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Abstract
Agronomic research provides management recommendations based on small-plot trials (SPTs) and on-farm trials (OFTs) with
very different characteristics. SPTs are traditionally conducted at agricultural experiment stations by research institutes or
universities, while OFTs are conducted under commercial-scale conditions and managed by farmers using their own equipment.
Several researchers claimed that discrepancies could occur between these two types of trials, which can make the extrapolation of
results from SPTs to the farm level difficult. In our study, we conducted an extensive comparison of small-plot and on-farm trials
to analyze the effect of foliar fungicide application on maize and soybean yields. We collected data on maize and soybean from
five US states. Analysis of the soybean data showed similar mean yield responses and within-trial standard deviation to fungicide
application between 479 OFTs and 83 SPTs. For maize, our comparison of 300 OFTs and 114 SPTs showed similar mean yield
response in both. Nevertheless, the within-trial standard deviation was three times smaller in on-farm compared to small-plot
trials. On the other hand, the between-trial standard deviation (measuring the variability of the effects of fungicide application
across different environments) was almost twice as large in SPTs than in OFTs for both crops. Hence, the differences in the
effects of fungicide on yield were similar whether theywere estimated using OFTs or SPTs for both crops. This implies that OFTs
can potentially detect significant yield differences with fewer replicates and thus reduce the cost of data generation.We argue that
SPTs can be seen as a preliminary step before scaling up to OFTs to facilitate technology transfer and extrapolate the results in
real farming conditions.

Keywords Bayesianmultilevel . Crop yield . Foliar fungicide . On-farm trial . Scaling

1 Introduction

Agronomic research commonly produces knowledge of
production-system performance and provides valuable man-
agement recommendations based on field experiments
(Kravchenko et al., 2017). Agronomists carry out different
types of field, and these involve experimental plots with very
different characteristics. For example, small-plot research tri-
als (SPTs), based on experimental plots of 0.005 to 0.01 ha,

are the most widely used to provide management recommen-
dations (Kravchenko et al., 2017). They are traditionally con-
ducted at agricultural experiment stations by research insti-
tutes or universities and are better suited for advanced or com-
plex experimental designs (i.e., randomized complete block or
split-plot). While SPTs might not always represent local or
conventional farming systems and farming practices
(Marchant et al., 2019), they are easier to manage for evalu-
ating several treatments in the same experiment (Kandel et al.,
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2018). By contrast, on-farm research trials (OFTs) are exper-
iments conducted on considerably larger areas (1.9–11 ha, see
Laurent et al., 2019), usually on a commercial farm, and man-
aged by farmers using their own equipment to answer field-
level questions (Robertson et al., 2007). The most common
experimental design for OFT is the replicated strip (several
long strips laid out side-by-side in a field) where a new man-
agement practice, or product, is compared to a standard farmer
practice (Kyveryga et al., 2018; Laurent et al., 2019).
Precision agriculture technologies facilitate more advanced
experimental designs such as randomized complete block de-
signs. OFTs are becoming more widespread due to a growing
interest among farmers and the research community regarding
the usefulness of SPTs to predict on-farm outcomes
(Kyveryga, 2019).

The difference between the two experimental scales is il-
lustrated in Figure 1, where one SPT and one OFT were im-
plemented in the same field located in Iowa. For an OFT, the
width of an individual strip depends on the size of available
equipment and can range from 5 to 20 m. The length of a strip
(considered an experimental unit) depends on the field size.
For example, a typical field in central Iowa, USA, is about 32

ha, approximately 457 m by 701 m (Laurent et al., 2019).
Because of the plot size, localized variability, such as that
caused by soil type, past management or subsurface drainage
pipes, may result in greater yield variability in SPT than OFT.
One advantage of SPT is that inter- and intra-plot variability
tends to be minimized by blocking factors, judicious plot lay-
outs, and location on favorable soils (Kravchenko et al.,
2017). Thus, detecting a treatment effect is arguably easier.
A recent power analysis also showed that more replications
were required in SPTs than OFTs to detect the same overall
treatment differences (Kandel et al. 2018). Crop yields can be
highly variable across a field as a result of the interaction
between topography (e.g., terrain slope), soil properties (e.g.,
soil fertility and moisture), weather conditions, and manage-
ment practices (Kravchenko and Bullock, 2000; Kravchenko
et al., 2005; Terra et al., 2006). However, OFTs represent a
more relevant commercial scale regarding farming systems,
farming skills, soil properties, topography, and hydrological
conditions (Kravchenko et al., 2005, 2017; Terra et al., 2006;
Marchant et al., 2019). Nevertheless, farmers may face logis-
tical constraints (e.g., equipment problems), experience yield
losses due to poor management, or be forced to follow

Fig. 1 Small-plot trial
(randomized complete block
design) and on-farm trial
(replicated strip trial design) in the
same field with nitrogen fertilizer
rate treatments. The dark angled
lines indicate the location of
drainage tiles, and the yellow
lines indicate soil map units. The
dark vertical strips are side-
dressed applications of nitrogen.
Source: Kyveryga et al. (2018).
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suboptimal management practices, resulting in increased yield
variability. Overall, this can reduce statistical power and make
the treatment effect more difficult to detect.

