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ABSTRACT. Millet is a small-seeded cereal crop with big potential and remarkable characteristics such as high drought 
resistance, short growing time, low water footprint, and the ability to grow in acidic soil. There is a need to develop non-
destructive methods for differentiation and evaluation of the quality attributes of different of proso millet cultivars grown in 
the U.S. Current methods of cultivar classification are either subjective or destructive, time consuming, not allowing for the 
whole population to be tested, and requiring trained operators and special equipment. In this study, the feasibility of using 
near-infrared  (NIR) hyperspectral imaging (900-1700 nm) to predict the quality attributes of proso millet (Panicum 
miliaceum L.) seeds as well to classify its different cultivars was demonstrated. Ten different cultivars of proso millet variety, 
which are the most popular in the US, investigated in this study included Cerise, Cope, Earlybird, Huntsman, Minco, 
Plateau, Rise, Snowbird, Sunrise, and Sunup. To reduce the large dimensionality of the hyperspectral imaging, principal 
component analysis (PCA) was applied, and the first two principal components were used as imaging features for building 
the classification models. The Classification performance showed a test accuracy rates as high as 99% for classifying the 
different cultivars of proso millet using gradient tree boosting ensemble machine learning algorithm. Moreover, using the 
partial least squares regression (PLSR) the coefficient of determination (R2) for quality prediction of proso millet seeds were 
0.87, 0.80, 0.83, 0.93, and 0.92 for moisture content, crude protein, crude fat, ash, and carbohydrate, respectively. The 
overall results indicate that NIR hyperspectral imaging could be used to non-destructively classify and predict the quality 
of proso millet seeds. 
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Introduction 
Millet is a small-seeded cereal crop with big potential. It has incredible qualities like drought resistance, high protein 

content (Singh et al., 2017), short growing times (Baltensperger, 2002)(Kalinova & Moudry, 2006), low water requirements 
(Han, Yang, Wu, & Yi, 2019), and the ability to grow in acidic soil (Niranjan, Prakasha, Meena, Kiran, & Yadawad, 2020). 
All these qualities allow millet to be a great crop for propagation in arid areas of Africa and Asia, and important for tackling 
food insecurity in this part of the world (Amadou, Gounga, & Le, 2013). There are nearly 20 different species of millet. In 
the US, proso millet (Panicum miliaceum L.) is the most produced variety of millet, with over 188,180 ha harvested in 2019 
(USDA, 2021). Proso millet has many different cultivars from this variety, with some farmers producing more than one 
cultivar on a single plot of land. This creates an issue of sorting and product consistency. Also, knowing the variety of millet 
and the proximate content of the product is important for consumers (Zhang, Liu, He, & Li, 2012). Current methods of seed 
classification use DNA molecular marking technology, visible morphological identification, and protein electrophoresis. All 
these techniques include their own shortcomings, with some being destructive, time consuming, not allowing for the whole 
population to be tested, and requiring trained operators and special equipment. These methods for quality detection have 
some shortcomings. Quality detection is often destructive such as the AOAC methods. These methods are not ideal as they 
are also time-consuming, not practical for commercial use, and cannot evaluate each individual seed. 

