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Abstract 

Although there are various informal definitions for heirloom tomatoes (Solanum 

lycopersicum L.), there is no official botanical classification or certification scheme. Novel 

hybrid cultivars advertised as 'heirloom-like' exemplify the term's application as a phenotypic 

descriptor, departing from the term's established conceptions. Two field trials were conducted in 

Hawai'i to screen cultivars representing traditional heirlooms, heirloom hybrids, and commercial 

cultivars to explore this concept. We observed significant differences in total and marketable 

yields (kg/plant) within and between three tomato market classes. Phenotypic traits related to 

fruit morphology, color, and physicochemical quality were used to develop a Multilayer 

Perceptron Neural Network (MLPNN) classifier to investigate whether the heirloom archetype 

could be defined. The model could distinguish between traditional heirlooms, heirloom hybrids, 

and commercial cultivars with an accuracy rate of 85%. Global and local agnostic tests identified 

traits for physicochemical quality, color, distal end shape, blockiness, and the latitudinal section 

as most influential for distinguishing the heirloom class. This study demonstrated that a wide 

range of phenotypic traits could be selected to target the heirloom ideotype; however, 

quality standards should be considered to preserve the integrity and value of the heirloom 

insignia. 

 

Keywords: Heirloom Tomato, Solanum lycopersicum L., Fruit Quality, Phenomics, 

Classification, Machine Learning, Ideotypes 
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Chapter 1. Historical and Contemporary Perspectives on the Heirloom Tomato 

 

Introduction 

Tomatoes (Solanum lycopersicum L.) are ubiquitous in diets across cultural and 

geographic regions, with around 85% of the world’s nations contributing to producing ~1.8 MT 

(million tonnes) globally in 2020 (FAOSTAT, 2022). Despite their widespread utility, fresh 

market tomatoes have come under increasing scrutiny for their poor sensory attributes 

(Estabrook, 2018; Jabr, 2012; Oltman et al., 2014; Everts, 2012; Wang & Seymour, 2017). 

Modern tomato quality is a recurring topic in the public domain, where scathing reviews and 

comparisons to “cardboard” and “wet-paper-towels” have become familiar rhetoric (Everts, 

2012; F Jabr, 2012; Milius, 2012; Mirsky, 2013). The shortcoming of modern tomato cultivars 

has prompted a growing body of researchers to investigate the molecular and genetic 

mechanisms contributing to these criticisms and their implications for future improvement 

(Alseekh et al., 2021; Folta & Klee, 2016; Gao et al., 2019; Klee & Tieman, 2018; Tieman et al., 

2012, 2017; Zhao et al., 2019; Zhu et al., 2018). Public and academic narratives on modern 

tomatoes vary in tone and objective, but each sector has unanimously adopted heirlooms to 

illustrate the preferred tomato archetype (Jordan, 2007; Panthee et al., 2013; Panthee & Gardner, 

2014; Vargas et al., 2015). 

Heirloom tomatoes have attracted public attention since appearing in popular culture 

during the 1980s (Jordan, 2007). In the past four decades, the term heirloom has evolved from an 

icon of the local-food movement to a designation for tomatoes with distinctive features that 

command premium prices. While demand for traditional heirloom tomatoes remains high, their 

supply is generally limited to direct sales within regional food systems. Many of these varieties' 



 

 11 

production traits and shelf life do not meet modern commercial standards (Healy et al., 2017). 

Consumers in the twenty-first century have been characterized by their increased interest in food 

systems and preference for diverse, high-quality produce (Ekelund & Jönsson, 2011). To meet 

these demands, industry professionals are shifting away from prioritizing traits of interest to 

production and distribution stakeholders and toward a consumer-directed model for selecting 

desirable fruit phenotypes (Folta & Klee, 2016). Many prominent seed distributors are offering a 

new fresh market category, broadly described as ‘heirloom-like' (Table 1.1). Advertisements for 

these new hybrid cultivars pander to heirloom enthusiasts with taglines like "old-world goodness 

with a twist of modern world traits" (Vitalis Organic Seed, 2021) while also appealing to 

growers with high yields, disease resistance, and durable fruits. Using the term heirloom is not 

regulated by an authoritative body or recognized as an official botanical classification. The 

conventions and proprietary rules (UPOV, 1991) that govern the naming of new varieties are 

definitive, but the characterization of terminologies such as heirloom, heritage, landrace, folk, or 

farmer varieties remains subjective. Public confusion and debate have surfaced with the 

emergence of these new hybrid tomatoes that are vibrantly colored, unusually shaped, and 

advertised for their seemingly 'heirloom-like' features. 

Therefore, the objectives for this review are two-fold: i) present a historical narrative for 

the fresh market tomato in the United States to account for the heirloom’s origins, and ii) 

contextualize heirloom tomatoes in a modern breeding and production framework. The scope of 

this review focuses primarily on the United States market, but many concepts can be applied to 

traditional cultivars in other geographic regions. The overarching goal of this study is to identify 

areas where further research is needed and to generate additional perspectives for ongoing 

discussions on what constitutes an ‘heirloom.’ 
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Domestication and Diversification 

As with heirloom nomenclature, tomato taxonomy has been a source of contention for 

centuries. Advancements in molecular technology affirmed one side of this debate, validating the 

species grouping in Solanum and restoring Linnaeus's original classification of Solanum 

lycopersicum L. (Spooner et al., 1993; Knapp, 2002; Peralta & Spooner, 2007). Providing 

consistent and universally accepted terminology establishes a baseline for communicating in the 

sciences. Unfortunately, public confusion over the species' taxonomic status will likely persist, as 

the former description (Lycopersicon esculentum Mill.) remains in texts from the 

last two decades. Tomato and its wild relatives are native to the Andean region of South America 

(Peralta et al., 2008; van Andel et al., 2022). Blanca et al. (2012; 2015; 2022) described the 

currently accepted domestication model as a ‘two-step’ process originating with the small-fruited 

wild species S. pimpinellifolium L. Evidence suggests S. pimpinellifolium L. naturally evolved 

during a northern migration to form the semi-domesticated species S. lycopersicum var. 

cerasiforme (Dunal) D.M. Spooner, G.J. Anderson & R.K. Jansen (Peralta & Spooner, 2007; 

Blanca et al., 2015; 2022). Upon its arrival in Mesoamerica, the cherry-sized fruit of S. 

cerasiforme was formally domesticated in Mexico, giving rise to the cultivated species S. 

lycopersicum L. (Bai & Lindhout, 2007; Razifard et al., 2020; Blanca et al., 2022). The Spanish 

conquest of Mexico in 1521 marked the beginning of the tomato's rise to global prominence, 

following which it joined several crops transported to Europe at this time (Bergougnoux, 2014; 

Caramante et al., 2021). Although detailed historical accounts for the species’ domestication in 

Mexico are lacking, botanical records for the earliest tomatoes to arrive in Europe indicate it was 

already in an advanced domesticated state (Daunay et al., 2007; Peralta et al., 2008). In 

their recent paper, Andel et al. (2022) presented an overview of the phenotypes reported in prior 
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and newly identified records from 1544 to 1555. While these samples constitute the only genetic 

material spread throughout Europe, by the eighteenth century, farmer selections had created 

regional populations with a wide variety of fruit characteristics (Foolad, 2007; Rick & Fobes, 

1975; Tanksley & McCouch, 1997; Casañas et al., 2017). The different fruit morphologies linked 

with this era were described as ribbed, oblong, deeply grooved, round, and flattened, with hues 

ranging from red to orange, yellow, pink, and brown (van Andel et al., 2022). Today, these 

features reflect the dominant aesthetic for the heirloom market. However, it would require 

millennia for novel fruit traits to be universally valued over uniformity (Goldman, 2008; Smith, 

1994). 

Before they were ‘Heirlooms’ 

After arriving in Europe, accounts of the tomato’s utility varied from ornamental to 

medicinal and, for those brave enough, culinary (Peralta & Spooner, 2007; Hyman, 2019). 

Superstitions over the fruit’s toxicity delayed its culinary use in Europe and later in the United 

States, as rumors persisted within European colonies (Estabrook, 2018; Rick, 1978; Foolad, 

2007). As tomatoes spread across the future United States in the late eighteenth century, 

consumption began normalizing in pocketed regions. This gradual integration into society and 

culture can be seen by the fruit's first depiction in American artwork in 1795, where Raphaelle 

Peale’s Still-life with Vegetables and Fruit depicts a singular red fruit, whose shape can only be 

described as lobed to a degree of deformity (Smith, 1994; Hyman, 2019). If advertised today, 

this tomato would likely be assigned to the 'specialty' class and command a premium over 

‘standard’ slicing varieties that dominate the modern fresh market. This notion would likely 

shock seedsmen from the mid-nineteenth century, as they were eager to present the American 

public with its first large, round, and perfectly uniform tomato.   
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According to folklore, misconceptions about the tomato's toxicity were dispelled after a 

gentleman ate the fruit in front of spectators at a Salem, New Jersey courthouse. Although 

various adaptations of this legend remain in perpetuity, a 1908 bulletin released by West Virginia 

University's agricultural research station credited the 1848 canning operation at Lafayette 

College (Easton, Pennsylvania) for fostering the nation's new favorite crop (Munson, 1908). 

Initial market availability was limited to cherry, plum, and pear-shaped fruits that varied in hues 

of red and yellow (Male, 1999). Seeds for larger fruits circulated within communities, but they 

were not commercialized because their irregular shapes were considered unmarketable. It was 

still common practice in the 18th century to engage in informal breeding by saving seeds from 

productive crops and detecting novel phenotypes arising from random mutations or outcrossing. 

Although public interest in breeding was piqued following Darwin’s release of On the Origin of 

Species (1837), laws of inheritance and Mendelian genetics were foreign concepts, even to 

seedsmen. Even though plant breeding had yet to become a scientific discipline, there was an 

influx of supposedly new tomato varieties hitting the market. A prevalent concern during this 

timeframe was that many of the new cultivars in seed catalogs would 'run out,' a phrase used to 

convey issues of segregating populations released as distinct varieties. This phenomenon was 

reflected in the varietal descriptions in The Field and Garden Vegetables of America by Fearing 

Burr (1865). The author prefaces his description of twenty common varieties with the caveat 

“…some are merely nominal, many are variable or quite obscure, and a few appear to be distinct, 

and, in a degree, permanent.” The regularity with which growers purchased unreliable seeds 

engendered public mistrust of tomato's burgeoning seed industry, forcing some growers to 

declare, “My chief reliance is to raise seeds and plants of my own that I know to be 

good” (Horace, 1870). In the brief course of tomato's history in the United States, concurrent 
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narratives have emerged at the threshold of modernization. Despite being separated by more than 

a century, growers' attitudes in the eighteenth century are reminiscent of grassroots movements 

in the 1970s. In response to consumer complaints, industries frequently respond with novel 

innovations. Today, this is reflected by the unified quest to improve fruit quality by incorporating 

"heirloom-like" features. However, around the turn of the nineteenth century, the most 

significant reforms to the seed industry were attributed to the work of one Ohio seedsman. 

Becoming an Industry 

Alexander Livingston is widely regarded as America’s first tomato breeder (Boswell, 

1937; Estabrook, 2018; Hyman, 2019; Liedl et al., 2013; Munson, 1908; Peralta & Spooner, 

2007; Smith, 1994; Stevens & Rick, 1986; Watson, 1996). The impact his varieties had on the 

country's tomato industry earned him this distinction, but it was the ethos he imparted on the 

market that maintained his legacy. Like many of his contemporaries, the Ohio seedsman was 

eager to present America with what he considered the ‘ideal’ tomato: large, round, smooth, and 

uniform in all respects. Upon the 1870 release of his first variety, Paragon, Livingston declared 

it "...the first perfectly and uniformly smooth tomato ever introduced to the American public" 

(Livingston, 1893). The validity of his assertion is arguable, but his sentiments allude to 

achieving a distinct variety with fixed traits. What has inevitably become Livingston's lasting 

contribution was conceptualizing trait selection based on the needs of different markets. Framed 

within a period where the scale and geographic range of commerce were rapidly expanding, 

Livingston identified the demand for a tomato that could compete in an industrial market space. 

By prioritizing traits such as firmness, uniform ripening, and shelf life, Livingston was ahead of 

his time. However, rather than approaching his trade through scientific theory, Livingston 

operated under misguided breeding principles. Detailed in his book, Livingston and the Tomato, 
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the seedsman dismissed hybridization as “violat[ing] the laws of nature” and proposed novel 

traits should only be obtained through chance differentiation observed in select stock (Boswell, 

1937). According to his own admissions, Livingston could not explain this phenomenon beyond 

attributing it to some higher power. However, he quickly relayed to his customers that the 

common people could not replicate the caliber of his breeding. In responding to some of his most 

frequent inquiries: “Can farmers and market gardeners grow their own seed and save this 

expense?” he answered a resounding no. Livingston’s memoir reflects an emerging narrative that 

allocated cultivar development to an industry rather than the farmer. America’s first tomato 

breeder illustrates a dichotomy of the tomato's place in American culture. While his successes 

paved the way for the rise of the private seed sector in the twentieth century, his legacy is 

inherently linked to the role heirlooms play in the current market. Livingston envisioned 

breeding tomatoes to correspond with individual market sectors, each distinguished by the 

producer and consumer demands. This ethos is reflected in the evolution of the processing, fresh, 

and now, ‘specialty’ markets. Today, Livingston’s collection meets many of the prescribed 

criteria to be considered heirlooms. In an ironic twist of fate, the man whose life work was to 

create 'perfectly uniform' fruit now has his seed categorized by a term synonymous with the 

features he sought to eliminate. 
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Expansion of the Tomato Industry During the Twentieth Century  

 

"During the war... home gardeners could not do much experimenting. We had to stick with the 

tried and true. But now that the war is over...our dreams 'turn toward new varieties."  

