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ABSTRACT
The petroleum industry has an increasing interest in understanding the microbial communities
driving biofouling and biocorrosion in reservoirs, wells, and infrastructure. However, sampling of
the relevant produced fluids from subsurface environments for microbiological analyses is often
challenged by high liquid pressures, workplace regulations, operator liability concerns, and remote
sampling locations. These challenges result in infrequent sampling opportunities and the need to
store and preserve the collected samples for several days or weeks. Maintaining a representative
microbial community structure from produced fluid samples throughout storage and handling is
essential for accurate results of downstream microbial analyses. Currently, no sample handling or
storage recommendations exist for microbiological analyses of produced fluid samples. We used
16S rRNA gene sequencing to monitor the changes in microbial communities in hypersaline pro-
duced water stored at room temperature or at 4 �C for up to 7 days. We also analyzed storage at
�80 �C across a 3-week period. The results suggest ideal handling methods would include placing
the collected sample on ice as soon as possible, but at least within 24 h, followed by shipping the
samples on ice over 2–3days, and finally, long-term storage in the �20 �C or �80 �C freezer.
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Introduction

Produced waters are often used to study microbial proc-
esses in subsurface environments, such as conventional
and unconventional oil and gas fields, CO2 storage reser-
voirs, coal seams, and other petroleum-related environ-
ments (Dahle et al. 2008; Gulliver, et al. 2014; Strąpo�c,
et al. 2008). Investigations into the microbial ecology
related to hydraulic fracturing operations have particularly
raised interest throughout the last few years. High-volume
hydraulic fracturing operations typically produce hundreds
of thousands to millions of gallons of produced water,
hypersaline wastewater, throughout their completion and
operation (Clark and Veil 2009; Gregory et al. 2011).
Produced water is characterized by unique geochemical
characteristics, particularly elevated salinity, dissolved met-
als, and the presence of organic compounds that are
derived from both the fracturing fluid and subsurface for-
mation, often resulting in a unique composition of anaer-
obic, halophilic, and extremophilic microorganisms of high
scientific interest (Clark and Veil 2009; Gregory et al. 2011;
Lipus et al. 2017; Struchtemeyer and Elshahed 2012).

Due to a growing interest in produced water biological
activity, multiple studies have investigated the microbial
ecology of produced water from these types of subsurface
environments, in an effort to improve hydraulic fracturing
operations, support produced water recycling, and under-
stand mechanisms of microbial biocide resistance (Akob
et al. 2015; Akyon et al. 2015; Cluff et al. 2014; Daly et al.
2016; Gregory et al. 2011; Kahrilas et al. 2015; Lipus et al.
2017; Mohan et al. 2014; Murali Mohan et al. 2013;
Struchtemeyer et al. 2014; Struchtemeyer and Elshahed
2012; Vikram et al. 2014; et al. 2016; Wuchter et al. 2013).
In addition, significant industrial effort is expended to min-
imize microbial activity during hydraulic fracturing opera-
tions, as microbial activity in produced water from hydraulic
fracturing has the potential to cause corrosion, fouling, and
sulfide release, resulting in production interruptions and
environmental consequences (Daly et al. 2016; Gaspar et al.
2014; Gregory et al. 2011; Liang et al. 2016; Struchtemeyer
and Elshahed 2012). Historically, microbial activity was
determined through the ‘bug-bottle’ method, which has
since been replaced with more accurate methods such as
qPCR and 16S rRNA gene sequencing (Cluff et al. 2014;
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Lipus et al. 2017; Murali Mohan et al. 2013; Struchtemeyer
and Elshahed 2012). Changes in the microbial composition
of samples prior to these analyses may lead to inaccurate,
non-representative data resulting in ineffective operational
decisions, making appropriate sampling and storage guide-
lines indispensable. While we are specifically interested in
produced water from hydraulic fracturing operations, the
sampling of produced water from other operations and envi-
ronments faces similar challenges.

