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ARTICLE

Chemical reversible crosslinking enables
measurement of RNA 3D distances and alternative
conformations in cells
Ryan Van Damme1,4, Kongpan Li1,4, Minjie Zhang1,4, Jianhui Bai1, Wilson H. Lee 1, Joseph D. Yesselman2,

Zhipeng Lu 1✉ & Willem A. Velema 3✉

Three-dimensional (3D) structures dictate the functions of RNA molecules in a wide variety

of biological processes. However, direct determination of RNA 3D structures in vivo is dif-

ficult due to their large sizes, conformational heterogeneity, and dynamics. Here we present a

method, Spatial 2′-Hydroxyl Acylation Reversible Crosslinking (SHARC), which uses che-

mical crosslinkers of defined lengths to measure distances between nucleotides in cellular

RNA. Integrating crosslinking, exonuclease (exo) trimming, proximity ligation, and high

throughput sequencing, SHARC enables transcriptome-wide tertiary structure contact maps

at high accuracy and precision, revealing heterogeneous RNA structures and interactions.

SHARC data provide constraints that improves Rosetta-based RNA 3D structure modeling at

near-nanometer resolution. Integrating SHARC-exo with other crosslinking-based methods,

we discover compact folding of the 7SK RNA, a critical regulator of transcriptional elongation.

These results establish a strategy for measuring RNA 3D distances and alternative con-

formations in their native cellular context.
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RNA plays critical roles throughout the cell, ranging from
carrying genetic information to regulation and catalysis1.
To perform these tasks, RNA must fold into complex

three-dimensional (3D) structures that undergo intricate con-
formational transitions2–7. Physical methods can be applied to
elucidate RNA structure, such as nuclear magnetic resonance
(NMR), cryo-EM, and crystallography. These approaches have
helped characterize RNA structures, often at atomic resolution,
but require well-behaved and purified samples, whereas cellular
RNA structures can be highly dynamic and heterogenous2.
Alternatively, numerous low-resolution approaches, such as
chemical mapping and crosslinking, are high-throughput and
can be applied in vivo. These low-resolution methods can be
coupled with ever-improving computational tools to build 3D
models8.

Chemical probing, such as selective 2′-hydroxyl acylation
(SHAPE) and dimethyl sulfate (DMS) alkylation, report var-
ious aspects of nucleotide flexibility and have been used to
constrain local secondary structure predictions9–13. Correlated
chemical probing methods such as multiplexed •OH cleavage
analysis (MOHCA), mutate-and-map (M2), and RNA inter-
acting group mutational profiling (RING-MaP) infer spatial
proximity of nucleotides but provides fuzzy distances to con-
strain 3D modeling14–18. While these methods are improve-
ments over 1D DMS chemical mapping, they are often limited
to smaller RNAs as they require the two correlated nucleotides
on the same sequencing read, and the sequencing coverage
scaled exponentially with RNA length. Furthermore, MOHCA
and M2 are only applicable to in vitro synthetic RNAs, while
RING-MaP is limited by the noisy background and low cor-
relation levels14.

Crosslinking and proximity ligation represent an alternative
strategy to capture spatial distances among nucleotides, over-
coming the limitations of correlated chemical probing19. Recently
developed psoralen-crosslinking-based methods, such as PARIS,
LIGR-seq, SPLASH, and COMRADES directly capture base pairs
either within or between different RNA molecules in high
throughput20–24. Psoralen crosslinks staggering pyrimidines in
opposite strands through [2+ 2] photocycloadditions. At the cost
of low efficiency, this reaction offers high specificity, is challen-
ging to reverse, and is limited to uridines in helical regions. Even
though the gapped reads from such methods can go down to 15
nucleotides on each arm, unambiguous identification of base
pairs remains challenging. Recently reported bifunctional acy-
lating crosslinkers, BINARI, react with the 2′-OH on all four
nucleotides and offer an approach to capturing nucleotide pairs in
spatial proximity crosslinking capacity to 3D space25. However,
the nine-step synthesis, large molecular size, and complex reversal
mechanism rendered the BINARI compounds unsuitable for
cellular application to measure RNA tertiary contacts on a
transcriptome-wide level25.

This study develops highly efficient and accessible 2′-hydroxyl
acylation chemistry for crosslink-formation and -reversal in living
cells (SHARC), overcoming the technical challenges in the pre-
paration and application of BINARI reagents. We develop an
exonuclease (exo) trimming approach to pinpoint crosslinked
nucleotides, improving the precision of distance measurements to
the crosslinked atoms (2′-O in ribose). The integration of SHARC
crosslinking, exo trimming, proximity ligation, and high
throughput sequencing (SHARC-exo) enables transcriptome-
wide analysis of spatial distances between nucleotides at nan-
ometer resolution in cells, without sequence length limitations.
We rigorously benchmarked the distance measurement and
structure capture using complex, yet well-studied models in cells,
such as the ribosome, spliceosome, 7SL, and RNase P, revealing
both static structures, interactions, and alternative conformations.

The incorporation of distance measurements into Rosetta-based
3D modeling dramatically improved structure resolution. We
combined SHARC-exo with established methods, such as PARIS
and CLIP, to discover compact folding of the 7SK RNA, a critical
regulator of transcriptional elongation in higher eukaryotes.
These experiments demonstrate the power of integrating multiple
orthogonal approaches to capture proximity constraints in
complex RNAs to study their structures. Together, we developed
cheap and easily synthesized compounds that dramatically out-
perform known crosslinking tools, providing the community with
a strategy for understanding RNA 3D structures and alternative
conformations in cells.

Results
Quantitative RNA crosslinking with bifunctional 2′-hydroxyl
acylation. Unlike proteins, RNA’s overall structure is governed by
sparse tertiary contacts (Fig. 1a). Highly structured RNAs as large
as 500 nucleotides may only contain a few critical tertiary
contacts6,26–28. Knowledge of these tertiary contacts significantly
improves the modeling of complex RNAs15,18,29. To determine
these constraints for RNAs in cells, we sought to develop a set of
bifunctional and reversible 2′-hydroxyl acylation reagents with
flexible linkers (Fig. 1b). To improve accessibility and facilitate
optimizations, we focused on a modular design using simple
dicarboxylic acids, the length of which can be easily adjusted.
Subsequent reversal allows facile analysis of the crosslinked
sequences. To synthesize such reagents, we activated simple
dicarboxylic acids using 1,1′-carbonyldiimidazole (CDI) in a one-
step reaction (Fig. 1c, see Methods in Supplementary Informa-
tion). We tested crosslinking efficiency on a model self-
complementary duplex RNA 1 in vitro, where acylations are
expected to occur on un-constrained nucleotides (Fig. 1d).

