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Abstract

This paper extends the solution concept in information design prob-
lems, in which a designer aims to implement a particular game out-
come by controlling the structure of signals that the players receive.
Specifically, we consider settings in which an equilibrium is imple-
mentable only if it satisfies an exogenous selection criterion. We focus
on optimal information design in a common-interest two-player game
with binary actions, requiring the selected equilibrium to satisfy risk
dominance. We provide a method for the designer to maximize the
probability of making the best equilibrium risk dominant, and show
how to extend our approach to other settings.
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In an information design problem, an individual, called the designer, can affect

the beliefs of players in a game of imperfect information. She has a preferred

equilibrium, and cannot change the basic structure of the game. However, she can

control the signals the players receive in different states of nature. One aspect

that studies of information design typically do not address is whether the designer

can control which equilibrium the players coordinate on, if the game has multiple

equilibria. Extending the solution concept to incorporate equilibrium selection

criteria is the main focus of this article.

The standard solution concept, Bayes Correlated Equilibrium, requires only that

the designer’s preferred outcome is a Bayesian Nash equilibrium. The designer

chooses the signal structure, and then the players receive the signals and play the

game (which we call the continuation game), and are typically treated as willing

to obey the designer’s recommendation as long as it is part of an equilibrium. The

players are willing to put their faith in the invisible hand.

In some problems, however, the players might require an equilibrium to satisfy

a refinement. A canonical example is a coordination game, such as a stag hunt.

Hunting for a stag is in the players’ common interest, but experimental evidence

and evolutionary game-theoretic studies suggest players may be willing to do so

only if it is also risk dominant (examples and discussion of risk dominance include

van Huyck, Battalio and Beil, 1990; Crawford, 1991; Cooper et al., 1992; Kandori,

Mailath and Rob, 1993; Battalio, Samuelson and van Huyck, 2001; Schmidt et al.,

2003; Binmore, 2007; Anctil et al., 2010). The designer needs to reassure the

players that the strategic risk of coordination failure is not excessive, because the

players seek guidance from the invisible paw.1 This constrains the designer, and

she must consider the risk dominance criterion when deciding what information to

commit to providing.

In an economic context, consider a coordination game between a solvent but illiquid

borrower and two creditors. The borrower is the designer and the continuation

game consists of the creditors choosing between rolling their debts over or seizing

1To our disappointment, someone else thought of the invisible paw metaphor first. See
Wolgast (1984).
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their collateral. To focus on the information and coordination issue, assume for

now that the creditors are symmetric; we relax this assumption below. Further

assume that the players have shared prior beliefs that are commonly known, so

that the designer’s task is not complicated by (her or the players’) uncertainty

about how anyone would interpret the signals she designs. The borrower prefers

to stay in business, and would like her chosen signal structure to implement an

outcome in which the creditors roll over. This may be an equilibrium, but for

familiar reasons, seizing the collateral may also be an equilibrium. No one benefits

from runs; however, the creditors might need reassurance that rolling over is a risk

dominant equilibrium.

The designer’s problem is to choose the signal structure that maximizes the prob-

ability that rolling over is a risk dominant equilibrium, conditional on the infor-

mation the borrowers receive. In a symmetric (2×2) game, the designer’s problem

has a particularly enchanting solution. The risk dominance constraint collapses

into a condition in which she can focus on the payoffs in each state separately, at-

tach prices to each state, and rank the states by the price (on a technical level, her

solution is analogous to applying the Neyman-Pearson Lemma). As we show, this

approach is quite robust, working even if the designer’s objective function changes.

We show this by considering a case in which the designer aims to maximize the

expected payments to the players, rather than maximizing the probability of the

players rolling over.

If the players’ payoffs are asymmetric, the designer’s problem is generally more

complicated, as she cannot necessarily price the states independently. As we show,

however, the designer can use a fully constructive algorithm, which would map the

asymmetric game to an equivalent symmetric game, if such a symmetric game

exists, and would indicate to her whether there is no such equivalent symmetric

game. If the algorithm succeeds, she can solve the corresponding symmetric game,

pricing the states one by one, and know that she has solved her original problem.

Otherwise, she can use Kuhn-Tucker to solve the (generally harder) constrained

optimization problem.

By allowing for settings in which the players may not select the designer’s pre-
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ferred equilibrium, we relax the solution concept from Bayes Correlated Equilib-

rium. This extends work by Mathevet, Perego and Taneva (2020), Morris, Oyama

and Takahashi (2020), and Inostroza and Pavan (2022) that addresses the extreme

case of adversarial preferences between the players and designer. Examples of

cases with misaligned but not fully adversarial preferences are in Candogan (2020).

