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STABILIZATION BY ADAPTIVE FEEDBACK CONTROL FOR
POSITIVE DIFFERENCE EQUATIONS WITH APPLICATIONS IN

PEST MANAGEMENT\ast 

C. J. EDHOLM\dagger , C. GUIVER\ddagger , R. REBARBER\S , B. TENHUMBERG\P , AND S. TOWNLEY\| 

Abstract. An adaptive feedback control scheme is proposed for stabilizing a class of forced
nonlinear positive difference equations. The adaptive scheme is based on so-called high-gain adaptive
controllers and contains substantial robustness with respect to model uncertainty as well as with
respect to persistent forcing signals, including measurement errors. Our results take advantage of the
underlying positive systems structure and ideas from input-to-state stability from nonlinear control
theory. Our motivating application is to pest or weed control, and in this context the present work
substantially strengthens previous work by the authors. The theory is illustrated with examples.

Key words. feedback control, mathematical ecology, Lur'e system, pest and weed management,
positive system, simple adaptive control

MSC codes. 15B48, 39A22, 39A30, 39A60, 93D20, 92D45, 93D21

DOI. 10.1137/21M1398240

1. Introduction. We propose an adaptive feedback controller for stabilizing the
following class of systems of forced nonlinear positive difference equations:

(1.1) x(t+ 1) = Ax(t) +B\Theta (Ex(t)) +Bev(t), x(0) = x0, t = 0, 1, 2, . . . .

The vectors x and v are a state and external forcing variable, respectively. Fur-
thermore, A, B, Be, and E are appropriately sized matrices, and \Theta is a (nonlinear)
function, all of which have certain positivity properties. The term positive refers
to the property that the dynamics (1.1) leave invariant the nonnegative orthant of
n-dimensional Euclidean space, reflecting the property that (1.1) models necessarily
nonnegative quantities. The dynamics in (1.1) are reasonably general as the right
hand side contains both linear and nonlinear terms and is occasionally called a semi-
linear difference equation [34] or a semilinear map [42]. The model (1.1) encompasses
inhomogeneous linear systems of difference equations in the special case that \Theta = 0.

In a control theoretic setting, the model (1.1) is often called a system of Lur'e
difference equations, after the Soviet scientist A.I. Lur'e, who made early contributions
to their stability theory in continuous-time. Other Anglicizations of the Russian name
include Lurie and Lurye. Lur'e systems arise in a variety of classical systems and
control theoretic contexts and are a well-studied and active area of research. Relevant
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works include, but are not limited to, [20, 26, 28, 32, 45] and, particularly for the
discrete-time case, the papers [16, 41] and the references therein.

Systems of positive Lur'e difference equations have recently been proposed and
considered as models in ecology in, for example, [9, 11, 14, 15, 39, 42, 44]. Briefly,
as Lur'e difference equations contain both linear and nonlinear components, they are
often an appropriate framework for modeling density-independent (that is, linear)
and density-dependent (that is, nonlinear) vital- or transition-rates. The inclusion
of density-dependence permits modeling Allee [8], competition, or crowding effects.
Consequently, (1.1) admits a range of realistic and nontrivial dynamic behavior in-
cluding boundedness of solutions [15], and attractive zero and nonzero equilibria, as
well as exhibiting fluctuating and even chaotic solutions. Another appealing facet
is that Lur'e systems are reasonably well-understood mathematically and amenable
to analysis. For example, ``trichotomies of stability"" (also known as ``limit set tri-
chotomies"") are presented in [39] and [44] for certain unforced (v = 0) models of the
form (1.1) in terms of the model data.

The motivating context for the current study is the situation wherein x in (1.1)
models a stage-structured local pest or weed population which we seek to manage via
some control scheme, such as chemical pesticide application or release of bio-control
agents [25]: a timely control engineering problem of significant societal, economical,
and environmental relevance. Pests include numerous organisms which cause damage
in agriculture and horticulture. Invertebrate pests reduce crop quality, vector plant
diseases, and directly cause crop losses before and after harvest. Insect pests alone
may account for 14--18\% of losses in total yield [38]. Importantly, pest pressure also
varies considerably with climate and crop species. Much greater losses to insect pests
can occur in developing countries [38], while cosmetic damage to fruit and vegetable
crops can mean that 30\% of production remains unharvested in the UK [13]. The food
security challenge for the present century is to increase global levels of food production
without placing additional stress on the environment. Rational and informed control
interventions, therefore, can help improve crop yields, minimize impacts, and reduce
costs, which require continued research and development. Moreover, we believe that
there is great utility and value in exploring the use of robust control strategies, such
as adaptive controllers, in pest management owing to the considerable uncertainties
present. Indeed, the exact effects of intervention strategies, be it a chemical pesticide
or bio-control application, are not likely to be known. Furthermore, pest species'
ranges are changing in response to climate change [5], meaning that farmers and
other end-users are likely to have to manage novel pests.

Adaptive control is arguably one of the two main pillars of robust control theory,
the other being H\infty -control, which traces its roots back to [47] and is now the subject
of numerous textbooks including, for instance, [50]. Adaptive control is a broad term,
with no one single agreed definition, and dates back to the control of aircraft in the
1950s. The early history is discussed in the reviews [2, 37]; for a more recent review
of some aspects see [4]. Monographs on the subject include [3, 27]. Roughly, the
idea behind simple adaptive control is that the control effort is a dynamic variable,
governed by some prescribed set of equations which are tied to an output (a mea-
sured variable) of the to-be-controlled system. The output need not be the whole
state x---in practice it may just be a portion of the state, such as knowledge of one
stage-class. The power of simple adaptive controllers is threefold: (i) their ease of
computation and thus implementation; (ii) their ability to achieve dynamic control
objectives with a paucity of information, such as just a measured output; and (iii)
their global robustness properties, meaning that their theoretical efficacy is ensured
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for all systems from a class or universum, typically prescribed by certain structural
properties. In particular, local robustness arguments, such as ``sufficiently accurate""
nominal parameter estimates, are not required for simple adaptive control schemes.
In the control engineering jargon the term ``self-tuning"" has also been used instead of
``adaptive,"" and the nomenclature ``simple"" refers to the nonidentifier property of the
controller, meaning that it does not seek to update the underlying dynamical model
over time or estimate model parameters. In natural resource management the word
``adaptive"" is less specific and generally means a feedback (see [46]). Two drawbacks
of simple adaptive controllers are, first, their lack of optimality (which one could argue
has been traded off to ensure their strong robustness properties)---in fact, robust per-
formance metrics need not be included---and, second, that they typically only ensure
desired asymptotic dynamic behavior---transient behavior is not addressed.

In [18] we proposed simple adaptive feedback control as a theoretical approach for
pest management. There we considered the feedback interconnection of the system
of linear positive difference equations

x(t+ 1) = Ax(t) + w(t), x(0) = x0, t = 0, 1, 2, . . . ,

and the simple adaptive controller

(1.2) u(t+ 1) = u(t) + \Phi (\| y(t)\| ), u(0) = u0, t = 0, 1, 2, . . . ,

where w(t) is the per time-step control effect of the control action or effort u(t), the
function \Phi determines the rate of adaptation of u, and y(t) is a measured variable
available for feedback purposes. In [18] we used irreducibility and positivity arguments
and avoided classical assumptions associated with high-gain control to establish sta-
bility properties of the state variable x(t).

The underlying idea in [18] is that the stabilizing effect of control increases with
increasing control effort, and if an infinite control effort is assumed to be stabilizing,
then, under certain assumptions, the adaptive control scheme (1.2) ``finds"" a finite
control effort which is also stabilizing. One of the benefits of an adaptive feedback
control approach is that a finite stabilizing control effort may not be known in practice.
Two drawbacks of [18] are that it considered only the somewhat limited case that the
underlying model is linear, when in fact most realistic pest models are nonlinear (that
is, density-dependent). Furthermore, simple adaptive controllers are known to be
susceptible to persistent measurement error, meaning that y(t) in (1.2) is replaced by
y(t) + \varepsilon (t) for some measurement error term \varepsilon (t). The results of [18] do not apply in
this setting.

The present work nontrivially extends [18] by considering the stabilization of (1.1),
facilitating the much more realistic situation wherein pest models can be nonlinear.
Moreover, here we augment the adaptation law (1.2) with a prescribed level \lambda > 0
of tolerance, reminiscent of a so-called \lambda -tracker; see [23] or [24]. The addition of ro-
bustness with respect to measurement errors is important owing to the difficulties in
accurately measuring pest populations. As is typical for adaptive feedback controllers,
we seek to make as few assumptions pertaining to knowledge of (1.1) as possible, in-
cluding the exact effect of control actions, our emphasis being on designing controllers
which are robust to such sources of uncertainty. There are strong arguments, such as
optimizing performance, as to why other controllers are more appropriate when the
to-be-controlled system is well modelled and the effects of control are well understood.

Our main result is Theorem 2.1, which gives stability and convergence properties
of the adaptive feedback control system we consider. The main ideas are the same
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as those outlined above, namely, that under the assumption that an infinite control
effort is stabilizing, the adaptive feedback control system we propose ``finds"" a finite
stabilizing control effort, in a sense we describe. The difference equations for the
state x are a controlled version of (1.1) and, as discussed above, the control vari-
able is determined by a simple adaptive feedback controller with measurement error
tolerance.

We comment that Lur'e systems, and their stability properties, are hugely well-
studied objects. In addition to the literature already cited, they arise in, for exam-
ple, models for gene regulation [31], networked control systems [48], and classes of
nonlinear discrete-time ARMA(X) models [40]. Yet another line of enquiry is the
stabilization of chaotic Lur'e systems; see [49] and the references therein. There are
numerous approaches to the stability of Lur'e systems, including the use of linear
matrix inequalities and subsequent Lyapunov analysis, as well as so-called multiplier-
based methods [7]. Other recent works include the use of sensitivity-type tools in
the study of positive Lur'e systems arising in ecology (see [10]). We are not aware
of other papers which specifically consider adaptive control of positive Lur'e systems,
or Lur'e systems in the context of pest management, and the overlap between these
cited works and the present contribution is minimal. Indeed, our analysis is crucially
underpinned by comparison and monotonicity arguments from the theory of positive
dynamical systems, or just positive systems; see, for instance, [6, 21, 29]. Adaptive
control of continuous-time positive linear systems is considered in [21, Chapter 15],
and differences between the results there and [18] are discussed in [18, Remark 2.15].

The paper is organized as follows. In section 2 we fully describe our model
and state our main results. Examples are presented in section 3 and we make some
summarizing comments in section 4. All mathematical proofs and supporting material
for our numerical examples appear in the appendix.

Notation. We collect mathematical notation and terminology. As usual, let \BbbN ,
\BbbZ , and \BbbR denote the sets of positive integers (natural numbers), integers, and real
numbers, respectively. Furthermore, we set

\BbbZ + :=
\bigl\{ 
m \in \BbbZ : m \geq 0

\bigr\} 
= \BbbN \cup \{ 0\} and \BbbR + :=

\bigl\{ 
t \in \BbbR : t \geq 0

\bigr\} 
.

For n,m \in \BbbN , we let n := \{ 1, 2, . . . , n\} , and \BbbR n and \BbbR n\times m denote usual n-dimensional
Euclidean space and the space of n\times m matrices with real entries, respectively. The
superscript T denotes both matrix and vector transposition. The symbol I denotes the
identity matrix, the size of which is consistent with the context. For M,N \in \BbbR n\times m

with entries mij and nij , respectively, we write

M \leq N if mij \leq nij \forall i \in n, j \in m,

and M < N if M \leq N and M \not = N . We use the corresponding conventions for \geq 
and >, respectively. We let \BbbR n\times m

+ denote the set of nonnegative matrices, that is,
M \in \BbbR n\times m

+ if 0 \leq M . We call M positive if 0 < M and strictly positive if every entry
of M is positive, noting that there are different conventions present in the academic
literature for the term positive matrix. We recall that a nonnegative square matrix
M \in \BbbR n\times n

+ is irreducible if, and only if, for each i, j \in n there exists k \in \BbbN such
that the (i, j)th entry of Mk is positive. We let \rho (M) denote the spectral radius of
M \in \BbbR n\times n.