-1946 USDA radio announcement foreshadowing changes in the tomato industry 

 

Before the 1940s, informal crop improvement and seed-saving were still prevalent among 

farmers, gardeners, and hobby breeders. The cultivars developed in this manner are widely 

referred to as landraces (a term not mutually exclusive with heirloom) and are distinguished by 

their adaptations to local growing conditions and expression of regional quality preferences 

(Zeven, A.C., 1998; Casañas et al., 2017). The USDA's 1937 Yearbook acknowledged these 

early breeding efforts but regarded landraces as inferior to modern varieties that were more 

durable and productive across different environments. Historically, the boundary between 

privately and publicly bred cultivars was not as distinct as it is today, with many commercial 

cultivars originating from public institutions, farmers, and amateur breeders. When the first F1-

hybrid Single-Cross was introduced in 1946, this balance of power fundamentally changed. The 

innovation and technology that followed World War II marked a discernible shift in food 

production and distribution. With the onset of synthetic fertilizers and improved mechanization, 

there was a preference for cultivars that could withstand post-harvest handling during long-

distance distribution (Sangam & Ortiz, 2019). According to Hoenig (2018), these factors led to a 

second industrialization phase in the tomato industry, during which the agricultural sector 

became increasingly centralized and homogenized. Although backyard gardeners and small-scale 

farms continued to grow traditional varieties, grocery supply chains sought favor in the lower 

prices and uniformity of F1-hybrids. 
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The Heirloom   

 

“The American public is not satisfied with old things, however good they may be.”   

- A.W. Livingston 

 

Even with his foresight into the requirements for the twentieth-century market, Alexander 

Livingston could not have predicted that consumers would inevitably seek tomatoes from the 

past. There has emerged a discourse around heirloom tomatoes that is as diverse as the varieties 

that bear the insignia. Despite its frequent inclusion in academic and public texts, the term 

heirloom has maintained an ambiguous status (Table 1.2). Botanical classifications afford clarity 

and consistency in scientific communications, but this precedent is disrupted when colloquial 

terms like heirloom become universally relevant. Further confusion arises from several terms 

(Table 1.1) that are used interchangeably with heirloom, each of which has become a topic of 

discussion in its own right (Berg, 2009; Casañas et al., 2017; Saxena & Singh, 2006; Villa et al., 

2005; A. C. Zeven, 1998). Although heirloom discourse is conspicuously devoid of concrete 

definitions, engaging with the nuance of its interpretation can be just as insightful.  

In the literature, perspectives on the heirloom tomato are governed by two initiatives: 

preserving biodiversity and improving quality. The most comprehensive historical accounts of 

the heirloom tomato in popular culture have come from the social sciences (Jordan, 2007, 2015; 

Joseph et al., 2017). In many instances, these analyses follow a recent trend in which commercial 

tomatoes are used to personify industrial agriculture and investigate the boundaries of 

commercialization for consumers (Estabrook, 2018; J. Hoenig, 2018; Hyman, 2019). Although 

separated by fifty years, many of these contemporary works mirror similar arguments conveyed 

by the original grassroots movements that catalyzed old tomato varieties back into the fresh 

market. Kingsbury (2009) and Ekelund et al. (2011) attribute these movements to a transition 
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into 'late modernity,' a cultural epoch defined by romanticizing relics of the past as a response to 

rapid technological change. By the mid-20th century, advances in agrochemicals, mechanization, 

and modern plant breeding had dramatically altered the scale and efficiency of food production 

(J. M. Hoenig, 2018). As agricultural systems evolved, plant breeding consolidated in the private 

sector, where research and development focused primarily on F1-hybrids for commercial 

operations (Dwivedi et al., 2019). While these innovations contributed to historic gains in crop 

productivity, rural farmers and home gardeners grew concerned as F1-hybrids quickly displaced 

open-pollinated cultivars in seed catalogs (Jordan, 2015; Pollan, 1994). Kent Whealy, founder of 

the non-profit Seed Savers Exchange, became a vocal critic of the commercial seed industry in 

recurring newspaper articles and trade journals (Curry, 2019; Jabs, 1984; Lacy, 1996; Mother 

Earth News, 1982). Whealy was among many home gardeners and small-holders who argued 

that the rise of F1-hybrids in the seed trade threatened the loss of valuable germplasm (Navazio, 

2012; Pardey et al., 2013; Wattnem, 2016; Wincott, 2018). Although Kent Whealy is often 

credited with popularizing heirlooms in the 1980s, Jordan (2015) contends that the heirloom 

tomato has developed two distinct identities over time. The plight of organizations like the Seed 

Savers Exchange exemplifies the first era of the heirloom tomato, personified by conservation 

and biodiversity campaigns. As the local food movement gained momentum, the heirloom 

tomato became a poster child for regional cuisine in upscale restaurants and culinary reviews 

(Ibsen & Nielson, 1999; Jabs, 1984; Pesci & Brinkley, 2021; Pollan, 1994; Schneider, 1996). 

Due to the rising media attention and association with artisanal cuisine, the term 'heirloom' 

shifted from its origins in conservation and local food to a secondary identity founded in 

consumer marketing and the social elite (Jordan, 2015; Joseph et al., 2017).  
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Heirlooms in a Modern World: Lost in Translation or Interpretation? 

As consumers look for alternatives to the standard fresh market tomato, the price and 

demand for heirloom cultivars have steadily climbed over the past 30 years (Ozores-Hampton et 

al., 2012; Stark, 2008). Recent studies attribute this to a legacy of breeding decisions that favored 

production-end stakeholders at the expense of the quality features pertinent to consumers 

(Bauchet et al., 2017; Causse et al., 2010; Healy et al., 2015; Wang & Seymour, 2017; Zhao et 

al., 2019). Where consumers value sensory attributes and novelty, historical breeding objectives 

for fresh market tomatoes have focused on yield, disease resistance, uniformity, and extended 

shelf life (Baldwin et al., 2000; Folta & Klee, 2016; Tieman et al., 2017). Folta & Klee (2016) 

examine the nuances underlying these issues, arguing that while breeding in the last 50 years 

contributes to existing consumer complaints, the industrialized nature of the modern food system 

contributes significantly to the poor sensory attributes people report. Recent molecular and 

genetic studies have shed light on complex polygenic traits like flavor (Baldwin et al., 2000; 

Bauchet et al., 2017; Pereira et al., 2021; Tieman et al., 2017; Zhao et al., 2019), 

prompting broader discussions on the impact of historical breeding practices on genetic diversity. 

While improving fruit flavor remains a goal for many breeding programs, researchers are also 

pursuing morphology and color to satisfy consumers' demand for ‘heirloom-like’ quality (Alonso 

et al., 2011; Panthee & Gardner, 2014; Rodríguez-Burruezo et al., 2005).  

Extensive work has been carried out to characterize the phenotypic diversity found in 

vintage (i.e., heirloom) germplasm (Bhattarai et al., 2016; J. Blanca et al., 2021; Cortés-Olmos et 

al., 2015; Ercolano et al., 2008; Panthee, Labate, & Robertson, 2013). Studies of this nature 

generally describe germplasm at the individual level, but in some cases, European landraces have 

been described at the population level (Caramante et al., 2021; Fortes et al., 2016). Although the 
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phenotypic diversity in traditional germplasm has been extensively documented, accounts of 

their genetic diversity have varied (Labate, 2021; Mohan et al., 2016; Pereira et al., 2021; Vargas 

et al., 2015). Several authors have addressed the necessity for scholarly consensus about the 

classification of germplasm that falls under terminology such as heirloom, landrace, farmer, 

traditional, and folk varieties (Berg, 2009; Casañas et al., 2017; Saxena & Singh, 2006; Villa et 

al., 2005; A. C. C. Zeven, 1998). Despite these attempts, the characterization of these terms tends 

to vary by region and context (Table 1.1). Two prevailing schools of thought dominate the 

literature: the European model, which emphasizes preservation and treats landraces as cultural 

objects (Berg, 2009; Casañas et al., 2017; Rocchi et al., 2016; Saxena & Singh, 2006; A. C. 

Zeven, 2002), and the United States model, which focuses on identifying suitable germplasm to 

satisfy consumer demand (Causse et al., 2003; Panthee et al., 2012; Panthee et al., 2013; Tieman 

et al., 2017; Tombesi et al., 2020; Xu et al., 2013). These models resonate with the heirloom 

tomato’s historical narratives, where Europe (notably Spain and Italy) embodies grassroots 

conservation movements, and the United States reflects the era of artisanal markets and the 

bourgeoisie. Despite these differing perspectives, seed companies in Europe and the United 

States are developing ‘Neo-heirloom’ tomatoes in response to decades of quality concerns. These 

cultivars are F1-hybrids that generally exhibit the fruit phenotypes that have become 

characteristic of traditional heirlooms. Even though this novel market type routinely promotes 

its ‘heirloom-like’ quality, there is not enough research to support these claims. Although ‘Neo-

heirlooms’ constitute a step toward incorporating consumer interests into breeding programs, 

more investigation into the production and phenotypic quality of these genotypes is necessary if 

the ‘Neo-heirloom’ is to succeed in penetrating the market (Table 1.2). 
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Reconciling the Consumer and Producer Voice in Breeding Priorities 

Heirloom tomatoes have been adopted as the poster child for opposing interests, first as 

the icon for the slow-food movement, now as the industry's caricature of consumer preference. 

Although phenotypically diverse, because heirloom varieties are homozygous, inbred lines, they 

possess limited genetic variability. Breeders and producers will need to balance their objectives 

for incorporating the phenotypes that consumers demand and broadening the cultivated tomato 

genome. The needs of the producer and consumer are not mutually exclusive. To meet the 

challenges of a changing climate, stakeholder interest at both ends of the market need to 

cohabitate the breeding process (Campanelli et al., 2015; Ceccarelli et al., 2009; G. K. Healy et 

al., 2017; Shelton & Tracy, 2016). While significant progress has been made, many outstanding 

questions require further investigation: 

1. Does the demand for heirlooms correspond with outward fruit characteristics and 

purportedly superior flavor, or is it attributable to their link with movements that 

reject the agro-industrial food system? 

2. If ‘Neo-heirlooms’ are mass-produced, do they merit the same market price as 

traditional varieties? 

3. If a tomato could incorporate the features desired by both producer and consumer, 

would the phenotype satisfy the heirloom archetype?  

In the last 50 years, the concept of ‘heirloom’ has evolved continuously under the 

influence of geographical location, social ideologies, and consumer perception. The subjective 

nature of prior classifications necessitates that this class is objectively defined to facilitate market 

research and provide additional perspectives on the history and future trajectory of heirloom 

tomatoes. 
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Chapter 1. Tables 

Table 1.1. Examples of informal definitions and descriptions of heirloom, landrace, and related 

terms as they appear in the literature. 

 

Source Terminology/Description 

LeHouillier & Male (1995) 

Male (1999) 

Heirloom 

Family: Selected and stabilized by farmers or home gardeners and maintained 

within a family or region. 

Commercial: Varieties introduced to the public by seed companies before 

1940. 

Created: Varieties deliberately created by crossing two known heirlooms, or 

an heirloom and a hybrid, and then stabilized. 

Mystery: Result from natural, unintentional, cross-pollination, or 

spontaneous mutation, and then stabilized by a grower. This category is 

distinguished by including varieties generated in modern times. 

Watson (1996) Heirloom 

1) Must be open-pollinated and true-to-type. Not inclusive of recent 

commercial F1-hybrid that are stabilized. 

2) Developed more than 50 years ago and maintained by either family, ethnic, 

religious, or tribal groups. Recognizes that more stringent definitions exclude 

seed from any commercial companies. 

3) Must have a history of origin, either verifiable or based on oral tradition. 

Blanca et al. (2022) 

 

Traditional  

Varieties developed by traditional farmers through intuitive breeding 

and cultivated prior to systematic breeding programs.  
*Cites vintage, landraces, and heirlooms to be synonymous with 

traditional. 

Williams & St. Clair (1993) 

Sims et al. (2011) 

Vintage 

Cultivars released during or before the 1960s and/or were developed 

before the application of Mendelian principles. 

Zeven (1998) Autochthonous Landrace  

A variety with a high capacity to tolerate biotic and abiotic stress, 

resulting in high yield stability and an intermediate yield level under a 

low input agricultural system. 

Saxena & Singh (2006) Farmer/Folk  

Varieties developed by farmers/communities that are homogeneous 

and stable for specific traits. 

Casañas et al. (2017) Landrace: a proposed concept for the future 

Cultivated varieties that have evolved, and may continue to evolve, 

within a defined ecogeographical area under the influence of the local 

community. Permits adapting landraces to new production systems, 

through unconscious or conscious selection by farmers and breeders, 

and/or incorporating modern breeding technology. 
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Table 1.2. A list of seed companies and distributors that currently offer ‘heirloom-like’ 

tomato varieties. Where provided, the seed collections' names and the distributors' marketing 

descriptions are included. 

