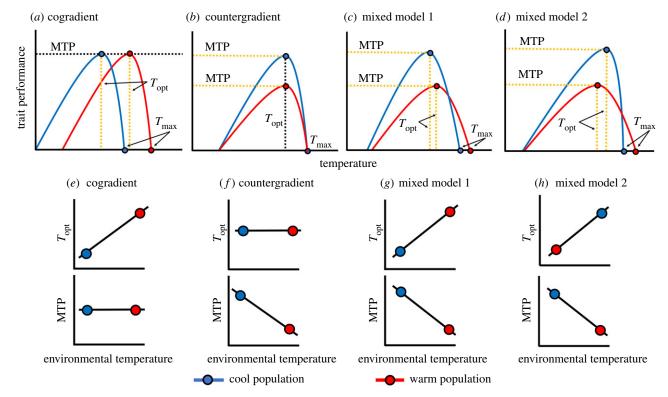
PROCEEDINGS B

royalsocietypublishing.org/journal/rspb

Correction

Cite this article: Villeneuve AR, Komoroske LM, Cheng BS. 2021 Correction to 'Environment and phenology shape local adaptation in thermal performance'. *Proc. R. Soc. B* **288**: 20212554.

https://doi.org/10.1098/rspb.2021.2554


Correction to 'Environment and phenology shape local adaptation in thermal performance'

A. R. Villeneuve, L. M. Komoroske and B. S. Cheng

(D) ARV, 0000-0001-7303-5931; LMK, 0000-0003-0676-7053; BSC, 0000-0003-1679-8398

Proc. R. Soc. B **288**, 20210741. (Published Online 28 July 2021) (doi:10.1098/rspb. 2021.0741)

Our correction is to figure 1 of the article, which contains a graphical design error resulting in switched line plots in panel h of the original article's conceptual figure. We have fixed the figure's error in this correction. We have also added two sentences to the caption of figure 1 which will aid the reader in figure interpretation. Changes to this figure and the figure caption do not impact any of our analysis, results, interpretations or conclusions.

Figure 1. Conceptual models of spatial patterns of thermal reaction norms, illustrated using TPCs (a-d) and TPC components (e-h). Under CoGV (a,e), thermal optima (T_{opt}) increases with environmental temperature, whereas maximum trait performance (MTP) is equal. Under CnGV (b,f), T_{opt} is equal between populations, while the cool population has higher MTP than the warm population. Under Mixed Model 1 (c,g), T_{opt} increases with environmental temperature, while MTP is highest in the cool population. Under Mixed Model 2 (d,h), both MTP and T_{opt} are greater in cool populations. Note the position of the warm population T_{opt} under Mixed Model 2 (h). The x-axis units of (e-h) are the measures of environmental temperature that are predicted to drive adaptation of trait variation. (Online version in colour.)