We activated a set of eight dicarboxylic acids with diverse
linker lengths and chemical properties (Fig. 1e, see characteriza-
tion in Supplementary Figs. 1 and 2a). The efficiency of
crosslinking RNA 1 was measured by polyacrylamide electro-
phoresis (Fig. 1e, Supplementary Fig. 2b). Activated oxalic and
succinic acids showed low to modest crosslinking of 1–24%
(Fig. 1e), possibly due to the short linker lengths that might be
insufficient to bridge 2′-OH groups on opposing strands (see
estimated crosslinker lengths in Supplementary Fig. 2a). Acti-
vated glutaric acid showed 94% crosslinking, while diglycolic acid,
which is similar in size, exhibited significantly lower crosslinking
of 27%. The differences between these aliphatic compounds can
potentially be explained by the inductive effect of the beta oxygen
that substantially increases the reactivity of the activated ester30,
making it more susceptible to hydrolysis. The activated aromatic
compounds, terephthalic, isocinchomeronic, and dipicolinic acids
all exhibited excellent crosslinking efficiencies between 97–99%,
likely due to optimal spacing and conformation of the linkers to
bridge opposing 2′-OH groups and favorable reactivity towards
2′-OH moieties as previously demonstrated by aromatic SHAPE
reagents13. The activated bipyridine compound 6,6′-binicotinic
acid showed an apparent crosslinking efficiency of 31%, though
solubility in aqueous solution was limited, hampering the exact
determination of its crosslinking performance. We selected
dipicolinic acid imidazolide (DPI) as a candidate to test further
based on these results. To characterize the reaction kinetics of
DPI at physiological pH 7.4 at room temperature, we measured
its hydrolysis with NMR and found that 50% was hydrolyzed
after 5 min (Supplementary Fig. 2c–e). This reaction is signifi-
cantly faster than the structurally related cell-permeable SHAPE
reagent NAI (half-life ~30 min, HEPES buffer pH = 8.0) due
to the additional electron-withdrawing group31, suggesting its
potential for rapid RNA crosslinking in cells.
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Reversing 2′-hydroxyl crosslinking under mild alkaline condi-
tions without RNA damage. Reversal of the crosslinks is necessary
for subsequent sequence analysis. We hypothesized that the lower
stability of the 2′-acylation products relative to the phosphodiester
bonds could allow selective crosslink reversal without causing RNA
chain breaks. To test this, we first analyzed the rate of phospho-
diester cleavage in a model RNA dinucleotide ApA (Fig. 1f). We
compared it to the methyl ester of dipicolinic acid 2 (Fig. 1g), a
simple ester derivative of the SHARC reagent DPI. The two com-
pounds were incubated in a 3:1 mixture of 100mM borate buffer
and DMSO at pH 10.0, and the stability was monitored over time
by 1H NMR (Fig. 1h and Supplementary Fig. 2f, g). No degradation
of ApA was observed even after 48 h, and the rate constant was
estimated to be below 4.0 × 10−7 s−1 (Fig. 1f). In contrast, com-
pound 2 was fully hydrolyzed after ~120min, with a rate constant
of 3.5 × 10−4 s−1 (R2= 0.99) (Fig. 1g). From this, we concluded that
the ~1000-fold difference in rate constant should provide sufficient
opportunity to selectively reverse the crosslinks under mild alkaline
conditions without RNA damage.

To investigate if the alkaline conditions can be successfully
applied to reverse SHARC crosslinks in longer RNA, the model
RNA 1 was crosslinked with DPI, purified, and 10 µM of
crosslinked RNA was incubated in 100 mM Borate buffer pH 10.0
for 2 h at 37 °C. The crosslinked RNA was nearly fully reversed
without apparent degradation (Fig. 1i). Increasing pH to 11.0 did
not result in noticeable degradation, suggesting a broad window
for robust reversal of crosslinks (Supplementary Fig. 2h, i).
Together, we showed that 2′-OH acylation could be easily
reversed at moderately alkaline pH without significant RNA
damage, opening the possibility for subsequent sequence analysis
in various applications. For larger RNAs, degradation may be
unavoidable. However, fragmentation is an inherent step in
sequencing library preparation, so the residual RNA degradation
does not affect subsequent sequence analysis.

Exonuclease trimming: a strategy to determine crosslinking
sites at near nucleotide resolution. Having demonstrated effi-
cient SHARC crosslinking and reversal, next we developed a
strategy, exonuclease (exo) trimming, to measure inter-nucleotide
distances, based on our previously established PARIS method21,32

(Fig. 2a). Crosslinked RNA samples are first digested with RNase
III, which fragments both single and double-stranded RNA into
short pieces21. RNA fragments are fractionated on a denatured-
denatured 2-dimension (DD2D) gel24, where the second dimen-
sion is denser than the first (e.g., 16% vs. 8%). The differential gel
densities enable the separation of crosslinked from non-
crosslinked fragments. The crosslinked fragments migrate as a
smear above the diagonal (Fig. 2a), therefore achieving near 100%
purity without the contamination of RNA with mono adducts of
the crosslinker. The purified cross-linked fragments are then
trimmed by an exonuclease, e.g., RNase R, which removes
nucleotides from the 3′ end until it is blocked by the crosslink
sites33. The trimmed fragments are ligated so that the two arms
are joined to form a continuous RNA molecule. After mild
alkaline crosslink reversal, the bipartite RNA molecules are
reverse transcribed for cDNA library preparation and sequenced.
The gapped reads are clustered into duplex groups (DGs, similar
to our previous definition21,34, but include all gapped reads from
secondary and tertiary structures). Each group corresponds to
one specific pair of nucleotides that are close to each other. The
gapped reads should reveal trimmed 3′ ends at a fixed distance
from the actual crosslinking sites (~5 nts, see details below). The
spatial distances between the crosslinked nucleotides (the 2′-OH
groups, to be precise) are determined by the length of the linkers
and the flexibility of the RNA structure.

To validate the exo trimming approach, we first applied it to
PARIS experiments, where the well-established crosslinking
preference of psoralen enables rigorous testing of the trimming
efficiency. After RNase R treatment, the reads are significantly
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shorter (Supplementary Fig. 3a). Counting from the 3′ end of
each arm of the gapped reads, we observed a strong enrichment
of uridines at the third to sixth position, peaking at the fifth
nucleotide, suggesting that the psoralen crosslinking to uridine
blocked RNase R trimming, leaving ~5 nts at the 3′ end
(Supplementary Fig. 3b). In contrast, no enrichment of uridine
was observed at the exact location without trimming. Therefore,
the exo trimming strategy allows us to pinpoint the crosslinking
sites with high precision. As an example, we showed the
identification of crosslinking sites in helical regions of the 28S
rRNA (Supplementary Fig. 3c–e).

SHARC-exo accurately measures static and dynamic spatial
distances in RNA in cells. To test SHARC-exo, we first cross-
linked HEK293T cells with DPI, extracted RNA using proteinase
K (PK) and the TNA method, fragmented RNA with RNase III,
and isolated the crosslinked fragments using the DD2D gel
method. We recovered 1.01%, 1.31%, and 1.89% RNA fragments
as crosslinked using 5, 12.5, or 25 mM DPI, respectively (Sup-
plementary Fig. 3f–h, comparable to psoralens used in the PARIS
method)24. PK digests proteins to <6 amino acids long35, and
efficiently removed the vast majority of proteins (Supplementary
Fig. 3i, TNA method), therefore the detected interactions are
unlikely to be mediated by proteins. We sequenced the SHARC-
exo libraries and observed 3.3–14.5% of the reads are gapped,
similar to PARIS (Supplementary Table 1)20,21. Crosslinked reads
are highly reproducible at different DPI concentrations and

RNase R trimming conditions (Supplementary Fig. 3j). The two
arms of each gapped-read span a wide range of distances, for
example, up to the entire length of rRNAs (1869 and 5070
nucleotides, respectively, Supplementary Fig. 3k). The crosslinked
together, these results demonstrated efficient and robust SHARC
crosslinking of RNA in cells.

To test the ability of SHARC-exo in measuring spatial
distances, we focused on the ribosome due to its high abundance,
complex structures, and intermolecular interactions (Fig. 2b)36,37.
Given that RNA homodimers are rare due to the transient nature
of most intermolecular interactions38, all subsequent analyses of
structures in individual RNA species were performed under the
assumption that the gapped reads were derived from the same
RNA, instead of two identical RNA molecules. We first calculated
the fraction of single-stranded nucleotides close to the 3′ end of
each arm of the gapped reads, based on the ribosome cryo-EM
structure36 (Fig. 2c, d, and Supplementary Fig. 4a–d). Counting
from the 3′ end, trimmed samples exhibited a dramatic increase
in the fraction of single-stranded nucleotides between the 1st
and 8th nucleotides, with a peak at the 5th (Fig. 2c, ~1.3-fold
over non-trimmed). We observed a similar trend when using
experimentally determined icSHAPE reactivities for the
ribosome21 (Fig. 2d). The stronger enrichment of icSHAPE
signal (Fig. 2d, ~3.7-fold) compared to the counts of single-
stranded nucleotides further confirmed the selective crosslinking
of unconstrained nucleotides by DPI and the efficient trimming.
A/U nucleotides are slightly enriched near the crosslink sites,
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likely reflecting their lower base-pairing potential (Supplementary
Fig. 4e)

To determine the range and precision of distance measure-
ments by SHARC-exo, we calculated spatial distances between the
two arms of each gapped-read in the ribosome cryo-EM
model36,37. The minimal distance has a narrow distribution with
a long tail, where 51% are within 20 Å, with a mode of ~8 Å, close
to the physical length of the crosslinker (~7 Å) (Fig. 2e,
Supplementary Fig. 2a). In contrast, the distances for randomly
shuffled reads have a much broader distribution (Wilcoxon rank-
sum (WRS) test, p < 10−300). To determine whether trimming
precisely reveals the crosslinked nucleotides, we searched for
nucleotides along each arm closest between the two arms (Fig. 2f).
Not surprisingly, the nearest point is the fifth nt, consistent with
the highest SHAPE reactivity (not seen on the non-trimmed
SHARC data, Supplementary Fig. 5). The distance between
5th ± 2 nts on the two arms follow a narrow distribution, with a
mode distance of 8 Å, and 31% reads less than 20 Å, and 49% less
than 40 Å (WRS test p < 10−300, compared to shuffled reads,
Fig. 2g).

