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Abstract
Sorghum	(Sorghum bicolor	[L.]	Moench)	is	the	fifth	most	productive	cereal	crop	world-
wide	with	some	hybrids	having	high	biomass	yield	traits	making	it	promising	for	sus-
tainable,	 economical	 biofuel	 production.	 To	 maximize	 biofuel	 feedstock	 yields,	 a	
more	complete	understanding	of	metabolic	responses	to	low	nitrogen	(N)	will	be	use-
ful	for	incorporation	in	crop	improvement	efforts.	In	this	study,	10	diverse	sorghum	
entries	(including	inbreds	and	hybrids)	were	field-	grown	under	low	and	full	N	condi-
tions	and	roots	were	sampled	at	two	time	points	for	metabolomics	and	16S	amplicon	
sequencing.	Roots	of	plants	grown	under	low	N	showed	altered	metabolic	profiles	at	
both	sampling	dates	including	metabolites	important	in	N	storage	and	synthesis	of	
aromatic	amino	acids.	Complementary	investigation	of	the	rhizosphere	microbiome	
revealed	dominance	by	a	single	operational	taxonomic	unit	(OTU)	in	an	early	sampling	
that	 was	 taxonomically	 assigned	 to	 the	 genus	 Pseudomonas.	 Abundance	 of	 this	
Pseudomonas	OTU	was	significantly	greater	under	low	N	in	July	and	was	decreased	
dramatically	in	September.	Correlation	of	Pseudomonas	abundance	with	root	metab-
olites	revealed	a	strong	negative	association	with	the	defense	hormone	salicylic	acid	
(SA)	under	full	N	but	not	under	low	N,	suggesting	reduced	defense	response.	Roots	
from	plants	with	N	stress	also	contained	reduced	phenylalanine,	a	precursor	for	SA,	
providing	further	evidence	for	compromised	metabolic	capacity	for	defense	response	
under	low	N	conditions.	Our	findings	suggest	that	interactions	between	biotic	and	
abiotic	stresses	may	affect	metabolic	capacity	for	plant	defense	and	need	to	be	con-
currently	prioritized	as	breeding	programs	become	established	for	biofuels	produc-
tion	on	marginal	soils.
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1  | INTRODUC TION

Sorghum	(Sorghum bicolor	[L.]	Moench)	is	the	fifth	most	productive	
cereal	 crop	worldwide	with	a	variety	of	uses	 including	animal	 for-
age,	sugar	production,	and	more	recently,	lignocellulosic	biomass	for	
bioenergy	 (Rooney,	Blumenthal,	Bean,	&	Mullet,	2007).	Sorghum's	
high	biomass	yield	and	drought	tolerance	potential	make	it	a	prom-
ising	 feedstock	 for	 sustainable,	 economical	 biofuel	 production.	
Production	strategies	that	utilize	agricultural	 lands	not	suitable	for	
food	production	and	 improve	economic	viability	are	a	 top	priority	
for	biofuel	feedstocks	(Langholtz,	Stokes,	&	Eaton,	2016).	Improving	
biomass	 production	 will	 require	 maximizing	 yield	 while	 reducing	
costly	inputs,	including	nitrogen	(N),	and	water	(Fazio	&	Monti,	2011,	
National	Research	Council,	2012).	Fortunately,	sorghum	possesses	
significant	genetic	diversity	 for	N	use	efficiency	 (Gelli	et	al.,	2014,	
2016),	 yield	 potential	 and	 drought	 tolerance	 (Mace	 et	al.,	 2013).	
Furthermore,	the	availability	of	a	reference	genome	(Paterson	et	al.,	
2009),	an	expression	atlas	(Shakoor	et	al.,	2014),	and	over	400,000	
markers	(Morris	et	al.,	2013)	identified	for	marker-	assisted	breeding	
makes	sorghum	well-	suited	for	significant	crop	improvement.

Modern	“omics”	techniques	function	as	valuable	molecular	dis-
covery	tools	for	assessing	plant	stress	responses	on	a	molecular	level	
(Urano,	Kurihara,	Seki,	&	Shinozaki,	2010).	The	“metabolome”	is	de-
scribed	by	surveying	all	low	molecular	weight	metabolites	generated	
as	a	result	of	gene-	regulated	and	environmentally	induced	responses	
(Brunetti,	George,	Tattini,	Field,	&	Davey,	2013;	Ganie	et	al.,	2015).	
Since	metabolites	are	one	measurable	endpoint	of	all	cellular	regu-
latory	activities,	they	have	been	described	as	“the	ultimate	response	
of	biological	systems	to	genetic	or	environmental	changes”	 (Fiehn,	
2002).	Thus,	metabolomics	is	a	robust	approach	for	determining	the	
molecular	phenotype,	especially	 in	assessing	response	during	both	
abiotic	 (Ganie	 et	al.,	 2015;	 Sánchez-	Martín	 et	al.,	 2015)	 and	 biotic	
(Scandiani	 et	al.,	 2014)	 stress	 and	 in	 identifying	 potential	 targets	
for	metabolic	engineering	(Tsogtbaatar,	Cocuron,	Sonera,	&	Alonso,	
2015).	 For	 example,	 previous	 research	has	 associated	biomass	 ac-
cumulation	with	specific	sorghum	leaf	metabolites	that	vary	across	
different	 sorghum	genetic	 lines	 (Turner	 et	al.,	 2016).	However,	 re-
lationships	 between	 root	metabolites	 and	 biomass	 yields	 in	 field-	
grown	sorghum	have	been	largely	ignored.

As	 a	 synergistic	 approach	 to	 plant	 breeding,	 beneficial	 mi-
crobes	 offer	 an	 underutilized	 opportunity	 to	 improve	 plant	
performance,	 especially	 on	 marginal	 lands	 with	 minimal	 inputs	
(Coleman-	Derr	&	Tringe,	2014).	Plant	growth	and	health	may	be	
improved	through	interactions	with	beneficial	soil	microorganisms	
via	a	number	of	mechanisms	including	increased	nutrient	availabil-
ity,	 production	 of	 protective	 or	 growth-	promoting	 enzymes	 and	
compounds,	 and	 competitive	 exclusion	 of	 pathogens	 (Chaparro,	
Sheflin,	Manter,	 &	Vivanco,	 2012;	 Farrar,	 Bryant,	 &	 Cope-	Selby,	
2014).	Under	marginal	 soil	 conditions	microbes	may	 play	 an	 im-
portant	role	in	providing	nitrogen	to	cereals	and	have	been	shown	
to	 potentially	 assist	 sorghum	with	 the	 acquisition	 of	N	 in	 nutri-
ent	 depleted	 environments	 (Carvalho,	 Balsemão-	Pires,	 Saraiva,	

Ferreira,	&	Hemerly,	2014;	Kochar	&	Singh,	2016;	Rupaedah,	Anas,	
Santosa,	 Sumaryono,	 &	 Budi,	 2016).	 Next-	generation	 sequenc-
ing	 provides	 an	 opportunity	 to	 identify	 potential	 microbes	 that	
may	 provide	 these	 benefits,	 even	 those	 not	 amenable	 to	 rapid	
laboratory	 cultivation	 (Knief,	 2014).	 Sorghum-	associated	 bacte-
rial	 communities	 have	 been	 recently	 reviewed	 (Kochar	 &	 Singh,	
2016)	and	one	study	 identified	N	application	as	a	primary	factor	
in	determining	N-	fixing	community	structure	in	the	sorghum	rhi-
zosphere	(Rodrigues	Coelho	et	al.,	2007).	Conversely,	detrimental	
microorganisms	present	additional	challenges	to	maximizing	yield	
in	marginal	environments	that	lack	the	optimal	amounts	of	water	
or	nitrogen	 (van	der	Heijden,	Bardgett,	&	van	Straalen,	2008).	A	
better	understanding	of	 these	 interactions	among	soil	nutrients,	
bacteria,	and	sorghum	yields	will	be	an	important	part	of	the	de-
velopment	 of	 sustainable	 and	 economical	 biofuel	 production	 on	
marginal	land.

The	primary	goal	of	this	study	is	to	improve	our	understanding	
of	the	root	metabolic	response	to	low	N	in	field	grown	sorghum.	
Utilizing	an	 integrative	approach,	we	 incorporated	data	 from	ag-
ronomic	 traits,	 the	 root	metabolome	and	 the	 rhizosphere	micro-
biome	of	10	sorghum	lines	(including	inbreds	and	hybrids)	grown	
under	conditions	of	both	low	and	full	N	and	sampled	on	two	dates.	
Taken	 together,	 our	 findings	 highlight	 an	 array	 of	metabolic	 dis-
advantages	 due	 to	 N	 stress	 that	 may	 reduce	 capacity	 for	 plant	
defense.	 Therefore,	 secondary	 biotic	 stresses	 should	 be	 consid-
ered	as	a	potential	 consequence	of	abiotic	 stresses,	 such	as	 low	
N	availability.