Following the terminology in, for example [30, p. 37], a norm \| \cdot \| on \BbbR n is called
monotonic if 0 \leq x \leq y implies that \| x\| \leq \| y\| . Every Euclidean norm is monotonic.
Here we let \| \cdot \| denote a (any) monotonic norm on \BbbR n, and the corresponding induced
operator norm on \BbbR m\times n, respectively.
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The symbol \scrK denotes the set of so-called comparison functions---continuous func-
tions \BbbR + \rightarrow \BbbR + which are strictly increasing and zero at zero; see, for example, [33,
p. 172].

Given a nonempty interval J \subseteq \BbbR + and matrix-valued function of a nonnegative
scalar variable M (whose domain includes J), we call M nonincreasing on J if, for all
w1, w2 \in J ,

(1.3) w1 \leq w2 \Rightarrow M(w1) \geq M(w2) ,

and similarly for nondecreasing on J . When the above holds with J = \BbbR +, then
we just call M nonincreasing, and analogously for nondecreasing. We let \scrF (\BbbZ +,\BbbR n)
denote the set of functions (sequences) \BbbZ + \rightarrow \BbbR n, and for x \in \scrF (\BbbZ +,\BbbR n) we let x+

denote the image of x under the left-shift operator, so that x+(t) = x(t+1). Further,
we set

\| v\| \ell \infty (t1,t2) := max
\bigl\{ 
\| v(\tau )\| : t1 \leq \tau \leq t2

\bigr\} 
\forall t1, t2 \in \BbbZ +, t1 \leq t2 .

If v \in \scrF (\BbbZ +,\BbbR n) is bounded, then we set \| v\| \ell \infty := sup
t\in \BbbZ +

\| v(t)\| .

2. Main results. Consider the system of nonlinear positive difference equa-
tions (1.1), where A \in \BbbR n\times n

+ , B \in \BbbR n\times m
+ , Be \in \BbbR n\times s

+ , E \in \BbbR q\times n
+ for somem,n, q, s \in \BbbN 

and function \Theta : \BbbR q
+ \rightarrow \BbbR m

+ . For the applications we have in mind, the state variable
x in (1.1) shall denote a stage-structured pest or weed population with n discrete
stage-classes. The variable v takes values in \BbbR s and Bev denotes a (structured) ex-
ternal disturbance term, which we shall call a forcing term. Throughout the present
work, we shall assume that not all of x is necessarily known to the modeller, and
thus not available to inform feedback control strategies. There are numerous reasons,
such as practicality, feasibility, or cost, as to why this may be the case. However, we
assume that a measured variable

y = Cx+Dev

is known, which corresponds to some observed portion of the state Cx, possibly
subject to measurement error denoted Dev. We call y the output. The term C
satisfies C \in \BbbR p\times n

+ for some p \in \BbbN , so that y \in \BbbR p, and we shall always assume that
C has no zero rows, as zero rows correspond to a trivial (zero) measurement and are
inappropriate.

We assume that the control action acts on the dynamics for x via the matrices A,
B, and E and the function \Theta , as a possibly nonlinear and unknown, but nonincreasing,
function of an applied control effort, denoted u. The control need not act on all of
these terms, but it is assumed to act on at least one. We propose an adaptation
law for u which, roughly, means that u increases so long as the norm of the output
is no smaller than a prescribed tolerance. The larger the control effort u, the more
efficacious the control effect, which in turn further reduces x, and so y as well.

To make the above overview concrete, we propose an adaptation law for u which
results in the following closed-loop simple adaptive feedback control system:

(2.1)

x+ = A(u)x+B(u)\Theta 
\bigl( 
u,E(u)x

\bigr) 
+Bev, x(0) = x0 ,

y = Cx+Dev,

u+ = u+\Psi 
\bigl( 
max

\bigl\{ 
0, \| \phi (y)\|  - \lambda 

\bigr\} \bigr) 
, u(0) = u0 ,

\right\}     
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where now A, B, and E are matrix-valued functions of the applied control effort u,
and \Theta may also depend on u. Here x+(t) = x(t + 1) for all nonnegative integers t.
It is assumed that the term Be is independent of u. The function \Psi : \BbbR + \rightarrow \BbbR +

belongs to \scrK , and u0 \in \BbbR + and \lambda \geq 0 are design parameters. These represent the
rate of adaptation of u, its initial value, and a forcing tolerance level, respectively.
The function \phi is discussed below.

The model (2.1) includes as a special case the situation Bev = v1 and Dev = v2
by taking

Be = (I, 0), De = (0, I), and v =

\biggl( 
v1
v2

\biggr) 
.

For all v \in \scrF (\BbbZ +,\BbbR s) and all initial conditions (x0, u0) \in \BbbR n
+ \times \BbbR +, throughout the

work we let (x, u) denote the unique solution of (2.1). It is clear that such a unique
solution exists. In the case that \Theta (\cdot , 0) = 0, v = 0, and \phi (0) = 0 (which shall be the
case), then (0, u0) is clearly a constant solution of (2.1).

We shall assume throughout that Bev(t) \geq 0, which ensures that x(t) \geq 0 for
all t \in \BbbZ +. Some comments on the situation wherein Bev(t) \geq 0 is relaxed are
provided in the text after the statement of Theorem 2.1. As a (noisy) measurement
of nonnegative state variables of a biological process, we would expect the output
y to be nonnegative valued. It is rather restrictive to assume that the noise Dev is
nonnegative valued, and thus as feedback we saturate the output y, that is, use \phi (y)
where \phi : \BbbR p \rightarrow \BbbR p is defined componentwise by

(2.2) (\phi (z))i := max
\bigl\{ 
0, zi

\bigr\} 
\forall z \in \BbbR p \forall i \in p ,

and where zi denotes the ith component of z. The rationale for including \phi is that
negative components of y(t) have been caused by noise, as Cx(t) \geq 0 for all t, and
are thus artifactual and should not lead to an increase in control effort u. Note that
if Dev \geq 0, then \phi (y) = y.

The tolerance \lambda seeks to add robustness of (2.1) with respect to the unknown
and potentially persistent forcing v---Theorem 2.1 below states that (2.1) has certain
stability properties for all sufficiently small \| v\| \ell \infty , as a function of \lambda . Hence, the
larger \lambda is, the larger the set of potential forcing terms which can be accommodated
(which is desirable), but the cost is that the resulting ``true"" output y - Dev may also
be larger (which is undesirable).

We record the following structural and nonnegativity properties associated with
the adaptive feedback control system (2.1):
(M1) A : \BbbR + \rightarrow \BbbR n\times n

+ , B : \BbbR + \rightarrow \BbbR n\times m
+ , E : \BbbR + \rightarrow \BbbR q\times n

+ for m,n, q \in \BbbN are
nonincreasing functions in the sense of (1.3) and A is continuous ;

(M2) \Theta : \BbbR + \times \BbbR q
+ \rightarrow \BbbR m

+ satisfies \Theta (\cdot , 0) = 0 and is continuous in its second
variable for each fixed first variable, and \Theta (w1, \cdot ) \leq \Theta (w2, \cdot ) for all w1 \geq w2 ;

(M3) for all w \geq 0, there exists \Delta = \Delta (w) \in \BbbR m\times q
+ such that

\Theta (w, z) \geq \Delta z \forall z \in \BbbR q
+ ,

and A(w) +B(w)\Delta E(w) is irreducible;
(M4) C \in \BbbR p\times n

+ for some p \in \BbbN and C has no zero rows;
(M5) \Psi \in \scrK .

We shall use the symbol (M) to denote the collected properties (M1)--(M5). By way of
commentary, assumptions (M1) and (M2) contain structural properties of the linear
and nonlinear data in (2.1), respectively. Assumptions (M4) and (M5) relate to the
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measured variable y and the difference equation for the control variable u in (2.1),
respectively. Finally, assumption (M3) is a growth condition for \Theta and provides
a coupling condition between the nonlinear and linear parts of the dynamics for x
in (2.1). We shall use it to couple the unknown variable x to the known observations
y = Cx+Dev. It is trivially satisfied with \Delta = 0 if A(w) itself is irreducible for every
w \geq 0. In the case m = q = 1, a sufficient condition for the existence of the lower
bound \Delta is that

\Delta := inf
z>0

\Theta (w, z)

z
> 0 \forall w \geq 0 .

We next introduce our stabilizability assumption:
(S) there exist \sigma \geq 0 and \Sigma \in \BbbR m\times q

+ such that

\Theta (\sigma , z) \leq \Sigma z \forall z \in \BbbR q
+ and \rho 

\bigl( 
A(\sigma ) +B(\sigma )\Sigma E(\sigma )

\bigr) 
< 1 .

Roughly speaking, this means that there is a large enough control effort \sigma so that the
linear system with that control, x+ = (A(\sigma ) + B(\sigma )\Sigma E(\sigma ))x, is exponentially stable
and provides an upper bound for x given by the nonlinear difference equation in (2.1)
but with fixed control u = \sigma .

Our main result is the following theorem, which describes stability and conver-
gence properties of the adaptive feedback control system (2.1).

Theorem 2.1. Consider the adaptive feedback control system (2.1) with \lambda > 0,
and assume that (M) and (S) hold. Then, there exists \alpha = \alpha (\lambda ) > 0 such that, for all
(x0, u0) \in \BbbR n

+ \times \BbbR + and all v \in \scrF (\BbbZ +,\BbbR s) with Bev \geq 0 and

(2.3) max
\bigl\{ 
\| Bev\| \ell \infty , \| Dev\| \ell \infty 

\bigr\} 
< \alpha ,

the following statements apply to the solution (x, u) of (2.1):
(i) u is bounded, and hence convergent ;
(ii) y is bounded and satisfies max

\bigl\{ 
0, \| \phi (y(t))\|  - \lambda 

\bigr\} 
\rightarrow 0 as t \rightarrow \infty ;

(iii) x is bounded ;
(iv) if \tau \in \BbbZ + is such that u(\tau ) \geq \sigma , then there exist M > 0 and \gamma \in (0, 1) such

that

(2.4) \| x(t+ \tau )\| \leq M
\bigl( 
\gamma t\| x(\tau )\| + \| Bev\| \ell \infty (\tau ,\tau +t - 1)

\bigr) 
\forall t \in \BbbN .

The constants M and \gamma in (2.4) depend on the model data in (2.1) (including on the
u(\tau ) \geq \sigma ), but are independent of x0, u0, and v.

If instead we consider (2.1) with \lambda = 0 and v = 0, and replace (2.3) by

(2.5)
\sum 
j\in \BbbZ +

\Psi (\delta \varepsilon j) < \infty \forall \delta > 0 \forall \varepsilon \in (0, 1) ,

then statements (i)--(iv) still hold and, additionally,
(v) x(t) \rightarrow 0 as t \rightarrow \infty .

We provide some commentary on the above theorem---its hypotheses and conclu-
sions.

Model assumptions. The model assumptions (M) are structural and positivity
properties imposed on the class of models to be controlled and are arguably not
physically restrictive. They are robust with respect to parametric (that is, the values
of A, B, E, and \Theta ) and structural (such as the various dimensions n, m, and p)
uncertainty in (1.1), which is a desirable aim of the present work.
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Assumption (M3) is a growth condition and the irreducibility requirement,
roughly speaking, means that every state component experiences the same rate of
growth or decline. Consequently, although Cx perhaps only measures a small por-
tion of the state, that alone is sufficient to gauge the rate with which all the state
variables are changing. Irreducibility of the closed-loop dynamics is a key structural
assumption in [18] and has been argued as a reasonable assumption for empirically
derived ecological models in [43].

Theorem 2.1 is still true without the assumption that Bev(t) \geq 0, provided that
x(t) \geq 0 for every t \in \BbbZ +. This is an admittedly unsatisfactory assumption, how-
ever, as describing the possible Bev(t) which maintain the physical requirement that
x(t) \geq 0 for x determined by the nonlinear difference equation (2.1) seems subtle. A
treatment when x is specified by a forced system of linear difference equations is given
in [17].

