
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

9-15-2022

Neural Network Repair with Reachability Analysis Neural Network Repair with Reachability Analysis

Xiaodong Yang

Tom Yamaguchi

Tran Hoang-Dung

Bardh Hoxha

Taylor T. Johnson

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors Authors
Xiaodong Yang, Tom Yamaguchi, Tran Hoang-Dung, Bardh Hoxha, Taylor T. Johnson, and Danil Prokhorov

Neural Network Repair with Reachability Analysis

XIAODONG YANG, Vanderbilt University, USA
TOM YAMAGUCHI, TRINA, Toyota NA R&D, USA

HOANG-DUNG TRAN, University of Nebraska, USA

BARDH HOXHA, TRINA, Toyota NA R&D, USA

TAYLOR T JOHNSON, Vanderbilt University, USA
DANIL PROKHOROV, TRINA, Toyota NA R&D, USA

Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural

networks for perception and control. Formally verifying the safety and robustness of well-trained DNNs

and learning-enabled cyber-physical systems (Le-CPS) under adversarial attacks, model uncertainties, and

sensing errors is essential for safe autonomy. This research proposes a framework to repair unsafe DNNs

in safety-critical systems with reachability analysis. The repair process is inspired by adversarial training

which has demonstrated high effectiveness in improving the safety and robustness of DNNs. Different from

traditional adversarial training approaches where adversarial examples are utilized from random attacks and

may not be representative of all unsafe behaviors, our repair process uses reachability analysis to compute the

exact unsafe regions and identify sufficiently representative examples to enhance the efficacy and efficiency of

the adversarial training.

The performance of our repair framework is evaluated on two types of benchmarks without safe models as

references. One is a DNN controller for aircraft collision avoidance with access to training data. The other is a

rocket lander where our framework can be seamlessly integrated with the well-known deep deterministic

policy gradient (DDPG) reinforcement learning algorithm. The experimental results show that our framework

can successfully repair all instances on multiple safety specifications with negligible performance degradation.

In addition, to increase the computational and memory efficiency of the reachability analysis algorithm in

the framework, we propose a depth-first-search algorithm that combines an existing exact analysis method

with an over-approximation approach based on a new set representation. Experimental results show that our

method achieves a five-fold improvement in runtime and a two-fold improvement in memory usage compared

to exact analysis.

Additional Key Words and Phrases: Neural network repair, reachability analysis, safe reinforcement learning

1 INTRODUCTION
Despite success of deep neural networks (DNNs) in various applications, trustworthiness is still

one of the main issues preventing widespread use. Research has shown that DNNs may generate

undesired behaviors even with the slightest perturbations on input data. Recently, many techniques

for analyzing behaviors of DNNs have been presented [Anderson et al. 2020; Botoeva et al. 2020;

Dutta et al. 2018; Frankle et al. 2020; Katz et al. 2019; Singh et al. 2019; Sotoudeh and Thakur 2021b;

Tran et al. 2019c, 2020b; Urban et al. 2020; Urban and Miné 2021; Wang et al. 2020; Xiong and

Jagannathan 2021; Yang et al. 2021a, 2020, 2021b]. Given a DNN, these works can generate a safety

certificate over an input-output specification [Seshia et al. 2018]. However, due to the black-box

nature of DNNs, training safe DNNs or repairing their erroneous behaviors remains a challenge.

Existing works to improve the safety and robustness of DNNs can be classified into two main

categories. The first category relies on singular adversarial inputs to make specialized modifications

Authors’ addresses: Xiaodong Yang, Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN,

USA, xiaodong.yang@vanderbilt.edu; Tom Yamaguchi, TRINA, Toyota NA R&D, Ann Arbor, MI, USA, tomoya.yamaguchi@

toyota.com; Hoang-Dung Tran, University of Nebraska, Lincoln, NE, USA, trhoangdung@gmail.com; Bardh Hoxha, TRINA,

Toyota NA R&D, Ann Arbor, MI, USA, bardh.hoxha@toyota.com; Taylor T Johnson, Electrical Engineering and Computer

Science, Vanderbilt University, Nashville, TN, USA, taylor.johnson@vanderbilt.edu; Danil Prokhorov, TRINA, Toyota NA

R&D, Ann Arbor, MI, USA, danil.prokhorov@toyota.com.

ar
X

iv
:2

10
8.

04
21

4v
1

 [
cs

.L
G

]
 9

 A
ug

 2
02

1

proyster
Typewritten Text
Published in LNCS 13465: Formal Modeling and Analysis of Timed Systems. 20th International Conference, FORMATS 2022. Warsaw, Poland, September 13–15, 2022, Proceedings, pp. 221–236.

1:2 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

on neural weights that likely result in misbehavior. In [Sohn et al. 2019a], the authors propose

a technique named Arachne. There, given a set of finite adversarial inputs that cause undesired

behaviors, with guidance of a fitness function, Arachne searches and subsequently modifies neural

weights that are likely related to these undesired behaviors. The method supports specifications

consisting of a finite set of inputs instead of continuous regions. In [Goldberger et al. 2020], the

authors propose a DNN verification-based method that modifies undesirable behavior of DNNs

by manipulating neural weights of the output layer. The correctness of the repaired DNN can be

formally proved with the verification technique. However, the repair process is limited to a single

adversarial example in each iteration. Typically, DNNs may contain multiple unsafe input regions

over a continuous domain. In addition, the approach relies on modifications of the output layer,

which may limit its capability. The second category utilizes adversarial examples for retraining.

Adversarial training works such as [Goodfellow et al. 2014; Madry et al. 2017] have demonstrated

that incorporating adversarial examples into the training process can improve the robustness of

DNNs. However, DNNs may misbehave over continuous regions and infinitely many adversarial

examples. Despite the robustness improvements, this training approach cannot guarantee safety

for the learned DNNs. To solve this issue, some researchers incorporate reachability analysis in this

process, such that they can train a model that is provably safe against norm-bounded adversarial

attacks [Mirman et al. 2018; Wong and Kolter 2018]. Given a norm-bounded input range, these

approaches over approximate the output reachable domain of DNNs with convex regions. Then

they conduct robust optimization by minimizing the worst-case loss over these regions, which aims

to migrate all the outputs to a desired domain. The primary issue of these approaches is that the

approximation error accumulates during computation. For large input domains or complex DNNs,

their approximated reachable domain can be so conservative that a low-fidelity worst-case loss may

result in significant accuracy degradation. One promising alternative is to utilize exact reachability

analysis methods [Bak et al. 2020; Tran et al. 2020a, 2019c, 2020b; Yang et al. 2021a]. These methods

can compute the exact reachable set of DNNs and identify all the unsafe input regions.

In this paper, we propose a framework to repair DNNs, which combines adversarial training with

exact reachability analysis of DNNs. We demonstrate the method and repair DNN controllers with

respect to input-output safety specifications. In each iteration of the process, unsafe input regions are

computed and incorporated into the training data. The iterative process will terminate once a model

candidate is verified safe and also its performance is above a threshold. At the heart of our approach,

we utilize a novel exact reachability method that is optimized for identification of the unsafe input

regions. We also integrate our framework with learning algorithms of DNNs, specifically the deep

reinforcement learning (DRL). The feasibility and effectiveness of this DNN repair framework

is demonstrated on two types of benchmarks. One is an unsafe DNN of a horizontal collision

avoidance system where the training data is accessible. For unsafe DNNs where the training data is

available, the repair algorithm merges the unsafe regions of the model candidate to the training

data in each loop, as shown in Figure 3. The other benchmark is an application of our framework

on a DNN trained through a DRL algorithm. Here, the repair algorithm will be slightly modified

since DRL is utilized to learn policies that maximize the expectation of rewards in the long term,

as well as ensure reasonable behaviors by avoiding violations of safety constraints. The risk in

DRL is normally associated with the inherent uncertainty of the environment and the facet that

even an optimal agent may perform unsuccessfully with such stochastic natures. It is because the

maximization of long-term rewards only involve finite environment and agent states, and it does

not necessarily prevent rare occurrence of states that incur unsafe unsafe actions and subsequent

safety violations. There is significant recent work on safe RL [Alshiekh et al. 2018; Bouton et al.

2019; Cheng et al. 2019; Fulton and Platzer 2018; Huang et al. 2020; Islam et al. 2020; Sohn et al.

2019b; Xiong et al. 2020; Zhou et al. 2020]. Most existing work relies on high-fidelity knowledge

1:3

of the environment dynamics and, to our best knowledge, there exist few approaches that can

compute and eliminate risks from the environment uncertainty due to their non-determinism.

In contrast, the advantages of our framework for DRL are threefold. Firstly, our framework can

construct the all possible states as well as the uncertainties with regions. Secondly, our framework

considers all unsafe state spaces in the regions and efficiently explore these spaces to reduce risks

where the elimination of risks can be formally verified. Thirdly, our framework is well compatible

with its learning process, with few adjustments needed for repair.

We summarize our contributions as follows: (1) We propose a framework for repair of DNNs with

respect to input-output safety specifications. Our method does not require safe model references

and can successfully repair unsafe DNNs on multiple safety specifications with negligible impact

on performance. (2) The method can be utilized with deep reinforcement learning to generate

provably safe agents. (3) We present a novel depth-first-search reachability analysis algorithm that

includes both exact and over-approximation methods. This results in a five-fold computational

speedup and two-fold memory reduction when compared to other state-of-the-art approaches. (4)

The framework is evaluated on two benchmark problems where the detailed evolution of model

candidates under repair is thoroughly analyzed.

2 PRELIMINARIES
2.1 Reachability Analysis and Set Representation
Reachability analysis is a process of computing reachable sets for the states of a system w.r.t.

an initial state domain. For DNNs, given an input set bounding all possible inputs, reachability

analysis computes its output reachable domain. In other words, it computes the domain of all

possible outputs that the DNN can produce given an input range. The set normally refers to a

convex polytope or a convex region bounded with linear constraints. In this process, sets will be

sequentially updated by the affine mapping and activation functions in neurons in the DNNs until

the last layer where the final sets compose the reachable domain of the DNN. The choice of set

representation is a critical component of reachability analysis algorithms, and it has implications in

computational complexity and accuracy of the approach. There are many mathematical structures

that enable the definition of a convex polytope. For example, the half-space representation defines

a polytope as a set of finite linear constraints. The vertex representation defines a polytope with

a finite number of extreme points. The reachability analysis method in this work mainly relies

on two set representations. One is the FVIM [Yang et al. 2021a] for exact reachability analysis,

and the other one, a novel over-approximation approach proposed in this work, is the V-zono

representation proposed in Section 5. The new representation improves the computation speed

and memory footprint of the algorithm. In the following, we review the FVIM representation for

exact reachability analysis of DNNs [Yang et al. 2021a].

2.2 Facet-vertex Incidence Matrix
A facet-vertex incidence matrix (FVIM) is a complete encoding of the combinatorial structure of a

convex set or a polytope [Henk et al. 2004]. It describes the containment relation between facets

of a polytope and its vertices, where facets and vertices are types of faces and they are defined in

Definition 2.1. The FVIM approach for exact reachability analysis of ReLU DNNs has been shown

to be very efficient compared to approaches with different set representations [Yang et al. 2021a].

One example of the FVIM representation of a 3-dimensional polytope 𝑆 is shown in Figure 6. The

polytope contains eight vertices denoted as vs and six facets denoted as 𝐹 s. Each facet is a face of 𝑆
which contains four vertices. For instance, the facet 𝐹1 denotes the plane containing vertices v1,
v2, v3 and v4. The complete containment relation between vertices vs and facets 𝐹 s is encoded in

1:4 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

the FVIM on the left matrix. Together with real values of vertices, FVIM can represent the set 𝑆 .

Formally, it is defined as follows.

Definition 2.1 (Faces). Given a polytope 𝑆 and a supporting hyperplaneH : 𝑎⊤𝑥 + 𝑏 = 0 whose
halfpsace 𝑎⊤𝑥 + 𝑏 ≤ 0 or 𝑎⊤𝑥 + 𝑏 ≥ 0 contains 𝑆 , if the dimension of 𝐹=H ∩ 𝑆 is 𝑘 , then 𝐹 is a
𝑘-dimensional face of 𝑆 and denoted as 𝑘-face. A full-dimensional convex polytope 𝑆 ⊆ 𝑅𝑑 contain
0-faces,1-faces, . . . , (𝑑-1)-faces which are respectively named vertex, edges, . . . , facets. The cardinality
of 𝑘-faces is denoted as 𝑓𝑘 (𝑆).
Definition 2.2 (Facet-vertex incidence matrix). The facet-vertex incidence matrix of a full-

dimensional polytope 𝑆 ∈ R𝑑 is a matrix F ∈ {0, 1}𝑓𝑛-1 (𝑆)×𝑓0 (𝑆) where the entry F (𝐹, v)=1 indicates
that the facet 𝐹 contains the vertex v, while the entry F (𝐹, v)=0, otherwise.

