
 

 

CYCLIST STRESS AND BIOMETRIC SENSING IN 

NATURALISTIC CYCLING 
 

 

 

 

 

 

 

 

 

 

A Dissertation Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

April Gadsby 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Civil and Environmental Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2021 

 

 

 

 



 

 ii 

BIOMETRIC SENSING AND CYCLISTS’ STRESS IN 

NATURALISTIC ENVIRONMENTS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. James Tsai, Co-Advisor 

School of Civil and Environmental 

Engineering 

Georgia Institute of Technology 

 Dr. Christopher Le Dantec 

School of Interactive Computing 

Georgia Institute of Technology 

 

 

  

Dr. Kari Watkins, Co-Advisor 

School of Civil and Environmental 

Engineering 

Georgia Institute of Technology 

 Dr. Daniel Spieler 

School of Psychology 

Georgia Institute of Technology 

 

 

  

Dr. Michael Rodgers 

School of Civil and Environmental 

Engineering 

Georgia Institute of Technology 

  

   

  Date: May 10, 2021  

 

 



 

 iii 

ACKNOWLEDGEMENTS 

Coming to the end of my PhD, I have many people to thank. First I’d like to thank my 

advisors Dr. Kari Watkins and Dr. James Tsai for their efforts guiding me throughout my 

PhD. They’ve both found time to give me opportunities to grow outside of pure research 

such as in teaching, student mentoring, and getting research funding. They’ve also trusted 

me enough to let me go abroad which greatly shaped my professional trajectory. Dr. Tsai 

deserves some extra gratitude for first exposing me to research. He and Yi-Ching Wu took 

the time to mentor me despite my first forays into research being a bit bumpy. But, if it 

weren’t for them sparking a love for research in me, I would have left civil engineering and 

pursued a completely different path. 

I’d like to thank my committee for their support and guidance. In particular, Dr. Chris Le 

Dantec has spent many hours working with me on the instrumented bicycle. Outside my 

committee, I’d like to thank Dr. Marjan Hagenzieker who let me visit TU Delft, got me 

very excited about transportation safety and road user behavior, and advised on my first 

papers. Dr. Laurence Jacobs has been a source of invaluable advice and guidance 

throughout my time at GT. 

I’d also like to thank all of my lab members over the last 6.5 years for their advice, 

guidance, and camaraderie. Ross Wang gave me some of the most valuable advice I’ve 

been given for surviving grad school when I first started. Other senior PhD students when 

I started, Aaron Greenwood, Simon Berrebi, and Alice Grossman have also continued to 

be sources of advice. Chengbo Ai has been incredibly supportive and especially during this 

last year while looking for jobs. Dave Ederer has been a great colleague/friend, source of 



 

 iv 

advice, and a calming presence in the office. Spencer Maddox deserves gratitude for 

collecting data on the hilliest route for me. I would also have not made it through without 

my great friends in the department Georgene Geary and Lauren Gardner. They deserve 

more than a single sentence, but it would take too long to complete. 

In addition to my lab members at GT, I’d also like to thank my colleagues at TU Delft who 

made my time there so great and helped me complete my data collection. Paul van Gent 

and Edwin Scharp spent time getting the sensors running. Edwin Scharp reminded me that 

it was my research so I needed to ask for exactly what I needed. I also appreciate Florian 

Schneider, Alexandra Gavriilidou, and Yan Feng for being my friends in a new place and 

continuing to stay in touch. 

Finally, I’d like to thank my close friends outside the program (Casey, Victor, and Katie) 

and family for keeping me sane.  Also, Gregory Stein, my fiancé, who I met towards the 

end but has decided to stay by my side despite meeting me just before experiencing a nasty 

combination of a global pandemic, applying to faculty positions, and finishing a PhD. He 

has also reminded me that I must include my cat, Poffertje, for her cuddles and reminders 

to play. She is not to be ignored.  

This material is based upon work supported by the National Science Foundation Graduate 

Research Fellowship under Grant No. DGE-1650044. 

 

 

 



 

 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF SYMBOLS AND ABBREVIATIONS xi 

SUMMARY xii 

CHAPTER 1. Introduction 1 

1.1 Background 1 
1.2 Objectives 3 
1.3 Research Approach 4 
1.4 Organization of the Dissertation 6 

1.5 References 7 

CHAPTER 2. Literature Review: Stress Measures and Eye Tracking 9 

2.1 Stress Measures 9 
2.2 Eye Tracking 10 
2.3 Eye Tracking in Transportation Research 12 

2.3.1 Eye Tracking in Driving Research 13 
2.3.2 Eye Tracking in Pedestrian Research 14 

2.3.3 Eye Tracking in Cycling Research 15 
2.4 References 16 

CHAPTER 3. Instrumented Bikes and their Use in Studies on Transportation 

Behaviour, Safety, and Maintenance 21 
Abstract 21 

3.1 Introduction 22 
3.2 Method 23 

3.2.1 Search Terms 23 
3.2.2 Inclusion and Exclusion Criteria 23 
3.2.3 Databases 24 

3.3 Metadata 25 

3.3.1 By year 25 
3.3.2 By location 26 
3.3.3 By journal 27 

3.4 Sensors and Data Collection 28 
3.5 Major Findings by Topic 31 

3.5.1 Studies Focused on the Influence of E-bikes on Cycling Behaviour and Safety

 31 
3.5.2 Studies Focused on Factors that Influence Motor Vehicle Overtaking Distance 

and Speed 35 



 

 vi 

3.5.3 Studies Focused on Infrastructure Management 39 

3.5.4 Studies Focused on Cyclist Stress 41 

3.5.5 Studies Focused on Conflicts and their Causes 43 
3.5.6 Studies Focused on Human Control of a Bicycle 46 
3.5.7 Studies focused on the Influence of Age on Cycling Behavior 47 
3.5.8 Studies focused on Vehicle Detection 49 

3.6 Conclusions and Future Research 49 

3.7 References 51 

CHAPTER 4. An international comparison of the self-reported causes of cyclist 

stress using quasi-naturalistic cycling 59 
4.1 Introduction 60 
4.2 Method 62 

4.2.1 Locations 63 
4.2.2 Study Route Design 64 

4.2.3 Recruitment/Participants 67 
4.2.4 Instruments 68 

4.3 Limitations Error! Bookmark not defined. 
4.4 Future Work Error! Bookmark not defined. 

4.4.1 Considerations/Adjustments to the Instrumented Bicycle Error! Bookmark not 

defined. 
4.5 References Error! Bookmark not defined. 

4.5.1 Protocol 85 
4.5.2 Analysis Method 86 
4.5.3 GPS and LiDAR 87 

4.6 Results 88 

4.6.1 Multiple-Choice Responses 88 
4.6.2 Comparison of Stress Levels 92 
4.6.3 Thematic Analysis 93 

4.6.4 Comparison of the Sensor Data 100 
4.7 Discussion 105 

4.8 Conclusion 107 

4.9 References 108 

CHAPTER 5. The Influence of Situational Complexity, Stress, and Stated Skill on 

Cyclists’ Gaze Behavior 113 

Abstract 113 
5.1 Introduction 114 
5.2 Initial Eye Tracking Tests 119 
5.3 Methods 120 

5.3.1 Participants/Recruitment 121 
5.3.2 Route 121 
5.3.3 Sensors 122 
5.3.4 Survey Instrument 124 
5.3.5 Protocol 125 
5.3.6 Analysis Methods 125 



 

 vii 

5.4 Results 133 

5.4.1 Stated Skill 133 

5.4.2 Complexity 136 
5.4.3 Stated Stress 139 
5.4.4 Heatmaps 142 

5.5 Discussion 146 
5.6 Conclusion 148 

5.7 References 150 

CHAPTER 6. Influence of Pavement Features on Cyclists’ Perception of Safety 

and Comfort: A Combined Survey and Eye Tracking Study 154 
6.1 Introduction 154 
6.2 Methods 156 

6.2.1 Participants/Recruitment 157 
6.2.2 Survey Instrument 158 

6.2.3 Field Experiment Route 159 
6.2.4 Sensors 161 

6.2.5 Protocol 161 
6.2.6 Analysis Methods 162 

6.3 Results 163 

6.3.1 Survey - Demographics 163 
6.3.2 Survey—Safety & Comfort 167 

6.3.3 Eye Tracking 176 
6.3.4 Eye Tracking—Surveys 178 

6.4 Discussion 180 

6.4.1 Practical Implications 184 

6.5 Conclusion 186 
6.6 References 187 

CHAPTER 7. Conclusion 190 

7.1 Contributions 190 
7.2 Limitations 197 
7.3 Future Work 199 

7.3.1 Considerations/Adjustments to the Instrumented Bicycle 202 
7.4 References 205 

APPENDIX A. US Survey 206 

Appendix B. NL Survey 210 

Appendix C. Instrumented BIcycle Literature Review Table 216 

Appendix D. PostHoc Tests for Chapter 5 239 

Appendix E. Posthoc Tests for Chapter 6 241 

 



 

 viii 

LIST OF TABLES 

Table 3-1 Sensors and their uses ....................................................................................... 29 
Table 4-1 Georgia Tech instrumented bicycle sensors ..................................................... 70 
Table 4-2 Summary of the thematic analysis showing percentage of respondents 

mentioning each theme ..................................................................................................... 93 
Table 4-3 More detailed themes showing percentage of respondents mentioning sub-

themes within the infrastructure and motor vehicles themes ............................................ 97 
Table 4-4 Close-pass events and characteristics of the pass and rider ........................... 103 
Table 5-1 Eye Tracking Glasses Specifications .............................................................. 124 
Table 5-2 Summary of measures and analyses using each aggregation technique ......... 133 

Table 5-3  Numerical gaze measures by stated skill with standard deviation in brackets 

and Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) .................. 136 

Table 5-4 Numerical measures of gaze behavior by segment with standard deviation in 

brackets and Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) .... 139 
Table 5-5 Numerical gaze measures by stress with standard deviation in brackets and 

Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) ......................... 142 
Table 6-1 P values for the ANOVA and T-tests by demographics of interest and 

pavement feature for responses to impact on perceived safety. ( * p<0.05;  ** p< 0.01 ; 

*** p <  0.001 ) ............................................................................................................... 171 
Table 6-2 P values for the ANOVA and T-tests by demographics of interest and distress 

type for responses to impact on comfort. ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) ..... 175 
Table 6-3 The Eye tracking measures by distress type and lane type. ........................... 177 

 

  



 

 ix 

LIST OF FIGURES 

Figure 3-1 Number of peer-reviewed research pieces by year up to June 2019 ............... 26 
Figure 3-2 Number of peer-reviewed research pieces by country .................................... 27 
Figure 3-3 Number of peer-reviewed research pieces by journal ..................................... 28 
Figure 4-1 Maps used for finding biking hot spots. (A) Ride Report (B) Relay (C) Strava. 

The average number of trips was taken and the lines are color coded by the number of 

standard deviations from that mean to bring out the most travelled routes. GT is marked 

with a star. ......................................................................................................................... 65 
Figure 4-2 The four chosen routes in Atlanta ................................................................... 66 
Figure 4-3 Infrastructure map of the Delft route (left) and an Atlanta route (right). ........ 67 

Figure 4-4 Components of the Georgia Tech instrumented bicycle ................................. 69 
Figure 4-5 Left: Instrumented bicycle used in Delft with the sensors used in this paper 

identified. Right: Instrumented bicycle components used in Atlanta on the researcher’s 

bicycle with the sensors used in this paper identified. ...................................................... 69 
Figure 4-6 Example of a completed and digitized stress map .......................................... 85 

Figure 4-7 Distribution of rider type self-classification ................................................... 90 
Figure 4-8 Results of attitudinal questions for Delft and Atlanta. Asterisks indicate 

statistical significance level when comparing Delft and Atlanta data ( * p<0.05;  ** p< 

0.01 ; *** p <  0.001 ) ....................................................................................................... 91 
Figure 4-9 Distribution of stress ratings by segment for Delft and Atlanta...................... 92 

Figure 4-10 Number of people responding to each category of “Most Drivers Don’t Seem 

to Notice Cyclists” who mentioned a motor vehicle as a stressor in the interview .......... 99 

Figure 4-11 Boxplots of the speed data in kilometres per hour, triangles represent the 

means .............................................................................................................................. 104 

Figure 5-1 a) shows the confident cyclist and b) the more timid cyclist. The 1 images are 

from The Netherlands and 2 from Atlanta ...................................................................... 120 

Figure 5-2 Route through Delft color-coded by infrastructure type ............................... 122 
Figure 5-3 The TU Delft instrumented bicycle............................................................... 123 
Figure 5-4 Route with images of the short segments taken for all cyclists .................... 127 

Figure 5-5 (a) x position by CSI, (0.5 as center), (b) y position by CSI (0.5 as center), the 

line represents the median and the triangle the mean ..................................................... 135 

Figure 5-6 (a) x positions by segment (0.5 as center), (b) y position by segment (0.5 as 

center) ............................................................................................................................. 138 
Figure 5-7 (a) x positions by stress rating (0.5 as center), (b) y position by stress rating 

(0.5 as center) .................................................................................................................. 141 
Figure 5-8 Heatmaps by segment, all maps cover the same area of normalized coordinates 

(0,0 – 1,1) ........................................................................................................................ 143 
Figure 5-9 Heatmaps by segment and stated skill, all maps cover the same area of 

normalized coordinates (0,0 – 1,1) ................................................................................. 145 
Figure 6-1 Screenshots of each facility type in the survey ............................................. 159 
Figure 6-2 Data Collection Route color-coded by facility type. ..................................... 159 
Figure 6-3 Route map with selected pavement features ................................................. 160 
Figure 6-4 Pupil Labs Invisible Eye Trackers used in this study. .................................. 161 



 

 x 

Figure 6-5 Histogram of ages in the sample. .................................................................. 164 

Figure 6-6 Histogram of rider types................................................................................ 165 

Figure 6-7 Histogram of commute frequency. ................................................................ 166 
Figure 6-8 Histogram of recreation frequency................................................................ 166 
Figure 6-9 Boxplots by pavement feature for “In this scenario, how does encountering the 

following impact your feelings of safety?” ..................................................................... 168 
Figure 6-10 Boxplots by pavement feature for “In this scenario, how does encountering 

the following impact your comfort?” .............................................................................. 169 
Figure 6-11 A density plot of the impact on perceived safety from unevenness on 

separated facilities with the size of the blue circle related to the count of responses at that 

point. The histogram on top shows the histogram for the age groups. ........................... 173 
Figure 6-12 A density plot of the impact on perceived safety from wide cracks on a 

separated facility with the size of the blue circle related to the count of responses at that 

point. The histogram on top shows the histogram for the bicycle commute frequency. 174 
Figure 6-13 A density plot of the impact on comfort from wide cracks on a mixed facility 

with the size of the blue circle related to the count of responses at that point. The 

histogram on top shows the histogram for the recreation frequency. ............................. 176 
Figure 6-14 Boxplots for the field participant sample by pavement feature for “In this 

scenario, how does encountering the following impact your feelings of safety?” ......... 179 

Figure 6-15 Boxplots for the field participant sample by pavement feature for “In this 

scenario, how does encountering the following impact your comfort?” ........................ 180 

 

  



 

 xi 

LIST OF SYMBOLS AND ABBREVIATIONS 

BLOS Bicycle Level of Service 

ECG Electrocardiogram 

EEG Electroencephalogram 

GPS Global Positioning System 

GSR Galvanic Skin Response 

IMU Inertial Measurement Unit 

IRI International Roughness Index 

LiDAR Light Detection and Ranging 

LTS Level of Traffic Stress 

SLaB Seeing Like a Bicycle 

 

  



 

 xii 

SUMMARY 

Cycling is gaining traction in the United States as a mode of transportation due to its 

plethora of benefits. However, cycling still makes up a very low percentage of modal 

share. One major hurdle to increased cycling modal share is that people feel cycling is 

unsafe and stressful. Many studies have considered cyclists’ stress, but these studies have 

not allowed participants to self-define their stressors during a cycling experience. This 

dissertation fills this gap by combining in-ride, open-ended surveys/interviews with 

naturalistic cycling methods. Cyclists wore eye tracking glasses and rode instrumented 

bicycles equipped with GPS and LiDAR to allow researchers to gain a deeper knowledge 

of their surroundings and reaction to them. 

This dissertation uses different combinations of sensors and survey techniques to explore 

cyclists’ stress and demonstrate the value of these methods. The first study focuses on in-

ride surveys and instrumented bicycle data to explore the differences between an emerging 

(Atlanta, USA) and an established (Delft, Netherlands) cycling city. Thematic analysis was 

used to assess the themes in the interview responses. In addition, GPS and LiDAR were 

used to further explore findings around cyclists’ speed and close-pass events.  Although 

there were differences in stressors between the locations, the results suggested that no 

matter the context, cyclists prefer separated, well-maintained bicycle infrastructure.   

The second study uses eye tracking and survey data from Delft to explore how gaze 

behavior varies with stress, complexity, and stated skill. The results suggest that 

complexity is better adjusted via non-visual tasks, but that stress may influence gaze range. 

The split between motor-tactical skills and safety motives in cyclists showed cyclists with 
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comparatively high safety motives had a wider gaze range. This was in unexpected based 

on driving literature suggesting that researchers cannot assume cyclists gaze behavior from 

studies on drivers’ gaze behavior. No set of measures for eye tracking in cycling has yet 

been settled upon, but the measures used here showed great promise for future work.  

The third study uses eye tracking and survey techniques to continue exploring the finding 

that pavement is a top stressor. Data were collected in Atlanta via an online survey and a 

separate field experiment. In the online survey data, potholes were the most important 

pavement characteristic to cyclists’ comfort, followed by debris, wide cracks, and 

unevenness. The eye tracking data showed that unevenness drew the most gaze, followed 

by potholes and debris. The results have practical implications for the prioritization of 

cyclist-focused pavement maintenance. 

Combined these studies demonstrate the value of combining survey techniques with 

sensing in naturalistic settings. Furthermore, the findings can be used in bicycle 

infrastructure design and maintenance for low-stress and safe cycling. Portions of this 

dissertation have already been published as: 

1. Gadsby, A. and Watkins, K.  Instrumented Bikes and their Use in Studies on 

Transportation Behaviour, Safety, and Maintenance, Transport Reviews, 

2020.  DOI: 10.1080/01441647.2020.1769227 

2. Gadsby, A., Hagenzieker, M, and Watkins, K. An International Observation of the 

Causes of Cyclist Stress using Quasi-Naturalistic Cycling. Journal of Transport 

Geography, 2020. DOI: 10.1016/j.jtrangeo.2020.102932 

 

https://doi.org/10.1080/01441647.2020.1769227
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CHAPTER 1. INTRODUCTION 

This dissertation presents research on cyclists’ stress and perceived safety. The unique 

methods combine surveys, instrumented bicycles, eye tracking, and naturalistic cycling. 

Each chapter will rely on at least two data streams and highlight the potential of these 

methods for understanding road user perceptions and behavior. The dissertation is based 

on research from a published literature review, one published paper,  and two working 

papers. 

1.1 Background 

Cycling has a plethora of benefits for both the user and society at large. For the user, cycling 

increases physical activity and associated health markers and provides a low-cost, and if 

designed well, convenient form of transportation (1, 2). On a societal level, higher levels 

of cycling can mean fewer cars on the road resulting in lower emissions and improved 

safety and public health.  

Despite these benefits, the percentage of trips taken by bicycle in the United States is less 

than 1% (3). Some cities within the United States and around the world have successfully 

increased cycling modal share with some of the best increasing it above 30%. Bicycle 

modal share in most cities could be improved, but many potential cyclists feel stressed, 

unsafe, and uncomfortable cycling with the current state of the infrastructure (3–5). 

To describe the types of people who could be converted to cyclists if bicycle infrastructure 

were built, Roger Geller developed the rider type scale which separates cyclists based on 

their comfort and confidence cycling. He developed the original classification system 
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based on Portland, Oregon’s experience improving cycling infrastructure (6). The four 

categories are: “strong and fearless”, “enthused and confident”, “interested, but 

concerned”, and “no way, no how”. The “strong and fearless” cyclists will ride under any 

roadway conditions and view the term “cyclist” as part of their identity. These are the 1% 

cycling in US cities now. “Enthused and confident” cyclists will share the road but prefer 

specific bicycle facilities. The “no way, no how” category includes people who would 

never bicycle, comprising about one-third of the population. The remaining category, 

“interested, but concerned”, comprises most of the population (~60%). This category 

includes people who would like to bicycle but are uncomfortable cycling without separated 

facilities. Misra (8) argued for a fifth category that would fall between “enthused and 

confident” and “interested, but concerned”. They called this category “comfortable, but 

cautious.” It comprises people who are enthusiastic about biking but are concerned about 

their safety, thus falling in between the surrounding categories.  These categories will be 

used to describe cyclists throughout the dissertation. 

Many studies have been performed to understand what makes cyclists outside of the 

“strong, and fearless” category hesitant or uncomfortable cycling. For example, studies 

have shown time of day (7), separation from motor vehicles (8), dedicated bicycle 

infrastructure (9–11), and traffic volumes (12) are significant contributors to cyclists’ 

stress. Studies about cyclists’ stress have mostly been survey or interview-based. Such 

methods when used outside the context of cycling heavily depend on recall which 

diminishes with time (13–15). Other studies have combined quasi-naturalistic cycling 

methods with brief surveys to understand rider characteristics. Despite addressing the lack 

of the cycling experienced from pure survey or interview-based studies, these studies have 
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not allowed participants to define their stressors; researchers assumed stressors based on 

participant surroundings and a stated stress level. This leaves a missing link in our 

understanding of cyclists’ stress between experienced stress and the cyclists’ perceived 

reason for that stress. 

Therefore, there is a need for open-ended, in-ride surveys and eye tracking to assess 

cyclists’ stress levels combined with real-time data streams sensing the environment 

around the cyclist. This dissertation attempts to address the gaps in knowledge of cyclists’ 

stress with an innovative method that combines quasi-naturalistic cycling with eye tracking 

and intra-ride, open-ended surveys. The contributions of this dissertation come both from 

the methods used and new insights into cyclists’ stress. 

1.2 Objectives 

The primary objective of this research is to improve understanding of cyclists’ stress and 

how real-time data streams, especially eye tracking, combined with survey methods can 

support new findings into cyclists’ stress, and in the future, road user behavior. The 

associated research questions are as follows: 

1. When allowed to self-define stressors, what do cyclists identify as stressful? 

Does this vary between an emerging and an established cycling city? 

2. How does gaze behavior vary with stress, complexity, and stated skill? 

3. Which pavement conditions matter most to cyclists’ perceived safety and 

comfort?  

4. How does the gaze given to pavement conditions vary by condition type and 

infrastructure type? 
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5. Can the use of in-ride survey techniques in combination with instrumented 

bicycles improve understanding of cyclists’ stress? 

1.3 Research Approach 

The research approach was designed to address the primary objective and research 

questions. Data collection occurred three times. The first two data collection protocols were 

designed to be comparable, but the third was adjusted to be more specific. Despite the 

differences, all three were similar in process. The data collection for each study is described 

in more detail in the following chapters, but a brief overview is provided here. 

The first round of data collection had cyclists in Atlanta riding a bicycle equipped with a 

variety of sensors including speed (GPS), proximity (LiDAR), and air quality (PM2.5) 

sensors. An MS Thesis (16) covers the results for the air quality sensors. The cyclists chose 

among four routes around Atlanta, both to improve familiarity with the routes and to give 

a cross-section of Atlanta for the air quality sensors. Each route took approximately 30 

minutes to cycle and had a variety of infrastructure from fully separated to mixed traffic 

cycling. We surveyed participants along the route to gain their stated stress levels, then 

interviewed them at the end to gather their reasoning for their stress levels. In addition to 

the interview, they filled out a survey that covered their transportation attitudes, habits, and 

demographic information. Participants also wore eye tracking glasses, but because of both 

hardware malfunction and data loss due to bright sunlight, the eye tracking data was not 

used in this dissertation. However, the use of eye trackers in this round served as a test of 

the eye trackers for future data collection efforts.  
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The second round of data collection was designed to be a comparison to the first. The 

process was the same, except the route was in Delft, the Netherlands. We adjusted the 

survey for cultural appropriateness and added a cycling skill inventory. We also adjusted 

the setup to reduce the hardware malfunction that resulted in eye tracking data loss in 

Atlanta, but the overall process was essentially the same. 

The first analysis performed on the data combined the interview/survey responses with the 

instrumented bicycle data from Atlanta and Delft. I used thematic analysis to assess the 

interview responses, and the instrumented bicycle data from the LiDAR and GPS to 

support key findings. A description of the study and results can be found in CHAPTER 4. 

The second analysis focused on the eye tracking data from Delft. This was an exploratory 

analysis of the measures of gaze behavior that could be associated with cyclists’ stress, 

skill, and navigational complexity. The measures explored were selected based upon 

literature review. The results of the exploratory analysis are included in CHAPTER 5. 

Based on findings from the previous studies that highlighted the importance of pavement 

condition, the third data collection plan focused on pavement condition was conceived with 

adjustments for Covid-19 related safety precautions. The cyclists did not ride the 

instrumented bicycle but did wear eye tracking glasses while cycling along an 

approximately 30-minute route covering separated bike lanes, painted bike lanes, and 

mixed traffic facilities. Participants filled out an online survey about their experience, 

adjusted to reflect the focus on pavement condition. In addition to the eye tracking 

component, an online survey was sent out to a larger population of Atlanta cyclists and 

analyzed as well. 
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The final analysis used data from the third data collection. Visual and statistical methods 

were used to analyze the online survey results. The results of the survey informed the 

pavement distresses to consider for the field experiment. The eye tracking data was then 

analyzed in frame-by-frame analysis for the selected pavement distresses and compared to 

the survey results. The practical implications of the findings are discussed and highlighted 

in CHAPTER 6. 

These methods demonstrate the value in combining biometric sensing, instrumented 

bicycles, and naturalistic settings to understanding cyclists’ stress and suggest benefits to 

future studies of road user behavior and perception. The results range from theoretical to 

highly practical. The methods open the door for further studies into road user behavior and 

interaction, especially vulnerable road users. 

1.4 Organization of the Dissertation  

This section provided the motivation and research questions for this dissertation. The 

following section reviews literature on stress measurement and the use of eye tracking. 

Next, CHAPTER 3 consists of a previously published literature review covers the use of 

instrumented bicycles in transportation. 

The following three chapters come from published or working papers and combined 

answer research question five. CHAPTER 4, extracted from a published paper, uses survey 

analysis and the instrumented bicycles to answer question 1. Thematic analysis was used 

to understand the main causes of stress in both Delft, the Netherlands and Atlanta, USA. 

CHAPTER 5 uses survey results and eye tracking data from the Netherlands to explore 

research question 2. This chapter has been extracted from a paper under review. CHAPTER 
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6 uses eye tracking and survey data from Atlanta to answer questions 3 and 4. CHAPTER 

7 summarizes the findings and puts forth the contributions, limitations, and future work for 

this dissertation. 
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CHAPTER 2. LITERATURE REVIEW: STRESS MEASURES AND 

EYE TRACKING 

2.1 Stress Measures 

Stress is difficult to define. Selye initially defined stress as “the non-specific response of 

the body to any demand for change”, indicating that it is a complex response comprising 

psychological, cognitive, and behavioral components (1). This is a very fluid definition and 

is context-dependent in practice. Furthermore, stress is a latent construct that cannot be 

directly measured. It can only be measured through correlating measures with self-reported 

stress ratings. This literature review will cover the ways people measure stress and how 

eye tracking, the chosen measurement device, has been used in transportation. Further 

literature review within each chapter will cover eye tracking in transportation relevant to 

that chapter. 

Based on previous work, the most ideal measurement of stress is to measure stress 

hormones such as cortisol and catecholamine (2). However, this requires invasive 

techniques that could not be used to gather real-time measures of stress in a dynamic 

setting. The most common non-invasive real-time measures of stress are heart rate 

variation, breathing pattern, blood pressure, galvanic skin response, brain waves, various 

eye measures, or a combination of these. Nandita and Gedeon reviewed these measures 

and ranked heart rate variation as the best primary measure of stress (2). Heart rate variation 

can be measured using electrocardiogram (ECG) and has been shown to correlate very well 

with stress (2). Unfortunately, heart rates do not just vary from person to person, but also 



 

 10 

with physical exertion. Respiration and blood pressure suffer from the same problem, but 

have not correlated as closely with stress as heart rate (2).  

Galvanic skin response measures the change in electrical conductance on the skin 

associated with increased moisture. It has shown good relations to stress and cognitive load 

(2). But the sensors are typically placed on fingers and sensitive to vibrations, which would 

be challenging for someone gripping the handles of a bicycle.  

Another measure, electroencephalogram (EEG) is used to measure brain activity. It is 

effective temporally, but requires attaching sensors to the scalp (2), which is not feasible 

for a naturalistic cycling study.  

Others have used various combinations of these. For example, Shi et al. (3) used heart rate, 

GSR, respiration, and temperature to develop a personalized stress detection algorithm 

using support vector machines. Within the world of transportation, driver stress was 

measured by Healey and Picard using a camera, GSR, heart rate, and skeletal muscle 

activity (using electromyography) (4). However, they also stated that this setup was 

cumbersome and not useful in realistic situations. Due to the challenges of the other 

methods, we focused on eye tracking, which can take measures also shown to be good 

indicators of stress (2).  

2.2 Eye Tracking 

Eye trackers record eye movements and pupil diameter. These can correlate with mental 

tasks and attention but cannot show whether someone processed what they looked at or 

noted something without looking at it. Eye trackers use infrared light to create a reflection 
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in the cornea and find the center of the pupil (5). The relative location of the reflection and 

pupil changes when the eye rotates and the head remains still (5). Using this information, 

the location of visual focus can be determined and mapped onto a world view.  

There are three primary types of eye movements: saccade, smooth pursuit, and fixation. 

Saccades are very rapid movements of the eye, during which vision is blurred and mostly 

suppressed (5). They move the eye from one point of focus to the next. Fixations are 

moments of stationary focus, typically lasting between 1/10 and ½ of a second (5). Finally, 

smooth pursuit of eye movement is when the eye is following a target. Because the point 

of focus will move relative to the cyclist, a fixation will typically appear as a smooth pursuit 

movement to the eye tracking processor. This type of movement is typically not tracked by 

eye tracking software. It often results in using frame-by-frame analysis methods where the 

start and end of a fixation is manually computed. But Vansteenkiste et al. (6) found that 

with head-mounted eye tracking fixation-based and frame-by-frame analysis were about 

equally effective.  

There are a variety of eye tracking measures that are known correlates of stress such as 

mental workload and emotion. Pupil size has been associated with positive and negative 

affect (7) and mental workload (8).  Illumination is a concern when measuring pupil size 

outside, although in lab settings it has been possible to separate illumination from pupil 

dilation due to mental workload or affect. However, Palinko et al. (9, 10) were able to 

separate the change in pupil diameter caused by illumination and that caused by cognitive 

load. They did this using a video with different colored trucks and varying the mental 

workload through additional tasks. Xu et al. (11) also found that cognitive load could be 

separated from luminance changes by changing the luminance while the participant did 
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math problems of different levels of difficulty. Both studies were performed in controlled 

laboratory settings and may be more challenging in a real-world environment. 

For blink rate, there have been mixed results, likely associated with the confluence between 

visual workload and mental workload. When separated, it seems blink rate increases with 

increasing mental workload and decreases with increasing visual workload (12). 

Controlling for both would be challenging in a naturalistic experiment. 

Fixations and fixation duration are the most commonly used in eye tracking. They’re used 

in UX research (5) to see where people look in stores or packaging. In driving it’s been 

shown that hazard perception and higher skill are associated with longer fixations (13). 

Fixations are used to create heat maps and have also been studied in terms of compactness 

of gaze (14). Overall, fixations and general gaze behavior are diverse measures better 

discussed in specific contexts. For this reason, focused eye tracking-related literature 

review are included in each chapter using eye tracking. 

2.3 Eye Tracking in Transportation Research 

Researchers have extensively used eye tracking in driving studies and to a lesser extent in 

bicycle and pedestrian studies. An exhaustive review of driving studies with eye tracking 

is beyond the scope of this review. However, a selection of papers has been included to 

illuminate the uses of eye trackers for research on drivers and what might apply to cycling. 

Further literature review is included in CHAPTER 4 and CHAPTER 5 to support the use 

of eye tracking in these studies. This section will cover each mode separately, starting with 

driving, then walking, then cycling. 
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2.3.1 Eye Tracking in Driving Research 

Eye tracking in driving research has covered a variety of topics. This literature review will 

include mental workload, distraction, driver fatigue, skill, and familiarity. Researchers 

have shown the effectiveness of eye tracking measures for driving studies. Marquart et al. 

(8) performed a review of eye-related measures of drivers’ mental workload. They 

primarily considered blink rate, pupillometry, and fixation duration. They found blink rate 

had confounding influences and pupillometry was challenging due to illumination, but that 

fixation duration could be usable. However, Palinko et al. (9, 10) explored the effect of 

illumination on pupil diameter in driving simulators. They found that separation of the 

effects of cognitive load and illumination is possible but requires knowledge of the 

illuminance. Their task and setting were highly controlled, so the findings may not apply 

outside of a laboratory setting.  

Cognitive load and distraction are important for safety in driving. One research team 

looking at cognitive load, Lee et al. (15), studied the effects of cognitive load and visual 

disruption on visual attention. They found that cognitive load impacts both exogenous 

("caught their eye”) attention and endogenous ("directed to observe”) attention. Overall, 

they determined that the effects of cognitive load and visual disruption were additive in 

their tendency to increase the likelihood of drivers missing safety-critical events. Nunes 

and Recarte (16) considered another safety concern, distraction from hands-free phone 

conversations. They looked at the cognitive demands of hands-free-phone conversations 

measuring fixation duration and location and pupil size. They found that the more complex 

the task, the narrower the field of vision.  
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Eye tracking has also been used to detect safety in terms of lighting and driver fatigue. Hu 

et al. (17) developed a model comparing pupil diameter change, luminance, and speed 

when driving into tunnels. Their aim was to recommend tunnel lighting designs for driver 

comfort and safety. Horng et al. (18) and later Kumar and Patra (19) developed driver 

fatigue detection algorithms based on video-images and the drivers’ eye behavior. These 

relied heavily on data of how open the eye was. 

Eye tracking has also been used to look at skill and familiarity. Chapman et al. (13, 20) 

compared the gaze behaviors of novice and experienced drivers in a driving simulator. 

They found novice drivers fixate for longer times than experienced drivers and experienced 

drivers fixate more frequently, but for shorter durations. They also developed an effective 

intervention to train novice drivers in visual scanning (20). Mourant and Rockwell (14) 

attempted to improve understanding of driver familiarity by mapping eye-movement 

patterns of drivers as they repeatedly drove routes. They found that as familiarity grew, the 

gaze became more compact and focused lower near the horizon and the lane marker. 

Additionally, they found that drivers use peripheral vision for monitoring and foveal vision 

for detailed observation as necessary. The authors used maps of gaze location compared to 

the lane markers to visualize the data. Based on the reviewed studies, gaze distribution, 

fixation frequency and duration, and pupil diameter are the most common measures of gaze 

behavior used in driving studies. 

2.3.2 Eye Tracking in Pedestrian Research 

Most research involving eye tracking with pedestrians has focused on 

navigation/locomotion and lighting/architecture, but some have been transportation-
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specific. The architecture work looks at lighting and interactions of pedestrians with their 

footpath (21–23). The navigation and locomotion work focuses primarily on way-finding 

(24–27).  

Within transportation-focused studies, researchers started, when eye tracking was fairly 

new, by studying the pedestrian gaze to gain a general description of their gaze behaviors 

(28). Additionally, researchers have studied pedestrian crossing behavior with a focus on 

children and elderly (29, 30). Recent studies have been preparing for autonomous vehicles. 

For example, Dey et al. used eye tracking to study how pedestrians perceive motor vehicles 

(31). They intended to use their findings to inform design for autonomous vehicles. These 

studies used fixations (duration and frequency) and gaze distribution to measure pedestrian 

gaze behavior.  

2.3.3 Eye Tracking in Cycling Research 

Although there is growing interest in using eye tracking for naturalistic cycling studies, 

publications are sparse. The most prolific author in this field is Vansteenkiste from Ghent 

University. He comes from a sports science background, so his studies have focused 

primarily on cyclist control of a bicycle (6, 32–35). In addition to defining how cyclists 

maneuver their bicycle in a variety of situations, Vansteenkiste et al. (32) found that when 

biking on low quality roads cyclists tended to look close to them rather than at further off 

environmental hazards, which is relevant to studies of pavement condition on cyclist 

behavior.  