Even though OFTs can be used to validate SPTs at a larger
field-scale (Licht and Witt, 2019), several authors have men-
tioned discrepancies between these two types of trials
(Table 1), especially regarding crop yield. Therefore, extrap-
olating the results from SPTs to a larger scale can be challeng-
ing or misleading. Thus, there is a need to better understand
the effect of experimental scale on data, results, and
conclusions. In their study, Tedford et al. (2017) analyzed
the yield benefits from foliar fungicides on maize at different
scales. They reported a yield difference between fungicide
application and untreated control equal to 1132 kg/ha at the
field-scale (8.1 ha) while at the small-plot scale (14 to 45 m2),

the yield difference was equal to 378 kg/ha. They suggested
that yields are higher near the alley and edge of the plots, than
towards the center of the plot because plants experience less
competition and have better light interception. In contrast,
Vincelli and Lee (2015) demonstrated that open alleys did
not impact the effect of foliar fungicide on maize yields in
field trials (Table 1). Schmer et al. (2008) compared inputs
to bioenergy crop OFTs (6.7 ha on average) with those to
SPTs (<5m2). They found that agricultural energy inputs
(i.e., fertilizer, herbicide, seed, diesel, and other) were lower
at the field scale than thought from previous studies based on
SPTs. Moreover, switchgrass from OFTs (managed for bio-
mass yield with moderate levels of N fertilizer) produced
471% more ethanol per hectare than low agricultural input
switchgrass on SPTs. Conversely, Kandel et al. (2018)

Table 1 Main differences between small plot and on-farm trials.

Characteristic Small plot trial (SPT) On-farm trial (OFT)

Plot size - From 0.005 to 0.01 ha (Kravchenko et al., 2017) - From 1.9 to 11 ha depending on the size of application
equipment (Laurent et al., 2019)

Experimental
design

- Usually randomized completely block design with
multiple treatments tested simultaneously

- Split-plot design is also frequently used
- Implemented by agricultural scientists in agricultural

experimental stations located in research institutes
or universities

- Variability is minimized by blocking, contiguous
designs, judicious plot layouts and location on
favorable soil (Kravchenko et al., 2017)

- Treatments are randomized within blocks
- Monitor and control pest
- Management practices are consistent across the trial

and the treatment is the only management factor
to change

- Replicated strip trial design with two treatments (the new
management practice and the control) is the most popular
and practical design

- Randomized complete block design or paired comparison
are two design sometimes used (Varner, 2009)

- Implemented by farmers with their own equipment
- Variability in soil properties is not minimized

(Kyveryga et al., 2018)
- Replicated strip design usually presents a lack of

randomization (Laurent et al., 2019). Thus, bias from
unknown factors that could affect yield is not minimized

- Rarely monitored or scouted for pest control
-Management practices are consistent across the trial

and the treatment is the only management factor to change

Harvest - Small-plot combine - Farmers measure yield with mass flow sensors and GPS
technology. For many years, farmers used weigh wagons
(Nelson et al., 2015)

Soil - Greater noise (yield variability) in SPT could be
explained by larger soil variation (Kandel et al., 2018)

- SPTs are usually located on favorable soils
(Kravchenko et al., 2017)

- Soil and topographic diversity leads to spatial variability
in plant growth and diminishes effects on crop yield
(Kravchenko et al., 2005)

Alleys and
edges

- Yield of plants near alley are higher than plants towards
the center of the plot (less competition and/or better
light interception) (Tedford et al., 2017). Thus,
fungicides have limited benefit.

- Edge and alley effects may influence yields
(Kleczewski, 2017). Plants on the edges of plots
experience a slightly different environment
than those inside the plot.

- With fungicide treatment, alleys and edge effect
do not influence yield (Vincelli and Lee, 2015)

- Within OFT, yield of plants are lower within strips (more
competition for light and nutrients), therefore yield
improvement is more likely with products that can
mitigate plant stresses like fungicides (Tedford et al., 2017)

- Edge effect relative to the overall treatment area is small
(Kleczewski, 2017)

Weed control - Mechanical weed control can generally be conducted
at optimal times (Kravchenko et al., 2017)

- SPT can, sometimes, represent an artificial system
(hand-seeded, hand-weeded, and irrigated during
establishment) (Schmer et al., 2008)

- Weed control practices are representative of the local farming
system and technologies (Marchant et al., 2019)
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reported similar yield responses between SPTs and OFTs to
foliar fungicide applications on soybean over a control to
which no fungicide was applied. On average, yield responses
were identical, while the within-trial variance was smaller in
OFTs than in SPTs. Kravchenko et al. (2017) showed that
small-plot scale yields well-matched field-scale yields for con-
ventional management systems but not for alternative systems
(reduced-input and organic). Alternative farming systems de-
pendmore on timely management interventions, such as weed
control, which is the greatest management challenge for
farmers at the field-scale. In contrast, mechanical weed control
can generally be conducted at an optimal time at a small-plot
scale.

