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Although some processes influencing acoustic niche usage may operate in the

sounds co-occurring in sound files at a specific time of day. Moreover, many indi-

sounds simultaneously. To provide novel insights into landscape-scale patterns

quantify soundscape diversity through the lens of trait-based ecology.

2. Our workflow quantifies the diversity of sound in the 24-hr acoustic trait space.

Handling Editor: Sarab Sethi We introduce the Operational Sound Unit (OSU), a unit of diversity measure-
ment that groups sounds by their shared acoustic properties. Using OSUs and
building on the framework of Hill numbers, we propose three metrics that cap-
ture different aspects of acoustic trait space usage: (i) soundscape richness, (ii)
soundscape diversity and (iii) soundscape evenness. We demonstrate the use of
these metrics by (a) simulating soundscapes to assess whether the indices pos-
sess a set of desirable behaviours and (b) quantifying soundscape richness and
evenness along a gradient in species richness.

3. We demonstrate that (a) the indices outlined herein have desirable behaviours
and (b) the soundscape richness and evenness are positively correlated with the
richness of sound-producing species. This suggests that more acoustic niche
space is occupied when the species richness is higher. Additionally, species-
poor acoustic communities have a higher proportion of rare sounds and use the

acoustic space less evenly.
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1 | INTRODUCTION

Passive acoustic monitoring (PAM) offers promising opportunities
for ecological monitoring. Automated acoustic sensors can record
environmental sound at broad spatiotemporal scales with reduced
cost and human effort compared to equivalent active acoustic sam-
pling by an in-situ observer (Gibb et al., 2019). Using acoustic data,
the taxonomic diversity of a biological community can be derived by
isolating and identifying species' calls, thus providing an objective
and permanent record of the resident soniferous (sound producing)
biological community (Gibb et al., 2019; Sugai et al., 2019). Yet, ob-
taining species-level information for broad spatiotemporal scales or
taxonomic breadth presents numerous analytical difficulties, such
as the time-consuming and knowledge-demanding nature of aural
annotation, and the paucity of reliable automated species identifiers
and reference databases for most taxa and regions (Gibb et al., 2019;
Kahl et al., 2021; Sugai et al., 2019; Toledo et al., 2015).

In addition to taxonomic information, species' sounds carry func-
tional significance. Acoustic signals are crucial for a broad range of
social interactions including courting behaviour, territorial defence,
predator avoidance and food sharing (Darwin, 1872; Seyfarth &
Cheney, 2003). As such, species' sounds are subject to selective
pressures at multiple scales (Zsebék et al., 2021), resulting in a wide
variety of acoustic traits that are expressed in the timing, frequency
and amplitude features of acoustic signals. The field of soundscape
ecology exploits this variation in acoustic traits, attempting to infer
ecological information from the soundscape—that s, the collection of
biological (biophony), geophysical (geophony) and human-produced
(anthrophony) sounds emanating from a landscape—without the
need for species identification (Krause, 1987; Pijanowski, Farina,
et al., 2011; Pijanowski, Villanueva-Rivera, et al., 2011). This ap-
proach assumes that the diversity of acoustic traits in the land-
scape can be used to understand ecological processes across spatial
and temporal scales (Pijanowski, Villanueva-Rivera, et al., 2011).
Consequently, more than 60 acoustic indices have been developed
(Buxton et al., 2018), each of which reflects some aspect of the di-
versity of acoustic traits in a sound file.

The diversity of acoustic signals in trait space can illuminate un-
derlying ecological and evolutionary mechanisms (Gasc et al., 2013).

4. Our workflow generates novel insights into acoustic niche usage at a landscape
scale and provides a useful tool for biodiversity monitoring. Moreover, Hill numbers
can also be used to measure the taxonomic, functional and phylogenetic diversity.
Using a common framework for diversity measurement gives metrics a common
behaviour, interpretation and standardised unit, thus ensuring comparisons be-
tween soundscape diversity and other metrics represent real-world ecological pat-

terns rather than mathematical artefacts stemming from different formulae.

acoustic indices, acoustic niche usage, ecoacoustics, Hill numbers, Operational Sound Units
(OSUs), passive acoustic monitoring (PAM), soundscape diversity, trait-based ecology

For instance, one of the cornerstone theories of soundscape ecol-
ogy is the Acoustic Niche Hypothesis, which views acoustic space
as a core ecological resource for which soniferous sympatric spe-
cies compete, leading to partitioning of the soundscape in the
time-frequency domain to avoid spectro-temporal overlap in sound
production (Krause, 1993). Therefore, a more speciose community
should lead to increased competition and partitioning of acoustic
niche space, which is reflected in the diversity of acoustic traits.
Indeed, acoustic indices have been successfully applied as proxies for
the diversity of species (Depraetere et al., 2012; Towsey et al., 2014)
or sound types (Pijanowski, Villanueva-Rivera, et al., 2011).