1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1
1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 1
1 0 0 1 1 1 0 0

v 2

v1

v 3

v 4

v5v 6

v7 v 8

v1 v 2 v 3 v 4 v5 v 6 v7 v 8

F1

F2

F3

F4

F5

F6

Fig. 1. Example of the facet-vertex incidence matrix.

Reachability analysis of DNNs with FVIM consists of the sequential application of two main

processes. One is affine mapping of the input set by the weights and bias for each layer. This is

followed by the transformation operation on the input set through each neuron in the layer. For

affine mapping, one useful attribute of FVIM is that it actually only changes the value of vertices

and will preserve the FVIM, which can ensure an efficient computation. As the input set passes

through neurons, our algorithm checks whether the input range spans over the two linearities of

the ReLU function. This is done by computing the lower bound and upper bound of the range. If

it spans both linearities, then subsets belonging to different linearities are processed separately.

The computation of the lower bound and upper bound of a set is one of primary challenges in

the reachability analysis of DNNs. In other works, this problem is commonly encoded with LP

solvers [Bak et al. 2020; Tran et al. 2019c; Wong and Kolter 2018; Zhang et al. 2018], which normally

deal with a large number of variables and may exhibit undesired efficiency. In contrast, FVIM

encodes all the vertices of the set which can be directly used to determine the lower bound and

upper bound of the set. Thus the LP problems can be avoided.

3 DEEP NEURAL NETWORK REPAIR
It has been shown that training of DNNs with adversarial examples is an effective way to improve

its robustness with respect to safety [Athalye et al. 2018; Goodfellow et al. 2014; Madry et al. 2017;

Tramer et al. 2020]. These methods utilize a relatively small number of adversarial examples to train

more robust DNNs. However, for DNN applications in safety-critical systems, additional guarantees

are necessary. It is important to go from robustness improvements to safety guarantees without

sacrificing performance of the DNN.

3.1 Provably Safe DNNs
Let N : 𝑋 → 𝑌 where 𝑋 and 𝑌 are the input and output space be a Deep Neural Network such

that given an input x ∈ 𝑋 , produces an output y = N(𝑥) ∈ 𝑌 . The safety verification problem of

DNNs w.r.t. safety properties is formally defined as follows.

1:5

Definition 3.1 (Safety Property). A safety property P of a DNN N specifies an input domain
I ⊆ 𝑋 and a corresponding unsafe output domainU ⊆ 𝑌 .

Definition 3.2 (DNN Safety Verification). A DNN is safe on a property P, or N |= P, if for
any x ∈ I and y = N(x) then y ∉ U. Otherwise, it is unsafe, or N ̸|= P.

Given a set of safety properties {P}𝑛𝑖=1, a performance function A, and a candidate DNN N , we

define the DNN Repair problem as the problem of retraining or repairing the DNN to generate

a new DNN N ′ such that all the properties are satisfied and the accuracy or performance of the

candidate DNN is maintained. For classification DNNs, the performance function A refers to the

classification accuracy on test data. For DNN agents in DRL, A refers to the averaged rewards on

certain number of episode tests.

Problem 3.1 (DNN Repair). Given a DNN candidateN , safety properties {P}𝑛𝑖=1 and performance
function A, train a DNN N ′ such that N ′ |= {P}𝑛𝑖=1 and also 𝐴(N ′) − 𝐴(N) ≥ Y. Y is a constant
value used to set the performance threshold.

3.2 Reachability Analysis of DNNs with Backtracking
At the core of our approach, a reachability analysis method is utilized to determine specification

violations. While traditional reachability analysis of neural networks focuses on computing output

reachable domain given an input domain, for neural network repair, it is just as important to

backtrack the unsafe reachable domain to the corresponding unsafe input domain containing

all adversarial examples. The input domain that generates unsafe behaviors is then used for the

training/repair process of the DNN. The computation of the unsafe input domain is normally

associated with the computation of its output reachable domain. The algorithm needs first to

determine the overlap between the reachable domain and the predefined unsafe domain before

backtracking the corresponding unsafe input space. The computation of output reachable domain

as well as the subsequent computation of unsafe input spaces are defined in Definition 3.3 and 3.4.

They are also illustrated in Figure 2. Given an input set I𝑖𝑛 , a square input domain in blue, the exact

output reachable domain O can be computed by O = N(I𝑖𝑛). When O overlaps with the unsafe

domainU which is O𝑢 = O ∩ U and O𝑢 ≠ ∅, we can compute the unsafe input space I𝑢 in red

area that only contains all the inputs leading to the safety violation.

Definition 3.3 (Output Reachable Domain). Let the computation of reachable sets of a DNN
N be denoted as N(·). Given an input set I𝑖𝑛 to N , a set of output reachable sets {𝑆}𝑛

𝑘=1
of N can be

computed as {𝑆}𝑛
𝑘=1

= N(I𝑖𝑛). We define the output reachable domain as O =
⋃𝑛

𝑘=1 𝑆𝑘 .

Definition 3.4 (Unsafe Input Domain). Given an input set I𝑖𝑛 to a DNN N and its output
reachable domain O that contains reachable sets {𝑆}𝑛

𝑘=1
, if O overlaps with the unsafe domain U,

then it is denoted as O𝑢 = O ∩U and O𝑢 is named unsafe output reachable domain. The computation
of the unsafe input domain refers to the process of computing a set of input subsets {𝐼 }𝑚𝑖=1 ⊂ I and
I𝑢 =

⋃𝑚
𝑖=1 𝐼𝑖 , such that ∀x ∈ I𝑢 , its output y ∈ O𝑢 and also that ∀x ∉ I𝑢 , its output y ∉ O𝑢 . This

process is denoted as I𝑢 = B(O).

Next, the algorithm for the computation of reachable sets will be presented in detail. We assume

that DNNs consists of one input layer, multiple hidden layers with ReLU neurons, and one output

layer with identity neurons. Except for the input layer, the computation in each layer includes

affine mapping by the weights and bias ahead and also the process with neurons. affine mapping is

denoted as T(·). The computation function for each neuron is denoted as E(·). Given an incoming

set 𝑆 ∈ R𝑑 to a layer of 𝑙 neurons, 𝑆 will be first mapped by T(·) into 𝑆 ′ ∈ R𝑙 where the dimension

𝑥𝑖 of x ∈ 𝑆 ′ is the input of 𝑖𝑡ℎ neuron.

1:6 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

Unsafe
domain

Input set Exact reachable domain

Unsafe space Overlapped area u

in in()

Unsafe
domain

Input set Exact reachable domain

Unsafe space Overlapped area

Fig. 2. Computation of exact reachable domain and identification of unsafe spaces.

Each ReLU neuron has two different linearities over its input range. For the 𝑖𝑡ℎ neuron, it can be

denotes as 𝑥𝑖 = ReLU(𝑥𝑖) where for 𝑥𝑖 < 0, 𝑥𝑖 = 0 and for 𝑥𝑖 ≥ 0, 𝑥𝑖 = 𝑥𝑖 . For the process E𝑖 (𝑆 ′) of
𝑆 ′ with the 𝑖th neuron, there are totally three different cases. The first one is that 𝑆 ′ only locates in

the range 𝑥𝑖 < 0. In this case, the dimension 𝑥𝑖 of all x ∈ 𝑆 ′ will be set to 0, which is equivalent to

an affine mapping on 𝑆 ′. The second case is that 𝑆 ′ only locates in the range 𝑥𝑖 ≥ 0, where 𝑆 ′ will
stay unchanged. The third case is that 𝑆 ′ spans the two ranges. In this case, 𝑆 ′ will be divided into

two subsets by a hyperplaneH : 𝑥𝑖 = 0, with each of subsets lying in one range 𝑥𝑖 < 0 or 𝑥𝑖 ≥ 0.
Then, on each subset, either the first or second case is applied.

Overall, the process for one input set with a neuron can generate at most 2 sets. These sets will

be subsequently processed with another neuron until all the neurons in the layer are considered.

Let the computation of one layer be denoted as L(·). It then can be formulated as in Equation 1

where 𝑙 denotes the number of neurons. The order in which the neurons in a layer are processed is

not important. Given an input set 𝑆 , in the worst case, it can output𝑂 (2𝑙) sets. Based on Equation 1,

the output reachable domain of a DNN can be computed layer by layer as in Equation 2 where 𝑘

denotes the number of layers. Suppose the DNN includes 𝑛 ReLU neurons, it will generate 𝑂 (2𝑛)
reachable sets.

L(𝑆) = (E𝑙 ◦ · · · ◦ E2 ◦ E1 ◦ T) (𝑆) (1)

N(𝑆) = (L𝑘 ◦ · · · ◦ L2 ◦ L1) (𝑆) (2)

Since different linearities of a ReLU neuron are separately considered in each E(·), the compu-

tation of output reachable sets of a DNN is also equivalent to the reachability analysis for linear

regions of the DNN. A linear region of a piecewise function like ReLU DNNs refers to the maximum

convex subset of the input space, on which the function is linear. Taking this fact into account, the

work [Yang et al. 2021a] proposes the set representation FVIM to track the connection between

reachable sets and their linear regions, such that for any output sets that violates safe properties

can be backtracked to its linear region and thus can identify the unsafe input space.

In order to compute the unsafe input domain, which is needed for DNN repair, we need to first

compute the 𝑂 (2𝑛) reachable sets. In practice, only a portion of these reachable sets may violate

safety specifications and a large amount of the computation is wasted on the safe reachable sets.

Therefore, to improve the computational efficiency, we develop a method to filter out such sets and

avoid additional computation.

Remark 3.1. Our reachability analysis algorithm, in the worst case, will require computation of
𝑂 (2𝑛) reachable sets with 𝑛 ReLU neurons in N(·) and B(·). We aim to develop an over-approximation
method to verify the safety of sets computed in Equation 1, such that we can filter out the safe set that
will not violate the properties Ps and avoid unnecessary subsequent computation.

To solve this problem, we propose an algorithm that integrates an over-approximation method

with the exact analysis method. Over-approximation methods can quickly check the safety of an

1:7

input set to DNNs. The integration is done as follows. Before an input set 𝑆 is processed in a layer

L(·), its safety will be first verified with the over-approximation method. If it is safe, it will be

discarded, otherwise, it continues with the exact reachability method. Suppose there are𝑚 ReLU

neurons involved in the computation in Equation 2, then it can generate 𝑂 (2𝑚) reachable sets
whose computation can be avoided if 𝑆 is verified safe. The integration of the over-approximation

algorithm also improves the memory footprint of the algorithm since a large number of sets are

discarded early in the process. Another problem of the method based on Equation 1 and 2 is the

memory-efficiency issue. As introduced, their computation may take up tremendous amount of the

computational memory, may even result in out-of-memory issues, due to the exponential explore

of sets. To solve this problem, the algorithm above is designed with the depth-first search, by which

the memory usage can be largely reduced. The details of the over-approximation algorithm are

presented in Section 5.3.

3.3 DNN Repair for Deep Reinforcement Learning
In deep reinforcement learning (DRL), an agent is replaced with a DNN controller. The inputs to

the DNN are states or observations, and their outputs correspond to agent actions. A property P
for the DNN agent defines a scenario where it specifies an input state space I𝑖𝑛 containing all

possible inputs, and also a domainU of undesired output actions. Here, safety is associated with an

input-output specification and reachability analysis refers to the process of determining whether

a learned DNN agent violates any of its specifications and also the computation of unsafe state

domain. This is formally defined as follows.

Definition 3.5 (Safe Agent). Given multiple safety properties {P𝑖 }𝑛𝑖 for a DNN agent N , the
learned agent is safe if and only if for any P𝑖 , the reachable domain O [𝑖] for its input state space I [𝑖]

𝑖𝑛

by O [𝑖] = N(I [𝑖]
𝑖𝑛
) does not overlap with its unsafe action spaceU [𝑖] , namely, O [𝑖] ∩U [𝑖] = ∅.

An unsafe agent has the state domainsO𝑢 where their states will result in unsafe actions. Since the
traditional adversarial training is usually for regular DNN training algorithms with existing training

data, how to utilize such states or adversarial examples in DRL to repair unsafe behaviors remains

a problem. By considering the fact that DRL learns optimal policies in interactive environments

by maximizing the expectation of rewards, one promising way will be introducing penalty to the

occurrence of unsafe actions during the learning, such that safety can also be naturally learned from

the unsafe state domain. This strategy can also ensure the compatibility with the DRL algorithms,

such that they can be seamlessly integrated. Its details are presented in Section 4.1.