Because current methods for identifying millet cultivars and determining its contents are laborious and destructive, other 
methods need to be implemented to fix these issues.  Some nondestructive solutions have been developed, like methods such 
as spectroscopy (Chen, Ren, Zhang, Diao, & Shen, 2013; Cui-qing, Li-juan, Sheng, & Yu-ming, 2017), spectral vegetation 
indices (Baath, Flynn, Gowda, Kakani, & Northup, 2021), machine visions (Venkatesan & Sujatha, 2018) and hyperspectral 
imaging (X. Wang, Li, Zheng, & Wang, 2020).  Among these, hyperspectral imaging (HSI) can provide the most information, 
as it combines the techniques of machine visions and spectroscopy.  Machine vision is an automated computer system that 
visually inspects the sample, operating at visible wavelengths to give a picture of the external view and positions of certain 
features (ElMasry & Sun, 2010).  This, however, cannot give an internal view of the object, missing the ability to detect 
complex classifications and quality compositions (ElMasry & Sun, 2010).  On the other hand, spectroscopy obtains spectral 
data of a sample from its light absorbance or reflectance.  This gives information about the internal components of the sample 
but does not pinpoint its exact location (ElMasry & Sun, 2010).  By combining machine visions and spectroscopy, HSI can 
obtain a spectrum for each pixel in an object’s image, creating a hypercube with spatial dimensions on two axes, and 
wavelength spectral dimension on the third axis (Manley, 2014).  With this added dimension, HSI can provide spectra for 
every pixel, giving it the advantage to tell more information about the sample (Manley, 2014).  This method works especially 
well for samples whose nature is not homogeneous, such as seeds that have an uneven distribution of internal chemical 
components (Zhu et al., 2019).  With hyperspectral imaging, millet seeds can be accurately classified and qualified. 

Various studies have been conducted using hyperspectral imaging to classify millet and other small grain seeds.  X. Wang 
et al. (2020) used visible-near-infrared hyperspectral imaging to classify 480 samples of eight millet varieties with an 
attention-CRNN model, having an accuracy of 87.5%.  This study showed low accuracy and is used less common millet 
cultivar. To improve upon these results, the number of seeds may need to be increased, the spectra range adjusted, or a 
different type of machine learning could be used. On top of this, with using cultivars of proso millet, there is more of a 
commercial application than that of the smaller cultivars Wang et al. uses in their study. Besides the work done by Wang et 
al., there is very little work done on small cereals like millet in the way of HSI used in for classification. However, this topic 
has been covered by others using different cereals. Zhang et al. (2012) developed a model to discriminate maize seed types 
of 330 samples of 6 varieties through hyperspectral imaging in the visible and near-infrared region with 98.89% accuracy. 
Another study on maize seeds was conducted by Zhao et al. (2018). They used NIR HSI to scan 12,900 seeds of 3 different 
varieties and created an algorithm that could classify the seeds. Another study on maize seeds was done by Xia et al. (2019). 
Using visible-near-infrared HSI to scan 1623 seeds of 17 varieties and multilinear discriminate analysis (MLDA) algorithm, 
they obtained an accuracy of  99.13%. Kong, Zhang, Liu, Nie, and He (2013) identified 225 rice seeds of four different 
cultivars with classification rates over 80% using near-infrared hyperspectral imaging system.  

More work has been done using hyperspectral technology in classifying different kinds of seeds than in predicting 
proximate qualities and content. Chen et al. (2013) used near-infrared spectroscopy to determine protein, carbohydrates, and 
fat contents of foxtail millet with a coefficient of determination of validation of 0.94, 0.92, and 0.7, respectively. In another 
study done by J. Wang et al. (2019), broomcorn millet was scanned using HSI to predict the protein content of the seeds and 
leaf nitrogen content. Using machine learning and linear regression, the coefficient of determination of the calibration set 
and validation set were 0.928 and 0.924 respectively. While both studies yield sufficient results, they lack the diversity and 
range of information that could be displayed by their dataset.  

The objective of this experiment is to 1) determine the exact proximate content of different cultivars of proso millet. 2) 
Create a dataset of spectral data for the seeds. 3) Use this dataset to create a supervised algorithm to classify unknown millet 
cultivars and 4) predict the proximate content of an unknown millet seed based on the information based in set 1.   
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Materials and methods  