Despite recent advances, several aspects of soundscape diversity
quantification remain unexplored. For instance, most indices capture
acoustic patterns using either time-averaged spectrograms (collapsed
in the temporal domain) or measures of variation in amplitude over
time (collapsed in the frequency domain). Hence, indices are funda-
mentally limited in their ability to detect diversity patterns across
both the spectral and temporal dimensions simultaneously (Eldridge
et al., 2016). Since spectro-temporal partitioning might be one of the
mechanisms dictating acoustic community assembly, considering both
the spectral and temporal dimensions of the acoustic trait space si-
multaneously may be key to evaluating how acoustic niches are struc-
tured. Moreover, most existing acoustic indices are calculated over
relatively short-duration time-scales (e.g. 1-min sound files). We sug-
gest that assembly processes structuring the presence and distribution
of sound in acoustic trait space should also be considered at broader
temporal scales. As many species' sound emissions follow circadian
patterns (Agostino et al., 2020), some of the temporal partitioning of
acoustic niches likely occurs in the 24-hr time domain. Yet, to date,
explicit quantification of the relationship among sounds in the 24-hr
acoustic trait space at a landscape scale has been scarce (but see Aide
et al., 2017). To do so, we require a robust framework that produces
informative metrics that capture within- and between-soundscape dif-
ferences in spectro-temporal trait space usage.

Here, we describe a workflow to decompose the diversity of sound
in acoustic trait space, hereafter referred to as soundscape diversity.
This workflow is grounded in the principles of acoustic niche theory and
leans heavily on trait-based ecological research. However, rather than
focussing on fine-scale temporal patterns (i.e. bioacoustics studies) or
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assessing the soundscape diversity of an acoustic assemblage at a partic-
ular time of day (i.e. many soundscape studies), we propose a framework
to investigate the relationship among all sounds produced in a broader
24-hr acoustic trait space at a given geographical location. We develop a
novel unit of diversity measurement, the Operational Sound Unit (OSU),
which groups sounds by their shared properties in acoustic trait space
(i.e. sounds occupy the same temporal and frequency space). Using OSUs
and building on the framework of Hill numbers (a mathematically unified
family of diversity indices), we introduce three metrics that capture dif-
ferent aspects of the acoustic trait diversity of the soundscape: (i) sound-
scape richness, (i) soundscape diversity and (i) soundscape evenness.
Our workflow offers unique insights that complement existing
soundscape diversity metrics. Dissecting the soundscape diversity
into its facets can provide insights into various aspects of 24-hr
acoustic trait space usage, including patterns of acoustic niche satu-
ration, evenness, dominance or rarity. Moreover, using Hill numbers,
we can quantify soundscape diversity at various scales, decom-
posing the regional metacommunity diversity (y-diversity) into its
local diversities (a-diversity) and a community turnover component
(p-diversity) using a simple multiplicative relationship. Additionally,
Hill numbers can also be used to quantify taxonomic, functional
and phylogenetic diversity, which ensures that observed relation-
ships between soundscape diversity and other facets of biodiver-
sity represent real-world ecological patterns. If the Acoustic Niche
Hypothesis holds, this means these various soundscape diversity
components could shed light on the species richness or diversity of
soniferous communities using a common framework of reference.
To illustrate our approach, we show that the proposed soundscape
diversity metrics follow a set of fundamental criteria for trait-based
diversity metrics and act in an ecologically intuitive way. Moreover, in
our case study, we use an acoustic dataset from Brazilian Amazonia to
investigate how the soundscape diversity metrics behave along a gra-
dient of species richness. We find positive correlations for both sound-

scape richness and evenness with the richness of soniferous species.

2 | METHODS

The implementation of this workflow is facilitated by the sounp-
scAPER package, written in the R-programming language (R Core
Team, 2020) and found on GitHub (https://github.com/ThomasLuyp
aert/soundscapeR).

2.1 | Defining acoustic trait space

The timing, frequency and amplitude of sounds are important acous-
tic traits that are subject to evolutionary processes and influence
community assembly. As such, we use the timing and frequency of
sounds as the variables that delineate a two-dimensional acous-
tic trait space and employ an amplitude-based threshold value to
quantify the detection/non-detection of sounds within this acoustic
space.

Although soniferous species produce sounds ranging from in-
frasound to ultrasound, we recommend constraining the upper-
frequency limit to 22,050 Hz, which is approximately the maximal
frequency audible to humans (Farina, 2013). Most wildlife sounds
can be found in this frequency range (Farina & James, 2016), so
the evolutionary mechanisms structuring acoustic assemblages
are likely strongest in this range. Moreover, in downstream anal-
yses, we use a spectral acoustic index to capture soundscape
structure, and the effects of ultrasonic frequencies on such in-
dices are not well studied. In the temporal domain, we follow
Aide et al. (2017) and consider acoustic trait space over 24 hr.
The reasoning here is twofold. First, we are interested in inves-
tigating the presence of all sounds produced at a given site for a
particular time of year, not just sounds at a particular time of day.
Second, almost all living organisms have 24-hr circadian rhythms
in sound emission (Agostino et al., 2020; Cui et al., 2011; da Silva
et al., 2014; Wang et al., 2012), making 24 hr an ecologically rele-
vant sample duration.