Good overviews of the standard solution concept in information design and prior

extensions are in Bergemann and Morris (2019); Taneva (2019). Our approach

builds on work exploiting the linear programming interpretation of Bayesian per-

suasion (Kolotilin, 2018; Dworczak and Kolotilin, 2019; Dworczak and Martini,

2019), which has recently been extended to information design (Doval and Skreta,

2021). In contrast to Bayesian persuasion (Kamenica and Gentzkow, 2011), our

information design setting has the challenge of a sender addressing multiple re-

ceivers, who may have different payoffs and who interact strategically.

The structure of the rest of this article is as follows. In Section 1 we study informa-

tion design in a symmetric, common interest coordination game. Section 2 allows

for heterogeneity in the payoffs in the continuation game. Section 3 discusses

robustness. Section 4 concludes.

1 A Symmetric Coordination Game

We begin by considering a game with three actors: a designer (she) and two players

(both he) of a symmetric (2× 2) common interest game of imperfect information,

referred to as the continuation game. Label the players as {1, 2}. We assume

throughout that all parties have rational expectations, that they share a common

prior, and that all communication is public. In the context of a rollover application,

allowing for private communication would raise additional issues (e.g., legal or

litigation questions) that are beyond the scope of our paper; for discussion of

privately informed receivers, see Kolotilin et al. (2017).

The two players move simultaneously. Each player’s action set is {L,R}. Let

ai be the action of player i ∈ {1, 2}. The payoffs, described below, depend on
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an unknown state. Uncertainty is characterized by a probability space (Ω,F , ψ)

in which ψ is a common prior. If Ω is discrete and ωk ∈ Ω, we write ψ(ωk)

or ψk as a shorthand for ψ({ωk}). Let r and ` be (F-measurable) nonnegative

random variables. Assume that r(·) weakly statewise dominates `(·); we relax this

assumption below in Section 3.

Given state ω ∈ Ω and action profile (a1, a2) ∈ {L,R}2, let i, j ∈ {1, 2} with i 6= j.

Player i’s payoff is

ui(ai, aj ;ω) =


`(ω), if ai = L

r(ω), if ai = aj = R

0, if ai = R, aj = L

(1)

The players choose their actions simultaneously after observing a public signal,

which the designer can influence as described below, but before learning the state.

There are two pure strategy equilibria in the continuation game: (R,R), which

is Pareto dominant, and (L,L).2 See Figure 1 for the payoffs; expectations are

conditional on players’ information.

E[`] 0

E[`] E[`]

E[`] E[r]

0 E[r]

L R

L

R

P
la

ye
r

1

Player 2

Figure 1: Payoff matrix of the (2×2) game.

2There is a mixed strategy equilibrium, which is never risk dominant and payoff equiv-
alent to (L,L). We do not mention it further.

4



The designer’s objective is to maximize the probability that the players select the

Pareto-dominant equilibrium. Her payoff is

uD(a1, a2) =

1, if a1 = a2 = R

0, otherwise
(2)

Strategic risk may induce the players to coordinate on the Pareto inferior equi-

librium (L,L). Each player may consider how much he has to lose by guessing a

different equilibrium from the one the other player has in mind. From Figure 1,

a player who chooses R when the other player believes the (L,L) equilibrium is

being selected would lose E[`]. One who chooses L when the other player believes

the (R,R) equilibrium is being selected would lose E[r]− E[`].

Harsanyi and Selten (1988) use this intuition to propose an equilibrium refinement

called risk dominance. Under this refinement, the selected equilibrium maximizes

the product of the deviation losses to each player. Thus, if E[`]2 ≥ (E[r]− E[`])2,

the (L,L) equilibrium is weakly risk dominant, and if this inequality is reversed, the

(R,R) equilibrium is weakly risk dominant. By the assumptions that r statewise

dominates ` and that r and ` are nonnegative, the Pareto-dominant equilibrium

(R,R) is weakly risk dominant if and only if

E[r] ≥ 2E[`] (3)

An easy but important consequence of (3) is that when the payoffs are symmetric,

the effects of each state on risk dominance can be analyzed in isolation. For

instance, if the state space Ω is finite and equal to {ω1, . . . , ωn}, (3) becomes

n∑
k=1

[2`(ωk)− r(ωk)]ψk ≤ 0 (4)

Inequality (4) means that the contribution of ωk to whether (R,R) is risk dominant

does not depend on ωj for any j 6= k.

