
LEARNING DYNAMICS FROM DATA USING OPTIMAL TRANSPORT
TECHNIQUES AND APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

By

Shaojun Ma

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Computational Science and Engineering

College of Sciences
Department of Mathematics

Georgia Institute of Technology

August 2022

© Shaojun Ma 2022

LEARNING DYNAMICS FROM DATA USING OPTIMAL TRANSPORT
TECHNIQUES AND APPLICATIONS

Thesis committee:

Dr. Luca Dieci
School of Mathematics
Georgia Institute of Technology

Dr. Molei Tao
School of Mathematics
Georgia Institute of Technology

Dr. Wuchen Li
School of Mathematics
University of South Carolina

Dr. Xiaojing Ye
Department of Mathematics and Statistics
Georgia State University

Dr. Hongyuan Zha
School of Data Science
The Chinese University of Hong Kong,
Shenzhen

Dr. Haomin Zhou, Advisor
School of Mathematics
Georgia Institute of Technology

Date approved: June 1st, 2022

Enjoy the fruits of discipline, strength comes with practice.

For my parents

ACKNOWLEDGMENTS

It has been six years since I became a student in Georgia Tech. My major was Me-

chanical Engineering because I wanted to build iron man suits, later on I realized that the

core parts in iron man suits are computer science and mathematics, so I decided to explore

the world that I never saw. It is such a great pleasure for me to know everybody in Tech,

without their help I will never make this achievement.

Firstly I want to express my full, deepest gratitude to my advisor, Professor Haomin

Zhou, who keeps leading me to build understandings of mathematics, providing meaning-

ful research directions and supporting me in writing papers. I trust Professor Zhou for his

expertise in mathematics, incisive and novel understanding of the research, as well as his

nice personalities. During my PhD study in Math Department, I enjoy discussing differ-

ent kinds of problems with him, including not only cutting edges of the research but also

life experience, advice and encouragement. I will never forget the moment we had lunch

together in China and every formula we wrote on the board in his office, it is such a great

luck for me to have him as my PhD and life advisor.

I also want to convey my super gratitude to my co-advisor, Professor Hongyuan Zha,

who also gives a lot of cares to my research, life and work. Professor Zha provides me a lot

of interesting research directions, he always know the most advanced and popular research

topics in both computational science and mathematics fields, his advice inspires to touch

the most newest and interesting research directions. Professor Zha also helped me a lot

while I was looking for internships and jobs, his wisdom, calm and positiveness always

light my research and life.

I am extremely grateful to Professors Xiaojing Ye, Luca Dieci and Molei Tao for spar-

ing time to serve as my committee members. I appreciate their valuable and insightful

questions and suggestions.

I would like to thank Professor Wuchen Li and Professor Yongxin Chen, my collabo-

v

rators Shu Liu and Jiaojiao Fan for the guides and discussions. They offer me professional

advice and thoughts which tremendously push forward the progress of the projects. From

our communications I am able to see new possibilities, together we come up with new ideas

and solve problems. I really enjoy working with them.

Meanwhile, I want to offer my thanks to my graduate fellows and friends. Allow me to

specially thank Haoming Jiang, Ruilin Li, Haodong Sun, Xinshi Chen, Haoran Sun, Yuqin

Yang, Yingjie Qian and Hao Wu for years of friendship and many interesting discussions

in both research and life.

Last but not least, I convey my deep thanks to my parents, without the constant sup-

porting and caring of whom, I would not have the opportunity to have gone so far.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xiv

Summary .xviii

Chapter 1: Introduction . 1

1.1 Computational Methods for OT and IOT Problems 1

1.2 Applications of OT in Data Driven Problems 3

Chapter 2: PRELIMINARY IN MATHEMATICS 6

2.1 Optimal Transport . 6

2.2 Fokker Planck Equation . 7

2.3 Hamiltonian System . 9

2.3.1 Definition . 9

2.3.2 Computing Methods . 11

2.4 Optimal Control . 12

2.5 Mean Field Game . 13

Chapter 3: Learning High Dimensional Wasserstein Geodesics 16

vii

3.1 Introduction . 16

3.2 Background of the Wasserstein Geodesic 20

3.3 Proposed Methods . 25

3.3.1 Primal-Dual based saddle point scheme 25

3.3.2 Simplification via geodesic pushforward map 26

3.3.3 Bidirectional dynamical formulation 33

3.3.4 Overview of the algorithm . 33

3.4 Experiments . 37

3.5 Complete Geodesics in Experiments . 41

3.5.1 Synthetic Data . 41

3.5.2 Realistic Data . 45

3.6 Conclusion . 48

Chapter 4: Scalable Computation of Monge Maps with General Costs 50

4.1 Introduction . 50

4.2 Background . 52

4.3 Proposed method . 54

4.4 Error Analysis via Duality Gaps . 56

4.5 Experiments . 64

4.5.1 Learning the 2D optimal map with L2 cost 64

4.5.2 Effect of different costs in 2D space 65

4.5.3 Example in 28×28D space . 65

4.5.4 Examples in 64×64D space . 66

viii

4.6 Summary of experiment details . 69

4.6.1 Normal 2D case . 69

4.6.2 Example in 28×28D space . 69

4.6.3 Example in 64×64D space . 70

4.7 Conclusion . 70

Chapter 5: Learning Cost Function for Optimal Transport 72

5.1 Introduction . 72

5.2 Related Work . 76

5.3 Proposed Framework . 79

5.3.1 Preliminaries on Entropy Regularized OT 79

5.3.2 Entropy Regularization in Inverse OT 80

5.3.3 Inverse OT and Its Dual Formulation 81

5.4 Algorithmic Development . 88

5.4.1 Discrete Case . 88

5.4.2 Continuous Case . 94

5.5 Numerical Experiments . 97

5.5.1 Discrete Inverse OT on Synthetic Data 97

5.5.2 Discrete Inverse OT on Real Marriage Data 99

5.5.3 Continuous Inverse OT on Synthetic Data 100

5.5.4 Continuous Inverse OT on Color Transfer 104

5.6 Remarks on the Implementation of Algorithm 3 106

5.7 Characterization of Inverse Problems Bypassing Bi-level Optimization . . . 108

ix

5.8 Robust case . 112

5.9 Block Coordinate Descent for Discrete Inverse OT 113

5.10 Conclusion . 117

Chapter 6: Learning Stochastic Behaviour from Aggregate Data 118

6.1 Introduction . 118

6.2 Proposed Method . 120

6.2.1 Fokker Planck Equation for the density evolution 120

6.2.2 Weak Form of Fokker Planck Equation 121

6.2.3 Wasserstein Distance on Time Series 125

6.3 Experiments . 129

6.3.1 Synthetic Data . 129

6.3.2 Realistic Data – RNA Sequence of Single Cell 131

6.3.3 Realistic Data – Daily Trading Volume 134

6.4 Discussions . 138

6.5 More experiments and proofs . 140

6.5.1 RNA-sequence . 140

6.5.2 Daily Trading Volume . 141

6.6 Error Analysis . 142

6.7 Learning Data-driven Hamiltonian System 146

6.7.1 Hamiltonian System . 148

6.7.2 Algorithm . 148

6.7.3 Experiments . 151

x

6.8 Conclusion . 155

Chapter 7: Optimal Density Control . 156

7.1 Introduction . 156

7.2 Methodology . 160

7.3 Experiments . 167

7.3.1 Synthetic Data . 167

7.3.2 Realistic Data . 169

7.4 Conclusion . 171

Chapter 8: Studies of Trading Strategies . 172

8.1 Predicting Daily Trading Volume . 172

8.1.1 Introduction . 172

8.1.2 Methodologies . 174

8.1.2.1 Two-state Kalman Filter Model 174

8.1.2.2 Our Model: Various-states Kalman Filter 175

8.1.2.3 DOF of State Space . 176

8.1.2.4 Kalman Filter . 178

8.1.3 Experiment . 180

8.1.3.1 Data Introduction . 180

8.1.3.2 Experiment Set-up . 180

8.1.4 Results . 181

8.1.4.1 MAPE Distribution . 181

8.1.4.2 Predictions on Specific Days 182

xi

8.1.4.3 Analysis of v-state Model 183

8.1.5 Conclusion . 185

8.2 Mean Field Game Generative Adversarial Network 185

8.2.1 Introduction . 185

8.2.2 Related Works . 186

8.2.2.1 Original GAN . 186

8.2.2.2 Wasserstein GAN . 187

8.2.2.3 Other GANs . 188

8.2.2.4 Hamilton-Jacobi Equation and Mean Field Games 188

8.2.2.5 Optimal Transport . 190

8.2.3 Model Derivation . 191

8.2.3.1 Formulation via Perspective of MFG 191

8.2.3.2 Formulation via Perspective of OT 193

8.2.4 Experiments . 194

8.2.4.1 Synthetic . 195

8.2.4.2 Realistic . 196

8.2.5 Conclusion . 196

References . 197

xii

LIST OF TABLES

4.1 Quantitative evaluation results on CelebA 64× 64 test dataset. 68

5.1 Affinity matrix estimated using Algorithm 3 on the marriage data. “H” and
“W” stand for Husband and Wife respectively, “Edu” stands for Education,
“Irres” stands for Irresponsibility, and “Disc” stands for Disciplined. 100

5.2 Average error of 5-fold cross-validation in RMSE and MAE (×10−4) and
average running time (in seconds) for all compared matching algorithms. . . 101

6.1 The Wasserstein error of different models on Synthetic-1/2/3 and RNA-
sequence data sets. 135

6.2 The Wasserstein error of different models on Supplementary RNA-sequence
data sets. 141

6.3 The Mean absolute percentage error(MAPE) of different models on Daily
Trading Volume data sets. 142

8.1 Historical intrady trading volume of stock ”AAPL” 181

xiii

LIST OF FIGURES

3.1 Wasserstein geodesic between two Gaussians 16

3.2 Syn-1. (a)(b) true ρa and generated ρb, (c)(d) true ρb and generated ρa,
(e)(g) tracks of sample points from ρa(ρb) to ρb(ρa), (f)(h) vector fields
from ρa(ρb) to ρb(ρa). 38

3.3 Syn-2. (a)(b) true ρa and generated ρb, (c)(d) true ρb and generated ρa,
(e)(g) tracks of sample points from ρa(ρb) to ρb(ρa), (f)(h) vector fields
from ρa(ρb) to ρb(ρa). 39

3.4 Real-1, Forest views. (a)(c) true summer(autumn) view, (b)(d) generated
autumn(summer) view when true summer(autumn) view is given, (e)(g)
true palette distribution of summer(autumn) view, (f)(h) generated palette
distribution of summer(autumn) view. 39

3.5 Real-2, Digits transformation. (a)(b) true(generated) digit 4(8), (c)(d) true(generated)
digit 8(4), (e)(f) true(generated) digit 6(9), (g)(h)true(generated) digit 9(6). . 40

3.6 2-dimensional Gaussian to Gaussian . 41

3.7 5-dimensional Gaussian to Gaussian . 42

3.8 10-dimensional Gaussian to Gaussian . 43

3.9 10-dimensional Gaussian Mixture . 44

3.10 Forest summer view and autumn view . 45

3.11 Geodesics between ”0” and ”1” . 46

3.12 Geodesics between ”4” and ”8” . 47

3.13 Geodesics between ”6” and ”9” . 48

xiv

4.1 Qualitative results of our algorithm for learning 2D map with L2 cost. The
first two columns represent the marginals ρa and ρb. The marginal distribu-
tions are uniformly supported on a square and a ring in the first row. In the
second row, they are standard Gaussian and Gaussian mixture with 10 com-
ponents respectively. The maps generated by our method are demonstrated
in (c)-(d) columns and W2-OT maps are in (e)-(f) columns. 64

4.2 Monge map for Lp OT problem from ρa to ρb, left: p = 2, right: p = 6 . . . 65

4.3 Generated ρa and ρb, 1
2
|| · ||22 cost . 66

4.4 Generated ρa and ρb, || · ||1 cost . 66

4.5 Unpaired image inpainting on test dataset of CelebA 64× 64. In panel (b)
and (c), we show the results with α = 10 in the first row and α = 10000 in
the second row. A small transportation cost would result that pushforward
map neglects the connection to the unmasked area, which is illustrated by
a clear mask border in pushforward images. 67

4.6 Unpaired image inpainting on test dataset of CelebA 128× 128. 68

5.1 Results of Algorithm 3 for cost matrix recovery on synthetic data. True
cij = | i−j

n
|p for i, j ∈ [n]. (a) Objective function value versus iteration

number for varying p. (b) Relative error (in log scale) versus iteration num-
ber for varying p. (c) Relative error (in log scale) versus iteration for vary-
ing ε. (d) CPU time (in seconds) versus problem size n in log-log scale for
varying ε. Each curve shows the average over 20 instances. 98

5.2 The relative error (left) and objective function value (right) versus iteration
number by Algorithm 4 on the continuous inverse OT with synthetic data
and varying p in the symmetric case. 101

5.3 True cost function and cost function recovered by Algorithm 4 assuming
knowledge of the linear proportion between x and y for continuous inverse
OT on synthetic data . 102

5.4 True cost function and cost function recovered by Algorithm 4 without
knowledge of the proportion between x and y for continuous inverse OT
on synthetic data. Notice that (d) shows the optimal transport plan induced
by the true cost c (left) and the one by the recovered cost (right) are very
similar (with relative error 0.026) despite that the recovered cost differs
significantly from the true cost shown in (c). This demonstrates the generic
solution non-uniqueness issue of inverse OT if prior knowledge on c is in-
sufficient. 103

xv

5.5 Result of color transfer using the cost funciton learned by Algorithm 4.
(a) Source image; (b) Target color transferred image; (c) Color transferred
image using the cost function learned by Algorithm 4; (d) Color transferred
image using mis-specified cost function. Images in the bottom row show
the point clouds of color pixels of the images above. The color in image (c)
is much more faithful to (b), whereas (d) renders noticeable bias in color
fading. 105

6.1 State model of the stochastic process Xt 120

6.2 Comparison of generated data(blue) and ground truth(red) of Synthetic-
1((a) to (c)), Synthetic-2((d) to (f)) and Synthetic-3((g) to (i)). In each case,
it finally converges to a stationary distribution. 132

6.3 (a) to (d): The performance comparisions among different models on D2
and D7 of Mt1 and Mt2. (e) and (f): True (red) and predicted (blue) cor-
relations between Mt1(x-axis) and Mt2(y-axis) on D2 (left) and D7 (right).
(g) and (h): Wasserstein loss of Mt1 on D2 and D7 vs iterations. 134

6.4 Predictions of various models, (a) to (d): Group A: predictions of our model
with full trajectory, (e) to (h): Group B: predictions of our model without
full trajectory. 136

6.5 Results of learning curl field . 138

6.6 Results of learning diffusion function . 139

6.7 The performance comparisions among different models on D2 and D7 of
Tdh and Gsn. 141

6.8 (a) to (d): TSLA stock. (e) to (h): GOOGL stock. We predictions of traded
volume in next 100 days, RM(yellow) fails to capture the regularities of
traded volume in time series, kalman filter based model(green) fails to cap-
ture noise information and make reasonable predictions, our model(blue) is
able to seize the movements of traded volume and yield better predictions. . 141

6.9 Comparison of generated q (blue) and ground truth of q (red) from 420∆t
to 800∆t, x-axis:q1, y-axis:q2. 153

6.10 Comparison of generated p (blue) and ground truth of p (red) from 420∆t
to 800∆t, x-axis:p1, y-axis:p2. 154

6.11 Comparison of generated q − p (blue) and ground truth of q − p (red) from
100∆t to 800∆t, x-axis:q, y-axis:p. 155

xvi

7.1 Trajectories of samples (black/green) at different time points as they are
heading to the target positions (blue) under the learned control strategy
U(x) = ∇G(x), where G(x) is a neural network. 168

7.2 Trajectories of samples (green/red) at start and final locations, compared
with target positions (blue), U(x) is parametrized as Resnet and normaliz-
ing flow in Syn-2-2c and Syn-2-2d respectively. 169

7.3 (a) to (c): Trajectories of samples (red) at different time points as they
are heading to the target positions (blue) under the learned control strategy
U(x), (d) to (f): other trajectories that fall into local minimum. U(x) is
parametrized as Resnet in all cases. 170

7.4 Trajectories of samples (red) at different time points as they are heading to
the target density (blue contour) under the learned control strategy U(x),
which is also parametrized as Resnet. 170

8.1 A graphical representation of the Kalman Filter model: each vertical slice
represents a time instance; the top node X in each slice is the hidden state
variable corresponding to the underlying volume components; and the bot-
tom node Y in each slice is the observed volume in the market 174

8.2 DOFs of states . 178

8.3 Comparison of MAPE . 182

8.4 comparison of prediction: (a) to (d):baseline models on AAPL, (e) to (h):our
v-state model on stock ”AAPL” . 182

8.5 Relationship between error and true percentage 183

8.6 Correlation matrix of hidden states, eigenvalues of transition covariance
matrix, ”AAPL” and ”JPM” . 184

8.7 Results on 2D synthetic data set . 194

8.8 Results on 10D synthetic data set . 195

8.9 Generated handwritten digits . 196

xvii

SUMMARY

Optimal Transport has been studied widely in recent years, the concept of Wasserstein

distance brings a lot of applications in computational mathematics, machine learning, engi-

neering, even finance areas. Meanwhile, people are gradually realizing that as the amount

of data as well as the needs of utilizing data increase vastly, data-driven models have great

potentials in real-world applications. In this thesis, we apply the theories of OT and design

data-driven algorithms to form and compute various OT problems. We also build a frame-

work to learn inverse OT problem. Furthermore, we develop OT and deep learning based

models to solve stochastic differential equations, optimal control, mean field games related

problems, all in data-driven settings.

In Chapter 2, we provide necessary mathematical concepts and results that form the

basis of this thesis. It contains brief surveys of optimal transport, stochastic differential

equations, Fokker-Planck equations, deep learning, optimal controls and mean field games.

Chapter 3 to Chapter 5 present several scalable algorithms to handle optimal transport

problems within different settings. Specifically, Chapter 3 shows a new saddle scheme

and learning strategy for computing the Wasserstein geodesic, as well as the Wasser-

stein distance and OT map between two probability distributions in high dimensions. We

parametrize the map and Lagrange multipliers as neural networks. We demonstrate the

performance of our algorithms through a series of experiments with both synthetic and

realistic data.

Chapter 4 presents a scalable algorithm for computing the Monge map between two

probability distributions since computing the Monge maps remains challenging, in spite of

the rapid developments of the numerical methods for optimal transport problems. Similarly,

we formulate the problem as a mini-max problem and solve it via deep learning. The

performance of our algorithms is demonstrated through a series of experiments with both

synthetic and realistic data.

xviii

In Chapter 5 we study OT problem in an inverse view, which we also call Inverse OT

(IOT) problem. IOT also refers to the problem of learning the cost function for OT from

observed transport plan or its samples. We derive an unconstrained convex optimization

formulation of the inverse OT problem. We provide a comprehensive characterization of the

properties of inverse OT, including uniqueness of solutions. We also develop two numerical

algorithms, one is a fast matrix scaling method based on the Sinkhorn-Knopp algorithm for

discrete OT, and the other one is a learning based algorithm that parameterizes the cost

function as a deep neural network for continuous OT. Our numerical results demonstrate

promising efficiency and accuracy advantages of the proposed algorithms over existing

state-of-the-art methods.

In Chapter 6 we propose a novel method using the weak form of Fokker Planck Equa-

tion (FPE) — a partial differential equation — to describe the density evolution of data in

a sampled form, which is then combined with Wasserstein generative adversarial network

(WGAN) in the training process. In such a sample-based framework we are able to learn the

nonlinear dynamics from aggregate data without explicitly solving FPE. We demonstrate

our approach in the context of a series of synthetic and real-world data sets.

Chapter 7 introduces the application of OT and neural networks in optimal density

control. Particularly, we parametrize the control strategy via neural networks, and provide

an algorithm to learn the strategy that can drive samples following one distribution to new

locations following target distribution. We demonstrate our method in both synthetic and

realistic experiments, where we also consider perturbation fields.

Finally Chapter 8 presents applications of mean field game in generative modeling and

finance area. With more details, we build a GAN framework upon mean field game to

generate desired distribution starting with white noise. We also provide a various hidden

states model to predict the daily trading volume of stocks in the stock trading markets.

xix

CHAPTER 1

INTRODUCTION

Optimal transport (OT) problem was formalized by the French mathematician Gaspard

Monge in 1781 [1]. In the 1940s The Major advances of OT problem were made by the

Soviet mathematician and economist Leonid Kantorovich [2]. Hence the problem is also

known as the Monge–Kantorovich problem. OT problem is a constrained optimization

problem to find the optimal transport plan to move mass from initial to target locations

with minimum cost. Gradually the nice geometric structures of OT were discovered by

mathematicians [3, 4], and OT has became a popular and classical research topic in opti-

mization, probability theory and finance. In recent years, OT theories have been applied in

the field of partial differential equations [4], fluid dynamics [5] and differential geometry

[6]. Also, due to the ability to measure the discrepancy between different distributions, OT

vastly draws attentions of machine learning, robotics and control communities, we have

witnessed a great success of OT application in deep learning [7, 8], robotics [9, 10], control

[11, 12] and economy[13].

1.1 Computational Methods for OT and IOT Problems

We present three major works related to the computation of OT problem from Chapter

2 to Chapter 5, including two novel algorithms of handling high dimensional cases with

different cost functions, and one inverse view of the OT problem (IOT), where we compute

the cost function when OT plan is already given.

• Learning Wasserstein Geodesics

We propose a new formulation and learning strategy for computing the Wasserstein

geodesic between two probability distributions within a high dimensional setting. By

1

applying the method of Lagrange multipliers to the dynamic formulation of the opti-

mal transport (OT) problem, we derive a minimax problem whose saddle point is the

Wasserstein geodesic. We then parametrize the functions by deep neural networks and

design a sample based bidirectional learning algorithm for training. The trained net-

works enable sampling from the Wasserstein geodesic. As by-products, the algorithm

also computes the Wasserstein distance and OT map between the marginal distributions.

We demonstrate the performance of our algorithms through a series of experiments with

both synthetic and real-world data.

• Learning Monge Map

Monge map refers to the optimal transport map between two probability distributions and

it provides a principled approach to transform one distribution to another. In spite of the

rapid developments of the numerical methods for optimal transport problems, comput-

ing the Monge maps remains challenging, especially for high dimensional problems. In

this topic, we present a scalable algorithm for computing the Monge map between two

probability distributions. Our algorithm is based on a weak form of the optimal trans-

port problem, thus it only requires samples from the marginals instead of their analytic

expressions, and can accommodate optimal transport between two distributions with dif-

ferent dimensions. Compared with other existing methods for estimating Monge maps

using samples, which usually adopt quadratic costs, our algorithm is suitable for general

cost functions. The performance of our algorithms is demonstrated through a series of

experiments with both synthetic and realistic data.

• Learning Cost Function in Inverse Optimal Transport

Inverse optimal transport (OT) refers to the problem of learning the cost function for OT

from observed transport plan or its samples. In this topic, we derive an unconstrained

convex optimization formulation of the inverse OT problem, which can be further aug-

mented by any customizable regularization. We provide a comprehensive characteriza-

2

tion of the properties of inverse OT, including uniqueness of solutions. We also develop

two numerical algorithms, one is a fast matrix scaling method based on the Sinkhorn-

Knopp algorithm for discrete OT, and the other one is a learning based algorithm that

parameterizes the cost function as a deep neural network for continuous OT. The novel

framework proposed in the work avoids repeatedly solving a forward OT in each itera-

tion which has been a thorny computational bottleneck for the bi-level optimization in

existing inverse OT approaches. Numerical results demonstrate promising efficiency and

accuracy advantages of the proposed algorithms over existing state-of-the-art methods.

1.2 Applications of OT in Data Driven Problems

Next in Chapter 6 and Chapter 7, we apply OT onto two important problems, namely,

solving drift term of stochastic differential equation (SDE) and optimal density control.

Unlike traditional methods, we solve problems in sample level within different dimensional

settings, by leveraging neural networks. Lastly in Chapter 8, we develop a new generative

adversarial network (GAN) base on mean field game (MFG). We also try to solve a popular

trading problem in the final Chapter.

• Learning Stochastic Differential Equation and Hamiltonian System

Learning nonlinear dynamics from aggregate data is a challenging problem because the

full trajectory of each individual is not available, namely, the individual observed at one

time may not be observed at the next time point, or the identity of individual is unavail-

able. This is in sharp contrast to learning dynamics with full trajectory data, on which

the majority of existing methods are based. We propose a novel method using the weak

form of Fokker Planck Equation (FPE) — a partial differential equation — to describe

the density evolution of data in a sampled form, which is then combined with Wasserstein

generative adversarial network (WGAN) in the training process. In such a sample-based

framework we are able to learn the nonlinear dynamics from aggregate data without ex-

plicitly solving FPE. Furthermore, we extend our model to Hamiltonian system within an

3

aggregate setting, more specifically, we parametrize Hamiltonian H by neural network

and learn it by minimizing accumulate Wasserstein distance between generated data and

observed data. We demonstrate our approach in the context of a series of synthetic and

real-world data sets.

• Learning Optimal Density Control

Optimal control problems have been studied in a lot of areas in recent years. Typical

individual-level control framework aims to control individuals precisely, the number of

agents to be controlled is small. As for the density control problems, the densities are

usually known in advance, which can be hardly constrained in realities, especially when

surrounding environment is complex. In this paper, we provide an idea to parametrize

the control as neural network to realize density control. Our work can be concluded

as: 1) Review the popular optimal control frameworks. 2) Design a data-driven model

to learn the optimal density control strategy u(x) to drive one distribution to another

distribution in sample level. 3) We apply our model on realistic application, for example

path planning of a group of underwater vehicles in the ocean flow field.

• MFG GAN and Predicting Intraday Trading Volume

We propose a novel mean field games (MFGs) based GAN(generative adversarial net-

work) framework. To be specific, we utilize the Hopf formula in density space to rewrite

MFGs as a primal-dual problem so that we are able to train the model via neural net-

works and data samples. Our model is flexible due to the freedom of choosing var-

ious functionals within the Hopf formula. Moreover, our formulation mathematically

avoids Lipschitz-1 constraint. The correctness and efficiency of our method are validated

through several experiments.

Predicting intraday trading volume plays an important role in trading alpha research.

Existing methods such as rolling means (RM) and a two-states based Kalman Filtering

method have been presented in this topic. We extend two states into various states in

4

Kalman Filter framework to improve the accuracy of prediction. Specifically, for dif-

ferent stocks we apply cross validation and determine best states number by minimizing

mean squared error of the trading volume prediction. We demonstrate the effectiveness

of our method through a series of comparison experiments and numerical analysis.

5

CHAPTER 2

PRELIMINARY IN MATHEMATICS

In this chapter, we introduce the basic mathematics needed in this thesis, including opti-

mal transport (OT), Fokker Planck equation (FPE), Hamiltonian system, optimal control

and Mean field game (MFG). These are highly related topics and form the bases of our

algorithms.

2.1 Optimal Transport

The optimal transport theory is a popular and famous branch of modern mathematics to

study how to transport from one probability distribution to another one with the optimal

cost. The original optimal transport problem was proposed by Monge [1] as following:

C(µ, ν) = inf
T

{∫
X

c(x, T (x))dµ(x)

}
, (2.1)

over the set of all measurable maps T : X → Y such that T♯µ = ν. Here T♯µ is the push

forward measure defined as T♯µ(A) = µ(T−1(A)) for all measurable set A ⊂ X . We

define cost function c(x, y) as the effort or energy for moving one unit mass from x to y

with x ∈ µ and y ∈ nu. µ, ν are two probability measures supported on continuous states.

A relaxation version of OT problem is given as

C(µ, ν) = inf
π∈Π(µ,ν)

{∫∫
X×Y

c(x, y) dπ(x, y)

}
, (2.2)

where Π(µ, ν) is the joint probability measure of µ and ν, namely, Π(µ, ν) := {π :

π(·, Y) = µ, π(X, ·) = ν}. Compared with Monge problem, here we do not find the

optimal map T but the optimal transport plan π, which is also known as Kantorovich prob-

6

lem [2]. Moreover, (2.2) also admits a duality form, named Kantorovich duality [6], is

presented as

C(µ, ν) = sup
ϕ(y)−ψ(x)≤c(x,y)

{∫
Y

ϕ(y)dν(y)−
∫
X

ψ(x)dµ(x)

}
. (2.3)

Either (2.1), (2.2) or (2.3) can be regarded as the static view of OT problem, the reason

is that none of them involve any time dynamics. If we study OT problem with an extra time

dimension, we come to the dynamical formulation of optimal transport problem as

C(ρa, ρb) =min
ρ,v

{∫ 1

0

∫
Rd

L(v(x, t)) ρ(x, t) dxdt

}
, (2.4)

subject to:
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)) = 0, (2.5)

ρ(·, 0) = ρa, ρ(·, 1) = ρb, (2.6)

where L can be treated as the transporting cost or as the kinetic energy of the transport

motion, for example L(v(x, t)) = 1
2
||v(x, t)||2, which is known as dynamical OT prob-

lem, as well as the Benamou-Brenier formulation [5]. And from above (2.5) is continuity

constraint and (2.6) is boundary constraint, which describe on the time axis, the density

evolution of ρ along the flow field v(·, t). Hence the goal of dynamical OT problem is to

find optimal density evolution and flow field to continuously transfer density ρa to ρb with

minimum energy cost. We also call the optimal {ρ(·, t)} as the geodesic (w.r.t. the cost

L) joining boundary densities ρa and ρb. We will introduce more details in Chapter 3 and

Chapter 4.

2.2 Fokker Planck Equation

For a normal stochastic differential equation

dXt = g(Xt, t)dt+ σ(Xt, t)dWt, (2.7)

7

where in the space RD, dXt represents an infinitesimal change of {Xt} along with time

increment dt, g(·, t) = (g1(·, t), ..., gD(·, t))T is the drift term of SDE, σ is the diffusion

coefficient, {Wt} is the standard Brownian motion. We also call (2.7) as Itô process.

Suppose ϕ(x, t) is a solution of Itô process, by Itô formula we have

dϕ(X) =

(
∂ϕ

∂x
dX +

1

2
σ2 ∂

2ϕ

∂x2
dX2

)
=

(
g
∂ϕ

∂x
+

1

2
σ2 ∂

2ϕ

∂x2

)
dt+ σ

∂ϕ

∂x
dW.

Then we take expectation on both sides gives

dE [ϕ] = E
[
g
∂ϕ

∂x
+

1

2
σ2∂

2ϕ

∂x2

]
dt,

∫
ϕ
∂ρ

∂t
dx =

∫
g
∂ϕ

∂x
ρ(x, t)dx+

∫
1

2
σ2∂

2ϕ

∂x2
ρ(x, t)dx.

Use integration by parts on right side and consider p(∞, t) = 0, we have

∫
ϕ
∂ρ

∂t
dx = −

∫
ϕ
∂

∂x
[g(x)ρ(x, t)] dx+

∫
1

2
σ2ϕ

∂2ρ(x, t)

∂x2
dx,

which leads to Fokker Planck Equation (FPE) in R1

∂ρ

∂t
= − ∂

∂x
[g(x)ρ(x, t)] +

1

2
σ2∂

2ρ(x, t)

∂x2
, (2.8)

and from (2.8) we derive Fokker Planck Equation in RD as

∂ρ(x, t)

∂t
=

D∑
i=1

− ∂

∂xi

[
gi(x, t)ρ(x, t)

]
+

1

2
σ2

D∑
i=1

∂2

∂xi2
ρ(x, t). (2.9)

Specially if g(x) is the gradient of a potential function V (x), namely, g(x) = −∇V (x)

and σ =
√
2D, it is not possible to calculate the time dependent solution of this equation

for an arbitrary potential. But there exists an stationary solution for the corresponding

8

Fokker-Planck equation

ρ∗ =
1

z
e−

V (x)
D , Z =

∫
Rd

e−
V (x)
D dx. (2.10)

where ρ∗ is the unique invariant distribution called the Gibbs distribution, Z is the normal-

ization factor, also called the partition function. In this thesis we are not looking for the

equilibrium of the FPE, we only care the distribution evolution along time axis and study

the dynamics that drives one distribution to another distribution.

2.3 Hamiltonian System

2.3.1 Definition

A system of differential equations is called a Hamiltonian system if there exists a real

valued function H(x, y) such that

dx

dt
=
∂H

∂y
,

dy

dt
= −∂H

∂x
, (2.11)

for all x and y, and the function H is called the Hamiltonian function for the system. H(x, y)

is also considered to be a conserved quantity for the system. The Hamiltonian system often

has a physical meaning for the system of ODEs that is modelling a particular real-world

situation, since it represents a quantity that is being conserved over time.

To get a closer look of Hamiltonian system, let’s start with an undamped harmonic

oscillator

mẍ+ kx = 0,

9

which can be rewritten as

ẋ = v, v̇ = − k
m
x (2.12)

Suppose that (x(t), v((t)) is a solution curve in the x-v plane. We calculate the slope of the

solution curve dv/dx using the fact from calculus that the derivative of an inverse function

is

d

dx
f−1(x) =

1

f ′(x)
,

thus we have

dv

dx
= − kx

mv
,

which leads to the solution

1

2
mv2 +

1

2
kx2 = H, (2.13)

whereH is a constant. The first term in (2.13) is the kinetic energy function of the harmonic

oscillator and the second term is the potential energy function. We call the total energy of

the harmonic oscillator asH . The above equation also tells us that in a Hamiltonian system,

the energy (the sum of the potential energy and the kinetic energy) is always conserved. If

we compare (2.13) with (2.11), we will find out dx/dt = ∂H/∂v = mv and dv/dt =

∂H/∂x = kx, which is the same system with (2.12) by change of variable.

Generally speaking, in a formal Hamiltonian system we would like to replace the nota-

tions v with p and x with q. Other systems such as mathematical pendulum which can be

described as H(p, q) = 1
2
p2 − cos q, thus the dynamics is dp/dt = − sin q and dq/dt = p.

For Kepler problem, when computing the motion of two bodies (planet and sun) which

10

attract each other, we choose one of the bodies (sun) as the centre of our coordinate sys-

tem, the motion will then stay in a plane and we can use two-dimensional coordinates

q = (q1, q2) for the position, and p = (p1, p2) for the velocity of the second body, the sys-

tem is depicted byH(p1, p2, q1, q2) =
1
2
(p21+p

2
2)−1/(

√
q21 + q22).Another typical example

is Hénon–Heiles problem, with H(p, q) = 1
2
(p21+ p

2
2)+

1
2
(q21 + q

2
2)+ q

2
1q2− 1

3
q32, which is a

Hamiltonian system that can have chaotic solutions, but it is out of our scope and we won’t

discuss more in this thesis.

2.3.2 Computing Methods

If we want to know the behaviour of Hamiltonian systems we need to compute the evolution

of p and q along time axis. We briefly introduce some typical numerical methods [14] in

this section.

Explicit Euler Method. The simplest of all numerical methods for the Hamiltonian system

is the method formulated by Euler that reads

p(t+ h) = p(t)− h∂H(p(t), q(t))

∂q
,

q(t+ h) = q(t) + h
∂H(p(t), q(t))

∂p
, (2.14)

the method uses a constant step size h to compute one step and one after until to the step

we want, starting from a given initial value p(0) and q(0).

Implicit Euler Method. As an alternative to the explicit Euler scheme, it is also called the

backward Euler scheme

p(t+ h) = p(t)− h∂H(p(t+ h), q(t))

∂q
,

q(t+ h) = q(t) + h
∂H(p(t+ h), q(t))

∂p
, (2.15)

we see p(t + h) shows in both side in the first equation, one may use Newton method to

11

compute approximate value.

Symplectic Euler Method. Explicit Euler Method may cause instability issues while Im-

plicit Euler Method involves extra steps caused by Newton method. Symplectic Euler

Method provides a more convenience way by

p(t+ h) = p(t)− h∂H(p(t), q(t))

∂q
,

q(t+ h) = q(t) + h
∂H(p(t+ h), q(t))

∂p
, (2.16)

Störmer–Verlet Method. When the Hamiltonian is conservative and separable, we can

use this simple and widely-used symplectic integrator

p(t+
1

2
h) = p(t)− 1

2
h
∂H(p(t), q(t))

∂q
,

q(t+ h) = q(t) + h
∂H(p(t+ 1

2
h), q(t))

∂p
,

p(t+ h) = p(t+
1

2
h)− 1

2
h
∂H(p(t), q(t+ h))

∂q
, (2.17)

which is also known as the leapfrog method. It is also computationally efficient as Euler’s

method yet considerably more accurate.

2.4 Optimal Control

We consider a stochastic control problem where the state Xs of the system is governed by

the SDE with values in Rd

Xs = x+

∫ s

t

b(τ,Xτ , ατ)dτ +

∫ s

t

σ(τ,Xτ , ατ)dWτ , (2.18)

whereX ∈ Rd, α is the control for some fixed setA,W is a given N-dimensional Brownian

motion, b : [0, T] × Rd × A → Rd and σ : [0, T] × Rd × A → Rd×N . Each controller

12

controls the process X through the control α to reach control goals. If define

J(t, x, α) = E
[∫ T

t

r(τ,Xτ , αs)dτ + g(XT)

]
, (2.19)

where T is the finite time horizon, and we have running cost r : [0, T] × Rd × A → R

and terminal cost g : Rd → R. We aim to find the optimal control α to minimize J by

introducing the value function the map u : [0, T]× Rd → R, which is

u(t, x) = inf
α∈A

J(t, x, α). (2.20)

2.5 Mean Field Game

Base on the optimal control problem, when we deal with infinitely many agents, suppose

each agent controls his or her own dynamics by

Xs = x+

∫ s

t

b(τ,Xτ , ατ , ρ(τ))dτ +

∫ s

t

σ(τ,Xτ , ατ , ρ(τ))dWτ , (2.21)

where X ∈ Rd, α is the control, W is a given N-dimensional Brownian motion. The

difference with (2.18) is that here all parameters are dependent to the distribution ρ(τ). The

coefficients b : [0, T]×Rd×A×P(Rd)→ Rd and σ : [0, T]×Rd×A×P(Rd)→ Rd×N .

The cost function is defined as

J(t, x, α) = E
[∫ T

t

r(s,Xs, αs)ds+ g(XT , ρ(T))

]
, (2.22)

where T is the finite time horizon, and we have running cost r : [0, T]×Rd×A×P(Rd)→

R and terminal cost g : Rd × P(Rd)→ R. The value function is defined as

u(t, x) = inf
α∈A

J(t, x, α), (2.23)

13

where u(t, x) solves the Hamilton-Jacobi equation


−∂tu(t, x) +H(t, x,Du(x, t), D2u(x, t), ρ(t)) = 0

u(T, x) = g(x, ρ(T)),

(2.24)

in which the Hamiltonian H : [0, T]× Rd × Rd × Rd×d × P(Rd)→ R is defined as

H(t, x,Du,D2u, ρ) = sup
α∈A

{
−r(t, x, α, ρ)−Du(t, x)b((t, x, α, ρ)

− 1

2
Tr(σσ∗(t, x, α, ρ)D2u(t, x))

}
. (2.25)

If we denote α∗(t, x) as one solution of above equation, we have

H(t, x,Du,D2u, ρ) = −r(t, x, α∗, ρ)−Du(t, x)b((t, x, α∗, ρ)

− 1

2
Tr(σσ∗(t, x, α∗, ρ)D2u(t, x)). (2.26)

Similarly for the individual level of control at optimum we have

dX∗
τ = b(τ,X∗

τ , α
∗(τ,X∗

τ), ρ(τ))dτ + σ(τ,X∗
τ , α

∗(τ,X∗
τ), ρ(τ))dWτ . (2.27)

Thus we apply Itô formula to derive density evolution ρ(τ) by

E
[
ϕ(T,X∗

T)

]
=E
[
ϕ(0, X∗

0)

]
+

∫ T

0

E
[
∂τϕ(τ,X

∗
τ) + b(τ,X∗

τ , α
∗(τ,X∗

τ), ρ(τ))Dϕ(τ,X
∗
τ)

+
1

2
Tr(σσ∗(τ,X∗

τ , α
∗(τ,X∗

τ), ρ(τ))D
2ϕ(τ,X∗

τ)

]
=

∫
X

ϕ(0, x)ρ(0)dx+

∫ T

0

∫
X

[
∂τϕ(τ, x) + b(τ, x, α∗(τ, x), ρ(τ))Dϕ(τ, x)

+
1

2
Tr(σσ∗(τ, x, α∗(τ, x), ρ(τ))D2ϕ(τ, x)

]
ρ(τ, x)dτ.

(2.28)

14

After integration by parts we will have for ρ(t)


∂tρ− 1

2

∑
i,j D

2
ij(ρ(t, x)σijσ

∗
ij(t, x, α(t, x)

∗, ρ(t))) +∇ · (ρ(t, x)b(t, x, α(t, x)∗, ρ(t))) = 0,

ρ(0, ·) = ρ0.

(2.29)

Collecting (2.24) and (2.29) together gives MFG system


−∂tu(t, x) +H(t, x,Du(x, t), D2u(x, t), ρ(t)) = 0

∂tρ− 1
2

∑
i,j D

2
ij(ρ(t, x)σijσ

∗
ij(t, x, α(t, x)

∗, ρ(t))) +∇ · (ρ(t, x)b(t, x, α(t, x)∗, ρ(t))) = 0,

ρ(0, ·) = ρ0, u(T, x) = g(x, ρ(T)),

(2.30)

We can simplify this system by setting σ =
√
2Id, then we have

H(t, x,Du(t, x), ρ) = sup
α∈A

{
−r(t, x, α, ρ)−Du(t, x)b(t, x, α, ρ)

}
, (2.31)

by the Envelope Theorem we notice that

DpH(t, x,Du(t, x), ρ(t)) = −b(t, x, α(t, x), ρ(t)) (2.32)

Finally the MFG system comes to


−∂tu(t, x)−∆u(t, x) +H(t, x,Du(x, t), ρ(t)) = 0

∂tρ−∆ρ(t, x)−∇ · (ρ(t, x)DpH(t, x,Du(t, x), ρ(t))) = 0,

ρ(0, ·) = ρ0, u(T, x) = g(x, ρ(T)).

(2.33)

15

CHAPTER 3

LEARNING HIGH DIMENSIONAL WASSERSTEIN GEODESICS

3.1 Introduction

As a key concept of optimal transport (OT) [15], Wasserstein distance has been widely

used to evaluate the distance between two distributions. Suppose we are given any two

probability distributions ρa and ρb on Rd, recap from (2.2) that the Wasserstein distance

between ρa and ρb is defined as

inf
π

{∫
Rd×Rd

c(x, y)dπ(x, y)
∣∣π ∈ Π(ρa, ρb)

}
. (3.1)

The solution of OT refers to an optimal π∗ to attain the Wasserstein distance between two

distributions as well as an optimal map T ∗ such that T ∗(x) and y have the same distribution

when x ∼ ρa.

(a) t=0 (b) t=0.25 (c) t=0.5 (d) t=0.75 (e) t=1

Figure 3.1: Wasserstein geodesic between two Gaussians

When applying OT-related computations to applications, the Kantorovich duality form

has been widely studied and applied. For example, many regularized OT problems have

been investigated, including entropic regularized OT [16, 8], Laplacian regularization [17],

Group-Lasso regularized OT [18], Tsallis regularized OT [19] and OT with L2 regulariza-

tion [20].

16

Based on the Kantorovich form (2.4), specially if we choose cost function as c(x, y) =

1
2
|x − y|2, then it leads to the well-known 2-Wasserstein distance. The OT problem can

be rewritten in a fluid dynamics perspective (3.2) [21]: W2 defined below is the square of

2-Wasserstein distance,

W2(µ, ν) =inf
{∫

Rd

∫ 1

0

ρ(x, t)|v(x, t)|2dxdt
}
,

subject to: ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb. (3.2)

Solving (3.2) leads to the following partial differential equation (PDE) system:

∂tρ+∇ · (ρ∇Φ) = 0,
∂Φ

∂t
+

1

2
|∇Φ|2 = 0,

subject to: ρ(·, 0) = ρa, ρ(·, 1) = ρb. (3.3)

The solution of Problem (3.2) or (3.3) gives the definition of Wasserstein geodesic: if there

exists an optimal pushforward map Ξ∗ between ρa and ρb, then the constant speed geodesic

is defined as a continuous curve: ρt = (Id + tΞ∗)♯ρa
1, which depicts the trajectory of

x0 ∈ ρa moving towards x1 ∈ ρb. Here Id stands for the identity map.

Wasserstein geodesic between ρa and ρb, shown in Figure 3.1 as an example, depicts

trajectory of the distribution mean (indicated by a red line), and provides ample information

for the Wasserstein distance and optimal pushforward map. More importantly, Wasserstein

geodesic offers a natural sampling mechanism without any artificial regularization to gen-

erate samples not only for the target distribution ρb, but also for all distributions along the

geodesic, due to the reason that the geodesic is automatically kinetic-energy-minimizing.

Our model is different from several recent OT based models for computing the optimal

pushforward map, such as Jacobian and Kinetic regularized OT [22] and L2 regularized

OT [23].
1Please check Definition 3.2.1.

17

Researchers from robotics and optimal control communities also apply Wasserstein

geodesic in different scenarios. For examples, [9] apply Brenier-Benamou OT to swarm

control and updates the velocity of each agent. [10] study the locations of robots by min-

imizing the Wasserstein distance between original and target distributions. Diverse OT

applications in control theories are investigated in the work of[11, 12]. However, most

of current research that combines OT with robotics or control is still limited to low di-

mensions. Due to this reason, we suggest having a method to compute the Wasserstein

geodesic, especially within high dimensional settings, will be beneficial for developing

novel high dimensional algorithms and applications in robotics and control, such as path

planning for multi-agent systems in high dimensional dynamics.