Field surveys can be used to understand to which extent
results from SPTs can translate to those in producers fields.
Andrade et al. (2019) compared the yield difference between
narrow (38 cm) row and wide (76 cm) row spacing on soy-
bean yield using field survey data and SPTs data in different
US soybean regions. They reported consistent yield differ-
ences in producer fields and small plots within the Central
US region, but not for the North US region. Beyond small-
plot trials and on-farm trials, Andrade et al. (2019) suggested
analyzing data collected from producer field surveys to better
understand the discrepancy between experimental scales.

In our study, we quantify the impact of experimental
scale on the effect of foliar fungicide application on crop
yield and investigate potential causes for discrepancies.
Foliar fungicide application has been widely reported in
the literature, and a substantial amount of data have been
generated to allow us to test the discrepancies between the
two experimental scales. To do so, we collected data from
published reports (in which data were averaged across rep-
lications) and raw data from SPTs and OFTs looking at the
foliar fungicides’ effect on yield. Data were collected from
five states across the USA on maize and soybean, including
53 active ingredients (alone and in combination) present in
commercial foliar fungicides. Thus, our results should cov-
er broader conditions than the ones already published.
Understanding the causes of yield gaps between SPT and
OFT is crucial to better inform on-farm decision-making
and interpret results at appropriate spatial scales.

2 Materials and methods

2.1 Data description

The data were extracted from foliar fungicide reports pub-
lished in Fungicide and Nematicide Tests (F&N Tests) and
Plant Disease Management Reports (PDMR), Iowa State
Research Farm Progress Reports, Nebraska On-Farm
Research Network (OFRN), Iowa Soybean Association
OFRN, Ohio OFRN, South Dakota OFRN, Pennsylvania

OFRN, and peer-reviewed papers. The keywords maize,
soybean, and foliar fungicide were used to find the published
reports or peer-reviewed articles. More information about the
search strategy can be found in supplemental materials
(Supplemental Section 1).

We considered a trial as a unique combination of year and
location. Published reports and raw data were collected from
978 trials conducted from 1999 to 2019, and 6280 observa-
tions met our criteria for inclusion in the data set. Data were
shared as raw data (i.e., they had not been processed) or aver-
aged across repetitions (in the case of published reports from
F&N Tests, PDMR, and Iowa State Research Farm Progress
Reports). One observation represented data from a pair of
treatments: fungicide applied and control (no fungicide ap-
plied). Most of the time, a published report included a single
trial from one location. In some cases, published reports in-
cluded data from nearby locations or at the same research
station but testing, for example, different hybrids. In that case,
we considered each experiment as a separate trial. To be se-
lected, the experimental design must have included a mini-
mum of two replicates, an untreated control, and a treatment(s)
defined as the application of a single foliar fungicide on maize
or soybean, which were the crops of interest. Studies must
have reported the grain yield (raw data or summaries in weight
or volume per unit area) for the untreated control and the
treatment(s). Treatment with seed-applied fungicide and com-
binations of different foliar fungicides products were not in-
cluded in the data set. Other variables were included in the
data set if available (e.g., hybrid, plot length, plot width, rate
of application, and application timing; see Supplementary
Table S1 for more information) but were not considered for
inclusion in the analysis because they were not systematically
reported.

Most OFTs (90%) were conducted using a replicated strip
design. The majority of SPT was conducted using completely
randomized designs (93%). The number of replicate blocks
ranged from 2 to 20 for the OFTs and 3 to 8 for the SPTs
(Table 2). Themedian number of replicates was 4 or 5 for both
OFTs and SPTs (Figure 2). For the OFTs, the experimental
units were 76 to 762 m long by 3 to 36 m wide, while for the
SPTs, the experimental units were 1.8 to 35 m long by 1.2 to
12 m wide (Table 2). In most cases, a nonionic surfactant was
used with the foliar fungicide application. Data were collected
from 1999 to 2019 from 5 states (Iowa, Nebraska,
Pennsylvania, South Dakota, and Ohio). For maize, 31%,
26%, and 12% of the trials included pyraclostrobin,
prothioconazole + trifloxystrobin, and azoxystrobin +
propiconazole as a treatment, respectively. For soybean,
32%, 16%, and 11% of the trials included pyraclostrobin,
prothioconazole + trifloxystrobin, and pyraclostrobin +
fluxapyroxad as a treatment, respectively. Active ingredients
present in the foliar fungicides used in the trials belonged to
three Fungicide Resistance Action Committee (FRAC) code
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groups (FRAC, 2020); FRAC Code 3, demethylation inhibi-
tors (DMI), FRAC Code 7, succinate-dehydrogenase inhibi-
tors (SDHI), and FRAC Code 11, the quinone outside inhib-
itors (QoI). Most commercial fungicide products contain ac-
tive ingredients from at least two FRAC Code groups. Thus,
fungicide treatments were grouped according to the FRAC

groups to that their active ingredient(s) belonged to. For prod-
ucts that contained active ingredients belonging to more than
one FRAC group, groups were separated by an underscore
(e.g., QoI_DMI). A larger proportion of fungicides with at
least two FRAC groups were compared in SPT than OFTs
(Table 2).

