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SUMMARY

Mixed-integer linear programming (MILP) has become a pillar of operational decision making

and optimization, with large-scale economic and societal impact. MILP solvers drive multi-billion

dollar industries and the operation of critical infrastructure, and this ability to use MILPs to effec-

tively make large-scale discrete decisions relies on the ability to solve MILPs efficiently. Despite

a half-century of active research on the subject, critical components of these solvers’ underlying

algorithms remain poorly understood theoretically. This thesis provides novel and fundamental

explanations for, and practical insights on, several long-analyzed phenomena in the branch-and-

bound method, the workhorse algorithm of all state-of-the-art MILP solvers. In chapter 1, we

give some background on branch-and-bound and related works.

These implementations of branch-and-bound typically use variable branching, that is, the

child nodes are obtained by fixing some integer constrained variable to one of its possible values.

Even though modern MILP solvers are able to solve very large-scale instances efficiently, rel-

atively little attention has been given to understanding why the underlying branch-and-bound

algorithm performs so well. In chapter 2, our goal is to theoretically analyze the performance of

the standard variable branching based branch-and-bound algorithm. In order to avoid the expo-

nential worst-case lower bounds, we follow the common idea of considering random instances.

More precisely, we consider random integer programs where the entries of the coefficient matrix

and the objective function are randomly sampled. Our main result is that with good probabil-

ity branch-and-bound with variable branching explores only a polynomial number of nodes to

solve these instances, for a fixed number of constraints. To the best of our knowledge this is the

first known such result for a standard version of branch-and-bound. We believe that this result

provides an indication as to why branch-and-bound with variable branching works so well in

practice.

To understand the difficulties of branch-and-bound, in chapter 3 we study an algorithm that
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can be viewed as an abstraction of modern MILP solvers: general branch-and-bound. That is,

instances that are challenging for general branch-and-bound are likely to also be challenging for

MILP solvers. A general branch-and-bound tree is a branch-and-bound tree which is allowed to

use general disjunctions of the form 𝜋⊤𝑥 ≤ 𝜋0 ∨ 𝜋⊤𝑥 ≥ 𝜋0 + 1, where 𝜋 is an integer vector and

𝜋0 is an integer scalar, to create child nodes. We construct a packing instance, a set covering

instance, and a Traveling Salesman Problem instance, such that any general branch-and-bound

tree that solves these instances must be of exponential size. We also verify that an exponential

lower bound on the size of general branch-and-bound trees persists even when we add Gaussian

noise to the coefficients of the cross-polytope, thus showing that a polynomial-size “smoothed

analysis” upper bound is not possible.

Full strong-branching (henceforth referred to as strong-branching) is a well-known variable

selection rule that is known experimentally to produce significantly smaller branch-and-bound

trees in comparison to all other known variable selection rules. In chapter 4, we attempt an anal-

ysis of the performance of the strong-branching rule both from a theoretical and a computational

perspective. On the positive side for strong-branching we identify vertex cover as a class of in-

stances where this rule provably works well. In particular, for vertex cover we present an upper

bound on the size of the branch-and-bound tree using strong-branching as a function of the addi-

tive integrality gap, show how the Nemhauser-Trotter property of persistency which can be used

as a pre-solve technique for vertex cover is being recursively and consistently used through-out

the strong-branching based branch-and-bound tree, and finally provide an example of a vertex

cover instance where not using strong-branching leads to a tree that has at least exponentially

more nodes than the branch-and-bound tree based on strong-branching. On the negative side for

strong-branching, we identify another class of instances where strong-branching based branch-

and-bound tree has exponentially larger tree in comparison to another branch-and-bound tree

for solving these instances. On the computational side, we conduct experiments on various types

of instances like the lot-sizing problem and its variants, packing integer programs (IP), covering

ix



IPs, chance constrained IPs, vertex cover, etc., to understand how much larger is the size of the

strong-branching based branch-and-bound tree in comparison to the optimal branch-and-bound

tree. The main take-away from these experiments is that for all these instances, the size of the

strong-branching based branch-and-bound tree is within a factor of two of the size of the optimal

branch-and-bound tree.

Finally, in chapter 5 we discuss possible extensions of the work covered in this thesis.
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CHAPTER 1

INTRODUCTION

Solving combinatorial optimization problems to optimality is a central object of study in Opera-

tions Research, Computer Science, and Mathematics. One way to solve a combinatorial optimiza-

tion problem is to model it as an integer program (IP), namely a problem of the form

max ⟨𝑐, 𝑥⟩

s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ ℤ𝑛,

(IP)

and then use an IP solver. The branch-and-bound algorithm, invented by Land and Doig in [1],

is the underlying algorithm implemented in all modern state-of-the-art MILP solvers.

As is well-known, the branch-and-bound algorithm searches the solution space by recursively

partitioning it. The progress of the algorithm is monitored by maintaining a tree. Each node of

the tree corresponds to a linear program (LP) solved, and in particular, the root-node corresponds

to the LP relaxation of the integer program (i.e., the where the constraint 𝑥 ∈ ℤ𝑛
in (chapter IP)

is removed). After solving the LP corresponding to a node, the feasible region of the LP is parti-

tioned into two subproblems (which correspond to the child nodes of the given node), so that the

fractional optimal solution of the LP is not included in either subproblem, but any integer feasi-

ble solution contained in the feasible region of the LP is included in one of the two subproblems.

This is accomplished by adding an inequality of the form 𝜋⊤𝑥 ≤ 𝜋0 to the first subproblem and

the inequality 𝜋⊤𝑥 ≥ 𝜋0 + 1 to the second subproblem (these two inequalities are referred as a

disjunction), where 𝜋 is an integer vector and 𝜋0 is an integer scalar (see Figure 3.1). The process

of partitioning at a node stops if (i) the LP at the node is infeasible, or (ii) the LP’s optimal solu-
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tion is integer feasible, or (iii) the LP’s optimal objective function value is worse than an already

known integer feasible solution. These three conditions are sometimes referred to as the rules for

pruning a node. The algorithm terminates when there are no more “open nodes” to process, that

is all nodes have been pruned. A branch-and-bound algorithm is completely described by fixing

a rule for partitioning the feasible region at each node and a rule for selecting which open node

should be solved and branched on next. If the choice of 𝜋 is limited to being the canonical basis

vectors 𝑒𝑗 = (0,… , 0, 1, 0,… , 0) (with the 1 in the 𝑗-th position), then we call such an algorithm a

simple or variable branch-and-bound, and without such a restriction on 𝜋 we call the algorithm a

general branch-and-bound. See [2, 3] for more discussion on branch-and-bound and for general

background on integer programming.

1.0.1 Bounds on the size of branch-and-bound trees

We will primarily be concerned with the size of branch-and-bound trees, which we define to be

the number of nodes in the tree. This is the number of subproblems in the enumeration tree and,

in most cases, the algorithm solves at most a linear number of linear programs at each node.

For these reasons, the size of a branch-and-bound tree is arguably the standard measure of the

algorithm’s ability to solve a given problem. This is supported in experimental studies and in

practice, where smaller trees correlate with faster total computation times and larger trees with

slower times.

Upper bounds on the size of branch-and-bound trees and “positive” results. In 1983,

Lenstra [4] showed that integer programs can be solved in polynomial time in fixed dimension.

This algorithm can be viewed as a general branch-and-bound algorithm that uses tools from the

geometry of numbers, in particular the lattice basis reduction algorithm [5], to decide on 𝜋 for

partitioning the feasible region. Pataki [6] proved that most random packing IPs (i.e., where

𝐴 and 𝑏 in (chapter IP) are non-negative) can be solved at the root-node using a partitioning
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scheme similar to the one proposed by Lenstra [4]. It has been observed that using such general

partitioning rules can result in significantly smaller trees than using a simple branch-and-bound

for some instances [7, 8], but most commercial solvers use the latter. Beame et al. [9] recently

studied how branch-and-bound can give good upper bounds for certain SAT formulas.

In chapter 2 we show that for certain classes of random integer programs the simple branch-

and-bound tree has polynomial size (number of nodes), with good probability; see [10] for the

full paper. See also [11] for nice extensions of this direction of results.

Lower bounds on the size of branch-and-bound trees and connections to the size of cut-

ting-plane algorithms. Jeroslow [12] and Chvátal [13] present examples of integer programs

where every simple branch-and-bound algorithm for solving them has an exponential-size tree.

However, these instances can be solved with small (polynomial-size) general branch-and-bound

trees; see Yang et al. [14] and Basu et al. [15]. Cook et al. [16] present a TSP instance that

requires exponential-size branch-and-cut trees that uses simple branching (recall that branch-

and-cut is branch-and-bound where one is allowed to add cuts to the intermediate LPs). Basu et

al. [17] compare the performance of branch-and-bound with the performance of cutting-plane

algorithms, providing instances where one outperforms the other and vice-versa. In another pa-

per, Basu et al. [15] compare branch-and-bound with branch-and-cut, providing instances where

branch-and-cut solves the instance in exponentially fewer nodes than branch-and-bound. They

also present a result showing that the sparsity of the disjunctions can have a large impact on the

size of the branch-and-bound tree required to solve a given problem. Beame et al. [9] asked as an

open question whether there are superpolynomial lower bounds for general branch-and-bound

algorithm. Dadush and Tiwari [18] settled this in the affirmative. In particular, they show that

any general branch-and-bound tree that proves the integer infeasibility of the so-called cross-

polytope in 𝑛-dimensions has at least
2𝑛
𝑛 leaf nodes.

In chapter 3 we demonstrate IP formulations of several combinatorial optimization problems
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requiring exponential size general branch-and-bound trees. We also present the first “smoothed”

exponential lower bound for general branch-and-bound; see [19] for the full paper.

Quantifying the impact of variable selection on the size of simple branch-and-bound

trees. When considering a simple branch-and-bound tree, the partitioning scheme boils down

to the choice of which variable to branch on. Much of the research in the area of branch-and-

bound algorithms has focused on this topic – see for example [20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32]. Most of the above work develops various intricate greedy rules for determining the

branching variable. A popular concept is that of pseudocost branching: the value of pseudocost

(variable with largest pseudocost gets branched on) keeps a history of the success (in terms of

improving dual bound) of the variables on which branching has already been done. Many of the

papers cited above differ in how pseudocost is initialized and updated during the course of the

branch-and-bound tree. Other successful methods like hybrid branching and reliability branch-

ing [32] are combinations of pseudocost branching and full strong-branching, that we discuss

next.

The focus of chapter 4 is full strong-branching [30], henceforth referred to as strong-branching

for simplicity. Empirically it is well understood that strong-branching produces very small trees

in comparison to other rules. However, to the best of our knowledge there is no understanding of

how good strong-branching is in absolute terms. In chapter 4, we analyze strong branching, both

theoretically and computationally; see [33] for the full paper.
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CHAPTER 2

BRANCH-AND-BOUND SOLVES RANDOM BINARY IPS IN POLYTIME

2.1 Introduction

In 1983, Lenstra [4] showed that general integer programs can be solved in polynomial time in

fixed dimension. This algorithm, which is essentially a branch-and-bound algorithm, uses tools

from geometry of numbers, in particular the lattice basis reduction algorithm [5] to decide on

𝜋 for partitioning the feasible region. Pataki et al. [6] proved that most random packing integer

programs can be solved at the root-node using a partitioning scheme similar to the one proposed

by Lenstra [4]. While there are some implementations of such general partitioning rules [7], all

state-of-the-art solvers use the much simpler (and potentially significantly weaker and restrictive)

variable branch-and-bound for solving binary IPs.

As mentioned above, all state-of-the-art MILP solvers use variable branching, which has

proven itself to be very successful in practice [34]. Part of this success could be attributed to the

fact that variable branching helps maintain the sparsity structure of the original LP relaxation,

which can help in solving LPs in the branch-bound-tree faster (see [35, 36, 37, 38]). Additionally,

while in the worst-case there can be exponentially many nodes in the branch-and-bound tree (see

[13, 12, 39] for explicit examples for variable branching based branch-and-bound), a major reason

for its success is that in practice the size of the tree can be quite small [40]. To the best of our

knowledge there is no theoretical study of branch-and-bound algorithm using variable branching

that attempts to explain its incredible success in practice.

In order to avoid worst-case lower bounds, a standard idea is to consider random instances.

A famous example is the study of smoothed analysis for the simplex method [41]. In this paper,

we provide what seems to be the first analysis of the branch-and-bound algorithm with variable
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branching for a set of random instances. More precisely, we consider problems of the form

max ⟨𝑐, 𝑥⟩

s.t. 𝐴𝑥 ≤ 𝑏 (IP)

𝑥 ∈ {0, 1}𝑛.

By a random instance of IP we mean one where we draw the entries of the constraint matrix

𝐴 ∈ ℝ𝑚×𝑛
(𝑚 ≪ 𝑛) and the objective vector 𝑐 uniformly from [0, 1] independently. We remark

that the right-hand side is still fixed/deterministic. We parametrize it as 𝑏𝑗 = 𝛽𝑗 ⋅ 𝑛, and we will

consider the case where 𝛽𝑗 ∈ (0, 12 ) for 𝑗 ∈ {1,… , 𝑚}. (The case when 𝛽𝑗 is high is less interesting

since the sum of 𝑛 i.i.d random variables drawn from Uniform[0, 1] concentrates tightly around
1
2

as 𝑛 → ∞, and so this constraint will be satisfied even if all variables are set to 1.) We show that

if the number of constraints 𝑚 is fixed, then the branch-and-bound tree with variable branching

has at most polynomial number of nodes with good probability. More precisely, we show the

following result.

Theorem 1. Consider a branch-and-bound algorithm using the following rules:

• Partitioning rule: Variable branching, where any fractional variable can be used to branch on.

• Node selection rule: Select a node with largest LP value as the next node to branch on.

Consider 𝑛 ≥ 𝑚 + 1 and a random instance of the problem IP where 𝑏𝑗 = 𝛽𝑗 ⋅ 𝑛 and 𝛽𝑗 ∈ (0, 1/2) for

𝑗 ∈ {1,… , 𝑛}. Then with probability at least 1 − 1
𝑛 − 2−𝛼�̄�2 , the branch-and-bound algorithm applied

to this random instance produces a tree with at most 𝑛𝑓 (𝑚;𝛽)
nodes for all 𝛼 ≤ min{30𝑚 , log 𝑛

�̄�2
}, where

�̄�2 is constant depending only on 𝑚 and 𝛽 and 𝑓 (𝑚; 𝛽) is a function depending only on 𝑚 and 𝛽 .

We note that the node selection rule used here is called the best-bound method in the literature

and often used in practice with minor modifications [31]. It is folklore that this node selection
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rule is known to guarantee the smallest tree for any fixed partitioning rule. Also notice that

Theorem 1 does not specify a rule for selecting a fractional variable to branch on and therefore

even “adversarial” choices lead to a polynomial sized tree with good probability. This indicates

that the tree is likely to be even smaller when one uses a “good” variable selection rule, such as

strong branching [32]. Another reason for the size of the tree to be even smaller in practice is that

Theorem 1 relies only on rule (iii) of pruning, i.e., pruning by bounds, to bound the size of the

tree. However, pruning may also occur due to rules (i) (LP infeasibility) or (ii) (integer optimality),

thus leading to a smaller tree size than predicted by Theorem 1.

Also notice that while IP is written in packing form (e.g., 𝐴 is non-negative), our bounds work

for every deterministic binary IP that is “well-behaved”, as discussed in section 2.7. Together with

the above observations, we believe Theorem 1 provides compelling indication of why branch-

and-bound with variable branching works so well in practice.

Finally, we note that random (packing) instances have been considered in several previous

studies, and it has been shown that they can be solved in polynomial time with high probability.

As mentioned earlier, Pataki et al. [6] proves that random packing integer programs can be solved

in polynomial-time; however it uses the very heavy machinery of lattice basis reduction, which

is not often used in practice. Other papers considering random packing problems present algo-

rithms that are custom-made enumeration-based schemes that are not equivalent to the general

purpose branch-and-bound algorithm. In particular, Lueker [42] showed that the additive in-

tegrality gap for random one-row (i.e. 𝑚 = 1) knapsack instances is 𝑂 (
log2 𝑛
𝑛 ), and using this

property Goldberg and Marchetti-Spaccamela [43] presented a polynomial-time enumeration al-

gorithm for these instances. Beier and Vocking [44, 45] showed that the so-called knapsack core

algorithm with suitable improvements using enumeration runs in polynomial-time with high

probability. Finally, Dyer and Frieze [46] generalize the previous results on integrality gap and

enumeration techniques to the random instances we consider here.

There has also been follow-up work to the results presented here. Borst et al. [11] show that,
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when the data is drawn from a standard Gaussian (as opposed to the uniform distribution studied

here), the integrality gap is sufficiently small that branch-and-bound solves problems of this type

in 𝑛poly(𝑚)
nodes. Frieze [47] shows that any branch-and-bound tree solving the asymmetric trav-

elling salesperson problem via the assignment problem relaxation has an exponential number of

nodes.

The rest of the paper is organized as follows. section 2.2 presents notation, formalizes the set-

up and presents some preliminary results needed. section 2.3 establishes a key result that the size

of branch-and-bound tree can be bounded if one can bound all possible “near optimal” solutions

for IP(𝑏) for varying values of 𝑏. section 2.4 and section 2.5 build up machinery to prove that the

number of “near optimal” solutions is bounded by a polynomial. section 2.6 completes the proof

of Theorem 1. In section 2.7, we present an upper bound on the size of branch-and-bound tree

for general IPs.

An earlier version of this paper is published in the conference SODA [10]. The current paper

is a significant improvement over [10]. Although the main result (Theorem 1) is the same, we

have significantly simplified the proofs and sharpened the key take-away result in section 2.7

that can be applied to obtain upper bounds on the size of branch-and-bound tree for general IP

models: see Corollary 3. Comparing with [10], we improve this result by reducing the upper

bound on size of branch-and-bound trees by a factor of 𝑂(𝑛𝑚). Also the analysis in section 2.3

and section 2.4 are revamped and simplified as compared the original paper [10].

2.2 Preliminaries

2.2.1 Branch-and-bound

Even though the general branch-and-bound algorithm was already described in the introduction,

we describe it again here for maximization-type 0/1 IPs and using variable branching as parti-

tioning rule and best-bound as node selection rule, for a clearer mental image. This is what we
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will henceforth refer to as the branch-and-bound (BB) algorithm.

The algorithm constructs a tree  where each node has an associated LP; the LP relaxation of

original integer program is the LP of the root node. In each iteration the algorithm:

1. (Node selection) Selects an unpruned leaf 𝑁 with highest optimal LP value in the current

tree  , and obtains an optimal solution 𝑥 to this LP, if one exists.

2. (Pruning by integrality) If 𝑥 is integral, and hence feasible to the original IP, and has higher

value than the current best such feasible solution, it sets 𝑥 as the current best feasible

solution. The node 𝑁 is marked as pruned by integrality.

3. (Pruning by infeasibility/bound) Else, if the LP is infeasible or its value is no better than

the value of the current best feasible solution, the node 𝑁 is marked as pruned by infeasi-

bility/bound.

4. (Branching) Otherwise it selects a coordinate 𝑗 where 𝑥 is fractional and adds two children

to 𝑁 in the tree: on one of them it adds the constraint 𝑥𝑗 = 0 to the LP of 𝑁 , and on the

other it adds the constraint 𝑥𝑗 = 1 instead.

Note that we do not assume that an optimal IP solution, or even the optimal IP value, is given

in the beginning of the procedure: the algorithm starts with no current best feasible solution,

which are only found in step Pruning by integrality. One simple but important property of this

best-bound node selection rule is the following.

Lemma 1 (best-bound node selection). The execution of branch-and-bound with best-bound node

selection rule never branches on a node whose LP value is worse than the optimal value of the original

IP.

Proof. Let IP
∗

denote the optimal value of the original IP. Notice that throughout the execution,

either:
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1. The current best feasible solution has value IP
∗

(i.e. an optimal integer solution has been

found)

2. The LP of some unpruned leaf contains an optimal integer solution, and so this LP value is

at least as good as IP
∗
.

This means that in every iteration, the algorithm cannot select and branch on a leaf with LP value

strictly less than IP
∗
: in Case 2 such leaf is not selected (due to the best-bound rule), and in Case

1 such leaf is pruned by infeasibility/bound (and hence not branched on) if selected.

2.2.2 (Random) Packing problems

We will use the following standard observation on the number of fractional coordinates in an

optimal solution of the LP relaxation of every instance of IP (see for example Section 17.2 of

[48]).

Lemma 2. Consider an instance of IP. Then every LP in the BB tree for this instance has an optimal

solution with at most 𝑚 fractional coordinates.

Proof. Notice that the LP’s in the BB tree for this instance have the form

max ⟨𝑐, 𝑥⟩

s.t. 𝐴𝑥 ≤ 𝑏

𝑥𝑗 = 0, ∀𝑗 ∈ 𝐽0 (2.1)

𝑥𝑗 = 1, ∀𝑗 ∈ 𝐽1

𝑥𝑗 ∈ [0, 1], ∀𝑗 ∉ 𝐽0 ∪ 𝐽1,

for disjoint subsets 𝐽0, 𝐽1 ⊆ [𝑛] (i.e. the fixings of variables due to the branchings up to this node

in the tree).
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The feasible region 𝑃 in (Equation 2.1) is bounded, so there is an optimal solution 𝑥 ∗
of the LP

that is a vertex of 𝑃 . This implies that at least 𝑛 of the constraints of the LP are satisfied by 𝑥 ∗
at

equality. Since there are 𝑚 constraints in 𝐴𝑥 ≤ 𝑏, at least 𝑛 −𝑚 of these equalities are of the form

𝑥 ∗
𝑗 = 𝑣𝑗 (for some 𝑣𝑗 ∈ {0, 1}) and so at most 𝑚 𝑥 ∗

𝑗 ’s can be fractional.

Recall that the integrality gap of IP is IPGap ∶= OPT(LP) −OPT(IP), namely the optimal value

of its LP relaxation LP ∶= max{⟨𝑐, 𝑥⟩ ∶ 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ [0, 1]𝑛} minus the optimal IP value. Dyer and

Frieze proved the following property that will be crucial for our results: for a random instance

of IP (defined right after the definition of IP), the integrality gap is 𝑂( log
2 𝑛
𝑛 ) with good probability

(setting 𝛼 to be a sufficiently large constant below).

Theorem 2 (Theorem 1 of [46]). Consider a vector 𝛽 ∈ (0, 12 )
𝑚
and let 𝑏 ∈ ℝ𝑚

be given by 𝑏𝑗 = 𝛽𝑗 ⋅ 𝑛

for 𝑗 ∈ {1,… , 𝑚}. Then there are scalars 𝑎1, 𝑎2 ≥ 1 depending only on 𝑚 and min𝑗 𝛽𝑗 such that the

following holds: for a random instance  of IP

Pr(IPGap() ≥ 𝛼𝑎1
log2 𝑛
𝑛 ) ≤ 2−𝛼𝑎2

for all 𝛼 ≤ 3 log 𝑛
𝑎2

.