The effects of storage conditions on microbial commun-
ities in other types of environmental samples have previ-
ously been investigated (Lee et al. 2007; Lin et al. 2010;
Pepper et al. 2014; Petersen and Klug 1994; Rubin et al.
2013). Microorganisms in sediment cores were shown to
remain active during storage at a temperature of 4 �C,
resulting in altered microbial and geochemical patterns.
Similar observations were made for bacteria inhabiting plant
tissues, as storage at 4 �C resulted in a decrease of species
richness (Mills et al. 2012). In contrast, Lauber et al. (2010)
suggested different temperature conditions (between �80 �C
and 20 �C) and storage times (up to 14 days) to only have
minor effects on fecal, skin, and soil sample microbial com-
munities. These studies provide some insights into the
effects of storage on microbial communities in environmen-
tal samples. However, these guidelines are often applicable
to environmental samples that do not have the same set of
logistical challenges in the oil and gas industry, such as high
liquid pressures, workplace regulations, operator liability
concerns, and remote sampling locations. These methods
also do not represent microbial communities in aqueous
and hypersaline subsurface samples, that can be expected
from produced fluids.

We believe fluid and produced water from hydraulic frac-
turing processes and other subsurface operations represent a
unique environment (hypersaline, high metal, and organic
concentrations), which can impact the microbial community
structure during sample handling and storage. There are
currently no guidelines on how to store or handle produced
water samples for microbiological analyses. Produced water
samples for microbiological analysis are typically obtained
and handled onsite by well staff, due to workplace regula-
tions and liability concerns, before being transferred to
researchers for microbiological assessment, and thus are sus-
ceptible to inappropriate handling and storage practices.
These circumstances, together with the unique chemical
composition of hydraulic fracturing produced water, call for
defined sampling and storage procedures.

The goal of this study is to define specific handling and
processing guidelines for produced water samples intended
for microbiological analysis. We focused on the effect of
long term sample storage (>1week) in the freezer, and the
effect of short term storage (<1week) at room temperature
or in the fridge. The first is a commonly accepted method
for environmental water samples, but the effects have not
been evaluated for produced water. The latter can occur
when samples need to be transported long distance (e.g. on
ice) or the option to freeze the samples is not available.
Produced water sample microbial communities were

monitored for 7 days at two different storage temperatures
(4 �C and room temperature) using 16S rRNA gene sequenc-
ing. Room temperature was utilized to represent conditions
when samples could not be immediately placed on ice, while
4 �C was utilized to represent conditions expected in a ship-
ping container full of ice. Furthermore, we evaluated the
effect on the microbial ecology during storage at �80 �C for
3 weeks. �80 �C represents conditions expected in a ship-
ping container full of dry ice, or long-term storage in the
laboratory freezer. Sequences were taxonomically classified,
and alpha- and beta-diversity were calculated to understand
the changes in microbial ecology under varying storage
times and temperatures. We specifically investigated the
effects of storage condition and time on microbial commun-
ities in produced water from hydraulic fracturing operations,
however, we believe findings from this study may also be
applicable to produced waters from similar environments.

Materials and methods

Sampling

Samples used for time series experiments were obtained
from two produced water holding ponds (impoundments
used to store produced water) in Washington County, PA
(HP1 and HP2). A third sample was taken from a produced
water hauling truck (FWT). For each type of produced
water, 500mL were filtered on-site and filters were immedi-
ately preserved in TRIZOL (Life Technologies, Carlsbad,
CA) for analysis of the original sample ecology (referred to
as ‘Onsite’ samples). Furthermore, 1–2 L of each produced
water were sampled in sterile 1 L bottles. These fluids were
intended for the storage experiments. All samples were
stored on ice during transportation to the laboratory (less
than 2 h). Upon arrival in the laboratory produced water
samples were immediately frozen at �80 �C for 3 weeks
prior to processing.

Temperature and conductivity were assessed on site for
FWT and HP1 samples. Temperature and total dissolved
solids (TDS) concentration for HP1 and FWT samples were
also measured on-site. Sampling circumstances, timing, and
access restrictions did not allow on-site temperature and
TDS measurements for HP2 samples; however; the air tem-
perature during sampling was �1 �C.

