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Abstract
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive cereal crop world-
wide with some hybrids having high biomass yield traits making it promising for sus-
tainable, economical biofuel production. To maximize biofuel feedstock yields, a 
more complete understanding of metabolic responses to low nitrogen (N) will be use-
ful for incorporation in crop improvement efforts. In this study, 10 diverse sorghum 
entries (including inbreds and hybrids) were field-grown under low and full N condi-
tions and roots were sampled at two time points for metabolomics and 16S amplicon 
sequencing. Roots of plants grown under low N showed altered metabolic profiles at 
both sampling dates including metabolites important in N storage and synthesis of 
aromatic amino acids. Complementary investigation of the rhizosphere microbiome 
revealed dominance by a single operational taxonomic unit (OTU) in an early sampling 
that was taxonomically assigned to the genus Pseudomonas. Abundance of this 
Pseudomonas OTU was significantly greater under low N in July and was decreased 
dramatically in September. Correlation of Pseudomonas abundance with root metab-
olites revealed a strong negative association with the defense hormone salicylic acid 
(SA) under full N but not under low N, suggesting reduced defense response. Roots 
from plants with N stress also contained reduced phenylalanine, a precursor for SA, 
providing further evidence for compromised metabolic capacity for defense response 
under low N conditions. Our findings suggest that interactions between biotic and 
abiotic stresses may affect metabolic capacity for plant defense and need to be con-
currently prioritized as breeding programs become established for biofuels produc-
tion on marginal soils.

K E Y W O R D S

metabolism, metabolomics, microbiome, nitrogen, rhizosphere, roots, salicylic acid, sorghum, 
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1  | INTRODUC TION

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive 
cereal crop worldwide with a variety of uses including animal for-
age, sugar production, and more recently, lignocellulosic biomass for 
bioenergy (Rooney, Blumenthal, Bean, & Mullet, 2007). Sorghum's 
high biomass yield and drought tolerance potential make it a prom-
ising feedstock for sustainable, economical biofuel production. 
Production strategies that utilize agricultural lands not suitable for 
food production and improve economic viability are a top priority 
for biofuel feedstocks (Langholtz, Stokes, & Eaton, 2016). Improving 
biomass production will require maximizing yield while reducing 
costly inputs, including nitrogen (N), and water (Fazio & Monti, 2011, 
National Research Council, 2012). Fortunately, sorghum possesses 
significant genetic diversity for N use efficiency (Gelli et al., 2014, 
2016), yield potential and drought tolerance (Mace et al., 2013). 
Furthermore, the availability of a reference genome (Paterson et al., 
2009), an expression atlas (Shakoor et al., 2014), and over 400,000 
markers (Morris et al., 2013) identified for marker-assisted breeding 
makes sorghum well-suited for significant crop improvement.

Modern “omics” techniques function as valuable molecular dis-
covery tools for assessing plant stress responses on a molecular level 
(Urano, Kurihara, Seki, & Shinozaki, 2010). The “metabolome” is de-
scribed by surveying all low molecular weight metabolites generated 
as a result of gene-regulated and environmentally induced responses 
(Brunetti, George, Tattini, Field, & Davey, 2013; Ganie et al., 2015). 
Since metabolites are one measurable endpoint of all cellular regu-
latory activities, they have been described as “the ultimate response 
of biological systems to genetic or environmental changes” (Fiehn, 
2002). Thus, metabolomics is a robust approach for determining the 
molecular phenotype, especially in assessing response during both 
abiotic (Ganie et al., 2015; Sánchez-Martín et al., 2015) and biotic 
(Scandiani et al., 2014) stress and in identifying potential targets 
for metabolic engineering (Tsogtbaatar, Cocuron, Sonera, & Alonso, 
2015). For example, previous research has associated biomass ac-
cumulation with specific sorghum leaf metabolites that vary across 
different sorghum genetic lines (Turner et al., 2016). However, re-
lationships between root metabolites and biomass yields in field-
grown sorghum have been largely ignored.

As a synergistic approach to plant breeding, beneficial mi-
crobes offer an underutilized opportunity to improve plant 
performance, especially on marginal lands with minimal inputs 
(Coleman-Derr & Tringe, 2014). Plant growth and health may be 
improved through interactions with beneficial soil microorganisms 
via a number of mechanisms including increased nutrient availabil-
ity, production of protective or growth-promoting enzymes and 
compounds, and competitive exclusion of pathogens (Chaparro, 
Sheflin, Manter, & Vivanco, 2012; Farrar, Bryant, & Cope-Selby, 
2014). Under marginal soil conditions microbes may play an im-
portant role in providing nitrogen to cereals and have been shown 
to potentially assist sorghum with the acquisition of N in nutri-
ent depleted environments (Carvalho, Balsemão-Pires, Saraiva, 

Ferreira, & Hemerly, 2014; Kochar & Singh, 2016; Rupaedah, Anas, 
Santosa, Sumaryono, & Budi, 2016). Next-generation sequenc-
ing provides an opportunity to identify potential microbes that 
may provide these benefits, even those not amenable to rapid 
laboratory cultivation (Knief, 2014). Sorghum-associated bacte-
rial communities have been recently reviewed (Kochar & Singh, 
2016) and one study identified N application as a primary factor 
in determining N-fixing community structure in the sorghum rhi-
zosphere (Rodrigues Coelho et al., 2007). Conversely, detrimental 
microorganisms present additional challenges to maximizing yield 
in marginal environments that lack the optimal amounts of water 
or nitrogen (van der Heijden, Bardgett, & van Straalen, 2008). A 
better understanding of these interactions among soil nutrients, 
bacteria, and sorghum yields will be an important part of the de-
velopment of sustainable and economical biofuel production on 
marginal land.

The primary goal of this study is to improve our understanding 
of the root metabolic response to low N in field grown sorghum. 
Utilizing an integrative approach, we incorporated data from ag-
ronomic traits, the root metabolome and the rhizosphere micro-
biome of 10 sorghum lines (including inbreds and hybrids) grown 
under conditions of both low and full N and sampled on two dates. 
Taken together, our findings highlight an array of metabolic dis-
advantages due to N stress that may reduce capacity for plant 
defense. Therefore, secondary biotic stresses should be consid-
ered as a potential consequence of abiotic stresses, such as low 
N availability.