The growth condition (2.5) in words states that \Psi respects the summability of
convergent geometric series. It need not be satisfied for general \Psi \in \scrK . It is not
an overly restrictive assumption in practical applications, as it is satisfied if \Psi is lo-
cally Lipschitz continuous at zero, or H\"older continuous (with any positive exponent),
for instance. This assumption played a key role in [18], but can be obviated here
when (2.1) contains a positive forcing tolerance \lambda > 0.

Stabilizability assumptions. Another key hypothesis of Theorem 2.1 is the sta-
bilizability assumption (S), which, as our examples suggest, is a reasonable assumption
in ecologically motivated scenarios. Possibly the simplest situation in which (S) holds
is if \rho (A(w)) < 1 and \Sigma may be chosen sufficiently small. The condition (S) contains
a linear bound and an eigenvalue condition, the latter of which grows in size with the
size of A. The following lemma contains a sufficient condition for (S).

Lemma 2.2. Consider (2.1) and assume that (M) holds. If there exist \sigma \geq 0,
\Sigma \in \BbbR m\times q

+ , strictly positive \zeta \in \BbbR q
+ and \kappa \in (0, 1) such that \rho (A(\sigma )) < 1 and

(2.6) \Theta (\sigma , z) \leq \Sigma z \forall z \in \BbbR q
+ and \zeta TH(\sigma )\Sigma \leq \kappa \zeta T ,

where

(2.7) H(w) := E(w)(I  - A(w)) - 1B(w) \forall w \geq \sigma ,

then assumption (S) holds with \sigma and \Sigma as above.

In control theory jargon, the matrix H(w) in (2.7) is the steady state gain of
the linear control system specified by the triple (A(w), B(w), E(w)). The second
inequality in (2.6) is a so-called weighted small-gain condition and is used extensively
in [19] in the stability analysis of systems of positive Lur'e difference equations. The
matrix H(\sigma )\Sigma is order q \times q and indeed is scalar if q = 1, in which case the second
condition in (2.6) reduces to the scalar inequality H(\sigma )\Sigma < 1. Therefore, in certain
cases, such as when m, q \ll n, verifying (2.6) may be easier than verifying (S) directly.

Establishing whether the weighted small-gain condition (2.6) is satisfied evidently
requires knowledge of the assumed unknown \Theta and H (the latter depending on A, B,
and E), although knowledge of suitable \sigma \geq 0, strictly positive \zeta \in \BbbR q

+, and \kappa \in (0, 1)
as in (2.6) is not required to implement (2.1) or for Theorem 2.1 to apply. Since
H is nonincreasing (see Lemma C.1), if it is known, perhaps by other or a fortiori
arguments, that \rho (A(w)) < 1 and H(w) \rightarrow 0 as w \rightarrow \infty , and that \Theta admits the linear
bound in (2.6) uniformly in its first variable, then (2.6) holds.

External forcing. In the context of the robustness of (2.1) with respect to the
additive external forcing term v, which models disturbances into the state dynamics
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and measurement errors, the third key hypothesis of Theorem 2.1 is that \| v\| \ell \infty is
small enough. Specifically, the estimate (2.3) is a hypothesis of Theorem 2.1, where
the threshold \alpha is a function of the tolerance \lambda . This is admittedly a local robustness
property. Thus, Theorem 2.1 contains some robustness in this sense---at least quali-
tatively if not quantitatively. Indeed, one drawback of Theorem 2.1 is that \alpha is not
explicitly constructed.1 That written, the proof of Theorem 2.1 does show that the
condition (2.3) may be relaxed to

(2.8) max
\bigl\{ 
lim sup
t\rightarrow \infty 

\| Bev(t)\| , lim sup
t\rightarrow \infty 

\| Dev(t)\| 
\bigr\} 
< \alpha ,

and the conclusions of the theorem are still valid. Moreover, in the simpler case that
Bev = 0, that is, only measurement noise is present, then the proof of Theorem 2.1
shows that \alpha (\lambda ) can be chosen to equal \lambda . Moreover, the threshold \alpha (\lambda ) = \lambda is the
largest possible threshold which ensures that the conclusions of Theorem 2.1 can be
expected to hold. Indeed, if Dev \geq 0 and

lim sup
t\rightarrow \infty 

\| Dev(t)\| > \lambda ,

then it is clear from (2.1) and the definition of y that u is unbounded, which is very
undesirable.

Finally, straightforward adjustments to the proof of Theorem 2.1 demonstrate
that statements (i)--(v) still hold if the saturation function \phi is omitted from (2.1).

The next two examples seek to illustrate the role of the hypotheses and conse-
quences of the conclusions of Theorem 2.1, respectively.

Example 2.3. We claim that the stabilizability assumption (S), or coupling con-
dition (M3), cannot be dropped from the hypotheses of Theorem 2.1 in general. The
simplest way in which (S) fails is if \rho (A(w)) \geq 1 for all w \geq 0. For the sake of
simplicity, assume that v = 0, that

\Lambda := lim
w\rightarrow \infty 

A(w) ,

exists and is irreducible, and that \lambda > 0 is sufficiently small. Then with \Theta = 0, it
follows that x admits the estimate x+ = A(u)x \geq \Lambda x. The continuity of \rho gives
\rho (\Lambda ) \geq 1, which, when combined with the irreducibility of \Lambda , yields that

lim sup
t\rightarrow \infty 

(\| y(t)\|  - \lambda ) > 0 ,

and hence u diverges. If, in fact, \rho (\Lambda ) > 1, then x and y = Cx diverge as well.
The irreducibility properties associated with (2.1), formulated in the coupling con-

dition (M3), must also hold, unless further assumptions are placed on the observation
matrix C. As an example, consider (2.1) with n = 2, v = 0, \lambda = 0, and

A(u) :=

\biggl( 
a1(u) 0
0 a2(u)

\biggr) 
, B(u) :=

\biggl( 
1
0

\biggr) 
, E(u) = C :=

\bigl( 
0 1

\bigr) 
, \Theta := 0 .

(The terms Be and De are unimportant when v = 0.) Here a1, a2 : \BbbR + \rightarrow \BbbR + are
continuous, nonincreasing functions. We assume that there exists some large u\dagger > 0
such that a1(u

\dagger ), a2(u
\dagger ) < 1, so that assumption (S) holds with \sigma = u\dagger and \Sigma = 0.

1For more information, see the estimate (B.11) and supporting discussion.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION BY ADAPTIVE FEEDBACK CONTROL 2223

Moreover, since \Theta = 0, assumption (M3) is not satisfied as A(w) is reducible (when
\Theta = 0, the only possible candidate for \Delta in (M3) is \Delta = 0).

Under the above hypotheses, the adaptive feedback control system (2.1) reduces
to the three scalar difference equations

(2.9) x+
k = ak(u)xk, k \in \{ 1, 2\} , and u+ = u+\Psi (\| y\| ) = u+\Psi (x2) .

In light of (2.9), by choosing 0 < w2 < w1 < u\dagger and functions a1, a2 additionally such
that

a2(w2) < 1 and a1(w1) > 1

(informally, satisfied if a2 decays more quickly than a1), we can then choose x0, u0,
and \Psi such that x2(t) \rightarrow 0 and u(t) \rightarrow w \in [w2, w1] as t \rightarrow \infty . However, since
a1(w1) > 1, it follows that

x+
1 = a1(u)x1 \geq a1(w1)x1 ,

leading to x1(t) \rightarrow \infty as t \rightarrow \infty .

Example 2.4. Theorem 2.1 does not enforce that x(t) \rightarrow 0 as t \rightarrow \infty when \lambda \not = 0.
Indeed, consider (2.1) with Bev = 0, \Theta = 0, sufficiently large \lambda > 0 and bounded
Dev. If u\ast \geq 0 and x\ast \in \BbbR n

+ are such that

(2.10) A(u\ast )x\ast = x\ast 

(in particular, if \rho 
\bigl( 
A(u\ast )

\bigr) 
= 1 and x\ast \in \BbbR n

+ is a corresponding eigenvector) and v, \lambda ,
and x\ast together have the property that

sup
t\in \BbbZ +

\| \phi (Cx\ast +Dev(t))\|  - \lambda < 0 ,

then (x\ast , u\ast ) is a constant solution of (2.1). In particular, there are constant solutions
of (2.1) with a nonzero state component. We see that statements (i)--(iii) of Theo-
rem 2.1 hold, but that the hypotheses of statements (iv) and (v) are not satisfied.
Indeed, necessarily it must be the case that u\ast < \sigma . Further, the equality (2.10) does
not violate assumption (S). Instead, in other words, we conclude that u\ast is not a
stabilizing control level in the sense of (2.4). We note that the choice that \Theta = 0
in this example is not restrictive and is made to simplify the exposition---examples
illustrating the same features of (2.1) can be constructed with nonzero \Theta .

As a corollary of Theorem 2.1, we obtain a result for linear positive systems by
taking \Theta = 0 in (2.1). The special case of (2.1) with \Theta = 0, Dev = 0, and \lambda = 0 was
considered in [18].

Corollary 2.5. Consider (2.1) in the special case that \Theta = 0 and A(w) is
irreducible for every w \geq 0. If (M) holds and \rho (A(\sigma )) < 1 for some \sigma \geq 0, then the
conclusions of Theorem 2.1 apply.

Returning to (2.1), we comment that unless A(w) is itself irreducible for every
w \geq 0, a nonzero \Delta in assumption (M3) is required. This in turn necessitates that
\Theta (w, \cdot ) is globally linearly bounded from below, and hence unbounded, which need
not be the case in many ecological models. Therefore, roughly, our next result allows
for \Theta which satisfy a weaker linear lower bound condition, provided that \Theta satisfies
an additional growth condition.
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Proposition 2.6. Consider the adaptive feedback control system (2.1), and as-
sume that properties (M) and (S) hold, with (M3) replaced by

(M3)\prime There exist \Gamma 1 \in \BbbR m\times q
+ and \Gamma 2 \in \BbbR m

+ such that \rho (A(0) + B(0)\Gamma 1E(0)) < 1
and

\Theta (0, z) \leq \Gamma 1z + \Gamma 2 \forall z \in \BbbR q
+ .

Further, for every w, k \geq 0, there exists \Delta = \Delta (w, k) \in \BbbR m\times q
+ , such that

\Theta (w, z) \geq \Delta z \forall z \in \BbbR q
+ with \| z\| \leq k ,

and A(w) +B(w)\Delta E(w) is irreducible.
Then the conclusions of Theorem 2.1 hold.

In words, hypothesis (M3)\prime allows for the function \Theta (w, \cdot ) to be linearly bounded
from below only on bounded sets, provided that a boundedness/growth condition
holds. Possibly the simplest situation wherein the first two properties of hypothe-
sis (M3)\prime are satisfied is when \rho (A(0)) < 1 and the function \Theta (0, \cdot ) is bounded (so
that \Gamma 1 may be chosen above to equal zero).

The assumption (M3)\prime can be further relaxed by replacing 0 which appears as
an argument of A(0), B(0), etc., by some \sigma 1 > 0, provided that, roughly, for all
w \in [0, \sigma 1] a lower bound of the form

A(w)z +B(w)\Theta (w,E(w)z) \geq \Lambda (w)z \forall z \in \BbbR n
+

holds, for some irreducible \Lambda (w) \in \BbbR n\times n
+ . For the sake of brevity, we do not give the

details.
In a discrete-time control system the update law for the state determines the

state at the next time-step in terms of the current state and the control, as well as
any external variables. The formulation of the right hand side depends on when,
throughout the time-step, these processes take place, particularly if the processes do
not commute (which is likely to be the situation in the matrix-valued case). We now
discuss how the model (2.1) may capture the timings of control actions.

Specifically, we assume that the quantity x is governed by (1.1) when uncontrolled,
and that control action reduces the state proportionally via multiplication with \Gamma (u),
modelled as

(2.11) x+ = \Gamma (u)
\bigl( 
A0x+B0\Theta 0(E0x)

\bigr) 
+Bev, x(0) = x0 ,

for some fixed A0 \in \BbbR n\times n
+ , B0 \in \BbbR n\times m

+ , E0 \in \BbbR q\times n
+ with m,n, q \in \BbbN . The function

\Gamma is not expected to be known exactly, but is expected to have certain qualitative
properties, captured as

(D) \Gamma : \BbbR + \rightarrow \BbbR n\times n is zero on the off-diagonal and its diagonal components
are either unity or nonincreasing continuous functions \BbbR + \rightarrow (0, 1] which are
unity at zero.

