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Review 

Regulation of innate immunity by Nrf2 
D van der Horst1, ME Carter-Timofte1, J van Grevenynghe2,  
N Laguette3, AT Dinkova-Kostova4,5 and D Olagnier1   

The transcription factor Nuclear factor erythroid 2-related factor 2 
(Nrf2) has been mainly investigated as a regulator of redox 
homeostasis. However, research over the past years has 
implicated Nrf2 as an important regulator of innate immunity. 
Here, we discuss the role of Nrf2 in the innate immune response, 
highlighting the interaction between Nrf2 and major components 
of the innate immune system. Indeed, Nrf2 has been shown to 
widely control the immune response by interacting directly or 
indirectly with important innate immune components, including 
the toll-like receptors–Nuclear factor kappa B (NF-kB) pathway, 
inflammasome signaling, and the type-I interferon response. This 
indicates an essential role for Nrf2 in diseases related to microbial 
infections, inflammation, and cancer. Yet, further studies are 
required to determine the exact mechanism underpinning the 
interactions between Nrf2 and innate immune players in order to 
allow a better understanding of these diseases and leverage new 
therapeutic strategies. 
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Introduction 
Nuclear factor erythroid 2-related factor 2 (Nrf2) is the 
transcriptional master regulator of detoxifying and 

antioxidative responses [1,2]. Under basal conditions, 
Nrf2 is kept inactive by its repressor Kelch-like-enoyl- 
CoA hydratase(ECH)-associated protein 1 (Keap1), 
which serves as a substrate for the Cul3–E3 ligase 
complex that targets Nrf2 for ubiquitination and pro-
teasomal degradation [3,4]. However, electrophile agents 
and reactive oxygen species (ROS) can induce Keap1 
modifications that consequently inhibit the ubiquitina-
tion of Nrf2, thereby saturating Keap1 with Nrf2 and 
preventing Nrf2 degradation [5–8]. Therefore, due to 
insufficient availability of Keap1, the newly synthesized 
Nrf2 accumulates and translocates to the nucleus, where 
it binds to the antioxidant-response element (ARE) and 
initiates the expression of cytoprotective genes and de-
toxifying genes to control redox homeostasis [5–7]. 

Initially, Nrf2 was solely considered as a regulator of the 
oxidative-stress response. Interestingly, over the past 
years, studies have implicated Nrf2 in the regulation of 
immune and inflammatory responses [9]. The innate 
immune response is the first line of defense, which relies 
on dedicated receptors to detect danger signals such as 
microbial infection and tissue damage and initiate the 
induction of antimicrobial molecules and inflammatory 
gene expression [10]. Nrf2 regulates the immune re-
sponse by interacting directly or indirectly with one or 
more of the major innate immune signaling components 
that maintains cellular homeostasis. In this short review 
article, we give a chronological summary of the past and 
more recent findings on the interactions between Nrf2 
and some of the major components of the innate im-
mune system (Figure 1). 

Nuclear factor erythroid 2-related factor 2 and 
toll-like receptors signaling 
Toll-like receptors (TLR), which trigger inflammatory 
signaling cascades in response to structurally conserved 
microbial patterns or host danger molecules, and Nrf2 
have been shown to interconnect in different ways to 
regulate the innate immune response [11,12]. TLR 
signaling can induce Nrf2 activation, and this is primarily 
found to be through autophagy-mediated degradation of 
Keap1 [13]. Briefly, TLR signaling induces expression of 
autophagy adapter protein p62, essential for modulating 
Keap1 degradation, thereby promoting activation of the 
Nrf2 pathway [13]. The Nrf2 gene product heme oxy-
genase-1 was also shown to be upregulated following 
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Nrf2 nuclear translocation and protein kinase C activa-
tion after lipopolysaccharide (LPS) stimulation and 
TLR4 engagement [14]. Other TLR agonists, such as 
peptidoglycan (TLR2), polyinosinic–polycytidylic acid 
(TLR3), and resiquimod (TLR7), have been high-
lighted to trigger Nrf2-mediated transcription of anti-
oxidant genes, hence stimulating cell survival [13,15]. 
Thus, TLR agonists may be considered as stimuli that 
induce Nrf2 to reduce stress and inflammation, linking 
the immune and antioxidant pathways. 

