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SUMMARY

Linear algebra is the underpinning of a significant portion of the computation done

in the modern age. Applications relying on linear algebra include physical and chemi-

cal simulations, machine learning, artificial intelligence, optimization, partial differential

equations, and many more. However, the direct use of mathematically exact linear algebra

is often infeasible for the large problems of today. Numerical and iterative methods provide

a way of solving the underlying problems only to the required accuracy, allowing problems

that are many magnitudes larger to be solved magnitudes more quickly than if the problems

were to be solved using exact linear algebra. In this dissertation, we discuss, test existing

methods, and develop new high-performance numerical methods for scientific computing

kernels, including matrix-multiplications, linear solves, and eigensolves, which accelerate

applications including Gaussian processes and quantum chemistry simulations. Notably,

we use preconditioned hierarchical matrices for the hyperparameter optimization and pre-

diction phases of Gaussian process regression, develop a sparse triple matrix product on

GPUs, and investigate 3D matrix-matrix multiplications for Chebyshev-filtered subspace

iteration for Kohn-Sham density functional theory calculations.

The exploitation of the structural sparsity of many practical scientific problems can

achieve a significant speedup over the dense formulations of the same problems. Even so,

many problems cannot be accurately represented or approximated in a structurally sparse

manner. Many of these problems, such as kernels arising from machine learning and the

Electronic-Repulsion-Integral (ERI) matrices from electronic structure computations, can

be accurately represented in data-sparse structures, which allows for rapid calculations.

We investigate hierarchical matrices, which provide a data-sparse representation of ker-

nel matrices. In particular, our SMASH approximation can construct and provide matrix

multiplications in near-linear time, which can then be used in matrix-free methods to find

the optimal hyperparameters for Gaussian processes and to do prediction asymptotically
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more rapidly than direct methods. To accelerate the use of hierarchical matrices further,

we provide a data-driven approach (where we consider the distribution of the data points

associated with a kernel matrix) that reduces a given problem’s memory and computation

requirements. Furthermore, we investigate the use of preconditioning in Gaussian pro-

cess regression. We can use matrix-free algorithms for hyperparameter optimization and

prediction phases of Gaussian process. This provides a framework for Gaussian process

regression that scales to large-scale problems and is asymptotically faster than state-of-the-

art methods. We provide an exploration and analysis of the conditioning and numerical

issues that arise from the near-rank-deficient matrices that occur during hyperparameter

optimizations.

Density Functional Theory (DFT) is a valuable method for electronic structure calcu-

lations for simulating quantum chemical systems due to its high accuracy to cost ratio.

However, even with the computational power of modern computers, the O(n3) complex-

ity of the eigensolves and other kernels mandate that new methods are developed to allow

larger problems to be solved. Two promising methods for tackling these problems are

using modern architectures (including state-of-the-art accelerators and multicore systems)

and 3D matrix-multiplication algorithms. We investigate these methods to determine if

using these methods will result in an overall speedup. Using these kernels, we provide a

high-performance framework for Chebyshev-filtered subspace iteration.

GPUs are a family of accelerators that provide immense computational power but must

be used correctly to achieve good efficiency. In algebraic multigrid, there arises a sparse

triple matrix product, which due to the sparse (and relatively unstructured) nature, is chal-

lenging to perform efficiently on GPUs, and is typically done as two successive matrix-

matrix products. However, by doing a single triple-matrix product, reducing the overhead

associated with sparse matrix-matrix products on the GPU may be possible. We develop a

sparse triple-matrix product that reduces the computation time required for a few classes of

problems.

xv



CHAPTER 1

INTRODUCTION

The main content of this dissertation is split into three major parts. First, hierarchical ma-

trices, their use in various applications, and new methods developed for them are discussed.

The next part discusses the use of 3D matrix-matrix products for Chebyshev-filtered sub-

space iteration, as well as other methods for accelerating ab-initio quantum chemistry meth-

ods. The final part discusses a sparse triple matrix product on GPUs for sparse matrix

calculations.

Many scientific computing applications involve dense matrices, which arise from eval-

uating a function pairwise between points in a dataset. Such kernel functions often arise

when considering the pairwise interactions of points, such as in n-body problems, particle

physics, and Gaussian processes [1, 2, 3]. Computing the matrix corresponding with n

points directly would take O(n2) time and space for a constant time kernel, which may be

prohibitively expensive for large values of n. However, hierarchical matrices are a family

of methods that can asymptotically reduce the computation and storage costs by approxi-

mating the interactions intelligently. The exact costs and manner depend on the type of hi-

erarchical matrix used; some common hierarchical matrices include theH, HODLR, HSS,

H2 matrices [4, 5, 6, 7], each of which has its own benefits and drawbacks. In particular,

this dissertation focuses onH2 matrices due to their ability to handle a more general set of

problems compared to the other methods. The corresponding portion of this dissertation

details the SMASH hierarchical matrices, and the use of hierarchical matrices in Gaussian

process regression. In particular, by combining preconditioners with matrix-free methods,

we build a framework for large-scale Gaussian process regression, which can handle both

the hyperparameter optimization and prediction phases.

Quantum mechanics is the governing theory on the electronic and atomic scales, used in
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calculations including material science, chemistry, and physics [8, 9]. However, the govern-

ing Schrödinger Equation is intractable to solve for all but the smallest problems. A variety

of approximations and methods have been developed to increase the tractability of the prob-

lems. One such method, Kohn-Sham density functional theory (DFT), is commonly used

due to its accuracy to cost ratio, which requires the solution of eigenvalue problems. One

method to further reduce the cost of the computations is the use of Chebyshev-filtered sub-

space iteration, which replaces many of the eigenvalue problems with the titular subspace

iteration [10]. The content of this dissertation investigates Chebyshev-filtered subspace it-

eration, develops a high-performance framework and implementation which allows for the

use of GPUs in a distributed setting, and investigates the use of 3D matrix-matrix products,

which theoretically provide an improvement over traditional matrix products.

The solution of linear systems arises in many scientific computing and machine learn-

ing applications, including simulations, the finite element method, and Gaussian processes.

One method of solving linear systems on discretized problems is the multigrid method,

which can scale linearly with the number of discretization points [11]. The algebraic multi-

grid method extends the multigrid method to work outside differential equations and other

applications with well-defined discretizations [12]. As part of algebraic multigrid, triple-

matrix products are performed, which often involve very large, sparse matrices. Develop-

ing a GPU-supported triple matrix product can increase the performance of such algebraic

multigrid solvers. In the final part of this dissertation, we implement such a triple-matrix

product and demonstrate its performance with experimental results.

1.1 Outline and Contributions

In Chapter 2 we begin our discussion on hierarchical matrices. We begin with a background

on hierarchical matrices, which leads into the Structured Approximation by Separation

and Hierarchy (SMASH) algorithm for hierarchical matrices. We provide an overview of

hierarchical matrices and SMASH to provide a foundation for later chapters.
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In Chapter 3 we describe a data-driven-based approach to hierarchical matrices, build-

ing on SMASH. By using data-driven-based sampling, one can reduce the amount of com-

putation required to achieve a given accuracy. We demonstrate the efficacy of using the

data-driven-based approach, which was able to perform a computation to the same accu-

racy as the state-of-the-art method in 31.6% of the memory and 39.3% of the time, demon-

strating its effectiveness.

In Chapter 4 we investigate the use of hierarchical matrices for high-dimensional data.

We demonstrate the deficiencies of current hierarchical matrix methods, and then demon-

strate the efficacy of combining proxy surface with dimensionality reduction methods. This

results in hierarchical matrices which can scale better to higher dimensions, alleviating the

curse of dimensionality.

In Chapter 5 we begin our investigation into Gaussian processes, in particular accel-

erating solves with kernel matrices arising from Gaussian processes, using preconditioned

iterative methods. We provide a brief background into Gaussian process regression, includ-

ing describing the scalability issues faced when considering large problems. By exploiting

the block low-rank structure in the kernel matrices that arise in Gaussian process regres-

sion, one can scale Gaussian processes to much larger problems. However, the systems that

arise during Gaussian process regression can be numerically low-rank and mathematically

ill-conditioned, resulting in the need for insight into these issues and methods to address

them. We propose two preconditioners, one based on the Nyström method for low-rank

problems and one based on Factorized Sparse Approximate Inverse (FSAI), which can ef-

fectively precondition the system. We provide details and experiments that demonstrate

when and why one preconditioner may be preferred.