2.2.3 Notation

We use the shorthands ( 𝑛
≤𝑘) ∶= ∑𝑘

𝑖=0 (
𝑛
𝑖) and [𝑛] ∶= {1, 2,… , 𝑛}. We also use ([𝑛]≤𝑘) to denote the

family of all subsets of [𝑛] of size at most 𝑘. We use 𝐴𝑗
to denote the 𝑗th column of the matrix 𝐴.

For any vector 𝑥 ∈ ℝ𝑛
, we use 𝑥+

to denote the vector that satisfies 𝑥+
𝑖 = max(0, 𝑥𝑖) for all 𝑖 ∈ [𝑛].

2.3 Branch-and-bound and good integer solutions

In this section we connect the size of the BB tree for any instance of IP and the number of its

near-optimal solutions.
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To make this precise, first let LP be the LP relaxation of IP

max ⟨𝑐, 𝑥⟩

s.t. 𝐴𝑥 ≤ 𝑏 (LP)

𝑥 ∈ [0, 1]𝑛,

and its Lagrangian relaxation

min
𝜆≥0

max
𝑥∈[0,1]𝑛

⟨𝑐, 𝑥⟩ − 𝜆⊤(𝐴𝑥 − 𝑏) ≡ min
𝜆≥0

max
𝑥∈[0,1]𝑛

∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆, 𝐴𝑗⟩)𝑥𝑗 + ⟨𝑏, 𝜆⟩.

Let (𝑥 ∗, 𝜆∗) be a saddle point of this Lagrangian, namely

𝑥 ∗ = argmax
{
∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)𝑥𝑗 + ⟨𝑏, 𝜆∗⟩ ∶ 𝑥 ∈ [0, 1]𝑛
}

𝜆∗ = argmin
{
∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆, 𝐴𝑗⟩)𝑥 ∗
𝑗 + ⟨𝑏, 𝜆⟩ ∶ 𝜆 ≥ 0

}
.

Recall that this saddle point solution has the same value as OPT(LP) [49]. Also notice that

𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩ can be thought as the reduced cost of variable 𝑥𝑗 and by optimality of 𝑥 ∗

𝑥 ∗
𝑗 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1 if 𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩ > 0

0 if 𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩ < 0.
(2.2)

For any point 𝑥 ∈ [0, 1]𝑛, we define the quantity

pareto(𝑥) = ∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩) ⋅ (𝑥 ∗
𝑗 − 𝑥𝑗),

which is then the difference in value between 𝑥 and 𝑥 ∗
given by the reduced costs. Given this, we
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say that a 0/1 point 𝑥 is good if its pareto is at most IPGap, and we use 𝐺 to denote the set of all

good points, namely

𝐺 ∶= {𝑥 ∈ {0, 1}𝑛 ∶ pareto(𝑥) ≤ IPGap}. (2.3)

The following is the main result of this section, which states that we can bound the size of the

branch-and-bound tree based on the number of these good points.

Theorem 3. Consider the branch-and-bound algorithm with best-bound node selection rule for solv-

ing IP. Then its final tree has at most 2|𝐺 |𝑛 + 1 nodes.

The remainder of this section is dedicated to proving this result. So let  denote the final

BB tree constructed by the algorithm, and let  denote the set of its internal nodes. The first

observation is that all LP solutions seen throughout the BB tree have small pareto.

Lemma 3. Let 𝑁 be a node that is branched on in the BB tree  , i.e. 𝑁 ∈  , and let 𝑥𝑁
be an

optimal solution for the LP of this node with at most 𝑚 fractional coordinates (via Lemma 2). Then,

pareto(𝑥𝑁 ) ≤ IPGap.

Proof. First notice that for every feasible solution 𝑥 to LP we have

OPT(LP) ≥ ⟨𝑐, 𝑥⟩ + pareto(𝑥),

since the equality of optimal value of LP and its Lagrangian and then feasibility of 𝑥 give

OPT(LP) − ⟨𝑐, 𝑥⟩ = ∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)𝑥 ∗
𝑗 + ⟨𝑏, 𝜆∗⟩ − ⟨𝑐, 𝑥⟩ ≥ ∑

𝑗∈[𝑛]
(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)𝑥 ∗

𝑗 + ⟨𝐴𝑥, 𝜆∗⟩ − ⟨𝑐, 𝑥⟩,

and the claim follows by noticing that the right-hand side is precisely pareto(𝑥). Moreover, by

13



the best-bound node selection rule (Lemma 1) we have that ⟨𝑐, 𝑥𝑁 ⟩ ≥ OPT(LP) − IPGap. Putting

these observations together proves the result.

We will now present the proof of Theorem 3. This follows from the construction of an asso-

ciation between BB nodes and good points. In particular, we will show that the association is at

least one-to-one and at most 𝑛-to-one.

Proof of Theorem 3. We will demonstrate an association 𝑟 ∶  → 𝐺 that satisfies the following

properties:

1. associates any internal node 𝑁 ∈  to at least one good solution 𝑥 ∈ 𝐺; i.e. for all 𝑁 ∈ 

it holds that |𝑟(𝑁 )| ≥ 1

2. associates at most 𝑛 internal nodes to any one good solution; i.e. for any 𝑥 ∈ 𝐺, it holds

that |𝑟−1(𝑥)| ≤ 𝑛

Let 𝑁 ∈  be any internal node of  and 𝑥𝑁
be its optimal LP solution. Let 𝐽 ⊂ [𝑛] denote

the set of indices where 𝑥𝑁
is 0 or 1. Define 𝑟 ∶  → 𝐺 to associate 𝑁 with any

𝑥 ′ ∈ argmin{ pareto(𝑥) ∶ 𝑥 ∈ {0, 1}𝑛, 𝑥𝑗 = 𝑥𝑁
𝑗 ∀𝑗 ∈ 𝐽}.

We will now show that 𝑟 satisfies property 1. Noting that the objective function pareto(⋅) is affine

(𝜆∗ is fixed) and that 𝑥𝑁
is in the convex hull of the 0, 1 points {𝑥 ∈ {0, 1}𝑛 ∶ 𝑥𝑗 = 𝑥𝑁

𝑗 ∀𝑗 ∈ 𝐽}, it

must hold that

pareto(𝑥 ′) ≤ pareto(𝑥𝑁 ) ≤ IPGap,

where the last inequality follows from Lemma 3. Then we see that

𝑥 ′ ∈ {𝑥 ∈ {0, 1}𝑛 ∶ pareto(𝑥) ≤ IPGap}.

This concludes the proof of property 1.
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We will now show that 𝑟 satisfies property 2. Let 𝑥 ∈ 𝐺. Let 𝑁1, 𝑁2 be two internal nodes

of  , with optimal LP solutions 𝑥 (1)
and 𝑥 (2)

respectively, such that 𝑟(𝑥 (1)) = 𝑟(𝑥 (2)) = 𝑥 ′
. In the

following paragraph we show that either 𝑁1 is a descendant of 𝑁2, or vice versa. Then, for any

𝑥 ∈ 𝐺 all nodes associated to 𝑥 (i.e. all 𝑁 ∈ 𝑟−1(𝑥)) must lie in the same path from the root in 

(i.e. must all be descendants of one another). So since a path from the root in  can have length

at most 𝑛, we have the desired conclusion.

Suppose, for the sake of contradiction, 𝑁1 and 𝑁2 are not one a descendant of the other in the

BB tree  . Let 𝑁 ≠ 𝑁1, 𝑁2 be their lowest common ancestor in the tree  , and let 𝑓 ∈ {1, ..., 𝑛}

be the index where node 𝑁 was branched on. Since nodes 𝑁1 and 𝑁2 are on different subtrees

under 𝑁 , without loss of generality assume that 𝑁1 is in the subtree with 𝑥𝑓 = 0 and 𝑁2 is in the

subtree with 𝑥𝑓 = 1. Then since 𝑥 (1)
𝑓 = 0 and 𝑟(𝑥 (1)) = 𝑥 ′

, it must be that 𝑥 ′
𝑓 = 0. However, since

𝑥 (2)
𝑓 = 1, we have 𝑥 (2)

𝑓 ≠ 𝑥 ′
𝑓 , so that by definition of 𝑟(⋅) we have 𝑥 (2) ∉ 𝑟−1(𝑥 ′), getting the desired

contradiction. This concludes the proof of property 2.

The existence of such an association implies that the number of internal nodes of  (i.e. | |)

is upper bounded by |𝐺 | ⋅ 𝑛. Since the total number of nodes in a binary tree is at most twice the

number of its internal nodes plus 1, we see that  has at most 2|𝐺 |𝑛 + 1 nodes, giving the desired

bound.

We spend the remainder of this paper obtaining an upper bound of the form 𝑛𝑂(𝑚)
for the

number of good solutions (Equation 2.3), which will then prove Theorem 1.

2.4 Value of solutions and geometry of items

Going back to (Equation 2.2), we can see the saddle point 𝑥 ∗
as being obtained by a linear classi-

fication of columns induced by 𝜆∗, namely 𝑥 ∗
𝑗 is set to 0/1 depending on whether

𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩ ≷ 0 ≡ ⟨(𝑐𝑗 , 𝐴𝑗), (1, −𝜆∗)⟩ ≷ 0,
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Figure 2.1: Each dot represents an item/column (𝑐𝑗 , 𝐴𝑗) of IP. The grey line coming from the origin

is 𝐻 . The optimal solution has 𝑥 ∗
𝑗 = 1 for all items 𝑗 above this line, 𝑥 ∗

𝑗 = 0 for all items 𝑗 below

this line. Each 𝐽𝓁 is the set of items that lie in one of the colored regions; 𝐽rem are the items that

lie on the inner most region (yellow).

that is, depending where the column (𝑐𝑗 , 𝐴𝑗) lands relative to the hyperplane in ℝ𝑚+1

𝐻 ∶= {𝑦 ∈ ℝ𝑚+1 ∶ ⟨(1, −𝜆∗), 𝑦⟩ = 0};

see Figure Figure 2.1.

The next lemma says that the pareto(𝑥) of a 0/1 point 𝑥 increases the more it disagrees with

𝑥 ∗
, and the penalty for the disagreement on item 𝑗 depends on the distance of the column (𝑐𝑗 , 𝐴𝑗)

to the hyperplane 𝐻 . We use 𝑑(𝑧, 𝑈 ) to denote the Euclidean distance between a point 𝑧 and a

set 𝑈 , and 1(𝑃 ) to denote the 0/1 indicator of a predicate 𝑃 . This generalizes Lemma 3.1 of [43].

Lemma 4. Consider any 𝑥 ∈ {0, 1}𝑛. Then

pareto(𝑥) ≥ ∑
𝑗∈[𝑛]

𝑑((𝑐𝑗 , 𝐴
𝑗), 𝐻) ⋅ 1(𝑥𝑗 ≠ 𝑥 ∗

𝑗 ).
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Proof. Recalling the definition of pareto(⋅), we can rewrite it as follows:

pareto(𝑥) = ∑
𝑗∈[𝑛]

(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)(𝑥 ∗
𝑗 − 𝑥𝑗)

= ∑
𝑗∶𝑥 ∗𝑗 =0

(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)(𝑥 ∗
𝑗 − 𝑥𝑗) + ∑

𝑗∶𝑥 ∗𝑗 =1
(𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩)(𝑥 ∗

𝑗 − 𝑥𝑗). (2.4)

To analyze the right-hand side of this equation, consider a term in the first sum. Since 𝑥 ∗
𝑗 = 0,

the term is non-zero exactly when the 0/1 point 𝑥 takes value 𝑥𝑗 = 1. Moreover, since 𝑥 ∗
𝑗 = 0

implies that 𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩ is negative, this means that the terms in the first sum of (Equation 2.4)

equal |𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩| ⋅ 1(𝑥𝑗 ≠ 𝑥 ∗
𝑗 ). A similar analysis shows that the terms in the second sum of

(Equation 2.4) also equal |𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩| ⋅ 1(𝑥𝑗 ≠ 𝑥 ∗
𝑗 ). Together these give

pareto(𝑥) = ∑
𝑗∈[𝑛]

|𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩| ⋅ 1(𝑥𝑗 ≠ 𝑥 ∗
𝑗 ). (2.5)

Finally, notice that

|𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩| ≥ 𝑑((𝑐𝑗 , 𝐴
𝑗), 𝐻),

because, since the point (⟨𝜆∗, 𝐴𝑗⟩, 𝐴𝑗) belongs to the hyperplane 𝐻 , we have

𝑑((𝑐𝑗 , 𝐴
𝑗), 𝐻) ≤ ‖(𝑐𝑗 , 𝐴𝑗) − (⟨𝜆∗, 𝐴𝑗⟩, 𝐴𝑗)‖2 = |𝑐𝑗 − ⟨𝜆∗, 𝐴𝑗⟩|.

Plugging this bound in (Equation 2.5) concludes the proof of the lemma.

Thus, a good solution, i.e., one with pareto(𝑥) ≤ IPGap, must disagree with 𝑥 ∗
on few items

𝑗 whose columns (𝑐𝑗 , 𝐴𝑗) are “far” from the hyperplane 𝐻 . To make this quantitative we bucket

these distances in powers of 2, so for 𝓁 ≥ 1 define the set of items

𝐽𝓁 ∶=
{
𝑗 ∶ 𝑑((𝑐𝑗 , 𝐴

𝑗), 𝐻) is in the interval (
log 𝑛
𝑛 2𝓁 , log 𝑛

𝑛 2𝓁+1]

}
,
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and define 𝐽rem = [𝑛] ⧵⋃𝓁≥1 𝐽𝓁 as the remaining items (see Figure Figure 2.1). Since every item in

𝐽𝓁 has distance at least
log 𝑛
𝑛 2𝓁 from 𝐻 , we directly have the following.

Corollary 1. If 𝑥 ∈ {0, 1}𝑛 is a good point (i.e., pareto(𝑥) ≤ IPGap), then for every 𝓁 ≥ 1 the number

of coordinates 𝑗 ∈ 𝐽𝓁 such that 𝑥𝑗 ≠ 𝑥 ∗
𝑗 is at most

𝐶
2𝓁 , where 𝐶 ∶= 𝑛

log 𝑛 ⋅ IPGap.

Then, an easy counting argument gives an upper bound on the total number of good points

𝐺.

Lemma 5. We have the following upper bound:

|𝐺 | ≤ 2|𝐽rem | ⋅
log𝐶

∏
𝓁=1

(
|𝐽𝓁 |

≤ 𝐶/2𝓁)
,

where 𝐶 ∶= 𝑛
log 𝑛 ⋅ IPGap.

1

Proof. Notice that every solution in 𝐺 can be thought of as being created by starting with the

vector 𝑥 ∗
and then changing some of its coordinates, and because of Corollary 1 we:

• Cannot change the value of 𝑥 ∗
in any coordinate 𝑗 in a 𝐽𝓁 with 𝓁 > log𝐶

• Can only flip the value of 𝑥 ∗
in at most

𝐶
2𝓁 of the coordinates 𝑗 ∈ 𝐽𝓁 for each 𝓁 = 1,… , log𝐶

(recall that 𝑥 ∗
is 0/1 in all such coordinates)

• Set a new arbitrary 0/1 value for (in principle all) coordinates in 𝐽rem.

Since there are at most 2|𝐽rem | ⋅ ∏log𝐶
𝓁=1 ( |𝐽𝓁 |

≤𝐶/2𝓁) options in this process, we have the desired upper

bound.

Notice that, ignoring the term 2|𝐽rem |
, this already gives with good probability a quasi-polynomial

bound |𝐺 | ≲ 𝑂(𝑛)polylog(𝑛)
for random instances of IP: the upper bound on the integrality gap from

1
We assume throughout that the 𝐶/2𝓁 ’s are integral to simplify the notation, but it can be easily checked that

using ⌈𝐶/2𝓁 ⌉ instead does not change the results.
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Theorem 2 (with 𝛼 set as a large enough constant) gives that with good probability 𝐶 ≤ log 𝑛

and so we have log log 𝑛 binomial terms, each at most ( 𝑛
log 𝑛) ≤ 𝑛log 𝑛 (since |𝐽𝓁 | ≤ 𝑛).

In order to obtain the desired polynomial bound |𝐺 | ≤ 𝑛𝑂(𝑚)
, we need a better control on |𝐽𝓁 |,

namely the number of points at a distance from the hyperplane 𝐻 .

2.5 Number of items at a distance from the hyperplane

To control the size of the sets 𝐽𝓁 we need to consider a random instance of IP and use the fact that

the columns (𝑐𝑗 , 𝐴𝑗) are uniformly distributed in [0, 1]𝑚+1
. Recalling the definition of 𝐽𝓁 , we see

that an item 𝑗 belongs to this set only if the column (𝑐𝑗 , 𝐴𝑗) lies on the (𝑚 + 1)-dim slab of width

log 𝑛
𝑛 2𝓁+1 around 𝐻 :

{
𝑦 ∈ ℝ𝑚+1 ∶ 𝑑(𝑦, 𝐻 ) ≤ log 𝑛

𝑛 2𝓁+1
}
.

It can be shown that the volume of this slab intersected with [0, 1]𝑚+1
is at most proportional to its

width, so as long as𝐻 is independent of the columns, the probability that a random column (𝑐𝑗 , 𝐴𝑗)

lies in this slab is ≈ log 𝑛
𝑛 2𝓁+1. Thus, we would expect that at most ≈ (log 𝑛) 2𝓁+1 columns lie in this

slab, which gives a much improved upper bound on the (expected) size of 𝐽𝓁 (as indicated above,

think 𝓁 ≤ log log 𝑛). Moreover, using independence of the columns (𝑐𝑗 , 𝐴𝑗), standard concentration

inequalities show that for each such slab with good probability the number of columns that land

in it is within a multiplicative factor from this expectation.

Unfortunately, the hyperplane 𝐻 that we are concerned with, whose normal
(1,−𝜆∗)

‖(1,−𝜆∗)‖2
is deter-

mined by the data, is not independent of the columns. So we will show a much stronger uniform

bound that shows that with good probability the above phenomenon holds simultaneously for all

slabs around all hyperplanes, which then shows that it holds for 𝐻 . We abstract this situation

and prove such uniform bound. We use 𝕊𝑘−1 to denote the unit sphere in ℝ𝑘
.

Theorem 4 (Uniform bound for slabs). For 𝑢 ∈ 𝕊𝑘−1 and 𝑤 ≥ 0, define the slab of normal 𝑢 and
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width 𝑤 as

𝑆𝑢,𝑤 ∶=
{
𝑦 ∈ ℝ𝑘 ∶ ⟨𝑢, 𝑦⟩ ∈ [−𝑤,𝑤]

}
.

Let 𝑌 1,… , 𝑌 𝑛
be independent random vectors uniformly distributed in the cube [0, 1]𝑘 , for 𝑛 ≥ 𝑘.

Then with probability at least 1 − 1
𝑛 , we have that for all 𝑢 ∈ 𝕊𝑘−1 and 𝑤 ≥ log 𝑛

𝑛 at most 60𝑛𝑤𝑘 of the

𝑌 𝑗
’s belong to 𝑆𝑢,𝑤 .

While very general bounds of this type are available (for example, appealing to the low VC-

dimension of the family of slabs), we could not find in the literature a good enough such multi-

plicative bound (i.e., relative to the expectation ≈ 𝑛𝑤). The proof of Theorem 4 instead relies on

an 𝜀-net type argument.

This result directly gives the desired upper bound on the size of the sets 𝐽rem and 𝐽𝓁 .

Corollary 2. With probability at least 1 − 1
𝑛 we have simultaneously

|𝐽rem| ≤ 120(𝑚 + 1) log 𝑛

|𝐽𝓁 | ≤ 60(𝑚 + 1)2𝓁+1 log 𝑛, ∀𝓁 ∈ [log 𝑛 − 1]

2.5.1 Proof of Theorem 4

Let 𝕊′ be a minimal 𝜀-net, for 𝜀 ∶= log 𝑛
𝑛
√
𝑘 , of the sphere 𝕊𝑘−1, namely for each 𝑢 ∈ 𝕊𝑘−1 there is 𝑢′ ∈ 𝕊′

such that ‖𝑢′ − 𝑢‖2 ≤ 𝜀. It is well-known that there is such a net of size at most ( 3𝜀 )
𝑘

(Corollary

4.2.13 [50]). Also define the discretized set of widths 𝕎′ ∶= { log 𝑛
𝑛 , 2 log 𝑛𝑛 , ...,

√
𝑘 + log 𝑛

𝑛 } so that

|𝕎′| = 𝑛
√
𝑘

log 𝑛 + 1.

We start by focusing on a single slab in the net, observing that these slabs are determined

independently of the columns. Since the vector 𝑌 𝑗
is uniformly distributed in the cube [0, 1]𝑘 , the

probability that it belongs to a set 𝑈 ⊆ [0, 1]𝑘 equals the volume vol(𝑈 ). Using this and an upper

bound on the volume of a slab (intersected with the cube), we get that the probability that 𝑌 𝑗
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lands on a slab is at most proportional to the slab’s width.

Lemma 6. For every slab 𝑆𝑢′,𝑤′ , with 𝑢′ ∈ 𝕊′ and 𝑤′ ∈ 𝕎′
, we have Pr(𝑌 𝑗 ∈ 𝑆𝑢′,𝑤′) ≤ 2

√
2𝑤′

.

Proof. Since these slabs are determined independently of the columns, it is equivalent to show

that the volume vol(𝑆𝑢′,𝑤′ ∩ [0, 1]𝑘) is at most 2
√
2𝑤′

. Let slice(ℎ) ∶= {𝑦 ∈ [0, 1]𝑘 ∶ ⟨𝑦, 𝑢⟩ = ℎ} be

the slice of the cube with normal 𝑢′
at height ℎ. It is known that every slice of the cube has (𝑘−1)-

dim volume vol𝑘−1 at most

√
2 [51], and since 𝑆𝑢′,𝑤′ ∩ [0, 1]𝑘 = ⋃ℎ∈[−𝑤′,𝑤′] slice(ℎ), by integrating

we get

vol(𝑆𝑢′,𝑤′ ∩ [0, 1]𝑘) = ∫
𝑤′

−𝑤′
vol𝑘−1(slice(ℎ)) dℎ ≤ 2

√
2𝑤′

as desired.