4 FRAMEWORK FOR DNN REPAIR
In this section, we propose a solution to Problem 3.1. The primary idea of our approach is to utilize

reachability analysis to incorporate adversarial information into the training process. Different

from regular adversarial training which obtains adversarial examples from random attacks, we

consider the entire adversarial region by selecting representative examples which are sufficient to

represent the region. The general approach is shown in Figure 3. The retraining process consist

of several epochs. For each epoch, reachability analysis, as described in Figure 2, is conducted to

compute the exact unsafe input domain I𝑢 and its unsafe output reachable domain O𝑢 for each

safety property in {P}𝑛𝑖=1. I𝑢 and O𝑢 together are named unsafe data domain, which is formally

defined in Definition 4.1. Then data pairs (x, y) with x ∈ I𝑢 and y ∈ O𝑢 which sufficiently represent

the unsafe input domain are selected. The selection process is presented next. After determining

the representative data pairs, the unsafe output y for a particular adversarial example needs to be

corrected before adding it to the original training data. This correction normally requires a safe

1:8 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

model as a reference. But in practice, this reference model is usually not available. Therefore, we

propose two alternatives for the correction step. One is achieved by editing the unsafe y to its

closest safe ŷ in the reachable space. The other is for the DRL where unsafe data pairs of the state

and action will be penalized through rewards, such that safety can be naturally learned along with

the optimal policies. The first case is presented next.

 Safe Data
Domain

Unsafe Data
Domain

Safe Data
Domain

Training Data Model
Candidate

Merge

Merge

Train

Correction

(x , y)

(x , y) (x , ŷ)

Reachability Analysis

Fig. 3. Framework for neural network repair.

Definition 4.1 (Unsafe Data Domain and Unsafe Data Pair). Given the unsafe input domain
I𝑢 of a DNN N on the safety property P with I𝑢 =

⋃𝑚
𝑘=1 𝐼𝑘 , the unsafe reachable domain O𝑢 is

computed by O𝑢 =
⋃𝑚

𝑘
𝑂𝑘 where 𝑂𝑘 = N(𝐼𝑘) as described in Definition 3.4. Then the pair I𝑢 and O𝑢

is defined as the unsafe data domain of the DNN on the property P, containing unsafe data pairs (x, y)
with x ∈ I𝑢 , y = N(x) ∈ O𝑢 .

Given a DNN with 𝑛 safety properties and a set of 𝑙 training data pair (x, y)s, the DNN repair

problem to satisfy all 𝑛 properties as well as maintain its performance is formulated as

minimize
\

(𝑛∑︁
𝑖=1

max
x∈I [𝑖]𝑢

𝐿(𝑓\ (x), ŷ) +
𝑙∑︁

𝑗=1

𝐿(𝑓\ (x𝑗), y𝑗)
)

(3)

where 𝑓 denotes DNN, \ denotes the weight parameters, and ŷ represents the optimal safe output

for the correction of y in the unsafe data pair (x, y) on property P𝑖 , and this correction refers to

the correction procedure in Figure 3. Without safe model references for repair, we set ŷ to be the

closest safe data to y in the space, on which ∥y − ŷ∥ is minimal. The problem of finding ŷ can be

encoded as a LP problem of finding a ŷ on the boundaries ofU [𝑖] such that the distance between ŷ
and y is minimal, where the optimal ŷ is located on one of its boundaries along its normal vector

from y. Let the vector from y to ŷ along the normal vector be denoted as Δy. Then, the problem of

finding ŷ can be formulated as

ŷ = y + (1 + 𝛼)Δy, min
ŷ∉U [𝑖]

∥y − ŷ∥ (4)

where 𝛼 is a very small positive scalar to divert ŷ from the boundary ofU [𝑖] into the safe domain.

The y ∈ O [𝑖]𝑢 that leads to the maximum loss value for the interior maximization of Equation 3

is from the extreme points of O [𝑖]𝑢 , namely, its vertices, because this loss is associated with the

maximum distance Δy among y ∈ O [𝑖]𝑢 . Let 𝑉𝑆 be the set of vertices of O [𝑖]𝑢 , and 𝑉𝑘 be the set

of vertices of 𝑂𝑘 where 𝑂𝑘 = N(𝐼𝑘). Since O [𝑖]𝑢 =
⋃𝑚

𝑘=1𝑂𝑘 then 𝑉𝑆 ⊆
⋃𝑚

𝑘=1𝑉𝑘 . Recall that an

unsafe input set 𝐼𝑘 is a linear region of the DNN, over which the DNN is linear. Therefore, 𝑂𝑘 is

essentially an affine mapping from 𝐼𝑘 and the vertices of 𝐼𝑘 one-to-one correspond to 𝑉𝑘 of 𝑂𝑘 . We

can conclude that the vertices of unsafe input sets {𝐼 }𝑚
𝑘=1

contain the optimal x ∈ I [𝑖]𝑢 =
⋃𝑚

𝑘=1 𝐼𝑘
for the interior maximization of Equation 3. Moreover, vertices are sufficient to represent a convex

domain. Therefore, the vertices of unsafe input sets {𝐼 }𝑚
𝑘=1

can sufficiently represent the unsafe

1:9

input domain I [𝑖]𝑢 , and data pairs (x, y) where x belongs to the vertices of {𝐼 }𝑚
𝑘=1

and y belongs

to the vertices {𝑂}𝑚
𝑘=1

can represent the unsafe data domain. These data pairs will be selected to

merge into the training data for the adversarial training, which is themerge procedure in Figure 3.

The framework is also described in Algorithm 1. To maintain the performance of the repaired

DNN, a threshold is also included in Line 5. Function reachAnalysis is used to compute all the

safe and unsafe data domains of a DNN on multiple safety properties. Lines 4 and 7 generate

representative data pairs for the adversarial training in Line 10. Function Correction applies a

correction on y corresponding to Equation 4.

Algorithm 1 DNN Repair

Input: N , (x, y)training # an unsafe DNN and its training data

Output: N ′ # an safe DNN satisfying all its safety properties with a desired performance

1: procedure N ′ = Repair(N)

2: N ′← N
3: while true do
4: Dunsafe, Dsafe = reachAnalysis(N , {P}𝑚𝑖=1) # compute unsafe and safe data domains

5: if Dunsafe is empty and A(N ′) − A(N) ≥ Y then # A: performance function

6: break and return N ′
7: (x, y)safe, (x, y)unsafe = Vertices(Dunsafe, Dsafe) # representative data pairs

8: (x, ŷ) = Correction((x, y)unsafe)
9: merge (x, ŷ), (x, y)safe to (x, y)training
10: N ′ = Update(N ′, (x, y)training)

4.1 Framework for Deep Reinforcement Learning
DRL is a machine learning technique where a DNN agent learns in an interactive environment

from its own experience. Our framework aims to repair an unsafe agent which violates its safety

properties while performance is maintained. The difference of the framework for DRL with the

general framework in Figure 3 is the correction of y in unsafe data pairs (x, y). The correction in

this modified framework is achieved by introducing a penalty to the unsafe data pair observed in

the learning process, from which safety can be learned. In the following, we introduce the repair

framework for DRL.

In a regular learning process, in each time step, the agent computes the action and the next

state based on the current state. A reward is assigned to the state transition. This transition is

denoted as a tuple ⟨𝑠, 𝑎, 𝑟, 𝑠 ′⟩ where 𝑠 is the current state, 𝑎 is the action, 𝑠 ′ is the next state, and 𝑟 is
the reward. Then, this tuple together with previous experience is used to update the agent. The

sequence of time steps from the beginning with an initial state to the end of the task is called an

episode. With appropriate parameters settings, the performance of an agent may gradually converge

to the optimum after a number of episodes. A good learning also relies on effective policy-learning

algorithms. The DRL approach in this work considers one of the most popular algorithms, the

deep deterministic policy gradients algorithm (DDPG) [Lillicrap et al. 2015] and is utilized on the

rocket-lander benchmark
1
inspired by the lunar lander [Brockman et al. 2016].

As introduced, the correction of unsafe data pairs (x, y) is achieved through self-learning by

assigning penalty to unsafe behaviors. Here, x refers to the state input 𝑠 to the DNN agent and

y refers to its output action 𝑎. The new framework is shown in Figure 4. Similar to the general

framework, given an unsafe agent candidate in Figure 4(a), our reachability analysis method

1
https://github.com/arex18/rocket-lander

1:10 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

DNN Agent <s,a,r,s’>

One time step with
the environment

Add

A Set of
<s,a,r,s’>

Train

 Select

Agent
Candidate

One Episode

Unsafe
State Space

Reachability
Analysis

Buffer of
Unsafe States

Run one episode
with each unsafe

state as initial state

Generate

Termination
Empty?

(a) (b)

New Experiences

Old Experiences

Fig. 4. Repair framework for deep reinforcement learning. The loop in (a) represents one epoch. Given an
unsafe agent, its unsafe state space is computed with our reachability analysis method, Then, eposides are
run with unsafe state as initial states to update the agent, where occurrence of unsafe states will be penalized.
In (b), the new experiences refer to the experience learned during the repair while the old experiences refer to
the ones learned in learning of the original agent.

computes the unsafe state domain that lead to a wrong action by the agent. The vertices of unsafe

state sets {𝐼 }𝑚
𝑘=1

are selected as representative unsafe states for the unsafe domain. The correction

of the wrong action 𝑎 for an unsafe state 𝑠 will be achieved by running one episode with the unsafe

state as an initial state as shown in Figure 4(b). The process of one episode is similar to the regular

episode. The difference is that a new penalty 𝑟 is incorporated for any unsafe pair 𝑠 and 𝑎 in each

time step. The penalty 𝑟 is normally being set to the least reward in the old experience, where the

old experiences refers to the experience from learning the original unsafe agent. In the repair, the

𝑡𝑢𝑝𝑙𝑒 in each time step will be stored into a global buffer for previous experience, which is named

new experiences. For training, a set of tuples will be randomly selected from both experiences. The

process in Figure 4(a) will be repeated until the agent becomes safe and its performance is above

a predefined threshold. The algorithm is shown in Algorithm 2 where Function singleEpisode
corresponds to Figure 2(b).

Algorithm 2 Repair for Deep Reinforcement Learning

Input: N , 𝐸 # an unsafe DNN agent, and its old experience, a set of tuples
Output: N ′ # a safe DNN satisfying all its safety properties with a desired performance

1: procedure N ′ = Repair(N)

2: N ′← N
3: while true do
4: Dunsafe = reachAnalysis(N , {P}𝑚𝑖=1) # compute unsafe and safe data domains

5: if Dunsafe is empty and A(N ′) − A(N) ≥ Y then # A: performance function

6: break and return N ′
7: 𝑆unsafe = Vertices(Dunsafe) # representative unsafe states

8: for s in 𝑆unsafe do
9: N ′ = singleEpisode(N ′, s, 𝐸) # one episode learning with initial state 𝑠 and 𝐸.

5 REACHABILITY ANALYSIS OF DNN
Fast reachability analysis is a core component in our DNN repair framework. However, different

from traditional algorithms, for DNN repair the emphasis of the algorithm is on finding the

unsafe input domain and it’s corresponding unsafe output domain. Our algorithm builds on the

reachability analysis and backtracking method presented in [Yang et al. 2021a]. The method utilizes

1:11

a FVIM set representation for efficient encoding of the combinatorial structure of polytopes. This

set representation is suitable for set transformations that are induced by operations in a neural

network. The reachability analysis method presented in [Yang et al. 2021a] is able to compute the

output reachable domain of a DNN, and subsequently identify the unsafe input regions. However,

one disadvantage of the algorithm is that, in the worst case, the number of reachable sets is 𝑂 (2𝑛),
where 𝑛 is the number of ReLU neurons. Its efficiency could be impeded due to this computation of

a huge number of sets.

To alleviate this problem,we utilize an novel over-approximationmethod to speed up computation

in Equation 1 and 2 by filtering out safe regions in the early stages of the algorithm. Since our

focus of retraining is on computing the unsafe input domain and it’s corresponding unsafe output

domain, once we have guarantees of safety for a particular region, we do not need to compute its

exact output reachable sets. Thereby, the computational efficiency and the memory footprint of the

algorithm can be significantly improved.

Our over-approximation method is based on a new set representation for the linear relaxation

of ReLU neurons. The new set representation named V-zono is designed to efficiently encode

the exponentially increasing vertices of sets in each linear relaxation, and it is totally compatible

with the FVIM. In the following section, the over approximation withV-zono will be introduced.