If the players in the continuation game are willing to select an equilibrium only

5



if it is risk dominant, then the designer’s objective is to choose a signal structure

that maximizes the probability that the (R,R) equilibrium is risk dominant in

expectation conditional on the signals. As is standard in information design, we

assume the designer can commit ex ante to release a signal about the state, along

with a recommended action profile that the players would be willing to obey given

the signal.

If (3) or, equivalently, (4) holds ex ante, the designer’s problem is trivial (release

no information about the state and recommend that both players choose R). Oth-

erwise, to solve her problem, the designer partitions Ω into three F-measurable

subsets. In one, G0, she recommends the (R,R) equilibrium by releasing public

signal g. In another, B, she recommends playing (L,L), by releasing public signal

b. She may also need a third set, G1, on which she mixes, releasing public signal

g or b according to an independent randomization device.

The players observe public signal g or b and then make their decisions. The

partition and the designer’s recommended actions are common knowledge. We

summarize the sequence of events in Figure 2.

designer
chooses

(G0, G1, B)

nature
draws
ω ∈ Ω

public
signal g or
b revealed

players
choose
actions;

payoffs are
realized

Figure 2: Timeline

1.1 A three-state example

Consider the following three-state example.

Example 1.1. Let Ω = {ω1, ω2, ω3}, let (ψ1, ψ2, ψ3) = (0.5, 0.2, 0.3), and let the

corresponding payoffs be r(ω) = (9, 4, 3) and `(ω) = (5.5, 0, 2).
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Consider the ex ante expected payoffs to each player:

E[r] = 0.5 · 9 + 0.2 · 4 + 0.3 · 3 = 6.2

E[`] = 0.5 · 5.5 + 0.2 · 0 + 0.3 · 2 = 3.35

By (3), the (R,R) equilibrium is not risk dominant ex ante because E[r] = 6.2 <

2E[`] = 6.7. Therefore, without additional information, the players would select

the equilibrium (L,L).

The designer can clearly do better. An easy improvement would be to disclose the

state. Equivalently, she could let G0 = {ω2}, G1 = ∅, and B = {ω1, ω3}, telling the

players whether, conditional on the state, (R,R) is risk dominant. Coordination

is successful with probability ψ2 = 0.2, and each player’s expected payoff increases

by 4·0.2 = 0.8. This strategy is suboptimal, but a step in the right direction.

To find the designer’s optimal strategy, we write her problem as follows:

max
q1,q2,q3

3∑
k=1

qk (5)

subject to

(∀k ∈ {1, . . . , 3}) 0 ≤ qk ≤ ψk (feasibility) (6)

2E[`|g; q1, q2, q3]− E[r|g; q1, q2, q3] ≤ 0 (risk dominance constraint) (7)

Note that this objective function straightforwardly generalizes to an n-state setting

for any positive integer n.

In (5), qk represents the joint probability of state ωk and the good signal g. Thus,

if qk = ψk, the designer issues signal g if state ωk occurs (so that ωk ∈ G0). If

qk ∈ (0, ψk), then state ωk ∈ G1, and the designer mixes. In this case, if ωk occurs,

she reports g with probability qk/ψk. If qk = 0 and ωk occurs, she reports b.

For the risk dominance constraint, we can use the same reasoning by which we

rewrite (3) as (4), and replace the conditional expectation formulation of (7)
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with
3∑

k=1

[2`(ωk)− r(ωk)] qk ≤ 0 (8)

This formulation has the same form as a budget constraint, in which

pk := 2`(ωk)− r(ωk)

is the price associated with state ωk. Thus we refer to (8) as the designer’s budget

constraint. From the statewise values of ` and r in Example 1.1, we have p =

(p1, p2, p3) = (2,−4, 1).

Viewed in this light, the designer’s problem is equivalent to a consumer’s problem,

with her objective as (5), which she maximizes subject to her feasibility constraint

(6) and her budget constraint (8). Intuitively, [2`(ωk) − r(ωk)]qk is the amount

that consuming qk (i.e., incorporating qk units of ωk in G) moves the desirable

equilibrium toward (or below) the risk dominance constraint.

Some states may have a negative price, such as ω2 in the example. In these

states, the (R,R) equilibrium is risk dominant, corresponding to the designer’s

endowment in the consumer problem interpretation.