Consequently, \Gamma as in (D) satisfies \Gamma (0) = I, and the difference equation (2.11) coin-
cides with the original model (1.1) when u = 0. In a biological context, the motivation
for the model (2.11), and the qualitative properties of \Gamma , is that the control action
of multiplication by \Gamma (u), corresponding to proportional removal or reduction, occurs
after the other biological processes which take place over each time-step. The external
signal Bev is assumed independent of the control action.

The difference equation (2.11) is a special case of the dynamics for x in (2.1),
with functions A, B, and E given by

A(w) := \Gamma (w)A0, B(w) := \Gamma (w)B0, and E(w) := E0 .

Here E and \Theta := \Theta 0 : \BbbR q
+ \rightarrow \BbbR m

+ are independent of w.
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If, in fact, the control action of proportional removal is assumed to occur before
the other biological processes over a time-step, then a more appropriate model is to
replace the update law for x in (2.11) by

(2.12) x+ = A0\Gamma (u)x+B0\Theta 0

\bigl( 
E0\Gamma (u)x

\bigr) 
+Bev, x(0) = x0 ,

where the interpretation of the terms in (2.12) is otherwise the same as that in (2.11).
In a given situation, it may not be clear whether (2.11) or (2.12) is the most

appropriate model. However, the hypotheses (M2), (M4), and (M5) for (2.1) are
independent of whether the x dynamics are specified by (2.11) or (2.12). Further,
our next result states that the remaining key hypotheses of Theorem 2.1, namely,
properties (M1), (M3), and (S), are the same for the models (2.11) and (2.12).

Proposition 2.7. Consider the adaptive control system (2.1) in the special case
of (2.11) or (2.12), where \Gamma satisfies (D). The hypotheses (M1), (M3), and (S) hold
in the context of (2.11) if, and only if, they hold in the context of (2.12).

We conclude this section by investigating the limiting control effort u\infty :=
limt\rightarrow \infty u(t) (the so-called limiting gain) of (2.1), which is guaranteed to exist by
statement (i) of Theorem 2.1. We shall consider the special case that v = 0 and
\lambda = 0. In particular, Theorem 2.1 does not address any properties of u\infty , but much
attention in the adaptive control literature has been devoted to establishing whether
the limiting gain generated by (2.1) is itself stabilizing, that is, investigating the sta-
bility properties of the so-called limit system. Recall that in [18], which considers the
linear positive case, the limiting gain is exponentially stabilizing (under some struc-
tural assumptions) for all nonzero initial conditions x0. Without further assumptions
on the nonlinear system (1.1) considered presently, however, the limiting gain need
not be stabilizing, and only local results should be expected.

Our next result broadly shows that the limiting gain fulfills a necessary condition
for local stability of the limit system. As we shall discuss, a slight strengthening of
this necessary condition for stability is in fact sufficient for local exponential stability.

Proposition 2.8. Imposing the notation and assumptions of Theorem 2.1 in the
case that v = 0 and \lambda = 0, and for given (x0, u0) \in \BbbR n

+\times \BbbR + with x0 \not = 0, let u\infty \in \BbbR +

denote the limit of the control variable u in (2.1). In general, u\infty depends on x0 and
u0. Suppose that there is some nonempty neighborhood of zero in \BbbR q

+, denoted U , and

\Gamma \in \BbbR m\times q
+ such that

(2.13) \Gamma z \leq \Theta (u\infty , z) \forall z \in U ,

and G := A(u\infty ) +B(u\infty )\Gamma E(u\infty ) is irreducible. Then \rho 
\bigl( 
G
\bigr) 
< 1.

The hypothesis that x0 \not = 0 is required in the above proposition, as the unique
solution of (2.1) is (0, u0) when v = 0 and x0 = 0. Note that the condition (2.13) is
independent of u\infty if \Theta in fact only depends on its second argument. In the case that
m = q = 1 and \Theta (u\infty , \cdot ) is differentiable at zero, the condition (2.13) is satisfied if
\Gamma \geq 0 is such that

\Gamma <
\partial \Theta 

\partial z
(u\infty , z)| z=0 .

The inequality \rho (G) \leq 1 is necessary for zero to be a stable equilibrium of the limit
system

(2.14) x+ = A(u\infty )x+B(u\infty )\Theta (u\infty , E(u\infty )x)
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for \Theta which satisfy (2.13). If, in fact, \Theta and \Gamma \in \BbbR m\times q
+ are such that there is some

\Lambda \in \BbbR m\times q
+ with the property that

\Gamma z \leq \Theta (u\infty , z) \leq (\Gamma + \Lambda )z \forall z \in U ,

and \rho 
\bigl( 
G + B\Lambda E

\bigr) 
< 1, then zero is a locally exponentially stable equilibrium of the

limit system (2.14).
Therefore, the value of the above result is that, under the above conditions, a

single experiment can determine (in other words, learn) a stabilizing control level u\infty .

3. Examples. We illustrate our results through two worked examples. All fol-
lowing simulations were performed in MathWorks MATLAB 2020a, and in what
follows ``randomly generated numbers"" are actually pseudorandomly generated.

3.1. Scalar difference equations. We consider (2.1) in the simple case that
the underlying model for x is scalar, often called a (discrete) map in the difference
equations literature. As is well-known, difference equations have been proposed as
suitable models for species with nonoverlapping generations; see, for instance [22, 35].
A motivating biological example is the economically important pest, the Colorado
potato beetle (leptinotarsa decemlineata), which is described in detail in [1] and, to
quote, ``can completely destroy potato crops.""

3.1.1. Introducing the model. Forced (nonlinear) difference equations take
the form

(3.1) x+ = g(x) + v1 ,

where g : \BbbR + \rightarrow \BbbR + is some function and v1 is an external signal. Including a control
term updates the model (3.1) to

(3.2) x+ = f(u, x) + v1 ,

which falls within the scope of (1.1) with n = 1, A = 0, B = E = 1, Be =
\bigl( 
1 0

\bigr) 
,

and \Theta = f . In the absence of control (u = 0), the models (3.1) and (3.2) coincide,
captured by the equality g(z) = f(0, z) for all z \geq 0. In this scalar case, we assume
that the output y is equal to the state, up to measurement error, leading to y = x+v2
so that C = 1 and De =

\bigl( 
0 1

\bigr) 
.

3.1.2. Verifying hypotheses. We discuss the key model hypotheses (M)
and (S) in the context of the scalar model (3.2). Assumptions (M1) and (M4) are
satisfied, and assumption (M5) relates to the difference equation for u, and so is in-
dependent of (3.2). Assumptions (M2) and (M3)/(M3)\prime relate to the nonlinear term
f . The former is satisfied if f(\cdot , 0) = 0, f is continuous in its second variable for each
fixed first variable, and f(w1, \cdot ) \leq f(w2, \cdot ) for all w1 \geq w2 \geq 0.

In these applied settings, assumption (M3)\prime is often more relevant than (M3), and
the former is satisfied here if f(0, z) \leq \gamma 1z + \gamma 2 for some \gamma 1 \in [0, 1) and any \gamma 2 \in \BbbR +

and, for each w \geq 0 and \gamma > 0, there exists \delta > 0 such that

f(w, z) \geq \delta z \forall z \in [0, \gamma ] .

In the typical setting that f(w, \cdot ) is continuously differentiable, the above condition
is satisfied if f(w, \cdot ) is positive definite and, for each w \geq 0,

\partial f

\partial z
(w, 0) > 0 .
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In the context of (3.2), assumption (S) requires \sigma \geq 0 and \kappa \in (0, 1) such that

(3.3) f(\sigma , z) \leq \kappa z \forall z \geq 0 .

To simplify the condition (3.3) further requires bespoke assumptions on f .

3.1.3. A numerical example. As a concrete example, we consider (3.1) where
g is the so-called Hassell map g : \BbbR + \rightarrow \BbbR + given by

(3.4) g(z) =
\ell z

(1 + az)\beta 
\forall z \geq 0 .

Here \ell = g\prime (0) (derivative from the right) is the ``finite net rate of increase""2 and ``a
and \beta are constants defining the density dependent feedback term"" (quotes from [22,
p. 472]). In our numerical simulations, we take

\ell = 75, \beta = 30, a = 7\times 10 - 5 ,

which are based on the values from [22, Figure 1, Table 2] for the Colorado potato
beetle (Leptinotarsa decemlineata).

To arrive at the controlled model (3.2) requires some assumptions on the effect of
the control effort u. We suppose that the application of control effort u leads to the
removal of the proportion p(u) from the population and gives rise to the model (3.2)
with

(3.5) f(w, z) = (1 - p(w))g(z) \forall w, z \geq 0 .

Natural assumptions on the function p : \BbbR + \rightarrow [0, 1] are that it is continuous, nonde-
creasing with p(0) = 0. In light of our choice of g in (3.4), condition (3.3) is satisfied
if there exists \sigma > 0 such that

(3.6) (1 - p(\sigma ))\ell < 1 .

In the following numerical simulation, we consider the adaptive feedback control sys-
tem (2.1) applied to the model (3.2), specified by (3.4) and (3.5), with initial data
and \Psi : \BbbR + \rightarrow \BbbR + given by

(3.7) x0 = 1000, u0 = 0, and \Psi (w) = 400 ln(1 + w) \forall w \geq 0 .

The function \Psi is based on that used in [18, section 4]. We assume that the control
efficacy function is given by

p(w) = 1 - e - \alpha w w \geq 0, where \alpha := 8\times 10 - 5 .

We set v1 as a uniformly randomly generated number between 0 and 50, modeling a
low-level of per time-step immigration. The measurement error v2 is assumed to be
proportional to the true output x, meaning that

y = x+ v2 = x+ \varepsilon x = (1 + \varepsilon )x ,

where \varepsilon (t) \in [ - 0.05, 0.05] is determined randomly for every t \in \BbbZ +, corresponding to
an at-most 5\% per time-step measurement error. Note that with these assumptions
on v2, it follows that y(t) is always nonnegative, and so \phi (y(t)) = y(t) in (2.1).

2The symbol \lambda is used in [22] instead of \ell . We are using \ell as \lambda denotes the output threshold
in (2.1).
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Fig. 3.1. Numerical simulations from the example in section 3.1 for varying \lambda . Model data
are detailed in section 3.1.3. In panel (a) the dotted horizontal lines are the \lambda i levels, and the black
dotted line corresponds to the uncontrolled model (3.1). (See the online version for colored plots.)

The results of our first numerical simulations are contained in Figure 3.1. Three
simulations are performed corresponding to the thresholds

(3.8) \lambda 1 = 6000, \lambda 2 = 2000, and \lambda 3 = 200 .

The data in (3.7) and (3.8) have been chosen somewhat arbitrarily to illustrate the
qualitative conclusions of Theorem 2.1. Figure 3.1(a) plots the observed population
abundance y(t) against time t---using a logarithmic axis for the vertical axis for ease
of inspection. In each case, it is observed that

(3.9) max
\bigl\{ 
y(t) - \lambda , 0

\bigr\} 
\rightarrow 0 ,

as time increases. In words, the observed pest population is asymptotically controlled
to the desired target level. This is in contrast to the uncontrolled population, given
by (3.1), which is plotted in a black dotted line in Figure 3.1(a), and is seen to
fluctuate. The control efficacy p(u(t)) is plotted against time t in Figure 3.1(b) and
is seen to increase from zero initially and to converge over time. Remember that
in this illustrative example u does not contain units, and so arguably p(u) is more
informative than u.

With the above assumptions, all the hypotheses of Proposition 2.6 are satisfied,
apart from knowledge of whether the forcing tolerance threshold conditions (2.3)
or (2.8) hold. The following heuristic argument suggests that (2.8) may well be
satisfied. Since v1 is ``small"" relative to x and y, the proof of Theorem 2.1 shows that
\alpha (\lambda ) \approx \lambda , and so the condition (2.8) is likely to be satisfied if

lim sup
t\rightarrow \infty 

| v2(t)| = 0.05 lim sup
t\rightarrow \infty 

| x(t)| < \lambda .