Few studies have been published from a transportation engineering perspective. Ahlstrom 

et al. (34) from Sweden looked at the visual behavior of cyclists when using smartphones. 
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They found that, when required to perform the task, cyclists choose locations where they 

can spend longer looking at the phone and don’t sacrifice safety necessary gazes to look at 

the phone. In terms of safety behavior, older cyclists are a concern. Igari et al. (35) from 

Japan researched where older adult cyclists look using a stationary bicycle and a video 

compared to young adults. They found the elder cyclists looked down at the pavement more 

than young cyclists who looked further ahead. Stelling-Konczak et al. (2018) studied 

glance behavior of teenage cyclists while using headphones. Although cyclists believe they 

compensate for the loss of audio signal by glancing more, it was found that there was no 

statistically significant difference in glance behavior when listening to music. Mantuano et 

al. (36) from Italy used eye-tracking to observe where cyclists look when mixed with 

pedestrians. They found that less experienced cyclists had a gaze pattern with more 

saccades and that cyclists tended to watch pedestrians more than physical risks or other 

cyclists. This suggested to the authors that participants considered pedestrian’s movements 

less predictable than cyclists. None of these studies have looked at cyclist stress and there 

is still a lot of opportunity for further study in cycling using eye tracking.  
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CHAPTER 3. INSTRUMENTED BIKES AND THEIR USE IN 

STUDIES ON TRANSPORTATION BEHAVIOUR, SAFETY, AND 

MAINTENANCE 

This chapter has been adapted from: Gadsby, A. and Watkins, K.  Instrumented Bikes and 

their Use in Studies on Transportation Behaviour, Safety, and Maintenance, Transport 

Reviews, 2020. DOI: 10.1080/01441647.2020.1769227 

 

Abstract 

Instrumented bikes are a critical tool to understanding cyclist behavior and 

preferences to incorporate cycling into modeling, designing, and planning the 

transportation system. Literature using instrumented bikes for transportation-related 

research has increased in popularity, especially in the last 6 years. As these studies 

are growing in number and maturity, now seems a good time to review how the 

bikes have been used, choices of sensors and methodology, and where there are 

gaps to be filled by future work. Therefore, the objectives of this literature 

review are to 1) discuss sensor choice in relation to methodology, 2) review 

findings from topics studied using instrumented bikes, and 3) discuss gaps in the 

literature. Two databases were searched for transportation-based literature 

using instrumented bikes with a total of 75 articles meeting the inclusion criteria. 

The literature was organized into nine focus areas with the most common topics 

being E-bikes, vehicles passing cyclists, and critical events. The results show that 

instrumented bikes are versatile tools that can shed light on a variety of aspects of 

cyclist behavior and safety as well as how to maintain the system for them. Various 

sensors were used for these studies, but cameras, GPS, and accelerometers were the 

most common. The review highlights the importance of study technique 

(naturalistic vs quasi-naturalistic vs other) on sensor choice with GPS and/or 

cameras being critical to any naturalistic study. However, GPS and cameras are the 

most challenging data types to work with due to difficulty and the time-consuming 

nature of processing the data. The variation in sensors also suggests some need to 

standardize set-ups for comparison of data across international contexts. Areas for 

future research are also discussed, including a new perspective for passing-distance 

studies and incorporating instrumented bikes into the connected 

vehicle/infrastructure space.  
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3.1 Introduction 

Cycling has many well-known societal benefits including air pollution reduction, 

congestion alleviation, and improvement of public health (1). However, in most countries 

the number of cyclists is still low (2). There is increasing interest in capitalizing on these 

societal benefits by increasing bike modal share. In order to do this, people want to use 

cycling research to better understand how to incorporate cycling into models and make it 

more appealing in terms of both safety and comfort.  

There are a variety of study methods used frequently in cycling research, including surveys, 

simulation, and naturalistic cycling. With portable logging devices becoming inexpensive 

to build with the advent of the Arduino and Raspberry Pi in the 2000s, bikes instrumented 

with sensors became increasingly usable for research in this field.  

Since 2000, there have been many articles published, 75 in this review, that have used an 

instrumented bike. In that time, researchers have illuminated many topics around cycling, 

such as E-bike rider behavior and factors influencing passing distance. As these studies are 

growing in number and maturity, now seems a good time to review how the bikes have 

been used, choices of sensors and methodology, and where there are gaps to be filled by 

future work. Therefore, this article will 1) discuss sensor choice in relation to methodology, 

2) review findings from topics studied using instrumented bikes, and 3) discuss gaps in the 

literature. 

This article is organized such that the next sections discuss the method of the literature 

review, metadata of the research, and sensors used. Then, major findings in the literature 
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in conjunction with sensors choices are reviewed with gaps in the research highlighted 

throughout. Finally, conclusions and directions for future research are offered. 

3.2 Method 

This section describes the methodology for conducting the literature review, including the 

selection of databases and inclusion and exclusion criteria. 

3.2.1 Search Terms 

Two key phrases were searched: “Instrumented (Bike or bicycle or cycling)” and 

“Naturalistic and (Cycling or bike or bicycle).” The focus of this literature review is the 

use of instrumented bikes for transportation research, therefore the first key phrase was a 

natural choice. However, it was clear that some important studies were missing with just 

that key phrase. To remedy this, “Naturalistic Cycling” was also reviewed, which 

recovered the noted studies. Naturalistic cycling is a methodology that allows participants 

to cycle as they would normally with some means of observing their behavior. The two 

most common methods of observing their behavior are through fixed-camera video 

recording and instrumented biking. When this method is highlighted, the tool used is often 

more implicit in the title and key words, sometimes being phrased as “a bike equipped 

with”, so these articles were often not identified with the instrumented bike search term. 

Combined, the authors felt this provided a comprehensive selection of articles.  

3.2.2 Inclusion and Exclusion Criteria 

To be included in this literature review, studies needed to meet five criteria. First, only 

research published in English was included. Additionally, the research needed to be 
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published in a peer-reviewed format. Third, a bike equipped with sensors had to be used as 

part of the data collection process. Studies that only put sensors on the riders’ body (I.e. in 

a backpack) were excluded because it would broaden the focus of this literature review 

beyond the scope of a single article. Fourth, the research had to be transportation planning 

or engineering focused. This meant that studies with a primary focus on health separate 

from transportation (I.e. potential for instrumented bikes in rehabilitation for illness/injury, 

air quality measurements, etc.) or bike design (I.e. improving crank shafts for sports 

cyclists) were excluded. Additionally, route choice as a category was excluded as there is 

a large GPS-based literature on route choice that would warrant a separate article and was 

not effectively captured using the chosen search terms. The data collection techniques used 

for these studies would be similar to other naturalistic studies in their route identification, 

therefore excluding these studies is not a loss to the sensor discussion. Finally, studies had 

to include at least some cycling outside. This excluded purely lab-based or simulator 

studies. 

3.2.3 Databases  

Three scholarly databases were searched using these search terms. The first database was 

the Transportation Research International Documentation (TRID) (3). TRID is maintained 

by the US National Academies' Transportation Research Board and contains research 

covering all modes and transportation disciplines. It was chosen because of its 

transportation focus and all articles in TRID were reviewed. 

The second database searched was Google Scholar. Google Scholar was selected in order 

to broaden the search. Articles are listed in order of relevance to the keyword. Due to the 
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high number of hits for each search, a cutoff point was needed. The 500th article was chosen 

as the cutoff point because there were no longer relevant articles for at least 50 articles 

prior to the 500th one. 

The review through each database was done sequentially with three steps for each database. 

First, the database was searched for the terms “Instrumented (Bike or bicycle or cycling).” 

Then a title search was conducted followed by abstract review. Then the process restarted 

with “Naturalistic and (Cycling or bike or bicycle)” as the key terms, removing any 

duplicates at the title search stage. In TRID for the instrumented bike key terms, there were 

initially 226 hits and for the naturalistic cycling 116 hits, with 35 articles meeting the 

inclusion criteria. Using google scholar the instrumented bike key terms had 1,210 hits and 

naturalistic cycling 5,160 although only 500 articles were considered for either, ultimately 

44 articles met the inclusion criteria.  

3.3 Metadata 

This section will review metadata about the articles including publication year, journal, 

research location, and topic category.  

3.3.1 By year 

Figure 3-1 displays the number of publications by year. There were sprinklings of articles 

in the early 2000s. The earliest articles from 2003 and 2005 were out of New Zealand about 

instability riding over different line types.  

From 2007, research using instrumented bikes became more regular, but still only 1-2 

articles were published per year. The article in 2007 discusses passing of cyclists, the 
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second most common topic of research reviewed. In 2012, the first article that discusses e-

bikes as a focus, the most common focus in this review, appeared. From 2013, the research 

using instrumented bikes takes off with at least 9 articles per year since. In 2019, 5 articles 

had already been published by June, suggesting another year with a high volume of 

research using instrumented bikes. The increase in interest in the last 6 years suggests now 

is a good time to review what has been done, the methods used, troubles faced, and existing 

needs.  

  

Figure 3-1 Number of peer-reviewed research pieces by year up to June 2019 

3.3.2 By location 

Figure 3-2 displays the number of publications by country. Looking at the research 

produced by country, the United States is leading. Considering the number of published 

research pieces by continent, Europe comes out on top with more than double the articles 

out of North America.  
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Figure 3-2 Number of peer-reviewed research pieces by country 

3.3.3 By journal 

The breakdown by journal is shown in Figure 3-3. The journal with the most publications 

on this topic is Accident Analysis and Prevention with 17 articles followed by 

Transportation Research Part F with 10 articles.  
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Figure 3-3 Number of peer-reviewed research pieces by journal 

3.4 Sensors and Data Collection 

A wide variety of sensors are used for research with instrumented bicycles. The choice of 

sensor to use is heavily dependent on the objective of the study. If all camera directions are 

counted as one type of sensor, most studies use three or fewer sensor types, with the most 

common number of sensor types being one. The most common sensors used were GPS and 

cameras, especially forward-facing, followed by accelerometers, gyroscopes, and speed 

sensors.  

Table 3-1 below shows the types of sensors used, the number of studies each sensor was 

used for, and the topic categories of the articles. Note that some studies use an inertial 

measurement unit (IMU) which acts as an accelerometer, gyroscope, and sometimes 

magnetometer. For Table 3-1, use of this sensor has been included in accelerometer, 

gyroscope, and magnetometer. 
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Table 3-1 Sensors and their uses 

Sensor 

# 

Studies 

Using 

the 

Sensor Focus Area of the Study 

GPS 45 Age, Conflicts, E-Bikes, Infrastructure Management, Cyclist 

Stress, Human Control, Passing, Vehicle Detection 

Forward 

Camera 

37 Age, Conflicts, E-Bikes, Human Control, Infrastructure 

Management, Cyclist Stress, Passing 

Accelerometer 34 Age, Conflicts, E-Bikes, Human Control Infrastructure 

Management, Cyclist Stress, Passing, Vehicle Detection 

Gyroscope 22 Age, Conflicts, E-Bikes, Human Control, Passing, Vehicle 

Detection 

Speed 20 Age, Conflicts, E-Bikes, Infrastructure, Passing 

Lateral 

Distance 

16 Conflicts, Infrastructure, Passing, Vehicle Detection 

Magnetometer 14 Age, Conflicts, E-Bikes, Infrastructure, Passing 

Side Camera 12 Conflicts, Infrastructure, Passing 

Egocentric 

Camera 

11 Age, Conflicts, E-bikes, Human Control 

Rear Camera 9 Age, Conflicts, E-Bikes, Infrastructure, Passing 

Pedal Sensors 6 E-Bikes, Infrastructure 

Brake Sensor 6 Conflicts, E-Bikes, Infrastructure, Human Control 

Steering 6 Age, E-Bikes, Human Control, Infrastructure 

Pressure 

Sensor 

3 Conflicts, E-Bikes 

Current 

Sensor 

2 E-Bikes 

Handlebar 

Strain 

2 Human Control 

Sitting Force 2 Human Control 

Other 7 Age, E-Bikes, Human Control, Infrastructure 

 

The purpose of the study and the method (naturalistic vs non-naturalistic) define the best 

selection of sensors. For example, GPS or cameras (usually both) are needed for a 

naturalistic study as cyclists can ride anywhere, but these are not always necessary for a 

pre-specified route that a quasi- or non-naturalistic study would use.  
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However, there can be multiple ways of accomplishing the same task. For example, the 

studies looking at passing distances either used a sensor for lateral distance (ultrasonic was 

the most common, but LiDAR was used as well) or a camera. There are benefits and 

tradeoffs for each choice. Lateral distance sensors cannot tell the researcher about the type 

of vehicle, but the data can be faster to process. Video data can show the type of vehicle, 

but processing time can be very long. For example, Chuang, Hsu, Lai, Doong & Jeng (4) 

who studied passing distance noted that it took one person-day of work to record events 

and road facilities for a half hour of camera data. 

Cameras and GPS, although the most popular sensors, were the most troublesome. As 

mentioned, cameras often required manual encoding which requires very long processing 

times noted by Chuang et al. (4), Huertas-Leyva, Dozza, and Baldanzini (5), Gustafsson 

and Archer (6), and Westerhuis and de Waard (7). GPS data can be challenging as it can 

be interrupted by tall buildings or other fixtures blocking the sensor, and the accuracy may 

not be high enough to determine exactly which road a cyclist used. It can be time 

consuming to clean the data, snap to maps, and process as was noted by Gustafsson and 

Archer (6), Gehlert et al. (8), Gorenflo, Golab and Keshav (9), and Mackenzie, Thompson 

and Dutschke (10) . These challenges of interruption and long processing times are 

important to consider when planning a project that requires video data and/or GPS. 

Gorenflo et al. (9) wrote an article dedicated specifically to lessons learned around data 

collection, management, and analysis. Some lesson highlights include doing a full pilot 

project first and testing sensor types and sampling frequencies. They also recommend 

collecting redundant data in case of a sensor failure which happens frequently which was 

also noted by other researchers including Mackenzie et al. (10) and Gehlert et al. (8).  
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Another challenge is that there is a lack of standardization in the equipment and techniques 

used for these studies. Without some standardization, it can be challenging to compare 

studies because variation in technique, definitions, and data format can render studies non-

comparable. Westerhuis and de Waard (7) note this need for standardization in their paper. 

Two authors looked into standardization options: Xie et al. (11) developed a vibration 

measurement system and Ambroz (12) considered the usefulness of raspberry pis for 

instrumented bikes. Two others published articles just on their data collection protocol, but 

no follow-up papers have been published yet (13, 14). As this field evolves, it may be of 

interest to researchers to develop a standardized package of equipment and definitions so 

that studies from different contexts and transportation cultures can be meaningfully 

compared. 

3.5 Major Findings by Topic 

The major findings grouped by a general focus topic will be covered in this section with a 

discussion of the sensor-type decisions for each topic included. For tables showing 

information on the article and data collection strategy separated by section, visit Appendix 

C. Instrumented BIcycle Literature Review Table. 

3.5.1 Studies Focused on the Influence of E-bikes on Cycling Behaviour and Safety 

The E-bike studies attempt to assess the safety impacts of E-bikes as they become more 

popular around the world. Overall, the results are very consistent. 

There is a strong consensus that people go faster when they ride E-bikes (5, 15–20). 

Langford et al. (20), who studied E-bikeshare use in a university setting in Tennessee, 
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found that E-bike riders rode on average 3.3 kph faster than conventional bike riders. 

Huertas-Leyva et al. (5) used naturalistic methods with six participants riding for two 

weeks each and found that E-bike riders travelled on average 22% faster than conventional 

bike riders. A study out of the Netherlands (17, 18) found that the speed difference between 

E-bike and conventional bike riding was dependent on the complexity of the situation with 

cyclists riding only about 1.5 kph faster on E-bikes in complex situations and about 3.5 

kph faster in simple situations. The German Naturalistic Cycling Study found that E-bike 

riders travelled on average 17.4 kph and conventional riders 15.3 kph (15, 16). From these 

varied contexts, a range of speed increases of about 2-3.5 kph when riding E-bikes has been 

shown.  

The majority of the studies that analyzed cyclist speed incorporated speedometer data, 

while only two studies (5, 20) acquired speed data via GPS. Langford et al. utilized 

bikeshare bikes that feature GPS as standard equipment thus making the use of GPS for 

the collecting of speed data the natural choice. However, neither study specifically 

discussed the reasoning behind their sensor selection. Based on the drawbacks GPS can 

pose (i.e. inaccuracy without a clear view of the sky), studies that want to prioritize speed 

data may benefit from supplementing GPS data with data collected from a speedometer, as 

the other studies had done.  

When looking at conflicts, there was consensus that E-bikes experienced more risk than 

conventional bikes, particularly at intersections. As part of the German Naturalistic Cycling 

Study, Petzoldt et al. (15) found that conventional bike riders’ risk of a conflict did not 

significantly increase at intersections, however the risk of conflict for E-bikes doubled at 

intersections. In line with this finding, (21) found that E-bike riders conflicted more 
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frequently with cars, especially heavy-duty vehicles, than conventional bike riders and 

hypothesized this was due to drivers misperceiving the cyclists’ travel speed. Conflict-

based studies require the use of a variety of sensors, typically including GPS and cameras, 

but also brake sensors as used in Huertas Leyva et al. These sensor choices will be 

discussed further in the conflicts section.  

Outside of conflict-based analysis, two associated studies (17, 22) measured the mental 

workload of their participants using a peripheral detection task. They found that cyclists 

adjusted their speed to keep mental workload consistent, but for older cyclists, their speed 

adjustment in complex situations was insufficient. E-bike riders may also feel less safe as 

they were more likely to wear a helmet in the German Naturalistic Cycling Study (23). 

However, looking purely at risky riding behavior, Langford et al. (20) in the United States 

and Schleinitz et al. (24) in Germany both found that E-bike riders’ behavior is not different 

from conventional bike riders. Overall it appears that E-bike riders may behave 

approximately the same to conventional bike riders except the slight speed increase, but 

the slight speed increase may expose them to greater risk. The primary sensors used for 

these findings include participant-facing (aka egocentric) cameras and GPS. 

Due to the motorization of E-bikes, the stability differs. Twisk et al. (25) had riders perform 

various tasks such as mounting, accelerating and braking, on both conventional and electric 

bikes. They found E-bikes were less stable in the early portion of the mounting process 

than conventional bikes. Kovacsova et al. (19) also studied the stability of cyclists on both 

bike types. They found that people rated their performance on accelerating and maintaining 

speed tasks better on an E-bike, but other tasks such as turning and braking better on 

conventional bikes. They also found that E-bike riders accelerate to speed more quickly 
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than conventional bike riders. Both of these studies used accelerometer and gyroscope data 

to measure cyclist stability.  

The reduced effort to accelerate and maintain speed on E-bikes suggests they could be used 

for longer trips. The WeBike Project in Canada sought to understand the usage of E-bikes 

by providing instrumented electric bicycles to 31 University of Waterloo-affiliated students 

and faculty (9, 26–28). The participants rode the bikes naturalistically while the WeBike 

team collected data about their usage and charging habits. They found that the bikes were 

used mostly for commuting trips with over 70% of trips under 20 minutes (27). They found 

no evidence of range anxiety and that charging habits differed between the faculty and 

students with students taking two more trips between charges than faculty (28). They 

developed an algorithm to predict the remaining range (26). Lopez et al. (29) studied the 

usage of E-bikes using GPS and naturalistic methods in Belgium. They came to the 

conclusion that commutes up to 13 km are still viable for E-bike riders (29). One of the 

WeBike team’s more interesting findings was that the participants’ predicted usage and 

actual usage of the bike were not correlated, which they suggest means that people in 

general are uninformed about E-bikes which could be a barrier to adoption (28). Such large 

benefits will need to be communicated better to encourage usage of E-bikes for longer 

travel distances. These studies relied heavily upon GPS for the distance, location, and speed 

data as well as sensors that could tell the remaining charge in the battery.  

Based on these findings, E-bikes have potential to allow for longer bike commutes, but 

also lead to higher speeds and higher conflict rates. Overall, these studies relied most 

heavily upon GPS, speedometer, camera, and charging data. The charging data would be 

unique to E-bikes, but the other three are candidates for widespread use in instrumented 
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bike studies. There is a need for improved E-bike-specific sensing equipment for some 

studies. For example, the WeBike findings’ main limitation in terms of charging was that 

they asked their participants to keep the bike charged because the smartphone collecting 

data used the same battery. They acknowledge that many charging events occurred with 

nearly full charge, which could be due to this request (27). Additionally, their range 

prediction model is a good start, but was limited by them not having information about 

assistance level and low frequency of GPS data (26). Most of the E-bike studies compared 

conventional bikes and E-bikes, so the sensors chosen were mostly applicable to both. 

However, there is space for E-bike specific research in the literature, for example studying 

charging habits or range prediction, that may require new types of instrumentation specific 

to the electrical components.  

3.5.2 Studies Focused on Factors that Influence Motor Vehicle Overtaking Distance and 

Speed 

Studies regarding vehicles passing cyclists most frequently use a lateral distance sensor 

such as ultrasonic or cameras to detect vehicle distances. Unlike the studies on E-bikes, the 

results are mixed, especially regarding the usefulness of bike lanes for increasing passing 

distance.  

Four studies (4, 30–32) found that bike lanes increased passing distance while 3 studies 

(33–35) found that bike lanes decreased passing distance, and another two claimed the 

effect was inconclusive (36) or not a significant variable (37). The sensor choices were 

varied in both cases. There could be many explanations for the mixed results including 

driver culture, lane width, cyclist positioning, and definition of lateral clearance. However, 
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there is support for both sides from various contexts. It is likely to be what Stewart and 

McHale (37)  and Shackel and Parkin (36) suggest, that the presence or absence of a bike 

lane is not the most important factor influencing the passing distance. 

Two factors that have consistently come out of the research as important to passing distance 

were the ability of the passing vehicle to safely move into another lane and lane width. 

Stewart and McHale (37) developed a generalized linear model from 1,908 observations 

with 11 variables. They found cycle lane width to not be statistically significant. The top 

three most significant variables were the absolute road width, presence of on-street parking, 

and the presence of an opposing vehicle. In contrast, Beck et al. (35) found that most close 

passing events occurred without the presence of parked cars. Shackel and Parkin (36) also 

developed a linear model and found having 2 lanes in the same direction and greater lane 

widths were associated with greater passing speeds and distances. Love et al. (31) and 

Venter & Knoetze (38) both used linear regression and also found lane width to be a 

significant variable. Dozza, Schindler, Bianchi-Piccinini, & Karlsson (39) found that lane 

width didn’t impact passing distance, but the presence of oncoming traffic reduced it. 

Mehta et al. (40) developed a model to estimate the number of unsafe passing events 

cyclists experience per hour. They also found that the probability of an unsafe passing 

event is much higher in restricted settings where the vehicle cannot change lanes. 

Vanderschuren and Ithana (41, 42) found that on high mobility roads (typically having 

more and wider lanes) the passing distances were larger. Overall, it seems when looking at 

passing distance, the focus should not be on the presence or absence of a bike lane, but on 

the ease with which a driver can give space to the cyclist. These studies utilized lateral 

distance sensors or cameras to detect close-passes and information about the infrastructure 
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surrounding the cyclist to look at what influences passing distance. Although detecting a 

close pass is critical to these studies, the contextual information is also important. Cameras 

can be used to detect presence of traffic at the time of passing, although doing so can be 

processing intensive. Additional data, such as surveys of the infrastructure are needed to 

supplement the camera data. 

In research that is only possible with the use of cameras able to capture information about 

larger vehicles, including buses and freight trucks, researchers found that these larger 

vehicles typically passed closer (33, 34, 42, 43). This could be due to them having less 

space to maneuver within the lane (42) and that passing can take longer (39).  

Overall, there is good support that passing distances are most greatly influenced by the 

space with which a vehicle can safely maneuver. Unfortunately, there is a tradeoff as wider 

driving lanes result in higher speeds. There is strong support for speed not influencing 

passing distance (32, 35, 36, 39). These studies used a mix of video-based calculation (36, 

39) and speed limits (32, 35) to determine driver speed. However, Llorca et al. (44), the 

only group using a vehicle speed specific sensor found that speed did influence cyclists’ 

risk perception due to the aerodynamic forces caused by higher speeds, especially in 

combination with large vehicles. Bike lane width may be a way to reduce the driving lane 

width while still increasing space available to pass. However, there is evidence that vehicle 

drivers are less likely to change lanes or encroach on the next lane to pass a cyclist if there 

is an existing bike lane (32).  Barring modal separation, the solution may be to include the 

3-foot passing distance as a buffer to the bike lane. 
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Walker (43) considered how appearance influenced passing behavior by testing both 

helmet use and apparent gender. He found that when wearing a helmet, he was passed more 

closely, and when appearing female, he was given more space. Love et al. (31) and Chuang 

et al. (4) both also found that drivers give women more space when passing. As a follow-

up to his first study, Walker et al. (30) explored a range of bicyclist outfits’ impacts on 

passing behavior. He had outfits ranging from novice rider to sports cyclist and commuter. 

Despite his previous findings about helmets, he found that the outfit had no impact on 

driver behavior. Although women (or long-haired cyclists) may be given more space, no 

outfit appears to effectively influence driver behavior so efforts will need to come from 

elsewhere such as improved infrastructure.  

Overall, two sensor types were used to measure vehicle passing distance: lateral distance 

and cameras. Lateral distance data is more specific and faster to process, but cameras are 

able to capture data including vehicle type and instantaneous traffic volumes. In addition 

to passing distance, passing speed was also measured in several studies. This was measured 

via three methods: the use of two separated lateral clearance sensors, cameras, and a speed 

laser for vehicle speeds. Measuring speed also requires knowing the cyclists’ speed so GPS 

or speedometer, preferably one the cyclist can read to maintain a set speed, is also needed. 

Although the sensors used are critical to these studies, they use only a small number of 

sensors. 

Unlike the other studies in which cyclists are always the focus, these studies center on 

observing driver behavior. They can be naturalistic or not for the cyclist, but they would 

always be naturalistic for the drivers. Because of this, the cyclist participants are often 

irrelevant. Due to low sensor and cyclist participant needs, this area would be one of the 
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easier areas to develop a uniform data collection system and strategy. Based on the 

findings, this data collection system should include a way of measuring lateral distance and 

vehicle type. A robust data collection system would also consider what additional data is 

needed, such as lane widths and numbers. If choosing a naturalistic method allowing the 

cyclist to choose their route, the way of collecting this data will need to be on-board the 

bike but could be collected manually if routes are known. Vehicle speed did not seem to 

influence passing distance, but did influence the stress caused by them, so it may also be 

relevant to some studies. In that case, both vehicle and cyclist speed measures are needed. 

3.5.3 Studies Focused on Infrastructure Management 

The studies involving infrastructure can be separated into two focuses: specific features 

and maintenance. These studies rely heavily on accelerometer data.  

Five studies looked at specific features. Two studies from a New Zealand group (45, 46) 

looked at line types and road objects’ influence on cycle stability. They measured stability 

using potentiometers for steering angle and accelerometers. Their overall finding was that 

instability was not simply a function of height. Of the 20 objects/line types they studied the 

worst were rough ground, round utility access cover, domes, and loose gravel. Vasudevan 

and Patel (47) studied the discomfort caused by speed humps for cyclists and motorized 

two-wheel vehicles using accelerometers at the handlebars and seat. They found that the 

discomfort was greater for cyclists, especially at the hands. A study out of Greece used 

GPS to look at the braking profile of cyclists in relation to pavement type. They found that 

asphalt provided the best friction among asphalt, concrete, and thermoplastic colored lanes 

(48).  Lee et al. (49) attempted to determine the minimum one-way bike lane width using 
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GPS capable of real time kinematics. They found, based on essential maneuvering space, 

that 2 meters is the minimum width with no curb or gutter. 

Six of the studies looked at measuring the pavement condition for maintenance purposes. 

Nuñez, Bisconsini, & Rodrigues da Silva (50) developed a method of evaluating the 

condition of cycling infrastructure using video recordings, GPS, and accelerometers. They 

found that pavement did influence vertical acceleration. Concrete had the least vibrations 

and paving bricks the most. Neto et al. (51) categorized surfaces using an accelerometer 

and GPS. Bil et al. (52) compared vertical acceleration readings with subjective comfort 

ratings of their participants. They found that there was a strong correlation (coefficient of 

–0.94) between the subjective rating and the accelerometer readings converted into 

Dynamic Comfort Index values. They also found that the speed of the cyclist impacted the 

accelerometer results which was not controlled for in any other study. A group from the 

UK (53, 54) developed a bike for assessing pavement condition which they call IntelliBike. 

Their bike is equipped with forward and downward cameras, an accelerometer, GPS, 

speedometer, sound meter, light meter, and microphone. They found that the most 

important factors in comfort were surface maintenance related ones such as debris and 

defects. None of these studies tied their values to already-existing pavement evaluation 

systems.  

Li et al. (55) began filling this gap by measuring pavement texture using existing methods 

for vehicle comfort ratings and comparing those results, on-bike accelerometer, and 

subjective ratings to describe the correlation between pavement management treatments 

and rider experience. This study was a step in the direction of tying maintenance for cyclists 

into existing maintenance practices, but the focus on sport cyclists on rural and suburban 
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roads is a limitation to expanding the method to urban spaces where most commute cycling 

occurs.  

These studies primarily used accelerometer and GPS. However, this combination may be 

too simplistic to acquire data about the range of riding surface characteristics that can affect 

cyclists including friction, debris, and potholes. IntelliBike is a more complex data tool for 

pavement data. Accelerometer and GPS are very versatile, however many of the sensors 

added to IntelliBike are not used in many other types of studies, so which sensors to choose 

would be dependent on the desired versatility of the system and which pavement conditions 

the study is trying to capture.  

3.5.4 Studies Focused on Cyclist Stress 

Not just physical comfort, but also emotional comfort is important to a cyclist’s decision 

to ride. With 51 participants from their university, Feizi et al. (56) used an instrumented 

bike equipped with sensors including forward-facing camera, GPS, steering sensors, and 

rider body position sensors along with a comfort survey to understand cyclist comfort. 

They found that cyclists with self-reported lower skill levels resulted in a higher probability 

of a low comfort rating. They also found that the more intersections and times a cyclist 

must turn or maneuver, the lower the comfort rating. Yamanaka, Xiaodong, and Sanada 

(57) developed evaluation models incorporating cyclist stress. They collected data 

including camera, lateral distance, and braking data in China, France, and Japan to build 

their model which they conclude works.  

Caviedes and Figliozzi (58) used skin conductivity as a stress measure to study the impact 

of traffic conditions and infrastructure type on cyclists’ stress levels. Their bikes were 



 

 42 

equipped with GPS, powermeters, and two helmet cameras. They also found that peak hour 

stress was higher (17%) than off-peak hours and that the most stressful events occurred 

around intersections. Along segments the most stressful events involved other travelers 

(vehicles or pedestrians) entering the bike lane. However, their study only had 5 

participants. Similarly, Nunez, Teixeira, et al. (59) analyzed the relationship of stress with 

noise, vertical acceleration, presence of cycle paths, and period of day using the same 

camera/accelerometer set up from their infrastructure-focused study. They used a smart 

band measuring skin conductivity, correlated with stress. They were able to map this stress 

data and compare it to their instrumented bike data. Their methods and participants are not 

well described besides having a small sample size, but their simple choice of cameras and 

accelerometers combined with a measure of stress seems to be a viable option for 

measuring cyclist stress. 

There is still much room for further study to develop a body of knowledge surrounding the 

causes of cyclist stress in real environments. A variety of sensors were chosen for the 

studies including sensors to observe the surroundings (i.e. cameras, lateral distance 

sensors), the cyclists’ movements (i.e. GPS, steering, powermeters), and the cyclist 

themselves (i.e. galvanic skin response). Two small studies were able to primarily rely on 

cameras and accelerometers on the bikes, but perhaps the difficulty of extracting all the 

necessary data from videos led to the small sample sizes of the data presented in the 

resulting papers. The causes of stress and comfort can be varied, perhaps even varying by 

location, and the sensors needed to study it are likewise varied and defined by what the 

researchers want to explore as a cause of stress. In order to create a consistent measurement 
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unit, a consistent set of potential stressors must be defined first, making this one of the 

more complicated topics to design a measurement method for.  

3.5.5 Studies Focused on Conflicts and their Causes 

Naturalistic cycling is the most popular way of using instrumented bikes to study conflicts. 

The most common definition of a critical event is taken from naturalistic driving studies - 

whenever a party must slow down or change directions in response to an event. Because 

of this definition, most studies incorporate cameras, GPS, and some means of measuring 

the cyclists’ braking activity. 

There is a consensus that intersections, crossings, and poorly maintained infrastructure are 

the locations with the most conflicts. Dozza and Werneke had 16 riders riding for 2 weeks 

each on bikes equipped with a forward camera, IMU, GPS, and brake sensors (60). They 

found that attributable risk was highest for intersections, followed by pedestrians/bikers 

and the pavement surface. Additionally, they found that risk of critical events was higher 

in proximity to intersections and when the road surface was poorly maintained. They 

delved deeper into this data and combined it with interviews with the participants (61). 

They found that visual occlusion was common around events both at intersections and with 

other bikes. The German Naturalistic Cycling Study also considered critical events using 

cameras, GPS, and speed sensors (15, 62). They had 28 participants who rode for four 

weeks and found that most riders experienced only 1-3 conflicts.  Critical events with 

vehicles were most frequently caused by motorists failing to yield. They also found that 

the risk of a critical event was 2 times higher on bike infrastructure than on-road, 

accounting for distance travelled on each (15). They did not single-out intersections, but 



 

 44 

did consider the conflict partners with over half (57%) of conflicts occurring with a bike 

or pedestrian (62), which could explain the finding that the risk of a critical event was 

higher on bike infrastructure . 

Jahangiri, Elhenawy, Rakha, and Dingus (63) were concerned about cyclists’ safety 

behavior and studied cyclist violations at signal-controlled intersections using bikes 

equipped with forward and egocentric cameras, GPS, accelerometer, gyroscope, and speed 

sensors. They found that cyclists were more likely to violate a red light when making right 

turns, and the risk of running the red decreases when cyclists have traffic to the side or in 

front of them. Schleinitz et al. (24) also used their data to look at cyclists running red lights 

and found a 20% violation rate. They also found that cyclists were most likely to run a red 

light when turning right, and that cyclists would frequently ride on the sidewalk to avoid a 

red. Overall, they found that cyclists are opportunistic and are more likely to run a red when 

there is good sight distance. The opportunistic cyclist view fits with the findings of both 

Jahangiri et al. (63) and Schleinitz et al. (24) findings regarding when cyclists run red lights.  

Further supporting the opportunistic cyclist, Kircher et al. (64) studied cyclists’ speed 

adaptation when performing self-paced smartphone tasks using forward and egocentric 

cameras on the bike and eye tracking and GPS on the cyclist. They found that cyclists 

adapted their speed and riding strategy to the conditions, thus generally choosing safe 

locations to perform the smartphone tasks. 

A Spanish group decided to study conflicts specifically on two-way cycle tracks using 

cameras, GPS, a speed sensor and range finder on the bike. They found that pedestrians 

were the most common second unit, and crossings were the most common conflict and 
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perceived as the riskiest (65). They also studied the meeting maneuvers between cyclists 

on two-way cycle tracks (66). They found that when there are obstacles beside the cycle 

track, cyclists ride closer to the center with a larger effect from obstacles at handlebar 

height than wheel height. On cycle tracks less than 1.6m wide, the frequency and intensity 

of the interactions increased with braking only being a significant interaction on these 

tracks.  

Lawrence et al. (67) studied the risk of car door collisions in Australia using a bike 

equipped with cameras and GPS. They found that their sample encountered 55 cars/km and 

2.3 opened door events per hour. People gave way to the cyclists 6.9 times per hour. They 

conclude that although people give way many more times than not, there is still challenge 

in addressing the risk of dooring for cyclists.  