We solve the consumer’s problem in steps. First, she consumes all states with

nonpositive prices to full capacity. In the current example, state ω2 has a negative

price, so she sets q∗2 = ψ2 = 0.2. This creates slack of −4 ·0.2 = −0.8 in her budget

constraint (8).

Next, among the states with positive prices, she considers the ratio of the marginal

utility of each qk (which we denote by MUk) to its price. In the example,

MU1

p1
=

1

2
<

1

1
=
MU3

p3

Therefore, she always gets more marginal utility from spending on q3 than from

spending on q1. She consumes q3 until either her feasibility constraint or her budget

constraint binds. If she consumes q3 to full capacity ψ3, the amount of slack left
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in her budget constraint is

p2ψ2 + p3ψ3 = −4 · 0.2 + 1 · 0.3 = −0.5 < 0 (9)

leaving her with resources to spend on q1. As q1 has positive marginal utility,

she consumes it until either there is no more of it available or she runs out of

resources.

The designer does not have sufficient slack left in her budget to consume all of ψ1,

so she spends the rest of her budget on q1. From (8) and (9),

p1q
∗
1 − 0.5 = 0

so that

q∗1 =
0.5

p1
= 0.25

We can think of the designer’s optimal information structure as follows: if the

state is in {ω2, ω3}, she always reports g, so these two states form her set G0. If

the state is ω1, she mixes, so G1 = {ω1}. As ψ1 = 0.5 but q∗1 = 0.25, we can see

that the designer mixes with probability 0.5 if state ω1 is realized. The maximized

probability of coordination on (R,R) is 0.75, compared with the 0.2 she would

achieve by fully disclosing the state. The expected payoff to each player increases

from 4.15 if she fully discloses the state to 5.325.

1.2 A general state-space: results and interpretation

The general structure of the designer’s problem is that of finding a subset of a

state space with maximal measure, subject to a constraint:

max
G∈F

∫
ω∈G

dψ(ω) (10)

s.t.

∫
ω∈G

[2`(ω)− r(ω)] dψ(ω) ≤ 0 (11)
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As in the discrete example above, the designer solves this problem by evaluat-

ing each state individually (the solution is an application of the Neyman-Pearson

Lemma). In particular, the designer forms a cutoff c, and reports g when state ω

occurs only if 2`(ω)− r(ω) ≤ c.
Theorem 1. Suppose the payoff dominated equilibrium (L,L) is ex ante risk dom-

inant, but that the Pareto dominant equilibrium (R,R) has positive probability of

being risk dominant ex post. Then the designer’s optimal strategy is to pick a cutoff

c > 0 such that, for each ω ∈ Ω

If 2`(ω)− r(ω) < c, then ω ∈ G0

If 2`(ω)− r(ω) > c, then ω ∈ B

If 2`(ω)− r(ω) = c, then ω ∈ G1

with the mixing probability for states in G1 chosen to make (R,R) weakly risk

dominant, i.e., to make

E[2`(ω)− r(ω)|g] = 0

Note that if the Pareto dominant equilibrium (R,R) is ex ante weakly risk domi-

nant, the designer can optimally give a degenerate signal (such as setting G0 = Ω,

i.e., always reporting g). Similarly, if the dominated equilibrium (L,L) is ex post

risk dominant with probability 1, then the expected payoff to the designer is 0

regardless of her strategy.

As in the discrete example above, the designer’s problem is analogous to a con-

sumer’s problem, with (10) as the designer’s objective and (11) having the form

of a budget constraint, analogous to (4). For a given ω ∈ Ω, we write p(ω) :=

2`(ω) − r(ω) as the price associated with consuming ω. Because the designer re-

ceives constant marginal utility from any increase in the probability of reporting

g, the solution to her problem has the simple boundary condition: states ω, ω′ are

both on her boundary (i.e., both in G1) if and only if

∂U/∂ω

p(ω)
=
∂U/∂ω′

p(ω′)
⇔ 1

2`(ω)− r(ω)
=

1

2`(ω′)− r(ω′)
(12)
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Equation (12) shows the intuition of Theorem 1. Any states on the boundary must

have the same price, because they generate the same marginal utility. Call this

price c. Any state ω′′ with a lower price than c would always be included in G0,

and any state with a higher price than c is too costly and therefore is in B.