Let 𝑁𝑢,𝑤 be the number of vectors 𝑌 𝑗
that land in the slab 𝑆𝑢,𝑤 . From the previous lemma

we have 𝔼𝑁𝑢′,𝑤′ ≤ 2
√
2𝑤′𝑛. To show that 𝑁𝑢′,𝑤′ is concentrated around its expectation we need

Bernstein’s Inequality; the following convenient form is a consequence of Appendix A.2 of [52]

and the fact Var(∑𝑗 𝑍𝑗) = ∑𝑗 Var(𝑍𝑗) ≤ ∑𝑗 𝔼𝑍 2
𝑗 ≤ 𝔼∑𝑗 𝑍𝑗 for independent random variables 𝑍𝑗 in

[0, 1].

Lemma 7. Let 𝑍1,… , 𝑍𝑛 be independent random variables in [0, 1]. Then for all 𝑡 ≥ 0,

Pr(∑
𝑗
𝑍𝑗 ≥ 𝔼∑

𝑗
𝑍𝑗 + 𝑡) ≤ exp( − min

{
𝑡2

4𝔼∑𝑗 𝑍𝑗
,
3𝑡
4

}

).

Lemma 8. For each 𝑢′ ∈ 𝕊′ and width 𝑤′ ∈ 𝕎′
, we have

Pr(𝑁𝑢′,𝑤′ ≥ 20𝑤′𝑛𝑘) ≤ 𝑛−4𝑘 .

Proof. Let 𝜇 ∶= 𝔼𝑁𝑢′,𝑤′ . Notice that 𝑁𝑢′,𝑤′ is the sum of the independent random variables that

indicate for each 𝑗 whether 𝑌 𝑗 ∈ 𝑆𝑢′,𝑤′ . Then applying the previous lemma with 𝑡 = 4𝜇 + 16
3 𝑘 ln 𝑛
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we get

Pr(𝑁𝑢′,𝑤′ ≥ 5𝜇 +
16
3
𝑘 ln 𝑛) ≤ exp( − min

{
16
3
𝑘 ln 𝑛 ,

3 ⋅ (16/3)𝑘 ln 𝑛
4

}

) ≤ 𝑛−4𝑘 , (2.6)

where in the first inequality we used 𝑡2 ≥ (4𝜇) ⋅ ( 163 𝑘 ln 𝑛). From Lemma 6 we get 𝜇 ≤ 2
√
2𝑛𝑤′

, and

further using the assumption 𝑤′ ≥ log 𝑛
𝑛 (implied by 𝑤′ ∈ 𝕎′

) we see that

20𝑤′𝑛𝑘 ≥ (10
√
2 +

16
3 )𝑤′𝑛𝑘 ≥ 5𝜇 +

16
3
𝑘 ln 𝑛,

and hence inequality (Equation 2.6) upper bounds Pr(𝑁𝑢′,𝑤′ ≥ 20𝑤′𝑛𝑘). This concludes the proof.

To prove the theorem we need to show that with high probability we simultaneously have

𝑁𝑢,𝑤 ≤ 60𝑛𝑤𝑘 for all 𝑢 ∈ 𝕊𝑘−1 and 𝑤 ≥ log 𝑛
𝑛 . We associate each slab 𝑆𝑢,𝑤 (for 𝑢 ∈ 𝕊𝑘−1 and

𝑤 ∈ [0,
√
𝑘]) to a “discretized slab” 𝑆𝑢′,𝑤′ by taking 𝑢′

as a vector in the net 𝕊′ so that ‖𝑢′ − 𝑢‖2 ≤ 𝜀

and taking 𝑤′ ∈ 𝕎′
so that 𝑤′ ∈ [𝑤 + log 𝑛

𝑛 , 𝑤 + 2 log 𝑛
𝑛 ].

Lemma 9. This association has the following properties: for every 𝑢 ∈ 𝕊𝑘−1 and 𝑤 ∈ [0,
√
𝑘]

1. The intersected slab 𝑆𝑢,𝑤 ∩ [0, 1]𝑘 is contained in the associated intersected slab 𝑆𝑢′,𝑤′ ∩ [0, 1]𝑘 .

In particular, in every scenario 𝑁𝑢,𝑤 ≤ 𝑁𝑢′,𝑤′

2. If the width satisfies 𝑤 ≥ log 𝑛
𝑛 , then 𝑤′ ≤ 3𝑤 .

Proof. The second property is immediate, so we only prove the first one. Take a point 𝑦 ∈ 𝑆𝑢,𝑤 ∩

[0, 1]𝑘 . By definition we have ⟨𝑦, 𝑢⟩ ∈ [−𝑤,𝑤], and also

|⟨𝑦, 𝑢′⟩ − ⟨𝑦, 𝑢⟩| = |⟨𝑦, 𝑢′ − 𝑢⟩| ≤ ‖𝑦‖2 ‖𝑢′ − 𝑢‖2 ≤
√
𝑘𝜀 =

log 𝑛
𝑛

,

where the first inequality is Cauchy-Schwarz, and the second uses the fact that every vector in

[0, 1]𝑘 has Euclidean norm at most

√
𝑘. Therefore ⟨𝑦, 𝑢′⟩ ∈ [−(𝑤 + log 𝑛

𝑛 ), 𝑤 + log 𝑛
𝑛 ], and since the
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associated width satisfies 𝑤′ ≥ 𝑤 + log 𝑛
𝑛 we see that 𝑦 belongs to 𝑆𝑢′,𝑤′ ∩ [0, 1]𝑘 . This concludes the

proof.

Proof of Theorem 4. We need to show

Pr [ ⋁
𝑢∈𝕊𝑘−1,𝑤≥ log 𝑛

𝑛

(𝑁𝑢,𝑤 > 60𝑤𝑛𝑘)] ≤
1
𝑛
. (2.7)

Since there are only 𝑛 𝑌 𝑗
’s, we always have 𝑁𝑢,𝑤 ≤ 𝑛 and hence it suffices to consider 𝑤 ∈

[ log 𝑛𝑛 , 1
60𝑘 ], in which case we can use the inequalities 𝑁𝑢,𝑤 ≤ 𝑁𝑢′,𝑤′ and 𝑤′ ≤ 3𝑤 from the previous

lemma; in particular, the event (𝑁𝑢,𝑤 > 60𝑤𝑛𝑘) implies the event (𝑁𝑢′,𝑤′ > 20𝑤′𝑛𝑘). Thus, using

Lemma 8

LHS of (Equation 2.7) ≤ Pr [ ⋁
𝑢′∈𝕊′,𝑤′∈𝕎′

(𝑁𝑢′,𝑤′ > 20𝑤′𝑛𝑘)]

≤ ∑
𝑢′∈𝕊′,𝑤′∈𝕎′

Pr(𝑁𝑢′,𝑤′ > 20𝑤′𝑛𝑘)

≤ |𝕊′| |𝕎′| 𝑛−4𝑘

≤ (
3𝑛

√
𝑘

log 𝑛 )

𝑘+1

𝑛−4𝑘 ≤
1
𝑛
,

where the last inequality uses the assumption 𝑛 ≥ 𝑘. This concludes the proof.

2.6 Proof of Theorem 1

We can finally conclude the proof of Theorem 1. To simplify the notation we use 𝑂(val) to denote

cst ⋅ val for some constant cst. Because of Theorem 3, we show that for a random instance  of

IP, with probability at least 1 − 1
𝑛 − 2−𝛼𝑎2 the number of good points 𝐺 relative to this instance is

at most 𝑛𝑓 (𝑚;𝛽)
.

For that, let 𝐸 be the event where all of the following hold:
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1. Theorem 2 holds for , namely IPGap() is at most
𝛼𝑎1 log2 𝑛

𝑛 ,

2. The bound of Corollary 2 on the sizes of 𝐽rem and 𝐽𝓁 for all 𝓁 ∈ [log 𝑛 − 1], determined by the

arrangement of random vectors (𝑐𝑗 , 𝐴𝑗)’s that comprise the columns of .

By taking a union bound over these results we see that 𝐸 holds with probability at least 1− 1
𝑛−2

−𝛼𝑎2
.

From the first item in the definition of 𝐸, under 𝐸 we have that 𝐶 ∶= 𝑛
log 𝑛 ⋅ IPGap() is at most

𝛼𝑎1 log 𝑛. Therefore, using the standard estimate ( 𝑎
≤𝑏) ≤ (4𝑎/𝑏)𝑏 that holds for 𝑎 ≥ 4𝑏, we get that,

under 𝐸:

log𝐶

∏
𝓁= log 𝑎1

2

(
|𝐽𝓁 |

≤ 𝐶/2𝓁)
≤

log𝐶

∏
𝓁=1

(
𝑂(𝑚) 22𝓁 log 𝑛

𝛼𝑎1 log 𝑛 )

𝐶/2𝓁

=
log𝐶

∏
𝓁=1

(
𝑂(𝑚) 22𝓁

𝛼𝑎1 )

𝐶/2𝓁

≤ (
𝑂(𝑚)
𝛼𝑎1 )

𝐶∑𝓁≥1
1
2𝓁

⋅ 22𝐶∑𝓁≥1
𝓁
2𝓁

≤ (
𝑂(𝑚)
𝛼𝑎1 )

𝑂(𝐶)

,

where we started the product from 𝓁 = log 𝑎1
2 to ensure we could apply the binomial estimate given

only the assumption 𝛼 ≤ 30𝑚; for the lower terms we can use the crude upper bound

∏
𝓁< log 𝑎1

2

(
|𝐽𝓁 |

≤ 𝐶/2𝓁)
≤ ∏

𝓁< log 𝑎1
2

2|𝐽𝓁 | ≤ 2𝑂(𝑚𝑎1 log 𝑎1 log 𝑛) = 𝑛𝑂(𝑚𝑎1 log 𝑎1).

Plugging these bounds on Lemma 5, we get that under 𝐸 the number of good points 𝐺 relative

to the instance  is upper bounded as

|𝐺 | ≤ 2𝑂(𝑚 log 𝑛) ⋅ 𝑛𝑂(𝑚𝑎1 log 𝑎1) ⋅(
𝑂(𝑚)
𝛼𝑎1 )

𝑂(𝛼𝑎1 log 𝑛)

≤ 𝑛𝑂(𝑚𝑎1 log 𝑎1+𝛼𝑎1 log𝑚).

Finally, plugging this bound on Theorem 3 we get that under 𝐸 the branch-and-bound tree for
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the instance  has at most

2 𝑛 ⋅ 𝑛𝑂(𝑚𝑎1 log 𝑎1+𝛼𝑎1 log𝑚) + 1 ≤ 𝑛𝑂(𝑚𝑎1 log 𝑎1+𝛼𝑎1 log𝑚)

nodes. Recalling from Theorem 2 that 𝑎1 is a constant depending only on 𝑚 and 𝛽 , this concludes

the proof of Theorem 1.

2.7 Final remarks

We note that most of the above arguments hold not only for random problems but actually for

every 0/1 IP. In particular, Theorem 3 and Lemma 5 hold in such generality, which combined give

the following.

Corollary 3. Consider any instance of IP with arbitrary 𝐴 ∈ ℝ𝑚×𝑛
and 𝑏 ∈ ℝ𝑚

. Then the tree of the

best-bound branch-and-bound algorithm applied to this instance has at most

2(2
|𝐽rem | ⋅

log𝐶

∏
𝓁=1

(
|𝐽𝓁 |

≤ 𝐶/2𝓁))
𝑛 + 1

nodes, where 𝐶 ∶= 𝑛
log 𝑛 ⋅ IPGap.

This shows that the effectiveness of branch-and-bound actually hold for every “well-behaved”

0/1 IP (or distributions that generate such IPs with good probability), where “well-behaved” means

that the integrality gap must be small and there cannot be too many columns (𝑐𝑗 , 𝐴𝑗) concentrated

around a hyperplane (in order to control the terms |𝐽𝓁 |).
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CHAPTER 3

LOWER BOUNDS ON THE SIZE OF GENERAL BRANCH-AND-BOUND TREES

3.1 Introduction

Here we take interest in the size of general branch-and-bound trees. This is because instances

requiring an exponential number of nodes to solve using general branch-and-bound are likely

to also be challenging for MILP solvers. We hope that this study can provide some intuition on

when and why solvers struggle with a MILP instance and how to formulate heuristics to combat

these bottlenecks.

Figure 3.1: The left picture is the initial polytope and the right picture demonstrates the two

subproblems as a result of branching on the disjunction ⟨𝜋, 𝑥⟩ ≤ 𝜋0 ∨ ⟨𝜋, 𝑥⟩ ≥ 𝜋0 + 1.

Concurrent to the development of our work, Fleming et al. [53] showed a fascinating relation-

ship between general branch-and-bound proofs and cutting-plane proofs using Chvátal-Gomory

(CG) cutting-planes:

Theorem 5 (Theorem 3.7 from [53]). Let 𝑃 ⊆ [0, 1]𝑛 be an integer-infeasible polytope and suppose
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there is a general branch-and-bound proof of infeasibility of size 𝑠 and with maximum coefficient 𝑐.

Then there is a CG proof of infeasibility of size at most

𝑠(𝑐𝑛)log 𝑠 .

The following simple corollary allows one to infer exponential lower bounds for branch-and-

bound trees for polytopes for which we have exponential lower bounds for CG proofs.

Corollary 4. Let 𝑃 ⊆ [0, 1]𝑛 be an integer-infeasible polytope such that any CG proof of integer-

infeasibility of 𝑃 (see Definition 1) has length at least 𝐿. Then any general branch-and-bound proof

of integer-infeasibility of 𝑃 with maximum coefficient 𝑐 has size at least

𝐿
1

1+log(𝑐𝑛) .

The above result makes progress in answering questions raised in Basu et al. [17] related to

the comparison between the size of general branch-and-bound trees and the size of CG proofs.

Moreover, Pudlak [54] and Dash [55] provide exponential lower bounds for CG proofs for the

“clique vs. coloring” problem, which is of note since this problem is defined by only polynomially-

many inequalities. Thus, Corollary 4 taken together with results in [54] and [55] also settles the

question raised in Dadush and Tiwari [18] as long as the maximum coefficient in the disjunctions

used in the tree is bounded by a polynomial in 𝑛.

3.1.1 Contributions of this paper and relationship to existing results

Contributions. We construct an instance of packing-type and a set-cover instance such that

any general branch-and-bound tree that solves these instances must be of exponential (with re-

spect to the ambient dimension) size. We note that the packing and covering instances are de-

scribed using an exponential number of constraints, and so unfortunately this does not settle the
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question raised by Dadush and Tiwari [18]. We also present a simple proof that any branch-and-

bound tree proving the integer infeasibility of the cross-polytope in 𝑛 dimensions must have 2𝑛

leaves. We then extend this result to give (high-probability) exponential lower bounds for per-

turbed instances of the cross-polytope where independent Gaussian noise is added to the entries

of the constraint matrix. To our knowledge this is the first result that shows that a “smoothed

analysis” [56] polynomial upper bound on the size of branch-and-bound trees is not possible.

Finally, we show an exponential lower bound on the size of any general branch-and-bound tree

for the Traveling Salesman Problem (TSP).

Comparison to previous results. We now discuss our results in the context of the recent

landscape, in particular with the results of [18] and [53].

1. New problems with exponential lower bounds on the size of general branch-and-bound tree:

As mentioned earlier, recently Dadush and Tiwari [18] provided the first exponential lower

bound on the size of general branch-and-bound tree for the cross-polytope. The other ad-

ditional result, Corollary 4 from [53], only implies branch-and-bound lower bounds for

polytopes for which we already have CG hardness. These come few and far between in

the existing literature, and these instances are often a bit artificial; see [54] and [55]. In

contrast, in this paper we provide lower bounds for the size of general branch-and-bound

tree for packing and set-cover instances, which are more natural combinatorial problems

than those mentioned above.

2. Improved quality of bounds: Dadush and Tiwari [18] show that any branch-and-bound proof

of infeasibility of the cross-polytope has at least
2𝑛
𝑛 leaves. We improve on this result by

providing a simple proof that any such proof of infeasibility must have 2𝑛 leaves.

Chvatal et al. [57] provide a
1
3𝑛2

𝑛/8
lower bound on CG proofs for TSP. Combined with

Corollary 4, this can be used to show a lower bound of 2𝑂(
𝑛

log 𝑐𝑛)
for branch-and-bound trees
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for TSP using maximum coefficient 𝑐 for the disjunctions. We are able to achieve a stronger

lower bound of 2Ω(𝑛).

3. Removing the dependence on the maximum coefficient size used in the branch-and-bound

proof: The bound given in Corollary 4 depends on the maximum coefficient size used in

the branch-and-bound proof. In [53], the authors mention that they “view this as a step

toward proving [branch-and-bound] lower bounds (with no restrictions on the [coefficient

sizes])”. Our results satisfy this property, as none of the bounds presented in this work

depend on the coefficients of the inequalities of the general branch-and-bound proof.

Finally, the results presented here can be easily combined with Theorem 1.14 of [15] to ap-

ply to branch-and-cut proofs. In particular, our results imply exponential lower bounds, for the

polytopes shown here, on the size of branch-and-cut proofs that are allowed to branch on split

disjunctions and employ any cutting-plane paradigm that is “not sufficiently different” from split

disjunctive cuts (see [15] for details).

3.1.2 Roadmap and notation

Since this paper focuses on lower bounds for general branch-and-bound trees (obviously implying

lower bounds for simple branch-and-bound tree), we drop the term “general” for the rest of the

paper. The paper is organized as follows. In section 3.2 we present the necessary definitions. In

section 3.3, we present key reduction results that allow transferring lower bounds on the size of

branch-and-bound trees from one optimization problem to another. In section 3.4, we present

a lower bound on the size of branch-and-bound trees for packing and set covering instances.

In section 3.5, we present a lower bound on the size of branch-and-bound trees for the cross-

polytope and some other related technical results. In section 3.6, we show that even after adding

Gaussian noise to the coefficients of the cross-polytope, with good probability branch-and-bound

still requires an exponentially large tree to prove infeasibility. Finally, in section 3.7, we use results
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from section 3.5 and section 3.3 to provide an exponential lower bound on the size of branch-and-

bound trees for solving TSP instances.

For a positive integer 𝑛, we denote the set {1,… , 𝑛} as [𝑛]. When the dimension is clear from

context, we use the notation 1 to be a vector whose every entry is 1. Let 𝐶 be a set of linear

constraints of the form (𝜋 𝑖)⊤𝑥 ≤ 𝜋 𝑖
0, ∀𝑖 ∈ [𝑚]. Then let {𝑥 ∶ 𝐶} denote the set of all 𝑥 ∈ [0, 1]𝑛

such that all of the constraints 𝐶 are valid for 𝑥 (i.e. the polytope defined by the set of constraints

𝐶). Note that for a subset of these constraints 𝐵 ⊆ 𝐶 , it holds that {𝑥 ∶ 𝐵} ⊇ {𝑥 ∶ 𝐶}. Also note

that for two sets of constraints 𝐵, 𝐶 , it holds that {𝑥 ∶ 𝐵 ∪ 𝐶} = {𝑥 ∶ 𝐵} ∩ {𝑥 ∶ 𝐶}. Given a set 𝑆,

we denotes its convex hull by conv(𝑆). Given a polytope 𝑃 ⊆ ℝ𝑛
, we denote its integer hull, that

is the set conv(𝑃 ∩ ℤ𝑛), as 𝑃𝐼 . We call 𝑃 integer-infeasible if 𝑃 ∩ ℤ𝑛 = ∅.

3.2 Abstract branch-and-bound trees and notions of hardness

In order to present lower bounds on the size of branch-and-bound (BB) trees, we simplify our

analysis by removing two typical condition assumed in a BB algorithm – (i) the requirement that

the partitioning into two subproblems (which correspond to the child nodes of the given node)

is done in such a way that the optimal LP solution of the parent node is not included in either

subproblem, and that (ii) branching is not done on pruned nodes. By removing these conditions,

we can talk about a branch-and-bound tree independent of the underlying polytope – it is just

a full binary tree (that is, each node has 0 or 2 child nodes). The root-node has an empty set

of branching constraints. If a node has two child nodes, these are obtained by applying some

disjunction 𝜋⊤𝑥 ≤ 𝜋0 ∨ 𝜋⊤𝑥 ≥ 𝜋0 + 1, where each of the child nodes adds one of these constraints

to its set of branching constraints together with all the branching constraints of the parent node.

Note that here 𝜋 is an integer vector and 𝜋0 an integer ; we call such disjunctions legal. Note that

proving lower bounds on the size of such BB trees that solves a given integer program certainly

gives a lower bound on the size of BB trees that in addition require (i) and (ii). Finally, note that

since a BB tree is a full binary tree, the total number of nodes of a BB tree with 𝑁 leaf-nodes is
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2𝑁 − 1.

Definition 1. Given a branch-and-bound tree  , applied to a polytope 𝑃 ⊆ ℝ𝑛
, and a node 𝑣 of the

tree:

• We denote the number of nodes of the branch-and-bound tree  by | |. This is what is termed

the size of this tree.

• We denote by 𝐶𝑣 the set of branching constraints of 𝑣 (as explained above, these are the con-

straints added by the branch-and-bound tree along the path from the root-node to 𝑣).

• We call the feasible region defined by the LP relaxation 𝑃 and the branching constraints at

node 𝑣 the atom of this node, i.e., 𝑃 ∩ {𝑥 ∶ 𝐶𝑣} is the atom corresponding to 𝑣.

• We let  (𝑃 ) denote the union of the atoms corresponding to the leaves of  when run on

polytope 𝑃 , i.e.,  (𝑃 ) = ⋃𝑣∈leaves( )(𝑃 ∩ {𝑥 ∶ 𝐶𝑣}).

• For any 𝑥 ∗ ∈ 𝑃 ⧵ 𝑃𝐼 , we say that  separates 𝑥 ∗
from 𝑃 if 𝑥 ∗ ∉ conv( (𝑃 )).

• Given a vector 𝑐 ∈ ℝ𝑛
, we say  solvesmax𝑥∈𝑃∩ℤ𝑛⟨𝑐, 𝑥⟩ if for all the leaf nodes 𝑣 of  , one of the

following three conditions hold: (i) the atom of 𝑣 is empty, (ii) there exists at least one optimal

solution of the linear program max𝑥 ∈ atom of 𝑣⟨𝑐, 𝑥⟩ that is integral, or (iii) max𝑥 ∈ atom of 𝑣⟨𝑐, 𝑥⟩

is at most the objective function value of another atom whose optimal solution is integral.

If 𝑃 ∩ ℤ𝑛 = ∅, note that (ii) and (iii) are not possible, and in this case we use the term “proves

integer-infeasibility” instead of “solves” the problem.

Given a polytope 𝑃 ⊆ ℝ𝑛
, we define its BB hardness as

BBhardness(𝑃 ) = max
𝑐∈ℝ𝑛 (min

{
| | ∶  solves max

𝑥∈𝑃∩ℤ𝑛
⟨𝑐, 𝑥⟩

}
) .