Gustafsson and Archer (6) conducted a unique study looking at commuter cyclists in 

Stockholm to understand accessibility and safety problems. They used GPS and a forward-

facing camera on their instrumented bikes. They found the average speed to be 20.4 km/h 

with delay making up 13% of travel time. In cities, the average speed dropped to 16 km/h 

with delay making up 22% of the travel time. They identified 506 problems, 43% of which 

were attributed to safety problems and 56% to access problems. The safety problems were 

most frequently attributed to the design with the second most common being the road 

surface. Their work represents a unique perspective and method of studying bike 

accessibility, especially with the inclusion of delay that would be interesting to replicate in 

other cities. 
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The sensor choices are largely similar in these studies (cameras, GPS, speedometer and/or 

braking sensors), but the findings seem to vary related to the context (i.e. bikes in fully 

separated facilities, whether they are exposed more to motor vehicles or pedestrians). This 

topic of study would be benefitted by adopting the same definition of conflict. Therefore, 

these studies would benefit from a set of sensors geared to detect conflict, such as speed 

and/or braking sensors which are already typically used and IMU for sudden direction 

change. Furthermore, these are typically naturalistic studies that go for a longer period of 

time, so the sensor kit should be minimally invasive and easily powered to make it the most 

naturalistic.  

3.5.6 Studies Focused on Human Control of a Bicycle 

Instrumented bikes have also been used to study human control of bicycles. Cain and 

Perkins used steering, speed, acceleration, and angular velocity sensors to develop a model 

of cyclist steady state turning (68). Zhang et al. (69) also equipped the rider with an IMU 

to develop a rider pose estimation model.  

Kooijman, Schwab, and Moore (70) used an egocentric camera, steering, frame lean and 

yaw rate, speed, and pedaling cadence sensors to identify the major human control actions 

involved in stabilization during normal biking. They found that very little upper body lean 

and only minor steering movements are involved. At low speeds, they found cyclists use 

their knees to stabilize the bike, but otherwise it is all done with steering. Twisk et al. (25) 

studied mounting behavior using a variety of sensors including a speedometer, gyroscope, 

and steering sensors looking at comparisons between older and middle-aged people and 

between conventional and electric bikes. They found that the most stable way of starting 
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was while seated using the pedal to push off. Ma and Luo (71) used an instrumented bike 

with GPS and altitude sensors to develop models for acceleration behavior to be used in 

simulations. They found that gender and agility had significant effects on the acceleration 

behavior. Dozza and Fernandez (72) tested an instrumented bike with IMU, braking 

sensors, forward camera, and GPS to analyze bicycle dynamics in a naturalistic way. They 

found that they were able to describe maneuvers such as circumnavigating a car that had 

cut in front of a cyclist. 

Overall, the sensors needed to measure cyclist dynamics are more diverse than in the other 

topics. Based on the sensor choices for these studies, IMU/gyroscope and steering sensors 

are the most critical in this field.  

3.5.7 Studies focused on the Influence of Age on Cycling Behavior 

Both older persons and children have been studied using instrumented bikes. As noted in 

the E-bike section, there have been a few articles comparing middle-aged riders to older 

riders (17–19, 25) in relation to E-bike and conventional bike use. Kovacsova et al. (19) 

tested 61 participants within the age groups of 30-39 and 65-79 on both conventional bikes 

and pedelecs. They used speed sensors and accelerometers to find that older cyclists both 

accelerate and cycle on an E-bike at about the same speed as a middle-aged person on a 

conventional bike. This suggests that older cyclists use the E-bike to compensate for any 

loss of physical fitness. Kovacsova et al. (19) had the cyclists perform a series of tasks 

including a head check, braking, and low-speed cycling. The older cyclists struggled more 

with the head turn tasks and maintained balance by additional steer and roll motions. To 

detect these stability concerns they used steering sensors and accelerometer/gyroscope.  
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The articles by Twisk et al. (17, 25) and Valkveld et al. (18) used the same dataset of 58 

participants, half age 30-45 and the other half age 65 or older riding instrumented bikes 

equipped with a steering sensor, speedometer, GPS, IMU, and cameras. They also tested a 

series of tasks including mounting/dismounting, emergency braking, and low-speed riding. 

Additionally, they used a peripheral detection task to test mental workload. They found 

that the bike did not influence the mental workload as cyclists adapted their speed to keep 

this constant, but older cyclists had a higher mental workload than the middle-aged cyclists. 

The cyclists speed patterns were similar, but with the middle-aged cyclists consistently 

riding approximately 2.6 kph faster (18). Twisk et al. (25) looked specifically at mounting 

and found that muscle strength, which is correlated with age, influences stability with 

weaker cyclists having lower stability. E-bikes allow people to cycle into an older age, and 

as Gehlert et al. (8) discovered, it is easier to find older people who ride an e-bike. As E-

bikes become more popular, there is increasing need for research on the safety and behavior 

of older cyclists.  

These studies required the human control/stability sensors from previous sections and 

speed sensors to study the interaction of age, bike type, and speed/stability. 

Studies involving children cycling on instrumented bikes are still uncommon. There was 

one study out of Australia by Hatfield et al. (73) that looked at the effectiveness of a cycling 

education program using naturalistic cycling with forward and egocentric cameras. They 

emphasize the benefits of their methodology, but, found no evidence that the program 

influenced behavior. Overall, it seems instrumented bikes have potential for studying 

children’s behavior, but the tool needs to be applied in more contexts. 
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3.5.8 Studies focused on Vehicle Detection 

With vehicles becoming more connected and autonomous, both how vehicles will detect 

vulnerable road users and how those users might detect vehicles is increasingly of interest. 

Three papers looking at this have been published in the last two years. A group in England 

(74, 75) developed an effective bicycle positioning algorithm from cyclist kinematics 

including data from accelerometer/gyroscope and GPS to incorporate into the connected 

vehicle space. In Minnesota, a group is developing a laser tracking system to detect 

approaching rear vehicles (76). Their publication discussed the development of their 

algorithms and their preliminary field tests. Their system has shown potential. 

None of these studies are bringing cyclists into the connected vehicle space, a frontier with 

potential for study using instrumented bikes. Instrumentation could be included that allows 

the bike to inform nearby road users and infrastructure of their location and speed to help 

improve safety and traffic flow. This could be especially useful on E-bikes which already 

have an on-board power supply, are opening cycling to a broader range of people, and are 

exposed to more risk. There is room for imagination and innovation here with how cyclists 

could be incorporated into a space with connected vehicles and infrastructure. 

3.6 Conclusions and Future Research 

This study compiled a literature review of topics studied using instrumented bikes. 

Research using instrumented bikes has increased rapidly in the last decade touching a 

variety of topic areas. The variety of research objectives covered shows that instrumented 

bikes are a useful, effective, and critical tool in cycling research. The most commonly used 
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and most versatile sensors are GPS, cameras, accelerometers, and speedometers. A few key 

areas for future research are highlighted here. 

Behavior of both cyclists and drivers interacting with cyclists can be subject to a large 

amount of regional variation, therefore it is of interest to compare results from different 

regions. However, there is need for consistency in definitions of key variables, such as 

critical event, across studies. Similarly, there is a desire for consistency in instrumentation. 

Although sensor choice is heavily dependent on the study goals, development of a sensor 

kit with some of the most common sensor types or designed for studies of a certain topic 

that could be built and used by many research teams would benefit the field. Each of the 

focus areas discussed above also included discussion of the most common and relevant 

sensors to the topic and could be used as a starting point for such a kit. 

One area that needed more innovation in sensors was studies on E-bikes. Most studies have 

focused on the important comparison between conventional bikes and E-bikes, but this has 

led to studies using sensors that also work on conventional bikes leaving a gap in studies 

looking at E-bikes and E-bike riders themselves. This information would be valuable for 

use in planning for and advertising for E-bikes by governments interested in increasing 

bike modal-share where E-bikes may suit large portions of the population better than 

conventional bikes. Studies looking to study this side of E-bikes may require different 

sensors than the most common ones from previous studies. For example, speed sensors 

become less important but sensors detecting battery charge may become more important.  

One of the biggest research gaps in terms of what instrumented bikes are being used for is 

the incorporation of bicycles into the connected vehicle space. Although some studies have 
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begun looking at how vehicles can sense the presence of a cyclist, there are still no studies 

that use anything attached to the bike to communicate with other road users. With vehicles 

becoming increasingly connected, this is a time-pressing and critical research gap. 
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CHAPTER 4. AN INTERNATIONAL COMPARISON OF THE 

SELF-REPORTED CAUSES OF CYCLIST STRESS USING 

QUASI-NATURALISTIC CYCLING 

 

This chapter has been adapted from: Gadsby, A., Hagenzieker, M, and Watkins, K. An 

International Observation of the Causes of Cyclist Stress using Quasi-Naturalistic 

Cycling. Journal of Transport Geography, 2020. DOI: 10.1016/j.jtrangeo.2020.102932 

 

Abstract 

 
This study explores the influences of attitudes and setting on cyclists’ stated causes of 

stress using survey techniques and quasi-naturalistic cycling in both Delft, The 

Netherlands and Atlanta, Georgia, USA. The study recruited 28 participants in Delft and 

41 in Atlanta. Participants cycled approximately 30 minutes on specified routes in 

both cities on an instrumented bicycle. Prior to cycling, the participants filled in a written 

survey about their cycling habits, attitudes, and demographics. At specified points during 

and after the ride, participants were interviewed about their stress levels throughout the 

ride and the causes of those stress levels. Thematic analysis and statistical methods are 

used to understand the interactions of setting (country), attitudes, stated stress, and sensor 

data. The top three stressors were motor vehicles, pavement, and poor infrastructure; 83% 

of participants mentioned a motor vehicle causing stress, 64% mentioned road surface, 

and 58% mentioned infrastructure. The results confirm the importance of motor vehicle 

interaction to cyclist stress, but also highlight some new insights on stress such as the 

importance of pavement condition. Speed differentials between cyclists and vehicles 

were also shown to be important and suggested cyclists in Delft felt comfortable to travel 

their ideal speed. This speed preference was supported by GPS data that showed the 

cyclists in Delft were cycling at speeds about half (12 kph) that of the cyclists in Atlanta 

(24 kph). Review of close-pass events demonstrated that cyclists in Delft were more 

comfortable with closer passes which could be associated with their belief that motorists 

notice them and/or speed differences between the vehicle and bicycle. The results also 

suggest that number of vehicle travel lanes can have mixed impacts on cyclist stress. 

These findings can be taken into consideration when designing bicycle facilities to create 

low-stress cycling networks.  

 

 

 

 

 

 

 



 

 60 

4.1 Introduction 

 

Designing a low-stress cycling network is critical to encouraging cycling. There have 

been many studies on the causes of cyclist stress and stress/comfort-based rating systems, 

but there is still room for improvement in our understanding of cyclist stress. This study 

uses a new combination of quasi-naturalistic cycling, instrumented bicycles, and near 

real-time interviews to add to the existing body of knowledge on the causes of cyclist 

stress.  

One major component of the existing literature on cyclist stress is stress/comfort-based 

rating systems for projects and road segments. The most widely known are Bicycle Level 

of Service (BLOS), Bicycle Compatibility Index (BCI) and Level of Traffic Stress (LTS). 

The designers of BLOS used cyclists’ comfort ratings on roads with a variety of 

characteristics to develop their rating system. Significant variables include traffic 

volumes, number of through lanes, lane width, speed limit, volume of heavy vehicles, and 

road surface condition, among others (1). BCI was a parallel effort that used video clips 

to identify roadway characteristics’ compatibility with cycling. BCI includes bicycle 

facility presence, width, vehicular volumes, speed, and presence of parking (2). Both 

BLOS and BCI require intensive data collection and complicated equations that do not 

easily show the relationships between each component and the result. This makes them 

challenging to calculate network wide. LTS (3) was an attempt to make a rating system 

that was more user-oriented and applicable across a network. The designers based the 

classification levels on a system similar to Geller’s four types of cyclists (4), and the 

distinction between categories are based on Dutch design practice rather than through 
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experiment (5). LTS variables include bicycle facility presence and width, parking 

presence, speed limit, bicycle lane blockage, and number of lanes (3).  These rating 

systems suggest that road lane width, presence of parking, vehicle speeds, vehicle 

volumes, number of vehicle lanes, and bicycle facility presence are important factors in 

cyclist stress. However, these scales were developed based on post-ride video review, 

surveys about comfort, and assumptions from the literature, rather than data collected on 

real-time stressors identified by participants. 

Additional studies have further explored causes of cyclist stress. These studies have 

found that time of day (6), separation from motor vehicles (7), dedicated bicycle 

infrastructure (8–10), and traffic volumes (11) are important influences on cyclist stress. 

Studies on cyclist stress are often exclusively survey or interview-based (2, 8–10). By 

choosing to conduct interviews and surveys outside of the cycling experience, studies 

become dependent on recall which diminishes with time, can require prompting, and may 

be less specific than surveying in real-time (12–14). Although there is some evidence that 

surveys in combination with a video can provide similar results for comfort and safety 

ratings as an in-person experience (15), there is not yet evidence that cyclists would 

identify the same stressors without the additional cues an in-person riding experience 

offers.  

Some studies combine quasi-naturalistic cycling methods with a rider characteristics 

focused survey, including demographics and transportation attitudes (6, 7, 11, 16, 17). 

Naturalistic cycling studies allow participants to cycle as they normally would without 

any set routes. Quasi-naturalistic studies put some limitations on naturalistic cycling, 

typically in the form of a specified route (18). Both Yamanaka et al. (19), who developed 
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a bicycle to measure BLOS, and the developers of the BLOS (1) did couple quasi-

naturalistic cycling with short surveys identifying the participants’ stress levels during the 

ride. However, the participants themselves did not get to define the stressors, only their 

level of stress. By using quasi-naturalistic cycling methods without an interview portion 

to inquire why the cyclist was stressed, the defining of stressors is left to the researchers. 

Both interviews/surveys outside of a cycling experience and stress ratings mid-ride 

without a participant explanation for that rating result in top-down definitions of 

stressors. This results in stressors defined by the assumptions of the survey designers or 

data analyzers, limiting the scope of potential stressors.  

Therefore, this study explores what may happen if the cyclist is able to define their own 

stressors through the combination of quasi-naturalistic cycling with near real-time 

interviews to find the gaps in researchers’ assumptions of what causes cyclists’ stress. To 

broaden the study, data were collected in both Atlanta, Georgia, USA and Delft, The 

Netherlands to gain perspective on stressors in what is often considered traditionally 

high- and low-stress environments for cyclists. Through this unique study methodology 

that allows for cyclists themselves to define their stressors, this international comparison 

aims to explore what cyclists find stressful to fill methodological gaps in the literature. 

Ultimately, the findings can inform design choices for low-stress bicycle facilities.  

4.2 Method 

 

The experiment that is the subject of this paper consisted of each participant cycling 25-

30 minutes along a specified route. The participants rode an instrumented bicycle 
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equipped with a variety of sensors including GPS, LiDAR, and cameras and filled out a 

survey about their stress levels, attitudes about transportation, characteristics as a cyclist, 

and demographic information. The following section provides greater detail about the 

methods used in the study. 

4.2.1 Locations 

 

The experiment was conducted in Atlanta, Georgia in the United States and Delft, Zuid-

Holland in the Netherlands. The city of Atlanta has a population of approximately 

500,000 people with approximately 6 million people in the metro area. As of 2016, 

Atlanta had a bicycle modal share of 1.4% (20). Delft is a smaller city in the Netherlands 

with a population of approximately 100,000 people. The Netherlands has a national 

bicycle modal share of just over 25% (21).  In urbanised areas in the Netherlands, such as 

Delft, bicycle modal shares of almost 40% for trips between 1 and 7 kilometres are 

common (22). The Dutch have been improving their cycling network since a reversal 

from car-oriented policies in the 1970’s (23). In contrast, Atlanta began to emphasize 

bicycles as a mode of travel with the conception of the multimodal circulator trail, the 

Beltline, in 2012, and has steadily increased the bicycle network since (24).  Atlanta was 

assumed to represent a high stress cycling environment and Delft a low stress cycling 

environment based on their cycling traditions. These two cities were selected due to the 

home base of the universities in each location as part of a larger study on the influence of 

cyclist stress on behaviour. The contrast is expected to highlight the similarities in cyclist 

stress across environments. To keep some consistency in the environment for 
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participants, the study routes within the cities were designed based on the same 

guidelines. 

4.2.2 Study Route Design 

The study routes were designed to cover a variety of infrastructure and land uses, as could 

be reasonably found within each city. All routes were circuitous and designed to minimize 

left turning movements. Four routes were chosen around Atlanta to encourage participation 

and allow participants to choose a familiar route, however the small city of Delft required 

only one route. Additionally, the data collection plan in Atlanta was also designed to have 

the coverage to support a study on air quality which was unnecessary for the Delft data 

collection plan. 

The Atlanta routes were designed first, then the Delft route was designed to approximate 

the Atlanta routes. To create the Atlanta routes, maps of where people ride were made. 

These were made using Ride Report data from 2018, Relay Bikeshare data from 2018, and 

Strava data from 2014. These maps are provided in Figure 4-1. The most travelled roads 

are shown in red and have volumes over two standard deviations higher than the average 

road bicycled in Atlanta. The Ride Report data best represents commuters. The Relay 

Bikeshare data has many casual recreational riders, which can be seen by the dark red that 

covers the Beltline and Piedmont Park. The Strava data has a larger number of sports 

cyclists which caused some areas that would not be considered a road that a typical 

commuter might travel to have a high ridership. Areas with the highest volumes of riders 

were chosen as areas of focus for designing the routes.  By combining the three sources, 
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weighting the commuter-heavy Ride Report data the most, the cycling hot spots in the city 

were found.  

 

Figure 4-1 Maps used for finding biking hot spots. (A) Ride Report (B) Relay (C) 

Strava. The average number of trips was taken and the lines are color coded by the 

number of standard deviations from that mean to bring out the most travelled routes. 

GT is marked with a star. 
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In conjunction with the bicycle volume maps, a map of bicycle infrastructure in Atlanta 

was also used to develop routes. The routes were designed to have variation in facility and 

road type. Each route has a segment of low-stress (i.e. parks, shared use trail), medium-

stress, and high stress (i.e. mixed traffic with high car volumes). The routes are located 

around the city, have a variety of conditions in each, and are located where people regularly 

ride. A map of the routes is provided in Figure 4-2.  

 

Figure 4-2 The four chosen routes in Atlanta 

All Atlanta routes had more vehicular interaction than the Delft route as Dutch design 

standards separate cyclists and motor vehicles above 30 kph and discourage car use in the 

inner city (25). However, both locations had route segments with unprotected bicycle 

lanes and mixed traffic. Maps with color-coded infrastructure of the Delft route and the 
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most frequently used Atlanta route are shown in Figure 4-3. Based on the LTS rating 

system, the route through Delft varied from LTS 1 to LTS 2 and the Atlanta routes LTS 1 

to LTS 4. Although the routes were designed using similar principles, the availability of 

high stress infrastructure in Delft was very low. Therefore, it was expected for stress 

levels to be lower in Delft.  

Familiarity was surveyed in both locations. An open-ended question was used in Atlanta 

but changed to a Likert-scale question in Delft. Although not perfectly comparable, most 

cyclists were very familiar with at least a portion of the route and familiar to very familiar 

with the entire route. Based on the responses, the researchers feel safe assuming that 

route familiarity was similar across the two samples. 

 

 

Figure 4-3 Infrastructure map of the Delft route (left) and an Atlanta route (right). 

 

4.2.3 Recruitment/Participants 

In total, there were 41 participants in Atlanta and 28 in Delft. Participants were recruited 

via convenience sampling through e-mails and fliers. Participants were asked to cycle one 
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time in Atlanta, but to capture within-person differences, when possible, two times (off 

peak and peak hour) in Delft. In Atlanta, the participants were able to choose the time 

that fit their schedule best, resulting in 56% of rides done during peak hours. In Delft, 

52% of rides occurred during peak hours. Ten participants in Delft were given 10-euro 

gift cards as compensation for participation. This was added mid-way through 

recruitment to encourage participation.  

4.2.4 Instruments 

Similar instrumentation, both in terms of surveys and sensors, were used in Atlanta and 

Delft. The GT instrumented bicycle components were designed to be attached to 

participants’ bicycles, need minimal intervention from the research team once started, and 

have minimal impact on participants’ experience biking. This resulted in the setup shown 

in Figure 4-4. The matrix, the green piece in the foreground, sits on the handlebars and the 

box is attached to a seat-mounted bicycle rack. Two cords are wound around the top tube 

of the bicycle to attach the two components.  A bicycle equipped with the sensors is shown 

on the right in Figure 4-5. The matrix contains the GPS, accelerometer, gyroscope, and 

atmospheric sensors. The box contains the power supply, LiDAR, Sonar, and particulate 

matter sensors. Table 4-1 lists the sensor type, part number, and position. The primary 

sensors to be used in this research include the GPS and LiDAR. The instrumented bicycle 

in the Netherlands had a similar sensor set-up including GPS and LiDAR, but these were 

affixed to one bicycle that was ridden by all participants. Images of each of the 

instrumented bicycle setups are shown in Figure 4-5. 
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Figure 4-4 Components of the Georgia Tech instrumented bicycle 

 

  

Figure 4-5 Left: Instrumented bicycle used in Delft with the sensors used in this paper 

identified. Right: Instrumented bicycle components used in Atlanta on the 

researcher’s bicycle with the sensors used in this paper identified. 

 

 

 

 

 

GPS GPS 

LiDAR LiDAR 
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Table 4-1 Georgia Tech instrumented bicycle sensors 

Sensor Type Part Number Location 

Inertial Measurement Unit 

(IMU) (accelerometer, 

gyroscope, magnetometer) 

ST LSM9DS1 Handlebars 

Temperature/Humidity ST HTS221 Handlebars 

Particulate Matter PMS5003 Box 

Altitude NXP MPL3115A2 Handlebars 

Microphone Array 8 MEMS MP34DB02 Handlebars 

LiDAR LIDAR-Lite v3 Box 

Sonar LV-MaxSonar-EZ1 Box 

 

The survey consisted of two parts. The first part asked questions about the cyclists’ cycling 

habits (frequency, time cycling, etc.) and attitudes (risk taking preferences, trust of car 

drivers, etc.). The second part asked demographic questions such as gender identification 

and education level. One of the key rider characteristic questions asked cyclists to 

categorize themselves by a rider type defined by interest and confidence in cycling. This 

scale was originally defined by Geller in Portland to categorize people by what level of 

infrastructure was needed for them to cycle (4). It included 4 categories: “Strong & 

Fearless,” “Enthused & Confident,” “Interested, but Concerned,” and “No Way, No How.” 

The “Strong & Fearless” cyclists would be willing to cycle on any roadway. The required 

infrastructure then increases up to “Interested, but Concerned” cyclists who need full 

separation from motor vehicles. Misra et al. (26) refined the categories to include a category 

in the middle called “Comfortable, but Cautious.” This refined scale was used for this 

study. The “No Way, No How” category was excluded because these people would not be 
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willing participants in a study requiring cycling. The attitudinal questions were borrowed 

from a study that explored user preferences for bicycle infrastructure in emerging cycling 

cities and the attitudes that influence those preferences (27).  The surveys used in the USA 

and the Netherlands can be found in Combined, these studies have demonstrated the value 

of naturalistic cycling, smooth and separated cycle tracks, and designing from a cyclists’ 

perspective. The common thread throughout these studies was the use of naturalistic 

cycling in combination with sensing and surveys. These methods allowed for new insights 

into cyclist behavior and design.  

The approach used in this dissertation combined surveys and sensing techniques in 

naturalistic cycling. Previous research focused on cyclists’ stress focused on surveys 

without the naturalistic cycling component or included the naturalistic cycling without a 

robust survey. Using in-ride surveys allowed for cyclists to describe their stress in near 

real-time. Literature shows that survey responses are less negative after a cycling 

experience (1), so it stands to reason that cyclists would also respond differently to more 

open-ended questions in the midst of a ride.  

There are two other options to collect this data that are not truly naturalistic. These would 

be 1) on a test track and 2) in a simulator. The three (including naturalistic cycling) have 

varying degrees of trade-off between closeness to reality and control over the experimental 

conditions. Naturalistic cycling allows for the most realistic conditions but has the least 

control. Although the route could be predictable for the most part, the presence and actions 

of surrounding road users is largely unpredictable. This unpredictability requires more 

trials to ensure a sufficiently large, usable dataset. A test track presents much more control 

than naturalistic cycling but removes much concern for safety which is an important 
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component of cyclists’ stress. Test tracks are also very costly to construct and require large 

amounts of space that are not typically available, especially for research on cycling. 

Research comparing responses in naturalistic settings and a constructed to feel realistic test 

track may show that a test track allows for very similar responses, but with greater control. 

Unfortunately, although it has the possibility of being the most effective option, the costs 

of constructing one are prohibitive. 

The last approach would be to use a simulator. This option presents the most control, but 

is the least realistic. Cycling simulators suffer from missing important cues such as the 

feeling of the air passing the cyclist, the pressure difference of a close pass, and the feeling 

of turning the bicycle. A participant clearly has no concern about their safety in such an 

environment which may impact their stress. A benefit to cycling simulators is that a broader 

cross-section of the population may be willing to participate in the study. Participants who 

are concerned about their safety when cycling will not participate in a naturalistic study 

but may in a simulator study. A simulator may be the best option, if available, for studies 

of hazard identification or differences between “interested, but concerned” and “strong and 

fearless” cyclists for safety concerns and to attract participants, respectively.  

The approach used in this study presents the most realistic scenarios, and thus is the best 

choice among these for studying cyclists’ stress. The approach used here was also low-cost 

and allowed for use of the existing infrastructure, making it accessible to any researcher 

within proximity of a bike-able road. It was innovative in its combination of techniques 

and allowed for new insights into cyclists’ stress and behavior. For some studies, a 

simulator may be the ideal choice, so careful consideration should be given when selecting 

which method to use. However, one contribution of this work was to demonstrate that in-
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ride surveys with naturalistic cycling and instrumented bicycles is a feasible method for 

studying cyclists’ behavior.   

Eye tracking is another research method that has infrequently been used in cycling 

research. The research within this dissertation demonstrated some of the benefits of the 

approach as well as caveats. Eye movement is influenced by many external variables such 

as person-to-person differences that are not immediately relevant to the study. However, it 

can be challenging to recruit high enough numbers of participants for a naturalistic cycling 

experiment to adjust for these factors. When data collection completed for the study in 

CHAPTER 5, it has a larger sample size than any published eye tracking in naturalistic 

cycling study. Because of these external sources of variability, the statistical testing 

resulted in few significant results when trying to describe gaze behavior in a general 

manner as was attempted in CHAPTER 5. Despite these challenges, some valuable insights 

were gleaned, particularly about the differences between cyclists’ motor-tactical skills, 

safety motives on gaze behavior and how those differed from expectations based on 

literature on drivers’ gaze behavior. The technique was effective as an exploratory study, 

but more concrete results were possible when choosing a narrower scope as was done in 

CHAPTER 6. The narrow, focused scope allowed for less influence from outside factors, 

more significant results, and more practical findings. The research demonstrated that eye 

tracking can be used for both exploratory studies and practical, focused studies to gather 

valuable findings. But, it also demonstrated that the more focused scope allows for greater 

control and more significant results.  

In addition to findings about the methods, there were important findings about cyclists’ 

behavior and stress. A theme that arose during the research was the value of a smooth riding 
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surface. Although previously pavement condition had rarely been considered in studies on 

cyclists’ stress, CHAPTER 4 demonstrated that poor pavement is one of the top three most 

cited stressors among cyclists. CHAPTER 5 demonstrated that poor pavement can be a 

safety concern as it leads to lower gaze, potentially resulting in missed safety cues that 

would’ve been seen if the cyclist had been looking further ahead. CHAPTER 6 expanded 

on these findings to show that the most important components of poor pavement are 

unevenness, potholes, debris, and wide cracking. This study also demonstrated that 

decreased separation between cyclists and motorists resulted in a decreased likelihood that 

a participant fixated on one of these pavement concerns. This emphasizes the safety 

concern further. This information leads to implementable maintenance strategies, such as 

street sweeping bike lanes and setting stricter requirements on utility maintenance 

patching, to improve the comfort and safety of roadway facilities for cyclists.  

Furthermore, the research showed that cyclists’ behavior and needs may not follow the 

trends expected from literature on drivers. CHAPTER 6 suggested that pavement 

maintenance strategies need to consider that inconveniences for a driver (i.e. a mid-sized 

pothole) may be a safety concern for a cyclist. CHAPTER 5 also demonstrated that the 

gaze behavior of cyclists did not align with expectations based on the driving literature. 

Again, demonstrating that when designing for cyclists, engineers and planners cannot 

assume that cyclists will behave a certain way based on knowledge of drivers. Cyclists 

need to be considered through all aspects from planning to design to maintenance, but 

currently they are not frequently integrated into the planning and design of projects and 

rarely considered in maintenance. Planning, design and maintenance for all projects where 

someone could conceivably cycle should endeavor to come from a cyclists’ perspective, 
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but this can be challenging for personnel who do not cycle. Agencies should endeavor to 

have personnel not just drive projects, but also cycle them. If possible, it would be best to 

have a regular cyclist contribute to projects so that the drivers’ perspective is not the only 

contribution through planning to design. The results also showed that aspects like location, 

age, and rider type did not significantly impact the most important factors in cyclists’ stress 

or their reaction to pavement features. Although a group of humans will always vary, the 

most important factors to cyclists’ stress and comfort appear fairly consistent across 

cyclists making design from a cyclists’ perspective more achievable. 

4.3 Limitations 

As with all research endeavors, this research had some limitations. Inherently, naturalistic 

methods are limited in the control researchers have on the setting. This allows for very 

realistic experiences but can lead to large amounts of noise or unexpected events to process. 

For example, the pothole that was supposed to be analyzed in CHAPTER 6 for the mixed 

traffic scenario was filled shortly after data collection began. There was another, less ideal, 

pothole along the segment, but similarly unwanted and unexpected situations can happen 

in any naturalistic study. 

The research was also limited by a lack of high stress scenarios for the eye tracking data 

from Delft. This limited the ability to fully explore the impact of stress on cyclists’ gaze 

behavior. Further data collection could remedy this but was not possible because of the 

Covid-19 pandemic restrictions. This limitation also highlights the difficulty of comparing 

a low-stress, established cycling environment such as Delft with a higher-stress, emerging 

cycling environment such as Atlanta. In some ways such a comparison provides interesting 
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and valuable insights such as the finding in CHAPTER 4 that motor vehicles were the top 

stressor in both locations. However, the high-stress infrastructure was limited in Delft and 

the low-stress was limited in Atlanta, so equivalent routes were not possible.  

Furthermore, eye tracking has been used so infrequently in studies of cyclists that a 

standard set of measures has not yet been agreed upon. Therefore, the eye tracker work in 

this dissertation tended to be exploratory in nature. The methods seem promising, but more 

work is needed to confirm the findings based on further usage of eye trackers in cyclist 

behavior studies. Both fixations and measures of gaze were used in these analyses, but due 

to the motion of the cyclist relative to the world, what would be a fixation in a static 

situation becomes a smooth pursuit. Eye tracking software is not well equipped to track 

smooth pursuits automatically. The largest dispersion value was used to try to 

accommodate this, but fixations were not as accurately measures as they would be in a 

static situation. Because of this limitation, the gaze measures would be more meaningful 

than the fixation measures and differences in measures of fixation would need to be more 

significant to be trusted. This limitation can be accommodated in some analyses, such as 

the work in CHAPTER 6 which used frame-by-frame analysis. These more micro-scale 

analyses can better correct for the software’s limitations in detecting smooth pursuit 

movements.  

One pervasive limitation was a lack of diversity in the study sample. Participants for all 

data collection efforts were predominately white and highly educated. Efforts were made 

to gather a more representative sample, especially for the online survey, but were ultimately 

unsuccessful. A lack of financial incentive for participation could partially explain these 

unsuccessful efforts, but predominately white and educated samples are a common 
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limitation in studies on cyclists. Research is needed on how to obtain a more representative 

sample of the cycling population. 

Furthermore, although the sample sizes in this research were large for a naturalistic cycling 

and eye tracking study, the sample sizes were still too small (< 30) for robust statistical 

analyses to be performed. Additionally, with such small sample sizes, it is impossible to be 

confident that the results are applicable to a larger population, thereby necessitating repeat 

studies to confirm the results.  

4.4 Future Work 

This dissertation has pointed to a few areas for future research. The results overall 

demonstrated the value of eye tracking, instrumented bicycles, and in-ride surveys for 

better understanding of cyclists and possibly other road users’ stress and behavior. Future 

research can continue to use these methods to study road users’ feelings of stress, safety, 

and comfort and how they behave in and interact with their environment. 

The methods and data from CHAPTER 4 could be used to go a step further by incorporating 

the maps to better understand exactly what infrastructure existed where the cyclists 

commented on stressors. Additionally, these maps could be aggregated to identify stress 

hotspots. Furthermore, this study could be repeated in better matched cities in terms of size. 

Atlanta is a large city and Delft a small city, so comparison to larger Dutch cities such as 

Amsterdam or Rotterdam could be beneficial. Further, finding more comparable routes, if 

possible, could further address the limitations of this study. 
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The instrumented bicycle as a tool for understanding cyclist behaviors also has more 

potential. For example, the sonar could be used to better understand how fast vehicles are 

going during close-pass events and further illuminate why some close-pass events are not 

considered stressful. The question of cyclists’ speed could also be further studied by having 

the same cyclist ride in separated and mixed settings. Another potential study would be to 

study off-peak and peak hours using these methods. Data were collected to conduct such 

analysis in Delft, but as a small college town, peak hour traffic and stress levels did not 

vary enough from off-peak hours to finish the study.  

CHAPTER 5 was exploratory and opened the door to many future avenues for research. 

The results suggested that stress may influence gaze, but a future study with a more even 

distribution of stress levels on the route is needed to build more confidence in the findings. 

Complexity could be studied in a more controlled environment with non-visual tasks 

increasing the complexity. Overall, the strongest influence on gaze behavior in CHAPTER 

5 was skill. Confidence in the results could be increased through further exploration with 

a larger sample in each skill group. Furthermore, the results suggested we cannot assume 

that what is known about drivers’ gaze will be the same for cyclists. Little research to date 

has focused on cyclists’ gaze behavior, but many of the studies of drivers’ gaze behavior 

could be repeated for cyclists. In addition, a study of cyclists’ gaze behavior in simulators 

compared to in-field could inform whether these future gaze behavior studies could be 

performed in the highly controlled environment of a simulator instead of in-field.  

The analysis in CHAPTER 5 did not take into consideration the cyclists’ speed or time 

series analysis, but both warrant future study. A recent paper using eye tracking data 

collected after that in this dissertation found that risk perception had an influence on speed 



 

 79 

and combined these had an influence on cyclists’ gaze patterns (2). The cyclists’ gaze 

tended to be higher and more on the travel path when cycling fast and they went slower 

when their risk perception was higher. Risk perception is a component of cyclists’ stress, 

so it may also be worth looking at stress, cyclists’ speed, and if they have the same 

relationship to gaze patterns. A validation-type study that determines the validity of 

fixation measurements at varying cycling speeds would also be very valuable. To the 

algorithm, fixations would look like smooth pursuits. The algorithm assumes the eye 

trackers are stationary, so the world is moving relative to the eye trackers, which can result 

in errors identifying fixations. Speed may impact the error resulting from this.  

Another analysis method that could be used to build on this dissertation is time-series 

analysis. Time-series analysis in combination with areas of interest analysis has been used 

in a previous study of cyclists’ gaze behavior to identify common gaze patterns (3). The 

paper was brief conference paper and had a narrow scope analyzing just 1 intersection. 

However, it demonstrated the value of time-series analysis for identifying repetitive gaze 

patterns. It is possible that more stressed cyclists tend to shoulder check more frequently 

or very rapidly and briefly look away from the travel direction when scanning. Although 

the gaze area was explored in this dissertation, the use of time-series analysis could better 

illuminate the gaze patterns that resulted in those gaze areas. 

CHAPTER 6 also suggested a couple directions for future work. This dissertation laid out 

the most important pavement distresses and gave ideas for incorporating the information 

into asset management plans. However, the next step would be to develop a model of 

pavement deterioration on cycle facilities. Pavement deterioration on major auto-focused 

assets has been extensively researched, but less is known about lower volume roads and 
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bicycle facilities. This information is critical to asset management plans. Additionally, eye 

tracking can demonstrate that a cyclist has or has not fixated on an object, but it cannot 

definitively inform whether the cyclist has processed that information. A simulator-based 

study could take the research a step further to determine if the reduced fixations in mixed 

traffic settings are indicative that the cyclist is missing these safety-critical cues.  

