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Abstract
Anesthesia drug overdose hazards and lack of gold standards in anesthesia monitoring lead to an urgent need for accu-
rate anesthesia drug detection. To investigate the PPG waveform features affected by anesthesia drugs and develop a 
machine-learning classifier with high anesthesia drug sensitivity. This study used 64 anesthesia and non-anesthesia 
patient data (32 cases each), extracted from Queensland and MIMIC-II databases, respectively. The key waveform 
features (total area, rising time, width 75%, 50%, and 25%) were extracted from 16,310 signal recordings (5-s duration). 
Discriminant analysis, support vector machine (SVM), and K-nearest neighbor (KNN) were evaluated by splitting the 
dataset into halve training (11 patients, 8570 segments) and halve testing dataset (11 patients, 7740 segments). Sig-
nificant differences exist between PPG waveform features of anesthesia and non-anesthesia groups (p < 0.05) except 
total area feature (p > 0.05). The KNN classifier achieved 91.7% (AUC = 0.95) anesthesia detection accuracy with the 
highest sensitivity (0.88) and specificity (0.90) as compared to other classifiers. Kohen’s kappa also shows almost 
perfect agreement (0.79) with the KNN classifier. The KNN classifier trained with significant PPG features has the 
potential to be used as a reliable, non-invasive, and low-cost method for the detection of anesthesia drugs for depth 
analysis during surgical operations and postoperative monitoring.

Keywords  Photoplethysmography · Anesthesia depth · K-nearest neighbor · Queensland database · MIMIC II database

1  Introduction

General anesthesia causes a total or partial loss of sensation 
and anesthesia drugs affect pulmonary and cardiovascular sys-
tems [1, 2]. The autonomic nervous system (ANS) controls the 
autonomous activity during the unconsciousness of the patient. 

Stimulation during surgical procedures causes changes in car-
diac and pulmonary systems by ANS [3]. At least more than 
one type of anesthesia drug is used for the patients. Patients 
with cardiovascular diseases (i.e., myocardial infarction, 
hypertension) are more susceptible to anesthesia complica-
tions. Overdosing of anesthesia drugs can cause severe com-
plications that could be life-threatening. Related vital signs 
(e.g., heart rate, respiratory rate) are often monitored during 
anesthesia. Anesthesia depth has been detected by the electro-
encephalographic modalities that include the bispectral index 
and spectral entropy but these modalities are expensive and 
insensitive to different anesthetic drugs [4]. Due to its clini-
cal importance, recently, some novel technologies based on 
electroencephalography have been proposed for detecting 
anesthesia depth [5]. A deep learning-based algorithm using 
electrocardiography (ECG) and photoplethysmography (PPG) 
was proposed but two-channel analysis has the potential to be 
complicated during implementation [6]. Therefore, there is an 
urgent clinical need for a simple, non-invasive, low-cost, and 
reliable method to detect anesthesia depth.
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PPG is a low-cost, non-invasive technology widely 
used for blood saturation and heart rate measurement 
[7]. PPG waveform reflects the volumetric changes in 
the distal circulation and is influenced by the respiratory 
drive and other patient-specific physiological conditions. 
Earlier research revealed that the time-based PPG wave-
form features are associated with cardiovascular changes 
in the human body [8]. Recently, PPG has been widely 
used in extracting cardiovascular and respiratory param-
eters [8–10]. PPG can reflect the vital signs related to the 
anesthesia depth [8–10]. Therefore, recent years have wit-
nessed increasing works on PPG-based anesthesia depth 
detection [12–14].

PPG waveforms have been used to investigate the depth 
of anesthesia or to validate other technologies during surgi-
cal operations or post-surgical procedures [10–14]. Coutrot 
et al. examined the detection of intraoperative hypotension 
by the PPG waveform features (dicrotic notch height (DIC) 
and perfusion index (PI)) during vasopressor boluses [11]. 
Both parameters separately achieved a good area under the 
curve (AUC) of 0.86 and 0.83 and the combination of both 
parameters improved prediction better with an AUC of 0.91 
[12]. Ezri et al. and Chen et al. both used digital and ana-
logue finger PPG waveforms to detect and classify anesthe-
sia depth whilst different parameters were used (PPG ampli-
tude in Ezri et al.’s study, approximate and sample entropies 
in Chen et al.’s study with AUC of 0.87) [12, 13]. Bao used 
various PPG waveform features (amplitude, notch, baseline 
amplitude, and area) to achieve a balanced anesthesia detec-
tion. The PPG waveform features and cerebral state index 
were used to compare the detection of balanced anesthesia. 
Both of the parameters detect different aspects of balanced 
general anesthesia [14]. Park et al. used nasal PPG wave-
forms for analgesia detection during general anesthesia. This 
study proposed the nasal PPG index used to predict the pain 
level during anesthesia with an AUC of 0.73 [15].