Sample preparation  

In this study, ten different cultivars of proso millet seeds were grown and obtained from the University of Nebraska’s 
Panhandle Research and Extension Center in Scottsbluff, Nebraska.  Ten common cultivars produced in the U.S. were 
studied, namely Cerise, Cope, Earlybird, Huntsman, Minco, Plateau (waxy var.), Rise, Snowbird, Sunrise, and Sunup.  The 
seeds were sifted to remove any outside contaminates like stones, dirt, and straw using a Ro-Tap sieve shaker (RX-29, W.S. 
Tyler, Mentor, Ohio), then dehulled with a modified disc mill (Glenn Mills Inc., Clifton, N.J.) where the stationary disk was 
replaced with a rubber disk. This minimizes the breakage of the millet and provides a better chance of proper hull removal.  
The seeds were placed in labeled bags separating each cultivar, then stored in a freezer with a temperature of -70°C.  To be 
prepared for scanning, the seeds were taken out of the freezer and placed at room temperature (about 27°C) for at least 1 
hour prior to testing. A total of 500 seeds were counted out from each bag, separated into 10 groups of 50 seeds.  These seeds 
were then scanned by hyperspectral data acquisition, carried out in the Food Engineering lab at Biosystems and Agricultural 
Engineering Department, University of Kentucky, Lexington, KY, USA.  This preparation was then repeated every day until 
each of the 10 cultivars of millet was tested. 

 

Millet quality determination 

To find the proximate content, the samples were first ground by a Quadrumat Junior Mill (C.W. Brabender Instruments 
Inc., South Hackensack, N.J.).  Then, using the AOAC Standard Method, the five qualities measured in each of the cultivars 
of proso millet were determined: moisture content (Method 925.09), crude protein (Method 920.87), crude fat (Method 
920.39), ash (Method 923.03), and carbohydrate (Method 985.29) (AOAC, 2010, Singh et al., 2018).  

 

HSI system and image acquisition  

The machine used for hyperspectral data acquisition of the millet seeds was an HSI system using short-wave near-infrared 
(SWNIR) bands. The wavelength range used for the HSI system was 900 nm to 1700 nm with a spectral resolution of 5 nm 
(N17E, Specim, Oulu, Finland). The setup for the HSI system includes a moving stage driven by a stepper motor (MRC-
999-031, Middleton Spectral Vision, Middleton, WI 53562) with the InGaAs camera (Goldeye infrared camera: G-032, 
Allied Vision, Stradtroda, Germany) attached perpendicular to said moving stage with a single 150W halogen lamp (A20800, 
Schott, Southbridge, MA, USA) illuminating the stage. A computer is used for data acquisition and analysis software 
(FastFrame by Middleton Spectral Vision, Middleton, WI 53562). 

To obtain clear images, the parameters setting included a scanning speed of 0.25 in/s, the exposure time of the camera 
was set to 45 ms with a framerate of 22.173 Hz, the halogen lamp angle was 54°, and the vertical distance between the lens 
and the sample stage was set to 12.5 cm.  Samples were captured in a line scanning or pushbroom mode.  The acquired 
hyperspectral images contained 256 wavelength bands in “.raw” format with a header file in “.hdr” format. 

In the hyperspectral image acquisition, one group of 50 millet seeds would be distributed on the stage at a time and 
organized into rows and columns of 5 by 10. The seeds were placed to ensure that no two seeds were touching and that all 
the seeds were within an area that is 3x7 cm centered on the stage. Repeat this for every group of 50 seeds prepared for that 
day, labeling the scan correctly based on cultivar name and scan number. The seeds were placed back into the original tins, 
then disposed of once completed.  
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Figure 1. Hyperspectral Imaging System   

 
To eliminate random noise from the influence of illumination and dark current of the camera, the obtained raw images 

needed to be corrected with the white and dark reference images.  These reference images were obtained at the end of each 
day after the samples were scanned.  The white reference images were obtained using a polytetrafluoroethylene (PTFE) 
Teflon plate of 99% reflectivity and 10 mm thickness placed directly on the black sample stage.  The dark reference images 
were obtained by covering the lens of the HSI system and turning off the halogen lamp and all lights in the room.  The 
calibration was done based on the following equation: 

 

𝑋ఒ ൌ
ூഊି஻

ௐഊି஻
                                                                (1) 

In this equation, Xλ is the calibrated reflectance for the image, Iλ is the reflectance of the original radiance value for the 
pixel acquired by the sensor of the camera, Wλ is the reflectance of the white reference target, and B is the black reference 
captured while avoiding any light source in order to quantify the electronic noise of the sensor. 