4.4.1 Considerations/Adjustments to the Instrumented Bicycle 

In the process of this research, I identified ways in which the instrumented bicycle could 

be improved. The first involves redundancy. For any future data collection with the 

instrumented bicycle, I would recommend building in redundant components for any of the 

most critical sources of data. For example, I needed a redundant camera that could serve to 

both help identify where the cyclist was in the case of lost GPS data and provide footage if 

the eye tracking data were corrupted. Having redundant data allows us to make meaning 

out of the data even if one system has failed. 

One component related to redundancy that could be valuable in future studies would be a 

speedometer. Speed can be derived from the GPS data, but the GPS frequently produced 

invalid data, likely attributable to the tall buildings in Atlanta. Building in a speedometer 

would allow for gathering speed data without concern around accurate/usable GPS data. 

If a future study wanted to use the instrumented bicycle to look at close-pass events, it 

would be very valuable to have camera data that is linked to the LiDAR and Sonar data. 

For the inspection of close-pass events in this dissertation, I identified all close-passes, then 

used the timestamp to link to the GPS data, then watched the video around that location 

based on my knowledge of the route. Watching the video was necessary to confirm the 
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object close to the rider was a car and not me or some other irrelevant feature. This process 

would be much quicker and more accurate if there were, for example, a timestamp linking 

the video to the LiDAR. In addition to being faster and more accurate, this method would 

also eliminate the risk of invalid GPS data breaking the chain.  

The eye trackers were not a practical measure of stress. Extracting stress among all the 

other influencers of gaze was time consuming and did not come out as significant. In my 

opinion, the effort would not be worth the improvement over measures of stated stress. I 

suspect based on my experience of working with human subjects, that a button system for 

identifying their stress levels may be too complicated to get participants to use. I think the 

best option would be a microphone setup that either cues the cyclist to give a stress rating 

or allows them to narrate their ride. Another idea would be to use a peripheral detection 

task to study their mental workload. A peripheral detection task does not work with 

wearable eye trackers as they stand, so that would need a separate study. If eye trackers are 

used, it should be for a specific purpose, directly related to the research questions, and the 

analysis should be tested and defined prior to beginning data collection. This is heavily 

dependant on the intended research questions.  

Other sensors that could produce value include light (lux), cadence, and brake sensors. The 

light sensor would add value for an eye tracking project to remove the influence of 

adjusting light levels on the pupillometry data. Cadence and brake sensors are frequently 

used in instrumented bicycle studies (4) and could add valuable information about the 

cyclists’ behavior. However, I do not think these add sufficient value to change the setup 

to not be attachable to anyone’s bike.  
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The choice of sensors is heavily dependent on the study being performed, so the value of 

each sensor and any associated trade-offs from adding it are really determined by the study 

itself. I strongly recommend anyone using an instrumented bicycle for research to 

thoroughly test every step of the research design. It is not sufficient to just test that the 

sensors work, but it is critical to also check the data is coming out in a usable format for 

your future data analyses. Thus, the way the data will be analyzed needs to be known (and 

tested) before the data collection protocol and sensor selection is finalized.  

Finally, I have some recommendations on build and output. It is critical that the attachment 

mechanism to participants’ bicycles is firmly holding the box in place. In this study, the 

box would sometimes shift sideways when a cyclist mounted/dismounted. I tried to correct 

this as much as possible, but the LiDAR data would be substantially more trustworthy if 

the box did not change position on the cyclists’ bike. Additionally, because the GPS data 

failed sometimes, it was extremely challenging to separate files from days where multiple 

rides occurred. It would be much easier to manage the data if a new file were created every 

time the system is started. 

In summary, my key lessons from using the instrumented bicycle are 1) test everything, 2) 

include redundancy whenever possible, and 3) the design depends on the study. A study 

design that has targeted research questions, has been tested through the analysis portion, 

and has redundancy built in for key sensors will reduce data loss and allow for smoother, 

more useful data analysis.  
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APPENDIX A. US Survey and Appendix B. NL Survey, respectively. 

All survey questions used in Atlanta were also used in Delft with small adjustments to 

address changes in location (“Atlanta” changed to “Delft”) and structures (i.e. level of 

education). The familiarity question was adjusted after data collection in Atlanta from an 

open-ended question to a Likert-scale to be more consistent and comparable for future 

data collection. 

During the ride, the cyclist was asked to color-code by stress level (low, moderately-low, 

moderately-high, and high) a map of the recently ridden segment of the route. To reduce 

recall error, the map was color-coded at two points during the ride and at the end. The 

post-ride interview inquired about the map to understand why the cyclist gave the stress 

ratings they gave. The data gathered in this format was the basis for the thematic analysis. 

An example of a digitized stress map is provided in Figure 4-6. 
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Figure 4-6 Example of a completed and digitized stress map 

4.5.1 Protocol 

The protocol of a data collection appointment started with consent forms, as approved by 

the human research ethics boards for both universities. Following consent, the written 

survey was filled out by each participant. Prior to the appointment, the participant was 

provided a map of the route, and the route was reviewed before the sensors were set up.  

Once the sensors were prepared and the participant was comfortable, the ride began. The 
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participant cycled in front with the researcher behind in case of emergencies, sensor 

failure, and to give directions as needed. The participant was encouraged to not interact 

with the researcher and cycle as they normally would cycle. The participant and 

researcher stopped at two pre-designated locations along the route to colour-code the map 

based on their stress levels and review the directions for the next segment of the route. 

Once the whole ride was complete, the researcher removed the sensors and conducted the 

post-ride interview.  

4.5.2 Analysis Method 

The analysis was conducted using mixed methods. Quantitative statistical analysis 

primarily consisted of Mann Whitney testing of the demographic and attitudinal 

differences in the samples. Such quantitative analysis was limited due to the small sample 

size in each location. To supplement the quantitative analysis, thematic analysis was used 

to identify and describe attitudes and ideas in interview responses. Thematic analysis is 

used in the field of transportation engineering to analyse open-ended survey questions 

(28), interviews (29, 30), and focus groups (31). Braun and Clarke’s article on thematic 

analysis was used as a guide for this analysis (32).  

Braun and Clarke suggest four phases of thematic analysis: data familiarization, 

generating initial codes, finding themes, and reassessing themes (32). To familiarize 

themselves with the data, the researchers repeatedly read the data. After familiarizing, 

initial codes were generated to describe interesting topics in the data. The participants’ 

responses were coded as short phrases (i.e. low traffic, smooth road surface, negative 
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response to motor vehicles, etc.). More than one code was possible per response as 

participants may list more than one reason for their stress rating. The codified responses 

were compiled by participant. In total, 43 codes were generated. Then, themes were 

generated from the codes by grouping and consolidating them to a list of themes. After 

finding the themes, they were reassessed for coherence. To ensure the analysis was 

performed in a systematic manner, it was checked by two other researchers and adjusted 

accordingly. 

An inductive (bottom-up) and semantic approach was taken to identifying themes. This 

means the themes were identified through exploring the responses, not from theoretical, 

existing knowledge found in the literature. Once the thematic analysis was complete, 

quantitative results from the written surveys were paired with the themed interview 

responses to explore the relationships of cyclist characteristics and attitudes with stated 

causes of stress. In addition, the instrumented bicycle data (GPS and LiDAR) were used 

to support the findings in the quantitative and thematic analyses. 

4.5.3 GPS and LiDAR 

GPS and LiDAR were equipped to both instrumented bicycles. The GPS provided 

location and speed data and LiDAR provided the distance to the nearest object to the left. 

The LiDAR were in approximately the same position on both bicycles, as shown in 

Figure 4-5. The GPS data were used to find cyclists’ point speed to better understand 

riding speed in relation to stress. The LiDAR data was used to identify close-passes (a 

reading of under 1000 mm). Video data corresponding to these potential close-pass 
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events were reviewed to confirm the close-pass events. Then the close-pass locations 

were compared with the stress maps and survey responses to explore any potential 

relationship between attitudes, characteristics, and stress ratings to a close-pass event.  

4.6 Results 

This section covers the results from the various analyses. First, the multiple-choice 

responses and reported stress levels are presented. Second, the interview responses 

analyzed through thematic analysis are discussed. Then both analyses are combined to 

explore relationships between participants’ multiple-choice responses and stated causes 

of stress. Finally, the sensor data from the instrumented bicycle are used to tie findings in 

the previous results subsections to objective data. 

4.6.1 Multiple-Choice Responses 

Although the sample in Delft primarily consisted of graduate students from TU Delft, the 

two samples had similar demographic breakdowns. Mann-Whitney tests were used to 

find which demographic and attitudinal questions revealed a difference in the sample. 

Due to the small sample sizes, some true differences may not reach statistical 

significance. The comparisons here are meant to improve understanding of the samples, 

but the differences in samples and the differences in location suggest that the responses 

from the two samples cannot be strictly compared. 
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The sample was about 2/3 male and nearly all possessed the equivalent of a bachelors 

(25%) or graduate degree (71%).  In terms of demographics, the only statistically 

significant difference between Atlanta and Delft was in age (U = 21 , p = .04). The 

genders, tested with a Fisher’s Exact test (p=0.57) were not significantly different.  

The Atlanta sample had a more even spread of ages with more people above 34 years old, 

although both samples had the largest group in the 25-34 age range (82% in Delft and 

31% in Atlanta). In the Netherlands, people were asked to ride during peak and off-peak 

hours, making it challenging for people with day jobs and thus, attracting more student-

aged participants. To ensure this age difference did not influence the results, the results in 

the thematic analysis were compared by age within the Atlanta sample, showing no 

systematic difference in themes. Based on this finding, the authors chose not to explore 

age further. 

When questioned about rider type, the Atlanta sample had more cyclists rating 

themselves as “Strong & Fearless” (39%) than the Delft sample (15%) with more people 

selecting “Enthused & Confident” in Delft (68%). Just under 20% in both locations chose 

“Comfortable, but Cautious,” and none chose the “Interested, but Concerned” category. 

The differences did reach statistical significance (U=21, p=.04). Figure 4-7 displays the 

distribution of the responses.  
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Figure 4-7 Distribution of rider type self-classification 

 

The two samples had similar cycling experience (U=10, p=.12) with almost all participants 

learning to cycle as children. The Delft sample cycled for commute purposes more 

frequently (U=21, p=.03), but both samples primarily consisted of regular bicycle-

commuters. This is an expected bias through self-selection into the experiment. The “Less 

than Once per Month” participants, all in Atlanta, were checked for differences in their 

identified themes, but no systematic difference was found. Of the ten attitudinal questions 

in the survey, four showed statistically significant differences.  The results for the 

attitudinal questions are shown in Figue 4-8 with Delft on the left and Atlanta the right. 

The samples did not differ in their tendency towards risk-taking and their preference for 

alternative modes.  
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Figue 4-8 Results of attitudinal questions for Delft and Atlanta. Asterisks indicate 

statistical significance level when comparing Delft and Atlanta data ( * p<0.05;  ** p< 

0.01 ; *** p <  0.001 ) 

 

The questions on which they did differ were related to their motivations for cycling and 

their opinion of other road users. The most statistically significant difference (U=49, p = 

.008) was that cyclists in Delft tended to disagree more with the statement “Most Drivers 

Don’t Seem to Notice Cyclists.” The importance of this difference will be explored in the 

next sections (3.3, 3.4). The samples also differed statistically on the importance of 

exercise (U =21, p=0.03), estimation of cyclists’ regard for their own safety (U=21, 

p=0.03), and whether their friends or family cycling with them would make them more 
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likely to cycle (U=45, p=.009). These latter three could be associated with the higher 

cycling modal share in the Netherlands.  

Overall, the samples do differ, but these demographic differences do not seem to be the 

primary influence on the themes stated in their interviews. Age and commute frequency 

were checked, and no clear systematic difference was found in their thematic analyses. 

The highly statistically significant difference in response to “Most Drivers Don’t Seem to 

Notice Cyclists” will continue to be explored throughout the analysis. 

4.6.2 Comparison of Stress Levels 

As expected, the percentage of segments considered by cyclists as ‘low stress’ was higher 

in Delft than Atlanta. The stress ratings by percentage of segments are shown in Figure 

4-9.  

 

 

Figure 4-9 Distribution of stress ratings by segment for Delft and Atlanta 
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4.6.3 Thematic Analysis 

This section covers the results from the thematic analysis and the combination of the 

thematic analysis results and cyclists’ characteristics. 

4.6.3.1 Interview Thematic Analysis 

Twelve themes were identified for causes of stress; the most frequently mentioned were 

motor vehicles, pavement (road surface), and infrastructure. Nine themes were identified 

for stress reducers; the most frequently mentioned were high quality road infrastructure, 

low traffic volumes (both motorists and cyclists), and familiarity of the 

route/environment.  Due to the low sample size and sample differences, Atlanta and Delft 

were not quantitatively compared, but compared qualitatively to highlight interesting 

results. Table 4-2 shows the percentage of participants who mentioned each theme in 

their interviews.  

Table 4-2 Summary of the thematic analysis showing percentage of respondents 

mentioning each theme 

Theme Delft Atlanta Total 

Causes of Stress  
  

Motor Vehicles 68% 93% 83% 

Poor Pavement 54% 71% 64% 

Poor Infrastructure 32% 78% 58% 

High Volume 29% 54% 43% 

Anticipation 4% 46% 29% 

Speed Differential 18% 34% 28% 

Lane Restriction 32% 22% 26% 

Surprises 32% 17% 23% 

Bus/Truck 21% 22% 22% 

Pedestrians 32% 15% 22% 

Cyclists 36% 0% 17% 

Intersections 14% 10% 12% 
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Table 4-3 Approved 

 

Reducers of Stress  
  

Quality Infrastructure 93% 80% 86% 

Low Volume 89% 71% 78% 

Familiarity 75% 29% 48% 

Speed Differential 29% 41% 36% 

Lack of Motor Vehicles 29% 37% 33% 

Good Pavement 32% 17% 23% 

Ambiance 11% 17% 14% 

Lack of Pedestrians 4% 5% 4% 

Lack of Intersections 7% 0% 3% 

 

The top three stressors in each location were not the same. Motor vehicles were the top 

stressor in both locations. In Atlanta poor road infrastructure (78%) slightly outdid poor 

road surface (71%). It is notable that poor road infrastructure was mentioned over twice 

as often in Atlanta (78%) as in Delft (32%).  In Delft, poor road surface (54%) was the 

second most common stressor. However, other cyclists were the third highest stressor 

(36%) in Delft with pedestrians, lane restriction, and surprises tied with poor 

infrastructure (32%) for fourth most common. The differences in percent identifying 

other cyclists and pedestrians as stressors likely have to do with the relatively higher 

modal share of cycling and walking in Delft than in Atlanta. Another notable difference 

was the mention of anticipation, the fifth most common in Atlanta (46%) and least 

common in Delft (4%). These comments were mostly about the movements of other road 

users, especially motor vehicles in Atlanta. It is notable that anticipating driver 

movements was so different given that motor vehicles were the most mentioned stressor 

in both locations. 
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The top two stress reducers, high quality infrastructure and low volumes, were the same 

in both locations. The third highest in Atlanta (41%) was speed differential with 

familiarity (29%) as the fifth most common. However, familiarity was the third most 

common in Delft (75%). As mentioned, familiarity with the route was similar between 

both samples. Nonetheless, to check for the effect of familiarity, all participants who did 

not rate any segment as very familiar were temporarily removed from the dataset, leaving 

30 participants in Atlanta and 27 in Delft. In this reduced dataset, cyclists in the 

Netherlands still mentioned familiarity almost twice as frequently (78% in Delft and 40% 

in Atlanta) 

Although the Atlanta participants would have encountered a far larger number of vehicles 

due to modal share and infrastructure differences, motor vehicles were the most 

mentioned stressor in both locations. 93% of participants in Atlanta mentioned motor 

vehicles, and fewer participants, 68%, mentioned them in Delft, which is expected due to 

higher stress levels and vehicle volumes in Atlanta. Overall, 83% of participants 

mentioned vehicles as being a cause of stress and 33% specifically mentioned the lack of 

motor vehicles as being a reducer of stress.  

Quality infrastructure was the top stress reducer. 86% of participants mentioned 

something about the infrastructure as being a stress reducer, many of these mentioning 

“separation from motor vehicles,” the width of the road, and, in Atlanta, multi-lane roads 

that allowed vehicles to pass. About ¼ of the participants mentioned restriction of their 

lane by other road users, labelled lane restriction, such as a close-pass or wrong-way 

cycling, as a stressor. These results suggest that cyclists appreciate infrastructure that 
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limits their interaction with other road users, especially motor vehicles, and when not 

possible, provides space to allow for comfortable passing distances.  

Infrastructure was both a high-ranking stressor and stress reducer. Infrastructure consists 

of many components. Therefore, multiple aspects of infrastructure have been broken out 

in Table 4-4. Aspects of infrastructure chosen for detailed analysis included: width, 

number of travel lanes (only relevant in Atlanta), presence of bicycle facilities, and sight 

distance. In addition, the impact of parked vehicles, one aspect of the motor vehicles 

theme, is also included in the detailed analysis. 

As shown in Table 4-4, the lack of a bicycle facility was never a complaint in Delft but 

was frequently mentioned in Atlanta (34%). The high mention of narrowness in Delft 

(29%) was related to a narrowed section from construction along the Delft route. Width 

overall of the available travel space for cyclists likely varied between the two locations 

but was mentioned about equally as a stress reducer (~12%). The presence of a bicycle 

facility was appreciated by both samples and served to reduce stress. Good visibility was 

mentioned about 14% of the time in Delft, but never in Atlanta. In Delft, sight distance 

was more important than width to reducing cyclist stress. The number of travel lanes was 

only slightly more frequently mentioned as a stressor (10%) than as a stress reducer (7%). 

Common understanding is that number of lanes contributes significantly to stress, but 

when cycling in mixed traffic, cyclists in Atlanta appreciated that motorists were able to 

move to another lane to pass them. Both groups mentioned parked vehicles at about the 

same rates (~17%) and both routes had similar roadside parking availability. Although 

cyclists in Delft believe drivers notice them more frequently, they seem to have similar 

wariness around parked vehicles as Atlanta cyclists. 
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Table 4-4 More detailed themes showing percentage of respondents mentioning sub-

themes within the infrastructure and motor vehicles themes 

Theme Delft Atlanta Total 

Causes    

Sub-theme of 

Motor Vehicles 

 
 

 

Parked vehicles 18% 17% 17% 

Sub-theme of 

Infrastructure 

 
 

 

Narrow 29% 17% 22% 

Number of Travel 

Lanes 

0% 10% 6% 

No Bicycle Facility 0% 34% 20% 

Sight Distance 

Issue 

4% 7% 6% 

Reducers 
 

 
 

Sub-theme of 

Infrastructure 

 
 

 

Wide 11% 12% 12% 

Number of Travel 

Lanes 

0% 7% 4% 

Bicycle Facility 29% 39% 35% 

Good Sight 

Distance 

14% 0% 6% 

 

For this analysis, the speed differential theme was defined as a mention of either their 

own speed or the speed of other travelers. Just over ¼ of participants mentioned speed 

differentials as a stressor and even more (36%) mentioned it as a stress reducer. Higher 

speed differences were associated with higher stress. Although both sets of participants 

mentioned speed, Atlanta cyclists mentioned it about twice as frequently and the focus of 

the comments differed between the two samples. In Delft, the comments were about the 

cyclists being able to keep (or not keep) their preferred speed. For example, one cyclist in 

Delft said the reason for their low stress rating on all segments was the “chill speed so 

[they] had more time to analyze and anticipate.”  In contrast, in Atlanta the responses 
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were about the speed of the vehicles. For example, stress was reduced by “lots of stop 

signs to slow cars,” “stop and go traffic,” and “traffic flow going [participant’s] speed.” 

Stress was increased by “fast cars”. Both perspectives ultimately reveal that cyclists are 

less stressed by low speed differentials and not be pressured by speed differentials to 

deviate from their ideal speed.  

It is also worth noting that ambiance was mentioned by 11% of cyclists in Delft and, even 

more, 17% in Atlanta. Ambiance included comments about their surroundings unrelated 

to the immediate transportation needs such as having trees along the path or a nice view. 

Although not a main stress reducer, it was mentioned without prompting suggesting it is a 

factor in cyclist stress and could warrant future study. 

4.6.3.2 Combining Interviews with Attitudes 

By combining interview responses with the attitudinal questions in both locations, we 

examined relationships between cyclists’ attitudes or rider type to their stated stressors. 

The low cell frequencies do not allow for statistical testing but suggest some interesting 

associations that could be further investigated with larger samples.  

 

The first relationship explored was between how people responded to “Most Drivers 

Don’t Seem to Notice Cyclists” and mention of motor vehicles as stressors. Figure 4-10 

breaks down the results by location with the bars displaying the number of people who 

mentioned motor vehicles as stressor in each location grouped by their response to the 

attitudinal question. Of those agreeing or neutral to this statement, 97% mentioned a 
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motor vehicle. However, of those disagreeing with this statement only 64% mentioned a 

motor vehicle. This suggests that cyclists who disagree with “Most Drivers Don’t Seem 

to Notice Cyclists” may be slightly less likely to mention a motor vehicle as a stressor. 

However, with more cyclists in Atlanta agreeing and in Delft disagreeing, this could also 

be related to regional differences. 

 

Figure 4-10 Number of people responding to each category of “Most Drivers Don’t 

Seem to Notice Cyclists” who mentioned a motor vehicle as a stressor in the interview 

The second relationship explored was between rider type and mention of motor vehicles, 

including buses and trucks, as a stressor. No obvious relationship existed with about even 

percentages (~70-80%) in each category in both places. Ultimately, motor vehicles 

appear to be a stressor for most people. 

The third relationship was between rider type and mention of the infrastructure as either a 

stressor or stress reducer. There did not seem to be any obvious trend suggesting that 
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“Strong & Fearless” cyclists mentioned infrastructure more or less than the 

“Comfortable, but Cautious” riders.  

Three more relationships were explored to understand why almost exclusively, cyclists in 

Atlanta anticipated other road users’ movements. Although in Delft cyclists were 

surrounded by other cyclists, they did not report anticipating cyclist movements at the 

rate Atlanta cyclists anticipated driver movements. This suggests Delft cyclists were 

confident in predicting the movements of other cyclists, but Atlanta cyclists were not 

confident in predicting motorists’ actions. We decided to explore what characteristics of 

Atlanta cyclists correlated with commenting about anticipating a driver movement. Rider 

type, responses to “Most drivers don’t seem to notice cyclists,” and commute frequency 

were compared. Rider type and the attitudinal response did not show a relationship with 

anticipating driver actions, but the daily commuters mentioned this theme substantially 

more (14 of the 21 daily commuters) than the less frequent commuters (5 of the 30 

others).  

4.6.4 Comparison of the Sensor Data 

LiDAR and GPS are useful sensors for measuring key components of the cycling 

experience including speed and proximity to motor vehicles. These data are used in this 

section to further explore the stress responses regarding motor vehicles and speed 

differentials. LiDAR data was used to measure close-pass events in which a motor 

vehicle passes a cyclist with less than 1 meter of space. Three assumptions were checked 

with regard to close-passes: (1) cyclists in Delft are less likely to rate a close-pass event 

as high stress, (2) cyclists with a higher comfort rating (i.e. strong and fearless) are less 
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likely to rate a close-pass event as high stress, and (3) cyclists who disagreed with the 

statement that “Most drivers don’t seem to notice cyclists” are less likely rate a close-pass 

event as high stress.  

In addition, GPS sensor data were used to understand cyclist speed by taking the 

instantaneous speed from GPS reading to GPS reading. This speed data can be used to 

check the assumption that cyclists in Delft cycle slower than the cyclists in Atlanta. This 

hypothesis is suggested by the comments about cyclists being able to keep their own 

speed in Delft. 

4.6.4.1 LiDAR 

The LiDAR data were used to identify locations with close-passes, with results shown in 

Table 4-5. Only four close-pass events were found in the Atlanta data and seven in the 

Delft data, two during the same ride (labelled 3 and 4). 4 of the 7 close-pass events in 

Delft were rated low stress, two of which were within a closer distance than any of the 

close-pass events in Atlanta. 4 of the 7 close-pass events in Delft were with a bus, 2 of 

which were rated low stress. The segments where these close-pass events occurred were 

along one-way streets with an exception for cyclists. The cyclists were going against the 

flow of traffic when passed by the buses. During the other close-pass events the cyclist 

and motor vehicle were travelling in the same direction. The narrow one-way street, low 

speed limit (30 kph), and nearby pedestrian areas likely resulted in low speeds (lower 

than the speed limit) of the motor vehicles in this area. In this unique situation, it seemed 

that cyclists were more tolerant of a close-pass event, likely at least partially due to low 

speeds. 
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In Atlanta, the close-pass events were all rated above low stress. Most happened at a 

distance greater than those in Delft. The conditions of the close-pass events were such 

that they were always on mixed traffic segments with the motorist and cyclist moving in 

the same direction. The speed limit on the roads with close-pass events was 25 mph (40 

kph).  

The relationship between rider type and the responses to “Most drivers don’t seem to 

notice cyclists” to their stress rating during a close-pass event was explored and is 

presented in Table 4-5. However, there does not seem to be any link with rider type. The 

strong polarization of answers to “Most drivers don’t seem to notice cyclists” resulted in 

all cyclists experiencing a close-pass event in Delft on the disagree side and all in Atlanta 

on the agree side. A larger sample of close-pass events with a more diverse sample 

regarding this question may be necessary to determine if it is related to their belief that 

drivers notice them. However, it should be noted that in addition to the low speeds, the 

difference in stress rating of close-pass events, could be related to these different views of 

whether drivers notice cyclists.  
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Table 4-5 Close-pass events and characteristics of the pass and rider 

Delft 

Close-Pass 

Bus Distance Rider Type “Most drivers 

don’t seem to 

notice 

cyclists” 

Stress Rating 

1 No 850 mm Strong & 

Fearless 

Disagree Low 

2 No 720 mm Enthused & 

Confident 

Disagree Low 

3 Yes 580 mm Comfortable, 

but Cautious 

Strongly 

Disagree 

Moderately Low 

4 No 670 mm Comfortable, 

but Cautious 

Strongly 

Disagree 

Moderately Low 

5 Yes 620 mm Enthused & 

Confident 

Disagree Low 

6 Yes 610 mm Comfortable, 

but Cautious 

Strongly 

Disagree 

Low 

7 Yes 600 mm Enthused & 

Confident 

Strongly 

Disagree 

Moderately high 

Atlanta 

Close-Pass 

     

1 No 710 mm Comfortable, 

but Cautious 

Strongly 

agree 

Moderately high 

2 No 900 mm Enthused & 

Confident 

Agree High 

3 No 710 mm Strong & 

Fearless 

Agree Moderately low 

4 No 700 mm Enthused & 

Confident 

Strongly 

agree 

Moderately low 

 

4.6.4.2 GPS 

Based on the findings that cyclists appreciated getting to travel at their ideal speed, and 

that the Atlanta cyclists were more frequently stressed by high speed differentials, it was 

assumed that cyclists in Delft would cycle slower than cyclists in Atlanta. The point 

speed data were plotted as boxplots in Figure 4-11. The data suggest this assumption is 

correct. The mean speeds are substantially different with Atlanta’s mean speed (24 kph) 

being about twice as high as Delft’s (12 kph). When looking at the median speeds this 
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becomes even more extreme with Delft’s at 7 kph and Atlanta at 27 kph. The differences 

could be exaggerated by plotting the point speed data (a slow-moving cyclist will 

generate more data points in the same distance). However, the data suggest that cyclists 

in the Netherlands without the pressure to move more quickly, are choosing to use a 

lower speed than in the United States where cyclists must ride mixed with vehicles. 

Although these differences are striking, the cyclists’ speeds were within the range of 

expected values for each country (33). There may also be other factors influencing these 

speed differences. These differences may be more pronounced due to the differences in 

bicycle used, as cyclists in America will often use a faster bicycle than the typical Dutch 

city bicycle used for the experiment in Delft. Similar to the bicycle styles, American 

cyclists are also often more sporty than in the Netherlands where cycling is a casual, 

every day experience (34).  

 

 

Figure 4-11 Boxplots of the speed data in kilometres per hour, triangles represent the 

means 
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4.7 Discussion 

Overall, the main components of cyclist stress can be attributed to the presence of motor 

vehicles, poor pavement, and poor infrastructure. This section goes into further discussion 

about the individual results of the study and how, ultimately, they relate to the influence of 

the built environment on feelings of stress. 

The two samples differed significantly in their responses to “Most drivers don’t seem to 

notice cyclists” with more agreeing in Atlanta and disagreeing in Delft. This is similar to 

previous findings that Dutch cyclists rated their tolerance and consideration for other road 

users higher than cyclists in the USA (35). Strictly looking at the Dutch, Dutch cyclists 

also reported to be very often confident that drivers notice them (36) and both cyclists and 

motorists expected motorists to yield more than cyclists (37).  In Delft, people disagreed 

more with “Most drivers don’t seem to notice cyclists” and experienced lower LTS 

infrastructure and vehicular volumes; however, motor vehicles were still the top stressor in 

both Delft and Atlanta. This highlights the importance of motor vehicles to cyclists’ stress. 

It is well established in the literature that cyclists’ perceived safety and stress levels are 

negatively influenced by interaction with motor vehicles (e.g. (31, 38, 39)).  

However, the Delft data suggests that it is not just motor vehicles, but all other road users 

that are causes of stress for cyclists. In Delft, other cyclists were the third most common 

stressor and pedestrians were tied with three others for the fourth most common stressor. 

This supports building separated infrastructure to minimize interaction with other road 

users, although interaction with other cyclists is likely inevitable. Additionally, it is worth 
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noting that despite pedestrians and cyclists being frequent stressors in Delft, about twice as 

many participants mentioned motor vehicles than either other mode. 

Another difference highlighted in the thematic analysis was how cyclists mentioned speed 

differentials. Delft cyclists mentioned their own speed and Atlanta cyclists mentioned 

vehicle speeds. Both suggested that cyclists prefer to go at their ideal speed. Based on the 

interview responses, the Atlanta cyclists experienced higher, more stressful speed 

differentials which may have pressured them to go faster than their ideal speed. This was 

explored in the results section (3.4.2), and it was found that the Atlanta cyclists were 

cycling about twice as fast as the Delft cyclists. Although other factors such as typical trip 

lengths, cycling culture, and bike types could also influence the ideal speeds, the thematic 

analysis results coupled with the large speed differences suggest that cyclists’ speed is 

influenced by pressure from the speed differentials in shared lanes. This may reveal the 

importance of infrastructure separating modes by speed, as the Dutch system does.  

Pavement condition was the second most common stressor in Delft and third in Atlanta. 

Pavement condition, included in BLOS, has been considered in terms of physical comfort 

(40–42), but is infrequently considered in stress studies. The findings of this study suggest 

that this is a more important factor than previously acknowledged. 

A more detailed analysis was performed on the components of the infrastructure theme. It 

was shown that presence of bicycle facilities is the most important aspect of the 

infrastructure to cyclist stress. This could explain why over double the percentage of 

participants in Delft who identified infrastructure as a stressor did so in Atlanta. This fits 

with previous findings that the presence of bicycle facilities is important to reducing cyclist 
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stress. Sight distance caused some stress in both locations but was a substantial component 

of reducing stress via infrastructure in Delft. This could be related to the slower speeds in 

Delft allowing cyclists more time to react to visual cues. Width and presence of bicycle 

facilities are included in all the existing infrastructure ratings systems, but sight distance, 

mentioned more frequently than number of lanes, has yet to be considered.  

The number of travel lanes had a nearly even percentage of participants mentioning it as a 

stress reducer (7%) and as a stressor (10%). It reduced stress because cyclists felt vehicles 

were more able to give sufficient space when passing if there were more lanes. This 

suggests that number of travel lanes alone may not be as simple of an inclusion to measures 

of cyclist stress. Instead, aspects such as speed (high speeds often associated with high lane 

numbers) and roadway width may be better indicators.  

4.8 Conclusion 

Previous studies have assessed stress, but variables collected to conduct the assessment 

have been largely defined by the researchers. In this study, participants self-identified their 

causes of stress through a near real-time interview. This study confirmed and at times 

emphasized some of what is already known, especially the importance of motor vehicle 

interaction to cyclist stress. This study also contradicted the idea that number of travel lanes 

is a key stressor, instead suggesting that it can serve as both a stressor and stress reducer 

and that other stressors may be more influential. In addition, this study also highlighted 

new insights into causes of stress. For example, pavement condition is often overlooked 

but came out in the top three stressors in this study. The interviews also allowed for a new 

perspective on speed and the identification of sight distance as a factor in stress. Finally, 
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this study also looked at close-pass events and how attitudes impact stress during them. 

The results were not definitive but suggest that the Delft cyclists’ comfort with closer 

passes could be associated with their belief that motorists notice them and/or the low speed 

of vehicles. 

There were several limitations to this study. First, although for studies incorporating the 

use of instrumented bicycles and quasi-naturalistic cycling, the sample size was reasonable, 

the analysis would have been stronger with a larger sample size. Second, some of the study 

design was not as consistent as desirable including the difference in bicycles used and the 

variation in the familiarity question. Finally, it could be desirable to perform the study 

again in more comparable cities in terms of population and transportation infrastructure.  

Findings indicate that a few themes relating to cyclist stress require further research. The 

results suggested that there may be some interaction between cyclist speed, stress, and their 

ability to foresee risky situations which warrants further study. The results about pavements 

also suggest that studies on pavement management for cyclists should also consider their 

stress, not just physical comfort.  In addition, ambiance was mentioned by 14% of 

participants and a study specifically on ambiance could be used to aid in inexpensive 

improvements to the streetscape that could impact people’s willingness to cycle.  
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CHAPTER 5. THE INFLUENCE OF SITUATIONAL COMPLEXITY, 

STRESS, AND STATED SKILL ON CYCLISTS’ GAZE 

BEHAVIOR 

 

ABSTRACT 

Much of the world has improved in terms of road safety, but cyclist injury and fatality 

rates have not decreased at the same rate as motorist and passenger injury and fatality rates. 

Gaze behavior has been extensively studied in driving due to its relevance to safety and 

vehicle control, but gaze behavior is only starting to be studied in cyclists. This exploratory 

study aims to begin filling this gap by using eye tracking glasses and quasi-naturalistic 

cycling to explore how situational complexity, stress, and stated skill influence gaze 

behavior. This study took place in Delft, The Netherlands with 8 female and 18 male 

participants, all affiliated with the university. Cyclists were asked to ride an instrumented 

bicycle for about 30 minutes on a route with minimal vehicle interaction at off-peak and 

peak hour. Cyclists filled out a survey about their cycling habits, attitudes, and skill level 

and were interviewed about their stress levels at three designated locations during/after the 

ride. Cyclists’ horizontal and vertical gaze range, gaze area, and fixation number and 

duration were compared by segment. The segments were divided by complexity and stress 

and the riders by self-identified high motor-tactical skill and high safety motive ratings. 

The results suggest that the primary cycling task (maneuvering, scanning, etc.) or other 

factors dominate over complexity for these measures, but stress and stated skill do have 

influence on cyclists’ gaze. The most striking results showed that the safety motives group 

utilized improved scanning behavior and a gaze more focused on the center of their view 

where most safety-critical cues appear. The measures used were effective in highlighting 

information about cyclists’ scanning and gaze range. These results highlight some areas 

warranting future research including the influence of cyclist skill, experience, and stress on 

gaze behavior. They also serve as a building block to layer gaze behavior in mixed vehicle-

cyclist situations. 
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5.1    Introduction 

Due to its societal benefits, cycling is experiencing a resurgence in many countries around 

the world. However, even in established cycling countries, such as the Netherlands, the 

rate of cyclist injuries/deaths is not decreasing at the same rate as motorist injuries/deaths. 