2  | E XPERIMENTAL PROCEDURES

2.1 | Field description and experimental design

This study was conducted at Eastern Nebraska Research and 
Extension Center (ENREC) located near Mead, Nebraska in the 
United States during the summer of 2015. The low N field (GPS co-
ordinates 41.163166, −96.424108) had not had N applied for more 
than 20 years and was in an oat/sorghum rotation with oat forage 
removed each year. The full N field (41.156414, −96.408031) had 
eighty pounds per acre of N in the form of anhydrous ammonia ap-
plied early in the spring and was in a soybean/sorghum rotation. 
Both fields were planted on June 2, 2015.

2.2 | Plant germplasm selection

Ten diverse entries of sorghum, representing a range of materi-
als based on racial, geographic, and breeding status criteria, were 
selected for testing (Table 1). All lines represent bioenergy types 
and likely would be candidates for biofuels production. Entries are 
identified by plant introduction numbers of the U.S. National Plant 
Germplasm System or hybrid numbers from Clemson University (for 
more information or germplasm, please contact Stephen Kresovich 
at Clemson).
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2.3 | Field sample collection

Soil, rhizosphere, and root samples were collected from each field 
two times during the growing season. The sampling dates were July 
22 and September 15, 2015. Two plants per genotype were exca-
vated from the top 30 cm of soil using a shovel at two different loca-
tions in each plot as described previously (McPherson, Wang, Marsh, 
Mitchell, & Schachtman, 2018). Soil was removed from the roots 
using a tiller and collected. A variety of roots including crown, semi-
nal, and primary roots were excised from two plants and placed in 
a 50 ml Falcon tube containing 35 ml of phosphate buffer (6.33 g/L 
NaH2PO4, 8.5 g/L Na2HPO4 anhydrous, 200 μl/L Silwet L-77). 
Roots were then shaken for 1–2 min to remove some of the rhizo-
sphere soil. Roots were then separated for downstream analyses: 
DNA extraction and microbiome analysis, and metabolite analysis. 
Rhizosphere soil and roots for DNA extraction were stored in 50 ml 
Falcon tubes on ice for transport to the laboratory.

Samples were collected for biomass analysis on October 8, 2015. 
An above ground portion of plants from 1 square meter for each plot 
was weighed for fresh biomass measurements. The same samples 
were oven dried in paper sacks until reaching a stable water content 
before weighing for dry biomass measurements.

2.4 | Laboratory preparation of roots, soil, and 
rhizosphere

Roots that were brought back to the laboratory on regular ice were 
surface sterilized by rinsing for 30 s in 5.25% sodium hypochlo-
rite + 0.01% Tween 20, followed by a 30-s rinse in 70% ethanol, fol-
lowed by three rinses in sterile ultrapure water. Roots were blotted 
dry on a clean paper towel, placed in a 15 ml tube, frozen at −80°C, 
and then ground in liquid N prior to DNA extraction.

The rhizosphere samples were filtered through a sterile 100 μm 
mesh filter (Fisher Scientific, USA), into a clean 50 ml tube. The rhi-
zosphere was pelleted at 3,000 × g for 10 min at room temperature. 
The pellet was resuspended in 1.5 ml phosphate buffer (6.33 g/L 
NaH2PO4, 8.5 g/L Na2HPO4 anhydrous), and transferred to a ster-
ile 2 ml microfuge tube. The rhizosphere was re-pelleted by spin-
ning tubes for 5 min at full speed. The supernatant was drained 

off and the rhizosphere soil pellet was stored at −20°C until DNA 
extraction.

A small 2 ml tube of soil was removed carefully to avoid any root 
pieces and stored for DNA extraction at −20°C. Soil was then sieved 
through US Standard Sieve #4, 4750 micron, followed by Sieve #8, 
2360 micron to remove debris and roots. Approximately 100 g of 
sieved soil was sent for soil analysis (Ward Labs, Kearney, NE) to de-
termine the organic carbon and nutrient concentrations of the soil.

2.5 | DNA extraction of soil, rhizosphere, and 
root samples

DNA was extracted from soil and rhizosphere samples using 
PowerSoil-htp 96 Well Soil DNA Isolation Kit (MoBio, Carlsbad, CA, 
USA) following the manufacturer's protocol. DNA was extracted 
from roots with PowerPlant Pro-htp 96 Well DNA Isolation Kit 
(MoBio, Carlsbad, CA, USA) following the manufacturer's proto-
col. The DNA was quantified with the Quantifluor dsDNA reagent 
(Promega) following the manufacturer's protocol.

2.6 | Amplification and Illumina sequencing of 16S 
tag sequences

DNA was quantified and amplified in 96 well plates with single in-
dexed primers targeting the V4 region of the bacterial 16S rRNA gene 
(Walters et al., 2015). Chloroplast and mitochondrial peptide nucleic 
acid (PNA) blockers were used to prevent chloroplast and mitochon-
drial amplification in all samples (Lundberg, Yourstone, Mieczkowski, 
Jones, & Dangl, 2013). Amplified samples were multiplexed at 184 
samples per PE 2 × 300 Illumina MiSeq sequencing run. Data from 
the sequencer was demultiplexed and processed through bbduk for 
end trimming, quality filtering, and masking (https://jgi.doe.gov/data-
and-tools/bbtools/bb-tools-user-guide/bbduk-guide/). High quality 
reads were processed by iTagger version 2.2 (Tremblay et al., 2015). 
Version 2.2 processes sequencing amplicon data by iterative cluster-
ing of reads at 99%, 98%, and 97% identity using the USEARCH soft-
ware suite, and then performing taxonomic assignment of each OTU 
(Edgar, 2010). The source code for iTagger is available on Bitbucket: 
http://bitbucket.org/berkeleylab/jgi_itagger. For normalization 

Genotype Type Race Source Breeding status

PI 297130 Energy Caudatum Uganda Inbred

PI 505735 Energy Caudatum Zambia Inbred

PI 506030 Energy Guinea Togo Inbred

PI 510757 Energy Durra Cameroon Inbred

PI 642998 Sweet Bicolor U.S. Inbred

PI 655972 Energy Kafir U.S. (Kansas) Inbred

C126 Energy Guinea U.S. (South Carolina) Hybrid

C225 Energy Caudatum U.S. (South Carolina) Hybrid

CO53 Energy Guinea U.S. (South Carolina) Hybrid

CO56 Energy Guinea U.S. (South Carolina) Hybrid

TABLE  1 Sorghum accessions utilized 
for this study

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
http://bitbucket.org/berkeleylab/jgi_itagger
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purposes and to remove low abundance OTUs, we kept OTUs in 
the downstream analysis that had at least two reads in at least five 
samples and normalized the remaining dataset by randomly subsam-
pling each sample to a consistent read depth of 20,000 reads per 
sample. The normalized OTU table was analyzed downstream using 
MicrobiomeAnalyst (http://www.microbiomeanalyst.ca/) (Dhariwal 
et al., 2017) to produce PCoA visualizations of the data. Statistical 
analyses of the normalized OTU table, including PERMANOVA and 
ANCOM (Mandal et al., 2015) were performed in QIIME2 (https://
qiime2.org) (Bolyen et al., 2018).