Conversely, Nrf2 activation may restrain TLR-mediated 
inflammatory response through induction of antioxidant 
proteins and inhibition of pro-inflammatory cytokines  
[16]. In addition, Nrf2 induction inhibits LPS-mediated 
activation of pro-inflammatory cytokines in macrophages  
[17] (Figure 2). Whereas Nrf2 has been generally ac-
cepted to control inflammation through the antioxidant 
response, these authors report transcriptional repression 
of pro-inflammatory cytokines, independently of the 
ARE motif and of ROS levels [17]. Moreover, Nrf2 may 
also directly control TLR expression as TLR4 and Nrf2 
protein levels are inversely correlated [18]. 

Nuclear factor erythroid 2-related factor 2 and 
the NF-κB pathway 
The NF-κB transcription factor is an important tran-
scriptional regulator of the innate immune response 
upon pathogen infection or tissue damage [19]. The 
interactions between TLR and Nrf2 signaling may arise 

from NF-κB pathway activation downstream of TLR 
signaling. Indeed, NF-κB factor is known to be sensitive 
to redox-status changes [20]. In this regard, Nrf2 has an 
indirect capacity to negatively regulate NF-κB through 
induction of the antioxidant response [21]. Furthermore, 
Keap1 suppresses NF-κB signaling by inducing IκB ki-
nase-β proteasomal degradation [22]. In addition, Nrf2- 
deficient mice present increased NF-κB activity upon 
LPS stimulation, supporting that Nrf2 can regulate the 
innate immune response by suppressing NF-κB activa-
tion [23]. 

Nrf2 and NF-κB display an antagonistic relationship. 
The NF-κB subunit p65 has been shown to negatively 
regulate Nrf2 transcriptional activation through depri-
vation of CREB-binding protein from Nrf2 and recruit-
ment of histone deacetylase 3 to the ARE region, 
thereby directly repressing Nrf2 transcriptional signaling  
[24]. Furthermore, p65 has also been shown to inhibit 
Nrf2 transcriptional activation through interaction with 
Keap1 [25] (Figure 2). Overall, this antagonistic inter-
action is crucial for maintaining cellular processes such as 
innate immune signaling, although this interplay mostly 
relies on second messengers or occurs through indirect 
transcriptional regulation. 

Nuclear factor erythroid 2-related factor 2 and 
the NLRP3 inflammasome 
Inflammasomes are cytoplasmic multimeric complexes 
formed in response to a variety of physiological and 

Figure 1  
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Timeline of the main discoveries in innate immunity and the most relevant achievements in the field of Nrf2–immuno interactions. Figure was created 
using BioRender.com.   
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pathogenic stimuli [26]. Inflammasome activation is an 
essential component of the innate immune response and 
is critical for the clearance of pathogens or damaged cells 
through pro-inflammatory cytokine secretion and/or cell- 
death induction [26]. The interaction between Nrf2 and 
inflammasomes has been extensively reviewed else-
where [27]. Yet, it is worth mentioning that while Nrf2 
activation is in general associated with an anti-in-
flammatory state, the literature on this topic is more 
contrasted. Indeed, during the last few years, a crosstalk 
and inverse correlation of both pathways in regulating 
inflammation became apparent. While ROS are natural 
inducers of the NLR Family Pyrin Domain Containing 3 
(NLR= NOD-like receptor) (NLRP3) inflammasome, 
Nrf2 can counteract the action of ROS through its anti-
oxidant activity, and it is reasonable to assume that Nrf2 
activation causes NLRP3 inflammasome inhibition [28]. 
Additionally, NF-κB, which is required to prime the 

inflammasome cascade by upregulating pro-in-
flammatory cytokine gene levels, also crosstalks with the 
Nrf2 pathway as described above. Finally, Nrf2 itself has 
been suggested to suppress the transcription of NLRP3 
and other inflammatory-associated genes such as IL-1β  
[17,29]. However, Nrf2 has also been reported to be 
required for optimal NLRP3 inflammasome activity  
[30,31]. This suggests that more profound mechanistical 
studies are still needed to decipher the exact involve-
ment of each player in this complex interaction. 