To summarize, earlier studies did not comprehensively 
investigate the key waveform features of PPG in the detec-
tion of anesthesia drug detection in the patient. However, 
some studies tried to improve the accuracy in detecting the 
depth of anesthesia or balanced anesthesia but still lack a 
comprehensive comparison of different PPG waveform fea-
tures, which plays a key role in the development of algo-
rithms to reliably and accurately detect anesthesia in differ-
ent subjects [12–14]. A similarity in previous studies was 
found during the literature review that all previous studies 
only recruit patients having anesthesia only. The compari-
son between anesthesia and no-anesthesia volunteers could 
reveal more details of the PPG-based anesthesia detection 
and provide the true sensitivity of the predicting algorithm. 
To make a reliable anesthesia depth detection algorithm 
from the PPG waveform, a machine learning classifier 
trained with significant waveform features is needed.

This pilot study was designed to investigate the key PPG 
waveform features and develop machine learning classifiers 
to achieve reliable PPG-based anesthesia drug detection in 
the patients. Multiple classification algorithms were devel-
oped, trained, and evaluated based on the data from both 
anesthesia and non-anesthesia patients.

2 � Materials and methods

The major steps of this pilot study are summarized in Fig. 1:

1)	 Extract and segment raw PPG waveforms from two 
online databases (Queensland and MIMIC-II). Based 
on the manual check, the good-quality signal segments 
with 5 s of duration were saved.

2)	 Pre-process each PPG waveform segment using noise 
filtration, baseline elimination, and 2-dimensional (2D) 
normalization (x-axis and y-axis).

3)	 Extract and label PPG waveform features.
4)	 Identify the significant features affected by the anesthe-

sia drugs using a t-test.
5)	 Train and evaluate classification algorithms using ten-

fold cross-validation and compare anesthesia detection 
accuracy.

2.1 � Physiological signal databases

In this study, two online physiological signal databases 
(Queensland and MIMIC-II) were used to extract PPG 
waveforms:

Fig. 1   Flow diagram of the 
study Raw PPG Signal 
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2.1.1 � Queensland database

Queensland database contains pre-recorded physiological 
parameter data, including PPG waveforms from patients who 
had anesthesia as shown in Fig. 2(a) [16]. These signal record-
ings were affected by the movement artefacts and also faced 
missing data problems. Therefore, signal recordings were seg-
mented into 5-s signal segments. The Queensland database 
contains PPG waveforms from 32 patients who underwent 
surgical procedures (25 for general surgery, 4 for sedation, 
and 3 for spinal anesthesia). With variations of signal quality 
among the 32 cases, finally, 8155 5-s PPG signal segments 

were extracted in total. Each folder contained excel files that 
have multiple physiological signal recordings with variable 
measurement duration. The PPG signals were recorded using 
a 100-Hz sampling frequency.

2.1.2 � MIMIC II database

Similarly, only 32 cases were randomly separated from 3000 
patient data in the MIMIC II database. To further match the data 
sizes of anesthesia and non-anesthesia patients, 8155 5-s PPG 
signal segments were extracted from the 32 recordings. Each 
recording contains three physiological parameter data, as shown 

Fig. 2   Physiological data-
bases. a Queensland database 
structure which consists of 32 
folders; each folder contains 
eight physiological parameters. 
Only PPG signal recordings 
were separated (shaded box) 
for further processing. b The 
MIMIC database contains 3000 
recordings of three physiologi-
cal parameters, including PPG 
signals. Each recording folder 
contains recorded parameters 
from each non-anesthesia and 
anesthesia patient with variable 
measurement duration
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in Fig. 2(b). All physiological waveforms were recorded with 
a 125-Hz sampling frequency. In total, 16,310 PPG waveform 
segments were used; each sample contained five average PPG 
features from the beats present in each PPG waveform segment.