2.2 | Defining a unit of soundscape diversity
measurement

In trait-based ecology, diversity metrics are usually based on the
traits of taxonomic species and their abundance (Shaner et al., 2021).
Yet, taxonomic information is not always available. In some fields of
research where the taxonomic identity of individuals is unknown,
Operational Taxonomic Units (OTUs)—or groups of related individu-
als which share a set of observed properties (Sokal & Sneath, 1963)—
are used to infer system diversity. Here, we attempt to measure and
compare the acoustic properties of entities (sounds) in a system
(acoustic trait space) without a taxonomic link to the source organ-
isms. Hence, to quantify the soundscape diversity, we require a unit
of measurement that groups sounds by their shared acoustic proper-
ties without the need for taxonomic information.

In analogy to OTUs, we propose a novel unit of diversity mea-
surement, Operational Sound Units (OSUs), which group sounds
by their shared spectro-temporal properties. OSUs are obtained by
subdividing acoustic trait space into many discrete spectro-temporal
bins which are the soundscape equivalent of the time-frequency
bins in a spectrogram. Despite being conceptually analogous to the
time-frequency bins used to calculate the ‘Acoustic Space Use’ (ASU)
metric in Aide et al. (2017), the OSU differs in the amplitude features
that are used to capture the presence and abundance of sound in
acoustic trait space, and in the resolution along the temporal axis

(see below).
2.2.1 | Assessing the presence of sound in acoustic
trait space

Methodological choices made during acoustic data collection, such
as the temporal sampling regime and sampling rate, will affect
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subsequent analyses. We provide recommendations regarding these
choices in the context of our workflow in S1 and Sé.1. Here, we use
a sampling regime of 1min of recording every 5 min (henceforth
1 min/5 min) and a sampling rate of 44,100 Hz.

We are interested in all biological sounds produced at a given site,
regardless of which source they emanate from. Therefore, we focus
on the presence of sounds exceeding a 3-dB amplitude threshold for
a certain duration of time in each 1-min recording. We pool sound
files from the acoustic survey at a specific site into 24-hr samples
of the acoustic trait space, each sample containing all 1-min sound
files obtained in a single day (00:00-23:59 hr; Figure 1a). To deter-
mine where (frequency domain) and when (time domain) sound is
present in the acoustic trait space, we use the Acoustic Cover (CVR)
spectral acoustic index. For each 1-min sound file, the CVR index
produces a vector of values, one value for each frequency bin of the
spectrogram. Each value reflects the proportion of cells in a noise-
reduced frequency bin that exceeds a 3-dB threshold and ranges
between 0 and 1 (see Towsey, 2017 for a detailed breakdown of
index computation). We calculate the CVR index for all 1-min sound
files in each 24-hr sample. Acoustic recordings are processed follow-
ing Towsey (2017), computing indices using the QUT Ecoacoustics
Analysis Programs software (Towsey et al., 2018; Figure 1b).

The CVR index vectors for all 1-min files in a sample are concate-
nated chronologically, creating a data frame with the time of record-
ing as columns, the frequency bins as rows, and the value of the CVR
index for each time-frequency bin as cells. This reveals the presence
and distribution of sound in each sample of the 24-hr acoustic trait

space (Figure 1c).

2.2.2 | The Operational Sound Unit (OSU)

By assessing the presence of sound in acoustic trait space as de-
scribed in Section 2.2.1., we have divided the trait space into discrete
time-frequency bins, grouping sounds by their acoustic properties
(shared time and frequency values in trait space), thus capturing our
concept of Operational Sound Units (Figure 2).

As with time-frequency bins in spectrograms, the resolution of
OSUs in acoustic trait space, and thus the total number of OSUs,
is variable. The temporal width of OSUs is dictated by the sound
file length and the total number of OSUs in the temporal domain
by the recording schedule. The 1-min duration employed for index
calculation retains enough detail in the acoustic features for long-
duration soundscape analysis, facilitates rapid computation, and
has been used as the de facto standard in most soundscape studies
(Truskinger & Towsey, 2019).

In the frequency domain, OSU resolution is determined by the
width of the frequency bins of the CVR index vector. This is dictated
by the sampling rate and window length, which are specified in the
Fast Fourier Transformation (FFT). Choosing the appropriate window
length depends on the soniferous community of interest. In S.2, we
provide guidance on window length choice and recommend using a
256-sample window length. With our recording settings (44,100Hz

sampling rate, 1 min/5 min sampling regime and a window length of
256), the frequency domain consists of 128 frequency bins (number
of bins = window length/2) of 172Hz width (bin width = [sampling
rate/2]/number of bins). The temporal domain consists of 288 bins
(24 hr = 1440 min with 1 min/5 min recorded = 288 bins). As such,
the total number of detectable OSUs in the trait space using these
settings is 36,864 (128 frequency bins * 288 temporal bins).

2.3 | Assessing the prevalence of OSUs in acoustic
trait space

Next, we need to attribute an importance value to each OSU.
Instead of using the raw CVR values obtained in Section 2.2.1, we
use an incidence-based approach to derive an importance value for
each OSU.

For every 24-hr sample of each site, we use a site-specific thresh-
old to convert the OSU's raw CVR values to a binary variable. This
binary variable captures the detection (CVR value 2 threshold = 1) or
non-detection (CVR value < threshold = 0) of sound for the section
of the acoustic trait space delineated by each OSU (Figure 3a). The
choice of the threshold depends on the study system and is influ-
enced by the sound transmission characteristics of the habitat and
the amount of ambient noise in the surrounding environment (Darras
et al., 2016). For a comparison of thresholding methods, consult S.3.