 

Data analysis 

From the hyperspectral images, the seeds were segmented as the region of interest using Python (Version 3.7, Python 
Software Foundation, https://www.python.org/ (accessed on 15 October 2021)).  To segment the ROI, two masks were used 
to separate each seed in the image. The first mask was to remove the background using thresholding, so all the seed 
boundaries in the image were clearly defined.  Then, a connectivity function was used to segment each individual seed from 
the others in the first mask.  This function counted the connected regions for each seed and fills in every seed area in the 
mask to a different intensity value. Next, to look at each seed individually, a second mask is created by segmenting out all 
values that are not equal to BW value of the seed of interest. 

The spectra for each seed could then be found and analyzed.  A loop was used to find each seed of interest in the image, 
calculating the spectra for each pixel in the seed. Then a spectrum is averaged for every pixel, calculating, displaying, and 
saving the mean spectra for each seed.  This ROI and spectra extraction was repeated for every seed in each repetition for 
each type of millet.  Using these mean spectra, the seeds can then be classified, and their proximate qualities determined. 

The dataset of the 10 cultivars was then built for classification, using the samples as rows, and the features and labels as 
columns.  PCA was used to compress the data and reduce the dimensionality of the hypercube. The data used a five-fold 
cross validation model for supervised machine learning classification.  The predictor values were the PCA of the spectral 
data, and the dependent variables were the cultivars of millet.  Different machine learning classification algorithms of SVM 
(Support Vector Machine), RF (Random Forest), kNN (k-Nearest Neighbors), linear discriminant analysis (LDA), and 
Ensemble were performed and compared for their test classification accuracies. Five models are created for each algorithm 
and the mean is taken of the accuracy for each algorithm.  

The dataset was also built for a regression model in determining the qualities of the millet seeds. The data was collected 
the same as before, but instead the labels were changed to mean quality values for each seed type. Eight cultivars were used 
for the regression. The predictor values were still the spectral data, and now the dependent variables were the quality values.  
A supervised model was developed by using a five-fold cross validation model.  A PLS (partial least squares) regression and 
a MLR (multiple linear) regression were then carried out, comparing the regression algorithms by using the values of the 
coefficient of determination (R2) and mean squared error (MSE) for quality prediction accuracies. The mean of the R2 and 
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MSE is taken for the five tests. This regression was repeated for each of the qualities being tested. 

Results and discussion 

Spectral analysis 

As the data is being complied, the spectrum for each seed is first normalized for reflectance vs wavelength and cropped 
to both ends by 6 bands at the beginning and 15 at the end to remove noise. This isolates the region of interest for each 
spectrum and puts the value at a comparable position. The resulting average spectrum for each cultivar is shown in Figure 
2. The spectrum for each cultivar follows a similar curve but have differing reflectance values at certain wavelengths. This 
could be due to the chemical and physical properties of the material at each wavelength.  

The maximum absorption is found in the valleys and is seen all wavelengths around 925, 1200, 1400, and 1700. The local 
peaks, or minimum absorption, are around wavelengths of 1000, 1250, and 1500.  The absorption values around 1400 show 
the first water overtones, indication the moisture content of the material being scanned. Meanwhile, the C-H bond has the 
third, second, and first overtone around 925, 1200, and 1700nm, respectively (Pasquini, 2003). This overtone could be an 
indication of the lipids in the sample. The second and first overtone for the N-H bond can be seen at wavelengths of 1000 
and 1500 nm, respectively. Both wavelengths correspond with local peak values. The N-H bond could be indicating proteins 
within the material. Around wavelengths of 1250, the resonance of the combination of C-H bonds appears. From a glace, 
Minco seems to have a much smaller absorbance at both wavelengths than the other cultivars based on the higher reflectance 
of the spectrum. While Figure 2 shows a great visual exploring some differences, it cannot be used alone in classification. 
Other techniques need to be used to classify the millet cultivar clearly and accurately.  