2  | E XPERIMENTAL PROCEDURES

2.1 | Field description and experimental design

This	 study	 was	 conducted	 at	 Eastern	 Nebraska	 Research	 and	
Extension	 Center	 (ENREC)	 located	 near	 Mead,	 Nebraska	 in	 the	
United	States	during	the	summer	of	2015.	The	low	N	field	(GPS	co-
ordinates	41.163166,	−96.424108)	had	not	had	N	applied	for	more	
than	20	years	and	was	 in	an	oat/sorghum	rotation	with	oat	forage	
removed	each	 year.	 The	 full	N	 field	 (41.156414,	 −96.408031)	 had	
eighty	pounds	per	acre	of	N	in	the	form	of	anhydrous	ammonia	ap-
plied	 early	 in	 the	 spring	 and	was	 in	 a	 soybean/sorghum	 rotation.	
Both	fields	were	planted	on	June	2,	2015.

2.2 | Plant germplasm selection

Ten	 diverse	 entries	 of	 sorghum,	 representing	 a	 range	 of	 materi-
als	 based	on	 racial,	 geographic,	 and	 breeding	 status	 criteria,	were	
selected	 for	 testing	 (Table	1).	 All	 lines	 represent	 bioenergy	 types	
and	likely	would	be	candidates	for	biofuels	production.	Entries	are	
identified	by	plant	introduction	numbers	of	the	U.S.	National	Plant	
Germplasm	System	or	hybrid	numbers	from	Clemson	University	(for	
more	information	or	germplasm,	please	contact	Stephen	Kresovich	
at	Clemson).
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2.3 | Field sample collection

Soil,	 rhizosphere,	and	root	samples	were	collected	from	each	field	
two	times	during	the	growing	season.	The	sampling	dates	were	July	
22	and	September	15,	2015.	Two	plants	per	genotype	were	exca-
vated	from	the	top	30	cm	of	soil	using	a	shovel	at	two	different	loca-
tions	in	each	plot	as	described	previously	(McPherson,	Wang,	Marsh,	
Mitchell,	 &	 Schachtman,	 2018).	 Soil	 was	 removed	 from	 the	 roots	
using	a	tiller	and	collected.	A	variety	of	roots	including	crown,	semi-
nal,	and	primary	roots	were	excised	from	two	plants	and	placed	in	
a	50	ml	Falcon	tube	containing	35	ml	of	phosphate	buffer	(6.33	g/L	
NaH2PO4,	 8.5	g/L	 Na2HPO4	 anhydrous,	 200	μl/L	 Silwet	 L-	77).	
Roots	were	then	shaken	for	1–2	min	to	remove	some	of	the	rhizo-
sphere	 soil.	 Roots	were	 then	 separated	 for	 downstream	 analyses:	
DNA	extraction	and	microbiome	analysis,	and	metabolite	analysis.	
Rhizosphere	soil	and	roots	for	DNA	extraction	were	stored	in	50	ml	
Falcon	tubes	on	ice	for	transport	to	the	laboratory.

Samples	were	collected	for	biomass	analysis	on	October	8,	2015.	
An	above	ground	portion	of	plants	from	1	square	meter	for	each	plot	
was	weighed	 for	 fresh	biomass	measurements.	The	 same	 samples	
were	oven	dried	in	paper	sacks	until	reaching	a	stable	water	content	
before	weighing	for	dry	biomass	measurements.

2.4 | Laboratory preparation of roots, soil, and 
rhizosphere

Roots	that	were	brought	back	to	the	laboratory	on	regular	ice	were	
surface	 sterilized	 by	 rinsing	 for	 30	s	 in	 5.25%	 sodium	 hypochlo-
rite	+	0.01%	Tween	20,	followed	by	a	30-	s	rinse	in	70%	ethanol,	fol-
lowed	by	three	rinses	in	sterile	ultrapure	water.	Roots	were	blotted	
dry	on	a	clean	paper	towel,	placed	in	a	15	ml	tube,	frozen	at	−80°C,	
and	then	ground	in	liquid	N	prior	to	DNA	extraction.

The	rhizosphere	samples	were	filtered	through	a	sterile	100	μm 
mesh	filter	(Fisher	Scientific,	USA),	into	a	clean	50	ml	tube.	The	rhi-
zosphere	was	pelleted	at	3,000	×	g	for	10	min	at	room	temperature.	
The	pellet	was	 resuspended	 in	1.5	ml	 phosphate	buffer	 (6.33	g/L	
NaH2PO4,	8.5	g/L	Na2HPO4	anhydrous),	and	transferred	to	a	ster-
ile	2	ml	microfuge	 tube.	The	 rhizosphere	was	 re-	pelleted	by	spin-
ning	 tubes	 for	 5	min	 at	 full	 speed.	 The	 supernatant	 was	 drained	

off	and	the	rhizosphere	soil	pellet	was	stored	at	−20°C	until	DNA	
extraction.

A	small	2	ml	tube	of	soil	was	removed	carefully	to	avoid	any	root	
pieces	and	stored	for	DNA	extraction	at	−20°C.	Soil	was	then	sieved	
through	US	Standard	Sieve	#4,	4750	micron,	followed	by	Sieve	#8,	
2360	micron	 to	 remove	debris	 and	 roots.	Approximately	 100	g	 of	
sieved	soil	was	sent	for	soil	analysis	(Ward	Labs,	Kearney,	NE)	to	de-
termine	the	organic	carbon	and	nutrient	concentrations	of	the	soil.

2.5 | DNA extraction of soil, rhizosphere, and 
root samples

DNA	 was	 extracted	 from	 soil	 and	 rhizosphere	 samples	 using	
PowerSoil-	htp	96	Well	Soil	DNA	Isolation	Kit	(MoBio,	Carlsbad,	CA,	
USA)	 following	 the	 manufacturer's	 protocol.	 DNA	 was	 extracted	
from	 roots	 with	 PowerPlant	 Pro-	htp	 96	 Well	 DNA	 Isolation	 Kit	
(MoBio,	 Carlsbad,	 CA,	 USA)	 following	 the	 manufacturer's	 proto-
col.	The	DNA	was	quantified	with	the	Quantifluor	dsDNA	reagent	
(Promega)	following	the	manufacturer's	protocol.

2.6 | Amplification and Illumina sequencing of 16S 
tag sequences

DNA	was	quantified	and	amplified	 in	96	well	plates	with	single	 in-
dexed	primers	targeting	the	V4	region	of	the	bacterial	16S	rRNA	gene	
(Walters	et	al.,	2015).	Chloroplast	and	mitochondrial	peptide	nucleic	
acid	(PNA)	blockers	were	used	to	prevent	chloroplast	and	mitochon-
drial	amplification	in	all	samples	(Lundberg,	Yourstone,	Mieczkowski,	
Jones,	&	Dangl,	2013).	Amplified	samples	were	multiplexed	at	184	
samples	per	PE	2	×	300	Illumina	MiSeq	sequencing	run.	Data	from	
the	sequencer	was	demultiplexed	and	processed	through	bbduk	for	
end	trimming,	quality	filtering,	and	masking	(https://jgi.doe.gov/data-
and-tools/bbtools/bb-tools-user-guide/bbduk-guide/).	 High	 quality	
reads	were	processed	by	iTagger	version	2.2	(Tremblay	et	al.,	2015).	
Version	2.2	processes	sequencing	amplicon	data	by	iterative	cluster-
ing	of	reads	at	99%,	98%,	and	97%	identity	using	the	USEARCH	soft-
ware	suite,	and	then	performing	taxonomic	assignment	of	each	OTU	
(Edgar,	2010).	The	source	code	for	iTagger	is	available	on	Bitbucket:	
http://bitbucket.org/berkeleylab/jgi_itagger.	 For	 normalization	

Genotype Type Race Source Breeding status

PI	297130 Energy Caudatum Uganda Inbred

PI	505735 Energy Caudatum Zambia Inbred

PI	506030 Energy Guinea Togo Inbred

PI	510757 Energy Durra Cameroon Inbred

PI	642998 Sweet Bicolor U.S. Inbred

PI	655972 Energy Kafir U.S.	(Kansas) Inbred

C126 Energy Guinea U.S.	(South	Carolina) Hybrid

C225 Energy Caudatum U.S.	(South	Carolina) Hybrid

CO53 Energy Guinea U.S.	(South	Carolina) Hybrid

CO56 Energy Guinea U.S.	(South	Carolina) Hybrid

TABLE  1 Sorghum	accessions	utilized	
for	this	study

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
http://bitbucket.org/berkeleylab/jgi_itagger
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purposes	 and	 to	 remove	 low	 abundance	OTUs,	 we	 kept	 OTUs	 in	
the	downstream	analysis	that	had	at	least	two	reads	in	at	least	five	
samples	and	normalized	the	remaining	dataset	by	randomly	subsam-
pling	each	 sample	 to	a	 consistent	 read	depth	of	20,000	 reads	per	
sample.	The	normalized	OTU	table	was	analyzed	downstream	using	
MicrobiomeAnalyst	 (http://www.microbiomeanalyst.ca/)	 (Dhariwal	
et	al.,	2017)	to	produce	PCoA	visualizations	of	the	data.	Statistical	
analyses	of	the	normalized	OTU	table,	including	PERMANOVA	and	
ANCOM	(Mandal	et	al.,	2015)	were	performed	in	QIIME2	(https://
qiime2.org)	(Bolyen	et	al.,	2018).