Her boundary satisfies 2`(ω)− r(ω) = c, i.e., it has the same slope of 2 as her risk

dominance constraint. In other words, she solves her problem by shifting her risk

dominance line to the right, without changing the slope. Figure 3 illustrates.

r

`

a

a

b

b

2a

r
=
`

r
=

2`

r
=

2`
−
c

Report g

Figure 3: The designer’s optimal disclosure region (dotted triangle and dark
gray trapezoid)

In the figure, the support of (r, `) is [a, b]2. Because r statewise dominates `, the

set of possible ex post values of r and ` is the gray triangle with the 45°-line as

its hypotenuse. The set of states in which (R,R) is risk dominant is shown as a

dotted right triangle, on and above the r = 2` line. This region combined with
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the interior of the dark gray trapezoid bounded on the right by the r = 2` − c
line defines the set G0. The r = 2`− c line defines G1. The designer chooses c so

that (E[`|g],E[r|g]) lies on the r = 2` line. The light gray irregular quadrilateral

defines the set B.

2 Asymmetric Payoffs

In the symmetric game discussed above, an important result is that we can analyze

risk dominance on a statewise basis. This enables us to treat each state separately

and associate a price with including each state in the set G = G0 ∪ G1 of states

generating the good signal g.

We now consider a game with asymmetric payoffs. As above, assume Player i ∈
{1, 2} in the continuation game has action set {L,R} and payoff function

ui(ai, aj ;ω) =


`i(ω), if ai = L

ri(ω), if ai = aj = R

0, if ai = R, aj = L

(13)

In contrast to the analysis in Section 1, we no longer require `1 ≡ `2 or r1 ≡ r2,

though we continue to require that for i ∈ {1, 2} and for every ω ∈ Ω, 0 ≤ `i(ω) ≤
ri(ω). Risk dominance requires that the product of deviation losses is maximized,

so the (R,R) equilibrium is weakly risk dominant given signal g if and only if

E[`1|g] · E[`2|g]− E[r1 − `1|g] · E[r2 − `2|g] ≤ 0 (14)

The designer’s problem is still a constrained optimization problem, which she

can solve using Kuhn-Tucker. The constraints, however, are more difficult to

analyze. For instance, in an n-state world, assume as before that designer chooses
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qk ∈ [0, ψk] as the probability of report g and state ωk. Then (14) becomes

(∑n
k=1 `1(ωk)qk∑n

k=1 qk

)(∑n
k=1 `2(ωk)qk∑n

k=1 qk

)
−
(∑n

k=1[r1(ωk)− `1(ωk)]qk∑n
k=1 qk

)(∑n
k=1[r2(ωk)− `2(ωk)]qk∑n

k=1 qk

)
≤ 0

Multiplying both sides by (
∑n

k=1 qk)2 and rearranging terms, we obtain

n∑
k=1

[`1(ωk)r2(ωk) + `2(ωk)r1(ωk)− r1(ωk)r2(ωk)]q2k

+

n−1∑
j=1

n∑
k=j+1

[`1(ωj)r2(ωk) + `1(ωk)r2(ωj) + `2(ωj)r1(ωk)

+ `2(ωk)r1(ωj)− r1(ωj)r2(ωk)− r1(ωk)r2(ωj)]qjqk ≤ 0 (15)

in which effects of each state do not appear separable. Nevertheless, under some

circumstances which we now describe, it remains possible for the designer to pro-

ceed as before, assigning a price to including each state in the set G and solving

the corresponding consumer problem.

The designer’s procedure works as follows. For a given asymmetric game, she

searches for a hypothetical corresponding symmetric game. Denote the available

actions of the corresponding symmetric game, if one exists, by {Ls, Rs} and the

payoffs by `s and rs. The corresponding symmetric game must have the following

property: the equilibrium (Rs, Rs) is risk dominant if and only if the equilibrium

(R,R) in the original game is risk dominant, i.e., if and only if (15) holds. If the

designer can find a corresponding symmetric game, then she solves her problem

exactly as in Section 1.

As the designer manipulates the qk, she needs the equivalence of risk dominance

in both games to be maintained. From (15), for j, k ∈ {1, . . . , n} with j < k, she
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has the following collection of n(n+ 1)/2 coefficients:

λk := `1(ωk)r2(ωk) + `2(ωk)r1(ωk)− r1(ωk)r2(ωk)

µjk := `1(ωj)r2(ωk) + `1(ωk)r2(ωj) + `2(ωj)r1(ωk) + `2(ωk)r1(ωj)

− r1(ωj)r2(ωk)− r1(ωk)r2(ωj)

Thus, λk is the coefficient on the q2k term in (15), and µjk is the coefficient on the

qjqk term. Plugging `s into (15) for `1 and `2, and plugging rs in for r1 and r2,

we obtain, for j, k ∈ {1, . . . , n} with j < k,

λk = 2`s(ωk)rs(ωk)− [rs(ωk)]2 (16)