Literature shows that most cycling accidents are caused by human error, more often by 

other road users than the cyclist (Simpson & Mineiro, 1992). The rate and severity of 

accidents can be reduced and mitigated by forgiving infrastructure design that assumes 

error will happen (Cushing, Hooshmand, Pomares, & Hotz, 2016). Although many safety 

treatments for cyclists still need more rigorous, systematic safety assessment, it’s been 

shown that infrastructure choices such as building a bike lane consistently improve safety 

(DiGioia, Watkins, Xu, Rodgers, & Guensler, 2017; Mooney et al., 2018). Over time, a 

rich literature has been developed regarding general categories of infrastructure that are 

safer for or perceived as safer by cyclists (Harkey, Reinfurt, & Knuiman, 1998; Klobucar 

& Fricker, 2007; Landis, Vattikuti, & Brannick, 2007; Mekuria, Furth, & Nixon, 2012; 

Pikora, Giles-Corti, Bull, Jamrozik, & Donovan, 2003).  Although perceived safety does 

not always match actual safety, infrastructure that is perceived as safer can increase cycling 

rates leading to more awareness of cyclists and the safety in numbers phenomenon 

(Cushing et al., 2016; Fyhri, Sundfør, Bjørnskau, & Laureshyn, 2017; Mooney et al., 2018). 

As cyclists’ safety is associated both with behavior (road user error) and infrastructure 

design, more detailed information about how cyclists interact with their surroundings can 

aid in developing more forgiving, safer designs for cyclists. Gaze behavior is one aspect of 

how road users interact with their surroundings and has been extensively studied in driving 
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research due to its relationship to driver safety and vehicle control. However, to date, gaze 

behavior analysis has not been widely used in cycling research.  

Although aspects of the driving experience, such as high speeds and the presence of the 

dashboard, are not applicable to cycling, driving studies of gaze behavior can serve as a 

starting point for measures and methods in cycling studies. Nunes & Recarte (2002) 

considered distraction from hands-free phone conversations. They looked at the cognitive 

demands of hands-free-phone conversations considering fixation duration, fixation 

location, and pupil size. They found that the more complex the task, the more tunnel vision 

occurred. Chapman, et al. found that more experienced drivers use more fixations of shorter 

duration than inexperienced drivers (Chapman, Underwood, & Roberts, 2002). They also 

showed that experienced drivers scan a wider frame of view (Chapman et al., 2002), while 

Mourant & Rockwell showed that experienced drivers tend to look at the right lane edge 

near the horizon (Mourant & Rockwell, 1970). These driving studies suggest that measures 

of gaze range in x and y and measures of fixation should be considered for cyclist gaze 

behavior. This is further supported by a review paper that concluded the most common 

gaze measures in driving studies included number and duration of fixations and exploration 

of areas of the visual frame (Kapitaniak, Walczak, Kosobudzki, Jóźwiak, & Bortkiewicz, 

2015).  

Although eye tracking has been infrequently used in naturalistic cycling, there have been 

studies that described cyclists’ gaze behavior, especially in terms of bicycle control, 

distraction, and hazard perception. Vansteenkiste and his coauthors from Ghent University 

are the most prolific in the area of cyclist control of a bicycle (Vansteenkiste, Cardon, 

D’Hondt, Philippaerts, & Lenoir, 2013; Vansteenkiste, Van Hamme, et al., 2014). In 
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addition to defining how cyclists maneuver their bicycle in a variety of 

situations,  Vansteenkiste, Zeuwts, Cardon, Philippaerts, & Lenoir (2014) found that when 

biking on low quality roads, cyclists tended to look close to them rather than at further off 

environmental hazards.  

Other studies have focused on cyclist distraction and hazard detection (Ahlstrom, Kircher, 

Thorslund, & Adell, 2016; Mantuano, Bernardi, & Rupi, 2017; Stelling-Konczak et al., 

2018; van Paridon, Leivers, Robertson, & Timmis, 2019). Ahlstrom et al. (2016) focused 

on visual strategies employed when using a cell phone in traffic. They found that cyclists 

chose strategic moments to use their cell phone where they could glance at the phone for 

longer. Stelling-Konczak et al. (2018) studied glance behavior of teenage cyclists while 

using headphones. Although cyclists believe they compensate for the loss of audio signal 

by glancing more, it was found that there was no statistically significant difference in 

glance behavior when listening to music. Mantuano et al. (2017) found that along a cycle 

track that has potential for pedestrian-cyclist interaction, cyclists are inclined to watch 

pedestrians, even delaying observation of an upcoming intersection to watch them. Van 

Paridon et al. (van Paridon et al., 2019) studied young cyclists’ hazard perception finding 

that children adjust their search strategies with intricacy of the situation and that the 

children spent longer looking at the pavement in sections of poor pavement.  Rupi and 

Krizek studied cyclists’ gaze behavior at intersections to find that their gaze patterns differ 

based on cyclists’ experience with more experienced cyclists showing longer fixation 

durations and less gaze activity (Rupi & Krizek, 2019). A recent study, and the most similar 

to this research, looked at the effects of subjective risk and visual space on cyclists’ gaze 

behavior(von Stülpnagel, 2020). They found that increased subjective risk which was 
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associated with increased visual complexity resulted in what they call a “more hectic and 

cluttered gaze behavior” that included shorter fixations in directions diverging more from 

the lane of travel and on objects closer to the cyclist. Combined these studies emphasize 

the importance of other road users, pavement condition, subjective risk, and experience to 

cyclists’ gaze behavior.  

The present study will build upon these findings on cyclists’ gaze behavior. None of these 

studies have attempted to understand how stress influences cyclists’ gaze behavior; 

however, cyclists’ stress is a major concern in design, planning, and research for cyclists 

(e.g. (Caviedes & Figliozzi, 2018; Furth, Mekuria, & Nixon, 2016; Geller, 2006; Heesch, 

Sahlqvist, & Garrard, 2012; Mekuria et al., 2012; Nuñez et al., 2018; Pikora et al., 2003). 

Stress has a very fluid definition with the most basic being “the non-specific response of 

the body to any demand for change”, indicating that it is a complex response comprising 

psychological, cognitive, and behavioral components (“What is Stress? - The American 

Institute of Stress,” 2019). This definition is ultimately highly context dependent.  

In this study, stress will be defined by participants’ stated stress which the authors 

hypothesize is a combination of anticipation of future events, reactions to the immediate 

surroundings, and a cyclists’ confidence they can manage them. The causes of cyclists’ 

stress were previously explored using the survey data collected in this study, and showed 

that pavement, interactions with motor vehicles, and infrastructure most strongly 

influenced stress (Gadsby, Hagenzieker, & Watkins, 2021). These can be associated with 

what is immediately happening around the cyclist, but other causes of stress such as 

anticipation can be associated with the concern for future events. Stress levels, as reported 

by the study participants, and their influence on gaze behavior are explored in this study.  



 

 118 

Stress may be influenced by two potential explanatory variables that build upon existing 

literature: maneuvering complexity (related to their immediate surroundings) and stated 

skill (related to their confidence). This study looks at skill as defined by the cyclists’ 

themselves which is both an operationalization of actual skill, but also gives insight into 

the cyclists’ confidence in that skill allowing them to manage situations that occur. 

Although this study was executed prior to their publishing, von Stülpnagel (von Stülpnagel, 

2020) has already reported on the affects of visual complexity. But complexity of 

maneuvering may also influence the stress and gaze behavior of a cyclist as suggested by 

the influence of pavement condition on young and older cyclists (van Paridon et al., 2019; 

Vansteenkiste, Zeuwts, et al., 2014). Additionally, a cyclists’ ability or confidence in their 

abilitiy to successfully maneuver and react to future stimuli may also influence their stress. 

The influence of experience on cyclists’ gaze behavior has been studied, but this present 

study will use a more detailed survey on cyclists’ stated skill to explore how their 

perspective on their abilities and the resulting gaze behavior aligns with previous studies 

of experience. Combined, this study will explore the influence of stress, an important 

component of cycling safety research, and two potential explantory variables within stress: 

complexity (of maneuvering) and stated skill. These address two of the three hypothesized 

components of stress: immediate surroundings and confidence. 

The aim of the present study is to use quasi-naturalistic cycling and eye tracking to explore 

how cyclists’ gaze behavior is influenced  stress and two potential components of stress: 

stated skill and complexity (of maneuverability) in the absence of heavy motor vehicle 

traffic. This study is exploratory in nature and presents initial findings on variations in 

cyclists’ gaze behavior in real world cycling. This will provide a baseline to build upon for 
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future understanding of cyclists’ gaze behavior with the added complexity of motor 

vehicle-cyclist interaction which will add the third hypothesized component of stress: 

anticipation of future events. Furthermore, understanding of general cyclist gaze behavior 

in these situations may be useful in designing safer bicycle facilities. 

5.2 Initial Eye Tracking Tests 

Prior to starting data collection with the eye trackers, a feasibility test was performed in 

2018. The initial results were presented at the International Cycling Safety Conference in 

October 2018. This initial study informed the study that is the subject of this chapter and 

supported the hypothesis that differences in skill, stress, or infrastructure may influence 

gaze behavior. 

Data were collected in the Netherlands and the USA. Two participants, a comfortable, but 

cautious female cyclist and a strong, and fearless male cyclist, wore the glasses in the 

Netherlands. In Atlanta, a different pair of participants, one a comfortable, but cautious 

female cyclist and the other a strong and fearless male cyclist, wore the glasses. Both pairs 

rode on various types of infrastructure.  

Only qualitative results were possible due to loss of data in the USA from sunlight, but 

some trends appeared. The confident cyclists tended to look above the horizon, suggesting 

they were looking further ahead, and scanned the scene with a sweeping gaze. The cautious 

cyclists tended to look below the horizon, closer to them, and scan with quick glances 

around the scene. Examples of these differences are shown in Figure 5-1. When the 

cautious cyclists were on very low-stress facilities, such as a park, their gaze tended to be 

similar to a confident cyclist’s gaze. These results suggest that there are differences in gaze 
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behavior between when a cyclist is more stressed as compared to less stressed. The cyclist’s 

comfort with biking influences their baseline behavior, but so does skill. The more skilled 

cyclists were more likely to check doors of parked cars and scan at intersections.  

       

                            (a-1)              (a-2) 

       
     (b-1)                                                           (b-2) 

Figure 5-1 a) shows the confident cyclist and b) the more timid cyclist. The 1 images 

are from The Netherlands and 2 from Atlanta 

5.3 Methods 

The objective of this study is to explore gaze behavior in the absence of significant motor 

vehicle interaction so that the gaze behavior could ultimately be separated and layered with 

that from motor vehicle interaction. Towards this end, the research team designed a short 
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(5 km) route around the Dutch city of Delft. Participants cycled the route during off peak 

and peak hours on an instrumented bicycle while wearing eye tracking glasses. The cyclists 

were also interviewed about their experience in the experiment; their cycling habits, 

attitudes, and skill; and their demographics.  

5.3.1  Participants/Recruitment 

The study had 28 participants, 26 (8 female) who rode both peak and off-peak and 2 (1 

female) who rode only peak hour. Participants were recruited via email and fliers. Due to 

the recruitment methods and requirement to ride off-peak, all participants were affiliated 

with the Delft University of Technology (TU Delft) and most were students. 82% of 

participants were in the 25-34 age range. Nine participants were originally from the 

Netherlands, but all had some familiarity with cycling in the Netherlands and the chosen 

route. To increase participation as the study continued, the final 10 subjects were provided 

a 10-euro gift card incentive after their second ride. 

5.3.2 Route 

Delft is a small, historic city in the Netherlands with a population of approximately 

100,000. The Netherlands has a bicycle modal share just over 25% (24).  In Delft, the 

bicycle modal share is expected to be closer to 40% for trips between 1 and 7 kilometers, 

as is common in urbanized areas in the Netherlands (25). The route began at TU Delft, 

travelled through the historic center of Delft, and returned to TU Delft. It was 

approximately 5 km long and took approximately 25 minutes to cycle. The route was 

designed to incorporate a mix of infrastructure and land use types. Figure 5-2 shows a map 

of the route and the infrastructure.  
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Figure 5-2 Route through Delft color-coded by infrastructure type 

5.3.3 Sensors 

An instrumented bicycle and eye trackers were used to monitor the cyclists in the study. 

The instrumented bicycle was a standard Dutch city bicycle with back pedal brakes. 

Choosing a standard bicycle meant most participants were familiar with the type of bicycle. 

The attached components sat on built-in bicycle racks and added just under 5 lbs to the 

bicycle. Participants could familiarize themselves with the bicycle prior to data collection 

to minimize influence from the type of bicycle and added components.  The bicycle was 

equipped with front and back cameras, GPS, and LiDAR, as shown in Figure 5-3. The eye 

trackers were wearable Pupil Labs Core glasses, which were connected to a light laptop in 

a backpack worn by the rider.  

N 
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The eye trackers produced two types of data. They provided a point gaze location for each 

frame resulting in 50 gaze points per second. Each location is given in normalized 

coordinates with (0,0) the bottom left of the frame and (1,1) the top right. Measures using 

this data will be referred to as measures of gaze. The eye trackers also produced information 

on groups of gaze points in the same area and labelled them a fixation. Fixations had 

associated locations and durations. Fixations can be challenging in this context because the 

cyclist is moving relative to the world. To adjust for this, the allowable dispersion of the 

gaze within a fixation was set to 4.5 degrees and the minimum duration to 150 ms. This 

adjustment allows for creating meaning from the fixation data but is imperfect. Therefore, 

differences in measures of fixations between groups will need to be more significant than 

the gaze measures. The eye trackers did not have an accelerometer or gyroscope on them. 

Through visual inspection of the video footage, the amount of time a participants' head was 

turned during data used in the analysis was minimized.  

 

Figure 5-3 The TU Delft instrumented bicycle 

 

GPS 

LiDAR Camera Camera 
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The eye trackers were wearable Pupil Labs Core glasses. Table 5-1 provides the glasses 

specifications. The glasses were connected to a light laptop in a backpack worn by the 

rider.  

Table 5-1 Eye Tracking Glasses Specifications 

Specification Value 

Gaze Accuracy 0.60 degrees 

Gaze Precision 0.08 degrees 

Pupil Tracking Technology Dark pupil 

Sampling Frequency (Eye) 200 Hz 

Sampling Frequency (World) Variable 30-120 Hz depending on light 

levels 

 

5.3.4 Survey Instrument 

In addition to the sensors, three survey instruments were used: a pre-ride survey, mid-ride 

surveys, and a post-ride interview. The pre-ride survey included questions about the 

participant’s cycling habits (i.e. frequency, primary mode of transportation), attitudes, skill 

(from the Cycling Skill Inventory (26)), and demographics. At two designated locations 

along the ride, cyclists stopped to fill in a map of the route based on their stress levels (low, 

moderately low, moderately high, high). After the ride, cyclists were interviewed to 

understand their reasoning behind their ratings for each segment, their familiarity with the 

route, and the influence of their accident history on their ratings. The cyclists’ survey data 

were linked to their eye tracking data by a unique identifier given for each ride.  
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5.3.5 Protocol 

Prior to the ride, the weather was checked to confirm that the likelihood of rain was small 

during the study. The study began with participants signing consent forms as approved by 

the human subjects research boards at both TU Delft and Georgia Tech. They were briefed 

on the experiment and asked to fill in the pre-ride survey. Once complete, the bicycle was 

sized to them, and they were equipped with the sensors. Then the participant began the ride 

with the researcher behind. They were instructed to cycle as they would normally as if the 

researcher was not present. The researcher was there to give directions as needed to limit 

wayfinding concerns so as not to impact their gaze patterns. In addition, the researcher 

could act in case of an emergency and manage equipment if needed although this was never 

necessary. The participant was asked to stop twice at designated locations to fill in the map 

survey. Once the ride was over, the sensors were removed, and the participant completed 

their map. The researcher then conducted the post-ride interview.  

5.3.6 Analysis Methods 

The first step of the analysis was to define and slice the three groupings of data: complexity, 

stress, and stated skill.  All data slices were 5-10 seconds based on review of the situation 

to ensure approximately similar start/stop of the slice for each rider and consistent 

conditions within the slice. The sliced data provided information on the location in 

normalized coordinates (bottom left corner as (0,0), top right as (1,1)) of the gaze and 

fixations. These were run through a python code developed in house to output measures of 

gaze distribution and fixation duration. Gaze data below 70% confidence, as reported by 

the Pupil Labs software, was removed. 
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5.3.6.1 Data Grouping and Slicing  

For this analysis, complex situations required the cyclist to change speed as derived from 

speedometer and video data. In total, the complex segments taken from every cyclist’s eye 

tracking data included a small barrier that cyclists had to pass through, as well as a narrow, 

blind curved segment around construction, an unsignalized crossing and left turn, and two 

bumpy roads. As controls, two segments that showed no speed change were taken for each 

cyclist, one on a smooth, two-way cycle track through TU Delft’s campus and another on 

a smooth, two-way cycle track along a canal. Each of the complex situations were treated 

individually as their level of complexity and associated visual tasks varied. All seven 

segments were sliced for every ride and are shown in Figure 5-4. 
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Figure 5-4 Route with images of the short segments taken for all cyclists 

In addition to slicing the data for complexity, situations that caused a rating above low 

stress for any rider were additionally sliced for the analysis on stress. These were identified 

based on the locations in the participants’ stress maps marked as above low stress and the 

description of the stressor. The cyclists’ videos were reviewed in these locations for a 

situation best matching the description. Situations that occurred in less than 5 seconds or 

that could not clearly be identified based on the location and description, were not used. 

Only the seven segments selected for the complexity analysis were sliced for every cyclist 

and these higher stress slices were added on an individual basis. If a cyclist had a stressful 

Bumpy 

2 

Barri

er 

Curv

e 

Crossin

g 

Low 

1 

Bumpy 

1 

Low 2 



 

 128 

interaction with another cyclist and marked that as moderately high stress on their map, 

that moment would be sliced from their data only and added to the moderately high group. 

The complexity identifier (i.e. barrier, bumpy 1, etc.) was ignored for the stress grouping 

and each sliced video was identified by the affiliated stress rating. For example, some 

cyclists’ trips through the barrier would be in the low stress group, some in the moderately 

low, and some in the moderately high. There was only one situation labelled high stress, 

so it was joined with the moderately high group. 

The third category of analysis, stated skill, was defined by participants’ responses to the 

Cycling Skill Inventory. The Cycling Skill Inventory asks participants to rate themselves 

on 17 Likert-scale items from definitely weak to definitely strong (26). The cited study 

observed that two components underlie the data: motor-tactical skills and safety motives.  

De Winter et al. (26) identified the questions tied to each component, and we used those to 

separate participants in this study. For safety motives these were: “obeying traffic signals”, 

“avoiding unnecessary risks,” “cycling carefully,” “obeying traffic rules,” and “showing 

consideration for other road users.” For motor-tactical skills the responses were higher for: 

“cycling when it is slippery,” “knowing how to act in particular traffic situations,” 

“controlling the bicycle,” “sudden braking and/or swerving when needed,” “fast reactions,” 

“predicting traffic situations ahead,” and “maneuvering smoothly through busy traffic.” 

The remaining questions represented a combination of the two skills.  

Most participants in the current study rated themselves evenly among the two, but nine 

participants (16 total rides) in this study scored low in one category and high in the other. 

This was defined by a one point or greater difference between their average rating for safety 

motives and motor-tactical skills. Four scored higher for motor-tactical skills and five for 
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safety motives. The remaining 19 participants scored less than one point different in the 

two categories and were group together in the “mixed” category as a baseline to compare 

to. The three groups of data for this analysis consisted of all rides by the four cyclists in 

the motor-tactical skills group, all rides by the five cyclists in the safety motives group, and 

all rides for the remaining 19 participants.   

5.3.6.2 Measure Selection 

In selecting measures to use, a wide variety of measures from the literature were 

considered. The intention was to select measures that could more generally describe 

cyclists’ gaze as the complexity/task varied (traversing a barrier, cycling straight on smooth 

pavement, and making a left turn are all distinct tasks).  Initially, pupillometry, fixation 

number and duration, median x and y gaze position, and areas of interest for both gaze and 

fixations were included. Pupillometry was too sensitive to variations in light levels and was 

removed from consideration early on.  

To date, areas of interest are the most common way studies of eye tracking in cycling have 

measured gaze (14, 17, 18, 27, 28). Studies using areas of interest typically investigate a 

specific scenario or scenarios for observation of a particular object (e.g. (28)) or a particular 

action, such as right glances at intersections (17). Others look for a specific area, such as 

an area around the location where the path meets the horizon (18) or within the bike lane 

(14). Overall, using areas of interest means the researchers are looking for gaze to fall 

within or outside of a specific area. The use of areas of interest was not well suited for three 

reasons: the tasks for each slice changed; there was no specific gaze pattern we were 

looking for; and we wanted more generalized measures.  Furthermore, using this technique 



 

 130 

becomes increasingly challenging with larger participant numbers as the area of interest 

often needs to be defined frame by frame (14, 18). With 28 participants and 54 rides in 

total, this study had a sizeable data set. Following this more exploratory study, areas of 

interest may be used for future research on very specific gaze patterns.  

Although we did not do frame-by-frame areas of interest analysis, we did calculate 

percentage of gaze in the four quadrants of the viewing frame, within a box centered at the 

nexus of the horizon and bike lane, within the bike lane, and above the horizon. The box 

centered at the nexus of the horizon and bike lane was designed to measure narrowing of 

gaze range. However, we discovered that the assumption that narrowing of gaze range 

would occur in the center box was not necessarily correct after reviewing the data. This 

was ultimately replaced by a measure of gaze area that was defined by the area of a 

rectangle with a base defined as the width of the horizontal gaze range and the height 

defined as the vertical gaze range. The analyses of above the horizon and within the bike 

lane did not show strong results even in the descriptive statistics, so are not presented here. 

The measures of the spread and median of gaze positions in the horizontal and vertical 

planes were kept. 

After extensive exploration and consideration, the final measures selected were x 

(horizontal) and y (vertical) range, median x and y positions, number of fixations/second, 

and fixation duration. 
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5.3.6.3 Data Analyses 

Boxplots and heatmaps were created by compiling all x and y coordinates of the gaze for 

each group (i.e. every data slice for “barrier” combined to one full “barrier” dataset or every 

data slice marked as “moderately low stress” combined to one full “moderately low” 

dataset). These were created using the Python programming language to act as visual 

representations of the data in both 1D and 2D. They are visually compared in the results 

section. 

All measures mentioned in the previous section were calculated per ride then averaged by 

group. For example, the x gaze range was calculated for each “barrier” data slice, then the 

average of all x gaze range values for “barrier” data slices was taken for the descriptive 

statistics. Initially, the same aggregation technique used to make the boxplots and heatmaps 

was going to be used for the measures. However, the x and y range and gaze area needed 

to be calculated for each sliced data file and averaged because when using the initially 

aggregated dataset, all range values came out to the maximum possible area of 1. 

Calculating the other measures this way did not alter the results and improved clarity for 

the statistical analyses, so it was decided that all measures would use the same aggregation 

technique.  

Descriptive statistics and statistical testing were used to explore the results. Because of the 

exploratory nature of the study, we would like to emphasize that the statistical analyses 

serve to gain insights into differences between the groups but were not intended to test 

specific hypotheses. The non-parametric Kruskal-Wallis test was used to statistically 

compare all measures. Kruskal-Wallis tests were chosen because it is useful for testing 
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whether there is a difference among more than two groups, but not beholden to the 

assumptions of a one-way ANOVA. In this way, each segment, stress level, and skill could 

be treated individually to identify if any had a statistically significant deviation. To identify 

specific differences, Mann-Whitney post-hoc tests were performed. Results for the post-

hoc tests for statistically significant results can be found in Appendix D. PostHoc Tests for 

Chapter 5  

Each measure calculated for each slice of data was labelled with its corresponding group 

for skill, segment type, and stress level. These labels were used to statistically compare the 

measures using the R programming language. For stated skill (Results Section 3.1), groups 

were chosen as the cyclists in the high motor-tactical skill group, the high safety motive 

group, and the remaining cyclists who had approximately even scores in the two categories. 

For the complexity analysis (Results Section 3.2), the groups were the data for all rides at 

each segment. For stated stress (Results Section 3.3), the groups were defined by the stress 

rating given to each slice, so all the sliced data rated as low, moderately low, and 

moderately high were each a group. The groups within each analysis were mutually 

exclusive. A summary of the aggregation techniques, measures, and analyses is provided 

in Table 5-2. 
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Table 5-2 Summary of measures and analyses using each aggregation technique 

Aggregation Technique Measures Analyses 

Raw data (x,y gaze 

positions) combined by 

group (i.e. all x,y gaze 

positions for the barrier 

segment) 

None Boxplots, Heatmaps 

Raw data was not 

combined with other data 

slices, each measure was 

calculated for each slice, 

then measures were 

grouped (i.e. by segment) 

for the analyses 

Median x position, Median y 

position, Mean Fixation 

duration, Mean X range, Mean 

y range, Mean gaze area, 

Mean fixations/second 

Descriptive Statistics, 

Kruskal-Wallis 

Statistical Tests, Mann 

Whitney Post-hoc test 

 

5.4 Results 

The gaze behavior measures were compared across multiple dimensions: stated skill, 

complexity of the segment, and stated stress. The gaze distributions are presented visually 

as box-and-whisker plots and numerically in the following tables. Heatmaps of the gaze 

distribution of the stated skill group by complexity segment are also presented to further 

explore findings. 

5.4.1 Stated Skill 

As mentioned in the Methods section, 5 people rated their safety motives notably higher 

than their motor skills and 4 participants rated their motor-tactical skills notably higher 
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than their safety. Their gaze patterns are compared here along with the remaining 19 

participants, labelled “mixed”.  

Figure 5-5 displays the x and y positions as boxplots and Table 5-3 presents the numerical 

results and statistical significance. Although the medians are similar, both the box and 

whiskers of the high safety motive participants are much shorter than the motor-tactical 

skills group, suggesting that there is reduced variability in the gaze. However, when 

looking at the mean x and y range in Table 5-3, the high safety motive group has a wider 

x and y range. This resulted in a highly significant effect on x-range, but not on y-range. 

The combination of x and y range showed that the cyclists in the high safety motive group 

exhibited a larger gaze area which differed significantly from those in the high motor-

tactical skill group. This suggests that cyclists with a higher safety motive, but lower motor-

tactical skill ratings tend to scan more frequently than cyclists with a similar or higher 

motor-tactical skill score. 

The number of fixations/second was lowest for the high motor-tactical skill group and 

highest for the high safety motive group which was statistically significant. Although not 

significant, it is notable that the high motor-tactical skill group also showed the shortest 

fixation durations and the safety motive group the longest. 
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(a) 

 

 (b)  

Figure 5-5 (a) x position by CSI, (0.5 as center), (b) y position by CSI (0.5 as center), 

the line represents the median and the triangle the mean 
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Table 5-3  Numerical gaze measures by stated skill with standard deviation in 

brackets and Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

MEDIAN X 

POSITION  

MEAN X-

RANGE*

** 

MEDIAN 

Y 

POSITIO

N 

MEAN Y-

RANGE 

MEAN 

GAZE 

AREA** 

MEAN 

NUMBER 

OF 

FIXATION

S/ 

SECOND** 

FIXATION 

DURATION 

(MS) 

HIGH 

MOTOR-

TACTICAL 

SKILL 

0.53 

(0.13) 

0.60 (0.32) 0.44 

(0.19) 

0.50 

(0.20) 

0.23 

(0.16) 

1.8(1.5) 264 (335) 

MID/MID 
0.52 

(0.12) 

0.69 (0.22) 

 

0.44 

(0.12) 

0.53 

(0.21) 

0.30 

(0.18) 

2.0(1.4) 285 (387) 

HIGH 

SAFETY 

MOTIVE 

0.54 

(0.12) 

0.72 (0.15) 0.42 

(0.14) 

0.63 

(0.17) 

0.33 

(0.17) 

2.6(1.4) 294 (295) 

HIGH/HIG

H 
0.55 

(0.12) 

0.70 (0.19) 0.47 

(0.16) 

0.58(0.19) 0.30 

(0.18) 

2.8(1.1) 278(373) 

K-W TEST 

RESULTS 
Χ2

2=1.56

, p=.450 

ε2=0.001 

Χ2
3=108.1, 

p<.001 

ε2=0.004 

Χ2
2=0.38

, p=.820 

ε2=0.030 

Χ2
3=16.36

, p<.001 

ε2=0.003 

Χ2
2=11.46

, p=.003 

ε2=0.027 

Χ2
2=11.59

, p=.003 

ε2=0.023 

Χ2
2=1.37, 

p=.505 

ε2=0.002 

 

5.4.2 Complexity 

The segments chosen included five more complex segments (a barrier, a narrow curve, two 

bumpy sections, a crossing), and two control segments. The segments are treated 

individually and vary in complexity. The x positions of the gaze in normalized coordinates 

by segment are shown in Figure 5-5a and the y positions in Figure 5-6b. Table 5-4 contains 

gaze measures and their significance. Figure 5-6a does not show great variation based on 

the complexity of the segment, and there was not a significant effect of complexity on 

either the median x position or the mean x-range.  

As can be seen in Figure 5-6b, the low complexity segments have a higher positioned gaze 

than the higher complexity segments. The bumpy pavements and the barrier have the 
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lowest gaze, which could be related to their bicycle control related tasks. These differences 

did not result in a significant effect, but there was a significant effect on y-range and a 

highly significant effect on gaze area. The biggest difference was between the curve and 

the barrier which could be related to differences in scanning and focused bicycle-control 

tasks.  

Although the fixation measures did not show a significant effect, they are still interesting 

for this exploratory study. The mean number of fixations/second was highest for the barrier 

section, and it had a relatively lower fixation duration. Additionally, the fixations were 

longer lasting for the two low complexity sections although they showed similar 

fixations/second to the other segments.  

It is also notable that the two low complexity segments are most similar to each other and 

the two bumpy pavement sections are most similar to each other. This is most clear in the 

boxplots and the measures for the fixation durations and the median y position. 
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(a) 

 

(b) 

Figure 5-6 (a) x positions by segment (0.5 as center), (b) y position by segment (0.5 as 

center) 
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Table 5-4 Numerical measures of gaze behavior by segment with standard deviation 

in brackets and Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

SEGMENT MEDIAN X 

POSITION  

MEAN X-

RANGE 

MEDIAN Y 

POSITION 

MEAN Y-

RANGE* 

MEAN 

GAZE 

AREA*** 

MEAN 

NUMBER 

OF 

FIXATION

S/ 

SECOND 

MEAN 

FIXATION 

DURATIO

N (MS) 

BARRIE

R 
0.54 

(0.12) 

0.64 

(0.26) 

0.39 

(0.15) 

0.47 

(0.26) 

0.20 

(0.12) 

2.8 (1.5) 255 

(375) 

BUMPY 1 0.55 

(0.10) 

0.66 

(0.31) 

0.40 

(0.16) 

0.54 

(0.23) 

0.23 

(0.17) 

2.1 (1.6) 283 

(429) 

BUMPY 2 0.54 

(0.11) 

0.73 

(0.29) 

0.41 

(0.16) 

0.62 

(0.23) 

0.32 

(0.16) 

2.3 (1.2) 286 

(389) 

CURVE 0.51 

(0.19) 

0.73 

(0.25) 

0.44 

(0.14) 

0.63 

(0.20) 

0.32 

(0.19) 

2.1 (1.4) 205 

(192) 

CROSSIN

G 
0.51 

(0.11) 

0.70 

(0.27) 

0.45 

(0.15) 

0.55 

(0.25) 

0.43 

(0.17) 

2.3 (1.3) 292 

(341) 

LOW 1 0.54 

(0.12) 

0.66 

(0.28) 

0.53 

(0.15) 

0.58 

(0.20) 

0.32 

(0.18) 

2.2 (1.2) 317 

(308) 

LOW 2 0.55 

(0.11) 

0.68 

(0.26) 

0.54 

(0.14) 

0.58 

(0.19) 

0.27 

(0.15) 

2.2 (1.4) 314 

(371) 

K-W 

TEST 
Χ2

6=5.3

5 

p=.500 

ε2=0.00

2 

Χ2
6=11.9

5 p=.063 

ε2=0.017 

Χ2
6=10.

36 

p=.110 

ε2=0.013 

Χ2
6=15.

57 

p=.016 

ε2=0.028 

Χ2
6=30.8

1, p<.001 

ε2=0.072 

Χ2
6=1.7

2, 

p=.943 

ε2=0.01

2 

Χ2
6=5.0

9, 

p=.532 

ε2=0.00

26 

 

5.4.3 Stated Stress 

The segments were rated and subsequently segmented based on the cyclists’ stress levels. 

Additional segments were identified due to a stress rating of moderate or high. 

Unfortunately, only one segment was rated high stress, so the highest stress rating used in 

this study is moderately high. 
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Figure 5-7 displays boxplots of the x and y positions by stress levels and Table 5-5 displays 

numerical measures of the gaze. There was not a significant effect of stress on any of the 

measures used in this study, but that could be related to the relatively low stress of the 

route/location. This study was exploratory in nature and variations in gaze may be worth 

considering even if not statistically significant in this data set. Visually from the boxplots, 

the moderately high stress segments have a slightly narrower range of gaze in the x 

direction and y direction. The mean y-range consistently decreases with increasing stress 

and the mean x range decreased as well, although not consistently. Notably, the variation 

in gaze area decreased from the low to moderately high stress segments and the gaze area 

decreased slightly as well. This suggests that higher stressed individuals had a consistently 

narrower gaze area than lower stressed participants.  
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(a) 

 

(b) 

Figure 5-7 (a) x positions by stress rating (0.5 as center), (b) y position by stress rating 

(0.5 as center) 
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Table 5-5 Numerical gaze measures by stress with standard deviation in brackets and 

Kruskal Wallis Test Results ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

STRESS MEDIAN X 

POSITION  

MEAN X-

RANGE 

MEDIAN Y 

POSITION 

MEAN Y-

RANGE 

MEAN 

GAZE 

AREA 

NUMBER 

OF 

FIXATIONS

/ SECOND 

FIXATION 

DURATIO

N (MS) 

LOW 0.54 

(0.12) 

0.69 

(0.27) 

0.44 

(0.16) 

0.57 

(0.22) 

0.30 

(0.17) 

2.3 (1.4) 282 

(344) 

MODERAT

ELY LOW 
0.51 

(0.11) 

0.65 

(0.29) 

0.43 

(0.15) 

0.50 

(0.21) 

0.29 

(0.18) 

2.2 (1.3) 264 

(240) 

MODERAT

ELY HIGH 
0.54 

(0.13) 

0.66 

(0.34) 

0.42 

(0.13) 

0.49 

(0.28) 

0.28 

(0.05) 

2.3 (1.4) 301 

(568) 

K-W TEST Χ2
2=4.8

5, 

p=.089 

ε2=0.00

7 

Χ2
2=5.

03 

p=.081 

ε2=0.00

8 

Χ2
2=0.6

5, 

p=.724 

ε2=0.00

3 

Χ2
2=4.

01 

p=.135 

ε2=0.02

8 

Χ2
2=0.93 

p=.629 

ε2=0.003 

Χ2
2=3.59 

p=.166 

ε2=0.004 

Χ2
2=2.0

4, 

p=.360 

ε2=0.00

1 

 

5.4.4 Heatmaps 

The heatmaps of all riders’ gaze locations are shown in Figure 5-8. The two low complexity 

segments show a more central gaze. The two bumpy segments have more oblong areas of 

gaze extending from the lower right to upper left. The barrier segment which was the most 

challenging to maneuver shows the narrowest gaze distribution and the crossing where 

scanning was critical shows the largest.  

Additional heatmaps shown in Figure 5-9 were created to further explore the two groupings 

(high safety motives and high motor tactical skills) for each of the complexity heatmaps in 

Figure 5-8. Figure 5-9 by separating the gaze patterns of each complexity segment by skill 

group allows us to explore the finding from Section 3.1 Stated Skill that within the 



 

 143 

boxplots, the high motor-tactical skill group had a wider gaze distribution than the safety 

motive group but a smaller gaze area in the calculations. 