             
Figure 2. Mean reflectance spectra of different millet cultivar samples acquired by NIR hyperspectral imaging. 

PCA and preprocessing 

HSI accusation produces data that contains high dimensionality. This dimensionality creates issues in the analysis and 
application processes due to the complexity of the data. To better quantify the spectra for each cultivar, some preprocessing 
must be conducted before classification models are created. The best way to go about this is using principal component 
analysis (PCA). The dimensions of the spectra are reduced while retaining all details of the data using PCA. The variation 
in the data is captured with two PCs, with PC1 retaining 98% and PC2 with 2%. This added together covered 100% of the 
variability in the data. Figure 3 shows the clustering of the PCA data. Each cultivar has a stripe encompassing the variety in 
each cultivar. While these clusters are seemingly very distinct and separable, there is some overlap and distance between 
certain points. Because of these reasons, a better form of classification needs to be used. 
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Figure 3. Principal component analysis of ten millet cultivars 

 

Machine learning classification results 

Table 1 shows the performance of different machine learning classifiers based on the mean spectra for each millet cultivar.  
To get the best classification rate, the raw data was analyzed and trimmed to cut off the end wavelengths and keep intact the 
rest of the data.  The best classification result, shown in bold in Table 1, was obtained using the Gradient tree boosting 
classifier, with an overall test accuracy of 99.4%.  The RF classifier also provided good results with an overall test accuracy 
of 99.1%.  Both Gradient tree boosting, and RF classifiers also have a very good training set result, each with an accuracy 
of 100%.  These results are better than X. Wang et al. (2020) who obtained an accuracy of 87.5%.   

 

Table 1. Results of the classification of millet samples for training and test sets based on mean spectra for each cultivar. 

Classifier 
Total accuracy (%) 

Training set Testing set 

SVM 70.2 71.1 

RF 100 99.1 

kNN 96.1 94.5 

LDA 81.9 81.8 

Gradient tree boosting 100 99.4 

SVM: Support Vector Machine, LDA: Linear Discriminant Analysis, kNN: k-Nearest Neighbors, RF: Random Forest. Bolded line indicates the best 
result. 

 
Table 2 shows the precision, recall, and F1-scores for RF and Gradient tree boosting, the two best classifiers, for each of 

the millet cultivars.  Precision, recall, and F1-score evaluate the quality of the model, showing whether it is a good fit for 
the data and how well it performs.  Not only is the accuracy of RF and Gradient tree boosting high, but their precision, recall, 
and F1-scores are also very high, with no score going below 96%.  These classifiers can thus be used to classify the millet 
cultivars with a high dependability. 

 

Table 2. Results of the classification of millet cultivars for test data set  
Classifier Cultivar Precision (%) Recall (%) F1-score (%) 

RF 

Cerise 100 100 100 

Cope 100 100 100 

Earlybird 100 100 100 

Huntsman 98 99 99 

Minco 100 100 100 

Plateau 100 98 99 

Rise 99 98 99 

Snowbird 100 98 99 

Sunrise 96 98 97 

Sunup 98 100 99 

Gradient tree boosting 

Cerise 99 100 99 

Cope 100 100 100 

Earlybird 100 100 100 

Huntsman 99 99 99 
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Minco 100 100 100 

Plateau 99 99 99 

Rise 100 99 100 

Snowbird 100 99 100 

Sunrise 100 98 99 

Sunup 97 100 99 

 

In addition to PCA, another way to reduce dimensionality is selecting effective wavelengths from the spectra.  Each 
spectrum contains so much data and information for the total amount of features and wavelengths, making it complicated to 
create a model without overfitting. This leads to a lot of redundancies in the spectra data for each cultivar. One way to reduce 
these redundancies is by looking only at the significant points in the data. This is best done by optimal wavelength selection 
for the mean spectra.  By selecting these specific wavelengths, a reduced model using all the data in each wavelength can 
be determined.  In this study, 5, 15, and 30 wavelengths are selected to see the number of wavelengths that makes a significant 
difference in the accuracy of the algorithm.  