2.7 | Sample preparation and extraction for 
metabolomics analysis

Immediately	 upon	 arrival,	 sorghum	 tissue	 samples	 were	 stored	
at	 −80°C	 with	 subsequent	 lyophilization	 for	 further	 analysis.	
Lyophilized	sorghum	tissue	was	homogenized	in	5	ml	polypropylene	
tubes	 using	 stainless	 steel	 beads	 and	 the	 Bullet	 Blender®	 Storm5	
homogenizer	 (Next	 Advance,	 Averill	 Park,	 NY).	 A	 19–21	mg	 por-
tion	 of	 the	 lyophilized	 and	 homogenized	 tissue	was	weighed	 into	
a	2	ml	glass	vial.	Extraction	of	 this	 tissue	 is	visually	summarized	 in	
Supporting	 Information	Figure	S5.	Phytohormones	were	extracted	
by	adding	1	ml	of	methyl-	tert-	butyl-	ether	(MTBE)	solution	contain-
ing	 6:3:1	 MTBE:methanol:water	 (v/v/v)	 and	 vortexing	 at	 4°C	 for	
60	min.	Next,	glass	vials	were	centrifuged	for	15	min	at	3,500	rpm.	
A	 400	μl	 aliquot	 of	 the	 extraction	 was	 dried	 completely	 under	 N	
gas,	resuspended	in	100	μl	methanol	and	stored	in	a	glass	insert	in	
a	2	ml	glass	vial	at	−80°C	until	further	analysis.	To	separate	organic	
and	aqueous	layers,	350	μl	of	water	was	added	to	the	remaining	ex-
tract	and	vortexed	for	30	min	at	4°C.	Glass	vials	were	centrifuged	at	
2,750	rpm	at	4°C	for	15	min	and	the	organic	 layer	was	transferred	
into	a	separate	2	ml	glass	vial.	The	aqueous	layer	was	transferred	to	
an	Ambion®	filter	cartridge	(Thermo	Fisher	Scientific,	USA)	and	cen-
trifuged	briefly	to	pass	the	aqueous	extract	through	the	column.	The	
filtrate	was	transferred	to	a	separate	glass	vial	and	stored	at	−80°C	
until	 further	analysis.	 In	addition,	a	pooled	extract	was	created	by	
combining	equal	volumes	of	each	sample	into	one	glass	vial	for	use	
as	a	consistent	representative	quality	control	sample	(QC).

2.8 | Targeted UPLC- MS/MS phytohormone  
analysis

Two	 microliters	 of	 monophasic	 plant	 extract	 were	 injected	 in	 an	
ACQUITY	UPLC	System,	equipped	with	an	ACQUITY	Binary	Solvent	
Manager	 (20	μl	 sample	 loop,	 partial	 loop	 injection	 mode;	 Waters	
Corporation).	 An	 Acquity	 UPLC	 T3	 column	 (1	×	100	mm,	 1.8	μM;	
Waters	 Corporation)	 was	 used	 for	 chromatographic	 separation.	
Mobile	phase	A	consisted	of	LC-	MS	grade	water	with	0.1%	formic	
acid	and	mobile	phase	B	was	100%	acetonitrile.	The	elution	gradient	
was	 initially	0.1%	B	 for	1	min,	which	was	 increased	 to	55.0%	B	at	
12	min	and	further	increased	to	97.0%	B	at	15	min,	then	decreased	
to	0.1%	B	at	15.5	min.	The	column	was	re-	equilibrated	for	4.5	min	for	
a	total	run	time	of	20	min.	The	flow	rate	was	set	to	120	μl/min and 

the	column	temperature	was	maintained	at	45°C.	Mass	spectrom-
etry	was	performed	on	a	Xevo	TQ-	S	triple	quadrupole	MS	(Waters	
Corporation)	operated	in	selected	reaction	monitoring	(SRM)	mode	
(Supporting	Information	Table	S5).

Skyline	bioinformatics	 software	 (MacLean, Bioinformatics	2010)	
was	used	to	detect	and	integrate	peak	areas	and	to	calculate	linear	
regression	of	 analytical	 standards	used	 for	quantification.	Prior	 to	
quantification,	each	analyte	peak	area	was	normalized	to	the	internal	
standard	(Supporting	Information	Table	S6).

All	 raw	data	 files	were	 imported	 into	 the	 Skyline	 open	 source	
software	 package	 (MacLean	 et	al.,	 2010).	 Each	 target	 analyte	was	
visually	inspected	for	retention	time	and	peak	area	integration.	Peak	
areas	were	exported	to	Excel	and	absolute	quantitation	was	deter-
mined	 by	 using	 the	 linear	 regression	 equation	 generated	 for	 each	
compound	from	the	calibration	curve.	To	make	the	calibration	curve,	
analytical	 standards	 were	 diluted	 in	 pure	 methanol	 serially	 from	
400	ng/ml	 to	0.54	ng/ml	before	 adding	 an	equal	 amount	of	 every	
internal	standard	to	each	vial.	The	linear	regression	equation	of	the	
analytical	standard	curve	was	used	to	convert	the	normalized	peak	
area	to	quantity	(ng/ml)	for	each	analyte.	The	values	were	then	ad-
justed	for	precise	weight	of	root	tissue	for	each	sample	and	reported	
as	ng/g	root	tissue.

2.9 | Non- targeted reverse phase UPLC- MS/MS  
analysis

A	200	μl	aliquot	of	the	organic	layer	was	dried	and	resuspended	in	
100 μl	of	methanol	and	toluene	(1:4,	v/v).	Single	injections	of	3	μl	of	
extract	were	made	on	an	Acquity	UPLC	system	(Waters	Corporation)	
in	 discrete,	 randomized	blocks.	 The	pooled	QC	was	 injected	 after	
every	10	sample	injections.

Separation	was	performed	with	an	Acquity	UPLC	CSH	Phenyl	
Hexyl	column	(1.7	μM,	1.0	×	100	mm;	Waters	Corporation),	using	a	
gradient	from	solvent	A	(water,	0.1%	formic	acid)	to	solvent	B	(ace-
tonitrile,	0.1%	formic	acid).	Injections	were	made	in	100%	A,	held	at	
100%	A	for	1	min,	ramped	to	98%	B	over	12	min,	held	at	98%	B	for	
3	min,	and	then	returned	to	starting	conditions	over	0.05	min	and	
allowed	 to	 re-	equilibrate	 for	3.95	min,	with	a	200	μl/min	constant	
flow	rate.	The	column	and	samples	were	held	at	65°C	and	6°C,	re-
spectively.	The	column	eluent	was	infused	into	a	Xevo	G2	Q-	TOF-	MS	
(Waters	Corporation)	with	an	electrospray	source	in	positive	mode,	
scanning	50–2,000	m/z	 at	0.2	s	per	scan,	alternating	between	MS	
(6	V	 collision	 energy)	 and	MSE	mode	 (15–30	V	 ramp).	 Calibration	
was	performed	using	sodium	iodide	with	1	ppm	mass	accuracy.	The	
capillary	voltage	was	held	at	2,200	V,	source	temp	at	150°C,	and	N	
desolvation	temp	at	350°C	with	a	flow	rate	of	800	L/hr.