 
Low 1 

 
Low 2 

 

 
Bumpy 1 

 
Bumpy 2 

 

 
Barrier 

 
Curve 

 
Crossing 

Figure 5-8 Heatmaps by segment, all maps cover the same area of normalized 

coordinates (0,0 – 1,1) 

For conciseness, the 5 segments of higher complexity were included in Figure 5-9 as they 

were the most interesting.  The heatmaps support the findings from the Stated Skill section. 
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The high safety motive group tended to have a much more centrally focused gaze with all 

members of the group tending to focus on a small area of the viewing frame. The gaze 

tended to be slightly right of center which fits with literature showing that we track the 

right side of the lane. In most cases the high motor-tactical skill group showed a wider gaze 

distribution than the combination of all rides. Their gaze distribution also tends to be more 

oblong with more time spent at opposing corners. This suggests that perhaps due to their 

high rated skills but low investment in safety motives, they spend more of their time 

looking at components of their view that are outside the immediately relevant area. Due to 

their self-rated low safety motives, these are unlikely to be safety-relevant gazes. This 

supports the findings in Section 3.1 Stated Skill and that the use of both aggregate gaze 

points used in the box plots and the individually calculated and aggregated measures such 

as the mean gaze area measure are useful in combination to study cyclists’ gaze behavior. 
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Segmen

t 

All Rides High Motor-Tactical 

Skills 

       High Safety 

motives 

Bumpy 

1 

  
 

Bumpy 

2 

   

Barrier 

   

Curve 

 
  

Crossin

g 

   

Figure 5-9 Heatmaps by segment and stated skill, all maps cover the same area of 

normalized coordinates (0,0 – 1,1) 
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5.5 Discussion 

The results presented here are an exploratory foray into understanding cyclists’ gaze 

behavior. Although many of the differences presented did not reach statistical significance, 

possibly due to variations in visual strategy between participants, the trends in the 

descriptive statistics align with findings in driver gaze behavior studies.  

The most striking results suggest that skill, at least stated skill, influences gaze behavior. 

With improved bicycle handling/motor-tactical skills, both number of fixations and 

fixation duration decreased. Both horizontal and vertical gaze range was lower than for 

high safety motive cyclists. These results show mixed agreement with Chapman et al. (7), 

who found that drivers fixated more often, but for a shorter time and had increased 

horizontal gaze range after driver training. The cause of this mix may be attributable to 

what skill each group is demonstrating. It makes sense that the high safety motive cyclists 

would engage in superior scanning behaviors, but perhaps not exhibit the shorter-duration 

fixations that may be more closely tied to control skill and experience. In contrast, the high 

motor-tactical skill cyclists rated themselves low for safety motives, so it would make sense 

they would exhibit superior unconsciously controlled skill indicators for gaze (fixation 

duration) but engage in less scanning. The boxplots showed a wider variation in gaze from 

the high motor-tactical skill cyclists when combining their x and y gaze positions, but when 

averaging gaze range across segment/ride, the high safety motive cyclists displayed 

superior gaze range. This suggests that the high motor-tactical cyclists tended to look in a 

small area of the frame, but that small area was in a wider section of the frame across rides. 

This could mean the high motor-tactical skill cyclists were forgoing safety-related gaze to 

put attention on happenings around them (i.e. something happening across the street, birds 
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flying, a nice view, etc.). The heatmaps displayed in section 3.4 further supported this 

explanation. 

Based on driver gaze behavior literature, complexity would be assumed to reduce gaze 

area. The studies that found that complexity leads to decreased visual range often increased 

complexity by increasing difficulty of non-driving related tasks, such as talking on the 

phone (6, 29, 30). However, these non-driving tasks do not require the drivers’ visual 

attention, and thus, do not conflict with driving-task necessary gaze behavior.  

The results showed little significance for complexity as measured by need to reduce speed. 

The two bumpy segments and two low complexity segments had similar gaze patterns to 

their twin, suggesting that the primary visual task may be more important than general 

complexity as defined by a need to decrease speed. The primary visual task would be the 

required gaze patterns to navigate and maintain control of the bicycle. For example, the 

primary visual task for the crossing would be to scan to identify vehicles/other road users 

to determine if it is safe to cross or for a bumpy pavement to watch the bumps to navigate 

to not lose control of the bicycle. Because the two pairs of segments with the same tasks 

showed similar results, it appears that the primary visual task is more important the 

generalized complexity as defined by a requirement to change speed.  The results suggest 

that gaze measures, at least the ones used here, cannot measure a difference based on 

complexity with varying primary visual tasks. Future studies should keep the primary 

visual task constant while varying complexity by other means.                     

Although complexity in this study did not show much statistically significant variation, this 

analysis did show that complexity may influence the height, and likely the distance ahead, 
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the cyclist is looking with both low complexity sections showing a higher gaze pattern. 

Also influencing this, cyclists tend to look lower when the pavement is rougher. This was 

found by Vansteenkiste, Zeuwts, et al. (15), and replicated here with both bumpy sections 

showing some of the lowest gazes. This suggests that maintenance of bicycle facilities 

should be prioritized to create smoother pavements that lead to gaze behavior that is higher, 

more distant, and thus more capable to anticipate hazards ahead. 

Eye tracking has not been used to study the influence of driver stress on gaze behavior, but 

stress is an important component of cycling research. The stress results showed some 

reduction in gaze range in the x and y direction. In addition, as stress increased, the median 

gaze range decreased. Even more striking, the variance in gaze range decreased 

substantially moving from low to moderately high stress. In addition, stress seemed to 

decrease the number of fixations without a decrease in their duration. Although no results 

were statistically significant in this exploratory study of the influence of stress on gaze 

behavior, this research suggests that stress does influence gaze and warrants further, more 

specific study with a wider distribution of stress levels during rides. 

5.6 Conclusion 

Gaze behavior is linked to cyclists’ safety and can help inform design decisions both now 

and as we prepare for autonomous vehicles, but it is one aspect of cyclist safety research 

that is in its early stages. This paper presented new methods and directions for further study 

of cyclists’ gaze behavior. This initial exploratory study has shown that gaze behavior can 

be used to understand the scanning strategies of cyclists and the stress of cyclists. Overall, 

the results suggest that stress may influence gaze, but whether cyclists self-rate as having 



 

 149 

stronger safety motives or not has a stronger influence on gaze behavior. This finding pairs 

with the suggestion from the statistical analysis that there were large individual differences, 

collectively suggesting that strategies vary based on cyclists’ safety motives. It seems that 

task or other factors are more important to gaze measures studied here than complexity.  

Future study should focus on cyclists’ skill, experience, and stress. Studies of complexity 

may be better suited to consistent tasks with outside factors such as conversation increasing 

that complexity. Furthermore, this study has shown how stress, skill, and complexity 

influence gaze without the influence of heavy motor vehicle traffic and can thus serve as a 

foundation upon which we can layer studies of gaze behavior in mixed traffic situations.  

This study also used some unconventional methods of data analysis/measures. The use of 

distribution measures rather than areas of interest was useful in identifying differences in 

visual search strategy by cyclists’ stated skill. It provided a description of where cyclists 

looked generally and their gaze area. Furthermore, the combination of boxplots with 

measures of gaze area was useful to identifying that one group of cyclists (high motor-

tactical skills) tended to have a smaller gaze area, but that gaze area varied widely in 

location in the frame of view. Either measure alone would not have been able to show this. 

This has demonstrated that these measures can further our understanding of gaze behavior.  

Although this study was exploratory and theoretical in nature, it has some practical 

implications. First, safety motivations are important to improved safety-relevant gaze, even 

for skilled cyclists. Therefore, safety motivated behaviors, such as scanning intersections 

or checking parked cars’ doors, could be encouraged. Additionally, this study further 

confirmed that bumpy pavements can lead to lower gaze than smooth pavements. Lower 
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gaze could result in missed safety-relevant cues, so improving ride quality may serve safety 

purposes as well. 
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CHAPTER 6. INFLUENCE OF PAVEMENT FEATURES ON 

CYCLISTS’ PERCEPTION OF SAFETY AND COMFORT: A 

COMBINED SURVEY AND EYE TRACKING STUDY 

Abstract 

Although infrequently included in studies of cyclists’ perceived safety, pavement 

condition impacts cyclists’ stress and related perceptions of safety. Few studies 

investigating pavement’s impact on cyclists’ perceived safety have gone far enough to 

develop actionable information for industry professionals. This paper aims to fill that gap 

by identifying which pavement distresses most influence cyclists’ perceived safety and 

comfort and making recommendations of how maintenance should be prioritized based on 

the results. This study used a combination of online surveys and field experiments. The 

181 complete responses to the online survey showed potholes were the most important 

pavement distress for perceived safety and comfort and debris, wide cracks, and 

unevenness were also important. Eye tracking data was collected during the field 

experiment and analyzed for whether participants fixated on the distresses, when, and for 

how long. These results showed that unevenness attracted the most fixations for the longest 

duration. In mixed traffic scenarios, participants tended to fixate less frequently and closer 

to the object compared to the separated facility suggesting a potential safety concern. These 

findings are compiled into recommendations for cyclist-focused maintenance practices. 

These recommendations can be used by asset management planners and maintenance 

personnel to improve the perceived safety and comfort of their cycle network. 

 

6.1 Introduction 

Cycling is a low-cost, low-emission means of transportation that can fill gaps in our 

transportation system and improve public health. Despite the evidence that the health 

benefits outweigh the risks (1), cycling is often viewed as unsafe and stressful (2, 3). 

Perceived safety and stress are key concerns in the design of cycling facilities. It is well 

established that motor vehicles, high traffic speeds, and mixed facilities increase cyclists’ 

stress (4–9).  
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Rating systems have been designed to address the perceived safety and stress of cycling. 

One of the most well-known of these ratings systems, Level of Traffic Stress (LTS) rates 

facilities from 1 (low stress) to 4 (high stress) based on the infrastructure and cyclists’ 

comfort (10). LTS attempts to create a rating system that is user-oriented and applicable 

across a network and considers bicycle facility presence and width, parking presence, speed 

limit, bicycle lane blockage, and the number of lanes (10). A predecessor to LTS and 

frequently used rating system, Bicycle Level of Service (BLOS) includes traffic volumes, 

number of through lanes, lane width, speed limit, volume of heavy vehicles, and pavement 

condition. BLOS was developed in one of the few studies of cyclists’ comfort or stress that 

considers pavement as a stress inducer. Recent findings from a study that used self-reported 

causes of cyclists’ stress and real-time interviews have found that pavement condition was 

the second most mentioned stressor when combining responses from Atlanta, in the United 

States and Delft, in the Netherlands (9).   

As agencies build more cycling infrastructure, they need to incorporate pavement condition 

for cyclists into asset management practices. A review of Complete Streets asset 

management policies in the United States revealed a lack of condition assessment for 

cycling facilities (11). To incorporate cycling infrastructure into asset management, 

agencies need to identify what pavement condition features matter, as well as how to rate 

the condition for prioritization and how to collect that data. Most studies concerning 

cyclists’ comfort have not linked to asset management and have not defined what aspects 

of the pavement were important. 

Two studies have tried to incorporate cycling infrastructure into asset management. 

Thigpen et al.’s study used accelerometers to measure cyclists’ comfort and linked that to 
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mean profile depth (MPD), a common pavement measurement (12). However, the study 

did not specify specific pavement conditions of concern and focused on recreational 

cyclists and major roads owned by Caltrans, primarily rural roads. In England, Calvey et 

al. designed a bike with accelerometers to collect pavement condition data relevant to 

cyclists (13, 14). They used this bike in conjunction with survey data to better understand 

the factors that influence cyclists’ safety and comfort. They included debris and surface 

defects in their survey, which came out as the two highest concerns, ranked worse than the 

directness and width of the path. Although Calvey included some types of pavement 

concerns, it was not sufficiently complete as surface defects could have a wide range of 

solutions. Although these studies have increased our understanding of cyclist comfort 

related to pavement, they have not yet gotten to the fundamental question of what features 

of pavement condition should be prioritized for maintenance to support safe, comfortable 

cycling. 

The study that is the subject of this paper aims to fill that gap using a combination of survey 

data and eye tracking to gain an understanding of what cyclists perceive as unsafe and 

uncomfortable and how that relates to gaze behavior and attention under different levels of 

separation from motor vehicles. The results will identify what pavement condition features 

should be prioritized in 3 scenarios: fully separated, bike lane, and mixed traffic. These 

findings will be valuable for agencies building bicycle facility asset management systems. 

6.2 Methods 

The purpose of the data collection was two-fold. The first goal was to understand what 

pavement conditions impact cyclists’ sense of safety and comfort on varying road 
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configurations. The second was to understand how pavement conditions influence gaze 

behavior and if gaze behavior aligned with the participant’s survey results. To do this, both 

survey techniques and naturalistic cycling methods were used.  

The study took place in Atlanta, Georgia, USA, which has a population of approximately 

500,000 with approximately 6 million people in the metro area. Atlanta had a 1.4% bicycle 

modal share in 2016 (15) and 17% modal share for bike/walk/transit in 2018 (16). The 

online survey was administered from June-September 2020 and eye tracking data 

collection took place October–December 2020.  

6.2.1 Participants/Recruitment 

The survey was sent out through various biking groups in Atlanta, including bike commute 

list serves for universities and companies, cycling-related social media pages, group ride 

hosts, cycling advocacy groups, and bike shops. An effort was made to gain a diverse 

sample representative of Atlanta and care was taken to reach out to predominately minority 

cycling-related organizations; however, the sample over represents white, highly educated 

people. In total, the survey had 181 complete responses. Of the respondents, 143 identified 

as white and 109 had a graduate degree. The sample contained 83 women (46%). Further 

discussion of the demographics and survey responses can be found in the Results section. 

Due to concerns regarding the Covid-19 pandemic, the field experiments recruited only 

people affiliated with Georgia Tech. In total there were 17 participants, 8 women. Most 

participants were in the 18-34 age range with only 5 participants over 35 years old. This 

was expected because of the university-focused recruitment efforts. 
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6.2.2 Survey Instrument 

The survey was administered online through the Qualtrics platform and designed to gauge 

how pavement condition influences cyclists’ sense of safety and comfort on facility types 

differing in separation levels. The main portion of the survey contained short videos from 

a cyclists’ perspective cycling on each of the facility types (separated cycle track, painted 

bike lane, mixed traffic). A screenshot of the video for each type of facility is shown in 

Figure 6-1. The video was intended to orient the respondent to that section of questioning. 

These video-based descriptive surveys have been shown to resemble responses in a real-

world experiment with a slight negative bias (17). 7-point Likert style questions following 

each video asked how pavement features would influence their feelings of safety and 

comfort on that type of facility. These questions were asked for each facility type and 

demographic questions were asked at the end. The survey was slightly modified for the 

field experiment to add an identifier to link their eye tracking video to their survey 

response. 

The seven features included potholes, debris, unevenness, narrow cracks, wide cracks, 

faded paint, and green paint. Debris was described as gravel, leaves, etc. and unevenness 

was described as bumpy road, spots of raised asphalt, low manhole covers, etc. Narrow 

cracks were described as closed and wide cracks as wide enough to feel. Colloquial terms 

and definitions were used for the pavement features because of the audience for the survey 

and the focus on their perspective. Therefore, there were no strict definitions (i.e. crack 

width in mm) or measures of pavement roughness (i.e. IRI). Examples of each feature can 

be seen in the map of Figure 6-3 displaying the features used for the eye tracking portion.  
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Separated Bike Lane Mixed Traffic 

Figure 6-1 Screenshots of each facility type in the survey 

6.2.3 Field Experiment Route 

The route design targeted the most important pavement conditions from the survey. The 

route had segments of separated cycle track, bike lane, and mixed traffic. It was ridden 

clockwise by all participants. Figure 6-2 displays the route color-coded by facility type. 

Figure 6-3 displays the targeted pavement features. 

 

Figure 6-2 Data Collection Route color-coded by facility type. 
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Figure 6-3 Route map with selected pavement features 
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6.2.4 Sensors 

Pupil Labs Invisible eye tracking glasses, pictured in Figure 6-4, were used for this study 

because they were designed to function well in sunlight and correct for slippage (18). The 

eye camera collects data at 200Hz.  

 

Figure 6-4 Pupil Labs Invisible Eye Trackers used in this study. 

6.2.5 Protocol 

The protocol was approved by the internal review board at Georgia Tech and had special 

provisions in place to reduce the risk of transmission of Covid-19. These provisions 

included a pre-ride checklist for symptoms, masks, gloves, sanitation, and limited close 

interaction. A data collection appointment started with the participant meeting the 

researcher in a designated open, outdoor space. The participant signed consent forms, then 

the researcher reviewed the route with the participant. The participant then put on the eye 

trackers and the researcher confirmed that the eye trackers were collecting data and 

calibration was successful. After, the participant cycled the route clockwise on their own 

bike. At the end of the ride, the participant returned the eye tracking glasses and was 

emailed the online survey to fill out within 24 hours. To not bias their gaze, the participant 

was not aware that pavement was the focus of the study until they received the survey. 
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6.2.6 Analysis Methods 

Both eye tracking analysis and survey analysis were needed. Each occurred separately, 

then the results were compared to see if gaze behavior matched their stated preferences. 

6.2.6.1 Survey Analysis 

The survey was analyzed using descriptive statistics, visual representation, and statistical 

testing. Initially, the intention was to use statistical modeling techniques such as regression, 

but after visual inspection of the data, it was clear there was no relationship to model. 

Instead, descriptive statistics and statistical testing were used in combination with visual 

representations such as bar graphs and density plots. Although Likert-type data is ordinal, 

literature supports that Analysis of Variance (ANOVA) is sufficiently robust to use, 

especially with large sample sizes (19, 20). ANOVA is less conservative than a 

nonparametric test and more likely to find a relationship that does not actually exist. 

Because this study is about safety, there is more risk in missing a relationship than finding 

one that does not exist, so ANOVA’s, and in cases of 2 groups T-tests, were used to assess 

statistical significance.  

6.2.6.2 Eye Tracking 

The eye tracking videos were reviewed to identify each of the pavement features. Fixations, 

which the Pupil Labs software could identify, were the focus of the analysis. The minimum 

fixation length was set to 150 ms and the maximum dispersion 4.5 degrees to capture the 

fixations despite movement associated with cycling. The videos were reviewed frame-by-

frame to confirm the software-identified fixations. 
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The faded paint and green paint had no more than a slight impact on cyclists’ perceived 

safety and comfort in the survey. The extent of paint features made it challenging to 

differentiate if the cyclist looked at it or just looked at their path of travel. Therefore, the 

paint features were not included in the eye tracking portion. The remaining features were 

visually identified in the video. The timestamp when the front wheel met the feature was 

recorded. Then the video was reviewed frame by frame back in time until the feature was 

not visible. The fixations on the object were recorded as well as the time stamp of the start 

of the first fixation. This information was then passed through a python code which 

compiled it into 3 measures. One a simple yes/no of whether they fixated on the object and 

the second was for how long. The third, referred to as “time to arrival” was the recorded 

time the front wheel met the feature minus the timestamp of the start of the first fixation. 

This was used because the longer the time to arrival of the first fixation, the longer the 

cyclist had to react to the feature making a longer time to arrival safer than a shorter. The 

complete analysis assesses whether the object was fixated upon, how long it was fixated 

upon, and how long before meeting the object was it first fixated upon (time to arrival). 

6.3 Results 

This section will review the results of the analysis starting with the survey portion of the 

study followed by the eye tracking portions. 

6.3.1 Survey - Demographics 

The sample demographics will be discussed first. The sample was 54% male and 

predominately white (79%). The sample was also highly educated, with 59% of the sample 

having a graduate degree and 35% a Bachelor’s degree. As shown in Figure 6-5, the age 
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groups were well distributed. The majority of respondents fell within the ages of 25-44  

(58%).  

 

Figure 6-5 Histogram of ages in the sample. 

The survey also asked about transportation habits and attitudes, including rider type, 

bicycle commute frequency, bicycle recreation frequency, and primary mode. The rider 

type was initially defined by Geller (21), but the modified one that includes “comfortable, 

but Cautious” from Misra (22) was used in this study . The most common response was 

“Enthused & Confident.” The “Interested, but Concerned” group was under-sampled. This 

was expected because “Interested, but Concerned” cyclists are less likely to cycle in 

Atlanta and be  in the email listservs or social media groups the survey was advertised in. 

The distribution of rider types can be seen in Figure 6-6. Car and bicycle were the most 

common primary mode, with 43% and 42% in each group, respectively. The sample had a 
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good mix of commute frequency with the most common being daily (33%), shown in 

Figure 6-7. There was also a mix of recreational cycling frequency with the most in “several 

times/month” (43%), shown in Figure 6-8. 

Overall, there was sufficient variation in age and transportation habits/attitudes to consider 

these variables in the statistical analysis. 

 

Figure 6-6 Histogram of rider types. 
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Figure 6-7 Histogram of commute frequency. 

 

Figure 6-8 Histogram of recreation frequency. 
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6.3.2 Survey—Safety & Comfort 

This section will present the results of the survey responses. Boxplots of the responses to 

how each pavement feature affected respondents’ feelings of safety and comfort are 

provided in Figure 6-9 and Figure 6-10, respectively.  

Based on the survey, the most prominent feature negatively impacting cyclists’ feelings of 

safety are potholes followed by wide cracks, debris, and unevenness. The narrow cracks 

and paint only had minor to no impact. The pavement features tended to have less effect 

on feelings of safety in the separated facility scenario. The results for the bike lane and 

mixed traffic facility were nearly identical. The statistical analysis will focus on the 

conditions with at least a moderate impact: potholes, wide cracks, debris, and unevenness. 
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Figure 6-9 Boxplots by pavement feature for “In this scenario, how does encountering 

the following impact your feelings of safety?” 

 The results were largely similar for comfort. Potholes became less important on bike lanes, 

and unevenness became more important in the separated condition. Narrow cracks and 

green paint remained of low importance, so the same four conditions will be considered in 

the statistical testing.   
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Figure 6-10 Boxplots by pavement feature for “In this scenario, how does 

encountering the following impact your comfort?” 

After visual inspection of the data, there did appear to be some differences by age and 

primary mode, so ANOVA statistical testing was carried out. For primary mode, only car 

and bicycle were compared due to the low number of respondents who chose transit or 

walking. For characteristics that only had 2 groups to test, t-tests were performed. The 

resultant p-values are given in  

  Separated Bike Lane 
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Table 6-1. The Tukey posthoc results can be found in the Appendix E. Posthoc Tests for 

Chapter 6.  

 

 

 
ANOVA 
DF Pothole 

Uneven-
ness Debris 

Wide 
Crack Pothole 

Uneven-
ness Debris 

Wide 
Crack 

Age 6 0.0936 
.00305 

** .035* 
.00768 

** 0.798 0.178 0.512 0.166 

Gender T-test 0.869 0.211 0.588 0.603 0.539 0.816 0.471 0.888 

Primary 
Mode T-test 0.265 0.69 0.901 0.277 0.013* 0.601 0.499 0.549 

Commute 
Frequency 4 0.288 0.443 0.571 .0111* 0.0776 0.973 0.733 0.121 

Recreation 
Frequency 4 0.812 0.135 0.938 0.126 0.35 0.0775 0.62 0.0652 

  Mixed     

  Pothole 
Uneven-
ness Debris 

Wide 
Crack     

Age 6 0.923 0.396 0.774 0.712     

Gender T-test 0.863 0.17 0.515 0.57     

Primary 
Mode T-test 0.04* 0.097 0.261 0.65     

Commute 
Frequency 4 0.401 0.712 0.493 0.481     

Recreation 
Frequency 4 0.927 0.515 0.146 0.816     
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Table 6-1 P values for the ANOVA and T-tests by demographics of interest and 

pavement feature for responses to impact on perceived safety. ( * p<0.05;  ** p< 0.01 

; *** p <  0.001 ) 

 

From  

  Separated Bike Lane 

 
ANOVA 
DF Pothole 

Uneven-
ness Debris 

Wide 
Crack Pothole 

Uneven-
ness Debris 

Wide 
Crack 

Age 6 0.0936 
.00305 

** .035* 
.00768 

** 0.798 0.178 0.512 0.166 

Gender T-test 0.869 0.211 0.588 0.603 0.539 0.816 0.471 0.888 

Primary 
Mode T-test 0.265 0.69 0.901 0.277 0.013* 0.601 0.499 0.549 

Commute 
Frequency 4 0.288 0.443 0.571 .0111* 0.0776 0.973 0.733 0.121 

Recreation 
Frequency 4 0.812 0.135 0.938 0.126 0.35 0.0775 0.62 0.0652 

  Mixed     

  Pothole 
Uneven-
ness Debris 

Wide 
Crack     

Age 6 0.923 0.396 0.774 0.712     

Gender T-test 0.863 0.17 0.515 0.57     

Primary 
Mode T-test 0.04* 0.097 0.261 0.65     

Commute 
Frequency 4 0.401 0.712 0.493 0.481     

Recreation 
Frequency 4 0.927 0.515 0.146 0.816     
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Table 6-1, age had a significant effect on how safe people felt related to unevenness, debris, 

and wide cracks on separated facilities. The Tukey results showed the difference in 

unevenness was between the “65 and older” group and the younger 18-24, 25-34, and 35-

44 groups. The grouping of the younger half of the sample (18-44) and the older half (45+) 

can be seen in the density plot in Figure 6-11. The difference in response to wide cracks 

was between the 45-54 and 25-34 groups. None of the groups were significant for debris, 

  Separated Bike Lane 

 
ANOVA 
DF Pothole 

Uneven-
ness Debris 

Wide 
Crack Pothole 

Uneven-
ness Debris 

Wide 
Crack 

Age 6 0.0936 
.00305 

** .035* 
.00768 

** 0.798 0.178 0.512 0.166 

Gender T-test 0.869 0.211 0.588 0.603 0.539 0.816 0.471 0.888 

Primary 
Mode T-test 0.265 0.69 0.901 0.277 0.013* 0.601 0.499 0.549 

Commute 
Frequency 4 0.288 0.443 0.571 .0111* 0.0776 0.973 0.733 0.121 

Recreation 
Frequency 4 0.812 0.135 0.938 0.126 0.35 0.0775 0.62 0.0652 

  Mixed     

  Pothole 
Uneven-
ness Debris 

Wide 
Crack     

Age 6 0.923 0.396 0.774 0.712     

Gender T-test 0.863 0.17 0.515 0.57     

Primary 
Mode T-test 0.04* 0.097 0.261 0.65     

Commute 
Frequency 4 0.401 0.712 0.493 0.481     

Recreation 
Frequency 4 0.927 0.515 0.146 0.816     
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so the slightly significant ANOVA may be a false positive. With so many statistical tests, 

this can be expected. It won’t be considered further. 

 

Figure 6-11 A density plot of the impact on perceived safety from unevenness on 

separated facilities with the size of the blue circle related to the count of responses at 

that point. The histogram on top shows the histogram for the age groups. 

People whose primary mode was a car were more concerned about potholes than people 

whose primary mode was a bicycle, which was significant in the bike lane and mixed traffic 

conditions. Wide cracking on a separated facility showed a difference between the daily 

bicycle commuters and the “several times a month” bicycle commuting group. As can be 

seen from the density plot in Figure 6-12, the daily bicycle commuters had proportionally 

more responses in “substantial decrease” and less in the “no impact” category.  
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Figure 6-12 A density plot of the impact on perceived safety from wide cracks on a 

separated facility with the size of the blue circle related to the count of responses at 

that point. The histogram on top shows the histogram for the bicycle commute 

frequency. 

The same statistical testing was performed for the comfort scores. The results are shown in 

Figure 6-13. 

Table 6-2. The only significant results were for the recreation frequency groups for wide 

cracks on separated and mixed facilities. The Tukey Posthoc results did not show any 

significant differences at a 95% confidence level for wide cracks on separated facility by 

bicycle recreation frequency. This was again only slightly significant in the ANOVA and 

could be a false positive. For the mixed facility, the differences were attributed to the 

“several times per month” and “daily” groups. The density plots suggest the differences 

may be more associated with the difference in the size of the two groupings, resulting in 

proportionately more responding moderate or substantial decrease in safety for the “several 

times per month” groups than the “daily” groups. The density plot is provided in Figure 

6-13. 
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Table 6-2 P values for the ANOVA and T-tests by demographics of interest and 

distress type for responses to impact on comfort. ( * p<0.05;  ** p< 0.01 ; *** p <  

0.001 ) 

  Separated Bike Lane 

 

ANOVA 
DF Pothole 

Uneven
-ness Debris 

Wide 
Crack 

Pothol
e 

Uneven
-ness Debris 

Wide 
Crack 

Age 6 0.301 0.0802 
0.083

6 0.112 0.978 0.178 0.512 0.166 

Gender T-test 0.489 0.756 0.913 0.885 0.463 0.474 0.679 0.396 

Primary 
Mode T-test 0.616 0.213 0.778 0.823 0.115 0.408 0.323 0.582 

Commute 
Frequency 4 0.792 0.443 0.772 0.743 0.455 0.629 0.376 0.915 

Recreatio
n 
Frequency 4 0.349 0.169 0.889 

0.0346
* 0.798 0.14 0.707 0.194 

  Mixed     

 

ANOVA 
DF 

Pothol
e 

Uneven-
ness Debris 

Wide 
Crack     

Age 6 0.867 0.855 0.791 0.961     

Gender T-test 0.664 0.378 0.56 0.705     

Primary 
Mode T-test 0.091 0.766 0.112 0.442     

Commute 
Frequency 4 0.36 0.76 0.286 0.693     

Recreatio
n 
Frequency 4 0.574 0.224 0.417 

0.0161
*     
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Figure 6-13 A density plot of the impact on comfort from wide cracks on a mixed 

facility with the size of the blue circle related to the count of responses at that point. 

The histogram on top shows the histogram for the recreation frequency. 

6.3.3 Eye Tracking 

As can be seen in Table 6-3, the eye tracking results showed that overall, unevenness tends 

to be the most fixated upon, for the longest, and with the largest time to arrival. The pothole 

on the separated facility was the exception. It was fixated upon more frequently and for 

longer than the unevenness in the separated cycle track. Debris and potholes were fixated 

upon less frequently, for a shorter time, and closer to arrival on the mixed traffic facility 

than on the separated cycle track or bike lane. In contrast, unevenness was fixated on for 

slightly longer and more frequently, but with less time to arrival on the mixed facility.  

The cracking was overall less important in terms of gaze behavior. Cracking to the point 

of unevenness may be a concern, but these findings suggest that debris, potholes, and 

general unevenness are more important for cyclists’ gaze behavior.  
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Table 6-3 The Eye tracking measures by distress type and lane type. 

Infrastructure 
Percent 
Fixating 

Median 
Fixation 
Length 
(ms) 

 Time 
to 
Arrival 
from 1st 
Fixation 
(s) 

Pothole 

Separated 82% 610 1.9 

Bike Lane 82% 416 1.1 

Mixed  47% 188 1.0 

Unevenness 

Separated 71% 534 3.4 

Bike Lane 88% 548 2.5 

Mixed 93% 560 2.3 

Debris 

Separated 65% 332 2.4 

Bike Lane 65% 384 1.9 

Mixed 40% 188 1.3 

Wide Crack 

Separated 59% 268 1.2 

Bike Lane 29% 232 1.1 

Mixed 47% 272 0.9 

Minor Crack 

Separated 47% 246 1.4 

Bike lane N/A 

Mixed 20% 224 1.6 
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6.3.4 Eye Tracking—Surveys 

The 17 eye-tracking study participants filled out the same online survey that was given to 

the larger online population after their ride. Boxplots of their responses are given in Figure 

6-14 and Figure 6-15. Their responses overall tended to be less negative than the larger 

sample, but the order of importance remained similar. The less negative responses align 

with findings that survey-only respondents tended to respond more negatively than people 

who participated in a field experiment (17). 

Potholes came out as having the most impact on perceived safety and comfort. Unevenness 

was a bit less important compared wide cracks and debris, at least in the bike lane and 

mixed scenarios, but drew the most gaze. This does not necessarily mean their survey 

responses contradict their eye tracking data, but that what attracts the most gaze and has 

the biggest impact on feelings of safety may not be the same. Both are important to cyclists’ 

safety and perception of safety and must be considered.  
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Figure 6-14 Boxplots for the field participant sample by pavement feature for “In this 

scenario, how does encountering the following impact your feelings of safety?” 
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Figure 6-15 Boxplots for the field participant sample by pavement feature for “In this 

scenario, how does encountering the following impact your comfort?” 

6.4 Discussion 

The primary objective of this paper was to recommend which maintenance activities to 

prioritize to improve the bikability of the city. This prioritization was to be based on both 

survey responses on perceived safety and comfort and eye tracking data. The discussion 

will focus on what was learned and what the practical implications are. 

The survey results demonstrated that potholes anywhere have a substantial influence on 

cyclists’ perceived safety and comfort. This was true across all possible segmentation of 
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the data (i.e. age, rider type, etc.). This suggests that filling potholes ought to be of the 

highest priority for infrastructure to feel safe and comfortable to those on bikes. Those 

driving as their primary mode were slightly more concerned about potholes than those 

cycling as their primary mode. This does not change the priority because everyone was 

highly concerned about potholes. However, it suggests that if the city hopes to increase 

cycling modal share, it is important to have pothole-free routes. Furthermore, it was notable 

that the participants of the in-field experiment had less negative responses to the pavement 

characteristics than the online-only participants, even though both took the survey online 

at their leisure. In Fitch & Handy’s paper that found the same (17), they suggest this 

difference can be attributed to imagined vs experienced scenarios. This means people who 

are interested in cycling, but not yet cycling imagine it to be worse than it is, furthering the 

importance of having smooth pavements to encourage people to take up cycling as a mode 

of travel. 

Interestingly, potholes did not draw the most gaze; instead, unevenness drew the most gaze. 

The survey put unevenness as slightly less important than debris or wide cracks, but 

unevenness was looked at more frequently, for longer, and earlier than these other 

distresses. This is important because it would be safer for the cyclist to be looking for other 

road users than at the pavement.  It is important to note that gaze is associated with overt 

attention, but not covert. Covert attention is when someone attends to an object/target 

without fixating on it (23). Although fixations increase the likelihood a participant 

identified the object, it is possible that participants identified potholes without fixating on 

them. Therefore, the results of the eye tracking portion of this study and the survey do not 

contradict each other but provide two avenues for understanding how pavement influences 
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cyclists’ safety. A potential explanation for why unevenness drew more gaze than potholes 

despite having less effect on perceived safety could be associated with the extent, visibility, 

and avoid-ability of unevenness. Most of the uneven sections took the entire lane or close 

to it, so it was visible far in advance and demanded navigational planning. Potholes are 

typically much more compact and easier to avoid. In the eye tracking study, none of the 

potholes measured more than one foot in diameter. Therefore, cyclists may not need to 

linger their gaze on them to avoid the pothole.  

Wide cracks and debris could have the same extent issue as unevenness. In this study, the 

wide cracks and debris were only a segment of no more than 10 feet. These components of 

extent and avoid-ability influencing gaze may be important to a successful maintenance 

plan. Wide cracks were important in the survey but drew much less gaze than debris, so 

cracking may not be as important to gaze behavior but is still influencing perceived safety.  

The type of facility did have some effect on the results in both the gaze behavior and the 

survey analysis. For potholes and debris, cyclists observed them with less time to arrival 

on mixed facilities than on bike lanes or separated facilities. Literature has shown that 

increased visual tasks when driving result in shorter fixations (24). Cyclists would be 

experiencing many more safety-relevant cues when mixed with vehicles, so, it seems 

reasonable that/ they would see things later and give them less time. The reduced fixations 

on potholes and debris may mean that these safety-relevant cues are being missed in the 

mixed traffic situation. There is evidence that collisions go together with inadequate visual 

attention distributions, so this is considered a cause for concern and support for separation 

of modes. A simulator-based study may be needed to determine if cyclists in this setting 

are truly missing these pavement features and the influence on crash risk. Potholes and 
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debris were fixated on less frequently and for a shorter duration on mixed facilities, but 

unevenness had a higher rate and length of fixation. The increased rate and length of 

fixation on unevenness further underpins the importance of having smooth (not uneven) 

pavement to allow cyclists’ gaze to spend more time on other safety-relevant tasks such as 

observing surrounding vehicles or pedestrians.  

For the survey responses, the results for the bike lane and mixed traffic were nearly 

identical, but the separated facility made all the pavement distresses less impactful on 

perceived safety and comfort. Distresses in a bike lane can send a cyclist into mixed traffic, 

so this result makes sense and suggests that maintenance efforts should be focused on bike 

lanes and mixed traffic. However, any conditions that a cyclist cannot easily avoid in a 

separated facility should also be attended to in a timely fashion.  

It was hypothesized that some of the demographic or rider characteristics would influence 

the survey responses. There were a few significant effects including age on the perceived 

safety of unevenness on separated facilities, using a car as their primary mode on potholes’ 

impact on perceived safety, commute frequency on wide cracks in a separated facility, and 

recreation frequency on comfort around wide cracks in mixed facilities. Although these 

influences may exist, none were consistent or extensive enough to suggest a reorganization 

of the priority based on the population. Ultimately, potholes, unevenness, wide cracks, and 

debris are important for the feelings of safety and comfort of all cyclists. 