µjk
2

= `s(ωj)r
s(ωk) + `s(ωk)rs(ωj)− rs(ωj)r

s(ωk) (17)

The conditions in (16), along with the requirement that rs statewise dominates `s,

can be rewritten as

rs(ωk) = `s(ωk) +
√

[`s(ωk)]2 − λk (18)

which in turn requires that `s(ωk) ≥
√
λk if λk ≥ 0. In addition, plugging (18)

into (17) and rearranging, we obtain

µjk
2

= `s(ωj)`
s(ωk)−

√
([`s(ωj)]2 − λj)([`s(ωk)]2 − λk) (19)

Example 2.1 shows a case in which an equivalent symmetric game exists.

Example 2.1. Let Ω = {ω1, ω2} with ψ1 = ψ2 = 0.5. Suppose the payoffs are as

follow:

(`1(ω), r1(ω)) =

(1, 3) if ω = ω1

(2, 4) if ω = ω2

(`2(ω), r2(ω)) =

(4, 7) if ω = ω1

(3, 5) if ω = ω2

Then λ1 = −2, λ2 = 2, and µ12 = 1.

14



The designer’s optimal strategy turns out to be (q1, q2) = (0.5, 0.39). We now show

that the designer can find this solution by constructing an equivalent symmetric

game.

The designer can find an equivalent symmetric game by substituting for λ1, λ2,

and µ12 in (19) and solving for `s(ω2) as a function of `s(ω1). Because λ2 < 0,

`s(ω1) is restricted only by nonnegativity. The solution is

`s(ω2) =
−`s(ω1) +

√
17[`s(ω1)]2 + 34

4

This value is strictly monotone and increases approximately linearly in `s(ω1), so

it is unbounded above. Therefore, the designer can always choose a value of `s(ω1)

for which `s(ω2) >
√
λ2 =

√
2. For example, at `s(ω1) = 2, she has `s(ω2) ≈ 2.02.

With these values, she can use (18) to find rs(ω1) ≈ 4.45 and rs(ω2) ≈ 3.46.

Using the corresponding symmetric game, the designer finds that the price of state

ω1 is p1 = 2`s(ω1)−rs(ω1) = −0.45. The price is negative, so she consumes all the

ω1 available by setting q1 = ψ1 = 0.5. That gave her a negative cost of −0.45·0.5 =

−0.225, so she can consume state ω2 at a price of p2 = 2`s(ω2) − rs(ω2) = 0.58

until she exhausts her endowment. That is, she sets q2 = 0.225/0.58 ≈ 0.39.

On the other hand, not every asymmetric game has a corresponding symmetric

game. For instance, suppose for some j and k, µjk = 0 and both λj and λk are

negative. Then (19) is not satisfiable. Example 2.2 illustrates.

Example 2.2. Let Ω = {ω1, . . . , ωn} for n ≥ 3, and assume that each state occurs

with positive probability (i.e., ψi > 0). For j, k ∈ {1, . . . , n} with j < k, suppose

the payoffs for states ωj , ωk are as follow:

(`1(ω), r1(ω)) =

(1, 3) if ω = ωj

(2, 4) if ω = ωk

(`2(ω), r2(ω)) =


(
4, 254

)
if ω = ωj(

3, 254
)

if ω = ωk

Assume the payoffs in the other states guarantee that (R,R) is not ex ante risk

dominant (i.e., (R,R) is not risk dominant if we set qi = ψi at each state). Then
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λj = λk = −1/2 and µjk = 0. By (19), a solution would require

0 = `s(ωj)`
s(ωk)−

√(
[`s(ωj)]2 +

1

2

)(
[`s(ωk)]2 +

1

2

)
By the nonnegativity of `s(·), the right-hand side is always negative. Therefore,

there can be no symmetric game that is equivalent to the original asymmetric

game.

In the special case in which the asymmetries are a question of scaling, there is

always a corresponding symmetric game. Therefore, the risk dominance condition

in this case can always be reduced to a linear constraint, and the designer can

price each state individually. We state this result as follows:

Proposition 1. Let α > 0 be an arbitrary constant. Suppose that ∀ω ∈ Ω, `1(ω) =

α`2(ω) and r1(ω) = αr2(ω). Then the solution to the designer’s problem is identical

to that of the symmetric game in which α = 1.