Our goal for most of this paper is to provide lower bounds on the BB hardness of certain

polytopes.
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To get exponential lower bounds on BB hardness for some 𝑃 , we will often present a particular

point 𝑥 ∗ ∈ 𝑃 ⧵𝑃𝐼 such that any  that separates 𝑥 ∗
from 𝑃 must have exponential size. We formalize

this below.

Definition 2 (BBdepth). Let 𝑃 ⊆ ℝ𝑛
be a polytope and consider any 𝑥 ∗ ∈ 𝑃 ⧵ 𝑃𝐼 . Let  be a smallest

BB tree that separates 𝑥 ∗
from 𝑃 . Then, define BBdepth(𝑥 ∗, 𝑃 ) to be | |.

Definition 3 (BBrank). Define BBrank(𝑃 ) = max𝑥∈𝑃⧵𝑃𝐼 BBdepth(𝑥, 𝑃 ).

Lemma 10 (BB rank lower bounds BB hardness). Let 𝑃 ⊆ ℝ𝑛
be a polytope. Then, there exists

𝑐 ∈ ℝ𝑛
such that any BB tree solving max𝑥∈𝑃∩ℤ𝑛⟨𝑐, 𝑥⟩ must have size at least BBrank(𝑃 ), that is

BBhardness(𝑃 ) ≥ BBrank(𝑃 ).

Proof. Let 𝑥 ∗ ∈ argmax𝑥∈𝑃⧵𝑃𝐼 BBdepth(𝑥, 𝑃 ), so that BBrank(𝑃 ) = BBdepth(𝑥 ∗, 𝑃 ). Since 𝑥 ∗
does

not belong to the convex set 𝑃𝐼 , by the hyperplane separation theorem [58] there exists 𝑐 with

the separation property ⟨𝑐, 𝑥 ∗⟩ > max𝑥∈𝑃𝐼 ⟨𝑐, 𝑥⟩. By choice of 𝑥 ∗
, for any BB tree  with | | <

BBrank(𝑃 ) it holds that 𝑥 ∗ ∈ conv( (𝑃 )). Then such tree  must have a leaf whose optimal LP

solution has value at least ⟨𝑐, 𝑥 ∗⟩ > max𝑥∈𝑃𝐼 ⟨𝑐, 𝑥⟩, and therefore must still not be pruned, showing

that  does not solve max𝑥∈𝑃∩ℤ𝑛⟨𝑐, 𝑥⟩.

We now show that, under some conditions, the reverse of this kind of relationship also holds.

We will use this reverse relationship to prove the BB hardness of optimizing over an integer

feasible polytope given the BB hardness of proving the infeasibility of another “smaller” polytope.

Lemma 11 (Infeasibility-to-optimization). Let 𝑃 ⊆ ℝ𝑛
be a polytope and ⟨𝑐, 𝑥⟩ ≤ 𝛿 be a facet

defining inequality of 𝑃𝐼 that is not valid for 𝑃 . Assume that the affine hull of 𝑃 and 𝑃𝐼 are the same.

Then, there exists 𝜀0 > 0 such that for every 𝜀 ∈ (0, 𝜀0]

BBrank(𝑃 ) ≥ BBhardness({𝑥 ∈ 𝑃 ∶ ⟨𝑐, 𝑥⟩ ≥ 𝛿 + 𝜀}).
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Before we can present the proof of Lemma 11 we require a technical lemma from [59]. The full-

dimensional case 𝐿 = ℝ𝑛
is Lemma 3.1 of [59], and the general case follows directly by applying

it to the affine subspace 𝐿.

Lemma 12 ([59]). Consider an affine subspace 𝐿 ⊆ ℝ𝑛
and a hyperplane 𝐻 = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑐, 𝑥⟩ = 𝛿}

that does not contain 𝐿. Consider dim(𝐿) affinely independent points 𝑠1, 𝑠2 … , 𝑠dim(𝐿)
in 𝐿∩𝐻 . Consider

𝛿 ′ > 𝛿 and let 𝐺 be a bounded and non-empty subset of 𝐿 ∩ {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑐, 𝑥⟩ ≥ 𝛿 ′}. Then there exists

a point 𝑥 in ⋂𝑔∈𝐺 conv(𝑠1,… , 𝑠dim(𝐿), 𝑔) satisfying the strict inequality ⟨𝑐, 𝑥⟩ > 𝛿 .

Proof of Lemma 11. Let 𝐿 be the affine hull of 𝑃𝐼 . Then there exist 𝑑 ∶= dim(𝑃𝐼 ) = dim(𝐿) affinely

independent vertices of {𝑥 ∈ 𝑃𝐼 ∶ ⟨𝑐, 𝑥⟩ = 𝛿}. Let 𝑠1,… , 𝑠𝑑 be 𝑑 such affinely independent vertices

and note that since they are vertices of 𝑃𝐼 , they are all integral. Let 𝜀0 ∶= (max𝑥∈𝑃⟨𝑐, 𝑥⟩) − 𝛿 , and

notice that since the inequality ⟨𝑐, 𝑥⟩ ≤ 𝛿 is not valid for 𝑃 we have 𝜀0 > 0. Then for any 𝜀 ∈ (0, 𝜀0],

let 𝐺 ∶= {𝑥 ∈ 𝑃 ∶ ⟨𝑐, 𝑥⟩ ≥ 𝛿 + 𝜀}, which is then non-empty. Also notice that 𝐺 is a bounded set,

since 𝑃 is bounded. Let 𝑁 ∶= BBhardness(𝐺).

Let  be a BB tree such that | | < 𝑁 . Then we have that  (𝐺) ≠ ∅, that is, there exists

𝑥 ∗( ) ∈  (𝐺). In particular 𝑥 ∗( ) ∈ 𝐺. Moreover, since 𝐺 ⊆ 𝑃 , we have  (𝐺) ⊆  (𝑃 ) (see

Lemma 13 in the next section for a formal proof of this), and so we have 𝑥 ∗( ) ∈  (𝑃 ). Also note

that since 𝑠1,… , 𝑠𝑑 ∈ 𝑃 ∩ ℤ𝑛
, we have that these points also belong to  (𝑃 ). Thus,

conv (𝑠1,… , 𝑠𝑑 , 𝑥 ∗( )) ⊆ conv( (𝑃 )).

Now applying Lemma 12, with 𝛿 ′ = 𝛿 + 𝜀, we have that there exists 𝑥 ∗
such that

𝑥 ∗ ∈ ⋂
 ∶| |<𝑁

conv (𝑠1,… , 𝑠𝑑 , 𝑥 ∗( )) ⊆ ⋂
 ∶| |<𝑁

conv( (𝑃 )) (3.1)

and such that ⟨𝑐, 𝑥 ∗⟩ > 𝛿 . Clearly, 𝑥 ∗ ∉ 𝑃𝐼 , since ⟨𝑐, 𝑥⟩ ≤ 𝛿 is a valid inequality for 𝑃𝐼 . Thus, since

(Equation 3.1) implies 𝑥 ∗ ∈ conv( (𝑃 )) for all  with | | < 𝑁 , we have that BBdepth(𝑥 ∗, 𝑃 ) ≥ 𝑁
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and consequently, BBrank(𝑃 ) ≥ 𝑁 .

3.3 Framework for BB hardness reductions

In this section we present key reduction results that allow transferring lower bounds on the size

of BB trees from one optimization problem to another. We begin by showing monotonicity of the

operator  (⋅).

Lemma 13 (Monotonicity of leaves). Let 𝑄 ⊆ 𝑃 ⊆ ℝ𝑛
be polytopes. Then  (𝑄) ⊆  (𝑃 ).

Proof. For any leaf 𝑣 ∈  , recall that 𝐶𝑣 is the set of branching constraints of 𝑣. Then  (𝑄) =

⋃𝑣∈leaves( )(𝑄 ∩{𝑥 ∶ 𝐶𝑣}) = 𝑄 ∩⋃𝑣∈leaves( ){𝑥 ∶ 𝐶𝑣} ⊆ 𝑃 ∩⋃𝑣∈leaves( ){𝑥 ∶ 𝐶𝑣} = ⋃𝑣∈leaves( )(𝑃 ∩{𝑥 ∶

𝐶𝑣}) =  (𝑃 ).

The following corollary follows easily from Lemma 13. In particular, consider a smallest BB

tree  that separates 𝑥 ∗
from 𝑃 . By Lemma 13, the same tree, when applied to 𝑄 ⊆ 𝑃 , will not

have 𝑥 ∗
in the convex hull of its leaves and therefore separates 𝑥 ∗

from 𝑄.

Corollary 5 (Monotonicity of depth). Let 𝑄 ⊆ 𝑃 ⊆ ℝ𝑛
be polytopes. Then for every 𝑥 ∗ ∈ (𝑄 ⧵ 𝑄𝐼 ) ∩

(𝑃 ⧵ 𝑃𝐼 ) = 𝑄 ⧵ 𝑃𝐼 we have

BBdepth(𝑥 ∗, 𝑄) ≤ BBdepth(𝑥 ∗, 𝑃 ).

Inspired by the lower bounds for cutting-plane rank from [57], we show that integral affine

transformations conserve the hardness of separating a point via branch-and-bound, i.e. they

conserve BBdepth. Then, we give a condition where BBrank is also conserved. These will be used

to obtain lower bounds in the subsequent sections.

We say that 𝑓 ∶ ℝ𝑛 → ℝ𝑚
is an integral affine function if it has the form 𝑓 (𝑥) = 𝐶𝑥 + 𝑑 , where

𝐶 ∈ ℤ𝑚×𝑛, 𝑑 ∈ ℤ𝑚
.

Lemma 14 (Simulation for integral affine transformations). Let 𝑃 ⊆ ℝ𝑛
be a polytope, 𝑓 ∶ ℝ𝑛 →

ℝ𝑚
an integral affine function, and denote 𝑄 ∶= 𝑓 (𝑃 ) ⊆ ℝ𝑚

. Let ̂ be any BB tree. Then, there exists
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a BB tree  such that | | = |̂ | and

𝑓 ( (𝑃 )) ⊆ ̂ (𝑄).

Proof. Let 𝑓 (𝑥) = 𝐶𝑥 + 𝑑 with 𝐶 ∈ ℤ𝑚×𝑛, 𝑑 ∈ ℤ𝑚
. Given a BB tree ̂ , we construct a BB tree 

with the desired properties as follows:  has the same nodes as ̂ but each branching constraint

⟨𝑎, 𝑦⟩ ≤ 𝑏 of ̂ is replaced by the constraint ⟨𝐶𝑇𝑎, 𝑥⟩ ≤ 𝑏 − ⟨𝑎, 𝑑⟩ in  .

First we verify that  only uses legal disjunctions: First note that 𝐶𝑇𝑎 ∈ ℤ𝑛
and 𝑏−⟨𝑎, 𝑑⟩ ∈ ℤ.

If a node of ̂ has ⟨𝑎, 𝑦⟩ ≤ 𝑏 ∨ ⟨𝑎, 𝑦⟩ ≥ 𝑏+1 as its disjunction, the corresponding node in  has the

disjunction ⟨𝐶𝑇𝑎, 𝑥⟩ ≤ 𝑏−⟨𝑎, 𝑑⟩ ∨ ⟨−𝐶𝑇𝑎, 𝑥⟩ ≤ −𝑏−1−⟨−𝑎, 𝑑⟩ (notice ⟨𝑎, 𝑦⟩ ≥ 𝑏+1 ≡ ⟨−𝑎, 𝑦⟩ ≤

−𝑏 − 1). Since the second term in the latter disjunction is equivalent to ⟨𝐶𝑇𝑎, 𝑥⟩ ≥ 𝑏 − ⟨𝑎, 𝑑⟩ + 1,

we see that this disjunction is a legal one.

To conclude the proof, we show that 𝑓 ( (𝑃 )) ⊆ ̂ (𝑄). Let 𝑆 be the atom of a leaf 𝑣 of 

and 𝑆 be the atom of the corresponding leaf �̂� of ̂ . We show that for all 𝑥 ∈ 𝑆, it must be that

𝑓 (𝑥) ∈ 𝑆. To see this, notice that if 𝑥 satisfies an inequality ⟨𝐶𝑇𝑎, 𝑥⟩ ≤ 𝑏−⟨𝑎, 𝑑⟩ then 𝑓 (𝑥) satisfies

⟨𝑎, 𝑓 (𝑥)⟩ ≤ 𝑏:

⟨𝑎, 𝑓 (𝑥)⟩ = ⟨𝑎, 𝐶𝑥 + 𝑑⟩ = ⟨𝑎, 𝐶𝑥⟩ + ⟨𝑎, 𝑑⟩ = ⟨𝐶𝑇𝑎, 𝑥⟩ + ⟨𝑎, 𝑑⟩ ≤ 𝑏.

Since any 𝑥 ∈ 𝑆 belongs to 𝑃 and satisfies all the branching constraints of the leaf 𝑣, this implies

𝑓 (𝑥) belongs to 𝑄 and satisfies all the branching constraints of the leaf �̂�, and hence belongs to

the atom 𝑆. Therefore, 𝑓 (𝑆) ⊆ 𝑆. Taking a union over all leaves/atoms then gives 𝑓 ( (𝑃 )) ⊆ ̂ (𝑄)

as desired.

Corollary 6. Let 𝑃 , 𝑄, and 𝑓 satisfy the assumptions of Lemma 14. Further, suppose 𝑃 and 𝑄 are

both integer-infeasible. Then,

BBhardness(𝑄) ≥ BBhardness(𝑃 ).
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Proof. Let ̂ be the smallest BB tree such that ̂ (𝑄) = ∅. Then, by Lemma 14, it must hold that

 (𝑃 ) = ∅. The desired result follows.

Corollary 7. Let 𝑃 , 𝑄, and 𝑓 satisfy the assumptions of Lemma 14. Then for every 𝑥 ∗ ∈ ℝ𝑛
such

that 𝑥 ∗ ∉ 𝑃𝐼 and 𝑓 (𝑥 ∗) ∉ 𝑄𝐼 , we have

BBdepth(𝑓 (𝑥 ∗), 𝑄) ≥ BBdepth(𝑥 ∗, 𝑃 ).

Proof. Let ̂ be a smallest BB tree that separates 𝑓 (𝑥 ∗) from 𝑄, and let  be a tree given by

Lemma 14. Together with the fact that 𝑓 is affine, this implies that if 𝑥 ∈ conv( (𝑃 )) then 𝑓 (𝑥) ∈

conv(̂ (𝑄)): there exists 𝑥1, ..., 𝑥𝑘 ∈  (𝑃 ) and 𝜆1, ..., 𝜆𝑘 ∈ [0, 1] such that ∑𝑖∈[𝑘] 𝜆𝑖 = 1 and 𝑥 =

∑𝑖∈[𝑘] 𝜆𝑖𝑥 𝑖
. Thus,

𝑓 (𝑥) = 𝐶(∑
𝑖∈[𝑘]

𝜆𝑖𝑥 𝑖) + 𝑑 = ∑
𝑖∈[𝑘]

𝜆𝑖(𝐶𝑥 𝑖) + ∑
𝑖∈[𝑘]

𝜆𝑖𝑑

= ∑
𝑖∈[𝑘]

𝜆𝑖(𝐶𝑥 𝑖 + 𝑑) = ∑
𝑖∈[𝑘]

𝜆𝑖𝑓 (𝑥 𝑖) ∈ conv(̂ (𝑄)),

where the last containment is by definition of  . Since we know 𝑓 (𝑥 ∗) ∉ conv(̂ (𝑄)), this implies

that 𝑥 ∗ ∉ conv( (𝑃 )), namely  separates 𝑥 ∗
from 𝑃 as desired.

Lemma 15 (Hardness lemma). Let 𝑃 ⊆ ℝ𝑛
and 𝑇 ⊆ ℝ𝑚

be polytopes and 𝑓 ∶ ℝ𝑛 → ℝ𝑚
an integral

affine function such that 𝑓 (𝑃 ) ⊆ 𝑇 . Suppose 𝑓 is also one-to-one and 𝑇 ∩ ℤ𝑚 ⊆ 𝑓 (𝑃 ∩ ℤ𝑛). Then,

BBrank(𝑇 ) ≥ BBrank(𝑃 ).

Proof. First we show that 𝑥 ∉ 𝑃𝐼 implies 𝑓 (𝑥) ∉ 𝑇𝐼 by proving the contrapositive. Suppose 𝑓 (𝑥) ∈

𝑇𝐼 ; then ∃𝑦1, ..., 𝑦𝑘 ∈ 𝑇 ∩ ℤ𝑚
and 𝜆1, ..., 𝜆𝑘 ∈ [0, 1] such that ∑𝑖∈[𝑘] 𝜆𝑖 = 1 and 𝑓 (𝑥) = ∑𝑖∈[𝑘] 𝜆𝑖𝑦 𝑖

.
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Since 𝑇 ∩ ℤ𝑚 ⊆ 𝑓 (𝑃 ∩ ℤ𝑛), for each 𝑖 there is 𝑥 𝑖 ∈ 𝑃 ∩ ℤ𝑛
such that 𝑦 𝑖 = 𝑓 (𝑥 𝑖). Then

𝑓 (𝑥) = ∑
𝑖∈[𝑘]

𝜆𝑖𝑓 (𝑥 𝑖) = ∑
𝑖∈[𝑘]

𝜆𝑖(𝐶𝑥 𝑖 + 𝑑) = 𝐶 ∑
𝑖∈[𝑘]

𝜆𝑖𝑥 𝑖 + 𝑑 = 𝑓 (∑
𝑖∈[𝑘]

𝜆𝑖𝑥 𝑖),

and so 𝑓 (𝑥) belongs to 𝑓 (𝑃𝐼 ). Since 𝑓 is one-to-one, this implies that 𝑥 belongs to 𝑃𝐼 , as desired.

Now let 𝑥 ∗ = argmax𝑥∈𝑃⧵𝑃𝐼 BBdepth(𝑥, 𝑃 ). Since 𝑥 ∗ ∉ 𝑃𝐼 , by the above claim 𝑓 (𝑥 ∗) ∉ 𝑇𝐼 . By

assumption 𝑓 (𝑃 ) ∩ ℤ𝑚 ⊆ 𝑇 ∩ ℤ𝑚
, and so (𝑓 (𝑃 ))𝐼 ⊆ 𝑇𝐼 , and therefore 𝑓 (𝑥 ∗) ∉ (𝑓 (𝑃 ))𝐼 . Then by

Corollary 7 we have

BBdepth(𝑓 (𝑥 ∗), 𝑓 (𝑃 )) ≥ BBdepth(𝑥 ∗, 𝑃 ).

Since by assumption 𝑓 (𝑃 ) ⊆ 𝑇 , 𝑓 (𝑥 ∗) ∈ 𝑓 (𝑃 ), and 𝑓 (𝑥 ∗) ∉ 𝑇𝐼 , by Corollary 5 we have

BBdepth(𝑓 (𝑥 ∗), 𝑇 ) ≥ BBdepth(𝑓 (𝑥 ∗), 𝑓 (𝑃 )).

Putting it all together we get

BBrank(𝑇 ) = max
𝑦∈𝑇 ⧵𝑇𝐼

BBdepth(𝑦, 𝑇 ) ≥ BBdepth(𝑓 (𝑥 ∗), 𝑇 ) ≥ BBdepth(𝑓 (𝑥 ∗), 𝑓 (𝑃 )) ≥ BBdepth(𝑥 ∗, 𝑃 )

= max
𝑥∈𝑃⧵𝑃𝐼

BBdepth(𝑥, 𝑃 ) = BBrank(𝑃 ),

which concludes the proof of the lemma.

In the rest of the paper, we will use Corollary 6, Corollary 7 or Lemma 15 together with some

appropriate affine transformation to reduce the BB hardness of one problem to another. The three

affine one-to-one functions we will use (and their compositions) are Flipping, Embedding, and

Duplication as defined below.

Definition 4 (Flipping). We say 𝑓 ∶ [0, 1]𝑛 → [0, 1]𝑛 is a flipping operation if it “flips” some
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coordinates, that is, there exists 𝐽 ⊆ [𝑛] such that

𝑦 = 𝑓 (𝑥) ⟹ 𝑦𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑥𝑖 if 𝑖 ∉ 𝐽

1 − 𝑥𝑖 if 𝑖 ∈ 𝐽
.

In other words, 𝑓 (𝑥) = 𝐶𝑥 + 𝑑 , where (recall 𝑒𝑖 is the 𝑖-th canonical basis vector)

𝐶 𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑒𝑖 if 𝑖 ∉ 𝐽

−𝑒𝑖 if 𝑖 ∈ 𝐽

𝑑𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0 if 𝑖 ∉ 𝐽

1 if 𝑖 ∈ 𝐽
.

Definition 5 (Embedding). We say 𝑓 ∶ [0, 1]𝑛 → [0, 1]𝑛+𝑘 is an embedding operation if

𝑦 = 𝑓 (𝑥) ⟹ 𝑦𝑖 =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝑥𝑖 if 1 ≤ 𝑖 ≤ 𝑛

0 if 𝑛 < 𝑖 ≤ 𝑛 + 𝑘1

1 if 𝑛 + 𝑘1 < 𝑖 ≤ 𝑛 + 𝑘

,

for some 0 ≤ 𝑘1 ≤ 𝑘. In other words, 𝑓 (𝑥) = 𝐶𝑥 + 𝑑 , where

𝐶 𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑒𝑖 if 1 ≤ 𝑖 ≤ 𝑛

0 otherwise

𝑑𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1 if 𝑛 + 𝑘1 < 𝑖 ≤ 𝑛 + 𝑘

0 otherwise

.
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Note that we can always renumber the coordinates so that the additional coordinates with values 0

or 1 are interspersed with the original ones and not grouped at the end.

Definition 6 (Duplication). Consider a 𝑘-tuple of coordinates (𝑗1, ..., 𝑗𝑘) that are not necessarily

distinct, where 𝑗𝑖 ∈ {1, ..., 𝑛} for 𝑖 = 1, ..., 𝑘. We say that 𝑓 ∶ [0, 1]𝑛 → [0, 1]𝑛+𝑘 is a duplication

operation using this tuple if

𝑦 = 𝑓 (𝑥) ⟹ 𝑦𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑥𝑖 if 1 ≤ 𝑖 ≤ 𝑛

𝑥𝑗𝑖−𝑛 if 𝑛 < 𝑖 ≤ 𝑛 + 𝑘
.