 
Seed Company 

- Collection name Seed Distributor Marketing Description Website 

Gautier Semences 
Johnny’s Selected 

Seeds 
French Heritage Collection https://www.johnnyseeds.com 

Vitalis Organic Seeds  

- Mixologist Collection 

Osborne Quality 

Seeds 
Hybrid Heirloom https://www.osborneseed.com 

Ball-PanAmerican Seed Co. 

- Heirloom Marriage™ 

 

Burpee Heirloom Marriage™ https://www.panamseed.com 

TomaTech-Nirit Seeds Ltd. 

- Specialty – The Musketeers n.a. 
Specialty  

‘The Muskateers’ 
https://www.tomatech.com 

Yüksel Tohum 

- Village-types Paramount Seeds Heirloom-type https://paramountseeds.com 

Harris Morgan-HM Clause 

- Exotics 
Seedway Specialty https://www.seedway.com 

Santa Sweets 

- UglyRipe®  
n.a. 

UglyRipe®  

‘Heirloom Tomato’ 
http://www.santasweets.com 
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Chapter 2. Developing an Heirloom Market Type Classifier Using High-throughput 

Phenomics and Machine Learning 

 

Introduction 

The tomato industry has historically operated within two distinct market domains: fresh 

and processing (USDA, 1983, 1991). This distinction has facilitated targeted research tailored to 

the specific needs of each supply chain; however, this dynamic has been disrupted over the past 

thirty years as changing consumer preferences have caused a divergence in the fresh market (J. 

Blanca et al., 2015). Although improving flavor and fruit quality has recently received increased 

attention (Gao et al., 2019; Saliba-Colombani et al., 2001; Tieman et al., 2017; Zhao et al., 

2019), public complaint over the matter has been continuously voiced since the 1970s 

(Hightower, 1972; Klee & Tieman, 2018). Since the early 1990s, consumers have come 

to associate the term 'heirloom' with colorful, atypically shaped, and flavorful tomatoes (Dwivedi 

et al., 2019). Due to the stark contrast between these characteristics and the typical commercial 

prototype, heirloom tomatoes have evolved into a ‘specialty’ subclass within the fresh market 

(Grassbaugh et al., 1999; Johnston, 2011; Joseph et al., 2017).  

While some heirloom enthusiasts attribute their preference to novel organoleptic 

properties, others claim their preference stems from nostalgia for preindustrial agriculture. 

(Jordan, 2007). In the years following World War II, technological innovations that increased the 

scale of production and distribution profoundly altered the agricultural industry. With the advent 

of agronomic chemicals and improved mechanization, commercial breeders focused on 

developing cultivars that could endure post-harvest handling throughout the supply chain (Klee 

& Tieman, 2018; Worthington et al., 1978). Although backyard gardeners and small-scale farms 
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continued to grow more delicate varieties, grocery supply chains sought favor in the lower prices 

and uniformity of hybrid slicers. The tomato market remained homogenous until it was disrupted 

again in the early 1980s, instigated by celebrity chefs and food critics showcasing the heirloom 

tomato as their new culinary muse (Hugh et al. 2017). Coinciding with the birth of the local food 

movement, the heirloom tomato became the poster child for regional cuisine as consumers 

sought more diversity in their produce options. Rather than being a fleeting trend, demand for 

heirloom tomatoes has increased over time, as evidenced by its proportional impact on market 

prices. Today, varieties such as Cherokee Purple and German Johnson are household names and 

can be purchased at artisanal markets for roughly twice the price of standard fresh market 

varieties (USDA: Specialty Crops, 2020). Recent trends in trait selection among tomato breeders 

demonstrate that industry professionals are cognizant of consumers' shifting preference for 

tomatoes with novel shape and color attributes. In lieu of maintaining the classic red beefsteak 

archetype, new hybrid cultivars are promoted as having 'heirloom-like’ fruit quality with modern 

production traits. Although heirloom tomatoes have acquired numerous colloquial definitions, 

such as being at least 50 years old, open-pollinated, or specific to a region with a traceable 

ancestry, there is no official botanical classification or accreditation system in place (Harland and 

Craxton, 2009). In the absence of established standards and regulations, the 'heirloom-like' 

insignia has evolved into a phenotypic descriptor rather than a designation of heritage or 

pedigree.  

While the sociocultural debate on what genuinely qualifies as an heirloom tomato may 

continue for years, it is possible to quantitatively examine the properties that distinguish this 

unique class. With the advent of high-throughput phenotyping tools, such as the Tomato 

Analyzer (TA v. 4.0) software (Gonzalo et al., 2009), the precision and efficiency of collecting 
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objective measurements for fruit morphology and color have significantly improved (Granier & 

Vile, 2014). Numerous studies have used TA measurements and fruit physicochemical properties 

to characterize quality features in traditional germplasm (Figàs et al., 2015; Nankar et al., 2020; 

Panthee, Labate, McGrath, et al., 2013). However, no existing research has used these 

parameters to broadly classify the ‘heirloom’ archetype. Machine learning (ML) and statistical 

data mining have become popular tools in the plant sciences for processing and identifying 

valuable insights from phenomics data (Gill et al., 2022; Niazian & Niedbaa, 2020; Rahaman et 

al., 2019). For example, Yang et al. (2019) developed a convolutional neural network (CNN) 

classifier to mitigate adulteration in the trade of Cinnamomum osmophloeum (var. Kanehira). 

Similarly, the economic value attributed to heirloom tomatoes requires objective quality 

assurance in its labeling. Therefore, the primary objective of this research is to develop a 

classification model based on morphological, color, and physicochemical fruit features to 

characterize the attributes that exemplify the heirloom market class. In addition, this study aims 

to determine whether 'heirloom-like' cultivars can meet producers' and consumers' expectations 

regarding yield and quality. We hope to shed light on the evolving meaning of heirloom and its 

use as a phenotypic descriptor and assist the breeding community in selecting phenotypes that 

consumers desire. 
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Materials & Methods 

Plant Material 

Solanaceae Coordinated Agriculture Project  

To investigate the differences in fruit morphology, color, and physicochemical quality 

from a diverse sample of cultivars, phenotypic data from the Solanaceae Coordinated Agriculture 

Project's (SolCAP) vintage (68 accessions) and fresh market (86 accessions) collections were 

used for this analysis. As part of the cooperative's objectives, standardized phenotypic data were 

collected to facilitate the identification of fruit quality traits (SolCAP, 2009). SolCAP field trials 

were structured by pre-defined market classes and conducted in 2009 and 2010 across multiple 

institutions. Following a preliminary examination to ensure features of interest were recorded 

during each replicate year, the Ohio State University (OSU) vintage and University of California 

Davis (UC Davis) fresh market datasets were selected for analysis. Field passports detailing the 

location, management practices, and experimental designs for the OSU and UC Davis trials are 

listed in Table 2.1. For each location and year, trials were conducted in a randomized complete 

block design with three experimental units per plot and replicated twice. Management practices 

followed the institution's local extension service recommended regional protocols.  

Hawai’i Field Trials 

To evaluate the fruit morphology, quality, and yield of traditional heirlooms (TH), hybrid 

heirlooms (HH), and commercial hybrids (CH), field trials were conducted at the University of 

Hawai’i research stations on Oahu in 2020 and 2021. The field passport data for each location is 

provided in Table 2.2. Field crops in the tropics encounter significant challenges from pests and 

diseases. To reduce the severity of pests and diseases, field tests were conducted at each location 

in high tunnel screen houses. Because the production area was limited to the screen house 
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dimensions, experiments were conducted in an augmented design to maximize genotypes from 

each market class (Federer & Raghavarao, 1975). Furthermore, the rationale presented by Healy 

et al. (2015) was adopted, and the number of technical replicates was reduced to include more 

accessions. An overview of the germplasm screened in each environment and the corresponding 

seed sources are presented in Table 2.3. Although neither experimental site was certified, the 

cultural management practices employed during each study followed USDA National Organic 

Program (NOP) standards.  

The first trial was held at the Waimānalo Research Station (21° 20' 7.872'' N, 157° 42' 

53.2188'' W) in a 139 m2 modified Conley Coldframe (model 1100; Montclair, CA) from August 

2020 to January 2021. Seedlings were grown in a greenhouse at the University of Hawaiʻi 

Mānoa (Honolulu, HI) under organic management practices and treated with a 2% fish emulsion 

solution (Aqua power [5-1-1]; JH Biotech, Ventura, CA) one week prior to transplanting. The 

research plot was tilled in July 2020, and five slightly mounded beds (0.9 x 16.8 m2) were shaped 

and spaced at 1.5 m centers. The experimental design consisted of five blocks with 55 plots (0.9 

x 1.5 m2), in which four plants were considered an experimental unit. Seven check varieties were 

completely randomized within each block, and 17 treatment accessions were distributed among 

all remaining plots. Within row spacing, plants were offset at 60 centimeters apart. A single 

application of Sustane 8-2-4 (Cannon Falls, MN) was incorporated into each plot at planting to 

achieve a nitrogen rate of 224 kg/ha. The beds were mulched with wood chips obtained locally 

and installed with two drip lines. Plants were supported using roller hook lines attached to two 

overhead high tensile wires running along the bed's perimeter. Indeterminate varieties were 

grown to a single stem and trained using the ‘lower and lean’ method (See Johnny’s Selected 

Seeds, 2014), while determinant types were lightly pruned and supported at the primary stem. 
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Pest management was performed as needed and followed local extension recommendations for 

organic systems. 

A second field trial was conducted at Magoon Research Station (21° 18' 26.748'' N, 157° 

48' 35.208'' W) from June to November 2021. A custom-built screenhouse (92 m2) was 

constructed on-site and outfitted with overhead cables to facilitate the ‘lower and lean’ trellising 

method. Transplants were produced in the same location and managed according to the previous 

description. The research plot was tilled, and ten slightly mounded beds (0.6 x 5.4 m2) were 

shaped at 1.4 m centers. Within row spacing, plants were offset and 51 cm apart. The 

experimental design comprised five blocks with 36 plots (0.6 x 1.4 m2) and five plants per 

experimental unit. Six check varieties were completely randomized within each block, and eight 

treatment accessions were distributed among all remaining plots. A total fertilization rate of 224 

kg/N/ha was provided through a split application of 112 kg/N/ha Sustane 8-2-4 (Cannon Falls, 

MN) at planting, while the remaining equivalents were supplied through soluble fertilizer (Aqua 

power [5-1-1]; JH Biotech, Ventura, CA) treatments during flower set and early harvest. All 

other cultural management and site preparations for the 2020 study were repeated in 2021, with 

the exception that all genotypes assessed were indeterminate in growth. 

Data Collection 

Total and Marketable Yield 

In each environment, data for yield and marketability were gathered over ten weeks, as 

established by the initial harvest of each plot. The fruit was harvested as needed to guarantee that 

specimens for subsequent shape and quality assessments were at their peak maturity. Qualitative 

assessments to determine marketability were based upon the grading system outlined by Healy et 

al. (2015). Tomatoes with splitting or insect and disease damage were deemed unmarketable; 
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however, those with minor cat-facing and dry cracking were considered marketable. Harvest data 

was recorded per plot (kg/plant/plot), and marketable weights were estimated at each weighing 

by multiplying the average fruit weight by the number of unmarketable fruits. 

Analysis of Tomato Fruit Morphology and Color 

 Twenty fruits of each accession were harvested at the ‘red-ripe’ stage, as defined by the 

USDA grades and standards (USDA, 1991), and analyzed using the Tomato Analyzer (TA v. 

4.0) for 42 fruit shape and color metrics. A complete description of TA measures is provided in 

Table 2.5. A total of ten fruits were prepared for longitudinal and transverse imaging according 

to the protocol outlined in the TA manual (Gonzalo et al., 2009). Fruit images were captured 

using an Epson Perfection V39 Color Photo & Document Scanner (Epson America, Inc.; Los 

Alamitos, CA), and all required calibration procedures were implemented. The average 

measurements for each fruit per scan were calculated for subsequent analysis. 

Evaluation of Fruit Physicochemical Properties 

Fruits prepared for TA analysis were examined for the following fruit quality attributes: 

total titratable acidity (TTA), total soluble solids (reported as degrees Brix %), and pH. Cross-

sections of approximately nine fruits were homogenized in a blender, and three 50 mL aliquots 

were stored at -20 °C. Prior to analysis, samples were thawed for four hours in the refrigerator (4 

°C) and then brought to room temperature (20–22 °C) (Casals et al., 2019). Each aliquot was re-

homogenized and strained with a cheesecloth to remove excess solids. Brix values were 

estimated using a Sper Scientific digital refractometer (model 30051) with automatic temperature 

compensation (ATC) (Scottsdale, Arizona) and recorded as the average of three technical 

replicates. Using the procedures described in Panthee et al. (2013), TTA, estimated as the percent 

citric acid by volume (% CA), and pH was measured using a Hanna Instruments model 84432 
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Automatic miniTitrator and pH Meter (Woonsocket, Rhode Island). A detailed summary of the 

assay protocol is provided in Appendix A.  

Data Analysis 

All statistical analyses were conducted using the R Statistical Software (version 4.2.0; R 

Core Team, 2022).  

Agronomic Performance of Hawai’i Field Trials 

Each environment's total and marketable yield data were calculated as the average 

kilograms per-plant per-plot (Supplementary Tables 1-6). Due to significant variations across 

sites, each field experiment was analyzed separately. Total and marketable yields were evaluated 

by fitting a linear mixed model with genotype as the fixed effects and block as the random 

effects. The R package ‘augmentedRCBD’ (Aravind et al., 2015) was used to conduct an 

analysis of variance (ANOVA) and least square mean comparisons using Fisher's Least 

Significant Difference (LSD) when P < 0.05. 