2.7 | Sample preparation and extraction for 
metabolomics analysis

Immediately upon arrival, sorghum tissue samples were stored 
at −80°C with subsequent lyophilization for further analysis. 
Lyophilized sorghum tissue was homogenized in 5 ml polypropylene 
tubes using stainless steel beads and the Bullet Blender® Storm5 
homogenizer (Next Advance, Averill Park, NY). A 19–21 mg por-
tion of the lyophilized and homogenized tissue was weighed into 
a 2 ml glass vial. Extraction of this tissue is visually summarized in 
Supporting Information Figure S5. Phytohormones were extracted 
by adding 1 ml of methyl-tert-butyl-ether (MTBE) solution contain-
ing 6:3:1 MTBE:methanol:water (v/v/v) and vortexing at 4°C for 
60 min. Next, glass vials were centrifuged for 15 min at 3,500 rpm. 
A 400 μl aliquot of the extraction was dried completely under N 
gas, resuspended in 100 μl methanol and stored in a glass insert in 
a 2 ml glass vial at −80°C until further analysis. To separate organic 
and aqueous layers, 350 μl of water was added to the remaining ex-
tract and vortexed for 30 min at 4°C. Glass vials were centrifuged at 
2,750 rpm at 4°C for 15 min and the organic layer was transferred 
into a separate 2 ml glass vial. The aqueous layer was transferred to 
an Ambion® filter cartridge (Thermo Fisher Scientific, USA) and cen-
trifuged briefly to pass the aqueous extract through the column. The 
filtrate was transferred to a separate glass vial and stored at −80°C 
until further analysis. In addition, a pooled extract was created by 
combining equal volumes of each sample into one glass vial for use 
as a consistent representative quality control sample (QC).

2.8 | Targeted UPLC-MS/MS phytohormone  
analysis

Two microliters of monophasic plant extract were injected in an 
ACQUITY UPLC System, equipped with an ACQUITY Binary Solvent 
Manager (20 μl sample loop, partial loop injection mode; Waters 
Corporation). An Acquity UPLC T3 column (1 × 100 mm, 1.8 μM; 
Waters Corporation) was used for chromatographic separation. 
Mobile phase A consisted of LC-MS grade water with 0.1% formic 
acid and mobile phase B was 100% acetonitrile. The elution gradient 
was initially 0.1% B for 1 min, which was increased to 55.0% B at 
12 min and further increased to 97.0% B at 15 min, then decreased 
to 0.1% B at 15.5 min. The column was re-equilibrated for 4.5 min for 
a total run time of 20 min. The flow rate was set to 120 μl/min and 

the column temperature was maintained at 45°C. Mass spectrom-
etry was performed on a Xevo TQ-S triple quadrupole MS (Waters 
Corporation) operated in selected reaction monitoring (SRM) mode 
(Supporting Information Table S5).

Skyline bioinformatics software (MacLean, Bioinformatics 2010) 
was used to detect and integrate peak areas and to calculate linear 
regression of analytical standards used for quantification. Prior to 
quantification, each analyte peak area was normalized to the internal 
standard (Supporting Information Table S6).

All raw data files were imported into the Skyline open source 
software package (MacLean et al., 2010). Each target analyte was 
visually inspected for retention time and peak area integration. Peak 
areas were exported to Excel and absolute quantitation was deter-
mined by using the linear regression equation generated for each 
compound from the calibration curve. To make the calibration curve, 
analytical standards were diluted in pure methanol serially from 
400 ng/ml to 0.54 ng/ml before adding an equal amount of every 
internal standard to each vial. The linear regression equation of the 
analytical standard curve was used to convert the normalized peak 
area to quantity (ng/ml) for each analyte. The values were then ad-
justed for precise weight of root tissue for each sample and reported 
as ng/g root tissue.

2.9 | Non-targeted reverse phase UPLC-MS/MS  
analysis

A 200 μl aliquot of the organic layer was dried and resuspended in 
100 μl of methanol and toluene (1:4, v/v). Single injections of 3 μl of 
extract were made on an Acquity UPLC system (Waters Corporation) 
in discrete, randomized blocks. The pooled QC was injected after 
every 10 sample injections.

Separation was performed with an Acquity UPLC CSH Phenyl 
Hexyl column (1.7 μM, 1.0 × 100 mm; Waters Corporation), using a 
gradient from solvent A (water, 0.1% formic acid) to solvent B (ace-
tonitrile, 0.1% formic acid). Injections were made in 100% A, held at 
100% A for 1 min, ramped to 98% B over 12 min, held at 98% B for 
3 min, and then returned to starting conditions over 0.05 min and 
allowed to re-equilibrate for 3.95 min, with a 200 μl/min constant 
flow rate. The column and samples were held at 65°C and 6°C, re-
spectively. The column eluent was infused into a Xevo G2 Q-TOF-MS 
(Waters Corporation) with an electrospray source in positive mode, 
scanning 50–2,000 m/z at 0.2 s per scan, alternating between MS 
(6 V collision energy) and MSE mode (15–30 V ramp). Calibration 
was performed using sodium iodide with 1 ppm mass accuracy. The 
capillary voltage was held at 2,200 V, source temp at 150°C, and N 
desolvation temp at 350°C with a flow rate of 800 L/hr.