In Chapter 6 we consider Gaussian process hyperparameter optimization and training

in its entirety. The kernels used in Gaussian processes, as discussed earlier, are prime

candidates for being handled effectively by hierarchical matrices. However, many details

that arise during the hyperparameter optimization and prediction phases must be handled
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with care for the results to be effective. As such, in this chapter we include an analysis of

what numerical issues may arise during Gaussian process regression, provide examples of

how these problems may be handled, as well describing a framework for how matrix-free

methods can be used in Gaussian processes effectively. Furthermore, through an analysis of

the issues that may arise, in combination with numerical experiments, we can demonstrate

classes of problems for which hierarchical matrices prove to be an extremely effective tool.

In Part II we investigate how quantum chemistry simulations can be performed more

rapidly. One can either scale up or scale out the hardware used to tackle larger problems.

The modern approaches for these would be to either use fatter nodes by utilizing GPUs

to increase the density of calculations or extend to more nodes. Both of these approaches

require algorithmic improvements to provide the speedup desired. First, we investigate the

use of GPUs in a distributed memory fashion for the computationally expensive kernels

and how to reduce the amount of communication between the CPU and GPU to improve

speeds. Second, if the number of nodes increases, so does the communication. As such,

3D matrix-matrix multiplications appear promising to reduce the amount of communication

required while still achieving high efficiency in terms of flops. However, the distributions

used for such calculations may not be favorable for general-purpose codes, as they require

redistributions to be compatible with existing codes. We investigate the role of 3D matrix-

matrix multiplication in Chebyshev-filtered subspace iteration density functional theory

codes.

In Part III we investigate the use of sparse triple-matrix products on GPUs for algebraic

multigrid. A triple matrix product RAP arises within algebraic multigrid, typically eval-

uated as two matrix-matrix products. However, this requires multiple passes over the data

and a temporary matrix. By providing a triple matrix product, we can reduce the overhead

associated with such a calculation, resulting in an overall speedup compared to traditional

methods.
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Part I

Hierarchical Matrices
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CHAPTER 2

SMASH

2.1 Introduction

Kernel matrices, where each element in the matrix is given by a kernel evaluated between

two points, require O(n2) computation and storage to form and, through dense linear al-

gebra, take O(n3) time to solve and O(n2) to perform matrix-vector products with for n

points. However, depending on the kernel and point distribution, alternative representations

exist which can approximate the matrix to a given precision, allowing for rapid operations

to be performed. In particular, we will look at a hierarchical matrix approximation known

as SMASH (Structured Approximation by Separation and Hierarchy), which provides near-

linear construction and matrix-vector products in both computation and storage time.

Hierarchical matrices are a data-sparse representation that can exploit the block low-

rank properties of many kernels used in data science, machine learning, and scientific com-

puting. By data-sparse, we mean that while there may be n2 elements in the matrix (where

there are n rows and n columns), an alternative representation can well approximate the

matrix with fewer than n elements. One kernel that arises in these methods is the Gaussian

kernel. The Gaussian kernel (also known as the radial basis function) is defined as

K(x, y) = e
−||x−y||22

2θ2 ,

for two points x and y. The Gaussian kernel is used in many applications, including support

vector machines [13], can be used as the normal distribution in statistics, and is commonly

used in Gaussian processes [14].

Different hierarchical matrices provide various operations, typically a fast factoriza-

tion or a rapid matrix-vector product, which would be asymptotically faster than the dense
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equivalent. There exists a variety of hierarchical matrices, including H matrices [4], H2

matrices [5], HODLR matrices [6], and HSS matrices [7], each of which has its benefits

and drawbacks. In this chapter, we will focus on the SMASH approximation, which pro-

vides near-linear matrix-vector products allowing for use in matrix-free algorithms which

will enable large-scale problems to be faced [15, 16].

2.2 Review of SMASH

The construction of SMASH approximations and use of SMASH approximations are pro-

vided in detail in [15] and [16]. However, we provide a brief high-level overview here.

The hierarchical representation must first be formed before its use to provide matrix-vector

products.

SMASH relies on two main inputs to construct the SMASH representation and matrix-

vector products with the SMASH representation. First, it requires a set of n data points

X in Rd space. As an example, these may correspond with particles for an electrostatic

calculation. Additionally, SMASH requires the ability to evaluate the kernel. This results

in a kernel matrix, where a kernel K can be evaluated between two points Xi and Xj

yielding a scalar K(Xi, Xj) → R. The space in which the dataset lies is referred to as the

domain.

As mentioned previously, one of the core properties of hierarchical matrices is that they

exploit the block low-rank properties present in many kernels. To achieve this, the domain

is split into clusters, typically done through the recursive splitting of the domain, resulting

in a tree. Each node of the tree corresponds with a cluster. In the case of SMASH, we

begin with a root node corresponding to the entire domain, then perform recursive adaptive

splitting based on the number of data points in each cluster and the bounding boxes that

the data points lie in. Intuitively, once we have a clustering, we can observe that the kernel

evaluated between pairs of points in distant clusters is likely to be less sensitive than pairs

of points in nearby clusters. The idea of nearby and distant clusters is defined as nearfield
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and farfield clusters, where an admissibility condition is used to determine whether two

clusters are nearfield or not.

The admissibility condition is dependent on the hierarchical representation used. SMASH,

by default, uses an admissibility condition defined as

max(diameter(Xi), diameter(Xj)) < 0.7||(center(Xi)− center(Xj))||2, (2.1)

where Xi and Xj correspond with the ith and jth clusters respectively.

Ignoring the nested basis ofH2 matrices (which will be discussed later), we can see that

the block of the kernel matrix corresponding with farfield nodes may be well approximated

by a low-rank representation. In contrast, the nearby blocks should remain represented as

dense matrices. The low-rank representation used is an interpolative decomposition [17],

which SMASH uses a strong rank-revealing QR decomposition to calculate [18]. The in-

terpolative decomposition allows a matrix to be approximated via a few columns or rows of

the matrix and a small dense matrix. When considering data points, this corresponds with

selecting a few points as representative or skeleton points. Thus, we can approximate the

matrix corresponding with a cluster and its farfield by selecting a few points from the clus-

ter using strong rank-revealing QR factorization, yielding the interpolative decomposition.

In SMASH, we use two different methods for constructing the basis, the interpolation-

based method and the data-driven-based approach, discussed in the next chapter. By taking

the union of these skeleton points with the skeleton points of the cluster’s siblings, we can

repeat this processing traversing up the cluster tree, which provides the hierarchical nature.

H2 matrices achieve a lower asymptotic computation and storage costs compared to the

method just described by calculating the basis associated with a given node from its chil-

dren and small transfer matrices. SMASH allows H2 matrices to be calculated directly,

rather than re-compressing aH matrix.

For well-separated leaf clusters Xi and Xj , the associated farfield block can be repre-
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Algorithm 1H2 matrix-vector product
1: procedureH2MAT-VEC(b, U, V,B,W,R, tree)

Output: y = Âb
2: for each leaf node i do
3: qi = V T

i bi
4: end for
5: for each non-leaf node i from bottom to top do
6: qi =

∑
c∈children of iW

T
c qc

7: end for
8: for each non-leaf node i do
9: gi =

∑
j Bi,jqj, ∀j ∈ interaction list of i

10: end for
11: for each non-leaf node i from top to bottom do
12: gc = gc +Rcgi
13: end for
14: for each leaf node i do
15: yi = Uigi +

∑
j Bi,jbj, ∀j ∈ nearfield of i

16: end for
17: end procedure

sented as

Ai,j ≈ UiBi,jV
T
j . (2.2)

Where Ui is referred to as the column basis for node i, while Vj is referred to as the row

basis, andBi,j is known as the coupling matrix. InHmatrices, the same definition holds for

the non-leaf farfield blocks. However, in H2 matrices, the non-leaf farfield blocks exploit

a nested bases property. This allows the associated basis matrices to be calculated from

the node’s children basis matrices. In the case of two children c1, c2 and transfer matrices

R,W , this can be defined as:

Up =

Uc1Rc1

Uc2Rc2

 , Vp =

Vc1Wc1

Vc2Wc2

 .
From these small matrices, we can calculate the matrix-vector product of the hierarchi-

cal approximation Â with an arbitrary vector b, as seen in Alg. 1. This is discussed in more

detail in Section 3.
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CHAPTER 3

DATA DRIVEN SMASH

It is well known that hierarchical matrix methods can provide asymptotic speedup when

compared with dense linear algebra methods. However, the cost of deriving hierarchical

representations can be significant, especially when the approximation rank is much larger

than the actual rank. This section will focus on H2 matrices, which can be constructed,

stored, and applied in optimal O(n) time and space enabled by the nested basis property

[20, 5, 21]. A simpler hierarchical structure, associated with H matrices [22, 23, 5, 21],

does not require nested bases and has a suboptimal cost ofO(n log n) in storage and matrix-

vector products. Among these two types of hierarchical matrices, it is particularly difficult

to create a black-box high performance implementation ofH2 matrices.