Public Data Mining 

Plot means for the 2009 and 2010 SolCAP vintage and fresh market datasets were 

calculated, and accessions without all three measurement categories (shape, color, and 

physicochemical quality) were omitted. Before merging the vintage and fresh market datasets, 

missing data were treated with K-Nearest Neighbor imputation (KNN), where k = 3 (R package 

‘DMwR’; Torgo, 2010). Detailed information regarding the final SolCAP vintage and fresh 

market accessions used in the classification modeling can be found in Appendix A. 
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Machine Learning Classifier 

Inspired by the methodologies described by Rahaman et al. (2019) and Zou et al. (2019), 

the following section discusses the techniques used to build a classification model for the 

heirloom phenotype employing various data mining and ML techniques. 

Principal Component Analysis  

A principal component analysis (PCA) based on Euclidean distances was used to 

ascertain the contribution of features to the cumulative variance in 1) the SolCAP vintage and 

fresh market dataset and 2) the aggregated SolCAP and Hawai’i trial data (R package 

‘FactoMineR’; Lê et al., 2008). Prior to analysis, all numeric predictors were standardized (z-

scores), and the first two principal components were utilized to produce an ordination biplot to 

assess variable contribution and market class distributions.  

Classification Model Comparison 

Three supervised ML classification models were evaluated to identify the morphological, 

color, and physicochemical characteristics that distinguish the heirloom phenotype. Using the 

conceptual framework proposed in Robnik-Sikonja (2016), a radial basis function network was 

used to generate 60 synthetic observations from the Hawai’i data (R package ‘semiArtificial’; 

Robnik-Sikonja, 2021). This step was administered to account for potential out-of-distribution 

error (OOD) when using the model to classify the Hawai’i dataset (Shen et al., 2021). An 80/20 

training and validation split, stratifying for market class, was performed on the SolCAP data 

(including the synthetic observations). See Table 2.4. for details on the dimensions and class 

representation in the training and validation samples. To perform binary classification, the factor 

levels for CH and HH were modified to NH (Not Heirloom). Based on Pearson's correlation 

coefficient (r > 0.75), highly correlated variables were omitted during feature selection. The final 
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variables included in the datasets are listed in Table 2.5. Using the methodology described by 

Chawla et al. (2002), class imbalances (NH= 295; TH= 176) in the training data were corrected 

with the synthetic minority oversampling technique (SMOTE) (R package ‘Themis’; Hvitfeldt, 

2022). All datasets were further preprocessed, including applying the Yeo-Johnson power 

transformation for numerical predictors and standardizing using z-scores. To identify the optimal 

ML classifier for the data and classification problem, three models were selected for comparison: 

1) Multilayer Perceptron Neural Network (MLPNN), 2) Polynomial Support Vector Machine 

(SVMP), and 3) Decision Tree (DT) (R package ‘Tidymodels’; Kuhn et al., 2020). 

Hyperparameters were selected for each model using a grid-search with repeated k-fold (k =5; r 

= 2) cross-validation (CV). Models were finalized with the selected parameters fit through 

resampling (CV k = 10; r = 1) to generate performance metrics for ROC-AUC (receiver 

characteristic operator of the area under the curve), accuracy, specificity, and sensitivity. 

Information on hyperparameters and model specifications can be found in Table 2.6.  

After assessing the preliminary models, the MLPNN was selected for compilation and 

testing. An additional round of hyperparameter tuning was performed using RStudio’s interface 

to ‘Keras’ (Allaire & Chollet, 2022) and ‘Tensorflow’ (Abadi et al., 2016). The final network 

architecture consisted of an input layer with 32 features, and two hidden layers with 32 and 16 

neurons, respectively. To prevent overfitting, elastic net regularization was applied to each 

hidden layer (L1 = 0.0001, L2 = 0.001). The Rectified Linear Unit (ReLU) activation function 

was employed in the hidden layers, and the sigmoid activation function was applied in the single 

node output layer. Model training was conducted for 40 epochs, with a batch size of 20, and used 

the gradient-based Adam optimizer (Kingma and Lei Ba, 2014) with a binary-cross entropy loss 

function. An out-of-sample error rate was determined using the validation dataset, and accuracy 
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and loss values from the last training epoch were recorded. A summary of the neural network 

configuration and training parameters can be found in Table 2.7. Binary class predictions (1= 

Traditional Heirloom, 0= Not Heirloom) and probability estimates were utilized to generate 

confusion matrices and relevant accuracy statistics for the validation and Hawai’i datasets (R 

package ‘Caret’; Kuhn et al., 2008). Crosstabulations of within-variety predictions for lines 

screened during the Hawai’i trial were performed to determine the outcomes for the original 

market class assignments.  

A permutation-based test (permutation = 50) was conducted to evaluate the global 

significance of the individual explanatory variables and their related measurement categories. 

For each permutation, the area under the ROC curve (AUC) was calculated to estimate the mean 

1-AUC impact of each variable on the model’s predictive performance. To evaluate feature 

importance at the local level, SHAP values (Shapely Additive Explanations; Lundberg and Lee, 

2017) for a sample of observations from each market class were examined. All post-hoc agnostic 

tests were performed using R packages in the ‘Dr.Why’ collection (Biecek & Burzykowski, 

2021). Summary statistics by prediction group (NH or TH) were calculated for the 32 fruit 

measurements (R package ‘CompareGroups’; Subirana et al., 2014). The Shapiro-Wilks test was 

used to assess each variable's normality. For normally distributed variables, the mean and 

standard deviation (SD) of the prediction groups were calculated, and significant differences 

between groups were estimated using a one-way analysis of variance (ANOVA) (P < 0.05).  For 

non-parametric variables, values are expressed as the median and first and third quartiles, and 

significant differences between groups were estimated using the Kruskal-Wallis Test (P < 0.05). 
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Results 

Hawai’i Field Trials 

During the 2020 and 2021 field trials in Hawai’i, 29 cultivars (11 HH, 11 CH, and 6 TH) 

were tested for total and marketable yield (kg/plant). In the trial conducted at the Waimānalo 

Research Station in 2020, significant differences were identified for total and marketable yield 

within and among all sources of variance (Table 2.8). Total yield ranged from 0.32 ± 0.27 to 

5.21 ± .64 kg/plant, and marketable yield 0.31 ± 0.25 to 4.95 ± .59 kg/plant. Skyway, a 

commercial hybrid, had the highest values for both yield traits, while Stealth, an heirloom 

hybrid, had the lowest (Table 2.9). For the fruit quality traits TTA and Brix (Figure 2.1), 

traditional heirlooms' mean TTA (0.56 % CA) was significantly higher than commercial hybrids 

(P = 5.12e-10) and heirloom hybrids (P = 6.94e-8). There was less variation between class means 

for Brix, with values for commercial hybrids (3.93%) roughly equivalent to the mean for 

traditional heirlooms (3.94%). However, whereas traditional heirlooms were more negatively 

skewed, the distribution for commercial hybrids was positively skewed. Among the market 

types, commercial hybrids were the only group significantly different (P = 0.03) from heirloom 

hybrids.  

In the second trial, conducted at the Magoon Research Station in 2021, there were 

significant differences in total and marketable yield for all sources of variation, except for within 

treatment means (Table 2.10). Adjusted means for total yield ranged from 1.45 ± 0.90 to 9.26 ± 

.38 kg/plant, and marketable yield 0.87 ± 0.85 to 7.88 ± .36 kg/plant (Table 2.11). The heirloom 

hybrid Quasimodo significantly outperformed all other varieties in the 2021 trial in terms of 

both yield traits. Although the two trials were not statistically compared, trends were observed 

for the varieties replicated across environments. The heirloom hybrid Stealth had the lowest total 
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yield, which was not statistically different from the observed lowest marketable yield. The 

traditional heirloom Old German was among the highest yielding lines and outperformed the two 

commercial checks included in the trial. In 2021, mean comparisons for TTA exhibited a 

comparable ranking among market classes, with traditional heirlooms having the highest mean 

(0.73% CA) and commercial hybrids the lowest (0.63% CA) (Figure 2.2). Significant differences 

among the market classes were identified between traditional heirlooms and commercial hybrids 

(P = 6.30e-3) and heirloom hybrids and commercial hybrids (P = 0.02). In contrast, while 

commercial hybrids again had the highest mean Brix (4.34%), no significant differences were 

identified between the market classes. 

Machine Learning Model Comparison 

Principal Component Analysis 

The SolCAP vintage and fresh market PCA (Figure 2.3.a) identified 76.05% of the total 

inertia in the first seven principal components (PC), with 42.96% of the cumulative variance 

explained in the first two dimensions. The first PC, explaining 28.0% of the phenotypic 

variability, is characterized by eccentricity area index, eccentricity, shoulder height, proximal 

indentation area, pericarp thickness, circular, fruit shape index external II, proximal blockiness, 

and TTA (features are listed in descending order of contribution). The second PC was mostly 

comprised of maximum width, width mid-height, perimeter, proximal angle macro, area, vertical 

and horizontal asymmetry, and distal blockiness. A two-dimensional plot of PC1-2 and the 20 

most significant contributors can be found in Figure 2.3.a. The 95% confidence ellipses reveal a 

distinct separation between the two market classes, with a minimal overlap occurring in quadrant 

three associated with fruit shape index measurements.  
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Combining the SolCAP and Hawai'i phenotypic data sets, the PCA captured 76.86% of 

the cumulative variance in the first eight dimensions, with PC1-2 accounting for 40.99% (Figure 

2.3.b). The features contributing to PC1-2 were comparable to the preliminary results, although 

their relative contributions varied. The first dimension is associated with the features proximal 

indentation area, eccentricity area index, shoulder height, eccentricity, and pericarp thickness. 

The second dimension was also associated with the basic fruit measurements height mid-width, 

maximum height, and area, although Brix had a greater contribution in PC2 for the 

SolCAP/Hawai’i data. With the addition of the heirloom hybrid class in Figure 2.3.b, the 95% 

confidence ellipses for the three market types (TH, CH, and HH) show less distinction than in 

Figure 2.3.a. However, the distribution for commercial hybrids remains concentrated in quadrant 

two. Where the ellipses for traditional and hybrid heirlooms overlap, observations are associated 

with color traits, proximal indentation area, blockiness, and TTA.  

Classification Model 

Performance metrics were compared for three ML classification models: MLPNN, 

SVMP, and DT, to identify the optimal classification model. As depicted in Table 2.12, there 

were marginal differences in precision, ROC-AUC, sensitivity, and specificity across the models. 

Overall, all benchmark performance metrics were greater than 0.90, with DT having the lowest 

values compared to SVMP and MLPNN. While the top two models were comparable in terms of 

ROC-AUC and accuracy, MLPNN was selected due to its superior sensitivity and specificity. 

A primary objective of this research was to assess whether ‘heirloom’ can be 

conceptualized as a phenotypically distinct market class. To address this question, an MLPNN 

with two hidden units [32:32:16:1] was constructed to identify the morphological, 

physicochemical quality, and color attributes that distinguish traditional heirloom tomatoes (TH) 
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from modern, hybrid cultivars (HH; CH). The model was trained for 40 epochs, and accuracy 

and loss values for the validation and training datasets were examined. Results from the final 

epoch are presented in Table 2.13, and a confusion matrix detailing the prediction statistics for 

the validation set is provided in Table 2.14. By the final epoch, both datasets achieved high 

accuracy rates (training 97 %; validation 99 %), which generally indicates a model overfitting 

the training data (Niazian & Niedbaa, 2020). Based on the convergence and diminishing losses 

observed in the training and validation datasets, the model was selected to generate market class 

predictions for the Hawai’i test set. Table 2.15 shows that the model achieved an 85% accuracy 

rate in classifying the Hawai’i cultivars. While prediction accuracy was greater for the validation 

data (99 %), this disparity is likely attributed to the heirloom hybrids that make up 40% (n=139) 

of the testing data. Observations resulting in Type I and Type II errors were examined by 

computing a cross-tabulation of the Hawai’i cultivars and are arranged by the preassigned market 

classes (Table 2.16). 

The prediction results for the lines assessed during the 2020 and 2021 Hawai'i field trials 

are reported in Table 2.16 as the proportion of a variety's total technical replicates classified as 

either TH (Traditional Heirloom) or NH (Not Heirloom). The high specificity (92%) reported is 

underscored by the fact that all observations for the commercial hybrids were classified under 

NH (true-negative). Prediction instances for seven heirloom hybrid lines contributed to the 

models overall Type-I error [24 Karat (n=1); Aurea (n=1); Ginfizz (n=6); Mai Tai (n=3); 

Marnouar (n=7); Quasimodo (n=5); Stealth (n=9)]. However, Ginfizz, Marnouar, and Stealth 

were the only heirloom hybrid varieties to receive a majority TH class prediction. Four 

traditional heirloom varieties contributed to the Type II error [Ananas Noire (n=2); Black Krim 

(n=2); Brandywine (n=13)], although Brandywine was the only one with a majority 
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misclassification. Summary statistics of the 32 fruit measurements estimated for each prediction 

group (NH or TH) are provided in Supplementary materials (Table 7). 