This work provided valuable insights, but there were a few limitations. As previously 

pointed out, attention can be overt or covert so whether or not a fixation occurred does not 

necessarily inform us whether the participant noticed the object. Further research, possibly 
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in a simulator, could better inform whether pavement features not fixated upon are being 

missed and the safety implications. Furthermore, colloquial rather than strict definitions of 

the pavement features were used in this study, so it cannot inform specifically at what point 

a narrow crack becomes a wide crack or the diameter of a pothole needed to be a concern. 

Furthermore, the eye tracking study only considered one of each distress on each facility 

type. These limitations necessitate future research into the specific pavement feature 

requirements for asset management. Despite efforts to recruit a representative sample, the 

sample was predominately white and highly educated. Demographic and rider 

characteristics did not come out as important in this study, but future work may want to 

consider these further with a more diverse sample. Despite these limitations, plenty of 

valuable practical implications stem from this research. 

6.4.1 Practical Implications 

Potholes, debris, wide cracks, and unevenness were the most important pavement 

considerations. These have very different treatments and solutions. This discussion will 

take into consideration the ease of alleviating these concerns. Overall, all four could be 

better addressed through minor tweaks to maintenance protocols. 

The discussion pointed out a few overarching pavement feature characteristics to consider 

in prioritizing them for maintenance. The first to consider is their perceived impact on 

safety which potholes had the most impact on. In addition, the features’ extent, avoid-

ability, and visibility should be taken into consideration. Visibility is increased with 

increased color contrast and extent, as can be seen in lowered manholes or poorly done 

patches. Of the three, avoid-ability should be the most important because unavoidable 
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pavement features can push cyclists into dangerous cycling conditions and require more 

attention to navigate which draws attention away from other safety-relevant cues. Any asset 

management plan focused on cyclists should prioritize based on perceived safety, avoid-

ability, extent, and visibility.  

Of the four most critical pavement features to perceived safety, debris is the easiest to 

address. Debris is often scattered from the roadway into the bike lane during storms. Debris 

can damage tires, cause bikes to lose traction, and have a moderate impact on perceived 

safety and comfort. A solution to the debris problem is to run the street sweepers along 

bike lanes at a regular interval. Adding in street sweeping or shifting the route of street 

sweepers from the driving lane to the bike lane can be a quick, relatively low-cost 

improvement to cyclists’ safety and comfort. 

Potholes are the biggest concern for cyclists’ perceived safety and comfort. Although 

potholes may be merely a comfort concern for drivers, potholes can result in crashes for 

cyclists. Because of reduced loads on the pavement from bicycles being lighter, bicycle 

facilities do not often develop potholes. Moving cyclists into dedicated bicycle facilities, 

even a bike lane, can reduce the effort needed to immediately repair potholes. Naturally, 

when potholes are reported, these should be patched in a timely fashion. However, on 

mixed facilities where cyclists are expected to travel, it is critical for safety that agencies 

prioritize these routes for pothole filling activities. New pothole filling mix designs and 

protocols may be needed because it is likely for cyclists’ safety that potholes of a smaller 

size would need to trigger maintenance activities than what triggers pothole filling for 

motor vehicles. Furthermore, it is important to not create an uneven surface when filling 
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potholes. A shift in priorities to frequent bike routes could be an immediately applicable 

change and the new mix design could be a long term solution. 

Unevenness is a broad category with many causes. Some are costly to rectify, such as 

raising grates. But a substantial amount of unevenness on roadways is caused by pothole 

filling or utility maintenance. These could be addressed by having stricter regulations on 

utility companies when they fill in pavement after a repair and by holding maintenance 

personnel to a higher standard. If money is available, rectifying unevenness issues such as 

low grates would be most valuable on bike lanes where this level of unevenness could 

make that portion of the bike lane unusable, sending cyclists into mixed traffic. If cyclists 

must enter mixed traffic, then the level of traffic stress for the route is increased and may 

reduce people’s willingness to cycle. 

Wide cracks are a challenge. Due to reduced loads on the pavement from bicycles being 

lighter, wide cracks are less likely to develop on bike facilities. The bike lanes will probably 

be repaved with the driving lanes which are likely to need repair sooner than the bike lanes. 

A minimum repaving date could be set based upon the time it is expected to take for the 

bike lane to weather to the point of having substantial cracking. Similarly, separated 

facilities should be repaved before substantial cracking makes the facility unusable. This 

timing could be developed through experience over time. Mixed facilities where cyclists 

are expected to travel should be prioritized for crack abatement. 

6.5 Conclusion 

This research further explored cyclists’ perception of and gaze behavior around certain 

pavement features to improve maintenance practices to support cycling. Few papers have 
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considered the impact of pavement condition on cyclists’ feelings of safety and even fewer 

have extended that to existing maintenance practices. This research has answered what 

pavement features matter most and in what context. The results showed that potholes, 

unevenness, debris, and wide cracks have moderate to substantial impacts on cyclists’ 

feelings of safety and comfort. In addition, eye tracking analysis showed that unevenness 

attracted the most gaze. All of these conditions were slightly less concerning on a separated 

cycle track compared to bike lanes or mixed facilities. Similarly, cyclists spent more time 

observing individual pavement distresses and were more likely to fixate on them with more 

separation. These findings have implications for both cyclists’ feelings of safety and their 

actual safety. Maintenance practice recommendations were provided and supported basing 

maintenance prioritization on perceived safety, avoid-ability, extent, and visibility. Future 

studies could extend this work to determine if the reduced likelihood to fixate on distresses 

in the mixed traffic setting does indicate that the higher visual load is leading to missed 

hazard identification. 
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CHAPTER 7. CONCLUSION 

This chapter summarizes the main findings and the resulting contributions and limitations, 

then suggests directions for future work. 

7.1 Contributions 

This dissertation’s contributions are first summarized by answering the research questions 

put forth in the introduction.  

1. When allowed to self-define stressors, what do cyclists identify as stressful? 

Does this vary between an emerging and an established cycling city? 

CHAPTER 4 addressed this question through a combination of in-ride surveys 

and instrumented bicycles in quasi-naturalistic cycling. The study was 

performed in both Atlanta, an emerging cycling city, and in Delft, the 

Netherlands, a long-established cycling city. Although there were differences 

in stressors between the cities, the top stressor in both locations was motor 

vehicles. This demonstrated the importance of separation between modes to 

cyclists’ stress.  

 

Another important finding was that cyclists in Delft spoke of their own speed 

and getting to choose their speed, whereas Atlanta cyclists spoke of the motor 

vehicles speeds. Further study with the instrumented bicycle data revealed that 

cyclists in Atlanta were going over twice as fast as Delft cyclists. Combined, 

these results suggest that cyclists in Atlanta feel pressured to cycle faster than 
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they would without pressure from motor vehicles. Furthermore, pavement 

condition, an infrequent consideration in cyclists’ stress studies, was revealed 

to be one of the top 3 stressors in both locations. Overall, the results suggest 

that cyclists, regardless of where they live, are less stressed when separated 

from motor vehicles by well-maintained bicycle infrastructure.  

 

2. How does gaze behavior vary with stress, complexity, and stated skill? 

This exploratory question is investigated in CHAPTER 5 using a combination 

of eye tracking and survey techniques. The most striking results were the 

differences among cyclists self-identifying their skills as being high in motor-

tactical type skills/low in safety motives and those who responded the opposite. 

Skill influenced the range of their gaze, but in unexpected ways. Although 

literature on drivers suggested that skilled drivers had a wider gaze range, this 

study found the opposite was true among cyclists. This could be because high 

safety motives are more associated with scanning behavior than high motor 

tactical skills. Furthermore, this suggested that researchers cannot assume the 

gaze behavior of drivers and cyclists are the same.  

3. Which pavement conditions matter most to cyclists' perceived safety and 

comfort?  

This was answered in CHAPTER 6 using a combination of online surveys and 

eye tracking experiments. The surveys showed that, when asked about feelings 

of safety and comfort, cyclists care most about potholes followed by wide 

cracks, debris, and unevenness. Unevenness drew the most gaze. Participant 
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characteristics did not have a strong influence on these hierarchies. Combined, 

these results suggest that for bike-able cities, maintenance needs to prioritize 

potholes, unevenness, wide cracks, and debris.  

 

4. How does the gaze given to pavement conditions vary by condition type and 

infrastructure type? 

This question was also explored in CHAPTER 6. The field experiment cyclists 

had similar survey responses to the survey-only population. However, cyclists 

spent the most time fixating upon and were most likely to fixate upon 

unevenness. Their gaze could be better used to watch for hazards and other road 

users, so this highlights the importance of creating smooth riding surfaces.  

 

In mixed traffic scenarios, cyclists were less likely to fixate upon and spent less 

time fixating upon pavement distresses. This suggests cyclists may miss 

pavement hazards when cycling mixed with motor vehicles. This both supports 

separating cyclists and motor vehicles and prioritizing maintenance on mixed 

traffic facilities where cyclists are expected.  

 

Findings in CHAPTER 6 filled a gap in the existing literature. Existing 

literature has explored cyclists’ reaction to pavement roughness that can be 

measured by accelerometers but has failed to capture distresses that a cyclist 

may not bike over. The literature had yet to define what pavement features were 

most important for cyclists’ sense of safety and comfort which is critical 



 

 193 

information for asset managers. This chapter filled that gap. It demonstrated the 

importance of potholes, unevenness, debris, and wide cracks and that the extent, 

visibility, and avoid-ability of pavement features should be included in any 

cyclist-focused asset management plan.  

 

5. Can the use of in-ride survey techniques in combination with instrumented 

bicycles improve understanding of cyclists’ stress? 

The combined results from the three studies presented in this dissertation have 

allowed new insights into what cyclists consider most stressful, how gaze varies 

with stress and skill, and how to prioritize pavement maintenance for safe, 

comfortable cycling. The method of combining in-ride survey techniques with 

instrumented bicycles was highly successful in exploring the questions 

presented and could be used to explore many more research questions. Some of 

these will be covered in section 7.3 Future Research. 

Combined, these studies have demonstrated the value of naturalistic cycling, smooth and 

separated cycle tracks, and designing from a cyclists’ perspective. The common thread 

throughout these studies was the use of naturalistic cycling in combination with sensing 

and surveys. These methods allowed for new insights into cyclist behavior and design.  

The approach used in this dissertation combined surveys and sensing techniques in 

naturalistic cycling. Previous research focused on cyclists’ stress focused on surveys 

without the naturalistic cycling component or included the naturalistic cycling without a 

robust survey. Using in-ride surveys allowed for cyclists to describe their stress in near 

real-time. Literature shows that survey responses are less negative after a cycling 
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experience (1), so it stands to reason that cyclists would also respond differently to more 

open-ended questions in the midst of a ride.  

There are two other options to collect this data that are not truly naturalistic. These would 

be 1) on a test track and 2) in a simulator. The three (including naturalistic cycling) have 

varying degrees of trade-off between closeness to reality and control over the experimental 

conditions. Naturalistic cycling allows for the most realistic conditions but has the least 

control. Although the route could be predictable for the most part, the presence and actions 

of surrounding road users is largely unpredictable. This unpredictability requires more 

trials to ensure a sufficiently large, usable dataset. A test track presents much more control 

than naturalistic cycling but removes much concern for safety which is an important 

component of cyclists’ stress. Test tracks are also very costly to construct and require large 

amounts of space that are not typically available, especially for research on cycling. 

Research comparing responses in naturalistic settings and a constructed to feel realistic test 

track may show that a test track allows for very similar responses, but with greater control. 

Unfortunately, although it has the possibility of being the most effective option, the costs 

of constructing one are prohibitive. 

The last approach would be to use a simulator. This option presents the most control, but 

is the least realistic. Cycling simulators suffer from missing important cues such as the 

feeling of the air passing the cyclist, the pressure difference of a close pass, and the feeling 

of turning the bicycle. A participant clearly has no concern about their safety in such an 

environment which may impact their stress. A benefit to cycling simulators is that a broader 

cross-section of the population may be willing to participate in the study. Participants who 

are concerned about their safety when cycling will not participate in a naturalistic study 
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but may in a simulator study. A simulator may be the best option, if available, for studies 

of hazard identification or differences between “interested, but concerned” and “strong and 

fearless” cyclists for safety concerns and to attract participants, respectively.  

The approach used in this study presents the most realistic scenarios, and thus is the best 

choice among these for studying cyclists’ stress. The approach used here was also low-cost 

and allowed for use of the existing infrastructure, making it accessible to any researcher 

within proximity of a bike-able road. It was innovative in its combination of techniques 

and allowed for new insights into cyclists’ stress and behavior. For some studies, a 

simulator may be the ideal choice, so careful consideration should be given when selecting 

which method to use. However, one contribution of this work was to demonstrate that in-

ride surveys with naturalistic cycling and instrumented bicycles is a feasible method for 

studying cyclists’ behavior.   

Eye tracking is another research method that has infrequently been used in cycling 

research. The research within this dissertation demonstrated some of the benefits of the 

approach as well as caveats. Eye movement is influenced by many external variables such 

as person-to-person differences that are not immediately relevant to the study. However, it 

can be challenging to recruit high enough numbers of participants for a naturalistic cycling 

experiment to adjust for these factors. When data collection completed for the study in 

CHAPTER 5, it has a larger sample size than any published eye tracking in naturalistic 

cycling study. Because of these external sources of variability, the statistical testing 

resulted in few significant results when trying to describe gaze behavior in a general 

manner as was attempted in CHAPTER 5. Despite these challenges, some valuable insights 

were gleaned, particularly about the differences between cyclists’ motor-tactical skills, 
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safety motives on gaze behavior and how those differed from expectations based on 

literature on drivers’ gaze behavior. The technique was effective as an exploratory study, 

but more concrete results were possible when choosing a narrower scope as was done in 

CHAPTER 6. The narrow, focused scope allowed for less influence from outside factors, 

more significant results, and more practical findings. The research demonstrated that eye 

tracking can be used for both exploratory studies and practical, focused studies to gather 

valuable findings. But, it also demonstrated that the more focused scope allows for greater 

control and more significant results.  

In addition to findings about the methods, there were important findings about cyclists’ 

behavior and stress. A theme that arose during the research was the value of a smooth riding 

surface. Although previously pavement condition had rarely been considered in studies on 

cyclists’ stress, CHAPTER 4 demonstrated that poor pavement is one of the top three most 

cited stressors among cyclists. CHAPTER 5 demonstrated that poor pavement can be a 

safety concern as it leads to lower gaze, potentially resulting in missed safety cues that 

would’ve been seen if the cyclist had been looking further ahead. CHAPTER 6 expanded 

on these findings to show that the most important components of poor pavement are 

unevenness, potholes, debris, and wide cracking. This study also demonstrated that 

decreased separation between cyclists and motorists resulted in a decreased likelihood that 

a participant fixated on one of these pavement concerns. This emphasizes the safety 

concern further. This information leads to implementable maintenance strategies, such as 

street sweeping bike lanes and setting stricter requirements on utility maintenance 

patching, to improve the comfort and safety of roadway facilities for cyclists.  
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Furthermore, the research showed that cyclists’ behavior and needs may not follow the 

trends expected from literature on drivers. CHAPTER 6 suggested that pavement 

maintenance strategies need to consider that inconveniences for a driver (i.e. a mid-sized 

pothole) may be a safety concern for a cyclist. CHAPTER 5 also demonstrated that the 

gaze behavior of cyclists did not align with expectations based on the driving literature. 

Again, demonstrating that when designing for cyclists, engineers and planners cannot 

assume that cyclists will behave a certain way based on knowledge of drivers. Cyclists 

need to be considered through all aspects from planning to design to maintenance, but 

currently they are not frequently integrated into the planning and design of projects and 

rarely considered in maintenance. Planning, design and maintenance for all projects where 

someone could conceivably cycle should endeavor to come from a cyclists’ perspective, 

but this can be challenging for personnel who do not cycle. Agencies should endeavor to 

have personnel not just drive projects, but also cycle them. If possible, it would be best to 

have a regular cyclist contribute to projects so that the drivers’ perspective is not the only 

contribution through planning to design. The results also showed that aspects like location, 

age, and rider type did not significantly impact the most important factors in cyclists’ stress 

or their reaction to pavement features. Although a group of humans will always vary, the 

most important factors to cyclists’ stress and comfort appear fairly consistent across 

cyclists making design from a cyclists’ perspective more achievable. 

7.2 Limitations 

As with all research endeavors, this research had some limitations. Inherently, naturalistic 

methods are limited in the control researchers have on the setting. This allows for very 

realistic experiences but can lead to large amounts of noise or unexpected events to process. 
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For example, the pothole that was supposed to be analyzed in CHAPTER 6 for the mixed 

traffic scenario was filled shortly after data collection began. There was another, less ideal, 

pothole along the segment, but similarly unwanted and unexpected situations can happen 

in any naturalistic study. 

The research was also limited by a lack of high stress scenarios for the eye tracking data 

from Delft. This limited the ability to fully explore the impact of stress on cyclists’ gaze 

behavior. Further data collection could remedy this but was not possible because of the 

Covid-19 pandemic restrictions. This limitation also highlights the difficulty of comparing 

a low-stress, established cycling environment such as Delft with a higher-stress, emerging 

cycling environment such as Atlanta. In some ways such a comparison provides interesting 

and valuable insights such as the finding in CHAPTER 4 that motor vehicles were the top 

stressor in both locations. However, the high-stress infrastructure was limited in Delft and 

the low-stress was limited in Atlanta, so equivalent routes were not possible.  

Furthermore, eye tracking has been used so infrequently in studies of cyclists that a 

standard set of measures has not yet been agreed upon. Therefore, the eye tracker work in 

this dissertation tended to be exploratory in nature. The methods seem promising, but more 

work is needed to confirm the findings based on further usage of eye trackers in cyclist 

behavior studies. Both fixations and measures of gaze were used in these analyses, but due 

to the motion of the cyclist relative to the world, what would be a fixation in a static 

situation becomes a smooth pursuit. Eye tracking software is not well equipped to track 

smooth pursuits automatically. The largest dispersion value was used to try to 

accommodate this, but fixations were not as accurately measures as they would be in a 

static situation. Because of this limitation, the gaze measures would be more meaningful 
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than the fixation measures and differences in measures of fixation would need to be more 

significant to be trusted. This limitation can be accommodated in some analyses, such as 

the work in CHAPTER 6 which used frame-by-frame analysis. These more micro-scale 

analyses can better correct for the software’s limitations in detecting smooth pursuit 

movements.  

One pervasive limitation was a lack of diversity in the study sample. Participants for all 

data collection efforts were predominately white and highly educated. Efforts were made 

to gather a more representative sample, especially for the online survey, but were ultimately 

unsuccessful. A lack of financial incentive for participation could partially explain these 

unsuccessful efforts, but predominately white and educated samples are a common 

limitation in studies on cyclists. Research is needed on how to obtain a more representative 

sample of the cycling population. 

Furthermore, although the sample sizes in this research were large for a naturalistic cycling 

and eye tracking study, the sample sizes were still too small (< 30) for robust statistical 

analyses to be performed. Additionally, with such small sample sizes, it is impossible to be 

confident that the results are applicable to a larger population, thereby necessitating repeat 

studies to confirm the results.  

7.3 Future Work 

This dissertation has pointed to a few areas for future research. The results overall 

demonstrated the value of eye tracking, instrumented bicycles, and in-ride surveys for 

better understanding of cyclists and possibly other road users’ stress and behavior. Future 
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research can continue to use these methods to study road users’ feelings of stress, safety, 

and comfort and how they behave in and interact with their environment. 

The methods and data from CHAPTER 4 could be used to go a step further by incorporating 

the maps to better understand exactly what infrastructure existed where the cyclists 

commented on stressors. Additionally, these maps could be aggregated to identify stress 

hotspots. Furthermore, this study could be repeated in better matched cities in terms of size. 

Atlanta is a large city and Delft a small city, so comparison to larger Dutch cities such as 

Amsterdam or Rotterdam could be beneficial. Further, finding more comparable routes, if 

possible, could further address the limitations of this study. 

The instrumented bicycle as a tool for understanding cyclist behaviors also has more 

potential. For example, the sonar could be used to better understand how fast vehicles are 

going during close-pass events and further illuminate why some close-pass events are not 

considered stressful. The question of cyclists’ speed could also be further studied by having 

the same cyclist ride in separated and mixed settings. Another potential study would be to 

study off-peak and peak hours using these methods. Data were collected to conduct such 

analysis in Delft, but as a small college town, peak hour traffic and stress levels did not 

vary enough from off-peak hours to finish the study.  

CHAPTER 5 was exploratory and opened the door to many future avenues for research. 

The results suggested that stress may influence gaze, but a future study with a more even 

distribution of stress levels on the route is needed to build more confidence in the findings. 

Complexity could be studied in a more controlled environment with non-visual tasks 

increasing the complexity. Overall, the strongest influence on gaze behavior in CHAPTER 
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5 was skill. Confidence in the results could be increased through further exploration with 

a larger sample in each skill group. Furthermore, the results suggested we cannot assume 

that what is known about drivers’ gaze will be the same for cyclists. Little research to date 

has focused on cyclists’ gaze behavior, but many of the studies of drivers’ gaze behavior 

could be repeated for cyclists. In addition, a study of cyclists’ gaze behavior in simulators 

compared to in-field could inform whether these future gaze behavior studies could be 

performed in the highly controlled environment of a simulator instead of in-field.  

The analysis in CHAPTER 5 did not take into consideration the cyclists’ speed or time 

series analysis, but both warrant future study. A recent paper using eye tracking data 

collected after that in this dissertation found that risk perception had an influence on speed 

and combined these had an influence on cyclists’ gaze patterns (2). The cyclists’ gaze 

tended to be higher and more on the travel path when cycling fast and they went slower 

when their risk perception was higher. Risk perception is a component of cyclists’ stress, 

so it may also be worth looking at stress, cyclists’ speed, and if they have the same 

relationship to gaze patterns. A validation-type study that determines the validity of 

fixation measurements at varying cycling speeds would also be very valuable. To the 

algorithm, fixations would look like smooth pursuits. The algorithm assumes the eye 

trackers are stationary, so the world is moving relative to the eye trackers, which can result 

in errors identifying fixations. Speed may impact the error resulting from this.  

Another analysis method that could be used to build on this dissertation is time-series 

analysis. Time-series analysis in combination with areas of interest analysis has been used 

in a previous study of cyclists’ gaze behavior to identify common gaze patterns (3). The 

paper was brief conference paper and had a narrow scope analyzing just 1 intersection. 
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However, it demonstrated the value of time-series analysis for identifying repetitive gaze 

patterns. It is possible that more stressed cyclists tend to shoulder check more frequently 

or very rapidly and briefly look away from the travel direction when scanning. Although 

the gaze area was explored in this dissertation, the use of time-series analysis could better 

illuminate the gaze patterns that resulted in those gaze areas. 

CHAPTER 6 also suggested a couple directions for future work. This dissertation laid out 

the most important pavement distresses and gave ideas for incorporating the information 

into asset management plans. However, the next step would be to develop a model of 

pavement deterioration on cycle facilities. Pavement deterioration on major auto-focused 

assets has been extensively researched, but less is known about lower volume roads and 

bicycle facilities. This information is critical to asset management plans. Additionally, eye 

tracking can demonstrate that a cyclist has or has not fixated on an object, but it cannot 

definitively inform whether the cyclist has processed that information. A simulator-based 

study could take the research a step further to determine if the reduced fixations in mixed 

traffic settings are indicative that the cyclist is missing these safety-critical cues.  

7.3.1 Considerations/Adjustments to the Instrumented Bicycle 

In the process of this research, I identified ways in which the instrumented bicycle could 

be improved. The first involves redundancy. For any future data collection with the 

instrumented bicycle, I would recommend building in redundant components for any of the 

most critical sources of data. For example, I needed a redundant camera that could serve to 

both help identify where the cyclist was in the case of lost GPS data and provide footage if 
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the eye tracking data were corrupted. Having redundant data allows us to make meaning 

out of the data even if one system has failed. 

One component related to redundancy that could be valuable in future studies would be a 

speedometer. Speed can be derived from the GPS data, but the GPS frequently produced 

invalid data, likely attributable to the tall buildings in Atlanta. Building in a speedometer 

would allow for gathering speed data without concern around accurate/usable GPS data. 

If a future study wanted to use the instrumented bicycle to look at close-pass events, it 

would be very valuable to have camera data that is linked to the LiDAR and Sonar data. 

For the inspection of close-pass events in this dissertation, I identified all close-passes, then 

used the timestamp to link to the GPS data, then watched the video around that location 

based on my knowledge of the route. Watching the video was necessary to confirm the 

object close to the rider was a car and not me or some other irrelevant feature. This process 

would be much quicker and more accurate if there were, for example, a timestamp linking 

the video to the LiDAR. In addition to being faster and more accurate, this method would 

also eliminate the risk of invalid GPS data breaking the chain.  

The eye trackers were not a practical measure of stress. Extracting stress among all the 

other influencers of gaze was time consuming and did not come out as significant. In my 

opinion, the effort would not be worth the improvement over measures of stated stress. I 

suspect based on my experience of working with human subjects, that a button system for 

identifying their stress levels may be too complicated to get participants to use. I think the 

best option would be a microphone setup that either cues the cyclist to give a stress rating 

or allows them to narrate their ride. Another idea would be to use a peripheral detection 
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task to study their mental workload. A peripheral detection task does not work with 

wearable eye trackers as they stand, so that would need a separate study. If eye trackers are 

used, it should be for a specific purpose, directly related to the research questions, and the 

analysis should be tested and defined prior to beginning data collection. This is heavily 

dependant on the intended research questions.  

Other sensors that could produce value include light (lux), cadence, and brake sensors. The 

light sensor would add value for an eye tracking project to remove the influence of 

adjusting light levels on the pupillometry data. Cadence and brake sensors are frequently 

used in instrumented bicycle studies (4) and could add valuable information about the 

cyclists’ behavior. However, I do not think these add sufficient value to change the setup 

to not be attachable to anyone’s bike.  

The choice of sensors is heavily dependent on the study being performed, so the value of 

each sensor and any associated trade-offs from adding it are really determined by the study 

itself. I strongly recommend anyone using an instrumented bicycle for research to 

thoroughly test every step of the research design. It is not sufficient to just test that the 

sensors work, but it is critical to also check the data is coming out in a usable format for 

your future data analyses. Thus, the way the data will be analyzed needs to be known (and 

tested) before the data collection protocol and sensor selection is finalized.  

Finally, I have some recommendations on build and output. It is critical that the attachment 

mechanism to participants’ bicycles is firmly holding the box in place. In this study, the 

box would sometimes shift sideways when a cyclist mounted/dismounted. I tried to correct 

this as much as possible, but the LiDAR data would be substantially more trustworthy if 
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the box did not change position on the cyclists’ bike. Additionally, because the GPS data 

failed sometimes, it was extremely challenging to separate files from days where multiple 

rides occurred. It would be much easier to manage the data if a new file were created every 

time the system is started. 

In summary, my key lessons from using the instrumented bicycle are 1) test everything, 2) 

include redundancy whenever possible, and 3) the design depends on the study. A study 

design that has targeted research questions, has been tested through the analysis portion, 

and has redundancy built in for key sensors will reduce data loss and allow for smoother, 

more useful data analysis.  
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APPENDIX A. US SURVEY 

Seeing Like a Bicycle Study 

 

 

Part A: Categorizing You as A Cyclist 

To begin, we’d like to learn more about you as a cyclist. This will help us put your answers to the stress 

map in context.  

 

1. How frequently do you cycle for commute/travel purposes? 

 Less than once per month 

 Several times per month 

 Several times per week 

 Nearly daily 

 

2. How frequently do you cycle for recreation? 

 Less than once per month 

 Several times per month 

 Several times per week 

 Nearly daily 

 

3. What type of rider would you classify yourself as? 

 Strong & Fearless – I am willing to ride my bicycle in any situation.  

 Enthused & Confident – I am confident sharing the road, but prefer bicycle facilities. 

 Comfortable, but Cautious – I am comfortable biking on most roads, but will choose another 

mode depending on the facilities. 

 Interested, but Concerned – I require facilities geared to cyclists to ride. 

 

4. How long have you been biking? 

 Since childhood 

 Several years 

 One year or less 

 Just started 

 

5. How long have you been biking in Atlanta? 

 Since childhood 

 Several years 

 One year or less 

 Just started 
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6. For each of the following statements, please choose the response that most closely fits your 

reaction. 

 Strongly 

disagree Disagree 

Neutral or 

No opinion Agree 

Strongly 

agree 

Most drivers don’t seem to 

notice bicyclists 

          

Taking risks fits my personality           

I like trying things that are new 

and different 

          

It’s pretty hard for my friends to 

get me to change my mind 

          

 

Strongly 

disagree Disagree 

Neutral 

or No 

opinion Agree 

Strongly 

agree 

I am usually very cautious with 

strangers 

          

I like the idea of sometimes 

walking or biking instead of 

taking the car 

          

Many bicyclists appear to have 

little regard for their personal 

safety 

          

Getting regular exercise is very 

important to me. 

          

I would bicycle more if my 

friends/family came with me. 

          

I am generally satisfied with my 

life. 

          

 

Part B: Some Background about Yourself 

To help us know you a little bit better, we’d like to ask you a few background questions. 

 

1. What is your gender identity? 

 Female 

 Male 
 

 Prefer not to answer 
 None of the above (please 

specify):__________ 
 

2. How old are you? 

 18-24 

 25-34 

 35-44 

 45-54 

 55-64 

 65 or older 
 

3. Would you describe yourself as… (please check all that apply) 

 American Indian/Native American 

 Asian/Pacific Islander 

 Black/African American 

 Hispanic/Latino 

 White/Caucasian 

 Prefer not to answer 

 Other (please specify): __________
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4. Please check the category that contains your approximate annual household income before taxes: 

 Less than $15,000 

 $15,000 to $34,999 

 $35,000 to $54,999 

 $55,000 to $74,999 

 $75,000 to $94,999 

 $95,000 or more 
 

5. What is your educational background? (Check highest level attained) 

 Some grade school or high school 

 High school diploma or equivalent 

 Some college, no degree 

 Associate’s degree 

 Bachelor’s degree 

 Graduate or professional degree 

 

6. Approximately how many years have you lived in Atlanta?      _____ 

 

 

7. What cities have you lived in for a substantial period of time? 

________________________________________________________________________________ 

 

8. How far do you live from your main work/school/destination?   _______ 
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Interview Questions 

Instructions to interviewer: Review their map. Inquire about locations with a particularly high or low 

stress level 

At this location, what contributed to the high/low stress rating? 

 

General questions not tied to their map: 

How familiar with this route were you? (ride segments daily, but unfamiliar with others) 

 

 

 

 

 

 

 

What factors do you think most contributed to your stress on this route? 

 

 

 

 

 

 

 

 

What factors do you think most reduced stress on this route? 

 

 

 

 

 

 

 

 

Have you ever been involved in an accident while biking or with a cyclist, and how has that experience 

influenced your stress when biking? 

 

 

 

 

 

 

 

Bicycle Type (to be filled out by surveyor) 

Ebicycle? Y/N 

Type of bicycle: ____________________________ 

Number of gears: _______ 

Tire size: ________ 
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APPENDIX B. NL SURVEY 

Seeing Like a Bicycle Study 

 

 
 

Part A: Categorizing You as A Cyclist 

To begin, we’d like to learn more about you as a cyclist. This will help us put your answers to the stress 

map in context. As a reminder, you may choose to not answer any question in this survey. 

 

7. How frequently do you cycle for commute/travel purposes? 

 Less than once per month 

 Several times per month 

 Several times per week 

 Nearly daily 

 

8. How frequently do you cycle for recreation? 

 Less than once per month 

 Several times per month 

 Several times per week 

 Nearly daily 

9. What is your primary mode of transport? 

 Car 

 Bicycle 

 Motorcycle/moped 

 Public Transport 

 Walking 

 Other 

 

10. What type of rider would you classify yourself as? 

 Strong & Fearless – I am willing to ride my bike in any situation (including mixed with 

motorvehicles).  

 Enthused & Confident – I am confident sharing the road with motorvehicles, but prefer bike 

facilities. 

 Comfortable, but Cautious – I am comfortable biking on most roads, but will choose another 

mode depending on the availability of bike-focused facilities. 

 Interested, but Concerned – I require bike-focused facilities to ride. 

 

11. How long have you been biking? 

 Since childhood 

 Several years 

 One year or less 

 Just started 
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12. How long have you been biking in the Netherlands? 

 Since childhood 

 Several years 

 One year or less 

 Just started 

 

 

 

13. For each of the following statements, please choose the response that most closely fits your 

reaction. 

 Strongly 

disagree Disagree 

Neutral or 

No opinion Agree 

Strongly 

agree 

Most drivers don’t seem to 

notice bicyclists 

          

Taking risks fits my personality           

I like trying things that are new 

and different 

          

It’s pretty hard for my friends to 

get me to change my mind 

          

I am usually very cautious with 

strangers 

          

I like the idea of sometimes 

walking or biking instead of 

taking the car 

          

Many bicyclists appear to have 

little regard for their personal 

safety 

          

Getting regular exercise is very 

important to me. 

          

I would bicycle more if my 

friends/family came with me. 

          

I am generally satisfied with my 

life. 

          
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14. For each of the following statements, please choose the response that most closely fits your skill level.  

 Definitely 

Weak Weak Neither  Strong 

Definitely 

Strong 

Cycling when it is slippery. 
          

Knowing how to act in 
particular traffic situations. 

          

Obeying traffic signals. 
          

Tolerating other road users’ 
errors calmly. 

          

Controlling the bicycle. 
          

Adjusting speed to the 
conditions. 

          

Sudden braking and/or 
swerving when needed. 

          

Staying calm in irritating 
situations. 

          

Recognizing hazards in traffic. 
          

Fast reactions. 
          

Yielding to somebody else who 
does not have right of way. 

          

Avoiding unnecessary risks. 
          

Cycling carefully. 
          

Predicting traffic situations 
ahead. 

          

Maneuvering smoothly 
through busy traffic. 

          

Obeying traffic rules. 
          

Showing consideration for 
other road users 

          

 

15. How many accidents were you involved in as a cyclist in the last 3 years? 

 0  

 1 

 2 

 3 

 4 

 5+ 
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16. What was the other party in the accident(s)? 

 Fall 

 Pedestrian 

 Vehicle 

 Cyclist 

 Moped/Motorcycle 

 Obstacle 

 Other 

17. Did any of your accidents with a motorized vehicle happen at an intersection?

 Yes  

 I was not involved in any accidents 

with a motorized vehicle  

 No 

18. Were you involved in a collision with another cyclist when driving a motorized vehicle 

during the last 3 years? (Please include all accidents, regardless of how they were caused how 

slight they were, or where they happened) 

 0 

 1 

 2 

 3 

 4 

 5+ 

19. Did any of your accidents with a cyclist while driving happen at an intersection?

 Yes   No 

 I was not involved in any accidents with a motorized vehicle  
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Part B: Some Background about Yourself 

To help us know you a little bit better, we’d like to ask you a few background questions. As a reminder, 

you may choose to not answer any question in this survey. 

 

9. What is your gender identity? 

 Female 

 Male 
 

 Prefer not to answer 
 None of the above (please 

specify):__________ 
 

3. How old are you? 

 18-24 

 25-34 

 35-44 

 45-54 

 55-64 

 65 or older 
 

10. Would you describe yourself as… (please check all that apply) 

 Asian/Pacific Islander 

 Black/Afro-European 

 Hispanic/Latino 

 White/Caucasian 

 Prefer not to answer 

 Other (please specify): __________

 

11. Please check the category that contains your approximate annual household income before taxes: 

 Less than €15,000 

 €15,000 to €34,999 

 €35,000 to €54,999 

 €55,000 to €74,999 

 €75,000 to €94,999 

 €95,000 or more 
 

12. What is your educational background? (Check highest level attained) 

 Some primary school or secondary 

school 

 Secondary school diploma or equivalent 

 MBO/Associate’s degree 

 HBO/WO/Bachelor’s degree 

 Master’s or PhD or advanced 

professional degree 

 Other __________ 
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13. Approximately how many years have you lived near Delft?      _____ 

 

 

14. What cities have you lived in for a substantial period of time? 

_____________________________________________________________________

___________ 

 

15. How far do you live from your main work/school/destination?   _______ 

 

Interview Questions 

Instructions to interviewer: Review their map. Inquire about the stress levels 

At this location, what contributed to the high/low stress rating? 