This above inequality appears to be satisfied in each simulation.
We illustrate next the asymptotic stabilization of the scheme (2.1) in the case

that \lambda = 0 and v = 0, guaranteed by statement (v) of Theorem 2.1. For this purpose,
we again simulate (2.1) specified by (3.2), (3.4), and (3.5), only now with \lambda = 0 and
v = 0. Three simulations are performed corresponding to the functions \Psi = \Psi j \in \scrK 
given by

\Psi 1(w) = 400 ln(1 + w), \Psi 2(w) = 2w, and \Psi 3(w) =
1200w

1 + w
\forall w \geq 0 .
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Fig. 3.2. Numerical simulations from the example in section 3.1 for varying \Psi . Model data
are detailed in section 3.1.3, now with \lambda = 0 and v = 0. (See the online version for colored plots.)

These functions are again based on those used in [18, section 4]. Each is Lipschitz, and
so the growth condition (2.5) is satisfied. All other model parameters are as above.
The results of our second numerical simulations are contained in Figure 3.2. By
Proposition 2.6, statement (v) of Theorem 2.1 applies, and we see that x(t) = y(t) \rightarrow 0
as t \rightarrow \infty .

Noting that g\prime (0) = \ell , the hypotheses of Proposition 2.8 are satisfied with \Gamma :=
\ell  - \varepsilon for every \varepsilon \in (0, \ell ), so the limiting control effort u\infty 

j should be stabilizing, here
meaning that \bigl( 

1 - p(u\infty 
j )

\bigr) 
\ell \leq 1 j \in \{ 1, 2, 3\} ,

which is the condition \rho (G) < 1 from Proposition 2.8 in the current context. Taking
the control values uj(60) as a proxy for u\infty 

j for j \in \{ 1, 2, 3\} , each of which are of the

order 104, it is readily computed that\bigl( 
1 - p(u\infty 

1 )
\bigr) 
\ell = 0.389,

\bigl( 
1 - p(u\infty 

2 )
\bigr) 
\ell = 0.955, and

\bigl( 
1 - p(u\infty 

2 )
\bigr) 
\ell = 0.387 ,

which are all less than one. In other words, in each case a stabilizing control effort
has been found. However, noting that each control effort results in p(u\infty 

j ) \approx 0.98,
asymptotically eradicating the population requires removing approximately 98\% of
the population per time-step, which is likely not practicable.

We comment that determining analytically the time taken for max
\bigl\{ 
y(t)  - \lambda , 0

\bigr\} 
to converge to zero seems intractable to us, even in this simple scalar example. This
is a consequence of the presence of forcing terms and the nonlinear interplay between
the measured variable y, the tolerance \lambda , the update law for u, and the consequent
effect on x.

To explore one of these relationships numerically, Figure 3.3 plots the (minimal)
time taken for max

\bigl\{ 
y(t) - \lambda , 0

\bigr\} 
to converge against varying \lambda , for all other variables

fixed, and in the absence of forcing terms. All simulations were run over 100 time-
steps, and the time for convergence recorded is the first after which max

\bigl\{ 
y(t) - \lambda , 0

\bigr\} 
is always zero. Interestingly, no clear pattern emerges, and time taken for convergence
is constant (or nearly so) for some ranges of \lambda and highly oscillatory for other ranges
of \lambda . Intuitively (and very roughly), on the one hand, we expect smaller \lambda to require
a larger control effort u to achieve convergence, which would take longer all other
variables being equal. On the other hand, smaller \lambda results in u increasing faster, as
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Fig. 3.3. Numerical simulation results from the example in section 3.1. Time for convergence
is plotted against varying \lambda . Model data are detailed in section 3.1.3, with v = 0.

max
\bigl\{ 
y(t) - \lambda , 0

\bigr\} 
is larger, suggesting faster convergence. It seems that these factors

broadly balance out.
We conclude the example by commenting that in this scalar setting, the condi-

tion (3.6) is sufficient for the zero solution of the uncontrolled (u = 0) and unforced
(v1 = 0) difference equation (3.1) specified by (3.4) and (3.5) to be exponentially
stable. Evidently, if the control efficacy function p and net rate of increase \ell are
known with certainty, then a constant (and minimal) level of control u = w can be
chosen to satisfy (3.6). What is arguably less clear from the condition (3.6) is how to
choose a constant control effort u = w which leads to (3.9), for a prescribed level \lambda .
Indeed, revisiting the first numerical simulation, and taking u(40;\lambda j) as a proxy for
the limiting control effort under \lambda j , we compute that

(1 - p(u(40;\lambda 1))\ell = 29.6423, (1 - p(u(40;\lambda 2))\ell = 9.8207, (1 - p(u(40;\lambda 3))\ell = 1.0462.

In other words, none of the simulations in Figure 3.1 have led to a limiting control
effort which satisfies (3.6), yet (3.9) holds.

3.2. Structured population models. As a second illustrative example, we
consider (2.1) for a stage-structured population model, corresponding to vector-valued
x(t). We continue the study of potential pest control strategies of the insect pest, the
Diaprepes root weevil (DRW; Diaprepes abbreviatus). The present example builds
on [18, section 4], where the simple adaptive feedback control scheme proposed in [18]
is applied to a linear DRW model. The present example also complements the
work [12], where optimal control approaches are presented for the management of
DRW. The model we currently use is a nonlinear version of that used in [12], which
itself is based on the model proposed in [36]. We refer the reader to [12, 18, 36],
and the references therein, for more background and context on DRW and potential
control strategies.

3.2.1. Introducing the model. We first discuss the uncontrolled model, which
is of the form (1.1). The model has four stage-classes, namely, eggs, larvae, pupae,
and adults, leading to n = 4, and the time-steps t denote time in weeks. Letting x(t)
denote the structured population abundance at time-step t, we propose the following
nonlinear matrix population projection model, given by
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(3.10)

\left(    
x+
1

x+
2

x+
3

x+
4

\right)    =

\left(    
s1 0 0 \theta (x4)
g1 s2 0 0
0 g2 s3 0
0 0 g3 s4

\right)    
\left(    
x1

x2

x3

x4

\right)    +

\left(    
0
0
0
v1

\right)    ,

\left(    
x1(0)
x2(0)
x3(0)
x4(0)

\right)    =

\left(    
x0
1

x0
2

x0
3

x0
4

\right)    .

Here the si terms are per time-step stasis probabilities of stage class i. The gi terms
are per time-step growth probabilities from stage i to i+ 1. Combined, si + gi is the
survival probability of an individual who starts a time-step in stage i. The si and gi
are all assumed positive and satisfy 0 < si + gi < 1 for every i. The \theta term is the per
adult number of eggs recruited into the population each time-step and is assumed to
be a function of the number of adults, owing to crowding effects at higher abundances.
Therefore, at each time-step \theta (x4)x4 new eggs are recruited into the population. The
term v1 models an adult immigration term, reflecting the most motile stage class.

We comment that the theory developed in this paper extends to models with more
density dependent terms, although verifying the hypotheses becomes more involved.

The uncontrolled model (3.10) may be written in the form (1.1) with
(3.11)

A :=

\left(    
s1 0 0 0
g1 s2 0 0
0 g2 s3 0
0 0 g3 s4

\right)    , B :=

\left(    
1
0
0
0

\right)    , E :=
\bigl( 
0 0 0 1

\bigr) 
, Be =

\left(    
0 0
0 0
0 0
1 0

\right)    ,

so that n = 4, m = q = 1, and s = 2. (The second zero column of Be shall reflect that
v has two components, the second component corresponding to measurement noise.)
The nonlinear function \Theta 0 : \BbbR + \rightarrow \BbbR + is given by

\Theta 0(z) = \theta (z)z \forall z \in \BbbR + .

The scalar function \theta : \BbbR + \rightarrow \BbbR + is unlikely to be known in practice but is assumed
to be nonincreasing, continuous, and positive for positive arguments.

As is the case in [18], we assume that the number of adults is (noisily) measured
at each time-step, leading to

(3.12) y = x4 + v2 = Cx+Dev with C =
\bigl( 
0 0 0 1

\bigr) 
and De =

\bigl( 
0 1

\bigr) 
,

where v2 is a measurement error term. We assume that control in this example
corresponds to the release of entomopathogenic nematodes, which attack DRW larvae
see ([12]). The control term u(t) denotes the quantity of nematodes to release. The
control is modelled as acting before the biological processes in each time-step, leading
to the model (2.12) with

(3.13) \Gamma (w) :=

\left(    
1 0 0 0
0 \delta (w) 0 0
0 0 1 0
0 0 0 1

\right)    \forall w \geq 0 ,

where \delta : \BbbR + \rightarrow [0, 1] is assumed to be nonincreasing, continuous, and positive for
positive arguments and to satisfy \delta (0) = 1. This final condition captures the property
that no control effort leads to no control effect on the pest.

With a slight abuse of notation, the matrix-valued functions A, B, and E in (2.1)
are thus given by

A(w) = A\Gamma (w), B(w) = B, and E(w) = E\Gamma (w) = E \forall w \geq 0 ,
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where the matrices on the right hand sides are as in (3.11) and (3.13). The nonlinear
function \Theta in (2.1) is given by \Theta = \Theta 0 (so in fact is independent of the first variable
w).

3.2.2. Verifying hypotheses. We proceed to verify that the assumptions (M)
and (S) are satisfied in this example. Since \delta is assumed continuous and nonincreasing,
it follows that \Gamma is continuous and nonincreasing, and hence so are A, B and E, so
that (M1) holds. The function \Theta = \Theta 0 is independent of w (its first variable) and our
hypotheses on \theta ensure that (M2) holds. Assumption (M4) is evidently satisfied, and
assumption (M5) relates to the difference equation in (2.1) for u, and so is independent
of the model described so far.

The growth hypotheses (M3) and (M3)\prime depend on the properties of the nonlinear
term \theta . The assumptions on \theta guarantee that it has a nonnegative limit at infinity, de-
noted \theta \infty , which is the per adult number of eggs recruited per time-step at (infinitely)
large population sizes. In fact, \Theta satisfies the bounds

(3.14) \theta \infty z \leq \Theta (z) = \theta (z)z \leq \theta (0)z \forall z \in \BbbR + .

If \theta \infty > 0 (and so necessarily \Theta is unbounded), then we claim that property (M3)
holds, which follows from the fact that the lower bound for \Theta in (3.14) holds with
constant \Delta := \theta \infty and because the matrix

(3.15) A(w) +B(w)\Delta E(w) = A0\Gamma (w) +B0\theta \infty E0 =

\left(    
s1 0 0 \theta \infty 
g1 s2\delta (w) 0 0
0 g2\delta (w) s3 0
0 0 g3 s4

\right)    
is irreducible for all w \geq 0. If \theta \infty = 0, then we claim that (M3)\prime holds. For this
purpose, since A(0) is lower triangular, with diagonal entries less than unity, it is
clear that \rho (A(0)) < 1. Let \varepsilon > 0 be sufficiently small so that \rho (A(0) + \varepsilon BE) < 1.
Since \theta \infty = 0, it is routine to see that there exists \gamma > 0 such that

\Theta (z) = z\theta (z) \leq \varepsilon z + \gamma \forall z \in \BbbR + .

Further, for all w, k \geq 0, we have

\Theta (z) = \theta (z)z \geq \theta (k)z \forall z \in [0, k] ,

and, akin to (3.15), the matrix A(w) + B(w)\theta (k)E(w) is irreducible. Therefore,
assumption (M3)\prime holds.

To verify the stabilizability assumption (S), we use Lemma 2.2 as in this example
m = q = 1. That \rho (A(0)) < 1 has already been discussed. A consequence of the upper
bound for \Theta in (3.14) is that the linear bound for \Theta in (2.6) holds with \Sigma := \theta (0).
The key quantity for Lemma 2.2 is the function H : \BbbR + \rightarrow \BbbR + given by
(3.16)

H(w) = E(w)(I  - A(w)) - 1B(w) =
g1g2g3\delta (w)

(1 - s1)(1 - \delta (w)s2)(1 - s3)(1 - s4)
\forall w \in \BbbR + .