2.10 | Non- targeted UPLC- MS/MS HILIC analysis

Single	injections	of	3	μl	of	the	aqueous	extract	were	made	on	a	Waters	
Acquity	UPLC	system	in	discrete,	randomized	blocks.	The	pooled	QC	
was	 injected	 every	 after	 every	 10	 injections.	 Separation	was	 per-
formed	 using	 a	 ZIC-	pHilic	 (5	μM,	 2.0	×	150	mm;	 EMD	 Millipore),	

http://www.microbiomeanalyst.ca/
https://qiime2.org
https://qiime2.org
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using	 a	 gradient	 from	 solvent	 A	 (acetonitrile)	 to	 solvent	 B	 (water,	
10	mM	Ammomium	 Bicarbonate,	 pH	 9.6).	 Flow	 rate	was	 0.27	ml/
min	unless	noted	otherwise,	and	the	column	was	held	at	50°C.	The	
gradient	 is	 as	 follows:	 time	 (t)	=	0	min,	 10%	A;	 t	=	1.5	min,	 10%	A;	
t	=	8.5	min,	38%	A;	t	=	11	min,	60%	A;	t	=	11.5	min,	100%	A,	0.2	ml/
min	flow;	t	=	16.5	min,	100%	A;	t	=	17	min,	10%	A;	t	=	18	min,	10%	
A,	0.6	ml/min	flow;	t	=	22	min	10%	A;	t	=	22.5	min,	10%	A,	0.27	ml/
min	flow;	t	=	23	min,	10%	A,	end	of	equilibration.	The	column	eluent	
was	 infused	 into	a	Xevo	G2	Q-	TOF-	MS	 (Waters	Corporation)	with	
an	 electrospray	 source	 in	 negative	 ionization	mode,	 scanning	50–
1,200	m/z	 at	0.2	s	per	 scan,	alternating	between	MS	 (6	V	collision	
energy)	and	MSE	mode	(15–30	V	ramp).	Calibration	was	performed	
using	sodium	formate	with	1	ppm	mass	accuracy.	The	capillary	volt-
age	was	held	at	2,200	V,	source	temperature	at	150°C,	and	N	desol-
vation	temperature	at	350°C	with	a	flow	rate	of	800	L/hr.

2.11 | Non- targeted GC- MS analysis

A	200	μl	 aliquot	of	 the	aqueous	 layer	was	dried	down	completely	
under N2	(g).	The	dried	samples	were	resuspended	in	50	μl	of	pyri-
dine	containing	25	mg/ml	of	methoxyamine	hydrochloride	(Sigma),	
incubated	 at	 60°C	 for	 45	min,	 vigorously	 vortexed	 for	 30	s,	 soni-
cated	 for	10	min,	and	 incubated	 for	an	additional	45	min	at	60°C.	
Next,	 samples	were	 cooled	 to	 room	 temperature	 and	briefly	 cen-
trifuged.	Then,	50	μl	of	N-	methyl-	N-	trimethylsilyltrifluoroacetamide	
with	1%	trimethylchlorosilane	(MSTFA	+	1%	TMCS,	Thermo	Fisher	
Scientific)	 was	 added	 and	 the	 samples	 were	 vigorously	 vortexed	
for	30	s	and	then	incubated	at	60°C	for	30	min.	Metabolites	were	
separated	and	detected	using	a	Trace	1310	GC	coupled	to	an	 ISQ	
mass	spectrometer	 (Thermo	Fisher	Scientific).	Samples	 (1	μl)	were	
injected	at	a	10:1	split	ratio	onto	a	30	m	TG-	5MS	column	(0.25	mm	
i.d.,	0.25	μm	film	thickness;	Thermo	Fisher	Scientific)	with	a	1.2	ml/
min	helium	gas	 flow	 rate.	The	gas	 chromatography	 inlet	was	held	
at	285°C.	The	oven	program	started	at	80°C	for	30	s,	followed	by	
a	ramp	of	15°C/min	to	330°C,	and	an	8-	min	hold.	Masses	between	
50–650 m/z	were	scanned	at	5	scans/s	under	electron	impact	ioni-
zation.	Transfer	 line	and	 ion	 source	were	held	at	300	and	260°C,	
respectively.

2.12 | Metabolomics data analysis

GC-	MS	and	LC-	MS	data	sets	were	processed	independently	using	
the	R	statistics	software	(R	Core	Team,	2013)	as	described	previ-
ously	 (Yao,	Sheflin,	Broeckling,	&	Prenni,	2019).	Briefly,	process-
ing	steps	follow:	(a)	XCMS	software	defined	a	matrix	of	molecular	
features	 (Smith,	Want,	 O'Maille,	 Abagyan,	 &	 Siuzdak,	 2006),	 (b)	
samples	 were	 normalized	 to	 total	 ion	 current,	 (c)	 RAMClust	
package	 for	 R	 clustered	 covarying	 and	 co-	eluting	 features	 into	
spectra	 (Broeckling,	 Afsar,	 Neumann,	 Ben-	Hur,	 &	 Prenni,	 2014),	
(d)	 RAMSearch	 software	 (Broeckling	 et	al.,	 2016)	 allowed	 an-
notation	 by	 searching	 spectra	 against	 internal	 and	 external	 da-
tabases.	 Databases	 used	 for	 annotations	 included	 golm	 (http://
gmd.mpimp-golm.mpg.de/),	 NISTv14	 (http://www.nist.gov),	 and	

MassBank	 (http://www.massbank.jp).	Skyline	software	 (MacLean	
et	al.,	2010)	was	used	for	peak	picking,	integration,	normalization,	
and	quantification	of	phytohormones.	Principal	component	analy-
sis	 (PCA)	was	performed	using	only	annotated	metabolites	using	
mean-	centered	 and	pareto-	scaled	data	 in	 SIMCA	v14	 (Umetrics,	
Umea,	 Sweden).	 The	 biplot	 from	 the	PCA	 analysis	was	 also	 cre-
ated	 in	SIMCA	using	correlation	scaling	so	 that	scores	and	 load-
ings	 could	 be	 presented	 together	 to	 display	metabolites	 driving	
variation	between	N	treatment	groups.	The	list	of	scores	and	load-
ings	coordinates	was	then	plotted	in	Prism	7	(GraphPad,	La	Jolla,	
California,	US).	Prism	was	used	to	size	loading	metabolites	accord-
ing	to	loading	value	and	only	values	greater	than	0.5	on	either	co-
ordinate	axis	were	labeled	with	a	metabolite	name.	The	pathway	
analysis	 tool	 in	 MetaboAnalyst	 (http://www.metaboanalyst.ca/)	
was	used	 to	 identify	 important	KEGG	pathways	modeling	meta-
bolic	effects	under	low	and	full	N	conditions	(Xia,	Sinelnikov,	Han,	
&	Wishart,	2015).	The	tool	was	used	to	prioritize	KEGG	reference	
pathways	 of	 interest	 rather	 than	 to	 determine	 significant	meta-
bolic	changes	due	to	treatment,	so	cutoff	was	set	at	p-	value	<	0.05	
(ignoring	adjustment	for	multiple	testing).

2.13 | RNA extraction, RNA- seq library 
preparation, and data analysis

Frozen	 root	 samples	 were	 ground	 in	 liquid	 nitrogen	 with	 mor-
tar	 and	 pestle.	 Equal	 parts	 of	 extraction	 buffer	 and	 1:1	 acidic	
phenol:chloroform	were	added	and	vortexed	at	4°C	for	1	hr.	Samples	
were	then	centrifuged	for	30	min	and	the	aqueous	layer	was	trans-
ferred	to	an	RNase-	free	tube,	combined	with	equal	volume	of	24:1	
Chloroform:Isoamyl	 alcohol,	 and	 vortexed.	 Samples	 were	 centri-
fuged	 for	 15	min,	 aqueous	 layer	 transferred	 to	 a	RNase-	free	 tube	
and	mixed	well	with	1/3	volume	of	8M	LiCl.	Samples	were	incubated	
overnight	at	4°C	and	centrifuged	for	30	min.	Supernatent	was	dis-
carded	 and	 the	 pellet	was	washed	 twice	with	 ice	 cold	 80%	 etha-
nol,	mixing	and	centrifuging	 for	15	min	 following	each	wash.	RNA	
was	 resuspended	 in	 30	μl	 of	 nuclease-	free	 water.	 Samples	 were	
DNase	treated	using	the	Turbo	DNase	kit	 (Ambion)	and	quantified	
by	Nanodrop.	A	subset	of	samples	were	quality	checked	using	the	
Agilent	2100	Bioanalyzer	RNA	6000	nano	kit.

RNA-	seq	 libraries	 were	 prepared	 using	 the	 NEBNext	 Ultra	
Directional	 RNA	 Library	 Prep	 Kit	 for	 Illumina	 (New	 England	
Biolabs).	 Libraries	were	quantified	using	Qubit	dsDNA	HS	Assay	
kit	 (Thermo	Fischer)	and	quality	checked	using	 the	Agilent	2100	
Bioanalyzer	DNA	HS	chip.	All	libraries	were	indexed	and	pooled	to	
equal	concentrations	and	100	bp	single-	end	reads	sequenced	on	
two	 lanes	of	 the	 Illumina	HiSeq4000	at	 the	University	of	 Illinois	
Keck	Center.