Sample processing

Produced water samples were thawed on ice. For each stor-
age experiment condition, 250ml of produced water sample
was transferred to a sterile 1000mL glass bottle. Each sam-
ple was processed in duplicate, for a total of two biological
replicates per condition. Sub-samples for analysis (15mL)
were taken at the start of the experiment (Day 0), after
1 day, 2 days, 3 days, and 7 days. Samples were taken using a
sterile 15mL pipette and transferred into a 15mL Falcon
tube for further processing. During the experiment, sample
bottles were stored at 4 �C or room temperature (RT),
�25 �C, in a closed box on the laboratory workbench.
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Chemical analysis

TDS concentrations were determined using a Fisher
Scientific Accumet AP75 Conductivity/TDS meter (Thermo
Fisher Scientific, Pittsburgh, PA). The pH was measured
using a Thermo Fisher Education pH meter (Thermo Fisher
Scientific, Pittsburgh, PA). Cation concentrations were meas-
ured using a Perkin Elmer Atomic Absorption Spectrometer
1100 (Perkin Elmer, Bridgeville, PA). Anion concentrations
were determined using Thermo Scientific ICS-1100 Ion
Chromatograph (Thermo Fisher Scientific, Waltham, MA).
If necessary, produced water samples were filtered through a
0.45 lm membrane filter to remove solids, which may inter-
fere with atomic absorption and ion chromatography ana-
lysis. A detailed description of chemical methods can be
found in the Supporting Information.

DNA extraction

A 15mL sample from each treatment and each time point
was collected and biomass was harvested through centrifu-
gation at 10,000 rpm. Collected produced water biomass
was then digested with 10 ml of 20mg/mL lysozyme for
30min at 37 �C followed by DNA extraction using TRIZOL
(Life Technologies, Carlsbad, CA), according to manufac-
turer’s instructions. DNA from on-site samples preserved
in TRIZOL (Life Technologies, Carlsbad, CA) was also
extracted according to the manufacturer’s instructions. On-
site samples were processed in duplicates. DNA extractions
were performed under sterile conditions and control blanks
were included.

PCR

DNA was amplified using 16S rRNA gene primers, targeting
the V4 region, as described previously (Caporaso et al. 2012).
Briefly, PCR samples underwent an initial denaturation step
for 3min at 96 �C. Samples were then run for 40 cycles under
the following conditions: Denaturation occurred at 96 �C for
45 s, annealing at 50 �C for 60 s and elongation at 72 �C for
60 s. Final elongation was carried out at 72 �C for 10min.
Following amplification, 16S rRNA gene PCR products were
purified using AMPure beads (Beckman Coulter, Pasadena,
CA) and run on a 1% agarose gel for cleanup verification.
Post clean up DNA concentrations were assessed using Qubit
technology (Life Technologies, Carlsbad, CA). PCR amplifica-
tions were performed under sterile conditions and PCR con-
trols were included.

Sequencing

Cleaned up PCR products were pooled and diluted to a con-
centration of 20 nM. Diluted samples were then denatured
using fresh 0.2N sodium hydroxide for 5min at room
temperature and further diluted to 10 pMol library with
hybridization buffer HT1 according to the manufacturer’s
instructions (Illumina, San Diego, CA). The 10 pMol library
was spiked with 5% of 12.5 pMol PhiX control and sequenced

using a 300 cycle V2 Nano kit on an Illumina MiSeq sequen-
cer (Illumina, San Diego, CA). MiSeq sequencing generated
a single end read and barcode file.