Additionally, to handle the memory-efficiency issue caused by the large amount of sets computed

in Equation 1 and 2, a depth-first search algorithm is also presented.

5.1 Over Approximation with Linear Relaxation
This section presents our over-approximation method based on the linear relaxation of ReLU.

Linear relaxation is commonly used in other related works for fast safety verification of DNNs,

such as [Gehr et al. 2018; Singh et al. 2019; Zhang et al. 2018]. Instead of considering the two

different linearities of ReLU neuron over its input in E(·) of Equation 1, these works apply one

convex domain to over approximate these linearities to simplify the reachability analysis, as shown

in Figure 5. This over approximation is named linear relaxation. Recall the process of 𝑆 ′ with the 𝑖th

neuron in the layer in Section 3.2, when the lower bound and the upper bound of the 𝑥𝑖 of x ∈ 𝑆 ′
spans the two linearities bounded by 𝑥𝑖=0, 𝑆

′
is supposed to be divided accordingly and their two

subsets lying in the range 𝑥𝑖 < 0 or 𝑥𝑖 ≥ 0 will be processed in terms of their linearity. The linear

relaxation is applied only in such cases as shown in Figure 5 (b) and (c). When 𝑆 ′ only locates in

𝑥𝑖 < 0 or 𝑥𝑖 ≥ 0, the computation will be the same as the computation in Section 3.2. We denote

this process including the linear relaxation as E𝑎𝑝𝑝 (·), and the computation of one layer as L𝑎𝑝𝑝 (·).
Thus, by simply substituting E(·) with E𝑎𝑝𝑝 (·) in Equation 1, and substituting L(·) with L𝑎𝑝𝑝 (·) in
Equation 2, we can conduct the over-approximation method shown in Equation 5 and 6. Function

E𝑎𝑝𝑝 (·) only generates one output set for each input set instead of at most two sets. Therefore,

given one input set to the DNN, Equation 6 computes one over-approximated output reachable set

instead of 𝑂 (2𝑛) sets with 𝑛 ReLU neurons.

L𝑎𝑝𝑝 (𝑆) = (E𝑎𝑝𝑝
𝑙
◦ · · · ◦ E𝑎𝑝𝑝2 ◦ E𝑎𝑝𝑝1 ◦ T) (𝑆) (5)

N(𝑆) = (L𝑎𝑝𝑝
𝑘
◦ · · · ◦ L𝑎𝑝𝑝2 ◦ L𝑎𝑝𝑝1) (𝑆) (6)

Here we introduce two of the most common types of linear relaxations for ReLU functions as

shown in (b) and (c) of Figure 5. The linear relaxation in (b) uses the minimum convex bound.

Compared to other linear relaxations, it can over approximate the output reachable domain with the

least conservativeness. A less conservative relaxation typically leads to more accurate reachability

analysis algorithms. The primary challenge for this relaxation is the estimation of the lower bound

𝑙𝑏 and the upper bound 𝑢𝑏 for each ReLU activation function. This is normally formulated as an LP

1:12 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

Linear
Relaxation

ReLU
x̂

x x

x̂

lb lbub ub

x

x̂

lb

ub

−ε
+ε

(a) (b) (c)

l

l1

l2

Linear
Relaxation

l3

l4

l1

l2

l3

Fig. 5. Linear relaxations of ReLU functions with a convex bound: (a) ReLU function, (b) one type of linear
relaxation of ReLU function [Wong and Kolter 2018], and (c) linear relaxation utilized in our over-approximation
method based on a new set representation.

problem. However, since the number of variables equals to the number of activations, solving such

problems with traditional methods for each verification may not be tractable.

One alternative to avoid the LP problems is to use vertices to represent a set, This also enables

us to easily integrate this representation with the FVIM set representation in the exact reachability

analysis. One issue with this approach is that doubling of vertices in each ReLU relaxation may add

a significant computation cost and memory occupation. The explanation is as follows. Suppose the

relaxation is for the 𝑖th neuron. As shown in (b) and (c), the relaxation introduces an unknown

variable 𝑥𝑖 to the incoming set 𝑆 ∈ R𝑑 and also the relation between 𝑥𝑖 and 𝑥𝑖 bounded in the

convex domain.

Remark 5.1. The introduction of 𝑥𝑖 is equivalent to projecting 𝑆 into 𝑆ℎ in (𝑑+1)-dimensional space.
For each x ∈ 𝑆 , it will transform into xℎ ∈ 𝑆ℎ with xℎ=[x;𝑥𝑖] ∈ R𝑑+1. Accordingly, the faces of 𝑆
will transform into new faces of 𝑆ℎ with increasing their dimension by one. The new faces of 𝑆ℎ are
unbounded because of the unknown variable 𝑥𝑖 . The later intersection of 𝑆ℎ with the domain of 𝑥𝑖 and
𝑥𝑖 in the relaxation will yield real values to 𝑥𝑖 .

For instance, the vertex v of 𝑆 which is a 0-dimensional face will turn into vℎ=[v;𝑥𝑖] which is

equivalent to an unbounded edge of 𝑆ℎ , a 1-dimensional face. With 𝑆ℎ and the linear relaxation

bounds of 𝑥𝑖 and 𝑥𝑖 , E
𝑎𝑝𝑝

𝑖
(𝑆) can be interpreted as the intersection of 𝑆ℎ with these bounds.

Remark 5.2. The convex bounds of the ReLU relaxation consists of multiple linear constraint 𝑙s. Each
𝑙 : 𝛼 · x + 𝛽 ≤ 0 is one of two halfspaces divided by the hyperplaneH : 𝛼 · x + 𝛽=0. The intersection of
𝑆ℎ with each 𝑙 is essentially identifying the subset of 𝑆ℎ which is generated from division of 𝑆ℎ byH
and locates in the halfspace 𝑙 .

Take the (b) relaxation for instance which is bounded by three linear constraints 𝑙1, 𝑙2 and 𝑙3.

E
𝑎𝑝𝑝

𝑖
(𝑆) can be formulated as

E
𝑎𝑝𝑝

𝑖
(𝑆) = 𝑆ℎ ∩ {x ∈ R𝑑 | 𝑙1 ∩ 𝑙2 ∩ 𝑙3}. (7)

As introduced above the vertex vℎ=[v;𝑥𝑖] of 𝑆ℎ is symbolic with 𝑥𝑖 and is equivalent to an un-

bounded edge. In a bounded set, an edge includes two vertices. After the intersection of 𝑆ℎ with

the linear constraints, E
𝑎𝑝𝑝

𝑖
(𝑆) generates a bounded subset of 𝑆ℎ and meanwhile, each symbolic vℎ

will yield to two real vertices. Therefore, the vertices of 𝑆ℎ is doubled from the vertices of 𝑆 .
H1 : (𝑢𝑏 − 𝑙𝑏) · 𝑥 − 𝑢𝑏 · 𝑥 + 𝑢𝑏 · 𝑙𝑏 = 0

H2 : (𝑢𝑏 − 𝑙𝑏) · 𝑥 − 𝑢𝑏 · 𝑥 = 0

H3 : 𝑥 − 𝑢𝑏 = 0

H4 : 𝑥 − 𝑙𝑏 = 0

(8)

1:13

To solve this problem, it is necessary to develop a new set representation that can efficiently

encode the exponential explosion of vertices with ReLU relaxations. Here, we choose the relaxation

in Figure 5(c) because the convex bound for the relaxation is a zonotope which can be simply repre-

sented by a set of finite vectors and is formulated as a Minkowski sum. An efficient representation

of vertices can benefit from this simplification. The explanation is as follows. The zonotope in

(c) is bounded by two pairs of parallel supporting hyperplanes,H1,H2 andH3,H4 as shown in

Equation 8, and their linear constraints are denoted as 𝑙1, 𝑙2, 𝑙3 and 𝑙4. Since 𝑙3 and 𝑙4 are lower

and upper bounds of the 𝑥𝑖 in 𝑆 and 𝑆 itself locates in these constraints, then, the left part of

the conjunction in Equation 7 can be replaced with {x ∈ R𝑛 | 𝑙1 ∩ 𝑙2}. For each symbolic vertex

vℎ=[v;𝑥𝑖], two new vertices v′1 and v′2 can be computed from the intersection of the hyperplanes

H1 andH2 with 𝑥𝑖 involved. The vertices v′1 and v′2 are shown in Equation 9 where 𝑥𝑖 equals to

the 𝑣𝑖 of v.

v′1 =

[
v

𝑢𝑏 ·𝑥𝑖−𝑢𝑏 ·𝑙𝑏
𝑢𝑏−𝑙𝑏

]
, v′2 =

[
v

𝑢𝑏 ·𝑥𝑖
𝑢𝑏−𝑙𝑏

]
(9)

{v′1, v′2} =
{
v′𝑐 ± v′𝑣,

����� v′𝑐 =
[

v
𝑢𝑏 ·𝑣𝑖
𝑢𝑏−𝑙𝑏 −

𝑢𝑏 ·𝑙𝑏
2(𝑢𝑏−𝑙𝑏)

]
, v′𝑣 =

[
0

𝑢𝑏 ·𝑙𝑏
2(𝑢𝑏−𝑙𝑏)

] }
(10)

These two vertices can also be represented by Equation 10 where v′𝑣 is a constant vector for the
ReLU relaxation E

𝑎𝑝𝑝

𝑖
(𝑆). Let the vertices of 𝑆 be 𝑉 and 𝑆 ′=E

𝑎𝑝𝑝

𝑖
(𝑆), then for each v ∈ 𝑉 it yields

one v′𝑐 for the vertices 𝑉 ′ of 𝑆 ′. Let the set of v′𝑐 be denoted as 𝑉 ′𝑐 , then 𝑉
′
can be represented as

Equation 11 where the doubled vertices are represented by plus-minus with the vector v′𝑣 .

𝑉 ′ = 𝑉 ′𝑐 ± v′𝑣 (11)

The relaxation is illustrated by in Figure 6. The layer includes 2 ReLU neurons. The input set

𝑆 is 2-dimensional with x=[𝑥1, 𝑥2]⊤ ∈ 𝑆 , and its vertices 𝑉 consists of v1, v2 and v3. Here, 𝑥1, 𝑥2
respectively corresponds to the input of the first neuron and the second neuron. In this example,

the process of 𝑆 w.r.t. the first neuron is demonstrated. We can notice that the lower bound and the

upper bound of 𝑥1 in 𝑆 are 𝑙𝑏= − 1 and 𝑢𝑏=1, which indicates that 𝑆 spans the input range of ReLU

function over which the function exhibits two different linearities. Therefore, the linear relaxation

is applied in terms of the subfigure (b). As introduced above, there are four linear constraints 𝑙1, 𝑙2,

𝑙3 and 𝑙4 bounding this relaxation of 𝑥1 and 𝑥1, whose hyperplanes can be computed by Equation 8.

The introduction of new variable 𝑥1 projects 2-dimensional 𝑆 into 3-dimensional 𝑆ℎ with x ∈ 𝑆
transforming into xℎ=[x;𝑥1] ∈ 𝑆ℎ . Accordingly, the vertices v1, v2 and v3 of 𝑆 transform into new

symbolic vertices [−1, 2, 𝑥1]⊤, [−1, 0, 𝑥1]⊤ and [1, 0, 𝑥1]⊤ as shown in the subfigure (c), which are

equivalent to three unbounded edges of 𝑆ℎ . After the intersection of 𝑆ℎ with those linear constraints,

we obtain the final over-approximated set 𝑆 ′ represented by the red domain in the subfigure (d)

with its 6 vertices represented by the red points. According to Equation 10 and 11, the vertices 𝑉 ′

of 𝑆 can be represented as
𝑥1
𝑥2
𝑥1

 ∈ 𝑉 ′, 𝑉 ′ =

{
v′𝑐 ± v′𝑣

����� v′𝑐 ∈
{
−1
2
−0.25

 ,

−1
0
−0.25

 ,

1
0

0.75

}
, v′𝑣 =

0
0

0.25

}

(12)

where v′𝑐s are denoted as {v′𝑐1, v′𝑐2, v′𝑐2} and described by the dark points in (d).

5.2 Over approximation withV−zono
In the previous section, the a new set representation is preliminarily derived for the linear relaxation

in Figure 5(c). This section mainly presents the formal definition of the set representationV-zono,

and its utilization in the over approximation of DNNs in Equation 5. The utilization includes the

1:14 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

(1,0)

 (-1,2)

(-1,0)

x1

x1

x2

x2

x̂1

(−1 ,0 , x̂1) (−1 ,2 , x̂1)

F1

F2

F3

lb=−1

ub=1

x1

x2

x̂1

(1 ,0 , x̂1)

x1

ϵ=0.25

(1, 0, 0.75)

(-1, 2, -0.25)(-1, 0, -0.25)

x̂1

(a) (b)

(c) (d)

v'c2 v'c1

v'c3

v3v2

v1

S

Sh S '

Fig. 6. Example of the linear relaxation.

linear relaxation of ReLU neuron E𝑎𝑝𝑝 (·), the affine mapping T(·), as well as the safety verification

on the safety properties of DNNs.