The values ofH have the following biological interpretation: they are the total number
of adults, predicted by the model (2.12) with v = 0 and constant control effort u = w,
that a single egg produces over all time. Note that although each egg can produce at
most a single adult, that adult will be counted in each time-step it survives, and so
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H(w) > 1 is possible. Since the survival of eggs to adults is assumed to be density
independent, this quantity scales linearly. If H(0)\theta \infty < 1, so that at large population
sizes each egg is surviving and then recruiting fewer than one egg, then an application
of [15, Theorem 4.4(a)] yields that the solutions of the uncontrolled model (3.10) are
bounded when v1 is bounded.

Noting thatH is nonincreasing as \delta is assumed nonincreasing, if there exists \sigma \geq 0
such that

(3.17) H(\sigma )\theta (0) < 1 ,

then, in light of (3.14), the second inequality in (2.6) holds, and hypothesis (S) follows
from an application of Lemma 2.2. We comment that the condition (3.17) holds
independently of \theta (0) if \delta (w) \rightarrow 0, and hence H(w) \rightarrow 0, as w \rightarrow \infty .

3.2.3. A numerical example. For a numerical simulation we take parameter
values si and gi as in [12, section 2.5.1], which are reproduced in (D.1) in Appen-
dix D. The nonlinear term \theta does not appear in [12], as that paper considers a linear
(density independent) DRW model. The function we choose is given in (D.2) and is
such that (M3)\prime holds and the linearization around zero has the same slope as the
corresponding parameters in [12]. For simplicity, we further assume that v1 = 0.

For the control terms, first, we assume that the function \delta is given by

\delta (w) = e - \alpha w \forall w \geq 0 with \alpha := 1.655\times 10 - 8 ,

the motivation for which is discussed in [12, section 2.5.2].3 This choice of \delta ensures
that H satisfies assumption (3.17), the upshot being that the stabilizability assump-
tion (S) holds. The adult stage class is measured per time-step, as in (3.12), and
we assume a random per time-step proportional measurement error of at most 5\%,
meaning that v2 = \varepsilon Cx with uniformly randomly chosen \varepsilon (t) \in [ - 0.05, 0.05] for all
t \in \BbbZ +.

Since, with these parameters H(0)\theta (0) > 1, the uncontrolled model (3.10) (mean-
ing v1 = 0) has a unique nonzero steady state

x\ast := (I  - A(0)) - 1B\Theta (z\ast ) ,

where z\ast is the unique positive solution of the scalar equation H(0)\Theta (z) = z. We
used x\ast as the initial DRW population x0 for the controlled model (2.1), the rationale
being that the pest population is assumed to be endemic before control is applied.
The norm of x\ast has order of magnitude 105 and is given in (D.3). Moreover, with
our choice of \theta in (D.2) it follows from an application of [15, Theorem 5.2] that the
equilibrium x\ast of (3.10) with v1 = 0 attracts all nonzero solutions and is semiglobally
exponentially stable in the following sense. Namely, for every nonempty, compact set
X \subseteq \BbbR n

+ with 0 \not \in X, there exist M \geq 1 and \mu \in (0, 1) such that, for all x0 \in X, the
solution x of (3.10) with v1 = 0 satisfies

\| x(t) - x\ast \| \leq M\mu t\| x0  - x\ast \| \forall t \in \BbbZ + .

We performed three simulations by varying u0, the initial control effort. In this
example u(t) denotes the nematodes applied per hectare per time-step, with typical

3The symbol \alpha is used in [12] in this context, and we use it here as well---it should not be confused
with the forcing threshold in Theorem 2.1.
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values of order of magnitude 108 (see [12]). Since our control effort u is nondecreasing,
we take

u0
1 = 2.5\times 106, u0

2 = 5\times 106, u0
3 = 7.5\times 106 ,

as under estimates of a limiting control effort which is stabilizing. Finally, across the
simulations we fixed

\lambda = 5\times 104 and \Psi (z) = z .

With these choices, all of the hypotheses of Proposition 2.6 are satisfied, apart
from possibly the threshold conditions (2.3) or (2.8). We comment on this shortly.
Our numerical results are plotted in Figure 3.4. We see in Figure 3.4(a) that
max\{ y(t) - \lambda , 0\} \rightarrow 0, as time increases, certainly for the initial control efforts u0

2

and u0
3 while the simulation length is too short for the initial control effort u0

1. The
lower and higher black dotted lines in Figure 3.4(a) are the tolerance level \lambda and
the true output of the uncontrolled model (3.10), respectively, the latter of which
remains at its initial equilibrium value. This line is included for comparison purposes.
The control effort u(t) is plotted against time t in Figure 3.4(b), with line colors
corresponding to those in Figure 3.4(a).

Here we see that while u0
3 achieves the control objective reasonably quickly, the

initial control efforts u0
1 and u0

2 are arguably too small and performance is sluggish.
Indeed, the control efforts u(t;u0

1) and u(t;u0
2) have not converged over the course

of the simulation but, understandably, are at lower levels than u\infty 
3 . In applications,

the trade-off between the cost of control and the cost of pest population would need
to be considered. We comment that although the theory presented is qualitatively
independent of, in this case, the functional form of \theta , the numerical simulations are
somewhat sensitive to \theta . Practically, this highlights the importance of identifying pa-
rameters as much as possible, and extensive numerical testing over a range of possible
scenarios. Interestingly, in this example, performance is somewhat sluggish as the
adult population, modelled by x4, is determined via

x4(t+ 1) = s4x4(t) + g3x3(t) = 0.98x4(t) + 0.202x3(t) \forall t \in \BbbZ + .

In particular, as 0.98 \approx 1, once an adult population is established, as it is in this
example via the assumption that x(0) = x\ast , it decays comparatively slowly, and
independently of the control effort u(t).

Regarding the threshold conditions (2.3) and (2.8), in this case, as v1 = 0, it
follows that \theta (\lambda ) = \lambda . Again, arguing heuristically, in light of our simulations, since

lim sup
t\rightarrow \infty 

| v2(t)| = 0.05 lim sup
t\rightarrow \infty 

| Cx(t)| \approx 2\times 103 < \lambda ,

it appears that (2.8) is satisfied.

4. Discussion. A robust adaptive feedback controller has been proposed for the
control of a class of systems of positive nonlinear forced difference equations. The
difference equations are of so-called Lur'e type and contain both a linear component
and a structured nonlinear component, as well as an additive external forcing term.
Our motivating application has been to the dynamic and robust control of pests
and weeds---a timely and societally relevant problem in the context of global food
production---and our present work substantially improves our earlier paper [18], where
the same problem was studied in the context of linear models only, and with a simpler
controller which had no tolerance or robustness with respect to persistent exogenous
forcing terms or measurement error. The adaptive feedback control system (2.1)
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Fig. 3.4. Numerical simulations from the DRW model from section 3.2 with model data as
described in section 3.2.3. The higher and lower dotted lines in panel (a) denote the measured
uncontrolled population, which is at equilibrium, and the threshold \lambda , respectively. (See the online
version for colored plots.)

considered presently admits a quite general description of control which, practically,
we believe can model a number of different control actions or management strategies.
Thus, on the one hand, the techniques described here are portable across a number of
applied settings. On the other hand, the present paper pursues the specific problem
of the management of the invasive economic pest species DRW, and so complements
our existing works [12, 18, 36].

The controller considered here is based on a so-called simple adaptive controller
and uses a measured variable, denoted y, to dynamically update the control effort
u. The controller contains a forcing/noise tolerance term \lambda . The combined feedback
system is (2.1) and our main result is Theorem 2.1, which presents the stability and
convergence properties of (2.1). Our key assumptions are structural properties of the
model (M) and a stabilizability assumption (S). This latter assumption essentially
requires that there is a level of control effort which is stabilizing and, when satisfied,
the feedback system (2.1) informally ``finds"" such a level. Moreover, Proposition 2.8
shows that, under some simplifying assumptions, the control variable u associated
with (2.1) converges and the limiting control effort is itself stabilizing in a sense we
describe. From this perspective, our work can be viewed as ``learning control"" for
positive systems of Lur'e difference equations.

As with [18], our work is in the spirit of robust control. We study systems where
the terms in the model, and the model structure itself, are likely to be uncertain, and
the measured variable is likely to be subject to error or noise. Our hypotheses are
structural and do not require exact knowledge of the model parameters or structure
to be verified. We made a case in [18] for the value of considering robust control
techniques in the context of pest management, not least to broaden the theoretical
discussion and add another perspective. Consequently, given how little information
this control uses from the system, our results are not expected to be optimal in
any sense, but may have utility when models are so poor that optimal controls may
not function or perform as intended. This comment also naturally raises a future
research direction, which we hope to address, and is to combine elements of the robust
control methods developed here with the optimal control approaches in [12], to design
controllers with an agreeable and adjustable blend of robustness and optimality.
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Appendix. The appendix is divided into four sections. The first gathers ad-
ditional notation and estimates used in our proofs. The second and third contain
proofs of our mathematical results. The fourth contains supporting information for
the example presented section 3.2.

Appendix A. Preliminaries. Given strictly positive \xi \in \BbbR n
+, we let

| x| \xi := \xi T | x| =
n\sum 

j=1

\xi j | xj | \forall x =
\bigl( 
x1 . . . xn

\bigr) T \in \BbbR n ,

where the ith component of | x| \in \BbbR n is defined to be | xi| . We note that | \cdot | \xi is a norm
on \BbbR n and, if x \in \BbbR n

+, then | x| \xi = \xi Tx.
Throughout the proofs we shall use (often without explicit mention) the well-

known monotonicity of the spectral radius for nonnegative matrices M1,M2 \in \BbbR n\times n,
namely, if 0 \leq M1 \leq M2, then \rho (M1) \leq \rho (M2) (see, for instance [6, Corollary 1.5,
p. 27]).

We shall also use that if z \in \scrF (\BbbZ +,\BbbR n) is nonnegative and satisfies the difference
inequality

(A.1) z(t+ 1) \leq (\geq )A0z(t) + F (t, z(t)) + d(t) \forall t \in \BbbZ +, t \geq s ,

for some s \in \BbbZ +, (constant) A0 \in \BbbR n\times n
+ , function F : \BbbZ +\times \BbbR n

+ \rightarrow \BbbR n
+, and nonnegative

sequence d \in \scrF (\BbbZ +,\BbbR n
+), then z satisfies the variation-of-parameters inequality

(A.2)

z(t+k) \leq (\geq )At
0z(k)+

t+k - 1\sum 
j=k

At+k - 1 - j
0

\bigl( 
F (j, z(j))+d(j)

\bigr) 
\forall t \in \BbbN , \forall k \in \BbbZ +, k \geq s ,

which is easily established by induction.

Appendix B. Proof of Theorem 2.1. The proof of Theorem 2.1 is facilitated
by three technical lemmas. Using several smaller results shall help in proving later
results where variations of an argument are used, without excessive repetition.

The first lemma contains a coupling condition between C, capturing the measured
output, and bounds for the dynamics for x in (2.1).

Lemma B.1. Let C \in \BbbR p\times n
+ be nonzero, and let P \in \BbbR n\times n

+ be irreducible. There
exists \mu > 0 such that, for all i \in n, there exists ki \in n such that

\| CP kiz\| \geq \mu \rho (P )kizi \forall z :=
\bigl( 
z1 . . . zn

\bigr) T \in \BbbR n
+ .

Proof. Fix (\ell , s) \in p \times n such that C\ell s > 0, which is possible as C \not = 0. Note

that, as P \in \BbbR n\times n
+ ,

(B.1)

\| CP kz\| \geq (CP kz)\ell =
n\sum 

j,r=1

C\ell r(P
k)rjzj \geq C\ell s(P

k)sizi \forall z \in \BbbR n
+, \forall i \in n, \forall k \in \BbbZ + .