Mechanisms of type-I interferon regulation by 
Nuclear factor erythroid 2-related factor 2 
In addition to the induction of pro-inflammatory cyto-
kines through TLR/NF-κB and inflammasome sig-
naling, the type-I interferon (IFN) system constitutes an 
essential part of innate immunity. Type-I IFNs are 
produced upon recognition of foreign or self-DNA or 

Figure 2  
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Direct regulation of pro-inflammatory gene expression by Nrf2. Keap1 modification by electrophilic agents or ROS, prevents Nrf2 ubiquitination and 
degradation, hence allowing the newly synthesized Nrf2 to translocate to the nucleus, where it can initiate cytoprotective gene expression and 
establish redox control by binding to ARE regions. Following LPS stimulation, the NF-kB pathway is engaged to initiate a host of pro-inflammatory 
responses, such as IL-6 and interleukin 1 beta (IL-1β) gene expression. Nrf2 was shown to bind the proximity of these genes, thereby blocking the 
recruitment of RNA polymerase II to the IL-6 and IL-1β loci. The anti-inflammatory properties of Nrf2 were shown to be independent of its redox 
activity. The transcription factors Nrf2 and the NF-κB display an antagonistic relationship. NF-κB subunit p65 negatively regulates Nrf2 transcriptional 
activation directly and indirectly by interacting with Keap1. Figure was created using BioRender.com.   
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RNA and are best-known for inducing an antiviral state 
through the induction of interferon-stimulated genes 
(ISGs) [32]. Therefore, the role of Nrf2 in the type-I 
IFN response has mainly been investigated in the con-
text of viral infection. 

Dengue virus (DENV) infection in Nrf2-silenced 
monocyte-derived dendritic cells has been shown to 
trigger higher levels of interferon beta 1 (IFNβ) and 
ISGs, indicating an important role for Nrf2 in limiting 
antiviral responses upon DENV infection [33]. Activa-
tion of Nrf2 using sulforaphane inhibits vesicular sto-
matitis virus-induced antiviral response, thereby 
promoting the oncolytic activity of the virus in cancer 
cells [34]. More specifically, Nrf2 activation decreased 
nuclear localization of interferon-regulatory factor 3 
(IRF3), induction of IFNβ, and expression of the sub-
sequent ISGs through autophagy engagement [34]. Ac-
cordingly, Nrf2 activation suppresses IRF3 dimerization 
and expression of ISGs in human lung epithelial cells 
(A549) and human keratinocytes (HaCaTs) in response 
to a sequence-optimized RNA ligand [35]. Moreover, 
fibroblasts from Nrf2-deficient mice showed increased 
activation of IRF3 upon stimulation with LPS and poly- 
IC [23]. This suggests that Nrf2 represses IRF3- 
dependent type-I IFN induction. 

Stimulator of interferon genes (STING) plays an es-
sential role in innate immunity by mediating type-I IFN 
production upon recognition of cytoplasmic DNA or 
invading pathogens [36]. Nrf2 has also been found to 
inhibit STING expression, thereby increasing suscept-
ibility to herpes simplex virus (HSV) infection [37] 
(Figure 3). Interestingly, although Nrf2 does not control 
STING expression in mice [38], Nrf2-deficient mice 
exhibit increased basal level of type-I IFN and ISG le-
vels together with decreased susceptibility to HSV-2 
infection [38], and the Nrf2 activity was found to be 
associated with restriction of HSV-1 infection [39]. 
Moreover, Nrf2-dependent inhibition of STING and 
ISGs was shown in human melanoma cells, supporting a 
link between Nrf2 and the innate antiviral immune re-
sponse [40]. Altogether, Nrf2 has been demonstrated to 
broadly modulate the type-I IFN response. While Nrf2 
interferes with IRF3 activation, STING expression, and 
type-I IFN signaling, none of these crucial players in 
innate immunity have been demonstrated to be direct 
targets of Nrf2. 