Also, in the domain of applied mathematics, efficient computing method of Wasser-

stein geodesic is important and challenging. It is well-known that solving Problem (3.2)

directly or (3.3) by the traditional numerical PDE methods, such as finite difference or finite

element method which requires spatial discretization, which raise up the curse of dimen-

sionality issue, which is a hard problem that the computational cost grows exponentially as

the dimension increases.

Finally, in this chapter our contents are organized as follows: first we formulate the

OT problem as a saddle point problem without adding any regularizers. Next we reduce

the search space for the saddle point problem by leveraging KKT conditions. We then

parametrize the optimal maps as well as the Lagrange multipliers via deep neural networks.

Our model is a sample-based algorithm that is capable of handling both low and high di-

mensional Wasserstein geodesic. It is also worth mentioning that there is no Lipschitz or

convexity constraint on the neural networks in our computation. The constraints are thorny

issues since in most of current research they can only be approximately enforced when

dealing with Wasserstein related problems. Furthermore, our formulation is based on a La-

grangian framework which can be readily generalized to various alternative cost functions,

including the Lp-Wasserstein distance. To the best of our knowledge, there is no method

18

to compute high dimensional Wasserstein distance, optimal map as well as Wasserstein

geodesic all at once for a general cost function, in the sense of scalable computation. Our

model is tested through a series experiments on both synthetic and realistic data sets. To

summarize, our contributions are:

• We propose a novel saddle scheme so that both low and high dimensional Wasserstein

geodesic, optimal map as well as Wasserstein distance between two given distributions

can be computed in one single framework.

• Our scheme is able to handle general convex cost functions, including the general Lp-

Wasserstein distance. Moreover, the scheme does not require convexity or Lipschitz

constraint.

• The effectiveness of our method is demonstrated through extensive numerical experi-

ments, including both synthetic and realistic data sets.

Related work: Traditional approaches [21, 24, 25, 26] for OT problems are designed to

handle low dimensional settings but become infeasible in high dimensional cases since

those methods are based on spatial discretizations. In machine learning community, re-

searchers utilize OT to drive one distribution to another, and the Sinkhorn algorithm has

been widely adopted [27, 28, 29, 30] due to its convenient implementation even in high

dimensional settings. However, the algorithm does not scale well to a large number of

samples or can’t readily handle continuous probability measures [31].

To overcome the challenges of Sinkhorn algorithm, researchers bring neural networks

to study OT problems. [8] study the regularized OT by applying neural networks such that

large scale and high dimensional OT can be computed. [7] propose Wasserstein-1 GAN,

which is a generative model to minimize Wasserstein distance. Though we have witnessed

a great success of Wasserstein-1 GAN and its related work in high dimensional and large

scale applications [32, 33, 34, 35, 36, 37], the non-trivial Lipschitz-1 constraint of the

discriminator is hard to be theoretically satisfied.

19

In order to avoid Lipschitz-1 constraint in Wasserstein-1 GAN, by using input con-

vex neural networks (ICNN) [38] to approximate the potential function, [39] propose

Wasserstein-2 GAN to rewrite OT as a minimization problem, [40] and [41] extend the

semi-dual formulation of OT to new minimax problems.

[42] propose a machine learning framework for solving general Mean-Field Games

in high dimensional spaces. Such method can be applied to solving Optimal Transport

problems by adding penalty term to enforce the terminal constraint. Many other OT based

approaches have been proposed to drive one distribution to another, including continuous

normalizing flows (CNF) [43, 44] and the approaches developed by [45, 46].

Various OT models bring numerous applications in domain adaptation [8], generative

modeling [7], partial differential equations [47], stochastic control [48], robotics [9, 10], as

well as color transfer [39], which is also one of the experiments in this chapter.

Although Wasserstein distance and optimal map have been widely studied within di-

verse frameworks, most of them focus on the cases that the cost function is either L1 or

L2 based, and Wasserstein geodesic is seldom computed, especially in high dimensional

settings. In this chapter we compute all in our novel designed framework. We also note

that a similar strategy formulated by [49] derives a saddle point optimization scheme for

solving the mean field game equations. We should point out that our problem setting and

sampling method are distinct from them.

3.2 Background of the Wasserstein Geodesic

We consider two probability distributions ρa, ρb defined on Rd. For ease of discussion, we

assume the density functions of these two distributions exist, then we focus on computing

an interpolation curve {ρt}1t=0 between ρa and ρb. To be more precise, we aim to find

the length-minimizing curve joining ρa and ρb, which is also known as the Wasserstein

geodesic. To this end, we start from the classical Optimal Transport (OT) problem (3.1),

20

and assume the cost function c(x, y) is the optimal value of the following control problem,

c(x, y) = L(y − x) = min
{v(·,t)}

{∫ 1

0

L(vt) dt

}
,

subject to: ẋt = v(xt, t), x0 = x, x1 = y.

Here we assume the Lagrangian L(·) ∈ C1(Rd) satisfies L(−u) = L(u) for arbitrary

u ∈ Rd and is strictly convex and superlinear.2 Then ∇L : Rd → Rd is an invertible

map, we denote ∇L−1 the inverse of ∇L in the sequel. We define the Hamiltonian H(·)

associated with Lagrangian L(·) as

H(p) = max
v∈Rd
{v · p− L(v)} = ∇L−1(p) · p− L(∇L−1(p)), (3.4)

This is useful in our future discussion.

Remark 1. One important instance ofL isL(v) = |v|p
p

, p > 1, which leads to p-Wasserstein

distance. When p = 2, it recovers the classical 2-Wasserstein distance.

Since (3.1) doesn’t involve time, we denote it as Static OT problem and we denote its

optimal value as WStatic(ρa, ρb). Before introducing the dual problem of (3.1), we introduce

the following definition.

Definition 3.2.1. Given measurable map T : Rd → Rd and λ as a probability distribution

on Rd. We denote the pushforward of λ by T as T♯λ, which is defined as

T♯λ(E) = λ(T−1(E)) for all measurable set E ⊂ Rd.

Problem (3.1) has the Kantorovich dual form [6]

max
ϕ(y)−ψ(x)≤c(x,y)

{∫
ϕ(y)ρb(y) dy −

∫
ψ(x)ρa(x) dx

}
. (3.5)

2L(·) is super linear if limu→∞
L(u)
|u| =∞.

21

Here and in the sequel, we will denote
∫

as
∫
Rd for conciseness. One can show that the

optimal value of (3.5) equalsWStatic(ρa, ρb). Let us denote the optimizer to (3.5) as (ϕ∗, ψ∗).

Then∇ψ∗ (as well as∇ϕ∗) provides optimal transport maps from ρa to ρb (as well as from

ρb to ρa) in the sense that

(Id +∇L−1(∇ψ∗))♯ρa = ρb, (Id−∇L−1(∇ϕ∗))♯ρb = ρa. (3.6)

We then consider the dynamic version of (3.1)

WDym(ρa, ρb) = min
ρ,v

{∫ 1

0

∫
L(v(x, t)) ρ(x, t) dxdt

}
, (3.7)

subject to:
∂ρ

∂t
+∇ · (ρv) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb. (3.8)

This problem also has an equivalent particle control version

min
v

{∫ 1

0

E[L(v(Xt, t))] dt

}
, subject to

d

dt
Xt = v(Xt, t), X0 ∼ ρa, X1 ∼ ρb.

(3.9)

Such particle control version is more helpful for designing sample based formulation than

its PDE counterpart, (3.7) as we will stated in later Section 3.3.2. Since we introduce the

dynamics of {ρt} and {Xt} into the new definition and reformulate the original problem

(3.1) as an optimal control problem (3.7) and (3.9), we thus denote (3.7), (3.9) as Dynami-

cal OT problem. The optimal solution of Dynamical OT is given by the following coupled

PDE system (Chapter 13 of [6]).

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)∇L−1(∇Φ(x, t))) = 0,

∂Φ(x, t)

∂t
+H(∇Φ(x, t)) = 0,

subject to: ρ(·, 0) = ρa, ρ(·, 1) = ρb.

(3.10)

22

We denote the solution to (3.10) as (ρ∗,Φ∗). Then the optimal vector field is

v∗(x, t) = ∇L−1(∇Φ∗(x, t)). (3.11)

From a geometric perspective, Problem (3.7) can be treated as a computing scheme for

the geodesic on the probability manifold equipped with Wasserstein distance WDym(·, ·).

Following this point of view, we also treat (3.7) as the problem for evaluating the Wasser-

stein geodesic joining ρa and ρb. Meanwhile, the PDE system (3.10) serves as the geodesic

equation for the Wasserstein geodesic.

Remark 2. Static OT problems and Dynamical OT problems are closely related.

Recall (ϕ∗, ψ∗) as optimal solution to (3.5), and Φ∗ as solution of (3.10), then

Φ∗(x, 0) = ψ∗(x) + C0, Φ∗(x, 1) = ϕ∗(x) + C1. (3.12)

Here C0, C1 are constants. Furthermore, from (3.6) we have

(Id +∇L−1(∇Φ∗(·, 0)))♯ρa = ρb, (Id−∇L−1(∇Φ∗(·, 1)))♯ρb = ρa. (3.13)

In addition, Static and Dynamical OT produce the same distance, i.e. WStatic(ρa, ρb) =

WDym(ρa, ρb). Recall the original (static) optimal transport problem and consider its Kan-

torovich duality [6]

max
ϕ(y)−ψ(x)≤c(x,y)

{∫
ϕ(y)ρb(y) dy −

∫
ψ(x)ρa(x) dx

}
(3.14)

Then the optimal value of (3.5) equals WStatic OT(ρa, ρb). Let us denote the optimizer to

(3.5) as (ϕ∗, ψ∗). Then∇ψ∗ (as well as∇ϕ∗) will provide optimal transporting maps from

23

ρa to ρb (as well as from ρb to ρa), i.e. we have

(Id +∇ψ∗)♯ρa = ρb, (Id−∇ϕ∗)♯ρb = ρa. (3.15)

For the dynamical OT problem, its optimal solution is given by

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)∇L(·)−1(∇Φ(x, t))) = 0 (3.16)

∂Φ(x, t)

∂t
+H(∇Φ(x, t)) = 0

subject to ρ(·, 0) = ρa, ρ(·, 1) = ρb.

And the optimal vector field

v∗(x, t) = ∇L(·)−1(∇Φ(x, t)) (3.17)

Both (3.10) and (3.11) can be deduced from the KKT conditions of the dynamical OT.

The connections between Static OT and Dynamical OT is tied by the following rela-

tions:

Φ(x, 1) = ϕ∗(x) + C1 Φ(x, 0) = ψ∗(x) + C0 (3.18)

where C0, C1 are constants.

Furthermore, by (3.6), we also have

(Id +∇Φ(·, 0))♯ρa = ρb, (Id−∇Φ(·, 1))♯ρb = ρa. (3.19)

Such equations (3.6) and (3.13) are called Monge-Ampere equations. Assume (Id +

∇u)♯ρa = ρb admits unique solution u(x), then∇u = ∇ϕ∗ = ∇Φ0 is the optimal transport

field to the OT problem from ρa to ρb.

We also have WStatic OT(ρa, ρb) = WDym OT(ρa, ρb). Detailed discussion on the equiva-

lent relations between Static OT and Dynamical OT problems has also been elaborated in

24

several references such as section 5.1 of [15] and Chapter 13 of [6].

3.3 Proposed Methods

3.3.1 Primal-Dual based saddle point scheme

In this section, we present an approach of solving Dynamical OT problem (3.7) by apply-

ing Lagrange Multiplier method. We introduce Lagrange Multiplier Φ(x, t) for the PDE

constraint ∂ρ(x,t)
∂t

+ ∇ · (ρ(x, t)v(x, t)) = 0 and Ψ(x) for one of the boundary constraints

ρ(·, 1) = ρb. (The constraint ρ(·, 0) = ρa can be naturally treated as the initial condition of

ρt.) Then we consider the functional

L(ρ, v,Φ,Ψ) =

∫ 1

0

∫
L(v) ρ+

(
∂ρ

∂t
+∇ · (ρv)

)
Φ(x, t) dxdt+

∫
Ψ(x)(ρ(x, 1)− ρb(x)) dx

=

∫ 1

0

∫ (
L(v)− ∂Φ

∂t
−∇Φ · v

)
ρ(x, t) dxdt+

∫
Φ(x, 1)ρ(x, 1) dx

(3.20)

−
∫

Φ(x, 0)ρa(x) dx+

∫
Ψ(x)(ρ(x, 1)− ρb(x)) dx.

For the second equality, we apply integration by parts on [0, 1] and use the initial condition

ρ(·, 0) = ρa. Solving the constrained optimization problem (3.7) is equivalent to investi-

gating the following saddle point optimization problem

min
ρ,v

max
Φ,Ψ

L(ρ, v,Φ,Ψ). (3.21)

Problem (3.21) contains (ρ, v,Φ,Ψ) as variables. We eliminate some of the variables by

leveraging the Karush–Kuhn–Tucker (KKT) conditions [50]

∂L

∂Φ(x, t)
= 0,

∂L

∂Ψ(x)
= 0,

∂L

∂ρ(x, t)
= 0,

∂L

∂v(x, t)
= 0. (3.22)

25

The first two conditions lead to the constraints (3.8). The third condition in (3.22) yields

−∂Φ
∂t
− (∇Φ(x, t) · v(x, t)− L(v(x, t))) = 0, (3.23)

Φ(x, 1) + Ψ(x) = 0. (3.24)

The fourth condition in (3.22) yields ∇L(v(x, t))−∇Φ(x, t) = 0, which can be rewritten

as

v(x, t) = ∇L−1(∇Φ(x, t)). (3.25)

The KKT conditions (3.24) and (3.25) reveal explicit relations among v, Φ and Ψ, which

can be incorporated in (3.21) by plugging Ψ(x) = −Φ(x, 1) and v(x, t) = ∇L−1(∇Φ(x, t))

back into (3.20). Recall definition of H in (3.4), the first term of (3.20) then becomes

−
(
∂Φ(x,t)
∂t

+H(∇Φ(x, t))
)

. Our new optimization problem can be formulated as

min
ρ

max
Φ

∫ 1

0

∫
−
(
∂Φ

∂t
+H(∇Φ)

)
ρ(x, t) dxdt+

∫
Φ(x, 1)ρb(x)− Φ(x, 0)ρa(x) dx.

(3.26)

3.3.2 Simplification via geodesic pushforward map

Notice that both variables ρ(·, t) and Φ(·, t) are time-varying functions in the above saddle

point problem (3.26). On one hand this is in an integral form thus also a weak form of

OT problem that may accommodate general cost L. On the other hand, (3.26) requires to

optimize in a large space of time-varying functions, which may increase the computational

cost as well as the chance of falling into local optimas. We reduce the search space by

leveraging the the following geodesic to facilitate our training process:

Theorem 3.3.1. Suppose {X∗
t }1t=0 is the trajectory obeying the optimal vector field of (3.9)

with strictly convex Lagrangian L, then d2X∗
t

dt2
= 0,

where we utilize the property of optimal transporting trajectory, if L is strictly convex.

26

This result was discussed by [51] for 2-Wasserstein case (L(·) = |·|2
2

). The more general

result was presented in Theorem 5.5 of [15]. This theorem illustrates that, from the particle

point of view, the optimal transport process can be treated as a pushforward operation

along the geodesics (straight lines) in Rd. To be more precise, we denote {ρ∗(·, t)}1t=0 as

the optimal solution to (3.7). Denote {v∗(·, t)}1t=0 as the optimal vector field in (3.9). Then

{X∗
t }1t=0 solves d

dt
X∗

t = v∗(Xt, t). Since d2

dt2
X∗

t = 0, this implies X∗
t = X∗

0+tv
∗(X∗

0 , 0),

t ∈ [0, 1]. Finally, due to the equivalence between (3.7) and (3.9), we are able to verify that

X∗
t ∼ ρ∗(·, t), which yields X∗

0 + tv∗(X∗
0 , 0) ∼ ρ∗(·, t). Since X∗

0 follows the distribution

with density ρa, this leads to the following relation between optimal density ρ∗(·, t) and

optimal vector field v∗(·, 0) at t = 0

ρ∗(·, t) = (Id + tv∗(·, 0))♯ρa. (3.27)

Equation (3.27) leads to the fact that the optimal ρ∗(·, t) can be obtained by pushforwarding

the initial distribution ρa with the initial direction v∗(·, 0) along certain straight lines. This

observation motivates us to narrow the search space of {ρt}1t=0 on Prestrict

{ {ρ(·, t)}1t=0 | ρ(·, t) = (Id + tF)♯ρa for t ∈ [0, 1] },

whereF ∈ Rd. Combining above discussions we propose the scheme minρ∈Prestrict maxΦ L̂(ρ,Φ).

Specifically, considering ρ is uniquely determined by F , thus we reformulate our scheme

as

min
F

max
Φ
L(F,Φ), L(F,Φ) = L̂((Id + tF)♯ρa,Φ). (3.28)

We have the following theoretical property for scheme (3.28).

Theorem 3.3.2. Denote the solution (3.10) as ρ∗(x, t) and Φ∗(x, t), and set Φ∗
0(·) =

Φ∗(·, 0). Assume Φ∗(·, t) ∈ C2(Rd), then (∇L−1(∇Φ∗
0),Φ

∗) is a critical point to the func-

27

tional L, i.e.

∂L
∂F

(∇L−1(∇Φ∗
0),Φ

∗) = 0,
∂L
∂ψ

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

Furthermore, L(∇L−1(∇Φ∗
0),Φ

∗) = WDym(ρa, ρb).

Theorem 3.3.2 shows that the optimal solution of Dynamical OT is also a critical point

of the functional used in our saddle scheme optimization (3.28). The optimal value of

(3.28) is exactly the optimal transport distance. Before the proof of this Theorem, there are

some Lemmas to be stated first.

Let us denote F : Rd → Rd as the transporting vector field. Recall that we are com-

puting for the Wasserstein geodesic interpolating ρa and ρb. We denote ρ̂t = (I + tF)♯ρa.

Then we introduce the following functional of F and Φ:

L(F,Φ) =
∫ 1

0

∫ (
−∂Φ(x, t)

∂t
−H(∇Φ(x, t))

)
ρ̂(x, t) dxdt

+

∫
Φ(x, 1)ρb(x)− Φ(x, 0)ρa(x) dx (3.29)

=

∫ 1

0

∫ (
−∂Φ(x+ tF (x), t)

∂t
−H(∇Φ(x+ tF (x), t))

)
ρa(x, t) dxdt

+

∫
Φ(x, 1)ρb(x)− Φ(x, 0)ρa(x) dx

As mentioned in (3.28), our numerical method is to solve the following saddle point prob-

lem

min
F

max
Φ
L(F,Φ) (3.30)

As stated in Theorem 3.3.2, the optimal solution obtained from dynamical OT problem

(Brenier-Benamou formulation) (3.7) is a critical point to the functional L(F,Φ).

Lemma 3.3.3. Given a distribution with density ρ defined on Rd, consider vector field

F : Rd → Rd. Define time-varying density {ρ(·, t)}t∈[0,1] as ρ(·, t) = (Id + tF)♯ρ0.

28

Suppose for a given f ∈ C1(Rd), f(x)ρ(x, t) is integrable on Rd. Then

∫
f(x)

∂

∂t
ρ(x, t) =

∫
∇f(x+ tF (x)) · F (x) ρa(x) dx

Proof. We have

∫
f(x)

∂

∂t
ρ(x, t) =

d

dt

(∫
f(x)ρ(x, t) dx

)
=
d

dt

(∫
f(x+ tF (x))ρa(x) dx

)
=

∫
∇f(x+ F (x)) · F (x) ρa(x) dx

Lemma 3.3.4. Suppose Φ∗(x, t) is solved from (3.10) in the section with initial condition

Φ∗(·, 0) = Φ∗
0(·), we further assume Φ∗(·, t) ∈ C2(Rd). Then we have

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x). (3.31)

Proof. Now consider Hamilton-Jacobi equation of (3.10) in the section:

∂Φ∗(y, t)

∂t
+H(∇Φ∗(y, t)) = 0 Φ∗(·, 0) = Φ∗

0.

We take gradient with respect to x on both sides, we have

∂

∂t
(∇Φ∗(y, t)) +∇2Φ∗(y, t)∇H(∇Φ∗(y, t)) = 0. (3.32)

Let us denote Tt(x) = x+ t∇H(∇Φ∗
0(x)) for simplicity. We now compute

d

dt
∇Φ∗(Tt(x), t) =

∂

∂t
∇Φ∗(Tt(x), t) +∇2Φ∗(Tt(x), t)∇H(∇Φ∗

0(x))

29

By plugging y = Tt(x) into (3.32), we are able to verify d
dt
∇Φ∗(Tt(x), t) = 0. Thus

∇Φ∗(Tt(x), t) = ∇Φ∗(T0(x), 0) = ∇Φ∗
0(x) for t ∈ [0, 1] (3.33)

Recall H defined before, we can verify that∇H = ∇L−1. Thus (3.33) leads to

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x).

Lemma 3.3.5. Suppose Φ∗(x, t) is solved from (3.10) with initial condition Φ∗(·, 0) =

Φ∗
0(·), we further assume Φ∗(·, t) ∈ C2(Rd). Now denote ρ̂(·, t) = (Id+ t∇L−1(∇Φ∗

0))♯ρa.

Then ρ̂(·, t) solves

∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t))) = 0.

Proof. For arbitrary f ∈ C∞
0 (Rd), we consider:

∫
f(x)

(
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t)))

)
dx

=

∫
f(x)

∂ρ̂(x, t)

∂t
dx−

∫
∇f(x) · ∇L−1(∇Φ∗(x, t))ρ̂(x, t) dx

By Lemma 3.3.3, the first term equals

∫
∇f(x+ t∇L−1(∇Φ∗

0(x))) · ∇L−1(∇Φ∗
0(x)) ρa(x) dx (3.34)

The second term equals

∫
∇f(x+ t∇L−1(∇Φ∗

0(x))) · ∇L−1(∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t)) ρa(x) dx (3.35)

30

Using Lemma 3.3.4, we know the integrals (3.34) and (3.35) are the same. Thus we have

∫
f(x)

(
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t)))

)
dx = 0 ∀ f ∈ C∞

0 (Rd).

This leads to our result.

Lemma 3.3.6. Suppose Φ∗(x, t) is solved from (3.10) with initial condition Φ∗(·, 0) =

Φ∗
0(·), then

WDym(ρa, ρb) =

∫
L(∇L−1(∇Φ∗

0(x)))ρa(x) dx. (3.36)

Proof. Consider particle dynamical OT with its optimal solution v∗(x, t) = ∇L−1(∇Φ∗(x, t))

as stated in (3.11) before. Recall Theorem 1 stating that the optimal plan is transporting

each particle Xt along straight lines with constant velocity v∗(X0, 0) = ∇L−1(∇Φ∗
0(X0)),

i.e. v∗(Xt, t) = v∗(X0, 0) for any t ∈ [0, 1]. Combining these, we have

WDym OT(ρa, ρb) =

∫ 1

0

EL(v∗(Xt, t)) dt = E
(∫ 1

0

L(v∗(Xt, t)) dt

)
= EL(∇L−1(∇Φ∗

0(X0))).

Notice that we require X0 ∼ ρa. This will lead to (3.36).

Finally we provide the proof of Theorem 3.3.2.

Proof. Since we have assumed Φ∗(·, t) ∈ C2(Rd), we restrict our Φ ∈ C2(Rd) as well.

We first rewrite L(F,Φ) by using integration by parts as:

∫ 1

0

∫
Φ(x, t)

∂ρ̂(x, t)

∂t
−H(∇Φ(x, t))ρ̂(x, t) dxdt+

∫
Φ(x, 1)(ρa(x)−ρ̂(x, 1)) dx. (3.37)

By Lemma 3.3.3, (3.37) can be written as

L(F,Φ) =
∫ 1

0

∫
Rd

[∇Φ(x+ tF (x), t) · F (x)−H(∇Φ(x+ tF (x), t))]ρa(x) dxdt (3.38)

+

∫
Φ(x, 1)ρb(x) dx−

∫
Φ(x+ F (x), 1)ρa(x) dx.

31

Now based on (3.38) here, we are able to compute ∂L(F,Φ)
∂F

(x) as

∂L(F,Φ)
∂F

=

∫ 1

0

t∇2Φ(x+ tF (x), t) · [F (x)−∇H(∇Φ(x+ tF (x), t))]︸ ︷︷ ︸
(A)

ρa(x) dt

(3.39)

+

(∫ 1

0

∇Φ(x+ tF (x), t) dt−∇Φ(x+ F (x), 1)

)
︸ ︷︷ ︸

(B)

ρa(x).

Now we plug F = ∇L−1(∇Φ∗
0), Φ = Φ∗ into (3.39), by Lemma 3.3.4, we have

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x). (3.40)

Then using (3.40) and recall that ∇H = ∇L−1, one can verify that (A) = 0, similarly, for

(B), we have∇Φ(x+ tF (x), t) = ∇Φ∗
0 for all t ∈ [0, 1]. Thus (B) = 0 and we are able to

verify ∂L
∂F

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

On the other hand, we can compute ∂L(F,Φ)
∂Φ

(x, t) as

δL(F,Φ)
δΦ

(x, t) =

[
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇H(∇Φ(x, t)))

]
︸ ︷︷ ︸

(C)

+ [ρb(x)− ρ̂(x, 1)]︸ ︷︷ ︸
(D)

δ1(t)

Now by Lemma 3.3.5, we know (C) = 0. Furthermore, since Φ∗ solves Dynamical OT

problem associated to the optimal transport problem between ρa and ρb, by (3.13), we

have ρ̂(x, 1) = (Id + ∇Φ∗
0)♯ρa = ρb, this verifies (D) = 0. Thus, we are able to verify

∂L(F,Φ)
∂Φ

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

At last, we plug F = ∇L−1(∇Φ∗
0),Φ = Φ∗ in (3.38) to obtain:

L(∇L−1(∇Φ∗
0),Φ

∗) =

∫ 1

0

∫
∇Φ∗

0(x) · ∇L−1(∇Φ∗
0(x))−H(∇Φ∗

0(x)) ρa(x) dxdt

=

∫
L(∇L−1(∇Φ∗

0(x)))ρa(x) dx.

32

Now by Lemma 3.3.6, we have verified L(∇L−1(∇Φ∗
0),Φ

∗) = WDym OT(ρa, ρb).

3.3.3 Bidirectional dynamical formulation

We would like to improve the stability and avoid local traps during the training process

by proposing a bidirectional scheme, which consider the symmetric status of ρa and ρb in

(3.1). First of all for two OT problems

min
F

max
ΦF

Lab(F,ΦF), min
G

max
ΦG

Lba(G,ΦG),

where Lab is defined in (3.28), Lba is defined by switching ρa and ρb in (3.28). Clearly, the

first one is forW (ρa, ρb) and the second one is forW (ρb, ρa). At optima, the vector fields F

and G are transport vectors in the opposite directions. At a specific point x ∈ Rd, moving

along straight line in the direction F ends up at x+ F (x). The direction of G at x+ F (x)

should point to the opposite direction of F (x), which leads to G(x + F (x)) = −F (x).

Similarly, we also have F (x + G(x)) = −G(x). With above two conditions we add two

constraints for F and G to facilitate our training:

Rab(F,G) =

∫
|G(x+ F (x)) + F (x)|2 ρa(x) dx,

Rba(F,G) =

∫
|F (x+G(x)) +G(x)|2ρb(x) dx.

Our final saddle-point problem becomes

min
F,G

max
ΦF ,ΦG

Lab(F,ΦF) + Lba(G,ΦG) + λ(Rab(F,G) +Rba(F,G)), (3.41)

where λ is a tunable coefficient of our constraint terms.

3.3.4 Overview of the algorithm

To solve (3.41), we propose an algorithm that is summarized in the following steps.

33

• Preconditioning We can apply preconditioning techniques to 2-Wasserstein cases in or-

der to make our computation more efficient.

• Main Algorithm We set Fθ1 , Gθ2 and ΦF
ω1
,ΦG

ω2
as fully connected neural networks and

optimize over their parameters ω1, ω2 and θ1, θ2 alternatively via stochastic gradient as-

cend and descend.

• Stopping Criteria When computed F (orG) is close to the optimal solution, the Wasser-

stein distance W (ρa, ρb) (or W (ρb, ρa)) can be approximated by

Ŵ ab =

∫
L(F (x)) ρa(x) dx, Ŵ

ba =

∫
L(G(x)) ρb(x) dx.

For a chosen threshold ϵ > 0, we treat |Ŵ ab − Ŵ ba| < ϵ as the stopping criteria of our

algorithm.

It’s worth mentioning that we can apply preconditioning technique under the 2-Wasserstein

cases, i.e., L(·) = |·|2
2

. When the support of distributions ρa and ρb are far away from each

other, the computational process might get much more sensitive with respect to vector field

F . In order to deal with this situation, we consider preconditioning to our initial distribu-

tion ρa. In our implementation, we treat P : Rd → Rd as our preconditioning map. We fix

its structure as P (x) = σx+µ with σ ∈ R+, µ ∈ Rd. Such preconditioning process can be

treated as an operation aiming at relocating and rescaling the initial distribution ρa so that

the support of P♯ρa matches with the support of ρb in a better way, which in turn facilitates

the training process of our OT problem. A similar technique is also carried out by [52].

Let us denote the optimal vector field of OT problem between P♯ρa and ρb as∇Φ̂0, then

for the vector field F ∗(x) = ∇Φ̂0 ◦ P (x) + P (x) − x, the following theorem guarantees

the optimality of F ∗.

Theorem 3.3.7. Suppose L(·) = |·|2
2

. We define the map P (x) = σx+ µ with σ ∈ R+, µ ∈

Rd. Recall (3.11), we denote v(x, t) = ∇Φ̂(x, t) as the optimal solution to dynamical OT

34

problem (3.7) from P♯ρa to ρb. We set Φ̂0 = Φ̂(·, 0). Furthermore, we denote v(x, t) =

∇Φ∗(x, t) as the optimal solution to dynamical OT problem (3.7) from ρa to ρb, and set

Φ∗
0 = Φ∗(·, 0). Then we have

∇Φ∗
0(x) = ∇Φ̂0 ◦ P (x) + P (x)− x,

Φ∗
0(x) =

1

σ
Φ̂0(σx+ µ) +

σ − 1

2
|x|2 + µTx+ Const.

This theorem indicates that our constructed F ∗ is exactly the optimal transport field

∇Φ∗
0 for the original OT problem from ρa to ρb.

Proof. According to (3.13) we have

(Id +∇Φ̂0)♯(P♯ρa) = ρb

This yields

(P +∇Φ0 ◦ P)♯ρa = ρb

We rewrite this as

(Id +∇Φ̂0 ◦ P + P − Id)♯ρa = ρb (3.42)

We denote u(x) = 1
σ
Φ̂0(σx+ µ) + σ−1

2
|x|2 + µTx.

Then we can directly verify that

∇u(x) = ∇Φ̂0(σx+ µ) + (σx+ µ)− x = ∇Φ̂0 ◦ P (x) + P (x)− x

Plug this into (3.42) above we get:

(Id +∇u)♯ρa = ρb

Using the uniqueness of the solution to Monge-Ampere equation, we have Φ∗
0 = u+Const,

35

or equivalently,∇Φ∗
0(x) = ∇u(x) = ∇Φ̂0 ◦ P (x) + P (x)− x

Our computation procedure is summarized in Algorithm 1. We setFθ1 , Gθ2 and ΦF
ω1
,ΦG

ω2

as fully connected neural networks and optimize over their parameters.

Algorithm 1 Computing Wasserstein geodesic from ρa to ρb via bidirectional scheme
(3.41) and preconditioning

1: Choose our preconditioning map P (x) = σx + µ. Denote ρ̂a = P♯ρa (This step is
only applicable for 2-Wasserstein case. If we do not need preconditioning, we treat
P = Id.)

2: Set up the threshold ϵ > 0 as the stopping criteria
3: Initialize Fθ1 , Gθ2 , ΦF

ω1
,ΦG

ω2

4: for Fθ1 , Gθ2 steps do
5: Sample {(zak , tak)}Nk=1 from ρ̂a ⊗ U(0, 1) and {(zbk, tbk)}Nk=1 from ρb ⊗ U(0, 1);
6: Set xak = zak + takFθ1(z

a
k), x

b
k = zbk + tbkGθ2(z

b
k);

7: Sample {wak}Mk=1 from ρ̂a and {wbk} from ρb;
8: for ΦF

ω1
,ΦG

ω2
steps do

9: Update (via gradient ascent) ΦF
ω1
,ΦG

ω2
by:

∇ω1,ω2(Lab(ΦF
ω1
) + Lba(ΦG

ω2
))

10: end for
11: Sample {ξak}Kk=1 from ρ̂a and {ξbk}Kk=1 from ρb
12: Update (grad descent) Fθ1 , Gθ2 by:

∇θ1,θ2(Lab(ΦF
ω1
) + Lba(ΦG

ω2
) +K(Fθ1 , Gθ2))

13: Whenever |Ŵ ab − Ŵ ba| < ϵ, skip out of the loop.
14: end for
15: Set F ∗ = Fθ1 ◦ P + P − Id and G∗ = Gθ2 ◦ P + P − Id.
16: Wasserstein geodesic from ρa to ρb is given by {(Id+ tFθ1)♯ρa}; Wasserstein geodesic

from ρb to ρa is given by {(Id + tGθ2)♯ρb}.

Remark 3. In Algorithm 1, we need to sample points {zak} from the distribution ρ̂a = P♯ρa.

To achieve this, we first sample {uk} from ρa. Then {P (uk)} are our desired samples from

ρ̂a.

36

In Algorithm 1 we define

Lab(ΦF
ω1
) = − 1

N

N∑
k=1

[
∂

∂t
ΦF
ω1
(xak, t

a
k) +H(∇ΦF

ω1
(xak, t

a
k))

]
+

1

M

M∑
k=1

(ΦF
ω1
(wbk, 1)− ΦF

ω1
(wak, 0)),

Lba(ΦG
ω2
) = − 1

N

N∑
k=1

[
∂

∂t
ΦG
ω2
(xbk, t

b
k) +H(∇ΦG

ω2
(xbk, t

b
k))

]
+

1

M

M∑
k=1

(ΦG
ω2
(wbk, 1)− ΦG

ω2
(wak, 0)),

K(Fθ1 , Gθ2) =
λ

K

K∑
k=1

|Gθ2(ξ
a
k + Fθ1(ξ

a
k)) + Fθ1(ξ

a
k)|2 +

λ

K

K∑
k=1

|Fθ1(ξbk +Gθ2(ξ
b
k)) +Gθ2(ξ

b
k)|2,

Ŵ ab =
1

M

M∑
k=1

L(Fθ1(w
a
k)), Ŵ ba =

1

M

M∑
k=1

L(Gθ2(w
b
k)).

3.4 Experiments

Experiment Setup: We validate our algorithm through vast of synthetic data sets including

different dimensional Gaussian cases. We also test our algorithm for realistic data sets

including color transfer [53] and transportation between MNIST digits [54].

For low dimensional cases, namely, 2, 3, 5 and 10 dimensional cases, we set ΦF ,ΦG

and F,G as fully connected neural networks, where ΦF ,ΦG have 6 hidden layers and F

and G have 5 hidden layers. Each layer has 48 nodes, the activation function is chosen

as Tanh. For high dimensional cases, namely, the data dimension is 28× 28, we deal with

MNIST handwritten digits data set, we adopt similar structures of neural networks, the only

difference is that in each layer we extend the number of nodes from 48 to 512. In terms of

training process, for all synthetic and realistic cases we use the Adam optimizer [55] with

learning rate 10−4. Notice that we are computing Wasserstein geodesic, namely, starting

with an initial distribution ρt0 , in most cases we generate evolving distributions for next

ten time steps, from t1 = 0.1 to t10 = 1. The cost functions are chosen as L(v) = |v| 32

in Synthetic-2 and L(v) = |v|2 in all other tests. We only show the final state of the

generated distribution due to space limitation, more experiments and details are included

in next section.

37

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Syn-1. (a)(b) true ρa and generated ρb, (c)(d) true ρb and generated ρa, (e)(g)
tracks of sample points from ρa(ρb) to ρb(ρa), (f)(h) vector fields from ρa(ρb) to ρb(ρa).

Synthetic-1: This is a 2-dimensional case, we set ρa as a standard Gaussian distribution

N(µ0,Σ0) while ρb as six surrounding Gaussian distributions with the same Σ0. In Figure

3.2, we show the generated distribution that follows ρb as well as the one that follows ρa.

We also show the start-end tracks of points and vector field.

Synthetic-2: In this 5-dimensional case we treat ρa and ρb both as two Gaussian distri-

butions. We show the results of two dimensional projection in Figure 3.3.

Training and Results: For synthetic data sets, in the training process we set the batch

size Nt = 2000 and sample size for prediction Np = 1000. From Figures 3.2, 3.3 we see

that in all cases, within various dimensional settings, the generated samples closely follow

the ground-truth distributions.

Realistic-1: Two given pictures describe the summer view(ρa) and autumn view(ρb)

of a forest. We generate the autumn view starting with the summer view and generate the

summer view starting with the autumn view. We also show the ground-truth and generated

palette distributions in Figure 3.4.

38

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Syn-2. (a)(b) true ρa and generated ρb, (c)(d) true ρb and generated ρa, (e)(g)
tracks of sample points from ρa(ρb) to ρb(ρa), (f)(h) vector fields from ρa(ρb) to ρb(ρa).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Real-1, Forest views. (a)(c) true summer(autumn) view, (b)(d) generated au-
tumn(summer) view when true summer(autumn) view is given, (e)(g) true palette distri-
bution of summer(autumn) view, (f)(h) generated palette distribution of summer(autumn)
view.

39

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Real-2, Digits transformation. (a)(b) true(generated) digit 4(8), (c)(d)
true(generated) digit 8(4), (e)(f) true(generated) digit 6(9), (g)(h)true(generated) digit 9(6).

Realistic-2: We choose MNIST as our data set (28 × 28 dimensional) and study the

Wasserstein mappings as well as geodesic between digit 0(ρa) and digit 1(ρb), digit 4(ρa)

and digit 8(ρb), digit 6(ρa) and digit 9(ρb). Only partial results are presented in Figure 3.5

due to space limit.

Training and Results: For realistic-1 we set the batch size Nt = 1000, for realistic-2

in each iteration we take Nt = 500 pictures for training, especially for realistic-2 we also

add small noise to samples during the training process. From Figure 3.4 we see that the

generated autumn(summer) views are very close to the true autumn(summer) views, more-

over, the similarity between true and generated palette distributions also demonstrate that

our algorithm works well in these cases. In realistic-2 we study the Wasserstein geodesic

and mappings in original space without any dimension reduction techniques. Our gener-

ated handwritten digits follow similar patterns with the ground truth. In next section we

present our full experimental results.

40

3.5 Complete Geodesics in Experiments

3.5.1 Synthetic Data

Syn-1: Wasserstein-2

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

(u) traj ρa to ρb (v) vf ρa to ρb (w) traj ρb to ρa (x) vf ρb to ρa

Figure 3.6: 2-dimensional Gaussian to Gaussian

41

Syn-2: Wasserstein-1.5

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

(u) traj ρa to ρb (v) vf ρa to ρb (w) traj ρb to ρa (x) vf ρb to ρa

Figure 3.7: 5-dimensional Gaussian to Gaussian

42

Syn-3: Wasserstein-2

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

(u) traj ρa to ρb (v) vf ρa to ρb (w) traj ρb to ρa (x) vf ρb to ρa

Figure 3.8: 10-dimensional Gaussian to Gaussian

43

Syn-3: Wasserstein-2

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

Figure 3.9: 10-dimensional Gaussian Mixture

44

3.5.2 Realistic Data

Real-1: Color Transfer of Forest View

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

(u) Color dist of
Summer View

(v) Color dist of
Autumn View

(w) Generated
color dist of Sum-
mer View

(x) Generated color
dist of Autumn
View

Figure 3.10: Forest summer view and autumn view

45

Real-2: MNIST

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

Figure 3.11: Geodesics between ”0” and ”1”
s

46

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

Figure 3.12: Geodesics between ”4” and ”8”

47

(a) ρa to ρb at t1 (b) ρa to ρb at t2 (c) ρa to ρb at t3 (d) ρa to ρb at t4 (e) ρa to ρb at t5

(f) ρa to ρb at t6 (g) ρa to ρb at t7 (h) ρa to ρb at t8 (i) ρa to ρb at t9 (j) ρa to ρb at t10

(k) ρb to ρa at t1 (l) ρb to ρa at t2 (m) ρb to ρa at t3 (n) ρb to ρa at t4 (o) ρb to ρa at t5

(p) ρb to ρa at t6 (q) ρb to ρa at t7 (r) ρb to ρa at t8 (s) ρb to ρa at t9 (t) ρb to ρa at t10

Figure 3.13: Geodesics between ”6” and ”9”

3.6 Conclusion

OT problem has been drawing more attention in machine learning recently. Though many

algorithms have been proposed during the past several years for efficient computations,

most of them do not consider the Wasserstein geodesics, neither be suitable for estimating

optimal transport map with general cost in high dimensions. In this chapter we present a

novel method to compute Wasserstein geodesic between two given distributions with gen-

eral convex cost. In particular, we consider the primal-dual scheme of the dynamical OT

problem and simplify the scheme via the KKT conditions as well as the geodesic transport-

48

ing properties. By further introducing preconditioning techniques and bidirectional dynam-

ics into our optimization, we obtain a stable and effective algorithm that is capable of high

dimensional computation, which is one of the very first scalable algorithms for directly

computing geodesics with general cost, including L-p. Our method not only computes

sample based Wasserstein geodesics, but also provides Wasserstein distance and optimal

map. We demonstrate the effectiveness of our scheme through a series of experiments with

both low dimensional and high dimensional settings. It is worth noting that our model can

be applied not only in machine learning such as image transfer, density estimation, but also

in optimal control and robotics, where one needs to study the distribution of mobile agents.

We should also be aware of the malicious usage for our method, for instance, it could be

potentially used in some activities involving generating misleading data distributions.

49

CHAPTER 4

SCALABLE COMPUTATION OF MONGE MAPS WITH GENERAL COSTS

4.1 Introduction

Continuing on discussing OT problem, recall that the dynamic OT 2.4 is beneficial for de-

scribing the density evolution under the influence of a vector field [11, 12], but solving it

leads to a partial differential equation (PDE) system, which is not a trivial task, especially

in a high dimensional setting. To overcome the drawbacks of fluid dynamics formulation,

in this chapter we propose a computationally efficient and scalable algorithm for estimating

the Wasserstein distance and optimal map between probability distributions over continu-

ous spaces. Particularly, we apply the Lagrangian multiplier on the MK problem, to this

end we obtain a minimax problem. Our contribution can be summarized as follows: 1) We

develop a scalable algorithm to compute the optimal transport map associated with general

transport costs between any two distributions given their samples; 2) Our model is able to

deal with the cases that ρa or ρb is not absolute continuous; 3) Our method is also capable

of computing OT problems between distributions over spaces that do not share the same di-

mension. 4) We provide a rigorous error analysis of the algorithm based on duality gaps; 5)

We demonstrate its performance and its scaling properties in truly high dimensional setting

through with various experiments, on both synthetic and real data sets.

Related work: [25, 26] propose efficient approaches of computing OT problem, but the

methods become infeasible in high dimensional cases. However, Kantorovich dual problem

and application of DNN make OT computation more tractable. As a variety of models have

been proposed to handle high dimensions via neural networks, we can classify OT models

into static ones and dynamic ones. Static models include typical Kantorovich dual based

work, such as Wasserstein-1 GAN [7] and Wasserstein-1 related variations [32, 33, 34,

50

35, 36, 37], where cost function is chosen as L1 norm, then the Wasserstein-1 distance is

computed via solving a maximization problem. However, when we solve for Wasserstein-1

related problems, the non-trivial Lipschitz-1 constraint is challenging to be theoretically

and strictly realized. Utilizing input convex neural networks (ICNN) [38] to approximate

the potential function is a good way to avoid Lipschitz-1 constraint. For example, [40] and

[41] extend the semi-dual formulation of OT to new minimax problems.

The other one track of OT models are dynamic ones. By utilizing the structure of

Wasserstein geodesic information [6, 21], several related dual-based formulations are also

developed. [56] utilize the geodesic information by defining the Augmented Lagrangian

corresponding to Sobolev GAN objective. [23] treat the vector field as a potential func-

tion then add optimality condition as a regularizer into the original duality problem. While

all of above methods are focusing on either Wasserstein-1 or Wasserstein-2, [57] extends

the problem to Wasserstein-p by applying Lagrange multipliers in a bidirectional dynamic

scheme, though there is no Lipschitz or convexity constraint in the computation, the algo-

rithm is not very robust and bringing more computation complexity due to the extra time

dimension.

The subject of this work originates from the static MK problem. In particular, our algo-

rithm is inspired by the recent work in estimation of optimal transport map and Wasserstein-

p distance using dynamic view of OT [57], where samples’ density evolution is described

via a pushforward map, Lagrange Multipliers are parametrized as neural networks. How-

ever our formulation extends to a general cost function setting without considering time

dimension.

51

4.2 Background

Recall the Optimal Transport problem (2.2) on Rd. In this chapter, we consider a more

general OT problem from Rn to Rm

inf
π

{∫
Rn×Rm

c(x, y)dπ(x, y)

∣∣∣∣∣ π ∈ Π(ρa, ρb)

}
. (4.1)

We will mainly focus on the cost function c(·, ·) satisfying the following conditions:

There exists a ∈ L1(ρa), b ∈ L1(ρb), such that c(x, y) ≥ a(x) + b(y); (4.2)

c is locally Lipschitz and superdifferentiable everywhere; (4.3)

∂xc(x, ·) is injective for any x ∈ Rn. (4.4)

For the definitions of the bold terminologies listed above, please check the Appendix.

