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Simple Summary: A highly desirable approach to diagnose a human disease quickly and easily
is to identify a chemical, protein, or antibody in a biofluid like blood or urine that is uniquely
associated with the disease state and can serve as a diagnostic biomarker. Metabolomics is the study
of the set of metabolites or small molecular-weight compounds found in cells, tissues, organs, and
organisms. Thus, metabolomics is being widely applied to a variety of human diseases including
various cancers to identify potential metabolite biomarkers for disease diagnosis and personalized
medicine. Pancreatic ductal adenocarcinoma (PDAC) is the third-leading cause of cancer-related
death and has the lowest five-year survival rate primarily due to the lack of an early diagnosis. A
total of 24 metabolomics studies have been reported in the scientific literature that aimed to identify
diagnostic biomarkers for PDAC. We analyzed the outcomes from these 24 studies in detail and
observed a high level of inconsistencies in the identified metabolites that we attributed to a variety of
experimental factors. Despite this negative outcome, we did identify a set of 10 metabolites that were
consistently detected by several clinical studies and have the potential to serve as PDAC biomarkers
and warrant further investigation.

Abstract: Clinical metabolomics is a rapidly expanding field focused on identifying molecular
biomarkers to aid in the efficient diagnosis and treatment of human diseases. Variations in study
design, metabolomics methodologies, and investigator protocols raise serious concerns about the
accuracy and reproducibility of these potential biomarkers. The explosive growth of the field has
led to the recent availability of numerous replicate clinical studies, which permits an evaluation of
the consistency of biomarkers identified across multiple metabolomics projects. Pancreatic ductal
adenocarcinoma (PDAC) is the third-leading cause of cancer-related death and has the lowest
five-year survival rate primarily due to the lack of an early diagnosis and the limited treatment
options. Accordingly, PDAC has been a popular target of clinical metabolomics studies. We compiled
24 PDAC metabolomics studies from the scientific literature for a detailed meta-analysis. A consistent
identification across these multiple studies allowed for the validation of potential clinical biomarkers
of PDAC while also highlighting variations in study protocols that may explain poor reproducibility.
Our meta-analysis identified 10 metabolites that may serve as PDAC biomarkers and warrant
further investigation. However, 87% of the 655 metabolites identified as potential biomarkers were
identified in single studies. Differences in cohort size and demographics, p-value choice, fold-change
significance, sample type, handling and storage, data collection, and analysis were all factors that
likely contributed to this apparently large false positive rate. Our meta-analysis demonstrated the
need for consistent experimental design and normalized practices to accurately leverage clinical
metabolomics data for reliable and reproducible biomarker discovery.

Keywords: meta-analysis; pancreatic cancer biomarkers; clinical metabolomics; NMR; mass
spectrometry
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1. Introduction

Molecular biomarkers significantly improve the efficiency and quality of healthcare [1].
They are routinely used for disease detection and prevention, to assess an individual’s risk
to acquire or develop a disease, and for monitoring disease progression and a response to
treatment [1]. Molecular biomarkers have been used for decades and consist of proteins,
genes, and molecules that also includes metabolites [2]. Some classical metabolic biomark-
ers correspond to glucose (for diabetes) [3], creatinine (for metabolic disorders) [4], and
cholesterol and triglyceride (for cardiovascular diseases) [5]. The utility of these and other
biomarkers is predicated on the principle that the metabolite is uniquely and reproducibly
associated with the disease state. An inherent challenge in biomarker discovery is achiev-
ing a true statistically significant correlation between the metabolite and the disease. This
relationship needs to be maintained across multiple distinct cohorts and be observable
regardless of confounding factors (e.g., age, sex, ethnicity, diet, etc.) or comorbidities. The
limited availability of both replicate studies and the associated meta-analysis presents a
fundamental challenge to accurately assessing the reliability and reproducibility of poten-
tial molecular biomarkers. Further, the lack of a comprehensive evaluation of these clinical
studies hinders the identification of study design parameters that may negatively impact
the reproducibility of the outcomes. To address these issues, we present a detailed analysis
of 24 clinical pancreatic ductal adenocarcinoma (PDAC) metabolomics studies [6–29]. Our
meta-analysis revealed an extensive variation in these studies and highlighted a substantial
inconsistency in outcomes, but also identified a subset of metabolites that were identified
across multiple datasets. The analysis also exposed study design features that likely con-
tributed to a potentially high false positive rate and exposed the need to establish best
practices to successfully identify predictive molecular biomarkers.