2.10 | Non-targeted UPLC-MS/MS HILIC analysis

Single injections of 3 μl of the aqueous extract were made on a Waters 
Acquity UPLC system in discrete, randomized blocks. The pooled QC 
was injected every after every 10 injections. Separation was per-
formed using a ZIC-pHilic (5 μM, 2.0 × 150 mm; EMD Millipore), 

http://www.microbiomeanalyst.ca/
https://qiime2.org
https://qiime2.org
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using a gradient from solvent A (acetonitrile) to solvent B (water, 
10 mM Ammomium Bicarbonate, pH 9.6). Flow rate was 0.27 ml/
min unless noted otherwise, and the column was held at 50°C. The 
gradient is as follows: time (t) = 0 min, 10% A; t = 1.5 min, 10% A; 
t = 8.5 min, 38% A; t = 11 min, 60% A; t = 11.5 min, 100% A, 0.2 ml/
min flow; t = 16.5 min, 100% A; t = 17 min, 10% A; t = 18 min, 10% 
A, 0.6 ml/min flow; t = 22 min 10% A; t = 22.5 min, 10% A, 0.27 ml/
min flow; t = 23 min, 10% A, end of equilibration. The column eluent 
was infused into a Xevo G2 Q-TOF-MS (Waters Corporation) with 
an electrospray source in negative ionization mode, scanning 50–
1,200 m/z at 0.2 s per scan, alternating between MS (6 V collision 
energy) and MSE mode (15–30 V ramp). Calibration was performed 
using sodium formate with 1 ppm mass accuracy. The capillary volt-
age was held at 2,200 V, source temperature at 150°C, and N desol-
vation temperature at 350°C with a flow rate of 800 L/hr.

2.11 | Non-targeted GC-MS analysis

A 200 μl aliquot of the aqueous layer was dried down completely 
under N2 (g). The dried samples were resuspended in 50 μl of pyri-
dine containing 25 mg/ml of methoxyamine hydrochloride (Sigma), 
incubated at 60°C for 45 min, vigorously vortexed for 30 s, soni-
cated for 10 min, and incubated for an additional 45 min at 60°C. 
Next, samples were cooled to room temperature and briefly cen-
trifuged. Then, 50 μl of N-methyl-N-trimethylsilyltrifluoroacetamide 
with 1% trimethylchlorosilane (MSTFA + 1% TMCS, Thermo Fisher 
Scientific) was added and the samples were vigorously vortexed 
for 30 s and then incubated at 60°C for 30 min. Metabolites were 
separated and detected using a Trace 1310 GC coupled to an ISQ 
mass spectrometer (Thermo Fisher Scientific). Samples (1 μl) were 
injected at a 10:1 split ratio onto a 30 m TG-5MS column (0.25 mm 
i.d., 0.25 μm film thickness; Thermo Fisher Scientific) with a 1.2 ml/
min helium gas flow rate. The gas chromatography inlet was held 
at 285°C. The oven program started at 80°C for 30 s, followed by 
a ramp of 15°C/min to 330°C, and an 8-min hold. Masses between 
50–650 m/z were scanned at 5 scans/s under electron impact ioni-
zation. Transfer line and ion source were held at 300 and 260°C, 
respectively.

2.12 | Metabolomics data analysis

GC-MS and LC-MS data sets were processed independently using 
the R statistics software (R Core Team, 2013) as described previ-
ously (Yao, Sheflin, Broeckling, & Prenni, 2019). Briefly, process-
ing steps follow: (a) XCMS software defined a matrix of molecular 
features (Smith, Want, O'Maille, Abagyan, & Siuzdak, 2006), (b) 
samples were normalized to total ion current, (c) RAMClust 
package for R clustered covarying and co-eluting features into 
spectra (Broeckling, Afsar, Neumann, Ben-Hur, & Prenni, 2014), 
(d) RAMSearch software (Broeckling et al., 2016) allowed an-
notation by searching spectra against internal and external da-
tabases. Databases used for annotations included golm (http://
gmd.mpimp-golm.mpg.de/), NISTv14 (http://www.nist.gov), and 

MassBank (http://www.massbank.jp). Skyline software (MacLean 
et al., 2010) was used for peak picking, integration, normalization, 
and quantification of phytohormones. Principal component analy-
sis (PCA) was performed using only annotated metabolites using 
mean-centered and pareto-scaled data in SIMCA v14 (Umetrics, 
Umea, Sweden). The biplot from the PCA analysis was also cre-
ated in SIMCA using correlation scaling so that scores and load-
ings could be presented together to display metabolites driving 
variation between N treatment groups. The list of scores and load-
ings coordinates was then plotted in Prism 7 (GraphPad, La Jolla, 
California, US). Prism was used to size loading metabolites accord-
ing to loading value and only values greater than 0.5 on either co-
ordinate axis were labeled with a metabolite name. The pathway 
analysis tool in MetaboAnalyst (http://www.metaboanalyst.ca/) 
was used to identify important KEGG pathways modeling meta-
bolic effects under low and full N conditions (Xia, Sinelnikov, Han, 
& Wishart, 2015). The tool was used to prioritize KEGG reference 
pathways of interest rather than to determine significant meta-
bolic changes due to treatment, so cutoff was set at p-value < 0.05 
(ignoring adjustment for multiple testing).

2.13 | RNA extraction, RNA-seq library 
preparation, and data analysis

Frozen root samples were ground in liquid nitrogen with mor-
tar and pestle. Equal parts of extraction buffer and 1:1 acidic 
phenol:chloroform were added and vortexed at 4°C for 1 hr. Samples 
were then centrifuged for 30 min and the aqueous layer was trans-
ferred to an RNase-free tube, combined with equal volume of 24:1 
Chloroform:Isoamyl alcohol, and vortexed. Samples were centri-
fuged for 15 min, aqueous layer transferred to a RNase-free tube 
and mixed well with 1/3 volume of 8M LiCl. Samples were incubated 
overnight at 4°C and centrifuged for 30 min. Supernatent was dis-
carded and the pellet was washed twice with ice cold 80% etha-
nol, mixing and centrifuging for 15 min following each wash. RNA 
was resuspended in 30 μl of nuclease-free water. Samples were 
DNase treated using the Turbo DNase kit (Ambion) and quantified 
by Nanodrop. A subset of samples were quality checked using the 
Agilent 2100 Bioanalyzer RNA 6000 nano kit.

RNA-seq libraries were prepared using the NEBNext Ultra 
Directional RNA Library Prep Kit for Illumina (New England 
Biolabs). Libraries were quantified using Qubit dsDNA HS Assay 
kit (Thermo Fischer) and quality checked using the Agilent 2100 
Bioanalyzer DNA HS chip. All libraries were indexed and pooled to 
equal concentrations and 100 bp single-end reads sequenced on 
two lanes of the Illumina HiSeq4000 at the University of Illinois 
Keck Center.