2.14 | Statistical analysis

Differences	 between	 N	 treatments	 for	 agronomic	 traits	 were	
tested	 using	 a	 two-	tailed,	 unpaired	 Mann–Whitney	 (nonpara-
metric)	 test	 (Mann	 &	 Whitney,	 1947).	 For	 metabolite	 data,	 the	

http://gmd.mpimp-golm.mpg.de/
http://gmd.mpimp-golm.mpg.de/
http://www.nist.gov
http://www.massbank.jp
http://www.metaboanalyst.ca/
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Shapiro–Wilk	 test	 was	 first	 carried	 out	 to	 test	 whether	 the	 as-
sumption	 of	 a	 normal	 distribution	 is	 appropriate	 or	 not	 for	 log-	
transformed	data	using	shapiro	test	function	in	R.	If	normality	was	
not	 rejected	 at	 5%	 significance	 level,	 a	 linear	 mixed	model	 was	
carried	 out	 to	 assess	 the	 effect	 of	 collection	 date,	 N	 level,	 and	
genotype	on	metabolites	using	the	 lme4	package	for	R	statistics	
software	(Bates,	Mächler,	Bolker,	&	Walker,	2014).	Genotype	was	
modeled	as	a	random	effect	due	to	the	small	number	of	replicates	
(at	most,	two	per	genotype)	while	collection	date,	N,	and	their	in-
teraction	were	modeled	as	fixed	effects.	This	approach	accounts	
for	 variation	 attributable	 to	 genotypes	within	 a	 breeding	 status	
while	preserving	enough	degrees	of	freedom	to	perform	tests	on	
all	fixed	effects,	and	can	be	justified	by	considering	the	genotypes	
included	 in	 the	 study	 to	 be	 a	 sample	 from	 a	 range	 of	 sorghum	
genotypes	of	 interest.	Due	to	the	split-	plot	design	of	the	experi-
ment,	an	additional	random	effect	for	the	whole-	plot	error	was	ini-
tially	included	in	the	model	but	may	have	been	excluded	from	the	
final	model	 for	 some	metabolites	 if	 the	estimate	of	 the	variance	
component	corresponding	to	whole-	plot	error	was	zero.	Based	on	
residual	plots,	 there	was	no	 indication	of	 any	model	 assumption	
violations.	 Estimates	 and	95%	confidence	 intervals	 for	mean	 log	
metabolite	 for	 each	 collection	 date	 and	 N	 combination	 and	 the	
marginal	mean	for	N	(averaged	over	the	two	collection	dates)	were	
computed	with	 the	 emmeans	 package	 for	 R	 (Lenth,	 2018)	 using	
the	 Kenward–Roger	 approximation.	 If	 the	 normality	 assumption	
was	 violated,	 a	 nonparametric	 factorial	 ANOVA	 approach	 was	
performed	 using	 art	 function	 in	 ARTool	 R	 package	 (Wobbrock,	
Findlater,	Gergle,	&	Higgins,	2011).	The	metabolite	data	without	
log-	transformation	was	modeled	as	a	function	of	N	treatment,	col-
lection	date	and	interaction	between	N	treatment	and	collection	
date	as	fixed	effects,	and	genotype	type	and	biological	replicates	
as	random	effects.

Multivariate	 analysis	 for	 date	 and	 N	 treatment	 factors	 was	
completed	 for	 both	 rhizosphere	 bacterial	 composition	 and	 root	
metabolite	 profiles	 using	 the	 adonis2	 function	 in	 the	 vegan	 pack-
age	 (Oksanen	 et	al.,	 2013)	 for	 R	 statistics	 software	 (R)	 (R	 Core	
Team,	2013).	Pairwise	distances	for	these	comparisons	were	calcu-
lated	 using	 the	 Bray–Curtis	 ordination	method	 (Beals,	 1984).	 The	
adonis2	function	has	been	described	as	a	“permutational	MANOVA”	
(Anderson,	2001;	McArdle	&	Anderson,	2001)	and	offers	an	alterna-
tive	to	parametric	MANOVA.	A	two-	way	ANOVA	univariate	test	was	
used	 to	determine	differential	 relative	abundance	of	a	 single	OTU	
in	 rhizosphere	 soil	 by	 date,	 treatment,	 or	 the	 interaction	 in	 Prism	

7	 (GraphPad,	La	Jolla,	California,	US).	Correlation	analyses	utilized	
the	cor	function	in	R	and	with	the	nonparametric	Spearman's	rank	
option.	 The	 corrplot	 package	 (Wei	 et	al.,	 2017)	 for	 R	was	 used	 to	
visualize	correlation	analyses	as	heatmaps.

3  | RESULTS

The	 aboveground	 biomass	 and	 heights	 (Table	2	 and	 Supporting	
Information	 Data	 S1)	 were	 significantly	 reduced	 in	 the	 low	 N	
treatment	 group.	 The	 concentration	 of	 N	 in	 each	 field	 was	 deter-
mined	via	 soil	 composition	analysis	 (Table	3)	 and	determined	 to	be	
7.8	±	0.7	ppm	in	the	low	N	field	and	8.5	±	0.5	ppm	in	the	full	N	field.	
Total	aboveground	dry	biomass	(kg/ha)	was	reduced	by	68%	and	total	
aboveground	fresh	biomass	was	reduced	by	63%	(kg/ha)	under	low	
N	conditions.	These	data	show	that	the	N	treatment	had	a	strong	ef-
fect	on	sorghum	growth	and	that	plants	were	experiencing	N	stress.	
The	number	of	plants	per	square	meter	did	not	significantly	vary	by	
N	treatment.	Since	crop	hybridization	is	known	to	result	in	superior	
vigor	and	yield	(Packer	&	Rooney,	2014;	Quinby,	1963),	fold	change	
for	agronomic	traits	 in	hybrids	grown	with	 low	N	was	compared	to	
inbreds	and	was	calculated	(Supporting	Information	Figure	S1).	This	
comparison	did	not	reveal	any	significant	differences	in	biomass	ac-
cumulation	for	hybrids	versus	inbreds	grown	under	low	N	(p	=	0.05),	
therefore	hybrid	status	was	not	included	as	a	factor	for	other	analyses.

3.1 | Significant metabolite variation in low N roots

A	 nontargeted	metabolomics	 approach	was	 used	 to	 evaluate	 bio-
chemical	variation	in	roots	receiving	low	N	compared	to	plants	grown	
in	the	full	N	field.	PCA	analysis	was	used	to	visualize	this	variation	
and	shows	that	higher	trehalose,	quinic,	and	shikimic	acids	drove	the	
variation	 in	metabolite	 profiles	 under	 low	N	 conditions	 (Figure	1).	
Roots	from	the	full	N	field	were	higher	 in	asparagine,	other	amino	
acids,	 allantoin,	 2-		 imidazolidone	 -	4-	carboxylic	 acid	 (2-	I-	4-	C),	 and	
carbodiimide	in	both	July	and	September.	Permutational	MANOVA	
(PERMANOVA)	analysis	revealed	that	the	global	metabolite	profile	
was	significantly	different	between	low	versus	full	N	in	both	July	and	
September	(p	<	0.01;	Figure	1a,b).

The	altered	metabolite	profile	with	N	stress	allows	for	the	dis-
covery	of	associations	with	agronomic	traits,	for	example,	biomass.	
Spearman	rank	correlations	(Sheskin,	2003;	Weatherburn,	1961)	of	
root	metabolites	with	these	traits,	arranged	by	sampling	date	and	

Trait Full nitrogen (N) Low nitrogen (N) p- Value

Total	aboveground	dry	biomass	
(kg/ha)

25,714	±	1,491 8,346	±	628 <0.0001

Total	aboveground	fresh	biomass	
(kg/ha)

90,727	±	6,982 33,687	±	2,946 <0.0001

Plant	height	(cm) 337.6	±	9.612 235	±	9.278 <0.0001

Number	of	plants	per	square	
meter

18.49	±	0.7608 18.89	±	0.5414 0.461

TABLE  2 Agronomic	sorghum	traits	
related	to	biomass	production	(means,	
standard	error	of	the	mean,	and	results	of	
Mann–Whitney	by	trait)	p-	value	refers	to	
the	difference	between	full	and	low	N	
(n	=	20)
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N	treatment,	 revealed	 that	metabolite	 associations	with	biomass	
differed	with	N	treatment	and	also	changed	over	the	growing	sea-
son	(Figure	2).	Under	low	N	conditions,	the	July	sampling	revealed	
many	root	metabolites	that	were	correlated	with	reduced	biomass	
including	several	proteinogenic	amino	acids:	serine,	threonine,	as-
paragine,	valine,	and	phenylalanine.	Oleamide,	an	amide	derivative	

of	oleic	acid,	was	associated	with	higher	biomass	under	full	N	for	
both	 sampling	 dates	 and	 under	 high	 N	 in	 September.	 However,	
Oleamide	 was	 negatively	 correlated	 with	 biomass	 in	 September	
under	low	N	conditions.	Higher	biomass	in	the	low	N	field	was	as-
sociated	with	root	lactic	acid,	an	end	product	of	anaerobic	respira-
tion	(Rivoal	&	Hanson,	1994),	but	only	for	the	September	sampling.	