Computational analyses

16S rRNA gene sequences were analyzed using QIIME ver-
sion 1.7.0 (Caporaso et al. 2010). Sequences were quality
trimmed at a quality score of 20 and demultiplexed. The
number of sequences generated for each sample varied
between 2506 and 21,147 with a median sequence length of
251.0 base pairs (Table S1). Operational Taxonomic Units
(OTU) were picked using the pick_closed_reference_otus.py
python script using UCLUST (Abdeljabbar et al. 2013)
against the 2013 GreenGenes core set gg_97_otus.fasta refer-
ence database with a 97% sequence similarity (Brown et al.
2011). To remove bias introduced through varying number
of sequences, 5000 sequences (1000 sequences for HP2 sam-
ples) successfully assigned to OTUs were randomly selected
for each sample and used for alpha diversity analysis.
Average microbial abundance data values were calculated
based on OTU data from both replicates. Observed species,
Chao1 and Shannon were calculated from OTU tables.
Alpha diversity was estimated by the number of OTUs
assigned per 1000 sequences for each sample. T-tests were
used to assess statistical differences between OTU measure-
ments across the sampling period. The data was prior deter-
mined to be normally distributed by plotting the sample
data and comparing the histogram to a normal probability
curve. Beta diversity was used to develop principal coordin-
ate plots utilizing UniFrac distance metrics (Lozupone and
Knight 2005). Weighted UniFrac distance matrixes were cal-
culated and used to compare on-site samples with subse-
quent experimental samples (Day 0, 1, 2, 3, and 7). We used
ANOSIM (analysis of similarity) to evaluate differences
in community structure across the 3week �80 �C storage
period. Furthermore, we evaluated correlations between
sample storage time and the relative abundance of the major
observed taxa across the 7 day storage period. ANOSIM
and Spearman calculations were performed using vegan in R
(Team R 2014). Sequences for each sample were uploaded
to MG-RAST and can be accessed under the accession num-
bers 4603074.3 (FWT), 4603075.3 (HP1), and 4603076.3
(HP2). Description for sequence FASTA headers can be
found in the Supporting Information (Figure S1).

Results

Sampling, geochemical characterization, and
sequencing statistics

Samples were collected from two different produced water
holding ponds and from a produced water hauling truck.
Produced water holding pond 1 (HP1) and truck (FWT)
samples were taken in June 2014, produced water holding
pond 2 samples (HP2) was taken in December 2013.
Temperature and TDS concentration were found to be
23.8 �C and 11.60mS for HP1 and 19.1 �C and 19.7mS for
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FWT. Chemical analysis results for all three samples were as
expected for produced water samples, characterized by high
TDS concentrations (Table 1) and in the range of previously
reported data (Cluff et al. 2014; Murali Mohan et al. 2013;
Struchtemeyer and Elshahed 2012). The highest TDS con-
centrations were measured for FWT samples at 52,500mg/L.
HP1 was found to have the lowest TDS concentration at
5300mg/L. HP2 had a TDS concentration of 18,500mg/L.
DNA sequences generated for each sample varied between
2506 and 21,147 with a median sequence length of 251.0
base pairs (Table S1).

Taxonomy

The taxonomic distribution of all samples is shown in
Figure 1, and taxonomic abundances for all samples are
listed in detail in Tables S1–S3. We evaluated if sample han-
dling (transport on ice from the sampling site) and storage
of samples for 3 weeks at �80 �C affected the community’s
structure. Results suggested these practices to slightly alter
the relative abundance of a few taxa, but to only minorly
affect the overall community composition. Most notable
changes in relative abundance between on-site and Day
0 samples were a 12% increase of Campylobacterales in
FWT, a 5% decrease of Rhodobacterales in HP1, and a 10%
increase of Sphingomonadales in HP1 (Figure 1). Statistical
analysis using ANOSIM supported these observations for
FWT samples (R¼ 0.331 and P¼ .15) and HP2 samples
(R¼ 0.333, P¼ .09), but also suggested the change in com-
munity structure for HP1 samples to be more significant
(R¼ 0.968, P¼ .07). These findings suggest that transport of
produced water samples on ice and long term storage at
�80 �C (a practice often used for environmental samples in
many research efforts) can lead to minor (and sometimes
significant) shifts in the relative abundances of individual
taxa, but preserves the overall community structure.