Further, let 𝐽𝑗 = {𝑖 ∈ {1, ..., 𝑘} ∶ 𝑦𝑛+𝑖 = 𝑥𝑗} be the indices of 𝑦 that are duplicates of 𝑥𝑗 . Then, in other

words, 𝑓 (𝑥) = 𝐶𝑥 where

𝐶 𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒𝑖 if 1 ≤ 𝑖 ≤ 𝑛

𝑒1 if 𝑖 − 𝑛 ∈ 𝐽1

⋮

𝑒𝑛 if 𝑖 − 𝑛 ∈ 𝐽𝑛

3.4 BB hardness for packing polytopes and set-cover

In this section, we will begin by presenting a packing polytope with BBrank of 2Ω(𝑛). The proof

of this result will be based on a technique developed by Dadush and Tiwari [18]. Then we will

employ affine maps that satisfy Lemma 15 to obtain lower bounds on BBrank for a set-cover

instance.

We present a slightly generalized version of a key result from [18]. The proof is essentially

the same as of the original version, but we present it for completeness.

Lemma 16 (Generalized Dadush-Tiwari Lemma). Let 𝑃 ⊆ ℝ𝑛
be an integer-infeasible non-empty

polytope. Further, suppose 𝑃 is defined by the set of constraints 𝐶𝑃 (i.e. 𝑃 = {𝑥 ∶ 𝐶𝑃}) and let 𝐷 ⊆ 𝐶𝑃
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be a subset of constraints such that if we remove any constraint in 𝐷, the polytope becomes integer

feasible (i.e. for all subsets 𝐶 ⊂ 𝐶𝑃 such that 𝐷 ⧵ 𝐶 ≠ ∅, it holds that {𝑥 ∶ 𝐶} ∩ ℤ𝑛 ≠ ∅). Then,

any branch-and-bound tree  proving the integer-infeasibility of 𝑃 has at least
|𝐷|
𝑛 leaf nodes, that

is | | ≥ 2 |𝐷|
𝑛 − 1.

Proof. Let  denote any branch-and-bound proof of infeasibility for 𝑃 and let 𝑁 denote the num-

ber of leaf nodes of  . Suppose for sake of contradiction, that 𝑁 < |𝐷|
𝑛 . Consider any leaf node

𝑣 of  . Let 𝐶𝑣 be the set of branching constraints on the path to 𝑣. Since 𝑣 is a leaf and  is a

proof of infeasibility, we note {𝑥 ∶ 𝐶𝑣 ∪ 𝐶𝑃} = {𝑥 ∶ 𝐶𝑣} ∩ 𝑃 = ∅.

By Helly’s Theorem [58], there exists a set of 𝑛 + 1 constraints 𝐾𝑣 ⊆ 𝐶𝑣 ∪ 𝐶𝑃 such that {𝑥 ∶

𝐾𝑣} = ∅. Also, we see that

|𝐾𝑣 ∩ 𝐶𝑃 | ≤ 𝑛. (3.2)

This is because if we had |𝐾𝑣 ∩𝐶𝑃 | = 𝑛 + 1, this would imply 𝐾𝑣 ⊆ 𝐶𝑃 , hence {𝑥 ∶ 𝐶𝑃} ⊆ {𝑥 ∶ 𝐾𝑣},

and since {𝑥 ∶ 𝐾𝑣} = ∅; this would imply {𝑥 ∶ 𝐶𝑃} = 𝑃 = ∅, which is clearly a contradiction

because we know 𝑃 is non-empty.

Next, observe that the set 𝑃 ∶=
{
𝑥 ∶ ⋃𝑣∈leaves( )(𝐾𝑣 ∩ 𝐶𝑃 )

}
is integer-infeasible, because in

fact  certifies this: since 𝑃 ∩ {𝑥 ∶ 𝐶𝑢} =
{
𝑥 ∶ 𝐶𝑢 ∪⋃𝑣∈leaves( )(𝐾𝑣 ∩ 𝐶𝑃 )

}
⊆ {𝑥 ∶ 𝐾𝑢} = ∅ for all

𝑢 ∈ leaves( ). On other hand, observe that by (Equation 3.2) we have that | ⋃𝑣∈leaves( )(𝐾𝑣 ∩𝐶𝑃 )| ≤

𝑛𝑁 < |𝐷|, so one of the inequalities in 𝐷 is not used in the description of 𝑃 and hence 𝑃 contains

an integer point, a contradiction. This concludes the proof.

3.4.1 Packing polytopes

Consider the following packing polytope

𝑃𝑃𝐴 =
{
𝑥 ∈ [0, 1]𝑛 ∶ ∑

𝑖∈𝑆
𝑥𝑖 ≤ 𝑘 − 1 for all 𝑆 ⊆ [𝑛] such that |𝑆| = 𝑘

}
,
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where we assume 2 ≤ 𝑘 ≤ 𝑛
2 .

Lemma 17. There exists an 𝑥 ∗ ∈ 𝑃𝑃𝐴 ⧵ (𝑃𝑃𝐴)𝐼 such that any branch-and-bound tree that separates 𝑥 ∗

from 𝑃𝑃𝐴 has at least
2
𝑛 ((

𝑛
𝑘) + 1) − 1 nodes. Therefore, BBrank(𝑃𝑃𝐴) ≥ 2

𝑛 ((
𝑛
𝑘) + 1) − 1.

The starting point for proving this lemma is the following following proposition.

Proposition 1. The polytope 𝑄 = 𝑃𝑃𝐴 ∩{𝑥 ∶ ⟨1, 𝑥⟩ ≥ 𝑘} is integer-infeasible, and any branch-and-

bound tree proving its integer-infeasibility has at least
2
𝑛 ((

𝑛
𝑘) + 1) − 1 nodes.

Proof. We show 𝑄 ∩ {0, 1}𝑛 = ∅. Suppose for sake of contradiction there is some 𝑥 ∗ ∈ 𝑄 ∩ {0, 1}𝑛.

Since ∑𝑖∈[𝑛] 𝑥 ∗
𝑖 ≥ 𝑘, there is a set 𝑆 ⊆ [𝑛] of size 𝑘 such that ∑𝑖∈𝑆 𝑥 ∗

𝑖 = 𝑘. This violates the cardinality

constraint corresponding to 𝑆, so 𝑥 ∗ ∉ 𝑄, a contradiction.

For the lower bound on BB trees that prove the integer-infeasibility of 𝑄, we show that 𝑄

satisfies all of the requirements of Lemma 16. First we show that𝑄 ≠ ∅. Consider the point �̂� ∈ ℝ𝑛

where �̂�𝑖 = 𝑘
𝑛 for 𝑖 ∈ [𝑛]. Then, for any 𝑆 ⊆ [𝑛] with |𝑆| = 𝑘, we have ∑𝑖∈𝑆 �̂�𝑖 = 𝑘 ⋅ 𝑘

𝑛 ≤ 𝑘 ⋅ 1
2 ≤ 𝑘 − 1,

where the last two inequalities are implied by the assumption 2 ≤ 𝑘 ≤ 𝑛
2 . Also, ∑𝑖∈[𝑛] �̂�𝑖 = 𝑘. Thus,

�̂� satisfies all the constraints of 𝑄.

Next, we show that there is a set of (𝑛𝑘) + 1 constraints 𝐷 such that removing any of these

constraints makes 𝑄 integer feasible. Suppose we remove the constraint ∑𝑖∈𝑆 𝑥𝑖 ≤ 𝑘 − 1, denote

this new polytope 𝑄′
. Then let 𝑥 ∗

𝑖 = 1 for all 𝑖 ∈ 𝑆 and 𝑥 ∗
𝑖 = 0 for all 𝑖 ∉ 𝑆. Clearly ∑𝑖∈[𝑛] 𝑥 ∗

𝑖 ≥ 𝑘 and

since for all 𝑆′ ⊆ [𝑛], |𝑆′| = 𝑘 it holds that |𝑆′ ∩ 𝑆| ≤ 𝑘 − 1, it is also the case that ∑𝑖∈𝑆′ 𝑥 ∗
𝑖 ≤ 𝑘 − 1.

So 𝑥 ∗ ∈ 𝑄′ ∩ {0, 1}𝑛. Now suppose we remove instead the constraint ∑𝑖∈[𝑛] 𝑥𝑖 ≥ 𝑘, resulting in

polytope 𝑃𝑃𝐴. Clearly 𝑃𝑃𝐴 is down monotone, and therefore 0 ∈ 𝑃𝑃𝐴.

Therefore, by Lemma 16, any branch-and-bound proof of infeasibility for 𝑄 has at least
2
𝑛 ((

𝑛
𝑘)+

1) − 1 nodes.

Now, combining Proposition 1 with Lemma 11, we are ready to prove Lemma 17.
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Proof of Lemma 17. We will show that 𝑃𝑃𝐴 and ⟨1, 𝑥⟩ ≤ 𝑘 − 1 satisfy the conditions on 𝑃 and

⟨𝑐, 𝑥⟩ ≤ 𝛿 set by Lemma 11. First, ⟨1, 𝑥⟩ ≤ 𝑘 − 1 is a valid inequality for (𝑃𝑃𝐴)𝐼 : this follows

from the integer-infeasibility of 𝑄 = 𝑃𝑃𝐴 ∩ {𝑥 ∶ ⟨1, 𝑥⟩ ≥ 𝑘}, as proven in Proposition 1. Also,

clearly ⟨1, 𝑥⟩ ≤ 𝑘 − 1 is not valid for 𝑃𝑃𝐴, since it cuts off the point �̂� = 𝑘
𝑛1 ∈ 𝑃𝑃𝐴. In the following

paragraph we will show that {𝑥 ∈ (𝑃𝑃𝐴)𝐼 ∶ ⟨1, 𝑥⟩ = 𝑘−1} has dimension 𝑛−1, that is, ⟨1, 𝑥⟩ ≤ 𝑘−1

is facet-defining for (𝑃𝑃𝐴)𝐼 . With this at hand we can apply Lemma 11 to obtain

BBrank(𝑃𝑃𝐴) ≥ BBhardness(𝑃𝑃𝐴 ∩ {𝑥 ∶ ⟨1, 𝑥⟩ ≥ 𝑘}) =
2
𝑛 ((

𝑛
𝑘)

+ 1) − 1

where the last inequality follows from Proposition 1, which will then prove the lemma.

To show that ⟨1, 𝑥⟩ ≤ 𝑘−1 is facet-defining, let 𝑇 ⊆ [𝑛] be such that |𝑇 | = 𝑘−1. Let 𝜒 (𝑇 ) denote

the characteristic vector of 𝑇 , so that 𝜒 (𝑇 )𝑖 = 1 if and only if 𝑖 ∈ 𝑇 . We know that all these points

belong to the hyperplane {𝑥 ∶ ⟨1, 𝑥⟩ = 𝑘 − 1}. Thus, there can be at most 𝑛 affinely independent

points among {𝜒 (𝑇 )}𝑇⊆[𝑛],|𝑇 |=𝑘−1. We first verify that there are exactly 𝑛 affinely independent points

among {𝜒 (𝑇 )}𝑇⊆[𝑛],|𝑇 |=𝑘−1 by showing that the affine hull of the points in {𝜒 (𝑇 )}𝑇⊆[𝑛],|𝑇 |=𝑘−1 is the

hyperplane {𝑥 ∶ ⟨1, 𝑥⟩ = 𝑘 − 1}. Consider the system in variables 𝑎, 𝑏:

⟨𝑎, 𝜒 (𝑇 )⟩ = 𝑏, ∀𝑇 ⊆ [𝑛] such that |𝑇 | = 𝑘 − 1.

We have to show that all non-zero solutions of the above system are a scaling of (1, 𝑘 − 1). For

that, let 𝑇 1 = {1,… , 𝑘 − 1} and 𝑇 2 ∶= {2,… , 𝑘}. Subtracting the equation corresponding to 𝑇 1

from that of 𝑇 2
, we obtain 𝑎1 = 𝑎𝑘 . Using the same argument by suitably selecting 𝑇 1

and 𝑇 2
, we

obtain: 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛. Therefore, without loss of generality (excluding the solution where 𝑎

is identically 0, since that would lead to 𝑏 = 0), we may rescale all the 𝑎𝑖’s to 1. Then we see the

only possible value for 𝑏 is 𝑘 − 1. This shows that the only affine subspace containing the points

{𝜒 (𝑇 )}𝑇⊆[𝑛],|𝑇 |=𝑘−1 is {𝑥 ∶ ⟨1, 𝑥⟩ = 𝑘 − 1}, in other words, there are 𝑛 affinely independent points

among them. This concludes the proof.
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Finally, since BB hardness is always at least the BB rank (Lemma 10), Lemma 17 gives the

desired hardness bound.

Corollary 8. Consider the polytope 𝑃𝑃𝐴 = {𝑥 ∈ [0, 1]𝑛 ∶ ∑𝑖∈𝑆 𝑥𝑖 ≤ 𝑛
2 , for all 𝑆 ⊆ [𝑛] such that |𝑆| = 𝑛

2 + 1}.

Then, BBhardness(𝑃𝑃𝐴) ≥ 2Ω(𝑛), i.e. there exists a vector 𝑐 ∈ ℝ𝑛
such that the smallest branch-and-

bound tree that solves

max
𝑥∈𝑃𝑃𝐴∩{0,1}𝑛

⟨𝑐, 𝑥⟩

has size at least 2Ω(𝑛).

3.4.2 Set-cover

In order to obtain a set-cover instance that requires an exponential-size branch-and-bound tree,

we will use Lemma 15 together with the flipping affine mapping (Defintion 4) applied to the

packing instance from subsection 3.4.1.

More precisely, consider the following set-cover polytope:

𝑇SC =
{
𝑦 ∈ [0, 1]𝑛 ∶ ∑

𝑖∈𝑆
𝑦𝑖 ≥ 1 for all 𝑆 ⊆ [𝑛] such that |𝑆| = 𝑘

}
.

Proposition 2. Let 𝑃𝑃𝐴 still be the packing polytope from subsection 3.4.1. Let 𝑓 ∶ [0, 1]𝑛 → [0, 1]𝑛

be the flipping function with 𝐽 = [𝑛]. Then:

• 𝑇SC = 𝑓 (𝑃𝑃𝐴)

• 𝑇SC ∩ {0, 1}𝑛 ⊆ 𝑓 (𝑃𝑃𝐴 ∩ {0, 1}𝑛).

Proof. By substituting 𝑦𝑖 = 1 − 𝑥𝑖 for 𝑖 ∈ [𝑛] in the polytope 𝑃𝑃𝐴, we obtain that 𝑇SC = 𝑓 (𝑃𝑃𝐴).

For the second item, consider any �̂� ∈ 𝑇SC ∩ {0, 1}𝑛. Notice �̂� ∶= 1 − �̂� belongs to 𝑃𝑃𝐴 ∩ {0, 1}𝑛

and �̂� = 𝑓 (�̂�), and hence �̂� ∈ 𝑓 (𝑃𝑃𝐴 ∩ {0, 1}𝑛). This gives 𝑇SC ∩ {0, 1}𝑛 ⊆ 𝑓 (𝑃𝑃𝐴 ∩ {0, 1}𝑛).

Then by Lemmas 15 and 17 we have that BBrank(𝑇SC) ≥ BBrank(𝑃𝑃𝐴) ≥ 2Ω(𝑛). Further employ-

ing Lemma 10 we obtain the desired hardness bound.
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Corollary 9. BBhardness(𝑇SC) ≥ 2Ω(𝑛), i.e. there exists a vector 𝑐 ∈ ℝ𝑛
such that the smallest branch-

and-bound tree that solves

max
𝑥∈𝑇𝑆𝐶∩{0,1}𝑛

⟨𝑐, 𝑥⟩

has size at least 2Ω(𝑛).

3.5 BB hardness for cross-polytope

In this section, we present in Proposition 3 a simple proof of BB hardness for the cross-polytope.

As mentioned before, this result slightly improves on the result that can be directly obtained by

applying Lemma 16 to the cross-polytope.

Next in this section we develop Proposition 4 that shows that there is a point in the cross

polytope that is hard to separate using BB trees of small size. This allows us to use the machinery

of Lemma 15 and a composition of the affine functions described in section 3.3 to connect the BB

hardness of TSP to that of the cross-polytope, which we do in section 3.7.

The cross-polytope is defined as

𝑃𝑛 =

{

𝑥 ∈ [0, 1]𝑛 ∶ ∑
𝑖∈𝐽

𝑥𝑖 +∑
𝑖∉𝐽

(1 − 𝑥𝑖) ≥
1
2

∀𝐽 ⊆ [𝑛]

}

.

Recall that the cross-polytope is integer-infeasible: every 0/1 point �̂� ∈ {0, 1}𝑛 is cut off by the

inequality given by the set 𝐽 = {𝑖 ∈ [𝑛] ∶ �̂�𝑖 = 0}.

Proposition 3. Let  be a BB tree for 𝑃𝑛 that certifies the integer-infeasibility of 𝑃𝑛. Then | | ≥

2𝑛+1 − 1 (i.e. BBhardness(𝑃𝑛) ≥ 2𝑛+1 − 1).

Proof. In order to certify the integer-infeasibility of 𝑃𝑛, the atom of every leaf-node must be an

empty set. We will verify that in order for the atom of a leaf 𝑣 to be empty, no more than one

integer point is allowed to satisfy the branching constraints 𝐶𝑣 of 𝑣. This will complete the proof,

since we then must have at least 2𝑛 leaves.
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Consider any leaf 𝑣 of  such that two distinct integer points are feasible for its branching

constraints. Then the average of these two points is a point in {0, 1, 12}
𝑛

with at least one com-

ponent equal to
1
2 , which also satisfies the branching constraints. However, a point in {0, 1, 12}

𝑛

with at least one component equal to
1
2 satisfies the constraints defining 𝑃𝑛. Thus the atom of the

leaf 𝑣 is non-empty.

Corollary 10. Let 𝐹 ⊆ ℝ𝑛
be a face of 𝑃𝑛 with dimension 𝑑 . Then BBhardness(𝐹 ) ≥ 2𝑑+1 − 1.

Proof. Notice that 𝐹 is a copy of 𝑃𝑑 with 𝑛 − 𝑑 components fixed to 0 or 1. Thus, there exists an

appropriate embedding affine transformation 𝑓 (Definition 5) such that 𝑓 (𝑃𝑑 ) = 𝐹 . Also since 𝐹 ∩

ℤ𝑛 = ∅, we obtain that 𝑓 , 𝑃𝑑 and 𝐹 satisfy all the conditions of Corollary 6. Thus, BBhardness(𝐹 ) ≥

BBhardness(𝑃𝑑 ) ≥ 2𝑑+1 − 1, where the last inequality follows from Proposition 3.

Next we show that the point
1
21 is hard to separate from 𝑃𝑛. For that we need a technical

result that any halfspace that contains
1
21 must also contain a face of [0, 1]𝑛 of dimension at least

⌊𝑛/2⌋.

Lemma 18. Consider any (𝜋, 𝜋0) ∈ ℝ𝑛 × ℝ such that ⟨𝜋, 121⟩ > 𝜋0. Let 𝐺 = {𝑥 ∈ [0, 1]𝑛 ∶ ⟨𝜋, 𝑥⟩ >

𝜋0}. There exists a face 𝐹 of [0, 1]𝑛 of dimension at least ⌊𝑛/2⌋ contained in 𝐺.

Proof. By assumption we have 𝜋0 < 1
2 ∑

𝑛
𝑖=1 𝜋𝑖 . First consider the case where the vector 𝜋 is non-

negative. By renaming the coordinates we can further assume that 𝜋1 ≥ 𝜋2 ≥ … ≥ 𝜋𝑛 ≥ 0. Then

the face 𝐹 = {𝑥 ∈ [0, 1]𝑛 ∶ 𝑥𝑖 = 1, ∀𝑖 ≤ ⌈𝑛/2⌉} has the desired properties: it has dimension

𝑛 − ⌈𝑛/2⌉ = ⌊𝑛/2⌋, and any �̂� ∈ 𝐹 has

⟨𝜋, �̂�⟩ ≥
⌈𝑛/2⌉

∑
𝑖=1

𝜋𝑖 ≥
1
2

𝑛

∑
𝑖=1

𝜋𝑖 > 𝜋0,

where the second inequality follows from the ordering of the coordinates of 𝜋 , and hence 𝐹 is

contained in 𝐺.
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The case when 𝜋 is not non-negative can be reduced to the above case by flipping coordinates.

More precisely, let 𝐽 be the set of coordinates 𝑖 where 𝜋𝑖 < 0, and consider the coordinate flipping

operation (Definition 4) 𝑓 ∶ ℝ𝑛 → ℝ𝑛
that flips all coordinates in 𝐽 . Notice that

𝑓 (𝐺) =
{
𝑥 ∈ [0, 1]𝑛 ∶ ∑

𝑖∈𝐽
−𝜋𝑖𝑥𝑖 +∑

𝑖∉𝐽
𝜋𝑖𝑥𝑖 ≤ 𝜋0 −∑

𝑖∈𝐽
𝜋𝑖
}
,

and that defining the vector 𝜋 ′
as 𝜋 ′

𝑖 = −𝜋𝑖 for 𝑖 ∈ 𝐽 and 𝜋 ′
𝑖 = 𝜋𝑖 for 𝑖 ∉ 𝐽 and 𝜋 ′

0 ∶= 𝜋0 −∑𝑖∈𝐽 𝜋𝑖 we

still have ⟨𝜋 ′, 121⟩ > 𝜋 ′
0 . Since 𝜋 ′

is non-negative, the previous argument shows that 𝑓 (𝐺) has a

face 𝐹 of [0, 1]𝑛 of desired dimension, and hence 𝑓 −1(𝐹 ) = 𝑓 (𝐹 ) is a desired face of [0, 1]𝑛 contained

in 𝐺.

Proposition 4. For every 𝑛 such that ⌊𝑛/2⌋ > 1, BBdepth ( 1
21, 𝑃𝑛) ≥ 2⌊𝑛/2⌋+1 − 1.

Proof. For sake of contradiction suppose there exists a tree  of size less than 2⌊𝑛/2⌋+1 −1 such that

1
21 ∉ conv( (𝑃𝑛)). By the hyperplane separation theorem, there exists (𝜋, 𝜋0) ∈ ℝ𝑛 × ℝ such that

⟨𝜋, 121⟩ > 𝜋0 and ⟨𝜋, 𝑥⟩ ≤ 𝜋0 for all 𝑥 ∈ conv( (𝑃𝑛)). By Lemma 18, let 𝐹 be a face of [0, 1]𝑛 of

dimension ⌊𝑛/2⌋ contained in {𝑥 ∈ ℝ𝑛 | ⟨𝜋, 𝑥⟩ > 𝜋0}; notice that 𝑃𝑛 ∩ 𝐹 is a face of 𝑃𝑛 of the same

dimension. Since  (𝑃𝑛) ⊆ conv( (𝑃𝑛)) ⊆ ℝ𝑛 ⧵{𝑥 ∈ ℝ𝑛 | ⟨𝜋, 𝑥⟩ > 𝜋0} ⊆ ℝ𝑛 ⧵𝐹 and  (𝐹 ) ⊆ 𝐹 , we have

that  (𝑃𝑛) and  (𝐹 ) are disjoint and hence from Lemma 13 we get  (𝑃𝑛 ∩ 𝐹 ) ⊆  (𝑃𝑛) ∩  (𝐹 ) = ∅,

i.e., the atoms of the leaves of  applied to 𝑃𝑛∩𝐹 are all empty. Thus,  is a branch-and-bound tree

to certify the integer-infeasibility of 𝑃𝑛 ∩ 𝐹 of size less than 2⌊𝑛/2⌋+1 − 1. However, this contradicts

Corollary 10.