The ribosome is a highly dynamic and flexible macromolecular
machine. SHARC-exo captures spatial distances of the ribosome
in its entire life cycle in cells that include both intra-ribosome
dynamics and inter-ribosome contacts. To understand the long
tails in distributions (in Fig. 2e, g), we separated distances into
ones constrained by extensive base pairs, which are more stable,
and those simply in spatial proximity (tertiary motifs), which are
more dynamic (Fig. 2h)39. We further split tertiary contacts to the
stable core and the more flexible Expansion Segments (ESs),
many of which are not resolved with cryo-EM (Fig. 2i). As
expected, distances constrained by secondary structures are
predominantly within 20 Å (dsRNA, 96.2%, Fig. 2j), whereas
the core and ES tertiary distances have increasingly broader
distributions (58.2% and 33.9% within 20 Å, respectively).
Together, this analysis further demonstrated SHARC-exo’s high
accuracy and the ability to capture heterogeneous conformations
in cells.

To test the robustness of SHARC-exo, we compared multiple
DPI concentrations and trimming conditions. Regardless of DPI
concentration, SHARC-exo produced consistent enrichment of
single-stranded nucleotides near the 5th nucleotide (Supplemen-
tary Fig. 4a–d). The minimum distances between the two arms
are primarily within 20 Å (Supplementary Fig. 5a). However,
higher DPI concentrations reduced trimming efficiency, which
can potentially be explained due to disruption of the endogenous
structure of mono adducts that block trimming. The mono
adducts may reduce the resolution in distance measurements. At
the same DPI concentration, heavier trimming increased the
resolution of spatially proximal nucleotides (Supplementary
Fig. 5b–d).

SHARC-exo analysis of RNA structures and interactions
in vivo. To test the ability of SHARC-exo in capturing known
structures, we extracted spatial distances within 20 Å in the
ribosome (Fig. 3a, b, left panels). SHARC-exo measurements
(upper right triangles) are highly consistent with distances
between icSHAPE-reactive nucleotides in the cryo-EM model for
both the 18S and 28S rRNAs (lower left triangles). Shuffling of
SHARC-exo reads resulted in random distributions (Fig. 3a, b,
right panels). The zoom-in views of the two regions showed both
highly consistent distance measurements and ones missed by
SHARC-exo (blue and red boxes in areas 1–2, Fig. 3c,d). The
missed spatial proximities likely represent tight ribosome regions
inaccessible to DPI or nucleotides with steric hindrance.

SHARC-exo captured spatial distances both constrained by
secondary structures or simply in spatial proximity (Fig. 3e–m,
see more examples in Supplementary Fig. 6). In one instance in
the 28S rRNA, RNase R trimming resulted in significantly
shortened 3′ ends for both arms of the DG (Fig. 3e). Tracing back
to the 5th nucleotides from the 3′ ends, where the crosslinks are
expected, we obtained a pair of nucleotides with a spatial distance
of 11.1 Å between the 2′ oxygens in the ribosome cryo-EM model
(Fig. 3f, g). SHARC-exo also captured intermolecular interactions.
For example, SHARC-exo precisely mapped a tertiary contact
between the loop on 5.8 S helix 9 ES 3 (H9ES3) and an internal
bulge on 28S H54 (Fig. 3h). This interaction is stabilized by base
stacking between 5.8 S U126 and 28 S G2544 (Fig. 3i–k). These
two stretches of single-stranded nucleotides have significantly
higher icSHAPE reactivity than the surrounding helical regions
(Fig. 3l). The spatial distances among the most reactive two
nucleotides on each side range from 7.1 to 12.8 Å. Their distances
to the SHARC-exo determined 3′ ends range from 3 to 7
nucleotides, consistent with the global average for SHARC-exo
(Fig. 3m). Together, these results demonstrate that SHARC-exo
can capture static and alternative RNA-RNA interactions at near
nucleotide resolution.

In addition to the ribosome, SHARC-exo also captured spatial
distances in other non-coding RNAs, including the RPPH1 RNA
in RNase P, the 7SL RNA in signal recognition particle (SRP), and
U4/U6 snRNAs in the spliceosome (Supplementary Figs. 7–9).
RNase P is a ribozyme that cleaves off the 5′ leader of tRNA
precursors40,41. SHARC-exo captured five proximal nucleotide
pairs in the range of 17–36 Å (compare to ~190 Å -- the overall
length of RPPH1 structure. Supplementary Fig. 7). In the 7SL
RNA, all SHARC-exo measured distances are in the range of
9–26 Å, except one at 77.5 Å, which is likely due to an alternative
conformation previously predicted as a precursor in the SRP
assembly42 (Supplementary Fig. 8). U4 and U6 snRNAs form a
stable complex in the spliceosome, and two DGs connecting U4
to U6 were detected (Supplementary Fig. 9a)43. Crosslinking sites
were mapped to two regions in spatial proximity, including a
3-way junction (DG1, Supplementary Fig. 9b,c) and single-
stranded regions near an intermolecular helix (DG2, Supplemen-
tary Fig. 9b, d). In both structures, exo trimming pinpointed the
nucleotides in spatial proximity. Together these results demon-
strated that SHARC-exo could measure spatial distances in a wide
variety of RNAs in cells.

SHARC-exo distance measurements improve Rosetta-based
RNA 3D modeling. Having demonstrated accurate distance
measurements by SHARC-exo, next, we investigated whether
these constraints can improve 3D structure prediction. For
example, we focused on a specific region, h22-h24, in the 18 S
rRNA (Fig. 4a, Supplementary Fig. 10a). SHARC-exo captured
two major spatially proximal pairs of nucleotides at 7.8 and
21.0 Å (Fig. 4b, Supplementary Fig. 10b). Using these two dis-
tances as constraints and a linear pseudo-energy function, we
modeled the 3D structure of this 18 S segment (see Methods
in Supplementary Information). The addition of the constraints
significantly reduced the RMSD distribution for all models and
the top 200 models (Fig. 4c, d, Supplementary Fig. 10c). Clus-
tering showed that the SHARC-exo constrained top model dis-
plays high topological similarity to the cryo-EM structure, while
the de novo model deviates substantially (Fig. 4e, f, Supplemen-
tary Fig. 10d). In the native ribosome, the h22-h24 region is
stabilized by interactions with other RNA and protein compo-
nents. Despite using only two constraints in this unfavorable case,
the resolution of the 3D model increased significantly. The
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Fig. 3 SHARC-exo captures spatial distances within the human ribosome. a, b Comparing SHARC-exo captured spatial proximities to a cryo-EM
structure model of the human ribosome in 25 nt × 25 nt (a) or 50nt × 50nt (b) windows (PDB:4V6X). icSHAPE-measured reactive nucleotides within 20 Å
of each other in the 18S (a) and 28S (b) rRNAs are plotted on the lower-left corner of each square. SHARC-exo gapped reads with 2 arms within 20 Å of
each other are plotted on the upper right corner, and the read numbers are square-root scaled. Positions of SHARC-exo reads are randomly shuffled as a
control (right panels). c, d Zoom-in views of two areas in the 18S and 28S rRNAs. Blue rectangles highlight consistent distance measurements between
SHARC-exo and cryo-EM. The red rectangle highlight regions missed by SHARC-exo. e An example tertiary proximity in the 28 S rRNA captured by
SHARC-exo. f Secondary structure model of the two regions, showing the consensus 3′ ends of the gapped reads, expected crosslink sites, and distance.
g 3D structure model of the crosslinked sites. h–m SHARC-exo captured an interaction between 5.8S and 28S rRNAs. h Gapped reads for the interactions
between 5.8 S and 28 S rRNA. i The 3′ end, putative crosslinking sites and distance mapped onto the secondary structure model of rRNAs. j, k 3D model of
the interaction, where the two loops involved in interactions are shown in red and purple. Interhelical stacking is shown in spheres (k). l, m icSHAPE
measurement of nucleotide flexibility around the crosslinking sites (l) and all possible distances between the two interacting loops (m). m Distances
between 2′OH groups at the nucleotides with high SHAPE reactivity. Tail length in the parentheses indicates the distance between the 3′ ends and the
reactive nucleotides that are potentially crosslinked. Source data are provided as a Source Data file.
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availability of deeper sequencing coverage and denser constraints
will likely further improve the resolution of 3D modeling.

