LATE ONSET VITAMIN K DEFICIENCY BLEEDING, EXTREME PREMATURITY AND A HUMAN MILK **BASED DIET**

Sean Bryson¹, Atisha Pandya¹, Shaveta Mulla¹, David Card², Martin J Shearer³, Paul Clarke⁴, Vimal Vasu¹

Affliations

- 1. Department of Neonatal Medicine, East Kent University NHS Foundation Trust, Ashford, Kent
- 2. Human Nutristasis Unit, Vitapath, Guys and St Thomas's NHS Trust, London
- 3. Centre for Haemostasis and Thrombosis, Guys and St Thomas's NHS Foundation Trust, London
- 4. Neonatal Unit, Norfolk and Norwich University Hospital, Norwich UK

 An extremely preterm female infant (born at 23⁺⁵ weeks; weight 555g) received 0.4mg/ kg IM Vitamin K1 (VK). She received an exclusively human milk-based diet and was commenced on a commercially available human-milk fortifier.

- On D73 (CGA: 33⁺⁶ weeks; weight 1521g) she had significant 'oozing' from a heel-prick site. Investigations demonstrated deranged coagulation. She was treated with IM VK followed by oral VK thereafter.
- After 3 days, her coagulation normalized. PIVKA-2 analysis confirmed the diagnosis of late-onset VKDB. The results are illustrated in Figure 1 (abnormal values in red).

RECOMMENDED DAILY VITAMIN K REQUIREMENT?	BLOOD RESULTS			
 The current recommendation for VK is 8-10 µg/day in VLBW infants & 5µg/day in healthy breastfed infants (0-6 months) (ESPGHAN 2016). 	Test	D73 (Day of diagnosis)	D76	D77
• Evolucivo human milk diote havo lowor VK	ΡΤ	149.8		12.9
content compared to preterm formula diets.	APTT	84.4		39.5

Further, human milk fortifiers (HMF) are known to have lower VK content compared to Cow's Milk fortifiers.

 Our baby received exclusive HMF which contained 0.3µg/100ml VK (approximately 20 times lower than compared to a cow's milk fortifier). (1)

WHAT IS PIVKA-2?

- Protein induced by Vitamin K absence, under carboxylation = **PIVKA-2** is a functional marker of overall hepatic VK status.
- An elevated PIVKA-2 (>50.9mAU/ml) indicates a VK deficiency.

Factor VIII	137				50-100 IU/ dl		
Factor IX	7				60-150 IU/ dl		
Factor XI	48				70-160 IU/ dl		
PIVKA- 2		13437.2		28.02	17.36-50.0 mAU/mL		
VK		40.12		3.44	0.15-1.55 ug/l		
CONCLUSIONS							
Preterm babies fed an exclusively human							

(Figure 1)

D93

(Post

treatment)

Ref

range

12-16s

22-25s

care

 Serum VK is a marker for overall body tissue stores of VK but unreliable for diagnosis of VKDB.

Normal Serum VK is 0.15 - 1.55 µg/L. (2)

milk-derived diet (including HMF) receive inadequate VK intake and therefore maybe at risk of VKDB without additional VK supplementation. We

1. Prevention of Vitamin K Deficiency Bleeding in Newborn Infants, Mihatsch, Walter A. (2016), J Pediatric Gastroenterology and Nutrition, Jul;63(1):123-9 2. PIVKA-II plasma levels as markers of subclinical vitamin K deficiency in term infants. Dituri F, (2012). J Maternal Fetal Neonatal Med. Sep;25(9):1660-3