Since P is irreducible, it follows that \rho (P ) > 0 and P/\rho (P ) is itself irreducible with
spectral radius equal to one. Consequently,

ki := argmink\in n

\bigl\{ \bigl( 
(P/\rho (P ))k

\bigr) 
si

: (P k)si > 0
\bigr\} 

\forall i \in n and

\beta := min
i\in n

\bigl( 
(P/\rho (P ))ki

\bigr) 
si
> 0
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are well-defined, and have the property that

(B.2)
\bigl( 
P ki

\bigr) 
si
zi \geq \beta \rho (P )kizi \forall z \in \BbbR n

+, \forall i \in n .

The claimed inequality now follows with \mu := C\ell s\beta > 0 from the conjunction of (B.1)
and (B.2).

Broadly, the second lemma contains consequences for x and y in the adaptive
feedback control system (2.1) when the control variable u is bounded.

Lemma B.2. Consider (2.1) with \lambda \geq 0, v \in \ell \infty (\BbbZ +,\BbbR s), and Bev \geq 0, and
assume that (M1), (M2), (M4), and (M5) hold. Assume further that u is bounded.
The following statements hold:

(a) max
\bigl\{ 
0, \| \phi (y(t))\|  - \lambda 

\bigr\} 
\rightarrow 0 as t \rightarrow \infty .

(b) If there exists an irreducible P \in \BbbR n\times n
+ such that

(B.3) x(t+ 1) \geq Px(t) \forall t \in \BbbZ + ,

then x is bounded.
(c) If x is bounded, then so is y.

Proof. Let w \in \BbbR + denote an upper bound for u, which exists by hypothesis.
From the definition of u in (2.1), it follows that

t\sum 
j=0

\Psi 
\bigl( 
max

\bigl\{ 
0, \| \phi (y(j))\|  - \lambda 

\bigr\} \bigr) 
= u(t+ 1) - u0 \leq w  - u0 \forall t \in \BbbN ,

and hence, the nonnegative sequence
\bigl( 
\Psi 
\bigl( 
max

\bigl\{ 
0, \| \phi (y(k))\|  - \lambda 

\bigr\} \bigr) \bigr) 
k\in \BbbZ +

is summable.

Therefore,
\Psi 
\bigl( 
max

\bigl\{ 
0, \| \phi (y(t))\|  - \lambda 

\bigr\} \bigr) 
\rightarrow 0 as t \rightarrow \infty ,

and as \Psi \in \scrK , it is invertible in a neighborhood of zero, with a strictly increasing and
continuous inverse. We conclude that statement (a) holds.

We now prove statement (b). Since Cx(t) \geq 0 for all t \in \BbbZ +, by arguing compo-
nentwise, it follows that

(B.4) \| \phi (y(t))\| 1 =
\bigm\| \bigm\| \phi \bigl( Cx(t) +Dev(t)

\bigr) \bigm\| \bigm\| 
1
\geq \| Cx(t)\| 1  - \| Dev(t)\| 1 \forall t \in \BbbZ +

(where \| \cdot \| 1 denotes the usual vector one-norm). Seeking a contradiction, assume
that x is unbounded. Therefore, there exist sequences (tj)j\in \BbbN \subseteq \BbbN and (ij)j\in \BbbN \subseteq n
such that

(B.5) (x(tj))ij \geq j \forall j \in \BbbN .

The given lower bound (B.3) for the dynamics of x yields that

(B.6) Cx(tj + k) \geq CP kx(tj) \forall j, k \in \BbbN .

An application of Lemma B.1 yields a bounded sequence (kj)j\in \BbbN and \omega :=
\mu minr\in n \rho (P )r > 0 such that, in light of (B.5),

(B.7)
\bigm\| \bigm\| CP kjx(tj)\| \geq \omega x(tj)ij \geq \omega j \forall j \in \BbbN .

Taking norms in (B.6) and appealing to (B.7) yields that

(B.8)
\bigm\| \bigm\| Cx(tj + kj)

\bigm\| \bigm\| \geq \omega j \forall j \in \BbbN .
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However, the conjunction of (B.4) and (B.8) contradicts statement (a). We conclude
that x is bounded. Once x is bounded, it is clear from y = Cx + Dev and v \in 
\ell \infty (\BbbZ +,\BbbR s) that y is bounded as well.

The third and final lemma is an exponential input-to-state stability estimate for x
in (2.1) in the situation that u(t) is large enough and the stabilizability assumption (S)
holds.

Lemma B.3. Imposing the notation and assumptions of Theorem 2.1 apart from
assumption (M3), if \tau \in \BbbZ + is such that u(\tau ) \geq \sigma , then there exist M > 0 and
\gamma \in (0, 1) such that

(B.9) \| x(t+ \tau )\| \leq M
\bigl( 
\gamma t\| x(\tau )\| + \| Bev\| \ell \infty (\tau ,t+\tau  - 1)

\bigr) 
\forall t \in \BbbN .

The constants M and \gamma in (B.9) depend on the model data in (2.1) (including on
u(\tau ) \geq \sigma ), but are independent of x0, u0, and v.

Proof. Note that the sequence u is nondecreasing, and so u(t + s) \geq u(s) for all
s, t \in \BbbZ +. A consequence of the monotonicity in assumptions (M1) and (M2) is that
x admits the upper bound
(B.10)
x(t+ 1) \leq A(u(s))x(t) +B(u(s))\Theta 

\bigl( 
u(s), E(u(t))x(t)

\bigr) 
+Bev(t) \forall s, t \in \BbbZ +, t \geq s .

Set A0 := A(u(\tau )) + B(u(\tau ))\Sigma E(u(\tau )), where \Sigma is as in (S). Since u(\tau ) \geq \sigma by
hypothesis, the stabilizability assumption (S), when combined with the monotonicity
of A, B, and E in (M1), yields that \rho (A0) < 1 and

\Theta (u(\tau ), E(u(t))x(t)) \leq \Sigma E(u(t))x(t) \leq \Sigma E(u(\tau ))x(t) \forall t \in \BbbZ +, t \geq \tau .

Combining the above two estimates, the former with s = \tau , gives

x(t+ 1) \leq A0x(t) +Bev(t) \forall t \in \BbbZ +, t \geq \tau .

The above inequality is a special case of (A.1) with F := 0 and d := Bev, and
so the variation-of-parameters inequality (A.2) holds, here with k = s = \tau . The
estimate (B.9) now follows by taking norms in (A.2) and majorizing, and critically
uses that \rho (A0) < 1.

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1. We record that the function \phi which appears in (2.2) is
Lipschitz with Lipschitz constant equal to one.

(i) Seeking a contradiction, we posit that u is unbounded. Then there exists
\tau 1 \in \BbbN such that u(\tau 1) \geq \sigma , where \sigma is as in (S). An application of Lemma B.3
ensures the existence of M > 0 and \gamma \in (0, 1) such that (B.9) holds. In preparation
for the proof of statement (v), where \lambda = 0 and v = 0, we consider two exhaustive
cases.

Case 1: \lambda > 0. Define \alpha by

(B.11) \alpha (\lambda ) :=
\lambda 

\| C\| M + 1
,

and assume that (2.3) holds, meaning there exists \varepsilon > 0 such that

(B.12) \varepsilon +
\bigl( 
\| C\| M + 1

\bigr) 
max

\bigl\{ 
\| Bev\| \ell \infty , \| Dev\| \ell \infty 

\bigr\} 
\leq \lambda .
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Since \gamma < 1, we can choose sufficiently large \tau 2 \in \BbbN so that

\| C\| M\gamma t+\tau 2\| x(\tau 1)\| \leq \varepsilon \forall t \in \BbbZ + .

We invoke (B.9) with t and \tau there given by t + \tau 2 and \tau 1, respectively, to estimate
that

\| \phi (y(t+ \tau 2 + \tau 1))\| \leq \| y(t+ \tau 2 + \tau 1)\| = \| Cx(t+ \tau 2 + \tau 1) +Dev(t+ \tau 2 + \tau 1)\| 
\leq \| C\| \| x(t+ \tau 2 + \tau 1)\| + \| Dev\| \ell \infty 
\leq \| C\| M\gamma t+\tau 2\| x(\tau 1)\| + \| C\| M\| Bev\| \ell \infty + \| Dev\| \ell \infty 
\leq \varepsilon +

\bigl( 
\| C\| M + 1

\bigr) 
max

\bigl\{ 
\| Bev\| \ell \infty , \| Dev\| \ell \infty 

\bigr\} 
\leq \lambda \forall t \in \BbbZ + ,

where we have also majorized the Bev and Dev terms by their \ell \infty norms and in-
voked (B.12). Therefore, we see that

\| \phi (y(t+ \tau 2 + \tau 1))\|  - \lambda \leq 0 \forall t \in \BbbZ + ,

and, consequently, the update law for u in (2.1) yields that u(t+ \tau 2+ \tau 1) = u(\tau 2+ \tau 1)
for all t \in \BbbZ +. In particular, u is constant after some finite time, which contradicts
the assumed unboundedness of u.

Case 2: \lambda = 0. In this case we also assume that v = 0 and that the growth
condition (2.5) holds for \Psi . In particular, as v = 0, the inequality (B.9) with \tau there
equal to \tau 1 yields

\| y(t+ \tau 1)\| = \| Cx(t+ \tau 1)\| \leq \| C\| M\gamma t\| x(\tau 1)\| \forall t \in \BbbZ + .

Since \Psi \in \scrK , we invoke the above inequality to estimate that

u(t+ \tau 1) - u(\tau 1) =

t - 1\sum 
j=0

\Psi (\| y(j + \tau 1)\| ) \leq 
\sum 
j\in \BbbZ +

\Psi (\| C\| M\gamma j\| x(\tau 1)\| ) < \infty \forall t \in \BbbN ,

where we have also appealed to (2.5) to conclude that the infinite series above is
finite. The above inequalities yield that u is bounded, which again contradicts the
assumed unboundedness of u. Therefore, we have established statement (i) and that
u is bounded under the hypotheses of statement (v).

For the proof of the remaining statements, we record that as u is bounded by
part (i), and nondecreasing, u is convergent with limit w \in \BbbR +. In particular, u(t) \leq 
w for all t \in \BbbZ + which, when carefully combined with the monotonicity in (M1)
and (M2), and the lower bound in (M3), leads to the estimate

x+ = A(u)x+B(u)\Theta 
\bigl( 
u,E(u)x

\bigr) 
+Bev \geq A(w)x+B(w)\Theta 

\bigl( 
w,E(u)x

\bigr) 
+Bev

\geq 
\bigl( 
A(w) +B(w)\Delta E(u)

\bigr) 
x+Bev \geq 

\bigl( 
A(w) +B(w)\Delta E(w)

\bigr) 
x+Bev .(B.13)

For notational convenience, set P := A(w) + B(w)\Delta E(w), which is irreducible by
hypothesis (M3).

(ii) and (iii) In light of statement (i) and the lower bound (B.13) with irreducible
P , the hypotheses of Lemma B.2 are satisfied and the claims follow from this result.

(iv) The hypotheses of Lemma B.3 are satisfied and, noting that the estimate (2.4)
is the same as (B.9), the statement follows from Lemma B.3.
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(v) Here we assume that \lambda = 0, v = 0 and that (2.5) holds. We have already
proven that u is bounded under these assumptions, and the proof of statements (ii)--
(iv) hold in the case that \lambda = 0. It remains to prove that x(t) \rightarrow 0 as t \rightarrow \infty . For
this purpose, we claim that

(B.14) \rho (A(w)) < 1 .

Seeking a contradiction, suppose that (B.14) fails. Then \rho (P ) \geq \rho (A(w)) \geq 1. Con-
sequently, letting \xi T denote a strictly positive left eigenvector of the irreducible P
corresponding to the spectral radius of P , it follows from (B.13) that

Cx(t+ k) \geq CP tx(k) and | x(t+ k)| \xi \geq (\rho (P ))t| x(k)| \xi \geq | x(k)| \xi \forall t, k \in \BbbZ + .