In practice, the construction of a hierarchical matrix is much more expensive than mul-

tiplying it by a vector. As an example, the construction cost using algebraic techniques

is at least quadratic, while the cost of computing a matrix-vector product associated with

the resulting hierarchical format is near linear. Interpolation-based methods provide a gen-

eral, yet efficient, way to construct H2 matrices. They can bring the construction costs

down to O(n) and are used to solve a wide range of problems [24, 25]. However, one

issue with interpolation-based methods is that their costs have very large prefactors. This

is because the low-rank factors in the resulting hierarchical matrices have much larger rank

than needed for a given approximation accuracy. The other issue with interpolation-based

methods is that their costs scale exponentially with respect to the number of spatial dimen-

sions. Thus, these methods rapidly lose their efficiency in higher dimensions. The primary

motivation of the data-driven method proposed in this section is to achieve more efficient

© 2020 IEEE. Reprinted, with permission, from Lucas Erlandson; Difeng Cai; Yuanzhe Xi; Edmond
Chow , Accelerating Parallel Hierarchical Matrix-Vector Products via Data-Driven Sampling, IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), May 2020 [16] [19],
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scaling while being able to handle equally as general problems as interpolation-based meth-

ods.

A commonality among hierarchical matrix implementations is that all the low-rank

factors are calculated and stored during the construction, and are later used in performing

matrix-vector products. This is in contrast to the fast multipole method (FMM) where

the hierarchical low-rank format is generated just in time for use, and discarded after use

[1]. This, on the other hand, makes FMM less efficient when a large number of matrix-

vector multiplications need to be performed, for example, in the iterative solution of linear

systems. In this case, the hierarchical representation has to be computed from scratch

in each iteration. In order to trade off the memory and computation involved, we take

advantage of the special structure of low-rank factors produced by the SMASH algorithm

[26] and propose an on-the-fly approach when using the hierarchical format. Since most

factors produced by this algorithm are submatrices of the kernel matrix, instead of storing

these factors explicitly, we only store the corresponding row and column indices. This

significantly reduces the memory cost and these submatrices can be rapidly assembled in

parallel whenever needed.

We propose new methods to alleviate the bottlenecks that arise in H2 matrices and

hierarchical matrices in general. In summary:

• We introduce a new data-driven sampling method, which produces lower ranks for

H2 matrices and achieves a speedup up to 104 in high dimensions when compared to

the interpolation-based method;

• We discuss an on-the-fly handling of the matrix-vector products, which reduces

memory consumption by an order of magnitude;

• We provide parallel numerical experiments, demonstrating the effectiveness of the

above contributions.
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3.1 Background

Hierarchical Matrices

There exists much literature discussing hierarchical matrices and their applications. Sur-

veys can be found in [21, 5, 27, 28]. A variety of packages are described in [29, 30,

31]. The ideas behind hierarchical matrices can be traced back to [22, 32, 1, 23], where

researchers sped up the evaluation of n-body gravitational potentials [22] or Coulomb po-

tentials [1], and the iterative solution of boundary integral equations [32, 23]. Mathemati-

cally, the computational task boils down to computing the matrix-vector product involving

a dense matrix associated with certain kernel function K(x, y) evaluated at a set of points

X = {x1, . . . , xn}:

A = [K(xi, xj)]i,j=1:n.

For large problems, a straightforward calculation suffers from a prohibitive O(n2) com-

plexity in time and space. The above mentioned methods circumvent the computational

bottleneck by compressing certain blocks in the original matrix and bring the cost to be

near linear. The same principle has since been generalized into the algebraic framework

of hierarchical matrices, in particular H and H2 matrices. The algebraic counterparts can

handle a larger class of kernel functions [5, 21] and approximate A explicitly with a hier-

archically low-rank matrix Â. For a prescribed accuracy tolerance, storing and multiplying

a hierarchical matrix by a vector has near linear scaling with the matrix dimension.

The construction of a hierarchical matrix representation for a given kernel matrix in-

volves several steps. For a general dataset X where points may not be uniformly dis-

tributed, an adaptive partitioning of the dataset is first performed, to build up the hierarchy

and identify low-rank blocks for the associated kernel matrix. That is, the dataset is divided

geometrically and recursively until the number of points in each resulting subset is small

enough (such that performance is optimized). Meanwhile, a tree is generated to encode

the hierarchical structure of the partitioning, where each node in the tree corresponds to a
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subset of points in the partitioning. For example, the root node corresponds to the entire

set of points, and its children correspond to subsets of points after the initial partitioning.

We use Xi throughout the section to denote the set of points associated with node i. Two

nodes i and j are called well-separated if the corresponding point sets Xi and Xj are well-

separated by a certain criterion (cf. [5, 26]). The included experiments consider i and j to

be well-separated if the maximum diameter of Xi and Xj is less than 0.7 times the distance

between the midpoints of Xi and Xj . Any submatrix associated with well-separated clus-

ters is assumed to be numerically low-rank and can be well-approximated by a low-rank

matrix. Such a submatrix is often referred as a farfield block. A hierarchical matrix approx-

imation Â replaces the farfield blocks in the original matrixA by low-rank approximations,

i.e.,

Ai,j ≈ Âi,j = UiBi,jV
T
j (3.1)

for well-separated nodes i and j, where Ai,j and Âi,j denote the submatrices of A and Â

respectively, associated with subsets Xi and Xj . The matrices Bi,j connecting two basis

matrices Ui and Vj are called coupling matrices. The above structure gives rise to H ma-

trices, which have O(n log n) complexity in storage and matrix-vector products. To fur-

ther reduce the complexity to O(n), a more complicated structure is needed, one using the

nested basis property. That is, if node p is the parent of nodes i, j, k, then the corresponding

basis matrices U, V are nested in the following way:

Up =


UiRi

UjRj

UkRk

 , Vp =


ViWi

VjWj

VkWk

 ,

whereR andW matrices are called transfer matrices and are of sizeO(1). This nested basis

property enables one to only store transfer matrices instead of all basis matrices explicitly,

as a parent node can be constructed from its children. Hierarchical matrices with such
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a nested basis property are called H2 matrices. Meanwhile, when two sets of points are

close to each other, the corresponding matrix block is called a nearfield block and is not

approximated. The hierarchical partitioning of the entire set of points ensures that the

nearfield blocks are only associated with leaf nodes and the submatrix that consists of all

the nearfield blocks is sparse (cf. [5, 21, 33]). Therefore, a reduction in cost from O(n2)

to O(n log n) or O(n) is achieved by storing only the nearfield blocks and the low-rank

approximations for farfield blocks. All the basis matrices, transfer matrices and nearfield

blocks are called the generators ofH2 matrices.

To construct H2 representations, one needs a way to approximate farfield blocks and

simultaneously maintain the nested basis property. For FMM and its variants [32, 1, 33],

expansions such as Taylor expansions or spherical harmonic expansions are used due to

high accuracy and low computational complexity. The so-called kernel independent fast

multipole method [34, 35] derives factorizations by solving ill-posed integral equations.

One limitation of these methods is that they are only valid for special kernel functions,

i.e., the fundamental solutions of certain constant coefficient partial differential equations,

such as the Laplace equation, low-frequency Helmholtz equations, the Stokes equation,

etc. To handle general kernel functions, a common technique that allows for black-box

kernel independent implementations is polynomial interpolation. Due to the efficiency and

generality of interpolation, interpolation-based hierarchical matrix methods have been used

for solving many types of problems [5, 24, 36, 37, 21, 26].

Interpolation-Based Construction

Interpolation was first introduced forH2 matrices in [5, 24] as a replacement for Taylor ex-

pansions, as Taylor expansions require evaluation of the derivatives of the desired functions

which may have numerical overflow or underflow issues (cf. [33]). Conversely, interpo-

lation only requires evaluations of the kernel function, making it ideal for constructing

hierarchical matrices for arbitrary user-defined kernel functions. Compared to algebraic
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techniques, interpolation is able to provide explicit formulas for all low-rank factors in the

hierarchical representations and hence the total computational cost is small. We review the

basic idea of interpolation-based construction below.