TheV-zono shares similarities with theV-representation of polytopes introduced in Section 2,

but it can efficiently encode exponentially increasing vertices. It is formally defined in Definition 5.1.

It consists of base vertices C and base vectors V . An example of the vertices representation is

demonstrated in Figure 6(d). The convex set is the red domain. Its base vertices include three v′𝑐
and the base vectors includes one v′𝑣 as shown in Equation 12. Suppose C contains𝑚 base vertices

andV contains 𝑛 base vectors, then C ±V efficiently represents𝑚 × 2𝑛 vertices in Equation 13.

Definition 5.1 (V-zono). In the vertices representation, the set C that contains a set of finite
real points v𝑐 ∈ R𝑑 is named as Base Vertices, and the setV that contains a set of finite real vectors
v𝑣 ∈ R𝑑 is named Base Vectors. Then ⟨C,V⟩ can represent a convex set 𝑆 ⊂ R𝑑 where C ±V encodes
all its vertices.

C ±V = {v𝑐 +
𝑛∑︁
𝑖=1

(±v𝑣,𝑖) | v𝑐 ∈ C and V = {v𝑣,1, v𝑣,2, . . . , v𝑣,𝑛}} (13)

5.2.1 Linear Relaxation withV-zono. In the application ofV-zono in ReLU relaxation, the vertex

computation in E
𝑎𝑝𝑝

𝑖
(𝑆) has been formulated as Equation 10, which deals with regular vertices not

represented byV-zono. Here, we will formally present the linear relaxation withV-zono where

given an input set 𝑆 inV-zono, theV-zono of 𝑆 ′ = E
𝑎𝑝𝑝

𝑖
(𝑆) will be computed. Suppose theV-zono

of 𝑆 has base vertices C and base vectorsV . In terms of Equation 10, a new base vertex v′𝑐 can be

computed for each v by

v′𝑐 =
[
v
𝛾

]
, 𝛾 =

𝑢𝑏 · 𝑣𝑖
𝑢𝑏 − 𝑙𝑏 −

𝑢𝑏 · 𝑙𝑏
2(𝑢𝑏 − 𝑙𝑏) , v ∈ 𝑉 and 𝑉 = C ±V .

Each v′𝑐 is computed by incorporating one new dimension to each v ∈ 𝑉 with a real value 𝛾 , which

is essentially adding one new dimension to each v𝑐 ∈ C with 𝛾 , and adding one new dimension to

1:15

each v𝑣 ∈ V with zero. Accordingly, all the new base vertices v′𝑐s can be computed as{ [
v𝑐
𝛾

]
+

𝑛∑︁
𝑖=1

(
±

[
v𝑣,𝑖
0

]) ����� v𝑐 ∈ C and v𝑣,𝑖 ∈ V
}
.

Based on the equation above, Equation 10 can be extended from the computation of new vertices

v′s for one v to all v ∈ 𝑉 . The vertices 𝑉 ′ of 𝑆 ′ can be computed as below, from which we can

derive the C′ andV ′ as shown in Equation 14.{ [
v𝑐
𝛾

]
+

(
𝑛∑︁
𝑖=1

±
[
v𝑣,𝑖
0

])
± v′𝑣

����� v𝑐 ∈ C, and v𝑣,𝑖 ∈ V
}

C′ =
{ [

v𝑐
𝛾

] ����� v𝑐 ∈ C
}
, V ′ =

{ [
v𝑣
0

]
, v′𝑣

����� v𝑣 ∈ V
}

(14)

From Equation 14, we notice that with the linear relaxation of each ReLU neuron E
𝑎𝑝𝑝

𝑖
(·), the

dimension of vertices inV-zono will be increased by one because by introducing the new dimension

or variable 𝑥𝑖 the old dimension 𝑥𝑖 still remains. It will result in the dimension inconsistency with the

subsequent affine mapping between layers. This old dimension can be eliminated with projecting

the set 𝑆 ′ on it by replacing the old dimension 𝑥𝑖 in the vertices with the new 𝑥𝑖 . The projection is

reflected on Equation 15 with the updated C′ andV ′.
C′ = {v𝑐 | ∀v𝑐 ∈ C, v𝑐 [𝑖] = 𝛾}, V ′ = {v𝑣, v′𝑣 | ∀v𝑣 ∈ V, v𝑣 [𝑖] = 0} (15)

After the projection, part of the points C′±V ′ will become the actual vertices of the projected set

and the rest will become its interior points. The projection of a polytope 𝑆 into a lower-dimensional

space will generate another polytope 𝑆𝑙 whose every face is a projection of a face of 𝑆 . It indicates

that the vertices 𝑉𝑙 of 𝑆𝑙 are from the projection of subset of the vertices 𝑉 of 𝑆 . Since after the

projection Equation 15 preserves all projected vertices from Equation 14, there are redundant

points in Equation 15 which are not vertices but only interior points of the projected polytope. This

redundancy is allowed in the vertices representations of polytopes, as well as our set representation

V-zono. The detection and elimination of this redundancy requires and additional algorithm, which

is out of the scope of this work and will be our future work. In addition, sinceV-zono can efficiently

encode vertices, the redundancy issue will not greatly affect the efficiency of the algorithm, which

is also demonstrated in the experiments.

x1

x2

x̂1

(1, 0, 0.75)

(-1, 2, -0.25)(-1, 0, -0.25)

(d)

v'c2 v'c1

v'c3

x2

x̂1

(e)

(0.75,0)v'c3(-0.25,0)v'c2

(-0.25,2)v'c1

S ' S ' '

Fig. 7. Example of the linear relaxation.

An example of the projection of the set 𝑆 ′ in Figure 5(d) is shown in Figure 7. In the ReLU

relaxation, the 𝑥1 is the old dimension and 𝑥1 is the new one, therefore, the set will be projected on

1:16 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

the dimension 𝑥1 which will maintain the exact bounded relation between 𝑥1 and 𝑥2. The projection

generates another polytope represented by the red domain in (e). ItsV-zono for the vertices is[
𝑥1
𝑥2

]
∈ 𝑉 ′′, 𝑉 ′′ =

{
v′′𝑐 ± v′′𝑣

���� v′′𝑐 ∈
{ [
−0.25
2

]
,

[
−0.25
0

]
,

[
0.75
0

] }
, v′′𝑣 =

[
0.25
0

] }
. (16)

As shown in (d), itsV-zono contains 6 vertices denoted as red dots. After the projection as shown

in (e), the newV-zono contains 6 points which are the projections of these 6 vertices. 4 of them

are actual the vertices of 𝑆 ′′ and the rest 2 points are redundant.

5.2.2 Affine Mapping withV-zono. As shown in Equation 5, the over approximation of reachable

domain also includes affine mapping T(𝑊,𝑏) (·) between layers by weights𝑊 and bias 𝑏. As intro-

duced in Section 2, affine mapping on a set 𝑆 only changes the value of its vertices. Suppose the

vertices 𝑉 of 𝑆 is represented by C ±V , then T(𝑊,𝑏) (𝑆) on 𝑉 can be formulated as

𝑊 ·𝑉 + 𝑏 =𝑊 · (C ± V) + 𝑏
=𝑊 · C + 𝑏 ±𝑊 · V .

(17)

The new C′,V ′ for new vertices 𝑉 ′ after the affine mapping are

C′ =𝑊 · C + 𝑏 = {𝑊 · v𝑐 + 𝑏 | v𝑐 ∈ C}
V ′ =𝑊 · V = {𝑊 · v𝑣 | v𝑣 ∈ C}.

(18)

5.2.3 Safety Verification withV-zono. The safety verification problem is to determine whether

an output reachable domain overlaps with the unsafe domain bounded by linear constraints. Let

one linear constraint be denoted as 𝑙 : 𝛼⊤ · x + 𝛽 ≤ 0. Suppose vertices 𝑉 of the over approximated

output domain are represented by C ±V andV = {v𝑣,1, v𝑣,2, . . . , v𝑣,𝑛}. Then, the verification of 𝑉

w.r.t. the linear constraint 𝑙 can transform into checking if the minimum value of 𝛼⊤v + 𝛽 over the

vertices v ∈ 𝑉 is not positive, which is formulated as

minimize(𝛼⊤ (C ± V) + 𝛽). (19)

The internal formula can be extended as

𝛼⊤ (C ± V) + 𝛽 = 𝛼⊤C + 𝛽 ± 𝛼⊤V = 𝛼⊤C + 𝛽 +
𝑘∑︁
𝑖=1

±(𝛼⊤v𝑣).

Then for each v𝑐 ∈ C, we can compute its minimum 𝛼⊤v𝑐 + 𝛽 +
∑𝑘

𝑖=1 -|𝛼⊤v𝑣 |. By computing the

minimums of all v𝑐 ∈ C, we can determine the global minimum value in Equation 19 and thus

complete the safety verification.

5.3 Fast Computation of Unsafe Input Spaces of DNNs
In the previous sections, an over-approximation method for the reachability analysis of DNNs based

on the linear relaxation of ReLU neurons is developed. The method is formulated as Equation 5 and 6.

As introduced, it is utilized to integrate with the exact analysis method formulated in Equation 1 and

2 to filter out all the safe intermediate sets that are computed in each L(·) and are not necessary for

the computation of unsafe input spaces for DNNs. In this section, the algorithm for such integration

will be presented. This algorithm is based on the depth-first search to handle the memory-efficiency

issue due to large amount of sets computed in each layer.

Algorithm 3 describes the integration of the computation of unsafe input spaces of DNNs with

the proposed over-approximation method. Given an input domain 𝑆 , it can compute all the unsafe

input spaces w.r.t. the safety properties of the DNN. The details of each function are as follows.

1:17

(1) Function Reach(·) is a recursive function which, in each recursion, computes only one of

input sets generated from the last layer to reduce the burden on the computational memory.

Its base case is Line 3-5 where the computation reaches to the last layer of the DNN and

unsafe input spaces will be computed. The recursion depth is the number of the DNN layers

(2) Function outputOverApp(·) over approximates the output domain of the DNN for each

input set which is computed from the last layer with the exact analysis method in Equation 1

and 2. This function corresponds to Equation 5 and 6. The details is shown in Algorithm 4.

In the beginning, the set 𝑆 represented by FVIM is transformed into theV-zono in Line 2.

Subsequently, in each layer, it will be first processed by the affine mapping in Line 4 which

corresponds to the T(·) in Equation 5 and the computation of C′ and V ′ in Equation 18.

Then, in Line 5, it will be processed with ReLU neurons in the layer based on the linear

relaxation. This process corresponds to the each E𝑎𝑝𝑝 in Equation 5 and also the computation

of C′ andV ′ in Equation 15.

(3) Function safetyCheck(·) checks the safety of the over-approximated output domain com-

puted in Line 6 with respect to safety properties. This function corresponds to Equation 19

where the vertices of the output domain are checked with each linear constraints of the

unsafe domain defined in the properties. It returns unsafe if any vertex satisfies in all the

constraints, otherwise, safe. When 𝑆 is verified safe, the computation in the following layers

can be abandoned because 𝑆 will not lead to safety violation.

(4) Function layerOutput(·) computes the reachable sets for the current layer with input sets

computed from the previous layer, which corresponds to Equation 1 and 2. All sets in this

computation are represented by FVIMs. The details is shown in Algorithm 5.

The computational complexity of Algorithm 3 is that given an input set to a DNN with 𝑛

ReLU neurons, 𝑂 (2𝑛) output reachable sets will be computed. In practice, the utilization of the

over approximation method can significantly reduce the amount and improve the computational

efficiency. The experimental results indicate that Algorithm 3 can be around five times faster than

the algorithm without the over-approximation method.