Table 2 Description of the two experimental scales, small-plot trial and on-farm trial, available in our dataset.

Variables On-farm trials Small-plot trials

Number of trials for maize 300 114

Number of trials for soybean 481 83

Range plot length (m) 76 to 762 1.8 to 35

Range plot width (m) 3 to 36 1.2 to 12

Mean number of replicate (min-max) 5 (2-20) 5 (3-8)

Number of trials in IA 640 64

Number of trials in NE 24 55

Number of trials in OH 55 62

Number of trials in PA 18 3

Number of trials in SD 44 13

Number of maize trials with a fungicide product belonging to one FRAC Code Group 297 15

Number of soybean trials with a fungicide product belonging to one FRAC Code Group 465 39

Number of maize trials with a fungicide product belonging to at least two FRAC Code Group 3 99

Number of soybean trials with a fungicide product belonging to at least two FRAC Code Group 16 44
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Fig. 2 Boxplots of the number of replicates for maize (a) and soybean (b) for the different experimental scales. On-farm trials (OFTs) are represented in
blue and small plot trials (SPTs) in yellow. One dot represents the number of replicates for one combination trial and treatment.
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2.2 Data analysis

Mean log yield ratio (yield with fungicide treatment over yield
in untreated control) was calculated for each trial by averaging
raw data when available or from aggregated data otherwise
(i.e., yield data averaged over all repetitions reported in pub-
lished reports). Log yield ratio was used instead of yield ratio
to obtain a more symmetrical distribution and facilitate the
statistical analysis. When several foliar fungicide product
treatments per trial were available, one mean log yield ratio
was calculated for each fungicide product.

For the statistical analysis, the mean log yield ratio was
used as the effect size. The model was:

log Rijk
� � ¼ μOFT þ δSPTX i þ αij þ εijk

αij∼N 0;σ2
αi

� �

εijk∼N 0;σ2
εi

� � ð1Þ

where log(Rijk) represents the natural log of the jth trial of
category i (i=SPT or i=OFT) for the kth yield ratio.

μOFT represents the mean value of the log ratio for the OFT
category.

δSPT represents the mean effect of the SPT category on the
log ratio compared to OFT.

Xi is a dummy variable equal to 1 if Rijk belongs to the
SPT category; zero if Rijk belongs to the OFT
category.

αij represents the random effect of the jth trial for the ith
category of trials.

εijk represents the residual error.
αij is assumed to follow independent Gaussian

distributions with mean zero and unequal between-
trial variance σ2

αi for the i=SPT and i=OFT categories.
εijk is assumed to follow independent Gaussian

distributions with zero mean and unequal within-trial
variance σ2

εi for the i=SPT and i=OFT categories.

Model (1) includes five parameters, δSPT, μOFT, σ2
αi and σ

2
εi.

The variance σ2
αi and σ2

εi quantifies the between- and within-
trial variabilities, respectively. Separate variances are consid-
ered for OFT and SPT.

To take categorical variables (i.e., fungicide Group Name)
into account, we use the following statistical model:

log Rijk
� � ¼ μOFT þ δSPTX i þ ∑G

g¼2 βg þ θSPTgX i
� �

Z gð Þ
ijk

þ αij þ εijk ð2Þ

The model (2) remains the same as (1) except for βg repre-
senting the parameter for the gth fungicide Group Name, θSPTg
representing the interaction between the fungicide Group

Name and the SPT category, and the Z gð Þ
ijk representing a bina-

ry variable equal to 1 if Rijk belongs to the gth fungicide Group

Name; zero otherwise. G represents the total number of dis-
tinct fungicide Group Name in our analysis.

Models (1) and (2) were fitted using a Bayesian approach
with the R package brms (Bürkner, 2017). The priors for log
(σαi) were defined as a truncated Student’s t distribution with
10 degrees of freedom, a mean of zero and a scale parameter
of 0.1. The prior for log (σεOFT) was defined as a truncated
Student’s t distribution with 10 degrees of freedom, a mean of
−4.4, and a scale parameter of 0.1. The prior for log (σεSPT)
was defined as a truncated Student’s t distribution with 5 de-
grees of freedom, a mean of −3.2, and a scale parameter of 0.5.
These priors were based on Laurent et al. (2019). Priors for
μSPT and μOFT were defined as a normal distribution centered
on zero with a variance of 0.2.