To further benchmark the SHARC-exo method, we performed
in vitro crosslinking of a well-characterized model RNA, the P4-
P6 domain of the tetrahymena ribozyme6. SHARC-exo revealed
17 DGs with highly variable abundance, where the low abundance
ones are likely artifacts from RNA misfolding or crosslinking
(Supplementary Fig. 10f). We focused on 5 abundant DGs where
each contains >3% of total reads. The RNase R trimming
shortened the 3′ ends and improved the measurement of spatial
distances by 11–23 Å, based on the analysis of the crystal
structure6 (Supplementary Fig. 10g–h). The RNase R refined
distances, in the range of 19–41 Å, were still longer than the
minimal cross-linkable distances between the two arms (e.g.,
Supplementary Fig. 10i-j). These results demonstrate that the
crosslinking and RNase R trimming successfully captured spatial
distances, but there is still space for further improvement. The
addition of the SHARC and SHARC-exo derived distances
significantly reduced overall RMSD distribution for the complete
set of all models and the top 100 (Supplementary Fig. 10k).
Models constrained by SHARC-exo distances are much more
compact than non-constrained or SHARC-constrained ones
(Supplementary Fig. 10l–o). This result further confirmed the
usefulness of distance measurements in 3D modeling.

SHARC-exo captures alternative RNA conformations. Many
flexible regions in the ribosome, especially the ES, play essential
roles in translation44,45. However, they are often at low resolu-
tion or not resolvable with crystallography or cryo-EM due to
their dynamic nature36. In SHARC-exo data, reads with two
arms that span >40 Å are predominantly located in the ES
(96.52%, vs. 3.41% for core tertiary, and 0.08% for dsRNA,
Fig. 5a, Supplementary Fig. 11a–c). Consistent with this, the ESs,
even if visible by cryo-EM, have a higher B-factor, indicating
higher flexibility, while the core segments are considerably better
resolved (average resolution 5.4 Å, ranges between 2.2 and 21 Å,
Supplementary Fig. 11d, e)36. Two ESs in the 28 S rRNA, 78ES30
and 79ES31, have the highest read coverage with between-arm
distances >40 Å (hub1 and hub2, Fig. 5b, c). Hub1 makes
extensive contacts on many regions on the ribosome, most of
which are other flexible ESs (Fig. 5d, Supplementary Fig. 11f).
For example, the top six DGs connecting hub1 are all located on
the surface of the ribosome, among which the top-ranked is hub2
(Fig. 5d, Supplementary Fig. 11g). The flexibility of both hub1
(78ES30) and its partners make it possible for them to reach each
other. Using Rosetta and a single distance constraint between
hub1 and hub2, we found that the two regions can be modeled in
spatial proximity (from 128 to 16 Å, Fig. 5e, f) without any
clashes with other parts of the ribosome surface (Supplementary
Fig. 11h, i).

Next, we examined more complex RNA-RNA interactions
between the 5.8S and 28S and between 18S and 28S rRNAs
(Supplementary Figs. 12 and 13). We discovered both spatial
proximal nucleotide pairs and distant ones that likely represent
intermediates during ribosome assembly. Two significant regions
in the 5.8 S interact extensively with the 28 S (Supplementary
Fig. 12a). Among the top 6 DGs connecting 5.8S and 28S, DGs 1,
4, and 5 capture direct contacts, DGs 3 and 6 are likely due to the
alternative conformations of ESs on the 28 S that allow the
formation of intermolecular contacts, which were not captured by
cryo-EM, underlining the power of the SHARC method
(Supplementary Fig. 12b)36. The remaining DG2 connects two
regions that cannot reach each other in the mature ribosome but
are supported by extremely high sequencing coverage (Supple-
mentary Fig. 12a, close to DG1). This is likely explained due to

spatial proximity during the assembly of the ribosome. The
interactions that we captured between 18S and 28S ESs suggest a
highly dynamic nature of the translation machine (Supplemen-
tary Fig. 13). Together with the alternative conformations in 7SL
(Supplementary Fig. 8), these results suggest that SHARC-exo
captures static and dynamic structures in cells.

SHARC-exo reveals compact folding of the 7SK RNA. The
noncoding RNA 7SK plays an essential role in transcriptional
regulation46,47. Still, the structural basis of its function is largely
unknown, except for a few small regions that were solved by
crystallography and NMR48–53. For the full-length 7SK, 331 nt in
humans, both secondary and tertiary structures remain uncertain.
Wassarman and Steitz proposed the first secondary structure
model with four major helices, a “linear model” based on che-
mical probing (Supplementary Fig. 14a, b)54. Deep phylogenetic
analysis together with manual adjustments revealed a consistent
global secondary structure model across metazoans (Marz model,
or “circular model”), featuring eight helical regions, among which
a terminal helix (M1) circularizes 7SK55. More recent work using
the evolutionary coupling method that detects spatial interactions
failed to identify the M1 terminal helix (Supplementary
Fig. 14c–e)56. In vivo icSHAPE21, a measurement of 1D nucleo-
tide flexibility only provided consistent but not conclusive evi-
dence for the overall validity of helical regions in the Marz model
(Supplementary Fig. 14f–g). Here, using SHARC-exo in combi-
nation with low-resolution methods PARIS and CLIP, we con-
clusively demonstrate the existence of the circular model and
extensive tertiary contacts within this RNA that suggest compact
3D folding.

Using SHARC-exo, we discovered extensive secondary and
tertiary contacts among the helices and single-stranded regions
(Fig. 6a, Supplementary Fig. 15). These contacts suggest tight
folding of the 7SK RNA in cells. In particular, the two most
extended helices, M3 and M7, are packed together (a subset of the
contacts shown in Fig. 6b). To validate the compact folding of
7SK, we reanalyzed our recent PARIS and previously published
eCLIP data21,57 (Fig. 6c, d, Supplementary Figs. 16-17). PARIS
validated the local structures in the Marz model in both human
and mouse cells (M3, M4/M5, and M7), especially the terminal
helix M1 (DG1 in Supplementary Fig. 16a–c). In addition, PARIS
revealed proximity between distant regions (Supplementary
Fig. 16c–e, DGs 2-3). These long-range contacts suggest direct
contacts between M3 and M7 since psoralen crosslinking requires
stable structures, where at least two base pairs are needed to
sandwich a psoralen molecule58. In addition to 2-segment (1-gap)
reads that represent RNA duplexes, PARIS also captures more
complex structures in the form of multi-segment reads, where
two structures that form together in one molecule are crosslinked
ligated and sequenced (Fig. 6e, Supplementary Fig. 16f)34,38.
Therefore, multi-segment reads provide direct evidence that three
or more segments are close to each other in space in the same
RNA molecule. The multi-segment reads connect the 5′ end M3
to the 3′ end M7 and their surrounding sequences. Together,
these PARIS data suggest compact folding of the 7SK RNA.

CLIP experiments occasionally crosslink a protein molecule to
more than one RNA fragment in spatial proximity59. Proximity
ligation can join these fragments in one sequencing read (Fig. 6d,
Supplementary Fig. 17). We reanalyzed the extensive collection of
eCLIP datasets and found that LARP7, an integral component of
the 7SK complex, is strongly crosslinked to multiple locations,
including the M1, M3, and M7-M8 (Supplementary Fig. 17a,b).
The LARP7 eCLIP gapped reads confirmed the local 7SK
secondary structures (M3, M6, and M7), the terminal helix M1.
They revealed long-range structures that bring M3 and M7 to
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spatial proximity, similar to PARIS (Fig. 6d, Supplementary
Fig. 17c,d, DGs 1–3). Together, our integration of 3 orthogonal
approaches, SHARC-exo, PARIS, and eCLIP, provided strong
support for the circular model (Marz model) of the 7SK
secondary structure and suggest a compact folding of the 7SK
helices, in particular the direct contacts between M3 and M7
(Fig. 6f–g).