In the rollover game interpretation, Proposition 1 says that the relative size of the

creditors does not matter, as long as their support is required for the borrower’s

survival.3

3 Robustness

Throughout the analysis so far, we have taken for granted the designer’s objective

of maximizing the probability of the payoff dominant equilibrium, and that this

is in the interest of all parties. We now address two possible objections to this

viewpoint.

The first is that the designer’s preferred equilibrium could be payoff dominant in

ex ante expectation, but may not always be statewise payoff dominant. For exam-

ple, in the rollover game interpretation, there could be some states in which the

3Alternatively, if `1 = α`2 and r1 = αr2, then the designer can pick `s =
√
α`2 and

rs =
√
αr2. Then the λk and the µjk are unchanged, and both sums on the left-hand side

of (15) are multiplied by the positive constant α, which is irrelevant to the inequality.
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creditors are better off if the firm is liquidated. It is natural to ask if there are

circumstances under which the designer recommends rollover when liquidation is

efficient, while simultaneously recommending liquidation when rollover is efficient.

Proposition 2 shows the answer is yes. The requirement is that any state ω̂ inef-

ficiently included in G (i.e., for which the r(ω̂) < `(ω̂)) must have low stakes, in

the sense that r(ω̂) and `(ω̂) have to be sufficiently small.

Proposition 2. Let ω1, ω2 ∈ Ω, with r(ω1) > `(ω1) and r(ω2) < `(ω2). The

following are necessary for ω2 ∈ G0 ∪G1 and ω1 ∈ B:

1. 2`(ω2)− r(ω2) ≤ 2`(ω1)− r(ω1), and

2. r(ω2) < `(ω2) < `(ω1) < r(ω1).

That is, the payoffs in state ω2 must be small compared with those in ω1.

Strictness of the first inequality in Proposition 2 is not enough for sufficiency,

because the designer might report g or b on both ω1 and ω2. However, if the first

inequality is strict, then ω1 ∈ G0 ∪ G1 only if ω2 ∈ G0. Nothing changes in the

proof of Theorem 1, so the result still holds.

A second concern we address is that the players in the continuation game can do

better than maximizing the probability of selecting the payoff dominant equilib-

rium. If the players could choose the designer’s strategy, they would prefer to have

the designer maximize their expected payoffs. Addressing this concern is a larger

departure from the Bayesian persuasion tradition in information design, and has

more of the feel of mechanism design.

We first return to the discrete setting of Section 1.1. If the designer’s preferences

are perfectly aligned with those of the players, her constraints are as before and

her objective function is

max
q1,...,qn

U(q1, . . . , qn) =

n∑
i=k

qk (r(ωk)− `(ωk)) , (20)

so that her marginal utility of qk is now r(ωk)− `(ωk).
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As before, the designer first consumes all of the states with a nonpositive price.

In the three-state example of Subsection 1.1, she sets q2 = 0.2, and her budget

constraint does not bind, leaving slack of −0.8.

Next, she ranks states by their marginal utility to price ratio:

∂U/∂ω

p(ω)
=

r(ω)− `(ω)

2`(ω)− r(ω)

This ratio is 4.5/2 for state ω1 and 1 for state ω3, so the designer focuses on q1

next. Her budget constraint binds if

p1q1 + p2q2 = 0

⇔ 2q1 = 0.8⇔ q∗1 = 0.4

This is less than the full capacity of ψ1, so the designer stops here. If state ω1

occurs, the designer randomizes and reports g with probability 4/5. She always

reports g if the state is ω2, and she always reports b if the state is ω3.

Overall, the probability of successfully coordinating on the (R,R) equilibrium is

0.6, compared with 0.75 in the example of Subsection 1.1. However, the expected

payoffs to the players are 5.55, compared with 5.325 above.

The general case is similar: because the marginal utility of adding a state to G

is now the payoff from the good equilibrium, rather than a constant, the designer

shifts the slope rather than the intercept of the risk dominance boundary line. See

Figure 4. We state this precisely in Proposition 3. For the proposition, we restrict

attention to the case in which ψ is atomless, as extensions to general cases are

similar to Theorem 1.

Proposition 3. The designer maximizes the players’ expected payoffs as follows:

if E[r] ≥ 2E[`], then set G0 = Ω. If ψ({ω ∈ Ω|r(ω) > 2`(ω)}) = 0, then set

G0 = {ω ∈ Ω|r(ω) ≥ 2`(ω)} and G1 = ∅. Otherwise, for some α ∈ (1, 2), set

G0 = {ω ∈ Ω|r(ω) > α`(ω)} and G1 = {ω ∈ Ω|r(ω) = α`(ω)}.