The use of polynomial interpolation (cf. [26]) yields the following separable approxi-

mation for K(x, y)

K(x, y) ≈
r∑

k=1

pk(x)K(xk, y),

where xk are interpolation points and pk are the associated Lagrange polynomials (k =

1, . . . , r). The separable approximation above automatically induces a low-rank approxi-

mation of the entire farfield block for node i:

Ai := [K(x, y)]x∈Xi
y∈Yi

≈
[
p

(i)
1 (x), · · · , p(i)

r (x)
]
x∈Xi

[
K(x

(i)
k , y)

]
k=1:r
y∈Yi

,
(3.2)

where Yi denotes the set of all points that are well-separated from Xi. Thus, the column

basis Ui can be chosen as

Ui =
[
p

(i)
1 (x), p

(i)
2 (x), · · · , p(i)

r (x)
]
x∈Xi

. (3.3)

See Fig. 3.1 for a pictorial demonstration.

Despite its generality and computational efficiency, interpolation usually does not yield

the optimal rank in the approximation. That is, the approximation rank r in (3.2) can be

much larger than the optimal rank under a prescribed tolerance. This is due to the fact that

interpolation does not fully exploit the information from the kernel matrix, as one can see

from (3.3) that the basis Ui is independent of the kernel function K.

A more serious limitation of interpolation is that it suffers from the curse of dimension-

ality. The cost of interpolation-based construction methods scales exponentially with the

number of dimensions, making them a poor choice for problems involving more than a few
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(a) Xi (red) and its
farfield Yi (yellow).

(b) Corresponding farfield block Ai (green) and the
low-rank approximation.

Fig. 3.1: Demonstration of the farfield for node i.

dimensions. For example, in d dimensions, interpolation over a tensor grid with p points

per direction yields pd interpolation points in total, i.e., an approximation rank r = pd in

(3.2). Hence, we see that interpolation-based hierarchical low-rank approximations quickly

lose their efficiency in high dimensions.

3.2 Methods

In this section, we propose two novel methods for use in hierarchical matrix packages:

1. a new data-driven construction of hierarchical matrices with nested bases;

2. a memory efficient on-the-fly approach for matrix-vector products.

The data-driven approach breaks the curse of dimensionality seen by interpolation-

based methods. Our experiments show that the data-driven approach yields blocks of lower

rank (hence lower storage) for the same approximation error. Such a comparison can be

seen in Fig. 3.2, where it is visible that the rank achieved by the data-driven method for

the farfield nodes is significantly lower than the rank achieved by the interpolation based

method. The on-the-fly approach further reduces the memory usage of hierarchical matrix

representations by taking advantage of the special structure in coupling matrices [26]. By

postponing the generation of certain matrices until they are used, the on-the-fly approach
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Fig. 3.2: A comparison of the rank of the bases produced by the interpolation-based (lower
triangular part) method and the data-driven (upper triangular part) based method for 10,000
points randomly distributed in a cube for 1e-7 relative error for the Coulomb kernel. Red
denotes nearfield interactions.

reduces memory usage, allowing larger problems to be solved.

3.2.1 Data-Driven Hierarchical Construction

Overall Idea

The data-drivenH2 matrix approach employs a submatrix of the kernel matrix as the basis

matrix for a farfield block. For example, for a farfield block Ai as shown in Fig. 3.1,

the column basis in the data-driven case is Ui = K(Xi, Y
∗
i ), where Y ∗i is a small subset

(O(1) in size) of Yi. Since each Yi contains O(n) points and there are O(n) nodes in

total, naive sampling for each Yi leads to at least O(n2) cost for deriving all basis matrices.

Therefore, it is mandatory to sample Y ∗i hierarchically so as to lower the total cost to O(n).

Since the data-driven approach takes into account the kernel matrix, it enjoys an improved

efficiency compared to interpolation-based methods. Particularly, the advantages of the

data-driven approach are more prominent for high dimensional problems.
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Nyström Sampling

The Nyström method [38] is a popular approach for deriving low-rank approximations via

sampling and has been widely used in machine learning. Given point sets S, T , let KS,T

denote a matrix with entries K(s, t) for s ∈ S, t ∈ T . To approximate the kernel matrix

KX,X by a low-rank factorization, the Nyström method computes a set S that is much

smaller compared to the size of X , and constructs the following approximation

KX,X ≈ KX,SK
+
S,SKS,X ,

where K+
S,S denotes the pseudoinverse of KS,S . Once S is selected, KX,S serves as a col-

umn basis for the low-rank approximation. The original Nyström method chose S to be

a subset of X associated with randomly chosen indices. The choice of S significantly af-

fects the approximation accuracy and computational efficiency of Nyström methods. Var-

ious sampling strategies have been proposed to improve the performance of the original

Nyström method [38], such as leverage score based sampling [39, 40], k-means based sam-

pling [41], anchor net based sampling [42], etc. In this section, we adopt the anchor net

based sampling in [42] due to its efficiency for high dimensional problems.

Bottom-to-Top Sweep

The key to avoiding a quadratic sampling complexity is to sample the entire dataset hierar-

chically. This hierarchical sampling procedure starts with a bottom-to-top sweep following

the partition tree. The anchor net Nyström method [42] is used to select the sample points

inside each subset. We first sample over the points associated with each leaf node and then

pass the samples to the parent. Since there are O(1) points in each node at the leaf level,

the cost associated with each leaf node is O(1). Note that a parent node has O(1) children

and each child passes O(1) samples, so the parent of each leaf node is associated with a

new set of points with O(1) size. Next we perform the same operation for each parent node
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as in the leaf level. That is, we perform sampling over the new set of points for each parent

node and pass the output to the next level. The operation is repeated until we reach the root

node. Since the cost associated with each node is O(1), the total cost for the bottom-to-top

sweep is O(n). An illustration of the samples selected at the leaf level for a 2D dataset is

shown in Fig. 3.3a.

Top-to-Bottom Sweep

The top-to-bottom sweep is then performed on the samples from the farfield associated

with each node. We perform sampling over each such subset and pass the output to the

children nodes along the partition tree. Since computing samples at each node has O(1)

complexity, the total cost for this sweep is also O(n). An illustration of the samples from

the farfield of a block for a 2D dataset is shown in Fig. 3.3b.

Note that the sampling step is only performed on points in the original set, and is in-

dependent of the kernel function and the kernel matrix. While sampling has previously

been used in hierarchical methods, to the best of our knowledge, this is the first time that

sampling techniques have been used in a hierarchical way. An outline of the hierarchical

sampling is shown in Alg. 2.

To summarize, the proposed data-driven method enjoys the following features:

1. allows black-box kernel independent construction of the hierarchical low-rank for-

mat;

2. provides optimal O(n) complexity for the construction of nested bases, where n is

the number of given points;

3. is valid for high dimensional problems (more than 3 dimensions);

4. achieves lower rank than interpolation-based methods for the same accuracy.
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(a) Samples X∗i (red circles) from all leaf
nodes i.

(b) Samples Y ∗i (red circles) from the farfield
set Yi for Xi (blue stars) in the bottom left
corner.

Fig. 3.3: Illustration of the hierarchical sampling.

3.2.2 On-The-Fly Matrix-Vector Products

State-of-the-art methods for performing H2 matrix-vector products calculate the coupling

matrices Bi,j during the construction of the matrix. The Bi,j matrices are only used to per-

form matrix-vector products. In the newH2 on-the-fly memory mode, rather than calculat-

ing the Bi,j matrices during the construction of the matrix, they are calculated as needed in

lines 9 and 15 of Alg. 3.

Existing hierarchical matrix implementations calculate and store all the generators dur-

ing the construction of the matrix, which will then be (re)used later. While the memory

consumption scales linearly, we observe that the majority of the memory consumption

arises from the storage of the coupling matrices Bi,j . Since Bi,j is a submatrix of the

original kernel matrix, memory consumption can be significantly reduced by storing the

indices instead of the whole matrix Bi,j . The use of the on-the-fly memory scheme enables

problems an order of magnitude larger to be tackled compared to traditional approaches.
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Algorithm 2 Data-driven hierarchical sampling
1: procedure HIERARCHICAL SAMPLE(X)

Output: Y ∗i
2: for all i do
3: Set Y ∗i to be empty
4: if i is a leaf node then
5: Set X∗i = Xi, (points associated with node i)
6: else
7: Set X∗i to be empty
8: end if
9: end for

10: for each node i from bottom to top do
11: Set X∗i = Sampling(X∗i )
12: Add X∗i to X∗p , the set associated with parent p
13: end for
14: for each node i from top to bottom do
15: Set Y ∗i =

⋃
X∗j , j ∈ interaction list of i

16: Update Y ∗i = Sampling(Y ∗i )
17: Add Y ∗i to Y ∗c for each child c of i
18: end for
19: end procedure

3.3 Implementation Details

In this section, we describe our shared memory parallel implementation for comparing the

performance resulting from data-driven sampling vs. interpolation and on-the-fly mode

vs. normal memory mode. Our description is in two major parts: the construction of the