TABLE  3 Mean	soil	nutrient	concentrations	±	standard	deviation	of	the	mean

Treatment K (ppm) S (ppm) Ca (ppm) Mg (ppm) NO3 (ppm) NH4 (ppm) P (ppm)

High	N 358	±	34 13.6	±	0.6 1,751	±	60 252	±	12 8.5	±	0.5 5.0	±	1.1 18.4	±	3.0

Low	N 251	±	24 13.6	±	0.9 1,489	±	91 297	±	44 7.8	±	0.7 4.9	±	0.4 23.3	±	3.8

F IGURE  1 PCA	biplots	include	scores	
(squares)	and	metabolite	loadings	(gray	
circles)	of	the	root	metabolomics	analysis	
in	(a)	July	and	(b)	September.	Data	from	
GC-		and	LC-		MS	analyses	were	combined.	
Arrows	indicate	the	direction	of	influence	
for	a	specific	metabolite	on	N	treatment	
group	separation.	Circles	representing	
metabolites	are	sized	according	to	loading	
scores	determined	by	the	PCA	analysis
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Roots	with	 reduced	 shikimic	 acid,	 a	 precursor	 in	 aromatic	 amino	
acid	biosynthesis,	were	also	associated	with	higher	biomass	under	
full	N	conditions	for	both	sampling	dates,	but	this	correlation	with	
biomass	was	very	weak	in	the	low	N	treatment.	Similarly,	reduced	
quinic	acid,	another	precursor	in	aromatic	amino	acid	biosynthesis,	
was	 associated	with	 higher	 biomass	 in	 roots	 grown	 under	 full	N	
conditions	for	both	sampling	dates	and	low	N	September	sampling,	
but	 this	 association	 was	 very	 weak	 for	 the	 July	 sampling	 under	
low	N	conditions.	When	considering	differences	between	July	and	
September	 sampling	 dates,	 it	 is	 important	 to	 note	 that	 sorghum	
plants	were	in	the	vegetative	stage	in	July	and	were	in	the	repro-
ductive	stage	in	September	which	likely	influenced	differences	ob-
served	between	sampling	dates.	Thus,	with	the	data	at	hand	 it	 is	
not	possible	to	separate	the	influence	of	developmental	stage	from	
environmental	 factors.	Galacturonic	acid,	 a	 component	of	pectin	
that	makes	up	plant	cell	walls,	was	the	only	metabolite	negatively	
associated	with	 biomass	 across	 all	 treatment	 groups	 and	 sample	
dates.	 No	 root	 metabolites	 were	 consistently	 associated	 with	
higher	biomass	across	all	treatments	and	time	points.

3.2 | Rhizosphere microbiota significantly vary with 
N treatment and collection date

Rhizosphere	bacterial	community	profiles	significantly	differed	ac-
cording	 to	 collection	 date	 (PERMANOVA:	R2	=	0.83,	p	<	0.01)	 and	

were	 clearly	 separated	 in	 a	 principal	 coordinate	 analysis	 (PCoA;	
Supporting	 Information	 Figure	 S2).	While	 date	 accounted	 for	 the	
majority	of	 the	variation	 in	 rhizosphere	bacterial	 composition,	 sig-
nificant	variation	due	to	N	treatment	was	also	seen	along	PCo2	ex-
plaining	6%	of	the	variation.	PERMANOVA	analysis	revealed	that	the	
rhizosphere	bacterial	community	profile	was	significantly	different	
between	low	versus	full	N	in	both	July	and	September	(p	=	0.001).	
All	of	these	genera	were	significantly	different	by	interaction	of	date	
and	treatment	and	all	except	for	the	Burkholderia	genus	significantly	
differed	 by	 date	 (Supporting	 Information	 Table	 S2).	 The	 bacterial	
composition	of	 the	 rhizosphere	was	 largely	 dominated	by	 a	 single	
operational	taxonomic	unit	(OTU),	OTU	0,	in	July	that	mapped	taxo-
nomically	to	the	Pseudomonas	genus.	In	July,	this	single	OTU	domi-
nated	the	rhizosphere,	comprising	47%	of	the	bacterial	community	
under	full	N	conditions	and	significantly	more	under	low	N	at	66%	of	
the	bacterial	community	(ANOVA,	p	<	0.05;	Figure	3).

3.3 | Metabolic pathway analysis suggests altered 
flux through shikimate pathway

The	complete	annotated	list	of	metabolites	detected	in	roots	from	
the	 July	 sampling	 was	 used	 to	 generate	 the	 metabolic	 pathways	
associated	 with	 these	 molecules	 using	 the	 pathway	 analysis	 tool	
in	 MetaboAnalyst	 (http://www.metaboanalyst.ca/).	 The	 list	 of	
pathways	matching	with	 the	highest	number	of	metabolites	 in	 the	

F IGURE  2 Heatmap	showing	spearman	rank	correlations	of	agronomic	traits	(rows)	and	root	metabolites	(columns).	Color	scale	for	
correlation	value	is	dark	blue:	R2	=	1;	dark	red	(strong	positive	association):	R2	=	−1	(strong	negative	association).	Squares	are	also	sized	
according	to	R2	values	with	larger	squares	indicating	values	close	to	1	(blue)	or	−1	(red).	Rows	are	grouped	by	collection	date	(July	or	
September)	and	treatment	(low	or	full	N)	with	a	colored	key	along	the	left	edge	as	shown	in	the	legend.	Agronomic	traits	are	abbreviated	
as:	wet	=	total	plant	(includes	stems,	leaves,	and	panicle)	fresh	weight,	total	dry	=	total	plant	(includes	stems,	leaves,	and	panicle)	dry	matter	
weight,	veg	dry	=	vegetative	portion	of	plant	(stems	and	leaves)	dry	weight	measured	in	kilograms	per	hectare
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experimental	 dataset,	without	 consideration	 of	which	metabolites	
are	most	 relevant	 to	experimental	 factors,	 is	 shown	 in	Supporting	
Information	 Table	 S1	 and	 was	 used	 to	 prioritize	 KEGG	 reference	
pathways	 of	 interest.	 Metabolites	 that	 differentiated	 between	
low	and	 full	N	 treatments	were	 identified	 through	 the	PCA	biplot	
analysis	 (Figure	1)	 to	 narrow	 pathways	 of	 interest.	 Two	 of	 these	
KEGG	pathways,	“Alanine, aspartate, and glutamate metabolism”	and	
“Phenylalanine, tyrosine, and tryptophan biosynthesis”,	contained	me-
tabolites	shown	to	discriminate	between	 low	and	full	N	treatment	
groups	and	were	selected	for	further	analysis.	Generally,	metabolites	
in	 the	 “Alanine, aspartate, and glutamate”	 pathway	were	 less	 abun-
dant	in	roots	under	N	stress,	consistent	with	decreased	N	availability	
(Figure	4a,	Supporting	Information	Table	S3).	Biosynthesis	of	the	ar-
omatic	amino	acids	phenylalanine,	tyrosine,	and	tryptophan	occurs	
via	the	shikimate	pathway.	In	roots	sampled	in	July,	three	intermedi-
ary	metabolites	in	this	pathway,	quinic	acid,	3-	dehydroshikimic	acid,	
and	 shikimic	acid,	were	more	abundant	under	N	 stress,	while	 two	
end	products	of	this	pathway,	phenylalanine	and	tyrosine,	were	less	
abundant	with	N	stress	(Figure	4b,	Supporting	Information	Table	S3).