2.2 � PPG signal pre‑processing

Savtizky-Golay filter was preferred over other averaging filters 
as it preserves the edges of the PPG waveform [17]. In this 
study, a filter having 4 poles and 20 frames was used to maxi-
mally reduce the noises. The baseline wandering caused by 
the respiratory drive was removed from each PPG waveform 
segment. After the removal of baseline wandering and high-
frequency noises (e.g., powerline noise, electromyographic 
noise, motion artefact), the 2D normalization (in both width 
and amplitude) was then performed on each cardiac cycle (i.e., 
pulse beat) to protect PPG waveform segments from ampli-
tude and sample rate variation between two PPG waveform 
databases [8, 9]. A pre-processed pulse is depicted in Fig. 3.

2.3 � PPG waveform features extraction

In this study, only key signal features (total area, rising 
time, width 75%, 50%, and 25%) that have significant 
point-biserial correlation > 0.6 with anesthesia drug were 
selected from 13 PPG signal waveform features (rising 
time, total area, width 10% [i.e., the width of the wave-
form at 10% of the total amplitude], width 20%, width 25%, 
width 30%, width 40%, width 50%, width 60%, width 70%, 
width 75%, width 80%, and width 90%). The selected key 
signal features were used and discussed in this study that 
was extracted from each beat of the PPG waveform seg-
ment, as shown in Fig. 3. These PPG pulse features are 
associated with vascular tone, BP changes, and systemic 
vascular resistance [18, 19]. Rising time is the duration 
between the onset and the peak point of the PPG signal 
pulse, as shown in Fig. 3. The rising time has been used as 
a key feature to detect cardiovascular irregularities [20]. 
The total area under the PPG signal waveform was calcu-
lated by dividing the waveform space into N equal trap-
ezoid triangles. The area under the curve has a significant 

relationship with the BP [21]. The pulse widths at different 
heights were calculated against the normalized y-axis. It 
has been reported that PPG pulse width has a strong rela-
tionship with systemic vascular resistance [22].

The detection of peak and onset points was based on the 
slope (i.e., first derivative) of the PPG signal waveform. 
The algorithm detects the extrema when the sign of slope 
changes (i.e., from positive to negative for maxima, from 
negative to positive for minima), from which the peak and 
onset were selected as the global maximal and minimal val-
ues. Based on the peak and onset, the height (rising time), 
area, and widths were calculated in each beat.

2.4 � Machine learning algorithms

Three classification machine learning algorithms were 
evaluated in this study for the detection of anesthesia and 
non-anesthesia patients from PPG signal features only. The 
algorithm details are as follows:

2.4.1 � Discriminant analysis

In this research, a linear discriminant analysis classifier was 
used for anesthesia drug detection. This algorithm uses five 
sets of PPG waveform features present in each row of 16,310 
total samples. This algorithm reduced dimension by data 
projection. It maximizes the distance between means and 
reduces scatter. Next, it checks prior and posterior prob-
ability and predicts the outcome, which is anesthesia or 
non-anesthesia patients [23]. The summary of discriminant 
analysis algorithm actions is labeled in Fig. 4(a).

In this algorithm, anesthesia detection is based on the 
least classification cost in Eq. 1:

where:
ŷ = detection.
K = number of categories (anesthesia/non-anesthesia).
P(k|x) = posterior probability.
C(y|k) = classification error of extracted signal features.

(1)ŷ = argmin
∑K

k=1
P(k|x)C(y|k)

Fig. 3   Extracted PPG waveform 
features from every single beat 
of the PPG waveform extracted 
from a 5-s signal segment. 
The rising time is indicated by 
the vertical black dashed line 
which points to the time on 
the horizontal axis, widths are 
indicated by the horizontal red 
dashed lines, and the total area 
is represented by the creamy 
corn color under the curve
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2.4.2 � K‑nearest neighbor

KNN is the widely followed classification technique among 
researchers. It measures the distances between a query and 
neighboring points in the training data. All the distances 
were sorted in ascending order, and, based on majority vote 
criteria, predicted the anesthesia drugs in the patient from 
PPG waveform features [24]. A summary of the necessary 
steps of the KNN algorithm for anesthesia patient detection 
is shown in Fig. 4(b).