Algorithm 3 Computation of unsafe input spaces of a neural network

Input: 𝑆 # one input set to the neural network

Output: O𝑢𝑛𝑠𝑎𝑓 𝑒 # O𝑢𝑛𝑠𝑎𝑓 𝑒 : unsafe input spaces of the DNN
1: procedure O𝑢𝑛𝑠𝑎𝑓 𝑒 = Reach(S, layer) # 𝑆 : an input set; 𝑙𝑎𝑦𝑒𝑟 : the layer ID

2: O𝑢𝑛𝑠𝑎𝑓 𝑒 = 𝑒𝑚𝑝𝑡𝑦

3: if layer == lastlayer then # lastlayer : the ID of the last layer

4: unsafety = Backtrack(S) # unsafety: unsafe input space for the unsafe domain in 𝑆

5: return unsafety
6: overapp = outputOverApp(S) # overapp: over approximated output domain of the DNN

7: if safetyCheck(overapp) then
8: return None

9: O𝑐 = layerOutput(S, layer) # O𝑐 : output reachable sets of the current layer for S
10: for S in O𝑐 do
11: O𝑢𝑛𝑠𝑎𝑓 𝑒 .extend(Reach(S, layer+1))
12: return O𝑢𝑛𝑠𝑎𝑓 𝑒

1:18 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

Algorithm 4 Reachable-domain Over approximation of a neural network

Input: 𝑆 # one input set to the current layer

Output: O # one over approximated output reachable set of the current layer

1: procedure O = outputOverApp(S, layer)
2: S = Vzono(S) # transform the FVIM representation of 𝑆 to theV-zono

3: for layer = 1:lastlayer do
4: S = affineMapping(S, layer) # update base vertices and base vectors

5: S = reluLayerRelaxation(S) # relaxation of ReLU neurons

6: return O ← 𝑆

Algorithm 5 Reachable set computation of one layer

Input: 𝑆 # one input set to the current layer

Output: O # output reachable sets of the current layer

1: procedure O = layerOutput(S, layer)
2: O == 𝑒𝑚𝑝𝑡𝑦

3: S = affineMapping(S, layer)
4: if layer == lastlayer then
5: return S
6: O.extend(reluLayer(S)) # compute exact reachable sets with each ReLU neuron

7: return O

6 EXPERIMENTS AND EVALUATION
In this section, we evaluates the performance of the framework, including the performance of

the reachability analysis method. Recall from Section 4 that we consider two alternatives for

the correction of unsafe data in the absence of a safe model reference. The first case considers

transformations to the unsafe data points to the nearest safe set. The second case incorporates

repair as part of the learning process. We evaluate the first case with a well-known benchmark

named HorizontalCAS. HorizontalCAS is an airborne collision avoidance system, part of the ACAS

Xu family proposed by [Julian and Kochenderfer 2019]. HorizontalCAS has neural networks as

controllers. The code and training data for the benchmark are publicly available
2
, based onwhichwe

train all DNNs. Unsafe DNNs will be first identified from these DNNs for the further repair with our

framework. For the second approach, we apply our framework for repair in safe deep reinforcement

learning on a well-known benchmark: the rocket lander based on the lunar lander [Brockman et al.

2016]. The hardware configuration is Intel Core i9-10900K CPU @3.7GHz×, 10-core and 20-thread

Processor, 128GB Memory, 64-bit Ubuntu 18.04.

In addition to comparing with the related work [Yang et al. 2021a], our experimental evaluation

examines whether the repairing process can converge on the multiple safety properties, how

repairing unsafe behaviors on one property will affect other properties, and how the correction of

unsafe data to its closest safe data affects the behavior of repaired DNNs.

6.1 HorizontalCAS DNN Controller Repair
The original controller for the HorizontalCAS is based on a Markov Decision Process (MDP)

with large numeric tables [Julian and Kochenderfer 2019]. These controllers are replaced with

neural networks. This reduces the memory footprint significantly. There are five continuous

2
https://github.com/sisl/HorizontalCAS

1:19

inputs and two discrete inputs, For each combination of the two discrete input values, one neural

network is trained. Overall, the controller consists of an array of 45 feed-forward neural networks.

Each neural network is denoted as 𝑁𝑖 𝑗 where 𝑖 is an integer index ranging in [1, 5] and 𝑗 is an

integer index ranging in [1, 9]. The input to each DNN is a 5 dimensional continuous sensor

measurement of the dynamics between the ownship and the intruder. The inputs are denoted as

[𝜌 (feet), \ (deg),𝜓 (deg), 𝑣own (feet/s), 𝑣int (feet/s)] and they are, respectively, the distance between

ownship and intruder, the angle of the ownship heading direction relative to intruder, angle of

intruder heading direction relative to ownship heading direction, velocity of ownship and velocity

of intruder. The lower bound and upper bound of their ranges is as follows:

𝑙𝑏 = [0,−𝜋,−𝜋, 100, 0]; 𝑢𝑏 = [56000, 𝜋, 𝜋, 1000, 1000] .

There are 5 outputs corresponding to 5 action advisories which are, respectively, clear of conflict,

weak right, strong right, weak left and strong left. The action with the maximum output will be

selected. Each neural network includes 300 ReLU neurons which are fully connected. And for each

neural network, there are several safety properties defined. In each safety property, for an input

domain, desired action advisories are defined to avoid aircraft collision.

All 45 neural networks are well trained with the provided training data and default parameter

settings in their code. The accuracy of the DNNs is over 94%. Here, we design three safety properties

for all the networks in terms of the safety properties in work [Katz et al. 2017]. They are as follows:

(1) Property 1: for the input constraints 𝜌 ≥ 50000, 𝑣own ≥ 900 and 𝑣int ≤ 60, the desired output

should be located in the domain where the output of the action advisory clear-of-conflict
should not be the minimum. Then the unsafe output domain will be 𝑦1 ≤ 𝑦2 ∩𝑦1 ≤ 𝑦3 ∩𝑦1 ≤
𝑦4 ∩ 𝑦1 ≤ 𝑦5.

(2) Property 2: for the input constraints 1500 ≤ 𝜌 ≤ 1800, −0.06 ≤ \ ≤ 0.06, 𝜓 ≥ 3.10,
𝑣own ≥ 880 and 𝑣int ≥ 860. The desired output should that the action advisory clear-of-
conflict should not be the minimum.

(3) Property 3: for the input constraints 1500 ≤ 𝜌 ≤ 1800, −0.06 ≤ \ ≤ 0.06,𝜓 = 0, 𝑣own ≥ 900
and 𝑣int ≥ 700. Their desired output is should that the action advisory clear-of-conflict should
not be the minimum.

As introduced in Section 4, the correction of unsafe data pairs (x, y) is achieved by changing

unsafe y to its closest safe ŷ by adding a vector Δy, which is ŷ = y + Δy. The vector Δy represents

the normal vector with the minimum length, among the normal vectors 𝛼⊤s of the boundary

hyperplanes 𝛼⊤x + 𝛽 = 0 of the unsafe domain. In the safety properties, we have a common

unsafe domainU bounded by 4 linear constraints and their boundary hyperplanes are respectively,

𝑦1 − 𝑦2 = 0, 𝑦1 − 𝑦3 = 0, 𝑦1 − 𝑦4 = 0 and 𝑦1 − 𝑦5 = 0. For a y ∈ U, its Δy is computed over these

hyperplanes.

The safety of neural networks is first verified with our reachability analysis method. They are

determined safe if there is no unsafe input space computed on all three safety properties. Then, for

unsafe networks that violate at least one of the properties, we conduct the repair process with our

framework. The repair process monitors all the properties in case that the model candidate turns

unsafe on new properties. 11 of the 45 networks are verified unsafe. The parameter setting for the

training of the model in the framework is the same as the ones for the training of the original DNNs.

The performance threshold is set to 93%. The experimental results are shown in Table 1. We can see

that all the unsafe networks are successfully repaired by our framework, and that compared to the

original model, the accuracy changes on the repaired safe model are negligible. There is no obvious

performance degradation on the repaired models. This may be because the Δys for the correction
is trivial in these cases, seldom impacting accuracy. We can also notice that the network is repaired

1:20 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

efficiently in 3 epochs within totally one minute in most of the cases. It is noteworthy that each

repair of the violation on one property does not induce violations on other properties. This is likely

due to the fact that the input regions defined in the safety properties are apart from each other and

repair of unsafe behaviors over one region hardly affects the correct behaviors over other regions.

Table 1. Repair of neural network controllers for HorizontalCAS. There are 11 unsafe neural networks.
accuracy changes represents the accuracy difference (%) between the repaired safe model and the original
unsafe model. epochs of repair represents the number of repair iterations. running time represents the
computational time for the repair.

Neural Networks 𝑁11 𝑁12 𝑁15 𝑁16 𝑁17 𝑁19 𝑁26 𝑁41 𝑁52 𝑁55 𝑁59

Accuracy Changes(%) +0.55 +0.75 +1.3 +0.39 +1.54 +0.85 +2.25 +0.45 -0.31 +0.74 +0.39

Epochs of repair 3 3 2 3 14 3 11 2 2 2 2

Runing Time(sec) 24.3 23.1 15.2 31.5 1086.4 59.3 504.2 10.2 11.1 20.7 7.9

Fig. 8. The evolution of the output reachable domain and the unsafe reachable domain in the repair of DNN
𝑁26 on property 1. The domains are projected on the output 𝑦1 and 𝑦2 which are respectively, the 𝑥 axis and
𝑦 axis. The blue area represents the exact output reachable domain while the red area represents the unsafe
reachable domain which is a subset of the exact output reachable domain.

2 4 6 8 10 12
Epoch

95

96

97

98

A
cc

ur
ac

y(
%

)

0

5

10

15

20

U
ns

af
et

y
R

at
io

10 -3

Accuracy
Unsafety Ratio

2 4 6 8 10 12 14
Epoch

92

93

94

95

96

A
cc

ur
ac

y(
%

)

-2

0

2

4

6

8

U
ns

af
et

y
R

at
io

10 -3

Fig. 9. The evolution of the accuracy and the unsafe input domain in the repair of neural networks 𝑁26 and
𝑁17. The right 𝑦 axis represents the accuracy of the model candidate. The accuracy refers to the percentage
of the correct classification of action advisory. The left 𝑦 axis represents the approximated volume ratio of the
unsafe input domain to the whole input domain specified in the safety property.

More details of the repair process of 𝑁26 and 𝑁17 is included to illustrate the process. One is the

evolution of the output reachable domain of the candidate model on the violated properties, as

shown in Figure 8. We can notice that the reachable domain in blue expands with the repair while

the unsafe domain in red gradually disappears. The expansion is mainly because the Δy added

to the unsafe y changes the output distribution of the model candidate by turning away y from

the unsafe domain. The other one is the evolution of the accuracy and the unsafe input spaces of

the candidate model, as shown in Figure 9. The unsafe input space computed for each property is

quantified by the percentage of the unsafe volume related to the volume of the whole input domain.

1:21

Table 2. Comparison of our new reachability analysis method with the method [Yang et al. 2021a] on
computational efficiency and memory efficiency. T𝑟 (𝑠𝑒𝑐) andM𝑟 (𝐺𝐵) denote the computational time and
the maximummemory usage of our method for the reachability analysis in one repair. T𝑛𝑟 (𝑠𝑒𝑐) andM𝑛𝑟 (𝐺𝐵)
are for [Yang et al. 2021a] on the same model candidate models.

Nets 𝑁11 𝑁12 𝑁15 𝑁16 𝑁17 𝑁19 𝑁26 𝑁41 𝑁52 𝑁55 𝑁59

T𝑟 (𝑠𝑒𝑐) 3.3 5.5 4.6 5.2 61.6 9.0 24.0 3.1 3.1 5.0 3.3

T𝑛𝑟 (𝑠𝑒𝑐) 3.5 4.9 5.7 5.1 56.8 9.0 29.3 3.5 3.4 4.6 3.4

M𝑟 (𝐺𝐵) 4.90 4.91 4.97 4.92 4.97 4.97 4.96 4.94 4.94 4.97 4.94

M𝑛𝑟 (𝐺𝐵) 4.94 4.97 5.15 4.99 5.23 5.19 5.12 4.99 5.00 5.00 5.01

It can be approximated through a large amount of samplings. We can notice that the tendency of

the ratio decreases along with the repair, indicating the unsafe input domain gradually disappears.

While the new accuracy seldom goes below the original accuracy, indicating the repair in this cases

does not degrade the performance.

Table 2 describes the comparison of our new reachability analysis method to the method [Yang

et al. 2021a] regarding computational and memory efficiency. We can notice that there are no

obvious difference between the performance of these methods. This is because the computation of

the reachability analysis is negligible so that the overhead can not be distinguished.

6.2 Rocket Lander Benchmark
The rocket lander benchmark is based on the lunar lander presented in [Brockman et al. 2016].