With a variance of 0.2, the log ratio can take either a high
positive or a low negative value. Posterior distributions for
βg and θSPTg were computed using the No-U-Turn Samplers
(Hoffmann and Gelman, 2014) as implemented in the Stan
software (Stan Development Team, 2018). The conver-
gence of the MCMC chains was checked by running three
independent chains for 3,000 iterations and the metric Rhat,
which compares the between- and within-chain estimates
for model parameters, were between 1 and 1.02, indicating
convergence. Three variants of the model (1) were fitted
and evaluated using the Widely Applicable Information
Criterion (WAIC) values. The WAIC is a more general
criterion than Akaike Information Criteria (Watanabe,
2013) and is appropriate for Bayesian models. Indeed, a
first candidate model included equal between and within-
trial variances, a second candidate model included unequal
within-trial variance only, and the third candidate model
considered unequal between-trial variances only for the
plot-scale factor. Model (1) and the model with unequal
within-trial variance only performed better, but considering
the unbalanced structure of the data, we selected model (1).
We considered other models, but they resulted in higher
WAIC values, so we did not select them. We performed a
Pareto-Smoothed Importance Sampling cross-validation
(PSIS) (Vehtari et al., 2017; McElreath, 2020) to detect
highly influential observations on the WAIC. Two yield
observations for both maize and soybean had high values
of k, the Pareto shape parameter, which indicates potential-
ly influential observations, and were discarded from the
data set. These four observations were each from Ohio
OFRN, South Dakota OFRN, Iowa State Research Farm
Progress Reports, and Plant Disease Management Reports.

The four moments for the log ratio of maize and soybean
and for each experimental scale were computed using the R
package moments (Komsta and Novomestky, 2015).

We also computed 95% prediction intervals describing a
plausible range of values of yield ratio for a new OFT and
SPT, similar to those included in our database assuming sim-
ilar conditions (Higgins et al., 2009; IntHout et al., 2016).
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3 Results

3.1 Descriptive analysis

For maize, the mean yield ratio for the two experimental
scales was similar (1.018 and 1.020 for OFT and SPT,
respectively) while the variance was three times higher
for SPT compared to OFT (Table 3). The shapes of data
distribution were relatively symmetrical for OFT and SPT
(Table 3 and Figure 3.A), and the kurtosis was 5.6 and
10.6 for OFT and SPT, respectively. The distribution had
a high and sharp peak. The peak was higher for OFT than
for SPT (Figure 3.A). Distributions of the data were fairly
symmetrical for SPT and slightly skewed to the left for
OFT (Figure 3.B). The kurtosis was 7.2 and 3.9 for OFT
and SPT, respectively, so the distribution was Leptokurtic
(peak is high and sharp) for OFT and Mesokurtic (similar
to a normal distribution) for SPT.

Across all FRAC Groups, the median log-ratio was pos-
itive for SPT and OFT (Figure 4), indicating that fungicide
application increased yield across all groups. For the
maize in OFTs, the DMI and QoI were not represented,
and QoI_DMI_SDHI was poorly represented. For maize,
QoI_DMI and SDHI, the median log-ratio for maize were
similar, but the data were more dispersed for SPT. Across
all the fungicide Group Names, maize mean yield ratios
were less dispersed around the median for OFTs than
SPTs while soybean mean yield ratios were as dispersed
for OFTs as for SPTs. For soybean, OFTs and SPTs were
represented across all FRAC Groups but with less data for
QoI_DMI_SDHI.

A large proportion of the soybean data came from OFTs
conducted in Iowa and SPTs from Iowa and Ohio (Figure 5,
Table 2). For maize, most of the data came fromOFTs in Iowa
and SPTs trials from Iowa and Nebraska. In Iowa, the quantile
ranges for OFTs were shorter than SPTs for maize and soy-
bean. For soybean, most of the data came from Iowa and Ohio
for both experimental scales.

Other boxplots comparing foliar fungicide application
timings and year of harvest are available (Supplemental
Material, Figures S1-2), along with the relationship be-
tween the yield difference and yield of the control in maize
and soybean for both experimental scales (Supplemental
Material, Figure S3).

3.2 Results obtained with the Bayesian approach

The between-trial standard deviation was almost twice as
large for SPT than for OFT for both maize and soybean
(Table 4). For soybean, the within-trial standard deviation
was similar between OFT and SPT, but for maize, the
within-trial standard deviation was thrice larger for SPT than
OFT (Table 4). For model (2), the within and the between-trial
standard deviation was thrice and twice as large for SPT than
for OFT, respectively, for maize (Table 5). For model (2), the
between-trial standard deviation was as twice as large for SPT
than for OFT, for soybean. The credibility intervals for the
population estimates were similar between the two experi-
mental scales and for both crops (Table 5).

For maize and soybean, the range of plausible yield ratios
was larger for a new SPT than for a new OFT (Figure 6).
Indeed, the 95% prediction interval for a new SPT was 1.6
and 1.5 times larger than the 95% prediction for a new OFT,
for maize and soybean, respectively, and this is a result of the
additional uncertainty considered for trials in new situations.

Regardless of the foliar fungicide FRAC Group, the 95%
prediction intervals were always larger for a new SPT than a
new OFT (Figure 7) for maize and soybean as the between-
trial variance is larger for SPT than OFT. Only the FRAC
Groups having at least 20 trials in both experimental scales
were included in the analysis. In the maize trials, only the
SDHI and QoI_DMI fungicide Group Names were included
in the analysis (Figure 7.A), while for soybean, five fungicide
Group Names were included (Figure 7.B).