To ensure site-specific binarisation thresholds are objective,
we use the ‘IsoData’ binarisation algorithm, available in the auto-
THRESHOLDR R-package (Landini et al., 2017). The IsoData algorithm is
borrowed from image segmentation analysis and is designed to sep-
arate pixels in the foreground from those in the background (Ridler &
Calvard, 1978). In the context of our workflow, the algorithm deter-
mines an initial threshold value based on the mean CVR index value
of the site's soundscape. Based on this threshold, it divides the OSUs
into two classes (foreground and background), calculates their mean
CVR index values and updates the threshold to be the mean of these
two mean values. This process is repeated iteratively until threshold
convergence is achieved.

Finally, we compute the mean relative OSU abundance by av-
eraging each OSU's binary values across all 24-hr samples of the
acoustic trait space for a site (Figures 3b,c). To avoid confusion
between sound frequency (Hz) and incidence frequency (relative
number of OSU occurrences), we henceforth refer to the OSU im-

portance value as the relative abundance.

2.4 | Quantifying soundscape diversity using
Hill numbers

When quantifying the diversity of a system, diversity is typi-
cally broken down into two components: richness and evenness
(Hill, 1973). Here, we add a third component, soundscape diver-
sity, which incorporates aspects of the former two. Although a
large number of indices have been proposed to measure diversity,
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FIGURE 1 A visual representation of the workflow steps used to assess the presence of sound in acoustic trait space. (a) Sounds in the
recording period (7 days) are pooled into 24-hr samples of the acoustic trait space. (b) For each sample, all sound files are cut into 1-min
segments. Each 1-min segment is subjected to a Fast Fourier Transformation (FFT), followed by modal noise subtraction and spectral index
computation, resulting in a spectral index vector (CVR index) for each 1-min file. (c) For all sound files per 24-hr sample, the CVR index

vectors are concatenated chronologically, resulting in a data frame with t
as cells. Finally, we obtain repeated samples of the 24-hr acoustic trait sp.
frequency domain.

there is a growing consensus that Hill numbers are the most ap-
propriate framework to separate system diversity into its vari-
ous components (Chao et al., 2014; Hill, 1973; Jost, 2006). Unlike
entropy indices, Hill numbers scale proportionally with underly-
ing diversity—when system diversity doubles, so does the index
value (the replication principle—see S.5.4 for demonstration).
Moreover, Hill numbers can be used to measure not only sound-
scape diversity, but also taxonomic, functional and phylogenetic

ime-of-day as columns, frequency bins as rows and the CVR values
ace, each of which shows the presence of sound in the time-

diversity, giving metrics a common behaviour, interpretation and
standardised unit (Chao et al., 2014). This ensures comparisons
between soundscape diversity and other diversity types repre-
sent real-world ecological patterns, rather than mathematical ar-
tefacts stemming from different formulae. Finally, this framework
also allows decomposing the regional metacommunity diversity
(y-diversity) into its local diversity (a-diversity) and community
turnover (p-diversity) components.
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FIGURE 2 A conceptual visualisation
of Operational Sound Units (OSUs) in the
24-hr acoustic trait space. Each 24-hr 20,000
sample of the acoustic trait space can be
divided into sections which we define

: N 15000
as OSUs. These OSUs are delineated by L
the frequency-bin width of the spectral a 10,000
index vector (frequency domain) and the 5 ’
recording interval of the sampling regime g.
(temporal domain), and group sounds g 5,000
by their shared functional properties in -
acoustic space. 0
S
N

Hill numbers are computed as follows:

s\
ap = < pr) (1)
i=1

With S being the number of OSUs, pi the relative abundance of OSU
i, and g the order of diversity. This equation expresses the diversity of
the system as the ‘effective number of entities’ (OSUs)—the number of
equally abundant OSUs that would yield the same value of diversity.
Here, we briefly describe the soundscape richness, diversity and
evenness components and introduce the indices used for their mea-

surement in the acoustic trait space.

241 | Soundscape richness and diversity

Sensitivity to the relative abundance of OSUs is modulated using
the order of diversity (q) without changing the interpretation of
9D. When q= 0, relative abundance is disregarded and Equation (1)
yields °D=S, that is, the richness of OSUs in acoustic trait space—or
soundscape richness. In our workflow, soundscape richness meas-
ures the amount of acoustic trait space occupied by OSUs through-
out the acoustic survey at a site without considering their relative
abundance. Conceptually, our soundscape richness metric is analo-
gous to the soundscape saturation metric in Burivalova et al. (2018);
however, they measure the saturation of acoustic trait space at a
1-min scale. Similarly, our metric is related to the acoustic space use
(ASU) metric described in Aide et al. (2017), which quantifies the
saturation of acoustic trait space on a 24-hr scale, but uses a differ-
ent methodology to detect sounds and aggregates those sounds at
broader 1-hr intervals.