 Local and global model agnostics were conducted to examine how the 32 fruit features 

contributed to the market class predictions. Figure 2.5 illustrates the results of permutation-based 

feature importance tests for both individual and categorical fruit traits. When subject to 50 

permutations, average a value, pH, lobedness degree, average b value, and TTA had the greatest 

overall impact on prediction error (1-AUC > .025).  When features were grouped according to 

their respective measurement categories, physicochemical, color, distal end fruit shape, 

blockiness, and latitudinal measurements were the most influential to prediction accuracy         

(1-AUC > .075).  

The mean SHAP values for 25 random orderings were used to estimate the local-additive 

feature contributions for a sample of varieties from each class. Figure 2.6 compares results for 

three varieties with red fruit from each market class. Average a value was the most important 

trait attributed to Farruco (CH) and Quasimodo (HH), decreasing the TH prediction estimates by 

-0.09 and -0.16, respectively.  The second most important feature reducing Farruco’s prediction 

value was pH (z = 0.70), followed by lobedness degree pH (z = -0.49). Average a value also 

reduced Costoluto Genovese's (TH) prediction, but the overall effect was negligible compared to 

the additive contribution from its attributes in lobedness degree, distal-end protrusion, and TTA. 

While color parameters reduced Quasimodo’s prediction, its metrics in perimeter, shoulder 

height, and TTA increased its predictive estimate. Figure 2.7 shows that, for a replicate of 

Quasimodo that was classified as TH (76%), higher values in lobedness degree and distal 

blockiness, as well as lower pH, were attributed to its increased predictive value. Figure 2.7 also 

displays the Shapley values for the three HH cultivars in the experiment that were classified as 
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TH in most of their technical replicates: Stealth, Ginfizz, and Marnouar. Consistent with the 

global feature importance test, measurements in physicochemical quality, latitudinal section, and 

color were attributed to the cultivars' TH classification. Overall, positive z-scores in Brix reduced 

the TH prediction value, whereas low pH and high TTA values increased the prediction estimate. 

For the variety Marnouar, proximal eccentricity (z = 3.97) contributed the most to TH 

classification, while distal eccentricity (z = 2.40) was inversely correlated.  

Discussion 

Since the term first entered common vernacular, the notion of what constitutes 

as ‘heirloom’ in the fresh market has evolved. Several authors have informally defined heirloom 

and its related terminology in terms of a cultivar's traceable ancestry, age, and pollination status 

(Casañas et al., 2017; Male, 1999; Zeven, 1998; Watson, 1996; LeHouillier & Male, 1995).  The 

term heirloom, however, seems to have evolved from previous descriptions as it is now used to 

describe fruit attributes of novel hybrid cultivars. Prior phenomics studies on the fruit properties 

in heirloom germplasm have primarily focused on sourcing desirable traits for breeding 

improvements (Alonso et al., 2011; Dwivedi et al., 2019; Goncalves et al., 2009; Panthee, 

Labate, McGrath, et al., 2013; Rodríguez-Burruezo et al., 2005). However, there has been no 

exhaustive examination of ‘heirloom’ as a phenotypic market class. To explore this concept, we 

developed a supervised ML classifier based on morphology, color, and physicochemical 

properties to investigate whether the heirloom archetype could be defined. Two field 

experiments were carried out in Hawai'i as part of this study to evaluate the productivity of 

cultivars from three market classes (TH, HH, and CH) and determine whether their fruit quality 

attributes satisfied the requirements for heirloom classification. 
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We observed significant differences in total and marketable yields (kg/plant) between the 

three market classes (TH, HH, and CH) in the 2020 and 2021 field trials. Overall, commercial 

hybrids were among the top performing lines in both yield metrics in 2020 (Waimānalo). The 

highest yields from this market class were recorded in the three determinate types (Skyway, 

Cypress, and Grebe) included in the study, suggesting that trellising or pruning techniques may 

have contributed to the results. Given that phenotypic data collection was the primary objective 

of this work, we did not restrict the genotypes included to those with disease resistance qualities 

generally required by local producers (tomato yellow leaf curl (TYLC) and tomato spotted wilt 

(TSWV). Consequently, an unexpected finding was the strong performance of the TYLC and 

TSWV susceptible HH variety Quasimodo. This variety was the top-performing line in the 2021 

(Honolulu) study, and its total and marketable yields in the 2020 trial were not statistically 

different from those of the top two CH cultivars. Although only 25% of Quasimodo’s samples 

were classified as heirloom, we found considerable variation in this variety's fruit samples that 

may have contributed to both classifications. Considering the variance we observed within 

several traditional heirloom varieties, it might be argued that the inconsistency within 

Quasimodo’s samples is an ‘heirloom-like’ quality. Ginfizz, one of the three HH varieties that 

met the classification criteria, was another notable HH variety from the 2021 study that was 

susceptible to disease yet produced consistent and early yields. As for the other two HH varieties 

classified as heirloom, Stealth and Marnouar, neither variety was identified as a top performer. 

However, Marnouar had some of the highest values for TTA and outperformed TH varieties in 

some cases. As previously stated, environmental conditions were most likely a significant factor 

in this study; therefore, additional field studies will be required to make sound recommendations 

to local growers. The traditional heirloom Old German provided the most unexpected findings in 
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both field studies, as its total and marketable yields surpassed several commercial hybrids. While 

the scale and cultural practices used in the field trials may not be representative of more intensive 

commercial operations, these results suggest that a comparative economic analysis of specialty 

market types with varying disease resistance may be a fruitful area of research for cooperative 

extension in Hawai’i.  

Using 32 traits related to fruit morphology, color, and physicochemical attributes, we 

developed an MLPNN classification model that demonstrated high prediction accuracy (85% - 

99%) on unseen data. When classifying cultivars from the Hawai'i field trials, it was possible to 

differentiate between traditional heirlooms, heirloom hybrids, and commercial cultivars with an 

accuracy rate of 85%. Based on the Hawai'i dataset, it was observed that the model's specificity 

was greatest for commercial hybrids, as there were no misclassifications for this group. For the 

TH varieties, prediction sensitivity (true-positive rate) was relatively low (66%); however, this 

metric must be interpreted with caution given the group’s relatively small sample size. 

Considering that the HH market class accounted for over half (54%) of the observations coded as 

NH, the negative predictive value (88%) demonstrates the model's ability to distinguish between 

the heirloom phenotype and observations that may share superficial traits. Based on the 

prediction results, we can infer that the MLPNN identified a complex set of parameters that 

distinguishes the heirloom market class. We also found that the misclassification rate for each 

group was proportional to the size of the classes' 95% confidence ellipse in the PCA plots, with 

the greatest variance and error occurring for the TH varieties. Conversely, in classifying cultivars 

from the vintage SolCAP data into nine shape categories, Visa et al. (2014) reported that 

prediction error and variability within the shape categories were not always correlated. 

Therefore, using a multinomial model to classify the heirloom phenotype may enhance its 
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robustness to variations within and between TH cultivars. Although the variance may have 

contributed to the model’s error rate, it might be argued that variation within and between 

heirloom tomatoes is an inherent characteristic that denotes the market type. Moreover, these 

misclassifications enabled us to make direct comparisons within varieties, offering insights into 

the relative contribution of specific parameters.  

The variable importance tests further corroborated observations that physicochemical 

quality, color, distal end shape, blockiness, and the latitudinal section were most influential in 

classifying a fruit sample as an ‘heirloom.’ Perhaps the most intuitive conclusion drawn from the 

post-hoc tests is the negative correlation between red fruit (+ average a* value) and the heirloom 

market type. Given that red tomatoes remain the commercial standard in most markets, the 

differences in fruit color reflected in heirloom varieties have come to typify the label (Dwivedi et 

al., 2019; Joseph et al., 2017; Rodríguez-Burruezo et al., 2005). This notion was also conveyed 

in the classifier, as cultivars with red fruit required a greater additive contribution from other 

variables, such as high values for lobedness degree, TTA, distal blockiness, or lower values in 

pericarp area to be identified as heirlooms. One discrepancy which should be noted is the 

negative z-score for the Brix values associated with heirloom classification in the SHAP tests. 

While there appears to be a positive association with low values, these results contradict the 

training data and the findings in Panthee et al. (2013). On closer inspection, it appears that these 

values stem from the fact that the range for Brix in the Hawai'i data (2.9% to 5.0%) was 

considerably different from the distribution in the training data (3.0-8.2%). Further investigation 

will be required to explain this discrepancy; nonetheless, it is probable that the environment 

influenced the Brix values observed in the field studies. Evidence supporting that high TTA is 

associated with the class was more conclusive and consistent with the study previously cited. 
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According to the HH varieties that met the classification requirements, low values in the pericarp 

area may be a unifying characteristic. This feature was also reflected in misclassified samples of 

the TH variety Brandywine. The model’s relative weights for color parameters and lobedness 

degree may have detracted from the importance of other pertinent phenotypic traits identified in 

the heirloom germplasm. A correction for biases in fruit color would be beneficial in future 

applications to extend insights for classification based on morphology and physicochemical 

properties.  

Conclusion 

This study represents a first attempt to address classifying heirloom as a phenotypic 

market class. The methodology presented appears to be quite promising for creating a 

measurable definition for contextualizing the heirloom market type; however, the generality of 

the classification model must be established through future research. Although measuring the 

chemical composition and perception of flavor was outside the scope of this study, it represents 

an intriguing area for future research and remains an essential element required to define the 

heirloom archetype. The implications of this field of study may provide a spectrum of desirable 

traits that can be targeted in future breeding programs, broaden the definitions of what makes a 

cultivar heirloom, and enhance ongoing efforts to improve fresh market tomato quality.   
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Chapter 2. Tables  

Table 2.1. SolCAP field passports for the 2009 and 2010 Ohio State University (OSU) 

vintage and University of California Davis (UC Davis) fresh market phenotyping studies. 

 

 
Institute University of California Davis Ohio State University 

Market class Fresh Market Vintage 

Location Davis, CA Fremont, OH 

Number of Accessions*  144 84 

Experimental Design RCBD (Two replications x Year) RCBD (Two replications x Year) 

Management Each institute followed regional extension recommendations. 

* Number of accessions reflects the dataset prior to preprocessing and analysis. 

 

Table 2.2. Field passport for two field trials conducted in Hawai’i during 2020 and 2021.  

 

 

 
Field TRIAL 2020 Field TRIAL 2021 

Location Waimānalo Research Station Magoon Research Station 

GPS Coordinates 
21° 20' 7.872'' N 

157° 42' 53.2188'' W 

21° 18' 26.748'' N 

157° 48' 35.208'' W 

Elevation (m/Asl) 24 50 

Name Of Farm or Institute The University of Hawaiʻi at Mānoa 

Street Address 
41-698 Ahiki St, Waimānalo, HI 

96795 

2727 Woodlawn Dr, Honolulu, HI 

96822 

Year 2020-2021 2021-2022 

Transplanting Date  8/7/2020 - 9/15/2020 6/29/2021 

First Harvest Date 10/2/2020-11/16/2020 8/21/2021-8/25/2021 

Last Harvest Date 10-week harvest period 

Annual Rainfall (mm) 1397 3846 

Annual Temperature 

(Minimum-Maximum °C) 20-28  21-24 

Soil Description 

Waialua, Very-fine, mixed, 

superactive, isohyperthermic  

Pachic Haplustolls 

Makiki, fine, mixed, active, 

isohyperthermic Typic Haplustepts 

Texture Silty clay Clay loam 

Management Practices 
Followed local extension service recommendations. Utilized organic 

management practices, although the site was not NOP certified. 

Experimental Design RCBD Augmented Design (Federer & Raghavarao, 1975) 
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Table 2.3. Description of germplasm screened in two Hawai’i field trials conducted from 2020 to 

2021.  

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 Waimānalo 2020 

 

  

Seed Source Entry Name Market Class 

NeSeeds Brandywine Pink TH 

NeSeeds Black Krim TH 

NeSeeds Old German TH 

NeSeeds Costoluto Genovese TH 

NeSeeds Dr. Wyche’s Yellow Beefsteak TH 

NeSeeds Pamela CH 

NeSeeds Shining Star CH 

Paramount 24 Karat HH 

Paramount Pink Smart HH 

Paramount WS-2507 CH 

Paramount WS-2519 CH 

Paramount Stealth HH 

Paramount Eto Truss HH 

Paramount Aurea HH 

Paramount Grebe CH 

Paramount Quasimodo HH 

Yuksel Tohum Farruco CH 

Yuksel Tohum Nemesis CH 

Yuksel Tohum Gelidonya CH 

Yuksel Tohum Eurasia CH 

Seminis Cypress CH 

Johnny's Select Seed Skyway CH 

 

Honolulu 2021 

 

  

Seed Source Entry Name Market Class 

NeSeeds Brandywine Pink TH 

NeSeeds Old German TH 

NeSeeds Costoluto Genovese TH 

NeSeeds Pamela CH 

Paramount Pink Smart HH 

Paramount Stealth HH 

Paramount Quasimodo HH 

Yuksel Tohum Farruco CH 

Johnny's Select Seed Marnouar HH 

Johnny's Select Seed Marsalato HH 

Harris Seed Ginfizz HH 

Harris Seed Mai tai HH 

Tomato Fest Ananas Noire TH 

Cornel University Brandywise HH 
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Table 2.4. The sample size, market class demographics, and data sources for the training, 

validation, and Hawai’i datasets used to develop and test the Multilayer Perceptron Neural 

Network (MLPNN) classifier. 

