
NOVEL ALGORITHMS TO ACCOUNT FOR UNCERTAINTIES IN THE

SEQUENCING OF GENETIC MATERIAL WITH SKEWED ABUNDANCE

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI’I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

AUGUST 2022

By
Cédric Arisdakessian

Dissertation Committee:

Guylaine Poisson, Chairperson
Mahdi Belcaid, Chairperson

Henri Casanova
Kyungim Baek

Scott Robertson
Monique Chyba

© Copyright 2022
by

Cédric Arisdakessian
All Rights Reserved

ii

Acknowledgements

Taking the Ph.D. route was a life changing experience, that would not have been successful

without my advisors, Dr. Guylaine Poisson and Dr. Mahdi Belcaid. Guylaine has become a

very close friend and mentor during those five years. Her guidance and advice were critical

to my success in my PhD journey. She made me feel welcome in the ICS community and

valued as a researcher. Mahdi has been a close mentor from whom I owe most of my current

data science skills. At his contact, I learned how to think more critically and be a better

researcher. I will miss our encounters at coffee shops and our discussions on project ideas.

I would like to thank this dissertation’s committee for taking the time to carefully review

the manuscript and for their responsiveness whenever I was short on deadlines.

I wish to express my gratitude to Dr. Henri Casanova, for his insights in my everyday

research efforts. He is an infinite source of knowledge that made me grow both as a computer

scientist and as a person.

I wish to thank Dr. Kiana Frank for her positivity, selflessness and support in all my

endeavours, as well as for sharing with me her research with the local community. Working

in the Lo‘i at Ulupō Heiau was an enriching experience I am glad I took part in.

I would like to express my thanks to the entire computer science department for making

this journey possible, and in particular I would like to thank Ms. Janice Oda-Ng for making

me feeling welcome, and for her help in all of my administrative matters.

Lastly, I would like to thank my friends and family for their continuous encouragement

during those five years, and especially my mother Fabienne for her unwavering support in

the last year of this PhD.

iii

Abstract

The sequencing of genetic material (microbial DNA or RNA) is essential in biological

experiments. However, while the cost of sequencing has decreased substantially, the highly

skewed distribution of genetic material makes it challenging to accurately represent the

genetic content of a sample. For instance, in DNA-based metagenomic experiments, DNA

fragments are randomly sampled and used to identify and quantify organisms present

in an environmental sample. Rare species are sampled less frequently, thus challenging

subsequent bioinformatic analyses. Given the prevalence and the drastic implications of

the uneven distribution of genetic material on bioinformatic analyses, our research focuses

on new graph- and deep learning-based methods to address these issues in three different

contexts. Specifically, we propose (1) an imputation method that can accurately recover

the abundance of under-represented genetic material in single-cell RNA-seq experiments

(2) a binning method to reduce genome fragmentation in viral metagenome sequencing

experiments, and (3) a tool to explore and cluster viral populations based on their genomic

structure. Our contributions focus on three popular biological contexts for which the issue

of abundance hampers the bioinformatic analyses. Furthermore, the last two chapters focus

on understanding viral diversity and modeling the genesis of novel virus strains through

recombinations. Despite being at the core of the current COVID-19 crisis, the issue of

recombination remains understudied, and few tools exist to model how viral populations

evolve through recombination.

iv

Table of Contents

Acknowledgements . iii

Abstract . iv

List of Tables . vii

List of Figures . viii

Chapter 1: Introduction . 1

1.1 Background . 2

1.1.1 The basic units of life . 2

1.1.2 DNA and RNA sequencing . 4

1.2 Problem statement . 4

1.3 Contribution . 7

1.4 Structure of the Dissertation . 7

Chapter 2: DeepImpute: an accurate and efficient deep learning method for single-cell

RNA-seq data imputation . 10

2.1 Introduction . 11

2.2 Results . 13

2.2.1 Overview of the DeepImpute algorithm 13

2.2.2 DeepImpute is the most accurate among imputation methods on

scRNA-seq data . 14

2.2.3 DeepImpute improves the gene distribution similarity with FISH

experimental data . 17

v

2.2.4 DeepImpute improves downstream functional analysis 19

2.2.5 DeepImpute is a fast and memory efficient package 22

2.2.6 DeepImpute is a scalable machine learning method 22

2.3 Discussion . 25

2.4 Methods . 27

2.4.1 The workflow of DeepImpute . 27

2.4.2 Evaluation metrics . 28

2.4.3 Downstream functional analysis . 29

2.4.4 RNA FISH validation . 31

2.5 Availability of data and materials . 32

2.5.1 scRNA-seq Datasets . 32

2.5.2 Third party software . 32

2.5.3 DeepImpute’s material . 33

Chapter 3: CoCoNet: an efficient deep learning tool for viral metagenome binning . 44

3.1 Introduction . 45

3.2 Methods . 46

3.3 Results . 57

3.4 Discussion . 64

3.5 Conclusion . 66

3.6 Supplementary material . 73

3.6.1 Supplementary methods . 73

3.6.2 Supplementary figures . 75

3.6.3 Supplementary tables . 87

Chapter 4: Module painting . 92

4.1 Introduction . 92

4.2 Methods . 95

4.2.1 Definitions . 95

4.2.2 Module-painter: main steps and parameters 96

vi

4.2.3 Clustering metrics . 101

4.2.4 Data collection . 102

4.3 Results . 103

4.3.1 Module-painter reconstructs subpopulations in a simulated dataset . 103

4.3.2 Module-painter identifies recombinations in complete genomes 104

4.3.3 Module painter identifies recombinations in whole genome sequencing

experiments . 106

4.4 Discussion and conclusion . 108

Chapter 5: Conclusion . 113

5.1 Scientific contributions . 113

5.2 Future work . 114

5.3 Other contributions . 114

vii

List of Tables

S2.1 Single-cell datasets summary . 42

3.1 Simulation parameters summary . 58

S3.1 Dataset filtering summary . 87

S3.2 Bin count summary for each method . 87

S3.3 Hyperameter optimization of the parameters γ1, γ2, θ, max neighbors. 91

viii

List of Figures

1.1 Recombination process between 2 phages 3

1.2 Sequencing methods and impact of skewed genetic material distribution. . . 6

2.1 Neural network architecture of DeepImpute 14

2.2 Accuracy comparison between DeepImpute and other competing methods . 16

2.3 Comparison among imputation methods using RNA FISH data 18

2.4 Effect of imputation on downstream functional analysis on experimental data

(GSE102827) . 20

2.5 Effect of imputation on downstream functional analysis on simulated data

using Splatter . 21

2.6 Scalability comparison between imputation methods 24

S2.1 Preprocessing steps for DeepImpute . 41

S2.2 Masking experiment in single cell RNA-Seq data 42

S2.3 Effect of dropout rate on imputation accuracy 43

S2.4 Accuracy comparison between DeepImpute and two other variant architectures 43

3.1 CoCoNet’s neural network architecture and learning 49

3.2 CoCoNet clustering approach . 52

3.3 Distribution of k-mer distances . 59

3.4 Neural network performance on simulated data 60

3.5 Clustering performance on simulated data 62

ix

3.6 Clustering performance on Station ALOHA 63

S3.1 Template length histogram . 76

S3.2 Classification accuracy for simulated datasets 77

S3.3 Importance of coverage variability . 78

S3.4 Distances in composition and coverage spaces 79

S3.5 Effect of contig size on binning performance 80

S3.6 Heatmap view of hyperparameter optimization 81

S3.7 Taxonomy of RefSeq’s genomes . 82

S3.8 Bin size histogram for simulated data . 83

S3.9 Binning performance comparison . 86

4.1 Recombination mechanism in phages . 93

4.2 Example of coverage . 95

4.3 Coverage computation steps in module-painter 98

4.4 Missing fragments matching . 99

4.5 Parent selection . 100

4.6 Module-painter on simulated data . 104

4.7 Clustering of dairy phages . 105

4.8 Recombination analysis on WGS dataset . 107

x

Chapter 1

Introduction

DNA sequencing is the process of identifying the DNA sequence of the genetic material

in a sample. Its popularity has kept increasing over the years, and sequencing facilities now

provide fast and high-throughput services to sequence samples. However, the sequencing

process cannot yet produce ready-to-use data, but instead generate fragmented and

sometimes erroneous sequences. With the help of computational tools, it is possible to

improve the quality of the sequencing output and help in the most challenging part, the

data analysis.

The field of metagenomics, which consists in studying microbial communities in the

environment, has strongly benefited from this technology. By studying the nature and

abundance of microbes in an environment, we can learn more about its properties.

Experimentally, the composition and abundance of microbes in an environmental sample

(e.g., earth, water, dust, ...) can be estimated using whole-genome shotgun sequencing

technologies, and consists of sequencing the entire genomes of the microbial populations.

The sequencing process is complex and results in fragmented genomes that need to be

stitched together using computational tools. Another popular use of sequencing technologies

is the study of the activity of specific genes in a cell. In that case, we do not seek to

capture different genomes, but rather identify individual RNA copies, which are much

shorter than the whole genomes. For this reason, the genetic material can be sequenced

without fragmentation.

1

Whether we are sequencing a whole genome or the RNA in single cells, the sequencing

process amounts to random sampling of genetic material, and is therefore highly affected

by its underlying distribution. Our research focuses on new graph- and deep learning-

based methods to address these issues in three different contexts. Specifically, we propose

(1) an imputation method that can accurately recover the abundance of under-represented

genetic material in single-cell RNA-seq experiments (2) a binning method to reduce genome

fragmentation in viral metagenome sequencing experiments and (3) a tool to explore and

cluster viral populations based on their genomic structure.

1.1 Background

In this section, we provide the necessary bioinformatics and biology background for

understanding the research presented in the following chapters.

1.1.1 The basic units of life

The functions of living organisms are encoded in their DeoxyriboNucleic Acid (DNA), which

is made of two interleaved strands. A strand is a succession of molecules called nucleotides.

A nucleotide can be identified by its base which is one of A (Adenosine), C (Cytosine), G

(Guanine) or T (Thymine). At each position along the DNA, there are two complementary

bases (on each strand), called a base pair (or ”bp”), where the complement relationship

is a mapping that maps A↔ T and C↔G. Because of this complementary relationship, a

DNA sequence can be uniquely described with the sequence of its bases on one of the two

strands. In the following, we interchangeably use the words base, base pair, or nucleotide

since, for this dissertation, they correspond to the same entity.

The DNA can be seen as an efficient structure to compress the cell’s information: the

molecule itself is very stable and is preserved in the most secure part of the cell, the nucleus.

Similar to a software library, it provides functions that can be used upon request. Each

function is delineated in a region of the DNA (called a “gene”) and can be transcribed into

a transient form, the RNA. Finally, the RNA can be translated into its active form, the

2

protein, using a translation code mapping every three nucleotides (called a codon) to one

of 22 amino acids. Therefore, the DNA can be viewed as a static structure showing the

potential of a cell (all the possible things it can do), while the RNA and the proteins provide

a dynamic view of the cell’s activity at a certain time.

Every organism, including viruses, needs DNA or RNA to function. However, unlike

other organisms, viruses lack the necessary material to survive on their own. Thus, they

need to infect other living organisms (called “hosts”) and use their machinery to replicate.

Viruses are often categorized according to the type of host they infect. Bacteriophages, or

simply phages, are the most common viruses on earth and, as their name suggests, infect

bacteria. Viruses are ubiquitous throughout the earth [1], which makes encounters hard

to avoid. Thus, bacteria have naturally evolved to fight viral infection through various

mechanisms (such as the CRISPR-Cas system [2, 3], which is a bacterial mechanism that

cleaves and saves a fragment of the infecting virus’s genome in order to better target

it the next time). In turn, viruses also evolved to bypass those mechanisms. However,

viruses evolve at a much faster pace than other organisms, partly because of the process of

recombination [4, 5], which consists of exchanging part of their DNA with other members

of their species to produce two complementary children (see figure 1.1). This high sequence

variability can challenge DNA recognition mechanisms in bacteria (e.g. CRISPR) if the

saved fragment is altered.

Recombination
region

Figure 1.1: Recombination process between 2 phages

3

Both chapter 2 and 3 focus on viral metagenomes, and chapter 3 provides a more in-

depth study of viral recombinations and how it affects the structure of viral genomes.

1.1.2 DNA and RNA sequencing

In this work, we focus on DNA and RNA sequencing experiments, which involve measuring

the genetic content of a sample. In the case of DNA, our goal is to identify the genomes

of the living organisms in the sample, whereas for RNA, our goal is to identify the genes

being actively transcribed in a given context. Chapter 2 of this thesis focuses on single-cell

RNA sequencing experiments, which consists in measuring the (transcription) activity of

each individual cell in a sample.

DNA or RNA sequencing can today be easily achieved for a reasonable price [6]. Most

sequencing technologies require the genetic fragments to be relatively short, which is rarely

the case in practice for whole genome sequencing (a bacterial genome can easily reach up to

several millions of base pairs). Therefore, long strands of DNA need to be sheared in smaller

fragments before sequencing. After sequencing, we are left with short, overlapping sequences

called “reads”. Read assembly consists in reconstructing the original DNA using the overlap

between the reads. This assembly step can be more or less challenging depending on the

size of the DNA we sequence and its unique characteristics, the main one being repeated

sequences of bases. The contiguous sequences, or contigs, resulting from the assembly can

identify the organisms in our samples, and their abundance can simply be estimated by

counting the number of times the reads span the length of the contigs.

1.2 Problem statement

Sequencing platforms can identify the genetic material in a sample by randomly selecting

its fragments, amplifying and synthesizing them (in the case of the Illumina technology). In

order to minimize sequencing errors and ensure that no fragments were missed, the platforms

often sequence a sample multiple times. The number of times a sample’s DNA is sequenced,

4

called the sequencing depth, directly affects the cost of the sequencing. Therefore, biologists

have to find a trade-off between the number of samples they want to sequence and the level

of details they need for their analysis given a fixed budget. Even with a very high sequencing

depth, identifying all organisms in a metagenomic sample is not feasible in practice. Cost

left aside, the main issue is that organisms’ abundance is rarely uniformly distributed,

but instead tends to follow a log-normal distribution [7]. This means that an even higher

sequencing depth is required to detect low abundance organisms. For example, if a sample

contains two distinct organisms of lengthm with the first one being 100 times more abundant

than the second, then we need on average to sequence 101 ×m bases to measure the low

abundance organism in its entirety. Furthermore, we often want to measure the same

organism multiple times in order to reduce potential errors in sequencing. It is therefore

rarely possible to fully sequence an environment with the currently available technologies.

The incomplete sequencing of a sample has different consequences depending on the type

of experiment being carried out (see figure 1.2). In the case of whole-genome sequencing

experiments, missing fragments is the cause of genome fragmentation. The assembly process

reconstructs a metagenome by identifying overlapping fragments. If a fragment binding two

genomic regions is missing, it results in two different genomes that cannot be reconstructed

with approaches based on sequence overlap. Several tools have been developed to group

split genomes by relying on other characteristics, such as the unique DNA patterns contigs

contain. For the time being, the field is biased towards bacteria and is currently lacking in

virus-specific tools.

In the case of RNA sequencing however, since the measured genetic region is much

smaller (a single RNA), there is generally no issue with fragmentation. However, the log-

normal distribution of counts makes it difficult to measure low abundance genes. A RNA

physically present in multiple cells can be detected in one cell and not the other, artificially

creating differences between the two. In practice, it is common to observe more than 50%

of zeros in an abundance table (see figure 1.2).

5

x 2

x 100

Genome A

Genome B

A B (100)

Raw sample

Random
shearing

x 5

x 100

RNA 1

RNA 2

Whole Genome Sequencing Single-cell RNA sequencing

A B

Sequencing

A B

Assembly

A1 A2 B

x 2RNA 3

x 3

 x 150

RNA 1

RNA 2
x 0RNA 3

Cell 1 Cell 2

RNA 1 RNA 2 RNA 3 RNA 4

Cell 1 0 95 1 0

Cell 2 1 125 0 0

x 4RNA 4 x 3RNA 4

x 0

x 95

RNA 1

RNA 2

x 1RNA 3

x 1

x 125

RNA 1

RNA 2

x 0RNA 3

Cell 1 Cell 2

x 0RNA 4 x 0RNA 4

Raw cells

Sequencing

Abundance
table

Figure 1.2: Sequencing methods and impact of skewed genetic material distribution.:
(A) Whole genome sequencing for 2 genomes and a single sample. All the genomes are
fragmented and sequenced at random. Because there are few copies of A, missed fragments
cause the assembly to be fragmented into A1 and A2. B is however not fragmented because
it is in high abundance, and other fragments can account for missing information. (B)
RNA sequencing for 2 cells and 4 RNA types: The genetic material (RNA) we sequence is
much shorter, so we do not need to shear it. However, some low abundance RNA remain
unsequenced, which results in a zero count in the final abundance table.

6

1.3 Contribution

As previously mentioned, issues related to the sequencing of a sample with uneven genetic

material distribution cannot be completely solved by simply increasing the sequencing

depth. Efficient methods that account for missing fragments are therefore desperately

needed. The first two contributions of this dissertation make use of the advances in the

deep learning field to learn patterns in the data to identify missing data. First in chapter

2, we developed a Deep Learning-based missing value imputation tool for scRNA-seq data.

Second, in chapter 3, we tackle the issue of genome fragmentation in viral metagenome

sequencing experiments. Finally, in chapter 4 in an effort to improve our approach, we

investigate the unique combinatorial properties of viruses in order to fine-tune species-level

bins.

1.4 Structure of the Dissertation

This dissertation will be presented as a collection of peer-reviewed published (or submitted)

papers.

Chapter 2 [8] presents a deep-learning based approach to impute missing values in single-

cell RNA-seq experiments.

Chapter 3 [9] presents a deep-learning based approach for inferring split contigs after

assembling a viral metagenome.

Chapter 4 investigates viral recombination as a potential feature to improve the approach

described in chapter 3.

7

References

[1] A. G. Cobián Güemes, M. Youle, V. A. Cantú, B. Felts, J. Nulton, and F. Rohwer,

“Viruses as winners in the game of life,” Annual Review of Virology, vol. 3, pp. 197–214,

2016.

[2] F. J. Mojica, C. Dı́ez-Villaseñor, J. Garćıa-Mart́ınez, E. Soria, et al., “Intervening

sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements,”

Journal of molecular evolution, vol. 60, no. 2, pp. 174–182, 2005.

[3] A. F. Andersson and J. F. Banfield, “Virus population dynamics and acquired virus

resistance in natural microbial communities,” Science, vol. 320, no. 5879, pp. 1047–

1050, 2008.

[4] D. Botstein, “A theory of modular evolution for bacteriophages,” Annals of the New

York Academy of Sciences, vol. 354, no. 1, pp. 484–491, 1980.

[5] A. A. Hossain, J. McGinn, A. J. Meeske, J. W. Modell, and L. A. Marraffini, “Viral

recombination systems limit crispr-cas targeting through the generation of escape

mutations,” Cell Host & Microbe, 2021.

[6] K. A. Wetterstrand, “Dna sequencing costs: data from the nhgri genome sequencing

program (gsp). 2013,” URL http://www. genome. gov/sequencingcosts, 2016.

[7] W. Ulrich, M. Ollik, and K. I. Ugland, “A meta-analysis of species–abundance

distributions,” Oikos, vol. 119, no. 7, pp. 1149–1155, 2010.

8

[8] C. Arisdakessian, O. Poirion, B. Yunits, X. Zhu, and L. X. Garmire, “Deepimpute: an

accurate, fast, and scalable deep neural network method to impute single-cell rna-seq

data,” Genome biology, vol. 20, no. 1, pp. 1–14, 2019.

[9] C. G. Arisdakessian, O. D. Nigro, G. F. Steward, G. Poisson, and M. Belcaid, “Coconet:

an efficient deep learning tool for viral metagenome binning,” Bioinformatics, 2021.

9

Chapter 2

DeepImpute: an accurate and efficient deep

learning method for single-cell RNA-seq data

imputation

Abstract

Single-cell RNA sequencing (scRNA-seq) offers new opportunities to study gene expression

of tens of thousands of single cells simultaneously. We present DeepImpute, a deep

neural network-based imputation algorithm that uses dropout layers and loss functions

to learn patterns in the data, allowing for accurate imputation. Overall, DeepImpute

yields better accuracy than other six publicly available scRNA-seq imputation methods

on experimental data, as measured by the mean squared error or Pearson’s correlation

coefficient. DeepImpute is an accurate, fast, and scalable imputation tool that is suited

to handle the ever-increasing volume of scRNA-seq data, and is freely available at https:

//github.com/lanagarmire/DeepImpute.

Published: Cédric Arisdakessian, Olivier Poirion, Breck Yunits, Xun Zhu, and Lana X. Garmire.
”DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq
data.” Genome biology 20, no. 1 (2019): 1-14.

10

https://github.com/lanagarmire/DeepImpute
https://github.com/lanagarmire/DeepImpute

2.1 Introduction

The RNA sequencing technologies keep evolving and offering new insights to understand

biological systems. In particular, single-cell RNA sequencing (scRNA-seq) represents a

major breakthrough in this field. It brings a new dimension to RNA-seq studies by zooming

in to the single-cell level. Currently, various scRNA-seq platforms are available such as

Fluidigm- and Drop-Seq-based methods. While Drop-Seq can process thousands of cells

in a single run, Fluidigm generally processes fewer cells but with a higher coverage. In

particular, 10X Genomics’ platform is gaining popularity in the scRNA-seq community due

to its high yield and low cost per cell. Consequently, an increasing number of studies have

taken advantage of these technologies to discover new cell types [1, 2], new markers for

specific cell types [1, 3, 4], and cellular heterogeneity [4, 5, 6, 7, 8, 9].

Despite these advantages, scRNA-seq data are very noisy and incomplete [10, 11, 12] due

to the low starting amount of mRNA copies per cell. Datasets with more than 70% missing

(zero) values are frequently observed in an scRNA-seq experiment. These apparent zero

values could be truly zeros or false negatives. The latter phenomenon is called “dropout”

[13] and is due to failure of amplification of the original RNA transcripts. Among genes

of various lengths, shorter genes are more likely to be dropped out [14]. Such bias may

increase further during the subsequent amplification steps. As a result, dropout can affect

downstream bioinformatics analysis significantly, such as clustering [15] and pseudo-time

reconstruction [16], as it decreases the power of the studies and introduces biases in gene

expression. To correct such issue, analysis platforms such as Granatum [17] have included

an imputation step, in order to improve the downstream analysis.

Several imputation algorithms have been proposed, based on different principles and

models. MAGIC [18] focuses on cell/cell interactions to build a Markov transition matrix

and smooth the data. ScImpute [19] builds a LASSO regression model for each cell and

imputes them iteratively. SAVER [20] is a Bayesian-based model using various prior

probability functions. DrImpute [21] is a clustering-based method and uses a consensus

11

strategy: it estimates a value with several cluster priors or distance matrices and then

imputes by aggregation. VIPER is a recent published statistical method that looks at

cell/cell interaction to fit a linear model for each cell. Instead of using a LASSO regression

as for scImpute, the authors use a hard thresholding approach to limit the number of

predictors [22]. Most recently, DCA builds an auto-encoder to model the genes distribution

using a zero inflated negative binomial prior. To this end, the auto-encoder tries to predict

the genes’ mean, standard deviation, and dropout probability [23]. As the low quality of

the scRNA-seq datasets continues to be a bottleneck while the measurable cell counts keep

increasing, the demand for faster and scalable imputation methods also keeps increasing

[23, 24, 25]. While some of these earlier algorithms may improve the quality of original

datasets and preserve the underlying biological variance [26], most of them demand extensive

running time, impeding their adoption in the ever-increasing scRNA-seq data space.

In this chapter, we present a novel algorithm, DeepImpute, as the next generation

imputation method for scRNA-seq data. DeepImpute is short for “Deep neural network

Imputation”. As reflected by the name, it belongs to the class of deep neural-network

models [27, 28, 29]. Recent years, deep neural network algorithms have gained much

interest in the biomedical field [30], ranging from applications from extracting stable gene

expression signatures in large sets of public data [31] to stratify phenotypes [32] or impute

missing values [33] using electronic health record (EHR) data. In this report, we construct

DeepImpute models by splitting the genes into subsets and build sub-networks to increase its

efficacy and efficiency. Using accuracy metrics, we demonstrate that DeepImpute performs

better than the six other recently published imputation methods mentioned above (MAGIC,

DrImpute, ScImpute, SAVER, VIPER, and DCA). It also improves the downstream analysis

results, on clustering using both real and simulated datasets, as well as on differential

expression using a simulated dataset. We additionally show the superiority of DeepImpute

over the other methods in terms of computational running time and memory use. Moreover,

DeepImpute allows to train the model with a subset of the data to save computing time,

with little detriment to prediction accuracy. In summary, DeepImpute is a fast, scalable,

12

and accurate next generation imputation method capable of handling the ever-increasing

scRNA-seq data.

2.2 Results

2.2.1 Overview of the DeepImpute algorithm

DeepImpute is a deep neural network model that imputes genes in a divide-and-conquer

approach, by constructing multiple sub-neural networks (Fig. S2.1). Doing so offers the

advantage of reducing the complexity by learning smaller problems and fine-tuning the sub-

neural networks [34]. For each dataset, we select to impute a list of genes, which have a

certain variance over mean ratio (default=0.5). Each sub-neural network aims to understand

the relationship between the input genes (input layer) and a subset of target genes (output

layer) (Fig. 2.1). Users can set the size of the target genes, and we set 512 as the default

value, as it offers a good trade-off between speed and stability. As shown in Fig.2.1, each

sub-neural network is composed of four layers. The input layer consists of genes that are

highly correlated with the target genes, followed by a 256-neuron dense hidden layer, a

dropout layer with 20% dropout rate (note: not the dropout rate in the single cell data

matrix) of neurons which avoid overfitting (Fig. S2.3), and the output neurons made of the

above mentioned target genes. We use rectified linear unit (ReLU) as the default activation

function and train each sub-model in parallel by splitting the data to train (95% of the cells)

and test (5%) data. We stop the training if the test loss does not improve for 5 consecutive

epochs or the number of epochs exceeds 500, whichever is smaller. Because of the simplicity

of each sub-network, we observe very low variability due to hyperparameter tuning. As a

result, we set the default parameters for batch size at 64 and learning rate at 0.0001. Further

information about the network parameters are described in the Methods, section 2.4. In

the following sections, we describe the comprehensive evaluations of DeepImpute.

13

Figure 2.1: Neural network architecture of DeepImpute: Each sub-neural network is
composed of four layers. The input layer is genes that are highly correlated with the
target genes in the output layer. It is followed by a dense hidden layer of 256 neurons and
a dropout layer (dropout rate=20%). The output layer consists of a subset of target genes
(default N=512), whose zero values are to be imputed.

2.2.2 DeepImpute is the most accurate among imputation methods on

scRNA-seq data

We tested the accuracy of imputation on four publicly available scRNA-seq datasets (Table

S2.1): two cell lines, Jurkat and 293T (10X Genomic); one mouse neuron cells dataset (10X

Genomics); and one mouse interfollicular epidermis dataset deposited in GSE67602. We

compared DeepImpute with six other state-of-the-art, representative algorithms: MAGIC,

DrImpute, ScImpute, SAVER, VIPER, and DCA. Since the real dropout values are

unknown, we evaluated the different methods by randomly masking (replacing with zeros)

a part of the expression matrix of a scRNA-seq dataset (Fig. S2.2) and then measure the

14

differences between the inferred and actual values of the masked data. In order to mimic

a more realistic dropout distribution, we estimated the masking probability function from

the data (see Methods, section 2.4). We measured the accuracies using the two metrics

on the masked values: Pearson’s correlation coefficient and mean squared error (MSE), as

done earlier [20, 35].