Discussion
This study reports a series of reversible crosslinkers, SHARC, that
can capture spatial proximity in RNA with high efficiency. We
develop an exo trimming strategy that improved resolution in
both SHARC and PARIS to near single nucleotides (~3–7
nucleotides from the 3′ end), therefore generally applicable to
various types of crosslinkers. The high throughput SHARC-exo
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method measures spatial distances between nucleotides either
within an RNA or between different RNA molecules in living cells
with high efficiency. We show that SHARC-exo distance infor-
mation can be used to constrain Rosetta-based 3D RNA model-
ing, therefore opening the possibility of understanding the 3D
structures of the entire transcriptome in vivo. Using the ribosome
as an example, we demonstrate that SHARC-exo also reveals
highly heterogeneous conformations of ESs in cells, challenging to
characterize using conventional physical methods. Finally, we
integrated SHARC-exo with two other methods, PARIS and
CLIP, to conclusively determine a secondary structure model for
the 7SK RNA and reveal a compact folding of the multiple
helices. These results highlight significant advancements com-
pared to previous methods for RNA 3D structure analysis.

Future improvements and extensions of the SHARC-exo
principle will further enhance its versatility and reliability and
broaden its applications. First, despite our careful in vitro analysis
of the SHARC reagents, the kinetics of the two-step acylation and
hydrolysis reactions are difficult to characterize experimentally
and theoretically because they are not necessarily decoupled or
orthogonal. These reactions are likely different in vitro and
in vivo, making it challenging to develop a simplified model to

study them in detail. Nevertheless, a better understanding of these
reactions is important for further improvement of crosslinking
chemistry. The current RNase R trimming is not 100% efficient,
likely due to the presence of SHARC mono adducts on RNA.
Even though our computational identification of trimming stop
sites uses the 3′ end medians, which is robust against outliers,
further improvement of this experimental step will increase the
resolution and accuracy. Most cellular RNAs are associated with
proteins. Incorporating RNA–protein interactions and protein
structure information will enable 3D modeling of RNP complexes
in cells. Current acylation-based crosslinkers apply to all four
nucleotides yet are limited to flexible ones. In some highly
structured RNAs, the number of flexible and, therefore, cross-
linkable nucleotides might be moderate (Supplementary Fig. 18).
Critical spatially proximal nucleotides may be non-reactive,
making it potentially challenging to capture such constraints. In
the future, the development of chemical crosslinkers that react
with other functional groups in RNA with reduced bias will
further improve the efficiency, resolution, and dynamic range of
the distance measurements. Current modeling methods that can
use experimental constraints, such as Rosetta, are extremely
computationally expensive. With the ability to measure spatial

Fig. 5 SHARC-exo reveals dynamic conformations of expansion segments in the ribosome. a Distribution of reads based on their distances between the
two arms. For reads with minimal distance >40Å, the vast majority are mapped to the expansion segments (lower panel). b All hub1 interactions are
shown by red arcs. Among top-ranked DGs connecting hub1, the highest abundance expansion segment (78ES30), 4 of them are within the 28S (DGs 1–3
and 6), and 2 of them with the 18S (DGs 4 and 5). c Zoom-in view of hub1 and hub2, the two most highly connected dynamic regions in the rRNAs.
d Locations of the hub1 (red-colored, indicated by arrowheads) and its targets (gray, indicated by arrows). Blueline: 28S rRNA. Yellow line: 18S rRNA.
Blackline: 5.8S rRNA. e, f Cryo-EM (e) and a representative Rosetta (f) model of the hub1-hub2 region (28S:3936–4175) in the ribosome. Distances are
between the 2′OH groups at nucleotides 4000 and 4123. f The Rosetta model was constructed with a single constraint between nucleotides 4000 and
4123. Source data are provided as a Source Data file.

Fig. 6 SHARC-exo, PARIS, and eCLIP reveal compact folding of the 7SK RNA. a Secondary structure model of the human 7SK RNA (Marz 2009, helices
M1-M8 and single-stranded regions SS1–4) and 15 SHARC-exo derived spatial constraints (thick black lines). HEXIM and LARP7 binding sites are labeled.
b SHARC-exo derived tertiary proximities between M3 and M7. c Marz 2009 secondary structure model of 7SK in arc format. d eCLIP and PARIS captures
long-range contacts among M1, M3, and M7. Each track shows the coverage of one DG connecting two regions. e PARIS two-gap (3-segment) reads that
support long-range contacts in the compact 7SK RNA. The 5 vertical dash lines align the major peaks interacting with each other. f Comparison of long-
range contacts derived from SHARC-exo, PARIS 2-segment, eCLIP 2-segment, and PARIS 3-segment reads. g Model of spatial proximity between M3 and
M7 as determined by all 3 methods.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28602-3 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:911 | https://doi.org/10.1038/s41467-022-28602-3 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


distances in high throughput, new computational tools are
urgently needed further to exploit the rich structural information
in the SHARC-exo data and enable more rapid 3D modeling for
larger RNAs and deconvolution of structural ensembles on a
transcriptome-wide scale. Targeted enrichment coupled with
SHARC-exo can be applied to many low-abundance RNAs to
study their structures24. We anticipate that direct high through-
put analysis of RNA 3D structures in vivo will reveal new prin-
ciples of RNA structure formation and function. Given the critical
roles of RNA in human genetic and infectious diseases, in vivo,
3D structural information is invaluable for developing RNA-
based and RNA-targeted therapeutics.

Methods
Synthesis of activated dicarboxylic acids. 1,1′-Oxalyldiimidazole was purchased
from Tokyo Chemical Industries. All other activated dicarboxylic acids were syn-
thesized (Supplementary Fig. 1). The dicarboxylic acid (0.20 mmol) was dissolved
in 0.1 mL of DMSO. To this was added a solution of CDI (0.40 mmol) in DMSO
(0.1 mL) and the resulting mixture was kept under nitrogen at room temperature
for 1 h. Heavy bubbling was observed in all cases, which stopped after ~10 min. The
resulting 1.0 M solution of activated dicarboxylic acids was used immediately in
crosslinking experiments, without further purification. Successful activation was
confirmed for all compounds and full analysis (1H NMR, 13C NMR, and MS) was
obtained. Note that imidazole is formed as a byproduct in the reaction and is
present in all spectra, which can be found in the Supplementary Information.

In vitro crosslinking of model RNA. The model RNA 1 was purchased from
Integrated DNA Technologies. Nine μL of 10 μM RNA 1 in 0.06M MOPS, pH 7.5;
0.1 M KCl; 2.5 mM MgCl2, was heated to 95 °C for 2 min and then slowly cooled to
room temperature. One μL of 1M activated dicarboxylic acid stock solution in
DMSO was added and the mixture was incubated for 4 h at room temperature.
Reactions were quenched by the addition of 9 volumes of precipitation solution
(0.33 M NaOAc, pH 5.2, glycogen 0.2 mg/mL) and 30 volumes of absolute ethanol.
RNA was precipitated for 1 h at −20 °C and then centrifuged (21,000 × g) for
40 min at 4 °C. The pellet was washed with 70% ethanol, air-dried, and resus-
pended in 10 μL RNase-free water. Precipitated RNA was analyzed using 20%
PAGE and imaged using Sybr Gold and a Bio-Rad Gel Documentation System
(Image Lab software, v6.0.1) and safeVIEW-MINI2 Imaging System. The dis-
tribution between unreacted RNA 1 and crosslinked RNA was determined by
quantifying the band intensity with ImageJ (V1.52t). All experiments were per-
formed in triplicate.