H2 matrix and the application of the matrix via matrix-vector products. The coarsest level

of parallelism arises directly from the structure of the partition tree. During the bottom-

to-top sweeps of the tree, only information from the descendants of a node is required to

calculate the generators associated with that node. Thus, all nodes on the same level of

the tree can be processed in parallel. Similar parallelism is found in the top-to-bottom

sweeps where all nodes on a given level can be processed in parallel. Finally, certain

operations require a “horizontal sweep,” where there is no dependency on the ordering of

the computation, and thus all nodes can be processed simultaneously.
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Algorithm 3H2 matrix-vector product
1: procedureH2MAT-VEC(b, U, V,B,W,R, tree)

Output: y = Âb
2: for each leaf node i do
3: qi = V T

i bi
4: end for
5: for each non-leaf node i from bottom to top do
6: qi =

∑
c∈children of iW

T
c qc

7: end for
8: for each non-leaf node i do
9: gi =

∑
j Bi,jqj, ∀j ∈ interaction list of i

10: end for
11: for each non-leaf node i from top to bottom do
12: gc = gc +Rcgi
13: end for
14: for each leaf node i do
15: yi = Uigi +

∑
j Bi,jbj, ∀j ∈ nearfield of i

16: end for
17: end procedure

3.3.1 H2 Matrix Construction

Our construction phase has two parts. First, the construction of the tree and second, the

construction of the matrix. The tree construction is conducted in a divide-and-conquer

manner, where initially the entire set of points is considered. This set is then partitioned,

where each partition can be considered independently and in parallel with others. If a

given node contains more than a heuristically determined number of points, this process

is recursed. During the tree construction, the parent of each node is tracked, and after the

construction this information is used to determine the children associated with each node,

as well as other hierarchical information such as which level each node is on. Finally, once

the construction of the hierarchy information is completed, the determination of which

nodes are well-separated is performed.

The determination of well-separated nodes is completed via a recursive method, which

starts by considering the interaction of the root node with itself. If both nodes being consid-

ered are well-separated, they are added to each other’s interaction list. A node’s interaction
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list corresponds to the nodes that are in the farfield of the node, but not in the farfield of the

node’s parent. Otherwise, if both are leaf nodes, they are added to each other’s nearfield

list. If one or both have children, the process is repeated among the children.

Once the hierarchy information has been calculated, we can perform the sampling given

in Alg. 2, which is independent of the kernel. Alg. 2 consists of a bottom-to-top sweep and

a top-to-bottom sweep. These sweeps can be performed using the parallelization method

described above, by considering all of the nodes on a level in parallel.

The construction of the basis matrices and the indices associated with coupling matrices

is completed in a bottom-to-top sweep, and can be performed in parallel for all nodes

at a given level. If the on-the-fly memory mode is not being utilized, the calculation of

the coupling matrices is performed. This can be performed completely in parallel, by

calculating the interaction between every node with the nodes in its interaction list. Note

that our implementation uses a separate data structure to store the Bi,j matrices. This is

due to the fact that if the interactions between nodes are considered as a matrix, the matrix

would be very sparse. Thus, our data structure consists of a sparse matrix of integers,

and a sequence of dense matrices. The sparsity of the sparse matrix corresponds to the

interactions between nodes, with the value of the element at (i, j) providing the linear

index into a vector of dense matrices for Bi,j . Notably, this data structure is a C++ class

with a matrix-free interface, and thus can be used for on-the-fly mode as well. For on-the-

fly mode, rather than populating all the Bi,j matrices, they are calculated as needed. In the

symmetric case, only half of the Bi,j matrices are required, as Bi,j = (Bj,i)
T .

3.3.2 Matrix-Vector Product

The matrix-vector product consists of five stages, as seen in Alg. 3. First, a horizontal

sweep at the leaf node is performed, during which all leaf nodes can be considered in

parallel. Then, a bottom-to-top sweep is done, which can take advantage of the bottom-to-

top parallelization scheme mentioned at the beginning of Section 3.3. A horizontal sweep
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is then performed, applying the coupling matrices associated with each node to the vector.

Every application of Bi,j can be considered in parallel. In the on-the-fly case, the matrix-

vector product call to the class described above will calculate and apply Bi,j at this point,

however in the other memory modes Bi,j is retrieved from the data structure and applied.

After the horizontal sweep, a top-to-bottom sweep is performed, propagating the farfield-

interactions (calculated via the interaction list) to the children. Finally, a horizontal sweep

over the leaf nodes is performed, taking into account the nearfield/direct interactions.

3.3.3 Kernel Evaluation

Many of the calculations performed during the construction and application of hierarchical

matrices are kernel evaluations. Thus, it is paramount to have efficient kernel evaluations.

These evaluations can be accelerated by exploiting the SIMD instructions present in mod-

ern CPUs. Note that, like for direct interactions, the calculation ofBi,j involves two clusters

of points and there is an upper limit on the number of pairs of points for which the kernel

evaluation will be performed. The maximum number of points per node tends to be on the

order of hundreds.

3.3.4 Data-Driven Sampling

As shown in Alg. 2, data-driven sampling is performed via a bottom-to-top sweep and then

a top-to-bottom sweep. In these sweeps, nodes at the same level of the tree can be processed

in parallel. Note that during the sampling step, where Nyström sampling is performed by

finding the points nearest to a set of lattice points, Euclidean distances between the lattice

points and the considered points are calculated.

3.4 Experimental Setup

We report experimental timings for theH2 matrix construction and matrix-vector products.

The test sets of points used of these experiments are randomly generated over the surface
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of a sphere (sphere), in the volume of a cube (cube), and over the surface of a dinosaur

(dino). The dinosaur test set is a complex 3D pointcloud, which is used to demonstrate

the ability for these methods to handle highly non-uniform data [26, 43]. The timings of

the algorithms were measured in separate parts, Tconst, the H2 matrix construction time,

and Tmv, the time required to perform a single matrix-vector product, both in milliseconds.

The construction cost only occurs once, and can be amortized over many matrix-vector

products. The experiments were conducted on a single node with 128 GB of memory and

two Intel Xeon E5-2680 v4 CPUs, which have a base clock speed of 2.4 GHz and 14 cores.

Unless otherwise noted, experiments were performed with 14 OpenMP threads and using

the Coulomb kernel 1/||x− y||2. The relative error is measured as ||z − ẑ||2/||z||2, where

ẑ is composed of 12 rows sampled randomly from the H2 matrix-vector product, and z

contains the corresponding rows in the exact matrix-vector product.

3.5 Numerical Results

Fig. 3.4a shows that the point distribution does not have a notable impact on the construc-

tion time using on-the-fly memory mode. Fig. 3.4b shows that the asymptotic scaling re-

mains roughly the same for the different distributions. In Fig. 3.4c, we see that the Sphere

distribution requires less memory than the Cube distribution. This is due to the relative

sparsity of the Sphere distribution, as the points are not uniformly distributed in the 3D

domain, and there exists much empty space and fewer nearfield nodes, reducing the num-

ber of dense matrices required to be stored. The inflection point in memory usage is a

result from the generally effective, but not optimally tuned, parameters of the construction

method. Fig. 3.4b and Fig. 3.4c show that the data-driven method’s matrix-vector products

scale the same as, or better than, interpolation, and have a lower prefactor, while using less

memory.

Fig. 3.5 demonstrates the scaling of the data-driven method with respect to the number

of dimensions when using the on-the-fly memory mode. It is clear from Fig. 3.5a and
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Fig. 3.4: Data-driven and interpolation-based methods on a variety of distributions uising
on-the-fly memory mode for the Coulomb kernel. The relative accuracy for all tests is
around 1e-8.
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Fig. 3.5: Data-driven and interpolation-based methods on points in increasing dimensions
using the on-the-fly memory mode for the Coulomb kernel with points in the volume of a
hypercube, where the relative accuracy is fixed around 1e-8.
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Fig. 3.6: The data-driven and on-the-fly methods tested on increasing number of points for
the Coulomb kernel with points in the cube distribution, where the relative accuracy for
all tests is around 1e-8.

Fig. 3.5c that the construction and memory usage scale significantly better in the data-

driven case compared to interpolation-based methods. For example, with 160,000 points,

going from three to four dimensions gives a 87.05 fold increase in construction time and

5.46 fold increase in peak memory usage for the interpolation-based methods, while the

data-driven method increased only 4.25, and 1.87 times, respectively. Note that due to

time and memory constraints, the interpolation-based method was not tested for problems

involving more than 40,000 points in five dimensions.