4 Discussion

Management recommendations are often made using data
from SPTs that may not be representative of commercial
fields. In the present study, we assessed the impact of exper-
imental scale (i.e., OFTs vs SPTs) on the effect of foliar fun-
gicide applications on maize and soybean yields compared to
an untreated (no fungicide) control. We compared 300 OFTs
and 114 SPTs for maize and found similar mean yield re-
sponses between experimental scales; however, the within-
trial standard deviation for OFT was three times smaller than
the standard deviation for SPT. It is important to mention that
in our dataset, 99% of the OFTs on maize included fungicides

Table 3 Description of the four
moments (mean, variance,
skewness, and kurtosis) for the log
yield ratio of maize and soybean for
on-farm trial (OFT) and small-plot
trial (SPT). Moments for the yield
ratio are indicated in parentheses.

Crop Experimental scale Mean Variance Skewness Kurtosis

Maize OFT 0.017 (1.018) 0.001 0.66 (0.83) 5.6 (5.8)

SPT 0.019 (1.020) 0.003 −0.008 (0.73) 10.6 (11.2)

Soybean OFT 0.036 (1.038) 0.003 −0.47 (−0.05) 7.2 (6.2)

SPT 0.027 (1.029) 0.003 0.18 (0.44) 3.9 (4.2)
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Fig. 3 The mean log yield ratio distribution for maize (a) and soybean (b). On-farm trials are represented in blue and small plot trials in yellow. One
count represents one replicate from the raw data or the mean yield difference from the report summaries.

n = 54 n = 105 n = 149 n = 481 n = 2 n = 22 n = 152 n = 231

−0.2

0.0

0.2

0.4

DMI QoI QoI_DMI QoI_DMI_SDHI SDHI

Y
i
e
l
d
 
l
o
g
 
r
a
t
i
o
 
o
f
 
m
a
i
z
e

A

n = 25 n = 121 n = 61 n = 57 n = 216 n = 147 n = 9 n = 2 n = 294 n = 108

−0.25

0.00

0.25

DMI QoI QoI_DMI QoI_DMI_SDHI SDHI

Fungicide Group Names

Y
i
e
l
d
 
l
o
g
 
r
a
t
i
o
 
o
f
 
s
o
y
b
e
a
n

on−farm trial small−plot trial

B

Fig. 4 Boxplots of the mean yield log ratio of maize (a) and soybean (b)
to which fungicide products containing specific FRAC Code Groups
were applied. On-farm trials are represented in blue, and small plot

trials are in yellow. One dot represents the mean yield difference for
one trial. A vertical line represents a 95% confidence interval. The
numbers of trials are displayed at the top of each figure (n).
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containing active ingredients belonging to only one fungicide
FRAC Group (Table 2), which can explain the smaller credi-
ble interval in OFTs. Similarly, our comparison of 479 OFTs
and 83 SPTs for soybean showed no statistical difference be-
tween mean yield responses, and, unlike the maize data, we
found no statistical difference between within-trial standard
deviations. We also examined yield responses among
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Fig. 5 Boxplots of the mean yield log ratio of maize (a) and soybean (b)
by fungicide application for each state. On-farm trials are represented in
blue, and small plot trials are in yellow. One dot represents the mean yield

difference for one combination of trial and foliar fungicide. A vertical line
represents a 95% confidence interval. The number of combinations is
displayed at the top of each figure.

Table 4 Parameter estimates of response ratios and 95% credible
intervals (in brackets) for model (1) for soybean and maize. μ are
population estimates (means) and σ are standard deviations. OFT stands
for on-farm trial and SPT for small-plot trial. For SPT, the mean values
were estimated as μSPT = μOFT + δSPT.

Parameter Soybean Maize

μSPT 1.028 [1.017; 1.039] 1.0191 [1.011; 1.026]

μOFT 1.037 [1.032; 1.041] 1.0171 [1.014; 1.021]

σα SPT 0.039 [0.031; 0.048] 0.0393 [0.034; 0.046]

σα OFT 0.023 [0.016; 0.032] 0.0242 [0.022; 0.027]

σε SPT 0.046 [0.043; 0.049] 0.034 [0.033; 0.036]

σε OFT 0.0436 [0.0394; 0.0481] 0.012 [0.010; 0.015]

Table 5 Parameter estimates of response ratios and 95% credible intervals
(in brackets) for model (2) for soybean and maize. μ are population estimates
(means) and σ are standard deviations. For maize, some parameters could not
be estimated because the corresponding foliar fungicide Group Names were
not represented in the database (referred as “not applicable”). OFT = on-farm
trial; SPT = small-plot trial; QoI = quinone outside inhibitors; DMI =
demethylation inhibitors; SDHI = succinate-dehydrogenase inhibitors. For
SPT, the mean values were estimated as μSPT = μOFT + δSPT.