Reversal of in vitro crosslinked RNA. Five microlitres of 10 μM crosslinked RNA
in water were diluted with 45 μL 100 mM borate buffer pH 10.0 and incubated for
2 h at 37 °C. Reactions were quenched by addition of 50 μL of precipitation solution
(0.33 M NaOAc, pH 5.2, glycogen 0.2 mg/mL) and 300 μL of absolute ethanol.
RNA was precipitated for 1 h at −20 °C and then centrifuged (21,000 × g) for
40 min at 4 °C. The pellet was washed with 70% ethanol, air-dried, and resus-
pended in 10 μL RNase-free water. RNA was analyzed using 20% PAGE and
imaged using Sybr Gold and a Bio-Rad Gel Documentation System and safeVIEW-
MINI2 Imaging System. The distribution between unreacted RNA 1and cross-
linked RNA was determined by quantifying the band intensity with ImageJ
(V1.52t). All experiments were performed in triplicate.

Cell culture. HeLa (CCL-2) and HEK293T (CRL-3216) cells were purchased from
ATCC and maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco)+ 10% fetal bovine serum (FBS, Gibco)+ Pen/Strep antibiotic, in 37 °C
incubators with 5% CO2. All cell cultures were handled according to protocols
approved by the University of Southern California.

SHARC crosslinker preparation for crosslinking. SHARC reagents were made by
dissolving 1-part SHARC reactant in 200 μl anhydrous DMSO (Sigma, 276855) and
2 parts CDI Sigma, 115,533) in 250 μl DMSO. Dissolved SHARC reactant was
pipetted into the tube containing CDI. After briefly vortex and spinning down, a
needle was inserted into the top of the 1.5 mL centrifuge tube to allow the CO2

product to escape. Mixed solutions were left at room temperature to react for
30–60 min before crosslinking.

In vivo crosslinking. Hela and HEK293T cells with 80% confluency in a 10 cm
dish were washed twice with 1× phosphate-buffered saline (PBS). Then cells were
collected, resuspended in 1× PBS, and transferred into a 1.5 ml tube with a final
volume of 900 μl. For each tube of cells, added 100 μl of SHARC crosslinker to
make the final concentration of 0, 5, 12.5, and 25 mM. Cells were incubated in a
rotator at room temperature for 30 min. After crosslinking, crosslinking solution
was removed and cells were washed twice with 1× PBS.

Extraction of crosslinked RNA (TNA method, adapted from1). For each 10 cm
dish cell, added 100 μl of 6 M GuSCN (Sigma, 368975) and lysed cells with vigorous
manual shaking for 1 min. Then, cell lysate was added 12 μl of 500 mM EDTA
(Invitrogen™, 15575020), 60 μl of 10× PBS (Invitrogen™, AM9625), and water to a
final volume of 600 μl. Each sample was passed through a 25 or 26 G needle about
20 times to further break the insoluble material. Proteinase K (PK) (Thermo Sci-
entific™, EO0492) was added to a final concentration of 1 mg/ml, and PK treatment
was performed at 37 °C for 1 h on a shaker at 1000–1200 × g. After PK digestion,
60 μl of 3 M sodium acetate (pH 5.3) (Invitrogen™, AM9740), 600 μl of water-
saturated phenol (pH 6.6) (Invitrogen™, AM9712), and 1 volume pure isopropanol
were added to precipitate total nucleic acids by spinning at 17,000 × g for 20 min at
4 °C. After twice washing using 70% ethanol, total nucleic acids were resuspended
in 300 μl of nuclease-free water. For 100 μg of TNA samples, 50 units of TURBO™

DNase (Invitrogen™, AM2239) were added to remove DNA at 37 °C for 20 min.
Then added 20 μl of 3 M sodium acetate, an equal volume of water-saturated
phenol, two-volume of pure isopropanol to precipitate RNA sample by spinning
20 min at 12,000 × g at 4 °C.

RNA fragmentation. A 10 μg of cross-linked RNA was fragmented using 10 μl of
RNase III (NEB, M0245) with 5mM MnCl2 and 1× supplied shortcut buffer at
37 °C for 5 mins. After incubation, an equal volume of phenol was immediately
added to stop the reaction. Then the one-tenth volume of 3 M sodium acetate (pH
5.3), 3 μl of GlycoBlue (Invitrogen™, AM9516), three-volume of pure ethanol were
added to precipitate RNA. Fragmented RNA was resuspended in RNase-free water.

DD2D purification of cross-linked RNA. First dimension gel. Prepare 8% 1.5 mm
thick denatured first dimension gel using the UreaGel system (National Diag-
nostics, EC-833) with MOPS buffer (Fisher, BP2900500). Briefly, 3.2 ml UreaGel
concentrate, 5.8 ml UreaGel diluent, 1 ml 10× MOPS buffer, 80 μl 10% of APS, and
4 μl TEMED (Thermo Scientific™, 17919) were mixed to make 8% first dimension
gel. Loading dsRNA ladder (NEB, N0363S) as molecular weight marker. Run the
first dimension gel at 30W for 7–8 min in 1× MOPS buffer. After electrophoresis
was finished, staining the gel with SYBR Gold (Invitrogen™, S11494) in 1× MOPS
buffer and excising each lane between 50 nt to topside from the first dimension gel.
The second dimension gel can usually accommodate three gel splices.

Second dimension gel. Prepare the 16% 1.5 mm thick urea denatured second
dimension gel using the UreaGel system with MOPS buffer. Briefly, 6.4 ml UreaGel
concentrate, 2.6 ml UreaGel diluent, 1 ml 10× MOPS buffer, 80 μl 10% of APS, and
4 μl TEMED were mixed to make 16% first dimension gel. Using prewarmed 1×
MOPS buffer to fill the electrophoresis chamber to facilitate denaturation of the
cross-linked RNA. Run the second dimension at 30W for 50 min to maintain high
temperature and promote denaturation. Gels were imaged using the iBright FL1500
Image System (iBright Analysis Software, v3.1.2). A gel containing the cross-linked
RNA above the diagonal from the 2D gel was excised and crushed for RNA
extraction.

RNase R treatment. RNase R is a 3′→ 5′ exonuclease that is capable of unwinding
and digesting double-stranded RNA with a 3′ overhang. Purified crosslinked RNAs
from DD2D gel were treated with 20 units of RNase R (Biovision, M1228) in 1×
RNase R digestion buffer with 5 mM ATP at 45 °C for 2, 12, and 24 h, respectively.
Control RNA was without RNase R treatment. After RNase R treatment, the one-
tenth volume of 3M sodium acetate (pH 5.3), 3 μl of GlycoBlue, three-volume of
pure ethanol were added to precipitate RNA.

Proximity ligation. Purified RNA fragments were proximity ligated by T4 RNA
Ligase1 (NEB, M0437M). Briefly, 2 μl of 10× ligation buffer, 5 μl of T4 RNA Ligase,
1 μl of SuperaseIn (Invitrogen™, AM2696) and 1 μl of 0.1 mM ATP were added to
10 μl of purified dsRNA fragments2. Ligation mixture was incubated at room
temperature overnight. After ligation, the samples were boiled for 2 min to stop the
reaction. After heat denaturation, samples were centrifuged to remove the pre-
cipitate and then precipitated by ethanol.

Reverse crosslinking. To proximity ligated RNA fragments, 5× decrosslinking
buffer (500 mM Boric acid, pH 11) was added, and nuclease-free water was added
to bring decrosslinking buffer to 1×. Samples were incubated for 2 h at 45 °C to
guarantee reversal (this is higher than the temperatures used in the in vitro
experiments). After reverse crosslinking, RNA was purified with three-volume of
ethanol and 1 μl of GlycoBlue.

Adapter ligation. Reverse crosslinked RNAs were heated at 80 °C for 90 s, then
snapped cooling on ice. To each sample, 3 μl of 10 μM ddc adapter /5rApp/
AGATCGGAAGAGCGGTTCAG/3ddC/, 1 μl of T4 RNA ligase 1, 2 μl of DMSO,
5 μl of PEG8000, 1 μl of 0.1 M DTT, 1 μl of SuperaseIn and 2 μl of 10x T4 RNA
ligase buffer were added to perform adapter libation at room temperature for 3 h.
After adapter ligation, the following reagents were added to remove free adapters:
3 μl of 10x RecJf buffer (NEBuffer 2, B7002S), 2 μl of RecJf (NEB, M0264S), 1 μl of
5′Deadenylase (NEB, M0331S), 1 μl of SuperaseIn, Reaction was incubated at 37 °C
for 1 h. Then 20 μl of water was added to each sample to make a total volume of
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50 μl and Zymo RNA clean and Concentrator-5 (Zymo Research, R1013) was used
to purify RNA.