3.6 BB hardness for perturbed cross-polytope

We now show that exponential BB hardness for the cross-polytope persists even after adding

Gaussian noise to the entries of the contraint matrix. This implies an exponential lower bound

even for a “smoothed analysis” of general branch-and-bound.
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We consider the cross-polytope 𝑃𝑛 but where we add an independent gaussian noise𝑁 (0, 1/202)

with mean 0 and variance 1/202 to each coefficient in the left-hand side of its defining inequalities,

and replace the right-hand sides by approximately
𝑛
20 instead of the traditional

1
2 . More precisely,

we consider the following random polytope 𝑄:

𝑄 ∶=

{

𝑥 ∈ [0, 1]𝑛 ∶ ∑
𝑖∈𝐼

(1 + 𝑁 (0, 1
202 )) 𝑥𝑖 +∑

𝑖∉𝐼
(1 − (1 + 𝑁 (0, 1

202 )) 𝑥𝑖) ≥
1.6𝑛
20

, ∀𝐼 ⊆ [𝑛]

}

where each occurrence of 𝑁 (0, 1
202 ) is independent.

Theorem 6. With probability at least 1 − 2
𝑒𝑛/2 the polytope 𝑄 is integer-infeasible and every BB tree

proving its infeasibility has at least 2Ω(𝑛) nodes.

Recall that for independent gaussians 𝑌 ∼ 𝑁 (𝜇, 𝜎 2) and 𝑌 ′ ∼ 𝑁 (𝜇′, (𝜎 ′)2), their sum 𝑌 + 𝑌 ′
is

distributed as 𝑁 (𝜇 + 𝜇′, 𝜎 2 + (𝜎 ′)2), and for a centered gaussian 𝑌 ∼ 𝑁 (0, 𝜎 2) the scaled random

variable 𝛼𝑌 is distributed as 𝑁 (0, 𝛼2𝜎 2) for all 𝛼 ∈ ℝ.

We need the following standard tail bound for the Normal distribution (see equation (2.10) of

[60]).

Fact 1. Let 𝑋 ∼ 𝑁 (0, 𝜎 2) be a mean zero gaussian with variance 𝜎 2
. Then for every 𝑝 ∈ (0, 1), with

probability at least 1 − 𝑝 we have 𝑋 ≤ 𝜎
√
2 ln(1/𝑝), and with probability at least 1 − 𝑝 we have

𝑋 ≥ −𝜎
√
2 ln(1/𝑝).

Let 𝐿𝐻𝑆𝐼 (𝑥) be the left-hand-side of the constraint of 𝑄 indexed by the set 𝐼 evaluated at the

point 𝑥 .

Lemma 19. With probability at least 1 − 1
𝑒𝑛/2 the polytope 𝑄 is integer-infeasible.

Proof. Fix a 0/1 point 𝑥 ∈ {0, 1}𝑛, and let 𝐼 ⊆ [𝑛] be the set of coordinates 𝑖 where 𝑥𝑖 = 0. Let

𝐼 𝑐 = [𝑛] ⧵ 𝐼 . Notice 𝐿𝐻𝑆𝐼 (𝑥) is a gaussian random variable with mean 0 and variance
|𝐼 𝑐 |
202 ≤

𝑛
202 , and
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so from Fact 1, with probability at least 1 − 1
𝑒𝑛/22𝑛 we have

𝐿𝐻𝑆𝐼 (𝑥) ≤
√
𝑛

20
√
2 ln(𝑒𝑛/22𝑛) =

√
𝑛

20
√
(1 + 2 ln 2)𝑛 <

1.6𝑛
20

,

i.e., the point 𝑥 does not satisfy the inequality of 𝑄 indexed by 𝐼 , and so does not belong to 𝑄.

Taking a union bound over all 2𝑛 points 𝑥 ∈ {0, 1}𝑛, with probability at least 1 − 1
𝑒𝑛/2 none of them

belong to 𝑄. This concludes the proof.

Lemma 20. With probability at least 1 − 1
𝑒𝑛/2 the polytope 𝑄 contains all points {0, 12 , 1}

𝑛
that have

at least 𝑠 = 4𝑛
10 coordinates with value

1
2 . (We call this set of points Half𝑠 .)

Proof. Consider 𝑥 ∈ Half𝑠 . Fix 𝐼 ⊆ [𝑛]. Let 𝑛half ≥ 𝑠 = 4𝑛
10 be the number of coordinates of 𝑥 with

value
1
2 , 𝑛ones be the number of coordinates with value 1, and let 𝑛diff be the number of coordinates

𝑖 where either 𝑖 ∈ 𝐼 and 𝑥𝑖 = 1, or 𝑖 ∉ 𝐼 and 𝑥𝑖 = 0. We see that 𝐿𝐻𝑆𝐼 (𝑥) distributed as

𝐿𝐻𝑆𝐼 (𝑥) =𝑑
𝑛half

2
+ 𝑛diff +

1
2
𝑁 (0, 𝑛half

202 ) + 𝑁 (0, 𝑛ones

202 )

=𝑑
𝑛half

2
+ 𝑛diff + 𝑁 (0, (𝑛half

4 + 𝑛ones) ⋅ 1
202 ),

where again the occurrences of 𝑁 (0, ⋅) are independent. Since the last term is a gaussian with

variance at most
𝑛
202 , we get that with probability at least 1 − 1

𝑒𝑛/2⋅2𝑛 ⋅3𝑛

𝐿𝐻𝑆𝐼 (𝑥) ≥
𝑛half

2
+ 𝑛diff −

1
20

√
𝑛
√
2 log(𝑒𝑛/2 ⋅ 2𝑛 ⋅ 3𝑛) ≥

4𝑛
20

−
2.4𝑛
20

=
1.6𝑛
20

,

that is, 𝑥 satisfies the constraint of 𝑄 indexed by 𝐼 .

Taking a union bound over all 𝑥 ∈ Half𝑠 and all subsets 𝐼 ⊆ [𝑛], we see that all points in Half𝑠

satisfy all constraints of 𝑄 with probability at least 1 − 1
𝑒𝑛/2 . This concludes the proof.

Lemma 21. Let 𝐹 ⊆ {0, 1}𝑛 be a set of 0/1 points. For any 𝑘, if |𝐹 | > ∑𝑖≤𝑘−1 (
𝑛
𝑖), then conv(𝐹 ) contains

a point with at least 𝑘 coordinates of value 1/2.
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Proof. By the Sauer-Shelah Lemma (Lemma 11.1 of [61]), there is a set of coordinates 𝐽 ⊆ [𝑛] of

size |𝐽 | = 𝑘 such that the points in 𝐹 take all possible values in coordinates 𝐽 , i.e., the projection

𝐹𝐽 onto the coordinates 𝐽 equals {0, 1}𝑘 . So the point
1
21 belongs to conv(𝐹𝐽 ), which implies that

conv(𝐹 ) has the desired point.

Proof of Theorem 6. Let 𝐸 be the event that both the bounds from Lemmas 19 and 20 hold. By a

union bound, this event happens with probability at least 1 − 2
𝑒𝑛/2 . So it suffices to show that there

is a constant 𝑐 > 0 such that for every scenario in 𝐸, every BB tree proving the infeasibility of 𝑄

has at least 2𝑐𝑛 leaves.

In hindsight, again let 𝑠 = 4𝑛
10 and set 𝑐 ∶= 1 − ℎ( 𝑠𝑛 ), where ℎ is the binary entropy function

ℎ(𝑝) ∶= 𝑝 log 1
𝑝 +(1−𝑝) log

1
1−𝑝 . Notice that 𝑐 > 0, since ℎ is strictly increasing in the interval [0, 12]

and hence ℎ( 𝑠𝑛 ) < ℎ( 12 ) = 1.

Fix a scenario in the event 𝐸, so we know 𝑄 is integer-infeasible and Half𝑠 ⊆ 𝑄. Consider

any tree  that proves integer-infeasibility of 𝑄, and we claim that it has more than 2𝑐𝑛 leaves.

By contradiction, suppose not. Then  has a leaf 𝑣 whose branching constraints 𝐶𝑣 are satisfied

by at least
2𝑛
2𝑐𝑛 = 2𝑛⋅ℎ(𝑠/𝑛) 0/1 points (recall that each integer point satisfies all of the branching

constraints of at least some leaf). But since 2𝑛⋅ℎ(𝑠/𝑛) > ∑𝑖≤𝑠−1 (
𝑛
𝑖) (see e.g. Lemma 5 of [62]), by

Lemma 21 we know that the convex set {𝑥 ∶ 𝐶𝑣} contains a point �̂� ∈ [0, 1]𝑛 with at least 𝑠

coordinates of value 1/2. Moreover, notice that �̂� also belongs to conv(Half𝑠), which is contained

in 𝑄. Hence �̂� ∈ {𝑥 ∶ 𝐶𝑣}∩𝑄, namely the atom of the leaf 𝑣. But this contradicts that this atom is

empty (which is required since  proves integer infeasibility of 𝑄). This concludes the proof.

3.7 BB hardness for TSP

Again we use 𝑃𝑘 to denote the cross-polytope in 𝑘 dimensions.

Proposition 5. Let 𝑓 be any composition of the flipping (Defintion 4), embedding (Definition 5),

and duplication (Definition 6) operations. Let 𝐻 ⊆ [0, 1]𝑛 be a polytope such that 𝑓 (𝑃𝑘) ⊆ 𝐻 and
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𝑓 ( 121) ∉ 𝐻𝐼 , where 𝑘 ≤ 𝑛. Then, BBrank(𝐻 ) ≥ 2⌊𝑘/2⌋.

Proof. Notice that if 𝑓 is a composition of the flipping, embedding, and duplication operations,

then 𝑓 is an integral affine transformation. Moreover, if 𝑃 is integer-infeasible then 𝑓 (𝑃 ) is

also integer-infeasible. In particular, since 𝑃𝑘 is integer-infeasible we have (𝑓 (𝑃𝑘))𝐼 = ∅, and

hence 𝑓 ( 121) ∉ (𝑓 (𝑃𝑘))𝐼 . Now, Corollary 7 and Proposition 4 give us BBdepth (𝑓 ( 1
21) , 𝑓 (𝑃𝑘)) ≥

BBdepth ( 1
21, 𝑃𝑘) ≥ 2⌊𝑘/2⌋+1−1. Finally, since 𝑓 (𝑃𝑘) ⊆ 𝐻 , Corollary 5 implies that BBdepth(𝑓 ( 121), 𝐻 ) ≥

2⌊𝑘/2⌋+1 − 1. This implies the desired result: BBrank(𝐻 ) ≥ 2⌊𝑘/2⌋+1 − 1 ≥ 2⌊𝑘/2⌋.

We next state a key result from the proof of Theorem 4.1 of [63] (see also [57]), that shows

how we can apply Proposition 5 to obtain BB hardenss of the TSP polytope. Let 𝑇TSP𝑛 be the LP

relaxation of the TSP polytope using subtour elimination constraints for 𝑛 cities:

𝑥(𝛿(𝑣)) = 2 ∀𝑣 ∈ 𝑉

𝑥(𝛿(𝑊 )) ≥ 2 ∀𝑊 ⊂ 𝑉 ,𝑊 ≠ ∅

0 ≤ 𝑥(𝑒) ≤ 1 ∀𝑒 ∈ 𝐸

Proposition 6 (proof of Theorem 4.1 in [63]). There exists a function 𝑓 which is a composition

of flipping, embedding, and duplication such that 𝑓 (𝑃⌊𝑛/8⌋) is contained in 𝑇TSP𝑛 and 𝑓 ( 121) does not

belong to the integer hull of 𝑇TSP𝑛 .

Then employing Proposition 5 we obtain BBrank(𝑇TSP𝑛 ) ≥ 2 𝑛
16−2, and again since BB hardness

is at least the BB rank (Lemma 10) we obtain the desired hardness.

Corollary 11 (BB hardness for TSP). BBhardness(𝑇TSP𝑛) ≥ 2 𝑛
16−2, i.e, there is a vector 𝑐 ∈ ℝ𝑛(𝑛−1)/2

such that the smallest branch-and-bound tree that solves

max
𝑥∈𝑇TSP𝑛∩{0,1}𝑛(𝑛−1)/2

⟨𝑐, 𝑥⟩
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has size at least 2 𝑛
16−2.
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CHAPTER 4

THEORETICAL AND COMPUTATIONAL ANALYSIS OF STRONG BRANCHING

4.1 Introduction

Given an underlying LP solver, formally speaking, the branch-and-bound algorithm is well-defined

by fixing two rules:

• Rule for selecting an open node to be branched on next and,

• Rule for deciding the variable to branch on.

It is natural to measure the efficiency of a branch-and-bound algorithm by the number of nodes

(corresponding to number of LPs solved) in the tree, i.e., lesser the number of nodes, faster the

algorithm.

Selecting an open node to branch on next (node selection rule). It is well established [2]

that the best-bound rule (i.e., select node with the maximum LP optimal objective function value

for a maximization-type MILP or select node with minimum LP optimal objective function value

for a minimization-type MILP) for selecting the next node to branch on, leads to small branch-

and-bound trees. The intuition behind this is the following: one cannot ignore the node with

best-bound if one wants to solve the MILP. Thus, it is best to select to branch on it first. In the

rest of the paper, we always assume to use the best-bound rule.

Deciding which variable to branch on (variable selection rule). Given that the rule for

selecting the node to be branched on is well-understood, much of the research in the area of

branch-and-bound algorithms has focused on the topic of deciding which variable to branch on

– see for example [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Most of the above work develops
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various intricate greedy rules for determining the branching variable. A popular concept is that

of pseudocost branching: the value of pseudocost (variable with largest pseudocost gets branched

on) keeps a history of the success (in terms of improving dual bound) of the variables on which

branching has already been done. Many of the papers cited above differ in how pseudocost is

initialized and updated during the course of the branch-and-bound tree. Other successful methods

like hybrid branching and reliability branching [32] are combinations of pseudocost branching and

full strong-branching, that we discuss next.

The focus of this work is full strong-branching [30], henceforth referred to as strong-branching

for simplicity. This rule works as follows: branching on all the current fractional variables is

computed (i.e., the child nodes are solved for every choice of fractional variable) and improvement

measured in the left and right child node. Branching is now done on the variable with the most

‘combined improvement’, where the combined improvement is computed as a ‘score’ function of

the left and right improvement. Formally, let 𝑧 be the optimal objective function value of the LP at

a given node, and let 𝑧0𝑗 and 𝑧1𝑗 be the optimal objective function values of the LPs corresponding

to the child nodes where the variable 𝑥𝑗 is set to 0 and 1 respectively; we define Δ+
𝑗 ∶= 𝑧 − 𝑧1𝑗 and

Δ−
𝑗 ∶= 𝑧 − 𝑧0𝑗 (assuming the MILP’s objective function is of maximizing-type). Note that Δ+

𝑗 = +∞

is the child node with 𝑥𝑗 set to 0 is infeasible. Similarly for Δ−
𝑗 . Two common score functions used

are:

score𝐿(𝑗) = (1 − 𝜇) ⋅ min{Δ−
𝑗 ,Δ

+
𝑗 } + 𝜇 ⋅ max{Δ−

𝑗 ,Δ
+
𝑗 }

for a constant 𝜇 ∈ [0, 1], and

score𝑃 (𝑗) = max(Δ+
𝑗 , 𝜖) ⋅max(Δ−

𝑗 , 𝜖),

for a constant 𝜖 > 0, where the first score is recommended in [31, 32] (the paper [32] recommends

using 𝜇 = 1/6) and the second score function is recommended in [64], where 𝜖 > 0 is chosen close

to 0 (for example, 𝜖 = 10−6) to break ties. We will refer to the first score function as the linear score
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function and the second score function as the product score function. Finally, the variable selected

to branch on belongs to the set:

argmax
𝑗
{score(𝑗)}.

Empirically, strong-branching is well-known to produce significantly smaller branch-and-bound

trees [32] compared to all other known techniques, but is extremely expensive to implement

as one has to solve 2𝐾 LPs where 𝐾 is the number of fractional variables for making just one

branching decision. This experimentally observed fact is so well established in the literature

that almost all recent methods to improve upon branching decisions are based on using machine

learning techniques to mimic strong-branching that avoid solving the 2𝐾 LPs, see for example [65,

66, 67, 68, 69, 70, 71]. Finally, see [72] that describes a more sophisticated way to decide the

branching variable based on left and right improvement rather than a static ‘score’ function.

4.1.1 Our contributions

As explained in the previous section, empirically it is well understood that strong-branching

produces very small trees in comparison to other rules. However, to the best of our knowledge

there is no understanding of how good strong-branching is in absolute terms. In particular, we would

like to answer questions such as:

• How large is the tree produced by strong-branching in comparison to the smallest possi-

ble branch-and-bound tree for a given instance? Answering this question may lead us to

finding better rules.

• A more refined line of questioning: Intuitively, we do not expect strong-branching to work

well for all types of MILP models and instances. On the other hand, it may be possible that

for some classes of MILPs strong-branching based branch-and-bound tree may be quite

close to the smallest possible branch-and-bound tree. It would be, therefore, very useful to

understand the performance of strong-branching vis-á-vis different classes of instances.
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In this paper, we attempt an analysis of the performance of the strong-branching rule – both from

a theoretical and a computational perspective, keeping in mind the above questions.

• Strong branching is provably good: We show that for the vertex cover problem, the strong-

branching rule has several benefits.

First, we show that strong branching can take advantage of problem structure. Nemhauser

and Trotter [73] proved that one may fix variables that are integral in the optimal solution of

the LP relaxation of vertex cover and still find an optimal solution to the IP. Note that in the

branch-and-bound tree, every node corresponds to a sub-graph of the original vertex-cover

instance, and thus, ideally we would like to continue to use the Nemhauser-Trotter prop-

erty at each node. Instead of designing a specialized implementation of branch-and-bound

algorithm (where we fix variables that have an integer value in the LP optimal solution

at each node), our second result is to show that strong-branching naturally incorporates

“fixing” the integral variables of the LP solution recursively and consistently thoughout the

branch-and-bound tree.

Next, we present a fixed parameter-type (FPT) result that uses the additive gap between

the IP’s and the LP’s optimal objective function value to bound the size of the branch-and-

bound tree using strong-branching.

Finally, we construct an instance where strong-branching yields a branch-and-bound tree

that is exponential-times smaller than a branch-and-bound tree generated using a very

reasonable alternative variable selection rule.

• Strong branching is provably bad: We present a class of instances where the size of the

strong-branching based branch-and-bound tree is exponentially larger than a special branch-

and-bound tree that solves these instances. In fact, the result we prove is stronger – we

show that if we only branch on variables that are fractional, then the size of the branch-

and-bound tree is exponentially larger than the given special branch-and-bound tree to
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solve these instances. This special branch-and-bound tree branches on variables that are

integral in the optimal LP solutions at certain nodes.

• Computational evaluation of the size of strong-branching based branch-and-bound tree

against the “optimal” branch-and-bound tree
1
: We first present a dynamic programming al-

gorithm for generating the optimal branch-and-bound tree whose running time is poly(data())⋅

3𝑂(𝑛) where 𝑛 is the number of binary variables. Then we conduct experiments on various

types of instances like the lot-sizing problem and its variants, packing IPs, covering IPs,

chance constrainted IPs, vertex cover, etc., to understand how much larger is the size of the

strong-branching based branch-and-bound tree in comparison to the optimal branch-and-

bound tree. The main take-away from these experiments is that for all these instances, the

size of the strong-branching based branch-and-bound tree is within a factor of two of the

size of the optimal branch-and-bound tree.

To the best of our knowledge, this is the first such study of this kind on strong-branching,

that provides a better understanding of why strong-branching often performs so well in practice,

and gives insight into when an instance may be challenging for strong-branching.

The rest of the paper is organized in the following fashion. In section 4.2 and section 4.3,

we present the theoretical results. In section 4.4, we present the main computational results. In

section 4.5 we present the details of the dynamic programming algorithm mentioned above.

4.2 Analysis of Strong Branching for Vertex Cover

There are simple MILPs that require exponential size branch-and-bound trees [12, 13, 19, 15, 18].

A common way to meaningfully analyze an algorithm with exponential worst-case performance

1
We write “optimal” branch-and-bound tree with quotes, since the size of the optimal branch-and-bound tree

depends not only on the branching decisions taken at each node, but also on the properties of the LP solver. We

discuss this issue in detail in section 4.4
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is to show its performance with respect to some parameter [74, 75]. Arguably the most well-

studied problem in parameterized complexity is vertex cover.

Definition 7 (Vertex cover). The vertex cover problem over a graph 𝐺 = (𝑉 , 𝐸) can be expressed as

the following integer program (IP)

min ∑
𝑣∈𝑉

𝑥𝑣

s.t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, 𝑢𝑣 ∈ 𝐸

𝑥𝑣 ∈ {0, 1}, 𝑣 ∈ 𝑉

Given an instance  of this IP, we let 𝐿() denote its LP relaxation (i.e. when the variable constraints

instead are 𝑥𝑣 ∈ [0, 1]). We denote the optimal objective function value of an instance by OPT()

and the optimal objective function value of its LP relaxation by OPT(𝐿()). We denote its additive

integrality gap Γ() ∶= OPT()−OPT(𝐿()). For results pertaining to vertex cover, we use 𝑛 to denote

the number of vertices (i.e. 𝑛 ∶= |𝑉 |).

This section has two significant parts. In Section subsection 4.2.1, we present results that give

insight into how strong branching takes advantage of the polyhedral structure of vertex cover

instances defined above. In Section subsection 4.2.2, we present an upper bound, parameterized

by Γ, on the size of branch-and-bound trees using strong branching variable selection when solv-

ing vertex cover instances; in Section subsubsection 4.2.2, we that strong branching can result in

trees that are an exponential factor smaller than other reasonable variable selection rules.

Note that in this section (Section section 4.2), whenever we refer to strong-branching, we

assume that it has been used in conjunction with the product score function [64] score𝑃 , where

𝜖 = 0 and we use the convention that 0 ⋅∞ = 0. Finally, we refer to the size of a branch-and-bound

tree to denote its number of nodes; we note that in any binary tree, the number of nodes is at

most 2𝓁 + 1, where 𝓁 is the number of leaves.