 

 

 

 

Table 2.5. The Tomato Analyzer (TA) measurements for fruit shape and color features organized 

according to the measurement categories described in the TA (v. 4.0) user manual. The 

measurements described here have been adapted from those reported in Darrigues et al. (2008) 

and Ramos et al. (2018). 

 
Measurement Category Measurement (cm) Description 

Basic Measurements 
 
 

Perimeter* 

Area 

Width Mid-height 

Maximum Width 

Height Mid-width 

Maximum Height*  

Total distance around the fruit boundary. 

Total area enclosed by the fruit boundary. 

Width measured at half of the fruit’s height. 

Maximum horizontal distance of the fruit. 

Height measured at half of the fruit’s width. 

Maximum vertical distance of the fruit. 

Fruit Shape Index Fruit Shape Index External I* 

Fruit Shape Index External II 

Ratio of the maximum height to maximum width. 

Ratio of height mid-width to width mid-height 

Blockiness Proximal Fruit Blockiness 

Distal Fruit Blockiness* 

Fruit Shape Triangle*  

Ratio of fruit width at the proximal end to mid-width 

Ratio of fruit width at the distal end to mid-width. 

Ratio of proximal width to distal width. 

Homogeneity Ellipsoid 

 

 

 

Circular 

 

 

 

Rectangular*  

Error ratio from best-fit ellipse to fruit area. Error is 

the average residuals along the fruit's perimeter 

divided by the ellipse's major axis. Smaller values 

indicate more ellipsoid fruit. 

Error ratio from best-fit ellipse to fruit area. Error is 

the average residuals along the fruit's perimeter 

divided by the radius of the circle. Smaller values 

indicate more circular fruit. 

Ratio of the area of the rectangle bounding the fruit 

to the area of the rectangle bounded by the fruit. 

Proximal Fruit End 

Shape* 

Shoulder Height 

 

Proximal Angle Micro 

 

 

 

 

Proximal Angle Macro 

 

 

 

 

The ratio of the average height of the shoulder points 

above the proximal endpoint to maximum height. 

The angle between best-fit lines drawn through the 

fruit perimeter on either side of the proximal 

endpoint. Micro setting: points comprising 1% of the 

perimeter on either side of that center point used in 

the regression. 

(See above) Macro setting: points comprising 5% of 

the perimeter on either side of that center point used 

in the regression.  

 

Dataset 

 

Sample Size 

Class Count 

TH – CH - HH 

 

Data Source 

Training N = 528               210– 305 – 15 SolCAP (90%) - Synthetic HI (10%) 

Validation N = 132            54 – 77 –  1 SolCAP (95%) - Synthetic HI (5%) 

HI Testing N = 345           82 – 124 – 139 HI (100%) 
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Proximal Indentation Area The ratio of the area of the proximal indentation 

(bounded by the proximal shoulder points) to the 

total area of the fruit (x10).  

Distal Fruit End 

Shape* 

Distal Angle Micro 

 

 

 

 

Distal Angle Macro 

 

 

Distal Indentation Area 

 

 

Distal End Protrusion 

The angle between best-fit lines drawn through the 

fruit perimeter on either side of the distal endpoint. 

Micro setting: points comprising 1% of the perimeter 

on either side of that center point used in the 

regression. 

(See above) Macro setting: points comprising 5% of 

the perimeter on either side of that center point used 

in the regression.  

The ratio of the area of the distal indentation 

(bounded by the distal protrusion points) to the total 

area of the fruit (x10). 

The ratio of the area of the distal protrusion 

(bounded by the distal protrusion points) to the total 

area of the fruit (x10). 

Asymmetry* Obovoid 

 

Ovoid 

V. Asymmetry 

 

 

H. Asymmetry Ob. 

 

 

 

 

H. Asymmetry Ov. 

 

 

 

 

Width Widest Pos. 

Describes the degree to which the fruit is bottom-

heavy. 

Describes the degree to which the fruit is top heavy. 

Average distance between a vertical line through the 

fruit at mid-width and the midpoint of the fruit’s 

width at each height. 

If the area of the fruit is greater below mid-height 

than above it, measures the average distance between 

a horizontal line through the fruit at mid-height and 

the midpoint of the fruit’s height at each width. 

Otherwise, it is 0.  

If the area of the fruit is greater above mid-height 

than below it, measures the average distance between 

a horizontal line through the fruit at mid-height and 

the midpoint of the fruit’s height at each width. 

Otherwise, it is 0. 

Ratio of the height at which the maximum width 

occurs to the maximum height. 

Internal Eccentricity Eccentricity 

 

Proximal Eccentricity* 

 

 

Distal Eccentricity* 

 

 

Fruit Shape Index Internal 

Eccentricity Area Index 

Ratio of the height of the internal ellipse to the 

maximum height. 

Ratio of the height of the internal ellipse to the 

distance between the bottom of the ellipse and the 

top of the fruit. 

Ratio of the height of the internal ellipse to the 

distance between the top of the ellipse and the 

bottom of the fruit. 

Ratio of the internal ellipse’s height to its width. 

Ratio of the area of the fruit outside the ellipse to the 

total area of the fruit. 

Latitudinal Section Lobedness Degree* 

 

 

Pericarp Area* 

 

Pericarp Thickness 

The degree of uneven shape, measured by the 

standard deviation of the lengths between each 

boundary point and the weight center. 

The area between the pericarp boundary and the 

perimeter. 

The pericarp area divided by the average of the 

length of the pericarp boundary and the perimeter 
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Average Color Values* 

CIELab color space 

 

a 

 

b 

 

L 

 

Chroma 

 

 

Luminosity 

 

 

Hue 

Chromacity coordinate, where +a* is the red 

direction and -a* is the green direction. 

Chromacity coordinate, where +b* is the yellow 

direction and –b* is the blue direction 

Vertical axis of color space indicating lightness 

(+L*) to darkness (-L*) 

Describes the saturation of the color, measured 

radially from the center of each quadrant with the a* 

and b* axes. 
The average luminosity across all pixels, calculated 

from the RGB value of each pixel 

[ ( max(R, G, B) + min(R, G, B) ) * 240 ] / (2 * 255) 

Represents the basic color, estimated as the angular 

measurement in the quadrant between the a* and b* 

axes 

*Features included in the final datasets used to train the classification model. If indicated in the measurement 

category, all features are included. 
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Table 2.6. A summary of the hyperparameters derived from a grid search with 10-fold cross-

validation for three machine learning (ML) models: Multilayer Perceptron Neural Network 

(MLPNN), Support Vector Machine using a Polynomial kernel function (SVMP), and Decision 

Tree (DT). 

 

Classifier [R package] Hyperparameters 

 

MLPNN* 

[Keras] 
 

 

Hidden Layer = 1 

Hidden Units = 16 

Dropout Rate = 0.01 

Epochs = 50 

Activation Function = ReLu  

  
 

SVMP  

[Kernlab] 

 

Cost = 0.01e-1 

Degree of Interaction = 3 

Scale Factor = 0.09 

Insensitivity Margin = 1.23e-1 

 
 

 

DT 

[Rpart] 

 

Minimal Node Size = 30 

Cost Complexity = 1.60e-5 

  

*Machine learning (ML) model selected. For the final MLPNN 

architecture used in training, see Table 2.7. 

 

 

 

 

 

 

 

 

Table 2.7. The final network architecture [32:32:16:1] and training parameters used to construct 

the Multilayer Perceptron Neural Network (MLPNN) classifier.  

 

Layer Type Output Shape Parameter Count 

Dense - 1  (None, 32) 1056 

Dense - 2 (None, 16)  528 

Output  (None, 1) 17 

Total parameters: 1,601 

Trainable parameter: 1,601 

Non-trainable parameters: 80 

  

Training parameters: epochs =40; batch-size = 20 
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Table 2.8. Analysis of Variance (ANOVA) for block and treatment adjusted total and marketable 

yields (kg/plant) in the Waimānalo 2020 field trial. 

 
Treatment Adjusted  
Source of Variation Df Marketable Yield (kg/plant) Total Yield (kg/plant) 

Block (Ignoring Treatments) 4 3.51 **  4.74 **  

Treatment (Eliminating Blocks) 22 2.30 **  2.47 **  

Treatment: Check 6 1.50 **  1.91 **  

Treatment: Test and Test vs. Check 16 2.60 **  2.68 **  

Residuals 24 0.32     0.37         
Block Adjusted 

Treatment (Ignoring Blocks) 22 2.72 **  3.01 **  

Treatment: Check 6 1.50 **  1.91 **  

Treatment: Test vs. Check 1 11.54 **  12.55 **  

Treatment: Test 15 2.62 **  2.81 **  

Block (Eliminating Treatments) 4 1.20 *   1.77 **  

Residuals 24 0.32     0.37     

ns P > 0.05; * P <  0.05; ** P < = 0.01 

 

 

Table 2.9. Estimated marginal means for total and marketable yield for the Waimānalo 2020 

field trial. Pairwise comparisons were computed using Fisher’s Least Significant Difference 

(LSD; P < 0.05). 

 

Treatment Market Class2 

Marketable Yield 

(kg/plant) 

Total Yield 

(kg/plant) 

Cypress CH 4.95          a 5.16           a 

Skyway CH 4.95          a 5.21           a 

Quasimodo HH 4.38          a 4.37         ba 

Grebe CH 3.81        ba 4.21         ba 

Old German TH 2.23      cb 2.30      dc 

Espresso HH 2.15      cb 2.30      dc 

Eurasia CH 2.13      cb 2.92        cb 

Farruco CH 1.71      c 2.01      dc 

Nemesis CH 1.65    dc 1.93    edc 

Pamela CH 1.60      c 1.73      dc 

Shining Star CH 1.60      c 1.91      dc 

Aurea HH 1.35  edc 1.28   fedc 

WS-2519 CH 1.33  edc 1.50   fedc 

Gelidonya CH 1.33      c 1.55    edc 

24-Karat HH  1.18    dc 1.44    ed 

Dr. Wyche’s Yellow Beefsteak TH 1.15  edc 1.46    edc 

Brandywine TH 1.14  edc 1.92    edc 

WS-2507 CH 1.01  edc 1.07   fedc 

Eto Truss HH 1.01  edc 1.17   fedc 

Costoluto Genovese TH 0.89  edc 1.05   fedc 

Black Krim TH 0.55  ed  0.79   fe 

Pink Smart HH 0.52  edc  0.61   fed 

Stealth HH 0.31  e  0.32   f 
1Letter notation shared among values not significantly according to Fisher’s Least Significant Difference 

(LSD) (P < 0.05). Means comparisons are relative to the respective column’s trait. 
2Market class abbreviations: Commercial Hybrid (CH); Heirloom Hybrid (HH); Traditional Heirloom (TH). 
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Table 2.10. Analysis of Variance (ANOVA) for block and treatment adjusted total and 

marketable yields (kg/plant) in the Honolulu 2021 field trial.  

 
Treatment Adjusted  
Source of Variation Df Marketable Yield (kg/plant) Total Yield (kg/plant)   

Block (Ignoring Treatments) 4 2.96 **  2.66 *   

Treatment (Eliminating Blocks) 13 10.83 **  14.84 **  

Treatment: Check 5 23.48 **  34.18 **  

Treatment: Test and Test vs. Check 8 2.91 **  2.76 **  

Residuals 20 0.64     0.71         
Block Adjusted 

Treatment (Ignoring Blocks) 13 10.97 **  14.87 **  

Treatment: Check 5 23.48 **  34.18 **  

Treatment: Test vs. Check 1 18.22 **  13.73 **  

Treatment: Test 7 0.99 ns  1.24 ns  

Block (Eliminating Treatments) 4 2.50*   2.58 *   

Residuals 20 0.64     0.71     

ns P > 0.05; * P < 0.05; ** P < 0.01 

 

 

 

 

Table 2.11. Estimated marginal means for total and marketable yield for the Honolulu 2021 field 

trial. Pairwise comparisons were computed using Fisher’s Least Significant Difference 

(LSD;P<0.05). 
 

Treatment Market Class2 Marketable Yield (kg/plant) Total Yield (kg/plant) 

Quasimodo HH 7.88         a 9.26             a 

Ginfizz HH 4.64     cb 4.75       dcb 

Old German TH 4.54       b 5.12           b 

Pamela CH 3.34    dc 3.58       dc 

Farruco CH 3.32    dc 4.20       dcb 

Pink Smart HH 2.94    dc 3.16     ed 

Marsalato HH 2.57  edc 3.17    fedcb 

Mai Tai HH 2.57  edc 5.27         cb 

Brandywine TH 2.52  edc 3.09    fedcb 

Costoluto Genovese TH 2.02  ed 2.29    fed 

Ananas Noire TH 1.67  ed 2.34    fed 

Marnouar HH 1.52  e 1.60    f 

Stealth HH 1.49  ed 1.45    fe 

Brandywise HH 0.87  e 2.44    fed 
1Letter notation shared among values not significantly according to Fisher’s Least Significant Difference 

(LSD) (P < 0.05). Mean comparisons are relative to the respective column’s trait. 
2Market class abbreviations: Commercial Hybrid (CH); Heirloom Hybrid (HH); Traditional Heirloom (TH). 
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Table 2.12. Results for accuracy, ROC-AUC, sensitivity, and specificity for three classification 

models: Support Vector Machine (SVM) using a polynomial kernel function, Multilayer 

Perceptron Neural Network (MLPNN), and Decision Tree (DT). Metrics are expressed as the 

mean ± standard error prediction values computed from 10-fold cross-validation (CV).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.13. Prediction accuracy and optimization loss for the training and validation datasets. 