Figure 2.2 shows all the results of imputation accuracy metrics on the masked data.

DeepImpute successfully recovers dropout values from all ranges, introduces the least

distortions and biases to the masked values, and yields both the highest Pearson’s correlation

coefficient and the best (lowest) MSE in all datasets (Fig. 2.2A and C). DCA, another

neural-network-based method, has the second best performance after DeepImpute, based on

both MSE and Pearson’s correlation coefficient. By contrast, other methods present various

issues: VIPER tends to underestimate the original values, as reflected by the largest MSEs.

scImpute has the widest range of variations among imputed data and generates the lowest

Pearson’s correlations. MAGIC, SAVER, and DrImpute have intermediate performances

compared to other methods. However, SAVER persistently underestimate the values,

especially among the highly expressed genes. We further examined MSE distributions

calculated on the gene and cell levels (Fig. 2.2B). DeepImpute is the clear winner with

consistently the best (lowest) MSEs both at gene and cell levels on all datasets, which

are significantly lower than all other imputation methods (p<0.05). scImpute and VIPER

give the two highest MSEs at the cell level, whereas VIPER consistently has the highest

MSE at the gene level (Fig. 2.2B). Other methods are ranked in between, with varying

rankings depending on the datasets and gene or cell level. As internal controls, we also

compared DeepImpute (with ReLU activation) with 2 variant architectures: the first one

with no hidden layers and the second one with the same hidden layers but using linear

activation function (instead of ReLU). As shown in Fig.S2.4, DeepImpute (with ReLU

activation) yields Pearson’s correlation coefficients and MSEs that are either on par or better

than the two other variant architectures. For GSE67602 and neuron9k datasets generated

from complex animal primary tissues, DeepImpute (with ReLU activation) performs better;

15

for Jurkat and 293T datasets generated from cell lines, the results are comparable. This

suggests that DeepImpute (with ReLU activation) handles complex datasets better than its

competitors. In summary, DeepImpute yields the highest accuracy in the datasets studied,

among the imputation methods in comparison.

MSE=0.027
Pearson=0.861

MSE=0.032
Pearson=0.849

MSE=0.058
Pearson=0.834

MSE=0.036
Pearson=0.837

MSE=0.026
Pearson=0.845

MSE=0.036
Pearson=0.830

MSE=0.068
Pearson=0.817

MSE=0.039
Pearson=0.820

MSE=0.023
Pearson=0.834

MSE=0.043
Pearson=0.809

MSE=0.092
Pearson=0.802

MSE=0.165
Pearson=0.706

MSE=0.123
Pearson=0.757

MSE=0.255
Pearson=0.785

MSE=0.052
Pearson=0.780

MSE=0.035
Pearson=0.807

MSE=0.060
Pearson=0.797

MSE=0.160
Pearson=0.770

MSE=0.142
Pearson=0.711

MSE=0.209
Pearson=0.780

MSE=0.080
Pearson=0.798

MSE=0.113
Pearson=0.767

MSE=0.047
Pearson=0.828

MSE=0.146
Pearson=0.806

MSE=0.074
Pearson=0.770

MSE=0.042
Pearson=0.843

MSE=0.131
Pearson=0.820

MSE=0.066
Pearson=0.789

deepImpute DCA MAGIC SAVER scImpute VIPER DrImpute

 G

SE
67

60
2

 n
eu

ro
n9

k

29
3T

Ju
rk

at

True value (log)

Im
pu

te
d

va
lu

e
(lo

g)

A B

C

Figure 2.2: Accuracy comparison between DeepImpute and other competing methods: (A)
Scatter plots of imputed vs. original data masked. The x-axis corresponds to the true
values of the masked data points, and the y-axis represents the imputed values. Each
row is a different dataset, and each column is a different imputation method. The mean
squared error (MSE) and Pearson’s correlation coefficients (Pearson) are shown above each
dataset and method. (B) Bar graphs of cell-cell and gene-gene level MSEs between the
true (masked) and imputed values, based on those in (A). Asterisk indicates statistically
significant difference (P<0.05) between DeepImpute and the imputation method of interest
using the Wilcoxon rank-sum test. Color labels for all imputation methods are shown in
Figure (C). Ranking of each method for all four datasets for both overall MSE and Pearson’s
correlation coefficient

16

2.2.3 DeepImpute improves the gene distribution similarity with FISH

experimental data

Another way to assess imputation efficiency is through experimental validation on scRNA-

Seq data. Single-cell RNA FISH is such a method that directly detects a small number of

RNA transcripts in a single cell. Torre et al. measured the gene expression of a melanoma

cell line using both RNA FISH and Drop-Seq and compared their distribution using their

GINI coefficients (see the ”Methods” section) [36]. Similarly, we compared the same list

of genes using their GINI coefficients of RNA FISH vs. those after imputation (or raw

scRNA-seq data). DrImpute could not handle the large cell size and was omitted from

comparison. Comparing to Pearson’s correlation coefficient between RNA FISH and the

raw scRNA-seq data (-0.260), three methods, DeepImpute, SAVER, and DCA, have the

top 3 most improved and positive correlation coefficients, with values of 0.984, 0.782, and

0.732, respectively. VIPER barely changed the GINI coefficients, whereas scImpute had a

correlation coefficient (-0.451) even lower than the raw scRNA-seq dataset (Fig. 2.3A). For

MSE, all other imputation methods achieved better (smaller) MSEs compared to the raw

scRNA-seq results (MSE=0.178), except VIPER, which gives the same MSE as raw data.

Echoing the results of correlation coefficient, three methods, SAVER, DeepImpute, and

DCA, give the lowest MSEs. DeepImpute is the second most accurate method with an MSE

(MSE=0.0259), closely after SAVER (MSE=0.0152) and followed by DCA (MSE=0.0436).

Additionally, we compared the distributions of each gene before and after various imputation

methods, as well as in FISH experiments (Fig. 2.3B). Overall, DeepImpute (blue curves)

yields the most similar distributions to those of FISH experiments (gray curves) for three of

five genes (LMNA, MITF, and TXNRD1), with K-S test statistics of 0.08, 0.15, and 0.18,

respectively. For KDM5A, it achieved 2nd best K-S statistics 0.18, almost the same as DCA

(0.17). It does not perform as well for gene VGF (K-S statistic of 0.44), which has over 40%

zero values even in RNA-FISH data (56% in raw Drop-Seq data). Altogether, the FISH

validation results clearly show that DeepImpute improves the data quality by imputation.

17

Figure 2.3: Comparison among imputation methods using RNA FISH data: (A) Scatter
plots of GINI coefficients from the imputed (or raw) vs. FISH data. The x-axis is the
“true” GINI coefficient as determined by FISH experiments, and the y-axis is the imputed
(or raw) GINI coefficient. The Pearson’s correlation coefficients (Pearson) and mean squared
error (MSE) are shown for each method. Colors represent different genes: KDM5A (blue),
LMNA (orange), MITF (green), TXNRD1 (red), and VGF (purple). (B) Gene distributions
for seven imputation methods: DeepImpute (blue), DCA (yellow), MAGIC (green), SAVER
(red), scImpute (purple), VIPER (brown), raw (pink), and FISH (gray) data

18

2.2.4 DeepImpute improves downstream functional analysis

Another way to assess possible benefits of imputation is to conduct downstream functional

analysis. To this end, we utilized additional experimental and simulation datasets. We

use an experimental dataset (Hrvatin) from GSE102827, composed of 48,267 annotated

primary visual cortex cells from mice and which had 33 prior cell type labels [37]. Using

the Seurat pipeline implemented in Scanpy, we extracted the UMAP [38] components (Fig.

2.4A). We then performed cell clustering using the Leiden clustering algorithm [39], an

improved version of the Louvain algorithm [40]. We measure the accuracy of clustering

assignments using various metrics, including the Adjusted Rand Index (ARI), the Adjusted

Mutual Score (AMS), the Fowlkes-Mallow Index (FMI), and Silhouette Index (SI) to exam

UMAP cluster shapes (Fig. 2.4B). Due to the size of the Hrvatin dataset, we could not

run DrImpute and VIPER (speed issues) as well as scImpute (speed and memory issues),

but only DeepImpute, DCA, MAGIC, and SAVER. DeepImpute manages to disentangle

many clusters (Fig. 2.4A), resulting in the most improved clustering metrics compared to

the scenario without imputation (Fig. 2.4B). DCA, the other deep neural-network-based

method, also slightly improves the clustering metrics (Fig. 2.4B). On the contrary, MAGIC

and SAVER decrease, rather than improve the clustering outcome. Notably, MAGIC

manages to split many cell types but also highly distorts the data (Fig. 2.4A). SAVER

disentangles some clusters, but also splits some clusters beyond the original cell type labels

(Fig. 2.4A).

Given lack of absolute truth of class labels in experimental data, we next generated a

simulation data using Splatter. This simulation dataset (sim) is composed of 4000 genes

and 2000 cells, which are split into 5 cell types (proportions: 5%/10%/20%/20%/40%).

DeepImpute successfully separates cell types on the simulation, closely followed by scImpute

(Fig. 2.5A). These observations are confirmed by the evaluation metrics, where DeepImpute

achieves almost perfect scores for ARI, AMS, and FMI and significantly increases the

Silhouette score compared to the raw data (Fig. 2.5B). Next, we compare all seven

imputation methods for their capabilities to recover differentially expressed genes in the

19

Figure 2.4: Effect of imputation on downstream functional analysis on experimental data
(GSE102827): (A) UMAP plots of DeepImpute, DCA, MAGIC, SAVER, and raw data
(scImpute, DrImpute, and VIPER) failed to run due to the large cell size of 48,267 cells.
Colors represent original cell type labels as annotated. (B) Accuracy measurements of
clustering using various metrics: adjusted Rand index (adjusted rand score), adjusted
mutual information, Fowlkes–Mallows Index (Fowlkes-Mallows), and Silhouette coefficient
(Silhouette score). Higher values indicate better clustering accuracy. Bar colors represent
different methods: DeepImpute (blue), DCA (orange), MAGIC (green), SAVER (red), and
raw data (gray)

simulation data (Fig. 2.5C). For each method, we extracted the top 500 differentially

expressed genes in each cell type and compared with the true differentially expressed genes.

Overall, DeepImpute has the highest precision (AUC=0.894) at detecting differentially

20

expressed genes, compared to those of no imputation and other imputation methods.

Altogether, these results from both experimental and simulation data show unanimously

that DeepImpute improves downstream functional analysis.

Figure 2.5: Effect of imputation on downstream functional analysis on simulated data using
Splatter: This simulation dataset is composed of 4000 genes and 2000 cells, split into 5 cell
types (proportions: 5%/10%/20%/20%/40%). (A) UMAP plots of DeepImpute, DCA,
MAGIC, SAVER, scImpute, VIPER, DrImpute, and raw data. Each color represents one
of the 5 cell types. (B) Accuracy measurements of clustering using the same metrics as
in Fig. 2.4B. Bar colors represent different methods as shown in the figure. (C) Accuracy
measurements of differentially expressed genes by different imputation methods. The top
500 differentially expressed genes in each cell type are used to compare with the true
differentially expressed genes in the simulated data, over a range of adjusted p values for
each method. Colors represent different methods as shown in the figure.

21

2.2.5 DeepImpute is a fast and memory efficient package

As scRNA-seq becomes more popular and the number of sequenced cells scales exponentially,

imputation methods will have to be computationally efficient to be widely adopted. With

such a goal in mind, we choose the Mouse1M dataset to evaluate the computational speed

and memory usage among different imputation methods. We use Mouse1M dataset as it

has the highest number of cells to assess how adaptive each method is.

We downsampled the Mouse1M data, ranging in size from 100 to 50k cells (100, 500,

1k, 5k, 10k, 30k, 50k). We ran the imputations three times and measured the runtime (for

both training and testing steps) and memory load on an 8-core machine with 30 GB of

memory. DeepImpute, DCA, and MAGIC outperformed the other four packages on speed

(Fig. 2.6A), and DCA and DeepImpute are the most advantageous when the cell counts

get large (>30k). DCA is consistently and slightly faster than DeepImpute through all

tests. The other four imputation methods (scImpute, DrImpute, VIPER, and SAVER)

are significantly slower and consume significantly more memory (Fig. 2.6B). The slow

computation time of VIPER and DrImpute are due to lack of parallelization. VIPER is

unable to scale beyond 1k cells within 24h, while scImpute exceeded the 30 GB of memory

available and failed to run on more than 10k cells. For memory, DeepImpute and DCA,

two neural-network-based methods, are the most efficient, and their merits are much more

pronounced on large datasets (Fig. 2.6B). MAGIC uses a similar amount of memory as

DeepImpute and DCA on smaller datasets; however, as the dataset size increases beyond

10k cells, it requires significantly more memory. It hits an out of memory error and is unable

to finish the 50k cell imputation on our 30GB machine. In all, judging by both computation

speed and memory efficiency on larger datasets, DeepImpute and DCA outperform the other

five methods.

2.2.6 DeepImpute is a scalable machine learning method

Unlike all of the other imputation methods (except DCA), DeepImpute first fits a predictive

model and then performs imputation separately. The model fitting step uses most of the

22

computational resources and time, while the prediction step is very fast. We then asked

the question: What is the minimal fraction of the dataset needed to train DeepImpute and

obtain efficient imputation without extensive training time? To answer this question, we

used the neuron9k dataset and evaluated the effect of different subsampling fraction (5%,

10%, 20%, 40%, 60%, 80%, 90%, 100%) in the training phase on the imputation prediction

phase. We randomly picked a subset of the samples for the training step and computed

the accuracy metrics (MSE, Pearson’s correlation coefficient) on the whole dataset, with

10 repetitions under each condition. Model performance improvement begins to slow down

at around 40% of the cells (Fig. 2.6C). Specifically, from 40 to 100% fraction of data as

the training set, the MSE decreases slightly from 0.121 to 0.116, and Pearson’s coefficient

score marginally improves from 0.880 to 0.884. These experiments demonstrate another

advantage of DeepImpute over the other competing methods, that is, the use of only a

fraction of the data set reduces the running time even more with little detriment to the

accuracy of the imputed results.

23

Figure 2.6: Scalability comparison between imputation methods: Speed and memory usage
comparison among imputation methods, as well as the effect of subsampling training data
on DeepImpute accuracy. For deep learning models, the time reported corresponds to
training and testing combined. (A, B) Speed and memory comparisons on the Mouse1M
dataset. This dataset is chosen for its largest cell numbers. Color labels different imputation
methods. (A) Speed average over 3 runs. The x-axis is the number of cells, and the y-axis
is the running time in minutes (log scale) of the imputation process. (B) RAM memory
usage. The x-axis is the number of cells, and the y-axis is the maximum RAM used by the
imputation process. Because of the limited amount of memory or time, scImpute, SAVER,
and MAGIC exceeded the memory limit respectively at 10k, 30k, and 50k cells, thus no
measurements at these and higher cell counts. VIPER and DrImpute each exceeded 24h
on 5k and 10k cells; therefore, they too do not have measurements at these and higher cell
counts. (C) The effect of subsampling training data on DeepImpute accuracy. Neuron9k
dataset is masked and measured for performance as in Fig. 2.2. x-axis is the fraction of
cells in the training data set, and y-axis labels are values for mean squared error (left) and
Pearson’s correlation coefficient (right). Color labels are as indicated in the graph. Error
bars represent the standard deviations over the 10 repetitions

24

2.3 Discussion

Dropout values in scRNA-seq experiments represent a serious issue for bioinformatic

analyses, as most bioinformatics tools have difficulty handling sparse matrices. In this

chapter, we present DeepImpute, a new algorithm that uses deep neural networks to impute

dropout values in scRNA-seq data. We show that DeepImpute not only has the highest

overall accuracy using various metrics and a wide range of validation approaches, but also

offers faster computation time with less demand on the computer memory. In both simulated

and experimental datasets, DeepImpute shows benefits in increasing clustering results and

identifying significantly differentially expressed genes, even when other imputation methods

are not desirable. Furthermore, it is a very “resilient” method. The model trained on

a fraction of the input data can still yield decent predictions, which can further reduce

the running time. Together, these results demonstrate consistently and robustly that

DeepImpute is an accurate and highly efficient method, and it is likely to withstand the

tests of time, given the rapid growth of scRNA-Seq data volume.

Through systematic comparisons, two deep-learning-based methods, DeepImpute and

DCA, show overall advantages over other methods, between which DeepImpute performs

even better. Several unique properties of DeepImpute contribute to its superior

performance. One of them is using a divide-and-conquer approach. This approach

has several benefits. First, contrary to an auto-encoder as implemented in DCA, the

subnetworks are trained without using the target genes as the input. It reduces overfitting

while enforcing the network to understand true relationships between genes. Second,

splitting the genes into subsets results in a lower complexity in each sub-model and

stabilizing neural networks. As a result, a small change in the hyperparameters has

little effect on the result. Using a single set of hyperparameters, DeepImpute achieves

the highest accuracies in all four experimental datasets (Fig. 2.2A). Third, splitting the

training into sub-networks results in increased speed as there are fewer input variables in

25

each subnetwork. Also, training of each sub-network is done in parallel on different threads,

which is more difficult to do with one single neural network.

Unlike some other imputation algorithms, DeepImpute is a machine learning method.

The training and the prediction processes of DeepImpute are separate, and this may provide

more flexibility when handling large datasets. Moreover, we have shown that using only

a fraction of the overall samples, one can still obtain decent imputation results without

sacrificing the accuracy of the model much, thus further reducing the running time. Perhaps,

another advantage of DeepImpute over other methods is that it can pre-train a dataset of

a cell type (or cell state) on another cell type (or cell state) decently. This pre-training

process is very valuable in some cases, such as when the number of cells in the dataset is

too small to construct a high-quality model. Pre-training can also largely reduce the overall

computation time, since DeepImpute spends most of the time on training the samples.

Thus, it is also a good strategy when the new, large dataset is very similar to the dataset

used in pre-training.

An enduring imputation method has to adapt to the ever-increasing volume of scRNA-

seq data. DeepImpute is such a method, implemented in a deep learning framework where

new solutions for speed improvements keep appearing. One example is the development of

neural network-specific hardware (such as tensor processing units [41], or TPUs) which are

now available on Google Cloud. TPU can dramatically accelerate the tensor operations and

thus the imputation process. We were already able to deploy DeepImpute in a Google Cloud

environment where TPUs are already available. Another example is the development of

frameworks that efficiently use computer clusters to parallelize tasks such as Apache-Spark

[42] or Dask [43]. Such resources will help DeepImpute and similar deep-learning methods,

such as scDeepCluster designed for clustering analysis [44], achieve even higher speed over

time and keep up with the development of scRNA-seq technologies.

26

2.4 Methods

2.4.1 The workflow of DeepImpute

DeepImpute is a deep neural network-based imputation workflow, implemented with the

Keras [45] framework and TensorFlow [46] in the backend. Below, we describe the workflow

in four steps: preprocessing, architecture, training procedure, and imputation.

Preprocessing

The first step of DeepImpute is selecting the genes for imputation, based on the variance over

mean ratio (default=0.5), which are deemed interesting for downstream analyses [47, 48].

For efficiency, we adopt a divide-and-conquer strategy in our deep learning imputation

process. We split the genes into N random subsets, each with S numbers of genes, which

we call “target genes.” By default, S is set as 512. If the number of target genes is not a

multiple of this number, we round the number of genes to impute in N+1 subsets of deep

neural networks. The details of this step are illustrated in Figure S2.1.

Network architecture

For each subset, we train a neural network of four layers: the input layer of genes that are

correlated to the target genes, a 256-neuron fully connected hidden layer with a rectified

linear unit (ReLU) activation function, a dropout layer (note: different from dropout data

in scRNA-Seq), and an output layer of S target genes. A gene is selected to the input layer,

if it satisfies these conditions: (1) it is not one of the target genes and (2) it has top 5 ranked

Pearson’s correlation coefficient with a target gene. The dropout layer is included after the

hidden layer, as a common strategy to prevent overfitting [49]. We optimized the dropout

rate as 20%, after experimenting the dropout rates from 0 to 90% (Fig.S2.3). The other

default parameters of the networks include a learning rate of 0.0001, a batch size of 64, and

a subset size of 512. As internal controls, we also experimented two alternative setups for

27

DeepImpute: one with the same architecture but with a linear activation function and the

other one without hidden layers of neurons.

Training procedure

The training starts by splitting the cells between a training (95%) and a test set (5%). The

test set is used at each epoch to measure overfitting. We use a weighted mean squared

error (MSE) loss function that gives higher weights to genes with higher expression values.

This emphasizes accuracy on high confidence values and avoids over penalizing genes with

extremely low values (e.g., zeros). For a given cell c, the loss is calculated as follows:

Lossc =
∑

Yi(Yi − Ŷi)2

where Yi is the value of gene i for cell c and Ŷi is the corresponding estimated value at

a given epoch. For the gradient descent algorithm, we choose an adaptive learning rate

method, the Adam optimizer [50], since it is known to perform very efficiently over sparse

data [51]. The training stops if it reaches 500 epochs or if the training does not improve for

5 epochs.

Imputation

Once the network weights are properly trained, we impute the data by filling zeros in the

original matrix with the imputed values.

2.4.2 Evaluation metrics

Accuracy comparison on real datasets

To evaluate the accuracy of imputation, we apply a random mask to the real single-cell

datasets. The masking probability function is estimated in a similar fashion as in Splatter

[14]. For each gene, we extract the proportion of zeros vs. the mean of those positive values.

As done in Splatter, we fit a logistic function to these data points. Next, for each gene in the

28

dataset, we mask ten cells at random using a multinomial distribution: each cell c1, ..., cn

has a dropout probability p1, ..., pn given by the logistic function previously fitted. The

masked cells are sampled from a multinomial distribution with parameters (q1, q2, ..., qn),

where qi = pi/
∑

i pi are the normalized probability such that
∑

i qi = 1

These original values are used as “truth values” to evaluate the performance of

imputation methods. We used two types of performance metrics: the overall Pearson

correlation coefficient and MSE, both on log transformed counts. When needed, we also

computed MSE between cells cj and between genes gi.

Speed and memory comparison

We run comparisons on a dedicated 8-core, 30-GB RAM, 100-GB HDD, Intel Skylake

machine running Debian 9.4. We record process memory usage at 60-s intervals. For

testing data, we use the Mouse1M dataset since it has the largest number of single cells

(Table S2.1). We filter out genes that are expressed in less than 20% of cells, leaving 3,205

genes in our sample. From this dataset, we generate 7 subsets ranging in size (100, 500, 1k,

5k, 10k, 30k, 50k cells). We run each package 3 times per subset to estimate the average

computation time. Some packages (VIPER, DrImpute, SAVER, scImpute, and MAGIC)

are not able to successfully handle the larger files either due to out-of-memory errors (OOM)

or exceedingly long run times (> 24h).

2.4.3 Downstream functional analysis

Clustering

We perform cell clustering using the Seurat pipeline implemented in Scanpy. After

preprocessing the data, we extract the UMAP components [38] and cluster the cells using

the Leiden algorithm recommended in the Scanpy documentation. To assess the quality of

the clusters, we use four metrics. For all of them, a value of 1 indicates a perfect clustering,

while 0 corresponds to random assignments.

29

Adjusted mutual information[16]

It is an entropy-based metric that calculates the shared entropy between two clustering

assignments, and is adjusted for chance. The mutual information is calculated by

MI(C,K) =
∑

c∈C
∑

k∈K P (c, k) · log
(

P (c,k)
P (c)P (k)

)
, where P (c, k) is the probability of a

random cell belonging to both cluster c and k, and P (c) (resp. P (k)) the probability

of a random cell belonging to cluster c (resp. k).

Adjusted Rand index[16]

It is the ratio of all cell pairs that are either correctly assigned together or correctly not

assigned together, among all possible pairs. It is also adjusted for chance.

Fowlkes–Mallows index

It is a metric derived from the true positives (TP), false positives (FP), and false negatives

(FN) as follows: FMI =
√

TP
TP+FP ·

TP
TP+FN

Silhouette coefficient[29]

It is a clustering metric derived by comparing the mean intra-cluster distance and the mean

inter-cluster distance.

Differential expression analysis

We perform the differential expression analysis using the Scanpy package on the simulation

as the groups are pre-defined. For each method, we extracted the differentially expressed

genes for each cell group by performing a t-test of one group against the other groups. We

used Benjamini-Hochberg correction for multiple hypothesis testing to obtain adjusted p

value (pvaladj). Since each method has generated different differentially expressed genes,

we extracted the top 500 differentially expressed genes for each group and pooled the

differentially expressed genes for all of the groups. Using 1 − pvaladj as the differential

expression calling probability and the true differentially expressed genes (by Splatter) as

30

the truth measure, we calculated the area under the curve (AUC) for the ROC curve for

each method using the scikit-learn python package.

2.4.4 RNA FISH validation

We obtain a Drop-Seq dataset (GSE99330) and its RNA FISH dataset from a melanoma

cell line, as described by Torre et al. [36]. The summary of the dataset is listed in table

S2.1. For the comparison between RNA FISH and the corresponding Drop-Seq experiment,

we keep genes with a variance over mean ratio>0.5, the same as other datasets in this study,

leaving six genes in common between the FISH and the Drop-Seq datasets.

For GINI coefficient calculation, we first normalize the cells in each dataset using a

housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase, or GAPDH)-based factor,

as done by others [20]. We remove GAPDH outlier cells (defined here as the cells below the

10th and above the 90th percentiles). Then, we rescale each data point by a GAPDH-based

factor, as follows:

data[cell, gene] = data[cell, gene]× factor(cell)

where factor(cell) = mean(data[:,GAPDH])/data[cell,GAPDH]

Then, we compute GINI coefficient, as done in SAVER [20]. For distribution

normalization, the procedure is the same except that we first normalize each gene by an

efficiency factor (defined as the ratio between its mean value for FISH and its value for the

imputation method). We calculate the MSEs and Pearson’s coefficients with the following

formulas:

MSE(gene, method) =
∑
cell

(XFISH(gene, cell)−Xmethod(gene, cell))2

corr(gene, method) =
Cov [XFISH(gene), Xmethod(gene)]

Var[XFISH(gene)] ·Var[Xmethod(gene)]

where X is the input matrix of gene expression from RNA-FISH or Drop-Seq, Cov is the

covariance, and Var is the variance.

31

2.5 Availability of data and materials

2.5.1 scRNA-seq Datasets

In this chapter, we evaluate imputation metrics on nine datasets. Four of them

(Jurkat, 293T, neuron9k, and Mouse1M) are downloaded from the 10X Genomics

support website (https://support.10xgenomics.com/single-cell-gene-expression/

datasets). Briefly, the Jurkat dataset is extracted from the Jurkat cell line (human blood).

293T is a blood cell line derived from HEK293T that expresses a mutant version of the

SV40 large T antigen. The neuron9k dataset contains brain cells from an E18 mouse.