The Kantorovich dual problem of the primal OT problem (2.2) is formulated as (Chap

5, [6])

sup
(ψ, ϕ) ∈ L1(ρa)× L1(ρb)

ϕ(y)− ψ(x) ≤ c(x, y) ∀ x ∈ Rn, y ∈ Rm

{∫
Rm

ϕ(y)ρb(y) dy −
∫
Rn

ψ(x)ρa(x) dx

}
. (4.5)

It is not hard to tell that (4.5) is equivalent to

sup
ψ∈L1(ρa)

{∫
Rm

ψc,+(y)ρb(y) dy −
∫
Rn

ψ(x)ρa(x) dx

}
, (4.6)

sup
ϕ∈L1(ρb)

{∫
Rm

ϕ(y)ρb(y) dy −
∫
Rn

ϕc,−(x)ρa(x) dx

}
. (4.7)

Here we define ψc,+, ϕc,− via infimum/supremum convolution: ψc,+(y) = infx(ψ(x) +

c(x, y)) and ϕc,−(x) = supy(ϕ(y)− c(x, y)).

The following theorem states the equivalent relationship between the primal Optimal

52

Transport problem and its Kantorovich dual (4.5). The proof for a more general version

can be found in Theorem 5.10 of [6].

Theorem 4.2.1 (Kantorovich Duality). Suppose c is a cost function defined on Rn × Rm

and satisfies (4.2). We denote C(ρa, ρb) as the infimum value of (4.1). We denote K(ρa, ρb)

as the maximum value of (4.5). Then C(ρa, ρb) = K(ρa, ρb).

In general, the optimal solution π∗ to (2.2) can be treated as a random transport plan,

i.e. we are allowed to break the single particle into pieces and then transport each piece

to certain positions according to the plan π∗. However, in this study, we mainly focus on

the classical version of the OT problem, which is known as the Monge problem stated as

follows

min
T :Rn→Rm,T♯ρa=ρb

∫
Rn

c(x, T (x))ρa(x) dx. (4.8)

Here T is a measurable map on Rn, we define the pushforward of distribution ρa by T as

T♯ρa(E) = ρb(T
−1(E)) for any measurable set E ⊂ Rn. The Monge problem seeks for the

optimal deterministic transport plan from ρa to ρb.

The following result states the existence and uniqueness of the optimal solution to the

Monge problem. It is a simplified version of Theorem 10.28 combined with Remark 10.33

taken from [6].

Theorem 4.2.2 (Existence, uniqueness and characterization of the optimal Monge map).

Suppose the cost c satisfies (4.2), (4.3), (4.4) , we further assume that ρa and ρb are com-

pactly supported and ρa is absolute continuous with respect to the Lebesgue measure on

Rn. Then there exists unique transport map T∗ solving the Monge problem (4.8). Further-

more, there exists unique ψ∗, ϕ∗ solving the dual problem (4.5), or equivalently, ψ∗, ϕ∗ are

unique optimal solution of (4.6), (4.7). Then ψ∗, ϕ∗ are differentiable on Spt(ρa), Spt(ρb).

And we have

∇ψ∗(x) + ∂xc(x, T∗(x)) = 0, ∇ϕ∗(T∗(x))− ∂yc(x, T∗(x)) = 0, ρa almost surely.

53

4.3 Proposed method

In order to formulate a tractable algorithm for the general Monge problem (4.8), we first

notice that (4.8) is a constrained optimization problem. Thus, it is natural to introduce the

Lagrange multiplier f for the constraint T♯ρa = ρb and then reformulate (4.8) as a saddle

point problem

sup
f

inf
T
L(T, f) (4.9)

with L defined as

L(T, f) =
∫
Rn

c(x, T (x))ρa(x)dx+

∫
Rm

f(y)(ρb − T♯ρa) dy

=

∫
Rn

[c(x, T (x))− f(T (x))] ρa(x) dx+
∫
Rm

f(y)ρb(y) dy (4.10)

We can verify that the max-min scheme (4.9) is equivalent to the Kantorovich dual problem

(4.7). To this end, one only need to verify:

inf
T
L(T, f) =−

∫
Rn

sup
ξ
{f(ξ)− c(x, ξ)}ρa(x)dx+

∫
Rm

f(y)ρb(y)dy

=

∫
Rm

f(y)ρb(y)dy −
∫
Rn

f c,−(x)ρa(x)dx. (4.11)

The following results guarantee that the max-min scheme (4.9) will find the optimal Monge

map.

Definition 4.3.1 (Superdifferentiablity). For function f : Rn → R, we say f is superdiffer-

entiable at x, if there exists p ∈ Rn, such that

f(z) ≥ f(x) + ⟨p, z − x⟩+ o(|z − x|).

Definition 4.3.2 (Locally Lipschitz). Let U ⊂ Rn be open and let f : Rn → R be given.

54

Then (1) f is Lipschitz if there exists L <∞ such that

∀x, z ∈ Rn, |f(z)− f(x)| ≤ L|x− z|.

(2) f is said to be locally Lipschitz if for any x0 ∈ Rn, there is a neighbourhood O of x0 in

which f is Lipschitz.

Theorem 4.3.1 (Consistency). Suppose the optimal solution to (4.9) is (T∗, f∗), then T∗ is

the optimal Monge map to the problem (4.8) and f∗ = ϕ∗, where ϕ∗ is the optimal solution

to (4.7).

Proof. According to (4.11), we are able to tell that the optimal solution f∗ equals ϕ∗. Fur-

thermore, at the optimal point (T∗, f∗), we have

T∗♯ρa = ρb, T∗(x) ∈ argmaxξ∈Rm{f∗(ξ)− c(x, ξ)}.

The second equation leads to

f c,−∗ (x) = f∗(T∗(x))− c(x, T∗(x)).

Then we have

∫
Rn

c(x, T∗(x))ρa(x) dx =

∫
Rn

f∗(T∗(x))ρa(x) dx−
∫
Rn

f c,−∗ (x)ρa(x) dx

=

∫
Rm

f∗(y)ρb(y) dy −
∫
Rn

f c,−∗ (x)ρa(x) dx

≤
∫
Rn×Rm

[f∗(y)− f c,−∗ (x)]dπ(x, y) ≤
∫
Rn×Rm

c(x, y)dπ(x, y)

for any π ∈ Π(ρa, ρb). Here the second equality is due to T∗♯ρa = ρb, the last inequality is

due to the definition of f c,−∗ (x) = supy{f∗(y)− c(x, y)}.

As a result, T∗ solves (4.8) and thus is the unique optimal Monge map.

55

In exact implementation, we will replace both the map T and the dual variable f by the

neural networks Tθ, fη, with θ, η being the parameters of the networks. We aim at solving

the following saddle point problem. The algorithm is summarized in Algorithm 2.

max
η

min
θ
L(Tθ, fη) :=

1

N

N∑
k=1

c(Xk, Tθ(Xk))− fη(Tθ(Xk)) + fη(Yk) (4.12)

where N is the batch size and {Xk}, {Yk} are samples generated by ρa and ρb separately.

Algorithm 2 Computing Wasserstein distance and optimal map from ρa to ρb
1: Input: Marginal distributions ρa and ρb, Batch size N , Cost function c(x, T (x)).
2: Initialize Tθ, fη.
3: for K steps do
4: Sample {Xk}Nk=1 from ρa. Sample {Yk}Nk=1 from ρb.
5: for K1 steps do
6: Update (via gradient descent) θ to decrease (4.12)
7: end for
8: for K2 steps do
9: Update (via gradient ascent) η to increase (4.12)

10: end for
11: end for

4.4 Error Analysis via Duality Gaps

In this section, we assume that m = n = d, namely, we consider Monge problem between

spaces sharing the same dimension d. Suppose that we have solved (4.9) to a certain stage

and obtain a pair of (T, f), inspired by the work [58] and [41], we estimate a weighted L2

error between our computed map T and the optimal Monge map T∗. Firstly let’s introduce

the definition of c-concave functions. [6].

Definition 4.4.1 (c-concavity). We say a function f : Rd → R is c-concave if there exists a

function φ such that f = φc,+. This definition is also equivalent to (f c,−)c,+ = f .

To accomplish our result, we require ρa, ρb and c(x, y) to satisfy the conditions men-

56

tioned in Theorem (4.2.2). Furthermore, we also assume that c ∈ C2(Rd×Rd) and satisfies

∂xyc(x, y), as an d× d matrix, is invertible and self-adjoint. (4.13)

∂yyc(x, y) is independent of x; i.e. ∂yyc(x, y) =M(y) with M(y) a matrix function of y.

(4.14)

We further denote

σ(x, y) = σmin(∂xyc(x, y)) (4.15)

as the minimum singular value of the matrix ∂xyc(x, y), since it is invertible, σ(x, y) > 0

for any x, y ∈ Rd.

Theorem 4.4.1 (Posterior Error Analysis via Duality Gaps). Assume f ∈ C2(Rd) is a c-

concave function and assume that there exists φ ∈ C2(Rd) such that f(y) = infx{φ(x) +

c(x, y)}.

Suppose argminx{φ(x) + c(x, y)} is non-empty, finite set for arbitrary y ∈ Rd. Now

for any x̂y ∈ argminx{φ(x) + c(x, y)}, we further assume there exists function λ(·) > 0

such that

λ(y)In ⪰ ∇2
xx(φ(x) + c(x, y))

∣∣∣∣∣
x=x̂y

≻ On (4.16)

We denote the duality gaps

E1(T, f) = L(T, f)− inf
T̃
L(T̃ , f), E2(f) = sup

f̃

inf
T̃
L(T̃ , f̃)− inf

T̃
L(T̃ , f)

Denote T∗ as the optimal Monge map of the OT problem (4.8). Then there exists a strict

positive weight function β(·) > 0 (depending on c, T∗, f and φ, such that the weighted L2

error between computed map T and optimal map T∗ is upper bounded by

∥T − T∗∥L2(βρa) ≤
√

2(E1(T, f) + E2(f)).

57

Before proving the theorem, we need to prove following Lemmas first.

Lemma 4.4.2. Suppose n×n matrixA is self-adjoint, i.e. A = AT, with minimum singular

value σmin(A) > 0. Also assume n × n matrix H is self-adjoint and satisfies λIn ⪰ H ≻

On. Then AH−1A ⪰ σmin(A)
2

λ
In.

Proof. One can first verify that H−1 ⪰ 1
λ
In by digonalizing H−1. To prove this lemma, we

only need to verify that for arbitrary v ∈ Rn,

vTAH−1Av = (Av)TH−1Av ≥ |Av|
2

λ
≥ σmin(A)

2

λ
|v|2

Thus AH−1A− σmin(A)
2

λ
In is non-negative definite.

The following lemma is crucial for proving our results, it analyzes the concavity of the

target function f(·)− c(·, y) with f c-concave.

Lemma 4.4.3 (Concavity of f(·)−c(x, ·) as f c-concave). Suppose the cost function c(x, y)

and f satisfy the conditions mentioned in Theorem 4.4.1. Denote the function Ψx(y) =

f(y)− c(x, y), keep all notations defined in Theorem 4.4.1, then we have

∇2Ψx(y) ⪯ −
σ(x, y)2

λ(y)
In.

Proof. First, Notice that f is c-convex, thus, there exists φ such that f(y) = infx{φ(x) +

c(x, y)}. Let us also denote Φ(x, y) = φ(x) + c(x, y). Now for a fixed y ∈ Rn, We pick

one

x̂y ∈ argminx {φ(x) + c(x, y)}

Since we assumed that φ ∈ C2(Rn) and c ∈ C2(Rn × Rn), we have

∂xΦ(x̂y, y) = ∇φ(x̂y) + ∂xc(x̂y, y) = 0 (4.17)

At the same time, since x̂y is the minimum point of theC2 function Φ(·, y), then the Hessian

58

of Φ(·, y) at x̂y is positive definite,

∂2xxΦ(x̂y, y) = ∇2
xx(φ(x) + c(x, y))

∣∣∣∣∣
x=x̂y

= ∇2φ(x̂y) + ∂2xxc(x̂y, y) ≻ 0. (4.18)

Since ∂2xxΦ(x̂y, y) is positive definite, it is also invertible. We can now apply the implicit

function theorem to show that the equation ∂xΦ(x, y) = 0 determines an implicit function

x̂(·), which satisfies x̂(y) = x̂y in a small neighbourhood U ⊂ Rn containing y. Further-

more, one can show that x̂(·) is continuously differentiable at y. We will denote x̂y as x̂(y)

in our following discussion.

Now differentiating (4.17) with respect to y yields

∂2xxΦ(x̂(y), y)∇x̂(y) + ∂2xyc(x̂(y), y) = 0. (4.19)

On one hand, (4.19) tells us

∇x̂(y) = −∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y). (4.20)

On the other hand, notice that c ∈ C2(Rn × Rn), thus ∂xyc = ∂yxc. By (4.19),(4.18), we

have

∂2yxc(x̂(y), y)∇x̂(y) =− ∂2xxΦ(x̂(y), y)∇x̂(y)∇x̂(y)

=− (∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y). (4.21)

Now we are able to prove our theorem, we directly compute

∇2Ψx(y) = ∇2f(y)− ∂2yyc(x, y). (4.22)

To calculate ∇2f(y), we first compute ∇f(y). For fixed y, we suppose argminx{φ(x) +

59

c(x, y)} = {x̂1y, . . . , x̂ky}. By repeating previous argument, we can obtain k different func-

tions {x̂1(·), . . . , x̂k(·)} on a small enough neighbourhood V of y such that argminx{φ(x)+

c(x, ξ)} ⊂ {x̂1(ξ), . . . , x̂k(ξ)} for any ξ ∈ V . We then denote

Vi = {ξ | f(ξ) = φ(x̂i(ξ)) + c(x̂i(ξ), ξ)} ∩ V.

We know y ∈ Vi for all 1 ≤ i ≤ k and
⋃k
i=1 Vi = V . Now if y ∈ int(Vi) for certain Vi,

i.e., y lies in the interior of Vi, then restricted on Vi, f(·) = φ(x̂i(·)) + c(x̂i(·), ·), we can

directly compute the derivative of f as

∇f(y) = ∇(φ(x̂i(y)) + c(x̂i(y), y)) = ∂yc(x̂
i(y), y),

the second equality is due to the envelope theorem [59]. Then∇2f(y) can be computed as

∇2f(y) = ∂yxc(x̂
i(y), y)∇x̂i(y) + ∂yyc(x̂

i(y), y). (4.23)

One the other hand, if y does not belong to the interior of any Vi, we can further prove

that there exists Vi such that we can find a small cone with vertex at y belong to Vi. Then,

fixed on the cone, we still have f(·) = φ(x̂i(·)) + c(x̂i(·), ·), we can directly compute

the first and second order directional derivative of f(·) by computing the derivatives of

φ(x̂i(·)) + c(x̂i(·), ·). Finally, since f ∈ C2, we can still obtain the result in (4.23).

Now for simplicity, we just denote x̂i(y) as x̂(y), and (4.21) still holds. Plugging (4.21)

into (4.23), recall (4.22), this yields

∇2Ψx(y) = −(∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y) + ∂2yyc(x̂(y), y)− ∂2yyc(x, y)

Now by (4.14), since ∂yyc(x, y) is independent of x, ∂2yyc(x̂(y), y)− ∂2yyc(x, y) = 0. Thus

60

∇2Ψx(y) equals

∇2Ψx(y) = −(∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y)

= −∂2xxΦ(x̂(y), y)∇x̂(y)∇x̂(y) (4.24)

To further simplify (4.24), recall (4.20), we have

∇2Ψx(y) = −∂xyc(x̂(y), y)∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y).

By (4.16), we have

λ(y)In ⪰ ∂xxΦ(x̂(y), y) ≻ On

By condition (4.13), ∂xyc is self-adjoint, and (4.15) tells σmin(∂xyc(x, y)) = σ(x, y). Now

applying lemma 4.4.2, we have

∇2Ψx(y) ⪯ −
σ(x, y)2

λ(y)
In.

Now we can prove main result in Theorem 4.4.1:

Proof. In this proof, we denote
∫

as
∫
Rd for simplicity. We first recall

L(T, f) =
∫
f(y)ρb(y) dy −

∫
(f(T (x))− c(x, T (x)))ρa(x)dx,

also recall definition (4.11), f c,−(x) = supy{f(y)− c(x, y)}, we can write

E1(T, f) = −
∫

[f(T (x))− c(x, T (x))]ρa dx+ inf
T̃

{∫
[f(T̃ (x))− c(x, T̃ (x))]ρa dx

}
=

∫
[f c,−(x)− (f(T (x))− c(x, T (x)))]ρa(x)dx

61

We denote

Tf (x) = argmaxy{f(y)− c(x, y)} = argmaxy{Ψx(y)},

then we have

∇Ψx(Tf (x)) = 0. (4.25)

On the other hand, one can write:

E1(T, f) =
∫

[(f(Tf (x))− c(x, Tf (x)))− (f(T (x))− c(x, T (x)))]

=

∫
[Ψx(Tf (x))−Ψx(T (x))]ρa(x) dx

For a fixed x, since Ψx(·) ∈ C2(Rn), then

Ψx(T (x))−Ψx(Tf (x)) = ∇Ψx(Tf (x))(T (x)−Tf (x))+
1

2
(T (x)−Tf (x))T∇2Ψx(η(x))(T (x)−Tf (x))

with η(x) = (1− θx)T (x) + θxTf (x) for certain θx ∈ (0, 1). By (4.25) and Lemma 4.4.3,

we have

Ψx(T (x))−Ψx(Tf (x)) ≤ −
σ(x, η(x))2

2λ(η(x))
|T (x)− Tf (x)|2.

Thus we have:

E1(T, f) =
∫

[Ψx(Tf (x))−Ψx(T (x))]ρa(x) dx ≥
∫
σ(x, η(x))2

2λ(η(x))
|T (x)−Tf (x)|2ρa(x) dx

(4.26)

On the other hand, let us denote the optimal Monge map from ρa to ρb as T∗, by Kon-

torovich duality, we have

sup
f

inf
T
L(T, f) = inf

T,T♯ρa=ρb

∫
c(x, T (x))ρa dx =

∫
c(x, T∗(x))ρa dx

62

Thus we have

E2(f) =
∫
c(x, T∗(x))ρa dx−

(∫
f(y)ρb dy −

∫
f c,−(x)ρa dx

)
=

∫
c(x, T∗(x))ρa dx−

(∫
f(T∗(x))ρa dx−

∫
f c,−(x)ρa dx

)
=

∫
[f c,−(x)− (f(T∗(x))− c(x, T∗(x)))]ρa dx

Similar to the previous treatment, we have

E2(f) =
∫
[Ψx(Tf (x))−Ψx(T∗(x))]ρa(x) dx

Apply similar analysis as before, we will also have

E2(f) ≥
∫
σ(x, ξ(x))2

2λ(ξ(x))
|T∗(x)− Tf (x)|2ρa(x) dx (4.27)

with ξ(x) = (1− τx)T∗(x) + τxTf (x) for certain τx ∈ (0, 1).

Now we set

β(x) = min

{
σ(x, η(x))

2λ(η(x))
,
σ(x, ξ(x))

2λ(ξ(x))

}
, (4.28)

combining (4.26) and (4.27), we obtain

E1(T, f) + E2(f) ≥
∫
β(x)(|T (x)− Tf (x)|2 + |T∗(x)− Tf (x)|2)ρa dx

≥
∫
β(x)

2
|T (x)− T∗(x)|2ρa dx

This leads to ∥T − T∗∥L2(βρa) ≤
√
2(E1(T, f) + E2(f)).

.

Remark 4. We can verify that c(x, y) = 1
2
|x−y|2 or c(x, y) = −x ·y satisfy the conditions

mentioned above. Then Theorem 4.4.1 recovers similar results proved in [58] and [41].

63

Remark 5. Suppose c satisfies (4.13) (4.14), if c is also an analytical function, then c has

the form Ψ(x) +∇u(x)Ty + Φ(y), where Ψ, u,Φ are analytical functions on Rd, and u is

strictly convex.

4.5 Experiments

4.5.1 Learning the 2D optimal map with L2 cost

In this section, we compare our method with the baseline W2-OT [41]. W2-OT is devel-

oped to estimate Wasserstein-2 cost and as such learns the map ∇g(·) with L2 cost. As

mentioned in related work, it utilizes a min-max optimization structure as well. Figure

4.1 depicts qualitative difference of our algorithm on the Square-Ring and Mixture of ten

Gaussian datasets. Each example is represented in a row. It is observed that both methods

could learn a reasonable map, however, the samples generated by our method could cover

the ρb support completely and uniformly. ∇g♯ρa leaves some blank space in the Square-

Ring example, and excessively concentrates on the ten components in Gaussian mixture

example.

(a) ρa (b) ρb (c) T♯ρa (d) T (·) map (e)∇g♯ρa (f)∇g(·) map

Figure 4.1: Qualitative results of our algorithm for learning 2D map with L2 cost. The first
two columns represent the marginals ρa and ρb. The marginal distributions are uniformly
supported on a square and a ring in the first row. In the second row, they are standard
Gaussian and Gaussian mixture with 10 components respectively. The maps generated by
our method are demonstrated in (c)-(d) columns and W2-OT maps are in (e)-(f) columns.

64

Figure 4.2: Monge map for Lp OT problem from ρa to ρb, left: p = 2, right: p = 6

4.5.2 Effect of different costs in 2D space

In Figure 4.2, we consider the Monge problem with the cost c(x, y) = |x − y|p on R2,

we assume p > 1. 0 In order to reflect the difference between Lp-OT problems with

different p values, we consider ρa = 1
2
(N (µ1, σ

2I)+N (µ2, σ
2I)) and ρb = 1

2
(N (ν1, σ

2I)+

N (ν2, σ
2I)), with µ1 = (−2, 2), µ2 = (−6,−4), ν1 = (2, 2), ν2 = (6,−4) and σ = 0.1.

Notice that |µ1− ν1|2 + |µ2− ν2|2 < |µ1− ν2|2 + |µ2− ν1|2 and |µ1− ν2|6 + |µ2− ν1|6 <

|µ1−ν1|6+ |µ2−ν2|6, this indicates the difference between the Monge maps of L2-OT and

L6-OT problems. Such difference is captured by our numerical results shown in Figure 4.2

in the introduction.

4.5.3 Example in 28×28D space

L2 vs L1 cost In this experiment we choose MNIST as our data set (28×28 dimensional)

and assume each handwritten digit from 0 to 9 follows a specific distribution respectively.

Our task is to learn the Monge mapping between 0 and 1, 2 and 5, 3 and 7, 4 and 8, 6 and

9. In each round we treat 0, 2, 3, 4 and 6 as ρa and 1, 5, 7, 8, 9 as ρb, respectively. We

present generated digits that follow ρa and ρb in Figure 4.3, the learned map T pushforward

the digit distributions to target ones. Here we set 1
2
|| · ||22 as our cost function, thus we are

computing Wasserstein-2 distance. With the same training settings, we also show the result

of choosing || · ||1 as the cost function in Figure 4.4.

65

(a) T♯ρb (b) T♯ρb (c) T♯ρb (d) T♯ρb (e) T♯ρb

(f) T♯ρa (g) T♯ρa (h) T♯ρa (i) T♯ρa (j) T♯ρa

Figure 4.3: Generated ρa and ρb, 1
2
|| · ||22 cost

(a) T♯ρb (b) T♯ρb (c) T♯ρb (d) T♯ρb (e) T♯ρb

(f) T♯ρa (g) T♯ρa (h) T♯ρa (i) T♯ρa (j) T♯ρa

Figure 4.4: Generated ρa and ρb, || · ||1 cost

4.5.4 Examples in 64×64D space

Recently, several works have illustrated the scalability of our dual formula with different

realizations of the transportation costs. With a focus on the quadratic cost, [60] obtains

comparable performance in image generative models, which asserts the efficacy in unequal

dimension tasks. Similarly, [61] apply the formula with quadratic cost in multiple domain

adaptation tasks and achieve the respectable effect. Concurrently, [62] utilizes the dual

formula with more diverse costs in image super-resolution task. Our dual formula can be

viewed as the extension to all the above approaches.

In this section we show the effectiveness of our method on the inpainting task with

66

(a) Degraded/original images (b) Composite images G(x) (c) Pushforward images T (x)

Figure 4.5: Unpaired image inpainting on test dataset of CelebA 64× 64. In panel (b) and
(c), we show the results with α = 10 in the first row and α = 10000 in the second row. A
small transportation cost would result that pushforward map neglects the connection to the
unmasked area, which is illustrated by a clear mask border in pushforward images.

random rectangle masks. We take the distribution of occluded images to be ρa and the

distribution of the full images to be ρb. In many inpainting works, it’s assumed that an

unlimited amount of paired training data is accessible [63]. However, most real-world

applications do not involve the paired datasets. Accordingly, we consider the unpaired

inpainting task, i.e. no pair of masked image and original image is accessible. The training

and test data are generated according to [60, Section 5.2]. We choose cost function to be

mean squared error (MSE) in the unmasked area

c(x, y) = α · ∥x⊙M − y ⊙M∥
2
2

n
,

where M is a binary mask with the same size as the image. M takes the value 1 in the

unoccluded region, and 0 in the unknown/missing region. ⊙ represents the point-wise

67

multiplication, α is a tunable coefficient, and n is dimension of x. Intuitively, this works

as a regularization that the pushforward images should be consistent with input images in

the unmasked area. Empirically, the map learnt with a larger α can generate more realistic

images with natural transition in the mask border and exhibit more details on the face.

We conduct the experiments on CelebA 64× 64 and 128× 128 datasets [64]. The input

images (ρa) are occluded by randomly positioned square masks. Each of the source ρa and

target ρb distributions contains 80k images. We present the empirical results of inpainting

in Figure 4.5 and 4.6. Denote MC as the complement of M , i.e. MC = 1 in the occluded

area and 0 otherwise. We take the composite image G(x) = T (x) ⊙ MC + x ⊙ M as

the output image. Additionally, we provide the pushforward images T (x) to illustrate the

regularization effect of transportation cost in Figure 4.5.

Figure 4.6: Unpaired image inpainting on test dataset of CelebA 128× 128.

We also evaluate Fréchet Inception Distance [65] of the generated composite images

w.r.t. the original images on the test dataset. We use 40k images in total and compute the

score with the implementation provided by [66]. The results are presented in Table 4.1. It

shows that the transportation cost c(x, y) substantially promotes a map that generates more

realistic images.

Table 4.1: Quantitative evaluation results on CelebA 64× 64 test dataset.

α = 0 α = 10 α = 10000

FID 18.7942 9.2857 3.7109

68

4.6 Summary of experiment details

In terms of training, the cost functions we choose, structures of neural networks and details

of training process will be introduced here. We ran experiments using a NVIDIA RTX

2080 GPU for the experiments in Section 4.5.1, Section 4.5.3, and NVIDIA RTX 3090

GPU for Section 4.5.4. And we ran experiments on CPU for other experiments. If we train

on GPU cards with inner iteration K2 = 4, the training time is about 10 minutes for 2D

examples.

For general settings, for all experiments we use the Adam optimizer [55] and vanilla

feedforward networks unless specified. The activation functions are all PReLu unless spec-

ified.

4.6.1 Normal 2D case

For our method, the networks Tθ and fη each has 5 layers and 32 hidden neurons. The

batch size N = 100. K1 = 4, K2 = 1. The learning rate is 10−3. The number of iterations

K = 12000.

For the W2-OT, the setup is all the same except K1 = 10. The number of iterations

K = 12000.

4.6.2 Example in 28×28D space

Here for either L1 or L2 case we set both mapping function and the Lagrange multiplier

as six layers fully connected neural networks, with ReLU and Tanh activation functions

respectively, each layer has 512 nodes, the learning rate is 10−4. The batch size is 500 and

we train the model with the same general techniques mentioned before, specially we setK1

= 8 and K2 = 1. The algorithm is stable and it converges very fast. For L1 the average outer

iteration to get a convergent result is 8000, total computation time lasts for 3 hours, while

for L2 the average iteration for convergence is 4000 and total computation time is around

69

1 to 2 hours. From our experiments it seems that L1 based model is more sensitive to the

initial weights of the networks.

4.6.3 Example in 64×64D space

The loss function is slightly different with the (4.10). We modify the f(T (x)) to be f(G(x))

to strengthen the training of f

sup
f

inf
T

∫
Rn

[c(x, T (x))− f(G(x))] ρa(x) dx+
∫
Rm

f(y)ρb(y) dy.

In the unpaired inpainting experiments, the images are first cropped at the center with

size 140 and then resized to 64× 64 or 128× 128. We choose learning rate to be 1 · 10−3,

Adam [55] optimizer with default beta parameters, K2 = 1. The batch size is 64 for

CelebA64 and 16 for CelebA128. The number of inner loop iterationK1 = 5 for CelebA64

and K1 = 10 for CelebA128.

We use exactly the same UNet for the map T and convolutional neural network for f

as [60, Table 9] for CelebA64 and add one additional convolutional block in f network for

CelebA128.

On NVIDIA RTX A6000 (48GB), the training time of CelebA64 experiment is 10 hours

and the time of CelebA128 is 45 hours.

4.7 Conclusion

In this chapter we present a novel method to compute Monge map between two given dis-

tributions with freely chosen cost functions. In particular, we consider applying Lagrange

multipliers on MK problem, which leads to a saddle point problem. By further introduc-

ing neural networks into our optimization, we obtain a scalable algorithm that can handle

most general costs and even the case where the dimensions of marginals are unequal. Our

method not only computes sample based Wasserstein distance, but also provides optimal

70

map. Our scheme is shown to be effective through a series of experiments with both low

dimensional and high dimensional settings. It will become an useful tool for machine learn-

ing applications such as domain adaption that requires transforming data distributions. It

will also be potentially used in areas outside machine learning, such as robotics. On the

negative side, since the algorithm is a general tool to transform data distributions, it could

be potentially used in many other activities involving maneuvering data distributions.

71

CHAPTER 5

LEARNING COST FUNCTION FOR OPTIMAL TRANSPORT

5.1 Introduction

In this chapter, we derive an unconstrained convex optimization formulation of the in-

verse OT problem, which can be further augmented by any customizable regularization.

We provide a comprehensive characterization of the properties of inverse OT, including

uniqueness of solutions. We also develop two numerical algorithms, one is a fast matrix

scaling method based on the Sinkhorn-Knopp algorithm for discrete OT, and the other one

is a learning based algorithm that parameterizes the cost function as a deep neural network

for continuous OT. The novel framework proposed in the work avoids repeatedly solving

a forward OT in each iteration which has been a thorny computational bottleneck for the

bi-level optimization in existing inverse OT approaches. Numerical results demonstrate

promising efficiency and accuracy advantages of the proposed algorithms over existing

state-of-the-art methods.

The discrete version of (2.2) reduces to a linear program. In this case, µ ∈ ∆m−1 and

ν ∈ ∆n−1 become two probability vectors, where ∆n−1 := {x = (x1, . . . , xn) ∈ Rn :

xi ≥ 0,
∑n

i=1 xi = 1} stands for the standard probability simplex in Rn, and the cost c and

transport plan π each renders an m× n matrix. Then the discrete OT problem reads

min
π∈Rm×n

{
⟨c, π⟩ : π ≥ 0, π1n = µ, π⊤1m = ν

}
, (5.1)

where ⟨c, π⟩ := tr(c⊤π) =
∑

i,j cijπij is the discretized total cost under transport plan π,

and 1n := [1, . . . , 1]⊤ ∈ Rn. We will use these matrix and vector notations exclusively in

Sections 5.4.1, 5.5.1, and 5.5.2 during the discussions on discrete inverse OT.

It is important to note that a brute-force discretization of (2.2) yields in general a com-

72

putationally intractable problem (5.1) when X and Y are in higher dimensional space: m

represents the number of grid points (or bins) for discretizing the space X ⊂ Rd, and

hence it grows exponentially fast in d, i.e., m = Nd where N is the discretization points

(resolution) in each dimension. Similar for n and Y . This is well known as the “curse of

dimensionality” in the literature. Therefore, continuous OT and its inverse problem require

a vastly different approach in analysis and computation.

Motivation We consider the inverse problem of OT, i.e., learning the cost function c from

observations of the joint distribution π∗ or its samples. This work is motivated by a critical

issue of OT in all real-world applications: the solution to OT heavily depends on the cost

function c, which is the sole latent variable in the OT problem (2.2) to deduce the optimal

transport plan for any give pair of marginal distributions (µ, ν). Therefore, the cost function

is of paramount importance in shaping the optimal transport plan π∗ for further analysis and

inference.

In most existing applications of OT, the cost function is simply chosen as a distance-like

functions, such as c(x, y) = ∥x− y∥p where p > 0, according to users’ preferences. How-

ever, there are infinitely many choices of p, and cost functions need not be even distance-

like in practice. Therefore, a user-chosen cost function may incorrectly estimate the cost

incurred to transfer probability masses and thus fail to capture the actual underlying struc-

tures and properties of the data. Eventually, a mis-specified cost function results in severely

biased optimal transport plan given new marginal distribution pairs, leading to false claims

and invalid inferences.

To address the aforementioned issue, we propose to leverage observed pairing data

available in practice, which are samples or realizations of the optimal transport plan, to re-

construct the underlying cost function [67, 68, 69, 70, 71]. The reconstructed cost function

can be used to study the underlying mechanism of transferring probability/population mass

in the application of interests. It can also be used to estimate optimal pairings given new

73

marginal distributions µ and ν where modeling and computation of OT are involved.

Approach We consider the inverse problem of entropy regularized OT (the reason of

using regularized OT over the unregularized counterpart is explained in Section 5.3.2).

We propose a variational formulation for learning the cost function such that its induced

optimal transport plan is close to the observed transport plan or its samples. This variational

formulation yields a bi-level optimization problem, which can be challenging to solve in

general. However, by leveraging the dual form of entropy regularized OT, we show that

this bi-level optimization can be reformulated as an unconstrained and convex problem in

the cost function before adding any customizable regularization.

Based on our new formulation, we develop two efficient numerical algorithms for in-

verse OT: one for the discrete case and the other for continuous case. In the discrete case,

we can realize the observed transport plan π̂ as a probability matrix, which is either directly

given or can be readily summarized using samples. Then we show that the cost c can be

computed using a fast matrix scaling algorithm. In the continuous case, π̂ is often presented

by a number of i.i.d. samples in the form of (x, y) ∼ π̂. In this case, we parameterize the

cost function as a deep neural network and develop a learning algorithm that is completely

mesh-free and thus capable of handling high dimensional continuous inverse OT problems.

A significant advantage of our approach over existing ones is that we can avoid solv-

ing a standard OT problem in each iteration in bi-level optimization. To better distinguish

from the inverse OT, we hereafter use the term forward OT to refer the standard OT prob-

lem which solves for the optimal transport plan π∗ given cost c. Thus, the computational

complexity our method is comparable to that of a forward OT problem, which is only a

small fraction of complexities of existing bi-level optimization based methods. We will

demonstrate this substantial improvement in efficiency in Section 5.5.

Novelty and contributions Existing approaches to the inverse problem of OT aim at

recovering the cost function but vary in specific problem formulations and applications

74

domains. These approaches will be discussed in more details in Section 5.2. Compared to

existing ones, our approach is novel and advantageous in the following aspects:

• All existing methods formulate the cost learning as bi-level optimization or its vari-

ants, which require solving the forward OT problem in each outer iteration. In sharp

contrast, our approach yields a convex optimization with customizable regularization,

and the complexity of our method is comparable to the complexity of one forward

OT.

• To the best of our knowledge, the present work is the first in the literature that pro-

vides a comprehensive characterization of the solution(s) of inverse OT. Moreover,

we show that the ill-posedness of inverse OT, particularly the ambiguity issue of

unknown cost functions, can be rectified and the ground truth cost function can be

recovered robustly under mild conditions.

• Our framework can be applied to both discrete and continuous settings. To our best

knowledge, the present work is the first to tackle cost function learning for contin-

uous OT. This enables the application of inverse OT in a large variety of real-world

problems involving high-dimensional data.

Organization The remainder of this chapter is organized as follows. We first provide

an overview of existing cost learning approaches in OT and the relations to other metric

learning problems in Section 5.2. In Section 5.3, we propose an inverse optimal transport

approach for cost function learning, and derive a novel framework based on the dual of the

inverse OT formulation. In Section 5.4, we develop two prototype algorithms to recover the

cost matrix in the discrete setting and the cost function in continuous setting, and discuss

their properties and variations. Numerical experiments and comparisons are provided in

Section 5.5. Section 5.10 is the conclusion.

75

5.2 Related Work

In this section, we add more overviews of OT, inverse OT, and several closely related topics.

We also show the relations between cost learning for OT and general metric learning, and

contrast our approach to the existing methods.

Computational OT The computation of OT has been a long standing challenge and is

still under active research. Most existing work focus on the discrete setting (5.1), which

is a special type of linear program (LP). However, the cubic computation complexity for

general LP solvers prohibits fast numerical solution for large m and n. In [16], a modifi-

cation of (5.1) with an additional entropy regularization term in the objective function is

proposed:

min
π∈Rm×n

{
⟨c, π⟩ − εH(π) : π1n = ν, π⊤1m = ν

}
, (5.2)

where H(π) := −⟨π, log π − 1⟩ = −
∑

i,j πij(log πij − 1) is the (normalized) Shannon

entropy of π, and ε > 0 is a prescribed weight of the entropy regularization. Due to the

entropy term, the troublesome inequality constraint in the original OT (5.1) is eliminated,

and the objective function in (5.2) becomes strictly convex which admits unique solution.

Moreover, the dual problem of (5.2) is unconstrained, which can be solved by a fast matrix

scaling algorithm called the Sinkhorn (or Sinkhorn-Knopp) algorithm [16]. Sinkhorn al-

gorithm has been the common approach to solve (regularized) OT (5.2) numerically in the

discrete setting since then. Its property, convergence, and relation to the original OT (5.1)

are also extensively studied, for instance, in [72, 73]. A more comprehensive treatment of

computational OT in discrete setting, especially in the regularized form, can be found in

[74]. The continuous OT problem is considered where the dual variables are parameterized

as deep neural networks [75]. The sample complexity of OT is also studied in [76].

Cost Learning for OT The problem of cost learning for optimal transport has received

considerable attention in the past few years. In [68, 69], the cost matrix is parameterized

76

as a bilinear function of the feature vectors of the two sides in optimal transport. The pa-

rameter of the bilinear function, i.e., the interaction matrix, is recovered from the observed

matchings, which are hypothesized to be samples drawn from the optimal transport plan

that maximizes the total social surpluses [68]. The interaction matrix quantifies coupling

surplus that are important in the study of quantitative economics. In [70], a primal-dual ma-

trix learning algorithm is proposed to allow more flexible parametrization of the cost matrix

and also takes into account inaccurate marginal information for robust learning. In [67], a

set of distributions are given where each pair is also associated with a weight coefficient,

and the cost matrix is learned by minimizing the weighted sum of EMD between these pairs

induced by this cost. Given class labels of documents which are represented as histograms

of words, the cost matrix is parameterized as Mahalanobis distance between feature vectors

of the words and learned such that the induced EMD between similar documents are small

[77]. In [78], the cost matrix is learned such that the induced EMD between histograms

labeled as similar are separated from those between dissimilar histograms, which mim-

ics the widely used metric learning setup. In [79], the cost matrix is induced by a kernel

mapping, which is jointly learned with a feature-to-label mapping in a label distribution

learning framework. This work is extended to a multi-modal, multi-instance, and multi-

label learning problem in a follow-up work [80]. In [81], the cost matrix is parameterized

as the exponential of negative squared distance between features, where the feature map is

learned such that the induced EMD is small for those with same labels and large otherwise.

A cost matrix learning method based on the Metropolis-Hasting sampling algorithm is pro-

posed in [71]. In [82], the Sinkhorn iteration is unrolled into a deep neural network with

cost matrix as unknown parameter, which is then trained using given side information. The

present work targets at the cost learning problem for OT as in the aforementioned ones, but

contrasts favorably to them as explained in Section 5.1.

77

General Metric Learning The aforementioned methods and the work presented in this

chapter aim at learning the cost matrix/function, which is related to but different from the

standard metric learning [83] in machine learning. In standard metric learning, the goal is to

directly learn the distance that quantifies the similarity between features or data points given

in the samples. In contrast, the learning problem in inverse OT aims at recovering the cost

function (also known as the ground metric) that induces the EMD (or more generally the

Wasserstein distance) and optimal transport plan, optimal couplings, or optimal matchings

exhibited by the data. In inverse OT, we only observe the couplings/matchings which are

not labeled as similar or not. Hence, we cannot directly assess the distance or cost between

features. Instead, we need to learn the cost based on the relative frequency of the matchings

in the observed data, which is a compounded effect of the cost function and the intra-

population competitions. Moreover, the cost function is critical to reveal the underlying

mechanism of optimal transport and matchings, and can be used to predict or recommend

optimal matchings given new but different marginal distributions [68, 69, 70].

Riemann Distance Learning The cost function learning problem for optimal transport is

also related to Riemannian metric learning on probability simplex. In [84, 85], the Rieman-

nian metric, i.e., distances between probability distributions or histograms on the manifold

of probablity simplex, is directly learned. In contrast, the goal in this work is to learn the

cost function that reveals the interaction between features, which can also automatically

induce a metric on the probability simplex if the cost function satisfies proper conditions.

Moreover, the learned cost function from inverse OT can be used to provide insights of

observed matchings and generate interpretable predictions on new data associations, which

are extremely important and useful in many real-world applications.

78

5.3 Proposed Framework

5.3.1 Preliminaries on Entropy Regularized OT

We consider the entropy regularized OT [16, 74, 86, 87, 72, 88, 89, 90, 91, 92], where the

objective function in (2.2) is supplemented by the (negative) entropy of the unknown distri-

bution π. Entropy regularization takes into account of the uncertainty and incompleteness

of observed data, which an important advantage over the OT without regularization [67,

68, 69, 74]. The entropy regularized forward OT problem (5.2) is given as follows:

min
π∈Π(µ,ν)

{∫
X×Y

c(x, y) dπ(x, y)− εH(π)

}
, (5.3)

where H(π) := −
∫
(log(dπ/dλ) + 1) dπ denotes the normalized entropy of π (we assume

π is absolutely continuous with respect to the Lebesgue measure λ of X × Y and dπ/dλ

denotes the Radon-Nikodym derivative.) Let α : X → R and β : Y → R be the Lagrangian

multipliers corresponding to the two marginal constraints in Π(µ, ν) in (2.2) respectively,

we obtain the dual problem of (5.3) as follows,

max
α,β

{∫
X

α dµ+

∫
Y

β dν − ε
∫
X×Y

e(α+β−c)/ε dλ

}
. (5.4)

Denote (αc, βc) the optimal solution of the dual problem (5.4) for the given cost function

c, we can readily deduce that the optimal solution πc to the primal problem (5.3) reads

dπc(x, y) = e(α
c(x)+βc(y)−c(x,y))/ε dλ, (5.5)

which is a closed-form expression of πc in terms of (αc, βc). For notation simplicity, we

omit the arguments x and y hereafter when there is no danger of confusion.

79

5.3.2 Entropy Regularization in Inverse OT

Entropy regularization is particularly important to properly define the inverse problem of

OT. To see this, we first consider the discrete OT problem (5.1). Notice that an observation

matrix π̂ containing zero entries does not provide necessary information to fully character-

ize the cost matrix c: a small π̂ij suggests that cij is relatively large; but if π̂ij = π̂ik = 0

then it is difficult to tell which of cij and cik is larger. Although this issue can be somewhat

mitigated with additional information on c, it is still a severe problem when π̂ contains

many zeros or such information on c is not available. Indeed, a reasonable inverse OT al-

gorithm needs the relative ratios between the entries (thus better not be zeros) of π̂, together

with the supply distribution given by µ and ν, to infer the underlying cost accurately. How-

ever, sparse π̂ is very common in discrete OT problem (5.1) without any regularization.

This is because that an optimal transport plan, as a solution to the linear program (5.1),

often occurs at an extremal point of the polytope of the contraint set, and thus the number

of nonzero entries is no more than m + n− 1 [74]. In this case, the chance to uncover the

true cost c is very low. Entropy regularization of OT overcomes this issue as it always yield

a transport plan π̂ with no zero entry. Moreover, as the weight ε approaches 0, the solution

of entropy regularized OT tends to that of the standard unregularized OT.

Continuous inverse OT also benefits from entropy regularization. As shown later, our

approach is based on the dual formulation of entropy regularized OT. This allows us to pa-

rameterize the dual variables and the cost function as deep neural networks and develop an

efficient mesh-free method suitable for applications in high-dimensional continuous spaces.

Due to the aforementioned reasons, we consider the inverse problem of entropy regu-

larized OT in the present work. More precisely, we assume that the observation π̂ was the

solution of an entropy regularized OT (5.3) with unknown cost c to be recovered. How-

ever, it is important to note that, unlike entropy regularized OT, the inverse problem is not

sensitive to the weight ε in (5.3). This is because that the solution to (5.3) only depends

on c/ε, rather than the actual c. Thus the observation π̂ only contains information of this

80

ratio c/ε which is all we can recover. This ratio c/ε provides all information needed no

matter which OT one prefers to use for inference and prediction later: the solution to an

unregularized OT is invariant to any constant scaling of c; and the solution to an entropy

regularized OT can be freely modified by tuning another user-chosen regularization weight

ε′ > 0 pretending that the given cost is just c/ε.