Over 48,000 deaths from pancreatic cancer occur each year in the U.S, where PDAC
accounts for more than 90% of all pancreatic cancers [30,31]. Pancreatic cancer has the lowest
five-year survival rate among all cancers (11%) and is the third leading cause of cancer
deaths in the U.S. [31]. This poor prognosis largely stems from the inability to identify
the disease until the onset of late-stage symptoms when the cancer has metastasized,
and surgery is no longer an option [32–34]. In the absence of surgery, there are limited
alternative treatment options for pancreatic cancer (i.e., gemcitabine and folfirinox) [35],
where a limited increase in survivability and drug resistance are common outcomes [36].
There is an urgent need to identify molecular biomarkers to assist in the diagnosis and
prognosis of PDAC and to aid in monitoring a patient’s response to treatment. To date,
there have been 24 PDAC metabolomics studies conducted to identify potential metabolite
biomarkers [6–29].

Metabolomics is experiencing an exponential growth that includes extensive usage
for biomarker discovery [37]. Metabolomics offers promising opportunities for developing
new diagnostic and prognostic tools and consequently is of great interest to clinicians [38].
Nevertheless, there are still many challenges faced by the metabolomics community, which
include successfully transitioning laboratory results to the clinic. This issue is clearly seen
by the drastic variation in metabolite biomarkers identified between similarly diseased
patients. These variations can be attributed to multiple factors. Sample collection and
storage, cohort demographics, data processing, and analytical analyses can all impact a
study’s outcome [39,40]. Due to the inherent complexity of patient samples, it is vital that
these factors be controlled and minimized to achieve reliable and robust results. Simply, the
natural variation among biological replicates can easily obfuscate any disease-dependent
signal, which would negate the utility of the molecular biomarker.

2. Materials and Methods
2.1. Search Method

The scientific literature was searched using the Web of Science database for clinical
PDAC metabolomics studies using the following queries: “pancreatic cancer and clinical
metabolomics”, “pancreatic ductal adenocarcinoma and clinical metabolomics”, “pancre-
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atic cancer and metabolomics”, and “pancreatic ductal adenocarcinoma and metabolomics”.
The following manual selection criteria were then used to refine the list of metabolomics
studies for the meta-analysis: (i) only human samples, (ii) a control group that was com-
prised of either healthy individuals, healthy pancreatic tissue, or chronic pancreatitis, and
(iii) PDAC comparisons to other diseases including various cancers were omitted. Some
studies were also omitted that fit the above criteria but were not accessible.

2.2. Data Compilation

Experimental parameters and the metabolomics results from each study were compiled
into an Excel file for comparison and statistical analysis. These parameters included:
number of samples or patients, types of control samples, analytical technique, type of data
collected, number of metabolites identified as significant after analyses, choice of p-value
for statistical significance, fold change (FC) values, FC direction, data deposition, and
inclusion of patient demographic data. Where appropriate, all values were tabulated by
calculating sums, averages, standard deviations, and histogram distributions.

2.3. Statistical Analysis

All metabolites identified as significantly changing with their associated FC value and
FC direction were combined into a single list in Excel. For further comparison of the results
from the studies, 20% of the entire data set or a sub-grouping was used as an arbitrary cutoff
to identify recurring metabolites and to create a list of metabolites that were significantly
changing across multiple studies. FC values that were Log2 transformed in the original
study were converted back to their original values. The FC values of metabolites that
were identified in at least 20% or five papers were then averaged and a standard deviation
calculated to demonstrate the variation in FC across studies. A median for all FC values
was calculated based on analytical technique.