The slope α is chosen to make E[r|g] = 2E[`|g].
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Figure 4: The designer’s optimal disclosure region (dotted triangle and dark
gray triangle), where α ∈ (1, 2).

4 Conclusion

In information design problems, the designer cannot always take for granted that

the players in the continuation game will follow the designer’s advice. If the players

require any recommended equilibrium to satisfy a refinement, their requirement

becomes a constraint. Incorporating this constraint into the designer’s problem

therefore requires a change in the main solution concept.

As we show, in the case of risk dominance, the equilibrium refinement constraint

is often reducible to a linear inequality, which has the form of a budget constraint.

The designer’s problem then becomes analogous to a consumer’s utility maxi-

mization problem, and the optimal consumption choice corresponds the designer’s
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optimal information structure.

A Proofs

Proof of Theorem 1. Given that (L,L) is ex ante risk dominant but that there is

positive probability of (R,R) being risk dominant, there is an interior solution to

the designer’s problem

max
G∈F

∫
ω∈G

dψ(ω)

s.t.

∫
ω∈G

[2`(ω)− r(ω)] dψ(ω) ≤ 0

By the Neyman-Pearson Lemma and its extension to allow for randomization

(Kadane, 1968), the solution has the properties that, for some c > 0,

ω ∈ G if 2`(ω)− r(ω) < c

ω 6∈ G if 2`(ω)− r(ω) > c, and

E[r − 2`|ω ∈ G] = 0

Rearranging, it follows that G0 (the set of states that are in G with probability 1)

is {ω ∈ Ω|r(ω) > 2`(ω)− c} and that B = {ω ∈ Ω|r(ω) < 2`(ω)− c}. The designer

can randomize only on the boundary set {ω ∈ Ω|r(ω) = 2`(ω) − c}, and by the

conclusion of the Neyman-Pearson Lemma, she does so in order to make the risk

dominance constraint bind.
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Proof of Proposition 1. For a given measurable G ∈ F , (14) holds if and only if

(E[r1 − `1|G])(E[r2 − `2|G]) ≥ E[`1|G]E[`2|G]

⇔ (E[αr2 − α`2|G])(E[r2 − `2|G]) ≥ E[α`2|G]E[`2|G]

⇔ (αE[r2 − `2|G])(E[r2 − `2|G]) ≥ αE[`2|G]E[`2|G]

⇔ (E[r2 − `2|G])2 ≥ E2[`2|G]

The last line brings us back to the quadratic case in Section 1, i.e., the symmetric

case (where α = 1).

Proof of Proposition 2. The first condition comes from the associated consumer’s

problem: each state has the same marginal utility, so if the designer, viewed as a

consumer, includes ω2 and does not include ω1, then ω2 must be no more expensive,

i.e., 2`(ω2)− r(ω2) ≤ 2`(ω1)− r(ω1).

To get the second condition, rewrite the first one as follows:

2`(ω2)− r(ω2) ≤ 2`(ω1)− r(ω1)

⇒ `(ω2) + (`(ω2)− r(ω2)) < `(ω1) + (`(ω1)− r(ω1))

By hypothesis, the term in parentheses on the left-hand side is positive, and the

term in parentheses on the right-hand side is negative. Therefore,

`(ω2) < `(ω1)

as desired.

Proof of Proposition 3. As in the proof of Theorem 1, the corner cases of nondis-

closure (G0 = Ω) and full disclosure (G0 = {ω ∈ Ω|r(ω) ≥ 2`(ω)} and G1 = ∅)

are immediate.
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Otherwise, the designer’s problem is

max
G∈F

∫
ω∈G

[r(ω)− `(ω)]dψ(ω)

subject to (11). We can again apply the Neyman-Pearson Lemma, obtaining for

some d > 0,

ω ∈ G if
r(ω)− `(ω)

2`(ω)− r(ω)
< d

ω 6∈ G if
r(ω)− `(ω)

2`(ω)− r(ω)
> d, and

E[r − 2`|ω ∈ G] = 0

with d chosen to make the constraint bind. Rearranging, the boundary condition

for ω ∈ G1 is

r(ω)− `(ω) = c[2`(ω)− 2r(ω)] ⇔ r(ω)− 2c+ 1

c+ 1
`(ω)

Letting α = (2c+ 1)/(c+ 1) and noting that c > 0, we see that 1 < α < 2.
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