Hence, repeated applications of Lemma B.1 to the first inequality above yields \varepsilon > 0
and a sequence (tk)k\in \BbbN \subseteq \BbbZ + with tk \nearrow \infty as k \rightarrow \infty such that

\| \phi (y(tk))\| = \| y(tk)\| = \| Cx(tk)\| \geq \varepsilon \forall k \in \BbbN ,

which contradicts the convergence in statement (ii), as here \lambda = 0 and v = 0. We
conclude that (B.14) holds. Therefore, by the continuity of A and the spectral radius,
there exists \tau \in \BbbZ + such that \rho (A(u(\tau ))) < 1.

We next claim that

(B.15) lim sup
t\rightarrow \infty 

\| E(u(t))x(t)\| = 0 ,

which evidently yields that E(u(t))x(t) \rightarrow 0 as t \rightarrow \infty . The continuity of \Theta (u(\tau ), \cdot )
then gives

(B.16) lim
t\rightarrow \infty 

\Theta 
\bigl( 
u(\tau ), E(u(t))x(t)

\bigr) 
= 0 .

Note that the upper bound (B.10) is of the form (A.1) with s = \tau , A0 := A(u(\tau )),
and

F (t, z) := B(u(\tau ))\Theta (u(\tau ), E(u(t))z) \forall (t, z) \in \BbbZ + \times \BbbR n
+ ,

and so the variation-of-parameters inequality (A.2) holds. The conjunction of
\rho (A(u(\tau ))) < 1 and (B.16), when combined with the inequality (A.2), gives x(t) \rightarrow 0
as t \rightarrow \infty . Again, seeking a contradiction, we suppose that (B.15) fails, meaning
there exist \varepsilon > 0 and a sequence (tj)j\in \BbbN \subseteq \BbbZ + such that tj \nearrow \infty as j \rightarrow \infty and

\| E(u(tj))x(tj)\| \geq \varepsilon \forall j \in \BbbN .

From the monotonicity of the norm and of E, it follows that \| E(0)x(tj)\| \geq 
\| E(u(tj))x(tj)\| for every j \in \BbbN and, consequently, there exists \sigma > 0 such that
for every j \in \BbbZ + there exists ij \in n such that

(B.17) x(tj)ij \geq \sigma \forall j \in \BbbN .

The inequality (B.13) guarantees that (B.6) holds. Repeated application of
Lemma B.1 to this latter inequality yields the existence of a bounded sequence
(kj)j\in \BbbZ +

and \omega > 0 such that

(B.18) \| Cx(tj + kj)\| \geq 
\bigm\| \bigm\| CP kjx(tj)

\bigm\| \bigm\| \geq \omega x(tj)ij \forall j \in \BbbN .
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Combining (B.17) and (B.18), it follows that

\| y(tj + kj)\| = \| Cx(tj + kj)\| \geq \omega \sigma > 0 \forall j \in \BbbN ,

which contradicts the convergence \| y(t)\| = \| \phi (y(t))\| \rightarrow 0 as t \rightarrow \infty in statement (ii),
as here \lambda = 0 and v = 0. The proof is complete.

Appendix C. Proofs of remaining results.

Proof of Lemma 2.2. The following argument is in the spirit of estimates of the
spectral radius of a nonnegative matrix using a single point estimate; see, for exam-
ple, [30, Theorem 16.3]. It suffices to prove that s := \rho 

\bigl( 
A(\sigma )+B(\sigma )\Sigma E(\sigma )

\bigr) 
< 1. For

clarity, we suppress the fixed argument \sigma . Let nonzero \xi \in \BbbR n
+ be such that\bigl( 

A+B\Sigma E
\bigr) 
\xi = s\xi .

The eigenvector \xi \in \BbbR n can be chosen to be nonnegative as A + B\Sigma E \in \BbbR n\times n
+ . If

E\xi = 0, then s is an eigenvalue of A, and so less than one by hypothesis. We therefore
assume that E\xi \not = 0. Forming products and routine algebra gives

s\zeta TE(I  - A) - 1\xi = \zeta TE(I  - A) - 1
\bigl( 
A+B\Sigma E

\bigr) 
\xi = \zeta TE(I  - A) - 1A\xi + \zeta TH\Sigma E\xi 

< \zeta TE(I  - A) - 1A\xi + \zeta TE\xi = \zeta TE(I  - A) - 1\xi ,(C.1)

where have used the second inequality in (2.6) and that E\xi \not = 0. Noting that, as
\rho (A) < 1,

\zeta TE(I  - A) - 1\xi = \zeta TE
\Bigl( \sum 

k\in \BbbZ +

Ak
\Bigr) 
\xi \geq \zeta TE\xi > 0 ,

because \zeta T is strictly positive and E\xi > 0 by hypothesis, it follows from (C.1) that
s < 1, as required.

Lemma C.1. Let A,B,E satisfy (M1) and assume that \sigma \geq 0 is such that
\rho (A(\sigma )) < 1. Then H given by (2.7) is nonincreasing on [\sigma ,\infty ) in the sense of (1.3).

Proof. A consequence of the hypothesis that \rho (A(\sigma )) < 1 is that H(w) may be
expressed as a convergent Neumann series, namely,

H(w) = E(w)(I  - A(w)) - 1B(w) = E(w)
\Bigl( \sum 

j\in \BbbZ +

A(w)j
\Bigr) 
B(w) \geq 0 \forall w \in [\sigma ,\infty ) .

Invoking the hypothesis (M1) that the functions A, B, and E are nonincreasing, we
now see that the desired monotonicity holds: if w1, w2 \geq \sigma with w1 \leq w2, then

H(w1) = E(w1)
\Bigl( \sum 

j\in \BbbZ +

A(w1)
j
\Bigr) 
B(w1) \geq E(w2)

\Bigl( \sum 
j\in \BbbZ +

A(w2)
j
\Bigr) 
B(w2) = H(w2) .

Proof of Proposition 2.6. First assume that \lambda > 0. The proofs of statements (i)
and (iv) are the same as in Theorem 2.1, and the latter appeals to Lemma B.3.
Neither uses assumption (M3). Let w := limt\rightarrow \infty u(t). The proof of the convergence
in statement (ii) follows from an application of statement (a) of Lemma B.2 (which,
note, does not impose (M3)).

Set A0 := A(0) + B(0)\Gamma 1E(0). Since u(\tau ) \geq 0 for all \tau \in \BbbZ +, the hypothe-
ses in (M3)\prime carefully combined with the upper bound (B.10) and the monotonicity
in (M1) and (M2), yield the following estimate for x, namely,
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x+ \leq A(0)x+B(0)\Theta (0, E(u)x) +Bev \leq A(0)x+B(0)
\bigl( 
\Gamma 1E(u)x+ \Gamma 2

\bigr) 
+Bev

\leq A0x+B(0)\Gamma 2 +Bev,

The above upper bound and the resulting variation-of-parameters inequality (A.2)
with F := 0 and d := B(0)\Gamma 2 + Bev now yield that x is bounded as \rho (A0) < 1 and
d is bounded. Thus, statement (iii) holds, and now y is bounded by statement (c) of
Lemma B.2.

Once x is bounded, there exists k = k(x0, u0, v) > 0 such that

\| E(u(t))x(t)\| \leq \| E(0)x(t)\| \leq k \forall t \in \BbbZ + ,

and the hypothesis (M3)\prime guarantees the existence of \Delta = \Delta (w, k) such that (B.13)
holds.

The proof of statement (v) when \lambda = 0 is now the same as that in
Theorem 2.1.

Proof of Proposition 2.7. Consider (2.1) in the special cases of (2.11) or (2.12).
Associated with the former and latter are the functions

(C.2) A1(w) := \Gamma (w)A0, B1(w) := \Gamma (w)B0, and E1(w) := E0

and

(C.3) A2(w) := A0\Gamma (w), B2(w) := B0, and E2(w) := E0\Gamma (w) ,

respectively. Both (2.11) and (2.12) have the same nonlinear term \Theta 0. We need to
show that the assumptions (M1), (M3), and (S) hold for (C.2) and \Theta 0 if, and only if,
they hold for (C.3) and \Theta 0. In this case, for brevity in the current proof, we informally
say that the properties are equivalent.

Since \Gamma is assumed to satisfy (D), it follows that \Gamma is continuous and nonincreasing
in the sense of (1.3). Moreover, \Gamma (w) is diagonal with positive diagonal entries for
all w \in \BbbR +. Consequently, that property (M1) is equivalent is clear. To investigate
property (M3), note that \Gamma (w) is invertible with a diagonal inverse with positive
diagonal entries for all w \in \BbbR +. Hence, for fixed w \in \BbbR +, which we suppress as an
argument for clarity, we have that

(C.4) A1 +B1\Delta E1 = \Gamma 
\bigl( 
A0 +B0\Delta E0

\bigr) 
is irreducible if, and only if, A0 +B0\Delta E0 is irreducible, which occurs if, and only if,

(C.5) A2 +B2\Delta E2 =
\bigl( 
A0 +B0\Delta E0

\bigr) 
\Gamma 

is irreducible. Since w \in \BbbR + was arbitrary, we conclude that property (M3) is equiv-
alent.

Finally, note that the matrices on the right hand sides of (C.4) and (C.5) (with
\Delta replaced by \Sigma ) are themselves the product of the same two matrices in different
orders. Therefore, A1 +B1\Sigma E1 and A2 +B2\Sigma E2 have the same nonzero eigenvalues
and, hence, property (S) is equivalent as well. The proof is complete.

Proof of Proposition 2.8. Fix (x0, u0) \in \BbbR n
+ \times \BbbR + with x0 \not = 0, and let (x, u)

denote the solution of (2.1) with v = 0 and \lambda = 0. That the control variable u
is convergent follows from Theorem 2.1. We denote its limit by u\infty . Let G :=
A(u\infty ) + B(u\infty )\Gamma E(u\infty ), where \Gamma \in \BbbR m\times q

+ is as in (2.13). Seeking a contradiction,
assume that the claim is false, meaning \rho (G) \geq 1.
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The estimate (B.13) holds with w = u\infty , and letting \zeta \in \BbbR n
+ denote a strictly posi-

tive eigenvector corresponding to the spectral radius of P := A(u\infty )+B(u\infty )\Delta E(u\infty ),
which is irreducible by assumption (M3), it follows that

| x(t)| \zeta \geq (\rho (P ))t| x0| \zeta > 0 \forall t \in \BbbZ + .

In particular, x(t) \not = 0 for every t \in \BbbZ +.
An application of statement (v) of Theorem 2.1 gives that x(t) \rightarrow 0 as t \rightarrow \infty 

and, hence, Ex(t) \rightarrow 0 as t \rightarrow \infty . In particular, there exists \tau \in \BbbZ + such that
Ex(t + \tau ) \in U for all t \in \BbbZ +. Therefore, invoking the estimate (2.13) for \Theta and the
monotonicity of u, as in the derivation of (B.13), gives the lower bound

x(t+ 1) \geq 
\bigl( 
A(u\infty ) +B(u\infty )\Gamma E(u\infty )

\bigr) 
x(t) = Gx(t) \forall t \geq \tau .

Since G is irreducible, letting \xi \in \BbbR n
+ denote a strictly positive eigenvector corre-

sponding to \rho (G), it follows that

| x(t+ \tau )| \xi \geq (\rho (G))t| x(\tau )| \xi \geq | x(\tau )| \xi > 0 \forall t \in \BbbZ + .

The above inequality contradicts x(t) \rightarrow 0 as t \rightarrow \infty , completing the proof.

Appendix D. Further information for section 3.2. We present additional
information for the numerical simulations in section 3.2.3. The parameter values used
in (3.10) are

s1 = 0.305, s2 = 0.899, s3 = 0.778, s4 = 0.980, g1 = 0.530,(D.1)

g2 = 0.02, g3 = 0.202 ,

which are the same as those in [12, section 2.5.1]. For the nonlinear term \theta , we take

(D.2) \theta (z) =
80.477

1 + (6\times 10 - 5)z
7
5

\forall z \geq 0 ,

which satisfies \theta (0) = 80.477---equal to the corresponding term from the linear
(density-independent) model in [12, section 2.5.1]. We note that z \mapsto \rightarrow \theta (z)z is bounded.

The initial DRW population is taken to be

(D.3) x0 =
\bigl( 
0.1973 1.0353 0.0933 0.9420

\bigr) T \times 105 .
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