3. Results and Discussion

A total of 24 metabolomics studies focused on identifying disease biomarkers from
PDAC patients were compiled [6–29]. The techniques used in each study, source of sample,
and number of significantly identified metabolites are detailed in Table 1. The demographic
data of these studies is summarized in Table 2. Mass spectrometry (MS) was the predomi-
nant analytical platform for 17 studies; whereas nuclear magnetic resonance (NMR) was
employed in 6 studies, and only one study used both NMR and MS. The data collected to
identify metabolites also varied between each technique and study. MS studies differed
in the use of MS and MS/MS data in which some studies only used MS data for identi-
fication, while other studies started with MS and then proceeded with tandem MS for a
more targeted analysis. Alternatively, some MS studies used tandem MS for the entire data
collection. NMR studies primarily employed one-dimensional (1D) 1H NMR spectral data,
with only two studies supplementing the 1D 1H NMR data with two-dimensional (2D)
spectral data.

Qualitative metabolite changes (i.e., only increase or decrease) versus quantitative fold
changes, health status of control samples, sample sources, and cohort size also varied greatly
across these studies. All these confounding factors are likely to impact the metabolites
that are detected and the statistical significance of any observable difference. For example,
exosomes (1 study), pancreatic tissues (3 studies), plasma (4 studies), serum (13 studies), or
urine samples (3 studies) were used in the 24 PDAC biomarker studies. Naturally, some
metabolites may be sample-specific and the different sample types may yield divergent
metabolic profiles. However, 71% of the studies did use serum or plasma as a biomarker
source, greatly diminishing this concern. Since most of the studies used the same type of
biological sample (i.e., plasma or serum derived from blood), a true disease-dependent
biomarker may be expected to be identifiable across studies.
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Table 1. Paper Summaries.

Technique Paper Fluid Metabolites a

MS

1 Tao et al. Exosomes 144
2 Budhu et al. Pancreatic tissue 60
3 Zhang et al. Pancreatic tissue 55
4 Unger et al. Pancreatic tissue 50

5 Urayama et al. Plasma 18
6 Fukutake et al. Plasma 19

7 Luo et al. Plasma 26
8 Itoi et al. Serum 24

9 Kobayashi et al. Serum 45
10 Mayerle et al. Serum 10
11 Iwano et al. Serum 43

12 Lindahl et al. Serum 5
13 Di Gangi et al. Serum 10

14 Xiong et al. Serum 8
15 Martín-Blázqeuz et al. Serum 89

16 Macias et al. Serum 72
17 Wang et al. Serum 31

NMR

18 Michálková et al. Plasma 26
19 Zhang et al. Serum 23
20 Bathe et al. Serum 22
21 Davis et al. Urine 21
22 Napoli et al. Urine 11
23 Sahni et al. Urine 14

Both
24 McConnell et al. Serum (MS) 17
24 McConnell et al. Serum (NMR) 16

a Total metabolites identified as significantly changing after statistical analyses.

An observable change in a metabolite is completely dependent on the reference or
control group. The 24 PDAC studies used different control groups corresponding to healthy
controls (16 studies), chronic pancreatitis or benign pancreatic disease (5 studies), adjacent,
healthy tissues from PDAC patients (2 studies), and patients with benign hepatobiliary
disease (1 study). The power or statistical significance of a metabolomics study is also de-
pendent on the cohort size, which ranged from 5 to 360 patients across the 24 studies [41,42].
How the spectral data was analyzed may also impact the reliability and reproducibility of
the observed metabolite differences. Over 70% (17) of studies relied on a simple qualita-
tive analysis of the data and only seven studies used a more comprehensive quantitative
interpretation of the spectral data. Specifically, a qualitative analysis means the paper
only reported if the metabolite was increased or decreased in pancreatic cancer patients.
Conversely, a quantitative analysis reported both the magnitude and direction of the fold
change in the metabolite relative to controls.