Nuclear factor erythroid 2-related factor 2 and 
immunomodulatory metabolites 
Over the past decade, studies have identified cell-de-
rived immunomodulatory metabolites as potent Nrf2 

Figure 3  
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Type-I IFN and Nrf2 signaling pathway interactions. Cell-derived metabolites that display immunomodulatory properties include itaconate and its more 
cell-permeable derivative 4-OI. 4-OI has been shown to inhibit STING signaling and reduce IRF3 dimerization as well as limiting viral replication 
following SARS-CoV-2, HSV-1/2, Zika, and Vaccinia virus infection. Furthermore, OI also directly inhibits JAK1 phosphorylation and downstream 
interferon signaling. Figure was created using BioRender.com. 
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inducers. For example, tricarboxylic acid-cycle deriva-
tives itaconate or fumarate demonstrated anti-in-
flammatory activity in LPS-stimulated macrophages or 
virus-infected cells, respectively [41,42]. 

The immunomodulatory role of the Kreb’s cycle deri-
vative itaconate was first described when the immune- 
responsive gene-1 protein (IRG1) was identified, a mi-
tochondrial enzyme responsible for itaconic acid pro-
duction [43]. IRG1 and itaconate production were 
significantly increased in LPS-activated macrophages, 
promoting antimicrobial activity, and linking metabolism 
to the immune response [43]. Subsequently, 4-octyl 
itaconate (4-OI), its more cell-permeable derivative, was 
shown to activate Nrf2 through alkylation of Keap1 and 
exhibited anti-inflammatory properties by limiting IL-1β 
production [41]. However, another study showed that 
the original itaconate could not activate Nrf2 through 
Keap1 alkylation, suggesting that this could be attrib-
uted to its lower electrophilic properties compared with 
4-OI [44]. In agreement, Nrf2 activation by itaconate 
derivative, dimethyl itaconate (DI), was also demon-
strated to rely on its high electrophilic property and 
glutathione Glutathione Synthetase (GSH) deple-
tion [45,46]. 

Although stimulation with an RNA ligand enhanced 
IRG1 and itaconate levels [47], 4-OI inhibits IFN and 
ISG expression, creating a Nrf2-dependent negative- 
feedback loop between itaconate and the type-I IFN 
response [41,48] (Figure 3). In addition, 4-OI, such as 
Nrf2, was shown to repress STING levels and STING- 
dependent signaling [37]. 4-OI also restricted viral re-
plication of severe acute respiratory-syndrome cor-
onavirus 2 (SARS-CoV-2), HSV-1, HSV-2, Vaccinia 
virus, and Zika virus, independently of type-I IFN sig-
naling [35] (Figure 3). This indicates that the antiviral 
effect of Nrf2 activation by 4-OI may use various path-
ways to limit viral replication that have not been iden-
tified yet [35]. Furthermore, it has recently been 
demonstrated that 4-OI may also act independently of 
Nrf2 on the type-I IFN and inflammasome pathways  
[49,50]. 4-OI and derivatives can directly modify Janus 
Kinase 1 (JAK1), a tyrosine kinase important in type-I 
IFN signaling [49] (Figure 3). This is driven by 4-OI- 
mediated inhibition of JAK1 phosphorylation and de-
creased downstream Signal Transducer And Activator Of 
Transcription 1 (STAT1) phosphorylation in IFNβ-sti-
mulated cells [49]. Hence, it is important to consider that 
Nrf2-activating metabolites may also act as im-
munomodulators in a Nrf2-independent manner. The 
same was shown for itaconate and 4-OI in modifying 
NLRP3 and inhibiting inflammasome activation and IL- 
1β release in LPS-stimulated macrophages [50]. 