The higher the order of diversity q, the greater the weight given
to highly abundant OSUs. For instance, when g = 1, soundscape
diversity D equals the exponential of the Shannon entropy or the
number of common OSUs in the soundscape. When g = 2, the
soundscape diversity 2D equals the inverse of the Simpson index,
or the number of dominant or highly abundant OSUs in the sound-
scape. These three Hill numbers represent simple transformations
of the traditional and well-established diversity indices and calculate
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mean species rarity using the arithmetic (g = 0), geometric (g = 1) and
harmonic means (g = 2; Hill, 1973). Although the soundscape rich-
ness and diversity metrics are usually expressed in the total number
of OSUs, soundscape metrics can still be compared between sound-
scapes with differing dimensions (a different number of detectable
OSUs due to window length/sampling regime differences) by divid-
ing the soundscape richness or diversity by the total number of de-

tectable OSUs in the soundscape.

2.4.2 | Soundscape evenness

Evenness describes the equitability of abundances (Hill, 1973).
Various measures of evenness can be calculated by taking the
ratio between Hill numbers 9D with g = 1, 2, ..., and the richness
9D (Jost, 2010). Here, the choice of g-value determines the impor-
tance of OSU abundance on the evenness metric. For instance, since
D roughly represents the number of common OSUs in the acous-
tic trait space, the evenness ratio 'p/°D represents the proportion
of common OSUs in the community. Similarly, as 2D represents the
number of dominant OSUs, the evenness ratio represents the pro-
portion of dominant OSUs. Different g-values differ in the sharpness
of the cut-off between rarity, commonness or dominance.

These patterns in evenness are best represented by construct-
ing diversity profiles, a type of visualisation showing a series of Hill
numbers derived using a continuous function of the order of diver-
sity g (Chao et al., 2012; Jost, 2007; see Figure S11). Diversity pro-
files provide the most complete representation of the soundscape
evenness, giving the relative abundance distribution of OSUs in the
soundscape, and highlighting changes in diversity with changing im-
portance of rarity. As soundscape diversity and evenness can both
be calculated for an infinite number of g-values, for the remainder of
this work we will follow Jost (2006) and define diversity as 2D and
evenness as 2D/°D. We make this choice because g= 2 corresponds
to a common biodiversity metric used in literature (the Simpson
index) and the g-value is large enough to incorporate patterns of rar-
ity and dominance in the acoustic community.

In S.4, we outline the theoretical framework for decomposing the
soundscape diversity into its alpha, beta and gamma components.
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FIGURE 3 A conceptual representation of the methodology used to attribute an importance value to OSUs in acoustic trait space. (a) Per
site, a binarisation algorithm is applied to each sample of acoustic trait space, resulting in a binary variable representing the detection/non-
detection of OSUs across samples; (b). For each OSU, the detection (1) or non-detection (0) values are summed across all 24-hr samples of
acoustic trait space for that site and divided by the number of samples to obtain the OSU's relative abundance (incidence frequency); (c) The
presence, relative abundance and distribution of OSUs in acoustic trait space.

In S.5, we illustrate the behaviour and intuitive properties of the
proposed soundscape diversity metrics by simulating artificial
soundscapes. The simulated datasets serve to demonstrate the be-
haviour of the metrics with respect to some fundamental criteria for
trait-based diversity metrics, as outlined in Ricotta (2005), Villéger
et al. (2008), and Mouchet et al. (2010).

3 | CASE STUDY

To explore the behaviour of our metrics of soundscape diversity in a
real-life ecological setting, we characterised the soundscape richness

and evenness along a gradient in soniferous species richness using
an empirical dataset from Brazilian Amazonia (1°40'S, 59°40'W).
Acoustic data were collected at 35 sites for 4-10days in the Balbina
Hydroelectric Reservoir (BHR) in Brazilian Amazonia (see Supporting
Information S6.2 and Bueno et al., 2020 for further details). This work
was conducted under the SISBIO 49068 research permit.

Under the Acoustic Niche Hypothesis, we expected soundscape
richness to be positively related to soniferous species richness
(Krause, 1993). For soundscape evenness, we did not expect a rela-
tionship with species richness unless changing species richness was
associated with a shift in the relative abundance distribution of the
acoustic community (Wilsey et al., 2005).
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3.1 | Compound species richness of soniferous taxa

To assess the relationship between the soundscape diversity met-
rics and soniferous species richness, we generated a compound
species richness index of three major tropical forest soniferous
taxa: (i) anurans (Bueno et al., 2020), (ii) birds (this study) and (iii)
primates (Benchimol & Peres, 2015). Species richness data for
these three groups came from a manual and automated extraction
from audio recordings and data from the literature (see Supporting
Information S6.3). A total of 34 anuran species, 71 bird species and 7
primate species were detected across the 35 sites. We summed the
richness values for these three taxa to obtain the compound rich-
ness index. Due to the absence of available taxonomic richness data,
this compound richness did not include insects, a dominant acous-
tic group in tropical forests (Aide et al., 2017). However, we deem
the combined acoustic activity of these three taxonomic groups to
be sufficiently strong to influence the rainforest soundscape, and
therefore be detectable with our soundscape diversity metrics.