3.4 | N stress and the sorghum defense response

Analysis	 of	 phytohormones	 in	 root	 tissue	 was	 performed	 and	 in-
cluded	 quantitative	 measurement	 of	 12-	oxo-	phytodienoic	 acid,	
trans-	zeatin	riboside,	jasmonic	acid,	salicylic	acid,	abscisic	acid,	pha-
seic	acid,	 indole-	3-	carboxylic	acid,	and	dihydrophaseic	acid.	When	
treating	 genotype	 as	 a	 random	 factor,	 12-	oxo-	phytodienoic	 acid,	
jasmonic	 acid,	 and	 trans-	zeatin	 riboside	 significantly	 varied	 in	 the	
September	root	sampling	as	compared	to	roots	sampled	in	July,	but	
did	not	vary	significantly	by	treatment	or	by	interaction	of	date	and	
treatment	 (Supporting	Information	Table	S4	and	Data	S1).	Salicylic	
acid	was	 significantly	 reduced	 in	 low	N	conditions	 (Figure	5a),	 but	

did	 not	 vary	 significantly	 by	 date	 or	 by	 date	 x	 treatment	 interac-
tion	 (Supporting	 Information	 Table	 S4).	 No	 other	 root	 phytohor-
mones	that	were	analyzed	were	significantly	altered	by	N	treatment.	
Furthermore,	for	roots	sampled	in	July,	 less	SA	content	was	corre-
lated	with	 greater	 abundance	of	 the	 rhizosphere-	dominating	OTU	
0	(Pseudomonas)	under	full	N	(Figure	5b)	but	not	under	low	N	con-
ditions	 (Figure	5c).	 To	 further	 investigate	 root	 defense	 response,	
orthologs	of	 genes	previously	described	as	having	 altered	expres-
sion	 during	 pathogenesis	 (van	 Loon,	 Rep,	 &	 Pieterse,	 2006)	 were	
investigated	using	RNA-	seq	data	generated	 from	roots	sampled	 in	
parallel	from	the	same	field	and	dates	as	the	root	metabolite	collec-
tions	 (Supporting	 Information	Figure	 S4).	 The	RNA-	seq	data	were	
generated	from	only	a	subset	of	genotypes	(PI	297130,	PI	655972,	
CO53,	CO56,	and	C225)	with	 little	 replication	 (two	biological	 rep-
licates),	which	 limited	 the	 statistical	power.	However,	 three	of	 the	
12	 pathogenesis-	related	 (PR)	 genes	 (PR1b,	 OsPR8,	 and	OsPR10b)	
listed	 were	 downregulated	 in	 roots	 collected	 in	 July	 under	 low	
N	 versus	 full	N	 conditions	 in	multiple	 genotypes	 (Students	 t	 test,	
p	<	0.01;	Supporting	Information	Figure	S4).	Expression	of	PR1b	was	
reduced	by	90%	(on	average)	and	was	downregulated	in	PI	655972,	
PI	297130,	CO56,	and	C225.	Expression	of	OsPR8	was	reduced	by	
60%	(on	average)	and	was	downregulated	in	PI	297130,	CO56,	and	
C225.	Expression	of	OsPR10b	was	also	reduced	by	60%	(on	average)	
and	was	downregulated	in	all	included	genotypes.	No	significant	dif-
ference	in	low	N	versus	full	N	gene	expression	for	PR1b,	OsPR8,	or	
OsPR10b	was	observed,	however,	the	limited	number	of	replicates	
severely	restricted	statistical	power.

4  | DISCUSSION

Root	 and	 rhizosphere	 soil	 samples	 from	 N	 stressed	 sorghum	 re-
vealed	differences	in	root	metabolite	profiles,	rhizosphere	microbial	
community	 composition,	 and	 SA	 production.	 Phytohormones	 and	
bacterial	community	composition	also	varied	over	the	growing	sea-
son.	Metabolites	that	accumulated	in	N	stressed	roots	are	consist-
ent	with	previous	studies	on	the	effects	of	nutrient	deprivation	on	
plant	metabolism	and	go	beyond	what	is	currently	known.	In	the	July	
sampling,	for	example,	we	observed	increased	trehalose	and	sucrose	
content	in	roots	with	low	N	relative	to	full	N.	Similarly,	an	increased	
emphasis	 on	 carbohydrate	 storage	 in	 roots	 of	 soybean	 plants	 has	
been	previously	 associated	with	 a	 limited	 ability	 to	 synthesize	 su-
crose	in	leaves	with	N	stress	(Rufty,	Huber,	&	Volk,	1988).	Enhanced	
storage	 of	 carbohydrates	 in	 roots	 versus	 leaves	 could	 explain	 the	
observed	increase	in	trehalose	and	sucrose	in	roots	with	low	N	rela-
tive	 to	 full	 N.	 However,	 trehalose	 accumulation	 has	 been	 associ-
ated	with	both	biotic	and	abiotic	plant	stress	response	(Fernandez,	
Béthencourt,	Quero,	Sangwan,	&	Clément,	2010).	Accumulation	of	
trehalose	in	roots	was	observed	in	Arabidopsis thaliana	infected	with	
Plasmodiophora brassicae	 (Brodmann	 et	al.,	 2002)	 and	 in	 Pinus syl-
vestris	(pine)	infected	with	Armillaria ostoyae	(Isidorov,	Lech,	Żółciak,	
Rusak,	 &	 Szczepaniak,	 2008).	 Therefore,	 it	 is	 possible	 that	 treha-
lose	accumulation	in	roots	of	N	stressed	sorghum	resulted	from	the	

F IGURE  3 OTU	0	(Pseudomonas)	dominated	the	rhizosphere	
under	both	high	and	low	N	conditions,	but	was	significantly	more	
abundant	under	low	N	conditions	(p	<	0.05,	ANOVA).	Boxplot	
of	OTU	0	(Pseudomonas)	shown	as	percent	abundance	of	total	
normalized	reads	in	rhizosphere	soil	from	the	July	sampling	and	
demonstrates	the	dominance	of	the	rhizosphere	community	by	
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combined	abiotic	and	biotic	stresses	of	low	N	and	the	proliferation	
of	Pseudomonas	in	the	rhizosphere	in	July.

In	 addition,	 metabolites	 identified	 in	 previous	 research	 as	 im-
portant	to	N	cycling	and	mobility	in	plants	were	more	abundant	in	
roots	grown	with	full	N	relative	to	low	N.	For	example,	both	aspar-
tate	and	asparagine	 function	were	 reduced	with	 low	N	and	act	as	
carriers	when	mobilizing	N	to	sink	tissues	with	asparagine	being	par-
ticularly	 important	 as	 it	 is	 efficiently	 transported	 (Cañas,	Quilleré,	
Lea,	&	Hirel,	2010;	Gaufichon,	Rothstein,	&	Suzuki,	2015;	Masclaux-	
Daubresse	et	al.,	2010).	In	other	studies	looking	at	N	stress,	reduced	
amino	acids	were	observed	in	both	root	exudates	(Carvalhais	et	al.,	
2011)	 and	 tomato	 root	 tissue	 (Sung	 et	al.,	 2015).	 Thus,	 increased	
mobilization	of	N	can	reflect	higher	availability	of	soil	N.	However,	
it	is	also	possible	that	this	increased	mobilization	of	N	is	related	to	
competition	with	soil	microbes	because	access	to	N	is	important	not	
only	to	plants,	but	also	to	pathogenic	and	beneficial	microorganisms	
living	in	association	with	plants.	While	N	application	to	crops	likely	
benefits	plant	defense,	it	may	also	allow	rhizosphere	microorganisms	
to	gain	access	to	N	coming	from	root	cellular	pools	(Hoffland,	Jeger,	
&	van	Beusichem,	2000;	 Jensen	&	Munk,	1997).	Gene	expression	
patterns	consistent	with	remobilization	of	N	as	a	strategy	to	seques-
ter	N	stores	away	 from	bacteria	have	been	 reported	previously	 in	
Phaseolus vulgaris	 (common	 bean)	 (Tavernier	 et	al.,	 2007),	 tomato	
(Olea	et	al.,	2004),	Nicotiana tabacum	L.	(tobacco)	(Pageau,	Reisdorf-	
Cren,	Morot-	Gaudry,	&	Masclaux-	Daubresse,	2005),	and	Arabidopsis 
thaliana	 (AbuQamar	 et	al.,	 2006).	 Glutamine	 is	 typically	 the	 pre-
ferred	 carrier	 during	N	mobilization,	 but	 asparagine,	 aspartate,	 or	
alanine	 may	 be	 utilized	 when	 glutamine	 is	 limited	 (Pellier,	 Laugé,	
Veneault-	Fourrey,	&	Langin,	2003).	A	decrease	in	N-	carrying	amino	
acids	 in	response	to	N	stress	 likely	reflects	 lower	N	stores	already	
present	in	plant	cells.	Pathogens,	as	well	as	other	soil	microbes,	may	

have	experienced	reduced	opportunity	for	N	exploitation	in	roots	of	
N	stressed	sorghum.