Mouse1M also contains brain cells from an E18 mouse. The FISH and GSE99330 data

were both extracted from the same melanoma cell line WM989-A6 [36]. Two other datasets

are taken from GSE67602 [52], composed of mouse interfollicular epidermis cells and the

Hrvatin dataset GSE102827 [37] dataset, extracted from primary visual cortex of C57BL6/J

mice. Additionally, we simulate a dataset with the Splatter package [14] with parameters

dropout.shape=-0.5, dropout.mid=1, 4000 genes and 2000 cells split into 5 groups with

proportions 10%, 10%, 20%, 20%, and 40%. Each gene in each group is automatically

assigned a differential expression (DE) factor, where 1 is not differentially expressed, a

value less than 1 is downregulated, and more than 1 is upregulated.

2.5.2 Third party software

For comparison, we use the latest version of SAVER (v1.1.1) at https://github.

com/mohuangx/SAVER, ScImpute (v0.0.9) at https://github.com/Vivianstats/scImpute,

DrImpute (v1.0) available as a CRAN package, MAGIC (v1.4.0) at https://github.com/

KrishnaswamyLab/magic, VIPER (v1.0) at https://github.com/ChenMengjie/VIPER/

releases, and DCA (0.2.2) at https://github.com/theislab/dca. We preprocess the

datasets according to each method’s standard: using a square root transformation for

MAGIC, log transformation for DeepImpute (with a pseudo count of 1), but raw counts

for scImpute, DrImpute, SAVER, and DCA. For VIPER, we remove all genes with a null

32

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://github.com/mohuangx/SAVER
https://github.com/mohuangx/SAVER
https://github.com/KrishnaswamyLab/magic
https://github.com/KrishnaswamyLab/magic
https://github.com/ChenMengjie/VIPER/releases
https://github.com/ChenMengjie/VIPER/releases
https://github.com/theislab/dca

total count and rescale each cell to a library size of one million (RPM normalization) as

recommended.

2.5.3 DeepImpute’s material

The DeepImpute package and its documentation are freely available on GitHub https:

//github.com/lanagarmire/DeepImpute under the MIT license. The software as well

as the source code to reproduce the figures of this chapter was deposited on Zenodo

https://doi.org/10.5281/zenodo.3459902 [53].

33

https://github.com/lanagarmire/DeepImpute
https://github.com/lanagarmire/DeepImpute
https://doi.org/10.5281/zenodo.3459902

References

[1] D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lönnerberg, D. Lou, J. Hjerling-Leffler,

J. Haeggström, O. Kharchenko, P. V. Kharchenko, and Others, “Unbiased classification

of sensory neuron types by large-scale single-cell RNA sequencing,” Nat. Neurosci.,

vol. 18, no. 1, p. 145, 2015.

[2] A.-C. Villani, R. Satija, G. Reynolds, S. Sarkizova, K. Shekhar, J. Fletcher,

M. Griesbeck, A. Butler, S. Zheng, S. Lazo, and Others, “Single-cell RNA-seq reveals

new types of human blood dendritic cells, monocytes, and progenitors,” Science,

vol. 356, no. 6335, p. eaah4573, 2017.

[3] A. Zeisel, A. B. Muñoz-Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno,

A. Juréus, S. Marques, H. Munguba, L. He, C. Betsholtz, and Others, “Cell types in

the mouse cortex and hippocampus revealed by single-cell RNA-seq,” Science, vol. 347,

no. 6226, pp. 1138–1142, 2015.

[4] D. A. Jaitin, E. Kenigsberg, H. Keren-Shaul, N. Elefant, F. Paul, I. Zaretsky,

A. Mildner, N. Cohen, S. Jung, A. Tanay, and Others, “Massively parallel single-cell

RNA-seq for marker-free decomposition of tissues into cell types,” Science, vol. 343,

no. 6172, pp. 776–779, 2014.

[5] A. Kriegstein, A. A. Pollen, T. J. Nowakowski, J. Shuga, X. Wang, A. A. Leyrat,

J. H. Lui, N. Li, L. Szpankowski, B. Fowler, and Others, “Low-coverage single-cell

34

mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in

developing cerebral cortex,” 2014.

[6] B. Treutlein, D. G. Brownfield, A. R. Wu, N. F. Neff, G. L. Mantalas, F. H. Espinoza,

T. J. Desai, M. A. Krasnow, and S. R. Quake, “Reconstructing lineage hierarchies

of the distal lung epithelium using single-cell RNA-seq,” Nature, vol. 509, no. 7500,

p. 371, 2014.

[7] I. Tirosh, A. S. Venteicher, C. Hebert, L. E. Escalante, A. P. Patel, K. Yizhak, J. M.

Fisher, C. Rodman, C. Mount, M. G. Filbin, and Others, “Single-cell RNA-seq supports

a developmental hierarchy in human oligodendroglioma,” Nature, vol. 539, no. 7628,

p. 309, 2016.

[8] A. K. Shalek, R. Satija, X. Adiconis, R. S. Gertner, J. T. Gaublomme,

R. Raychowdhury, S. Schwartz, N. Yosef, C. Malboeuf, D. Lu, and Others, “Single-cell

transcriptomics reveals bimodality in expression and splicing in immune cells,” Nature,

vol. 498, no. 7453, p. 236, 2013.

[9] F. Tang, C. Barbacioru, S. Bao, C. Lee, E. Nordman, X. Wang, K. Lao, and M. A.

Surani, “Tracing the derivation of embryonic stem cells from the inner cell mass by

single-cell RNA-Seq analysis,” Cell Stem Cell, vol. 6, no. 5, pp. 468–478, 2010.

[10] J. K. Kim, A. A. Kolodziejczyk, T. Ilicic, S. A. Teichmann, and J. C. Marioni,

“Characterizing noise structure in single-cell RNA-seq distinguishes genuine from

technical stochastic allelic expression,” Nat. Commun., vol. 6, p. 8687, 2015.

[11] A. A. Kolodziejczyk, J. K. Kim, V. Svensson, J. C. Marioni, and S. A. Teichmann,

“The technology and biology of single-cell RNA sequencing,” Mol. Cell, vol. 58, no. 4,

pp. 610–620, 2015.

[12] C. Jia, D. Kelly, J. Kim, M. Li, and N. Zhang, “Accounting for technical noise in

single-cell RNA sequencing analysis,” bioRxiv, p. 116939, 2017.

35

[13] T. S. Andrews and M. Hemberg, “Modelling dropouts allows for unbiased identification

of marker genes in scRNASeq experiments.” July 2016.

[14] L. Zappia, B. Phipson, and A. Oshlack, “Splatter: simulation of single-cell RNA

sequencing data,” Genome Biol., vol. 18, no. 1, p. 174, 2017.

[15] X. Zhu, T. Ching, X. Pan, S. M. Weissman, and L. Garmire, “Detecting heterogeneity

in single-cell RNA-Seq data by non-negative matrix factorization,” PeerJ, vol. 5,

p. e2888, Jan. 2017.

[16] O. Poirion, X. Zhu, T. Ching, and L. X. Garmire, “Using single nucleotide variations in

single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage,” Nat.

Commun., vol. 9, p. 4892, Nov. 2018.

[17] X. Zhu, T. K. Wolfgruber, A. Tasato, C. Arisdakessian, D. G. Garmire, and L. X.

Garmire, “Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics

scientists,” Genome Med., vol. 9, no. 1, p. 108, 2017.

[18] D. van Dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail, A. J. Carr, C. Burdziak,

K. R. Moon, C. L. Chaffer, D. Pattabiraman, B. Bierie, L. Mazutis, G. Wolf,

S. Krishnaswamy, and D. Pe’er, “Recovering gene interactions from Single-Cell data

using data diffusion,” Cell, vol. 174, pp. 716–729.e27, July 2018.

[19] W. V. Li and J. J. Li, “An accurate and robust imputation method scimpute for

single-cell RNA-seq data,” Nat. Commun., vol. 9, p. 997, Mar. 2018.

[20] M. Huang, J. Wang, E. Torre, H. Dueck, S. Shaffer, R. Bonasio, J. I. Murray, A. Raj,

M. Li, and N. R. Zhang, “SAVER: gene expression recovery for single-cell RNA

sequencing,” Nat. Methods, vol. 15, pp. 539–542, July 2018.

[21] W. Gong, I.-Y. Kwak, P. Pota, N. Koyano-Nakagawa, and D. J. Garry, “DrImpute:

imputing dropout events in single cell RNA sequencing data,” BMC Bioinformatics,

vol. 19, p. 220, June 2018.

36

[22] M. Chen and X. Zhou, “VIPER: variability-preserving imputation for accurate gene

expression recovery in single-cell RNA sequencing studies,” 2018.

[23] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, “Single-cell RNA-

seq denoising using a deep count autoencoder,” Nat. Commun., vol. 10, p. 390, Jan.

2019.

[24] P. Lin, M. Troup, and J. W. K. Ho, “CIDR: Ultrafast and accurate clustering through

imputation for single-cell RNA-seq data,” Genome Biol., vol. 18, p. 59, Mar. 2017.

[25] J. Ronen and A. Akalin, “netsmooth: Network-smoothing based imputation for single

cell RNA-seq,” F1000Res., vol. 7, p. 8, Jan. 2018.

[26] L. Zhang and S. Zhang, “Comparison of computational methods for imputing single-cell

RNA-sequencing data,” bioRxiv, p. 241190, 2017.

[27] T. Ching, X. Zhu, and L. X. Garmire, “Cox-nnet: An artificial neural network method

for prognosis prediction of high-throughput omics data,” PLoS Comput. Biol., vol. 14,

p. e1006076, Apr. 2018.

[28] F. M. Alakwaa, K. Chaudhary, and L. X. Garmire, “Deep learning accurately predicts

estrogen receptor status in breast cancer metabolomics data,” J. Proteome Res., vol. 17,

pp. 337–347, Jan. 2018.

[29] K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire, “Deep Learning-Based Multi-

Omics integration robustly predicts survival in liver cancer,” Clin. Cancer Res., vol. 24,

pp. 1248–1259, Mar. 2018.

[30] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P.

Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L. Rosen, B. J.

Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar,

J. Xu, E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexandari, Z. Lu, D. J.

Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley, M. H. S. Segler, S. M.

37

Boca, S. J. Swamidass, A. Huang, A. Gitter, and C. S. Greene, “Opportunities and

obstacles for deep learning in biology and medicine,” J. R. Soc. Interface, vol. 15, Apr.

2018.

[31] J. Tan, G. Doing, K. A. Lewis, C. E. Price, K. M. Chen, K. C. Cady, B. Perchuk, M. T.

Laub, D. A. Hogan, and C. S. Greene, “Unsupervised extraction of stable expression

signatures from public compendia with an ensemble of neural networks,” Cell Syst,

vol. 5, pp. 63–71.e6, July 2017.

[32] B. K. Beaulieu-Jones, C. S. Greene, and Pooled Resource Open-Access ALS Clinical

Trials Consortium, “Semi-supervised learning of the electronic health record for

phenotype stratification,” J. Biomed. Inform., vol. 64, pp. 168–178, Dec. 2016.

[33] B. K. Beaulieu-Jones and J. H. Moore, “MISSING DATA IMPUTATION

IN THE ELECTRONIC HEALTH RECORD USING DEEPLY LEARNED

AUTOENCODERS,” Pac. Symp. Biocomput., vol. 22, pp. 207–218, 2017.

[34] C.-C. Chiang and H.-C. Fu, “A divide-and-conquer methodology for modular

supervised neural network design,” in Neural Networks, 1994. IEEE World Congress on

Computational Intelligence., 1994 IEEE International Conference on, vol. 1, pp. 119–

124 vol.1, June 1994.

[35] L. X. Garmire and S. Subramaniam, “Evaluation of normalization methods in

mammalian microRNA-Seq data,” RNA, vol. 18, pp. 1279–1288, June 2012.

[36] E. Torre, H. Dueck, S. Shaffer, J. Gospocic, R. Gupte, R. Bonasio, J. Kim, J. Murray,

and A. Raj, “Rare cell detection by single-cell RNA sequencing as guided by single-

molecule RNA FISH,” Cell systems, vol. 6, no. 2, pp. 171–179, 2018.

[37] S. Hrvatin, D. R. Hochbaum, M. A. Nagy, M. Cicconet, K. Robertson, L. Cheadle,

R. Zilionis, A. Ratner, R. Borges-Monroy, A. M. Klein, B. L. Sabatini, and M. E.

Greenberg, “Single-cell analysis of experience-dependent transcriptomic states in the

mouse visual cortex,” Nat. Neurosci., vol. 21, pp. 120–129, Jan. 2018.

38

[38] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and

projection for dimension reduction,” Feb. 2018.

[39] V. Traag, L. Waltman, and N. J. van Eck, “From louvain to leiden: guaranteeing

well-connected communities,” Oct. 2018.

[40] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of

communities in large networks,” J. Stat. Mech., vol. 2008, p. P10008, Oct. 2008.

[41] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, and Others, “In-datacenter performance analysis of

a tensor processing unit,” in Proceedings of the 44th Annual International Symposium

on Computer Architecture, pp. 1–12, 2017.

[42] J. Shanahan and L. Dai, “Large scale distributed data science from scratch using apache

spark 2.0,” in Proceedings of the 26th International Conference on World Wide Web

Companion, WWW ’17 Companion, (Republic and Canton of Geneva, Switzerland),

pp. 955–957, International World Wide Web Conferences Steering Committee, 2017.

[43] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung, M. Balazinska, A. Rokem,

A. Connolly, J. Vanderplas, and Y. AlSayyad, “Comparative evaluation of big-data

systems on scientific image analytics workloads,” Proceedings VLDB Endowment,

vol. 10, pp. 1226–1237, Aug. 2017.

[44] Tian, T. Tian, J. Wan, Q. Song, and Z. Wei, “Clustering single-cell RNA-seq data with

a model-based deep learning approach,” 2019.

[45] F. Chollet, “Keras,” 2015.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, and Others, “TensorFlow: A system for Large-Scale machine

learning,” in OSDI, vol. 16, pp. 265–283, 2016.

39

[47] R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, “Spatial reconstruction

of single-cell gene expression data,” Nat. Biotechnol., vol. 33, pp. 495–502, May 2015.

[48] F. A. Wolf, P. Angerer, and F. J. Theis, “SCANPY: large-scale single-cell gene

expression data analysis,” Genome Biol., vol. 19, p. 15, Feb. 2018.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:

A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res.,

vol. 15, no. 1, pp. 1929–1958, 2014.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412. 6980, 2014.

[51] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609. 04747, 2016.

[52] S. Joost, A. Zeisel, T. Jacob, X. Sun, G. La Manno, P. Lönnerberg, S. Linnarsson,

and M. Kasper, “Single-Cell transcriptomics reveals that differentiation and spatial

signatures shape epidermal and hair follicle heterogeneity,” Cell Syst, vol. 3, pp. 221–

237.e9, Sept. 2016.

[53] Arisdakessian, Poirion, Yunits, Zhu, and Garmire, “Deepimpute,” Sept. 2019.

Supplementary information

40

Figure S2.1: Preprocessing steps for DeepImpute: DeepImpute starts by selecting “target
genes” that meet a variability criteria based on variance over mean ratio (default: 0.5), and
then splits them into subsets with the same number of genes (default: N = 512). For the
last subset of genes less than the default value, they are rounded into the next sub-neural
network model. These target genes make up the output layer of the sub-neural network,
whose zero values are imputed. For each each target gene gi in subset k, we select the
5 best correlated genes, or predictor genes, which are not part of the target genes in the
subset k. Finally, we remove those predictor genes that were selected multiple times in all
the sub-neural networks. We use the remaining predictor genes as the input layer for the
sub-neural network.

41

Figure S2.2: Masking experiment in single cell RNA-Seq data: (Left) Raw dataset. Darker
colors represent higher values. (Right) Masked dataset. Masked values are barred with an
”X”.

Dataset Cells Sample type Organism Source

Jurkat 3,258 Blood cell line Homo Sapiens 10X Genomics*
293T 2,885 Blood cell line Homo Sapiens 10X Genomics*
Neuron9k 9,128 Brain cells Mus Musculus 10X Genomics*
GSE67602 1,422 Interfollicular epidermis cells Mus Musculus GSE67602
Mouse1M 1,306,127 Brain cells Mus Musculus 10X Genomics*
FISH 88,040 Melanoma cell line Homo Sapiens Torre et al. [36]
GSE99330 8,641 Melanoma cell line Homo Sapiens GSE99330
Sim 2,000 NA NA NA
Hrvatin 48,267 Primary Visual Cortex Mus Musculus GSE102827

Table S2.1: Single-cell datasets summary: *: the URL to access the dataset is:
https://support.10xgenomics.com/single-cell-gene-expression/datasets

42

Figure S2.3: Effect of dropout rate on imputation accuracy: The MSE scores for dropout
rates varying from 0 to 90% are shown. The blue and orange lines are gene-level and
cell-level MSEs, respectively.

Figure S2.4: Accuracy comparison between DeepImpute and two other variant architectures:
Bar plots of Pearson’s correlation coefficients (left) and mean squared error (right) are
shown for the masked data points of each dataset in Figure 2. Three DeepImpute variants
are compared: default DeepImpute with ReLU activation function (blue), DeepImpute with
linear activation function (orange), and DeepImpute without hidden layers (green).

43

Chapter 3

CoCoNet: an efficient deep learning tool for viral

metagenome binning

Abstract

Metagenomic approaches hold the potential to characterize microbial communities and

unravel the intricate link between the microbiome and biological processes. Assembly is

one of the most critical steps in metagenomics experiments. It consists of transforming

overlapping DNA sequencing reads into sufficiently accurate representations of the

community’s genomes. This process is computationally difficult and commonly results

in genomes fragmented across many contigs. Computational binning methods are used

to mitigate fragmentation by partitioning contigs based on their sequence composition,

abundance, or chromosome organization into bins representing the community’s genomes.

Existing binning methods have been principally tuned for bacterial genomes and do not

perform favorably on viral metagenomes.

In this chapter, we propose CoCoNet (Composition and Coverage Network), a new binning

Published: Cédric Arisdakessian, Olivia D. Nigro, Grieg F. Steward, Guylaine Poisson, and Mahdi
Belcaid. ”CoCoNet: an efficient deep learning tool for viral metagenome binning.” Bioinformatics 37, no.
18 (2021): 2803-2810.

44

method for viral metagenomes that leverages the flexibility and the effectiveness of deep

learning to model the co-occurrence of contigs belonging to the same viral genome and

provide a rigorous framework for binning viral contigs. Our results show that CoCoNet

substantially outperforms existing binning methods on viral datasets.

3.1 Introduction

Shotgun metagenomics plays a critical role in investigating the composition and function of

microbial communities in diverse environments, from the human gut [1, 2] to the deep sea

[3, 4]. Metagenomic assembly is particularly challenging for virome data [5]. Viral shotgun

assemblies are commonly plagued by short contigs, leading to poor characterization of the

underlying species diversity, richness [6] and functional capacity [7]. Binning contigs arising

from a single species is a process routinely used to compensate for incomplete microbial

metagenome assemblies. In the presence of reference genome sequences, binning is trivial

and can be achieved by clustering contigs that align with high-confidence against the same

reference genome. However, in samples containing species with unsequenced genomes,

binning is more complicated since contigs need to be clustered de novo. While binning

microbial contigs has seen significant advances recently, few programs have considered the

unique set of challenges associated with viruses.

Existing methods for binning contigs can be divided into three classes: 1) methods based

on sequence composition [8], 2) methods based on sequencing coverage correlation [9], and

3) a combination of both [10, 11, 12]. The first class of methods leverages the fact that

bacterial species have predominantly different distributions of k-mers, or words of size k, and

use that evidence to bin together contigs with similar k-mer distributions. This approach

works best on species with sufficiently divergent k-mer distributions but is less effective for

resolving closely related species for which the k-mer distributions may be indistinguishable,

particularly over short contigs. The second class of methods uses the sequencing coverage,

i.e., the number of reads aligning to each contig, and reports contigs that consistently share

45

similar coverage values across multiple samples as belonging to the same genome. This

approach is accurate but works best when many samples are available [12]. The third class

of methods leverages both k-mer and coverage profiles, typically using statistical models, to

infer clusters. This class of methods combines the advantages of composition- and coverage-

based solutions but is computationally more complex.

In this chapter, we introduce CoCoNet, a new method that leverages deep learning

to model the k-mer composition and the coverage for binning contigs assembled from

viral metagenomic data. Specifically, our method uses a neural network trained using

contigs’ subsequences, or fragments, to learn a flexible function for predicting the probability

that any pair of contigs originated from the same genome. These probabilities are

subsequently combined to infer bins representing the genomes of species present in the

sequenced samples. Our approach was specifically optimized for viral metagenomes with

large diversity, such as those found in environmental samples (e.g., oceans, soil, etc.).

Such samples require sophisticated modeling methods that account for several sources of

bias [13, 5]. We tested CoCoNet on both simulated and experimental viral metagenome

data, and our results show that CoCoNet outperforms existing tools optimized for binning

bacterial data. The CoCoNet source code and documentation are available at: https:

//github.com/Puumanamana/CoCoNet.

3.2 Methods

The CoCoNet algorithm

We developed CoCoNet, a Composition and Coverage Network that uses deep learning in

conjunction with clustering to bin assembly contigs into homogeneous clusters representing

the species present in the samples. Our approach works in two phases. The first phase

trains a deep neural network to estimate the probability that two fragments belong to the

same genome, given their composition and coverage information. The second phase uses a

46

https://github.com/Puumanamana/CoCoNet
https://github.com/Puumanamana/CoCoNet

computationally tractable heuristic to bin the contigs using the co-occurrence probabilities

inferred in the previous phase.

Preprocessing

To account for differences in contig lengths when extracting composition and coverage

features, we divide contigs longer than 2048 bp into regularly spaced fragments of length

1024 bp (step: 128 bp).

Composition feature: We compute the composition feature by summing the number of

occurrences of each k-mer, where k = 4, on each fragment’s forward and reverse strands.

This makes the distribution invariant to the reverse complement, therefore accounting

for missing strand orientation information. Because this transformation induces k-mer

redundancies (e.g. observing ACCG is the same as observing its reverse complement,

CGGT), we are left with 136 unique k-mers.

Coverage feature: The coverage feature is computed by aligning the raw reads against the

fragments, and by counting the number of reads aligning at each position of the fragment. To

reduce artifacts due to erroneous read mapping and mis-assembly, we filtered the alignments

to discard those that were either partial (represented 50% or less of the query’s length), had a

quality score lower than 30, or where one of the read pairs was unmapped (SAMflag=3596).

We also removed reads that had more than one high-quality alignment or PCR/optical

duplicates. We excluded contigs occurring in only one sample (prevalence < 2) since our

model does not extract relevant co-occurrence information from one sample. Finally, we

smoothed the coverage using an averaging window of size 64 and sub-sampled the resulting

vector every 32 bases to minimize computation and data storage requirements. These steps

yielded 31 coverage values for each fragment in each sample.

Filtering complete genomes: Complete genomes were used in the training but were not

included in the binning. We consider a contig to be complete if it contained Direct Terminal

Repeats [14]. Specifically, we flagged a contig as complete if its first and last 300 bp aligned

over at least 10 bp with at least 95% identity.

47

Deep learning model

This section describes how we train a neural network de novo to learn to predict the

probability that any pair of fragments belong to the same genome.

Training and test sets’ construction: We divide the initial set of contigs into 90% training

and 10% testing. Both sets contain positive and negative examples (see Figure 3.1a). The

positive examples are pairs of fragments from the same contig. They teach the model

the similarities in fragments from the same genome. The negative examples are pairs of

fragments from distinct contigs. They teach the model the differences between fragments

from different genomes. When selecting positive training instances, we try to maximize the

distance between the fragments to avoid trivial examples where fragments are similar due

to their overlap. We generate the same number of positive examples from each contig in the

training data to avoid biasing the training set in favor of long contigs. Using the approach

described above, some mislabeling can occur with negative examples since different contigs

can belong to the same bin. However, we show that the proportion of mislabeled pairs

should be negligible for diverse metagenomes (see Supplementary Methods). Other studies

have also shown that neural networks are robust to label noise and mislabeling, which can

be mitigated with large batch sizes [15].

Network architecture and training procedure: The network processes the composition

and coverage inputs in three main steps (See Figure 3.1b).

In the first step, we process both composition vectors separately using two 64-neurons dense

layers that share the same weights. Similarly, we process both coverage vectors using two

pairs of layers (1D convolution layer with 16 filters, a kernel size=4 and a stride=2,

and a 64-neurons dense layer) that share the same weights. Since the network outputs

a probability of the two fragments belonging to the same genomes, the output should

be symmetrical, i.e. P (frag1, frag2) = P (frag2, frag1). The merging layer enforces this

symmetricity using Siamese networks [16]. In short, given two vectors x1 and x2 and a dense

layer D, we compute both D(x1, x2) and D(x2, x1), and return the element-wise maximum

between the two outputs. In the second step, the information from the four original inputs

48

Contig b

1
2

3
4

5
6

Contig a

1
2

3
4

Contig c

1
2

3

Positive Examples

c
2

c
3

c
1

c
3

b
2

b
6

b
1

b
5

a
2

a
4

a
1

a
3

Negative Examples

a
2

c
3

b
2

c
1

c
3

b
3

a
1

b
2

b
5

a
4

c
1

a
1

A

B

(a) Training set construction

(b) Network architecture

Figure 3.1: CoCoNet’s neural network architecture and learning: (a) Training set
construction: Each contig is split into 1024 bp fragments spaced with a 128 bp step. The
training set is composed of two classes, positive (resp. negative) composed of fragment pairs
from the same (resp. different) contigs. The positive class is constructed by extracting a
constant number of fragment pairs from each contig. For a given contig, we pick the most
distant pairs. The negative class is composed of random fragments from random contig
pairs. (b) Deep learning model: The neural network computes the fragments co-binning
probability. First, a latent representation is computed for each composition and coverage
features separately by sharing the weights of the network between the two inputs. A 64-
neurons dense layer is used to process the composition vectors and a 1D convolution layer
followed by a shared 64-neurons dense layer to process the coverage vectors. For a pair
of fragments, the composition and the coverage features are merged with a siamese layer
composed of a 32-neurons dense layer, followed by an element-wise maximum. Two 1-neuron
layers are used to compute the probabilities of the observed composition and coverage values.
The latent representations of the composition and coverage are also used to compute the
probability of the combined coverage and composition. This is done by concatenating the
latent feature representations (32-neuron layer) and running them through a dense layer
with 32-neurons, followed by a layer with 1-neuron and a sigmoid activation.

49

is aggregated into two vectors of size 32, representing the composition and coverage (Figure

3.1b). Finally, the third step computes a composition probability, coverage probability, and

a combined probability that two fragments originated in the same genome.

We train the network using a batch size of 256 and a single epoch. We use the Adam [17]

optimizer with a learning rate of 10−3 and compute the overall loss as the weighted sum of

the three binary cross-entropy (BCE) losses:

Loss = BCE(composition) + BCE(coverage) + 2 · BCE(combined)

The network accuracy is evaluated on the test data every 400 batches. The training stops

if the test loss does not improve for after five consecutive evaluations of the test set.