Let 𝑆() represent a branch-and-bound tree for solving instance  using strong-branching.
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Unfortunately, the number of nodes in this tree depends not only on the node selection rule and

variable selection rule, but also on the underlying LP solver as well. For example, a solver may

report an integral solution at a given node and allow us to prune the node. Another solver might

report a different optimal solution to the LP, which is not integral. Therefore, we will be careful to

not refer to the branch-and-bound tree generated by strong-branching. Instead, we will use 𝑆()

to represent some branch-and-bound tree generated by strong-branching.

4.2.1 Strong branching and persistency

Nemhauser and Trotter [73] prove the following property regarding the LP relaxation of vertex

cover.

Fact 2 (Persistency; Theorem 2 of [73]). Let  be an instance of vertex cover, �̂� be an optimal

solution of 𝐿() and 𝐼 be the set of variables on which �̂� is integer (i.e. 𝐼 = {𝑗 ∶ �̂�𝑗 ∈ {0, 1}}). Then,

there exists an optimal solution �̂� to  such that �̂� agrees with �̂� on all of its integer components (i.e.

�̂�𝑗 = �̂�𝑗 for all 𝑗 ∈ 𝐼 ).

One way to use this property is to use it as a pre-solve routine, i.e., fix variables that are

integral in the optimal solution of the LP relaxation, and then work with the sub-graph induced

by the vertices with value
1
2 in the optimal solution of the LP. (The extreme points of the LP

relaxation of the vertex cover problem are half integral [76].) However, note that in the branch-

and-bound tree, every node corresponds to a sub-graph of the original vertex-cover instance,

and thus, ideally we would like to continue to use the Nemhauser-Trotter property at each node.

Instead of designing a specialized implementation of branch-and-bound algorithm (where we fix

variables that have an integer value in the LP optimal solution at each node), we show that strong-

branching naturally incorporates “fixing” the integral variables of the optimal solution of LP at

each node recursively throughout the branch-and-bound tree. In fact, it does even better in the

following sense: due to dual degeneracy, there may be alternative linear programming optimal
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solutions with different corresponding sets of variables being integral. Strong branching “avoids

branching” on all the variables that are integral in any of the alternative optimal LP solutions,

i.e., strong-branching is not fooled by the LP solver.

In order to present our results, we need to define the notion of maximal set of integer variables

and present some properties regarding this set of variables.

Fact 3 (Lemma 1 in [77]). Consider an instance of vertex cover and its LP relaxation. Let 𝑥1, 𝑥2
be

two optimal solutions to this LP relaxation and let 𝐼 1, 𝐼 2 ⊆ [𝑛] be the indices of the integer valued

variables in 𝑥1, 𝑥2
respectively. Then, there exists an optimal solution of the LP relaxation, �̂� , such

that the set of integer valued variables in �̂� is 𝐼 = 𝐼 1 ∪ 𝐼 2.

Based on the above fact we obtain the following observation: Given a vertex cover instance,

all optimal solutions of the LP relaxation that have a maximal number of integral coordinates

actually have the same set 𝐼 ⊆ [𝑛] of integral coordinates. Given an instance of vertex cover

, we call this subset the maximal set of integer variables and denote it 𝐼 (). Fact 2 then implies

that there exists an optimal solution to the vertex-cover instance where the maximal set of integer

variables are fixed to integer values from the corresponding values of an maximal optimal solution

of the LP relaxation.

As discussed before, in a branch-and-bound tree, each node corresponds to a vertex cover

instance on a sub-graph. Therefore, we can define the notion of maximal set of integer variables

at a given node 𝑁 , which we denote as 𝐼 (, 𝑁 ). Given an instance of vertex cover , we refer

to  () as a partial branch-and-bound tree for  if all the nodes of  () cannot be pruned.

For such a partial branch-and-bound tree, we use  𝐵() to refer to the dual bound that one can

infer from the partial tree.

The strength of strong-branching with regards to the maximal set of integer variables at a node

𝑁 is explained by the next result: Let 𝑗 belong to the maximal set of integer variables at node 𝑁 .

If the LP solver returns an optimal solution with 𝑥𝑗 integral, then clearly we do not branch on

this variable. However, if the LP solver returns an optimal solution where 𝑥𝑗 is fractional and we
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decide on branching on this variable based on strong-branching, then it must be that we have

“nearly solved” the instance, i.e., the dual bound that can be inferred from the partial tree must

be equal to the optimal objective function value of the instance. Formally we have the following:

Theorem 7. Let  be any instance of vertex cover. Assume we break ties within the best-bound rule

for node selection by selecting a node with the largest depth. Consider a partial tree  𝑆 generated

by strong-branching with the above version of best-bound node selection rule. Let 𝑁 be a node of

this tree that is not pruned. If 𝑗 ∈ 𝐼 (, 𝑁 ) and we decide to branch on variable 𝑥𝑗 at node 𝑁 (using

strong-branching), then

1.  𝐵
𝑆 () = OPT().

2. After branching on 𝑥𝑗 ,in at most (𝑛) further branchings the algorithm returns an integral

optimal solution.

We will require two preliminary results for the proof of Theorem 7. Throughout this section,

we use 𝑁𝑗,0 to denote the child node of 𝑁 that results from the branch 𝑥𝑗 = 0; we use 𝑁𝑗,1 similarly.

Lemma 22. Let 𝑁 be a node of 𝑆() with optimal objective value less than OPT(). Then strong-

branching will branch on 𝑣 ∉ 𝐼 (, 𝑁 ) at node 𝑁 and 𝑁𝑣,0, 𝑁𝑣,1 have optimal value at least
1
2 more

than that of 𝑁 .

Proof. Since𝑁 has optimal objective value less than OPT(), the LP relaxation at𝑁 must not have

an optimal solution that is integer. Note that if at 𝑁 we branch on 𝑥𝑢 where 𝑢 ∈ 𝐼 (, 𝑁 ), it must

hold that, at least one of 𝑁𝑢,0 or 𝑁𝑢,1 have optimal value the same as 𝑁 . Therefore, score𝑃 (𝑢) = 0.

We now show that there exists 𝑣 ∈ [𝑛] such that score𝑃 (𝑣) > 0. If there is no optimal solution

to 𝑁 that is integer, then 𝐼 (, 𝑁 ) ≠ [𝑛] by Fact 3. Therefore, there exists a 𝑣 ∉ 𝐼 (, 𝑁 ) such that

𝑥𝑣 = 1
2 in every optimal solution to 𝑁 . It follows that fixing 𝑥𝑣 ∈ {0, 1} must result in a feasible

solution to 𝑁 that has strictly greater value, and so branching on 𝑥𝑣 at 𝑁 leads to child nodes 𝑁𝑣,0

and 𝑁𝑣,1 where both have optimal value more than that of 𝑁 . Further, since 𝑁𝑣,0 and 𝑁𝑣,1 have
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objective value strictly more than 𝑁 and all basic feasible solutions are half-integral, it holds that

𝑁𝑣,0 and 𝑁𝑣,1 have objective value at least
1
2 more than 𝑁 .

Lemma 23. Let 𝑁 be a node of 𝑆() with an optimal LP solution that is integer. Then the sub-tree

rooted at 𝑁 will have size (𝑛), where it finds an integer optimal solution.

Proof. Let 𝑦 ∈ {0, 1}𝑛 be an optimal solution to the LP of node 𝑁 . If the LP solver returns an

integer solution, we are done. Suppose not, and suppose we branch on some variable 𝑣, and

without loss of generality let 𝑦𝑣 = 0. Then, of course 𝑁𝑣,0 will have 𝑦 as an optimal solution and

therefore have value OPT(). If 𝑁𝑣,1 has value greater than OPT(), this node gets pruned by

bound and we continue by branching on 𝑁𝑣,0 since it is now the open node with largest depth.

Suppose instead 𝑁𝑣,1 has value OPT(). Then, we argue in the next paragraph that there is an

optimal solution to the LP corresponding to 𝑁 that is integer feasible, denote 𝑧, with 𝑧𝑣 = 1; in

this case we can break the tie between 𝑁𝑣,0, 𝑁𝑣,1 arbitrarily. Then, for every node 𝑁 ′
in the sub-

tree rooted at 𝑁 , either one child of 𝑁 ′
has value greater than OPT() and is pruned by bound, or

both children of 𝑁 ′
have optimal solutions that are integer. In the second case, only one of these

two children will ever be branched on, since we break ties by branching on the node with largest

depth, and therefore will find an integer solution before revisiting a shallower node. The result

of the lemma follows.

Here we argue that if 𝑁𝑣,1 has a LP optimal objective function value OPT(), then there is

an optimal solution to the LP corresponding to 𝑁 that is integral, denote 𝑧, with 𝑧𝑣 = 1. Let 𝑥 ′

denote any optimal solution of 𝑁𝑣,1 and observe that 𝑥 ′, 𝑦 are both optimal solutions to 𝑁 . It

follows from the proof of Lemma 1 in [77] that: given two half-integral optimal solutions 𝑥 ′, 𝑦,
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there exists an optimal solution 𝑧 constructed as follows:

𝑧𝑗 =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1 if 𝑥 ′
𝑗 = 1 or 𝑥 ′

𝑗 = 1
2 , 𝑦𝑗 = 1

0 if 𝑥 ′
𝑗 = 0 or 𝑥 ′

𝑗 = 1
2 , 𝑦𝑗 = 0

1
2 if 𝑥 ′

𝑗 = 𝑦𝑗 = 1
2

In particular, [77] shows that that 𝑧 constructed as above is feasible and satisfies, ∑𝑗 𝑧𝑗 = ∑𝑗 𝑥 ′
𝑗 =

∑𝑗 𝑦𝑗 . Clearly 𝑧𝑣 = 𝑥 ′
𝑣 = 1 and since 𝑦 ∈ {0, 1}𝑛, it follows that 𝑧 ∈ {0, 1}𝑛 and is an optimal

solution of the LP corresponding to 𝑁 .

Proof of Theorem 7. We begin by proving Property 1. Suppose for sake of contradiction, there

exists an open node 𝑁 ′
in  𝐵

𝑆 () with optimal objective value less than OPT(). It follows from

the best-bound rule and Lemma 22 that strong-branching will choose to branch on 𝑗′ at 𝑁 ′
with

𝑗′ ∉ 𝐼 (, 𝑁 ′). Thus 𝑗′ and 𝑁 ′
are not the same as 𝑗 and 𝑁 , giving the desired contradiction.

Property 2 follows directly from Lemma 23 and the fact that 𝐼 (, 𝑁 ) = [𝑛], since otherwise

strong-branching would branch on some 𝑗 ∉ 𝐼 (, 𝑁 ).

The above result shows that we “almost never” branch on maximal set of integer variables

at a node if we use strong-branching. However, after branching on a variable that is not in the

maximal set of integer variables, what happens to the set of maximal set of integer variables at

the child nodes? A very favorable property would be if the maximal set of integer variables of

the parent node is inherited by the child nodes. Otherwise, while we may not branch on 𝑥𝑗 where

𝑗 ∈ 𝐼 (, 𝑁 ) at node 𝑁 , but we may end up branching on 𝑗 for a child 𝑁 ′
of 𝑁 — in other words,

we are then not really “fixing” variable 𝑥𝑗 . As it turns out the above bad scenario does not occur.

Formally we have the following:

Theorem 8. Let  be an instance of vertex cover. Consider any internal node 𝑁 of 𝑆() and let 𝑁 ′

be a child node of 𝑁 that results from branching on 𝑥𝑣 where 𝑣 ∉ 𝐼 (, 𝑁 ). Then, 𝐼 (, 𝑁 ) ⊂ 𝐼 (, 𝑁 ′).

62



Proof. Throughout this proof, we use 𝑁𝑗,0 to denote the child node of 𝑁 that results from the

branch 𝑥𝑗 = 0; we use 𝑁𝑗,1 similarly. We use 𝛿(𝑆) to denote the neighbors of any subset of vertices

𝑆 ⊆ 𝑉 . Also, throughout the proof, let 𝑥 ∗
be an optimal solution to 𝑁 with maximal set of integer

components (i.e. 𝑥 ∗
𝑗 ∈ {0, 1} for all 𝑗 ∈ 𝐼 (, 𝑁 )).

We will first consider the child 𝑁𝑣,1. Consider the solution 𝑦 to 𝑁𝑣,1 constructed from 𝑥 ∗
as

follows: 𝑦 takes the same values as 𝑥 ∗
, but 𝑦𝑣 = 1 instead of

1
2 . Note that this is feasible for 𝑁𝑣,1.

Since 𝑣 ∉ 𝐼 (, 𝑁 ) we have that 𝑥𝑣 = 1
2 in every optimal solution to 𝑁 . In other words, optimal

objective function value of 𝑁𝑣,1 is at least
1
2 more than that of 𝑁 . Also, ⟨1, 𝑦⟩ = ⟨1, 𝑥 ∗⟩+ 1

2 , and so,

𝑦 is an optimal solution to 𝑁𝑣,1. So 𝐼 (, 𝑁 ) ⊂ 𝐼 (, 𝑁 ′) follows in the case of 𝑁 ′ = 𝑁𝑣,1.

We will now consider the child 𝑁𝑣,0. Let 𝑉 ∗
1 = {𝑢 ∈ 𝑉 ∶ 𝑥 ∗

𝑢 = 1} and 𝑉 ∗
0 be defined similarly.

We will need the following technical result later in the proof.

Lemma 24. |𝛿(𝑆) ∩ 𝑉 ∗
0 | ≥ |𝑆| for all 𝑆 ⊆ 𝑉 ∗

1 .

Proof. Assume, for the sake of contradiction, there is a subset 𝑆 ⊆ 𝑉 ∗
1 such that |𝛿(𝑆) ∩ 𝑉 ∗

0 | < |𝑆|,

then it must hold that 𝑥 ∗
is not an optimal solution. This is because, we can set all of 𝑆 and 𝛿(𝑆)∩𝑉 ∗

0

to be
1
2 . This remains feasible, since we are only decreasing the value of the vertices in 𝑆, but all

of the vertices with value 0 adjacent to these vertices are also being raised to
1
2 . It also decreases

the cost, since
1
2 (|𝛿(𝑆) ∩ 𝑉

∗
0 | + |𝑆|) < |𝑆|.

Let 𝑥 ′
be any optimal solution to LP corresponding to 𝑁𝑣,0. Let Φ = {𝑢 ∈ 𝑉 ∗

1 ∶ 𝑥 ′
𝑢 ≠ 1}. We

will construct a feasible solution 𝑧 such that 𝑧𝑢 = 1 for all 𝑢 ∈ 𝑉 ∗
1 with cost no more than that of

𝑥 ′
. Note that since 𝛿(𝑉 ∗

0 ) ⊆ 𝑉 ∗
1 , this implies the existence of an optimal solution to 𝑁𝑣,0 with the

same integer variables as 𝑥 ∗
(since any optimal solution with all variables in 𝑉 ∗

1 set to 1 will have

all variables in 𝑉 ∗
0 set to 0).

We begin by constructing an intermediate solution 𝑦. Notice Φ can be partitioned into Φ0 =

{𝑢 ∈ Φ ∶ 𝑥 ′
𝑢 = 0} and Φ 1

2 = {𝑢 ∈ Φ ∶ 𝑥 ′
𝑢 = 1

2}. Let 𝑦 be defined by setting the variables in Φ0
to

1
2

and setting the variables in 𝛿(Φ0) ∩𝑉 ∗
0 to

1
2 (note that 𝑥 ′

𝑢 = 1 for all 𝑢 ∈ 𝛿(Φ0) ∩𝑉 ∗
0 ). This maintains
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feasibility, since the variables with decreasing value are a subset of 𝑉 ∗
0 , which are only adjacent

to vertices in 𝑉 ∗
1 which now all have value at least

1
2 in 𝑦 . This also maintains optimality, since

the cost increases by
1
2 |Φ

0| and decreases by
1
2 |𝛿(Φ

0) ∩𝑉 ∗
0 |, and by Lemma 24, |𝛿(Φ0) ∩𝑉 ∗

0 | ≥ |Φ0|. We

now construct 𝑧 similarly, from this intermediate solution 𝑦. Notice now, that all variables in Φ

have value
1
2 in 𝑦 . We construct 𝑧 by setting all of these variables to 1 and setting all variables in

𝛿(Φ) ∩𝑉 ∗
0 to 0 (note that 𝑦𝑢 ≥ 1

2 for all 𝑢 ∈ 𝛿(Φ) ∩𝑉 ∗
0 ). This maintains feasibility, since the variables

with decreasing value are a subset of 𝑉 ∗
0 , which are adjacent only to vertices in 𝑉 ∗

1 , which all have

value at least 1 in 𝑧. This also maintains optimality, since the cost increases by
1
2 |Φ| and decreases

by at least
1
2 |𝛿(Φ) ∩ 𝑉 ∗

0 |, and by Lemma 24, |𝛿(Φ) ∩ 𝑉 ∗
0 | ≥ |Φ|. Finally, we note that 𝑧 maintains

feasibility for 𝑁𝑣,0, since 𝑥 ′
𝑣 = 0 and therefore 𝑥 ′

𝑢 = 1 for all 𝑢 ∈ 𝛿(𝑣); since 𝛿(𝑣) ∩ Φ = ∅, all

vertices 𝑣 and 𝛿(𝑣) keep their value in 𝑧. This concludes the proof.

Therefore, using Theorem 7 and Theorem 8 together, we can conclude that when using

strong-branching, we are essentially repeatedly using Nemhauser-Trotter property recursively

and consistenly through-out the branch-and-bound tree: If 𝑗 is in the maximal set of integer

variables at node 𝑁 , it continues to remain in the maximal set of integer variables for all the child

nodes of 𝑁 ; and we do not branch on such a variable 𝑥𝑗 at node 𝑁 or any of its children unless

the instance is essentially solved (i.e., dual bound inferred from the tree equals the values of the

IP).

Here we present an example to illustrate that there are variable selection rules for which the

property described in Theorem 8 does not hold. See the instance ∗
shown in Figure Figure 4.1.

Consider the following partial branch-and-bound tree, letting 𝑁 denote the root node. Observe

that there is an optimal LP solution that sets 𝑥𝑎 = 𝑥𝑐 = 1 and 𝑥𝑏 = 𝑥𝑑 = 0; therefore, 𝐼 (∗, 𝑁 ) =

{𝑎, 𝑏, 𝑐, 𝑑}. However, suppose that an adversarial LP solver returns the optimal basic feasible

solution 𝑥𝑎 = 𝑥𝑏 = 𝑥𝑐 = 𝑥𝑑 = 1
2 . Suppose we branch on 𝑥𝑏 and consider the sub-problem resulting

from 𝑥𝑏 = 1, which we denote 𝑁 ′
. The unique optimal solution to 𝑁 ′

sets 𝑥𝑏 = 1 and 𝑥𝑎 = 𝑥𝑐 =

𝑥𝑑 = 1
2 ; therefore, 𝐼 (∗, 𝑁 ′) = {𝑏} ⊂ 𝐼 (∗, 𝑁 ).
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Figure 4.1: Instance ∗
: example illustrating that the property of Theorem 8 is not true for every

variable selection rule.

4.2.2 Upper bound on the size of branch-and-bound tree using strong-branching

We show an upper bound on strong-branching for vertex cover parameterized by its additive

integrality gap Γ(). We note that the result of Theorem 9 matches the guarantee of the classic

parameterized-complexity algorithm that uses bounded search trees tailored to this problem; see

Theorem 3.8 of [75]. One can view the result of Theorem 9 as indicating that full strong branching

is “automating” the standard FPT result (Theorem 3.8 of [75]) via generic integer programming

techniques (i.e. no particularly instance-specific knowledge is used).

Theorem 9. Let  be any instance of vertex cover. Assume we break ties within the best-bound

rule for node selection rule by selecting a node with the largest depth. Let 𝑆() be some branch-

and-bound tree generated by strong-branching (with product scoring rule) with the above version of

best-bound node selection rule that solves . Then independent of the underlying LP solver used,

|𝑆()| ≤ 22Γ()+2 + (𝑛).

Proof. Fix any branch-and-bound tree (using strong-branching) for . Let 𝑁 be a node at depth

2Γ() + 1. Suppose that no ancestor of 𝑁 had an optimal LP solution that was integer; it follows

from Lemma 22 that 𝑁 has optimal objective value at least OPT() + 1
2 . Denote the set of such

nodes no ancestor and note that these nodes are pruned by bound. Observe all other nodes (if any)
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at depth 2Γ() + 1 do have such an ancestor. Let integer denote the set of nodes at depth ≤ 2Γ()

that have an optimal solution that is integer, but none of its ancestors have an optimal solution

that is integer. Finally, observe that |no ancestor| + |integer| ≤ 22Γ()+1. We conclude the proof by

observing that Lemma 23 gives: if 𝑁 is the node in integer with largest depth, then the sub-tree

rooted at 𝑁 has size (𝑛) where it finds an integer solution with value OPT(). Therefore, no

other nodes in integer will be branched on. Since the number of leaves in this tree is at most

22Γ()+1 + (𝑛), the result of the theorem follows.

Intuitively, Theorem 9 follows from the observation that strong branching will never branch

on a variable in 𝐼 (, 𝑁 ) since these variables have score 0, while variables outside of this set have

score at least
1
2 , which is formalized by Lemma 22 above.

Moreover, it is impossible to find another branch-and-bound rule that has a much better upper

bound, so in this sense strong-branching is in the worst-case almost optimal for vertex cover

parametrized by integrality gap. This is because of the following bad example.

Remark 1. There is an instance  of vertex cover such that any branch-and-bound tree that solves

 has size 22Γ()+1 − 1.

This is the instance of 𝑚 disjoint triangles presented in [17]. Note that the smallest vertex

cover in this instance has value 2𝑚 while the optimal solution to the LP relaxation has value
3
2𝑚,

therefore Γ() = 1
2𝑚. It follows from the discussion in [17], that all branch-and-bound trees for

this instance have 2𝑚 leaves, i.e., at least 2𝑚+1 − 1 nodes.

Superiority of strong-branching

There are very few papers that give upper bounds on sizes of branch-and-bound tree (when we

use 0-1 branching) [10, 11]. These papers show that certain class of IPs with random data can

be solved using polynomial-size branch-and-tree with high probability. However, these results

do not depend on the variable selection rule used. Theorem 9 above is the first result of its kind
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that we are aware of, which uses a specific variable selection rule to prove upper bounds on size

of branch-and-bound tree. To further highlight the importance of strong-branching in obtaining

this upper bound result, we next show that if we do not use the strong-branching rule and we

have an “adversarial” LP solver, then we may need exponentially larger trees to solve the instance.