In the KNN algorithm, the distance between the query 
point and the neighboring data points measure Euclidean 

distance and standardize Euclidean distance, Mahalanobis 
distance, city block distance, Minkowski distance, Chebychev 
distance, cosine distance, correlation distance, Hamming dis-
tance, Jaccard distance, and Spearman distance. In this study, 
Minkowski distance with K = 6 neighboring data points was 
used to train and test the anesthesia detection algorithm. 
Malinoski distance uses the following Eq. 2 for the metric:

This KNN algorithm develops to find the closest x point 
to set the y point.

(2)dst =
p

√∑n

j=1
|xsj − ytj|p

Fig. 4   Flow diagrams of supervised classification machine learning 
algorithms. a Simplified diagram of discriminant analysis algorithm 
used to predict anesthesia drugs present in the human body. The algo-
rithm used means and covariance in dimension reduction to increase 
the distance between the means and scatter. The last step checked the 
posterior probability, prior probability, and classification error before 
prediction. b The KNN algorithm analyzes PPG waveform features 

and measures Minkowski distances between the query point and three 
neighboring data points. Later, a majority check was performed to 
finalize the detection result of anesthesia/non-anesthesia patients. c A 
flow diagram of the SVM algorithm that shows the hyperplane and 
epsilon tolerance (surrounded by dashed lines) created by the support 
vectors
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2.4.3 � Support vector machine

This algorithm selects the most appropriate hyper-
plane that separates the data into different categories. 
The hyperplane selection is based on the largest margin 
between different categories. It uses the Lagrangian func-
tion to separate the PPG waveform features of anesthesia 
and non-anesthesia categories based on the epsilon toler-
ance developed from support vectors. The linear kernel 
was used in the training of this algorithm. A simplified 
block diagram of all the necessary step SVM algorithm 
to detect anesthesia is shown in Fig. 4(c). The algorithm 
becomes converged when the feasibility gap tolerance 
between the primal and dual objective function is less 
than 1 e-3 [25].

In this research, only two categories (anesthesia/non-
anesthesia) are available to differentiate. The best hyper-
plane between these categories consists of the largest pos-
sible margin between the categories. In this classification 
algorithm, the training data set is represented as xj and pre-
dicted variables (yj). The primal Eq. (3) of the hyperplane 
formation is:

where β ϵ Rd and b represent the real number; this equation 
implies a suitable hyperplane for identifying anesthesia and 
non-anesthesia. Here, β and b would be reduced for all the 
data points (xj, yj)

The support vectors present on the decision boundary are 
xj, and the others:

2.5 � Data processing

In total, 13 PPG signals were analyzed using the statistical 
point biserial correlation method to quantitatively assess 
the relationship between PPG signal features and anesthesia 
drugs [26]. Only 5 key features were selected that showed 
a correlation higher than 0.6. For each feature, the values 
extracted from different beats were averaged to derive a sin-
gle estimation for the 5-s segment for next-step analysis.

The dataset that consists of 16,310 data segments of 64 
patients was divided into two halves. The first half which 
consists of 8570 PPG signal segments (32 patients, 16 anes-
thesia, and 16 non-anesthesia) was used for algorithm train-
ing. The other half which consists of 7740 segments (32 
patients, 16 anesthesia, and 16 non-anesthesia) was used for 
algorithm testing.

(3)f (x) = x
�

� + b = 0

(4)yjf
(
xj
)
≥ 1

(5)yjf
(
xj
)
= 1

For this study, the normality test was not performed since 
the sample size far exceeded the sample size limit of 40 [27]. 
It is suggested that a parametric procedure can be used even 
if the data is non-parametric when the sample size exceeds 
the 40-sample limit [27].

The box plot was used to compare the feature segments 
extracted from anesthesia and non-anesthesia patients (i.e., 
data from Queensland and MIMIC II datasets). The t-test 
was applied to check if there was any significant difference 
in PPG features between anesthesia and non-anesthesia 
patients. The key features were separated for machine learn-
ing algorithm development.