Clustering

We bin the contigs using a clustering graph G(v, e), where the nodes v represent the contigs

and the edges, e link contigs belonging to the same bin. The edges computation, the

comparison policy, and the graph clustering steps are described in what follows.

1. Edges computation: During the clustering stage, we split each contig into 30 regularly

spaced and maximally distant fragments of length 1024. To compare two contigs vi and vj ,

we compute the 900 probabilities that any fragment from vi overlaps with fragments in vj .

We sum these probabilities to yield an expected number of hits between the contigs, which

lies between 0 and 900:

#expected hits(vi, vj) =
m∑
l=1

m∑
k=1

P (vli, v
k
j) (3.1)

where vli represents the lth fragment in contig vi and m is the number of fragments per

contig (default is 30).

We subsequently assign an edge in G between contigs vi and vj if the number of expected

hits is higher than a given threshold θ (by default, 80% of the maximum possible value of

expected hits, m2).

50

2. Comparison policy : Given the large number of possible contig pairs in a dataset

(about 0.5 × 109 comparisons for 30k contigs), we use a heuristic to evaluate only pairs

that are more likely to belong to the same genome. In this heuristic, we hypothesize that

for two contigs vi and vj , #expected hits(vi, vj) > θ when vi and vj ’s fragments are close

in both the composition and coverage spaces (see supplementary figure S3.4). Given the

high-dimensionality of the original features, we choose to investigate the spatial proximity

of fragments in their latent representation space. We compute the latent representation of

each contig in the composition and coverage spaces using the trained neural network and

use that information to subsequently represent each contig in latent space as a ball centered

at its fragments’ center and with a radius R defined as:

R = percentile({||f − cf ||2, f ∈ fragments}, 90),

where ||f − cf ||2 is the euclidean distance of a fragment f to its center of mass cf .

We initially limit the comparison of a query contig to its 250 closest neighbors, which

we define as the contigs whose center of mass falls within the query’s ball (See Figure 3.2).

Further, our approach emphasizes new comparisons rather than ones previously examined.

Specifically, wherever contig vj is selected for comparison to vi, then contig vi will not be

selected for comparison to vj . Since the radius is the same for all contigs, shorter contigs are

not penalized due to the fact that their fragments are less variable. The number of neighbors

was set to 250 after hyperparameter optimization. Our tests indicated no improvement in

the results when considering more neighbors (see supplementary table S3.3).

3. Graph clustering : We use the Leiden algorithm [18] to identify the bins in the graph

representing the species. This clustering algorithm infers its clusters by optimizing the

Constant Potts Model (CPM) quality function H defined as:

H =
∑

c∈clusters
edges(c)− γ ·

(
vertices(c)

2

)
,

51

2
1

3

Contig b Contig c

30

Figure 3.2: CoCoNet clustering approach: We split each contig in 30 regularly spaced
and maximally distant fragments and used the deep neural network to compute the latent
representation for each fragment’s composition and coverage features. Considering each
feature type separately, we draw for each contig a ball centered at the center of mass of
its fragments’ latent representations, and with a radius equal to the 90th percentile of all
distances between each fragments and their respective center of mass. We compare a contig
to the 250 closest contigs whose center lies within the balls derived from both feature types.
The bins are finally determined using the Leiden clustering algorithm.

52

where edges(·) (resp. vertices(·)) counts the number of edges (resp. vertices) in a given

cluster. The parameter γ controls how dense clusters are in terms of edges. Initially,

each edge belongs to a different cluster. Then, the Leiden algorithm repeatedly 1) moves

nodes between clusters to improve H, 2) refines the clusters into sub-communities, and 3)

aggregates all the edges of a cluster into a single aggregated network. The algorithm stops

when H cannot be improved further.

Since the clustering graph has potentially missing edges resulting from our heuristic,

we perform the clustering in two steps. First, we run the Leiden algorithm with a small

resolution parameter (γ = 0.3) to delineate unpolished clusters. Then, within each cluster,

we fill the adjacency matrix with the remaining comparisons and re-run the Leiden clustering

algorithm within each cluster with a higher resolution parameter (γ = 0.4). The CoCoNet

implementation includes a second community detection algorithm, spectral clustering [19],

which is ideal when the number of bins is known.

Metrics

Classification metrics

We measured the network’s ability to classify contig pairs using the accuracy, the Area

Under the Receiver Operating Characteristics (ROC) Curve (AUC), and the F1 score.

These measures are defined as follows:

- The accuracy is the proportion of good predictions (either true positives or true

negatives) among all predictions.

- AUC: Area under the ROC curve defined as (TPR(thresh), FPR(thresh)) at various

classification thresholds.

- The F1 score is a summary value that takes into account both precision and recall. It

is defined as:

F1 = 2 · precision× recall
precision+ recall

=
2 · TP

2 · TP + FN + FP

53

Clustering metrics

To compare the binning predicted by CoCoNet, CONCOCT [11], and Metabat2[10] against

the ground truth, we used the Adjusted Rand Index (ARI), the homogeneity, and the

completeness. These measures are defined as follows:

- The ARI[20] is the ratio of all pairs that are assigned correctly as belonging either

together or not together, among all possible pairs. It is adjusted for chance.

- The homogeneity measures whether clusters contain only members of a single class.

It is derived from the ratio of H(C|K), the conditional entropy of the classes given

the cluster assignments and the entropy of the cluster assignments.

homogeneity = 1− H(C|K)

H(C)

- The completeness measures whether all members of a given class are assigned to the

same cluster. It is derived from the ratio of H(K|C), the conditional entropy of the

cluster assignments given the classes and the entropy of the cluster assignments.

completeness = 1− H(K|C)

H(K)

CheckV analysis

We used CheckV v0.7.0 [21] to analyze the quality of the bins resulting from the Station

ALOHA dataset. We concatenated the contigs in each bin into an artificial contig as required

by CheckV. We also ensured that any Direct Terminal Repeats found in the bin occur at the

ends of the resulting construct. We report our results using CheckV’s categories (Complete,

high-quality, medium-quality, low-quality, undetermined).

54

Simulations and experimental datasets

Simulations

Reference genomes were downloaded from the NCBI RefSeq viral database [22] (ftp://ftp.

ncbi.nlm.nih.gov/refseq/release/viral/; dataset version: September 12, 2019). This

dataset contains 13,274 viruses, 9,316 of which had a length greater than 3 kb. The dataset

was first preprocessed to convert ambiguous IUPAC codes into A, C, G, T by randomly

sampling among the possible values of each ambiguous code. Unresolved nucleotides, or Ns,

were removed from the k-mer counts to avoid biasing the computation. Finally, genomes

shorter than 3 kb were discarded from the simulations as they were too small to yield at

least two contigs of 2048 bp.

We used the preprocessed viral dataset with CAMISIM [23] to simulate four synthetic

metagenomes. Each of the synthetic metagenomes had either 4 or 10 samples and a coverage

of either 3X or 10X. For each simulation, we randomly sampled 500 or 2,000 genomes and

used a log-normal distribution (µ = 1, σ = 3) to simulate each genome’s relative abundance.

Each of the four experimental conditions was repeated ten times to account for sampling

variability. This resulted in a total of 80 simulations.

We simulated the sequencing by fragmenting each genome into chunks with a mean

length of 400 bp and a standard deviation of 10 bp. Each subsequence was then used

to simulate paired-end reads with errors introduced using Illumina’s MiSeq error profile.

Contigs were inferred deterministically using CAMISIM’s simulated reads’ location in the

reference genome. In this approach, which CAMISIM refers to a gold standard assembly, a

contig is simply a consensus sequence of the reads simulated from the region it spans.

Experimental datasets

We used three viral metagenomes from Beaulaurier et al. [24]. The data was collected

from Station ALOHA in the North Pacific Subtropical Gyre and sequenced with both

Oxford Nanopore Technologies (ONT) and Illumina technologies. Raw Illumina reads

55

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/

were downloaded from SRA (SRR10378148, SRR8811962, SRR8811963) and trimmed with

Fastp [25]: reads were truncated when the quality on a sliding window of length 10 bp

dropped below 25. Leading and trailing bases with quality below 5 were also trimmed.

All reads shorter than 20 bp were filtered out. Trimmed reads were assembled with

MetaSPAdes [26]. The resulting assembly contained 59,027 contigs longer than 2048 bp.

Sequencing reads were aligned against the contigs using the bwa-mem algorithm [27] with

default parameters. The alignments were filtered using pysam [28] to drop those that

were partial (less than 50% of the query), had a low quality (30 or less) or contained an

unmapped mate-pair (SAM flag=3596). We also filtered out alignments where reads had

multiple alignments or PCR/optical duplicates. Finally, we removed paired alignments with

mapping distance less than 200 or greater than 500 bp (see template length distribution

in Supplementary Figure S3.1). The number of contigs filtered at each step is provided

in Supplementary Table S3.1. After filtering, 42% of the contigs in each sample had a

coverage above 1X.

These genomes were assembled and polished using the ONT reads as described in [24]

(accession: PRJNA529454). This step resulted in 567, 96, and 1217 high-quality draft

genomes in the respective samples. We pooled all the contigs and dereplicated them

using Cluster-Genomes [29] using the default parameter values (minimum nucleotide

identity=95%, min coverage=80%). Only 1,322 unique contigs remained after the

dereplication.

Given that ONT and Illumina data were sequenced from the same biological samples,

we aligned the shorter Illumina contigs against the ONT reference assembly to obtain the

ground truth needed to verify our predictions. Thus, two contigs that align against the

same genome reference must bin together in the ground truth solution. Conversely, pairs

of contigs aligning to different genomes must appear in separate bins in the ground truth

solution. We used minimap2 [30] to align the Illumina contigs against the ONT references

and filter out potentially erroneous alignments if their minimum nucleotide identity was

less than 95% (same threshold as Cluster-Genomes). We also discarded alignments where

56

the Illumina contigs were longer than the ONT reference. Such alignments don’t convey

information conducive to validating our binning predictions.

Other algorithms

We used CONCOCT’s latest version 1.1.0 and set the maximum number of genomes to

2000 (maximum number of species in our simulations). We ran Metabat2 v2.15 with the

default parameters.

3.3 Results

Viral datasets

Simulated datasets

We used a simulated dataset constructed using the NCBI’s complete set of viral genomes (see

Methods for more details). 38% of the viruses in the database belong to the Caudovirales

order, a majority of which are of the Siphoviridae family (See supplemental Figure S3.7).

As expected, the simulations were less fragmented as the number of samples or the coverage

increased. For example, with 4 samples and 500 genomes, increasing the coverage from 4X

to 10X decreases the number of contigs by 26% (23,258 to 17,303). Similarly, with 4X

coverage and 500 genomes, increasing the samples from 3 to 15 leads to an 80% decrease

in the number of contigs (see Supplementary Table S3.1). Table 3.1 displays some relevant

properties of the simulated dataset in terms of average bin size, prevalence (number of

samples in which a contig occurs), and number of contigs longer than 2kb. The bin size

distribution for each setting is available in Supplementary Figure S3.8.

Experimental dataset ”Station ALOHA”

A total of 2,332 Illumina contigs (longer than 2048bp) mapped against 988 ONT references

with 95% similarity or higher. These alignments are valuable for providing the binning

ground truth, which we relied on in our tests.

57

Dataset
Number

of genomes
Coverage

Number
of samples

Average bin
size

Average
prevalence

Number of
contigs (>2kb)

Sim-1 500 3X 4 3.16 ±0.74 2.25 ±0.07 678 ±165
Sim-2 500 3X 15 1.89 ±0.15 6.30 ±0.37 893 ±70
Sim-3 500 10X 4 2.54 ±0.39 2.61 ±0.12 838 ±173
Sim-4 500 10X 15 1.17 ±0.12 8.54 ±0.32 582 ±57
Sim-5 2000 3X 4 3.25 ±0.32 2.18 ±0.07 2554 ±195
Sim-6 2000 3X 15 2.07 ±0.09 5.97 ±0.10 3871 ±163
Sim-7 2000 10X 4 2.48 ±0.08 2.56 ±0.08 3209 ±93
Sim-8 2000 10X 15 1.27 ±0.14 7.96 ±0.29 2520 ±271

SA > 1300 6.6X ±2.2 3 N/A 1.51 ±0.61 59,027

Table 3.1: Simulation parameters summary: For each experimental condition, the means and
standard deviations of ten replicates are shown. The number of bins for the Station ALOHA dataset
is unknown but is estimated to be at least the number of curated contigs assembled from the Oxford
Nanopore long reads. The table provides the number of contigs in each simulation, the average bin
size, and the average prevalence (number of samples in which a contig occurs). The variance for
each of these values across the ten replicate simulations is provided after the ”±” symbol. SA refers
to the experimental dataset ”Station ALOHA”

Effect of fragment length on composition separation

We compared the distributions of cosine distances between the k-mer profiles of pairs of

subsequences within vs across 9,316 publicly available viral genomes. Differences between

intra- vs. inter-genome distance distributions were significant (t-test) at all fragment lengths

tested although the distributions were very similar for the smallest fragment sizes (256 bp).

The cosine distances progressively diverged (range 0.10 to 0.48) as a function of fragment

length (Figure 3.3), suggesting that k-mer composition may represent a robust feature

for binning when computed on fragments of at least 1024 bp. The high prevalence of

viral genetic recombinations [31] and host to virus horizontal transfers [32] render binning

using k-mer composition alone impractical. This point is evidenced by the overlap between

the across- and within-species distributions in Figure 3.3. Other binning methods have

suggested that coverage can facilitate recovery of more complete bins [11]. As such, it is

crucial to include that information to enhance the signal conveyed by the k-mer composition.

58

256 512 1024 2048

Fragment length (bp)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
s
in

e
 d

is
ta

n
c
e

Figure 3.3: Distribution of k-mer distances: The k-mer cosine distance between fragments
from the same genome (orange) and different genomes (blue) for fragments of length
256, 512, 1024, and 2048 bp. The variance of the cosine distance within and across
species decreases gradually as the fragment length increases. The overlap between the
two distributions is much smaller for fragments of 1024 bp or longer. This suggests that the
best power for distinguishing within and across species requires fragments of at least 1024
bp.

CoCoNet performance on simulated viral data

For each simulated dataset, we trained the deep neural network using the 4-mer frequencies

and coverage vectors as inputs. We measured the network learning performance using the

accuracy, the F1 score, and the Area Under the ROC Curve (see Methods section 3.2 for

details about these metrics).

Overall, the accuracy, the F1-score, and the AUC are all consistently above 95%

(Figure 3.4). All of the metrics increase with the number of samples. Indeed, the larger

the number of samples, the easier and more accurate it becomes for the model to learn

the expected variability in coverage across contigs from the same genome. The computed

quality metrics are also correlated with the sequencing depth since a higher coverage can

lead to fewer contigs, more complete genomes, and less coverage variance between contigs

59

0.96

0.97

0.98

0.99

1.00

ac
cu
ra
cy

500 genomes 2000 genomes

0.96

0.97

0.98

0.99

1.00

F1

4 15
samples

0.980

0.985

0.990

0.995

1.000

AU
C

4 15
samples

3X
10X

Figure 3.4: Neural network performance on simulated data: We vary the number of genomes
(500, 2000), samples (4, 15) and coverage (blue: 3, orange: 10). The distribution of the
scores is shown for each of the 3 metrics (AUC, Accuracy, F1 score).

of the same genome. We also observe a slight decrease in the variance and improved metrics

when 2000 genomes were included in the simulations. This larger number of species allows

for more diversity in training examples and more possibilities for generalization. The total

counts for true positives, true negatives, false positives, false negatives show a similar trend

(see Supplementary Figure S3.2).

The binning performances of CoCoNet, CONCOCT, and Metabat2 were compared for

each of the simulated datasets using the ARI [20], the completeness and the homogeneity

(Figure 3.5). The completeness measures true positives, or events where contigs were

correctly binned together, while homogeneity measures true negatives, or events where

60

contigs were correctly assigned to separate bins. ARI is a more general metric that

captures both types of events (see Methods section for more details). CoCoNet accurately

reconstructs, on average, 14% of the bins that contain at least two contig, compared to 2.1%

and 2.0% for Metabat2 and CONCOCT, respectively. Overall, CONCOCT assigned all the

contigs to a small number of bins, yielding high levels of false positives. For instance, the

maximum number of bins observed was 70 and occurred for a coverage of 3X, 15 samples,

and 2,000 genomes. On the other hand, Metabat2 creates a small number of homogeneous,

non-singleton bins (low number of false positives). In summary, CONCOCT has low

homogeneity (median=0.418) and high completeness (median=0.984) while Metabat2,

has high homogeneity (median=0.999) and lower completeness (median=0.817). In

contrast, CoCoNet achieves high scores on both metrics, with a median homogeneity and

completeness values of 0.944 and 0.942, respectively. Since the completeness measures

whether contigs from the same virus are binned together, having a lower number of clusters

artificially inflates this metric, i.e., decreasing the number of clusters can only increase

the chance of grouping contigs. The ARI is a more generic metric since it measures both

correct and erroneous binning events by considering all pairs of contigs. The ARI scores for

bins produced by CONCOCT and Metabat2 were low due to their high false positive and

false negative rates, respectively. Specifically, CONCOCT and Metabat2 have median ARI

scores of 0.0794 and 0.200, whereas CoCoNet achieves a median score of 0.617.

Altogether, CoCoNet outperforms both CONCOCT and Metabat2 on the simulated

data as it yields more bins containing contigs from the same genome and fewer bins

containing contigs from different genomes.

CoCoNet accurately identifies contigs in the experimental dataset ”Station

ALOHA”

We processed all Illumina assembly contigs using CoCoNet, CONCOCT, and Metabat2,

and computed the ARI, completeness, and homogeneity scores using only the subset of

61

0.00

0.25

0.50

0.75

1.00
500 genomes

0.00

0.25

0.50

0.75

1.00 4 sam
ples (3X)

2000 genomes

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00 4 sam
ples (10X)

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00 15 sam
ples (3X)

ARI Completeness Homogeneity
0.00

0.25

0.50

0.75

1.00

ARI Completeness Homogeneity
0.00

0.25

0.50

0.75

1.00

15 sam
ples (10X)

CONCOCT
Metabat2
CoCoNet

Figure 3.5: Clustering performance on simulated data: We vary the number of genomes (500,
2000), samples (4, 15) and coverage (3, 10). For each of the 3 metrics (ARI, Completeness,
Homogeneity), the distribution of the scores is provided for each method (green: CoCoNet,
blue: CONCOCT, orange: Metabat2).

contigs mapping against the draft genomes. Figure 3.6 compares the scores of the three

metrics (ARI, Homogeneity, and completeness) for all three methods.

Similar to the results observed in the simulation, CONCOCT generates only 61 bins

in total. Nineteen (19) of these bins are homogeneous, and only 9 were non-singleton.

Metabat2 generated 2,212 bins, with 2,196 singletons, one homogeneous but partial, and

16 with erroneously merged contigs. In contrast, CoCoNet generates 1,452 bins, 1,177 were

homogeneous, and 127 were homogeneous and non-singletons (see Supplementary Table

S3.2).

62

ARI Completeness Homogeneity
0.0

0.2

0.4

0.6

0.8

1.0

CONCOCT
Metabat2
CoCoNet

CONCOCT Metabat2 CoCoNet0

100

200

300

400

Co
un
t

#Complete bins

CONCOCT Metabat2 CoCoNet0

200

400

600

800
#High-quality bins

CONCOCT Metabat2 CoCoNet0

10000

20000

30000

Co
un
t

#Low-quality bins

CONCOCT Metabat2 CoCoNet0

200

400

600

800

1000 #Medium-quality bins

CONCOCT Metabat2 CoCoNet0

2000

4000

6000

8000

10000

Co
un
t

#Not-determined bins

CONCOCT Metabat2 CoCoNet RefSeq
102

103

104

105

106

Si
ze
 (b

p)

Distribution of bin sizes

Figure 3.6: Clustering performance on Station ALOHA: (Top) The scores are provided
for each of the 3 metrics (ARI, Completeness, Homogeneity) and each method (green:
CoCoNet, blue: CONCOCT, orange: Metabat2). (Bottom) Bin classification by CheckV.
Each barplot corresponds to the number of contigs in the given category. The last facet
(boxplot) is the distribution of bin sizes for each method. The genome length distribution
of the viral RefSeq database is shown as a reference.

Metabat2 generated many bins, resulting in a very high homogeneity (0.979) and

completeness (0.869). However, the ARI value was low (0.00108) since only one non-

singleton bin was correct but small (2 contigs). CONCOCT achieved a slightly higher

completeness score (0.893) but a low homogeneity (0.421) and ARI (0.0103). In contrast,

CoCoNet results in a completeness value on par with CONCOCT and Metabat2 (0.885)

63

but has substantially higher homogeneity (0.927) than CONCOCT and an ARI (0.180) an

order of magnitude higher than the two other methods.

To further evaluate bin quality, we used CheckV to classify bins into 5 categories

(complete, high-quality, medium-quality, low-quality, and not-determined). CheckV’s

results mirror the ARI scores, with 464 complete bins and 804 high-quality bins for

CoCoNet, 146 complete bins and 341 high-quality bins for Metabat2 and 86 complete

bins and 55 high-quality bins for CONCOCT (see Figure 3.6). We also compared the bin

size distribution of each method with the RefSeq database to provide another qualitative

assessment of bin completeness and contamination. Indeed, if bins are complete, then their

size (in bp) should be similar to what can be found in reference viral databases. If bins are

significantly larger, it could be a sign of contamination. For example, CONCOCT’s median

bin size (39,194) is much higher than in RefSeq (12,155 for genomes longer than 3kb, 7,253

overall). CoCoNet and Metabat2 are more comparable to RefSeq with medians equal to

3,926 and 3,204, respectively.

3.4 Discussion

Our results show that CoCoNet performs substantially better than existing methods for

binning contigs assembled from viral metagenomes. Using CAMISIM, we simulated 80

datasets with varying number of bins, coverage, and number of samples. Overall, CoCoNet

retrieved the correct bins with fewer errors compared to either CONCOCT or Metabat2.

On a dataset that includes a high-quality ONT assembly and Illumina shotgun sequencing

reads of the same samples, we showed that CoCoNet was able to retrieve substantially

more correct bins than CONCOCT and Metabat2. This is particularly noteworthy since

the dataset contained only three samples.

Unlike binning algorithms that summarize the coverage across the complete contig using

one or two values (e.g. mean and standard deviation in the case of Metabat2), CoCoNet

learns to model the inherent coverage variability within samples by considering the coverage

64

in a sliding window. This distinction is critical in viral metagenomes where the DNA

amplification methods used to increase the typically low input material [5, 13] can yield

uneven coverage depths [33, 34] and, therefore, confound methods that rely on summary

statistics. We further highlight the importance of coverage variability in Supplementary

Figure S3.3, which shows that the neural network’s AUC generally decreases when the

coverage variability is subtracted (i.e., coverage is set to the mean value).

CoCoNet’s default behavior is to drop contigs shorter than 2048. CONCOCT, and

Metabat2 also have minimum contig length thresholds. For example, Metabat2 uses a

minimum contig length of 2.5kb in its model and relies on an ad-hoc heuristic to incorporate

short contigs into the inferred bins. Here, we decided to drop contigs shorter than 2048

bases for two reasons. First, shorter contigs are difficult to classify (See Supplementary

Figure S3.5) and their inclusion in the computation is unlikely to be without impact on the

false-positive rate. Second, the more positive pairs we predict across two contigs (Figure

3.1a), the more likely we can assign those contigs to the same bin. To generate training

instances from short contigs, we need to either 1- allow the fragments to overlap more or

2- take shorter fragments. The first solution results in training instances that are highly

correlated. The second option results in training instances that suffer from high variance.

In our tests, both solutions resulted in poor generalization power of the model.

We generate our negative examples by considering pairs of fragments that belong to

different contigs. Our assumption here is that two randomly selected contigs are most likely

to belong to separate rather than the same genome. Specifically, for large metagenomes such

as those found in environmental samples (e.g., oceans, soil, etc.), we expect contig pairs

originating from different genomes to outnumber contig pairs originating from the same

species by a few orders of magnitude. As such, label noise would only represent a negligible

fraction of the negative examples generated (See Supplementary Methods). Studies have

also shown that neural networks are robust to massive label noise, which can be mitigated

with large batch sizes [15]. CoCoNet uses a batch size of 256, which is reasonably large.

65

The coverage variability resulting from amplification bias [13] or coverage

heteroskedasticity, where the coverage’s standard deviation varies along a contig [35]

are other sources of noise that can confound the binning. Deep learning models are

also relatively robust to such sources of noise [36]. This makes CoCoNet more suitable

for handling potential variability in sequencing coverage than alternative methods that

summarize a contig’s coverage as a single value.

CoCoNet’s clustering approach is very conservative and emphasizes bin homogeneity.

Three of CoCoNet’s parameters can be adjusted to improve bin completeness at the cost of

possibly decreased homogeneity. Those are 1- fragment length, 2- the minimum number of

matches between two contigs connected by an edge in the contig-contig graph (θ), and 3-

the minimum edge density required for considering a cluster as a bin (γ). Decreasing the

values of θ or γ (respectively 80% and 75% by default) decreases the binning stringency.

Similarly, increasing the fragment length can minimize the variance in the k-mer and

coverage distributions between contigs of the same species and, consequently, improve

completeness (see Figure 3.3). Nevertheless, a longer fragment length can result in more

contigs being assigned to singleton bins simply because they were not long enough to be

processed. Naturally, decreasing the values of θ, γ, or the fragment length can result in

more homogeneous but less complete bins (see Supplementary Figure S3.6).

Finally, CoCoNet’s accuracy can be bolstered by combining multiple related

experiments. As was shown with the simulated dataset, CoCoNet’s performance strongly

increases as we increase the number of samples.

3.5 Conclusion

CoCoNet is a novel, deep learning-based approach to bin viral metagenome assemblies. Our

strategy leverages deep neural networks’ flexibility to learn the similarity in composition

and coverage across co-occurring contigs. Contrary to other methods that rely on coverage

and k-mer composition, our method models these features as distributions rather than

66

summarizing them in a single statistic. Our results show that CoCoNet outperforms other

tools on both simulated and real viral datasets. Our model is implemented in a self-

contained easy to install Python program that requires reasonable computational resources

to train the underlying deep neural network or use it to predict bins.

Software availability

CoCoNet was implemented in Python and is available for download on PyPi (https://

pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/

CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/

latest/index.html. CoCoNet does not require extensive resources to run. For example,

binning 100k contigs took about 4 hours on 10 Intel CPU Cores (2.4GHz), with a memory

peak at 27 GB (see Supplementary Figure S3.9). To process a large dataset, CoCoNet

may need to be run on a high RAM capacity server. Such servers are typically available in

high-performance or cloud computing settings.

Funding

This work was supported by funding from the National Science Foundation Division of

Ocean Sciences (Grant #1636402—Investigation of viruses and microbes circulating deep in

the seafloor) and the Office of Integrative Activities (Grants #1557349—‘Ike Wai: Securing

Hawaii’s Water Future and #1736030–G2P in VOM: An experimental and analytical

framework for genome to phenome connections in viruses of microbes).