5.3.3 Inverse OT and Its Dual Formulation

Suppose that the marginal distributions are given as µ and ν, and we observed sample

transport plan π̂ ∈ Π(µ, ν) (details about the format of π̂ will be provided in the next

section). Then we propose the following inverse OT problem to learn the underlying cost c

from observation π̂:

min
c

KL(π̂, πc) + ε−1R(c), (5.6a)

s.t. πc = argmin
π∈Π(µ,ν)

{∫
X×Y

c dπ − εH(π)

}
, (5.6b)

where the Kullback-Leibler (KL) divergence between π̂ and π is defined by

KL(π̂, π) :=
∫
X×Y

dπ̂

dπ
log

(
dπ̂

dπ

)
dπ, (5.7)

dπ̂/dπ is the Radon-Nikodym derivative of π̂ with respect to π, R(c) represents the regu-

larization (or constraint) on the cost function c, which is to be specified later, and πc is the

optimal transport plan induced by c, i.e., the solution of (5.3) for any specific c. We mul-

tiplied ε−1 to R(c) in (5.6a) for notation simplicity later, but R(c) is user-defined and thus

can contain ε for cancellation. The model (5.6) is straightforward to interpret: we seek for

the cost function c such that the induced πc is close to the observed transport plan π̂ in the

sense of KL divergence, and meanwhile it respects the specified regularization or satisfies

the constraint described by R(c).

The problem (5.6) is a typical bi-level optimization: the upper level problem (5.6a)

81

involves πc which is the solution to the minimization in the lower level problem (5.6b).

In general, bi-level optimization problems such as (5.6) are considered very challenging

to solve: standard bi-level optimization methods require solving the lower level problem

(5.6b) during each update of the variable c. Therefore, the overall computational cost is

very high because the lower level problem, which is an expensive OT problem, needs to be

solved for many times (i.e., the number of outer iterations to update c, which can be easily

over hundreds or even thousands).

However, we show that the inverse OT problem (5.6) possesses a very special structure.

Most notably, we prove that it is equivalent to an unconstrained and convex problem in c

before adding R(c) by leveraging the dual form of the entropy regularized OT (5.4). The

rigorous statement of this equivalency relation is given in the following theorem.

Theorem 5.3.1. The bi-level optimization (5.6) for inverse OT is equivalent to

min
α,β,c

E(α, β, c) +R(c), (5.8)

where the functional E is defined by

E(α, β, c) :=

∫
X×Y

c dπ̂ −
∫
X

α dµ−
∫
Y

β dν + ε

∫
X×Y

e(α+β−c)/ε dλ. (5.9)

The equivalency relation is in the sense that c∗ solves (5.6) if and only if (αc
∗
, βc

∗
, c∗) solves

(5.8), where (αc
∗
, βc

∗
) stands for the optimal solution to the dual problem (5.4) with cost

c∗.

Proof. Recall that the optimal transport plan πc induced by c is given in (5.5), where

(αc, βc) is the optimal solution to the dual problem (5.4). Therefore, (5.5) implies dπc =

ρ dλ where ρ is the density function of πc given by

ρ(x, y) := e(α
c(x)+βc(y)−c(x,y))/ε. (5.10)

82

Since ρ > 0 everywhere, we know λ ≪ πc and dλ = ρ−1dπc. On the other hand, since

π̂ ≪ πc ≪ λ, we know dπ̂ = ρ̂ dλ for some probability density ρ̂. Hence, by the chain rule

of measures, we have

KL(π̂, πc) =
∫
X×Y

ρ̂

ρ
log

(
ρ̂

ρ

)
ρ dλ

=

∫
X×Y

ρ̂ log ρ̂ dλ−
∫
X×Y

log ρ dπ̂ (5.11)

= H(π̂)− ε−1

∫
X×Y

(αc + βc − c) dπ̂.

Since π̂ ∈ Π(µ, ν), we know

∫
X×Y

αc dπ̂ =

∫
X

αc dµ and
∫
X×Y

βc dπ̂ =

∫
Y

βc dν (5.12)

Plugging (5.10) and (5.11) into (5.6a), eliminating the constant H(π̂) which is independent

of c, and multiplying the objective function by ε > 0 which does not alter minimization,

we obtain:

min
c

{
R(c)−

∫
X

αc dµ−
∫
Y

βc dν +

∫
X×Y

c dπ̂

}
. (5.13)

In (5.13), αc and βc are the optimal solution of the dual problem of (5.6b) and hence

implicitly depend on c. To make them independent variables, we plug (αc, βc) into E

defined in (5.9) and obtain:

E(αc, βc, c) =

∫
X×Y

c dπ̂ −
∫
X

αc dµ−
∫
Y

βc dν + ε

∫
X×Y

e(α+β−c)/ε dλ

=

∫
X×Y

c dπ̂ −
∫
X

αc dµ−
∫
Y

βc dν + ε, (5.14)

where the last equality is due to the unity property
∫
X×Y dπ

c = 1 since πc ∈ Π(µ, ν) is a

joint probability. On the other hand, for any c, the optimality of (αc, βc) to the dual problem

83

5.4 implies that

E(αc, βc, c) = min
α,β

E(α, β, c). (5.15)

Combining (5.14) and (5.15) and plugging to (5.13), merging the minimizations, and elim-

inating the singled-out constant ε, we obtain (5.8).

To this point, we have showed that, for any fixed c, there is

E(αc, βc, c) +R(c)− ε = ε(KL(π̂, πc) + ε−1R(c)),

where the left hand side is the objective function in (5.8) minus the constant ε, and the right

hand side is ε multiple of the objective function in (5.6a). Therefore, the two minimization

problems are equivalent and share the same set of solutions c∗.

The variational model (5.8) is the foundation of our algorithmic development for cost

function learning in the next section. Compared to (5.6), the optimization problem (5.8)

consists of a convex functional E (as shown later) and a customizable regularization (or

constraint) R, and hence has the potential to be solved much more efficiently than posed as

a bi-level optimization problem (5.6). Notice that, if c is given and fixed, then the inverse

OT (5.8) reduces to the dual problem of the (forward) entropy regularized OT (5.4).

As we will show below, the key feature of (5.8) is that the functionalE(α, β, c) is jointly

convex in (α, β, c). That is, E is a convex functional defined on

W := C(X)× C(Y)× C(X × Y),

where C(X) stands for the set of all real-valued continuous functions on X . However, un-

like (5.4), E(α, β, c) is not strictly convex in its variable (α, β, c) and thus we cannot claim

uniqueness of its minimizer. Indeed, we will show that there are infinitely many solutions

to (5.13) with the same π̂ when no additional regularization/constraint R is imposed. In

order to characterize the solution set of (5.8), we first need to investigate the behavior of E

84

over the quotient space induced by the following equivalence relation.

Definition 5.3.1. We say that (α, β, c) and (ᾱ, β̄, c̄) are equivalent, denoted by (α, β, c) ∼

(ᾱ, β̄, c̄), if α(x) + β(y)− c(x, y) = ᾱ(x) + β̄(y)− c̄(x, y) for any x ∈ X and y ∈ Y .

It is easy to verify that ∼ defines an equivalence relation overW in the classical sense.

This equivalence relation induces a quotient space W̃ := W/ ∼. Denote [(α, β, c)] ⊂ W

the equivalence class of (α, β, c). Then P : W → W̃ defined by P (α, β, c) = [(α, β, c)]

is called the canonical projection. We have the following result regarding the functional

E(α, β, c) in (5.8).

Theorem 5.3.2. The following statements hold for the functional E(α, β, c) defined in

(5.8):

(i) E(α, β, c) is jointly convex in (α, β, c);

(ii) E is a constant on each equivalence class [(α, β, c)];

(iii) Let Ẽ : W̃ → R be such that Ẽ([(α, β, c)]) = E(α, β, c), then Ẽ is well defined.

(iv) If (α∗, β∗, c∗) is a solution of (5.8), then the corresponding optimal transport plan

π∗ in (5.6) is given by dπ∗ = e(α
∗(x)+β∗(x)−c∗(x,y))/εdλ. Moreover, [(α∗, β∗, c∗)] is the

unique minimizer of Ẽ.

Proof. (i) Let ϕ : X × Y → R3 be ϕ(x, y) := (α(x), β(y), c(x, y)) for any x ∈ X and

y ∈ Y . Denote ζ = (1, 1,−1) ∈ R3. Then the functional E in (5.8) is given by

E(ϕ) =

∫
X×Y

ϕ · (−dµ,−dν, dπ̂) + ε

∫
X×Y

e(ζ·ϕ)/ε dλ.

For any fixed ψ : X ×Y → R3, we define the variation f : I → R, where I ⊂ R is a small

open neighborhood of 0, as follows,

f(ϵ) := E(ϕ+ ϵψ).

85

Then we can verify that

f ′(ϵ) =

∫
X×Y

ψ · (−dµ,−dν, dπ̂) +
∫
X×Y

e(ζ·(ϕ+ϵψ))/ε(ζ · ψ) dλ

and that

f ′′(ϵ) =
1

ε

∫
X×Y

e(ζ·(ϕ+ϵψ))/ε(ζ · ψ)2 dλ ≥ 0

for any ϵ ∈ I . Since ψ is arbitrary, we know E is a convex functional of ϕ.

(ii) To show that E is constant over the equivalence class [ϕ] = [(α, β, c)], we suppose

(α, β, c) ∼ (ᾱ, β̄, c̄), i.e., α(x) + β(y) − c(x, y) = ᾱ(x) + β̄(y) − c̄(x, y) for all (x, y).

Denote δα(x) := α(x)− ᾱ(x) for every x ∈ X and δβ(y) := β(y)− β̄(y) for every y ∈ Y ,

then it is obvious that

c̄(x, y) = ᾱ(x) + β̄(y)− α(x)− β(y) + c(x, y) = −δα(x)− δβ(y) + c(x, y).

Hence we have

E(ᾱ, β̄, c̄) =

∫
X×Y

c̄ dπ̂ −
∫
X

ᾱ dµ−
∫
Y

β̄ dν + ε

∫
X×Y

e(ᾱ+β̄−c̄)/ε dλ

=

∫
X×Y

(−δα − δβ + c) dπ̂ −
∫
X

(α− δα) dµ−
∫
Y

(β − δβ) dν + ε

∫
X×Y

e(α+β−c)/ε dλ

= E(α, β, c)−
∫
X×Y

(δα + δβ) dπ̂ +

∫
X

δα dµ+

∫
Y

δβ dν

= E(α, β, c),

where the last equality is a result of cancellations due to

∫
X×Y

δα dπ̂ =

∫
X

δα

(∫
Y

dπ̂

)
=

∫
X

δα dµ∫
X×Y

δβ dπ̂ =

∫
Y

δβ

(∫
X

dπ̂

)
=

∫
Y

δβ dν

86

by Fubini theorem. Therefore E is constant throughout the equivalence class [(α, β, c)].

(iii) As an immediate consequence of (ii), Ẽ : W̃ → R with Ẽ([ϕ]) := E(ϕ) for every

ϕ ∈ W is well defined.

(iv) For any minimizer (α∗, β∗, c∗) of (5.8), we know that (α∗, β∗) minimizesE(α, β, c)

when c = c∗, i.e.,

(α∗, β∗) = argmin
α,β

E(α, β, c∗) = argmin
α,β

{
ε

∫
X×Y

e(α+β−c
∗)/ε dλ−

∫
X

α dµ−
∫
Y

β dν

}
.

Hence (α∗, β∗) is the optimal dual variable of the forward OT with cost c∗, and therefore

the optimal transport plan (optimal primal variable) is dπ∗(x, y) = e(α
∗(x)+β∗(y)−c∗(x,y))/εdλ

for all (x, y) ∈ X × Y .

To show that [ϕ∗] is the unique minimizer of Ẽ over W̃ when ϕ∗ minimizesE, we define

for any nonzero [ψ] ∈ W̃ the variation g : I → R, where I ⊂ R is an open neighborhood

of 0, as follows,

g(ϵ) = Ẽ([ϕ] + ϵ[ψ]) = Ẽ([ϕ+ ϵψ]) = E(ϕ+ ϵψ),

where we used the fact [ϕ] + ϵ[ψ] = [ϕ + ϵψ] for any ϕ, ψ ∈ W and ϵ ∈ I , which can be

easily deduced from Definition 5.3.1, to obtain the second equality. Following the same

derivation as in (i), we can show that.

g′′(ϵ) =
1

ε

∫
X×Y

e(ζ·(ϕ+ϵψ))/ε(ζ · ψ)2 dλ.

Since [ψ] ̸= 0, we know ζ · ψ(x, y) ̸= 0 at some (x, y) ∈ X × Y . Since ψ is continuous,

we know that there exists δ > 0 and an open neighborhood U ⊂ X × Y (with positive

measure λ(U) > 0) of (x, y) such that e(ζ·(ϕ+ϵψ))/ε(ζ · ψ)2 ≥ δ > 0 for all (x, y) ∈ U . This

implies that

g′′(ϵ) ≥ 1

ε

∫
U

δ dλ = ε−1δλ(U) > 0.

87

Hence g is strictly convex at every [ϕ] ∈ W̃ . Therefore [ϕ∗] is the unique minimizer of Ẽ

on the quotient space W̃ .

According to Theorem 5.3.2, our inverse OT formulation (5.8) is convex as long as

the customizable regularization R(c) is convex in c or imposes a constraint of c onto a

convex set. In this case, we can employ convex optimization schemes to solve (5.8) for

the cost function, which are computationally much cheaper than solving general bi-level

optimizations. Moreover, Theorem 5.3.2 implies that (5.8) admits a unique equivalence

set that minimizes the functional E. Therefore, even without R(c), we can characterize

the entire optimal solution set using one minimizer of E(α, β, c): if (α, β, c) minimizes

E, then any other (ᾱ, β̄, c̄) minimizes E if and only if (ᾱ, β̄, c̄) ∼ (α, β, c). As we will

show later, certain mild regularization R(c) on c can further narrow down the search of the

desired cost c to a single point within the equivalence set minimizing E.

5.4 Algorithmic Development

In this section, we develop prototype numerical algorithms for cost function learning based

on the inverse OT formulation (5.8). As mentioned in Section 5.1, the cost function reduces

to a matrix in the discrete case while renders a real-valued function on X × Y in the con-

tinuous case. Due to this substantial difference, we consider the algorithmic developments

in these two cases separately.

5.4.1 Discrete Case

Algorithm for discrete inverse OT In the discrete case, we set the marginal distributions

µ and ν are two probability vectors from ∆m−1 and ∆n−1, respectively. Thus the cost c

and transport plan π are both m × n matrices. Suppose that we summarize the observed

matching pairs into the matching matrix π̂, e.g., πij = Nij/N , where Nij is the number

of couples of an individual from the ith class corresponding to µi and another individual

from the jth class corresponding to νj , and N =
∑m

i=1

∑n
j=1Nij , as a result the inverse OT

88

formulation (5.8) reduces to the following optimization problem:

min
α,β,c
{R(c)− ⟨α, µ⟩ − ⟨β, ν⟩+ ⟨c, π̂⟩+ s(α, β, c)} (5.16)

where α ∈ Rm, β ∈ Rn, c ∈ Rm×n, and s : Rm × Rn × Rm×n → R is defined by

s(α, β, c) := ε
m∑
i=1

n∑
j=1

e(αi+βj−cij)/ε. (5.17)

For the above minimization problem, we apply a variant of matrix scaling by modifying

the Sinkhorn-Knopp algorithm that alternately updates α, β, c in (5.16). Specifically, the

updates of α and β are identical to that in the Sinkhorn-Knopp algorithm for the forward

entropy regularized OT [16]. The update of c reduces to solving a regularized (or con-

strained, depending on R(c)) minimization for fixed α, β. This update scheme is well

known as block coordinate descent (BCD) or alternating minimization (AM). In general,

convergence of BCD requires joint convexity objective function and Lipschitz continuity

of its gradient [93]. The objective function E is shown to be joint convex above, but its gra-

dient is not Lipschitz continuous. We present an alternate formulation which is equivalent

to (5.8) but the objective function can be shown to have Lipschitz continuous gradient. We

provide details of the BCD algorithm and its convergence for this formulation in last part

of this chapter 5.9.

We here advocate a modified algorithm which is easy-to-implement and empirically

performs better than BCD in our tests. The updates of α and β remain the same as before.

The modification is in the update of c as follows: we split the update of c into two steps,

where the first step is matrix scaling to compute an m× n matrix K such that

Kij =
π̂ij

e(αi+βj)/ε
, for i = 1, . . . ,m, j = 1, . . . , n,

89

Algorithm 3 Matrix Scaling Algorithm for Cost Learning in Discrete Inverse OT (5.16)

Input: Observed matching matrix π̂ ∈ Rm×n and its marginals µ ∈ Rm, ν ∈ Rn.
Initialize: α ∈ Rm×1, β ∈ Rn×1, u = exp(α/ε), v = exp(β/ε), c ∈ Rm×n.
repeat
K ← e−c/ε

u← µ/(Kv)
v ← ν/(K⊤u)
K ← π̂/(uv⊤)
c← proxγR(−ε log(K))

until convergent
Output: α = ε log u, β = ε log v, c

and the second step is a proximal gradient descent to obtain the updated c:

c = proxγR(ĉ) := argmin
c

{
R(c) +

1

2γ
∥c− ĉ∥2

}
, (5.18)

where ĉ := −ε logK, and all exponential, logarithm, division operations mentioned here

are performed component-wisely. If R(c) imposes a constraint of c to a convex set C ⊂

Rm×n, then proxγR reduces to the orthogonal projection onto C, which has unique solution

and usually can be computed very fast. We summarize the steps of this modified scheme in

Algorithm 3.

It is worth noting that, as discussed in Section 5.3.2, the value of ε is unidentifiable in

inverse OT given that the data π̂ only contains information c/ε not c. Hence, we can just set

ε = 1 in Algorithm 3 and will recover c/ε, which is the same as c up to a constant scaling.

Uniqueness of solution in discrete inverse OT As inverse problems are underdeter-

mined in general, additional information can be essential to narrow down the search to

the desired solution to (5.8). The key is a properly designed R(c) which imposes con-

vex regularization or constraint to convex set. To avoid overloading notations, we use

the same symbols to denote the discrete counterparts of those in 5.3.3. For convenience,

we denote J = [1⊤m ⊗ In; Im ⊗ 1⊤n ; Imn], where In is the n × n identity matrix, and

[·; ·] stacks the arguments vertically by following the standard MATLAB syntax. Denote

90

ϕ = [α; β; c] ∈ Rm+n+mn (where c ∈ Rmn stacks the columns of c ∈ Rm×n in order verti-

cally, we use the matrix and vector forms of c interchangeably hereafter) , then Jϕ = 0 iff

αi+βj = cij for all i, j. The following result characterizes a sufficient condition for unique

minimizers of (5.16) if R(c) imposes a convex constraint of c into the set C. Note that, in

this case, (5.16) reduces to min(α,β,c)∈W E(α, β, c) over the manifoldW = Rm × Rn × C

describing the constraint on ϕ, and the proximal operator proxγR in the c-step in Algorithm

3 is the projection onto C.

Theorem 5.4.1. Suppose R(c) imposes the projection onto a closed convex set C in Rm×n

and (5.16) attains minimum at ϕ∗ := (α∗, β∗, c∗). If Tϕ∗W ∩ ker(J) = {0}, where Tϕ∗W

is the tangent space ofW at ϕ∗, then ϕ∗ is the unique minimizer of (5.16).

Proof. In the discrete case, we use the notation ϕ = [α; β; c] ∈ Rm+n+mn and E(ϕ) =

⟨[−µ;−ν; c], ϕ⟩ + ε⟨eJϕ/ε, 1mn⟩, where the exponential is component-wise. Hence the

Hessian of E(ϕ) is

∇2E(ϕ) = ε−1J⊤diag(eJϕ/ε)J ⪰ 0.

If ϕ∗ is a minimizer and Tϕ∗W ∩ ker(J) = {0}, then for any nonzero ψ ∈ Tϕ∗W , we have

Jψ ̸= 0. Hence,

ψ⊤(∇2E)ψ = ε−1(Jψ)⊤diag(eJψ
∗/ε)(Jψ) > 0,

since diag(eJψ
∗/ε) ≻ 0. Therefore ϕ∗ = (α∗, β∗, c∗) is the unique global minimizer.

We can derive closed-form expression for several special cases of C that cover many of

those used in practice.

Example 5.4.1 (Symmetric cost matrix). If C is the set of symmetric matrices with zero

diagonal entries, then proxγR(ĉ) (γ does not make any difference in this case) in Algorithm

91

3, i.e., the projection of ĉ onto C, is given by

c = proxγR(ĉ) =
ĉ+ ĉ⊤

2

and followed by setting the diagonal entries c to 0. Despite of its simple projection, the

constraint C includes a large number of cost matrices used in practice. In particular, any

(multiple of) distance-like cost matrix, i.e., kc with cij = |i− j|p for any nonzero k, p ∈ R

(if p < 0 then we require cii = 0 separately) is included in C. Note that any permutation

of the indices of such c is still in C.

Importantly, the following corollary shows that the symmetry of c in Example 5.4.1

implies uniqueness of solution to (5.16). Note that we additional assume the diagonal

entries of c to be zeros, but this holds in most applications since there is usually no cost

incurred when no transfer of probability mass is needed.

Corollary 5.4.1.1. Suppose C = {c ∈ Rn×n : c = c⊤, cii = 0, ∀i} and R(·) is the

indicator function of C, i.e., R(c) = 0 if c ∈ C and∞ otherwise, then (5.16) has a unique

solution c∗.

Proof. Since R(·) is the projection onto C, we knowW = {ϕ = (α, β, c) : Lc = 0} where

L ∈ R(2n2+n)×n2 represents the linear mapping such that Lc ∈ R2n2+n stacks vertically the

n×nmatrix c, its transpose c⊤ and the vector diag(c) of its diagonal. Therefore TϕW =W

for all ϕ ∈ W .

Suppose ψ = (α, β, c) ∈ Tϕ∗W ∩ ker(J), then Lc = 0 and cij = αi + βj for all i, j

(since Jc = 0). Therefore cii = αi + βi = 0, and hence αi = −βi, for all i. Now we have

cij = αi + βj = αi − αj.

Similarly, cji = αj − αi. Since c is symmetric, we know that αi − αj = αj − αi, which

implies αi = αj . Therefore cij = αi + βj = αi − αj = 0 for all i, j, and hence c = 0.

92

As a consequence, α = −β = ξ1n for some constant ξ ∈ R. So TϕW ∩ ker(J) =

{(ξ1n,−ξ1n, 0) ∈ R2n+n2
: ξ ∈ R}.

By Theorem 5.3.2, if ϕ∗ = (α∗, β∗, c∗) solves (5.16), then E attains minimum only at

{ϕ∗ + ψ : ψ ∈ TϕW ∩ ker(J)} ⊂ [ϕ∗], which all contain the same cost matrix c∗.

Example 5.4.2 (Linear affinity matrix). The cost matrix c is parameterized as c = G⊤AD,

where G = [g1, . . . , gm] ∈ Rp×m and D = [d1, . . . , dn] ∈ Rq×n are given. Here G and D

stand for the feature vector matrices for the two populations in matching, and A ∈ Rp×q is

the so-called linear affinity matrix (or interaction matrix) to be reconstructed. Therefore,

the constraint set is C = {G⊤AD : A ∈ Rp×q}.

In the study of personality traits in marriage [68], gi ∈ Rp and dj ∈ Rq are the given

feature vectors of the ith class of men and jth class of women in the market for i ∈ [m] and

j ∈ [n], and Akl ∈ R is the complementary coefficient of the kth feature of men and lth

feature of women for k ∈ [p] and l ∈ [q].

In this case, the projection of −ε logK onto the set C in (5.18) is given by

proxR(−ε(G+)⊤(logK)D+),

where G+ and D+ are the Moore-Penrose pseudoinverse of G and D, respectively,and can

be pre-computed before applying Algorithm 3.

There are many other choices of the constraint set C and the regularization R. These

are often application-specific and thus require discussions case by case, which is beyond

the scope of the present work. However, the general strategy developed in this section can

be easily modified and applied to many different situations.

Other additive regularization. If the regularizationR(c) is imposed as an additive penalty

term in the objective function in (5.8), then we need to compute the proximal operator

proxγR in the c-step of Algorithm 3 with γ → 0 gradually along with iterations. We can

93

also employ the alternating direction method of multipliers (ADMM) with an additional

Lagrange multiplier λ ∈ Rm×n, and execute the c-step as c ← proxγR(−ε logK − λ)

followed by the multiplier update step λ ← λ + (c + ε logK) in Algorithm 3. The main

computational cost is still in the proximal operator. For example, if the cost matrix c is

known to be low-rank, we can set R(c) = ∥c∥∗, the nuclear norm of the matrix c ∈ Rm×n,

i.e., the sum of singular values of the matrix c. Nuclear norm is a convex relaxation of

the matrix rank and much more computationally tractable than the latter. The closed-form

solution of proxγR(c̃) is U max(Σ− γI, 0)V ⊤, where UΣV ⊤ is the singular value decom-

position (SVD) of the matrix c̃. Similarly, if the cost matrix c is known to be sparse, we

can set R(c) =
∑m

i=1

∑n
j=1 |cij| which is a convex relaxation of the nonzero component

counter of c. The proximal operator c = proxγR(c̃) has a closed form known as the soft

shrinkage: cij = sign(c̃ij)max(|c̃ij| − γ, 0) for all i, j.

5.4.2 Continuous Case

In the continuous case, µ, ν, and π represent probability density functions on X , Y , and

X × Y , respectively. Here we are only given i.i.d. samples of these distributions, namely,

x(i) ∼ µ, y(j) ∼ ν, and (x(i), y(i)) ∼ π̂ ∈ Π(µ, ν). We define cost function c(x, y) on the

continuous spaceX×Y whereX ⊂ RdX and Y ⊂ RdY for potentially high dimensionality

dX and dY (e.g., dX , dY ≥ 3). As mentioned in Section 5.1, discretization of the spaces X

and Y renders m and n increasing exponentially fast in dX and dY , and then Algorithm 3

(or any discrete inverse OT algorithm) becomes infeasible computationally.

Cost function parametrization by deep neural networks Our approach (5.8) is an un-

constrained optimization with customizable regularization R(c). This allows for a natural

solution to overcome the issue of discretization using deep neural networks, which is a

significant advantage over bi-level optimization formulations. More precisely, we can pa-

rameterize the cost function c, as well as the functions α and β, in (5.8) as deep neural

94

networks. In this case, α, β, and c are neural networks with output layer dimension 1 and

input layer dimensions dX , dY , and dX + dY , respectively. In particular, the design of the

network architecture of cmay take the regularizationR(c) into consideration. For example,

ifR(c) suggests that c ≥ 0, then we can set the activation function in the output layer as the

rectified linear unit (ReLU) σ(x) := max(x, 0). We can also introduce an encoder hη to be

learned, such that the cost cη is the standard Euclidean distance between encoded features,

e.g., cη(x, y) = |hη(x) − hη(y)|. Nevertheless, in general, the architectures of the α, β,

and c are rather flexible, and can be customized adaptively according to specific applica-

tions. We will present several numerical results with architecture specifications used in our

experiments.

To formalize our deep neural net approach for solving continuous inverse OT, we let

θ denote the parameters of α and β (in actual implementations, α and β are two separate

neural networks with different parameters θa and θb respectively, but we use θ for both to

avoid overloaded notations). In addition, we use η to denote the parameters of c. Finally

we solve for the optimal pair (θ∗, η∗) by minimizing the loss function L with respect to the

network parameters (θ, η) base on (5.8)

min
θ,η

L(θ, η) := R(cη)− Êµ[αθ]− Êν [βθ] + Êπ̂[cη] + ε

∫
X×Y

e(αθ(x)+βθ(y)−cη(x,y))/ε dλ.

(5.19)

In (5.19), the empirical expectations are defined by the sample averages:

Êµ[αθ] :=
1

Nµ

Nµ∑
i=1

αθ(x
(i)), Êµ[βθ] :=

1

Nν

Nν∑
i=1

βθ(y
(i)), Êπ̂[cη] :=

1

Nπ̂

Nπ̂∑
i=1

cη(x
(i), y(i)),

where Dµ := {x(i) : i ∈ [Nµ]} and Dν := {y(i) : i ∈ [Nν]} are i.i.d. samples drawn

from µ and ν respectively, and Dπ̂ := {(x(i), y(i)) : i ∈ [Nπ̂]} are observed pairings of

π̂. If only π̂ is available, we can also substitute the samples for µ and ν by the first and

second coordinates of the samples in {(x(i), y(i)) : i ∈ [Nπ̂]}. The last integral in (5.19) can

95

be approximated by numerical integration methods, such as Gauss quadrature and sample-

based integrations. For example, ifX×Y is bounded, we can sampleNs collocation points

{(x(i), y(i)) : i ∈ [Ns]} from X × Y uniformly, and approximate the integral by

∫
X×Y

Gθ,η(x, y) dπ̂ ≈
1

Ns

Ns∑
i=1

Gθ,η(x
(i), y(i)), (5.20)

where Gθ,η(x, y) := e(αθ(x)+βθ(y)−cη(x,y))/ε. A more appealing method for sample-based

integration is to use an importance sampling strategy: we first estimate the mode(s) of the

function Gθ,η(x, y), and draw i.i.d. samples points {(x(i), y(i)) : i ∈ [Ns]} from a Gaussian

distribution ρ((x, y);ω,Σ) where ω and Σ represent the mean (close to the mode) and

variance of the Gaussian (or a mixture of Gaussians), and approximate the integral by

∫
X×Y

Gθ,η(x, y) dπ̂ ≈
1

Ns

Ns∑
i=1

Gθ,η(x
(i), y(i))

ρ((x(i), y(i));ω,Σ)
.

The advantages of this importance sampling strategy include the capability of integral over

unbounded domain X × Y and smaller sample approximation variance with properly cho-

sen ω and Σ. Other methods for approximating the integrals can also be applied. In our

experiments, we simply used the uniform sampling shown in (5.20).

Now we can compute all terms in the loss function L(θ, η) in (5.19). During training

process we apply stochastic gradient descent method to L and find an optimal solution

(θ∗, η∗). In each iteration, we use all of available samples for the empirical expectations, or

we only sample a mini-batch for the computation of the gradient of L with respect to (θ, η).

Otherwise, the optimization is standard in deep neural network training. Furthermore, we

use scaling αθ ← αθ/ε, βθ ← βθ/ε, and cη ← cη/ε and hence L(θ, η) can be minimized

with ε = 1 in (5.19). Then we scale cη back by multiplying ε after (θ∗, η∗) is computed.

The algorithm is summarized in Algorithm 4.

96

Algorithm 4 Cost Function Learning for Continuous Inverse OT by minimizing (5.19)
Input: Marginal distributions µ, ν and observed pairing data π̂.
Initialize: Deep nets (αθ, βθ), cη.
repeat

1. Draw a mini-batch from Dµ,Dν ,Dπ̂.
2. Sample {(x(i), y(i)) : i ∈ [Ns]} ⊂ X × Y .
3. Form stochastic gradient ∇̂L with empirical expectations and integral (5.20).
4. Update (θ, η)← (θ, η)− τ∇̂L(θ, η).

until convergent
Output: αθ, βθ, cη.

5.5 Numerical Experiments

Experiment setup We demonstrate our algorithms (Algorithms 3 and 4) through several

synthetic and real data sets. Both algorithms are implemented in Python, where PyTorch

is used in Algorithm 4 in the continuous inverse OT problem. The experiments are con-

ducted on a machine equipped with 2.80GHz CPU, 16GB of memory. We use relative error

∥c− c∗∥/∥c∗∥ to evaluate the cost matrices/functions c learned by the algorithms when the

ground truth cost c∗ is available. Notice that ∥ · ∥ is the standard Frobenius norm of matri-

ces for discrete case. And for continuous case, we evaluate the learned function cθ and the

ground truth cost function c∗ at a given finite set of grid points in X ×Y , so that both c and

c∗ can be treated as vectors and the standard 2-norm can be applied.

5.5.1 Discrete Inverse OT on Synthetic Data

We first implement Algorithm 3 on learning cost matrix c using observed transport plan

matrix π̂ in the discrete case. Here we set m = n and ground truth c∗ as c∗ij = |
i−j
n
|p for

i, j ∈ [n] and p = 0.5, 1, 2, 3. Next we use Sinkhorn algorithm [74] to generate π̂ for each

c∗ with varying ε = 101, 100, 10−1, 10−2, and we apply Algorithm 3 to π̂ and see if we are

able to recover the original c∗. To this end, we set the constraint set C = {c ∈ Rn×n : c =

c⊤, cii = 0, ∀i ∈ [n]}. We also constrain c to be non-negative values by applying max(·, 0),

which seems is able to facilitate this problem.

97

0 500 1000
iteration

0.85

0.90

0.95

ob
j v

al
ue

p=0.5
p=1
p=2
p=3

(a)

0 500 1000
iteration

10 8

10 5

10 2

re
la

tiv
e

er
ro

r

p=0.5
p=1
p=2
p=3

(b)

0 500 1000
iteration

10 8

10 5

10 2

re
la

tiv
e

er
ro

r

eps=1e1
eps=1e0
eps=1e-1
eps=1e-2

(c)

1.28 × 102 1.024 × 103

size of problem

10 2

100

102

CP
U

tim
e

eps=1e1
eps=1e0
eps=1e-1
eps=1e-2

(d)

Figure 5.1: Results of Algorithm 3 for cost matrix recovery on synthetic data. True cij =
| i−j
n
|p for i, j ∈ [n]. (a) Objective function value versus iteration number for varying p. (b)

Relative error (in log scale) versus iteration number for varying p. (c) Relative error (in log
scale) versus iteration for varying ε. (d) CPU time (in seconds) versus problem size n in
log-log scale for varying ε. Each curve shows the average over 20 instances.

Figure 5.1 shows the results of Algorithm 3. For fixed ε = 10−1, we generate 20

random pairs of (µ, ν) ∈ Rm × Rn and corresponding π̂ for problem size m = n = 100,

and apply Algorithm 3 to recover the cost matrix c. Figures 5.1a and 5.1b show the average

over the 20 instances of the objective function (5.16) and relative error of c (in logarithm)

versus iteration number. In all cases, the true c∗ is accurately recovered with relative error

approximately 10−4 or lower after 500 iterations. For fixed p = 2, we also perform the

same test of Algorithm 3 on π̂ generated using varying entropy regularization weight ε =

101, 100, 10−1, 10−2. We again run 20 instances and plot the relative error (in logarithm)

versus iteration. The result is shown in Figure 5.1c. With the same settings for p = 2

and varying ε, we test Algorithm 3 for each problem size n = 128, 256, 512, 1024, 2048,

run the algorithm until the relative error of c reaches 5 × 10−2, and record the average of

the CPU time for 20 instances. We plot the CPU time (in seconds) versus the problem

size n (in log-log) in Figure 5.1d. We can see the algorithm run with smaller ε reaches

the prescribed relative error in shorter time as Figure 5.1d shows. From Figure 5.1c we see

how relative errors decrease as the iteration increases with different ε, all errors converge in

similar patterns. These tests evidently show the high efficiency and accuracy of Algorithm

3 in recovering cost matrices in discrete inverse OT.

98

5.5.2 Discrete Inverse OT on Real Marriage Data

In this experiment we follow the setting of [69] and apply Algorithm 1 to the Dutch House-

hold Survey (DHS) data set (https://www.dhsdata.nl) to estimate the affinity matrixA. Here

the cost c has a parametric form C = −G⊤AD where G and D are given feature matrices

as described in Section 5.4.1. Following [69], we classify men and women into m and n

categories respectively based on the given G ∈ Rp×m and D ∈ Rd×n. These two matrices

represent the corresponding feature vectors for men and women. The matrix A ∈ Rp×q is

the reward (affinity) matrix to be estimated, where the (i, j) entry Aij measures the com-

plementarity or substitutability between the ith attribute of men and the jth attribute of

women.

For the historical data used to be trained, we only use the data ranging from 2006 to

2019. We choose 9 features from the data set, namely, educational-level, height, weight,

health and 5 personality traits which can be briefly summarized as irresponsible, disci-

plined, ordered, clumsy, and detail-oriented. All the features are rescaled onto [0, 1] inter-

val. The men and women are both clustered into 5 types by applying k-means algorithm,

and each type of men or women is represented by the corresponding cluster center. Af-

ter data cleaning, the data set contains the information about these features collected from

4,553 couples. In our experiment, we set parameter ε = 10−2. Notice that the initialization

of K-means algorithm still affects the values of the estimates, thus we run the experiments

100 times with different fixed random seeds and average the resulting affinity matrix as our

final result. We conclude estimated affinity matrix in Table 5.1.

The affinity matrix reveals several important implicit phenomena about marriage mar-

ket. The education factor gives the most significant complementarity among all the other

features. The trade-off between different features is revealed by the off-diagonal coeffi-

cients which are significantly different from zero. Since men and women have different

preferences for these attributes, the affinity matrix is not symmetric.

We also compare the performance of Algorithm 3 with other pair matching algorithms,

99

https://www.dhsdata.nl

Table 5.1: Affinity matrix estimated using Algorithm 3 on the marriage data. “H” and “W”
stand for Husband and Wife respectively, “Edu” stands for Education, “Irres” stands for
Irresponsibility, and “Disc” stands for Disciplined.

H\W Edu Height Weight Health Irres Disc Order Clumsy Detail

Edu 0.065 -0.083 -0.052 -0.048 0.015 -0.013 -0.043 -0.063 -0.040
Height -0.056 -0.461 -0.280 -0.239 -0.054 0.182 -0.232 -0.338 -0.247
Weight -0.037 -0.301 -0.182 -0.156 -0.037 0.122 -0.151 -0.219 -0.161
Health -0.035 -0.018 -0.009 -0.014 0.050 -0.125 -0.006 -0.033 -0.009
Irres -0.017 -0.371 -0.226 -0.188 -0.055 0.215 -0.194 -0.253 -0.202
Disc -0.002 0.097 0.059 0.055 0.022 0.002 0.050 0.079 0.052
Order -0.057 -0.309 -0.187 -0.162 -0.034 0.097 -0.150 -0.235 -0.163

Clumsy -0.020 -0.143 -0.086 -0.075 0.013 0.008 -0.075 -0.107 -0.079
Detail -0.049 -0.407 -0.247 -0.210 -0.070 0.204 -0.202 -0.295 -0.216

including the state-of-art RIOT model [70], SVD model [94], item-based collaborative fil-

tering model (itemKNN) [95], probabilistic matrix factorization model (PMF) [96], and

factorization machine model (FM) [97]. These models have been evaluated on DHS data

set in [70] so we just follow the same experimental protocol with 5-fold cross-validation.

Note that in [82] the authors come up with a neural network model and achieves the same

performance as RIOT on DHS dataset so we just omit the repetitive evaluation here. We

train all models on training data set and measure the errors on validation data set by com-

puting the root mean square error (RMSE) and the mean absolute error (MAE). We also

run the experiment for 10 times and record the running time for all models. The results

are given in Table 5.2. As Table 5.2 shows, our method (Algorithm 3) significantly outper-

forms all these existing methods in both accuracy and efficiency. Specifically, the RMSE

of Algorithm 3 is 2.46 × 10−11 and MAE is 1.90 × 10−11, so they are rounded as 0.0 in

Table 5.2.

5.5.3 Continuous Inverse OT on Synthetic Data

We now apply Algorithm 4 to recover the cost function c in continuous inverse OT. The

main difference from the discrete inverse OT is that, instead of learning a cost matrix, we

100

Table 5.2: Average error of 5-fold cross-validation in RMSE and MAE (×10−4) and aver-
age running time (in seconds) for all compared matching algorithms.

Method RMSE MAE Runtime

Random 45.1 31.4 1.24
PMF [96] 114.5 64.9 0.67
SVD [94] 109.8 62.4 0.73

itemKNN [95] 1.8 1.3 0.97
FM [97] 7.4 5.6 48.51

RIOT [70] 1.8 1.3 7.32
Algorithm 3 0.0 0.0 0.04

0 2500 5000 7500
iteration

0.5

1.0

re
la

tiv
e

er
ro

r

p=0.5
p=1
p=2
p=3

0 2500 5000 7500
iteration

0.5

0.0

0.5

1.0

ob
j v

al
ue

p=0.5
p=1
p=2
p=3

Figure 5.2: The relative error (left) and objective function value (right) versus iteration
number by Algorithm 4 on the continuous inverse OT with synthetic data and varying p in
the symmetric case.

aim at learning a parameterized function c : X × Y → R where X ⊂ Rd1 and Y ⊂ Rd2 .

Here d1 and d2 can be 3 or even higher, which causes the issue known as the curse of

dimensionality if we discretize X and Y . In this case, we parameterize c as a deep neural

network, with input layer size d1 + d2 and output layer size 1, to overcome the issue of

discretization in high-dimensional spaces. For simplicity, we consider the case where d1 =

d2, but the method can be applied to general cases easily.

To justify the accuracy, we first consider the case with d1 = d2 = 1 so that we can

discretize the problem and compute the ground truth optimal transport plan π̂ accurately

for sampling and evaluation purposes. We create a data set Dπ̂ by drawing N = 5, 000

samples from π̂ and use them as the sample pairing data for cost learning in each iteration

of Algorithm 4. We parameterize c as a 5-layer (including one input layer, 3 hidden layers,

and one output layer) deep neural network with 20 neurons per hidden layer, with tanh as

101

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(a) |x− y|1/2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(b) |x− y|1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(c) |x− y|2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(d) |x− y|3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(e) |x− 2y|2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(f) |2x− 3y|3

Figure 5.3: True cost function and cost function recovered by Algorithm 4 assuming knowl-
edge of the linear proportion between x and y for continuous inverse OT on synthetic data

the activation functions for the hidden layers and ReLU as the output layer.

In the first test, we set the cost to c = |x − y|p where p = 0.5, 1, 2, 3. Here we aim

at learning the correct exponent function (·)p and hence use |x − y| instead of (x, y) as

the input (input layer dimension is 1 here). We use PyTorch [98] and the builtin ADAM

optimizer [55] with learning rate 10−4 for training the network c, where the parameters are

initialized using Xavier initialization [99].

In Figure 5.2, we plot the progress of the relative error ∥c− c∗∥F/∥c∗∥F and objective

function value versus iteration number using Algorithm 4. These two plots indicate that

both errors of the recovered c and the objective function values obtained Algorithm 4 decay

102

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(a) |x− y|2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(b) |x− y|3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
true c

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered c

(c) |x− 2y|2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
true pi

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
recovered pi

(d) |x− 2y|2, relative error of π : 0.026

Figure 5.4: True cost function and cost function recovered by Algorithm 4 without knowl-
edge of the proportion between x and y for continuous inverse OT on synthetic data. Notice
that (d) shows the optimal transport plan induced by the true cost c (left) and the one by the
recovered cost (right) are very similar (with relative error 0.026) despite that the recovered
cost differs significantly from the true cost shown in (c). This demonstrates the generic
solution non-uniqueness issue of inverse OT if prior knowledge on c is insufficient.

stably. The learned cost functions (image in the right panel) are shown in Figure 5.3 (a)–(d)

for p = 0.5, 1, 2, 3 respectively, from which we can see that they match the ground truth

cost functions (image in the left panel) closely.

We also consider a more challenging problem of recovering asymmetric cost functions

c∗(x, y) = |x − 2y|2 and c∗(x, y) = |2x − 3y|3. We set the input as ξ = |x − 2y| and

ξ = |2 − 3y| for the cost function c and again try to recover the unknown exponent (·)p.

The network structure and activation functions are set identically to the symmetric case.

The ground truth cost and learned cost functions are shown in Figure 5.3e and 5.3f, which

demonstrate that Algorithm 4 can also faithfully learn the exponents in the asymmetric

case.

Now we conduct a test of Algorithm 4 without any prior information about the cost

function. We set the ground truth cost function c(x, y) to be |x− y|2 and |x− y|3, and use

103

the same generic neural network c : R × R → R (3 hidden layer, 20 neurons per layer,

and tanh and ReLU as the hidden layer activation and output activation respectively). The

recovered cost functions are plotted in Figure 5.4a and 5.4b. From 5.4a and 5.4b, we see

that Algorithm 4 can still recover the correct cost due to the symmetry.

We again test an asymmetric cost function c(x, y) = |x − 2y|2. We parameterize

c(x, y) = (x − αy)p where both α and p are unknown. Even with such rich prior in-

formation about the cost function c, it is difficult to recover the ground truth c faithfully.

To see this, we plot the cost function recovered by Algorithm 4 and compare it with the

true one in Figure 5.4c. As we can see, the two cost functions are very different. However,

when we apply forward OT using these two cost functions, we obtain very similar transport

plans with a small relative error 0.026, as shown in Figure 5.4d. This demonstrates the gen-

uine difficulty in the inverse problem of OT: there can be a large number of cost functions

that yield the same optimal transport plan as the given one, and it is critically important

to impose proper restrictions to c in order to recover the true cost function. Although we

proved that this issue can be completely resolved with a mild assumption on the symmetry

of c, it still can be a challenging issue in the most general case when such assumption does

not hold.

5.5.4 Continuous Inverse OT on Color Transfer

In this test, we consider the inverse OT problem in color transfer between images. Given

two RGB color images, the goal of color transfer is to impose the color palette of one image

(target) onto the other (source). It is natural to use 3D points to encode the RGB color of

pixels, then each image can be viewed as a point cloud in R3, thus forming a pairing data

with dX = dY = 3 using optimal transport under certain ground cost c. Specifically,

given a cost function c, we can learn the pairing that transfers the point cloud of the source

image to the one of the target image by solving a forward OT problem [75]. However,

the cost function is critical in shaping the the color transfer result. This experiment is to

104

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Result of color transfer using the cost funciton learned by Algorithm 4. (a)
Source image; (b) Target color transferred image; (c) Color transferred image using the
cost function learned by Algorithm 4; (d) Color transferred image using mis-specified cost
function. Images in the bottom row show the point clouds of color pixels of the images
above. The color in image (c) is much more faithful to (b), whereas (d) renders noticeable
bias in color fading.

show how an adaptively learned cost using Algorithm 4 can help to overcome the issue

with mis-specified cost and avoid inaccurate color transfer.