Fig. 3.6 details the cumulative effect of the new basis calculation via the data-driven method

and the on-the-fly memory mode. We observe that the effects are cumulative, where using

the data-driven method and on-the-fly memory at the same time results in the lowest mem-

ory usage and construction time. The memory scaling using on-the-fly memory is slightly

better than that in the normal memory mode, as the normal memory mode scales with both

the size and the number of farfield blocks while the on-the-fly memory mode scales only

with the size of the blocks. As can be seen from Table 3.1, the total memory reduction is

from 58.75 GiB to 543.74 MiB, for the case of 320,000 points.

Fig. 3.7 displays the scaling of on-the-fly methods with the number of OpenMP threads

for 1,000,000 points. Normal memory mode was not tested, as interpolation in normal
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Table 3.1: Timings and memory consumption using data driven and interpolation-based
methods.

n Basis Memory Tconst (ms) Tmv (ms) Memory (KiB)
320,000 Interpolation Normal 16789 1193 61603893
320,000 Interpolation On-The-Fly 3488 2869 1440420
320,000 Data Driven Normal 10011 469 19507675
320,000 Data Driven On-The-Fly 2430 1245 556789

memory mode requires more memory for this problem size than what is available. While

the scaling of the construction seen in Fig. 3.7a is sub-linear, due to the difficulty of par-

allelizing the upper levels of the recursive bisection, it can be seen in Fig. 3.7b that the

matrix-vector products have near linear scaling in both cases. Fig. 3.7c demonstrates that

the memory usage increases slightly with the number of threads, p. Each thread stores only

one Bi,j matrix at a time; thus, the concurrent memory usage is p · size(Bi,j).

Fig. 3.8 shows a comparison of the data-driven and interpolation-based methods as a

function of the approximation error. This demonstrates that the data-driven method with

the on-the-fly memory mode, for a given relative error, requires lower construction time,

memory usage, and matrix-vector time. This holds true even in the low accuracy case,

where interpolation is known to be the standard choice. These results demonstrate the

effectiveness of the data-driven method across a wide range of accuracy, in addition to the

number of points. The performance gap becomes even larger as the accuracy increases.

Fig. 3.9 shows the generality of the new data-driven method by demonstrating the

method for different kernel functions using the on-the-fly memory mode. The cubed

Coulomb kernel is given by 1/||x− y||32, the exponential kernel by exp(−||x− y||2), and

the Gaussian by exp(−||x− y||22/0.1). It can be seen that, in most cases, the plots for

the different kernels are nearly indistinguishable, demonstrating the generality of the new

method. With the exception of the Gaussian kernel, the scaling for the different kernels are

all nearly identical.
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Fig. 3.7: The data-driven and interpolation-based methods vs. thread count. The on-the-fly
mode was used for the Coulomb kernel with points in the cube distribution, where the test
problem has 1,000,000 points and the relative accuracy is fixed around 1e-8.
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Fig. 3.8: Data-driven and interpolation-based methods using the on-the-fly memory mode
as a function of accuracy for the Coulomb kernel with points in the cube distribution.
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Fig. 3.9: Data-driven and interpolation-based methods for different kernel functions where
the relative accuracy is fixed around 1e-8 for points in the cube distribution.

3.6 Discussion

3.6.1 Data-Driven Basis Construction

From Section 3.5, the benefits of the data-driven method are numerous. Compared to the

interpolation-based method, the data-driven method uses much less memory, as well as

reduces the time taken by the matrix-vector product and H2 matrix construction. The ma-

jority of the time associated with the construction of the hierarchical matrix using the data-

driven method comes not from the calculation of the basis, but rather the sampling. During

the matrix-vector products, the majority of the time spent is in calculating the direct or

nearfield interactions. Fortunately, the hierarchical sampling is done independently of the

kernel, and depends only on the points; thus, for applications where multiple kernels must

be used on the same data, the cost of sampling is amortized. As seen in Fig. 3.4 and Fig. 3.9,

the data-driven method is equally general as interpolation and Fig. 3.5 demonstrates that

it scales significantly better with the number of dimensions. While the scaling seen is not

completely independent of the number of dimensions, the scaling observed is much less

severe than that seen in the interpolation-based methods.
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3.6.2 On-The-Fly Memory Mode

Fig. 3.6 shows that the on-the-fly memory mode marginally increases the matrix-vector

product time, but significantly decreases the H2 matrix construction time. This makes

on-the-fly memory ideal for cases where the number of matrix-vector products for each

construction is small, while the normal memory mode might be preferred in cases where

many matrix-vector products are preformed for each construction.

3.7 Related Work

There exist a number of packages which, among other features, aim to extend hierar-

chical and FMM methods to higher dimensions. The STRUctured Matrices PACKage

(STRUMPACK) [30] is a distributed memory package based on the HSS matrix format.

It requires users to provide a fast matrix-vector multiplication routine in order to use ran-

domized algorithms to perform low-rank compression. ASKIT [44] is a distributed mem-

ory package designed for performing high-dimensional kernel summations. It is based on

using approximate nearest neighbor information to factorize off-diagonal blocks of ker-

nel matrices. The Geometry-Oblivious FMM (GOFMM) distributed memory package [29]

constructs anH matrix by sampling matrix entries without requiring any knowledge of the

point coordinates or kernel functions. The main difference between the data-driven method

proposed in this section and these other methods is that the sampling technique in the data-

driven method does not require any evaluations or entries of the kernel K and is performed

hierarchically in order to ensure the nested basis property for theH2 matrix construction.

Meanwhile, many algebraic methods have also been proposed to compress low-rank

matrices. Adaptive cross approximation (ACA) [45] can provide compression algebraically

using only a few entries of the matrix. However, ACA may fail for general kernel func-

tions and complex geometries due to the heuristic nature of the method. The hybrid cross

approximation improves the efficiency of ACA while achieving the convergence seen with
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interpolation [25]. The CUR decomposition, and the closely related interpolative decom-

position, provide a decomposition of the original matrix using a subset of the rows and

columns [39] [46]. While interpolative decomposition can be used efficiently in construct-

ing nested bases once candidate bases are determined, its asymptotic complexity makes it

infeasible to use to select sample points.

3.8 Conclusion

We demonstrate that bottlenecks associated with hierarchical matrices can be alleviated us-

ing our new data-driven and on-the-fly methods. We show that the data-driven method pro-

vides an equally general, but computationally more efficient way to calculate generators.

Furthermore, the on-the-fly technique allows the memory savings that come with hierar-

chical matrices to be even more pronounced. Our implementation has near linear scaling

with the number of threads for matrix-vector products with all the tested problems. Results

demonstrate that both of the methods, individually and cumulatively, result inH2 matrices

that scale linearly (as expected) with the number of points for both computation time and

memory usage.
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CHAPTER 4

HIGH-DIMENSIONAL HIERARCHICAL MATRICES

Hierarchical matrices are typically developed for use in low dimensions due to the curse of

dimensionality seen as the number of dimensions increases. While the data-driven method

seen in the previous chapter allowed the use of matrices in up to around five or six dimen-

sions, further improvement can be obtained. This chapter discusses a few options for how

hierarchical matrices can be adapted to suit high-dimensional data better and discusses re-

sults associated with each of the methods. In particular, we consider the difference between

intrinsic and ambient dimensionality and investigate how PCA and a data-based partition-

ing can decrease the effects of dimensionality. To understand the difference between intrin-

sic and ambient dimensionality, consider data that lies in a plane, but the plane is located in

3D space. The data would have two intrinsic dimensions but would lie in 3D ambient di-

mensional space. These investigations involve the case where the intrinsic dimensionality

is low, but the ambient dimensionality may be high. This is often seen in machine learning,

where the belief is that the data lies on a low-dimensional manifold relative to the number

of observables. Additionally, we investigate the use of alternate splitting methods during

hierarchical matrix construction, and the use of alternative bases that better scale to higher

dimensions. The effect of these methods is the ability for hierarchical matrices to scale to

higher dimensions.

4.1 Motivation

While the dimensionality of data encountered in scientific computing in cases such as phys-

ical simulations is often low, other data-based sciences such as machine learning or quan-

tum chemistry face high-dimensional data regularly [13, 47]. This may arise where there

are many properties associated with each data point, resulting in the data lying in Rd for
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Fig. 4.1: The number of nearfield interactions when increasing the number of ambient
dimensions for a 3D sphere.

d >> 1. Hierarchical matrices typically are not designed with this case in mind, as in-

creasing the number of dimensions suffers from the curse of dimensionality. This is as the

number of dimensions increases, the number of nearfield nodes increases. Intuitively, con-

sider the case where the nearfield consists of the considered cluster, as well as one cluster

in each direction of each dimension. This results in 2d+1 nearfield blocks in d dimensions,

which scales exponentially with the number of dimensions. This can be seen in Fig. 4.1,

where we see that as the number of dimensions increases, the number of nearfield inter-

actions also increases. As the nearfield interactions are calculated as dense matrices, this

results in an increase in the amount of computation required, which reduces the effective-

ness of hierarchical matrices.