It is important to note that several studies had incomplete or absent patient demo-
graphic data. Data deposition was also largely lacking across these studies despite the
fact that data deposition is highly valued by the metabolomics community. This is ev-
idenced by the recent growth in data repositories (e.g., The Metabolomics Workbench,
https://www.metabolomicsworkbench.org/ (accessed on 8 August 2022)), which enable
the routine submission of metabolomics datasets. Four of the eight studies published
within the last two years did list data deposition information. While data deposition is
improving and becoming common, it is not universal and would benefit by publishers
requiring the deposition of metabolomics data.

https://www.metabolomicsworkbench.org/
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Table 2. Summary of Study Designs from the 24 PDAC Papers.

Analytical Techniques

NMR MS Both

6 17 1

NMR Data

1D 1D & 2D

5 2

MS Data a

MS MS/MS MS and MS/MS

4 8 5

Fold Change

Qualitative Quantitative

17 7

Data Deposited b

Yes No

5 19

Control Samples

Healthy/normal
control

Chronic
pancreatitis/benign
pancreatic disease

Adjacent, non-tumor
tissue

Benign hepatobiliary
disease

16 5 2 1

Sample Sources

Urine Serum Plasma Tissue Exosomes

3 13 4 3 1
a Fragments used to identify metabolites; b Includes data that is available upon request to authors.

A total of 655 unique metabolites (Supplemental Table S1A) were identified as sig-
nificantly changing across the 24 PDAC biomarker studies. Of these 655 metabolites, 40
were detected in urine, 68 in plasma, 339 in serum, and 279 in the remaining sample types
(Supplemental Table S1B–E). Of course, some metabolites were detected in more than one
type of biofluid. A heatmap summarizing the distribution of these 655 metabolites across
the 24 PDAC studies is shown in Figure 1. It is readily apparent from this heatmap that the
metabolites are randomly dispersed. The hierarchical clustering based on the PDAC studies
failed to yield any discernable groupings. Similarly, studies using the same sample type
or analytical technique did not demonstrate any clustering. Clearly, the choice of sample
type or analytical technique was insufficient to explain the large metabolite variability.
This suggests that other factors, including study design and experimental parameters,
may have an equal to or greater than impact on the reproducibility and accuracy of the
metabolomics results.
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Figure 1. Heatmap of Metabolite Occurrence. A heatmap depicting the distribution of the 655 me-
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order corresponds to the groupings in Figure 2A. The exact list and order of the metabolite names 

Figure 1. Heatmap of Metabolite Occurrence. A heatmap depicting the distribution of the 655
metabolites identified by the 24 PDAC papers. A hierarchical cluster of the clinical studies was
performed where the row numbers correspond to the papers listed in Table 1. The numbers colored
red corresponds to studies that used either plasma or serum samples. The NMR label identifies
studies that used NMR whereas studies that used mass spectrometry are unlabeled. Metabolite
occurrence order corresponds to the groupings in Figure 2A. The exact list and order of the metabolite
names can be found in Supplemental Table S1A. For all metabolites with only a single occurrence, the
metabolites are ordered alphabetically. Since most studies did not report a quantitative fold change,
only a qualitative increase (red, +1) or decrease (blue, −1) in the metabolite relative to a control is
indicated. Metabolites not identified in a study were assigned zero and are white.