Nitrogen	 stressed	 sorghum	 showed	 unique	metabolic	 associa-
tions	with	agronomic	traits	that	changed	over	the	growing	season.	
Previous	 research	with	 non-	stressed,	 greenhouse-	grown	 sorghum	
revealed	that	higher	levels	of	intermediaries	of	the	shikimate	path-
way,	quinic,	and	shikimic	acids,	in	4-	week-	old	leaves	was	associated	
with	 higher	 biomass	 (Turner	 et	al.,	 2016).	However,	 in	 the	 current	
work,	lower	content	of	quinic	and	shikimic	acids	was	associated	with	
higher	biomass	 in	 roots	under	 full	N	conditions.	Shikimic	acid	was	
not	 strongly	 correlated	with	 biomass	 under	 N	 stress	 but	 reduced	
3-	dehydroshikimic	acid,	a	related	intermediary	in	the	shikimate	path-
way,	was	 negatively	 correlated	with	 higher	 biomass.	 Lower	 quinic	
acid	content	was	also	correlated	with	higher	biomass	under	 low	N	
conditions,	but	only	in	roots	from	the	September	sampling.	Whether	
this	 discrepancy	 is	 due	 to	 greenhouse	 versus	 field	 conditions	 or	
reflects	 tissue-	specific	 effects	 is	 not	 clear	 (Turner	 et	al.,	 2016).	
Therefore,	 the	role	of	shikimate	pathway	metabolites	and	biomass	
accumulation,	particularly	in	N	stress	environments	warrants	further	
investigation.

The	metabolic	pathway	analysis	suggested	altered	flux	through	
the	 shikimate	 pathway	 that	may	 have	 impaired	 production	 of	 the	
plant	defense	hormone	SA.	An	increase	in	intermediary	metabolites	
of	this	pathway	combined	with	a	decrease	in	end	products	with	N	
stress	suggests	that	flux	through	the	shikimate	pathway	may	have	
been	compromised,	or	compounds	may	have	been	diverted	to	other	
biosynthetic	 pathways,	 resulting	 in	 lower	 concentrations	 of	 end	
products	 (Figure	4b,	 Supporting	 Information	 Table	 S3).	 The	 end	
products	of	the	shikimate	pathway	are	aromatic	amino	acids,	includ-
ing	phenylalanine,	which	is	used	in	the	biosynthesis	of	plant	defense	
hormone	SA	(Chen,	Zheng,	Huang,	Lai,	&	Fan,	2009;	Maeda,	Yoo,	&	

F IGURE  4 Pathway	analysis	(a)	alanine,	aspartate,	and	glutamate	metabolism	and	(b)	phenylalanine,	tyrosine,	and	tryptophan	
biosynthesis	(shikimate	pathway).	Metabolites	detected	during	metabolomics	analysis	have	peak	intensities	presented	as	bar	graphs	overlaid	
on	the	pathway	map.	Peak	intensity	reflects	the	semiquantitative	nature	of	the	nontargeted	approach	used	for	this	global	metabolite	
analysis.	Statistical	significance	when	using	a	nonparametric	factorial	ANOVA	test	(Supporting	Information	Table	S2)	is	denoted	as	follows:	
*significant	by	date,	**significant	by	treatment	and	date	but	not	the	interaction,	***significant	by	date	treatment	interaction	(p < 0.05).	Dark	
green	=	July	high	N;	Dark	purple	=	September	high	N;	Light	green	=	July	low	N;	Light	purple	=	September	low	N

F IGURE  5 Salicylic	acid	and	OTU	0	abundance.	The	main	effect	of	nitrogen	treatment	showed	significantly	reduced	root	salicylic	acid	
content	under	low	N	compared	to	high	N	when	averaged	over	the	two	sampling	dates	and	treating	genotype	as	a	random	effect.	Panel	(a)	
shows	the	effects	plot	with	95%	confidence	interval	for	the	linear	mixed	model,	(b)	OTU	0	is	negatively	correlated	with	salicylic	acid	with	full	
N	and	(c)	not	with	low	N
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Dudareva,	2011).	Our	results	show	that	SA	concentration	was	sig-
nificantly	 lower	 in	 roots	experiencing	N	stress	and	this	effect	was	
not	influenced	by	collection	date	when	treating	genotype	as	a	ran-
dom	effect	 in	a	mixed	 linear	model	analysis	 (Figure	5a,	Supporting	
Information	Table	S4).	Since	SA	plays	an	important	role	in	plant	im-
munity	and	defense,	reduced	metabolic	capacity	to	produce	SA	may	
alter	the	overall	plant	defense	response.

RNA-	seq	 analysis	 of	 a	 subset	 of	 root	 samples	 for	 sorghum	
genes	 involved	 in	 the	pathogenesis	 response	provided	 some	ev-
idence	 of	 altered	 expression	 with	 three	 of	 the	 12	 genes	 being	
downregulated	 (t	 test,	 p	=	0.01)	 in	 samples	 from	multiple	 geno-
types	(Supporting	Information	Figure	S2).	Homologs	in	Arabidopsis 
thaliana	 for	 two	of	 these	genes,	PR1b,	were	previously	 found	 to	
be	induced	in	response	to	SA	(Thomma	et	al.,	1998).	 In	sorghum,	
PR1b	and	other	PR	genes	were	also	induced	when	SA	was	added	
to	growth	solution	for	hydroponically	grown	plants	(Salzman	et	al.,	
2005).	Furthermore,	sorghum	grown	under	full	N	conditions	was	
able	to	accumulate	more	root	SA	and	also	had	lower	abundance	of	
the	rhizosphere-	dominating	OTU	0	(Pseudomonas)	(Figure	5b)	con-
sistent	with	successful	plant	defense	of	the	rhizosphere.	However,	
sorghum	experiencing	N	stress	had	 less	SA	accumulation	 in	 root	
tissue	and	did	not	show	any	reduction	 in	rhizosphere	abundance	
of	OTU	0	(Pseudomonas)	(Figure	5c).	These	results	suggest	that	the	
reduced	abundance	of	SA	in	roots	experiencing	N	stress	is	insuffi-
cient	to	induce	some	important	defense	genes,	which	is	also	sup-
ported	 by	 the	 RNA-	seq	 analysis	 (Supporting	 Information	 Figure	
S4).	 However,	 since	 bacterial	 composition	 in	 the	 rhizosphere	
also	 varied	 significantly	 under	 low	 N	 conditions	 (Supporting	
Information	Table	S2),	we	cannot	determine	conclusively	if	the	re-
duced	abundance	of	SA	was	due	to	metabolic	effects	of	N	stress	or	
soil	bacterial	interactions.	When	interpreting	both	metabolic	and	
microbial	 differences	 due	 to	 treatment	 effect,	 it	 is	 important	 to	
note	other	differences	between	fields.	The	low	N	field	utilized	in	
this	study,	which	had	not	had	N	applied	for	more	than	20	years,	
also	had	other	differences	relative	to	the	full	N	field	including	crop	
rotation,	 soil	 composition	 and	 likely	 others.	 However,	 78.8%	 of	
variation	 in	 the	 rhizosphere	bacterial	composition	was	explained	
by	 sampling	 date	 and	 only	 5.7%	 variation	 was	 due	 to	 different	
treatments/fields	 (Supporting	 Information	 Figure	 S3).	 Similarly,	
when	metabolite	data	were	plotted	together	in	PCA	analysis,	sep-
aration	by	date	along	PC1	explained	49.3%	of	variation	and	PC2	
explained	only	13.4%.	These	results	suggest	that	the	influence	of	
non-	field	specific	factors	such	as	plant	growth	and	developmental	
stage	on	the	soil	rhizosphere	community	composition	are	exerting	
a	 stronger	 effect	 on	 sample	 variation	 than	 any	potential	 effects	
due	to	bulk	soil	composition,	which	has	also	been	demonstrated	in	
other	research	(Shi	et	al.,	2015).

Identifying	 production	 strategies	 that	 incorporate	 marginal	
soils	with	reduced	inputs	is	a	high	priority	for	biofuels	research	and	
our	findings	revealed	important	implications	for	improving	biomass	
yield	under	N	stress	and	 in	the	context	of	microbial	 interactions.	
As	breeding	programs	are	established	for	biofuels	production	on	
marginal	lands,	priorities	should	be	established	for	both	abiotic	and	

biotic	stress	tolerance	since	plant	response	to	N	deficiency	is	likely	
to	affect	critical	metabolic	pathways	for	plant	defense.
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