In addition, we evaluated the effects of short term stor-
age (up to seven7 days) at room temperature and at
refrigerator conditions (4 �C). The microbial community
structure of FWT samples remained constant during the
first 3 days but changed at room temperature after 7 days
(Figure 1A). Samples were initially dominated by bacteria of
the order Campylobacterales, with a relative abundance of

78% at Day 0. A shift in the microbial community profile
was detected under room temperature conditions after Day
3. The relative abundance of Campylobacterales decreased to
66% by Day 3 and to 2% by Day 7 (a decrease of 64%
across a 4 day period), while the relative abundance of
Alteromonadales increased to nearly 80%. No major changes
were observed for the FWT samples stored at 4 �C, in which
the community structure remained stable throughout the 7-
day period (Figure 1A). For FWT room temperature sam-
ples we identified a negative correlation between storage
time and Campylobacterales abundance (R ¼ �0.714 and
P¼ .02) and a positive correlation between storage time and
Alteromonadales abundance (R¼ 0.713 and P¼ .01) using
Spearman rank coefficient analysis (Table S4).

Storage results for the HP1 produced water samples
demonstrated that communities that were stored at room
temperature and 4 �C remained relatively stable over time,
however a slight shift in community structure was observed
for the RT samples (Figure 1B). Day 0 samples were domi-
nated by the orders Rhodobacterales (31% relative abun-
dance), Sphingomonadales (40%), Oceanospirillales (13%)
and Pseudomonadales (6%). Bacterial community structure
remained relatively constant for the first two days in both
the RT and 4 �C samples. Through days 3 and 7, the frac-
tions of Sphingomonadales (to 18% relative abundance)
and Oceanospirillales (to 11%) bacteria decreased slightly,
while bacteria of the order Pseudomonadales increased (up
to 28% relative abundance) in the samples stored at room
temperature. Only minor changes were observed in the
samples stored at 4 �C up to 7 days. No significant correla-
tions between the relative abundance of Rhodobacterales,
Pseudomonadales, or Oceanospirillales and storage time were
detected under either room temperature or 4 �C conditions.
However; Sphingomonadales abundance was inversely corre-
lated with storage time (R¼ 0.911, P¼ .01), supporting the
observed decrease in Sphingomonadales throughout the
experiment (Table S4).

The greatest effects of storage time and conditions on
microbial communities in produced water were observed for
the HP2 samples taken in December 2013. On-site sample
community structure was found to be dominated by
Campylobacterales (62% relative abundance), but to have
higher abundances of Bacteroidales, Desulfovibrionales, and
Desulfuromonadales than post freezing day 0 samples.
Storage results suggested that the microbial community
shifted quickly at room temperature while the shift was more
gradual at 4 �C (Figure 1C). Day 0 samples were dominated
by Campylobacterales (�75%). After 24 h at room tempera-
ture Campylobacterales relative abundance decreased to 17%
relative abundance, while Pseudomonadales (45%) and
Alteromonadales (13%) frequencies increased (Figure 1C).
By Day 7 Campylobacterales relative abundance had
decreased to 11%, while Pseudomonadales (up to 54%) and
Alteromonadales (up to 40%) had become even more abun-
dant (Figure 1C). In the samples stored at 4 �C, no changes
in microbial community structure were detected within the
first 3 days. Day 7 results revealed Pseudomonadales to be
the dominant order (49% relative abundance), while

Table 1. Chemical composition of produced water samples used in the study.

Sample Truck (FWT) Pond (HP1) Dec Pond (HP2)

Sampling date Jun-14 Jun-14 Dec-13
pH 6.53 7.27 7.35
Concentration (mg/L)
TDS (Total dissolved
solids)

52500.0 5300.0 18500.0

Calcium 6360.0 4850.0 1691.0
Sodium 18300.0 1720.0 5272.0
Barium 62.5 5.0 14.6
Strontium 727.0 39.2 1051.3
Iron 18.3 0.9 4.2
Magnesium 449.0 40.0 193.0
Manganese 2.0 BDL 0.3
Chloride 37600.0 3400.0 13867.0
Sulfate 3.7 71.5 66.5
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Campylobacterales relative abundance was found to have
decreased to 28% (Figure 1C). For both room temperature
and 4 �C conditions, our observations were supported by
Spearman rank coefficient correlation analysis.
We identified significant positive correlations between stor-
age time and the relative abundance of Pseudomonadales

(R¼ 0.911, P< .01) and Alteromonadales (R¼ 0.788,
P< .01) under room temperature conditions. We also iden-
tified a negative correlation between storage time and rela-
tive Campylobacterales abundance under room temperature
(R¼�0.881, P< 0.01) and 4 �C conditions
(R¼�0.812, P< .01).