2.14 | Statistical analysis

Differences between N treatments for agronomic traits were 
tested using a two-tailed, unpaired Mann–Whitney (nonpara-
metric) test (Mann & Whitney, 1947). For metabolite data, the 

http://gmd.mpimp-golm.mpg.de/
http://gmd.mpimp-golm.mpg.de/
http://www.nist.gov
http://www.massbank.jp
http://www.metaboanalyst.ca/


6  |     SHEFLIN et al.

Shapiro–Wilk test was first carried out to test whether the as-
sumption of a normal distribution is appropriate or not for log-
transformed data using shapiro test function in R. If normality was 
not rejected at 5% significance level, a linear mixed model was 
carried out to assess the effect of collection date, N level, and 
genotype on metabolites using the lme4 package for R statistics 
software (Bates, Mächler, Bolker, & Walker, 2014). Genotype was 
modeled as a random effect due to the small number of replicates 
(at most, two per genotype) while collection date, N, and their in-
teraction were modeled as fixed effects. This approach accounts 
for variation attributable to genotypes within a breeding status 
while preserving enough degrees of freedom to perform tests on 
all fixed effects, and can be justified by considering the genotypes 
included in the study to be a sample from a range of sorghum 
genotypes of interest. Due to the split-plot design of the experi-
ment, an additional random effect for the whole-plot error was ini-
tially included in the model but may have been excluded from the 
final model for some metabolites if the estimate of the variance 
component corresponding to whole-plot error was zero. Based on 
residual plots, there was no indication of any model assumption 
violations. Estimates and 95% confidence intervals for mean log 
metabolite for each collection date and N combination and the 
marginal mean for N (averaged over the two collection dates) were 
computed with the emmeans package for R (Lenth, 2018) using 
the Kenward–Roger approximation. If the normality assumption 
was violated, a nonparametric factorial ANOVA approach was 
performed using art function in ARTool R package (Wobbrock, 
Findlater, Gergle, & Higgins, 2011). The metabolite data without 
log-transformation was modeled as a function of N treatment, col-
lection date and interaction between N treatment and collection 
date as fixed effects, and genotype type and biological replicates 
as random effects.

Multivariate analysis for date and N treatment factors was 
completed for both rhizosphere bacterial composition and root 
metabolite profiles using the adonis2 function in the vegan pack-
age (Oksanen et al., 2013) for R statistics software (R) (R Core 
Team, 2013). Pairwise distances for these comparisons were calcu-
lated using the Bray–Curtis ordination method (Beals, 1984). The 
adonis2 function has been described as a “permutational MANOVA” 
(Anderson, 2001; McArdle & Anderson, 2001) and offers an alterna-
tive to parametric MANOVA. A two-way ANOVA univariate test was 
used to determine differential relative abundance of a single OTU 
in rhizosphere soil by date, treatment, or the interaction in Prism 

7 (GraphPad, La Jolla, California, US). Correlation analyses utilized 
the cor function in R and with the nonparametric Spearman's rank 
option. The corrplot package (Wei et al., 2017) for R was used to 
visualize correlation analyses as heatmaps.

3  | RESULTS

The aboveground biomass and heights (Table 2 and Supporting 
Information Data S1) were significantly reduced in the low N 
treatment group. The concentration of N in each field was deter-
mined via soil composition analysis (Table 3) and determined to be 
7.8 ± 0.7 ppm in the low N field and 8.5 ± 0.5 ppm in the full N field. 
Total aboveground dry biomass (kg/ha) was reduced by 68% and total 
aboveground fresh biomass was reduced by 63% (kg/ha) under low 
N conditions. These data show that the N treatment had a strong ef-
fect on sorghum growth and that plants were experiencing N stress. 
The number of plants per square meter did not significantly vary by 
N treatment. Since crop hybridization is known to result in superior 
vigor and yield (Packer & Rooney, 2014; Quinby, 1963), fold change 
for agronomic traits in hybrids grown with low N was compared to 
inbreds and was calculated (Supporting Information Figure S1). This 
comparison did not reveal any significant differences in biomass ac-
cumulation for hybrids versus inbreds grown under low N (p = 0.05), 
therefore hybrid status was not included as a factor for other analyses.

3.1 | Significant metabolite variation in low N roots

A nontargeted metabolomics approach was used to evaluate bio-
chemical variation in roots receiving low N compared to plants grown 
in the full N field. PCA analysis was used to visualize this variation 
and shows that higher trehalose, quinic, and shikimic acids drove the 
variation in metabolite profiles under low N conditions (Figure 1). 
Roots from the full N field were higher in asparagine, other amino 
acids, allantoin, 2-  imidazolidone -4-carboxylic acid (2-I-4-C), and 
carbodiimide in both July and September. Permutational MANOVA 
(PERMANOVA) analysis revealed that the global metabolite profile 
was significantly different between low versus full N in both July and 
September (p < 0.01; Figure 1a,b).

The altered metabolite profile with N stress allows for the dis-
covery of associations with agronomic traits, for example, biomass. 
Spearman rank correlations (Sheskin, 2003; Weatherburn, 1961) of 
root metabolites with these traits, arranged by sampling date and 

Trait Full nitrogen (N) Low nitrogen (N) p-Value

Total aboveground dry biomass 
(kg/ha)

25,714 ± 1,491 8,346 ± 628 <0.0001

Total aboveground fresh biomass 
(kg/ha)

90,727 ± 6,982 33,687 ± 2,946 <0.0001

Plant height (cm) 337.6 ± 9.612 235 ± 9.278 <0.0001

Number of plants per square 
meter

18.49 ± 0.7608 18.89 ± 0.5414 0.461

TABLE  2 Agronomic sorghum traits 
related to biomass production (means, 
standard error of the mean, and results of 
Mann–Whitney by trait) p-value refers to 
the difference between full and low N 
(n = 20)
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N treatment, revealed that metabolite associations with biomass 
differed with N treatment and also changed over the growing sea-
son (Figure 2). Under low N conditions, the July sampling revealed 
many root metabolites that were correlated with reduced biomass 
including several proteinogenic amino acids: serine, threonine, as-
paragine, valine, and phenylalanine. Oleamide, an amide derivative 

of oleic acid, was associated with higher biomass under full N for 
both sampling dates and under high N in September. However, 
Oleamide was negatively correlated with biomass in September 
under low N conditions. Higher biomass in the low N field was as-
sociated with root lactic acid, an end product of anaerobic respira-
tion (Rivoal & Hanson, 1994), but only for the September sampling. 