While the practical effectiveness of hierarchical matrices may be decreased in higher di-

mensions, applications that use high-dimensional data are often where kernel matrices can

be found. Machine learning often results in the kernel matrices due to the use of the kernel

trick, and their ability to be rapidly used for linear algebra. Furthermore, machine learning

often requires very large matrices, and as such, when applied effectively, the asymptotic

reduction seen by hierarchical matrices would significantly reduce the costs.
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(a) Interactions correspond-
ing with 1D random uniform
points.

(b) Interactions correspond-
ing with 2D random uniform
points.

(c) Interactions correspond-
ing with 3D random uniform
points.

(d) Interactions corresponding with points on a
2D circle.

(e) Interactions corresponding with points on a
3D sphere.

Fig. 4.2: Comparing the interaction of uniform random points against hyperspheres. Each
block corresponds with the interaction of two nodes, where the nearfield interactions are
colored in the red color scheme, while the farfield interactions are colored in the green
color scheme.
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4.2 Methods

To develop the methods in this section, we must consider the difference between the di-

mension of the manifold that the data lies on compared to the ambient dimension that the

data lies in. Fig. 4.2 demonstrates the difference between uniform random points and hy-

perspheres. In a simple case, a circle in 2D consists of a 1D manifold (intrinsic dimension)

lying in 2D space. We see in Fig. 4.2, that the nearfield distribution of a circle in 2D (Fig.

4.2d) looks more similar to uniform points in 1D (Fig. 4.2a) than uniform points in 2D

where the large magnitude elements are near the diagonal with no off-diagonal bands of

large elements (Fig. 4.2b). Similarly, a sphere in 3D (Fig. 4.2e) looks more similar to

uniform points in 2D (Fig. 4.2b), where there is a primary band around the diagonal, with a

secondary pair of bands further away from the diagonal. Thus, if we instead consider their

intrinsic dimension, we can reduce the effective dimensionality faced by the hierarchical

representation rather than considering the ambient dimension that the points lie in. This

chapter will consider two methods for performing this and utilizing an alternative sampling

method. The first method considers that, rather than performing the hierarchical partition-

ing based on the ambient space that the data lies in, it may be more effective to partition

based on the data itself. Instead of performing the hierarchical representation construc-

tion in the full ambient-dimensional space, the second method projects the data to a low-

dimensional manifold. It constructs the hierarchical representation in this low-dimensional

space.

Let us consider the first method, where the distribution of data points is considered

during partitioning. This consists of two portions. In the first, rather than considering the

spatial midpoint (or plane in the case where space is bisected, which constructs a binary

tree rather than a kd tree) as the origin for partitioning, instead uses the spatial midpoint

of the bounding box encompassing the points in the node. This results in the splitting

being more geometry aware and thus provides more even splittings and a better hierarchy.
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In the second, after a cluster has been partitioned, rather than directly using the relative

portion of the bounding box found via the splitting, the bounding box associated with the

node is recalculated based on the points associated with the node. While the bounding

boxes at a given level will no longer partition the total domain, the separation criteria can

better determine if clusters are well-separated based upon the data itself rather than larger

bounding boxes. As such, there will be fewer nearfield boxes, and thus more data can be

compressed.

One downside of this method is that there is an increase in the number of farfield nodes.

The data-driven-based method samples from the farfield nodes. As such, this can cause

an increase in the time taken when using the data-driven-based sampling method. One

alternative to the data-driven-based sampling method is using a method based on proxy

points and proxy surface [48, 49]. At a high level, what the proxy surface method does,

is rather than determine the representative points associated with each node based on its

farfield, is to create a set of proxy surface points outside the domain associated with the

node and determine the representative points based on the interaction of these points and

the points of the node. Proxy surface points have the advantage that they can be calculated

once for a bounding box of a given shape and size and reused at that level if the other the

bounding boxes have the same shape.

We can see the impact of this combined with the data-based splitting in Fig. 4.3. We see

that the time associated with the tree’s construction, the most expensive portion of the con-

struction, is significantly reduced. This figure is associated with projecting a sphere in 3D

of 100k points into a higher-dimensional space, and the hierarchical clustering is performed

in this higher-dimensional space. 100,000 points were used with ahead-of-time memory

mode using the Coulomb kernel. This is the case of a fixed intrinsic low-dimensional

manifold with a high-dimensional ambient space. We see in Fig. 4.4, that this data-based

splitting results in a nearly flat number of nodes and nearfield interactions resulting in a sig-

nificant decrease in the peak memory, construction cost, and matrix-vector cost. However,
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Fig. 4.3: Comparing the time taken for construction of the spatial splitting method against
the data splitting with proxy surface sampling method.
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Fig. 4.4: Different metrics for the spatial splitting method and the data splitting with proxy
surface sampling method.
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using PCA to reduce the problem to lower dimensions.
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no systematic increase in error is seen. Figure 4.4d demonstrates the error when compar-

ing the SMASH matrix-vector product against the same matrix-vector product using dense

matrices.

The second form of dimensionality reduction discussed is performing the hierarchical

construction in low-dimensional space, rather than the ambient space. We project the data

back down into 3D using principal component analysis (PCA) [50] for simplicity. PCA

can be used to reduce the dimensionality of a dataset by finding a set of so-called principal

components which represent the data well. PCA uses a linear mapping, while a more

complex mapping such as isomap may provide a more general dimensionality reduction

[51]. Once the data has been projected down into low-dimensional space, we then perform

the hierarchical clustering in this low-dimensional space. Once the hierarchical clustering

is performed, the resulting hierarchy tree can be used “as is” in the rest of the hierarchical

matrix construction. In the data-driven case, the sampling can be performed in the lower-

dimensional space to reduce the time associated with hierarchical sampling.

The impact of this dimensionality reduction can be seen in Fig. 4.5. This data corre-

sponds with a sphere in 3D, projected up into ND space, and projected back down to 3D

using PCA. 100,000 points were used with on-the-fly memory using the data-driven based

sampling with the Coulomb kernel with a binary tree. Observe that the time associated with

the tree construction is greatly reduced by performing the dimensionality reduction. As the

calculations are performed in 3D for all cases, we see that the timing does not increase

noticeably with the number of dimensions. In Fig. 4.6 we see that the number of nearfield

interactions and nodes stays nearly constant with the number of dimensions. As such, the

peak memory usage, construction time, and matrix-vector product time all stay nearly con-

stant with the number of points. The increase in construction time can be attributed to the

time taken for PCA to be performed.

We can see that both of these methods can perform very well for prototype problems in

reducing the costs associated with doing calculations with low intrinsic-dimensional data
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lying in high-dimensional space.

4.3 Future Work

There exists considerably more work that can be done in this vein. One method for fur-

ther reducing the costs is to use alternative methods for calculating the basis functions

associated with each farfield block. In addition to the proxy-surface-based method above,

sparse-grids are another alternative for selecting representative points [52, 53]. Further-

more, generalizing the dimensionality reduction method used from PCA to one such as

isomap would allow the method to be used for a broader range of points and data [51].
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CHAPTER 5

PRECONDITIONED GAUSSIAN PROCESSES

Gaussian process regression is a form of model-based machine learning used for its predic-

tive power and uncertainty quantification. However, performing Gaussian process regres-

sion for large problems is intractable as the solution of a dense linear system is required,

which takesO(n3) computation time andO(n2) storage complexity. This chapter describes

methods for preconditioning the linear systems that arise from Gaussian process regression.

We investigate a case study, provide details on what particular challenges are faced when

preconditioning the linear systems that arise from Gaussian process regression, and provide

matrix-free, parallel preconditioners which empirically work well on the problem.

5.1 Background on Gaussian Processes, Kernel Matrices, and Preconditioners

5.1.1 Gaussian Processes

[14] provides an introduction to Gaussian processes for Machine Learning. We will briefly

review the use of Gaussian process regression for noisy observations here.