Of the 655 unique metabolites, 87% of these metabolites were only identified in a
single study (Figure 2A). As the occurrence rate (number of studies detecting the same
metabolite) increased, the number of recurring metabolites across multiple studies rapidly
decreased. The highest recurring metabolites were present in less than half of the studies
with less than 1% of the metabolites detected in seven or more studies. These trends hold
true even when the data is sub-grouped by sample type (Supplemental Table S1A–E).
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Thus, an arbitrary cutoff of 20%, in which the same metabolites were identified in five or
more papers, was used to compile a list of recurring or reproducibly identified metabolites
(Table 3). Only 16 metabolites (2.4%) were identified by at least five papers as significantly
changing between healthy controls and PDAC patients. Notably, glutamate (11 studies),
glutamine (10 studies), and ornithine (9 studies) were the metabolites identified in most
studies and all have established roles in cancer [43–45].
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Figure 2. Summary of Metabolite Data. (A) Pie chart depicting the rate of metabolite occurrence
across the 24 studies. Numbers within parentheses indicate the number of studies identifying the
metabolites. An expanded view of the grey-starred slice of the pie chart is shown as an insert. (B) Bar
chart depicting the number of metabolites identified by MS, NMR, or both techniques.

The average FC values and the direction of the fold change were also tabulated
(Table 3, Supplemental Table S1A–E). Notably, a majority of the 655 metabolites were
only identified by MS with a mere 7% (46) of the metabolites only identified by NMR
and 35 (5.3%) metabolites identified by both platforms (Figure 2B). This disparity is not
surprising given the limited dynamic range and sensitivity of NMR compared to MS [46].
The median magnitude change in FC values (i.e., ignoring direction) for all metabolites
detected by MS or NMR was 1.85 and 1.16, respectively. A histogram of FC values is
plotted in Figure 3A, where numbers greater than one indicate a relative increase in PDAC
and numbers less than one indicate a decrease in PDAC. Most FC values were less than
two. This is concerning, especially for MS data, where an FC > 2 or 3 is a commonly used
criterion of likely significance. The routine use of a lower FC value to define a threshold
for a statistically significant metabolite change may partly explain the low recurrency of
metabolites across the 24 PDAC studies.

The cohort size varied greatly across the PDAC biomarker studies with participant
numbers ranging from fewer than 10 patients to over 100 (Figure 3B). A majority of the
metabolomics studies only disclosed qualitative metabolite changes (Figure 3C) while the
choice of p-value that indicated the statistical significance of the FC varied greatly from
p < 1 × 10−5 to p < 0.3 (Figure 3D). It was also concerning that only 8 of the 24 studies
reported the use of false discovery rate (FDR) corrected p-values or noted the type of FDR
method that was applied. The direction of metabolite FCs across the 24 PDAC biomarker
studies was also inconsistent. Only 69% of metabolites identified by at least two studies
exhibited the same FC direction (Figure 3E). Metabolites that were identified in at least
three studies showed only a 53% consistency in FC direction (Figure 3F), which continued
to drop to a consistency of 38% for metabolites identified in at least five studies (Figure 3G,
Table 3).
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Table 3. Most Commonly Occurring Metabolites a.

Metabolite # of
Publications

Higher Abundance
Relative to Control

Lower Abundance
Relative to Control

Average FC
Relative to Control STD STD/Avg Outlier

Values
# of Actual Values

(Including Outliers)