TABLE  3 Mean soil nutrient concentrations ± standard deviation of the mean

Treatment K (ppm) S (ppm) Ca (ppm) Mg (ppm) NO3 (ppm) NH4 (ppm) P (ppm)

High N 358 ± 34 13.6 ± 0.6 1,751 ± 60 252 ± 12 8.5 ± 0.5 5.0 ± 1.1 18.4 ± 3.0

Low N 251 ± 24 13.6 ± 0.9 1,489 ± 91 297 ± 44 7.8 ± 0.7 4.9 ± 0.4 23.3 ± 3.8

F IGURE  1 PCA biplots include scores 
(squares) and metabolite loadings (gray 
circles) of the root metabolomics analysis 
in (a) July and (b) September. Data from 
GC- and LC- MS analyses were combined. 
Arrows indicate the direction of influence 
for a specific metabolite on N treatment 
group separation. Circles representing 
metabolites are sized according to loading 
scores determined by the PCA analysis

–1.0

–0.5

0.0

0.5

1.0
July global root metabolite profile

, -Trehalose

Galacturonic acid

Quinic & Shikimic acids

Asparagine
Valine
Isoleucine
Alloisoleucine
Phenylalanine
Serine
Threonine
Aspartic acid
Carbodiimide

Sucrose2-I-4-C
Allantoin

Tyrosine

Low N
High N

–1.0 –0.5 0.0 0.5 1.0

–1.0 –0.5 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0
September global root metabolite profile

, -Trehalose

Galacturonic acid

Galactaric acid
Shikimic acid
Quinic acid
3-dehydro-
      shikimic acid

2-oleoyl glycerol

Aspartic acidAsparagine
Valine, Serine
Isoleucine
Alloisoleucine
Phenylalanine
         Threonine
Allantoin
2-I-4-C

Carbodiimide
Tyrosine
Flavonoid
Oleamide

Low N
High N

PC1 = 56.4%

PC
2

=
18

.6
%

PC1 = 44%

PC
2

=
28

.7
%

(a)

(b)



8  |     SHEFLIN et al.

Roots with reduced shikimic acid, a precursor in aromatic amino 
acid biosynthesis, were also associated with higher biomass under 
full N conditions for both sampling dates, but this correlation with 
biomass was very weak in the low N treatment. Similarly, reduced 
quinic acid, another precursor in aromatic amino acid biosynthesis, 
was associated with higher biomass in roots grown under full N 
conditions for both sampling dates and low N September sampling, 
but this association was very weak for the July sampling under 
low N conditions. When considering differences between July and 
September sampling dates, it is important to note that sorghum 
plants were in the vegetative stage in July and were in the repro-
ductive stage in September which likely influenced differences ob-
served between sampling dates. Thus, with the data at hand it is 
not possible to separate the influence of developmental stage from 
environmental factors. Galacturonic acid, a component of pectin 
that makes up plant cell walls, was the only metabolite negatively 
associated with biomass across all treatment groups and sample 
dates. No root metabolites were consistently associated with 
higher biomass across all treatments and time points.

3.2 | Rhizosphere microbiota significantly vary with 
N treatment and collection date

Rhizosphere bacterial community profiles significantly differed ac-
cording to collection date (PERMANOVA: R2 = 0.83, p < 0.01) and 

were clearly separated in a principal coordinate analysis (PCoA; 
Supporting Information Figure S2). While date accounted for the 
majority of the variation in rhizosphere bacterial composition, sig-
nificant variation due to N treatment was also seen along PCo2 ex-
plaining 6% of the variation. PERMANOVA analysis revealed that the 
rhizosphere bacterial community profile was significantly different 
between low versus full N in both July and September (p = 0.001). 
All of these genera were significantly different by interaction of date 
and treatment and all except for the Burkholderia genus significantly 
differed by date (Supporting Information Table S2). The bacterial 
composition of the rhizosphere was largely dominated by a single 
operational taxonomic unit (OTU), OTU 0, in July that mapped taxo-
nomically to the Pseudomonas genus. In July, this single OTU domi-
nated the rhizosphere, comprising 47% of the bacterial community 
under full N conditions and significantly more under low N at 66% of 
the bacterial community (ANOVA, p < 0.05; Figure 3).

3.3 | Metabolic pathway analysis suggests altered 
flux through shikimate pathway

The complete annotated list of metabolites detected in roots from 
the July sampling was used to generate the metabolic pathways 
associated with these molecules using the pathway analysis tool 
in MetaboAnalyst (http://www.metaboanalyst.ca/). The list of 
pathways matching with the highest number of metabolites in the 

F IGURE  2 Heatmap showing spearman rank correlations of agronomic traits (rows) and root metabolites (columns). Color scale for 
correlation value is dark blue: R2 = 1; dark red (strong positive association): R2 = −1 (strong negative association). Squares are also sized 
according to R2 values with larger squares indicating values close to 1 (blue) or −1 (red). Rows are grouped by collection date (July or 
September) and treatment (low or full N) with a colored key along the left edge as shown in the legend. Agronomic traits are abbreviated 
as: wet = total plant (includes stems, leaves, and panicle) fresh weight, total dry = total plant (includes stems, leaves, and panicle) dry matter 
weight, veg dry = vegetative portion of plant (stems and leaves) dry weight measured in kilograms per hectare
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experimental dataset, without consideration of which metabolites 
are most relevant to experimental factors, is shown in Supporting 
Information Table S1 and was used to prioritize KEGG reference 
pathways of interest. Metabolites that differentiated between 
low and full N treatments were identified through the PCA biplot 
analysis (Figure 1) to narrow pathways of interest. Two of these 
KEGG pathways, “Alanine, aspartate, and glutamate metabolism” and 
“Phenylalanine, tyrosine, and tryptophan biosynthesis”, contained me-
tabolites shown to discriminate between low and full N treatment 
groups and were selected for further analysis. Generally, metabolites 
in the “Alanine, aspartate, and glutamate” pathway were less abun-
dant in roots under N stress, consistent with decreased N availability 
(Figure 4a, Supporting Information Table S3). Biosynthesis of the ar-
omatic amino acids phenylalanine, tyrosine, and tryptophan occurs 
via the shikimate pathway. In roots sampled in July, three intermedi-
ary metabolites in this pathway, quinic acid, 3-dehydroshikimic acid, 
and shikimic acid, were more abundant under N stress, while two 
end products of this pathway, phenylalanine and tyrosine, were less 
abundant with N stress (Figure 4b, Supporting Information Table S3).