Author contributions statement

MB envisioned the project, CA implemented the project and conducted the analysis with

the help of MB. CA, MB, GP, ON and GS discussed the analyses and the results and

67

https://pypi.org/
https://pypi.org/
https://github.com/Puumanamana/CoCoNet
https://github.com/Puumanamana/CoCoNet
https://coconet.readthedocs.io/en/latest/index.html
https://coconet.readthedocs.io/en/latest/index.html

wrote the manuscript. All authors have read and agreed to the published version of the

manuscript.

Additional information

Competing interests

The authors declare that they have no competing interests.

68

References

[1] H. Xie, R. Guo, H. Zhong, Q. Feng, Z. Lan, B. Qin, K. J. Ward, M. A. Jackson, Y. Xia,

X. Chen, and others, “Shotgun metagenomics of 250 adult twins reveals genetic and

environmental impacts on the gut microbiome,” Cell systems, vol. 3, no. 6, pp. 572–584,

2016.

[2] A. Tyagi, B. Singh, N. K. B. Thammegowda, and N. K. Singh, “Shotgun metagenomics

offers novel insights into taxonomic compositions, metabolic pathways and antibiotic

resistance genes in fish gut microbiome,” Archives of microbiology, vol. 201, no. 3,

pp. 295–303, 2019.

[3] B. L. Hurwitz and M. B. Sullivan, “The Pacific Ocean Virome (POV): a marine viral

metagenomic dataset and associated protein clusters for quantitative viral ecology,”

PloS one, vol. 8, no. 2, p. e57355, 2013.

[4] F. Angly, B. Felts, M. Breitbart, P. Salamon, R. Edwards, C. Carlson, A. Chan,

M. Haynes, S. Kelley, H. Liu, J. Mahaffy, J. Mueller, J. Nulton, R. Olson, R. Parsons,

S. Rayhawk, C. Suttle, and F. Rohwer, “The marine viromes of four oceanic regions,”

PLoS biology, vol. 4, p. e368, 12 2006.

[5] T. D. Sutton, A. G. Clooney, F. J. Ryan, R. P. Ross, and C. Hill, “Choice of assembly

software has a critical impact on virome characterisation,” Microbiome, vol. 7, no. 1,

p. 12, 2019.

69

[6] R. Garćıa-López, J. F. Vázquez-Castellanos, and A. Moya, “Fragmentation and

coverage variation in viral metagenome assemblies, and their effect in diversity

calculations,” Frontiers in bioengineering and biotechnology, vol. 3, p. 141, 2015.

[7] J. F. Vázquez-Castellanos, R. Garćıa-López, V. Pérez-Brocal, M. Pignatelli, and

A. Moya, “Comparison of different assembly and annotation tools on analysis of

simulated viral metagenomic communities in the gut,” BMC genomics, vol. 15, no. 1,

p. 37, 2014.

[8] M. Strous, B. Kraft, R. Bisdorf, and H. Tegetmeyer, “The binning of metagenomic

contigs for microbial physiology of mixed cultures,” Frontiers in microbiology, vol. 3,

p. 410, 2012.

[9] M. Imelfort, D. Parks, B. J. Woodcroft, P. Dennis, P. Hugenholtz, and G. W. Tyson,

“GroopM: an automated tool for the recovery of population genomes from related

metagenomes,” PeerJ, vol. 2, p. e603, 2014.

[10] D. D. Kang, F. Li, E. Kirton, A. Thomas, R. Egan, H. An, and Z. Wang, “Metabat

2: an adaptive binning algorithm for robust and efficient genome reconstruction from

metagenome assemblies,” PeerJ, vol. 7, p. e7359, 2019.

[11] J. Alneberg, B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz, L. Lahti,

N. J. Loman, A. F. Andersson, and C. Quince, “Binning metagenomic contigs by

coverage and composition,” Nature Methods, vol. 11, pp. 1144–1146, Nov. 2014.

[12] V. Popic, V. Kuleshov, M. Snyder, and S. Batzoglou, “GATTACA: lightweight

metagenomic binning with compact indexing of kmer counts and minhash-based panel

selection,” bioRxiv, p. 130997, 2017.

[13] M. Parras-Moltó, A. Rodŕıguez-Galet, P. Suárez-Rodŕıguez, and A. López-Bueno,

“Evaluation of bias induced by viral enrichment and random amplification protocols

in metagenomic surveys of saliva dna viruses,” Microbiome, vol. 6, no. 1, p. 119, 2018.

70

[14] S. R. Casjens and E. B. Gilcrease, “Determining dna packaging strategy by analysis

of the termini of the chromosomes in tailed-bacteriophage virions,” in Bacteriophages,

pp. 91–111, Springer, 2009.

[15] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep learning is robust to massive

label noise,” arXiv preprint arXiv:1705.10694, 2017.

[16] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification

using a “siamese” time delay neural network,” in Proceedings of the 6th International

Conference on Neural Information Processing Systems, NIPS’93, p. 737–744, 1993.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[18] V. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden: guaranteeing

well-connected communities,” Scientific Reports, vol. 9, p. 5233, Dec. 2019. arXiv:

1810.08473.

[19] M. E. Newman, “Finding community structure in networks using the eigenvectors of

matrices,” Physical review E, vol. 74, no. 3, p. 036104, 2006.

[20] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2,

no. 1, pp. 193–218, 1985.

[21] S. Nayfach, A. P. Camargo, E. Eloe-Fadrosh, S. Roux, and N. Kyrpides, “Checkv:

assessing the quality of metagenome-assembled viral genomes,” BioRxiv, 2020.

[22] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh,

B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, et al., “Reference sequence

(refseq) database at ncbi: current status, taxonomic expansion, and functional

annotation,” Nucleic acids research, vol. 44, no. D1, pp. D733–D745, 2016.

71

[23] A. Fritz, P. Hofmann, S. Majda, E. Dahms, J. Dröge, J. Fiedler, T. R. Lesker,

P. Belmann, M. Z. DeMaere, A. E. Darling, et al., “Camisim: simulating metagenomes

and microbial communities,” Microbiome, vol. 7, no. 1, pp. 1–12, 2019.

[24] J. Beaulaurier, E. Luo, J. M. Eppley, P. Den Uyl, X. Dai, A. Burger, D. J. Turner,

M. Pendleton, S. Juul, E. Harrington, and others, “Assembly-free single-molecule

sequencing recovers complete virus genomes from natural microbial communities,”

Genome Research, pp. gr–251686, 04 2020.

[25] S. Chen, Y. Zhou, Y. Chen, and J. Gu, “fastp: an ultra-fast all-in-one fastq

preprocessor,” Bioinformatics, vol. 34, no. 17, pp. i884–i890, 2018.

[26] S. Nurk, D. Meleshko, A. Korobeynikov, and P. A. Pevzner, “metaspades: a new

versatile metagenomic assembler,” Genome research, vol. 27, no. 5, pp. 824–834, 2017.

[27] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM,” arXiv preprint arXiv:1303.3997, 2013.

[28] S. Anders, P. T. Pyl, and W. Huber, “Htseq—a python framework to work with high-

throughput sequencing data,” Bioinformatics, vol. 31, no. 2, pp. 166–169, 2015.

[29] S. Roux and B. Bolduc, ClusterGenomes, 2009 (Last commit October 26, 2017).

[30] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics,

vol. 34, no. 18, pp. 3094–3100, 2018.

[31] M. Lai, “Genetic recombination in rna viruses,” in Genetic Diversity of RNA Viruses,

pp. 21–32, Springer, 1992.

[32] C. Gilbert, J. Peccoud, A. Chateigner, B. Moumen, R. Cordaux, and E. A. Herniou,

“Continuous influx of genetic material from host to virus populations,” PLoS genetics,

vol. 12, no. 2, p. e1005838, 2016.

[33] O. E. Karlsson, S. Belák, and F. Granberg, “The effect of preprocessing by

sequence-independent, single-primer amplification (SISPA) on metagenomic detection

72

of viruses,” Biosecurity and bioterrorism: biodefense strategy, practice, and science,

vol. 11, no. S1, pp. S227–S234, 2013.

[34] T. Rosseel, S. Van Borm, F. Vandenbussche, B. Hoffmann, T. van den Berg, M. Beer,

and D. Höper, “The origin of biased sequence depth in sequence-independent nucleic

acid amplification and optimization for efficient massive parallel sequencing,” PloS one,

vol. 8, p. e76144, 09 2013.

[35] L. W. Hugerth and A. F. Andersson, “Analysing microbial community composition

through amplicon sequencing: from sampling to hypothesis testing,” Frontiers in

Microbiology, vol. 8, p. 1561, 2017.

[36] S. D’Souza, K. Prema, and S. Balaji, “Machine learning in drug–target interaction

prediction: current state and future directions,” Drug Discovery Today, 2020.

[37] L. Hertel, J. Collado, P. Sadowski, and P. Baldi, “Sherpa: hyperparameter optimization

for machine learning models,” 2018.

3.6 Supplementary material

3.6.1 Supplementary methods

Mislabeling in CoCoNet training set

To construct a neural network’s training example, we assume that two fragments that

originate from different contigs are a true negative pair, i.e., belong to different genomes.

This assumption is false when the two contigs belong to the same genome. Here, we show

that the number of false negatives (contigs from the same genome) occurring in the training

dataset are relatively low compared to the total amount of true negative examples.

First, we can observe that since CoCoNet chooses the same number of fragments for

each contig, the proportion of false negative examples is the same as the proportion of false

73

negative contig pairs:

False negative fragment pairs

Negative fragment pairs
=

False negative contig pairs× Fragments per contig

Negative contig pairs× Fragments per contig

=
False negative contig pairs

Negative contig pairs

We consider a set of genomes G that have been sequenced and assembled into a set

of contigs. Let ngenomes be the total number of genomes and ncontigs the total number of

contigs in the dataset. For a given genome g ∈ G, let Ng be the number of contigs associated

with g (in other words, Ng is the size of the bin defined by g).

The number of negative contig pairs is simply the number of combinations of any two

(distinct) contigs:

N =

(
ncontigs

2

)

The total number of possible False Negatives (FN) contig pairs corresponds to all pairs

between two contigs that belong to the same genome:

FN =
∑
g∈G

(
Ng

2

)

Therefore, the proportion of false negative examples depends on the fragmentation of the

assembly. If we define M = maxg∈GNg An upper bound of the false negative ratio is:

r =
FN

N
≤
ngenomes ×

(
M
2

)(ncontigs

2

) (3.2)

This upper bound is an equality if all the bins are of the same size and equation 3.2 can

be simplified using ncontigs = M × ngenomes:

r ≤ M − 1

2 · (ncontigs − 1)
(3.3)

74

Therefore, the condition to have a low false negative rate (in the simplified case) is:

M << ncontigs

which seems reasonable. For example, if M = 100 contigs/bin and ncontigs = 104, r ≤ 0.5%.

3.6.2 Supplementary figures

Station ALOHA preprocessing

We used BWA to align each of the Station ALOHA samples against the metaSPAdes contigs.

We filtered the alignments to discard those that were either partial (represented 50% or less

of the query’s length), had a quality score lower than 30, or where one of the read pairs was

unmapped (SAMflag=3596).

We also removed reads that had more than one high-quality alignment, or PCR/optical

duplicates. As Figure S3.1 shows, the distribution of template length appears to follow a

normal distribution centered around 300-350 bp. Based on this observation, we filtered any

alignments shorter than 200 bp or longer than 500 bp.

Neural network performance: TP, TN, FP and FN

Figure S3.2 provides the true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) values obtained by the neural network for each simulation setting. The

TP and TN increase as we increase the coverage and the number of samples. The FP and

FN decrease as a function of the number of samples and the coverage.

Importance of coverage variability

The objective here was to evaluate the effect of minimizing the coverage variation on

the performance of the neural network. We removed a fragment’s coverage variability by

setting the new coverage as the mean of the fragment’s coverage over all the samples (See

Figure S3.3).

75

0-
74

74
-1

49

14
9-

22
4

22
4-

29
9

29
9-

37
4

37
4-

44
9

44
9-

52
4

52
4-

59
9

59
9-

67
4

67
4-

74
9

74
9-

82
4

82
4-

89
9

89
9-

97
4

97
4-

10
49

10
49

-1
12

4

11
24

-1
19

8

11
98

-1
27

3

12
73

-1
34

8

13
48

-1
42

3

14
23

-1
49

8

template length

0

20000

40000

60000

80000

Co
un

t

Sample: SRR8811962

0-
74

74
-1

49

14
9-

22
4

22
4-

29
9

29
9-

37
4

37
4-

44
9

44
9-

52
4

52
4-

59
9

59
9-

67
4

67
4-

74
9

74
9-

82
4

82
4-

89
9

89
9-

97
4

97
4-

10
49

10
49

-1
12

4

11
24

-1
19

8

11
98

-1
27

3

12
73

-1
34

8

13
48

-1
42

3

14
23

-1
49

8

template length

0

50000

100000

150000

Co
un

t

Sample: SRR8811963

0-
74

74
-1

49

14
9-

22
4

22
4-

29
9

29
9-

37
4

37
4-

44
9

44
9-

52
4

52
4-

59
9

59
9-

67
4

67
4-

74
9

74
9-

82
4

82
4-

89
9

89
9-

97
4

97
4-

10
49

10
49

-1
12

4

11
24

-1
19

8

11
98

-1
27

3

12
73

-1
34

8

13
48

-1
42

3

14
23

-1
49

8

template length

0

50000

100000

150000

Co
un

t

Sample: SRR10378148

Figure S3.1: Template length histogram: Each facet is a different sample from the Aloha
Station dataset. The x-axis is a fragment length bin and the y-axis is the bin count

Figure S3.3 shows that including the variation leads to a slight improvement in the

AUC.

Distances in latent spaces

The clustering step creates the graph by comparing contigs in a pairwise manner. Since

it is computationally intractable to compute all pairwise comparisons, we use a heuristic

to choose contigs that are likely to cluster together into the same bin. In our heuristic,

two such contigs must exist nearby in the composition and coverage latent spaces, i.e., the

two contigs much be similar in their embeddings for composition and coverage. Figure S3.4

provides a representation of the composition and coverage spaces for a simulation containing

4 samples of 500 genomes at a 3X coverage.

Figure S3.4 shows that contigs in the same bin (orange dots) are closer to each other in

both spaces than they are to objects from different bins (blue dots).

76

4700

4800

4900

TN
500 genomes 2000 genomes

4800

4850

4900

4950

5000

TP

100

200

300

FP

4 15
samples

0

50

100

150

200

FN

4 15
samples

3X
10X

Figure S3.2: Classification accuracy for simulated datasets: Each row is a different metric
(TN/TP/FP/FN) and each column corresponds to the number of genomes (500 or 2000).
The number of samples (4 or 15) is on the x-axis and the y-axis is the metric’s value. Colors
represent sequencing depth (3X or 10X)

77

Contig
Fragment

Constant coverageVariable coverage

Sample 1

Sample 2

Sample 3

0.955

0.960

0.965

0.970

0.975

0.980

AU
C

Coverage=3X

0.9725

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

4 sam
ples

Coverage=10X

flat_coverage variable_coverage

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

AU
C

flat_coverage variable_coverage
0.990

0.992

0.994

0.996

0.998

15 sam
ples

Figure S3.3: Importance of coverage variability: (Top) Coverage flattening procedure: For
each fragment, we flatten the coverage by setting the coverage of each sample to its mean
value. (Bottom) Comparison of the neural network’s performance when taking the coverage
variability into account. Each facet represents a different simulation setting.

78

Figure S3.4: Distances in composition and coverage spaces: Top left and bottom right
plots are the kernel density functions of the distribution of euclidean distances for fragment
pairs in the same bin (orange) or different bins (blue). The x-axis corresponds to distance
between fragments, while the y-axis is the corresponding frequency. The top right and
bottom left plot show the correlation between the distances in each space. Each data point
is a fragment pair colored in orange if they belong to the same bin, and blue otherwise. In
the top right subplot, the x and y axes are the distances in the composition and coverage
spaces, respectively. The lower left subplot is the same as the top right with axes inverted.

79

2000-3000 3000-5000 5000-10000 10000-100000
Contig length category

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

Figure S3.5: Effect of contig size on binning performance: The x-axis is a different contig
size category and the y-axis is the binning performance for this category

Influence of contig length on clustering performance

To test whether contig length affects clustering performance, we ran CoCoNet on all the

simulation data. We then split the contigs into groups based on their lengths and used the

simulation results to compute each group’s adjusted rand index. The objective here was to

identify any statistically significant differences in ARI due to contig length. We assigned

contigs based on their lengths to 4 groups, 2kb-3kb, 3kb-5kb, 5kb-10kb and 10kb-100kb:

Figure S3.5 show that the binning performance seems to improve as contig length

increases. These differences were statistically significant at the 0.05 level (Kruskal-Wallis

test).

80

Hyper-parameters tuning

0.20.30.40.50.60.70.80.9
Gamma2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Ga
m

m
a1

ARI

0.20.30.40.50.60.70.80.9
Gamma2

Ga
m

m
a1

Homogeneity

0.20.30.40.50.60.70.80.9
Gamma2

Ga
m

m
a1

Completeness

0.94

0.96

0.10.20.30.40.50.60.70.80.9
Theta

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ga
m

m
a2

ARI

0.10.20.30.40.50.60.70.80.9
Theta

Ga
m

m
a2

Homogeneity

0.10.20.30.40.50.60.70.80.9
Theta

Ga
m

m
a2

Completeness

0.92

0.94

0.96

0.10.20.30.40.50.60.70.80.9
Theta

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Ga
m

m
a1

ARI

0.10.20.30.40.50.60.70.80.9
Theta

Ga
m

m
a1

Homogeneity

0.10.20.30.40.50.60.70.80.9
Theta

Ga
m

m
a1

Completeness

0.92

0.94

0.96

Figure S3.6: Heatmap view of hyperparameter optimization: Each row shows a different
factor combination (in order (γ1, γ2), (γ2, θ) and (γ1, θ)) and each column shows a different
metric (ARI, Homogeneity and Completeness). The color indicates the score (from dark red
to light yellow). Grey entries in the lower triangles of the matrices comparing γ1 and γ2 were
not evaluated since our heuristic requires that γ1 be smaller than γ2, i.e., the final clusters
need to be more densely connected that the unpolished clusters. The remaining missing
entries are parameter combinations that were not sampled in the Bayesian optimization
procedure.

81

We explored the hyperparameter space with a Bayesian optimization approach

(implemented in the python package parameter-sherpa [37]) to maximize the adjusted

rand index (ARI). We evaluated the parameters γ1, γ2, and θ in the range (0, 1) with a

0.1 increment, and the parameter max neighbors in the range [50, 500] with a 50 point

increment. The parameters were tested on a CAMISIM simulation with 4,000 genomes, 5

samples and a coverage of 6X.

Figure S3.6 shows the average scores for all combinations of γ1, γ2, and θ for all

three clustering metrics described in the paper (ARI, homogeneity and completeness).

The optimal adjusted rand index was obtained for θ = 0.8, γ1 = 0.3, γ2 = 0.4 and

max neighbors= 250. The hyper-parameter search table is available in supplementary

table S3.3.

RefSeq taxonomy

Root

Viruses

R
ib
o
viria

O
rthornavirae

Negarnaviricota
Polyp...otinaElliov...icetes

B
u
n
ya
vi
ra
le
s
 6
%

Haplo...otina
Monji...cetes

M
on
on
eg
av
ira
le
s
 3
%

Pisuviricota

Piso...etes

Picor...rales

Pi
co
rn
av
iri
da
e
 2
%

Se
co
vir
id
ae
 1
%

8 m
or
e

Nid
ov
ira
les
 1
%

S
tel...etes

P
at...les

Po
tyv
irid
ae
 2%

K
itrin

o
virico

ta

A
ls...te

s

M
a
...e
s

Virg
aviri

dae
 0.8

%
6 mor

e

T...s

Betaflexivi
ridae 1%

6 more

...A
...
sFlaviviridae 2%

...

Tolivirales 1%

D
up
lo
r..
.ri
co
ta

R
...
s

R
...
s

Reoviridae 3% C
...
s

G
...
s

Totiviridae 1%

un
cla
ss
ifie
d
Ri
bo
vir
ia

unclassified RNA viruses ShiM
-2016 9%

10 m
ore

Par
arn
avir

ae
Artv

ervi
rico

taRev
trav

irice
tesOrte

rvir
ale
s

C
aulim

oviridae 1%

R
etroviridae 0.9%

D
uplodnaviria

H
eunggongvirae

U
roviricota

C
audoviricetes

C
audovirales

1
8
%

S
ip
h
o
vi
ri
d
a
e

8%
 M
yov
irid
ae

4% Auto
graphivir

idae

4% Podoviridae

1% Herelleviridae1% Drexlerviridae
0.9% Demerecviridae

4 more

P
e.
..t
a

H
...
s

...

1% Herpesviridae

M
on
o.
..ir
ia

Sh
ot
ok
uv
ira
e

C
o.
..t
a

P.
..s ...

2% Papillomaviridae

...

1%
 Polyom

aviridae

Qu
...e
s

...

2%
 Parvoviridae

3 m
ore

Var
idn
avi
ria

Ba
mfo
rdv
irae

...

1%
 M
egaviricetes

1 m
ore

...

Tec
tiliv
iric
ete
s

R...
s

1%
 A
denoviridae

Poly
...ida

e

1%
 B
racovirus

1
%
 Ich

n
o
viru

s

2
%
 u
n
cla
ssifie

d
 viru

se
s

2
2
 m
o
re

Figure S3.7: Taxonomy of RefSeq’s genomes: Each disk is a different taxonomic level,
starting from Kingdom down to Family level.

82

Simulation fragmentation

100

101

102

103

104
Fr

eq
ue

nc
y

4 samples (3X) 4 samples (10X)

100 101 102

Number of contigs in bin

100

101

102

103

104

Fr
eq

ue
nc

y

15 samples (3X)

100 101 102

Number of contigs in bin

15 samples (10X)

Figure S3.8: Bin size histogram for simulated data: The top row (resp. bottom) corresponds
to simulations with 4 (resp. 15) samples. The left column (resp. right) corresponds to the
simulations with a sequencing depth of 3X (resp. 10X).

Scalability

Dataset simulation

We explore the scalability of our approach using 7 new datasets with 5 samples each.

We construct a dataset by iteratively selecting a genome and splitting it into a number

of contigs we randomly select from the range [1, genome length
2048]. We only keep contigs that

83

are longer than 2048 bp. We then use a log-normal distribution where log µ = 1 and log

σ = 2 to sample the genome’s mean coverage in each sample. We generate each sample’s

actual coverage by sampling from a Poisson distribution parameterized by the genome’s

mean coverage from the previous step.

Parameters affecting the runtime

The time required to train the neural network depends on the number of training

examples (--n-train, default is 4M) and the patience parameter for early stopping

(--patience, default is 5).

The time required during the clustering phase depends critically on the number of contigs

passed as input. Our heuristics works in two phases. First, we initialize the clustering graph

by comparing each contig with its closest neighbors in coverage and composition spaces (up

to 250) and inserting an edge between two contigs if they meet our similarity criteria. We

then use the contigs (nodes) and the newly added edges with the Leiden clustering algorithm

to detect unpolished bins.

In the second step, we compute all previously uncomputed pairwise comparisons within

an unpolished bin. The number of comparisons is therefore
∑

b∈bins
(|contigs∈b|

2

)
. In the

simplified case where all the bins have the same size, the number of comparisons becomes:

ncomparisons ' #bins×
(

#contigs

#bins

)2

=
#contigs

#bins
·#contigs = #contigs per bin×#contigs

If we further assume that each bin contains less than a few hundred contigs, this step

becomes linear in the number of contigs. However, the runtime can increase significantly

when an unpolished bin contains thousands of contigs. To remedy this issue, we impose

a hard limit of 100k comparisons in each unpolished bin. The user can also increase the

resolution parameter γ1 used in the first round of clustering, which will create more densely

connected (i.e., smaller) unpolished bins.

84

In summary, clustering is the bottleneck step since its computational efficiency depends

on the number of contigs processed. However, in most cases, the runtime scales linearly

with the number of contigs, making CoCoNet a viable tool to handle large metagenomes.

Parameters affecting memory usage

The deep learning training phase is the most memory-intensive step in CoCoNet. We

need to load the complete assembly into RAM during the training. We also use multiple

processes to compute k-mer composition, which duplicates the data across processes. As

such, CoCoNet’s RAM requirements scale linearly with the number of contigs and the

number of CPU used.

Results

Figure S3.9 shows CoCoNet, Metabat2 and CONCOCT’s runtime and memory usage

on a server with 10 Intel CPU Cores (2.4GHz). We performed the comparison on the 7

simulated datasets previously described (Dataset simulation) with 100, 500, 1k, 5k, 10k,

50k, and 100k contigs and 5 replicates each (total of 35 simulations). CoCoNet’s runtime

scales linearly with the number of contigs, and takes 240 minutes to bin 100k contigs.

The peak memory consumption has a sublinear trend and reaches 27GB for 100k contigs.

Metabat2 and CONCOCT require ∼ 3 GB of RAM and cluster 100k contigs in 26 and 400

minutes, respectively.

Despite its higher resources requirement, CoCoNet can handle large datasets with

reasonable computational resources. In our experience, most viral metagenomes contain

less than a million contigs longer than 2 kb. Since CoCoNet scales linearly with the number

of contigs, it could bin metagenomes with a million contigs in less than a day on a deca-core

server with 100 GB RAM. Such a configuration is typically available in most academic

high-performance computing centers or can be leased for a few dollars in a cloud computing

setting.

85

0 20000 40000 60000 80000 100000
Number of contigs

0

5

10

15

20

25

30

Pe
ak

 m
em

or
y

(G
B)

Memory Usage

0 20000 40000 60000 80000 100000
Number of contigs

0

50

100

150

200

250

300

Ti
m

e
(m

in
)

Running time

CoCoNet
Metabat2
CONCOCT

Figure S3.9: Binning performance comparison: Time and memory usage comparison
between CoCoNet (blue), Metabat2 (orange) and CONCOCT (green) for increasing number
of contigs (100, 500, 1k, 5k, 10k, 50k, and 100k). (Left) Memory usage in GB, (Right)
Running time in minutes

86

3.6.3 Supplementary tables

Dataset
Number

of genomes
Coverage

Number

of samples
Raw L> 2048bp Prevalence> 1

Sim-1 500 3X 4 23,258 678 544

Sim-2 500 3X 15 4,375 894 892

Sim-3 500 10X 4 17,303 838 751

Sim-4 500 10X 15 941 582 582

Sim-5 2000 3X 4 92,516 2,555 1,992

Sim-6 2000 3X 15 20,756 3,872 3,865

Sim-7 2000 10X 4 68,699 3,210 2,883

Sim-8 2000 10X 15 5,192 2,521 2,520

SA >1300 6.6X 3 2,882,543 56,844 56,565

Table S3.1: Dataset filtering summary: The ”Raw” column represents the total number of
contigs. The “>2048bp” column represents the number of contigs longer than 2048 bp.
The “Prevalence>1” represents the number of contigs that both are longer than 2048 bp
and appear in more than 1 sample. The last row is the filtering summary for the Station
ALOHA (SA) dataset.