Reverse transcription. SuperScript IV (SSIV) (Invitrogen™, 18090010) was used to
perform reverse transcription. The reaction buffer was optimized Mn2+ buffer
(1×): 50 mM Tris-HCl (PH 8.3), 75 mM CH3COOK, and 1.5 mM MnCl2. Briefly,
1 pmol of barcoded RT primer and 1 μl of 10 mM dNTP were added to RNA
samples and heated at 65 °C for 5 min in a PCR block, chilling the samples on ice
rapidly. Then 4 μl of 5× Mn2+ buffer, 2 μl of 0.1 M DTT, 1 μl of SuperaseIn and 1 μl
of SSIV were added to each sample. The mixed sample was incubated at 25 °C for
15 min, 42 °C for 10 h, 80 °C for 10 min; hold at 10 °C. After reverse transcription,
1 μl RNase H and RNase A/T1 mix were added and incubated at 37 °C for 30 min
in a thermomixer to remove RNA. Synthesized cDNA was purified using Zymo
DNA clean and Concentrator-5.

cDNA circularization and library generation. 1 μl of CircLigase™ II ssDNA Ligase
(Lucigen, CL9021K), 1 μl of 50 mM MnCl2 and 10× CircLigaseII™ buffer were
added to cDNA sample and performed circularization at 60 °C for 100 min. An
80 °C treatment for 10 min was followed to stop the reaction. The circularized
cDNA products were directly used to library PCR. Library PCR preparation was
performed3. PCR products were run on 6% native TBE gel. A gel containing DNA
products from 175 bp and topside (corresponding to >40 bp insert) was excised and
crushed for DNA extraction.

In vitro SHARC-exo analysis of the P4-P6 RNA. The P4–P6 (PDB: 1HR2) DNA
with T7 promoter (TAATACGACTCACTATAG) was purchased from twist
bioscience. After PCR amplification, the DNA was cleaned up using the Qiagen
PCR Purification Kit and purified using an 8% native polyacrylamide gel. The P4-
P6 (1HR2) RNA was transcribed using the MEGAscript T7 Transcription Kit from
Thermo Fisher (AM1334) from 136 ng of DNA template and purified on dena-
tured polyacrylamide gels. 10 μg of P4–P6 RNA, 10 μL of refolding buffer, and
water was added to a final volume of 44 μL per sample. The RNA was then
denatured by incubating at 90 °C for 5 min followed by snap cooling on ice. 1 μL of
500 mMMgCl2 was then added to each sample while cold and then mixed. Samples
were then allowed to come to room temperature over several minutes to refold.
After refolding, either 5 μL of DMSO for controls or 5 μL 50mM DPI was added to
each sample. Samples were then incubated at room temperature for 30 min. After
incubation, samples were purified using ethanol precipitation. The crosslinked
RNA was then converted into cDNA libraries as described above. In particular, we
divided the crosslinked RNA fragments from the DD2D gels into 2 fractions, where
one was treated with RNase R at 37 °C for 2 h, while the other was not treated. The
cDNA library was sequenced on a MiSeq machine.

SHARC-Seq analysis
Mapping. BCL files were converted to fastq files using bcl2fastq2 Conversion Software
(v2.20.0). The 3′end adapters of sequencing data were removed using Trimmomatic
(v0.36). PCR duplicates were removed using readCollapse script from the icSHAPE
pipeline. After removing 5′ header, reads were mapped to manually curated hg38
genome using STAR (v2.7.0 f) program4. The parameters used are as follows: STAR
--runThreadN 8 --runMode alignReads --genomeDir OuputPath --readFilesIn Sam-
pleFastq --outFileNamePrefix Outprefix --genomeLoad NoSharedMemory out-
ReadsUnmapped Fastx --outFilterMultimapNmax 10 --outFilterScoreMinOverLread
0 --outSAMattributes All --outSAMtype BAM Unsorted SortedByCoordinate
--alignIntronMin 1 --scoreGap 0 --scoreGapNoncan 0 --scoreGapGCAG 0 --scor-
eGapATAC 0 --scoreGenomicLengthLog2scale -1 --chimOutType WithinBAM
HardClip --chimSegmentMin 5 --chimJunctionOverhangMin 5 --chimScor-
eJunctionNonGTAG 0 --chimScoreDropMax 80 --chimNonchimScoreDropMin 20.

Classify alignments. The primary mapping alignments were extracted from Sam-
pleAligned.sortedByCoord.out.bam using SAMtools (v1.8), and classified into six
different types using gaptypes.py (https://github.com/zhipenglu/CRSSANT)5.
cont.sam, continuous alignments; gap1.sam, non-continuous alignments with one
gap; gapm.sam, non-continuous alignments with more than one gaps; trans.sam,
non-continuous alignments with the two arms on different strands or chromo-
somes; homo.sam, non-continuous alignments with the two arms overlapping each
other; bad.sam, non-continuous alignments with complex combinations of indels
and gaps. Gap1. and gapm alignments containing splicing junctions and short 1–2
nt gaps were filtered out using gapfilter.py (https://github.com/zhipenglu/
CRSSANT). Then filtered gap1.sam, filtered gapm.sam and trans.sam were used to
analyze RNA structures and interactions.

Cluster alignments to groups. Filtering alignments were assembled to DGs and NGs
using the crssant.py script (https://github.com/zhipenglu/CRSSANT). After DG
clustering, crssant.py verifies that the DGs do not contain any non-overlapping
reads, i.e., any reads where the start position of its left arm is greater than or equal
to the stop position of the right arm of any other read in the DG. If the DGs do not
contain any non-overlapping reads, then the following output files ending in the
following are written: Sample.sam: SAM file containing alignments that were

successfully assigned to DGs, plus DG and NG annotations; dg.bedpe: bedpe file
listing all duplex groups.

Visualization of SHARC-seq data in Integrative Genomics Viewer. Assembled
alignments with DGs tag were displayed using integrative Genomic Viewer (IGV)6

visualization tool (V.2.8.13). The bed output file (from crssant.py script) can be
visualized in IGV, where the two arms of each DG can be visualized as two “exons”,
or as an arc that connects far ends of the DG.

Structure analysis of rRNAs. To analyze the RNase R trimming efficiency (e.g.,
Fig. 2f), we examined gapped alignments against the ribosome cryo-EM structure.
For each alignment, we calculated the minimum physical distance between the two
arms in the ribosome. Then the nucleotides involved in the minimal distances were
recorded (counting from the 3′ end of each arm). In a hypothetical example, we
found that the minimal distance between the two arms in one read was between the
10th nt from the right arm and the 15th nt from the left arm (both counting from
the 3′ ends). Then this tuple (10, 15) is considered one point on the heatmap
(Fig. 2f and Supplementary Fig. 5b). After all the minimal distance nucleotides are
calculated, their frequencies are plotted in the heatmap in square root scale.

The SHARC-seq reads aligned to 45S pre-rRNA (NR_046235.3) were collected
and used to construct the interaction matrix. To build the physical interaction map
of 28S rRNA and 18S rRNA, the cryo-EM model of the 28S rRNA and 18S rRNA
was downloaded from RCSB Protein Data Bank (PDB) (ID: 4V6X). Watson-Crick
and non-Watson-Crick base pairs were analyzed using the DSSR software (v1.7.7)7.
The 3D structures of the ribosome were visualized by the PyMOL system
(Educational version, https://pymol.org/2/). Spatial distances in the cryo-EM model
were extracted directly for use. The resolution of the human ribosome cryo-EM
model is highly variable across the entire complex (PDB: 4V6X, Supplementary
Fig. 2c from8). Although the average resolution is 5.4 Å, the lowest goes to 21 Å.
The ribosome structure analysis and conclusions are based on longer distance
intervals, e.g., 0–20 and 20–40 Å. The modeling runs also used 0–20 and >20 Å as
the intervals for penalty calculations. In addition, the low-resolution regions are
confined to the expansion segments and do not affect the analysis of the stable core
regions (as we showed in the B-factor plot, Supplemental Fig. 11d, e). In our
analysis of the expansion segments, the distances that we focused on are much
longer than 20 A (Fig. 5e, f, Supplementary Fig. 11h, i). Therefore, the limited
resolution of the ribosome model does not affect the analysis.