3.4 | N stress and the sorghum defense response

Analysis of phytohormones in root tissue was performed and in-
cluded quantitative measurement of 12-oxo-phytodienoic acid, 
trans-zeatin riboside, jasmonic acid, salicylic acid, abscisic acid, pha-
seic acid, indole-3-carboxylic acid, and dihydrophaseic acid. When 
treating genotype as a random factor, 12-oxo-phytodienoic acid, 
jasmonic acid, and trans-zeatin riboside significantly varied in the 
September root sampling as compared to roots sampled in July, but 
did not vary significantly by treatment or by interaction of date and 
treatment (Supporting Information Table S4 and Data S1). Salicylic 
acid was significantly reduced in low N conditions (Figure 5a), but 

did not vary significantly by date or by date x treatment interac-
tion (Supporting Information Table S4). No other root phytohor-
mones that were analyzed were significantly altered by N treatment. 
Furthermore, for roots sampled in July, less SA content was corre-
lated with greater abundance of the rhizosphere-dominating OTU 
0 (Pseudomonas) under full N (Figure 5b) but not under low N con-
ditions (Figure 5c). To further investigate root defense response, 
orthologs of genes previously described as having altered expres-
sion during pathogenesis (van Loon, Rep, & Pieterse, 2006) were 
investigated using RNA-seq data generated from roots sampled in 
parallel from the same field and dates as the root metabolite collec-
tions (Supporting Information Figure S4). The RNA-seq data were 
generated from only a subset of genotypes (PI 297130, PI 655972, 
CO53, CO56, and C225) with little replication (two biological rep-
licates), which limited the statistical power. However, three of the 
12 pathogenesis-related (PR) genes (PR1b, OsPR8, and OsPR10b) 
listed were downregulated in roots collected in July under low 
N versus full N conditions in multiple genotypes (Students t test, 
p < 0.01; Supporting Information Figure S4). Expression of PR1b was 
reduced by 90% (on average) and was downregulated in PI 655972, 
PI 297130, CO56, and C225. Expression of OsPR8 was reduced by 
60% (on average) and was downregulated in PI 297130, CO56, and 
C225. Expression of OsPR10b was also reduced by 60% (on average) 
and was downregulated in all included genotypes. No significant dif-
ference in low N versus full N gene expression for PR1b, OsPR8, or 
OsPR10b was observed, however, the limited number of replicates 
severely restricted statistical power.

4  | DISCUSSION

Root and rhizosphere soil samples from N stressed sorghum re-
vealed differences in root metabolite profiles, rhizosphere microbial 
community composition, and SA production. Phytohormones and 
bacterial community composition also varied over the growing sea-
son. Metabolites that accumulated in N stressed roots are consist-
ent with previous studies on the effects of nutrient deprivation on 
plant metabolism and go beyond what is currently known. In the July 
sampling, for example, we observed increased trehalose and sucrose 
content in roots with low N relative to full N. Similarly, an increased 
emphasis on carbohydrate storage in roots of soybean plants has 
been previously associated with a limited ability to synthesize su-
crose in leaves with N stress (Rufty, Huber, & Volk, 1988). Enhanced 
storage of carbohydrates in roots versus leaves could explain the 
observed increase in trehalose and sucrose in roots with low N rela-
tive to full N. However, trehalose accumulation has been associ-
ated with both biotic and abiotic plant stress response (Fernandez, 
Béthencourt, Quero, Sangwan, & Clément, 2010). Accumulation of 
trehalose in roots was observed in Arabidopsis thaliana infected with 
Plasmodiophora brassicae (Brodmann et al., 2002) and in Pinus syl-
vestris (pine) infected with Armillaria ostoyae (Isidorov, Lech, Żółciak, 
Rusak, & Szczepaniak, 2008). Therefore, it is possible that treha-
lose accumulation in roots of N stressed sorghum resulted from the 

F IGURE  3 OTU 0 (Pseudomonas) dominated the rhizosphere 
under both high and low N conditions, but was significantly more 
abundant under low N conditions (p < 0.05, ANOVA). Boxplot 
of OTU 0 (Pseudomonas) shown as percent abundance of total 
normalized reads in rhizosphere soil from the July sampling and 
demonstrates the dominance of the rhizosphere community by 
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combined abiotic and biotic stresses of low N and the proliferation 
of Pseudomonas in the rhizosphere in July.

In addition, metabolites identified in previous research as im-
portant to N cycling and mobility in plants were more abundant in 
roots grown with full N relative to low N. For example, both aspar-
tate and asparagine function were reduced with low N and act as 
carriers when mobilizing N to sink tissues with asparagine being par-
ticularly important as it is efficiently transported (Cañas, Quilleré, 
Lea, & Hirel, 2010; Gaufichon, Rothstein, & Suzuki, 2015; Masclaux-
Daubresse et al., 2010). In other studies looking at N stress, reduced 
amino acids were observed in both root exudates (Carvalhais et al., 
2011) and tomato root tissue (Sung et al., 2015). Thus, increased 
mobilization of N can reflect higher availability of soil N. However, 
it is also possible that this increased mobilization of N is related to 
competition with soil microbes because access to N is important not 
only to plants, but also to pathogenic and beneficial microorganisms 
living in association with plants. While N application to crops likely 
benefits plant defense, it may also allow rhizosphere microorganisms 
to gain access to N coming from root cellular pools (Hoffland, Jeger, 
& van Beusichem, 2000; Jensen & Munk, 1997). Gene expression 
patterns consistent with remobilization of N as a strategy to seques-
ter N stores away from bacteria have been reported previously in 
Phaseolus vulgaris (common bean) (Tavernier et al., 2007), tomato 
(Olea et al., 2004), Nicotiana tabacum L. (tobacco) (Pageau, Reisdorf-
Cren, Morot-Gaudry, & Masclaux-Daubresse, 2005), and Arabidopsis 
thaliana (AbuQamar et al., 2006). Glutamine is typically the pre-
ferred carrier during N mobilization, but asparagine, aspartate, or 
alanine may be utilized when glutamine is limited (Pellier, Laugé, 
Veneault-Fourrey, & Langin, 2003). A decrease in N-carrying amino 
acids in response to N stress likely reflects lower N stores already 
present in plant cells. Pathogens, as well as other soil microbes, may 

have experienced reduced opportunity for N exploitation in roots of 
N stressed sorghum.