3.2 | Soundscape diversity data

We calculated the soundscape richness and evenness for all sites
using the workflow described above (see S.6.4). A priori knowledge
of acoustic space usage can be used to subset the acoustic trait space
to those time-frequency coordinates used by the soniferous groups
of interest (Metcalf et al., 2020). This can reduce signal masking, and
increase the sensitivity of soundscape metrics to species richness.
We restricted the frequency domain below 11,025 Hz, where most
anuran, bird and primate sounds are found, and excluded the part
of the frequency spectrum dominated by insects. As the sampling
duration was unequal between plots in the study, and we wished
to retain the maximal amount of information, we used sample size-
based rarefaction to equalise sampling effort among plots (see S.1).
At most, we extrapolated to double the minimal sample size (Chao
& Jost, 2012). We used the R-package iINEXT’ (Hsieh et al., 2016) to
calculate soundscape richness (°D) and evenness (°D/°D) at a sam-
pling effort of 8days (twice the minimal sampling duration). Finally,
we used a simple linear regression model to investigate the relation-
ship between soundscape richness and evenness, and compound
soniferous species richness. We provide additional analyses on the
effect of sampling regime and window length on the relationship be-

tween soundscape richness and species richness in S.1.2.2 and S.2.

4 | RESULTS
4.1 | Properties of soundscape diversity metrics

Soundscape richness, evenness and diversity had strictly positive
values constrained between O and 1, and are theoretically inde-
pendent of the species richness (S.5.1). The monotonicity criterion
held true for the soundscape richness and diversity metrics, but not

for soundscape evenness (S.5.2). Soundscape richness and evenness
were independent of one another and described unique aspects
of the soundscape diversity (S.5.3). Conversely, soundscape diver-
sity at g = 2 displayed a positive relationship with both soundscape
richness and evenness, and thus did not conform to the independ-
ence criterion. Unlike some commonly used biodiversity indices
(i.e. Shannon-Wiener and Simpson biodiversity index), our metrics
scaled linearly with the underlying diversity of the system—a theo-
rem known as the replication principle (S.5.4). Finally, the same ana-
lytical workflow can be used to quantify the soundscape diversity
at multiple scales or hierarchical levels, decomposing the regional
metacommunity diversity (y-diversity) into its local diversity (a-
diversity) and community turnover (s-diversity) components using a

simple multiplicative relationship (S.4; S.5.6).

4.2 | Relationship between soundscape
metrics and species richness

The correlation between soundscape richness and soniferous spe-
cies richness in our case study was strongly positive (r = 0.85;
R?=0.72; p <0.001; Figure 4a-1; Table S4). This positive correlation
was consistent, even for lower intensity sampling regimes (5.1.2.2),
with r values staying high (>0.8) at all tested sampling intensities.
We found that window length had a negligible impact on the cor-
relation between both metrics (r >0.83 for all window lengths; see
S.2). Based on the visual inspection of acoustic trait space, sites con-
taining a lower richness of soniferous species (Figure 4a-2) appeared
to have more empty and less complex trait spaces than species-rich
sites (Figure 4a-3). The trait space of low-richness sites had impov-
erished daytime soundscapes and lacked many of the sounds ex-
ceeding 5000Hz that were present at taxonomically rich sites. For
soundscape evenness, the correlation with soniferous species rich-
ness was weakly positive (r = 0.40; R> =0.16; p <0.05: Figure 4b-1).
For low-evenness sites, low abundance sounds were more common
compared to sites with a high soundscape evenness (Figure 4b-2 and
3).

5 | DISCUSSION
5.1 | Advantages of the workflow

Our soundscape metrics abided by a set of fundamental criteria for
trait-based diversity indices (Mouchet et al., 2010; Ricotta, 2005;
Villéger et al., 2008) and behaved in an ecologically intuitive man-
ner. Furthermore, separating soundscape diversity into richness,
evenness and diversity, and assessing how these behaved along a
gradient of species richness, shed light on patterns of acoustic niche
usage. Among the various theories that explain acoustic community
assembly and niche usage, two hypotheses prevail in the soundscape
literature: the Acoustic Adaptation Hypothesis and the Acoustic
Niche Hypothesis (Pijanowski, Farina, et al.,, 2011; Pijanowski,
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FIGURE 4 (a) The relationship between the soundscape richness and the richness of soniferous species (al) with a visual representation
of the 24-hr acoustic trait space for low-richness (a2) and high-richness (a3) soundscapes. The Pearson correlation coefficient and associated
R?- and p-values indicate a strong positive relationship (r = 0.85) between the soundscape richness and species richness of sound-producing
vertebrates. (b) The relationship between the soundscape evenness and the richness of soniferous species (b1) with a visual representation
of low-evenness (b2) and high-evenness (b3) soundscapes. The Pearson correlation coefficient and associated R2- and p-values indicate a
weak positive correlation (r = 0.40) between the soundscape evenness and species richness.