Method Total bins Homogeneous bins
Total bins

(non-singleton)

Homogeneous bins

(non-singleton)

CoCoNet 1452 1177 402 127

CONCOCT 61 19 51 9

Metabat2 2212 2197 16 1

Table S3.2: Bin count summary for each method: Homogeneous bins are the predicted bins
with no false positives

87

γ1 γ2 θ neighbors ARI completeness homogeneity

0.1 0.2 0.1 250 0.71274 0.97344 0.92237
0.1 0.2 0.2 350 0.71893 0.97363 0.92339
0.1 0.2 0.3 300 0.72141 0.97296 0.92368
0.1 0.2 0.4 200 0.71543 0.97328 0.92179
0.1 0.2 0.4 200 0.7118 0.97279 0.92342
0.1 0.2 0.4 250 0.71456 0.97258 0.92256
0.1 0.2 0.4 450 0.71867 0.97285 0.92291
0.1 0.2 0.5 200 0.70722 0.97323 0.92134
0.1 0.2 0.6 200 0.71661 0.97251 0.92307
0.1 0.2 0.6 400 0.71013 0.97329 0.92263
0.1 0.2 0.7 250 0.73074 0.97292 0.92582
0.1 0.2 0.7 250 0.72586 0.97263 0.92629
0.1 0.2 0.7 400 0.72617 0.97205 0.92549
0.1 0.2 0.8 250 0.74896 0.97 0.93208
0.1 0.3 0.1 100 0.71336 0.97308 0.92216
0.1 0.3 0.1 300 0.71219 0.97338 0.92216
0.1 0.3 0.2 150 0.71342 0.97336 0.92207
0.1 0.3 0.2 450 0.71607 0.97318 0.92217
0.1 0.3 0.4 50 0.71549 0.97319 0.9221
0.1 0.3 0.4 100 0.7153 0.97359 0.92254
0.1 0.3 0.5 50 0.71948 0.97369 0.92364
0.1 0.3 0.5 100 0.70617 0.97347 0.92165
0.1 0.3 0.5 100 0.71793 0.97309 0.92311
0.1 0.3 0.5 350 0.71495 0.97251 0.92343
0.1 0.3 0.5 400 0.71707 0.97313 0.92317
0.1 0.3 0.6 150 0.71277 0.97208 0.92313
0.1 0.3 0.6 350 0.71373 0.97188 0.92407
0.1 0.3 0.6 400 0.70783 0.97161 0.9231
0.1 0.3 0.6 500 0.72522 0.97225 0.92594
0.1 0.3 0.7 150 0.72645 0.9707 0.92801
0.1 0.3 0.7 300 0.72957 0.97149 0.92744
0.1 0.3 0.7 350 0.73157 0.97119 0.92812
0.1 0.3 0.8 250 0.75136 0.96443 0.9376
0.1 0.3 0.8 300 0.73276 0.96254 0.9355
0.1 0.3 0.8 500 0.75104 0.96587 0.93761
0.1 0.3 0.8 500 0.74688 0.96514 0.93605
0.1 0.4 0.1 400 0.70694 0.97392 0.92238
0.1 0.4 0.2 50 0.71809 0.97396 0.9229
0.1 0.4 0.2 200 0.71613 0.97267 0.92317
0.1 0.4 0.3 100 0.71371 0.9739 0.92234
0.1 0.4 0.3 450 0.70743 0.97325 0.92147
0.1 0.4 0.3 450 0.70803 0.97327 0.92209
0.1 0.4 0.4 500 0.71836 0.97324 0.92395
0.1 0.4 0.5 300 0.71736 0.97217 0.92403
0.1 0.4 0.6 50 0.71487 0.97075 0.9259
0.1 0.4 0.6 200 0.71778 0.96944 0.92693
0.1 0.4 0.6 300 0.72247 0.97106 0.92582
0.1 0.4 0.7 50 0.73883 0.96769 0.93241
0.1 0.4 0.7 200 0.7323 0.9661 0.93155
0.1 0.4 0.7 300 0.74152 0.96834 0.93338
0.1 0.4 0.7 300 0.73596 0.96642 0.93201
0.1 0.4 0.7 400 0.74608 0.96782 0.9353
0.1 0.4 0.9 250 0.76307 0.94309 0.95288
0.1 0.4 0.9 450 0.79665 0.95001 0.95638
0.1 0.5 0.1 400 0.71492 0.97333 0.92241
0.1 0.5 0.2 50 0.70749 0.97312 0.92173
0.1 0.5 0.2 350 0.7152 0.97237 0.92342
0.1 0.5 0.2 400 0.715 0.97342 0.92333
0.1 0.5 0.3 200 0.713 0.97206 0.92294
0.1 0.5 0.3 450 0.7157 0.97306 0.92386
0.1 0.5 0.3 450 0.71636 0.97212 0.9233
0.1 0.5 0.4 250 0.71428 0.97148 0.92371
0.1 0.5 0.5 250 0.7217 0.9691 0.92832
0.1 0.5 0.5 250 0.72141 0.96864 0.92865
0.1 0.5 0.5 250 0.72293 0.9706 0.92785
0.1 0.5 0.5 350 0.7199 0.96949 0.92684
0.1 0.5 0.5 350 0.71368 0.96809 0.9269
0.1 0.5 0.5 500 0.72138 0.96904 0.92749
0.1 0.5 0.6 200 0.73317 0.96675 0.93225
0.1 0.5 0.6 300 0.7259 0.96327 0.93504
0.1 0.5 0.6 450 0.72556 0.96297 0.9345
0.1 0.5 0.7 100 0.7387 0.95713 0.94065
0.1 0.5 0.7 100 0.73033 0.95228 0.94272
0.1 0.5 0.7 200 0.76454 0.95691 0.94377
0.1 0.5 0.7 400 0.7579 0.95917 0.93958
0.1 0.5 0.7 450 0.75552 0.95778 0.94154
0.1 0.5 0.8 250 0.73309 0.94574 0.94839
0.1 0.5 0.9 200 0.77952 0.93395 0.96374
0.1 0.5 0.9 400 0.70768 0.9258 0.95991
0.1 0.5 0.9 500 0.74512 0.93309 0.96054
0.1 0.5 0.9 500 0.70835 0.92814 0.95909
0.1 0.6 0.1 300 0.71094 0.97186 0.92257
0.1 0.6 0.2 100 0.72024 0.97256 0.92552
0.1 0.6 0.2 250 0.70409 0.97201 0.92368
0.1 0.6 0.3 50 0.72318 0.97109 0.9267
0.1 0.6 0.4 50 0.73058 0.9698 0.92867
0.1 0.6 0.4 50 0.72018 0.96947 0.92856
0.1 0.6 0.4 150 0.72397 0.96892 0.92943
0.1 0.6 0.4 150 0.72325 0.96924 0.92827
0.1 0.6 0.4 250 0.71628 0.96889 0.92871
0.1 0.6 0.4 500 0.72542 0.9695 0.92792
0.1 0.6 0.6 50 0.7408 0.95333 0.94165
0.1 0.6 0.6 150 0.7506 0.95924 0.9412
0.1 0.6 0.6 300 0.74043 0.95917 0.94011

γ1 γ2 θ neighbors ARI completeness homogeneity

0.1 0.6 0.6 300 0.74275 0.95895 0.94067
0.1 0.6 0.6 450 0.73582 0.95565 0.94074
0.1 0.6 0.6 500 0.75877 0.96014 0.94267
0.1 0.6 0.7 50 0.74408 0.95124 0.94704
0.1 0.6 0.7 450 0.76721 0.95008 0.94803
0.1 0.6 0.9 50 0.6255 0.92236 0.96064
0.1 0.6 0.9 200 0.72119 0.92271 0.96664
0.1 0.7 0.1 100 0.73589 0.96836 0.93207
0.1 0.7 0.2 250 0.72688 0.96776 0.93108
0.1 0.7 0.3 300 0.72776 0.96555 0.93456
0.1 0.7 0.3 450 0.74249 0.96695 0.93671
0.1 0.7 0.5 50 0.77341 0.95922 0.945
0.1 0.7 0.5 400 0.76126 0.95634 0.94555
0.1 0.7 0.5 450 0.75803 0.95575 0.94622
0.1 0.7 0.6 150 0.77773 0.95282 0.9506
0.1 0.7 0.7 250 0.77089 0.93985 0.95833
0.1 0.7 0.7 300 0.76617 0.94035 0.95728
0.1 0.7 0.8 100 0.69447 0.91734 0.96247
0.1 0.7 0.8 100 0.69265 0.91489 0.96487
0.1 0.7 0.8 150 0.68722 0.91588 0.96303
0.1 0.7 0.8 200 0.70522 0.91995 0.96208
0.1 0.7 0.8 300 0.69733 0.91965 0.96242
0.1 0.7 0.8 450 0.70927 0.91827 0.96224
0.1 0.7 0.9 350 0.60962 0.90465 0.96925
0.1 0.7 0.9 400 0.64454 0.90814 0.96875
0.1 0.7 0.9 450 0.65555 0.90983 0.97042
0.1 0.8 0.1 150 0.76582 0.96118 0.94313
0.1 0.8 0.1 500 0.77951 0.96265 0.94598
0.1 0.8 0.1 500 0.76971 0.96207 0.94424
0.1 0.8 0.2 150 0.77599 0.95958 0.94499
0.1 0.8 0.3 150 0.77084 0.95924 0.94687
0.1 0.8 0.3 150 0.77624 0.95736 0.94813
0.1 0.8 0.3 250 0.78163 0.95853 0.94899
0.1 0.8 0.3 250 0.77734 0.95853 0.94743
0.1 0.8 0.3 500 0.77695 0.95825 0.94807
0.1 0.8 0.4 100 0.7764 0.95436 0.95181
0.1 0.8 0.4 200 0.77953 0.95301 0.95179
0.1 0.8 0.4 200 0.78203 0.95463 0.95112
0.1 0.8 0.4 200 0.78313 0.95615 0.95131
0.1 0.8 0.4 300 0.78085 0.95476 0.95246
0.1 0.8 0.4 300 0.77376 0.95452 0.95041
0.1 0.8 0.4 500 0.77568 0.95396 0.95066
0.1 0.8 0.4 500 0.77511 0.95227 0.95118
0.1 0.8 0.5 450 0.7689 0.94563 0.95671
0.1 0.8 0.6 300 0.76231 0.94264 0.95826
0.1 0.8 0.6 300 0.75019 0.93526 0.96028
0.1 0.8 0.6 350 0.78171 0.9448 0.95917
0.1 0.8 0.7 50 0.63252 0.92709 0.96187
0.1 0.8 0.7 300 0.73723 0.92914 0.96268
0.1 0.8 0.7 400 0.7351 0.92611 0.96207
0.1 0.8 0.8 150 0.64431 0.90823 0.96527
0.1 0.8 0.8 150 0.66784 0.90925 0.96641
0.1 0.8 0.8 350 0.62531 0.90401 0.9661
0.1 0.8 0.9 450 0.58267 0.8975 0.9714
0.1 0.9 0.1 100 0.78995 0.95715 0.95476
0.1 0.9 0.1 500 0.79087 0.95696 0.95331
0.1 0.9 0.2 150 0.79252 0.95475 0.95459
0.1 0.9 0.3 50 0.69353 0.95075 0.95628
0.1 0.9 0.3 150 0.78197 0.95244 0.95456
0.1 0.9 0.4 250 0.78315 0.94942 0.95788
0.1 0.9 0.6 200 0.74137 0.93058 0.96226
0.1 0.9 0.6 300 0.75982 0.9379 0.96208
0.1 0.9 0.6 350 0.74393 0.93183 0.96153
0.1 0.9 0.7 100 0.63147 0.91671 0.96529
0.1 0.9 0.7 350 0.71942 0.92064 0.96723
0.1 0.9 0.7 500 0.69967 0.9182 0.96611
0.1 0.9 0.8 400 0.57783 0.89817 0.96829
0.1 0.9 0.9 200 0.49021 0.88963 0.97326
0.1 0.9 0.9 200 0.45163 0.87863 0.973
0.1 0.9 0.9 300 0.48101 0.88903 0.97214
0.1 0.9 0.9 450 0.48017 0.88756 0.97131
0.2 0.3 0.2 150 0.76734 0.96799 0.94055
0.2 0.3 0.2 350 0.76912 0.9667 0.94013
0.2 0.3 0.3 250 0.76262 0.96662 0.9388
0.2 0.3 0.3 400 0.76673 0.96682 0.93973
0.2 0.3 0.3 400 0.76533 0.9671 0.93997
0.2 0.3 0.3 450 0.7755 0.96742 0.94116
0.2 0.3 0.4 200 0.77165 0.96715 0.94053
0.2 0.3 0.5 500 0.77259 0.96816 0.94013
0.2 0.3 0.6 100 0.76783 0.96728 0.94037
0.2 0.3 0.6 100 0.76867 0.96757 0.94075
0.2 0.3 0.7 300 0.7747 0.96607 0.94228
0.2 0.3 0.8 150 0.78867 0.96365 0.94841
0.2 0.3 0.8 250 0.78196 0.96497 0.94618
0.2 0.3 0.8 300 0.78874 0.96457 0.94824
0.2 0.3 0.9 500 0.80298 0.96162 0.95301
0.2 0.4 0.1 200 0.77069 0.96725 0.94078
0.2 0.4 0.2 100 0.77497 0.96753 0.94142
0.2 0.4 0.2 350 0.77278 0.9671 0.94099
0.2 0.4 0.2 350 0.77111 0.96704 0.94051
0.2 0.4 0.4 50 0.77648 0.96756 0.94186
0.2 0.4 0.4 500 0.76723 0.96661 0.9396
0.2 0.4 0.4 500 0.77109 0.96711 0.94114
0.2 0.4 0.5 50 0.77295 0.96763 0.94098

88

γ1 γ2 θ neighbors ARI completeness homogeneity

0.2 0.4 0.5 150 0.76636 0.96669 0.94084
0.2 0.4 0.5 250 0.76933 0.96759 0.94044
0.2 0.4 0.6 350 0.77183 0.96646 0.94193
0.2 0.4 0.7 150 0.77415 0.96562 0.94362
0.2 0.4 0.7 300 0.77675 0.96591 0.94218
0.2 0.4 0.7 400 0.7744 0.96444 0.94418
0.2 0.4 0.8 100 0.78164 0.96227 0.94796
0.2 0.4 0.9 50 0.80815 0.95666 0.9586
0.2 0.5 0.1 400 0.77017 0.96713 0.94038
0.2 0.5 0.1 500 0.7718 0.96708 0.94108
0.2 0.5 0.2 50 0.77779 0.96779 0.94128
0.2 0.5 0.2 350 0.76915 0.96747 0.94089
0.2 0.5 0.2 450 0.76944 0.96728 0.94143
0.2 0.5 0.2 450 0.76696 0.96689 0.94049
0.2 0.5 0.3 200 0.7692 0.96705 0.94051
0.2 0.5 0.4 150 0.77143 0.96677 0.94085
0.2 0.5 0.4 450 0.77172 0.96753 0.94136
0.2 0.5 0.5 350 0.76912 0.96647 0.94143
0.2 0.5 0.6 100 0.77184 0.96489 0.94256
0.2 0.5 0.8 450 0.77898 0.95486 0.95278
0.2 0.5 0.9 100 0.78237 0.94566 0.96288
0.2 0.6 0.1 100 0.76491 0.967 0.9404
0.2 0.6 0.1 300 0.76661 0.96713 0.94016
0.2 0.6 0.2 400 0.7709 0.96738 0.94189
0.2 0.6 0.3 100 0.77311 0.96684 0.94136
0.2 0.6 0.3 300 0.77073 0.96695 0.94141
0.2 0.6 0.3 400 0.77264 0.96705 0.94126
0.2 0.6 0.4 350 0.76902 0.96683 0.94185
0.2 0.6 0.5 150 0.77045 0.96579 0.94219
0.2 0.6 0.5 500 0.77195 0.96563 0.94294
0.2 0.6 0.6 150 0.76305 0.96297 0.94495
0.2 0.6 0.7 250 0.77954 0.95775 0.95046
0.2 0.6 0.8 100 0.78305 0.94995 0.95812
0.2 0.6 0.8 200 0.78958 0.9519 0.95789
0.2 0.6 0.8 250 0.78402 0.94826 0.95663
0.2 0.6 0.8 250 0.76289 0.94643 0.95594
0.2 0.6 0.8 250 0.79028 0.94781 0.95855
0.2 0.6 0.8 300 0.7833 0.94808 0.95685
0.2 0.6 0.8 500 0.77438 0.94839 0.95721
0.2 0.6 0.9 450 0.77416 0.93689 0.96454
0.2 0.6 0.9 500 0.78989 0.93823 0.96706
0.2 0.7 0.1 250 0.77081 0.96601 0.94261
0.2 0.7 0.2 400 0.77404 0.96591 0.94344
0.2 0.7 0.2 450 0.76566 0.96613 0.94235
0.2 0.7 0.3 150 0.77093 0.9656 0.94249
0.2 0.7 0.3 500 0.77462 0.9662 0.94321
0.2 0.7 0.4 500 0.77596 0.96375 0.94497
0.2 0.7 0.5 500 0.77061 0.96133 0.94609
0.2 0.7 0.6 500 0.77603 0.95935 0.94832
0.2 0.7 0.7 50 0.6946 0.94766 0.95268
0.2 0.7 0.7 100 0.74965 0.94452 0.95435
0.2 0.7 0.7 150 0.7874 0.95358 0.95585
0.2 0.7 0.7 350 0.79171 0.95531 0.95501
0.2 0.7 0.8 150 0.76905 0.93802 0.96175
0.2 0.7 0.9 250 0.75691 0.92881 0.96953
0.2 0.8 0.2 300 0.77845 0.96171 0.94748
0.2 0.8 0.2 400 0.77853 0.96113 0.94724
0.2 0.8 0.2 400 0.77945 0.96078 0.94797
0.2 0.8 0.4 350 0.78566 0.95854 0.9521
0.2 0.8 0.5 400 0.77549 0.95574 0.95207
0.2 0.8 0.6 100 0.78144 0.95211 0.95709
0.2 0.8 0.6 100 0.76215 0.95007 0.95617
0.2 0.8 0.7 150 0.78113 0.9453 0.96181
0.2 0.8 0.7 150 0.77442 0.94362 0.96098
0.2 0.8 0.7 200 0.77102 0.94153 0.96127
0.2 0.8 0.8 150 0.73361 0.92893 0.96624
0.2 0.8 0.9 50 0.58818 0.91696 0.96919
0.2 0.8 0.9 250 0.67133 0.91341 0.97048
0.2 0.8 0.9 450 0.66489 0.91264 0.97161
0.2 0.9 0.1 50 0.70653 0.95364 0.95433
0.2 0.9 0.2 100 0.78634 0.95589 0.95522
0.2 0.9 0.3 100 0.78779 0.95523 0.95602
0.2 0.9 0.3 150 0.78962 0.95467 0.95595
0.2 0.9 0.3 450 0.78903 0.95592 0.95593
0.2 0.9 0.4 150 0.7891 0.95386 0.95748
0.2 0.9 0.4 150 0.78966 0.95332 0.95629
0.2 0.9 0.4 500 0.79166 0.95272 0.95735
0.2 0.9 0.5 100 0.76883 0.94879 0.95804
0.2 0.9 0.6 50 0.6629 0.93933 0.9595
0.2 0.9 0.6 250 0.77932 0.94394 0.9628
0.2 0.9 0.6 400 0.76683 0.94153 0.96142
0.2 0.9 0.7 200 0.74352 0.93405 0.96478
0.2 0.9 0.7 450 0.75282 0.93743 0.96442
0.2 0.9 0.8 400 0.69866 0.92392 0.96873
0.2 0.9 0.8 450 0.6964 0.92198 0.96726
0.2 0.9 0.8 450 0.6938 0.92192 0.96848
0.2 0.9 0.9 200 0.63974 0.90409 0.97364
0.2 0.9 0.9 250 0.60675 0.9039 0.97272
0.2 0.9 0.9 300 0.66121 0.90739 0.97218
0.3 0.4 0.1 50 0.7875 0.96206 0.94906
0.3 0.4 0.1 200 0.79101 0.96242 0.94897
0.3 0.4 0.2 50 0.79343 0.9631 0.94941
0.3 0.4 0.2 400 0.79135 0.9634 0.94937
0.3 0.4 0.2 450 0.78969 0.96307 0.94906

γ1 γ2 θ neighbors ARI completeness homogeneity

0.3 0.4 0.3 50 0.78974 0.9629 0.94918
0.3 0.4 0.3 400 0.78661 0.96208 0.94856
0.3 0.4 0.3 450 0.79391 0.96301 0.94991
0.3 0.4 0.4 50 0.79377 0.96362 0.94955
0.3 0.4 0.5 50 0.78595 0.96276 0.94915
0.3 0.4 0.5 500 0.79125 0.963 0.94997
0.3 0.4 0.6 100 0.79036 0.96176 0.94949
0.3 0.4 0.6 200 0.79566 0.9628 0.95059
0.3 0.4 0.6 450 0.79203 0.96238 0.94947
0.3 0.4 0.7 50 0.79434 0.96207 0.95138
0.3 0.4 0.8 150 0.79865 0.96005 0.9532
0.3 0.4 0.8 250 0.8095 0.96115 0.95503
0.3 0.4 0.8 450 0.80617 0.96019 0.95475
0.3 0.4 0.9 100 0.80788 0.953 0.95956
0.3 0.4 0.9 300 0.80444 0.95406 0.95842
0.3 0.5 0.1 300 0.78899 0.96239 0.94898
0.3 0.5 0.1 300 0.79192 0.96249 0.95004
0.3 0.5 0.1 400 0.78862 0.96233 0.94907
0.3 0.5 0.1 400 0.78563 0.96235 0.9486
0.3 0.5 0.4 500 0.78786 0.96194 0.94892
0.3 0.5 0.5 300 0.79363 0.96312 0.94991
0.3 0.5 0.5 350 0.78608 0.96226 0.94921
0.3 0.5 0.5 450 0.78675 0.96213 0.94925
0.3 0.5 0.6 450 0.79243 0.9619 0.95096
0.3 0.5 0.7 50 0.79667 0.96147 0.95198
0.3 0.5 0.7 350 0.79955 0.96222 0.95236
0.3 0.5 0.8 150 0.80455 0.95758 0.95803
0.3 0.5 0.8 200 0.8077 0.95856 0.95788
0.3 0.5 0.9 50 0.80559 0.95332 0.96256
0.3 0.5 0.9 450 0.79867 0.9476 0.96331
0.3 0.6 0.1 150 0.79084 0.9628 0.94927
0.3 0.6 0.1 200 0.78937 0.9629 0.94935
0.3 0.6 0.2 200 0.78893 0.96252 0.94975
0.3 0.6 0.2 250 0.78721 0.96268 0.94882
0.3 0.6 0.2 250 0.7858 0.96261 0.94888
0.3 0.6 0.2 450 0.792 0.96304 0.9498
0.3 0.6 0.3 500 0.79294 0.96226 0.94988
0.3 0.6 0.4 250 0.78992 0.96224 0.94931
0.3 0.6 0.5 150 0.787 0.96199 0.94958
0.3 0.6 0.5 450 0.78825 0.96204 0.95003
0.3 0.6 0.5 500 0.79145 0.96168 0.94987
0.3 0.6 0.6 100 0.78929 0.96178 0.95045
0.3 0.6 0.6 150 0.79585 0.96243 0.95106
0.3 0.6 0.6 300 0.7912 0.96114 0.95152
0.3 0.6 0.7 200 0.79467 0.95967 0.95293
0.3 0.6 0.8 150 0.8052 0.95623 0.96051
0.3 0.6 0.8 250 0.8015 0.95528 0.95907
0.3 0.6 0.8 400 0.80647 0.95628 0.95957
0.3 0.6 0.9 100 0.78381 0.94105 0.96578
0.3 0.7 0.1 100 0.79142 0.96208 0.94979
0.3 0.7 0.1 350 0.78795 0.96244 0.9497
0.3 0.7 0.1 400 0.7863 0.96121 0.94984
0.3 0.7 0.2 350 0.78806 0.96156 0.94963
0.3 0.7 0.3 250 0.78921 0.96197 0.95025
0.3 0.7 0.3 350 0.78839 0.96242 0.95068
0.3 0.7 0.4 350 0.79356 0.96166 0.95099
0.3 0.7 0.4 350 0.7934 0.96149 0.95074
0.3 0.7 0.4 450 0.79198 0.96127 0.95089
0.3 0.7 0.6 150 0.79014 0.95978 0.9521
0.3 0.7 0.6 450 0.79235 0.95882 0.95281
0.3 0.7 0.6 450 0.78753 0.95886 0.95276
0.3 0.7 0.9 200 0.77164 0.9335 0.96806
0.3 0.7 0.9 300 0.77157 0.93466 0.96771
0.3 0.7 0.9 350 0.77368 0.93283 0.96854
0.3 0.7 0.9 400 0.77139 0.93304 0.96813
0.3 0.8 0.1 200 0.79111 0.96063 0.95166
0.3 0.8 0.1 300 0.78976 0.95983 0.95237
0.3 0.8 0.1 400 0.79329 0.96155 0.95218
0.3 0.8 0.1 500 0.79159 0.96068 0.952
0.3 0.8 0.2 350 0.79463 0.96061 0.95262
0.3 0.8 0.4 300 0.79164 0.95972 0.9534
0.3 0.8 0.4 350 0.78831 0.9587 0.95259
0.3 0.8 0.4 400 0.7937 0.96042 0.95272
0.3 0.8 0.5 200 0.79198 0.95904 0.95377
0.3 0.8 0.6 50 0.72169 0.95383 0.95442
0.3 0.8 0.6 350 0.79597 0.95511 0.9568
0.3 0.8 0.6 500 0.79044 0.95589 0.95479
0.3 0.8 0.7 450 0.77397 0.94648 0.95996
0.3 0.8 0.8 100 0.75413 0.93943 0.96528
0.3 0.8 0.8 350 0.79014 0.94463 0.96471
0.3 0.8 0.8 450 0.78895 0.93995 0.96806
0.3 0.8 0.9 250 0.722 0.92417 0.96951
0.3 0.8 0.9 400 0.73116 0.92489 0.97124
0.3 0.9 0.1 300 0.79454 0.95703 0.95629
0.3 0.9 0.1 450 0.79401 0.95585 0.95601
0.3 0.9 0.2 150 0.79283 0.95645 0.95722
0.3 0.9 0.2 200 0.78691 0.95505 0.95563
0.3 0.9 0.2 400 0.79388 0.95675 0.95625
0.3 0.9 0.3 50 0.69802 0.95169 0.95641
0.3 0.9 0.3 200 0.79135 0.95566 0.95705
0.3 0.9 0.3 500 0.79281 0.95603 0.95699
0.3 0.9 0.4 100 0.78316 0.95318 0.95789
0.3 0.9 0.5 450 0.78684 0.95205 0.95809
0.3 0.9 0.6 300 0.78356 0.94842 0.96001