Nitrogen stressed sorghum showed unique metabolic associa-
tions with agronomic traits that changed over the growing season. 
Previous research with non-stressed, greenhouse-grown sorghum 
revealed that higher levels of intermediaries of the shikimate path-
way, quinic, and shikimic acids, in 4-week-old leaves was associated 
with higher biomass (Turner et al., 2016). However, in the current 
work, lower content of quinic and shikimic acids was associated with 
higher biomass in roots under full N conditions. Shikimic acid was 
not strongly correlated with biomass under N stress but reduced 
3-dehydroshikimic acid, a related intermediary in the shikimate path-
way, was negatively correlated with higher biomass. Lower quinic 
acid content was also correlated with higher biomass under low N 
conditions, but only in roots from the September sampling. Whether 
this discrepancy is due to greenhouse versus field conditions or 
reflects tissue-specific effects is not clear (Turner et al., 2016). 
Therefore, the role of shikimate pathway metabolites and biomass 
accumulation, particularly in N stress environments warrants further 
investigation.

The metabolic pathway analysis suggested altered flux through 
the shikimate pathway that may have impaired production of the 
plant defense hormone SA. An increase in intermediary metabolites 
of this pathway combined with a decrease in end products with N 
stress suggests that flux through the shikimate pathway may have 
been compromised, or compounds may have been diverted to other 
biosynthetic pathways, resulting in lower concentrations of end 
products (Figure 4b, Supporting Information Table S3). The end 
products of the shikimate pathway are aromatic amino acids, includ-
ing phenylalanine, which is used in the biosynthesis of plant defense 
hormone SA (Chen, Zheng, Huang, Lai, & Fan, 2009; Maeda, Yoo, & 

F IGURE  4 Pathway analysis (a) alanine, aspartate, and glutamate metabolism and (b) phenylalanine, tyrosine, and tryptophan 
biosynthesis (shikimate pathway). Metabolites detected during metabolomics analysis have peak intensities presented as bar graphs overlaid 
on the pathway map. Peak intensity reflects the semiquantitative nature of the nontargeted approach used for this global metabolite 
analysis. Statistical significance when using a nonparametric factorial ANOVA test (Supporting Information Table S2) is denoted as follows: 
*significant by date, **significant by treatment and date but not the interaction, ***significant by date treatment interaction (p < 0.05). Dark 
green = July high N; Dark purple = September high N; Light green = July low N; Light purple = September low N

F IGURE  5 Salicylic acid and OTU 0 abundance. The main effect of nitrogen treatment showed significantly reduced root salicylic acid 
content under low N compared to high N when averaged over the two sampling dates and treating genotype as a random effect. Panel (a) 
shows the effects plot with 95% confidence interval for the linear mixed model, (b) OTU 0 is negatively correlated with salicylic acid with full 
N and (c) not with low N
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Dudareva, 2011). Our results show that SA concentration was sig-
nificantly lower in roots experiencing N stress and this effect was 
not influenced by collection date when treating genotype as a ran-
dom effect in a mixed linear model analysis (Figure 5a, Supporting 
Information Table S4). Since SA plays an important role in plant im-
munity and defense, reduced metabolic capacity to produce SA may 
alter the overall plant defense response.

RNA-seq analysis of a subset of root samples for sorghum 
genes involved in the pathogenesis response provided some ev-
idence of altered expression with three of the 12 genes being 
downregulated (t test, p = 0.01) in samples from multiple geno-
types (Supporting Information Figure S2). Homologs in Arabidopsis 
thaliana for two of these genes, PR1b, were previously found to 
be induced in response to SA (Thomma et al., 1998). In sorghum, 
PR1b and other PR genes were also induced when SA was added 
to growth solution for hydroponically grown plants (Salzman et al., 
2005). Furthermore, sorghum grown under full N conditions was 
able to accumulate more root SA and also had lower abundance of 
the rhizosphere-dominating OTU 0 (Pseudomonas) (Figure 5b) con-
sistent with successful plant defense of the rhizosphere. However, 
sorghum experiencing N stress had less SA accumulation in root 
tissue and did not show any reduction in rhizosphere abundance 
of OTU 0 (Pseudomonas) (Figure 5c). These results suggest that the 
reduced abundance of SA in roots experiencing N stress is insuffi-
cient to induce some important defense genes, which is also sup-
ported by the RNA-seq analysis (Supporting Information Figure 
S4). However, since bacterial composition in the rhizosphere 
also varied significantly under low N conditions (Supporting 
Information Table S2), we cannot determine conclusively if the re-
duced abundance of SA was due to metabolic effects of N stress or 
soil bacterial interactions. When interpreting both metabolic and 
microbial differences due to treatment effect, it is important to 
note other differences between fields. The low N field utilized in 
this study, which had not had N applied for more than 20 years, 
also had other differences relative to the full N field including crop 
rotation, soil composition and likely others. However, 78.8% of 
variation in the rhizosphere bacterial composition was explained 
by sampling date and only 5.7% variation was due to different 
treatments/fields (Supporting Information Figure S3). Similarly, 
when metabolite data were plotted together in PCA analysis, sep-
aration by date along PC1 explained 49.3% of variation and PC2 
explained only 13.4%. These results suggest that the influence of 
non-field specific factors such as plant growth and developmental 
stage on the soil rhizosphere community composition are exerting 
a stronger effect on sample variation than any potential effects 
due to bulk soil composition, which has also been demonstrated in 
other research (Shi et al., 2015).

Identifying production strategies that incorporate marginal 
soils with reduced inputs is a high priority for biofuels research and 
our findings revealed important implications for improving biomass 
yield under N stress and in the context of microbial interactions. 
As breeding programs are established for biofuels production on 
marginal lands, priorities should be established for both abiotic and 

biotic stress tolerance since plant response to N deficiency is likely 
to affect critical metabolic pathways for plant defense.

5  | ACCESSION NUMBERS

Sequence data from this article can be found in the NCBI SRA sub-
mission library under the following accession numbers:

1.	 16S amplicons: Sequencing project IDs #1095844, #1095845, 
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