Parameter Soybean Maize

μSPT 1.015 [1.007; 1.027] 1.019 [1.011; 1.026]

μOFT 1.023 [1.004; 1.043] 1.011[1.006; 1.015]

σα SPT 0.039 [0.030; 0.049] 0.039 [0.030; 0.042]

σα OFT 0.022 [0.016; 0.031] 0.023 [0.02; 0.026]

βQoI 1.014 [1.011; 1.036] not applicable

βQoI_DMI 1.009 [0.991; 1.029] not applicable

βSDHI 1.017 [0.997; 1.036] 1.012 [1.006; 1.018]

θSPT QoI 0.990 [0.963; 1.018] not applicable

θSPT QoI_DMI 1.005 [0.980; 1.028] not applicable

θSPT SDHI 1.007 [0.983; 1.030] 0.989 [0.981, 1.997]

σε SPT 0.043 [0.040; 0.046] 0.030 [0.028; 0.033]

σε OFT 0.043 [0.039; 0.047] 0.011 [0.010; 0.015]
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fungicide FRAC Groups in both maize and soybean SPT and
OFT and detected no differences.

We found similar credible intervals of the mean effect size
(i.e., mean yield ratio) for both experimental scales, which was

interesting since we expected a narrower confidence interval
for the SPTs. Indeed, experimental designs for SPTs are more
complex to minimize variability by blocking, contiguous de-
signs, and judicious plot layouts and location. The prediction
interval, which represents the uncertainty around the mean
yield ratio for a new environment, is relevant when the
between-trial variability is large (Laurent et al., 2020b). The
between-trial variance was higher for SPTs than OFTs, which
suggests a larger diversity of environmental conditions and
practices tested for SPTs than OFTs; thus, the prediction
interval is larger for SPT than OFT. Our results are in
accordance with the study of Laurent et al. (2020b) as they
also reported a small between-trial variability for OFTs that
were part of an on-farm research network.

Our results are consistent with Kandel et al. (2018), who
compared the effect of foliar fungicides on soybean yield in
230 OFTs and 49 SPTs established in Iowa from 2008 to 2015
and found similar soybean yield responses between the two ex-
perimental scales. However, when analyzing a subset of 12
OFTs and 12 SPTs, Kandel et al. (2018) reported that the residual
variance in OFTs was smaller than SPT, while our residual stan-
dard deviations in OFTs and SPTs for soybean were similar
(Table 4). Kandel et al. (2018) used power analysis to demon-
strate that SPTs need more treatment replicates than OFTs to
detect the same overall treatment difference. They suggested that
larger soil variability or increased combine operator error resulted
in greater noise in SPTs. However, it is not always possible to
increase the number of replicates in SPT because of limitations in
land, economic, technical, and/or labor resources. A larger

soybean

maize
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Fig. 6 95% prediction intervals of yield ratios for a new small-plot trial
(in yellow) and a new on-farm trial (in blue) for response of maize and
soybean to a foliar fungicide application. Computations were done using
model 1.

SDHI

QoI_DMI

0.95 1.00 1.05

95% prediction interval for a new trial

F
o
l
i
a
r
 
f
u
n
g
i
c
i
d
e
 
g
r
o
u
p
 
n
a
m
e

A

SDHI

QoI_DMI

QoI

DMI

0.95 1.00 1.05 1.10

95% prediction interval for a new trial

F
o
l
i
a
r
 
f
u
n
g
i
c
i
d
e
 
g
r
o
u
p
 
n
a
m
e

B

on−farm trial small−plot trial

Fig. 7 95% prediction intervals per fungicide FRAC Group for a new
small-plot trial (in yellow) and a new on-farm trial (in blue) for maize (on
the left) and soybean (on the right). Computations were done using model

2. QoI, quinone outside inhibitors; DMI, demethylation inhibitors; SDHI,
succinate-dehydrogenase inhibitors.
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within-trial variability of yield response in SPTs could also be
explained by a larger impact of the spatial heterogeneity in yield
among plots. Work by Knörzer et al. (2013) supports this hy-
pothesis as they showed that biomass yield has a high variance
when the sampling area is small.

In our study, a major difference between SPTs and OFTs
was the number of foliar fungicide FRAC Group treatments
included in the experimental design. An SPT often included
several fungicide products that contained a mix of active
ingredients that belonged to different FRAC Groups, while
in the majority of OFTs, a single fungicide with an active
ingredient belonging to a single FRAC Group was compared
with an untreated control. Thus, the estimated uncertainty
around the mean yield could also be explained by the
variation between foliar fungicide treatments. Tedford et al.
(2017) reported a greater yield response of foliar fungicides on
maize in OFTs than SPTs, which contradicts our findings.
Indeed, the mean yield responses in SPTs and OFTs in our
study were similar, but the uncertainty around the mean yield
ratio for OFTs was smaller. Tedford et al. (2017) suggested
that the edge effect was primarily responsible for the differ-
ences detected among SPT and OFT because more plants in
SPTs bordered alleyways with no plants and thus had less
competition for water and nutrients and/or better light inter-
ception. Similarly, SPTs with alleyways could be prone to
drift during foliar fungicide application, which could increase
variability especially at the plot edges.

We found no difference in yield among foliar fungicide
FRAC Groups. In contrast, Paul et al. (2011) reported a great-
er yield response when fungicides belonging to the DMI_QoI
fungicide Group Name were applied to maize.