The tenfold cross-validation was used during each itera-
tion of optimization of machine learning algorithms. Each 
data segment was labeled with a patient number in order 
to avoid any bias between the training and testing steps of 
cross-validation. The optimized algorithms were applied to 
the testing dataset to check their performance.

The confusion matrix was created to calculate error rate, 
sensitivity, false positive rate, specificity, precision, and 
Cohen’s kappa. The region of interest (ROC) curves were 
used to check area under the curve (AUC) of each algorithm.

3 � Results

Figure  5 shows the normalized PPG waveforms of the 
patients having anesthesia drugs (red line) and the non-anes-
thesia patients (green line). Both PPG waveforms have dif-
ferent wave characteristics in terms of time-based waveform 
features (peak timing, area under the curves, and widths).

3.1 � The t‑test results

The two-sample unequal variance t-test was applied to 
the time-based PPG waveform features extracted from 
anesthesia (i.e., from the Queensland database) and non-
anesthesia patients (i.e., from MIMIC II database). This 
t-test aims to identify the significant parameters for the 
training and testing of three classifiers (discriminant 
analysis, SVM, and KNN). The t-test results’ identified 

Fig. 5   The average and normalized PPG waveform waveforms of 
anesthesia and non-anesthesia patients admitted to the hospital
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total area feature has no significant difference between 
the anesthesia and non-anesthesia patients (p > 0.05). 
Conversely, other waveform features (rising time, width 
75%, width 50%, and width 25%) show significant differ-
ence (p-value < 0.05) in Fig. 6.

3.2 � Classifier optimization

The Bayesian optimizer algorithm was used to optimize 
all three classifiers to get hyperparameters using tenfold 
cross-validation. All three classifiers (discriminant analy-
sis, SVM, and KNN) were optimized with 30 iterations to 
find the best hyperparameters having minimum classifica-
tion error as shown in Fig. 7.

The SVM classifier achieved the best hyper-parame-
ters (box constraints = 0.32 and kernel function = cubic) 
at the minimum classification error of 0.165 on 26th 

Fig. 6   The box plot diagram of PPG waveform parameters extracted 
from anesthesia (features name starting with Q for Queensland data-
base) and non-anesthesia (M for MIMIC II database) patient’s PPG 
waveforms. The values of each PPG waveform feature were compared 
between anesthesia and non-anesthesia patient subgroups. Note: * 
denotes a significant difference and NS means no significant difference

Fig. 7   Optimization curve of 
the classifiers shows estimated 
and observed minimum clas-
sification errors in 30 iterations 
under tenfold cross-validation
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iteration during optimization. Similarly, the discrimi-
nant analysis classifier achieved the best hyperparameters 
(discriminant type = quadratic) at the minimum classifi-
cation error of 0.29 on the 1st iteration. At last, the KNN 
classifier achieved the best hyperparameter (number of 
neighbors = 3; distance metrics = Euclidean, and distance 
weight = inverse) at the minimum classification rate of 
0.09 on the 23rd iteration during optimization.

3.3 � Classifiers evaluation

Among highly optimized classifiers, KNN classifi-
ers achieved the highest anesthesia detection accuracy 

(91.7%) as shown in Table 1, whereas SVM and discri-
minant analysis classifiers achieved accuracies even less 
than 75% (66.5% and 73.4).

Furthermore, the confusion matrices of the classifiers 
show the details of how these classifiers perform to suc-
cessfully classify patients having anesthesia using sig-
nificant PPG waveform features only. The numbers in the 
confusion matrices show KNN outperformed and sepa-
rate the highest number of anesthesia and non-anesthesia 
PPG features (3608 and 3506) among all the classifiers 
under test as shown in Fig. 8.

In Fig. 9, the area under the curve of all three classi-
fiers for the classification of patients having anesthesia 
drugs and no-anesthesia shows that the KNN classifier 
achieves the best AUC of 0.95 as compared to discrimi-
nant analysis (0.84) and SVM (0.71) classifiers.

Moreover, the KNN classifier achieved a low error 
rate (0.10) against discriminant analysis (0.26) and SVM 
(0.33). The sensitivity (0.88), specificity (0.90), and pre-
cision (0.90) also show the effectiveness of the classifier 
using significant PPG waveform features in Fig. 6. To 
determine the inter-rater reliability of the classifier under 
test, Cohen’s kappa coefficient was calculated that shows 
KNN almost has a perfect agreement (0.79) or inter-rater 
reliability as compared to other classifiers which show 
the fair agreement (0.46 and 0.33) as listed in Table 2.