Accuracy and loss reflect the values computed in the final training epoch for a Multilayer 

Perceptron Neural Network (MLPNN) classifier. 

 
Final Epoch Results   

Dataset Loss Accuracy 

Training set 0.04 0.97 

Validation set 0.03 0.99 

Training parameter: Epochs=40; Batch-size=20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Machine Learning Models 

Metrics1 SVM Polynomial 
Multilayer Perceptron 

Neural Network 
Decision Tree 

Accuracy .96 ± 6.4e-3 .96 ± 4.1e-3 .94 ± 1.1e-2 

ROC-AUC .99 ± 3.3e-3 .99 ± 4.9e-3 .97 ± 8.7e-3 

Sensitivity .97 ± 3.3e-3 .98 ± 6.1e-3 .97 ± 7.5e-3 

Specificity .94 ± 1.1e-2 .95 ± 1.1e-2 .91 ± 2.5e-2 
1 Values expressed as the mean ± standard error from resampling (10-fold CV) 
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Table. 2.14. Confusion matrix and classification statistics generated from the validation dataset 

predictions.  

 

Confusion Matrix                 Prediction Statistics 

               Prediction Accuracy - 0.99        

               Truth    NH   TH 95% Confidence Interval:  [0.96, 1.00] 

          NH      78      0 No Information Rate (NIR):  0.60         

                   TH        1    53 P-Value [ACC > NIR]:  < 2.0 e-16         

 Kappa:  0.98 

 McNemar's Test P-Value:  1   

 

 Sensitivity:  1.00 

 Specificity:  0.99 

 Positive (TH) Prediction Value:  .98 

 NH Prediction Value:  1.00 

 Prevalence:  0.40 

 Detection Rate:    0.40 

 Detection Prevalence:  0.41         

 Balanced Accuracy:  0.99        

          

 

 

Table. 2.15. Confusion matrix and classification statistics generated from the Hawai’i dataset 

predictions. 

 

Confusion Matrix                 Prediction Statistics 

                        Prediction Accuracy - 0.85       

               Truth     NH   TH 95% CI: [0.80, 0.88] 

           NH     231    32 No Information Rate (NIR):  0.73         

                   TH       21    61 P-Value [ACC > NIR]:  2.08e-7         

 Kappa:  0.59 

 McNemar's Test P-Value:  0.17   

 

 Sensitivity:  0.66 

 Specificity:  0.92 

 Positive) Prediction Value:  0.74 

 NH (Negative) Prediction Value:  0.88 

 Prevalence:  0.27 

 Detection Rate:    0.18 

 Detection Prevalence:  0.24         

 Balanced Accuracy:  0.79        
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Table 2.16. A summary of predicted market types for each cultivar studied in the 2020 and 

2021 field trials in Hawai’i. The proportions for each prediction group (NH = Not Heirloom; 

TH = Traditional Heirloom) correspond to the total number of technical replicates for each 

variety. Bold and underlined values indicate the market class with the highest prediction count 

(n 50%) for each variety. 

 
                                                                                                                                 

                                 Predictions n (%)1 

Market Class                                           Variety         True Heirloom            Not Heirloom               

Commercial Hybrid                                 Cypress                

Eurasia 

Farruco 

Gelidonya 

Grebe 

Nemesis 

Pamela 

Shining Star 

Skyway 

Ws-2507 

Ws-2519 

0 (0%) 9 (100%) 

0 (0%) 5 (100%) 

0 (0%) 24 (100%) 

0 (0%) 12 (100%) 

0 (0%) 10 (100%) 

0 (0%) 11 (100%) 

0 (0%) 21 (100%) 

0 (0%) 11 (100%) 

0 (0%) 11 (100%) 

0 (0%) 5 (100%) 

0 (0%) 5 (100%) 

Heirloom Hybrid                                      24 Karat               

Aurea 

Brandywise 

Espresso 

Eto Truss 

Ginfizz 

Mai Tai 

Marnouar 

Marsalato 

Pink Smart 

Quasimodo 

Stealth 

1 (8%) 12 (92%) 

1 (10%) 9 (90%) 

0 (0%) 6 (100%) 

0 (0%) 10 (100%) 

0 (0%) 9 (100%) 

6 (60%) 4 (40%) 

3 (30%) 7 (70%) 

7 (70%) 3 (30%) 

0 (0%) 10 (100%) 

0 (0%) 14 (100%) 

5 (25%) 15 (75%) 

9 (53%) 8 (47%) 

Traditional Heirloom                       Ananas Noire 

Black Krim 

Brandywine 

Costoluto Genovese 

                                   Dr. Wyche’s Yellow Beefsteak 

Old German 

6 (75%) 2 (25%) 

9 (82%) 2 (18%) 

7 (35%) 13 (65%) 

14 (78%) 4 (22%) 

5 (100%) 0 (0%) 

20 (100%) 0 (0%) 

1Values bold and underlined indicate the majority class prediction (n ≥ 50%) for each variety.  
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Chapter 2. Figures 

Figure 2.1. Mean comparison between Waimānalo 2020 market class values using the Games-

Howell test (Holmes adjusted P < 0.05) for two fruit quality traits: (a) Total Titratable Acidity  

(TTA; % Citric Acid) and (b) Degrees Brix. 

 

(a) 

(b) 
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Figure 2.2. Mean comparison between Honolulu 2021 market class values using the Games-

Howell test (Holmes adjusted P < 0.05) for two fruit quality traits: (a) Total Titratable Acidity 

(TTA) and (b) Degrees Brix.  
 

(a) 

 

 

(b) 
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Figure 2.3. Ordination biplots for two Principal Component Analyses (PCA) obtained from 48 

fruit measurements representing morphological, color, and physicochemical properties. (A) PCA 

results for the SolCAP vintage and market-fresh accessions. The axis represents the first two 

principal components (PC), which account for 43.0% of the cumulative variance. (B) PCA 

results for the SolCAP and 2020-2021 Hawai'i data. The axis depicts the first two PCs and 

captures 41.0% of the cumulative variance. The top 20 features contributing to the variance in 

PC 1-2 are plotted in each biplot, and 95% confidence ellipses denote each market class. 

 

(A) 

(B)  
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Figure 2.5. Variable importance estimated from individual and categorical fruit feature 

permutations. Feature importance is estimated from the mean prediction error (1-AUC) after 50 

iterations of feature permutation.  
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Figure 2.6. Shapley additive explanation (SHAP) for a commercial hybrid (CH), heirloom hybrid 

(HH), and traditional heirloom (TH). From top to bottom: Farruco, Quasimodo, and Costoluto 

Genovese. Additive contributions were computed separately for each variety and were estimated 

as a feature’s mean contribution from 25 random feature orderings. Graphs illustrate the top ten 

features identified for each observation. The blue and red bars reflect whether the observed 

values contributed positively or negatively to the cumulative TH prediction probability [0,1].  
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Figure 2.7. Shapley additive explanations for a sample of heirloom hybrid (HH) cultivars 

classified as traditional heirlooms (TH). From top to bottom: Quasimodo, Stealth, Marnouar, and 

Ginfizz. Additive contributions were computed separately for each variety and were estimated as 

a feature’s mean contribution from 25 random feature orderings. Graphs illustrate the top ten 

features identified for each observation. The blue and red bars reflect whether the observed 

values contributed positively or negatively to the cumulative TH prediction probability [0,1].  
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Chapter 3. Moving Heirlooms Forward into the Future 

 

Heirloom tomatoes have come to personify the preferred fresh market archetype and 

command a substantial premium in the marketplace. Although prior definitions of 'heirloom' are 

informal and vary across synonyms, the term’s use in describing fruit attributes in modern 

cultivars have wholly deviated from established concept. Given that assertions of 'heirloom-like' 

features lack a standardized context for comparisons, many of these claims are currently 

anecdotal. This thesis employed two approaches to investigate distinctions between heirloom and 

modern cultivars: (1) Two field trials comparing production and quality across different 

environments in Hawai'i, and (2) incorporating high-throughput phenotyping and machine 

learning to examine prominent fruit features that can be used to define an ‘heirloom’ ideotype for 

fresh market tomatoes. 

As expected, many distinctive traits of heirloom fruit, such as color, lobedness degree, 

fruit size (perimeter), and blockiness, are visible cues typically marketed to consumers. The fact 

remains, however, that customers cannot discern between products based on the quality of their 

internal components, such as chemical composition and pericarp thickness. This is especially 

relevant in the context of ‘Neo-heirlooms.' If a tomato has the exterior traits of an heirloom and 

may even be labeled as such, but lacks the intrinsic quality that customers anticipate, this 

presents a significant ethical concern regarding heirloom labeling. Consumer demand for 

heirloom tomatoes is reflected in their high market value (Alexander, 2006; Gertner, 2004). The 

price attributed to traditional heirloom varieties can also reflect the substantial risk growers 

undertake in producing varieties that typically lack the yield or disease resistance of modern 

hybrids (Klee & Tieman, 2018; Sydorovych et al., 2013). As previously discussed, (see chapter 
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one), the historical and contemporary perspectives on what constitutes an heirloom, landrace, or 

heritage variety are dominated by a dual ethos. The plights for conservation and seed sovereignty 

by the Seed Saver’s Exchange reflect a definition of heirloom based on social and cultural ethics. 

On the other hand, there is the heirloom tomato which is featured in culinary magazines and sold 

for roughly $6 per pound in artisanal grocery stores. Though it might be argued that the latter is 

linked with adverse notions of consumerism, these two identities are united in 

connotating 'heirloom' with local food systems and superior sensory quality. Although post-

harvest handling and shelf life were not explicitly investigated in this thesis, they are crucial 

factors that affect fruit quality and have also influenced the heirloom tomato’s historical 

perceptions. Small, low-input production systems have been the primary source of traditional 

heirloom tomatoes, with many growers relying on direct-market sales to ensure optimal harvest 

and distribution timing. A critical area to broach is the role of the cultural practices used to 

produce cultivars that fall within the heirloom market type. If 'Neo-heirlooms' are to penetrate 

the market and warrant the price premiums associated with their label, it will be imperative that 

they do not perpetuate the quality issues associated with mass production.  

This research demonstrated that the heirloom ideotype can be targeted by selecting 

specific phenotypic qualities; however, to retain the integrity and value of the label, the heirloom 

market type should be appraised based on the merits of the end product’s quality. Certification 

policies like the National Organic Program (NOP) in the U.S. (AMS-USDA, 2022) and Quality 

Labeling in the European Union (European Commission, 2019) represent possible solutions to 

protect growers and ensure quality control in the heirloom market. Several researchers have 

described this theoretical approach for European landraces (Pérez-Caselles et al., 2020; 

Petropoulos et al., 2019; Romero del Castillo et al., 2021; Skreli et al., 2017), with many 
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indicating that the benefits of Quality Labels, particularly the Protected Designation of Origin 

(POG), Protected Geographical Indication (PGI), and Traditional Specialties Guaranteed (TSG), 

primarily benefited small farmers. Traditional seeds developed and maintained by families, 

communities, or religious groups may require additional regulations and certification to ensure 

their preservation and cultural significance.  

While discussions over what constitutes heirloom germplasm will continue, steps towards 

incorporating consumer quality and the success of small farmers can integrate historical 

components of the heirloom tomato in future cultivars. Alternative methods for cultivar 

development should be explored in the public sector to achieve these objectives. Participatory 

Plant Breeding (PPB) offers a framework for establishing and preserving 'heirloom' as a high-

quality market type by involving consumers and producers in the breeding process. This method 

has been successfully used to breed vegetable crops for low-input, sustainable cropping systems 

(Navazio 2014, Mazourek 2014), as well as high-quality tomatoes targeted for direct marketing 

(Healy et al., 2015). Potential applications of this model should include consumer panels to 

evaluate whether selected phenotypes fulfill the expected sensory attributes of traditional 

heirloom varieties. Implementing regional PPB programs to develop 'Neo-heirloom' tomatoes 

can enhance productivity under local conditions and incorporate community-desired qualities. 

This premise could be extended in Hawai'i by following the objectives described in Casañas et 

al. (2017) and improving the traditional germplasm developed at The University of Hawai'i 

throughout the mid-twentieth century. To identify suitable traits for local production, future 

breeding programs must account for the unique seasonal variations and disease prevalence within 

and across each island’s microclimates. Moreover, given our research's differential relationship 
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between yield and disease susceptibility, a comparative economic analysis of advanced 

genotypes with various disease resistances should supplement field experiments. 

Heirlooms can exist in various material forms; whether jewelry, furniture, or a seed, the 

designation alludes to the continuation of culture and heritage (Heuss, 2012; Türe & Ger, 2016). 

While economic principles estimate an heirloom's monetary value, its intrinsic worth is inherent 

to the cultural history it represents. What defines an heirloom tomato? Whether or not the iconic 

label is what attracts customers, identifying its unmistakable sensory appeal will assist breeders 

in selecting phenotypes that satisfy market preferences. Through the ideas and analysis presented 

in this thesis, we hope to encourage a sustained interest in perpetuating the heirloom tomato in 

both conservation and future interpretation. 
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Supplementary Materials  

 

Table 1. Experimental design details for the Waimānalo 2020 field trial. 