More recently, newly discovered itaconate derivatives 
mesaconate and citraconate have also been shown to 

exhibit immunomodulatory properties [51,52]. Ci-
traconate is the most electrophilic and therefore the 
strongest Nrf2 agonist [52]. Mesaconate and its precursor 
itaconate, but not citraconate, are both induced in LPS- 
stimulated macrophages [51,52]. Both mesaconate and 
citraconate demonstrate similar immunomodulatory 
properties by reducing the type-I IFN response [51,52]. 
While this immunomodulation is reported to be mainly 
independent of Nrf2 for mesaconate, this has not been 
investigated for citraconate [51]. Moreover, itaconate, 
mesaconate, citraconate, and OI decreased STAT1 
phosphorylation upon influenza-A virus (IAV) infection 
in both Tamm-Horsfall Protein 1 (THP1) and A549 cells  
[52], corresponding to the previously shown effects of 4- 
OI and DI [35,53]. In IAV-infected cells, citraconate was 
able to inhibit Interferon Induced Protein With Tetra-
tricopeptide Repeats 1 (IFIT1) and C-X-C Motif Che-
mokine Ligand 10 (CXCL10) expression [52]. 
Altogether, these studies on metabolites have expanded 
and strengthened our knowledge of the role of Nrf2 in 
innate immunity. However, further research is required 
to determine to which extent the metabolic im-
munomodulation is dependent on Nrf2. 

Nuclear factor erythroid 2-related factor 2 
regulates cytokine release and immune-cell 
recruitment 
The innate immune response is particularly important 
for recruiting immune cells to the site of infection by 
producing cytokines [54]. Here, Nrf2 was shown to in-
terfere with the transcriptional activation of pro-in-
flammatory cytokines IL-6 and IL-1β in LPS-stimulated 
macrophages by binding in the proximity of their pro-
motor region and preventing RNA polymerase-II re-
cruitment [17] (Figure 2). Whereas Nrf2 was generally 
thought to repress inflammation through the antioxidant 
response, this study was the first to show that the anti- 
inflammatory properties of Nrf2 were independent of 
redox control [17]. Moreover, Nrf2 was also shown to 
increase IL-8 mRNA stability [55]. Therefore, Nrf2 can 
promote cytokine expression at the transcriptional and 
post-transcriptional level. 

Another cytokine controlled by Nrf2 activity is IL-17D. 
IL-17D is part of the interleukin-17 family of pro-in-
flammatory cytokines and plays an important role in the 
antitumor immune response by mediating tumor rejec-
tion through NK-cell recruitment [56]. Nrf2 activation 
by tert-butylhydroquinone was shown to induce IL-17D 
expression, NK-cell infiltration, and delayed tumor 
growth in vivo [57]. In contrast, lung adenocarcinoma 
constitutively active for Nrf2 due to Keap1 mutations 
displayed a reduced infiltration of dendritic cells, CD4+, 
and CD8+ T cells [40]. Both Nrf2 and IL-17D expres-
sion were increased upon viral infection, indicating a role 
in antiviral response [57]. Hence, Nrf2- and IL-17D- 
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deficient mice increased susceptibility to mouse cyto-
megalovirus (MCMV) infection [58]. Furthermore, in-
nate immune- cell recruitment was shown to be 
controlled by Nrf2-induced IL-17D expression during 
MCMV infection in vivo [58]. Overall, Nrf2-mediated 
IL-17D expression plays an important role in the anti-
tumor as well as the antiviral response through regula-
tion of innate immune- cell recruitment. 

Conclusion 
Studies over the past decade have indicated Nrf2 as a 
major player in innate immunity. Nrf2 has been shown 
to widely control important innate immune components 
to maintain cellular homeostasis, implying a significant 
role for Nrf2 in diseases related to microbial infections, 
inflammation, and cancer. Nonetheless, further me-
chanistical studies are needed to decipher the exact in-
direct and/or direct interactions between Nrf2 and 
innate immune players, which will allow a better un-
derstanding of these diseases, and moreover, new pos-
sibilities for treatment strategies. 
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