Villanueva-Rivera, et al., 2011). The former posits that species'
acoustic traits (e.g. signal frequency, amplitude, timing and duration)
are more similar than expected by chance as the environment filters
for traits that maximise effective sound propagation and minimise
attenuation (Mullet et al., 2017). The latter states that acoustic trait
space is a core ecological resource and sonically sympatric spe-
cies partition their acoustic niche so as to avoid spectro-temporal
overlap in their vocalisations, which would lead to inefficient com-
munication (Garcia-Rutledge & Narins, 2001; Krause, 1993). The
Acoustic Niche Hypothesis implies that evolutionarily archaic and
undisturbed ecosystems have acquired an evolutionary balance be-
tween all sounds in the landscape, resulting in soundscapes with
high spectro-temporal complexity and signal diversity, and mini-
mal overlap (Eldridge et al., 2016; Krause, 1993; Pijanowski, Farina,
et al., 2011; Pijanowski, Villanueva-Rivera, et al., 2011). Conversely,
disturbed systems in which ‘acoustically optimised’ species have been
lost from the habitat are then characterised by an unbalanced equi-
librium, showing readily detectable gaps in the soundscape.

Our soundscape richness metric quantifies the amount of
acoustic niche space occupied by OSUs independent of how fre-
quently OSUs were occupied over multiple days (the relative abun-
dance). In our case study, we found a strong positive correlation

(r=0.85; R?=0.72; p <0.001) between soundscape richness and
soniferous species richness. Soundscape richness is theoretically
independent of species richness, so the observed relationship
likely arose through processes of species assembly. Following the
Acoustic Adaptation Hypothesis, we expected the richness of
OSUs, driven by the richness of acoustic trait values, to be mostly
insensitive to the richness of soniferous species. Given the strong
positive relationship between soundscape richness and soniferous
species richness, it is likely the acoustic community in the case
study was structured by competition for acoustic niche space. As
the species richness gradient in our study area originated from a
disturbance event, it is plausible that the observed correlations
between soundscape richness and species richness stemmed from
the loss of species occupying unique acoustic niches in the acous-
tic trait space, resulting in a lower niche saturation at lower spe-
cies richness.

The soundscape evenness metric captures the degree to which
the relative abundances of OSUs are distributed in niche space.
Hence, it quantifies how evenly the available acoustic resources
are used at a landscape scale and sheds light on patterns of dom-
inance and rarity. In the case study, soundscape evenness dis-
played a weak positive correlation (r = 0.40; R? =0.16: p <0.05)
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with soniferous species richness. Changes in soniferous species
richness were associated with changes in the distribution of the
relative abundance of sounds in acoustic trait space. We posit
that the correlation between soundscape evenness and sonifer-
ous species richness could reflect an unbalanced equilibrium, in
which the acoustic community consists of a few acoustically dom-
inant and many rare sound-producing species (Krause, 1993). As
such, it appears that disturbed species-poor acoustic communities
used acoustic niche resources less effectively (Mason et al., 2005).
Indeed, the combination of both richness and evenness metrics
provides unique insights into acoustic niche usage. Yet, many ex-
isting soundscape diversity metrics focus solely on the presence
of sound in a short duration recording without accounting for the
prevalence of sound in those same areas of acoustic trait space
over the course of multiple days, thus overlooking the evenness
component of soundscape diversity.

Our workflow potentially offers a robust and cost-effective
method to track biodiversity changes at large spatial and temporal
scales, or in systems where the knowledge of the resident biological
community is incomplete. The strong positive correlation between
soundscape richness and an independent estimate of soniferous
species richness suggests this metric can be used as a proxy to
infer taxonomic diversity patterns. Hence, it could be used as an
early warning system, alerting researchers when declines in sound-
scape diversity exceed natural fluctuations (Krause & Farina, 2016;
Pijanowski, Farina, et al., 2011; Pijanowski, Villanueva-Rivera,
et al., 2011). The soundscape richness metric performed well as a
biodiversity proxy compared to analogous metrics in the literature.
For instance, in Burivalova et al. (2019), soundscape saturation
(saturation of acoustic niche space for 1-min sound files), achieved
a correlation of r = 0.56 and R? =0.31 with the number of unique
vertebrate calls (sonotypes) identified in the same sound file. The
Acoustic Space Use metric in Aide et al. (2017) has a similarly strong
relationship to our metric (Spearman's p = 0.85), but had a relatively
small sample size (8 plots). Moreover, both studies investigated the
correlation with the number of unique calls, whereas our study in-
vestigated the correlation with species richness. The former can
be expected to attain higher correlations, as different calls tend to
take up different parts of acoustic trait space and thus influence the
soundscape saturation or acoustic space use more directly. Still, our
workflow achieved high correlations, corroborating the robustness
of the method.

Furthermore, even when a correlation is absent, our method
allows us to measure where and when in acoustic trait space the
occurrence and relative abundance of sound changes across space,
time or hierarchical levels (e.g. local, regional or global) without re-
quiring a link to the taxonomic identity of OSUs. In our case study, a
visual comparison of acoustic trait space use between two extremes
of the soundscape richness gradient showed that low-richness sites
had an impoverished daytime soundscape and lacked sounds over
5000Hz. Moreover, the low-evenness soundscape had a higher pro-
portion of rare OSUs, suggesting the acoustic niche resource was
used less effectively.