Table 1   Anesthesia detection accuracies of machine learning classi-
fiers tested using testing dataset

Classifiers Hyperparameters Detection 
accuracy 
(%)

Discriminant analysis Discriminant type = quadratic 73.4
SVM Box constraints = 7.59

Kernel function = Gaussian
66.5

KNN Number of neighbors = 3
Distance metrics = Euclidean
Distance weight = inverse

91.7

Fig. 8   The Confusion matrices of three classifiers (discriminant analysis, SVM, and KNN) trained and tested with four key PPG waveform 
features (rising time, width 75%, width 50%, and width 25%) using the split into two halves technique. Note: A, anesthesia; NA, non-anesthesia

Fig. 9   The area under the 
curve (AUC) of all classifiers 
(discriminant analysis, SVM, 
and KNN) in the detection of 
the patient having anesthesia 
drug-using significant PPG fea-
tures. The KNN achieve the best 
AUC of 0.95 with the highest 
sensitivity of 0.88 and the least 
false-positive rate of 0.09
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4 � Discussion

This study shed light on reliable PPG-based anesthesia 
drug detection. Following existing studies, the results 
confirmed the potential of PPG waveform significant 
features and machine learning classifiers in detecting 
anesthesia drugs. Based on the quantitative comparison 
between different waveform features, the KNN algorithm 
achieved high accuracy of detection.

4.1 � Significance of PPG waveform features 
in anesthesia depth detection

Generally, PPG has been used during anesthesia monitor-
ing to monitor vital signs (heart rate) and oxygen satu-
ration only. This study will open a new chapter toward 
reliable anesthesia drug monitoring with the machine 
learning classifier using significant time-based PPG 
waveform features. A previous study also mentioned the 
relationship between PPG and nociception (it is a process 
of the sensory nervous system that encodes the noxious 
substance) [14]. Another study used PPG acceleration 
features to determine the depth of anesthesia and com-
pared it with the cerebral state index, which was also pro-
posed for anesthesia monitoring [15]. Some other studies 

found the relationship between PPG and anesthesia, but 
those studies are only pilot studies that were carried out 
with a small amount of data.

None of the studies comprehensively investigated and 
identified PPG waveform features that have high sen-
sitivity to differentiate between PPG having anesthe-
sia drugs and non-anesthesia. Although some research 
groups attempted to evaluate their PPG-based technolo-
gies on anesthesia patients and achieved maximal AUC 
0.91 [11], the current machine learning classifier (KNN) 
using significant PPG features achieved AUC 0.95 as 
listed in Table 3. Nevertheless, it should be noted that our 
comparison was between anesthesia and non-anesthesia 
status, not between different depths of anesthesia as in 
some existing studies. The performance of our algorithm 
in the fine-grained classification of different anesthesia 
conditions deserves further investigation.

4.2 � PPG signal quality evaluation

The PPG signal quality is influenced by many factors 
including environmental (i.e., ambient light intensity), 
technical (e.g., sensor layout, skin attachment, powerline 
noise, hardware for denoising), and physiological (e.g., 
body movement, skin color, measurement site) factors 
[28]. Many methods have been proposed for PPG signal 
quality evaluation and processing based on morphologi-
cal, spectral, and statistical characteristics [29]. Due to the 
high heterogeneity of PPG signal quality, there is a lack of 
a standardized method for PPG signal quality assessment 
algorithm and manual assessment is still widely adopted 
as a reliable reference [30]. In this study, the Queensland 
database contains electronic glitches and movement arte-
facts found in various places. Therefore, we systemati-
cally analyze the data manually and concluded that the 5-s 
signal segment which consists of 4 cardiac cycles (0.8 s 
cardiac cycle × 5 s) not affected by the noise.