 
Item Details 

Number of blocks 5 

Number of treatments 23 

Number of check treatments 7 

Number of test treatments 16 

 

Check treatments 

 

24-Karat, Black Krim, Farruco, Gelidonya,  

Pamela, Shining Star, Stealth 

Traits 

 

Total Yield (kg/plant)  

Marketable Yield (kg/plant) 

 

 

 

 

Table 2. The standard error for total and marketable yield (kg/plant) in Waimānalo 2020 field 

trial. 

 
Comparison Marketable Yield (kg/plant) Total Yield (kg/plant) 

A Test Treatment and a Control Treatment 0.66 0.71 
Control Treatment Means 0.36 0.38 

Two Test Treatments (Different Blocks) 0.85 0.91 

Two Test Treatments (Same Block) 0.79 0.85 

 

 

 

 

Table 3. Descriptive statistics for total and marketable yield (kg/plant) in the Waimānalo 2020 

field trial. 

 
Trait (kg/plant) Mean Std.Error Std.Deviation Min Max Skewness Kurtosis CV 

Total Yield  2.1 0.29 1.38 0.32 5.21 1.15 *   3.28 ns  35.12 

Marketable Yield  1.87 0.28 1.35 0.31 4.95 1.31 **  3.54 ns  37.32 

ns P > 0.05; * P ≤ 0.05; ** P  ≤ 0.01 
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Table 4. Experimental design details for the Honolulu 2021 field trial. 

 
Item Details 

Number of blocks 5 

Number of treatments 14 

Number of check treatments 6 

Number of test treatments 8 

 

Check treatments 

 

Farruco, Marnouar, Old German,  

Pamela, Pink Smart, Quasimodo 

 

Traits 

 

Total Yield (kg/plant)  

Marketable Yield (kg/plant) 

 

 

 

 

Table 5. The standard error for total and marketable yield (kg/plant) in the Honolulu 2021 field 

trial. 

 
Comparison Marketable Yield (kg/plant) Total Yield (kg/plant) 

A Test Treatment and a Control Treatment 0.95 1.00 

Control Treatment Means 0.51 0.53 

Two Test Treatments (Different Blocks) 1.22 1.29 

Two Test Treatments (Same Block) 1.13 1.19 

 

 

 

 

 

Table 6. Descriptive statistics for total and marketable yield (kg/plant) in the Honolulu 2021 field 

trial. 

 
Trait (kg/plant) Mean Std.Error Std.Deviation Min Max Skewness Kurtosis CV 

Total Yield 3.69 0.54 2.01 1.45 9.26  1.49 **  5.19 *   20.20 

Marketable Yield 2.99 0.48 1.78 0.87 7.88 1.48 **  5.04 *   22.47 

ns P > 0.05; * P ≤ 0.05; ** P ≤ 0.01 
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Table 7.1 Descriptive statistics by market class predictions for the Hawai’i dataset. The Shapiro-

Wilks test was used to estimate normality for each variable. For normally distributed variables, 

descriptive statistics are expressed as the mean and standard deviation, and significant 

differences were estimated from a one-way analysis of variance (ANOVA; P < 0.05). For non-

normal variables, values are expressed as the median and first and third quartiles, and significant 

differences were estimated using the Kruskal-Wallis Test (P < 0.05).  

 

 Prediction Groups  

Measurement (cm) Not Heirloom 

n = 252 

Heirloom 

 n = 93 

P-value 

Perimeter 23.0 [21.2;25.7] 24.4 [22.4;27.0] <0.001 

Maximum Height 5.92 [5.38;6.38] 5.52 [5.03;5.96] <0.001 

Fruit Shape Index External I 0.80 [0.70;0.89] 0.66 [0.62;0.71] <0.001 

Distal Fruit Blockiness 0.81 (0.03) 0.83 (0.03) <0.001 

Fruit Shape Triangle 1.11 [1.07;1.14] 1.10 [1.05;1.13] 0.077 

Rectangular 0.56 [0.54;0.57] 0.57 [0.55;0.58] <0.001 

Shoulder Height 0.09 [0.06;0.12] 0.15 [0.12;0.19] <0.001 

Proximal Angle Micro  203 [195;210] 197 [189;206] 0.001 

Proximal Angle Macro  142 [124;155] 163 [89.3;176] 0.003 

Proximal Indentation Area  0.28 [0.19;0.45] 0.58 [0.46;0.69] <0.001 

Distal Angle Micro  176 [92.6;180] 152 [88.3;181] 0.048 

Distal Angle Macro  125 [113;137] 139 [132;148] <0.001 

Distal Indentation Area  0.00 [0.00;0.00] 0.00 [0.00;0.01] <0.001 

Distal End Protrusion 0.00 [0.00;0.01] 0.01 [0.00;0.03] <0.001 

Obovoid 0.00 [0.00;0.00] 0.00 [0.00;0.04] 0.001 

Ovoid 0.16 [0.13;0.19] 0.14 [0.08;0.18] 0.004 

V Asymmetry 0.07 [0.05;0.11] 0.10 [0.07;0.16] <0.001 

H. Asymmetry ob. 0.00 [0.00;0.00] 0.00 [0.00;0.04] <0.001 

H. Asymmetry ov. 0.15 [0.09;0.21] 0.11 [0.06;0.20] 0.047 

Width Widest Position 0.45 [0.44;0.47] 0.46 [0.44;0.48] 0.558 

Proximal Eccentricity 0.89 [0.89;0.89] 0.89 [0.89;0.89] 0.009 

Distal Eccentricity 0.89 [0.89;0.89] 0.89 [0.88;0.89] <0.001 

Average Luminosity 136 [129;141] 129 [117;138] <0.001 

Average L Value 45.4 [41.5;57.3] 53.4 [42.6;60.3] 0.013 

Average a Value 29.4 [24.7;31.7] 17.3 [10.1;24.5] <0.001 

Average b Value 29.3 [26.9;32.5] 32.5 [26.3;39.0] <0.001 

Average Chroma 41.5 [37.1;44.8] 39.0 [33.3;45.0] 0.039 

Lobedness Degree 1.48 [1.10;2.13] 2.79 [2.09;3.80] <0.001 

Pericarp Area 0.44 [0.44;0.44] 0.44 [0.44;0.44] 0.901 

Brix (%) 4.00 [3.66;4.33] 4.13 [3.83;4.50] 0.008 

pH 4.36 [4.29;4.40] 4.27 [4.20;4.30] <0.001 

TTA (% CA) 0.47 [0.40;0.67] 0.68 [0.49;0.75] <0.001 

 

Class representation  

   

    Commercial hybrid (CH) 124 (49.2%) 0 (0.00%)  

    Heirloom hybrid (HH) 107 (42.5%) 32 (34.4%)  

    Traditional heirloom (TH) 21 (8.33%) 61 (65.6%)  
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Appendix A. Materials and Methods 

 

Table 1. The Solanaceae Coordinated Agriculture Project (SolCAP) (a) vintage and (b) fresh 

market germplasm used to develop an heirloom market type classifier. 

 

(a) 

 
Vintage Germplasm  

(Oregon State University 2009-2010) 

Donor Number/Variety Name Line ID# 

1091-Chonto 21 (Mataverde 3-21-2) SCT-0329 

A-1770 SCT-0330 

A-1771 SCT-0331 

Abel SCT-0332 

Ailsa Craig SCT-0325 

Aker’s West Virginia SCT-0285 

Amish Paste SCT-0286 

Beauty SCT-0287 

Black From Tula SCT-0288 

Brandywine (Sudduth/Quisenberry) SCT-0290 

Burbank SCT-0291 

Cherokee Purple SCT-0292 

Chih-mu-tao-se SCT-0333 

Costoluto Genovese SCT-0293 

Cotaxtla I SCT-0334 

Devon Surprise SCT-0335 

Favorite SCT-0295 

Globe SCT-0296 

Grushovka SCT-0298 

Heinz-1370 SCT-0336 

Hong Kong SCT-0337 

Howard German SCT-0299 

Juane Flammee SCT-0300 

King Humbert SCT-0301 

Kiyosu No.2 SCT-0338 

LA0410 SCT-0339 

LYC1903 SCT-0302 

Marglobe SCT-0303 

Marveille des Marches SCT-0326 

Moneymaker SCT-0304 

Opalka SCT-0305 

Orange Strawberry SCT-0306 

Oxheart SCT-0307 

Paragon SCT-0308 

Peron SCT-0309 

Peto 460 SCT-0340 

PI124035 SCT-0341 

PI124037 SCT-0342 

PI128586 SCT-0344 

PI128592 SCT-0345 
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PI129026 SCT-0346 

PI129033 SCT-0347 

PI129084 SCT-0348 

PI159009 SCT-0352 

PI196297 SCT-0353 

PI270430 SCT-0355 

PI272703 SCT-0356 

Pomodoro Superselezione di Marmande SCT-0357 

Ponderosa SCT-0327 

Prospero SCT-0358 

Rinon PI118783 SCT-0360 

Rinon PI118784 SCT-0360 

Rinon PI98097 SCT-0359 

Roma VF SCT-0312 

Rosao Monserrat SCT-0361 

Rumi Banjan SCT-0362 

Rutgers SCT-0313 

San Marzano SCT-0314 

Sao Paulo SCT-0363 

T1003 SCT-0317 

T1693 SCT-0318 

T1697 SCT-0319 

Tomate del lugar SCT-0365 

Tres Cantos SCT-0320 

Turrialba SCT-0366 

White Queen SCT-0322 

Zhongza No.4 SCT-0369 
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(b) 

 
Fresh Market Germplasm  

(University of California Davis 2009-2010) 

Donor Number/Variety Name Line ID# 

091109-3 SCT-0157 

091119-2 SCT-0158 

091120-2 SCT-0159 

091120-7 SCT-0160 

091135-1 SCT-0161 

091144-2 SCT-0163 

091166-3 SCT-0165 

Campbell28 SCT-0172 

‘Cherokee’ SCT-0173 

Fla.678 SCT-0174 

Fla.701 SCT-0175 

Fla.7060 SCT-0176 

Fla.7060 SCT-0237 

Fla.7481 SCT-0178 

Fla.7547 SCT-0179 

Fla.7770 SCT-0181 

Fla.7771 SCT-0182 

Fla.7775 SCT-0183 

Fla.7776 SCT-0184 

Fla.7781 SCT-0185 

Fla.7804 SCT-0186 

Fla.7907B SCT-0187 

Fla.7946 SCT-0188 

Fla.8000 SCT-0189 

Fla.8044 SCT-0190 

Fla.8059 SCT-0191 

Fla.8109 SCT-0193 

Fla.8111BH SCT-0194 

Fla.8124C SCT-0195 

Fla.8233 SCT-0196 

Fla.8293 SCT-0198 

Fla.8352 SCT-0200 

Fla.8476 SCT-0201 

Fla.8516 SCT-0202 

Fla.8539 SCT-0203 

Fla.8543 SCT-0204 

Fla.8608 SCT-0207 

Fla.8624 SCT-0208 

Fla.8626 SCT-0209 

Fla.8646 SCT-0211 

Fla.8735 SCT-0213 

Fla.8737 SCT-0214 

Flora-Dade SCT-0215 

LA0797 SCT-0217 

LA1996 SCT-0218 

Legend SCT-0224 

Medford SCT-0225 
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NC123S SCT-0227 

NC13G SCT-0229 

NC140 SCT-0230 

NC161L-1 W(2007) SCT-0231 

NC1CS SCT-0232 

NC23E-2(93) SCT-0233 

NC2Y SCT-0236 

NC33EB-1 SCT-0237 

NC47NC2 SCT-0238 

NC50-7 SCT-0239 

NC714-3B(2007) SCT-0240 

NC8276 SCT-0241 

NC8288 SCT-0242 

NCEBR-1 SCT-0246 

NCEBR-3 SCT-0248 

NCEBR-4 SCT-0249 

NCEBR-8 SCT-0253 

NCHS-1 SCT-0254 

Ohio MR13 SCT-0256 

Oregon Spring SCT-0258 

Oregon Star SCT-0259 

PI281553 SCT-0264 

Piedmont SCT-0268 

Rio Grande SCT-0269 

Severianin SCT-0270 

Siletz SCT-0271 

Summit SCT-0272 

T-5 SCT-0273 

T-9 SCT-0274 

Tropic SCT-0275 

UC-MR20 SCT-0276 

UC-N28 SCT-0277 

UC-T338 SCT-0278 

UC-TR44 SCT-0279 

UC-TR51 SCT-0280 

Willamette VF SCT-0281 
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Figure 1. Sample preparations and assay protocol for Total Titratable Acidity (TTA), adapted 

from Healy et al. (2017) and Panthee et al. (2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Preparation 

Remove 50 ml samples from freezer and thaw at 4 °C. 

Re-homogenate samples and bring to room temperature 20–22 °C. 

 

Sample Dilution 

Strain homogenate with cheese cloth to remove excess solids. 

Perform 5-fold dilution 

    40 mL deionized water 

    10 mL strained homogenate 

 

Total Titratable Acidity (Citric acid by volume) 

 

Titrate with .1 N NaOH to 8.2 pH 

% Citric acid (g/100  mL )=  (N * V1 * Eq wt.* 100) / (V2 * 1000) 

 

• N = Normality of NaOH (.1) 

• V1= Volume of NaOH added to reach titration point 

• Eq wt.= Equivalent weight of citric acid (64 mg/mEq) 

• V2 = Original sample volume (50 mL) 

 

  

Recorded as the mean % Citric acid from three technical replicates. 
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