Figure 1. Microbial community structure in hydraulic fracturing produced water samples from a hauling truck (FWT), and two holding ponds (HP1 and HP2),
preserved on-site and stored at room temperature or 4 �C over a time period of 7 days. On-site samples were stored at �80 �C for 3 weeks prior to
storage experiment.
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We also investigated to what extent the storage conditions,
specifically temperature, resulted in the emergence of specific
taxa. Genus level taxonomy analysis suggested the genera of
Marinobacter, and Shewanella to increase in relative abun-
dance in the room temperature samples (Figure S2A, Figure
S2C). The genus Arcobacter was found to decrease in relative
abundance under room temperature conditions in FWT and
HP2 samples (Figure S2A, Figure S2C). We did not observe
any effect of temperature of known thermophiles such as the
genus Thermoanaerobacter; however relative abundances for
this genus were generally low. Genus level taxonomy for all
three samples and temperature conditions is summarized in
Figure S2A–C.

Alpha diversity

Operational taxonomic units (OTUs) were utilized to deter-
mine the change in a number of microbial species of the
samples. The number of OTUs assigned per 1000 sequences
varied between samples (Table S5). The OTUs varied from
as low as 56 OTUs (HP2 room temperature) to as high as
156 OTUs (HP2 4 �C). Results demonstrated the observed
number of OTUs did not change under 4 �C conditions
throughout the 7-day storage period but decreased under
room temperature conditions throughout the 7-day storage
period for FWT and HP2 samples (Table S5). Statistical ana-
lysis revealed the number of OTUs in FWT and HP2 room
temperature samples to be significantly different at Day 7
compared to Day 0 (t-test, P< .05). No statistical differences
in the number of OTUs were observed across the 7-day
sampling period for HP1 room temperatures samples.

The same observations were made for HP1 4 �C samples,
HP2 4 �C samples, and FWT 4 �C samples.

The Chao1 and Shannon diversity measurements were
used to assess species richness and evenness (Hill et al.
2003; Magurran 2004). Results for both approaches suggest
diversity within samples to remain more stable at 4 �C than
room temperature. Chao1 estimates richness by taking into
account the abundance of each sequence belonging to a cer-
tain phylogeny in a sample and thus corrects for rare OTUs
(Hill et al. 2003). Chao1 values were found to decrease
under room temperature conditions over time, suggesting
population richness declined (Table S5). Chao1 values were
found to be significantly different in HP1 room temperature
Day 7 samples when compared to on-site and Day 0 sam-
ples (t-test, P< .05). Chao1 values at 4 �C conditions sug-
gested population richness to remain stable throughout
storage, with the exception of the HP2 samples, for which
population richness was found to increase within the first
2 days and then decrease until Day 7 (Table S5). The
Shannon index was used to determine population evenness;
microbial diversity and evenness were found to be the great-
est within the HP1 sample set and lowest within the FWT
sample set. Evenness values increased slightly over time in
FWT, HP1 and HP2 room temperature samples and HP1
4 �C samples (Table S5), suggesting microbial community
diversity was affected throughout the storage period.