Glutamate/glutamic acid 11 9 2 (2.37) 0.61 (0.83) 0.06 (0.35) 0.09 NA (5) 2

Glutamine 10 0 10 0.70 0.13 0.19 NA 7

Ornithine 9 3 6 (1.43) 0.51 (0.34) 0.02 (0.24) 0.03 NA (3) 3

Lysine 8 1 7 (1.03) 0.67 (0) 0.15 (0) 0.22 NA (1) 5

Phenylalanine 8 4 4 (1.17) 0.74 (0.09) 0.17 (0.07) 0.23 NA (2) 4

Threonine 8 1 7 0.76 0.15 0.20 NA 4

Arginine 7 3 4 (1.26) 0.61 (0.30) 0.05 (0.24) 0.09 NA (3) 2

Proline 7 0 7 0.74 0.15 0.20 NA 4

Alanine 6 1 5 (1.23) 0.62 (0) 0.06 (0) 0.10 NA (1) 2

Creatine 6 0 6 0.53 0.27 0.51 NA 4

Histidine 6 0 6 0.67 0.08 0.12 NA 5

Tyrosine 6 0 6 0.68 0.14 0.21 NA 3

Asparagine 5 0 5 0.79 0.13 0.17 NA 4

Aspartic acid/aspartate 5 2 3 (2.47) 0.82 (0.31) 0.16 (0.13) 0.20 NA (2) 2

Citrate 5 2 3 (2.10) 0.44 (1.03) 0.13 (0.49) 0.30 NA (2) 2

Glucose 5 4 1 (1.28) 0.22 (0.23) 0 (0.18) 0 (421.58) (3) 1
a Values in parentheses are associated with increased fold changes. Values outside parentheses are associated with decreased fold changes.
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Figure 3. Summary of Experimental Parameters, Design, and Outcomes. (A). Bar chart showing the
distribution of FC values across the 24 studies. A value greater than one indicates a relative increase
in the metabolite in PDAC while a value less than one indicates a relative decrease in the metabolite
in PDAC. (B). Bar chart showing the distribution of cohort size across the 24 studies. (C). Bar chart
depicting the number of studies that reported a quantitative or qualitative metabolite fold change.
(D). Bar chart showing the distribution of p-value used to define a statistically significant metabolite
change. One study did not report a p-value. Pie charts summarizing the consistency in reported
fold change direction (increase or decrease) for metabolites identified in (E). two or more studies, (F).
three or more studies, or (G). five or more studies. Blue indicates percentage of metabolites with the
same fold change direction in all studies and gray indicates percentage of metabolites with variable
fold change directions.

The number of statistically significant metabolite changes were plotted as a function of
cohort size and p-value in Figure 4. Overall, there was not a clearly identifiable relationship
between these three parameters. As cohort size increased, the number of significantly
changing metabolites did decrease, but there was a large random variation at smaller
cohort sizes (<100). The larger cohort sizes initially suggested a more robust evaluation of
metabolites that were changing between the disease and control groups since the number
of identified metabolites stabilized, but the p-values for the larger cohort studies also varied
greatly from p ≤ 0.05 to p < 0.3. This raised legitimate concerns about the reliability of the
apparent consistency in the number of identified metabolites in the larger cohort studies.
Some metabolites may be included or removed from the list of retained metabolites by the
simple choice of p-value, which cannot be easily rectified. Thus, the overall variability in
p-values presents an interesting challenge in comparing the reproducibility of metabolites
across multiple clinical studies and raises some serious questions. How do we achieve
statistical confidence and normalize across multiple clinical datasets without negating the
underlying value of the clinical research? One approach to address this issue is for the
community to adopt a single standard of statistical significance that must be adhered to by
published clinical studies. The 24 PDAC biomarker studies hint at a potential consensus
since 16, or 67%, of the studies, utilized a p-value of ≤0.05. The remaining eight studies
were equally divided between using either a higher or lower p-value. But is a p-value of
≤0.05 still too aggressive?
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report a p-value to determine statistical significance.

A proper balance needs to be obtained that accommodates the complexities, difficulties,
and potentially large biological variabilities encountered within human samples to avoid
false negatives or Type II errors (argument for larger p-values and smaller FC values) while
simultaneously avoiding an abundance of false positives or Type I errors (argument for
smaller p-values and larger FC values) that lead to erroneous disease biomarkers. Neither
an abundance of false positives nor false negatives is a desirable outcome, but in the context
of identifying a reliable and reproducible biomarker to diagnose and monitor a disease
against a complex human background, it would be preferable to initially minimize false
positives. Since 87% of the metabolites identified from the 24 PDAC studies were only
observed by one study and are likely false positives, it appears the clinical metabolomics
field is currently heavily biased toward Type I errors. In other words, the community may
be better served by adopting a more restrictive p-value and FC value. Of course, the choice
of p-value or FC value alone doesn’t account for the apparently high false positive rate as
other experimental factors are likely contributors.