In particular, we next demonstrate the superiority of strong-branching by comparing it with

a lexicographic variable selection rule for the vertex cover problem when the LP solver is adver-

sarial, i.e. the LP solver always gives the most fractional extreme point solution. The instance

in consideration vertex cover on the lollipop graph 𝐿3,𝑝 , where 𝑝 is an even integer (defined and

indexed as in Figure Figure 4.2).

Figure 4.2: Lollipop graph 𝐿3,𝑝 .

Remark 2. Consider an LP solver with the following property: Among all optimal extreme point

solutions, it reports an optimal extreme point with maximal number of fractional components. Let 

be the vertex cover problem on the lollipop graph 𝐿3,𝑝 , where 𝑝 is an even integer. Let 𝑆() be some

branch-and-bound tree that solves instance  obtained using the strong-branching rule and 𝐿() be

some branch-and-bound tree that solves instance  obtained using the following lexicographic rule:

branch on the fractional variable with largest index.

Then, Γ() = 1
2 , and |𝐿()| ≥ 2Ω(𝑛), while |𝑆()| ≤ 𝑂(𝑛).

Proof. First observe 𝑛 = 𝑝 + 3. The fact that OPT(𝐿()) = 𝑝+3
2 follows directly from the proof

of Theorem 1 in [78]. Furthermore, it is easy to see that setting 𝑥−2 = 𝑥−1 = 1, 𝑥0 = 0, 𝑥𝑗 = 1

for all odd 𝑗 ∈ [𝑝] and 𝑥𝑗 = 0 for all even 𝑗 ∈ [𝑝] results in a feasible solution to ; therefore,
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OPT() = 𝑝
2 + 2 = OPT(𝐿()) + 1

2 , and so Γ = 1
2 . The lower bound on the size of the tree using

the lexicographic rule, |𝐿()| ≥ 2Ω(𝑛), follows directly from Theorem 1 of [78]. Finally, the upper

bound on the strong branching tree |𝑆()| ≤ 𝑂(𝑛) follows directly from Theorem 9.

4.3 Strong branching does not work well for some instances

Next we present a negative result regarding strong-branching, showing that strong-branching

based branch-and-bound tree can have an exponential times as many nodes as compared to num-

ber of nodes in an alternative tree. In fact, the example shows something even stronger: any tree

that branches only on variables fractional in the current nodes optimal solution will have expo-

nential size, while an alternative tree has linear size.

We begin by showing a seemingly surprising result about the existence of an extended for-

mulation for any binary IP, that leads to a linear size branch-and-bound tree.

Proposition 7. For any integer program  with 𝑛 binary variables, there is an equivalent integer

program that uses an extended formulation of the feasible region of  with 2𝑛 binary variables,

which we refer to as 𝐵𝐷𝐺(), that has the following property: there exists a branch and bound tree

 ∗(𝐵𝐷𝐺()) that solves the instance 𝐵𝐷𝐺() and | ∗(𝐵𝐷𝐺())| ≤ 4𝑛 + 1.

Proof. Consider the instance :

max 𝑐⊤𝑥

s.t. 𝑥 ∈ 𝑃, 𝑥 ∈ {0, 1}𝑛. ()

where 𝑃 ⊆ [0, 1]𝑛 is a polytope. In [79], Bodur, Dash and Gunluk construct the extended for-

mulation 𝑄 ⊆ [0, 1]2𝑛 of 𝑃 as follows. For every vertex 𝑥 of 𝑃 , construct a vertex (𝑥, 𝑦) of 𝑄
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where

𝑦𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1 if 𝑥𝑖 ∈ {0, 1}

0 if 𝑥𝑖 ∈ (0, 1)
.

Define 𝑄 to be the convex hull of these vertices, we call this the BDG extended formulation for 𝑃 .

We construct the equivalent IP, 𝐵𝐷𝐺(), as follows:

max 𝑐⊤𝑥

s.t. (𝑥, 𝑦) ∈ 𝑄, 𝑥 ∈ {0, 1}𝑛, 𝑦 ∈ {0, 1}𝑛. (BDG())

For any IP , there exists a branch-and-bound tree with at most 4𝑛 + 1 nodes that solves

𝐵𝐷𝐺(). However, this tree does not remove the current LP optimal fractional point when

branching. See Figure Figure 4.3.

Figure 4.3: Branch-and-bound on BDG extended formulation
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This follows since, by the definition of𝑄, all of its vertices that have 𝑦𝑗 = 0must have 𝑥𝑗 ∈ (0, 1).

Therefore, the branch that has 𝑦𝑗 = 0 and 𝑥𝑗 = 0 (and similarly 𝑥𝑗 = 1) must be empty. Also, note

that the branch that has 𝑦1 = 1, ..., 𝑦𝑛 = 1 must be integral.

The extended formulation corresponding to 𝐵𝐷𝐺() used in Proposition 7 was first introduced

in [79] to show that every binary integer program has an extended formulation with split rank of

1. We also remark here that Proposition 7 does not imply that the decision version of binary IPs

is in co-NP. This is because the 𝐵𝐷𝐺() formulation may be of exponential-size in comparison to

the original formulation.

In Corollary 12 below, we take the cross-polytope [19] and apply the extended formulation

of Proposition 7 to obtain an example where strong-branching based branch-and-bound tree can

have an exponential times as many nodes as compared to number of nodes in an alternative tree.

Corollary 12. There exists an instance ∗
with 2𝑛 binary variables, such that the following holds:

Let  (∗) be any tree that solves ∗
satisfying the following property: if 𝑥 is the optimal solution

to an internal node 𝑁 of  (∗), then the variable 𝑗 branched on at 𝑁 must be such that 𝑥𝑗 ∈ (0, 1).

Then, | (∗)| ≥ 2𝑛+1 − 1. In particular, if 𝑆(∗) is a branch-and-bound tree generated using strong-

branching that solve ∗
, then |𝑆(∗)| ≥ 2𝑛+1 − 1. On the other hand, there exists a tree  ∗

that solves

∗
such that | ∗(∗)| ≤ 4𝑛 + 1.

Proof. Note that the 𝑦 variables are not fractional in any vertex of 𝑄. So when the tree of Figure

Figure 4.3 branches on a 𝑦 variable, it does not remove the current LP optimal fractional point

(because it does not remove any vertex of 𝑄).

Now suppose we restrict ourselves to branching on a variable that does remove the current

optimal point. Such a tree would only branch on 𝑥 variables (i.e. the original variables). Then, if

𝑃 is the 𝑛-dimensional cross polytope [19], and 𝑄 is its BDG extended formulation, we know that

branching on only the 𝑥 variables will require a tree of size at least 2𝑛+1 − 1, as shown in [19].

The final statement follows from Proposition 7.
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Typically, when implementing a branch-and-bound algorithm, one might be inclined to re-

strict the algorithm to branch on variables that are fractional in the current optimal solution.

Therefore the above example is counter-intuitive in that it shows there can be a significant sep-

aration between branch-and-bound trees that are restricted to branch on variables that are frac-

tional in the current optimal solution and branch-and-bound trees that are allowed to branch on

integer valued variables. To our knowledge, this is the first such explicit example in the literature.

4.4 Computational results

In the previous section, we have shown that strong-branching works well for vertex cover and

on the other hand, strong-branching can sometimes produce exponentially larger trees than al-

ternative trees to solve an instance. However, in general it seems very difficult to analyze strong-

branching for general MILPs on a case-to-case basis. Moreover, we would really like to answer

the question: how good is the strong-branching based branch-and-bound tree in comparison to

the optimal tree? In this section we try to shed light on this question using computational exper-

iments.

Optimal branch-and-bound tree. We begin with a discussion of an “optimal branch-and-

bound tree” for a given instance.

First note that it is clear that the optimal branch-and bound tree uses the worst bound rule

for node selection [2]. Moreover, we will consider branching on all variables at a given node,

whether it is integral or not in the optimal solution of the LP relaxation. Since we are using the

worst bound rule for node selection, we only branch on nodes whose objective function value is

at least as good as that of the MILP optimal objective function value.

Now consider a node whose LP optimal objective function value is equal to that of the MILP

optimal objective function value. There are two possible scenarios:

• The optimal face of this LP is integral, i.e., all the vertices of the optimal face are integer
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feasible and therefore the LP solver (like simplex) is guaranteed to find an integral solution

and prune the node.

• At least one vertex of the optimal face is fractional. In this case, depending on whether the

LP solver returns an integral vertex or not, we are able to prune the node or not. Moreover,

if we arrive at a fractional vertex, then depending on properties of other nodes and how we

break ties for node selection among nodes with same objective function value, we may or

may not end up branching on this node.

In other words, in the second case, the size of tree may depend on the type of optimal vertex

reported by the LP solver. In order to simplify our analysis and to remove all ambiguity regard-

ing the definition of the optimal branch-and-bound tree, we make the following assumption for

results presented in this section.

Assumption 1. We assume that if there exists an optimal solution to the LP relaxation at a given

node that is integral, then the LP solver finds it.

Observation 1. When using an LP solver which satisfies Assumption 1, a branch-and-bound tree

using the worst bound rule never branches on a node whose optimal objective function value is equal

to that of the IP solver.

Proof of Observation 1 is presented in subsection 4.5.1. The above observation clearly makes

the notion of “optimal branch-and-bound tree” for a given instance well-defined.

Dynamic programming algorithm for finding the optimal branch-and-bound tree. In

subsection 4.5.2 we present a dynamic programming (DP) algorithm that computes an optimal

branch-and-bound tree for a given instance under Assumption 1 for the LP solver.

Theorem 10. Under Assumption 1, there exists an algorithm with running time poly(𝑑𝑎𝑡𝑎) ⋅ 3𝑂(𝑛)

time to compute an optimal branch-and-bound tree for any binary MILP instance  defined on 𝑛

binary variables.
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subsection 4.5.2 also presents some computational enhancements (like exploiting parallel

computing) to improve the wall clock run time of the DP algorithm.

Computationally comparison of various variable selection rules against the optimal

branch-and-bound tree. We conduct the first study comparing branch-and-bound trees em-

ploying different variable selection rules to the optimal branch-and-bound tree. Detailed results

are presented in [33].

We consider the following variable selection rules: strong-branching with linear score func-

tion, strong-branching with product score function, most infeasible, and random. We evaluate

the performance of these rules on a wide range of problems: general packing and covering IPs

(packing-type, covering-type, and mixed packing and cover instances), lot-sizing and variants,

vertex cover, chance constraint programming (CCP) models for multi-period power planning

and portfolio optimization, and stable set on a bipartite graph with knapsack sides constraint

(100 instances for each model). Note that all of these instances have up to 20 binary variables

since we are unable to run the DP algorithm of Theorem 10 for larger instances. See [33] for a

detailed description of all these instances.

We present a discussion of all our results (together with tables and explanatory figures) in

[33]. Here are some of our notable findings on sizes of branch-and-bound tree trees:

• Random consistently performs the worst.

• Strong branching always performs the best.

• While the performance of two variants of strong-branching is comparable on all problems

considered in this study, strong branching with product score function (SB-P) dominates

over strong branching with linear score function (SB-L) on 8 out of 10 problems, although

by a small margin.

• The geometric mean of branch-and-bound tree size using strong-branching remains less
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than twice the size of optimal branch-and-bound tree for all problems considered in this

study. This is not the case for all branching rules: the Random rule (and sometimes even

the most-infeasible rule) is typically many more times larger than the optimal branch-and-

bound tree.

Finally, see Figure Figure 4.4 for a summary of the computational results. It is clear that while

strong-branching does quite well (within a factor of 2), there is scope for coming up with better

rules for deciding branching variables, for example for problems such as CCP portfolio optimiza-

tion. It would be interesting to see if one can use machine learning techniques to learn from the

optimal branch-and-bound trees.

Figure 4.4: Ratio of geometric mean of branch-and-bound tree sizes to geometric mean of optimal

tree sizes over all instances of a problem for various branching strategies. “Rand” stands for

random, “Most Inf” stands for most infeasible, “SB-P” stands for strong-branching with product

score function, and “SB-L” stands for strong-branching with linear score function.

In previous section (see Corollary 12), we have seen an example where strong-branching

performs badly while alternative branch-and-bound tree that has exponentially lesser nodes,

branches on integer variables. So a natural question we would like to understand is the percent-
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age of times the optimal branch-and-bound tree branches on integer variables for the various

instances. These results are presented in Table Table 4.1. We note that there are multiple optimal

trees. So it may be possible that these exists other optimal trees with a slightly different number

of branchings on integer variables.

Here are some of our notable findings:

• Strong branching does relatively poorly on general packing and covering IPs which has a

high fraction of integer branchings in the optimal tree and it does very well on lot-sizing

where the optimal tree rarely branches on integers. So it would appear consistent with our

hypothesis that more branchings on integer variables in the optimal tree implies strong-

branching performs poorly.

• On the other hand, for stable set on bipartite graph with knapsack side constraint, strong-

branching does very well in spite of a lot of integer branchings in the optimal tree.

Table 4.1: Summary of average tree sizes (geometric) and percentage of branching on integral

variable in optimal tree for all problems across 100 instances

Problem Opt Tree SB-L SB-P Most inf Rand % Int Branch

Multi-row Packing IP (P5) 25.4 41.2 40.9 50.8 59.9 48.2%

Multi-row Covering IP (C5) 25.2 39.0 39.1 48.9 56.4 49.0%

Mix Packing and Covering IP (G22) 10.2 14.2 14.2 16.8 18.3 48.0%

Lot-sizing 111.5 135.0 131.1 461.0 651.6 0.2%

Constrained Lot-sizing 101.9 131.1 125.9 328.0 635.0 0.2%

Big-bucket Lot-sizing 81.8 110.3 107.1 266.4 349.6 1.1%

Power Planning (CCP) 37.9 45.3 46.8 54.8 337.9 1.1%

Portfolio Optimization (CCP) 97.4 172.8 171.1 206.5 659.1 4.4%

Stable Set on Bipartite Graph + Knapsack 137.6 180.8 180.8 185.5 199.6 47.7%

Minimum Vertex Cover 7.1 9.3 9.1 12.1 12.2 0.0%

In other words, there does not seem to be a direct relationship between the performance of

strong-branching and the number of branching on integer variable of the optimal branch-and-

bound tree.
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Finally we end this section with a word of caution regarding over-interpreting the compu-

tational results above: As mentioned above, due of the exponential nature of the DP algorithm

to compute the optimal branch-and-bound tree, computational experiments could be performed

only on relatively smaller problem sizes with up to 20 binary variables. Some of the observations

derived here may not extrapolate to larger instances.

4.5 Computing an optimal branch-and-bound tree

4.5.1 Proof of Observation 1.

Observation 2. When using an LP solver which satisfies Assumption 1, a branch-and-bound tree

using the worst bound rule never branches on a node whose optimal objective function value is equal

to that of the IP solver.

Proof. Consider a linear program at a node whose optimal function value is equal to that of the

MILP optimal objective function value. There are two cases to consider. Case 1: if there exists

an integral optimal solution to the LP relaxation at a given node, then the LP solver finds it and

the node is pruned. Case 2: If not, then this node does not contain an integral solution with

objective function value equal to that of the MILP optimal objective function value. This implies

that there must exist another node whose feasible region contains an integer feasible solution

with the same objective function value as that of the MILP optimal objective function value. In

particular, this implies that there must exist a node whose optimal linear programming solution is

such an integer feasible solution. Since the LP solver will discover this solution before branching

on the current node, we will never branch on the current node.

4.5.2 The dynamic programming algorithm to compute optimal branch-and-bound tree.

We will now present the algorithm to compute the size of an optimal branch-and-bound tree

for a fixed IP max𝑥∈𝑃∩{0,1}𝑛⟨𝑐, 𝑥⟩ under Assumption 1. Let  denote the set of faces of [0, 1]𝑛 and
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note that each face can be defined as a string in {⋆, 0, 1}𝑛. For example, (0, ⋆, 1) denotes the face

{𝑥 ∈ [0, 1]3 ∶ 𝑥1 = 0, 𝑥3 = 1}. Thus, | | = 3𝑛. Also,  , is in one-to-one correspondence with

all the possible nodes in the branch-and-bound tree. Let OPT(𝐹 ) denote the size of the optimal

branch-and-bound tree for the sub-problem restricted to 𝐹 , i.e., max𝑥∈𝐹∩𝑃∩{0,1}𝑛⟨𝑐, 𝑥⟩.

Based on Assumption 1 and Observation 1, with the WDB rule for node selection, a node in

the branch-and-bound tree is pruned if and only if it is either infeasible, or the optimal objective

function value of its LP relaxation is less than or equal to the optimal MILP optimal objective

value. In Phase-1 of our algorithm (Algorithm Algorithm 1), this fact is used to identify nodes

that are pruned by infeasibility or by bound, thus, OPT(𝐹 ) = 0 for corresponding faces.

Now, given a face 𝐹 that is not pruned in the branch-and-bound tree, and variable 𝑥𝑗 that is

free in 𝐹 , define 𝐹𝑗,0, 𝐹𝑗,1 to be the faces of 𝐹 that result from fixing 𝑥𝑗 to 0 and 1 respectively, i.e.

𝐹𝑗,0 = {𝑥 ∈ 𝐹 ∶ 𝑥𝑗 = 0}. The fact that the optimal sub-tree at the node corresponding to 𝐹 branches

on the variable that produces two child nodes having the smallest optimal sub-trees, leads to the

following recurrence relation,

OPT(𝐹 ) = 1 + min
𝑗∈𝐽𝐹

{
OPT(𝐹𝑗,0) + OPT(𝐹𝑗,1)

}
,

where 𝐽𝐹 denotes the set of variables that are free in 𝐹 . We use this recurrence relation in the

bottom-up computation of OPT(𝐹 ) for the remaining faces (i.e. faces where OPT(𝐹 ) ≠ 0) in  as

Phase-2 of the algorithm. Thus, it can be inductively seen that the algorithm is correct. Addition-

ally, the actual branch-and-bound tree can be found by storing argmin𝑗
{

OPT(𝐹𝑗,0) + OPT(𝐹𝑗,1)
}

at every iteration.

Notice it takes 2𝑂(𝑛) time to execute line 1 and poly(𝑑𝑎𝑡𝑎) time to execute line 3 of Algorithm

Algorithm 1 for a particular face, where poly(𝑑𝑎𝑡𝑎) is the running time for solving an LP. There-

fore, Phase I takes at most 2𝑂(𝑛) +poly(𝑑𝑎𝑡𝑎) ⋅ 3𝑛 time. Also notice Phase-2 takes 𝑛 ⋅ 3𝑛 time; this is

because line 11 of Algorithm Algorithm 1 takes at most 𝑛 comparisons. So, in total Phase-1 and
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Algorithm 1 Computing Optimal Branch-and-bound Tree

Phase-1: Pruning by Infeasibility or Bound

1: Solve max𝑥∈𝑃∩{0,1}𝑛⟨𝑐, 𝑥⟩; let 𝑥 ∗
be the solution

2: Initialise:  ← 
3: for 𝐹 in  do
4: Solve max𝑥∈𝐹∩𝑃⟨𝑐, 𝑥⟩; let 𝑥 ∗

𝐹 be the optimal solution (𝑥 ∗
𝐹 = ∅ if LP is infeasible)

5: if 𝑥 ∗
𝐹 = ∅ or ⟨𝑐, 𝑥 ∗

𝐹⟩ ≤ ⟨𝑐, 𝑥 ∗⟩ then
6: OPT(𝐹 ) ← 0
7:  ←  ⧵ {𝐹}
8: end if
9: end for

Phase-2: Recursive bottom-up computation

10: Sort  in order of increasing dimension

11: for 𝐹 in  do
12: OPT(𝐹 ) ← 1 + min𝑗(OPT(𝐹𝑗,0) + OPT(𝐹𝑗,1))
13: end for
14: return OPT([0, 1]𝑛)

Phase-2 take 2𝑂(𝑛) + (poly(𝑑𝑎𝑡𝑎) + 𝑛) ⋅ 3𝑛 = poly(𝑑𝑎𝑡𝑎) ⋅ 3𝑂(𝑛) time.
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CHAPTER 5

FUTUREWORK

5.1 Probabilistic Analysis of Branch-and-Bound

In chapter 2, we conduct a probabilistic analysis of branch-and-bound with variable branching.

We are able to show that branch-and-bound does well for random integer programs with few

(at most constant) constraints. A natural extension would be to show that branch-and-bound

does well for some instances with more (e.g. Ω(𝑛)) constraints, even if that means we have to

introduce more structure. For example, we could study how branch-and-bound performs in solv-

ing the maximum weight matching problem (defined only by the degree constraints) on random

graphs. A similar study was attempted by [47], where Alan Frieze studied how branch-and-bound

performs on random instances of the asymmetric traveling salesperson problem. In this study,

he found that, in expectation, branch-and-bound results in exponential size trees.

5.2 Lower Bounds on the Size of General Branch-and-Bound Trees

In chapter 3, we demonstrated several examples of combinatorial optimization problems whose

integer programming formulations require exponential size general branch-and-bound trees. An

important caveat to these results is that each of these polytopes are described by an exponential

number of constraints (i.e. have an exponential number of facets). Moreover, the proof techniques

used crucially rely on this property. This leaves the question of whether there exist polytopes

with a small description requiring large general branch-and-bound trees. In an attempt to gain

more insight into this question, [80] show the affirmative is true for the analogous question for

split cuts, which is a cutting plane paradigm based on the same family of disjunctions as general

branch-and-bound (see [3] for more information on split cuts). Unfortunately, [9] showed that
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the same family of polytopes is solved relatively easily by general branch-and-bound, resulting

in trees of depth at most 𝑂(log2 𝑛). However, it is possible that a similar family of polytopes is

a good candidate for showing the desired result. That being said, it would be especially nice if

one could show an exponential lower bound for stable set, since the results of chapter 3 would

imply exponential lower bounds for several other problems like vertex cover, set partition, and

knapsack.

5.3 Quantifying the Impact of Variable Selection

In chapter 4, we quantify in several ways how strong branching performs well for vertex cover. It

would be especially interesting to study the success of strong branching in more generality. The

positive results of chapter 4 are largely due to properties of the vertex cover polytope, including

half-integrality and persistency. [81] gives a general framework that can get half-integral and

persistent linear programming relaxations for several combinatorial optimization problems (e.g.

they find new such relaxations for the group feedback vertex set and unique label cover problems).

Perhaps we can show that strong branching performs well integer programming formulations

constructed via the techniques of [81].

Finally, we think a challenging, but potentially rewarding direction might be to study other

successful branching schemes—maybe in relationship to strong branching or most fractional

branching, for example. Resolution search from [82] is one that comes to mind.
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