It is a vertical rocket landing model simulating SpaceX’s Falcon 9 first stage rocket. Unlike the

lunar lander whose action space is discrete, the action space is continuous, which commonly exists

in the practical applications. Besides the rocket, a barge is also included on the sea which moves

horizontally and its dynamics are monitored. The benchmark is shown in Figure 10. The rocket

includes one main engine thruster at the bottom with an actuated joint and also two other side

nitrogen thrusters attached to the sides of the top by un-actuated joints. The main engine has a

power 𝐹𝐸 ranging in [0, 1] and its angle relative to the rocket body is 𝜑 . The power 𝐹𝑆 of the side

thrusters ranges in [−1, 1], where −1 indicates that the right thruster has full throttle and the left

thruster is turned off while 1 indicates the opposite. The rocket landing starts in certain height. Its

goal is to land on the center of the barge without falling or crashing by controlling its velocity and

lateral angle \ through the thrusters.

FL

FR

FE

φ

G

θ

Fig. 10. Rocket lander benchmark.

1:22 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

There are three actions, the main engine thruster 𝐹𝐸 , its angle 𝜑 and the side nitrogen thrusters

𝐹𝑆 . The original observation contains the position 𝑥 and 𝑦 of the rocket relative to the landing

center on the barge, the velocity 𝑣𝑥 and 𝑣𝑦 of the rocket, its lateral angle \ , its angular velocity

𝜔 . To improve the performance of agents, we also incorporate the last action advisory into the

observation for reference. Then, the new observation can denoted as [𝑥,𝑦, 𝑣𝑥 , 𝑣𝑦, \, 𝜔, 𝐹 ′𝐸, 𝜑 ′, 𝐹 ′𝑆].
Their lower bound 𝑙𝑏 and upper bound 𝑢𝑏 are in Equation 20. The starting state and the reward are

similar to the lunar lander The termination conditions of one episode includes (1) |𝑥 | > 1 which
indicates the rocket moves out of the barge in 𝑥-space, (2) 𝑦 > 1.3 or 𝑦 < 0 which indicates the

rocket moves out of the 𝑦-space or below the barge, (3) \ > 35◦ which indicates the rocket tilts

greater than the controllable limit.

𝑙𝑏 = [−∞, 0,−∞,−∞,−𝜋,−∞, 0,−15◦,−1]
𝑢𝑏 = [+∞, +∞, +∞, +∞, 𝜋, +∞, 1, 15◦, 1] (20)

Two safety properties are defined for the agent as below. Since reachability analysis processes

bounded sets, the infinite lower bounds and upper bounds of states above will be replaced with the

searched state space in the learning process of the original agent.

(1) property 1: for the state constraints −20◦ ≤ \ ≤ −6◦, 𝜔 < 0, 𝜑 ′ ≤ 0◦ and 𝐹 ′
𝑆
≤ 0 , the desired

action should be 𝜑 < 0 or 𝐹𝑆 < 0, namely, the unsafe action domain is 𝜑 ≥ 0 ∩ 𝐹𝑆 ≥ 0. It
describes a scenario where the agent should always stop the rocket from tilting to the right.

(2) property 2: for the state constraints 6◦ ≤ \ ≤ 20◦, 𝜔 ≥ 0, 𝜑 ′ ≥ 0◦ and 𝐹 ′
𝑆
≥ 0 , the desired

action should be 𝜑 > 0 or 𝐹𝑆 > 0, namely, the unsafe action domain is 𝜑 ≤ 0 ∩ 𝐹𝑆 ≤ 0. It
describes a scenario where the agent should always stop the rocket from tilting to the left.

The reinforcement learning algorithm Deep Deterministic Policy Gradients (DDPG) [Lillicrap

et al. 2015] is applied on this benchmark, which combines the Q-learning with Policy gradients. This

algorithm is used for the environments with continuous action spaces. It consists of two models:

Actor, a policy network that takes the state as input and outputs exact continuous actions rather

than probability distribution over them, and Critic, a Q-value network that takes state and action

as input and outputs Q-values. The Actor is our target agent controller with its safety properties.

DDPG uses experience replay to update Actor and Critic, where in the training process, a set of

tuples are sampled from previous experiences.

Here, we first learn several agents with the DDPG algorithm. Then, we apply our framework to

repair agents that violate the safety properties. The architecture of the Actor is designed with 9

inputs for state, 5 hidden layers with each containing 20 ReLU neurons, 3 outputs with subsequent

tanh function which maps input spaces into [−1, 1]. Let the three outputs before the tanh be denoted
as 𝑦1, 𝑦2 and 𝑦3, the outputs of Actor are computed by 𝐹𝐸 = 0.5× tanh(𝑦1)+0.5, 𝜑 = 15◦× tanh(𝑦2)
and 𝐹𝑆 = tanh(𝑦3). Our reachability analysis is applied to the architecture before the tanh function,

which contains only ReLU neurons. Although the unsafe output domains defined in safety properties

above are for outputs 𝜑 and 𝐹𝑆 after the tanh function, the domains 𝜑 ≥ 0∩ 𝐹𝑆 ≥ 0, 𝜑 ≤ 0∩ 𝐹𝑆 ≤ 0
are actually equivalent to𝑦2 ≥ 0∩𝑦3 ≥ 0,𝑦2 ≤ 0∩𝑦3 ≤ 0. The architecture of the Critic is designed
with 12 inputs for state and action, 5 hidden layers with each containing 20 ReLU neurons, 1 output

for the Q-value. The capacity of the global buffer to store previous experience is set to 4 × 105.
The learning rate for Actor and Critic is set to 10−4 and 10−3 respectively. The 1000 episodes are
performed for each learning. Overall, three unsafe agents are obtained.

For the repair process, the parameters are as follows. the learning rates for Actor and Critic

stay unchanged. A buffer stores all old experiences from the learning process. In addition, another

global buffer is included to store new experiences with unsafe states as initial states. From these

two buffers, old experiences as well as new experiences are randomly selected to form a set of

1:23

training tuples in Figure 4(b). As introduced, a new penalty reward is added for any wrong actions

generated from input states. Its value is normally set to the lowest reward in the old experience.

Here, the penalty is set to -30. To maintain the performance, the threshold of the change ratio

which is defined in Equation 21 is set to -0.2.

Ratio =
Performance(𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝑎𝑔𝑒𝑛𝑡) − Performance(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑔𝑒𝑛𝑡)

Performance(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑔𝑒𝑛𝑡)
(21)

For each unsafe agent, we conduct the repair 5 times with each repair aiming to obtain a safe

agent. There are 15 instances used for evaluation. The experimental results are shown in Table 3

and 4. The evolution of the unsafe input domain like Figure 9 is not included for this benchmark

because the sampling does not work well for high dimensional input space. Table 3 describes the

performance change ratio, the epochs of repair and the total time, where the performance of agents

is evaluated by the averaged reward on 1000 episodes of running. We note that our framework can

successfully repair the 3 agents in all 15 instances. In most cases, the performance of the repaired

agent is slightly improved. The performance degradation in other instances is also trivial. The

repair process takes 2-6 epochs for all instances with the running time ranging from 332.7 seconds

to 2632.9 seconds. Also, during the repair process, we notice that repairing unsafe behaviors on one

property occasionally leads to new unsafe behaviors on the other property. This is likely because

the input regions defined in the properties are adjacent to each other but their desired output

regions are different, and the repaired behaviors over one input region can easily expand to other

regions over which different behaviors are expected.

Next, we conduct a comparison of our new reachability analysis method with the method

presented in [Yang et al. 2021a]. The results are shown in Table 4. In terms of computational

efficiency and memory efficiency, our method outperforms this method in [Yang et al. 2021a]. The

computational efficiency improvement of our method ranges between a maximum of 6.8 times

faster and a minimum of 3.6 times faster, with an average of 4.7. The reduction on memory usage

ranges between 61.7% and 70.2%, with an average of f 64.5%. It is noteworthy that there are many

factors that affect computational complexity of the reachability analysis, such as the number of

neurons, the input domain as well as the parameter weights of DNNs. Therefore, for the three

agents with the same architecture but different weights, the computational time is different.

Table 3. Repair of unsafe agents for the rocket lander. ID is the index of each repair. Ratio denotes the
performance change ratio of the repaired agent compared to the original unsafe agent as formulated in
Equation 21. Epoch denotes the number of epochs for repair. Time (sec) denotes the running time for one
repair with our reachability analysis method.

Agent 1 Agent 2 Agent 3

ID Ratio Epoch Time Ratio Epoch Time Ratio Epoch Time

1 +0.063 3 332.7 +0.048 3 635.7 +0.053 2 446.1

2 +0.088 3 302.0 +0.012 6 1308.4 +0.085 3 1451.6

3 +0.079 3 447.9 -0.084 4 812.9 -0.033 3 2417.1

4 +0.078 3 884.2 +0.025 3 620.3 +0.073 2 1395.3

5 +0.085 3 754.3 -0.001 4 813.5 -0.165 5 2632.9

In addition, we analyze the evolution of the reachable domain of candidate models in the repair.

An example of Agent 1 on the first repair is shown in Figure 11. At 𝑒𝑝𝑜𝑐ℎ = 0 which is before the

repair, we can notice that the candidate agent has unsafe output reachable domain on Property

1 and is safe on Property 2. At 𝑒𝑝𝑜𝑐ℎ = 1, the unsafe reachable domain becomes smaller, which

indicates that the agent learned from the penalty assigned to the unsafe actions and its action space

1:24 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

Table 4. Comparison of our new reachability analysis method with the method [Yang et al. 2021a] on
computational efficiency and memory efficiency. T𝑟 (𝑠𝑒𝑐) andM𝑟 (𝐺𝐵) denote the computational time and
the maximum memory usage of our method for all reachability analysis of all candidate models in one repair.
T𝑛𝑟 (𝑠𝑒𝑐) and M𝑛𝑟 (𝐺𝐵) are for [Yang et al. 2021a] on the same model candidate models.

Agent 1 Agent 2 Agent 3

ID T𝑟 T𝑛𝑟 M𝑟 M𝑛𝑟 T𝑟 T𝑛𝑟 M𝑟 M𝑛𝑟 T𝑟 T𝑛𝑟 M𝑟 M𝑛𝑟

1 129.4 760.0 15.94 42.69 426.1 1583.6 13.38 36.39 700.5 2513.7 14.48 46.05

2 122.9 740.4 15.48 40.45 935.9 3352.8 13.58 37.23 618.6 2586.6 14.33 48.18

3 206.7 1361.9 16.74 45.41 572.6 2106.7 13.55 36.55 645.3 3054.0 15.13 44.91

4 329.0 2250.6 15.66 43.89 428.4 1569.7 13.67 35.97 714.4 3019.8 15.49 47.10

5 224.53 1454.2 15.32 40.77 579.5 2108.3 13.68 35.99 997.0 3277.3 15.99 48.86

moves towards the safe domain. After another repair, the agent becomes safe on both properties. We

can also notice that during the repair the output reachable domains do not change much, indicating

that the performance of the agent is preserved.

Fig. 11. The evolution of the output reachable domain and the unsafe reachable domain in the repair of Agent
1 on the first repair. 𝑥 axis represents 𝑦2 and 𝑦 axis represents 𝑦3. The blue area represents the exact output
reachable domain while the red area represents the unsafe reachable domain which is a subset of the exact
output reachable domain. The bottom left area is the reachable domain on Property 1 and the top right area
is the reachable domain on Property 2.

7 RELATEDWORKS
Adversarial and robust training. The adversarial training [Goodfellow et al. 2014; Madry et al.

2017; Mirman et al. 2018; Wong and Kolter 2018; Zhang et al. 2019] is a type of method where

adversarial examples are obtained by adversarial attacks or reachability analysis based on the over

approximation. These methods have been shown effective in improving the robustness of DNN

against adversarial attacks. It inspires us to combine the adversarial training with the more accurate

reachability analysis methods that provide complete details of misbehaviors, such that provably

safe DNNs can be learned. The difference between our framework and the adversarial training is

that instead of examples from random attacks, our framework can identify examples representative

of the entire unsafe domain computed from the reachability analysis.

Verification of Deep Neural Networks. Many methods for safety verification of DNNs have

been developed, which are mainly based on reachability [Gehr et al. 2018; Tran et al. 2019b;

Xiang et al. 2017, 2018; Yang et al. 2020], optimization [Bastani et al. 2016; Dvijotham et al. 2018;

Lomuscio and Maganti 2017; Raghunathan et al. 2018; Tjeng et al. 2019; Wong and Kolter 2018],

and search [Bunel et al. 2018; Dutta et al. 2018; Ehlers 2017; Huang et al. 2017; Katz et al. 2017;

Wang et al. 2018; Weng et al. 2018]. The reachability analysis method is a very appealing method

for the repair because it can provide regions of DNN misbehaviors. The spectrum of reachability

methods can be broadly categorized in two classes: over-approximation and exact analysis methods.