Finally, our workflow is robust, identifying an ecological gradient
in an acoustically complex tropical rainforest setting. We used an
amplitude threshold to remove transient and non-biological sounds.
Although this step did not remove persistent non-focal high ampli-
tude sounds, such as rain showers, thunder or wind, from the data,
we still found strong positive correlations with species richness.
Moreover, both the window length and sampling intensity had a min-
imal effect on the soundscape richness-soniferous species richness
correlation. Additionally, the soundscape variability was captured
with fewer hours of recording (a minimum of 24 hr) than previously
suggested (i.e. 120 hr in Bradfer-Lawrence et al., 2019), although the
minimum acoustic survey length needed to be the same (5days). Yet,
as ecosystems can differ in their sound turnover rate and therefore
require different sampling efforts, we recommend sampling the
soundscape for longer durations and/or higher sampling intensity if

possible.

5.2 | Avenues of future research

The soundscape diversity metrics outlined herein treated all OSUs
as equally similar. In reality, OSUs are not independent elements,
but rather correlated units in acoustic trait space. As such, future
work on our soundscape diversity metrics should incorporate the
difference in acoustic trait values (time-frequency coordinates) of a
particular OSU from all other OSUs in the acoustic space (Scheiner
et al.,, 2017). Incorporating the distinctiveness of OSUs in acous-
tic trait space (soundscape dispersion) would allow us to further
quantify the degree to which acoustic trait space is partitioned,
providing further insights into acoustic niche differentiation and
resource competition (Mason et al., 2005). For instance, if acous-
tic communities are structured by competition for acoustic space,
we might expect overdispersion in acoustic trait space compared to
the same number of OSUs drawn randomly from the regional OSU
pool. Conversely, when the dispersion of OSUs in acoustic space is
lower than expected compared to the randomly drawn OSU pool,
environmental filtering is likely to be an acting process (Scheiner
et al.,, 2017).

In this paper, we opted for an incidence-based approach to attri-
bute an importance value to OSUs. Yet, the use of threshold values
to convert continuous variables to detection/non-detection data
has been critiqued in the literature (Lawson et al., 2014), as it results
in information loss and complicates comparisons between differ-
ent sites/studies for which different optimal threshold values may
apply. Still, we posit this approach can be appropriate for sound-
scape data. Although acoustic indices are known to capture animal
activity, there is an ongoing debate about their ability to capture
patterns of abundance (Boelman et al.,, 2007; Bradfer-Lawrence
et al., 2020). Moreover, acoustic indices can be sensitive to con-
founding environmental factors (Gasc et al., 2015). For instance,
CVR index values may respond to abiotic sounds, such as geophony
and anthrophony, which are considered confounding factors if the
aim is to capture biophonic sounds. Additionally, the index values
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can also be susceptible to the relative amplitude of songs in record-
ings, which, in turn, are shaped by the properties of the surrounding
vegetation, the distance of the sound-emitting animal to the sensor,
inherent biological differences between species and meteorological
conditions (Bradfer-Lawrence et al., 2020). We argue that convert-
ing raw CVR index values to binary detection/non-detection data
will reduce potential differences among sites and eliminate the
non-focal transient and low amplitude sounds from the data. Even
so, the influence of incidence-based versus continuous importance
values on the observed patterns warrants further investigation.

Nonetheless, choosing a threshold value that is valid in all eco-
logical contexts and accurately removes non-target sounds while
retaining enough information to capture patterns in niche usage
represents a challenge. Deriving a unique threshold value for each
study system by validating the ability of the soundscape diversity
metrics to capture a species richness gradient is not a feasible ap-
proach, as taxonomic data will not always be available. We found
that the approach in Burivalova et al. (2018), for which the chosen
threshold yields the most normal distribution of the obtained sound-
scape metric, did not yield the strongest correlation with species
richness. Although a constant threshold value worked well for our
specific case study, this threshold value will likely be different for
other ecosystems, seasons or levels of non-target sound. We recom-
mend that future studies derive incidence data using context-aware
binarisation algorithms (see S.3). These algorithms produce a unique
binarisation threshold per site by considering the distribution of CVR
values in the acoustic trait space, which, in turn, is influenced by
the soniferous community and sound transmission characteristics
of the habitat. We found that the ‘IsoData’ binarisation algorithm
worked best for our data, but further research in a wider variety of
habitats is needed to confirm that this algorithm is consistently most
appropriate.

Finally, we only used the CVR index to capture the amplitude
features of our soundscapes. We posit that other spectral indices,
alone or in combination, may better reflect sounds from specific
taxonomic groups. For instance, cicada choruses are characterised
by loud and long-duration stridulations, usually restricted to narrow
frequency bands and often leaving wide frequency band footprints
due to harmonics. Previous work suggests these features can be
captured by a set of spectral indices: low spectral entropy, high back-
ground noise and high spectral density (Brown et al., 2019; Ferroudj
et al., 2014; Towsey et al., 2014). Thus, these three indices could be
combined into a compound soundscape diversity index, which could
then be used to decompose the diversity of cicada choruses in 24-hr

acoustic trait space.

6 | CONCLUSION

In this study, we present a novel workflow for the quantification of
soundscape diversity that builds on trait-based ecology and uses Hill

numbers to generate a robust set of soundscape diversity metrics.

By broadening the temporal scope of soundscape diversity quanti-
fication to cover 24 hr, and considering the spectral and temporal
traits of sound simultaneously, these soundscape diversity metrics
can yield novel insights into acoustic trait space usage at multi-
ple spatiotemporal scales and act as a useful tool for biodiversity
monitoring.
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