Sample storage and handling, data collection and analysis, and cohort demographics
are some of the experimental design factors that may influence the successful outcome
of a biomarker discovery project. For example, time of sample pre-processing, length of
storage, sample preparation protocols, patient demographics, and bioinformatic analyses
are important factors in metabolomics studies that have all been previously shown to
impact study outcomes [47–51]. The metabolome is chemically unstable and will change
as a function of time and storage conditions. Most of the PDAC biomarker studies cited
herein described storage conditions and sample pre-processing protocols but did not define
the length of time that passed before samples were prepared for analyses and spectral data
were collected. Cohort demographics can also influence metabolic profiles with differences
in age, gender, and pre-existing health conditions, among other factors, inducing large bio-
logical variances that negatively impact biomarker identification. Simply, the within-group
difference (i.e., biological variability) is greater than the between-group difference (i.e.,
difference between healthy controls and PDAC patients). These problems are compounded
when comparing results across multiple clinical studies, which further emphasizes the need
to establish best practices and to standardize protocols for metabolomics clinical studies.

To account for these and other confounding factors, three different sub-groupings of
the entire dataset of 24 PDAC studies were made. These sub-groupings included: (A) 13
serum-only studies (Supplemental Table S1C), (B) 4 studies with the largest cohort size
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(>90 participants), and (C) 20 studies with a p-value ≤ 0.05. A recurring metabolite was
identified by being in at least 20% of the studies in a sub-group or in a minimum of two
studies, whichever was greater. Using these criteria, the full data set and sub-groups A and
C had 16 recurring metabolites each, while sub-group C had 15 metabolites. Overall, 23
unique metabolites were identified by combining the three sub-groups with the full data
set (Table 4). In total, seven new metabolites were identified by the three sub-groups that
were not previously identified using the full data set. In all but one case, the metabolite
was identified by only one sub-group. Conversely, and potentially more importantly, 10
of the recurring metabolites identified with the full data set were also identified in the
three sub-groups. This list of 10 metabolites (i.e., alanine, arginine, creatine, glutamate,
glutamine, histidine, lysine, ornithine, phenylalanine, and threonine) may be the most
robust and reliable choice for potential PDAC biomarkers from the 24 metabolomics studies.
The six metabolites that were only identified by one of the three sub-groupings or the full
data set are likely false positives. Further, the fact that the three sub-groups reduced
the number of likely biomarkers from 16 to 10 strongly infers that cohort size, choice of
p-value, and consistency of sample source all play a role in the proper identification of
reproducible metabolite biomarkers. Despite all these challenges and as summarized in
Tables 3 and 4, there was still a subset of metabolites that were detected across multiple
clinical metabolomics studies that have the potential to serve as biomarkers for PDAC.

Table 4. Common metabolites within study sub-groupings.

Metabolite Full 24 Serum Only Largest Cohorts p ≤ 0.05

3-hydroxybutyrate X
Alanine X X X X
Arginine X X X X
Asparagine X X
Aspartic acid/aspartate X X X
Citrate X X
Creatine X X X X
Creatinine X
Glucose X X
Glutamate/glutamic acid X X X X
Glutamine X X X X
Glycocholic acid X X
Hippurate/hippuric acid X
Histidine X X X X
Isoleucine X
Lysine X X X X
Myoinositol X
Ornithine X X X X
Phenylalanine X X X X
Proline X X X
Threonine X X X X
Tyrosine X X X
Urea X