OFTs and SPTs do not share the same purposes, and nei-
ther should be discounted. SPTs are more appropriate for ad-
vanced or complex experimental designs (e.g., randomized
complete block, split-plot) and enable multiple treatments
with or without different levels to be tested simultaneously.
Nevertheless, farmers can easily set up more advanced exper-
imental designs with the support of GPS technology and pre-
cision agriculture, such as variable rate technologies (USDA
National Agricultural Statistics Service, 2021),. In addition,
SPTs are suitable for testing the introduction of innovative
management practices, identifying the best treatments, and
increasing agronomic knowledge before an on-farm evalua-
tion to see if the results hold true. OFTs are useful for com-
paring a newmanagement practice to a standard practice using
a replicated strip design (Laurent et al., 2019), they can be
executed under commercial conditions and use farmers’
equipment. Thus, farmers tend to place more trust in OFTs
results than SPTs results (Thompson et al., 2019), and thus
OFTs may facilitate the adoption of new management prac-
tices. OFTs also allow in-depth investigation across a wider
variety of soils and landscape positions, which is usually lim-
ited when only research stations are used. Indeed, it is usual

for OFTs to collect spatial yield data across soils and land-
scapes to allow the assessment of site-specific responses.
OFTs can answer specific field-level questions such as nutri-
ent management, environmental issues (Schnepf and Cox,
2007), impact of rainfall on response to fungicide (Kyveryga
et al., 2013), and investigate runoff and soil erosion (Kuhn
et al., 2014). Regarding financial and land resource con-
straints, OFTs represent a more feasible option than SPTs,
usually conducted at experimental research stations where
land is usually limited or not representative of the surrounding
area (Thompson et al., 2019).

Although our study compares yield response in OFTs and
SPTs, it is essential to consider crop price and fungicide cost to
inform better decision-making. A yield benefit is not always
enough to offset the fungicide cost in case of the absence of
disease (i.e., assumed here by a high yield at the control).
Kandel et al. (2016) suggested that although fungicides can in-
crease soybean yield in the apparent absence of disease, only
14% of the trials were economically profitable. A web-applica-
tion, called ISOFAST, synthetizing data from replicated on-farm
trials, provides break-even economic analysis of foliar fungicides
on maize and soybean (Laurent et al., 2019, 2020a). Of the 19
foliar fungicide products evaluated, only six had a >50% proba-
bility of exceeding the break-even cost (considering grain market
price and application cost averaged over the last 10 years). It
suggests the need for reporting an economic analysis in addition
to yield performance to better inform decision-making.

Some limitations of our study should be highlighted. While
our goal was to compare OFTs and SPTs across different states,
including different pedoclimatic conditions, this resulted in an
unbalanced dataset. For example, OFTs for maize mostly came
from Iowa, and some from Nebraska, which may explain the
smaller uncertainty around the mean yield as most of the trials
are from the same farming area. For soybean, data were also
unbalanced as 82% of the trials were OFTs. A future investiga-
tion could consider accounting for covariables, such as fungicide
application timing and maize hybrid, to examine their effects on
yield response (Kyveryga et al., 2013; Laurent et al., 2020a).
Wise et al., (2019) have shown that yield response to a fungicide
is affected by the growth stage of the crop at the time of appli-
cation. Unfortunately, these variables are not systematically in-
formed in our dataset, which does not allow their inclusion in a
statistical model. We suggest that systematically reporting vari-
ables such as crop stage at the time of application, application
rate, and disease pressure will help further understand the effect
of foliar fungicide application on crop yield.

5 Conclusion

In this paper, we compared the effect of foliar fungicide onmaize
and soybean yield using two types of experiments (SPT vs OFT)
to better inform on-farm decision-making. SPT and OFT data
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were analyzed together, which provides a better understanding of
the overall effectiveness of foliar fungicides. Formaize, we found
similar mean yield responses with both types of experiments, but
the within-trial standard deviation estimated from the OFTs was
thrice smaller than the value estimated from the SPTs. For soy-
bean, no meaningful difference between mean yield responses
and between standard deviations was found in OFTs and SPTs.
The approach followed here can be used for other management
practices to understand how data from SPTs support (or not)
those from OFTs.

Our results, and previous published studies, show that OFTs
are sometimes characterized by lowerwithin-trial variability than
that obtained in SPTs. This indicates that OFTs can potentially
detect significant yield differences with fewer replicates (Kandel
et al., 2018) and thus reduce the cost of data generation (Bullock
et al., 2020). Another advantage of OFTs is that they involve
farmers more directly than SPTs and thus contribute to helping
farmers change their farming practices in their own fields
(Thompson et al., 2019). On the other hand, SPTs appear to be
more suitable for collecting measurements requiring technical
expertise and higher labor requirements to understand physical
and biological processes. SPTs can be seen as a preliminary step
before scaling up to OFTs to facilitate technology transfer and
extrapolate the results in real farming conditions. However, to
make OFTs a real pillar of agronomic research, specific technol-
ogies should be developed and widely implemented to support
farmers’ ability to collect data themselves.
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