Beta diversity

Weighted UniFrac principal coordinate analyses (Figure 2)
demonstrated that samples tend to cluster based on source
(e.g. FWT, HP1, HP2), rather than by time or storage

Figure 2. PCoA plot based on weighted UniFrac distances for microbial communities in three different types of hydraulic fracturing produced water preserved
on-site and stored at two different storage conditions over a 7 day period. The three different colors represent the different produced water types, sampled from dif-
ferent locations. The different shapes represent the sampling time points, as depicted in the figure legend. Samples clustering closely together are very similar in
community structure, while samples clustering apart from each other differ in community structure.
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condition. All on-site samples were found to cluster with the
Day 0 sample. The FWT room temperature Day 7 samples
clustered further away from the other FWT samples and
were found to group more closely with HP2 samples (Figure
2). Similarly, the HP2 room temperature Day 0 sample was
found to be an outlier and cluster separately from the other
HP2 room temperature samples (Figure 2). The HP2 4 �C
Day 7 sample was found to cluster with the HP2 room tem-
perature Day1, Day 2, Day 3, and Day 7 samples. Average
weighted UniFrac distances were found to be the greatest
for FWT room temperature Day 7 samples (0.62 ± 0.01)
and HP2 room temperature Day 2 (0.46 ± 0.02), Day 3
(0.52 ± 0.01), and Day 7 (0.48 ± 0.05) (Figure S3). Weighted
UniFrac distances relating HP2 samples stored at room tem-
perature were greater than UniFrac distances obtained for
samples under all other conditions (Figure S3). Although
taxonomic and alpha diversity analyses demonstrate change
according to the storage procedure, beta diversity analysis
suggests the microbial communities in most samples to
remain similar to the original samples across the storage
period. Exceptions were the Day 7 FWT samples stored at
room temperature, and the HP2 samples stored at room
temperature for more than 24 h.

Discussion

Technical challenges with sample handling and transport of
production water may lead to a considerable delay between
sample collection and sample processes. Recommendations
regarding the minimal handing requirements to maintain a
relevant microbial ecology currently do not exist. To address
this knowledge gap, we monitored the microbial ecology of
produced water from three different sources (two water hold-
ing ponds and one truck sample), at two temperatures (room
temperature and 4 �C) through a 7-day period (Days 0, 1, 2,
3, and 7). Furthermore, we evaluated how sample transport
(on ice) and subsequent long-term storage (at �80 �C) may
affect the microbial community structure in produced water.

We found that for all three produced water samples,
microbial taxonomy observed in produced water samples
stored at 4 �C on Day 3 was considered representative of the
Day 0 community structure based upon relative abundances
of major taxa and beta-diversity analyses. This suggests
transport on ice over a three-day period should still result in
a representative microbial community. Microbial community
composition in produced water samples stored at room tem-
perature was found to be more variable, with major taxo-
nomic profile changes being observed as soon as 24 h after
storage. These results were also confirmed through both
alpha- and beta-diversity analyses. This suggests the place-
ment of samples on ice as soon as possible to be ideal han-
dling methods, but at least within 24 h. Our study also
suggested produced water storage at �80 �C for 3 weeks can
result in minor shifts in microbial community structure,
however statistical analysis using ANOSIM suggested the
change to be insignificant (all P> .05). In addition, our
results also demonstrated that the unique chemical posses-
sion may play a role in how susceptible microbial

communities in produced water are to changes. We
observed significant changes in produced water samples,
which were characterized by higher salinities (FWT, HP2),
but did not observe these shifts in the produced water sam-
ples that were characterized by lower TDS concentrations.
Thus, geochemistry factors should be taken into account
when transporting and storing produced water samples.

We also specifically investigated if any potentially thermo-
philic taxa emerged under the tested conditions. Results sug-
gested the genera Marinobacter and Shewanella to increase
and Arcobacter to decrease under room temperature condi-
tions. However, none of these organisms is considered
specifically thermophilic and known to be selected by high-
temperature environments; on the contrary, members of the
genus Marinobacter have been described to survive in both
very low as well as high-temperature environments (Gauthier
et al. 1992; Kim et al. 2012). We also did not observe a dis-
appearance of specifically thermophilic organisms throughout
storage. The genus Shewanella typically grows at temperatures
around 20 �C; however, it has also been shown to sustain
growth under low-temperature conditions (Abboud et al.
2005). While certain Arcobacter species are known to live
under colder conditions (Donachie et al. 2005), members of
this genus are generally known to grow under a wide range
of temperatures (Van Driessche and Houf 2008).