Structure analysis of representative RNAs. In order to accurately and easily
analyze SHARC-seq data, pseudogenes and multicopy genes from gencode,
refGene, and Dfam were masked from hg38 genome. And then a single copy of
them was added back as a separated “chromosome”. For example, multicopy of
snRNAs were masked from the basic hg38 assembly genome, and 9 snRNAs (U1,
U2, U4, U5, U6, U11, U12, U4atac, and U6atac) were concatenated into one
reference, separated by 100 nt “N”s, was added back. The curated hg38 genome
contained 25 reference sequences, or “chromosomes”, masked the multicopy genes,
and added back single copies. This reference is best suited for the PARIS analysis.
SHARC-seq reads were mapped to representative RNAs were collected and used
for IGV visualization.

Cross-linking distance analysis. The ribose 2′OH in every flexible nucleotide
(single-stranded or icSHAPE activated) was used to calculate the cross-linking
distance. The minimum distance between two arms’ flexible nucleotide was used to
analyze the minimum distance distribution. The distance between No.3 to No.7
flexible nucleotides from the 3′end of each arm was used for 3–7 distance dis-
tribution analysis.

rRNA dynamic structure analysis. The core and expansion segment boundaries
of rRNA were derived from Chandramouli et al. (2008)9 and Wakeman and Maden
(1989)10. The SHARC-seq reads with ≥40 Å between two arms were collected and
separated to core and expansion alignments. The dynamic reads were selected
based on the rules that one arm mapped to the same region of rRNA, other arm
mapped to different regions. The selected dynamic alignments were loaded to IGV
for visualization.

Computational Modeling of h22–24 region in the 18S. Rosetta software (version
2020.08.61146) was used to model RNAs for this study11,12. Helices of secondary
structure regions were pre-built with the example command below to save com-
putational expense: rna_helix.py -seq cag cug -resum 5–7 27–29 -o exam-
ple_helix_1.pdb. The 920–1080 nucleotide region of the human 18S RNA was
modeled with and without SHARC determined constraints. For the model set
without SHARC constraints, no cst file or flag was used. For the model set with
SHARC constraints, the following linear energy function example command was
used to assign constraints for 2′OH atoms that participated in the crosslinking
reaction so that between 0A–20A there is no energy penalty and to apply a linearly
scaling energy penalty if the atoms are >20 A apart.
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AtomPair O2′ 63 O2′ 117 LINEAR_PENALTY 10.0 0 10 1.0. Here 10.0 is the
ideal distance between the atoms in Å, 0 is the energy penalty assigned to the range,
10 is the tolerance for the energy trough and 1.0 is the slope constraint.

Models were built with the command shown below using fasta, secondary
structure and constraint files (for modeling set containing the SHARC data,
otherwise no constraint file). For the native file used to get a rms for these files, the
920–1080 region of the 18S RNA was cut out using pymol and renumbered using
renumber_pdb_in_place.py.

rna_denovo.static.linuxgccrelease -nstruct 1000 -fasta../18s_920_1080.fasta -s../
18s_920_1080_helix_1.pdb../18s_920_1080_helix_2.pdb-secstruct_file../18s_920_
1080.secstruct -cst_file../18s_920_1080.cst -native../18s_920_1080_renumbered.
pdb -minimize_rna true -out:file:silent 18s_920_1080_tert.out

After modeling runs were finished, models were extracted using easy_cat.py.
Example: easy_cat.py directory. To extract the top 1% scoring models from the bulk
of the models for each run condition the following command was used (in this
example 200 models are extracted): silent_file_sort_and_select.py [example_file.out]
-select 1–200 -o [example_file_cluster.out]. The lowest 1% energy models were then
clustered from each run condition to inspect the different pose topologies that
existed within the lowest energy scoring models. Clustering was done with the
command shown below (in this example 10 clusters are made using a cluster radius
of 5 Å: rna_cluster.static.linuxgccrelease -in:file:silent [example_file.out] -out:nstruct
10 -cluster:radius 5 -out:file:silent [example_file_cluster.out]. Clusters were
extracted with the following command. The -no_replace_names flag here is used to
prevent clusters from being renamed: python extract_lowscore_decoys.py
[example_cluster_file.out] -no_replace_names.

Computational 3D modeling of the P4-P6 RNA. The P4-P6 secondary structure
was determined from PDB:1HR2 and is as follows:….((((.(….((((((….(((..(((((((..
(((((((((….)))))))))……………..)))….).))).)))…))))))…).))))((…((((…((((((((…..)))
)))))..))))…))..Models were generated using the following sample command line:
rna_denovo.static.linuxgccrelease -nstruct 1000 -fasta../1hr2.fasta -secstruct_file../
1hr2.secstruct -s../1hr2_helix* -cst_file../1hr2_trim_tert.cst -native../1hr2_chai-
n_a_native.pdb -out:file:silent 1hr2_20A.out -minimize_rna true. Models generated
without constraints had the –cst_file flag and cst file omitted from the command.
The top 5 DGs by number of reads in SHARC-exo data, each with >3% of total
reads, were used to constrain modeling with the equivalent DG being used for
SHARC-constrained models. Linear atom pair constraint was set so that distances
within 20 Å carried no penalty and distances greater then 20 Å were penalized with
a slope of 1. RMSD values for models against the 1HR2 crystal structure was
calculated. The top 100 scoring models from each group were clustered into 5
groups with a cluster radius of 5 Å. Wilcox Ranked Sum Tests were performed
between each two groups of top 100 models with the following R command wil-
cox.test (rmsd ~ group, data = XXX, exact = FALSE, alternative= ‘greater’).

Analysis of hub1-hub2 alternative conformations. First, the minimal 28 S seg-
ment that contained both regions are limited to residues 3935 – 4175. Secondary
structure was determined by running x3dna on the extracted segment7: x3dna-dssr
-i=input.pdb -o=dssr.out. As the structure did not contain bases for all models so
we went by hand to assign addition bases pairs base on geometry. Secondary
structure is as follows: ((..(((((((.((((.((((……….(((((…((((………(.((…………
……….)).)……………..))))………….))))).)))).)).)).)))))))…(((((…..((((..((.((((
((….))))))))……………((((((((((…..))))))))))…))))..)))))…..)).

We generated 15317 models using FARFAR by command:
rna_denovo.default.macosclangrelease -s stem_1.pdb stem_2.pdb helix_1.pdb
helix_2.pdb -nstruct 1000 -fasta test.fasta -secstruct_file test.secstruct
-minimize_rna false -cst_file test.cst, where the pdbs contained the original static
structures of helices and stems not included in the contact. Linear atom pair
constraint was set such that distances within 20 Å carry no penalty, while distance
above 20 Å is penalized at a slope of 1. For each of the models, we checked for steric
clashes of the rest of the RNA and local proteins by comparing the distance
between each phosphate of each modeled RNA nucleotide to the phosphate of each
remaining RNA and the c-alpha of an atom of each amino acid. A clash was
defined as a distance of fewer than 5 Å.

Analysis of 7SK structures using PARIS. PARIS data from human and mouse
cells were used to generate DGs for 7SK13. To analyze the secondary structures of
7SK, we clustered HEK293T PARIS non-continuous alignments on 7SK using
CRSSANT3.

Analysis of 7SK structures using LARP7 eCLIP. LARP7 eCLIP data in HepG2 and
K562 cells were downloaded from ENCODE14 and analyzed as follows. First reads
mapped to 7SK were extracted from the mapped bam files (chr6:52995620–52995951 in
hg38 coordinates). Reads with CIGAR gap flags D and N are extracted. All reads with D
flags are converted to N for consistency. Then all reads with “N” were divided into three
groups based on read start using the script readspan7SK.py and short-span reads were
used to construct local structures.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding
authors upon reasonable request. The raw and processed SHARC sequencing data were
deposited to NCBI GEO with accession number GSE167812. All PDB data are available
via Protein Data Bank (4V6X, 1HR2, 6AHR, 6FRK, 6QW6). Source data are provided
with this paper.

Code availability
Custom codes used for data analysis in this paper can be found at https://github.com/
zhipenglu/CRSSANT and https://github.com/minjiezhang-usc/SHARC-seq.
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