We obtain a pair of source and target images the USC-SIPI image database Volumn

3 [100]. We set the ground truth cost as ∥x − y∥2, and follow [75] to generate the color

transfer map. The original and the color transferred images are shown in Figure 5.5. The

pairing of point clouds of these two images are used as the samples of π̂ and fed into

Algorithm 4. In Algorithm 4, we parameterize the cost function in the form of c(x, y) =

g((|x1−y1|, |x2−y2|, |x3−y3|)), where g : R3 → R is a 5-layer neural network (including

3 hidden layers) with 32 neurons per hidden layer. The activation function is set to tanh. We

use ADAM optimizer with learning rate 10−3. After the cost c is learned using Algorithm 4,

we test the effect of the learned cost by applying it to the two given point clouds, and show

the color transferred image using this learned cost in Figure 5.5c and 5.5g. For comparison,

105

we also use a mis-specified cost function c(x, y) = ∥x − y∥ to generate another color

transferred image, as shown in Figure 5.5d and its point cloud as 5.5h. As we can see, the

image obtained using the cost learned by Algorithm 4 (Figure 5.5c) is much more faithful to

the true color (Figure 5.5a), whereas a mis-specified cost function yields an image (Figure

5.5d) with clearly noticeable bias in color tone.

5.6 Remarks on the Implementation of Algorithm 3

The inverse OT problem (5.13) consists of a smooth convex termE(α, β, c) defined in (5.9)

and a customizable regularization R(c) on c only. The parametrization using deep neural

nets introduces non-convexity and hence the convergence issue reduces to that of the SGD

(or its variant Adam used in our implementation) in Algorithm 4 for continuous case, and

the convergence is still being extensively studied by the community. Thus we here only

focus on the convergence for the discrete case. If R(c) imposes a convex regularization

or constrains c onto a convex set C, we can directly apply alternating minimization, also

known as block coordinate minimization [93], to the blocks α, β, c. In this case, the updates

of α and β have closed-form solutions as in Sinkhorn algorithm [16] and also given in Al-

gorithm 3. The update of c, on the other hand, requires solving the following minimization

for fixed α, β:

min
c
E(α, β, c) +R(c) ⇐⇒ min

c
⟨c, π̂⟩ − ε⟨e(α+β−c)/ε, 1⟩+R(c). (5.21)

To handle (5.21), we can either execute one proximal gradient descent step proxγR(c −

γ∇cE(α, β, c)) to update c (hence the problem is not solved exactly), or use multiple it-

erations to solve it exactly (so inner iterations are needed; other proximal smooth gradient

methods can be used as well). The former is equivalent to adding a proximal term of Breg-

man distance between the latest and next c based on ∇cE, and the proximal operator is

performed only once without solving (5.21) exactly and then we switch to α, β, and so on.

106

Note that, in either case, the algorithm is guaranteed to converge due to the convexity of

the problem (5.13). However, despite of the low per-iteration cost of the first approach of

handling (5.21), it may require a large number of iterations to converge and hence nega-

tively affect the overall computation complexity. On the other hand, solving (5.21) exactly

restrain ourselves in the BCD framework, but we may spend too much time on inner iter-

ations which is not efficient. In what follows, we are more interested in a scheme where a

closed-form evaluation is preferred if possible.

For a number of choices of R(c), exact and closed-form solution to (5.21) exists. In

particular, if C is given in Corollary 5.4.1.1 which covers a large variety of cost matrices

related to norms, the closed-form solution of (5.21) exists and is given by

−ε log

(
π̂ + π̂⊤

uv⊤ + vu⊤

)
,

where the logarithm and division are performed componentwisely and hence the computa-

tion can be done on the fly.

If a closed-form solution of (5.21) is not available, we can turn to the second approach

using proximal operator as mentioned above. There is closed-form solution as long asR(c)

is simple, i.e., its proximal operator proxR has closed-form solution or is easy to compute.

Examples include ∥c∥∗ (nuclear norm) and ∥c∥1 (c interpreted as vector).

In practice, we also find that a modification that splits E and R as presented in Algo-

rithm 3 can further improve convergence speed empirically. This is due to the closed-form

of the critical point of E(α, β, c) for given α, β. Thus, the per-iteration computational cost

remains extremely low in Algorithm 3 as long as proxR (projection onto C if R(c) imposes

constraint to C) is simple to compute, which is true for all the cases mentioned above.

One can also introduce auxiliary variable c̄, split E(α, β, c) and R(c̄) with constraint

c̄ = c, and apply the well-known alternating direction method of multipliers (ADMM)

to solve α, β, c, c̄ with low per-iteration cost, provided that the subproblems are easy to

107

compute.

In summary, there are a number of choices to numerically solve (5.13) with very high

efficiency due to the smooth and convex term E, which is a significant advantage over

existing inverse OT approaches based on bi-level optimization. However, the practical im-

plementation for the c step varies significantly according to the choice R(c), which is prob-

lem specific and hence not further exploited in this work. Instead, we turn to the general

convergence analysis of discrete inverse OT algorithm when the regularization/constraint

imposed by R(c) is convex in the next section.

5.7 Characterization of Inverse Problems Bypassing Bi-level Optimization

In general, inverse problems are formulated as optimization problems with complicated

constraints. In a typical setting, a set of (unknown) parameters of the problem determines

an intermediate variable, and such relation forms the constraint; the intermediate variable

is then compared with the measurement data, and the objective (loss) function quantifies

their discrepancy. The goal is then to find a (the) set of parameters such that the objective

function is minimized.

In the inverse OT problem considered in this work, the cost function c of OT is the set

of unknown parameter. The induced optimal transport plan πc is the intermediate variable,

which is compared to the observed data π̂ using KL divergence as a metric of discrepancy.

In neural ODE, the initial value and/or parameters in the defining function (e.g., network

parameters) is the set of unknown parameters, the solution of the ODE is the induced

intermediate variable, and the objective function is the squared error between the ODE

solution and observations. Although the solution of ODE can be considered as an optimal

trajectory that fits the ODE determined by the unknown parameters, one often employs

numerical ODE solver to approximate the solution, which makes the sense of optimality

part a little faded.

When the constraint itself involves an optimization, the constrained problem is called

108

bi-level optimization, which is considered very challenging computationally. Common

approaches to bi-level optimization require solving the optimization problem given in the

constrained repeatedly, which results in high computational cost of bi-level optimization.

We showed in this work that the bi-level optimization problem of inverse OT can be

reduced to an unconstrained optimization, which is much easier to solve than the original

one. Here we provide a general characterizations of problems which may potentially enjoy

similar solution approach. In brief, the discrepancy measure in the objective function and

the optimization problem described by the constraint need to be paired up to make the

reduction possible. To follow the notations used in this work, we use L(π, γ; c) to denote

the Lagrange function of the optimization problem in the constraint. Here π and γ = (α, β)

correspond to the primal and dual variables, and c is the unknown parameter that we want

to obtain ultimately. In inverse OT, L(π, γ; c) = ⟨c, π⟩ − εH(π) − ⟨γ,Aπ − b⟩, where

Aπ = b describes the marginal constraint π ∈ Π(µ, ν) with A = [1⊤m ⊗ In; Im ⊗ 1⊤n] and

b = [µ; ν]. We then define the primal and dual objective functions:

F (π; c) := L(π, γ(π; c); c) = max
γ

L(π, γ; c), (5.22)

G(γ; c) := L(π(γ; c), γ; c) = min
π
L(π, γ; c), (5.23)

where we used the following notations to denote the optimal dual (primal) variable when

the primal (dual) variable is fixed:

γ(π; c) := argmax
γ

L(π, γ; c),

π(γ; c) := argmin
π

L(π, γ; c).

If the strong duality of L holds (as in OT), we also use (π∗(c), γ∗(c)) to denote the optimal

109

solution of the minimax problem:

min
π

max
γ

L(π, γ; c) = max
γ

min
π
L(π, γ; c) (5.24)

Note that π∗(c) = π(γ∗(c); c) = argminπ F (π; c) and γ∗(c) = γ(π∗(c); c) = argmaxγ G(γ; c).

Consider the bi-level optimization problem of form

min
c
D(π̂, π∗(c)), subject to π∗(c) = argmin

π
F (π; c). (5.25)

Suppose that the objective function D is defined by (up to constant shifting and scaling)

D(π̂, π) = F (π̂; c)− F (π; c) (5.26)

for the given data π̂, then one can readily see thatD(π̂, π∗(c)) ≥ 0 since π∗(c) = argminπ F (π; c).

Moreover D(π̂, π∗(c)) = 0 means that π̂ is equally good as π∗(c) in terms of minimizing

F (π; c) for the given c. Therefore D(π̂, π∗(c)) is a promising metric to evaluate the quality

of a parameter c: the “loss” D is always nonnegative, and vanishes only if π̂ is a minimizer

of F (π; c).

In summary, if the objective function in the bi-level optimization problem (5.25) is

defined as in (5.26), then the problem can be readily reduced to a simpler unconstrained

problem:

min
c

{
D(π̂, π∗(c))

∣∣∣ π∗(c) = argmin
π

F (π; c)

}
= min

c
F (π̂; c)− F (π∗(c); c)

= min
c
F (π̂; c)−G(γ∗(c); c) (5.27)

= min
c
F (π̂; c)−max

γ
G(γ; c)

= min
c,γ

F (π̂; c)−G(γ; c),

110

where the second equality is due to the definition of primal and dual objective functions

(5.22) and (5.23) and the strong duality (5.24), the third equality is due to the optimality of

γ∗(c).

The inverse OT formulation we had in this work is exactly one special case of (5.27):

for fixed ε > 0, we had F (π; c) = ⟨π, c⟩ − εH(π) + ιAπ=b(π) and G(γ; c) = ⟨γ, b⟩ −

ε⟨e(A⊤γ−c−ε)/ε, 1⟩, where ιAπ=b(π) = 0 if Aπ = b and +∞ otherwise, and we set the loss

function to D(π̂, π) = KL(π̂∥π). Therefore,

D(π̂, π∗(c)) = KL(π̂∥π∗(c)) = ⟨π̂, log(π̂/π∗(c))⟩

= −H(π̂) + ⟨π̂, 1⟩ − ⟨π̂, log π(γ∗(c); c)⟩

= −H(π̂) + ⟨π̂, 1⟩ − ⟨π̂, log e(A⊤γ∗(c)−c)/ε⟩

= −H(π̂) + ⟨π̂, 1⟩+ ε−1⟨π̂, c⟩ − ε−1⟨Aπ̂, γ∗(c)⟩

= ε−1F (π̂; c) + ⟨π∗(c), 1⟩ − ε−1⟨Aπ̂, γ∗(c)⟩

= ε−1F (π̂; c) + ⟨π∗(c), 1⟩ − ε−1⟨b, γ∗(c)⟩

= ε−1F (π̂; c) + ⟨e(A⊤γ∗(c)−c)/ε, 1⟩ − ε−1⟨b, γ∗(c)⟩

= ε−1F (π̂; c)− ε−1G(γ∗(c); c)

= ε−1(F (π̂; c)− F (π∗(c); c)),

where the third equality is due to π∗(c) = π(γ∗(c); c) as shown under (5.24), the fourth

equality is due to the expression of the optimal primal variable using dual variable, the

sixth equality is due to the definition of F and that π̂ and π∗(c) are probabilities, the seventh

is from Aπ̂ = b, the ninth due to the definition of G, and the last equality due to strong

duality.

111

5.8 Robust case

Suppose µ̂ and ν̂ are given but noisy, we want to relax the marginal constraint to Π(µ, ν)

where µ and ν are unknown but close to µ̂ and ν̂:

min
c,µ,ν

KL(π̂ ∥ πc) +R(c),

s.t. πc = argmin
π∈Π(µ,ν)

⟨c, π⟩+ ε⟨π, log π − 1⟩

D(µ, µ̂) ≤ ρ, D(ν, ν̂) ≤ ρ.

where D is some discrepancy measure, such as squared l2 or KL. We use relaxation of the

last constraint

min
c,µ,ν

KL(π̂ ∥ πc) + ρ−1(D(µ, µ̂) +D(ν, ν̂)) +R(c),

s.t. πc = argmin
π∈Π(µ,ν)

⟨c, π⟩+ ε⟨π, log π − 1⟩

Using the same idea we can convert the bi-level problem to an unconstrained problem:

min
α,β,c,µ,ν

−⟨α, µ⟩ − ⟨β, ν⟩+ ⟨c, π̂⟩+ ε⟨e(α+β−c)/ε, 1⟩+ ρ−1(D(µ, µ̂) +D(ν, ν̂)) +R(c)

Note this problem is not jointly convex in all variables. However, alternating minimization

still works as it is biconvex. The updates of α, β, c are the same as before.

The update of µ when D(µ, µ̂) = ∥µ− µ̂∥2/2 is:

µ← argmin
µ

1

2
∥µ− (µ̂− ρα)∥2 = Proj∆n(µ̂− ρα)

which is the projection of µ̂ − ρα onto the probability simplex ∆n (closed form solution

112

exists). The update of µ when D(µ, µ̂) = KL(µ||µ̂) also has closed-form solution:

µi ←
µ̂ie

−ραi∑
j µ̂je

−ραj

5.9 Block Coordinate Descent for Discrete Inverse OT

In Section 5.4.1, we mentioned that block coordinate descent (BCD) [93] is a widely used

approach for solving convex minimization with multiple variables, such as (5.16), when the

closed form solution to subproblems are available. However, convergence of BCD requires

two key assumptions: the gradient of the objective function is Lipschitz continuous and the

iterates generated by BCD are bounded. However, neither of these two assumptions holds

for (5.16). To overcome these issues and ensure convergence of BCD, we can reformulate

the minimization problem (5.16) into an equivalent form, and show that the convergence

can be guaranteed for this new variant of Algorithm 3. This variant of BCD for (5.16) is

summarized in Algorithm 5. The reformulation and its equivalency to (5.16) is given in the

following lemma.

Lemma 5.9.1. The inverse OT minimization (5.16) is equivalent to the following minimiza-

tion:

min
α,β,c

Ψ(α, β, c) := F (α, β, c) +R(c), (5.28)

where the function E(α, β, c) in (5.16) is replaced with

F (α, β, c) := −⟨α, µ⟩ − ⟨β, ν⟩+ ⟨c, π̂⟩+ ε log
(
⟨e(α+β−c)/ε, 1⟩

)
.

The equivalence is in the sense that (5.16) and (5.28) share exactly the same set of solutions.

Proof. For any fixed c, we introduce Lagrange multipliers α, β and γ for the equality

constraints π1 = µ, π⊤1 = ν, 1⊤π1 = 1 respectively. Then we can form the dual problem

113

of the entropy regularized OT:

max
α,β
⟨α, µ⟩+ ⟨β, ν⟩ − ε log

(
⟨e(α+β−c)/ε, 1⟩

)
.

The other parts of (5.16) remain the same. Then it is easy to verify that all statements

of Theorem 5.3.2 (for discrete setting here) still hold true. Hence (5.16) and (5.28) are

equivalent. We omit the details here.

The main advantages of (5.28) are that the function F is still smooth and convex in

(α, β, c), the minimization subproblems (of α and β) still have closed form solutions, and

that ∇αF,∇βF , and ∇cF are all 1-Lipschitz continuous. The Lipschitiz continuity is a

consequence of the following lemma.

Lemma 5.9.2. For any a ∈ Rn and b ∈ Rn
+, the function f(x) := ⟨a, x⟩+ log(

∑n
i=1 bie

xi)

is convex in x, and∇f is 1-Lipschitz.

Proof. It is straightforward to verify that ∂if(x) = ai +
bie

xi∑n
j=1 bje

xj . Furthermore, there is

∂2ijf(x) =


1

∥
√
w∥42

(∥
√
w∥22wi − w2

i), if i = j,

− 1
∥
√
w∥42

(wiwj), if i ̸= j,

where wi := bie
xi for i = 1, . . . , n and we adopted a slightly misused notation

√
w :=

(
√
w1, . . . ,

√
wn). Then for any ξ ∈ Rn, we can show that

ξ⊤∇2f(x)ξ =
1

∥
√
w∥42

(∥
√
w∥22∥

√
wξ∥22 − |⟨

√
w,
√
wξ⟩|2),

where
√
wξ := (

√
w1ξ1, . . . ,

√
wnξn) stands for the componentwise product between

√
w

and ξ. By Cauchy-Schwarz inequality, we have ⟨
√
w,
√
wξ⟩ ≤ ∥

√
w∥2 · ∥

√
wξ∥2, from

which it is clear that ξ⊤∇f(x)ξ ≥ 0. Hence f is convex in x. Furthermore, there is

114

∥
√
wξ∥22 ≤ ∥

√
w∥22 · ∥ξ∥22, from which we can see that

ξ⊤∇2f(x)ξ ≤ ∥
√
wξ∥22

∥
√
w∥22

≤ ∥ξ∥22,

which implies that∇f is 1-Lipschitz.

To apply BCD with guaranteed convergence, we also need the boundedness of the it-

erates x = (αk, βk, ck). In the literature of BCD or alternating minimization (AM), an

assumption on the boundedness of the sub-level set {x : Ψ(x) ≤ Ψ(x0)} or that Ψ is co-

ercive is needed. However, neither of these holds for the (5.28). To ensure boundedness

of the iterates, we can restrict our search of the cost matrix c such that 0 ≤ cij ≤ Mc for

some Mc > 0 in addition to the constraint or regularization enforced by R(c). However,

we do not have similar bounded restrictions on α and β. To overcome this issue, we need

to shift the solution of each minimization subproblem of BCD for (5.28) without affecting

its optimality. To this end, we need the following definition.

Definition 5.9.1. A set S ⊂ Rn is said to have bounded variation M ∈ [0,∞) if

sup
x∈S

max
1≤i,j≤n

|xi − xj| ≤M.

Note that the requirement of bounded variation of S is weaker than the boundedness of

S. Now we can show that the solution sets of the minimization subproblems in α and β

both have bounded variations in the following lemma. Note that we can always eliminate

the zero components of µ and ν and regard them as strictly positive probability vectors.

Lemma 5.9.3. For any c and any β, the set argminα F (α, β, c) has bounded variation

Mα := Mc + ε log(µmax/µmin). Similarly, for any α, the set argminα F (α, β, c) has

bounded variationMβ :=Mc+ε log(νmax/νmin). Here µmax and µmin stand for the largest

and smallest components of µ respectively.

115

Algorithm 5 Block Coordinate Descent (BCD) for Discrete Inverse OT (5.16)

Input: Observed matching matrix π̂ ∈ Rm×n and its marginals µ ∈ Rm, ν ∈ Rn.
Initialize: α ∈ Rm×1, β ∈ Rn×1, u = exp(α), v = exp(β), c ∈ Rm×n, cij ∈ [0,Mc].
repeat
K ← e−c

u← µ/(Kv) and rescale u by κ such that e−Mα ≤ λu ≤ eMα

v ← ν/(K⊤u) and rescale v by κ such that e−Mβ ≤ κv ≤ eMβ

c ∈ argmin0≤cij≤Mc
R(c) + F (log u, log v, c)

until convergent
Output: α = ε log u, β = ε log v, c = εc.

Proof. For any c and β, we can check the optimality condition of an arbitrary α∗ ∈

argminα F (α, β, c). This condition is given by∇αF (α
∗, β, c) = 0, which yields

eα
∗
i /ε
∑

j e
(βj−cij)/ε∑

i,j e
(α∗

i+βj−cij)/ε
= µi. (5.29)

Taking logarithm of both sides and recalling the notation s in (5.17), we obtain

α∗
i

ε
= log µi + log ε−1s(α∗, β, c)− log

(∑
j

e(βj−cij)/ε

)
.

Since 0 ≤ cij ≤ Mc, we know e−Mc/ε ≤ e−cij/ε ≤ 1, and hence from the equality above

we obtain

ε log

(
eβj/εs(α∗, β, c)

ε

)
+ ε log µi ≤ α∗

i ≤Mc + ε log

(
eβj/εs(α∗, β, c)

ε

)
+ ε log µi.

Therefore the variation of α∗, i.e., max1≤i,j≤n |α∗
i−α∗

j |, is bounded byMc+ε log(µmax/µmin).

The proof for β∗ is similar and hence omitted.

Now we are ready to establish the convergence of Algorithm 5. For simplicity, we

directly apply rescaling of α ← α/ε, β ← β/ε, c ← c/ε which results in an equivalent

problem of (5.28) before Algorithm 5 starts, and rescale them back once the computation

is finished. Due to Lemma 5.9.3, we can always perform a shifting α ← α − t1 such that

116

∥α∥∞ ≤ Mc/2. The shifting constant t ∈ R can be simply set to (α(1) − α(n))/2, where

α(1) and α(n) stand for the largest and smallest components of α, respectively. As we can

see, such shifting does not alter the optimality of α and it still satisfies (5.29). Also note

that this shifting is equivalent to rescaling u = eα into [e−Mc , eMc] by κ = et, as presented

in Algorithm 5. The convergence of Algorithm 5 is given in the following theorem.

Theorem 5.9.4. Let (αk, βk, ck) be the sequence generated by the BCD Algorithm 5 from

any initial (α0, β0, c0), then

0 ≤ Ψk −Ψ∗ ≤ min

{
2

9D2
− 2, 2,Ψ0 −Ψ∗

}
18D2

k
, (5.30)

where Ψk := Ψ(αk, βk, ck) and D2 = mM2
α + nM2

β +mnM2
c .

Proof. By Lemma 5.9.2 we know ∇βF (α, β, c), ∇αF (α, β, c) and ∇cF (α, β, c) are 1-

Lipschitz continuous. Moreover, Algorithm 5 is equivalent to the standard BCD with where

the iterates lie in the bounded set {(α, β, c) : ∥α∥∞ ≤ Mα, ∥β∥∞ ≤ Mβ, ∥c∥∞ ≤ Mc}

due to Lemma 5.9.3. By invoking [101, Theorem 2(a)], we obtain (5.30).

5.10 Conclusion

In this chapter, we conduct a comprehensive study of the inverse problem for OT, i.e., learn-

ing the cost function given transport plan observations. We propose a novel inverse OT

approach to learn the cost functions such that the induced OT plan is close to the observed

plan or its samples. Unlike the bi-level optimization in the literature, we derive a novel

formulation to learn the cost function by minimizing an unconstrained convex functional,

which can be further augmented by customizable regularization on the cost. We provide a

comprehensive characterization of the inverse problem, including the structure of its solu-

tion and mild conditions that yield solution uniqueness. We also developed two prototype

numerical algorithms to recover the cost in the discrete and continuous settings separately.

Numerical results show very promising efficiency and accuracy of our approach.

117

CHAPTER 6

LEARNING STOCHASTIC BEHAVIOUR FROM AGGREGATE DATA

6.1 Introduction

In the context of dynamical systems, Aggregate data refers to a data format in which the

full trajectory of each individual modeled by the evolution of state is not available, but

rather a sample from the distribution of state at a certain time point is available. Typical

examples include data sets collected for DNA evolution, social gathering, density in control

problems, and bird migration, during the evolution of which it is impossible to follow an

individual inter-temporally. In those applications, some observed individuals at one time

point may be un-observable at the next time spot, or when the individual identities are

blocked or unavailable due to various technical and ethical reasons. Rather than inferring

the exact information for each individual, the main objective of learning dynamics in aggre-

gate data is to recover and predict the evolution of distribution of all individuals together.

Trajectory data, in contrast, is a kind of data that we are able to acquire the information

of each individual all the time. Although some studies also considered the case that partial

trajectories are missing, the identities of those individuals, whenever they are observable,

are always assumed available. For example, stock price, weather, customer behaviors and

most training data sets for computer vision and natural language processing are considered

as trajectory data. There are many existing models to learn dynamics of full-trajectory data.

Typical ones include Hamiltonian neural networks [102], Hidden Markov Model (HMM)

[103, 104], Kalman Filter (KF) [105, 106, 107] and Particle Filter (PF) [108, 109], as well

as the models built upon HMM, KF and PF [110, 111, 112, 113]. They require full tra-

jectories of each individual, which may not be applicable in the aggregate data situations.

On the other side, only a few methods are proposed on aggregated data in the recent learn-

118

ing literature. In the work of [114], authors assumed that the hidden dynamic of particles

follows a stochastic differential equation (SDE), in particular, they used a recurrent neu-

ral network to parameterize the drift term. Furthermore, [115] improved traditional HMM

model by using an SDE to describe the evolving process of hidden states and [116] updated

HMM parameters through aggregate observations.

We propose to learn the dynamics of density through the weak form of Fokker Planck

Equation (FPE), which is a parabolic partial differential equation (PDE) governing many

dynamical systems subject to random noise perturbations, including the typical SDE mod-

els in existing studies. Our learning is accomplished by minimizing the Wasserstein dis-

tance between predicted distribution given by FPE and the empirical distribution from data

samples. Meanwhile we utilize neural networks to handle higher dimensional cases. More

importantly, by leveraging the framework of Wasserstein Generative Adversarial Network

(WGAN) [7], our model is capable of approximating the distribution of samples at dif-

ferent time points without solving the SDE or FPE. More specifically, we treat the drift

coefficient, the goal of learning, in the FPE as a generator, and the test function in the weak

form of FPE as a discriminator. In other words, our method can also be regarded as a

data-driven method to estimate transport coefficient in FPE, which corresponds to the drift

terms in SDEs. Additionally, though we treat diffusion term as a constant in our model, it

is straightforward to generalize it to be a neural network as well, which can be an extension

of this work. We would like to mention that several methods of solving SDE and FPE [117,

118, 119] adopt opposite ways to our method, they utilize neural networks to estimate the

distribution P (x, t) with given drift and diffusion terms.

In conclusion, our contributions are: 1) We develop an algorithm that learns the drift

term of a SDE via minimizing the Wasserstein discrepancy between the observed aggregate

data and our generated data. 2) By leveraging a weak form of FPE, we are able to com-

pute the Wasserstein distance directly without solving the FPE. 3) Finally, we demonstrate

the accuracy and the effectiveness of our algorithm via several synthetic and real-world

119

examples.

6.2 Proposed Method

6.2.1 Fokker Planck Equation for the density evolution

We assume the individuals evolve in a pattern in the space RD as shown in Figure 6.1.

One example satisfying such process is the stochastic differential equation(SDE), which is

also known as the Itô process [120]: dXt = g(Xt, t)dt + σdWt. Here dXt represents an

infinitesimal change of {Xt} along with time increment dt, g(·, t) = (g1(·, t), ..., gD(·, t))T

is the drift term (drifting vector field) that drives the dynamics of SDE, σ is the diffusion

constant, {Wt} is the standard Brownian Motion.

Figure 6.1: State model of the stochastic process Xt

The probability density of {Xt} is governed by the Fokker Planck Equation(FPE)

[121]:

Lemma 6.2.1. Suppose {Xt} solves the SDE dXt = g(Xt, t)dt + σdWt, denote p(·, t)

as the probability density of the random variable Xt. Then p(x, t) solves the following

equation:

∂p(x, t)

∂t
=

D∑
i=1

− ∂

∂xi

[
gi(x, t)p(x, t)

]
+

1

2
σ2

D∑
i=1

∂2

∂xi2
p(x, t). (6.1)

As a linear evolution PDE, FPE describes the evolution of density function of the

stochastic process driven by a SDE. Due to this reason, FPE plays a crucial role in stochas-

tic calculus, statistical physics and modeling [122, 123, 124]. Its importance is also drawing

120

more attention among statistic and machine learning communities [125, 126, 127]. In this

chapter, we utilize the weak form of FPE as a basis to study hidden dynamics of the time

evolving aggregated data without solving FPE.

Our task can be described as: assume that the individuals evolve with the process in-

dicated by Figure 6.1, which can be simulated by Itô process. Then given observations

xt along time axis, we aim to recover the drift coefficient g(x, t) in FPE, and thus we are

able to recover and predict the density evolution of such dynamic. For simplicity we treat

g(x, t) as a function uncorrelated to time t, namely, g(x, t) = g(x). Notice that though

evolving process of individuals can be simulated by Itô process, in reality since we lose

identity information of individuals, the observed data become aggregate data, thus we need

a new way other than traditional methods to study the swarm’s distribution.

We also remark that in the work of [114], based on JKO theorem, they utilized RNN

to approximate potential function and measure Sinkhorn distance (an approximation to

Wasserstein distance). In our work, we assume that the density follows Fokker Planck

equation, but we don’t solve it directly. Instead, we take the weak form of Fokker Planck

equation and compute everything in sample form, which coincides with a similar form of

WGAN at the observations. Particularly, we treat FPE as the dynamic regularizer for the

marginal fitting problem, therefore is fundamentally different from previous methods. As

a byproduct, our numerical scheme allows to freely choose the time step ∆t, which is not

restricted to the given time stamp of observations. ∆t is used to control the error bound.

6.2.2 Weak Form of Fokker Planck Equation

Given FPE stated in Lemma 6.2.1, if we multiply a test function f ∈ H1
0 (RD) on both sides

of the FPE, where H1
0 (RD) denote the Sobolev space. Integration on both sides:

∫
∂p

∂t
f(x)dx =

∫ D∑
i=1

− ∂

∂xi

[
gi(x)p(x, t)

]
f(x)dx+

1

2
σ2

∫ D∑
i=1

∂2

∂xi2
p(x, t)f(x)dx,

121

∫
∂p

∂t
f(x)dx =

∫ D∑
i=1

gi(x)
∂

∂xi
f(x)p(x, t)dx+

1

2
σ2

∫ D∑
i=1

∂2

∂xi2
f(x)p(x, t)dx.

The first advantage of weak solution is that the solution of a PDE usually requires strong

regularity and thus may not exist in the classical sense for a certain group of equations,

however, the weak solution has fewer regularity requirements and thus their existence are

guaranteed for a much larger classes of equations. The second advantage is that the weak

formulation may provide new perspectives for numerically solving PDEs [128, 129, 130].

Suppose the observed samples at time points tm−1 and tm follow the true densities

p̂(·, tm−1) and p̂(·, tm) respectively. Let’s consider the following SDE:

dX̃t = gω(X̃t)dt+ σdWt,

where tm−1 ≤ t ≤ tm, X̃ tm−1 ∼ p̂(·, tm−1). (6.2)

Here gω is an approximation to the real drift term g. In our research, we treat gω as a

neural network with parameters ω. Stochastic process X̃t has a density function, denoted

by p̃(·, t), which is different from the observed density. Hence, it is natural to compute

and minimize the discrepancy between the approximated density p̃(·, tm) and true density

p̂(·, tm), within which we optimize gω and thus recover the true drift term g.

In our research, we choose the Wasserstein-1 distance as our discrepancy function [6]

[7]. Applying Kantorovich-Rubinstein duality [6] leads to W1(p̂(·, tm), p̃(·, tm)) =

sup
∥∇f∥≤1

{
Exr∼p̂(x,tm)[f(xr)]− Exg∼p̃(x,tm)[f(xg)]

}
.

The first term Exr∼p̂(x,tm)[f(xr)] can be conveniently computed by Monte-Carlo method

since we are already provided with the real data points xr ∼ p̂(·, tm). To evaluate the sec-

122

ond term, we first approximate p̃(·, tm) by trapezoidal rule [131]: p̃(x, tm) ≈

p̂(x, tm−1) +
∆t

2

(
∂p̂(x, tm−1)

∂t
+
∂p̃(x, tm)

∂t

)
, (6.3)

where ∆t = tm − tm−1. Then we compute

Exg∼p̃(·,tm)[f(xg)] ≈
∫
f(x)p̂(x, tm−1)dx+

∆t

2

(∫
∂p̂(x, tm−1)

∂t
f(x)dx+

∫
∂p̃(x, tm)

∂t
f(x)dx

)
. (6.4)

In the above Equation (6.4), the second and the third term on the right-hand side can be re-

formulated via the weak form of FPE. This gives us a new formulation forW1(p̂(·, tm), p̃(·, tm)),

which can by computed by using Monte-Carlo method. In fact, the first and the second

terms in (6.4) can be directly computed via data points from p̂(·, tm−1). For the third term,

we need to generate samples from p̃(·, tm). To achieve this, we apply Euler-Maruyama

scheme [132] to SDE (6.2) in order to acquire our desired samples x̃tm :

x̃tm = x̂tm−1 + gω(x̂tm−1)∆t+ σ
√
∆tz,

where z ∼ N (0, I), x̂tm−1 ∼ p̂(·, tm−1). (6.5)

HereN (0, I) is the standard Gaussian distribution on RD. Now we summarize these results

in Proposition 1:

Proposition 6.2.1. For a set of points X = {x(1), ...,x(N)} in RD. We denote Ff (X) as

1

N

N∑
k=1

(
D∑
i=1

giω(x
(k))

∂

∂xi
f(x(k)) +

1

2
σ2

D∑
i=1

∂2

∂x2i
f(x(k))

)
,

then at time point tm, the Wasserstein distance between p̂(·, tm) and p̃(·, tm) can be approx-

123

imated by

W1(p̂(·, tm), p̃(·, tm)) ≈ sup
∥∇f∥≤1

{
1

N

N∑
k=1

f(x̂
(k)
tm)

− 1

N

N∑
k=1

f(x̂
(k)
tm−1

)− ∆t

2

(
Ff (X̂m−1) + Ff (X̃m)

)}
.

Here {x̂(k)
tm−1
} ∼ p̂(·, tm−1), {x̂(k)

tm } ∼ p̂(·, tm). We denote X̂m−1 = {x̂(1)
tm−1

, ..., x̂
(N)
tm−1
},

X̃m = {x̃(1)
tm , ..., x̃

(N)
tm }, where each x̃

(k)
tm is computed by Euler-Maruyama scheme.

Proof. Suppose x̂(k)tm and x̂(k)tm−1
are our observed samples at tm and tm−1 respectively, then

expectations could be approximated by

Ex∼p̂(x,tm)[f(x)] =

∫
f(x)p̂(x, tm)dx ≈

1

N

N∑
k=1

f(x̂
(k)
tm), (6.6)

Ex∼p̃(x,tm)[f(x)] =

∫
f(x)p̃(x, tm)dx =

∫
f(x)

[
p̂(x, tm−1) +

∫ tm

tm−1

∂p(x, τ)

∂t
dτ

]
dx

=

∫
f(x)p̂(x, tm−1)dx+

∫
f(x)

∫ tm

tm−1

∂p(x, τ)

∂t
dτdx

≈ 1

N

N∑
k=1

f(x̂
(k)
tm−1

) + I, (6.7)

I =

∫
f(x)

∫ tm

tm−1

{
−

D∑
i=1

∂

∂xi

[
giω(x)p(x, τ)

]
+

1

2
σ2

D∑
i=1

∂2

∂x2i
p(x, τ)

}
dτdx. (6.8)

Then for the second term I above, it is difficult to calculate directly, but we can use

124

integration by parts to rewrite I as

I =

∫ tm

tm−1

∫ [
D∑
i=1

−f(x) ∂
∂xi

giω(x)p(x, τ) +
1

2
σ2

D∑
i=1

f(x)
∂2

∂x2i
p(x, τ)

]
dxdτ

=

∫ tm

tm−1

∫ [
D∑
i=1

giω(x)p(x, τ)
∂

∂xi
f(x) +

1

2
σ2

D∑
i=1

p(x, τ)
∂2

∂x2i
f(x)

]
dxdτ

=

∫ tm

tm−1

(
Ex∼p(x,τ)

[
D∑
i=1

giω(x)
∂

∂xi
f(x)

]
+ Ex∼p(x,τ)

[
1

2
σ2

D∑
i=1

∂2

∂x2i
f(x)

])
dτ

≈
∫ tm

tm−1

1

N

N∑
k=1

(
D∑
i=1

giω(x
(k))

∂

∂xi
f(x(k)) +

1

2
σ2

D∑
i=1

∂2

∂x2i
f(x(k))

)
dτ. (6.9)

To approximate the integral from tm−1 to tm, we adopt trapezoid rule, then we could

rewrite the expectation in Equation (6.7) as

Ex∼p̃(x,tm)[f(x)] ≈
1

N

N∑
k=1

f(x̂
(k)
tm−1

)

+
∆t

2

[
1

N

N∑
k=1

(
D∑
i=1

giω(x̂
(k)
tm−1

)
∂

∂xi
f(x̂

(k)
tm−1

) +
1

2
σ2

D∑
i=1

∂2

∂x2i
f(x̂

(k)
tm−1

)

)

+
1

N

N∑
k=1

(
D∑
i=1

giω(x̃
(k)
tm)

∂

∂x
f(x̃

(k)
tm) +

1

2
σ2

D∑
i=1

∂2

∂x2i
f(x̃

(k)
tm)

)]

=
1

N

N∑
k=1

f(x̂
(k)
tm−1

) +
∆t

2

[
Ff (X̂m−1) + Ff (X̃m)

]
. (6.10)

We subtract (6.6) by (6.10) to finish the proof.

6.2.3 Wasserstein Distance on Time Series

In real cases, it is not realistic to observe the data at arbitrary two consecutive time nodes,

especially when ∆t is small. To make our model more flexible, we extend our formu-

lation so that we are able to plug in observed data at arbitrary time points. To be more

precise, suppose we observe data set X̂ tn = {x̂(1)
tn , ..., x̂

(N)
tn } at J + 1 different time points

t0, t1, ..., tJ . And we denote the generated data set as X̃tn = {x̃(1)
tn , ..., x̃

(N)
tn }, here each x̃

(·)
tn

125

is derived from the n-step Euler-Maruyama scheme:

x̃tj = x̃tj−1
+ gω(x̃tj−1

)∆t+ σ
√
∆tz,

where z ∼ N (0, I), 0 ≤ j ≤ n, x̃t0 ∼ p̂(·, t0). (6.11)

Let us denote p̃(·, t) as the solution to FPE (6.1) with g replaced by gω and with initial

condition p̃(·, t0) = p̂(·, t0), then the approximation formula for evaluating the Wasserstein

distance W1(p̂(·, tn), p̃(·, tn)) is provided in the following proposition:

Proposition 6.2.2. Suppose we keep all the notations defined as above, then we have the

approximation:

W1(p̂(·, tn), p̃(·, tn)) ≈ sup
∥∇f∥≤1

{
1

N

N∑
k=1

f(x̂
(k)
tn)− 1

N

N∑
k=1

f(x̂
(k)
t0)− ∆t

2

(
Ff (X̂0) + Ff (X̃n)

+ 2
n−1∑
s=1

Ff (X̃s)

)}
.

Proof. Given initial x̂t0 , we generate x̃t1 , x̃t2 , x̃t3 ... x̃tn sequentially by Euler-Maruyama

scheme. Then the expectations can be rewritten as:

Ex∼p̂(x,tn)[f(x)] =

∫
f(x)p̂(x, tn)dx ≈

1

N

N∑
k=1

f(x̂
(k)
tn) (6.12)

126

Ex∼p̃(x,tn)[f(x)] ≈
1

N

N∑
k=1

f(x̂
(k)
t0)

+

∫ t1

t0

1

N

N∑
k=1

[
D∑
i=1

giω(x
(k))

∂

∂xi
f(x(k)) +

1

2
σ2

D∑
i=1

∂2

∂xi∂xj
f(x(k))

]
dτ

+

∫ t2

t1

1

N

N∑
k=1

[
D∑
i=1

giω(x
(k))

∂

∂xi
f(x(k)) +

1

2
σ2

D∑
i=1

∂2

∂x2i
f(x(k))

]
dτ + ...

+

∫ tn

tn−1

1

N

N∑
k=1

[
n∑
i=1

giω(x
(k))

∂

∂xi
f(x(k)) +

1

2
σ2

n∑
i=1

∂2

∂x2i
f(x(k))

]
dτ

(6.13)

which is

Ex∼p̃(x,tn)[f(x)] ≈
1

N

N∑
k=1

f(x̂
(k)
t0) +

∆t

2

[
Ff (X̂0) + Ff (X̃1)

]
+

∆t

2

[
Ff (X̃1) + Ff (X̃2)

]
+ ...+

∆t

2

[
Ff (X̃n−1) + Ff (X̃n)

]
(6.14)

Finally it comes to

Ex∼p̃(x,tn)[f(x)] ≈
1

N

N∑
k=1

f(x̂
(k)
t0) +

∆t

2

(
Ff (X̂0) + Ff (X̃n) + 2

n−1∑
s=1

Ff (X̃s)

)
(6.15)

We subtract (6.12) by (6.15) to finish the proof.

Minimizing the Objective Function: Base on Proposition 6.2.2, we obtain objective

function by summing up the accumulated Wasserstein distances among J observations

along the time axis. Thus, our goal is to minimize the following objection function:

min
gω

{
J∑
n=1

sup
∥∇fn∥≤1

{
1

N

N∑
k=1

fn(x̂
(k)
tn)− 1

N

N∑
k=1

fn(x̂
(k)
t0)

− ∆t

2

(
Ffn(X̂0) + Ffn(X̃n) + 2

n−1∑
s=1

Ffn(X̃s)

)}}
.

Notice that since we have observations on J distinct time points, for each time point we

127

Algorithm 6 Fokker Planck Process Algorithm
Require: Initialize fθn (1 ≤ n ≤ J), gω
Require: Set ϵfn as the inner loop learning rate for fθn and ϵg as the outer loop learning

rate for gω
1: for # training iterations do
2: for k steps do
3: for observed time ts in {t1, ..., tJ} do
4: Compute the generated data set X̃ts from Euler-Maruyama scheme (6.11) for

1 ≤ s ≤ J
5: Acquire data sets X̂ ts = {x̂(1)

ts , ..., x̂
(N)
ts } from real distribution p̂(·, ts) for 1 ≤

s ≤ J
6: end for
7: For each dual function fθn , compute: Fn = Ffθn (X̂ t0) + Ffθn (X̃tn) +

2
∑n−1

s=1 Ffθn (X̃ts)
8: Update each fθn by:

θn ← θn + ϵfn∇θ

(
1
N

∑N
k=1 fθn(x̂

(k)
tn)− 1

N

∑N
k=1 fθn(x̂

(k)
t0)− ∆t

2
Fn
)

9: end for
10: Update gω by:

ω ← ω − ϵg∇ω

(∑J
n=1

(
1
N
fθn(x̂

(k)
tn)− 1

N
fθn(x̂

(k)
t0)− ∆t

2
Fn
))

11: end for

compute Wasserstein distance with the help of the dual function fn, thus we involve J test

functions in total. In our actual implementation, we will choose these dual functions as

neural networks. We call our algorithm Fokker Planck Process(FPP), the entire procedure

is shown in Algorithm 6. We also provide an error analysis in Appendix.

Remark 6. When the time interval ∆t = tj − ti between two observations at Xi and

Xj(i < j) is large. In order to guarantee the accuracy of X̃s, we can separate ∆t into

multiple smaller intervals, namely, ∆t = Kh, where K the number of intervals and h is

the interval length. Then we evaluate (6.11) on the finer meshes to obtain more accurate

samples {x̃(1)s , ..., x̃
(N)
s } at specific time s.

Remark 7. The drift function recovered by our framework may not be unique, see Section

4 for more details.

128

6.3 Experiments

In this section, we evaluate our model on various synthetic and realistic data sets by em-

ploying Algorithm 6. We generate samples x̃t and make all predictions base on Equation

(6.5) starting with x̂0.

Baselines: We compare our model with two recently proposed methods. One model

(NN) adopts recurrent neural network(RNN) to learn dynamics directly from observations

of aggregate data [114]. The other one model (LEGEND) learns dynamics in a HMM

framework [115]. The baselines in our experiments are two typical representatives that

have state-of-the-art performance on learning aggregate data. Furthermore, though we sim-

ulate the evolving process of the data as a SDE, which is on the same track with NN, as

mentioned before, NN trains its RNN via optimizing Sinkhorn distance [133], our model

starts with a view of weak form of PDE, focuses more on WGAN framework and easier

computation.

6.3.1 Synthetic Data

We first evaluate our model on three synthetic data sets which are generated by three artifi-

cial dynamics: Synthetic-1, Synthetic-2 and Synthetic-3.

Experiment Setup: In all synthetic data experiments, we set the drift term g and the

discriminator f as two simple fully-connected networks. The g network has one hidden

layer and the f network has three hidden layers. Each layer has 32 nodes for both g and

f . The only one activation function we choose is Tanh. Notice that since we need to

calculate ∂2f
∂x2

, the activation function of f must be twice differentiable to avoid loss of

weight gradient. In terms of training process, we use the Adam optimizer [55] with learning

rate 10−4. Furthermore, we use spectral normalization to realize ∥∇f∥ ≤ 1[34]. We

initialize the weights with Xavier initialization[99] and train our model by Algorithm 1.

We set the data size at each time point is N = 2000, treat 1200 data points as the training

129

set and the other 800 data points as the test set, ∆t is set to be 0.01.

Synthetic-1:

x̂0 ∼ N (0,Σ0),

x̂t+∆t = x̂t − (Ax̂t + b)∆t+ σ
√
∆tN (0, 1).

In Synthetic-1, the data is following a simple linear dynamic, we set A = [(4, 0), (0, 1)], b =

[−12, −12]T , σ = 1, Σ0 = I2. We utilize true x0, x20 and x200 in training process and

predict the distributions of x10, x50 and x500. As visualized in Figure 6.2, from (a) to

(c), the generated data(blue) covers all areas of ground truth(red), the original Gaussian

distribution converges to the target Gaussian distribution as we expect.

Synthetic-2:

x̂0 ∼ N (0,Σ0), x̂t+∆t = x̂t −G∆t+ σ
√
∆tN (0, 1),

where G is given as following.