Table 2   Calculated parameters from confusion matrices where KNN 
achieved better performance among all the classifiers

Calculated parameters Discriminant 
analysis

SVM KNN

Error rate 0.26 0.33 0.10
Sensitivity 0.61 0.64 0.88
False positive rate 0.15 0.31 0.09
Specificity 0.84 0.68 0.90
Precision 0.79 0.65 0.90
Cohen’s kappa 0.46 0.33 0.79

Table 3   Comparison between earlier research and our study

Author Source Parameters Method Number of participants

Coutrot et al.2019 Finger PPG DIC + PI Statistical analyses (no 
machine learning)

61 (all under anesthesia)

Ezri.T et al.1998 Finger PPG Amplitude PPG amplitude proportionality 50 (all under anesthesia)
Chen W et al. 2020 Finger PPG Approximate and sample 

entropies
Prediction probability 40 (all under anesthesia)

Bao.H. et al Finger PPG Amplitude, notch, baseline 
amplitude, and area

Prediction probability 45 (all under anesthesia)

Park C et al. 2020 Nasal PPG Nasal photoplethysmography 
index

Statistical analyses 81 (all under anesthesia)

Roy Chowdhury et al., 2021 ECG and Finger PPG ECG and PPG heatmaps Deep learning 50 (all under anesthesia)
Our Work Finger PPG Rising T, width 75%, width 

50%, width 25%
KNN classifier 64 (32 = anesthesia, 

32 = non-anesthesia)
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4.3 � Machine learning algorithms for anesthesia 
depth detection

Previous studies also lack the development of a reliable and 
accurate machine learning classifier. A recent study used 
both ECG and PPG signal heatmaps for the training and 
evaluation of deep learning algorithms to predict the depth 
of anesthesia. Consequently, no time-based features were 
discussed as the whole input signal was converted into heat-
maps [6]. Many researchers extracted EEG signal features 
for training and validation of different machine learning 
algorithms (fine decision tree, artificial neural network, and 
SVM) to get better accuracy (> 90%) in anesthesia depth 
monitoring but EEG has more complex signal waveforms 
than PPG [31–33]. Furthermore, previous studies lack 
detailed algorithm evaluation.

To summarize, no earlier study comprehensively evalu-
ated and applied the time-based PPG features in the machine 
learning-based classification of anesthesia and non-anesthe-
sia patients, as summarized in Table 3. Therefore, there was 
a need for such a study that could investigate the signifi-
cance of key PPG waveform features using updated machine 
learning techniques to better analyze classifier sensitivity in 
the identification of patients having anesthesia drugs. The 
waveform features selected in this study for the detection 
of anesthesia drugs within the patient have been identified 
as the important markers for cardiovascular and pulmonary 
activities that have a major role during anesthesia depth 
monitoring. This study will provide a platform for further 
research about the determination of reliable and accurate 
anesthesia depth detection, monitoring of individual anes-
thesia drugs during surgery, and post-operative monitoring 
of the patients having sedative pills.

4.4 � Study limitations

This study is limited to a combined dataset of 64 patients from 
Queensland and MIMIC-II (32 patients each) databases as it 
specifically investigated the potential of PPG application in 
the detection of non-invasive anesthesia drugs in the patients. 
The demographic data of the patients were not included in the 
dataset, therefore not considered in this study. It is well known 
that the morphology of PPG is affected by these factors (e.g., 
age, sex, body mass index). No anesthesia depth reference (BIS 
or spectral entropy) was available in the investigated online 
databases (Queensland and MIMIC-II).

4.5 � Future work

In the future study, an extensive dataset including demo-
graphic and clinical data will be created using hospital 
databases along with the anesthesia depth reference (BIS) 

to develop a better machine learning model that could esti-
mate the correct depth of anesthesia and provide a reliable 
and cost-effective monitoring solution to the staff. Addition-
ally, deep learning has been proposed as a promising tool 
to achieve reliable detection of anesthesia, which deserves 
exploration based on multi-center, large-scale datasets [34].

5 � Conclusion

This study shows the significant potential of a temporal 
PPG markers-based machine learning classifier as a key 
step toward accurate anesthesia depth detection. It paves the 
way for the development of PPG-based reliable algorithms 
toward fine-grained anesthesia depth analysis. Furthermore, 
PPG can also be used to determine the effects of anesthesia 
drugs on the human body during the drug trials as it is not 
sensitive to any anesthesia drug. This research also lays the 
groundwork for the development of a handheld and low-cost 
portable device for the monitoring of anesthesia drugs during 
surgical operations and post-operation within the hospital.
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