89

γ1 γ2 θ neighbors ARI completeness homogeneity

0.3 0.9 0.6 300 0.78937 0.95048 0.95931
0.3 0.9 0.7 350 0.7648 0.94154 0.963
0.3 0.9 0.8 50 0.63621 0.93354 0.96719
0.3 0.9 0.8 200 0.76834 0.93627 0.96725
0.3 0.9 0.8 500 0.76527 0.93628 0.96713
0.3 0.9 0.9 500 0.67418 0.91493 0.97184
0.3 0.9 0.9 500 0.69365 0.91522 0.97156
0.3 0.9 0.9 500 0.67918 0.91579 0.97206
0.4 0.5 0.1 350 0.7955 0.95715 0.9574
0.4 0.5 0.1 450 0.79303 0.95673 0.95639
0.4 0.5 0.3 350 0.79528 0.95642 0.95662
0.4 0.5 0.4 350 0.79477 0.95612 0.9565
0.4 0.5 0.4 350 0.7933 0.95599 0.95578
0.4 0.5 0.5 50 0.72052 0.95364 0.95604
0.4 0.5 0.5 100 0.79317 0.9566 0.95657
0.4 0.5 0.5 200 0.794 0.95711 0.95659
0.4 0.5 0.5 250 0.79284 0.95694 0.95625
0.4 0.5 0.6 100 0.79431 0.95628 0.95697
0.4 0.5 0.6 150 0.79542 0.95619 0.95746
0.4 0.5 0.6 400 0.79837 0.95601 0.95784
0.4 0.5 0.6 450 0.79352 0.95539 0.95634
0.4 0.5 0.8 100 0.79864 0.9551 0.96022
0.4 0.5 0.8 300 0.79293 0.95406 0.95845
0.4 0.5 0.8 400 0.80192 0.95475 0.96011
0.4 0.6 0.2 50 0.75738 0.95509 0.95562
0.4 0.6 0.2 500 0.79623 0.95698 0.95687
0.4 0.6 0.2 500 0.79134 0.95592 0.95625
0.4 0.6 0.3 250 0.79381 0.95708 0.95707
0.4 0.6 0.3 350 0.79612 0.95647 0.95666
0.4 0.6 0.3 400 0.79602 0.95677 0.95722
0.4 0.6 0.3 500 0.79287 0.95614 0.95615
0.4 0.6 0.4 200 0.78745 0.95594 0.95546
0.4 0.6 0.4 500 0.79768 0.95652 0.95662
0.4 0.6 0.5 50 0.74409 0.95426 0.95765
0.4 0.6 0.5 150 0.79505 0.95713 0.95644
0.4 0.6 0.5 200 0.79519 0.95634 0.95704
0.4 0.6 0.6 300 0.79391 0.95618 0.95675
0.4 0.6 0.6 300 0.79482 0.95574 0.95807
0.4 0.6 0.8 300 0.79926 0.95301 0.96052
0.4 0.6 0.9 500 0.79626 0.94711 0.96645
0.4 0.7 0.1 100 0.78826 0.95592 0.95625
0.4 0.7 0.1 150 0.79559 0.95601 0.95723
0.4 0.7 0.1 250 0.79219 0.95621 0.95636
0.4 0.7 0.1 350 0.78933 0.95666 0.95581
0.4 0.7 0.1 500 0.79392 0.95534 0.95687
0.4 0.7 0.2 300 0.79328 0.95659 0.95675
0.4 0.7 0.2 400 0.79472 0.9559 0.95694
0.4 0.7 0.3 200 0.79175 0.95612 0.95713
0.4 0.7 0.6 300 0.79287 0.95513 0.95806
0.4 0.7 0.6 350 0.79694 0.95621 0.95801
0.4 0.7 0.6 450 0.7982 0.95629 0.95864
0.4 0.7 0.7 400 0.79197 0.95114 0.95991
0.4 0.7 0.8 200 0.79861 0.94898 0.96321
0.4 0.7 0.9 450 0.78272 0.93846 0.96944
0.4 0.8 0.2 100 0.78938 0.95532 0.95697
0.4 0.8 0.3 250 0.79276 0.95559 0.9568
0.4 0.8 0.3 400 0.79244 0.95551 0.95701
0.4 0.8 0.4 250 0.79156 0.95515 0.95791
0.4 0.8 0.4 250 0.79463 0.95564 0.95801
0.4 0.8 0.4 250 0.79396 0.95563 0.95691
0.4 0.8 0.5 300 0.79487 0.95561 0.95794
0.4 0.8 0.5 400 0.79282 0.95499 0.95804
0.4 0.8 0.5 500 0.79699 0.95611 0.95878
0.4 0.8 0.5 500 0.79557 0.95549 0.95866
0.4 0.8 0.5 500 0.79704 0.95544 0.9584
0.4 0.8 0.6 100 0.79232 0.95445 0.9598
0.4 0.8 0.7 150 0.79458 0.95164 0.96205
0.4 0.8 0.8 250 0.79069 0.94381 0.96534
0.4 0.8 0.8 350 0.78769 0.94284 0.96525
0.4 0.8 0.9 200 0.74737 0.93024 0.9714
0.4 0.8 0.9 300 0.77071 0.93312 0.97116
0.4 0.8 0.9 450 0.74066 0.92782 0.97059
0.4 0.9 0.1 300 0.79596 0.95478 0.95952
0.4 0.9 0.1 400 0.79472 0.95445 0.95894
0.4 0.9 0.2 250 0.79209 0.95379 0.95807
0.4 0.9 0.2 450 0.79008 0.95433 0.95843
0.4 0.9 0.3 200 0.79258 0.95408 0.95898
0.4 0.9 0.4 100 0.78723 0.95347 0.95885
0.4 0.9 0.5 50 0.6942 0.94779 0.96019
0.4 0.9 0.5 350 0.79148 0.95246 0.95945
0.4 0.9 0.6 100 0.77426 0.95024 0.96193
0.4 0.9 0.6 150 0.79062 0.95039 0.96131
0.4 0.9 0.6 350 0.79358 0.94956 0.9618
0.4 0.9 0.7 50 0.66984 0.94272 0.96361
0.4 0.9 0.7 100 0.77703 0.94601 0.96416
0.4 0.9 0.7 200 0.78088 0.94538 0.9655
0.4 0.9 0.7 400 0.78795 0.94885 0.96327
0.4 0.9 0.8 450 0.78821 0.94054 0.96809
0.5 0.6 0.1 100 0.79168 0.95267 0.96226
0.5 0.6 0.1 250 0.79465 0.95297 0.96141
0.5 0.6 0.1 500 0.79622 0.95318 0.96201
0.5 0.6 0.3 350 0.79393 0.95256 0.96167
0.5 0.6 0.4 350 0.79545 0.95241 0.96117
0.5 0.6 0.4 400 0.79323 0.95298 0.9611

γ1 γ2 θ neighbors ARI completeness homogeneity

0.5 0.6 0.4 400 0.79181 0.95267 0.96108
0.5 0.6 0.5 400 0.7927 0.95179 0.96086
0.5 0.6 0.6 200 0.79473 0.95253 0.96162
0.5 0.6 0.6 200 0.79556 0.952 0.96148
0.5 0.6 0.6 450 0.79297 0.95168 0.96096
0.5 0.6 0.6 450 0.79465 0.95268 0.96113
0.5 0.6 0.6 500 0.79483 0.95231 0.96133
0.5 0.6 0.7 150 0.79501 0.95143 0.96195
0.5 0.6 0.7 250 0.79933 0.9525 0.96233
0.5 0.6 0.7 350 0.79802 0.95215 0.96312
0.5 0.6 0.7 400 0.79753 0.95241 0.96233
0.5 0.6 0.8 150 0.80271 0.95169 0.96425
0.5 0.6 0.8 300 0.79783 0.95077 0.9637
0.5 0.6 0.8 350 0.79894 0.95059 0.96309
0.5 0.6 0.8 400 0.80187 0.95168 0.96382
0.5 0.6 0.9 200 0.7991 0.94637 0.96705
0.5 0.6 0.9 250 0.80339 0.94718 0.96764
0.5 0.7 0.2 350 0.79485 0.95274 0.96229
0.5 0.7 0.3 100 0.78685 0.95167 0.96112
0.5 0.7 0.3 100 0.78796 0.95163 0.96131
0.5 0.7 0.5 350 0.79068 0.95221 0.96053
0.5 0.7 0.5 350 0.79599 0.95233 0.96178
0.5 0.7 0.5 450 0.79602 0.95262 0.962
0.5 0.7 0.6 200 0.79623 0.95186 0.96186
0.5 0.7 0.8 50 0.71216 0.94631 0.9653
0.5 0.7 0.9 200 0.78926 0.94109 0.96877
0.5 0.8 0.1 150 0.79178 0.95131 0.96143
0.5 0.8 0.1 200 0.79327 0.95184 0.96146
0.5 0.8 0.1 300 0.79422 0.95224 0.96173
0.5 0.8 0.1 450 0.79426 0.95201 0.96218
0.5 0.8 0.2 350 0.79919 0.9523 0.96259
0.5 0.8 0.2 350 0.79713 0.95215 0.96233
0.5 0.8 0.2 400 0.79717 0.95213 0.9625
0.5 0.8 0.2 400 0.79161 0.95135 0.96143
0.5 0.8 0.2 500 0.79474 0.95186 0.96193
0.5 0.8 0.3 50 0.70765 0.94965 0.9628
0.5 0.8 0.3 300 0.79398 0.95201 0.96174
0.5 0.8 0.4 50 0.70813 0.94863 0.96229
0.5 0.8 0.4 300 0.79681 0.95238 0.96246
0.5 0.8 0.5 50 0.70983 0.94917 0.96254
0.5 0.8 0.6 100 0.79095 0.95167 0.96329
0.5 0.8 0.7 100 0.79327 0.94947 0.96406
0.5 0.8 0.7 500 0.79738 0.95019 0.96454
0.5 0.8 0.8 150 0.79136 0.94705 0.96601
0.5 0.8 0.8 300 0.79204 0.94663 0.96605
0.5 0.8 0.8 350 0.79376 0.94613 0.96632
0.5 0.8 0.8 400 0.79579 0.94673 0.96695
0.5 0.8 0.9 300 0.7606 0.93032 0.97134
0.5 0.9 0.1 50 0.70174 0.94818 0.96283
0.5 0.9 0.1 100 0.78756 0.95054 0.96237
0.5 0.9 0.2 500 0.79548 0.95154 0.96254
0.5 0.9 0.3 50 0.67637 0.94635 0.96385
0.5 0.9 0.3 500 0.79451 0.95113 0.96286
0.5 0.9 0.4 200 0.79511 0.95132 0.96236
0.5 0.9 0.4 500 0.79619 0.95123 0.96277
0.5 0.9 0.6 100 0.78586 0.95059 0.96322
0.5 0.9 0.6 250 0.79719 0.95013 0.96393
0.5 0.9 0.6 450 0.79901 0.95083 0.96444
0.5 0.9 0.8 500 0.78005 0.94025 0.96761
0.5 0.9 0.9 100 0.71575 0.92533 0.97274
0.5 0.9 0.9 350 0.75177 0.92872 0.97253
0.6 0.7 0.1 100 0.78957 0.94906 0.96516
0.6 0.7 0.1 450 0.78857 0.94866 0.96458
0.6 0.7 0.1 500 0.79027 0.94871 0.96394
0.6 0.7 0.2 100 0.78344 0.94883 0.96419
0.6 0.7 0.2 200 0.79003 0.94908 0.96415
0.6 0.7 0.2 400 0.79178 0.94924 0.96445
0.6 0.7 0.3 400 0.79065 0.94846 0.9646
0.6 0.7 0.4 150 0.7892 0.9482 0.96392
0.6 0.7 0.4 150 0.79251 0.94931 0.96462
0.6 0.7 0.4 250 0.78961 0.94851 0.96406
0.6 0.7 0.5 150 0.79193 0.94888 0.96435
0.6 0.7 0.5 250 0.79159 0.94853 0.96398
0.6 0.7 0.5 300 0.78898 0.94865 0.96397
0.6 0.7 0.7 50 0.69509 0.94535 0.96577
0.6 0.7 0.9 150 0.78477 0.93931 0.9699
0.6 0.8 0.1 50 0.69054 0.94507 0.96484
0.6 0.8 0.1 150 0.7925 0.94824 0.96432
0.6 0.8 0.1 500 0.79371 0.94871 0.96441
0.6 0.8 0.2 300 0.79528 0.94955 0.9658
0.6 0.8 0.2 350 0.78918 0.94863 0.96372
0.6 0.8 0.3 450 0.79243 0.9493 0.96465
0.6 0.8 0.5 100 0.78754 0.94814 0.96533
0.6 0.8 0.5 150 0.79042 0.94806 0.96436
0.6 0.8 0.5 450 0.79132 0.94915 0.96438
0.6 0.8 0.6 50 0.69328 0.94512 0.96525
0.6 0.8 0.6 200 0.79314 0.94929 0.96533
0.6 0.8 0.7 150 0.79278 0.94814 0.96567
0.6 0.8 0.7 200 0.79185 0.94764 0.96586
0.6 0.8 0.8 50 0.6782 0.93946 0.96882
0.6 0.8 0.8 200 0.79278 0.9454 0.96751
0.6 0.8 0.8 400 0.78917 0.94528 0.96762
0.6 0.8 0.8 500 0.7929 0.94597 0.96767
0.6 0.8 0.9 450 0.78138 0.93731 0.97122

90

γ1 γ2 θ neighbors ARI completeness homogeneity

0.6 0.9 0.1 300 0.79092 0.9492 0.96461
0.6 0.9 0.1 350 0.7918 0.94897 0.96484
0.6 0.9 0.1 350 0.79088 0.94838 0.96491
0.6 0.9 0.2 100 0.78219 0.94865 0.9645
0.6 0.9 0.2 150 0.79166 0.94932 0.96446
0.6 0.9 0.2 350 0.78917 0.94805 0.96416
0.6 0.9 0.3 100 0.78607 0.94869 0.96522
0.6 0.9 0.4 250 0.79007 0.94881 0.96438
0.6 0.9 0.4 350 0.7902 0.94848 0.96455
0.6 0.9 0.4 400 0.79153 0.94855 0.96451
0.6 0.9 0.5 100 0.78681 0.94808 0.96542
0.6 0.9 0.5 300 0.79173 0.94863 0.96515
0.6 0.9 0.6 250 0.79631 0.94805 0.96551
0.6 0.9 0.6 500 0.7888 0.94718 0.96504
0.6 0.9 0.7 100 0.78147 0.94674 0.96696
0.6 0.9 0.7 250 0.79628 0.94751 0.96732
0.6 0.9 0.7 250 0.793 0.94752 0.96711
0.6 0.9 0.7 300 0.7926 0.9464 0.96716
0.6 0.9 0.7 400 0.79065 0.94759 0.96679
0.6 0.9 0.8 50 0.65224 0.93543 0.96926
0.6 0.9 0.8 350 0.78462 0.94277 0.96789
0.6 0.9 0.8 350 0.78835 0.94239 0.96842
0.6 0.9 0.8 500 0.78347 0.94223 0.9688
0.7 0.8 0.2 200 0.78111 0.94394 0.96692
0.7 0.8 0.3 100 0.77168 0.94341 0.96756
0.7 0.8 0.3 400 0.78295 0.94489 0.9677
0.7 0.8 0.3 400 0.78642 0.94425 0.96775
0.7 0.8 0.3 400 0.78383 0.94478 0.96786
0.7 0.8 0.4 300 0.78117 0.94462 0.96724
0.7 0.8 0.4 450 0.78256 0.94436 0.96768
0.7 0.8 0.5 100 0.77552 0.94451 0.96785
0.7 0.8 0.6 300 0.78714 0.94491 0.96763
0.7 0.8 0.7 100 0.77854 0.94417 0.96848
0.7 0.8 0.8 100 0.77336 0.94182 0.9693
0.7 0.8 0.8 200 0.78285 0.94181 0.96892
0.7 0.8 0.8 300 0.78645 0.94181 0.96939
0.7 0.8 0.8 400 0.78122 0.94157 0.9686
0.7 0.8 0.8 450 0.78645 0.94203 0.96945
0.7 0.8 0.9 450 0.77988 0.9357 0.97021
0.7 0.9 0.1 150 0.78309 0.94426 0.96776
0.7 0.9 0.2 250 0.78468 0.94408 0.96816
0.7 0.9 0.3 200 0.78541 0.94455 0.96778
0.7 0.9 0.3 200 0.7842 0.94443 0.9679
0.7 0.9 0.3 300 0.78642 0.94501 0.96817
0.7 0.9 0.3 400 0.7812 0.94431 0.96747
0.7 0.9 0.4 150 0.78454 0.94407 0.96779
0.7 0.9 0.4 300 0.78446 0.9443 0.96802
0.7 0.9 0.4 350 0.78362 0.94458 0.96779
0.7 0.9 0.5 450 0.78823 0.9445 0.96855
0.7 0.9 0.7 300 0.78331 0.94369 0.9685
0.7 0.9 0.7 350 0.78492 0.94368 0.96891
0.7 0.9 0.7 450 0.78416 0.94295 0.96869
0.8 0.9 0.1 50 0.64664 0.93643 0.96898
0.8 0.9 0.1 300 0.78088 0.94238 0.96954
0.8 0.9 0.2 150 0.78195 0.94184 0.9694
0.8 0.9 0.2 300 0.77617 0.94106 0.9691
0.8 0.9 0.2 300 0.77677 0.94134 0.96864
0.8 0.9 0.2 300 0.78101 0.94133 0.9694
0.8 0.9 0.2 450 0.77695 0.94165 0.96897
0.8 0.9 0.2 500 0.77916 0.94175 0.96921
0.8 0.9 0.2 500 0.7766 0.94144 0.96918
0.8 0.9 0.3 50 0.65341 0.93688 0.96903
0.8 0.9 0.3 300 0.77503 0.9405 0.96882
0.8 0.9 0.4 150 0.78015 0.94188 0.96992
0.8 0.9 0.4 400 0.77781 0.94174 0.96956
0.8 0.9 0.5 50 0.6561 0.9371 0.96919
0.8 0.9 0.7 50 0.65733 0.93682 0.96981
0.8 0.9 0.7 100 0.76477 0.9402 0.97023
0.8 0.9 0.7 200 0.77934 0.94169 0.96983
0.8 0.9 0.8 250 0.77518 0.93906 0.97052
0.8 0.9 0.8 400 0.77711 0.93944 0.97112
0.8 0.9 0.9 50 0.62967 0.92692 0.97347
0.8 0.9 0.9 250 0.77018 0.93488 0.97252
0.8 0.9 0.9 450 0.76437 0.93351 0.97159

Table S3.3: Hyperameter optimization of the
parameters γ1, γ2, θ, max neighbors.

91

Chapter 4

Module painting

Abstract

With the rapid expansion of microbiome sequencing, hundreds of bacteriophage population

samples are now available in public databases. Pervasive recombinations within and across

populations reveal a large share of homologous recombinations, and recombinations between

genes that share little similarity but perform the same biological function, called modular

recombinations. We adapted the idea of chromosome painting to this particular problem,

and use recombinations as a feature to describe bacteriophage populations. We propose

module-painter, a tool that can quickly quantify and describe the exchange of modules

between populations. We show that module-painter can identify recombinations in both

simulated and real datasets and identify meaningful clusters based on this feature. The

code is publicly available at: https://github.com/Puumanamana/module-painter.git

4.1 Introduction

Unlike other organisms, viruses lack the necessary material to survive on their own. Thus,

they need to infect other living organisms and use their machinery to replicate. Viruses

Work in progress. Collaboration with Guylaine Poisson, Anne Bergeron and Mahdi Belcaid

92

https://github.com/Puumanamana/module-painter.git

infecting bacteria, or bacteriophages, are the most common viruses on earth [1], which makes

them hard to avoid. Bacteria have naturally adapted to fight viral infection through various

mechanisms (such as the CRISPR-Cas system [2, 3]). In turn, viruses also evolve to bypass

those mechanisms. However, viruses evolve at a much faster pace than other organisms,

partly because of the process of recombination [4, 5], which consists of exchanging part of

their DNA with other members of their species to produce two complementary children (see

figure 4.1). This high sequence variability can challenge DNA recognition mechanisms in

bacteria.

Recombination
region

Figure 4.1: Recombination mechanism in phages: (left) Two parent phages (blue and green)
recombine to produce two children (right).

DNA recombination is not unique to viruses and is observed in most organisms.

For diploid organisms (with pairs of chromosomes), recombination can happen during

reproduction, since the progeny receives one chromosome from each parent. Other

mechanisms, such as crossing-over, also play an important role in increasing the genetic

diversity in a population. Since the same recombination rarely occurs twice, it produces

descendants with similar genomic structure compared to other individuals of the same

generation. This leads to small variations in specific DNA sequences, called variants, to be

propagated within the population when they provide some kind of survival benefits. When a

region of DNA is present in a population with two or more variants, it is called polymorphic.

By studying the distribution of polymorphisms, we can hope to unravel a population’s

history of recombination. The most popular idea consists in decomposing (or “painting”)

the chromosomes of an individual as a set of acquired DNA segments from its ancestors, and

is now known as in silico “chromosomal painting”. In [6], the authors focus on humans and

93

aim at identifying the most recent “donor” for multiple DNA segments in an individual’s

DNA. The probability that a segment was received from a given donor is modeled using a

Hidden Markov Model, and the most likely scenario leading to the observed individual is

computed. Using this model, they build a “co-ancestry” matrix showing each individual’s

relatedness with the others across all segments of DNA considered. The authors further

expand their work and use this co-ancestry matrix as a baseline for subsequent analyses

to cluster the individuals into subpopulations and infer their history of recombination.

Although this approach has been used in [7] for highly conserved phage genes, it is in

general not well suited for viruses because of their high mosaicism (i.e. their genome is an

assemblage of DNA modules exchanged with their environment) [8]. It is indeed common

to observe DNA segments in phages that serve a similar function, but for which the DNA

sequences are drastically different. In comparison, the genetic variations in humans are most

commonly observed at individual DNA positions. High dissimilarity between individuals

complicates genome comparisons and the identification of polymorphism. Furthermore, the

propagation of mutation in a population is believed to be the driving force of evolution

for eukaryotes [9, 10], while in the case of phages, previous research seems to indicate that

recombinations play a major role in their adaptation [10]. The recombination process of

viruses is vastly different from most organisms and is still actively researched. A popular

paradigm for recombination was proposed by Botstein [4], who hypothesized in his modular

theory of phage recombination that viral genomes recombine by exchanging DNA segments

from variable regions (called modules) that are flanked by conserved regions. Based on

this theory, the authors in [11, 12, 13] align viral genomes and successfully identify viral

modules and their variants. These variants are further used to analyze a population of

Staphylococcus aureus and phages found in dairy factories in order to reconstruct the

recombination history. Based on the observed recombination in the population, they were

able to identify a minimal set of viruses that can generate the whole population using viral

recombination operations. Despite their success in recovering the recombination history,

these approaches are ill-suited for environmental viral metagenomes, since they are often

94

very fragmented and therefore do not fit in the authors’ mathematical model (which requires

a complete and ordered set of modules).

Here, we aim to reproduce the approach from this earlier work while reducing the

assumptions about genome completeness. Our finding are implemented in module-painter,

a tool for identifying the traces of a parent viral population on a target population. By

identifying recombination patterns, we are able to cluster the viruses into subpopulations

based on their shared history. We tested our method on both simulated datasets and

real metagenomic data and showed that module-painter identifies recombinations between

phages and produces meaningful phage clusters.

4.2 Methods

4.2.1 Definitions

We consider two phage populations P and Q with circular genomes, where the phages in P

are referred to as the parents and the phages in Q the children.

Child
Parent A
Parent B

Breakpoint
interval

Parent D

Recombination

Parent C

Figure 4.2: Example of coverage: Coverage of a phage (black) by 4 parents, A (blue), B
(green), C (orange) and D (pink). There are five breakpoints (shaded regions) that include
parents A/B (twice), A/C, A/D and C/D. There is only one recombination (A/B + A/B).

The coverage of a phage q in Q is a set of overlapping DNA segments from phages in

P aligning on q. When two successive segments overlap, they define a breakpoint interval

(or breakpoint for simplicity). A breakpoint is characterized by the start and end positions

of the overlap, and the IDs of the corresponding phages. A recombination may occur when

95

a pair of parents are involved in two breakpoints with different (start, end) positions (see

example in figure 4.2).

4.2.2 Module-painter: main steps and parameters

The module-painter algorithm is composed of two main steps. First, we determine a minimal

set of segments from the parent population covering each child’s genome. Second, we identify

all recombinations shared by multiple children in order to cluster them into subpopulations.

These steps are explained in further details below.

Coverage computation

The coverage computation is done for each child separately, therefore in this section we only

consider one child sequence (and many possible parents).

Initial coverage: We perform an initial alignment with Minimap2 [14] to identify

high confidence alignments with little to no gaps (parameters: -r 100 -z 50 -U 100

--no-long-join -c -P) and discard hits with less than 90% identity. The relative

orientation of a parent and a child’s genome can differ, thus we only keep hits from a

single orientation, chosen as the orientation of the hit with the most base pair matches.

Interval synchronization (figure 4.3A): To make the coverage computation more robust

to small variations in alignment accuracy, we start by “synchronizing” segments boundaries.

It consists in adjusting the boundary of intervals with similar start/end positions, and is

done through agglomerative clustering of all the intervals’ start positions. Intervals in the

same cluster are extended to the cluster’s minimum on the left. We do the same for the

end position of each interval (but this time, we extend intervals to the cluster’s maximum

on the right). This step yields a more homogeneous coverage of the children population,

with differences in the boundaries of the intervals larger than 20 bp.

Gap filling (figure 4.3B-C): At this stage, it is common to observe regions on the child

genome that are not covered by any parent. This step aims at filling those gaps in coverage.

First, we reduce the fragmentation of each parent by refining their alignment. We consider

96

all consecutive intervals, and fuse them together either if they are close (distance <100

bp) or if the region that separates them in the parent and the child is more than 90%

highly similar with a Needleman-Wunsch alignment (figure 4.3B). Then, once the parents’

segments are maximally extended, we investigate the remaining holes in coverage. If the

missing portion is small (distance < 100 bp) we extend the segments flanking this region

to touch, and otherwise we add a putative parent in the parent set, whose sequence is the

missing portion on the child’s genome (“NA” in figure 4.3C).

Coverage simplification (figure 4.3D-E): In order to focus on the more meaningful

alignments, we remove any interval embedded in a larger one (figure 4.3D). We further

simplify the coverage using the algorithm in [15] to find the minimal set of arcs covering

each child (figure 4.3E).

Identification of shared missing segments

The same missing segment can occur in multiple children, and identifying them can help us

detect additional recombinations involving this shared putative missing parent. Here, we

perform an all-vs-all global alignment (using minimap2 [14]) between all missing segments

and build a homology graph where the vertices are missing segments and an edge links

two segments with >90% identity (defined as #matches over the length of the smallest

segment). In this graph, matching segments correspond to the connected components and

will be considered as the same putative missing parents (see figure 4.4).