General questions not tied to their map: 

What factors do you think most contributed to your stress on this route? 

What factors do you think most reduced stress on this route? 

For each segment: On a scale from 1-5, 5 being extremely familiar, how familiar with this 

segment were you?  

How have any accidents influenced your stress when biking? 

What characteristics of the riding surface caused or reduced stress? Are there any locations 

you want to comment on specifically? 
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APPENDIX C. INSTRUMENTED BICYCLE LITERATURE 

REVIEW TABLE 

 

Sensors               

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Chuang, 

Hsu, Lai, 

Doong, & 

Jeng, 

2013) Taiwan 

Quasi-

naturalisti

c 

(specified 

route) 

gps, 

accelerome

ter, 

gyroscope, 

compass, 2 

ultrasonic, 

8 proximity 

sensors, 1 

variable 

resistor, 5 

car camera 

black boxes 

16 males, 

18 female, 

university 

students, 

1380 

incidents 

Demographics 

survey 

Sensors, 

passing 

distance 

Hu(Huerta

s-Leyva, 

Dozza, & 

Baldanzini

, 2018) Sweden 

Naturalist

ic 

GPS, 2 

IMU 

(frame and 

handlebar), 

2 brake 

sensors, 

forward 

facing 

camera; 

ebikes also 

had pedal 

sensor and 

current 

sensor 

6 

participants

, 28.5 h of 

traditional 

bikes and 

32.5 of e-

bikes None 

Sensors, 

E-bikes 
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(Gustafsso

n & 

Archer, 

2013) Sweden 

Quasi-

naturalisti

c 

(specified 

route) 

gps, 

forward 

facing 

camera 

14 men, 4 

women, 

438 trips 

over 4910 

km, 240h of 

cycling 

Diary to record 

problems and 

events of 

interest for 

each trip 

Sensors, 

conflicts 

(Westerhui

s & de 

Waard, 

2016) 

Netherl

ands 

Naturalist

ic 

camera 

forward 

facing, gps 

17 male, 13 

female,  

aged 50+, 

20 

traditional 

bike, 10 E-

bike 

Demographics 

survey, trip 

logbook Sensors 

(Gehlert et 

al., 2012) 

German

y 

Naturalist

ic 

front and 

back 

camera, 

gps, wheel 

sensor, 

altimeter 

55 

participants

, aiming to 

get 90, 34 

male, 21 

female 

travel diary 

(start/end time, 

activity, 

secondary 

activity, 

address) and 

questionaire 

before 

(demographics, 

traits, attitudes, 

travel behavior, 

accident 

history) and 

after (behavior, 

changes if 

riding an 

ebike), 

recruitment 

questionaire 

(demographics, 

bike use, bike 

type), skills test 

Sensors, 

age 

(Gorenflo, 

Golab, & 

Keshav, 

2017) Canada 

Naturalist

ic 

GPS, 

gyroscope, 

accelerome

ter, 

magnetome

ter  

31 

university-

affiliated 

participants 

(13 female), 

6000 trips 

in total; 11 

people survey 

Sensors, 

E0bikes 
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completed 

all 3 

surveys 

(Mackenzi

e, 

Thompson

, & 

Dutschke, 

2017) 

Australi

a 

Naturalist

ic 

GPS, 

ultrasonic 

(2 one in 

front and 

one in back 

of bike), 

motion 

sensor (is 

the device 

moving) 

10 riders for 

2 weeks (no 

gender but 

just a test to 

see if it 

works) None 

Sensors, 

passing 

distance 

(Xie et al., 

2019) China 

Non-

naturalisti

c, Variety 

of 

pavement

s types 

forward 

facing 

camera, 

accelerome

ters (2), gps 

watch(2) 

participant-

irrelevant 

design, 6 

pavement 

sections, 4 

runs per 

section none Sensors 

(Ambrož, 

2017) 

Sloveni

a N/A 

accelerome

ter, 

potenitome

ter, 

odometer one rider 

additional lab 

testing Sensors 

(Etemad, 

Costello, 

Wilson, & 

Wilson 

Page, 

2016) 

New 

Zealand 

In 

Planning 

ultrasonic, 

rear and 

forward 

cameras, 

accelerome

ter, 

gyroscope, 

compass, 

GPS Planned None Sensors 
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(Stevenson 

et al., 

2015) 

Australi

a 

Naturalist

ic 

front and 

rear view 

cameras, 

GPS 

395 to 

match 

injured 

cyclists in 

melbourne 

and perth, 

planned 

cyclist crashes 

(Databases, 

hospitals) Sensors 

E-bikes             

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Huertas-

Leyva et 

al., 2018) Sweden 

Naturalist

ic 

GPS, 2 

IMU 

(frame and 

handlebar), 

2 brake 

sensors, 

forward 

facing 

camera; 

ebikes also 

had pedal 

sensor and 

current 

sensor 

6 

participants

, 28.5 h of 

traditional 

bikes and 

32.5 of e-

bikes None 

E-bikes, 

sensors 

(Kovácsov

á et al., 

2016) 

Netherl

ands 

Not 

naturalisti

c (task-

based) 

potentiome

ter, 

accelerome

ter, 

gyroscope, 

speed 

30 

participants 

(17 female) 

aged 30-39 

and 31 

participants 

(14 female) 

aged 65-79  

questionnaire 

before 

(demographics, 

travel behavior, 

skill) and after 

(performance 

after), 

workload 

(peripheral 

detection task), 

and grip 

strength and 

balance test 

E-bikes, 

age 
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(Langford, 

Chen, & 

Cherry, 

2015) USA 

Naturalist

ic using 

bikeshare GPS 

6 traditional 

bike and 7 

E-bikes, 2 

years None E-bikes 

(K 

Schleinitz, 

Petzoldt, 

Kröling, 

Gehlert, & 

Mach, 

2019) 

German

y 

Naturalist

ic 

forward 

and 

egocentric 

camera, 

speed 

sensor 

 88 

participants 

(32 female, 

56 male), 

31 on 

convention

al (12f, 

19m), 47 

pedelec 

(20f, 27m), 

10 s-

pedelec 

(10m), 4 

weeks None 

E-bikes, 

conflicts 

(K 

Schleinitz, 

Petzoldt, 

& Franke-

Bartholdt, 

2015) 

German

y 

Naturalist

ic 

forward 

and 

egocentric 

camera, 

speed 

sensor 

31 

participants 

(12 female, 

19 male), 

28 with full 

data set, 4 

weeks of 

participatio

n, 383 h of 

video 

Demographics 

survey 

critical 

events 

(Twisk et 

al., 2013) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, 

potentiome

ter, GPS, 

egocentric 

camera, 

accelerome

ter, 

gryroscope, 

compass 

58 

participants

, 29 (18 

female) 

aged 30-45 

and 29 (13 

female) 

aged 65+  

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

age 
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(Vlakveld 

et al., 

2015) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

58 

participants

, 29 (18 

female) 

aged 30-45 

and 29 (13 

female) 

aged 65+  

58 participants, 

29 (18 female) 

aged 30-45 and 

29 (13 female) 

aged 65+  

E-bikes, 

age 

(K 

Schleinitz, 

Petzoldt, 

Franke-

Bartholdt, 

Krems, & 

Gehlert, 

2017) 

German

y 

Naturalist

ic 

forward 

and 

egocentric 

camera, 

speed 

sensor 

90 total 

participants

, 85 used 

(32 female, 

53 male), 

28 on co 

nventional 

(11f, 17m), 

47 pedelec 

(21f, 27m), 

s-pedelec 

(9m) 4 

weeks 

pre-study 

questionnaire 

(demographics, 

travel 

behavior), 

post-study 

questionnaire 

(experience 

during 

experiment) E-bikes 

(Petzoldt, 

Schleinitz, 

Heilmann, 

& Gehlert, 

2017) 

German

y 

Naturalist

ic 

forward 

and 

egocentric 

camera, 

speed 

sensor 

80 

participants 

(33f, 47m), 

31 

convention

al (12f, 

19m), 49 

pedelec 

(21f, 28m); 

14,445km 

pre-study 

questionnaire 

(demographics, 

travel 

behavior), 

post-study 

questionnaire 

(experience 

during 

experiment) 

E-bikes, 

conflicts 

(Dozza, 

Bianchi 

Piccinini, 

& 

Werneke, 

2016) Sweden 

Naturalist

ic 

Forward 

facing 

camera, 

GPS, 2 

IMUs, 2 

pressure 

sensors in 

the brake 

pads, pedal 

sensors, 

12 

participants 

(6 female), 

88 critical 

events, 410 

trips, 1474 

km, 86 h of 

video 

questionnaire 

(demographics, 

cycling habits, 

opinion of E-

bikes), 

interview to 

understand 

events during 

experiment E-bikes 



 

 222 

and current 

sensor 

(Boele-

Vos, 

Command

eur, & 

Twisk, 

2017) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

43 

participants

, 24 (15 

female) 

aged 30-45 

years, 19 (7 

female) 

aged 65+ 

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

age 

(K 

Schleinitz, 

Petzoldt, 

& Gehlert, 

2018) 

German

y 

Naturalist

ic 

speed, 

GPS, 

forward 

and person 

facing 

cmaeras 

32 female, 

44 male; 28 

traditional 

cyclists (11 

female) and 

48 pedelec 

(21 female) 

pre-study 

questionnaire 

(demographics, 

travel 

behavior), 

post-study 

questionnaire 

(experience 

during 

experiment) E-bikes 

(Twisk, 

Platteel, & 

Lovegrove

, 2017) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

30 

participants 

(17 female) 

aged 30-39 

and 31 

participants 

(14 female) 

aged 65-79  

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

human 

control, 

age 

(Gebhard, 

Golab, 

Keshav, & 

De Meer, 

2016) Canada 

naturalisti

c 

GPS, 

gyroscope, 

accelerome

ter, 

magnetome

ter  

31 

university-

affiliated 

participants 

(13 female), 

6000 trips 

survey (travel 

behavior and 

opinions, 

expected E-

bike use) E-bikes 
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in total; 11 

people 

completed 

all 3 

surveys 

(Gorenflo, 

Golab, et 

al., 2017) Canada 

naturalisti

c 

GPS, 

gyroscope, 

accelerome

ter, 

magnetome

ter  

31 

university-

affiliated 

participants 

(13 female), 

6000 trips 

in total; 11 

people 

completed 

all 3 

surveys 

survey (travel 

behavior and 

opinions, 

expected E-

bike use) 

Sensors, 

E-bikes 

(Gorenflo, 

Rios, 

Golab, & 

Keshav, 

2017) Canada 

naturalisti

c 

GPS, 

gyroscope, 

accelerome

ter, 

magnetome

ter  

31 

university-

affiliated 

participants 

(13 female), 

6000 trips 

in total; 11 

people 

completed 

all 3 

surveys 

survey (travel 

behavior and 

opinions, 

expected E-

bike use) E-bikes 

(Rios, 

Golab, & 

Keshav, 

2016) Canada 

naturalisti

c 

GPS, 

gyroscope, 

accelerome

ter, 

magnetome

ter  

31 

university-

affiliated 

participants 

(13 female), 

6000 trips 

in total; 11 

people 

completed 

all 3 

surveys 

survey (travel 

behavior and 

opinions, 

expected E-

bike use) E-bikes 
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(Lopez et 

al., 2017) 

Belgiu

m 

naturalisti

c GPS 

61 

participants 

(gender not 

stated), 

10,008 

segments, 

66,440 km , 

30 weeks None E-bikes 

Passing             

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Chuang et 

al., 2013) Taiwan 

Quasi-

naturalisti

c 

(specified 

route) 

GPS, 

accelerome

ter, 

gyroscope, 

compass, 2 

ultrasonic, 

8 proximity 

sensors, 1 

variable 

resistor, 5 

car camera 

black boxes 

34 (18 

female), 

unviersity 

students, 

1380 

passing 

maneuvers 

Demographics 

survey 

Sensors, 

passing 

distance 

(Love et 

al., 2012) USA 

Naturalist

ic 

Cameras 

(Parkin & 

Meyers) 

5 (1 

female), 

586 passes None 

passing 

distance 

(Mehta, 

Mehran, & 

Hellinga, 

2015) Canada 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  

GPS, 

ultrasonic, 

camera 

back/left 

view of 

passing 

vehicles 

No 

"participant

s", 27h 19 

m of data, 

5,227 

passing 

maneuvers None 

passing 

distance 
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(Walker, 

Garrard, & 

Jowitt, 

2014) UK 

Quasi-

naturalisti

c, but the 

route was 

the same 

commute 

for the 

same 

person 

every day Ultrasonic 

No 

"participant

s", single 

male rider, 

5690 

overtaking 

events 

survey on 

impression of 

outfits of 

general 

population 

(n=269) 

passing 

distance 

(Beck et 

al., 2019) 

Australi

a 

Naturalist

ic 

GPS, 

forward 

facing 

camera, 

ultrasonic 

60 

participants 

(15 female), 

422 trips, 

5302 km, 

18527 

passing 

events 

screening 

survey (age, 

gender, cycling 

habits, 

location) to 

purposely 

select 

participants 

passing 

distance 

(Meyers & 

Parkin, 

2008) UK 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  

Side facing 

camera 

participants 

irrelevant, 3 

sites each 

with a cycle 

lane and no 

cycle lane 

section, no 

statement 

on trials None 

passing 

distance 

(Parkin & 

Meyers, 

2010) UK 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  

Side facing 

camera 

participants 

irrelevant, 3 

sites each 

with a cycle 

lane and no 

cycle lane 

section, no 

statement 

on trials None 

passing 

distance 
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(Shackel & 

Parkin, 

2014) UK 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  

Cameras 

(side facing 

and 

forward 

facing), 

ultrasonic, 

microphon

e, 

speedomete

r  

participants 

irrelevant 

but 

researchers 

kept 

uniform 

appearance, 

500 

overtaking 

instances 

from 25 h of 

video None 

passing 

distance 

(Stewart & 

McHale, 

2014) UK 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  

front and 

side facing 

camera 

participants 

irrelevant 

but 

researchers 

kept 

uniform 

appearance, 

14 

segments 

ridden each 

way None passing 

(Venter & 

Knoetze, 

2013) 

South 

Africa 

Not 

naturalisti

c, defined 

segments 

with 

different 

infrastruct

ure  ulstrasonic 

participants 

irrelevant, 

13 

segments 

ridden each 

way 

observer 

observed 

speeds and 

categorized as 

low medium or 

high 

passing 

distance 

(Dozza, 

Schindler, 

Bianchi-

Piccinini, 

& 

Karlsson, 

2016) Sweden 

Not 

naturalisti

c, defined 

segments  

GPS, 

forward 

and back 

facing 

camera, 

LiDAR 

Participants 

irrelevant, 

84.5 km, 

145 

overtakings None 

passing 

distance 

(Ithana & 

Vandersch

uren, 

2013) 

South 

Africa 

Not 

naturalisti

c, defined 

segments  

Side facing 

camera 

Participants 

irrelevant, 

17 

segments None 

passing 

distance 
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ridden 4 

times 

(Vandersc

huren & 

Ithana, 

2012) 

South 

Africa 

Not 

naturalisti

c, defined 

segments  

Camera, 

gps, 

microphon

e No mention None 

passing 

distance 

(Walker, 

2007) UK 

Not 

naturalisti

c; varied 

routes, 

positionin

g and 

appearanc

e 

ultrasonic 

sensor, 

video 

camera,lase

r 

Participants 

irrelevant (1 

male 

researcher 

controlling 

appearance)

, 320 km None 

passing 

distance 

(Llorca, 

Angel-

Domenech

, Agustin-

Gomez, & 

Garcia, 

2017) Spain 

Not 

naturalisti

c, defined 

segments 

Forward, 

backward, 

and side 

facing 

cameras; 

GPS; 2 

lasers for 

speed; 2 

rangefinder

s 

professiona

l rider, 1 

mountain 

and 1 road 

bike, 2950 

overtaking 

maneuvers 

Interview on 

comfort 

passing 

distance 

 Infrastructure 

Management         

 

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 
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(Cleland, 

Walton, & 

Thomas, 

2005) 

New 

Zealand 

Not 

naturalisti

c, various 

line type 

trials 

potentiome

ter, 

accelerome

ter, 

speedomete

r 

17 

participants

; 6 

"inexperien

ced riders" 

rode over 

all 20 

objects 12 

times, other 

11 were 

experienced 

and rode 

over a 

selection 

3 tasks: target, 

lookback, 

brake; 

subjective 

evaluation of 

stability after 

ride (does 

braking affect 

stability?) 

Infrastruc

ture 

Manage

ment 

(Walton, 

Dravitzki, 

& Cleland, 

2003) 

New 

Zealand 

Not 

naturalisti

c, various 

line type 

trials 

potentiome

ter, 

accelerome

ter, 

speedomete

r 

6 

participants

, 15 lines 12 

times  

3 tasks: target, 

lookback, 

brake; 

subjective 

evaluation of 

stability after 

ride 

Infrastruc

ture 

Manage

ment 

(Vasudeva

n & Patel, 

2017) India 

Not 

naturalisti

c, various 

speed 

hump 

types 

Accelerom

eters, on 

handlebars, 

seat, and 

neck (neck 

didn't 

work) 

9 men, rode 

speed 

humps 15 

times 

Borg CR 10 

Scale for 

discomfort 

Infrastruc

ture 

Manage

ment 

(Galanis & 

Eliou, 

2011) Greece 

Not 

naturalisti

c, various 

pavement 

type trials GPS  

5 (2 

female), 

participants 

selected 

based on 

weight 

50,60,70,80

, and 90 kg None 

Infrastruc

ture 

Manage

ment 

(Lee, Shin, 

Kang, & 

Lee, 2016) 

South 

Korea 

Not 

naturalisti

c; defined, 

short 

trials 

GPS with 

real time 

kinematics 

(RTK) 

100 (20 

women), 

1200 total 

runs on 70 

m segment None 

Infrastruc

ture 

Manage

ment 
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(Nuñez, 

Bisconsini, 

& 

Rodrigues 

da Silva, 

2018) Brazil 

Not 

naturalisti

c, various 

pavement 

type trials 

Forward/do

wn facing 

camera, 

accelerome

ter 

Single 

cyclist on 5 

cycle paths 

of various 

pavement 

types 

visual 

inspection 

forms for asset 

inventorying 

Infrastruc

ture 

Manage

ment 

(Neto, 

Viana, 

Braga, & 

Oliveira, 

2018) Brazil 

Did not 

describe 

data 

collection 

GPS, 

accelerome

ter 

Did not 

describe 

data 

collection None 

Infrastruc

ture 

Manage

ment 

(Bíl, 

Andrášik, 

& 

Kubeček, 

2015) 

Czech 

Republi

c 

Not 

naturalisti

c, various 

pavement 

condition 

trials 

GPS, 

accelerome

ter 

43 

participants 

(9 women) 

rode 11 

segments of 

varying 

pavement 

condition 

subjective 

evaluation of 

comfort 

Infrastruc

ture 

Manage

ment 

(Calvey, 

Shackleton

, Taylor, & 

Llewellyn, 

2015) UK 

Not 

naturalisti

c, various 

pavement 

condition 

trials 

2 cameras 

(forward 

and 

downward 

facing), 

accelerome

ter, gps, 

speedomete

r (bike 

computer), 

sound 

meter, light 

meter, 

microphon

e 

20 

participants

, 3 segments 

questionnaire, 

totally separate 

from rides, 

about issues 

perceived as 

most important 

on a cycle path 

Infrastruc

ture 

Manage

ment 

(Calvey, 

Taylor, 

Shackleton

, & 

Llewellyn, 

2013) UK 

Not 

naturalisti

c, various 

pavement 

condition 

trials 

GPS, 

Forward 

and 

downward 

facing 

cameras, 

accelerome

pilot, just 1 

rider to test 

sensors  

Infrastruc

ture 

Manage

ment 
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ter, 

speedomete

r, sound 

meter, light 

meter, 

microphon

e 

(Li et al., 

2015) USA 

Not 

naturalisti

c, various 

pavement 

condition 

trials 

Accelerom

eter 

107 

participant 

samples 

across 42 

road 

sections 

various 

pavement 

texture 

measures, pre-

survey on 

demographics 

and cycling 

experience, in-

ride survey on 

comfort ratings 

Infrastruc

ture 

Manage

ment 

 Cyclist Stress          

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Nuñez, 

Teixeira, 

et al., 

2018) Brazil 

Not 

enough 

detail, 

likely 

quasi-

naturalisti

c with 

defined 

routes 

GPS, 

accelerome

ter 

No info on 

participants

, 2 routes at 

2 times of 

day 

smart band 

with skin 

conductivity 

levels and skin 

temeprature 

(stress 

measure) and 

GPS, noise 

sensor in 

backpack Stress 

(Feizi, Oh, 

Kwigizile, 

& Joo, 

2019) USA 

Quasi-

naturalisti

c, defined 

route 

GPS, 

forward 

facing 

camera, 

rider body 

position 

sensor, 

speedomete

51 

participants 

(10 female)  

survey on 

comfort levels 

and 

demographics Stress 
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r, steering 

angle, IMU 

(Yamanak

a, 

Xiaodong, 

& Sanada, 

2013) 

China, 

France, 

Japan 

cycle 

tracks, 

bike 

lanes, 

shared, 

residential

, shared 

sidewalks 

Forward 

facing 

camera, 

lateral 

distance, 

steering, 

braking, 

accelerome

ter, 

speedomete

r 

6 

participants

, 1432 trials 

Survey on 

perceptions 

during the ride Stress 

(Caviedes 

& 

Figliozzi, 

2018) USA 

on street 

(shared 

and bike 

lanes) and 

off-street GPS 

5 subjects 

with 

different 

levels of 

cycling 

experience 

rode route 

twice, 7 

hours of 

data 

Galvanic skin 

response 

(GSR) for 

stress, 

temperature 

from public 

sources, 2 

helmet cameras 

for a 365 

degree view Stress 

Conflicts             

Authors 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Dozza & 

Werneke, 

2014) Sweden 

Naturalist

ic 

GPS, 

forward 

facing 

camera, 2 

IMUs, 2 

pressure 

sensors in 

the brake 

pads 

16 

participants 

(8 female), 

2 weeks of 

riding, 332 

trips, 1549 

km, 114 h, 

63 events 

questionnaire 

on 

demographics 

and riding 

characteristics, 

interview to 

understand 

events Conflicts 
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(Werneke, 

Dozza, & 

Karlsson, 

2015) Sweden 

Naturalist

ic 

GPS, 

forward 

facing 

camera, 2 

IMUs, 2 

pressure 

sensors in 

the brake 

pads 

16 

participants 

(8 female), 

2 weeks of 

riding, 332 

trips, 1549 

km, 114 h, 

63 events 

questionnaire 

on 

demographics 

and riding 

characteristics, 

interview to 

understand 

events Conflicts 

(Petzoldt 

et al., 

2017) 

German

y 

Naturalist

ic 

Forward 

and 

egocentric 

camera, 

speed 

sensor 

80 

participants 

(33f, 47m), 

31 

convention

al (12f, 

19m), 49 

pedelec 

(21f, 28m); 

14,445km 

pre-study 

questionnaire 

(demographics, 

travel 

behavior), 

post-study 

questionnaire 

(experience 

during 

experiment) 

E-bikes, 

conflicts 

(K 

Schleinitz 

et al., 

2015) 

German

y 

Naturalist

ic 

Forward 

and 

egocentric 

camera, 

speed 

sensor 

31 

participants 

(12 female, 

19 male), 

28 with full 

data set, 4 

weeks of 

participatio

n, 383 h of 

video 

Demographics 

survey 

E-bikes, 

conflicts 

(Jahangiri, 

Elhenawy, 

Rakha, & 

Dingus, 

2016) USA 

intersectio

ns 

Forward 

facing and 

egocentric 

cameras, 

accelerome

ter, 

gyroscope, 

gps, speed 

sensor 

20 

participants 

(gender not 

specified) 

Pre-screening 

to find people 

who pass 

through many 

intersections 

during their 

commute Conflicts 
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(Katja 

Schleinitz 

et al., 

2019) 

German

y 

Naturalist

ic 

Forward 

and 

egocentric 

camera, 

speed 

sensor 

 88 

participants 

(32 female, 

56 male), 

31 on 

convention

al (12f, 

19m), 47 

pedelec 

(20f, 27m), 

10 s-

pedelec 

(10m), 4 

weeks of 

participatio

n None 

E-bikes, 

conflicts 

(Kircher, 

Ahlstrom, 

Palmqvist, 

& Adell, 

2015) Sweden 

Not 

naturalisti

c, various 

task trials 

Forward 

and 

egocentric 

cameras 

22 

participants 

(11 female) 

eye tracking, 

GPS (on 

cyclist), 

observers 

watching 

behavior, 

interviews 

about 

experience Conflicts 

(Angel-

Domenech

, García, 

Agustin-

Gomez, & 

Llorca, 

2014) Spain 

Quasi-

naturalisti

c 

GPS; 

forward 

(2), 

backward, 

and 

downward-

side facing 

cameras; 

microphon

e; 2 

rangefinder

s 

2 cyclists, 

648 

conflicts, 

10 hours of 

video , 130 

km 

subjective risk 

on likert scale 

for conflict 

recorded after 

conflict, used 

observations to 

find free flow 

speed Conflicts 

(Garcia, 

Gomez, 

Llorca, & 

Angel-

Domenech

, 2015) Spain 

Quasi-

naturalisti

c 

GPS; 

forward 

(2), 

backward, 

and 

downward-

1 cyclist 

(lab 

member), 

336 

meeting 

maneuvers,  None Conflicts 
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side facing 

cameras; 

microphon

e; 2 

rangefinder

s 

(Lawrence

, Oxley, 

Logan, & 

Stevenson, 

2018) 

Australi

a 

Naturalist

ic 

GPS, 

forward 

and back 

facing 

cameras 

25 

participants 

(gender not 

specified), 

97 trips, 9h 

58min, 84 

km None Conflicts 

(Gustafsso

n & 

Archer, 

2013) Sweden 

Quasi-

naturalisti

c 

(specified 

route) 

gps, 

forward 

facing 

camera 

14 men, 4 

women, 

438 trips 

over 4910 

km, 240h of 

cycling 

Diary to record 

problems and 

events of 

interest for 

each trip 

Sensors, 

conflicts 

 Human Control         

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 

(Yizhai 

Zhang, 

Kuo Chen, 

& Jingang 

Yi, 2013) USA 

Not 

naturalisti

c, short 2 

minute 

trials 

Egocentric 

camera, 

seat 

force/torqu

e sensor, 

handlebar 

strain, IMU 

5 

experienced 

riders (4 

male, 1 

female) 

imu on rider, 

indoor 

experiments 

with vision-

based motion 

capture system 

human 

control 

(Kooijman

, Schwab, 

& Moore, 

2009) 

Netherl

ands 

Quasi-

naturalstic 

(specified 

route) 

Egocentric 

camera, 

steer angle 

and steer 

rate, rear 

frame lean 

and yaw 

rate, 

speedomete

2 average 

skilled 

riders, 15 

minute 

outdoor test 

outside test 

followed by 

experiments in 

a lab setting 

human 

control 
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r, pedaling 

cadence 

(Twisk et 

al., 2017) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

30 

participants 

(17 female) 

aged 30-39 

and 31 

participants 

(14 female) 

aged 65-79  

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

human 

control, 

age 

(Ma & 

Luo, 2016) Sweden 

Naturalist

ic 

GPS and 

altitude 

11 

participants 

(3 female), 

126 trips None 

human 

control 

(Dozza & 

Fernandez, 

2014) Sweden 

Naturalist

ic 

GPS, 

forward 

facing 

camera, 2 

IMUs, 2 

pressure 

sensors in 

the brake 

pads 

16 

participants 

(8 female), 

2 weeks of 

riding, 332 

trips, 1549 

km, 114 h, 

63 events 

questionnaire 

on 

demographics 

and riding 

characteristics 

human 

ctonrol 

Age             

Citations 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 
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(Kovácsov

á et al., 

2016) 

Netherl

ands 

Not 

naturalisti

c (task-

based) 

potentiome

ter, 

accelerome

ter, 

gyroscope, 

speed 

30 

participants 

(17 female) 

aged 30-39 

and 31 

participants 

(14 female) 

aged 65-79  

questionnaire 

before 

(demographics, 

travel behavior, 

skill) and after 

(performance 

after), 

workload 

(peripheral 

detection task), 

and grip 

strength and 

balance test 

E-bikes, 

age 

(Twisk et 

al., 2013) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, 

potentiome

ter, GPS, 

egocentric 

camera, 

accelerome

ter, 

gryroscope, 

compass 

58 

participants

, 29 (18 

female) 

aged 30-45 

and 29 (13 

female) 

aged 65+  

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

age 

(Twisk et 

al., 2017) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

30 

participants 

(17 female) 

aged 30-39 

and 31 

participants 

(14 female) 

aged 65-79  

Peripheral 

detection task, 

heart rate, 

helmet 

mounted 

camera, 

demographics 

survey, grip 

strength and 

balance tests 

E-bikes, 

human 

control, 

age 

(Vlakveld 

et al., 

2015) 

Netherl

ands 

Quasi-

naturalisti

c 

(specified 

route) 

speedomete

r, GPS, 

rotation 

sensor, 

accelerome

ter, steering 

angle 

sensor, 

egocentric 

camera 

58 

participants

, 29 (18 

female) 

aged 30-45 

and 29 (13 

female) 

aged 65+  

58 participants, 

29 (18 female) 

aged 30-45 and 

29 (13 female) 

aged 65+  

E-bikes, 

age 
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(Gehlert et 

al., 2012) 

German

y 

Naturalist

ic 

front and 

back 

camera, 

gps, wheel 

sensor, 

altimeter 

55 

participants

, aiming to 

get 90, 34 

male, 21 

female 

travel diary 

(start/end time, 

activity, 

secondary 

activity, 

address) and 

questionaire 

before 

(demographics, 

traits, attitudes, 

travel behavior, 

accident 

history) and 

after (behavior, 

changes if 

riding an 

ebike), 

recruitment 

questionaire 

(demographics, 

bike use, bike 

type), skills test 

Sensors, 

age 

(Hatfield 

et al., 

2017) 

Australi

a 

Naturalist

ic 

Forward 

and 

egocentric 

cameras 

2 control 

schools, 2 

treatment 

schools, 3 

students (1 

female) at 

each 

school, 2 

weeks of 

riding None age 

 Vehicle 

Detection         

 

Citation 

Study 

Region 

Research 

Design Sensors 

Participants

/Trials 

Data collection 

techniques in 

addition to 

sensors (such 

as surveys) Topics 
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(Miah, 

Milonidis, 

Kaparias, 

& 

Karcanias, 

2019) England 

Quasi-

naturalisti

c 

(specified 

route) 

Downward 

facing 

camera, 

handlebar 

sensors, 

hall effect 

sensor, 

MEMS 

gyroscopes 

and 

accelerome

ters, GPS, 

spatial INS 

Participants 

Irrelevant None 

Vehicle 

detection 

(Milonidis, 

Miah, 

Kaparias, 

Stirling, & 

Karcanias, 

2017) England 

Quasi-

naturalisti

c 

(specified 

route) 

Downward 

facing 

camera, 

handlebar 

sensors, 

hall effect 

sensor, 

MEMS 

gyroscopes 

and 

accelerome

ters, GPS, 

spatial INS 

Participants 

Irrelevant None 

Vehicle 

detection 

(Jeon & 

Rajamani, 

2018) USA 

Not 

naturalisti

c, 

controlled 

trials of 

vehicle 

passings 

beam laser 

for distance 

Participants 

Irrelevant None 

Vehicle 

detection 
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APPENDIX D. POSTHOC TESTS FOR CHAPTER 5 

Table AI.1 Post Hoc Results for the X range by skill 

  

Motor-
Tactical 
Skill Mixed 

Mixed 0.0003 - 

Safety 
Motives 0.0319 0.163 

 

Table AI.2 Post Hoc Results for the gaze area by skill 

  

Motor-
Tactical 
Skill Mixed 

Mixed 0.0214 - 

Safety 
Motives 0.00751 0.300 

 

Table AI.3 Post Hoc Results for the fixations/second by skill 

  

Motor-
Tactical 
Skill Mixed 

Mixed 0.0197 - 

Safety 
Motives 0.0018 0.0380 
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Table AI.4 Post Hoc Results for the Y range by segment 

  Barrier 
Bumpy 
1 

Bumpy 
2 Crossing Curve Low 1 

Bumpy 
1 0.01665 - - - - - 

Bumpy 
2 0.00658 0.9702 - - - - 

Crossing 0.00058 0.57422 0.52981 - - - 

Curve 0.1639 0.1639 0.09968 0.02036 - - 

Low 1  0.04056 0.55683 0.45755 0.15671 0.44548 - 

Low 2 0.03592 0.5182 0.33349 0.12328 0.46825 0.932 

 

Table AI.5 Post Hoc Results for the gaze area by segment 

  Barrier 
Bumpy 
1 

Bumpy 
2 Crossing Curve Low 1 

Bumpy 1 0.0045 - - - - - 

Bumpy 2 0.0039 0.9215 - - - - 

Crossing 0.2826 0.088 0.078 - - - 

Curve 0.338 0.1067 0.1356 0.9756 - - 

Low 1  0.025 0.5343 0.7278 0.3297 0.2873 - 

Low 2 0.2276 0.1268 0.1211 0.9166 0.7222 0.3779 
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APPENDIX E. POSTHOC TESTS FOR CHAPTER 6  

Table A.1 Tukey Posthoc test results P values for perceived safety of unevenness on a sep

arated facility by age ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

  18-24 25-34 35-44 45-54 55-64 
65 or 
older 

18-24   .953 .834 .159 .833 .004** 

25-34 .953   1.000 .431 .998 .012* 

35-44 .834 1.000   .617 1.000 .021* 

45-54 .159 .431 .617   .915 .311 

55-64 .833 .998 1.000 .915   .067 

65 or 
older .004** .012* .021* .311 .067   
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Table A.2 Tukey Posthoc test results P values for perceived safety of debris on a separated facility 

 by age ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

 

  18-24 25-34 35-44 45-54 55-64 
65 or 
older 

18-24   .774 .544 .052 .775 .151 

25-34 .774   1.000 .400 1.000 .546 

35-44 .544 1.000   .594 1.000 .671 

45-54 .052 .400 .594   .758 .997 

55-64 .775 1.000 1.000 .758   .719 

65 or 
older .151 .546 .671 .997 .719   

 

Table A.3 Tukey Posthoc test results P values for perceived safety of wide cracks on a separated 

 facility by age ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 )  

  18-24 25-34 35-44 45-54 55-64 
65 or 
older 

18-24   1.000 .989 .095 .957 .271 

25-34 1.000   .995 .039* .972 .262 

35-44 .989 .995   .122 1.000 .426 

45-54 .095 .039* .122   .584 1.000 

55-64 .957 .972 1.000 .584   .692 

65 or 
older .271 .262 .426 1.000 .692   
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Table A.4 Tukey Posthoc test results P values for perceived safety of wide cracks on a sep

arated facility  by commute frequency ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

  
Less than 
1x/month 

Several 
x/month 

Several 
x/week Daily 

Less than 
1x/month   .138 .946 .936 

Several 
x/month .138   .438 .011* 

Several x/week .946 .438   .482 

Daily .936 .011* .482   

 

Table A.5 Tukey Posthoc test results P values for comfort of wide cracks on a separated f

acility by             recreation frequency ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

  
Less than 
1x/month 

Several 
x/month 

Several 
x/week Daily 

Less than 
1x/month   .986 .697 .200 

Several 
x/month .986   .228 .057 

Several x/week .697 .228   .715 

Daily .200 .057 .715   
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Table A.5 Tukey Posthoc test results P values for comfort of wide cracks on a mixed facil

ity by recreation  frequency ( * p<0.05;  ** p< 0.01 ; *** p <  0.001 ) 

 

  
Less than 
1x/month 

Several 
x/month 

Several 
x/week Daily 

Less than 
1x/month   .720 .834 .317 

Several 
x/month .720   .078 .029 

Several x/week .834 .078   .759 

Daily .317 .029* .759   
 