1:25

Over-approximation methods are able to provide safety guarantees but are also incomplete, i.e.,
the method may return unsafe due to over-approximation when in fact the system is safe. These
methods ensure quick safety verification but are not sufficient for the repair. The repair also requires

the exact analysis method which can compute the exact unsafe input domain and output domain of

DNNs. Thus, we design an algorithm to integrate these two type of method by taking advantage of

their merits, which has been shown around 5 times faster than the related work.

The efficiency and accuracy of reachability analysis is strongly associated with the set represen-

tation. Approaches, particularly for the DNN’s, Zonotope [Gehr et al. 2018], Star-set [Bak et al. 2020;
Tran et al. 2020a, 2019a,c, 2021, 2020b] and facet-vertex incidence matrix (FVIM) with vertices [Yang

et al. 2021a] are utilized. Each set representation has its advantages and challenges. For instance,

a zonotope can be represented with finite vectors v𝑖 by summing 𝑎𝑖v𝑖 , where 𝑎𝑖 is scalar ranging
between 0 and 1. Such a simple representation enables the development of fast over-approximation

methods for reachability analysis. The star-set representation is essentially an enhancement of

the half-space representation, which can efficiently process affine mapping in DNNs. The FVIM is

used for exact reachability analysis for repair in this work. For the integration of methods, the new

set representationV-zono which can be compatible with FVIM and efficiently encodes vertices is

designed for the over approximation method with ReLU linear relaxation.

Deep Neural Networks Repair.Works [Goldberger et al. 2020; Sohn et al. 2019a] attempt to

correct unsafe behavior of DNNs by modifying neural weights that is likely associated with the

misbehaviors. Due to the black-box nature of DNNs, the modification of such weights may result in

unpredicted performance degradation of DNNs. Work [Sotoudeh and Thakur 2021a] introduces a

Decoupled DNN architecture. Based on this architecture, their provable polytope repair which aims

to correct misbehaviors of ReLU DNNs over a domain can be reduced to a LP problem. However,

this method is only applicable to the two-dimensional input region for the DNNs having similar

size to the ones in the HorizontalCAS benchmark – a five-dimensional input.

8 CONCLUSION AND FUTUREWORK
Wehave presented a reachability-based framework to repair unsafe DNN controllers for autonomous

systems. The approach can be utilized to repair unsafe DNNs with only training data available. It

can also be integrated into existing reinforcement algorithms to synthesize safe DNN controllers.

Our experimental results on two practical benchmarks have shown that the proposed framework

can successfully obtain a provably safe DNN while maintaining its accuracy and performance.

We utilize a new set representation and integrate an over approximation method to improve the

performance and memory footprint of our rechability analysis algorithm.

Nonetheless, safe training or repairing of DNNs with reachability analysis is still a challenging

problem. There are several aspects we plan to study in the future. Firstly, computation of the

unsafe set domain of larger-scale DNNs with higher dimensional inputs, such as DNNs for image

classification, is still challenging. Therefore, new approaches are needed to repair such unsafe DNNs.

Secondly, training of DNNs relies on appropriate meta parameters and cannot always guarantee

the convergence to optimal performance, which can impose difficulties for the repair process

to converge. Thus, analysis of the interaction between DNN training and its repair is necessary.

Furthermore, from our observations it becomes more difficult to repair unsafe DNNs when the

input spaces of two safety properties are adjacent but with different desired output behaviors. This

is due to the fact that it may be difficult for the DNN to learn a boundary to distinguish these

adjacent input spaces and behave correctly. Therefore, a thorough study on understanding the

convergence of the proposed framework is critical for enhancing its applicability to real-world

applications.

1:26 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

REFERENCES
Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk Topcu. 2018. Safe

reinforcement learning via shielding. In Thirty-Second AAAI Conference on Artificial Intelligence.
Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. 2020. Neurosymbolic reinforcement learning with

formally verified exploration. arXiv preprint arXiv:2009.12612 (2020).
Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients give a false sense of security: Circumventing

defenses to adversarial examples. In International Conference on Machine Learning. PMLR, 274–283.

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020. Improved Geometric Path Enumeration for

Verifying ReLU Neural Networks. In Proceedings of the 32nd International Conference on Computer Aided Verification.
Springer.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016.

Measuring neural net robustness with constraints. In Advances in neural information processing systems. 2613–2621.
Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. 2020. Efficient Verification of

ReLU-Based Neural Networks via Dependency Analysis.. In AAAI. 3291–3299.
Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J Kochenderfer, and Jana Tumova. 2019. Rein-

forcement learning with probabilistic guarantees for autonomous driving. arXiv preprint arXiv:1904.07189 (2019).
Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. 2016.

Openai gym. arXiv preprint arXiv:1606.01540 (2016).
Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. 2018. A unified view of piecewise

linear neural network verification. In Advances in Neural Information Processing Systems. 4790–4799.
Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. 2019. End-to-end safe reinforcement learning

through barrier functions for safety-critical continuous control tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3387–3395.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output range analysis for deep feedforward

neural networks. In NASA Formal Methods Symposium. Springer, 121–138.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. 2018. A Dual Approach

to Scalable Verification of Deep Networks.. In UAI, Vol. 1. 2.
Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium

on Automated Technology for Verification and Analysis. Springer, 269–286.
Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. 2020. Pruning neural networks at

initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576 (2020).
Nathan Fulton and André Platzer. 2018. Safe reinforcement learning via formal methods: Toward safe control through proof

and learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. Ai2:

Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3–18.

Ben Goldberger, Guy Katz, Yossi Adi, and Joseph Keshet. 2020. Minimal Modifications of Deep Neural Networks using

Verification.. In LPAR, Vol. 2020. 23rd.
Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572 (2014).
Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. 2004. 16 basic properties of convex polytopes. Handbook of

discrete and computational geometry (2004), 255–382.

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. 2020.

A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and

interpretability. Computer Science Review 37 (2020), 100270.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In

International Conference on Computer Aided Verification. Springer, 3–29.
Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repairing deep neural networks: Fix patterns and

challenges. In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 1135–1146.
Kyle D Julian and Mykel J Kochenderfer. 2019. Guaranteeing safety for neural network-based aircraft collision avoidance

systems. In 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, 1–10.
Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An efficient SMT solver for

verifying deep neural networks. In International Conference on Computer Aided Verification. Springer, 97–117.
Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,

Haoze Wu, Aleksandar Zeljić, et al. 2019. The marabou framework for verification and analysis of deep neural networks.

In International Conference on Computer Aided Verification. Springer, 443–452.

1:27

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan

Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward relu neural networks.

arXiv preprint arXiv:1706.07351 (2017).
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning

models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).
Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract interpretation for provably robust neural

networks. In International Conference on Machine Learning. 3578–3586.
Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses against Adversarial Examples. In International

Conference on Learning Representations. https://openreview.net/forum?id=Bys4ob-Rb

Sanjit A Seshia, Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Sumukh Shivakumar,

Marcell Vazquez-Chanlatte, and Xiangyu Yue. 2018. Formal specification for deep neural networks. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 20–34.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural networks.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 41.

Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2019a. Search based repair of deep neural networks. arXiv preprint
arXiv:1912.12463 (2019).

Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2019b. Search based repair of deep neural networks. arXiv preprint
arXiv:1912.12463 (2019).

Matthew Sotoudeh and Aditya V Thakur. 2021a. Provable repair of deep neural networks. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation. 588–603.

Matthew Sotoudeh and Aditya V Thakur. 2021b. SyReNN: A Tool for Analyzing Deep Neural Networks. Tools and Algorithms
for the Construction and Analysis of Systems 12652 (2021), 281.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Networks with Mixed Integer

Programming. In International Conference on Learning Representations. https://openreview.net/forum?id=HyGIdiRqtm

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020. On Adaptive Attacks to Adversarial

Example Defenses. In Advances in Neural Information Processing Systems, Vol. 33. Curran Associates, Inc., 1633–1645.

https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf

Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020a. Verification of Deep Convolutional

Neural Networks Using ImageStars. In 32nd International Conference on Computer-Aided Verification (CAV). Springer.
https://doi.org/10.1007/978-3-030-53288-8_2

Hoang-Dung Tran, Feiyang Cei, Diego Manzanas Lopez, Taylor T. Johnson, and Xenofon Koutsoukos. 2019a. Safety

Verification of Cyber-Physical Systems with Reinforcement Learning Control. In ACM SIGBED International Conference
on Embedded Software (EMSOFT’19). ACM.

Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T

Johnson. 2019b. Star-Based Reachability Analysis of Deep Neural Networks. In International Symposium on Formal
Methods. Springer, 670–686.

Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T.

Johnson. 2019c. Star-Based Reachability Analsysis for Deep Neural Networks. In 23rd International Symposisum on
Formal Methods (FM’19). Springer International Publishing.

Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Xiaodong Yang, Nathaniel P. Hamilton, Diego Manzanas Lopez, Stanley

Bak, and Taylor T. Johnson. 2021. Robustness Verification of Semantic Segmentation Neural Networks using Relaxed

Reachability. In 33rd International Conference on Computer-Aided Verification (CAV). Springer.
Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang, Stanley Bak,

and Taylor T Johnson. 2020b. NNV: The neural network verification tool for deep neural networks and learning-enabled

cyber-physical systems. In International Conference on Computer Aided Verification. Springer, 3–17.
Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Perfectly Parallel Fairness Certification

of Neural Networks. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 185:1–185:30. https:

//doi.org/10.1145/3428253

Caterina Urban and Antoine Miné. 2021. A Review of Formal Methods applied to Machine Learning. arXiv preprint
arXiv:2104.02466 (2021).

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal security analysis of neural networks

using symbolic intervals. In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1599–1614.
Zi Wang, Aws Albarghouthi, and Somesh Jha. 2020. Abstract Universal Approximation for Neural Networks. arXiv e-prints

(2020), arXiv–2007.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon. 2018.

Towards fast computation of certified robustness for relu networks. In International Conference on Machine Learning.

https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=HyGIdiRqtm
https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253

1:28 Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov

PMLR, 5276–5285.

Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning. PMLR, 5286–5295.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2017. Reachable set computation and safety verification for

neural networks with relu activations. arXiv preprint arXiv:1712.08163 (2017).
Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable set estimation and verification for

multilayer neural networks. IEEE transactions on neural networks and learning systems 29, 11 (2018), 5777–5783.
Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan. 2020. Robustness to Adversarial Attacks in Learning-Enabled

Controllers. arXiv preprint arXiv:2006.06861 (2020).
Zikang Xiong and Suresh Jagannathan. 2021. Scalable Synthesis of Verified Controllers in Deep Reinforcement Learning.

arXiv preprint arXiv:2104.10219 (2021).
Xiaodong Yang, Taylor T Johnson, Hoang-Dung Tran, Tomoya Yamaguchi, Bardh Hoxha, and Danil Prokhorov. 2021a.

Reachability Analysis of Deep ReLUNeural Networks Using Facet-Vertex Incidence. In Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control (Nashville, Tennessee) (HSCC ’21). Association for Computing

Machinery, New York, NY, USA, Article 18, 7 pages. https://doi.org/10.1145/3447928.3456650

Xiaodong Yang, Hoang-Dung Tran, Weiming Xiang, and Taylor Johnson. 2020. Reachability Analysis for Feed-Forward

Neural Networks using Face Lattices. arXiv preprint arXiv:2003.01226 (2020).
Xiaodong Yang, Tomoya Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T Johnson, and Danil Prokhorov. 2021b.

Reachability Analysis of Convolutional Neural Networks. arXiv preprint arXiv:2106.12074 (2021).
Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network robustness

certification with general activation functions. In Advances in Neural Information Processing Systems. 4944–4953.
Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019. Theoretically principled

trade-off between robustness and accuracy. In International Conference on Machine Learning. PMLR, 7472–7482.

Weichao Zhou, Ruihan Gao, BaekGyu Kim, Eunsuk Kang, and Wenchao Li. 2020. Runtime-safety-guided policy repair. In

International Conference on Runtime Verification. Springer, 131–150.

https://doi.org/10.1145/3447928.3456650

	Neural Network Repair with Reachability Analysis
	Authors

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reachability Analysis and Set Representation
	2.2 Facet-vertex Incidence Matrix

	3 Deep Neural Network Repair
	3.1 Provably Safe DNNs
	3.2 Reachability Analysis of DNNs with Backtracking
	3.3 DNN Repair for Deep Reinforcement Learning

	4 Framework for DNN Repair
	4.1 Framework for Deep Reinforcement Learning

	5 Reachability Analysis of DNN
	5.1 Over Approximation with Linear Relaxation
	5.2 Over approximation with -zono
	5.3 Fast Computation of Unsafe Input Spaces of DNNs

	6 Experiments and Evaluation
	6.1 HorizontalCAS DNN Controller Repair
	6.2 Rocket Lander Benchmark

	7 Related Works
	8 Conclusion and Future Work
	References