These findings are consistent with previous storage con-
dition studies for environmental samples (Mills et al. 2012;
Pepper et al. 2014; Rubin et al. 2013; Struchtemeyer et al.
2014). Changes in microbial community structure in sedi-
ment core samples were observed when stored long term at
4 �C, confirming observations that microbes remain active at
these storage conditions resulting in changes over extended
periods of time (Mills et al. 2012). Similarly, studies investi-
gating storage conditions for soil samples intended for
microbial analysis suggested �20 �C or �80 �C as best long
term storage options and advised against storage at 4 �C
(Lee et al. 2007; Stenberg et al. 1998). However, our results
also show that guidelines proposed by Lauber et al. (2010),
which suggest soil and human-associated samples stored at
room temperature may be stored for up to 2weeks at room
temperature, cannot be applied to the unique produced
water environment. Similar to our findings, Lauber et al.
(2010) also highlight the impact environmental factors have
on microbial community structure and their role in making
samples more or less susceptible to changes in microbial
composition.

This study extends the current state of knowledge on
storage of environmental samples by investigating a saline
environment and including an on-site sample. Furthermore,
these results are particularly important as analysis of micro-
bial communities in produced water is an emerging focus
area and necessary to understand the role of microbes dur-
ing unconventional oil and gas production (Cluff et al. 2014;
Murali Mohan et al. 2013; Struchtemeyer et al. 2014). The
microbial community structures observed in our study was
similar (high relative abundance of halophilic taxa, such as
Marinobacter, and member of the Pseudomonadales and
Campylobacterales) to that previously observed in hydraulic
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fracturing produced water (Cluff et al. 2014; Lipus et al.
2017; Struchtemeyer and Elshahed 2012), and overall charac-
terized by halophilic aerobic and anaerobic microorganisms.
This suggests that the microbial ecology of our samples was
representative of that in other produced waters and that our
findings are likely relevant to other studies evaluating micro-
bial the community structures of hydraulic fracturing pro-
duced water. Proper produced water handling strategies
will be necessary when undergoing large scale studies that
include samples from many wells, sampled at different time
points and at various locations. Our results showed that
storage of produced water at room temperature, and after a
certain period of time at 4 �C, can degrade the original
microbial community structure and suggests the implemen-
tation of a protocol for produced water handling that
includes storage at 4 �C and processing within 3 days
of sampling.

Nevertheless, it is important to point out that the changes
in community structure observed in this study are specific
to the evaluated samples. Produced water samples from dif-
ferent locations and environments are likely different and a
similar experiment would lead to different shifts in the
microbial community structure and potentially different out-
comes. Results from this study do not necessarily imply that
storage at the described conditions leads to significant
changes in community structure, but rather that the risk for
degraded samples and consequently inaccurate results is
higher, should handling and storage under improper cir-
cumstance occur.

This study represents the first effort to evaluate the
effects of different storage conditions and storage times on
the microbial ecology of production waters from oil and gas
environments. Our results suggest produced water storage
and handling to be important for microbiological analyses.
Storing samples at room temperature for 24 h or longer may
lead to sample degradation, alter the taxonomic profile, and
limit the validity of the downstream analysis. To maintain
the original microbial community structure samples should
ideally be preserved on-site. If on-site sample processing is
not possible, our observations suggest storage of produced
water samples intended for microbiological analysis at 4 �C
for a short period of time (not more than 3 days) can main-
tain the original community structure. Long-term storage
should occur at �20 �C or ideally, at �80 �C. Comparisons
of samples preserved on-site and samples stored for 3 weeks
at �80 �C suggested long term freezer storage (�80 �C)
likely preserves the overall microbial taxonomy profiles, but
can also result in small relative abundance shifts. While
these results are based on analysis and observations made
with produced waters from hydraulic fracturing operations,
we believe this data to be also useful to scientists analyzing
produced waters from closely related subsurface environ-
ments, such as petroleum reservoirs or coal beds.
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