Definition of G in Synthetic-2

G11 =
1

σ1

N1

N1 +N2

(x̂1t − µ11) +
1

σ2

N2

N1 +N2

(x̂1t − µ21)

G22 =
1

σ1

N1

N1 +N2

(x̂2t − µ12) +
1

σ2

N2

N1 +N2

(x̂2t − µ22)

N1 =
1√
2πσ1

exp

(
−(x̂1t − µ11)

2

2σ2
1

− (x̂1t − µ12)
2

2σ2
1

)
N2 =

1√
2πσ2

exp

(
−(x̂2t − µ21)

2

2σ2
2

− (x̂2t − µ22)
2

2σ2
2

)

In Synthetic-2, the data is following a complex nonlinear dynamic. We let σ = σ1 = σ2 =

4, µ1 = [12, 15]T and µ2 = [−15,−15]T (defined in Appendix). We utilize true x10, x40 and

x80 in training process and predict x30, x50 and x100. The results are shown in Figure 6.2,

from (d) to (f), the generated data(blue) covers all areas of ground truth(red), generated

130

samples split and converge to a mixed Gaussian as the ground truth suggests.

Synthetic-3 (Nonlinear Van der Pol oscillator [134]:)

x̂0 ∼ N (0,Σ0),

x̂1t+∆t = x̂1t + 10

(
x̂2t −

1

3
(x̂1t)

3 + x̂1t

)
∆t+ σ

√
∆tN (0, 1),

x̂2t+∆t = x̂2t + 3(1− x̂1t)∆t+ σ
√
∆tN (0, 1).

In Synthetic-3, we let σ = 1 and utilize true x3, x7 and x20 in training process then predict

the distributions of x10, x30 and x50. As presented in Figure 6.2, from (g) to (i), the

generated data(blue) covers all areas of ground truth(red), the distributions we predict are

following the true stochastic oscillator’s pattern.

Remark 3: In Syn-2 and Syn-3, x̂it represents the i-th dimension of x̂t. We further

state that in Syn-1 and Syn-3, the training data is coming from the same x0 respectively.

In Syn-2 the training data is coming from different x0, namely, the training data x10, x40

and x80 are generated from three different sets of x0. We also consider cases in higher

dimensions: D = 6 and 10. To be more precise, we couple three 2-D dynamical systems

to create the 6-D dynamical system and five 2-D systems to create the 10-D example. We

compare our model with the two baseline models by using Wasserstein distance as error

metric for the low-dimensional (D = 2) and high-dimensional (D = 6, 10) cases. As reported

in Table 6.1, our model achieves lower Wasserstein error than the two baseline models in

all cases. Clearly all the drift functions in the synthetic data sets cause the change of the

distributions. In Discussion Section we discuss a special case when the drift term does not

change the distribution.

6.3.2 Realistic Data – RNA Sequence of Single Cell

In this section, we evaluate our model on a realistic biology data set called Single-cell

RNA-seq[135], which is typically used for learning the evolvement of cell differentiation.

131

(a) Syn-1: at 10∆t (b) Syn-1: at 50∆t (c) Syn-1: at 500∆t

(d) Syn-2: at 30∆t (e) Syn-2: at 50∆t (f) Syn-2: at 100∆t

(g) Syn-3: at 10∆t (h) Syn-3: at 30∆t (i) Syn-3: at 50∆t

Figure 6.2: Comparison of generated data(blue) and ground truth(red) of Synthetic-1((a) to
(c)), Synthetic-2((d) to (f)) and Synthetic-3((g) to (i)). In each case, it finally converges to
a stationary distribution.

The cell population begins to differentiate at day 0 (D0). Single-cell RNA-seq observations

are then sampled at day 0 (D0), day 2 (D2), day 4 (D4) and day 7 (D7). At each time point,

the expression of 24,175 genes of several hundreds cells are measured (933, 303, 683 and

798 cells on D0, D2, D4 and D7 respectively). Notice that there is only whole group’s

132

distribution but no trajectory information of each gene on different days. We pick 10 gene

markers out of 24,175 to make a 10 dimensional data set. In the first task we treat gene

expression at D0, D4 and D7 as training data to learn the hidden dynamic and predict the

distribution of gene expression at D2. In the second task we train the model with gene

expression at D0, D2 and D4, then predict the distribution of gene expression at D7. We

plot the prediction results of two out of ten markers, i.e. Mt1 and Mt2 in Figure 6.3.

Experiment Setup: We set both f and g as fully connected three-hidden-layers neural

networks, each layer has 64 nodes. The only activation function we choose is Tanh. The

other setups of neural networks and training process are the same with the ones we use

in Synthetic data. Notice that in realistic cases, ∆t and T/∆t become hyperparameters,

here we choose ∆t = 0.05, T/∆t = 35, which means the data evolves 10∆t from D0 to

D2 , then 10∆t from D2 to D4 and finally 15∆t from D4 to D7. For preprocessing, we

apply standard normalization procedures [136] to correct batch effects and use non-negative

matrix factorization to impute missing expression levels[114, 115].

Results: As shown in Table 6.1, when compared to other baselines, our model achieves

lower Wasserstein error on both Mt1 and Mt2 data, which proves that our model is capable

of learning the hidden dynamics of the two studied gene expressions. In Figure 6.3 (a) to

(d), we visualized the predicted distributions of the two genes. The distributions of Mt1

and Mt2 predicted by our model (curves in blue) are closer to the true distributions (curves

in red) on both D2 and D7. Furthermore, our model precisely indicates the correlations

between Krt8 and Krt18 on D4 and D7, as shown in Figure 6.3 (e) and (f), which also

demonstrates the effectiveness of our model since closer to the true correlation represents

better performance (more results in Appendix). In Figure 6.3 (g) and (h), we see the training

process of our model is easier with least computation time.

133

(a) D2 of Mt1 (b) D7 of Mt1

(c) D2 of Mt2 (d) D7 of Mt2

(e) Corr on D4 (f) Corr on D7

(g) W-loss of Mt1, D2 (h) W-loss of Mt1, D7

Figure 6.3: (a) to (d): The performance comparisions among different models on D2 and
D7 of Mt1 and Mt2. (e) and (f): True (red) and predicted (blue) correlations between
Mt1(x-axis) and Mt2(y-axis) on D2 (left) and D7 (right). (g) and (h): Wasserstein loss of
Mt1 on D2 and D7 vs iterations.

6.3.3 Realistic Data – Daily Trading Volume

In this section we would like to demonstrate the performance of our model in financial

area. Trading volume is the total quantity of shares or contracts traded for specified securi-

134

Table 6.1: The Wasserstein error of different models on Synthetic-1/2/3 and RNA-sequence
data sets.

Data Task Dimension NN LEGEND Ours

Syn–1

x50

2 1.37 0.44 0.05
6 4.79 2.32 0.06
10 9.13 2.89 0.10

x500

2 0.84 0.18 0.03
6 3.28 0.30 0.03
10 8.05 1.79 0.09

Syn–2

x50

2 4.72 2.84 0.02
6 6.47 5.33 0.14
10 12.58 7.21 0.22

x100

2 3.83 2.98 0.04
6 8.83 3.17 0.19
10 14.11 5.65 0.32

Syn–3

x30

2 4.13 1.29 0.08
6 6.40 3.16 0.17
10 11.76 8.53 0.25

x50

2 3.05 0.87 0.12
6 6.72 1.52 0.16
10 9.81 3.55 0.23

RNA-Mt1
D2 10 33.86 10.28 4.23
D7 10 12.69 7.21 2.92

RNA-Mt2
D2 10 31.45 13.32 4.04
D7 10 11.58 7.89 1.50

ties such as stocks, bonds, options contracts, future contracts and all types of commodities.

It can be measured on any type of security traded during a trading day or a specified time

period. In our case, daily volume of trade is measured on stocks. Predicting traded volume

is an essential component in financial research since the traded volume, as a basic compo-

nent or input of other financial algorithms, tells investors the market’s activity and liquidity.

The data set we use is the historical traded volume of the stock ”JPM”. The data covers

period from January 2018 to January 2020 and is obtained from Bloomberg. Each day

from 14:30 to 20:55, we have 1 observation every 5 minutes, totally 78 observations ev-

eryday. Our task is described as follows: we treat historical traded volume at 14:30, 14:40,

15:05, 15:20 and 16:20, namely, x0,x2,x7,x10,x22 as training data, each time point in-

135

(a) 14:35 (b) 15:15

(c) 15:35 (d) 16:15

(e) 14:35 (f) 15:15

(g) 15:35 (h) 16:15

Figure 6.4: Predictions of various models, (a) to (d): Group A: predictions of our model
with full trajectory, (e) to (h): Group B: predictions of our model without full trajectory.

cludes 730 samples. Then for next 100 days we predict traded volume at 14:35, 15:15,

15:35 and 16:15, namely, x1,x9,x13,x21. One of baselines we choose is classical rolling

means(RM) method, which predicts intraday volume of a particular time interval by the

136

average volume traded in the same interval over the past days. The other one baseline is a

kalman filter based model [137] that outperforms all available models in predicting intrady

trading volume.

Experiment Setup: Following similar setup as we did for RNA data set, we utilize

the same structures for neural networks here. For hyperparameters we set ∆t = 0.02,

T/∆t = 22, it takes one single ∆t from xt to xt+1. For preprocessing, we rescale data

by taking natural logarithm of trading volume, which is a common way in trading volume

research. We conduct experiments on two groups(A&B) to show advantages of our method,

for group A we train our model on complete data set, in this case the data has full trajectory;

for group B we manually delete some trajectories of the data, for instance, we randomly

kick out some samples of x0,x2,x7,x10,x22 then follow the same procedures of training

and prediction.

Results: We present prediction results in Figure 6.4. As shown in first four figures,

RM(yellow) fails to capture the regularities of traded volume in time series, kalman filter

based model(green) fails to capture noise information and make reasonable predictions, our

model(blue) is able to seize the movements of traded volume and yield better predictions.

With full trajectory, prediction made by RM is almost a straight line, the prediction value

bouncing up and down within a very small range, thus this model cannot capture the volume

movements, namely, regularities existing in the time series; prediction made by the Kalman

filter based model captures the regularities better than RM model, but it fails to deal with

noise component existing in the time series, thus some predictions are out of a reasonable

range. Traded volume predicted by our model is closer to the real case, moreover, our

model captures regularities meanwhile gives stable predictions. Furthermore, without full

trajectory, Kalman filter based model fails to be applied here and RM model still fails to

capture the regularities, we randomly drop half of the training samples and display predic-

tions made by our model in last four figures of Figure 6.4, we see our model still works

well.

137

6.4 Discussions

In this section we discuss the limitations and extension of our model.

The challenge for non-uniqueness: Mathematically it is impossible to recover the

exact drift term of an SDE if we are only given the information of density evolution on

certain time intervals, because there might be infinitely many drift functions to induce the

same density evolution. More precisely, suppose p(x, t) solves FPE (6.1), consider

0 = −
D∑
i=1

∂

∂xi
(ui(x, t)p(x, t)) +

σ2

2

D∑
i=1

∂2

∂x2i
p(x, t).

(a) True vector field (b) Learned vector field

Figure 6.5: Results of learning curl field

One can prove, under mild assumptions, that there may be infinitely many vector fields

u(x, t) = (u1(x, t), ..., uD(x, t)) solving above equation. Therefore the solution to FPE

(6.1) with drift term g(x, t) + u(x, t) is still p(x, t), i.e. the vector field u(x, t) never

affects the density evolution of the dynamic. This illustrates that given the density evolution

p(·, t), the solution for drift term is not necessarily unique. This clearly poses an essential

difficulty of determining the exact drift term from the density. In this study, the main goal

is to recover the entire density evolution (i.e. interpolate the density between observation

time points) and predict how the density evolves in the future. As a result, although we

138

(a) Prediction at t10 (b) Prediction at t30 (c) Prediction at t50

Figure 6.6: Results of learning diffusion function

cannot always acquire the exact drift term of the dynamic, we can still accurately recover

and predict the density evolution. This is still meaningful and may find its application in

various scientific domains.

Curl field: The drift function we showed in the synthetic experiments will apparently

cause the evolution of the distribution. If the drift function is a curl, namely g = ∇×F , then

the distribution does not change, under this situation we cannot learn the density evolution

since our algorithm depends on the change of the whole distribution. To demonstrate this

point of view, we simulate a curl field (y,−x) induced by A = [0, 10;−10, 0] on a Gaussian

distribution that mean= (0, 0), covariance= [2, 0; 0, 2]. Here we set noise part as 0. As

shown in Figure 6.5, true and learned vector fields are indicated in (a) and (b) respectively.

We see that the learned vectors are all ”points”, meaning the length of the vectors is ”0”,

the algorithm fails to recover true vector field.

Learning diffusion function: Our framework also works for learning unknown dif-

fusion function in the Itô process. As an extension of our work, if we approximate the

diffusion function with a neural network ση (with parameters η), we revise the operator F

139

as:

Ff (X) =
1

N

N∑
k=1

(
D∑
i=1

giω(x
(k))

∂

∂xi
f(x(k))

+
D∑
i=1

(D∑
j=1

1

2
(σijη (x

(k)))2
)
∂2

∂x2i
f(x(k))

)
,

which can be derived by the same technique we used to derive Proposition 6.2.1.

We test this formulation on a synthetic data set, where we only consider diffusion influ-

ence, namely, drift term in Equation 6.2.1 is ignored. We set the ground truth of diffusion

coefficient as σ = [(1, 0), (0, 2)]. We design the neural network as a simple one fully

connected layer with 32 nodes, then show our result in Figure 6.6, we see that the predic-

tions(blue) follow the same patterns as the ground truth(red) does.

Future directions It worth mentioning that our proposed algorithm 6 requires the gra-

dient with respect to the parameter ω of drift term gω (i.e. line 10 of Algorithm 6). Notice

that each sample x̃(k)tn is computed from (6.11) for n steps, thus each sample x̃(k)tn can be

treated as n compositions of drift term gω, which may lead to more expensive computation.

However, we cann avoid direct computation of gradient∇ω by applying the adjoint method

with Fokker-Planck equation (6.1) as the constraint [138, 139]. This is one of our future

research directions. Moreover, our model can also readily handle high dimensional cases

by leveraging deep neural networks. Providing more numerical analysis such as compare

trapezoidal rule and Runge-Kutta method in our scheme, as well as exploring super high

dimensional applications are also appealing future directions.

6.5 More experiments and proofs

6.5.1 RNA-sequence

140

(a) D2 of Mt1 (b) D7 of Mt1 (c) D2 of Mt2 (d) D7 of Mt2

Figure 6.7: The performance comparisions among different models on D2 and D7 of Tdh
and Gsn.

Table 6.2: The Wasserstein error of different models on Supplementary RNA-sequence
data sets.

Data Task Dimension NN LEGEND Ours

RNA-Tdh
D2 10 16.28 5.75 2.15
D7 10 28.19 22.49 1.03

RNA-Gsn
D2 10 34.94 10.77 3.31
D7 10 15.74 10.42 2.07

6.5.2 Daily Trading Volume

(a) 14:35 (b) 15:15 (c) 15:35 (d) 16:15

(e) 14:35 (f) 15:15 (g) 15:35 (h) 16:15

Figure 6.8: (a) to (d): TSLA stock. (e) to (h): GOOGL stock. We predictions of traded
volume in next 100 days, RM(yellow) fails to capture the regularities of traded volume in
time series, kalman filter based model(green) fails to capture noise information and make
reasonable predictions, our model(blue) is able to seize the movements of traded volume
and yield better predictions.

141

Table 6.3: The Mean absolute percentage error(MAPE) of different models on Daily Trad-
ing Volume data sets.

Stock Time RM KF Ours

JPM

14:35 0.52 0.28 0.01
15:15 0.54 0.36 0.04
15:35 0.51 0.42 0.06
16:15 0.52 0.49 0.12

TSLA

14:35 0.53 0.31 0.02
15:15 0.55 0.36 0.03
15:35 0.53 0.39 0.08
16:15 0.52 0.38 0.14

GOOGL

14:35 0.49 0.35 0.01
15:15 0.51 0.38 0.03
15:35 0.53 0.44 0.05
16:15 0.51 0.42 0.11

6.6 Error Analysis

In this section, we provide an error analysis of our model. Suppose the hidden dynamics is

driven by gr(x), the dynamics that we learn from data is gf (x), then original Itô process,

Euler processes computed by true gr and estimated gf are

dX = g(X)dt+ σdW ,

xrt+∆t = xrt + gr(x
r
t)∆t+ σ

√
∆tN (0, 1),

xft+∆t = xft + gf (x
f
t)∆t+ σ

√
∆tN (0, 1),

where X is the ground truth, xr is computed by true gr and xf is computed by estimated gf .

Estimating the error between original Itô process and its Euler form can be very complex,

hence we cite the conclusion from [140] and focus more on the error between original form

and our model.

Lemma 6.6.1. With the same initial Xt0 = xt0 = x0, if there is a global Lipschitz constant

142

K which satisfies

|g(x, t)− g(y, t)| ≤ K|x− y|,

then after n steps, the expectation error between Itô process xtn and Euler forward process

xrtn is

E|xtn − xrtn| ≤ K

(
1 + E|X0|2

)1/2

∆t.

Lemma 6.6.1 illustrates that the expectation error between original Itô process and its

Euler form is not related to total steps n but time step ∆t. For more details of proof process

of Lemma 6.6.1, please see first two chapters in reference book [140].

Proposition 6.6.1 (Error estimation). With the same initial x0, suppose the generalization

error of neural network g is ε and existence of global Lipschitz constant K

|g(x)− g(y)| ≤ K|x− y|,

then after n steps with step size ∆t = T/n, the expectation error between Itô process xtn

and approximated forward process xftn is bounded by

E|xtn − xftn| ≤
ε

K
(eKT − 1) +K(1 + E|x0|2)1/2∆t. (6.16)

143

Proof. With initial X and first one-step iteration

xrt0 = xt0 , xft0 = xt0 , (6.17)

xrt1 = xrt0 + gr(x
r
t0
)∆t+ σ

√
∆tN (0, 1), (6.18)

xft1 = xft0 + gf (x
f
t0)∆t+ σ

√
∆tN (0, 1). (6.19)

Then we have

E|xrt0 − xft0| = E|xt0 − xt0| = 0, (6.20)

E|xrt1 − xft1| = E|xrt0 − xft0 + gr(x
r
t0
)∆t− gf (xft0)∆t+ σ

√
∆tN (0, 1)− σ

√
∆tN (0, 1)|

≤ E|xrt0 − xft0|+ E|gr(xrt0)− gf (x
f
t0)|∆t

= E|gr(xrt0)− gf (x
r
t0
) + gf (x

r
t0
)− gf (xft0)|∆t

≤ E|gr(xrt0)− gf (x
r
t0
)|∆t+ E|gf (xrt0)− gf (x

f
t0)|∆t

≤ ε∆t+ E|gf (xrt0)− gf (x
f
t0)|∆t

= ε∆t+ E|g′f (x
ξ
t0)(x

r
t0
− xft0)|∆t (xξt0 ∈ [xrt0 ,x

f
t0])

≤ ε∆t+KE|xrt0 − xft0|∆t

= ε∆t. (6.21)

Follow the same pattern we have


xrt2 = xrt1 + gr(x

r
t1
)∆t+ σ

√
∆tN (0, 1),

xft2 = xft1 + gf (x
f
t1)∆t+ σ

√
∆tN (0, 1),

(6.22)

...
xrtn = xrtn−1

+ gr(x
r
tn−1

)∆t+ σ
√
∆tN (0, 1),

xftn = xftn−1
+ gf (x

f
tn−1

)∆t+ σ
√
∆tN (0, 1).

(6.23)

144

Which leads to:

E|xrt2 − xft2 | = E|xrt1 − xft1 + gr(x
r
t1
)∆t− gf (xft1)∆t+ σ

√
∆tN (0, 1)− σ

√
∆tN (0, 1)|

≤ E|xrt1 − xft1|+ E|gr(xrt1)− gf (x
f
t1)|∆t

≤ E|xrt1 − xft1|+ ε∆t+KE|xrt1 − xft1|∆t

≤ (1 +K∆t)ε∆t+ ε∆t, (6.24)

...

E|xrtn − xftn| ≤ ε∆t
n−1∑
i=0

(1 +K∆t)i. (6.25)

Now let S =
∑n−1

i=0 (1 +K∆t)i, then consider followings

S(K∆t) = S(1 +K∆t)− S

=
n∑
i=1

(1 +K∆t)i −
n−1∑
i=0

(1 +K∆t)i

= (1 +K∆t)n − 1

= (1 +K
T

n
)n − 1

≤ eKT − 1. (6.26)

Finally we have:

E|xrtn − xftn| ≤
ε

K
(eKT − 1), (6.27)

E|xtn − xftn| ≤
ε

K
(eKT − 1) +K(1 + E|x0|2)1/2∆t. (6.28)

Proposition 6.6.1 implies that besides time step size ∆t, our expectation error interacts

145

with three factors, generalization error, Lipschitz constant of g and total time length. In our

experiments, we find the best way to decrease the expectation error is reducing the value of

K and n.

6.7 Learning Data-driven Hamiltonian System

Next we also want to apply our method on learning data-driven Hamiltonian system. A

Hamiltonian system refers to a dynamical system governed by Hamilton’s ordinary differ-

ential equations (ODEs). The ODEs that express Hamiltonian dynamics are famous for

both their mathematical elegance and their challenges to numerical integration techniques.

Symplectic integrators have been developed to make the conserved energy in Hamiltonian

systems, thereby usually being more stable and structure-preserving than non-symplectic

ones [141]. Popular symplectic ones include symplectic-Euler and Stömer-Verlet [141,

142], which also be our integrators in this chapter.

Hamiltonian systems exist vastly in our world, one simple case is mass-spring system

and one example with more complexity is planetary movement of three bodies. The beauti-

ful mathematical properties and behaviours Hamiltonian systems make themselves popular

and a lot of researchers have built up several ways to study the systems in data-driven

frameworks. Several classical works include [143, 144, 145, 146, 147, 148, 149] where

researchers analyze latent differential equations in time series. Learning vector field of

Hamiltonian is one of efficient ways. [150, 151, 152, 153, 154, 155, 156] learn the vector

field through regression, [157, 158, 159, 160] learn the vector field via neural networks

and [161] learn through Gaussian process. Some machine learning based models include

[162, 163, 164, 165, 166], where popular frameworks such as RNN, LSTM, CNN and

transformer are utilized.

Learning quantities that produces the Hamiltonian vector field is another way to ana-

lyze the system. Typical works include [167], where researchers proposes to assume the

Hamiltonian functionH(q; p) as a multilayer neural network. The partial derivatives of this

146

network are then trained to match the time derivatives ṗ and q̇ observed along the trajec-

tories in state space. [168] trains neural networks to approximate the total energy function

for a pendulum. [169] learns the Hamiltonian by matching its symplectic integration with

the training sequences, and its prediction is then given by the symplectic map, which is the

symplectic integration of the learned Hamiltonian. [170] represents the symplectic map by

a neural-network-approximated generating function. [171] constructs specialized neural

networks, which represent only symplectic maps, to directly approximate the latent evolu-

tion map. Other works include [172, 173, 174, 175, 176] also cover mechanical problems

modeled by Hamiltonian systems.

Most of existing data-driven works rely on the trajectory level data, where each in-

dividual’s information and correspondence are known, thus L2 based objective function

is widely used. In our work, we explore the possibility to learn Hamiltonian within an

aggregate data setting, where we do not assume each individual’s full trajectory and corre-

spondence. Specifically, we learn Hamiltonians by minimizing accumulating Wasserstein

distance along time series observations, which is smiliar to the work of [177], where the

techniques are used to infer the drift term in stochastic differential equations. Notice that

[167, 169] learn the Hamiltonian that generates the vector field directly, [170] approximates

generating function that corresponds to the symplectic evolution map, which can also be

viewed as an ”implicit learning” of the Hamiltonian. Though our method aims at learning

the Hamiltonian explicitly, our problem is defined within an aggregate data setting. In con-

clusion, in this work we develop a method to directly study Hamiltonians in an aggregate

data setting, we also show the effectiveness of our model through two experiments.

147

6.7.1 Hamiltonian System

Similar to the SDE system we introduced before, within settings of Hamiltonian system,

we consider

dX = J−1∇H0(X)dt+
m∑
i=1

J−1∇Hi(X) ◦ dW i
t , X(0) = x0, (6.29)

where X ∈ R2d, J =

 0 Id×d

−Id×d 0

 , H0 is the Hamiltonian function of the deterministic

part, Hi, i = 1, · · · ,m, is the Hamiltonian function of the stochastic part.

Denote X = (P,Q), where P represents velocity and Q represents position of individ-

uals. Then the above system can be written as

dP = −∂H0

∂Q
(P (t), Q(t))dt−

d∑
i=1

∂Hi

∂Q
(P (t), Q(t)) ◦ dW i

t ,

dQ =
∂H0

∂P
(P (t), Q(t))dt+

d∑
i=1

∂Hi

∂P
(P (t), Q(t)) ◦ dW i

t . (6.30)

For instance, if we choose H0 = 1
2
|P |2 and Hi = 0, i = 1, · · · ,m, above system

becomes

dP = 0, dQ = P.

6.7.2 Algorithm

Suppose individuals evolves following the H0 and H1, without trajectory information, we

only have aggregate level data, thus we need to derive the dynamics of particles in density

level.

First of all we rewrite the stochastic Hamiltonian system 6.30 in its equivalent Itô form,

148

i.e,

dX(t) = J−1∇H0(X(t))dt+
m∑
i=1

J−1∇Hi(X(t))dW i
t , (6.31)

+
1

2

m∑
i=1

J−1∇2Hi(X(t))J−1∇Hi(X(t))dt. (6.32)

Then the Vlasov equation of (6.29) reads

∂ρ(X, t)

∂t
= −∇ · (ρ(X, t)J−1∇H0(X))− 1

2

m∑
i=1

∇ · [(J−1∇2Hi(X))(J−1∇Hi(X)ρ(X, t))]

+
1

2

m∑
i=1

∇2 · [(J−1∇Hi(X))(J−1∇Hi(X))⊤ρ(X, t)]

ρ(X, 0) = p(X), (6.33)

which can be rewritten as

∂ρ(X, t)

∂t
= −

2d∑
k=1

∂

∂xi
[(J−1∇H0(X))kρ(X, t)] (6.34)

+
1

2

m∑
i=1

2d∑
i=1

∂

∂xi

{
(J−1∇Hi(X))k

2d∑
j=1

∂

∂xj
[J−1∇Hi(X))jρ(X, t)]

}
. (6.35)

The weak form of above density evolution is

∫
X

∂ρ(X, t)

∂s
f(X)dX =

∫
X

J−1∇H0(X)ρ(X, t)
∂

∂X
f(X)dX

+
1

2

m∑
i=1

2d∑
i=1

{
(J−1∇Hi(X))k

2d∑
j=1

∂

∂xj
[J−1∇Hi(X))jρ(X, t)]

} ∂

∂xi
f(X)dX. (6.36)

In this chapter we only discuss the non-noise version of Hamiltonian system. Thus if

we ignore the noise part, we simplify 6.36 as

∫
X

∂ρ(X, t)

∂s
f(X)dX =

∫
X

J−1∇H0(X)ρ(X, t)
∂

∂X
f(X)dX. (6.37)

149

Moreover, when given true ρ̂t−1, the estimated ρ̃t is

ρ̃t = ρt−1 +

∫ t

t−1

∂ρ

∂s
ds. (6.38)

Finally the Wasserstein distance between ρ̂t and ρ̃t is

W (ρt, ρ̃t) = sup
f,||∇f ||≤1

EX̂∼ρ̂t{f(X̂)} − EX̃∼ρ̃t{f(X̃)}

= sup
f,||∇f ||≤1

∫
X

f(X)ρ̂tdX −
∫
X

f(X)ρ̃tdX

= sup
f,||∇f ||≤1

∫
X

f(X)ρ̂tdX −
∫
X

f(X)(ρ̂t−1 +

∫ t

t−1

∂ρ

∂s
ds)dX

= sup
f,||∇f ||≤1

∫
X

f(X)ρ̂tdX −
∫
X

f(X)ρ̂t−1dX −
∫
X

∫ t

t−1

f(X)
∂ρ

∂s
dsdX

= sup
f,||∇f ||≤1

∫
X

f(X)ρ̂tdX −
∫
X

f(X)ρ̂t−1dX

−
∫ t

t−1

∫
X

J−1∇H0(X)ρ(X, t)
∂

∂X
f(X)dXds

= sup
f,||∇f ||≤1

EX̂∼ρ̂t{f(X)} − EX̂∼ρ̂t−1
{f(X)}

−
∫ t

t−1

EX∼ρs{
2d∑
i=1

J−1∇H0(X)
∂

∂X
f(X)}ds (6.39)

Through experiments we found that computing last term in above equation 6.39 con-

sumes long computation time. We then propose another method to evaluate the Wasserstein

distance between generated particles and observed particles as

W (ρ̂t, ρ̃t) = sup
f,||∇f ||≤1

EX̂∼ρ̂t{f(X̂)} − EX̃∼ρ̃t{f(X̃)},

X̃(t) = X̂(t− 1) + J−1∇H0(X̂(t− 1))∆t. (6.40)

It can be proved that 6.39 and 6.40 are equivalent to each other. Till this end we con-

150

clude our objective function as

min
Hω

{
J∑
n=1

sup
∥∇fn∥≤1

{
1

N

N∑
k=1

fn(x̃
(k)
tn)− 1

N

N∑
k=1

fn(x̂
(k)
tn)

}
+ F

}
, (6.41a)

F =
J∑
n=1

((
E
[
Hω(x̃

(k)
tn)
]
− E

[
Hω(x̂

(k)
tn)
])2

+
(
E
[
Hω(x̃

(k)
tn)
]
− E

[
Hω(x̂

(k)
t0)
])2) (6.41b)

dX(t) = J−1∇H0(X(t))dt, (6.41c)

X̂(0) = X0, (6.41d)

where 6.41b is due to the conserved energy in the Hamiltonian system, we add this

constraint to facilitate our training process. We set H0 in 6.40 as a neural network Hω,

as well as f for the purpose of evaluating Wasserstein distance. Our algorithm can be

concluded as Algorithm 7.

6.7.3 Experiments

In this section we test our algorithm on two experiments. We generate data by Symplectic

Euler method [14] as

q(t+ h) = q(t) + h∇Hp(q(t), p(t)),

p(t+ h) = p(t)− h∇Hq(q(t+ h), p(t)). (6.42)

As for the Hamiltonian system we are going to learn, we start with a simple quadratic

system which reads

H0(p, q) =
1

2
(p21 + p22) +

1

2
(q21 + q22),

p(0) ∼ N (0, 1), q(0) ∼ N (0, 1). (6.43)

151

Algorithm 7 Learning Hamiltonian System
Require: Initialize fθn (1 ≤ n ≤ J), gω
Require: Set ϵfn as the inner loop learning rate for fθn and ϵg as the outer loop learning

rate for Hω

1: for # training iterations do
2: for k steps do
3: for observed time ts in {t1, ..., tJ} do
4: Compute the generated data set X̃ts from 6.41c and 6.41d for 1 ≤ s ≤ J

5: Acquire data sets X̂ ts = {x̂(1)
ts , ..., x̂

(N)
ts } from real distribution p̂(·, ts) for 1 ≤

s ≤ J
6: end for
7: For each dual function fθn , compute: 1

N

∑N
k=1 fθn(x̃

(k)
tn)− 1

N

N∑
k=1

fθn(x̂
(k)
tn)

8: Update each fθn by:

θn ← θn + ϵfn∇θ

(
1
N

∑N
k=1 fθn(x̂

(k)
tn)− 1

N

∑N
k=1 fθn(x̃

(k)
t0)

)
9: end for

10: Compute F =
∑J

n=1

((
E
[
Hω(x̃

(k)
tn)
]
− E

[
Hω(x̂

(k)
tn)
])2

11: +
(
E
[
Hω(x̃

(k)
tn)
]
− E

[
Hω(x̂

(k)
t0)
])2)

12: Update Hω by:

ω ← ω − ϵH∇ω

(∑J
n=1

(
1
N
fθn(x̂

(k)
tn)− 1

N
fθn(x̂

(k)
t0)
)
+ F

)
13: end for

We set Hω as a Resnet [178] with 3 hidden layers and each layer has 36 nodes, we

set the discriminator fn as the same neural networks we defined in learning SDE earlier

this chapter. The training set contains observations at 8 different time points, there will

be 50∆t between each time point. The number of points at each time point we observe is

1000. We train the networks on first 400∆t interval and test the performance on second

400∆t interval. ∆ is set to be 0.1. The result of q1 versus q2 is shown in Figure 6.9 and p1

versus p2 is shown in Figure 6.10. We see the particles generated (blue) by the learned Hω

almost cover all ground truth area (red).

For the second experiment we study the Lotka–Volterra Model, which models the pop-

152

(a) 420∆t (b) 440∆t (c) 460∆t (d) 480∆t (e) 500∆t

(f) 520∆t (g) 540∆t (h) 560∆t (i) 580∆t (j) 600∆t

(k) 620∆t (l) 640∆t (m) 660∆t (n) 680∆t (o) 700∆t

(p) 720∆t (q) 740∆t (r) 760∆t (s) 780∆t (t) 800∆t

Figure 6.9: Comparison of generated q (blue) and ground truth of q (red) from 420∆t to
800∆t, x-axis:q1, y-axis:q2.

ulations of predators and prey as they interact with each other. The system reads

H0(p, q) = ap− bep + cq − deq,

p(0) ∼ N (1, 0.5), q(0) ∼ N (1, 0.5). (6.44)

We set Hω and f the same structures in first experiment. The training set contains

observations at 8 different time points, there will be 20∆t between each time point. The

153

(a) 420∆t (b) 440∆t (c) 460∆t (d) 480∆t (e) 500∆t

(f) 520∆t (g) 540∆t (h) 560∆t (i) 580∆t (j) 600∆t

(k) 620∆t (l) 640∆t (m) 660∆t (n) 680∆t (o) 700∆t

(p) 720∆t (q) 740∆t (r) 760∆t (s) 780∆t (t) 800∆t

Figure 6.10: Comparison of generated p (blue) and ground truth of p (red) from 420∆t to
800∆t, x-axis:p1, y-axis:p2.

number of points at each time point we observe is 1000. We train the networks on first

100∆t interval and test the performance on total 800∆t length. ∆ is set to be 0.1. The

result of q versus p is shown in Figure 6.11. We see the particles generated (blue) by the

learned Hω almost cover all ground truth area (red).

Remark 8. We would like to mention that if the distribution of q or p doesn’t change along

time, then our distribution based model will not work since W (ρ̂0, ρ̂t) will be very small

for any time point t. Thus given x̂0, ∇H = 0 will give small discrepancy between the

154

(a) 100∆t (b) 200∆t (c) 300∆t (d) 400∆t

(e) 500∆t (f) 600∆t (g) 700∆t

s
(h) 800∆t

Figure 6.11: Comparison of generated q − p (blue) and ground truth of q − p (red) from
100∆t to 800∆t, x-axis:q, y-axis:p.

generated data x̃0 and the ground truth x̂0.

6.8 Conclusion

In this chapter, we formulate a novel method to recover the hidden dynamics from aggregate

data. In particular, our work shows one can simulate the evolving process of aggregate

data as an Itô process, in order to investigate aggregate data, we derive a new model that

employs the weak form of FPE as well as the framework of WGAN. Furthermore, we

prove the theoretical guarantees of the error bound of our model. Finally we demonstrate

our model through experiments on three synthetic data sets and two real-world data sets. As

an extension of this method, we apply our model onto learning Hamiltonian system under

aggregate data setting. We parametrize Hamiltonian as a neural network and developed the

objective function to study the system. We also prove our method on two synthetic data

sets.

155

CHAPTER 7

OPTIMAL DENSITY CONTROL

7.1 Introduction

Optimal control problems have been studied in a lot of areas in recent years. Typical

individual-level control framework aims to control individuals precisely, the number of

agents to be controlled is small. As for density control problems, the densities are usually

known in advance, which can be hardly constrained in realities, especially when surround-

ing environment is complex. In this chapter, we provide an idea to parametrize the control

as a neural network, as well as a vector field, to realize density control. Our work can

be concluded as: 1) Review most recent popular optimal control frameworks. 2) Design

a data-driven model to learn the optimal density control strategy U(x) to drive one dis-

tribution to another distribution in sample level. 3) We also apply our model on realistic

application, for example path planning of underwater glider. In an optimal control prob-

lem, we find a control u(t) to steer agents from x(0) to the neighbor of x(T). The common

setting of optimal control problem reads


dx = f(x(t), u(t))dt,

x(0) = x0,

(7.1)

and the reward(cost) function that needs to be maximized(minimized) is

L(u(·)) =
∫ T

0

r(x(t), u(t))dt+ g(x(T)), (7.2)

where g(x) is the terminal reward(cost) function.

Accordingly, if we add a Wiener processWt, then it comes to stochastic optimal control

156

which reads 
dX = F (X(t), U(t))dt+ σdWt,

X(0) = X0,

(7.3)

and the reward (cost) function that needs to be maximized (minimized) is in an expectation

form:

L(u(·)) = E

{∫ T

0

r(X(t), U(t))dt+ g(X(T))

}
, (7.4)

Above two basic forms are open-loop control problems, if we write control U(t) as

U(x, t), then it comes to the feedback control problem, which falls into closed-loop con-

trol. Moreover, recent research leverages optimal transport and provides a density control

framework: 
dX(t) = F (B(X(t), t), G(X(t)))dt+ σdWt,

X(0) ∼ ρ0, X(T) ∼ ρ1,

(7.5)

and minimize

L(B(·)) = E

{∫ T

0

1

2
||B(X(t), t)||2 + g(X(t)) dt

}
, (7.6)

Furthermore, one formulation of optimal density control [11, 12] reads

min
U
L(U) = E

{∫ 1

0

1

2σ
||U(X, t)||2dt

}
,

subject to: dXt = Udt+
√
σdWt,

X0 ∼ ρ0(x), X1 ∼ ρ1(x), (7.7)

where the target is to minimize the total control energy and the particles evolve in a stochas-

157

tic dynamic with the control U(x). If we add an extra flow field V (xt, t) to the control, the

formulation comes to

min
U
L(U) = E

{∫ 1

0

1

2σ
||U(X, t)||2dt

}
,

subject to: dXt = (V (Xt, t) + U)dt+
√
σdWt,

X0 ∼ ρ0, X1 ∼ ρ1. (7.8)

Above problems can also be rewritten as a density based form:

min
U,ρ

L(U) =

∫
X

∫ 1

0

1

2
||U(X, t)||2ρ(X, t)dtdX,

subject to:
∂ρ

∂t
+∇ · (Uρ)− σ

2
∆ρ = 0,

ρ(0, X) = ρ0, ρ(1, X) = ρ1. (7.9)

Generally, in the control problems we aim to minimize control energy, meanwhile the

agents follow various dynamics, either in particle level or density level. The work [179] de-

signs velocity field to make swarms density converges to the desired/commanded density

distribution. [180] presents a density control by improving Smoothed Particle Hydrody-

namic (SPH) [181] method with collision free condition, where one defines the density of

a robot as the weighted sum of distances to its nearby robots within a certain range. [182]

proposes a data-driven approach to learn the control by estimating Koopman operators.

[183] provides a control strategy to steer the state from an initial distribution to a terminal

one with specified mean and covariance, which is also called nonlinear covariance control.

For other more general works we refer to [11, 12, 184].

We would like to point out that due to the popularity of optimal transport in recent years,

several works combining Wasserstein metric and optimal control have been developed. For

instance, [185] develops Wasserstein proximal algorithms to solve density control prob-

lem, where a nonlinear drift term is considered. [186] discusses optimality conditions for

158

optimal control problems in Wasserstein spaces. [187] studies a Wasserstein based robust

control to resolve the issue that uncertain variables is unavailable. [188] proposes a novel

model-predictive control (MPC) method for limiting the risk of unsafety when the dis-

tribution of the obstacles’ is set to be within an ambiguity set which is measured by the

Wasserstein metric. [189] sets terminal cost as Wasserstein distance and find the parame-

ters of normalizing flow [190] by minimizing the terminal cost. [191] presents primal-dual

formulation of OT control problem with existence proof and efficient numerical method, a

similar method can also be found in [192] where the problem is solved by a Mean Field

Game (MFG) approach. [193] calculates the individual robot trajectories by alternating

two gradient flows that involve an attractive potential, a repelling function, and a process of

intermittent diffusion,, in which way a large group of robots are employed to accomplish

the task of shape formation.

Plenty of research of optimal control is widely applied in the domain of robotics, for

a general introduction we refer to [194]. [195] presents the work of using reinforcement

learning to control multi-robot system. [196, 197, 198] carefully designed an objective

function to minimize the control energy, L2 based difference between initial and target

positions, meanwhile keeping collision-free conditions, notice that [198] also parametrizes

the control as a neural network.

There are several common features of above works, the first point is that L2 loss

is always picked as a priority to evaluate the difference between initial and final loca-

tions. But L2 loss is hard to be used in an aggregate setting. Second point is that even

if some distribution-level metric such as Wasserstein distance is used, the target densities

are already explicitly known, and Wasserstein distance is evaluated within settings of low-

dimensional and small-scale of individuals. In this chapter, our goal is designing a model

that can handle both high-dimensional and large-scale aggregate data in samples level by

leveraging the application of neural networks.

159

7.2 Methodology

We parametrize the control as a neural network, when number of individuals is small, we

train the control by minimizing the Chamfer distance. And when number of individuals are

getting larger, we train the control by minimizing the Wasserstein distance.

If the number of agents (robots) K is moderate (no more than hundreds), then it is

tractable to design control individually. For simplicity, suppose Xi(t), U(X) ∈ R2 for

every time t. Let X̂i be the destination locations. Then the optimal control problem is

min
U
L(U) :=

∫ T

0

r(X(t), U(t))︸ ︷︷ ︸
running cost

dt+D(X(T), X̂)︸ ︷︷ ︸
terminal cost

, (7.10)

where X ′
i(t) = U(Xi) for 0 ≤ t ≤ T and X := (X1; . . . ;XK) ∈ RK×2 (a matrix with K

rows). Here the running cost is

r(X(t), U(X)) =
K∑
i=1

∑
j ̸=i

d(∥Xi(t)−Xj(t)∥) +
K∑
i=1

∥U(Xi)∥2, (7.11)

for penalty function d we use

d(z) = (z − dmax, 0)
2
+ + (dmin − z, 0)2+, (7.12)

to let z fall in [dmin, dmax].

The terminal cost of measuring differences between point clouds is Chamfer distance:

DChamfer(X, X̂) =
∑
i

min
j
∥Xi − X̂j∥2 +

∑
j

min
i
∥Xi − X̂j∥2. (7.13)

A simple way to solve (7.10) is to discretize time, then Xi(t+1) = Xi(t)+hUi(Xi(t))

for t = 0, . . . , T − 1 and time step size h. In this case, the unknown is U(Xi) ∈ R2 for

i = 1, . . . , K and t = 0, . . . , T . The gradient ∇UL(U) can be computed, and thus we can

160

use gradient descent to find U , which can be easily resolved by automatic Adam method

[55]. The algorithm is summarized in Algorithm 8.

Algorithm 8 Optimal Control Learning for small number of agents

Input: Samples X(0) that follow initial distribution, samples X̂ that follows target dis-
tribution, stepsize h, number of steps T , iteration numbers N1 and N2.
Initialize: Neural network uθ.
for N1 steps do

1. Generate full path ofX untilX(T) byXi(t+1) = Xi(t)+huθ(Xi(t)), 0 ≤ i ≤ K,
0 ≤ t ≤ T − 1.
2. Compute running cost by (7.11).
3. Compute terminal cost by (7.13).
4. Update θ ← θ − τ∇̂L(θ).

end for
Output: uθ.

If K is large (thousands or more), it is more efficient to do density control since (7.12)

is hard to be computed efficiently. From a particle point of view, we need to find vector

field U(·, t) for all t, such that X ′
i(t) = U(Xi(t), t) and Xi(t) minimizes the cost function.

The vector field U(·, t) can be parameterized as a DNN Uαt(·) (i.e., Uαt(x) ∈ R2 for

each x in the domain) with time varying parameter αt to be determined. For simplicity

we set αt = 0. We also set U(x) = ∇G(x) for potential function G(x). In this case,

we reformulate our terminal cost as Wasserstein distance, and we compute Wasserstein

distance by the Kantorovich-Rubinstein Duality form [6], namely, our problem is redefined

as

r(X(t), U(X)) =
K∑
i=1

∥U(Xi)∥2, (7.14)

DWasserstein(ρX , ρX̂) = sup
f,||∇f ||≤1

{
EX∈ρXf(X)− EX̂∈ρX̂

f(X̂)
}
. (7.15)

We evaluate the Wasserstein distance by spectral normalization [34]. The algorithm is

concluded in Algorithm 9.

Theorem 7.2.1. Suppose the control U(x) :∈ R2 → R2 satisfies Lipschitz condition,

161

Algorithm 9 Optimal Density Control Learning for large number of agents

Input: Samples following initial distributionX(0), samples following target distribution
X̂ , stepsize h, number of steps T , iteration numbers N1 and N2.
Initialize: Neural networks gθ, fη.
for N1 steps do

1. Generate full path ofX untilX(T) byXi(t+1) = Xi(t)+h∇gθ(Xi(t)), 0 ≤ i ≤ K
, 0 ≤ t ≤ T − 1.
2. Compute running cost by (7.14).
for N2 steps do

3. Update η ← η + τ∇̂
{
EXT∈ρXT

fη(XT)− EX̂∈ρX̂
fη(X̂)

}
.

end for
4. Update θ ← θ − τ∇̂L(θ).

end for
Output: Gθ.

namely, for X, Y ∈ R2, we have |U(X) − U(Y)| ≤ C|X − Y |, where C is Lipschitz

constant. Then for i, j ∈ K, if agents i and agents j do not collide at the initial location,

they will not collide in the future path which is generated by U .