Identification of shared recombinations

If we assume that two phages can recombine with each other multiple times at different

positions, then a recombination involving the same parents in multiple children does

not necessarily mean it is the same recombination. In order to ascertain whether a

recombination was inherited by two children, we need to check whether the DNA sequence

of the breakpoint intervals in the recombination is the same for both. To this end, we

use a similar approach as before by doing an all-vs-all alignment and building a homology

97

E

dist < 10bp

A
dist

NA

green ⊂ blue

Minimal
cover

s
e
q
u
e
n
c
e

i
d
e
n
t
i
t
y

>
9
0
%

dist
B

dist < 100 bp

D

dist > 100 bp Needleman-
WunschdistC

dist > 100 bp

dist < 100 bp

Figure 4.3: Coverage computation steps in module-painter: (A) Since the start position of
both parents is close (<10bp), we extend the blue parent to match the start of the green.
(B) There is a gap between two consecutive segments of the same parent. We close it if
the distance is short or if the exact alignment of the unaligned region with the Needleman-
Wunsch algorithm yields a high similarity. (C) Gap in coverage between the blue and the
green segments. If the distance between them is small (default is shorter than 100bp), we
extend both parents to touch. Otherwise, we add a putative parent (gray) to fill the hole.
(D) One parent (green) is embedded in the other (blue), therefore we remove the smaller
one. (E) The coverage contains 4 parents, with no embedding relationship. We can still
simplify the coverage by removing the orange parent (using the circle-cover algorithm in
[15]).

graph where vertices are breakpoints and edges link vertices with >90% identity with a

length difference of at most 50%. Identical breakpoints are the connected components in

this graph. We can then detect shared recombination whenever two shared breakpoints

with the same parents are identified.

Parent selection

Multiple parents can cover the exact same region on a child genome if they all have the

same variant. This complicates the identification of relatedness between children, as we

98

NA-3
NA-3 NA-499%

NA-1

all-vs-all alignment

NA-1

NA-2

NA-4

97% 98%

NA-2

NA-2

NA-1

NA-2

NA-2

Figure 4.4: Missing fragments matching: We start with 3 children with various degrees
of missing data. We align each missing fragment (labeled as NA) against all the others
and build a homology graph, where the vertices are the missing fragments and edges link
fragments with >=90% identity. Finally, we give the same label to the fragments belonging
to the same connected components.

do not know which parent should be chosen to define the breakpoint. For example, in

figure 4.5A, if we chose the blue parent as the ancestor of phage C1, then we define a

recombination between the blue and green parents, whereas if we choose the orange parent,

we have a recombination between the green and orange parents. We solve this issue by

selecting the parents that maximize the number of shared recombinations between children.

This is however a very complex problem since for p undetermined regions, each of them

with n1, ..., np possible parents, we have n1 × ... × np combinations of parents. Thus, we

choose to adopt a greedy approach (figure 4.5). We start by enumerating all possible

recombinations and rank them by prevalence, defined here as the number of children in which

the recombination occurs. For each recombination from best to worst, we discard alternative

parents that occur at the same place (see figure 4.5A). It is however fairly common to have

recombinations with the same prevalence, in which case we need to break ties. First, we

prioritize recombinations for which breakpoints cannot be reused. For example, if a pair of

parents define three breakpoints bk1, bk2, bk3, then we can only define one recombination

99

with two of the three breakpoints. Thus, if the selection of a parent leads to erasing one

of them, we can still define a recombination with the remaining two. This is depicted on

figure 4.5B, where there are three breakpoints involving the blue and pink parents. In this

case, if we choose to pick the orange parent, we still have a recombination between pink

and blue. If this criteria still leads to a tie, we pick the recombination involving the most

common parents overall, and pick at random to break any remaining ties.

C1 C2

Prevalence
GBG 2
BGB 1
GOG 1
GPG 1

We discard the
orange parent

C1

Prevalence
OGO 2
BPB 2
PBP 1
BGB 1
OPO 1

We discard the
blue parent

C2 C3

A B

Figure 4.5: Parent selection: Shaded areas are segments where multiple parents are covering
the same region. Parents are referred to with the initial of their color (e.g. P for pink).
(A) The recombination GBG appears on both C1 and C2 whereas GOG appears only in
C1. Therefore, we discard the orange parent. (B) Both OGO and BPB appear on two
children (C1+C3 and C1+C2 respectively). However, if we pick BPB, we erase the OGO
recombination whereas if we choose OGO, we still have the PBP recombination. Therefore,
we discard the blue parent.

If multiple parents cover a segment not involved in any recombination, we also need to

make a decision. We take a similar approach and focus on breakpoint prevalence: we keep

the parent for which the breakpoint occurs in the most children, and break ties by selecting

the most common parent pair, ultimately selecting at random for the remaining ties.

Population clustering

We construct a co-occurrence graph where vertices are children and edges link vertices

with shared recombinations. We identify clusters using the Leiden community detection

algorithm [16]. When multiple overlapping recombinations occur on the same phage, some

breakpoints (and thus recombinations) can be erased, therefore erasing edges in the graph.

Instead, we can hope to identify more links between phages by simply looking at shared

100

breakpoints instead of recombinations. Therefore, we propose two clustering options, based

on either recombination or breakpoint.

Rotating the parent population

In some datasets, there is no natural choice for the parent population —any sample could

be chosen to be the parent. The module-painter algorithm can still be used in this case

to cluster phages according to recombination patterns. For a dataset with n samples, we

use a “leave-one-out” strategy, where we iteratively select each sample to be the parent

population and the rest to be the children. Each iteration identifies recombinations shared

between phages in n-1 samples. We use the recombinations from all n runs to cluster the

phages as described in the previous paragraph.

4.2.3 Clustering metrics

To evaluate the clustering accuracy, we used the Adjusted Rand Index (ARI), the

homogeneity and the completeness. These measures are defined as follows: The ARI [17]

is a measure based on the relative cluster assignment of any pair of samples. The Rand

Index is the proportion of phage pairs that are correctly clustered together or correctly not

clustered together among all possible pairs. The ARI is a modified version of the Rand Index

that accounts for chance. The homogeneity measures whether the predicted clusters are

“pure”, or in other words, if they only group phages from the same population. It is based

on the conditional entropy of the subpopulations given the predicted clusters, H(S | K), as

follows:

Homogeneity = 1− H(S | K)

H(S)

The completeness is complementary to the homogeneity, and measures whether phages from

the same population are split apart. It is based on the conditional entropy of the predicted

101

clusters given the subpopulations, H(K | S), as follows:

Completeness = 1− H(K | S)

H(K)

4.2.4 Data collection

Simulation

Our simulation relies on a modular recombination model. Each simulation can be split into

3 phases. First, we generate a genetic reservoir by defining p ordered modules, each with two

or more variants. The number of variants per module is uniformly sampled in {5,...,10}, and

the size of each variant (in bp) is uniformly sampled in {200,...,500}. Second, we generate

a parent phage by selecting a variant at random for each of the p modules. We repeat

this process multiple times to generate a parent population. In order to enforce a certain

population structure, we divide the parent population into K clusters, each with a size

sampled from a Poisson distribution of mean 5. Third, we generate the children population

within each cluster by randomly recombining parents. To simulate a recombination, we pick

two parents at random and one or more consecutive modules to exchange. We produce two

children with each parents’ variant of the chosen module exchanged (as in figure 4.1). In

general, only one of the children benefits from the exchange, and we therefore discard one

of them at random. For a given subpopulation, the total number of recombination is the

product of the recombination rate, the population size, and the number of generations. In

our simulations, we use a recombination rate of 20% and vary the number of generations.

Since phages in a population recombine randomly, the true clusters do not necessarily

correspond to the K initial populations, but are further divided into subpopulations. In

these subpopulations, any two phages share a common ancestor.

Dairy bacteriophages

The authors in [18, 13] sampled phages around the world and performed a hierarchical

clustering of their genomic features to ascertain whether the phages cluster according to

102

where they come from. Their attempts were overall successful except for 4 Dutch dairy

factories that we use in this paper to determine if recombination patterns are more adapted

in identifying each factory. We collected the phages using the accession provided in [18]

and divided the sequences between the 4 factories.

Human gut metagenome dataset

The dataset from [19] contains the metagenomes of 24 individuals (with 6 controls and 18

exposed) before, 7 days after, and 3 months after administering an antibiotic. We collected

assemblies provided from the authors on NCBI (bioproject PRJEB8094) and we kept contigs

larger than 20kb, while filtering for viral contigs using DeepVirFinder [20].

4.3 Results

4.3.1 Module-painter reconstructs subpopulations in a simulated dataset

We first validate our method on simulated datasets with known population structure. The

simulation process is explained in the Methods section. We generated a total of 600 datasets,

with 50 replicates for each combination of the number of clusters (2, 5 or 10) and number

of generations (2, 4, 6, or 8). We evaluated the clustering accuracy based on three metrics,

the Adjusted Rand Index (ARI), the completeness and the homogeneity (see figure 4.6).

The completeness measures true positives, or events where phages were correctly grouped

together, while homogeneity measures true negatives, or events where phages were correctly

assigned to separate subpopulations. ARI is a more general metric that captures both types

of events (see Methods for more details). We can see that the homogeneity is very high

(>0.99) across all simulation settings, meaning that very few clusters group phages from

different populations. Both the completeness and ARI are negatively correlated with the

number of generations, which tends to make the population structure more complex. The

completeness is relatively high, going from more than 0.9 for 2 generations to 0.5-0.6 for

6 and 8 generations. The ARI follows a similar trend across all settings, starting at 0.5

103

2 4 6 8
#generations

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

metric = Homogeneity

2 4 6 8
#generations

metric = Completeness

2 4 6 8
#generations

metric = ARI

#clusters
2
5
10

Figure 4.6: Module-painter on simulated data: For all figures, the x-axis identifies the
number of generations (2, 4, 6 or 8), which is subdivided based on the number of clusters
(2, 5 or 10). (A) Clustering accuracy on simulated datasets. Each column is a different
metric (left: Homogeneity, middle: Completeness, right: ARI) and each point corresponds
to a dataset. Colors correspond to the number of clusters (blue: 2, orange: 5, green:
10). The y-axis measures the score for each given metric, and the black diamonds symbols
represent the median of the metric in each category.

for 2 generations to 0.2 for 8 generations. Almost all the identified recombinations link

phages from the same population (data not shown) which corroborates our observations

with the homogeneity metric. The number of identified recombinations also grows with

the number of generations, as expected. Thus, although module-painter does not identify

the entire populations, it can identify many recombinations and use them to define robust

subpopulations.

4.3.2 Module-painter identifies recombinations in complete genomes

We evaluate the performance of module-painter on phages from four Dutch dairy factories.

In their paper [18], the authors were not able to separate phages of each factory by looking

solely at the phages’ genome organization. We show here that recombination patterns can

help identify similarities between phages. For this experiment, there is no clear choice

of who should be selected as the parent population. Therefore, we use a “leave-one-out”

strategy (see Methods) by iteratively selecting one factory as the parent population and the

others to be the children.

104

b
M

N

P

J

G

I

g

T

A

E

V

h

Q

X

f

e

R

C

S

c

O

W

Z

U

D

i

a

d

k

K
B

F

l

H

A

Homogeneity Completeness ARI
0.0

0.1

0.2

0.3

0.4

0.5

Sc
or

e

genome-organization
module-painter

B

0 5000 10000 15000 20000 25000 30000

F3.R

F3.S

F3.W

F3.X

F3.d

cluster = 0

0 5000 10000 15000 20000 25000 30000

F3.T

F3.U

F3.V

cluster = 1

F1.A
F1.D
F1.F
F1.M
F1.B
F1.G
F1.I
F1.L

C

Figure 4.7: Clustering of dairy phages: (A) Recombination graph identified by module-
painter. Vertices represent phages, and edges are recombination between them. Colors
identify different factories (blue: 1, orange: 2, yellow: 3, green: 4). (B) Clustering accuracy
on dairy factories dataset. The x-axis identifies the clustering metric and the clustering
method used (also visible with the coloring, red for genome organization and blue for
module-painter), while the y-axis displays the score of each metric. (C) Coverage of phages
in factory 3 by phages in factory 1. Each subplot represents a different subpopulation, and
colors identify different parents. The x-axis is the position along the child genome, while
the y-axis separates multiple children in the same cluster.

We identified a total of 65 recombinations, 15% of which (10) are shared by multiple

phages. We used the shared recombinations to build a graph (see figure 4.7A) that we cluster

as described in the Methods. We compare the accuracy of the clusters of phages with the

ones found with genome organization features in [18]. In order to emphasize recombinations

105

as a clustering feature, we exclude any phage for which no recombinations were found.

Figure 4.7B shows that module-painter is more accurate than the clusters based on genome

organization: recombinations lead to less false positive groupings (homogeneity value of

0.51 for module-painter versus 0.26 for genome-organization) and more true positives

(completeness of 0.33 for module-painter vs 0.23 for genome-organization). The ARI is

relatively low, still in favor of module-painter (0.13 versus 0.033).

Next, we show that module-painter can identify subpopulations within phages from the

same factory. Figure 4.7C shows 8 phages from factory 3 divided into 2 clusters when

studied through the lens of factory 1. For example, phages d, X, W, S and R are put in

the same cluster because they share breakpoints involving A, M and F, while V, U and

T are grouped because they share breakpoints involving D and B. Overall, we show that

recombinations are a powerful feature for studying the interactions between phages in a

population, and be an interesting alternative to more commonly used methods.

4.3.3 Module painter identifies recombinations in whole genome

sequencing experiments

Finally, we use a metagenome dataset in which 24 patients (8 controls and 16 exposed)

are followed at three different time points (before antibiotic treatment, 7 days after, 90

days after). For each patient, we follow the evolution of the phage population at each

time point. First, we use module-painter to track phage recombinations over time for each

patient separately. We pick t0 (i.e. before treatment) as the parent population, and we look

for recombinations shared by phages at t7 and t90. As shown in figure 4.8A,B, we found

two examples for patients 13 and 21 of phages identified at t7 and t90 who share the same

recombination. Used in concordance with abundance data, this could give us insights about

the adaptation of phages when they are subject to changes in their environment.

106

0 10000 20000 30000 40000

P13E7.384

P13E90.1029

cluster = 0

0 25000 50000 75000 100000 125000 150000 175000

P13E7.101

P13E7.378

cluster = 1

P13E0.114
P13E0.400
P13E0.493
P13E0.955

A

0 25000 50000 75000 100000 125000 150000 175000 200000

P21E7.160

P21E7.197

P21E90.1055

cluster = 0

0 50000 100000 150000 200000

P21E7.675

P21E90.1257

cluster = 1

P21E0.128
P21E0.184
P21E0.216
P21E0.512
P21E0.802
P21E0.135
P21E0.351
P21E0.510
P21E0.594
P21E0.654

B

Control Exposed

5

10

15

re

co
m

bi
na

tio
ns

Reference: t0

Control Exposed

Reference: t7

Control Exposed

Reference: t90

t0
t7
t90

C

Figure 4.8: Recombination analysis on WGS dataset: (A,B) Coverage examples for two
patients. The x-axis represents the position on the genome, while the y-axis separates
multiple children. (A) Patient 13: Shared recombination between the green and yellow
parents for two phages at t7 and t90. (B) Patient 21: Shared recombination between the
yellow and orange parents for three phages, two at t7 and one at t90. (C) Distribution of the
number of recombinations for each patient’s metagenome. Each facet shows the result when
the parent population is set to a different time point. The x-axis represents the treatment
(Control or Exposed), and is further subdivided into each remaining time point.

Then, we investigate whether the antibiotic treatment has an effect on recombination

frequency. Similarly, we run module-painter on each patient separately but this time

we rotate the parent population between the three timepoints to identify recombinations.

Overall, module-painter is able to detect a total of 850 recombinations in all 15,034 phages.

The distribution of the number of recombination is displayed on figure 4.8C. The number

of recombination follows an inverse trend when we compare the patients who received the

antibiotic and the ones who did not: For example, when the reference is t0, the median

107

number of recombinations decreases for the controls (8.5 to 5) and increases for the exposed

patients (3 to 5), while when the reference is t90, the controls increase in recombination

(from 6 to 7.5) and decrease for the exposed (from 6 to 3). Thus, through the lens of

recombination, module-painter can provide insights on the evolution of communities.

4.4 Discussion and conclusion

Module-painter provides a fresh perspective on phage population analysis by identifying

exchanges of functional modules within a population. To our knowledge, this is the first

phage clustering method based on recombinations. We show that our approach is able

to leverage this information both on simulated data and real data to unravel the kinship

between phages. We simulated 600 datasets with varying number of clusters and generations

to evaluate module-painter’s ability to recover the underlying population structure. Module-

painter was able to identify many links between phages and to untangle the simulated

population structure to some degree, with little to no false positives. We included two

real-world datasets to validate our approach. The first is a high-quality dataset made of

phages with known population structure. We showed that module-painter recovered more

robust clusters than the original authors, who relied solely on genome organization features.

Furthermore, the power of our approach also lies in its resolution, since we were able to

recover individual subpopulations from the population in each factory. Finally, we used

a metagenomic dataset from a gut microbiome experiment to showcase module-painter’s

ability to detect recombinations between phages over the course of multiple weeks. A

majority of population structure analysis methods rely on multiple sequence alignments

to build a recombination model, which is computationally intensive. Instead, through

the use of fast alignment tools (e.g. minimap2) and by making parsimony assumptions,

module-painter is able to identify recombinations in hundreds of contigs while remaining

computationally tractable. However, its speed comes at the cost of a lower sensitivity

compared to other tools. Thus, we recommend module-painter as an exploratory tool for

108

detecting recombinations in metagenomic datasets. The process of viral recombination

is still poorly understood, and we hope that module-painter can provide more real-life

examples of those processes in metagenomic data.

109

References

[1] A. G. Cobián Güemes, M. Youle, V. A. Cantú, B. Felts, J. Nulton, and F. Rohwer,

“Viruses as winners in the game of life,” Annual Review of Virology, vol. 3, pp. 197–214,

2016.

[2] F. J. Mojica, C. Dı́ez-Villaseñor, J. Garćıa-Mart́ınez, E. Soria, et al., “Intervening

sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements,”

Journal of molecular evolution, vol. 60, no. 2, pp. 174–182, 2005.

[3] A. F. Andersson and J. F. Banfield, “Virus population dynamics and acquired virus

resistance in natural microbial communities,” Science, vol. 320, no. 5879, pp. 1047–

1050, 2008.

[4] D. Botstein, “A theory of modular evolution for bacteriophages,” Annals of the New

York Academy of Sciences, vol. 354, no. 1, pp. 484–491, 1980.

[5] A. A. Hossain, J. McGinn, A. J. Meeske, J. W. Modell, and L. A. Marraffini, “Viral

recombination systems limit crispr-cas targeting through the generation of escape

mutations,” Cell Host & Microbe, 2021.

[6] D. J. Lawson, G. Hellenthal, S. Myers, and D. Falush, “Inference of population

structure using dense haplotype data,” PLoS genetics, vol. 8, no. 1, p. e1002453, 2012.

[7] K. Yahara, P. Lehours, and F. F. Vale, “Analysis of genetic recombination and the

pan-genome of a highly recombinogenic bacteriophage species,” Microbial genomics,

vol. 5, no. 8, 2019.

110

[8] M. L. Pedulla, M. E. Ford, J. M. Houtz, T. Karthikeyan, C. Wadsworth, J. A. Lewis,

D. Jacobs-Sera, J. Falbo, J. Gross, N. R. Pannunzio, et al., “Origins of highly mosaic

mycobacteriophage genomes,” Cell, vol. 113, no. 2, pp. 171–182, 2003.

[9] J. Van Etten and D. Bhattacharya, “Horizontal gene transfer in eukaryotes: not if, but

how much?,” Trends in Genetics, vol. 36, no. 12, pp. 915–925, 2020.

[10] H. Ochman, J. G. Lawrence, and E. A. Groisman, “Lateral gene transfer and the nature

of bacterial innovation,” nature, vol. 405, no. 6784, pp. 299–304, 2000.

[11] K. M. Swenson, P. Guertin, H. Deschênes, and A. Bergeron, “Reconstructing

the modular recombination history of staphylococcus aureus phages,” in BMC

bioinformatics, vol. 14, pp. 1–9, Springer, 2013.

[12] S. Bérard, A. Chateau, N. Pompidor, P. Guertin, A. Bergeron, and K. M.

Swenson, “Aligning the unalignable: bacteriophage whole genome alignments,” BMC

bioinformatics, vol. 17, no. 1, pp. 1–13, 2016.

[13] A. Bergeron, M.-J. Meurs, R. Valiquette-Labonté, and K. M. Swenson, “On the

comparison of bacteriophage populations,” in RECOMB International Workshop on

Comparative Genomics, pp. 3–20, Springer, 2022.

[14] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics,

vol. 34, no. 18, pp. 3094–3100, 2018.

[15] C. Lee and D. Lee, “On a circle-cover minimization problem,” Information Processing

Letters, vol. 18, no. 2, pp. 109–115, 1984.

[16] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden: guaranteeing

well-connected communities,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[17] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2,

no. 1, pp. 193–218, 1985.

111

[18] J. Murphy, F. Bottacini, J. Mahony, P. Kelleher, H. Neve, A. Zomer, A. Nauta, and

D. van Sinderen, “Comparative genomics and functional analysis of the 936 group of

lactococcal siphoviridae phages,” Scientific reports, vol. 6, no. 1, pp. 1–13, 2016.

[19] F. Raymond, A. A. Ouameur, M. Déraspe, N. Iqbal, H. Gingras, B. Dridi, P. Leprohon,

P.-L. Plante, R. Giroux, È. Bérubé, et al., “The initial state of the human gut

microbiome determines its reshaping by antibiotics,” The ISME journal, vol. 10, no. 3,

pp. 707–720, 2016.

[20] J. Ren, K. Song, C. Deng, N. A. Ahlgren, J. A. Fuhrman, Y. Li, X. Xie, R. Poplin, and

F. Sun, “Identifying viruses from metagenomic data using deep learning,” Quantitative

Biology, vol. 8, no. 1, pp. 64–77, 2020.

112

Chapter 5

Conclusion

5.1 Scientific contributions

Our research projects address challenges resulting from the uneven distribution of genetic

material by proposing three methods to account for it.

In the first project, we developed DeepImpute, a deep learning approach for the

imputation of missing values in single-cell RNA-seq experiments. We show that our

approach can successfully recover many of the missing values and improve the downstream

analyses.

In the second project, we developed CoCoNet, a deep learning based approach to address

the issue of fragmentation in viral metagenomic assemblies. To our knowledge, this is the

first method that was specifically developed for viruses. We show CoCoNet outperforms

existing methods that were developed for bacteria and can successfully cluster contigs in

homogeneous bins.

Our third project explores the genomic structure of viral populations in order to

split species-level bins into subpopulations. We show that our tool can identify shared

recombinations between phages in the same population and help unravel some of the

combinatorial complexity of phage population structure.

113

5.2 Future work

All three projects in this dissertation showed promising results, and we believe they could

be further improved or expanded to other related fields.

Imputation of microbiome data: In the first project, we developed a tool for

imputing missing values in single-cell RNA-seq data. Other types of experiments, such

as marker-gene sequencing of metagenomic data, handle similar feature and face the same

challenges. Thus, expanding DeepImpute to the specifics of those fields could be a natural

direction for this project.

Improvement of binning accuracy: In the second project, we showed that we

could learn a similarity function to bin contigs together. Although the accuracy of our

neural network was quite high (>90-95%), there was a significant amount of false positive

predictions in our experiments. This is due to the nature of the comparisons being

performed: there are naturally more contig pairs that do not belong to the same genome.

One solution would be to integrate the imbalance of classes during the training of the

network, by either adjusting the loss function to be biased towards negative examples, or

by constructing a training dataset with the same imbalance. Another solution would be

to use additional viral features to guide the network in order to do fewer comparisons.

An example would be to functionally annotate the contigs, group the contigs with similar

functions, and use CoCoNet to only compare contigs with complementary functions.

5.3 Other contributions

• Zhu, X., Wolfgruber, T. K., Tasato, A., Arisdakessian, C., Garmire, D. G., &

Garmire, L. X. (2017). Granatum: a graphical single-cell RNA-Seq analysis pipeline

for genomics scientists. Genome medicine, 9(1), 1-12.

• Du, Y., Huang, Q., Arisdakessian, C., & Garmire, L. X. (2020). Evaluation of STAR

and Kallisto on single cell RNA-Seq data alignment. G3: Genes, Genomes, Genetics,

10(5), 1775-1783.

114

• Arisdakessian, C., Cleveland, S.B. and Belcaid, M. (2020). MetaFlow— mics: Scalable

and Reproducible Nextflow Pipelines for the Analysis of Microbiome Marker Data. In

Practice and Experience in Advanced Research Computing (pp. 120-124).

• Garmire DG, Zhu X, Mantravadi A, Huang Q, Yunits B, Liu Y, Wolfgruber T,

Poirion O, Zhao T, Arisdakessian C, Stanojevic S. (2021) GranatumX: A community-

engaging, modularized, and flexible webtool for single-cell data analysis. Genomics,

Proteomics & Bioinformatics;19(3):452-60.

• Belcaid, M., Arisdakessian, C., & Kravchenko, Y. (2021). Efficient DNA sequence

partitioning using probabilistic subsets and hypergraphs. In Proceedings of the 36th

Annual ACM Symposium on Applied Computing (pp. 4-9).

• Jani, A.J., Bushell, J., Arisdakessian, C.G. et al. (2021). The amphibian

microbiome exhibits poor resilience following pathogen-induced disturbance. ISME

J 15, 1628–1640. https://doi.org/10.1038/s41396-020-00875-w

• Spotkaeff, C., Arisdakessian, C., Jungbluth, S., Rappe, M., Steward, G., and Nigro,

O. (2021). Across the Basement: A Comparison of Viruses in the Crustal Aquifer at

North Pond and Juan de Fuca Ridge, vol. 2021

• Belcaid, M., Arisdakessian, C., & Kravchenko, Y. (2022). Taming DNA clustering

in massive datasets with SLYMFAST. ACM SIGAPP Applied Computing Review,

22(1), 15-23.

• Nigro, O., Spotkaeff, C. R., Arisdakessian, C., Jungbluth, S., Rappe, M. S.,

& Steward, G. Phylogenomic comparison of viruses across basalt-hosted oceanic

basement systems. In 2022 Astrobiology Science Conference. AGU.

• Cleveland, S., Arisdakessian, C., Nelson, C., Belcaid, M., Frank, K., & Jacobs,

G. (2022). The C-MĀIKI Gateway: A Modern Science Platform for Analyzing

Microbiome Data. In Practice and Experience in Advanced Research Computing

(pp. 1-7).

115

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	The basic units of life
	DNA and RNA sequencing

	Problem statement
	Contribution
	Structure of the Dissertation

	DeepImpute: an accurate and efficient deep learning method for single-cell RNA-seq data imputation
	Introduction
	Results
	Overview of the DeepImpute algorithm
	DeepImpute is the most accurate among imputation methods on scRNA-seq data
	DeepImpute improves the gene distribution similarity with FISH experimental data
	DeepImpute improves downstream functional analysis
	DeepImpute is a fast and memory efficient package
	DeepImpute is a scalable machine learning method

	Discussion
	Methods
	The workflow of DeepImpute
	Evaluation metrics
	Downstream functional analysis
	RNA FISH validation

	Availability of data and materials
	scRNA-seq Datasets
	Third party software
	DeepImpute’s material

	CoCoNet: an efficient deep learning tool for viral metagenome binning
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Supplementary material
	Supplementary methods
	Supplementary figures
	Supplementary tables

	Module painting
	Introduction
	Methods
	Definitions
	Module-painter: main steps and parameters
	Clustering metrics
	Data collection

	Results
	Module-painter reconstructs subpopulations in a simulated dataset
	Module-painter identifies recombinations in complete genomes
	Module painter identifies recombinations in whole genome sequencing experiments

	Discussion and conclusion

	Conclusion
	Scientific contributions
	Future work
	Other contributions