Sum 16 16 15 16

While the consistency of identified metabolites was low, the metabolites identified
in at least 20% of the PDAC studies all have important roles in carcinogenic onset and
progression. For example, the most identified metabolite, glutamate, has been shown to
promote pancreatic cancer cell invasion and migration [52]. Similarly, glutamine is used by
cancerous cells as an alternative fuel source for TCA via glutaminolysis and is vital to many
types of cancers, including pancreatic cancer [53]. Glucose is a classic hallmark of oncogene-
sis with increased consumption in cancer cells promoting cellular proliferation and survival,
commonly called the Warburg Effect [54]. Ornithine is a proposed biomarker of cancer as
increased levels of ornithine metabolism have been evident in studies of tumor-bearing
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animals [55]. Creatine has been shown to promote cancer metastasis and to decrease animal
survival in colorectal and breast cancer [56]. Citrate is an important intermediate in the
TCA cycle and is rapidly consumed by cancerous cells to promote cellular proliferation and
drug resistance [57]. The remaining 10 amino acids that were commonly identified by these
PDAC studies and include alanine, arginine, asparagine, aspartate, histidine, lysine, pheny-
lalanine, proline, threonine, and tyrosine, serve as alternative energy sources and contribute
to redox balance [58]. Again, the fact that this set of consistently identified metabolites was
also associated with cellular processes relevant to cancer increases the likelihood of provid-
ing a reliable diagnosis of PDAC. Nevertheless, some of these metabolites did not change
consistently across the clinical studies, which is problematic. Simply, for a metabolite to be
a true biomarker for PDAC it should be consistently detected in a biofluid and repeatedly
demonstrate the same relative change in abundance. Overall, clinical metabolomics has
made important progress in the identification of potential metabolic biomarkers for PDAC,
but there are still aspects of the process that must be addressed to increase the robustness
and the reliability of these outcomes.

4. Conclusions

This meta-analysis has highlighted the large variation in potential metabolite biomark-
ers observed across 24 PDAC metabolomics studies. A surprisingly high number of
655 metabolites were identified where 87% of these metabolites were only observed by
one study, suggesting an extremely high false positive rate. There was no discernable
difference in this variability based on sample type or analytical method. Only 16 metabo-
lites were identified by 20% or more of these studies. The most consistently identified
metabolite (glutamate/glutamic acid) was only listed in 11 of the 24 studies. Only 6 of the
16 metabolites had the direction (increase or decrease) of their fold change consistently
reported. When cohort size, sample type, and p-value were considered, the number of
potentially reproducible metabolites dropped from 16 to 10. Differences in cohort size
and demographics, p-value choice, fold-change significance, sample type, handling and
storage, data collection, and analysis were all factors that likely contributed to the large
inconsistencies between these 24 PDAC metabolomics studies. Taken together, a strong case
is made that a high level of consistency in experimental design is necessary to accurately
identify reproducible disease biomarkers across multiple studies. In short, a conservative
approach is demanded, such as a large cohort size (>100), small FDR-corrected p-values
(<0.01), and large FC values (>2–3) that also necessitates the establishment and adherence
to best practices for metabolomics clinical studies. Otherwise, the scientific community will
be awash in irreproducible, erroneous, and contradictory results that will likely undermine
the utility and beneficial impact of metabolomics in a variety of fields including disease
diagnosis and progression. While this meta-analysis herein focused on clinical studies of
PDAC patients, the shortcomings highlighted are not exclusive to pancreatic cancer and
are likely to be observed in numerous other clinical disease studies.

Despite the highlighted challenges and problems, it is important to note that a com-
prehensive analysis of these 24 PDAC studies did identify a list of 10 potential metabolite
biomarkers that obtained a level of reproducibility across multiple studies. The fact that
these metabolites were identified across these multiple studies with divergent experimental
parameters and conditions provides a higher level of statistical confidence than can be
achieved by a single study. The availability of multiple studies performed by different
researchers using samples from a different cohort of patients is invaluable to assess both
the true reproducibility of potential disease biomarkers and provide a path forward to
improve our approach to discovering biomarkers through clinical metabolomics.
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