Proof. At initial location, for two different locations X0 and Y0 we have

|X0 − Y0| ≥ σ, |U(X0)− U(Y0)| ≤ C|X0 − Y0|. (7.16)

After ∆t, X0, Y0 are updated as

X1 = X0 + U(X0)∆t, Y1 = Y0 + U(Y0)∆t. (7.17)

We evaluate the difference of X1, Y1 by

|X1 − Y1| = |X0 − Y0 + (U(X0)− U(Y0))∆t| ≥ |X0 − Y0| − |U(X0)− U(Y0)|∆t

≥ |X0 − Y0| − C∆t|X0 − Y0| = (1− C∆t)|X0 − Y0|

= (1− C∆t)σ. (7.18)

162

Follow same pattern and extend it to XT and YT we have

|XT − YT | ≥ (1− C∆t)Nσ = (1− C∆t)
1
∆tσ = (1− C T

N
)Nσ = e−CTσ. (7.19)

Thus we can tune ∆t, C,N, σ to bound the distance of different agents.

Lemma 7.2.2. Denote

L(θ) = sup
||∇fη ||≤1

{
EXT∈ρXT

fη(XT)− EX̂∈ρX̂
fη(X̂)

}
= sup

||∇fη ||≤1

E(θ, fη), (7.20)

then the gradient ∇θL(θ) at any θ is given by ∇θL(θ) = ∂θE(θ, fη(θ)), where fη(θ) is the

solution of sup||∇fη ||≤1E(θ, fη) for the specified θ.

Proof. From the definition we know

∇θL(θ) = ∂θE(θ, fη(θ)) + ∂fηE(θ, fη(θ))∇θfη(θ). (7.21)

Now we form the Lagrange function

L(θ, fη(θ), µ) = E(θ, fη(θ)) + µ(||∇fη|| − 1), (7.22)

for the maximization problem sup||∇fη ||≤1E(θ, fη). Then the Karush-Kuhn-Tucker (KKT)

condition of fη is given by

∂fηL(θ, fη(θ), µ) = ∂fηE(θ, fη(θ)) + µ(θ)||∆fη(θ)|| = 0, (7.23a)

µ(θ)(||∇fη(θ)|| − 1) = 0, (7.23b)

µ(θ) ≥ 0, ||∇fη(θ)|| ≤ 1. (7.23c)

163

The complementary slackness condition (7.23b) implies that

∇θµ(θ)(||∇fη(θ)|| − 1) + µ(θ)∇θ||∇fη(θ)|| = 0. (7.24)

If µ(θ) = 0, then we know ∂fηE(θ, fη(θ)) = 0 due to (7.23a) and hence (7.21) reduces

to ∇θL(θ) = ∂θE(θ, fη(θ)). If µ(θ) > 0, then from (7.23b) we know ||∇fη(θ)|| − 1 = 0,

which further implies∇θ||∇fη(θ)|| = 0 from (7.24), thus we see∇θL(θ) = ∂θE(θ, fη(θ))

from (7.21).

Theorem 7.2.3. Suppose the parameters θ and η are bounded in a ball centered at origin

with radius R, namely, we have Θ := {θ : |θ| ≤ R}, H := {η : |η| ≤ R}. For any

ε > 0, let {θj} be a sequence of the network parameter in uθ generated by the stochastic

gradient descent algorithm, where ∇θL(θ) is approximated by mean of samples. If the

sample complexity is K = O(ε−1) in each iteration, then min1≤j≤JE[|∇θL(θ)|2] ≤ ε after

J = O(ε−1) iterations.

Proof. Since we parametrize uθ and fη by finite-layers neural networks, and parameters are

bounded, we know uθ and fη have Lipschitz continuous gradient with respect to θ. Thus

we say L(θ) has M -Lipschitz continuous gradient ∇L(θ) for some M > 0, since L(θ)

is composed of uθ and fη. Following the procedure of stochastic gradient descent, started

from initial θ1, the generated sequence of {θj} is

θj+1 = Π(θj − τGj) = argmin
θ∈Θ

(GT
j θ +

1

2τ
|θ − θj|2), (7.25)

where Gj denotes the stochastic gradient of L(θ) at θj using observed samples. Π denotes

the projection of θ to the ball centered at original point with radius R and τ is the learning

rate. Suppose gj := ∇θL(θj) represents the true (but unknown) gradient of L at θj , then

164

we define the sequence {θ̄j} generated by gj:

θ̄j+1 = Π(θj − τgj) = argmin
θ∈Θ

(gTj θ +
1

2τ
|θ − θj|2). (7.26)

We would like to mention that computing { ¯θ}j is not practical since we don’t know

the true gj . To prove the convergence of the projected SGD iterations, first we utilize the

property of M -Lipschitz continuity of∇θL(θ) implies that

L(θj+1) ≤ L(θj) + gTj ej +
M

2
|ej|2, (7.27)

and

−L(θ̄j+1) ≤ −L(θj)− gTj ēj +
M

2
|ēj|2, (7.28)

where we denote ej := θj+1 − θj , ēj := θ̄j+1 − θj for all i. Due to the optimality of θj+1 in

7.25 we have

0 ≤ (Gj +
θj+1 − θj

τ
)T (θ̄j+1 − θj+1) = (Gj +

ej
τ
)T (ēj − ej). (7.29)

Adding (7.27), (7.28) and (7.29) leads to

L(θj+1)− L(θ̄j+1) ≤ (gj −Gj)
T (ej − ēj) +

eTj (ēj − ej)
τ

+
M

2
|ej|2 +

M

2
|ēj|2. (7.30)

Repeating (7.27) to (7.30) with θj+1 and θ̄j+1 replaced by θ̄j+1 and θj respectively, with

the optimality of θj+1 in (7.26) with gj we have

L(θ̄j+1)− L(θj) ≤ −(
1

τ
− M

2
)|ēj|2. (7.31)

165

We sum up (7.30) and (7.31) yielding

L(θj+1)− L(θj) ≤ (gj −Gj)
T (ej − ēj) +

eTj (ēj − ej)
τ

+
M

2
|ej|2 − (

1

τ
−M)|ēj|2.

(7.32)

Now due to Cauchy-Schwarz inequality, the definitions of θj+1 and θ̄j+1, we show that

(gj −Gj)
T (ej − ēj) = (gj −Gj)

T (θj+1 − θ̄j+1) = (gj −Gj)
T (Π(θj − τGj)− Π(θj)− τgj)

≤ |gj −Gj||Π(θj − τGj)− Π(θj)− τgj| ≤ τ |gj −Gj|2, (7.33)

where the last inequality is due to the fact that the projection Π onto the convex set Θ is a

non-expansive operator. Moreover we notice that

eTj (ēj − ej)
τ

=
1

2τ
(|ēj|2 − |ej|2 − |ej − ēj|2). (7.34)

Substituting (7.33) and (7.34) into (7.32) we have

L(θj+1)− L(θj) ≤ τ |gj −Gj|2 − (
1

2τ
−M)|ēj|2 − (

1

2τ
− M

2
)|ej|2 −

1

2τ
|ej − ēj|2.

(7.35)

If we assume the neural network training provides us a reasonable accuracy on Gj ,

namely we have

E[|Gj − gj|2] ≤ ε. (7.36)

Taking expectation on both sides of (7.35) and reordering leads to

(
1

2τ
−M)E[|ēj|2] ≤ E[L(θj)]− E[L(θj+1)] + τε− ((

1

2τ
− M

2
)E[|ej|2], (7.37)

166

Finally we take sum of (7.37) for j = 1, 2, ..., J , then divide both sides by (1
2τ
−M)J ,

set τ = 1
4M

we have

1

J

J∑
j=1

E[|ēj|2] ≤
16M(E[θ1]− E[θJ+1])

J
+ 4ε ≤ 16M(E[θ1]− E[θ∗])

J
+ 4ε ≤ ε, (7.38)

if we set E[θ∗]) = minθ∈Θ E[θ]) ≥ 0 and J = 4ε−1(16M(E[θ1]− E[θJ∗]).

7.3 Experiments

In this section we validate our algorithms on both synthetic and realistic data sets.

7.3.1 Synthetic Data

We first evaluate our model on several synthetic data sets which are generated in two cases:

Synthetic-1 and Synthetic-2.

Experiment Setup: In all synthetic data experiments, we set the control U(x) as a

neural network with different structures, which will be stated later. We set the discrimina-

tor f as a fully-connected network, the number of hidden layers and nodes in each layer

depend on the dimension of problems. The only one activation function we choose is Tanh.

In terms of training process, we use the Adam optimizer [55] with learning rate 10−4.

Furthermore, we use spectral normalization to realize ∥∇f∥ ≤ 1[34]. We initialize the

weights with Xavier initialization[99] and train our model by Algorithm 8 and Algorithm

9 for small number of agents and large number of agent, respectively. We set the data size

at each time point is N = 2000, treat 1500 data points as the training set and the other 500

data points as the test set, ∆t and T are set to be 0.1 and 1 respectively.

Synthetic-1: In Synthetic-1, we start with Algorithm 8 on twenty two-dimensional

and three-dimensional samples. Here we set our control U as the gradient of a fully

connected neural network, namely, U(x) = ∇G(x), where G(x) has three hidden lay-

ers and each layer has 18 nodes. Other experimental settings stay the same as introduced

167

before. As shown in Figure 7.1, the initial positions of samples are around left upper corner

(black/green) while the target final positions are on right side with both upper and lower

corners (blue). As we see, the samples gradually move to the target positions under U(x).

We also notice that even we choose Chamfer distance as our objective function, the initial

points are not being moved to fit the target points perfectly, but close enough to satisfy the

similarity on distribution level.

(a) Syn-1-2dim:t=0 (b) Syn-1-2dim:t=0.5 (c) Syn-1-2dim:t=1

(d) Syn-1-3dim:t=0 (e) Syn-1-3dim:t=0.5 (f) Syn-1-3dim:t=1

Figure 7.1: Trajectories of samples (black/green) at different time points as they are heading
to the target positions (blue) under the learned control strategyU(x) = ∇G(x), whereG(x)
is a neural network.

Synthetic-2: In Synthetic-2, we try to control large number of agents in various sce-

narios. In the first group, the initial(green)/target(blue) positions are shown in Figure 7.2,

the first row shows the projections of 100 dimensional cases onto 3 dimensional space. All

samples follow Gaussian distributions. We see green points are moved to destinations that

cover the targeting area. Here we set U as the gradient of a fully connected neural network

G, where G has three hidden layers and each layer has 36 nodes. We set f as a six-hidden-

168

layer neural network, each layer has 256 nodes. In the second group, we also show the 2D

projections of 100D cases, as shown in second row of Figure 7.2. The samples here are fol-

lowing unbalanced Gaussian distributions, we see that the samples at initial positions (red)

finally converge to the target positions (blue) as we expect. Notice that in second group we

keep the same structure of f but in Syn-2-2c we set U as Resnet [178] with 4 layers and

each layer has 32 nodes, and in Syn-2-2d we set U as normalizing flow [127] with flow

length 30.

(a) Syn-2-a:t=0 (b) Syn-2-a:t=1 (c) Syn-2-b:t=0 (d) Syn-2-b:t=1

(e) Syn-2-2c:t=0 (f) Syn-2-2c:t=1 (g) Syn-2-2d:t=0 (h) Syn-2-2d:t=1

Figure 7.2: Trajectories of samples (green/red) at start and final locations, compared with
target positions (blue), U(x) is parametrized as Resnet and normalizing flow in Syn-2-2c
and Syn-2-2d respectively.

7.3.2 Realistic Data

In this experiment we aim to control the density of Autonomous Underwater Vehicles

(AUVs). AUVs are a class of submerged marine robots capable of performing persistent

missions in the ocean, when controlling AUVs from initial positions to target positions, we

169

(a) Real-a:t=0 (b) Real-a:t=0.5 (c) Real-a:t=1 with traj

(d) Real-b:t=0 (e) Real-b:t=0.5 (f) Real-b:t=1

Figure 7.3: (a) to (c): Trajectories of samples (red) at different time points as they are
heading to the target positions (blue) under the learned control strategy U(x), (d) to (f):
other trajectories that fall into local minimum. U(x) is parametrized as Resnet in all cases.

(a) Real-b:t=0 (b) Real-b:t=0.5 (c) Real-b:t=1

Figure 7.4: Trajectories of samples (red) at different time points as they are heading to
the target density (blue contour) under the learned control strategy U(x), which is also
parametrized as Resnet.

also need to consider the flow field in the ocean. Our control problem is revised as

min
U(X)

DWasserstein(ρX , ρX̂) +

∫ 1

0

∫
Ω

|U(X)− V (X)|2ρ(X, t)dXdt,

subject to:
dX

dt
= U(X), (7.39)

170

where V (x) is the underwater flow field, the data of which is provided by GTSR Lab [199].

In (7.39) we aim to move AUVs to the surroundings of target locations on distribution level.

We apply both algorithms 8 and 9 to realize our control strategy. Notice that the size of

raw data is small (10 samples only), when we apply Algorithms 9, we augment data to the

size of N = 500 by generating Gaussian samples around original data, namely, the final

training data is following Gaussian mixtures.

The results for small size data is shown in Figure 7.3. We see that with the influence of

our added flow field, the learned vector field still pushforwards the agents to the surround-

ing areas of our target positions. We also show the trajectories of the agents in (c), we see

that the agents cannot match on one to one level, this is due to high non-convexity of the

Chamfer distance, during the training process it easily falls into local minimum. We also

show some results of falling into local minimum in (d), (e) and (f). However to achieve

perfect matching of the initial and target positions or to get the global minimizer of Cham-

fer distance are difficult problems that we plan to tackle in our future research. This issue

seems to be solvable when we allow U to be time dependent.

We show the result for large size data in Figure 7.4, the contour of target density is

indicated by blue and we present generated points (red) from the initial distribution to the

end distribution. We see that the whole distribution is moving to the target, namely, the

generated points gradually fall into the range of target contour map.

7.4 Conclusion

In this chapter we develop algorithms to realize density control for both small number

and large number of agents. Unlike traditional control methods, our models are able to

handle high dimensional cases by leveraging neural networks. We realize density control

by minimizing Wasserstein distance between generated distribution and target distribution,

which is seldom used in other works as well. Our models are validated by both synthetic

and realistic experiments.

171

CHAPTER 8

STUDIES OF TRADING STRATEGIES

8.1 Predicting Daily Trading Volume

8.1.1 Introduction

Trading volume is the total quantity of shares or contracts traded for specified securities

such as stocks, bonds, options contracts, futures contracts and all types of commodities.

The trading volume of any type of security can be measured during a trading day or a spec-

ified time period. In our case, daily trading volumes of stocks are measured. The trading

volume is an essential component in trading alpha research since it tells investors about the

market’s activity and liquidity. Over the past decade, along with the improved accessibil-

ity of ultra-high-frequency financial data, evolving data-based computational technologies

have attracted many attentions in financial industries [200, 201, 202, 203, 204, 205, 206,

207, 208]. Meanwhile, the development of algorithmic and electronic trading has shown

great potential of trading volume since many trading models require the forecast of intra-

day volume as an key input [209, 210, 211]. As a result, there are growing interests in

developing models for precisely predicting intraday trading volume.

Researchers aim to propose various strategies to accomplish trading efficiently in the

electronic financial markets, meanwhile they wish to minimize transaction costs and mar-

ket impacts [212]. The study of trading volume generally falls into two lines to achieve the

goals. One line of work is focusing on suggesting optimal trading sequence and amount

[213, 214, 215, 216, 217], while another line is investigating the relationships among trad-

ing volume and other financial variables or market activities such as bid-ask spread, return

volatility and liquidity [218, 219, 220, 221, 222, 223, 224, 225, 226, 227], etc. Thus a

precise model that provides insights of trading volume can be regarded as a basis for both

172

lines of work.

There are several existing methods to estimate future trading volume. As a funda-

mental approach, rolling means (RM) predicts intraday volume during a time interval by

averaging volume traded within the same interval over the past days. The concept of RM

model is straightforward, but it fails to adequately capture the intraday regularities. One

classical intraday volume prediction model decomposes trading volume into three compo-

nents, namely, a daily average component, an intraday periodic component, and an intraday

dynamic component, then the model adopts the Component Multiplicative Error Model

(CMEM) to estimate the three terms [228]. Though this model outperforms RM, the limi-

tations such as high sensitivity to noise and initial parameters complicate its practical im-

plementation. [137] proposes a new model to deal with the logarithm of intraday volume,

which simplifies the multiplicative model into an additive one. The model is constructed

within the scope of a two-state (intraday and overday features) Kalman Filter [229] frame-

work, the authors utilize the expectation-maximization (EM) algorithm for the parameter

estimation. Though the model provides a novel view to study intraday and overday fac-

tors, the flexibility is not satisfied since the model treats the number of hidden states of all

stocks as two, thus there may be information loss. Moreover, from experiment we see that

the dominant term in the model is actually daily seasonality, and the learning process of

parameters is not robust.

As an extension of two-state Kalman Fiter, our new model has advantages such as

higher prediction precision, stability and simple computation structure. In general our con-

tributions are:

• Firstly, we develop a new method that combines cubic spline and statistical process

to determine the best degrees of freedom (DOFs) for different stocks.

• Secondly, by choosing suitable DOFs, we provide a smoothing prediction of daily

trading volume.

173

• Finally, we demonstrate that our model outperforms RM and two-state Kalman Fiter

through experiments on 978 stocks.

8.1.2 Methodologies

We denote the i-th observation on day t as volt,i, the local indices i ∈ {0, 1, 2, ..., I} and

t ∈ {0, 1, 2, ..., T}, we set global index τ=t ∗ I + i thus volt,i = volτ .

8.1.2 Two-state Kalman Filter Model

Before introducing our method, we would like to review the two-state Kalman Fiter model.

Within the model, the volume is defined as the number of shares traded normalized by daily

outstanding shares:

volt,i =
shares tradedt,i

daily outstanding sharest
. (8.1)

Figure 8.1: A graphical representation of the Kalman Filter model: each vertical slice
represents a time instance; the top node X in each slice is the hidden state variable corre-
sponding to the underlying volume components; and the bottom node Y in each slice is the
observed volume in the market

This ratio is one way of normalization [137], the normalization is beneficial to correct

low-frequency variation, which is caused by the change of trading volume. Log-volume

refers to the natural logarithm of trading volume. The researchers train their model with

log-volume and evaluate the predictive performance based on volume. The reason for using

log-volume is that it converts the multiplicative terms [228] to additive relationships, and

174

makes it naturally fits Kalman Filter framework. Moreover, the logarithmic transformation

facilitates to reduce the skewness property of volume data [230]. [137]’s model is built

upon Kalman Fiter framework, as illustrated in Figure 8.1. X represents hidden state that

is not observable, Y represents logarithm of observed traded volume. The mathematical

updates are:

Xτ+1 = AτXτ + qτ ,

Yτ = Cxτ + ϕτ + vτ , (8.2)

for τ = 1, 2, ..., T ∗ I , where Xτ = [ητ µτ]
T is the hidden state vector containing two pa-

rameters, namely, the daily average part and the intraday dynamic part; Aτ = diag(aητ , a
µ
τ)

is the state transition matrix; observation matrix C is fixed as [1 1]; qτ = [qητ a
µ
τ]
T ∼

N(0, Qτ) where Qτ = diag((σητ)
2, (σµτ)

2); vτ ∼ N(0, r), and ϕ = [ϕ1, ϕ2, ..., ϕI] is

treated as the seasonality; initial state X1 ∼ N(π1,Σ1). The unknown system param-

eters θ(π1,Σ1, a
η, aµ, ση, σµ, r, ϕ) are estimated by explicit equations, which are derived

from expectation-maximization(EM) algorithm. For more details of two-state model, we

suggest readers review the original paper [137].

8.1.2 Our Model: Various-states Kalman Filter

In the two-state model mentioned above, the DOF of hidden state variable is two since

it has two factors, representing intraday and overday. Since there is no systematic way

to determine a correct DOF of hidden state variable, especially for various stocks. Our

concern is that how to find a better DOF for each stock and predict trading volume more

precisely. As a conclusion our new method still falls into the Kalman Fiter framework,

175

however, we change equation (8.2) to the most common Kalman Fiter update:

Xt+1 = BXt + γ,

Yt = DXt + ψ. (8.3)

The differences of Equation (8.2) and Equation (8.3) are as follows: Xt represents the

hidden state whose dimension is n×1, where n, as the DOF of hidden state variable, will be

determined in Algorithm 10; state transition matrix B is a n× n matrix while observation

matrix D is a I × n matrix; γ ∼ N(0,Γ) where transition covariance matrix Γ is a n × n

matrix; ψ ∼ N(0,Ψ) where observation covariance matrix Ψ is a I × I matrix; initial state

X1 ∼ N(π1,Σ1) and observation Yt is a I × 1 vector. Notice that B, D, Γ and Ψ are

uniquely determined by training data.

For our model, the data we use is three years historical daily trading volume from

Bloomberg. We define observation as multiplication of traded volume and Volume Weighted

Average Price (VWAP).

volnew
t,i = Volume× VWAP. (8.4)

Furthermore we model and evaluate performance by the percentage ratio:

pt,i =
volnew

t,i∑I
i vol

new
t,i

× 100. (8.5)

8.1.2 DOF of State Space

Our assumption is that different stocks will have distinct number of parameters in hidden

state Xτ . For a specific stock, we call the dimension of Xτ as degrees of freedom(DOFs),

thus for stock with index s, Xs
τ = [xs1, x

s
2, ..., x

s
dof]. One of key concerns of our model is

how to determine DOFs for each stock. By experiment, we find that seasonality ϕ domi-

176

Algorithm 10 Find DOF by Cross Validation
Require: Training data Y , shuffle times Ns and cross validation times Ncv

1: for DOF = 1,2,...,I do
2: for i = 1,2,...,Ns do
3: Shuffle Y
4: for j = 1,2,...,Ncv do
5: Shuffle and split Y into training set and test set
6: Compute cubic smoothing spline on training set
7: Compute and store MSE on test set
8: Compute and store standard error(SE) of each MSE
9: end for

10: Find best DOF by “one standard error rule”
11: end for
12: end for

nates the prediction of traded volume in two-state model, and in both of two-state model

and our model, I=77, which means in each day for each stock we have 78 observations and

ϕ has 78 parameters to be determined. We aim to include seasonality in the hidden states

and drop ϕ to avoid dominant term. In terms of avoiding over-fitting and reducing compu-

tation load, we use cubic spline to fit 78 observations smoothly in each day. Given a series

of observations yi, i ∈ 1, 2, ..., I , the cubic spline is to find a function g which minimizes

I∑
i=1

(yi − g(xi))2 + λ

∫
g′′(x)2dx, (8.6)

where i = 1, 2, ..., I in our case, λ is a non-negative tuning parameter. The function g that

minimizes 8.6 is known as a smoothing spline. The term
∑I

i=1(yi − g(xi))
2 encourages

g to fit the data well, and the term λ
∫
g′′(x)2dx is regarded as a penalty that controls

smoothness of the spline. By solving 8.6 we have

gλ = Sλy, (8.7)

where gλ, as the solution to 8.6 for a particular choice of λ, is a I-dimensional vector

containing the fitted values of the smoothing spline at the training points x1, x2, ..., xI .

177

(a) Distribution of best DOFs (b) Best DOF of AAPL (c) Best DOF of JPM

Figure 8.2: DOFs of states

Equation 8.7 indicates that the vector of fitted values can be written as a I × I matrix Sλ

times the corresponding vector y. Then the DOF is defined to be the trace of the matrix Sλ.

Our first target is to give a specific DOF and get the corresponding spline. Thanks to

the work of B. D. Ripley and Martin Maechler (https://rdrr.io/r/stats/smooth.spline.html),

we are able to get fitting splines when given reasonable DOFs. After fitting process then we

use cross validation to find the best DOF that achieves lowest mean squared error(MSE).

Algorithm 10 outlines the mechanism of finding DOF for each stock. We analyze the DOFs

of 978 stocks, the distribution of stocks’ DOFs and best DOFs of some stocks are shown in

Figure 8.2.

8.1.2 Kalman Filter

Once given the best DOF, we utilize Kalman Filter to do predictions. Kalman Filter is

an online algorithm which precisely estimate the mean and covariance matrices of hidden

states. Suppose parameters in Equation (8.3) are known, Algorithm 11 outlines the mech-

anism of the Kalman Filter. We model the distribution of hidden state Xt+1 conditional

on all of the percentage observations up to time t. Since we suppose γ and ψ in Equation

(8.3) are Gaussian noise, thus all hidden states follow Gaussian distributions and it is only

necessary to characterize the conditional mean and the conditional covariance as shown in

line 3 and line 4. Then given new observations we correct the mean and covariance in line

178

https://rdrr.io/r/stats/smooth.spline.html

7 and line 8.

Algorithm 11 Kalman Filtering
Require: Parameters B,D,Γ,Ψ, π0,Σ0

1: initialize X0 ∼ N(π0,Σ0)
2: for t=0,1,2,...,T-1 do
3: predict next state mean: Xt+1|t = BXt|t
4: predict next state covariance: St+1|t = BtSt|tBt⊤+ Γt
5: obtain measurement Yt
6: compute Kalman gain: Kt+1 = St+1|tD

⊤(DSt+1|tD
⊤ +Ψ)−1

7: update current state mean: Xt+1|t+1 = Xt+1|t +Kt+1(Yt −DXt+1|t)
8: update current state covariance: St+1|t+1 = (I −Kt+1D)St+1|t
9: end for

Algorithm 12 Kalman Smoothing
Require: Parameters B,D,Γ,Ψ, π1,Σ1 and XT |T , ST |T from Kalman Filtering

1: for t=T-1,T-2,...,0 do
2: compute: Jt = St|tB

T
t S

−1
t+1|t

3: compute mean: Xt|T = Xt|t + Jt(Xt+1|T −BXt+1|t)
4: compute covariance:St|T = St|t + Jt(St+1|T − St+1|t)J

⊤
t

5: compute joint covariance:St,t−1|T = St|tJ
⊤
t−1 + Jt(St+1,t|T −BSt|t)J⊤

t−1

6: end for
7: specially, ST,T−1|T = (I −KTD)BST−1|T−1

Our ultimate goal is to make predictions of Xt and Yt by Equation (8.3). The method to

calibrate parameters is expectation-maximization(EM) algorithm. Smoothing process infer

past states before XT conditional on all the observations from the training set, which is a

necessary step in model calibration because it provides more accurate information of the

unobservable states. We outlines Kalman smoothing process as Algorithm 12.

After performing Algorithm 10, 11 and 12, we need to estimate parameters by EM

method, as shown in algorithm 13. EM algorithm is one common way to estimate param-

eters of Kalman Filter problem. It extends the maximum likelihood estimation to cases

where hidden states are involved [231]. The EM iteration alternates between performing

an E-step (i.e., Expectation step), which constructs a global convex lower bound of the ex-

pectation of log-likelihood using the current estimation of parameters, and an M-step (i.e.,

179

Maximization step), which computes parameters to maximize the lower bound found in E-

step. Two advantages of EM algorithm are fast convergence and existence of closed-form

solution. The derivations of Kalman Filter and EM algorithm beyond the scope of this

chapter, we refer interested readers to [229] for more details.

Algorithm 13 EM algorithm
Require: Initial B,D,Γ,Ψ, π1,Σ1, results from Kalman Filtering and Kalman smoothing

1: while not converge do
2: for t=T-1,T-2,...,0 do
3: Pt+1 = St+1|T +Xt+1|TX

⊤
t+1|T

4: Pt+1,t = St+1,t|T +Xt+1|TX
⊤
t|T

5: end for
6: π1 = X1|T
7: Σ1 = P1 −X1|TX

⊤
1|T

8: B = (
∑T−1

t=0 Pt+1,t)(
∑T

t=2 Pt)
−1

9: Γ = 1
T

∑T−1
t=0 (Pt+1 + Pt − Pt+1,tB

⊤ −BP⊤
t+1,t)

10: Ψ = 1
T+1

∑T
t=0(YtY

⊤
t +DPtD

⊤ − YtX⊤
t|TD

⊤ −DXt|TY
⊤
t)

11: end while

8.1.3 Experiment

8.1.3 Data Introduction

We collect and analyze intraday trading volume of 978 stocks on major U.S. markets. For

example, a glance of the information of stock ”AAPL” is summarized in Table 8.1. The data

covers the period from January 3rd 2017 to May 29th 2020, excluding none trading days.

Each trading day consists of 78 5-minute bins. Volume and percentage are computed by

Equation 8.4 and 8.5 respectively. All historical data used in the experiments are obtained

from the Invesco Inc.

8.1.3 Experiment Set-up

We choose two-state model and RM model mentioned before as baselines. Data from

January 3rd 2017 to June 30th 2017 is considered as training set while data from July 5th

180

Table 8.1: Historical intrady trading volume of stock ”AAPL”

Time LAST FIRST HIGH LOW VOLUME VWAP time bin
1/3/2017 106.24 105.9 106.42 105.59 1139228 106.11 14:30
1/3/2017 105.28 106.24 106.34 105.19 1245847 105.77 14:35
1/3/2017 105.51 105.29 105.53 104.85 1289865 105.23 14:40
· ·

1/3/2017 106.23 106.04 106.23 106 1675070 106.09 20:55
· ·

5/29/2020 318.25 319.25 320 318.22 747433 319.21 13:30
· ·

5/29/2020 317.92 319.29 319.62 317.46 1969841 318.92 19:55

2017 to January 2nd 2018 is treated as test set. Both of training set and test set contain

Ttrain=125 trading days(from day 0 to day 124). We initialize B,Γ,Ψ as identity matrices,

and D as smooth matrix, then perform Algorithms 10 to 13 on traning set to obtain model

parameters, finally make predictions on next Ttest=125 days(from day 125 to day 249). We

evaluate performances of three models by mean absolute percentage error(MAPE):

MAPE =
1

M

M∑
τ=1

|ptrue
τ − ppredicted

τ |, (8.8)

where τ = t ∗ I + i.

8.1.4 Results

In this section we compare our model with two state-of-the-art baselines and perform some

analysis of our results.

8.1.4 MAPE Distribution

We obtain the distributions of MAPE of 978 stocks from three models and show them in

Figure 8.3. We see that our v-state model outperforms baselines by giving smaller MAPEs.

181

(a) RM (b) Two-state (c) our model: v-state

Figure 8.3: Comparison of MAPE

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.4: comparison of prediction: (a) to (d):baseline models on AAPL, (e) to (h):our
v-state model on stock ”AAPL”

8.1.4 Predictions on Specific Days

To better visualize comparisons, we pick ten stocks out of the data set and show their

predictions on day 150, 175, 200 and 225. Due to space limitation, we only show one stock

”AAPL” here in Figure 8.4. We see that two-state model almost overlaps RM model. Our

v-state model provides a smoother prediction.

182

8.1.4 Analysis of v-state Model

Figure 8.5: Relationship between error and true percentage

In order to further test the precision of our model, we also investigate the relationship

between absolute error and true percentage for all stocks. The absolute error of stock s on

τ -th bin is defined as

error = |ppredicted
s,τ − ptrue

s,τ |. (8.9)

As illustrated in Figure 8.5, we present error versus ptrue
s,τ for all 978×125×78 samples.

We see there is a nearly linear relationship between absolute error and true percentage.

When ptrue
s,τ gets larger, the slope gets closer to 1. Moreover, we observe that 95% samples

fall into the corner around the original point. For these samples, considering the linearity,

mathematically we have

0 ≤ |ppredicted
s,τ − ptrue

s,τ | ≤ ptrue
s,τ ,

0 ≤ ppredicted
s,τ ≤ 2ptrue

s,τ . (8.10)

And for those samples outside of the corner we plug in the linear equation with slope

183

rate of 1:

|ppredicted
s,τ − ptrue

s,τ | ≈ ptrue
s,τ ,

ppredicted
s,τ ≪ ptrue

s,τ or ppredicted
s,τ ≈ 2ptrue

s,τ . (8.11)

From Equation 8.10 and Equation 8.11, we see that our model provides a lower bound

as well as a upper bound for the prediction precision. This is beneficial for the future

analysis since it is still not a trivial task to fully capture the movements of trading volume,

due to the high-noisy property of original data. It also could be one potential direction in

the future.

(a) AAPL (b) JPM (c) AAPL (d) JPM

Figure 8.6: Correlation matrix of hidden states, eigenvalues of transition covariance matrix,
”AAPL” and ”JPM”

Finally we show complementary examples of correlation matrix of hidden states, eigen-

values of transition covariance matrix in Figure 8.6. The figures suggest that most of states

do not highly correlate to each other, meanwhile a few states share linear relationships. We

find that half of the eigenvalues are very close to 0. Notice that the eigenvalues from a

covariance matrix inform us the directions that the data has different level of spread, the

eigenvectors of the covariance matrix indicate the directions that contain more or less data

information. The information of correlation matrix and covariance matrix could help us

further reduce the number of hidden states which in turn brings less computation. We also

leave this as one of future directions.

184

8.1.5 Conclusion

On the basis of Kalman Filter, we develop a new method to determine the dimension of

hidden state for each distinct stock. Our method provides smoothing predictions of intra-

day trading volume, brings potential of using gradient based method for further analysis.

Through experiments we demonstrate that v-state model gains better prediction precision

than two-state model and RM model.

8.2 Mean Field Game Generative Adversarial Network

8.2.1 Introduction

Over the past few years, we have witnessed a great success of generative adversarial net-

works (GANs) in various applications. Speaking of general settings of GANs, we have two

neural networks, one is generator and the other one is discriminator. The goal is to make

the generator able to produce samples from noise that matches the distribution of real data.

During training process, the discriminator distinguishes the generated sample and real sam-

ples while the generator tries to ’fool’ the discriminator until an equilibrium state that the

discriminator cannot tell any differences between generated samples and real samples.

Wasserstein GAN (WGAN)[7] makes a breakthrough on computation performance

since it adopts a more natural distance metric (Wasserstein distance) other than the To-

tal Variation (TV) distance, the Kullback-Leibler (KL) divergence or the Jensen-Shannon

(JS) divergence. However most algorithms related to WGAN are based on the Kantorovich

duality form of OT (optimal transport) problem, in which we are facing Lipschitz-1 chal-

lenge in training process. Though several approximated methods have been proposed to

realize the Lipschitz condition in computation, we aim to find a more precise mathematical

method.

MFGs[232, 233] are problems that model large populations of interacting agents. They

have been widely used in economics, finance and data science. In mean field games, a

185

continuum population of small rational agents play a non-cooperative differential game on

a time horizon [0, T]. At the optimum, the agents reach a Nash equilibrium (NE), where

they can no longer unilaterally improve their objectives. In our case the NE leads to a PDE

system consisting of continuity equation and Hamilton-Jacobi equation which represent the

dynamical evolutions of the population density and the cost value respectively. The PDE

system follows a similar pattern within the framework of OT [49], here the curse of infinite

dimensionality in MFGs is overcome by applying Hopf formula in density space.

Utilizing Hopf formula to expand MFGs in density space is introduced in [234]. Base

on their work, we show that under suitable choice of functionals, the MFGs framework can

be reformulated to a Wasserstein-p primal-dual problem. We then handle high dimensional

cases by leveraging deep neural networks. Notice that our model is a widely-generalized

framework, different choices of Hamiltonian and functional settings lead to different cases.

We demonstrate our approach in the context of a series of synthetic and real-world data sets.

This chapter is organized as following: 1) In section 8.2.2, we review some typical GANs

as well as concepts of MFGs. 2) In section 8.2.3, we develop a new GAN formulation by

applying a special Lagrangian, our model naturally and mathematically avoids Lipschitz-

1 constraint. 3) In subsection 8.2.4, we empirically demonstrate the effectiveness of our

framework through several experiments.

8.2.2 Related Works

8.2.2 Original GAN

Given a generator network Gθ and a discriminator network Dω, the original GAN objective

is to find an mapping that maps a random noise to points that follow an expected distribu-

tion, it is written as a minimax problem

inf
Gθ

sup
Dω

Ex∼ρdata

[
logDω(x)

]
+ Ez∼ρnoise

[
log (1−Dω(G(z))

]
. (8.12)

186

The loss function is derived from the cross-entropy between the real and generated dis-

tributions. Since we never know the ground truth distribution, when compared with other

generative modeling approaches, GAN has lots of computational advantages. In GAN

framework, it is easy to do sampling without requiring Markov chain, we utilize expecta-

tions which is also easy to be computed during the process of constructing differentiable

loss function. Finally, the framework naturally combines the advantages of neural net-

works, avoiding curse of dimensionality and is able to be extended to various GANs with

different objective functions. The disadvantage of original GAN is that the training process

is delicate and unstable due to the reasons which are theoretically investigated in [235].

8.2.2 Wasserstein GAN

Wasserstein distance provides a better and more natural measure to evaluate the distance

between two distributions[15]. The objective function of Wasserstein GAN (WGAN) is

constructed on the basis of Kantorovich-Rubinstein duality form [6] for distributions ρ1

and ρ2:

W (ρ1, ρ2) = sup
ϕ,∥∇ϕ∥≤1

Ex∼ρ1 [ϕ(x)]− Ex∼ρ2 [ϕ(x)]. (8.13)

Given duality form, one would like to rewrite the duality form in a GAN framework

by setting generator Gθ, discriminator Dω and then minimizing the Wasserstein distance

between target distribution and generated distribution:

inf
Gθ

sup
Dω ,∥∇Dω≤1∥

Ex∼ρdata [Dω(x)]− Ez∼ρnoise [Dω(Gθ(z))]. (8.14)

Though WGAN has made a great success in various applications, it brings a well-

known Lipschitz constraint problem, namely, we need to make our discriminator satisfies

the condition ∥∇Dω ≤ 1∥. Lipschitz constraint in WGAN has drawn a lot of attentions of

researchers, several methods such as weight clipping[7], adding gradient penalty as regu-

187

larizer[236], applying weight normalization[237] and spectral normalization[238]. These

methods facilitate training process, however, all of these methods are approximation ones,

besides, we seek for a new formulation to avoid Lipschitz constraint in WGAN theoreti-

cally.

8.2.2 Other GANs

A variety of other GANs have been proposed in recent years. These GANs enlarge the

application areas and provide great insights of designing generators and discriminators to

facilitate the training process. One line of the work is focused on changing objective func-

tion, such as f-GAN[239], Conditional-GAN[240], LS-GAN[241] and Cycle-GAN[242].

Another line is focused on developing stable structure of generator and discriminator, in-

cluding DCGAN[243], Style-GAN[244] and Big-GAN[245]. Though these GANs have

been widely applied and accomplished a great success, there is no ”best” GAN[246].

8.2.2 Hamilton-Jacobi Equation and Mean Field Games

Hamilton-Jacobi equation in density space (HJD) plays an important role in optimal con-

trol problems[51, 247, 248]. HJD determines the global information of the system[249,

250] and describes the time evolution of the optimal value in density space. In applica-

tions, HJD has shown effectiveness in modeling population differential games, also known

as MFGs which study strategic dynamical interactions in large populations by setting up

finite players’ differential games[233, 232]. Within this context, the agents reach a Nash

equilibrium at the optimum, where they can no longer unilaterally improve their objectives.

The solutions to these problems are obtained by solving the following partial differential

188

equations (PDEs)[234]:


∂tρ(x, t) +∇x · (ρ(x, t)∇pH(x,∇xΦ(x, t))) = 0

∂tΦ(x, t) +H(x,∇xΦ(x, t)) + f(x, ρ(., t)) = 0

ρ(x, T) = ρ(x), Φ(x, 0) = g(x, ρ(., 0)).

(8.15)

where ρ(x, t) represents the population density of individual x at time t. Φ(x, t) represents

the velocity of population. We also have each player’s potential energy f and terminal cost

g. The Hamiltonian H is defined as

H(x, p) = sup
v
{⟨v, p⟩ − L(x, v)}. (8.16)

where L can be freely chosen.

Furthermore, a game is called a potential game when there exists a differentiable poten-

tial energy F and terminal cost G, such that the MFG can be modeled as an optimal control

problem in density space[251, 234]

U(T, ρ) = inf
ρ,v
{
∫ T

0

[

∫
X

L(x, v(x, t))ρ(x, t)dx− F (ρ(., t))]dt+G(ρ(., 0))}. (8.17)

where the infimum is taken among all vector fields v(x, t) and densities ρ(x, t) subject to

the continuity equation:


∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0 0 ≤ t ≤ T

ρ(x, T) = ρ(x).

(8.18)

Our method is derived from this formulation, the details will be introduced in next section.

189

8.2.2 Optimal Transport

To better understand the connections between MFGs and WGAN, we also would like to

recap optimal transport(OT). OT rises as a popular topic in recent years, OT-based theories

and formulations have been widely used in fluid mechanics[252], control[11], GANs[7] as

well as PDE[47]. Recall Monge’s problem[6]:

inf
F

∫
X

c(x, F (x))dµ(x). (8.19)

However, the solution of Monge problem may not exist and even if the solution exists,

it may not be unique. Recall Kantorovich’s problem[24] reads


inf

π∈P(X×Y)

∫
X×Y c(x, y)dπ(x, y)∫

Y
dπ(x, y) = dµ(x),

∫
X
dπ(x, y) = dν(y).

(8.20)

Notably, recap the fluid dynamic formulation of OT[24] reads



inf
v,ρ

∫ T
0

∫
X

1
2
∥v(x, t)∥2ρ(x, t)dxdt

∂ρ
∂t

+∇ · (µν) = 0

ρ(x, 0) = µ, ρ(x, T) = ν.

(8.21)

where v(x, t) is the velocity vector. We solve this problem by applying Lagrange multiplier

Φ(x, t) and optimality conditions, finally we have its dual form


sup
Φ,ρ

∫
Φ(x, T)ρ(x, T)−

∫
Φ(x, 0)ρ(x, 0)

∂Φ
∂t

+ 1
2
∥∇Φ∥2 = 0.

(8.22)

We also refer readers to another related dynamical formulation of OT [253].

190

8.2.3 Model Derivation

8.2.3 Formulation via Perspective of MFG

Let’s rewrite (8.17) and (8.18) with defining flux function m(x, t) = ρ(x, t)v(x, t), then we

have

U(T, ρ) = inf
ρ,v
{
∫ T

0

[

∫
X

L(x,
m(x, t)

ρ(x, t)
)ρ(x, t)dx− F (ρ(., t))]dt+G(ρ(., 0))}, (8.23)

with 
∂tρ(x, t) +∇ ·m(x, t) = 0 0 ≤ t ≤ T

ρ(x, T) = ρ(x).

(8.24)

We solve above primal-dual problem by applying Lagrange multiplier Φ(x, s):

U(T, ρ) = inf
ρ(x,t),m(x,t)

sup
Φ(x,t)

{∫ T

0

[∫
X

L

(
x,
m(x, t)

ρ(x, t)

)
ρ(x, t)dx− F (ρ(., t))

]
dt+G(ρ(., 0))

+

∫ T

0

∫
X

(∂tρ(x, t) +∇ ·m(x, t))Φ(x, t)dxdt

}
. (8.25)

After integration by parts and reordering it leads to

U(T, ρ) = sup
Φ(x,t)

inf
ρ(x,t)

{
−
∫ T

0

∫
X

ρ(x, t)H(x,∇Φ(x, t))dxdt−
∫ T

0

∫
X

ρ(x, t)∂tΦ(x, t)dxdt

−
∫ T

0

F (ρ(., t))dt+G(ρ(., 0))−
∫
X

ρ(x, 0)Φ(x, 0)dx

+

∫
X

ρ(x, t)Φ(x, t)dx

}
, (8.26)

where

H(x,∇Φ(x, s)) = sup
v
∇Φ · v − L(x, v). (8.27)

191

Now let L(x, v) = ∥v∥p
p

where ∥ · ∥ can be any norm in Euclidean space. For example,

choose ∥ · ∥ = ∥ · ∥2, namely, ∥v∥ = ∥v∥2 =
√
v21 + v22 + ...+ v2n. For arbitrary norm s,

we have the minimizer of 8.27 and corresponding H as

∇Φ = ∥v∥p−ss · vs−1, (8.28)

H(v) = ∥v∥ps −
∥v∥ps
p

=
1

q
∥v∥ps. (8.29)

Furthermore we have

∥∇Φ∥qs′ = (∥v∥p−ss)q∥vs−1∥qs′

= [(

∫
|v|sdx)

p−s
s]

p
p−1 (

∫
|vs−1|

s
s−1dx)

p
p−1

s−1
s

= (

∫
|v|sdx)

1
s
(p−s) p

p−1
+ 1

s
(s−1) p

p−1

= (

∫
|v|sdx)

p
s

= ∥v∥ps, (8.30)

H(∇Φ) = 1

q
∥∇Φ∥qs′ where

1

p
+

1

q
= 1,

1

s
+

1

s′
= 1. (8.31)

Now we are able to plug H(∇Φ) back into 8.26, let T = 1 and make F and G as 0,

then

U(1, ρ) = sup
Φ(x,t)

inf
ρ(x,t)

{∫ 1

0

∫
X

−(∂sΦ(x, t) +
1

q
∥∇Φ∥qs′)ρ(x, t)dxdt

−
∫
X

ρ(x, 0)Φ(x, 0)dx+

∫
X

ρ(x, 1)Φ(x, 1)dx

}
. (8.32)

Next, we extend (8.32) to a GAN framework. We let ρ(z, t) be the generator that

pushforward Gaussian noise distribution to target distribution. Specially, we set ρ1 as the

distribution of our ground truth data. We treat Φ(x, t) as discriminator thus it leads to our

192

objective function:

LMFG-GAN = inf
ρ(x,t)

sup
Φ(x,t)

{
− Ez∼p(z),t∼Unif [0,1][∂tΦ(ρ(z, t), t) +

1

q
∥∇Φ(ρ(z, t), t)∥qs′]

+ Ex∼ρ1 [Φ(x, 1)]− Ez∼p(z)[Φ(ρ(z, 0), 0)]

}
. (8.33)

We solve this minimax problem by Algorithm 14. Notably, if we extend (8.33) to a

general case with a general Hamiltonian H , we revise 8.33 as

L = inf
ρ(x,t)

sup
Φ(x,t)

{
− Ez∼p(z),t∼Unif [0,1][∂tΦ(G(z, t), t) +H(x,Φ,∇Φ)]

+ Ex∼ρ1 [Φ(x, 1)]− Ez∼p(z)[Φ(ρ(z, 0), 0)]

}
. (8.34)

Algorithm 14
Require: Initialize generator ρθ, discriminator Φω

1: for ρθ steps do
2: Sample x from real distribution
3: Sample z from standard normal distribution
4: for Φω steps do
5: Do gradient ascent on LMFG-GAN to update Φω

6: end for
7: Do gradient descent on LMFG-GAN to update ρθ
8: end for

8.2.3 Formulation via Perspective of OT

Now we are going to derive the same objective function from the perspective of OT. Base

on the formulation (8.22), we directly apply Lagrange multiplier ρ(x, s) on the constraint

193

to reformulate original problem as a saddle scheme:

inf
ρ
sup
Φ

{∫ 1

0

∫
X

−

(
∂Φ

∂t
+

1

2
∥∇Φ∥2

)
ρ(x, t)dxdt+

∫
X

Φ(x, 1)ρ(x, 1)dx

−
∫
X

Φ(x, 0)ρ(x, 0)dx

}
. (8.35)

We extend (8.35) to a GAN framework by letting ρ(z, s) be the generator and Φ(x, s)

be the discriminator, thus finally we achieve the same problem:

LOT-GAN = inf
ρ(x,t)

sup
Φ(x,t)

{
− Ez∼p(z),t∼Unif [0,1][∂tΦ(ρ(z, t), t) +

1

2
∥∇Φ(ρ(z, t), t)∥2]

+ Ex∼ρ1 [Φ(x, 1)]− Ez∼p(z)[Φ(ρ(z, 0), 0)]

}
, (8.36)

which has the same structure with (8.33), thus (8.33) can also be seen as minimizing

Wasserstein-2 distance. A similar formulation is introduced in our recent work [254],

where we consider samples from two known distributions and compute their Wasserstein

geodesic.