To obtain the optimal wavelengths, the dataset is used as an input for the Sequential Forward Selection (SFS) algorithm. 
This model uses the machine learning classifier to determine how this information is sorted. The classifier that was used was 
the one with the highest accuracy in Table 1, the Gradient tree Boosting model. This algorithm produces the significant 
wavelengths for a given number of wavelengths. These wavelengths are shown in Table 3 corresponding to the band number. 
These bands can then be the new dataset that the machine learning algorithm uses in testing and training. These results are 
shown in Table 3, resulting in a 98.00%, 98.14%, and 97.60% prediction accuracy for 30, 15, and 5 wavelengths, 
respectively.  This table shows the highest prediction accuracy at 15 wavelengths.  While still a high prediction accuracy, 
the feature selection made the classification accuracy slightly worse for this study.  

 

Table 3. Results of the classification of millet cultivars based on selected wavelengths. 
Classifier  No. of 

Features 
Wavebands (nm) Classification 

accuracy  

Gradient tree Boosting 30 900.17, 903.53, 906.88, 910.24, 913.59, 916.95, 920.30, 923.65, 
927.01, 930.36, 933.71, 937.07, 940.42, 943.77, 947.13, 950.48, 
953.83, 957.18, 960.53, 963.89, 967.24, 970.59, 973.94, 977.29, 

980.64, 983.99, 1004.09, 1540.94, 1673.58  

98.00% 

15 900.17, 903.53, 906.88, 910.24, 913.59, 916.95, 920.30, 923.65, 
927.01, 930.36, 933.71, 1004.09, 1540.94, 1673.58 

98.14% 

5 900.17, 903.53, 1004.09, 1540.94, 1673.58 
  

  
97.60 % 

 
 

Machine learning quality prediction results 

Table 4 above shows the regressions for the prediction of proximate content of the millet cultivars.  To get the best 
regression results, the data was normalized from 0-1 and trimmed to cut off the endpoints.  Both regressions gave good 
results with high R2 values, specifically for the prediction of ash and carbohydrate content with R2 values above 0.9.  PLS 
had consistently lower error (MSE) than MLR for each quality, giving more reliable results and predictions.  This is because 
PLS reduces the dimensionality of the data to get the best fit line, whereas MLR fits multiple and sums up the error, leading 
to a bigger MSE value.  

 

Table 4. Results of the prediction of quality attributes of millet samples. 

Quality Predictive model R2 MSE 

Ash 
PLS 0.9312 0.0554 

MLR 0.9413 0.2179 

Carbohydrate 
PLS 0.9197 0.2331 

MLR 0.9055 0.5214 

Moisture 
PLS 0.8260 0.0263 

MLR 0.7764 0.1723 

Crude Protein 
PLS 0.7979 0.1193 

MLR 0.7476 0.3810 
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Crude Fat 
PLS 0.8249 0.0596 

MLR 0.8335 0.2348 

 
 

Conclusion 
In this study the potential of using HSI in the NRI spectral range (900–1700 nm) was investigated for the classification 

of ten different proso millet cultivars. Additionally, the prediction of some important physicochemical attributes of proso 
millet, using non-destructive HSI method, was studied. Based on different classification models built from the mean spectra 
of each sample, the best classification performance was obtained from the Gradient tree boosting, and RF classifiers that 
resulted in test classification accuracies of 99.4% and 99.1%, respectively. Moreover, using PLSR for quality prediction of 
proso millet seeds the coefficient of determination (R2) were obtained as 0.87, 0.80, 0.83, 0.93, and 0.92 for moisture content, 
crude protein, crude fat, ash, and carbohydrate, respectively. These results indicate the potential of the HSI in the NIR range 
as a promising tool to evaluate and classify different proso millet cultivars. 
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