8.2.4 Experiments

Notice that for all experiments we set s = s′ = 2, we adopt fully connected neural networks

for both generator and discriminator. In terms of training process, for all synthetic and

realistic cases we use the Adam optimizer [55] with learning rate 10−4.

(a) generated by (z,0) (b) generated by (z,1) (c) generated by (z,0) (d) generated by (z,1)

Figure 8.7: Results on 2D synthetic data set

194

(a) Ground truth (b) generated by (z,0) (c) generated by (z,1) (d) Ground truth

(e) generated by (z,0) (f) generated by (z,1) (g) Ground truth (h) generated by (z,0)

(i) generated by (z,1) (j) Ground truth (k) generated by (z,0) (l) generated by (z,1)

Figure 8.8: Results on 10D synthetic data set

8.2.4 Synthetic

Syn-1: In this case we test our algorithm on 2D case, the target distribution is a Gaussian

N (µ,Σ), where µ=(5,5) and Σ= [[1,0],[0,1]], here we choose q = 10, p = 1.1. The

generated distributions are shown in Figure 8.7 (a) and (b). Syn-2: Here and in all following

tests we set q = 2, p = 2, in this case we still generate a 2D Gaussian distribution, with the

same mean and covariance matrix we used in Syn-1. The generated distributions are shown

in Figure 8.7 (c) and (d). Syn-3: In this case we generate a 10D Gaussian as our target

distribution. Some of 2D projections of the true distributions and generated distributions

are shown in Figure 8.8.

195

(a) iteration 18000 (b) iteration 52000 (c) iteration 146400

Figure 8.9: Generated handwritten digits

8.2.4 Realistic

MNIST: We test our algorithm on MNIST data set, where each sample has 16×16 dimen-

sions. The generated handwritten digits are shown in Figure 8.9. We believe more carefully

designed neural networks such as CNN with extra time input dimension will improve the

quality of generated pictures.

8.2.5 Conclusion

In this section we derive a new GAN framework based on MFG formulation, by choosing

special Hamiltonian and Lagrangian. The same formulation via OT perspective is also

presented. The framework avoids Lipschitz-1 constraint and is validated through several

synthetic and realistic data sets. We didn’t thoroughly investigate the optimal structure of

neural networks, we only tried ones with fully connected layers. Some of future works

include improving structures of neural networks, or providing a way to embed time input

dimension into CNN.

196

REFERENCES

[1] G. Monge, “Mémoire sur la théorie des déblais et des remblais,” Histoire de l’Académie
Royale des Sciences de Paris, 1781.

[2] L. Kantorovich, “On translation of mass (in russian), c r,” in Doklady. Acad. Sci.
USSR, vol. 37, 1942, pp. 199–201.

[3] J. D. Lafferty, “The Density Manifold and Configuration Space Quantization,”
Transactions of the American Mathematical Society, vol. 305, no. 2, pp. 699–741,
1988.

[4] F. Otto, “The Geometry of Dissipative Evolution Equations: The Porous Medium
Equation,” Communications in Partial Differential Equations, vol. 26, no. 1-2,
pp. 101–174, 2001.

[5] J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem,” Numerische Mathematik, vol. 84, no. 3,
pp. 375–393, 2000.

[6] C. Villani, Optimal transport: old and new. Springer Science & Business Media,
2008, vol. 338.

[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” in arXiv: 1701.07875,
2017.

[8] V. Seguy, B. Damodaran, R. Flamary, R. Courty N., A., and M. Blondel, “Large-
scale optimal transport and mapping estimation,” arXiv:1711.02283, 2017.

[9] V. Krishnan and S. Martı́nez, “Distributed optimal transport for the deployment of
swarms,” IEEE Conference on Decision and Control (CDC), pp. 4583–4588, 2018.

[10] D. Inoue, Y. Ito, and H. Yoshida, “Optimal transport-based coverage control for
swarm robot systems: Generalization of the voronoi tessellation-based method,”
IEEE Control Systems Letters, vol. 5, no. 4, pp. 1483–1488, 2020.

[11] Y. Chen, T. Georgiou, and M. Pavon, “On the relation between optimal transport
and schrödinger bridges: A stochastic control viewpoint,” in Journal of Optimiza-
tion Theory and Applications, 2016.

[12] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal transport in systems and control,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 89–113,
2021.

197

[13] A. Galichon, Optimal transport methods in economics. Princeton University Press,
2018.

[14] E. Hairer, M. Hochbruck, A. Iserles, and C. Lubich, “Geometric numerical integra-
tion,” Oberwolfach Reports, vol. 3, no. 1, pp. 805–882, 2006.

[15] C. Villani, Topics in optimal transportation, 58. American Mathematical Soc., 2003.

[16] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
Advances in Neural Information Processing Systems, 2013, pp. 2292–2300.

[17] R. Flamary, N. Courty, A. Rakotomamonjy, and D. Tuia, “Optimal transport with
laplacian regularization,” in Advances in Neural Information Processing Systems,
Workshop on Optimal Transport and Machine Learning, 2014.

[18] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal transport for do-
main adaptation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 9, pp. 1853–1865, 2016.

[19] B. Muzellec, R. Nock, G. Patrini, and F. Nielsen, “Tsallis regularized optimal trans-
port and ecological inference,” In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

[20] A. Dessein, N. Papadakis, and J. Rouas, “Regularized optimal transport and the
rot mover’s distance,” The Journal of Machine Learning Research, vol. 19, no. 1,
pp. 590–642, 2018.

[21] J. Benamou and Y. Brenier, “A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem,” Numerische Mathematik, vol. 84, no. 3, pp. 375–
393, 2000.

[22] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman, “How to train your
neural ode: The world of jacobian and kinetic regularization,” in arXiv:2002.02798,
2020.

[23] L. Yang and G. Karniadakis, “Potential flow generator with L2 optimal transport
regularity for generative models,” in arXiv:1908.11462, 2019.

[24] J. Benamou, B. Froese, and A. Oberman, “Two numerical methods for the elliptic
monge-ampere equation,” ESAIM: Mathematical Modelling and Numerical Analy-
sis, vol. 44, no. 4, pp. 737–758, 2010.

[25] W. Li, E. Ryu, S. Osher, W. Yin, and W. Gangbo, “A parallel method for earth
mover’s distance,” Journal of Scientific Computing, vol. 75, no. 1, pp. 182–197,
2018.

198

[26] W. Gangbo, W. Li, S. Osher, and M. Puthawala, “Unnormalized optimal transport,”
Journal of Computational Physics, vol. 399, p. 108 940, 2019.

[27] J. Altschuler, J. Niles-Weed, and P. Rigollet, “Near-linear time approximation algo-
rithms for optimal transport via sinkhorn iteration,” Advances in neural information
processing systems, pp. 1964–1974, 2017.

[28] A. Genevay, G. Peyré, and M. Cuturi, “Learning generative models with sinkhorn
divergences,” International Conference on Artificial Intelligence and Statistics,
1608–1617, 2018.

[29] R. Li, X. Ye, H. Zhou, and H. Zha, “Learning to match via inverse optimal trans-
port,” in J. Mach. Learn. Res., 2019, 20, pp.80–1.

[30] Y. Xie, X. Wang, R. Wang, and H. Zha, “A fast proximal point method for com-
puting exact wasserstein distance,” in Uncertainty in Artificial Intelligence, 2020,
pp. 433–453.

[31] A. Genevay, M. Cuturi, G. Peyré, and F. Bach, “Stochastic optimization for large-
scale optimal transport,” in Advances in neural information processing systems,
2016, pp. 3440–3448.

[32] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 5767–5777.

[33] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-encoders,”
in arXiv:1711.01558, 2017, pp. 3440–3448.

[34] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks,” arXiv:1802.05957, 2018.

[35] A. Tong Lin, W. Li, S. Osher, and G. Montúfar, “Wasserstein proximal of gans,”
2018.

[36] Y. Dukler, W. Li, A. Tong Lin, and G. Montúfar, “Wasserstein of wasserstein loss
for learning generative models,” 2019.

[37] Y. Xie, M. Chen, H. Jiang, T. Zhao, and H. Zha, “On scalable and efficient compu-
tation of large scale optimal transport,” in In International Conference on Machine
Learning, 2019, pp. 6882–6892.

[38] B. Amos, L. Xu, and J. Kolter, “Sinkhorn distances: Lightspeed computation of op-
timal transport,” in International Conference on Machine Learning, 2017, pp. 146–
155.

199

[39] A. Korotin, V. Egiazarian, A. Asadulaev, A. Safin, and E. Burnaev, “Wasserstein-2
generative networks,” arXiv:1909.13082, 2019.

[40] J. Fan, A. Taghvaei, and Y. Chen, “Scalable computations of wasserstein barycenter
via input convex neural networks,” arXiv:2007.04462, 2020.

[41] A. Makkuva A.and Taghvaei, S. Oh, and J. Lee, “Optimal transport mapping via
input convex neural networks,” in International Conference on Machine Learning,
2020, pp. 6672–6681.

[42] L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung, “A machine learning
framework for solving high-dimensional mean field game and mean field control
problems,” Proceedings of the National Academy of Sciences, vol. 117, no. 17,
pp. 9183–9193, 2020.

[43] C. Finlay, A. Gerolin, A. Oberman, and A. Pooladian, “Learning normalizing flows
from entropy-kantorovich potentials,” in arXiv:2006.06033, 2020.

[44] W. Grathwohl, R. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud, “Ffjord:
Free-form continuous dynamics for scalable reversible generative models,” in arXiv:
1810.01367, 2018.

[45] G. Trigila and E. Tabak, “Data-driven optimal transport,” Communications on Pure
and Applied Mathematics, vol. 69, no. 4, pp. 613–648, 2016.

[46] M. Kuang and E. Tabak, “Sample-based optimal transport and barycenter prob-
lems,” Communications on Pure and Applied Mathematics, vol. 72, no. 8, pp. 1581–
1630, 2019.

[47] S. Ma, S. Liu, H. Zha, and H. Zhou, “Learning stochastic behaviour of aggregate
data,” in arXiv:2002.03513, 2020.

[48] I. Yang, “Wasserstein distributionally robust stochastic control: A data-driven ap-
proach,” IEEE Transactions on Automatic Control, 2020.

[49] A. Lin, S. Fung, W. Li, L. Nurbekyan, and S. Osher, “Apac-net: Alternating the
population and agent control via two neural networks to solve high-dimensional
stochastic mean field games,” in arXiv:2002.10113, 2020.

[50] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
Calif.: University of California Press, 1951, pp. 481–492.

[51] J. Benamou and Y. Brenier, “A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem,” in Numerische Mathematik, 2000.

200

[52] M. Kuang and E. G. Tabak, “Preconditioning of optimal transport,” SIAM Journal
on Scientific Computing, vol. 39, no. 4, A1793–A1810, 2017.

[53] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between
images,” IEEE Comput. Graph. Appl., vol. 21, no. 5, pp. 34–41, Sep. 2001.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.
6980, 2014.

[56] Y. Mroueh, C. Li, T. Sercu, A. Raj, and Y. Cheng, “Sobolev gan,” in arXiv:1711.04894,
2020.

[57] S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, “Learning high dimensional wasser-
stein geodesics,” in arXiv:2102.02992, 2021.

[58] J.-C. Hütter and P. Rigollet, Minimax estimation of smooth optimal transport maps,
2020. arXiv: 1905.05828 [math.ST].

[59] S. Afriat, “Theory of maxima and the method of lagrange,” SIAM Journal on Ap-
plied Mathematics, vol. 20, no. 3, pp. 343–357, 1971.

[60] L. Rout, A. Korotin, and E. Burnaev, “Generative modeling with optimal transport
maps,” in International Conference on Learning Representations, 2022.

[61] A. Korotin, D. Selikhanovych, and E. Burnaev, “Neural optimal transport,” arXiv:2201.
12220, 2022.

[62] M. Gazdieva, L. Rout, A. Korotin, A. Filippov, and E. Burnaev, “Unpaired image
super-resolution with optimal transport maps,” arXiv:2202.01116, 2022.

[63] Y. Zeng, Z. Lin, H. Lu, and V. M. Patel, “Cr-fill: Generative image inpainting with
auxiliary contextual reconstruction,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 14 164–14 173.

[64] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,”
in Proceedings of the IEEE international conference on computer vision, 2015,
pp. 3730–3738.

[65] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium,” Ad-
vances in neural information processing systems, vol. 30, 2017.

201

https://arxiv.org/abs/1905.05828

[66] A. Obukhov, M. Seitzer, P.-W. Wu, S. Zhydenko, J. Kyl, and E. Y.-J. Lin, High-
fidelity performance metrics for generative models in pytorch, version v0.3.0, Ver-
sion: 0.3.0, DOI: 10.5281/zenodo.4957738, 2020.

[67] M. Cuturi and D. Avis, “Ground metric learning,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 533–564, 2014.

[68] A. Dupuy and A. Galichon, “Personality traits and the marriage market,” Journal
of Political Economy, vol. 122, no. 6, pp. 1271–1319, 2014.

[69] A. Galichon and B. Salanié, “Cupid’s invisible hand: Social surplus and identifica-
tion in matching models,” Available at SSRN 1804623, 2015.

[70] R. Li, X. Ye, H. Zhou, and H. Zha, “Learning to match via inverse optimal trans-
port.,” Journal of Machine Learning Research, vol. 20, no. 80, pp. 1–37, 2019.

[71] A. M. Stuart and M.-T. Wolfram, “Inverse optimal transport,” arXiv:1905.03950,
2019.

[72] A. Dessein, N. Papadakis, and J.-L. Rouas, “Regularized optimal transport and the
rot mover’s distance,” The Journal of Machine Learning Research, vol. 19, no. 1,
pp. 590–642, 2018.

[73] B. Schmitzer, “Stabilized sparse scaling algorithms for entropy regularized trans-
port problems,” SIAM Journal on Scientific Computing, vol. 41, no. 3, A1443–
A1481, 2019.

[74] G. Peyré and M. Cuturi, “Computational optimal transport,” Foundations and Trends®
in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[75] V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel,
“Large scale optimal transport and mapping estimation,” in International Confer-
ence on Learning Representations, 2018.

[76] A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré, “Sample complexity of
sinkhorn divergences,” arXiv:1810.02733, 2018.

[77] G. Huang, C. Guo, M. J. Kusner, Y. Sun, F. Sha, and K. Q. Weinberger, “Supervised
word mover’s distance,” in Advances in Neural Information Processing Systems,
2016, pp. 4862–4870.

[78] F. Wang and L. J. Guibas, “Supervised earth mover’s distance learning and its com-
puter vision applications,” in European Conference on Computer Vision, Springer,
2012, pp. 442–455.

202

[79] P. Zhao and Z.-H. Zhou, “Label distribution learning by optimal transport,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[80] Y. Yang, Y.-F. Wu, D.-C. Zhan, Z.-B. Liu, and Y. Jiang, “Complex object clas-
sification: A multi-modal multi-instance multi-label deep network with optimal
transport,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ACM, 2018, pp. 2594–2603.

[81] L. Xu, H. Sun, and Y. Liu, “Learning with batch-wise optimal transport loss for
3d shape recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 3333–3342.

[82] R. Liu, A. Balsubramani, and J. Zou, “Learning transport cost from subset corre-
spondence,” arXiv:1909.13203, 2019.

[83] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for feature
vectors and structured data,” arXiv:1306.6709, 2013.

[84] T. M. Dagnew and U. Castellani, “Supervised learning of diffusion distance to im-
prove histogram matching,” in International Workshop on Similarity-Based Pattern
Recognition, Springer, 2015, pp. 28–37.

[85] T. Le and M. Cuturi, “Unsupervised riemannian metric learning for histograms us-
ing aitchison transformations,” in International Conference on Machine Learning,
2015, pp. 2002–2011.

[86] S.-i. Amari, R. Karakida, M. Oizumi, and M. Cuturi, “Information geometry for
regularized optimal transport and barycenters of patterns,” Neural computation,
vol. 31, no. 5, pp. 827–848, 2019.

[87] G. Aude, M. Cuturi, G. Peyré, and F. Bach, “Stochastic optimization for large-scale
optimal transport,” arXiv:1605.08527, 2016.

[88] P. Dvurechensky, A. Gasnikov, and A. Kroshnin, “Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm,”
in International conference on machine learning, PMLR, 2018, pp. 1367–1376.

[89] P. Dvurechensky, A. Gasnikov, S. Omelchenko, and A. Tiurin, “A stable alternative
to sinkhorn’s algorithm for regularized optimal transport,” in International Confer-
ence on Mathematical Optimization Theory and Operations Research, Springer,
2020, pp. 406–423.

[90] A. Genevay, “Entropy-regularized optimal transport for machine learning,” Ph.D.
dissertation, Paris Sciences et Lettres, 2019.

203

[91] H. Janati, B. Muzellec, G. Peyré, and M. Cuturi, “Entropic optimal transport be-
tween unbalanced gaussian measures has a closed form,” Advances in Neural In-
formation Processing Systems, vol. 33, 2020.

[92] F.-P. Paty and M. Cuturi, “Regularized optimal transport is ground cost adversarial,”
in International Conference on Machine Learning, PMLR, 2020, pp. 7532–7542.

[93] A. Beck, “On the convergence of alternating minimization for convex program-
ming with applications to iteratively reweighted least squares and decomposition
schemes,” SIAM Journal on Optimization, vol. 25, no. 1, pp. 185–209, 2015.

[94] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-
mender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[95] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms
on top-n recommendation tasks,” in Proceedings of the fourth ACM conference on
Recommender systems, 2010, pp. 39–46.

[96] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” in Advances
in neural information processing systems, 2008, pp. 1257–1264.

[97] S. Rendle, “Factorization machines with libfm,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 3, no. 3, pp. 1–22, 2012.

[98] A. Paszke et al., “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[99] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in International Conference on Artificial Intelligence and
Statistics, 2010.

[100] A. Weber, “The usc-sipi image database version 5,” USC-SIPI Report, vol. 315(1),
1997.

[101] M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo, “Iteration complexity analysis
of block coordinate descent methods,” Mathematical Programming, vol. 163, no. 1-
2, pp. 85–114, 2017.

[102] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” arXiv:
1906.01563, 2019.

[103] D. Alshamaa, A. Chkeir, F. Mourad-Chehade, and P. Honeine, “Hidden markov
model for indoor trajectory tracking of elderly people,” in IEEE Sensors Applica-
tions Symposium (SAS), 2019.

204

[104] S. R. Eddy, “Hidden markov models,” Current Opinion in Structural Biology, vol. 6,
no. 3, pp. 361–365, 1996.

[105] F. Farahi and H. S. Yazdi, “Probabilistic kalman filter for moving object tracking,”
Signal Processing: Image Communication, vol. 82, 2020.

[106] A. C. Harvey, Forecasting, structural time series models and the Kalman filter.
Cambridge University Press, 1990.

[107] R. E. Kalman, “A new approach to linear filtering and prediction problems,” arXiv:
1805.04099, 1960.

[108] N. P. Santos, V. Lobo, and A. Bernardino, “Unmanned aerial vehicle tracking using
a particle filter based approach,” in IEEE Underwater Technology (UT), 2019.

[109] P. M. Djuric et al., “Particle filtering,” IEEE Signal Processing Magazine, vol. 20,
no. 5, pp. 19–38, 2003.

[110] M. Deriche, A. A. Absa, A. Amin, and B. Liu, “A novel approach for salt dome
detection and tracking using a hybrid hidden markov model with an active contour
model,” Journal of Electrical Systems, vol. 16(3), pp. 276–294, 2020.

[111] Y. Fang, C. Wang, W. Yao, X. Zhao, H. Zhao, and H. Zha, “On-road vehicle track-
ing using part-based particle filter,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 20(12), pp. 4538–4552, 2019.

[112] A. Hefny, C. Downey, and G. J. Gordon, “Supervised learning for dynamical sys-
tem learning,” in Neural Information Processing Systems, 2015.

[113] J. Langford, R. Salakhutdinov, and T. Zhang, “Learning nonlinear dynamic mod-
els,” in International Conference on Machine Learning, 2009, pp. 593–600.

[114] T. Hashimoto, D. Gifford, and T. Jaakkola, “Learning population-level diffusions
with generative rnns,” in International Conference on Machine Learning, 2016,
pp. 2417–2426.

[115] Y. Wang, B. Dai, L. Kong, S. M. Erfani, J. Bailey, and H. Zha, “Learning deep
hidden nonlinear dynamics from aggregate data,” in Uncertainty in Artificial Intel-
ligence, 2018.

[116] R. Singh, Q. Zhang, and Y. Chen, “Learning hidden markov models from aggregate
observations,” arXiv:2011.11236, 2020.

[117] E. Weinan, J. Han, and A. Jentzen, “Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic

205

differential equations,” in Communications in Mathematics and Statistics, 2017,
pp. 349–380.

[118] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen, “Solving stochastic differ-
ential equations and kolmogorov equations by means of deep learning,” 2018.

[119] W. Li, S. Liu, H. Zha, and H. Zhou, “Parametric fokker-planck equation,” in Ge-
ometry science of information, 2019.

[120] B. Øksendal, “Stochastic differential equations,” in Stochastic differential equa-
tions, Springer, 2003, pp. 65–84.

[121] H. Risken and T. Caugheyz, Eds., The fokker-planck equation: Methods of solution
and application. Springer, 1991.

[122] E. Nelson, Quantum fluctuations. Princeton University Press, 1985.

[123] D. Qi and A. Majda, “Low-dimensional reduced-order models for statistical re-
sponse and uncertainty quantification: Two-layer baroclinic turbulence,” Journal of
the Atmospheric Sciences, vol. 73(12), pp. 4609–4639, 2016.

[124] H. Risken, “The fokker-planck equation,” Springer Series in Synergetics, vol. 18,
pp. 4609–4639, 1989.

[125] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian
inference algorithm,” in Neural Information Processing Systems, 2016, pp. 2378–
2386.

[126] M. Pavon, E. G. Tabak, and G. Trigila, “The data-driven schroedinger bridge,”
arXiv:1806.01364, 2018.

[127] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in
arXiv:1505.05770, 2015.

[128] O. Zienkiewicz and I. Cheung, The Finite Element Method in Engineering Science,
ser. McGraw-Hill European Publishing Programme. McGraw-Hill, 1971, ISBN:
9780070941380.

[129] J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving par-
tial differential equations,” Journal of computational physics, vol. 375, pp. 1339–
1364, 2018.

[130] Y. Zang, G. Bao, X. Ye, and H. Zhou, “Weak adversarial networks for high-dimensional
partial differential equations,” in arXiv:1907.08272, 2019.

206

[131] K. E. Atkinson, An introduction to numerical analysis. John wiley & sons, 2008.

[132] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations.
Springer Science & Business Media, 2013, vol. 23.

[133] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
Advances in Neural Information Processing Systems, 2013.

[134] Y. Li, “A data-driven method for the steady state of randomly perturbed dynamics,”
arXiv:1805.04099, 2018.

[135] A. Klein et al., “Droplet barcoding for single-cell transcriptomics applied to em-
bryonic stem cells,” Cell, vol. 161, no. 5, pp. 1187–1201, 2015.

[136] S. C. Hicks, M. Teng, and R. A. Irizarry, “On the widespread and critical impact of
systematic bias and batch effects in single-cell rna-seq data,” bioRxiv, 2015.

[137] R. Chen, Y. Feng, and D. Palomar, “Forecasting intraday trading volume: A kalman
filter approach,” in Available at SSRN 3101695, 2016.

[138] L. S. Pontryagin, Mathematical theory of optimal processes. Routledge, 2018.

[139] M. J. Zahr and P.-O. Persson, “An adjoint method for a high-order discretization of
deforming domain conservation laws for optimization of flow problems,” Journal
of Computational Physics, vol. 326, pp. 516–543, 2016.

[140] G. N. Milstein and M. V. Tretyakov, Eds., Stochastic numerics for mathematical
physics. Springer Science & Business Media, 2013.

[141] E. Haier, C. Lubich, and G. Wanner, Geometric Numerical integration: structure-
preserving algorithms for ordinary differential equations. Springer, 2006.

[142] B. Leimkuhler and S. Reich, Simulating hamiltonian dynamics, 14. Cambridge uni-
versity press, 2004.

[143] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[144] H. Abarbanel, Analysis of observed chaotic data. Springer Science & Business
Media, 2012.

[145] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge university
press, 2004, vol. 7.

207

[146] E. Bradley and H. Kantz, “Nonlinear time-series analysis revisited,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 25, no. 9, p. 097 610, 2015.

[147] E. Baake, M. Baake, H. Bock, and K. Briggs, “Fitting ordinary differential equa-
tions to chaotic data,” Physical Review A, vol. 45, no. 8, p. 5524, 1992.

[148] J. Bongard and H. Lipson, “Automated reverse engineering of nonlinear dynami-
cal systems,” Proceedings of the National Academy of Sciences, vol. 104, no. 24,
pp. 9943–9948, 2007.

[149] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” science, vol. 324, no. 5923, pp. 81–85, 2009.

[150] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the
national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[151] G. Tran and R. Ward, “Exact recovery of chaotic systems from highly corrupted
data,” Multiscale Modeling & Simulation, vol. 15, no. 3, pp. 1108–1129, 2017.

[152] H. Schaeffer, G. Tran, and R. Ward, “Extracting sparse high-dimensional dynamics
from limited data,” SIAM Journal on Applied Mathematics, vol. 78, no. 6, pp. 3279–
3295, 2018.

[153] F. Lu, M. Zhong, S. Tang, and M. Maggioni, “Nonparametric inference of interac-
tion laws in systems of agents from trajectory data,” Proceedings of the National
Academy of Sciences, vol. 116, no. 29, pp. 14 424–14 433, 2019.

[154] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of
partial differential equations,” Science advances, vol. 3, no. 4, e1602614, 2017.

[155] S. H. Kang, W. Liao, and Y. Liu, “Ident: Identifying differential equations with
numerical time evolution,” Journal of Scientific Computing, vol. 87, no. 1, pp. 1–
27, 2021.

[156] P. A. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O. Grigoriev, “Robust learn-
ing from noisy, incomplete, high-dimensional experimental data via physically con-
strained symbolic regression,” Nature communications, vol. 12, no. 1, pp. 1–8,
2021.

[157] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural networks for
data-driven discovery of nonlinear dynamical systems,” arXiv:1801.01236, 2018.

208

[158] S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning of dynamics and signal-
noise decomposition with time-stepping constraints,” Journal of Computational
Physics, vol. 396, pp. 483–506, 2019.

[159] T. Qin, K. Wu, and D. Xiu, “Data driven governing equations approximation using
deep neural networks,” Journal of Computational Physics, vol. 395, pp. 620–635,
2019.

[160] Z. Long, Y. Lu, X. Ma, and B. Dong, “Pde-net: Learning pdes from data,” in Inter-
national Conference on Machine Learning, PMLR, 2018, pp. 3208–3216.

[161] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of
nonlinear partial differential equations,” Journal of Computational Physics, vol. 357,
pp. 125–141, 2018.

[162] C. A. Bailer-Jones, D. J. MacKay, and P. J. Withers, “A recurrent neural network
for modelling dynamical systems,” network: computation in neural systems, vol. 9,
no. 4, p. 531, 1998.

[163] Y. Wang, “A new concept using lstm neural networks for dynamic system identifi-
cation,” in 2017 American control conference (ACC), IEEE, 2017, pp. 5324–5329.

[164] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach,”
Physical review letters, vol. 120, no. 2, p. 024 102, 2018.

[165] S. Mukhopadhyay and S. Banerjee, “Learning dynamical systems in noise using
convolutional neural networks,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 30, no. 10, p. 103 125, 2020.

[166] A. Shalova and I. Oseledets, “Tensorized transformer for dynamical systems mod-
eling,” arXiv:2006.03445, 2020.

[167] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[168] T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis, “On learning hamiltonian
systems from data,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 29, no. 12, p. 121 107, 2019.

[169] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, “Symplectic recurrent neural net-
works,” arXiv:1909.13334, 2019.

209

[170] R. Chen and M. Tao, “Data-driven prediction of general hamiltonian dynamics via
learning exactly-symplectic maps,” in International Conference on Machine Learn-
ing, PMLR, 2021, pp. 1717–1727.

[171] P. Jin, A. Zhu, G. E. Karniadakis, and Y. Tang, “Symplectic networks: Intrinsic
structure-preserving networks for identifying hamiltonian systems,” arXiv:2001.03750,
2020.

[172] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using physics as
model prior for deep learning,” arXiv:1907.04490, 2019.

[173] P. Toth, D. J. Rezende, A. Jaegle, S. Racanière, A. Botev, and I. Higgins, “Hamil-
tonian generative networks,” arXiv:1909.13789, 2019.

[174] Y. D. Zhong, B. Dey, and A. Chakraborty, “Symplectic ode-net: Learning hamilto-
nian dynamics with control,” arXiv:1909.12077, 2019.

[175] K. Wu, T. Qin, and D. Xiu, “Structure-preserving method for reconstructing un-
known hamiltonian systems from trajectory data,” SIAM Journal on Scientific Com-
puting, vol. 42, no. 6, A3704–A3729, 2020.

[176] S. Xiong, Y. Tong, X. He, S. Yang, C. Yang, and B. Zhu, “Nonseparable symplectic
neural networks,” arXiv:2010.12636, 2020.

[177] S. Ma, S. Liu, H. Zha, and H. Zhou, “Learning stochastic behaviour of aggregate
data,” arXiv:2002.03513, 2020.

[178] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in CVPR, 2016, pp. 770–778.

[179] U. Eren and B. Açıkmeşe, “Velocity field generation for density control of swarms
using heat equation and smoothing kernels,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 9405–9411, 2017.

[180] S. Zhao, S. Ramakrishnan, and M. Kumar, “Density-based control of multiple
robots,” in Proceedings of the 2011 American control conference, IEEE, 2011,
pp. 481–486.

[181] L. C. Pimenta, N. Michael, R. C. Mesquita, G. A. Pereira, and V. Kumar, “Control
of swarms based on hydrodynamic models,” in 2008 IEEE international conference
on robotics and automation, IEEE, 2008, pp. 1948–1953.

[182] H. Choi, U. Vaidya, and Y. Chen, “A convex data-driven approach for nonlinear
control synthesis,” Mathematics, vol. 9, no. 19, p. 2445, 2021.

210

[183] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen, “Nonlinear covariance control via dif-
ferential dynamic programming,” in 2020 American Control Conference (ACC),
IEEE, 2020, pp. 3571–3576.

[184] I. Haasler, Y. Chen, and J. Karlsson, “Optimal steering of ensembles with origin-
destination constraints,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 881–886,
2020.

[185] K. Caluya and A. Halder, “Wasserstein proximal algorithms for the schrödinger
bridge problem: Density control with nonlinear drift,” IEEE Transactions on Auto-
matic Control, 2021.

[186] B. Bonnet and H. Frankowska, “Necessary optimality conditions for optimal con-
trol problems in wasserstein spaces,” Applied Mathematics & Optimization, vol. 84,
no. 2, pp. 1281–1330, 2021.

[187] I. Yang, “Wasserstein distributionally robust stochastic control: A data-driven ap-
proach,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3863–3870,
2020.

[188] A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion control for
collision avoidance using conditional value-at-risk,” IEEE Transactions on Robotics,
2021.

[189] K. Hoshino, “Finite-horizon control of nonlinear discrete-time systems with termi-
nal cost of wasserstein distance,” in 2020 59th IEEE Conference on Decision and
Control (CDC), IEEE, 2020, pp. 4268–4274.

[190] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components
estimation,” arXiv:1410.8516, 2014.

[191] K. Elamvazhuthi, S. Liu, W. Li, and S. Osher, “Dynamical optimal transport of
nonlinear control-affine systems,”

[192] H. Gao, W. Lee, W. Li, Z. Han, S. Osher, and H. V. Poor, “Energy-efficient velocity
control for massive numbers of rotary-wing uavs: A mean field game approach,” in
GLOBECOM 2020-2020 IEEE Global Communications Conference, IEEE, 2020,
pp. 1–6.

[193] C. Frederick, M. Egerstedt, and H. Zhou, “Collective motion planning for a group
of robots using intermittent diffusion,” Journal of Scientific Computing, vol. 90,
no. 1, pp. 1–20, 2022.

211

[194] Z. Feng, G. Hu, Y. Sun, and J. Soon, “An overview of collaborative robotic manip-
ulation in multi-robot systems,” Annual Reviews in Control, vol. 49, pp. 113–127,
2020.

[195] P. Zhu, W. Dai, W. Yao, J. Ma, Z. Zeng, and H. Lu, “Multi-robot flocking control
based on deep reinforcement learning,” IEEE Access, vol. 8, pp. 150 397–150 406,
2020.

[196] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation
with distributed model predictive control for multi-robot motion planning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 604–611, 2020.

[197] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-
free multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–
674, 2017.

[198] D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto, “A neural
network approach for high-dimensional optimal control,” arXiv:2104.03270, 2021.

[199] The georgia tech systems research lab (gtsr), https://fumin.ece.gatech.edu/index.
html.

[200] S. Jansen, Hands-On Machine Learning for Algorithmic Trading: Design and im-
plement investment strategies based on smart algorithms that learn from data using
Python. Packt Publishing Ltd, 2018.

[201] Q. Kang, H. Zhou, and Y. Kang, “An asynchronous advantage actor-critic rein-
forcement learning method for stock selection and portfolio management,” in Pro-
ceedings of the 2nd International Conference on Big Data Research, 2018, pp. 141–
145.

[202] J. De Spiegeleer, D. B. Madan, S. Reyners, and W. Schoutens, “Machine learning
for quantitative finance: Fast derivative pricing, hedging and fitting,” Quantitative
Finance, vol. 18, no. 10, pp. 1635–1643, 2018.

[203] D. Lv, S. Yuan, M. Li, and Y. Xiang, “An empirical study of machine learning
algorithms for stock daily trading strategy,” Mathematical problems in engineering,
vol. 2019, 2019.

[204] B. Huang, Y. Huan, L. D. Xu, L. Zheng, and Z. Zou, “Automated trading systems
statistical and machine learning methods and hardware implementation: A survey,”
Enterprise Information Systems, vol. 13, no. 1, pp. 132–144, 2019.

[205] K. B. Hansen, “The virtue of simplicity: On machine learning models in algorith-
mic trading,” Big Data & Society, vol. 7, no. 1, p. 2 053 951 720 926 558, 2020.

212

https://fumin.ece.gatech.edu/index.html
https://fumin.ece.gatech.edu/index.html

[206] L. Cao, “Ai in finance: A review,” Available at SSRN 3647625, 2020.

[207] L. Gan, H. Wang, and Z. Yang, “Machine learning solutions to challenges in fi-
nance: An application to the pricing of financial products,” Technological Fore-
casting and Social Change, vol. 153, p. 119 928, 2020.

[208] V. Todorov, I. Dimov, S. Apostolov, and S. Poryazov, “Highly efficient stochastic
approaches for computation of multiple integrals for european options,” in Proceed-
ings of Sixth International Congress on Information and Communication Technol-
ogy, Springer, 2022, pp. 1–9.

[209] R. Huptas, “Point forecasting of intraday volume using bayesian autoregressive
conditional volume models,” Journal of Forecasting, vol. 38, no. 4, pp. 293–310,
2019.

[210] S. Borovkova and I. Tsiamas, “An ensemble of lstm neural networks for high-
frequency stock market classification,” Journal of Forecasting, vol. 38, no. 6, pp. 600–
619, 2019.

[211] P. Ghosh, A. Neufeld, and J. K. Sahoo, “Forecasting directional movements of
stock prices for intraday trading using lstm and random forests,” Finance Research
Letters, vol. 46, p. 102 280, 2022.

[212] M. J. Roe, “Stock market short-termism’s impact,” University of Pennsylvania Law
Review, pp. 71–121, 2018.

[213] P. Schroeder, R. Dochow, and G. Schmidt, “Optimal solutions for the online time
series search and one-way trading problem with interrelated prices and a profit
function,” Computers & Industrial Engineering, vol. 119, pp. 465–471, 2018.

[214] S. Endres and J. Stübinger, “Optimal trading strategies for lévy-driven ornstein–
uhlenbeck processes,” Applied Economics, vol. 51, no. 29, pp. 3153–3169, 2019.

[215] H. Park, M. K. Sim, and D. G. Choi, “An intelligent financial portfolio trading strat-
egy using deep q-learning,” Expert Systems with Applications, vol. 158, p. 113 573,
2020.

[216] Y. Fang et al., “Universal trading for order execution with oracle policy distillation,”
arXiv preprint arXiv:2103.10860, 2021.

[217] T. Théate and D. Ernst, “An application of deep reinforcement learning to algorith-
mic trading,” Expert Systems with Applications, vol. 173, p. 114 632, 2021.

[218] A. Ranaldo and P. Santucci de Magistris, “Trading volume, illiquidity and com-
monalities in fx markets,” 2018.

213

[219] T.-A. Dinh and Y.-K. Kwon, “An empirical study on importance of modeling pa-
rameters and trading volume-based features in daily stock trading using neural net-
works,” in Informatics, Multidisciplinary Digital Publishing Institute, vol. 5, 2018,
p. 36.

[220] A. Bernales, C. Cañón, and T. Verousis, “Bid–ask spread and liquidity searching be-
haviour of informed investors in option markets,” Finance Research Letters, vol. 25,
pp. 96–102, 2018.

[221] P.-Y. Hsu, C. Chou, S.-H. Huang, and A.-P. Chen, “A market making quotation
strategy based on dual deep learning agents for option pricing and bid-ask spread
estimation,” in 2018 IEEE international conference on agents (ICA), IEEE, 2018,
pp. 99–104.

[222] P. Feldhütter and T. K. Poulsen, “What determines bid-ask spreads in over-the-
counter markets?” Available at SSRN 3286557, 2018.

[223] H. Yang, A. M. Kutan, and D. Ryu, “Volatility information trading in the index op-
tions market: An intraday analysis,” International Review of Economics & Finance,
vol. 64, pp. 412–426, 2019.

[224] A. Alkusani, A. Handayani, and Y. F. Rahmadani, “Linkage stock price, trading
volume activity, stock returns and trading frequency on bid ask spread,” Innovation
Research Journal, vol. 1, no. 1, pp. 28–33, 2020.

[225] L. Liu and Z. Pan, “Forecasting stock market volatility: The role of technical vari-
ables,” Economic Modelling, vol. 84, pp. 55–65, 2020.

[226] H. Sun and B. Yu, “Forecasting financial returns volatility: A garch-svr model,”
Computational Economics, vol. 55, no. 2, pp. 451–471, 2020.

[227] W. Daadaa, “Bid-ask spread, corporate board and stock liquidity in emergent mar-
kets,” African Journal of Economic and Management Studies, 2021.

[228] C. Brownlees, F. Cipollini, and G. Gallo, “Intra-daily volume modeling and pre-
diction for algorithmic trading,” Journal of Financial Econometrics, vol. 9, no. 3,
pp. 489–518, 2011.

[229] R. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[230] B. Ajinkya and P. Jain, “The behavior of daily stock market trading volume,” Jour-
nal of accounting and economics, vol. 11, no. 4, pp. 331–359, 1989.

214

[231] R. Shumway and D. Stoffer, “An approach to time series smoothing and forecasting
using the em algorithm,” Journal of time series analysis, vol. 3, no. 4, pp. 253–264,
1982.

[232] O. Gueant, J. Lasry, and P. Lions, “Mean field games and applications,” in In Paris-
Princeton lectures on mathematical finance, 2010.

[233] J. Lasry and P. Lions, “Mean field games,” in Japanese journal of mathematics,
2007.

[234] Y. Chow, W. Li, S. Osher, and W. Yin, “Algorithm for hamilton–jacobi equations
in density space via a generalized hopf formula,” Journal of Scientific Computing,
vol. 80, no. 2, pp. 1195–1239, 2019.

[235] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” arXiv: 1701.04862, 2017.

[236] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved
training of wasserstein gans,” in Advances in Neural Information Processing Sys-
tems, 2017.

[237] T. Salimans and D. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” in Advances in Neural Information
Processing Systems, 2016.

[238] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks,” in arXiv:1802.05957, 2018.

[239] S. Nowozin, B. Cseke, and R. Tomioka, “F-gan: Training generative neural sam-
plers using variational divergence minimization,” in Advances in Neural Informa-
tion Processing Systems, 2016, pp. 271–279.

[240] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” in arXiv:1411.1784,
2014.

[241] X. Mao, Q. Li, H. Xie, L. R.Y., W. Z., and S. Paul Smolley, “Least squares genera-
tive adversarial networks,” in International Conference on Computer Vision, 2017.

[242] J. Zhu, T. Park, P. Isola, and A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” in International Conference on Computer
Vision, 2017.

[243] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” in arXiv:1511.06434, 2015.

215

[244] T. ZKarras, S. Laine, and T. Aila, “A style-based generator architecture for gener-
ative adversarial networks,” in International Conference on Computer Vision and
Pattern Recognition, 2019.

[245] A. Brock, J. Donahue, and K. Simonyan, “A style-based generator architecture for
generative adversarial networks,” in arXiv:1809.11096, 2018.

[246] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created
equal? a large-scale study,” in Advances in Neural Information Processing Systems,
2018.

[247] P. Cardaliaguet, F. Delarue, J. Lasry, and P. Lions, “The master equation and the
convergence problem in mean field games,” in arXiv:1509.02505, 2015.

[248] M. Huang, R. Malhamé, and P. Caines, “Large population stochastic dynamic games:
Closed-loop mckean-vlasov systems and the nash certainty equivalence principle,”
in Communications in Information & Systems, 2006.

[249] W. Gangbo, T. Nguyen, and A. Tudorascu, “Hamilton-jacobi equations in the wasser-
stein space,” in Methods and Applications of Analysis, 2008.

[250] W. Gangbo and A. Swiech, “Existence of a solution to an equation arising from the
theory of mean field games,” in Journal of Differential Equations, 2015.

[251] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, “The master equation and
the convergence problem in mean field games,” in The Master Equation and the
Convergence Problem in Mean Field Games, Princeton University Press, 2019.

[252] M. Agueh, B. Khouider, and L. Saumier, “Optimal transport for particle image
velocimetry,” in Communications in Mathematical Sciences, 2016.

[253] W. Li and S. Osher, “Constrained dynamical optimal transport and its Lagrangian
formulation,” 2018. arXiv: 1807.00937.

[254] S. Liu, S. Ma, Y. Chen, H. Zha, and H. Zhou, “Learning high dimensional wasser-
stein geodesics,” in arXiv:2102.02992, 2021.

216

https://arxiv.org/abs/1807.00937

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Computational Methods for OT and IOT Problems
	Applications of OT in Data Driven Problems

	2 | PRELIMINARY IN MATHEMATICS
	Optimal Transport
	Fokker Planck Equation
	Hamiltonian System
	Optimal Control
	Mean Field Game

	3 | Learning High Dimensional Wasserstein Geodesics
	Introduction
	Background of the Wasserstein Geodesic
	Proposed Methods
	Experiments
	Complete Geodesics in Experiments
	Conclusion

	4 | Scalable Computation of Monge Maps with General Costs
	Introduction
	Background
	Proposed method
	Error Analysis via Duality Gaps
	Experiments
	Summary of experiment details
	Conclusion

	5 | Learning Cost Function for Optimal Transport
	Introduction
	Related Work
	Proposed Framework
	Algorithmic Development
	Numerical Experiments
	Remarks on the Implementation of Algorithm 3
	Characterization of Inverse Problems Bypassing Bi-level Optimization
	Robust case
	Block Coordinate Descent for Discrete Inverse OT
	Conclusion

	6 | Learning Stochastic Behaviour from Aggregate Data
	Introduction
	Proposed Method
	Experiments
	Discussions
	More experiments and proofs
	Error Analysis
	Learning Data-driven Hamiltonian System
	Conclusion

	7 | Optimal Density Control
	Introduction
	Methodology
	Experiments
	Conclusion

	8 | Studies of Trading Strategies
	Predicting Daily Trading Volume
	Mean Field Game Generative Adversarial Network

	References