Gaussian process regression provides a method for predicting the response of a func-

tion m(X∗) and its associated variance s2(X∗) given a set of observations X and their

responses y (with Gaussian noise with variance σ2) with a known kernel K with Gaussian

with variance for a set of points X∗. As an example, if we have a 3D surface, we may

want to be able to estimate the z coordinate given a pair of (x, y) coordinates. That is we

want a way to estimate the function f which maps f(x, y) → z. In this case, we have a

set of measurements at locations X , with measured height y. Then, the mean estimate for

unknown points X∗ can be calculated as m(X∗), where the variance is given by s2(X∗).
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We then have a joint distribution for training outputs y and test outputs m(X∗) of

 y

m(X∗)

 ∼ N
0,

K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (5.1)

which in turn leads to the predictive mean m(X∗) and variance s2(X∗) of

m(X∗) = K(X∗, X)(K(X,X) + σ2I)−1y (5.2)

s(X∗)
2 = K(X∗, X∗)−K(X∗, X)((K(X,X) + σ2I)−1)K(X,X∗) (5.3)

We observe that, provided the kernel function and the noise σ, computing the expected

value for a given input X∗ requires matrix products involving the kernel matrix and the

solution of a system of equations arising from a diagonal perturbation to the kernel matrix.

When solved using a Cholesky factorization, this linear solve takes O(n3) time if n is

the number of observations, making this direct Gaussian process infeasible for problems

greater than a few tens of thousands even on modern clusters. [54]

5.1.2 Preconditioners

Iterative methods provide an alternative method for solving a system of linear equations

compared with direct methods such as the Cholesky-based method mentioned above. While

direct methods require a known number of steps to achieve (mathematically) exact results,

iterative methods start with an approximate solution which is gradually improved until it

reaches the desired accuracy. Iterative methods are particularly useful in the cases where

full accuracy is not required, when the system is sparse, and depending on the method used,

can have great potential for parallelizability. In our case, we will use Krylov-Subspace-

based methods.

Preconditioning is a critical component of iterative methods for the solution of linear

systems. Without loss of generality, let us consider left preconditioning. Rather than solv-
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Fig. 5.1: A visualization of the points used in the case study.

ing the equation Ax = y, we instead solve the equation MAx = My, which in the extreme

case where M = A−1, we see that this results in x = My, requiring only a single matrix-

vector product. The effectiveness of preconditioners depends on the underlying system

of equations being solved. From a practical standpoint, an ideal preconditioner should be

quick to construct, result in a system that is easy to solve and can be applied quickly. The

preconditioner may be applied as an operator rather than calculated explicitly depending

on the preconditioner.

5.1.3 Case Study

For demonstrative purposes, while constructing preconditioners, we will consider a case

study using realistic a realistic data and scenario.The dataset used has 9635 points, where

each data point consists of the z (altitude) associated with a given location on a 3D surface

obtained via a laser scan. As the scan is not exact, the data is considered noisy. The dataset

used can be seen in Fig. 5.1. Part of Gaussian process regression is finding the hyperparam-

eters that best model the system. This process is known as hyperparameter optimization

or training. The hyperparameters σ, θ obtained via hyperparameter optimization for this

problem are θ ≈ 11.65 and σ ≈ 0.018. σ is related to the system’s noise, while θ is known

as the length scale and indicates how long-range the interactions are. The kernel evaluated
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Fig. 5.2: A visualization of the kernel matrix resulting from the case study.

for this matrix can be seen in Fig. 5.2.

5.2 Preconditioning Gaussian Processes

As mentioned above, the system of equations we wish to solve takes the form A + σI ,

where A is mathematically symmetric positive definite. We will be considering the use of

the Gaussian kernel, which for two points x and y is given by,

K(x, y) = e−
||x−y||22
θ2 ,

a popular choice for Gaussian processes [14].

Notice that as θ approaches infinity, the matrix approaches a matrix of all ones, a rank-

one matrix (plus a diagonal for the noise). Conversely, as θ approaches 0, the matrix

approaches the identity. Thus, these cases are relatively easy to solve, but the intermediate

values of θ which can be difficult to solve (ignoring the rank deficiency). This can be seen

in Fig. 5.3, where the system of equations from the case study is solved for varying θ values

(with a σ of 0.018). This solution is performed via the Preconditioned Conjugate Gradient

[55] method, terminating when ||b−Ax||||b|| < 1e− 6.

We note that in practical applications, the hyperparameters (θ and σ) are rarely known

ahead of time. Instead, an optimization step is performed during which the “optimal”
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Fig. 5.3: Demonstrating the number of iterations required for a solution when varying the
length scale.

parameters are determined (generally using L-BFGS-B). While this is discussed in more

detail in Chapter 6, we note it here to demonstrate that an ideal preconditioner should

perform well across a wide range of hyperparameters. We can use the hyperparameters

within a step, as when we evaluate the log-likelihood during optimization, we are doing so

for a given set of hyperparameters.

In Fig. 5.2 we can see that the matrix can be reordered such that entries with the most

significant values lie close to the diagonal, while entries further from the diagonal tend to

have smaller magnitudes. In this case, the matrix was reordered based upon the ordering

resulting from the SMASH matrix construction.

5.2.1 FSAI

This section investigates a method based on the Factorized Sparse Approximate Inverse

(FSAI) method for preconditioning [56]. Fig. 5.4a presents histograms of the magnitudes

of the entries of the inverse of the kernel matrix. When the length scale is small, we can
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Fig. 5.4: Plots of the spectrums and histograms of the values of A and A−1.

observe that there are fewer entries with large magnitudes. As such, approximate inverse

methods are a promising family of methods to use as preconditioners.

In particular, we use the FSAI method introduced by [56] to approximate the Cholesky

factor of the inverse of the matrix A:

I ≈ GAGT ⇐⇒ GGT ≈ A−1.

This allows us to use such an approximation as a preconditioner. The original method con-

strains the approximate inverse to a given sparsity pattern, while more recent modifications

have developed dynamic approaches which aim to provide adaptive sparsity patterns [57,

58, 59]. The static FSAI was previously used by [60] to precondition Gaussian sampling.

We can see in Fig. 5.5 the impact of using an FSAI-based preconditioner. In particular,

the sparsity pattern is chosen such that the points within a distance of 8 of each other are

included in the sparsity structure. That is to say,

Si,j =


1 ||Xi −Xj||2 < 8

0

47



0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18

It
er

at
io

n
C

ou
nt

Length scale

Iterations

Unpreconditioned
FSAI (8)

Fig. 5.5: Demonstrating the number of iterations required for a solution when varying the
length scale when preconditioned with FSAI.

for a sparsity pattern S with points X .

We observe that using the FSAI-based preconditioner greatly reduces the number of

iterations required for a large range of length scales, particularly those corresponding with

small length scales. As indicated previously, this correlates with the cases where there are

fewer significant entries in the inverse matrix.

5.2.2 Nyström

Recall from before that as θ increases to infinity, the matrix approaches a rank-one matrix

plus a diagonal. If we look at Fig. 5.4b, we can see that the dropoff of the eigenspectrum

becomes more severe as θ increases, even for values in the range of O(1). This indicates

that a preconditioner that approximates the matrix as a low-rank matrix plus a diagonal

perturbation may be effective. The Nyström method was used by [61] to approximate

K̃ ≈ K(X,X) by selecting a small subset of m << n points Xm from X. This results in
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Fig. 5.6: Demonstrating random point selection for Nyström-based preconditioning.

the approximation of

K(X,X) ≈ K̃ = K(X,Xm)K(Xm, Xm)−1K(Xm, X) = Ũ Λ̃ŨT . (5.4)

The diagonal perturbation with the Sherman-Morrison-Woodbury Identity [62] yields the

following approximate solution

x =
1

σ
(b− Ũ(σI + Λ̃ŨT Ũ)−1Λ̃ŨT b).

This approximation was used in [63] to accelerate solves via preconditioned conjugate

gradient, with the m points being randomly selected. An example of uniformly randomly

selected points from the case study can be seen in Fig. 5.6a, while the results of such a

preconditioner can be seen in Fig. 5.6b. We observe that in contrast to the FSAI precon-

ditioner, this Nyström preconditioner requires fewer iterations the larger the length scale

is.

We will now discuss the impact of different point selections on the effectiveness of the

preconditioner.
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Fig. 5.7: Demonstrating hierarchical point selection for Nyström-based preconditioning.

Point Selection

While the selection of random points requires little overhead and provides very effective

results, it may be possible that intentionally sampling the points could provide a better

low-rank approximation – and thus a better preconditioner, without additional computation

costs. As mentioned in the previous sections, SMASH is a method for constructing and

applying hierarchical matrices, including the Gaussian kernel we are currently considering.

During the construction of a SMASH matrix, points are selected to be part of the skeleton,

which are a good set of points for the SMASH representation. As these points have already

been calculated, we can use them as the sample points without any additional calculation

compared to the randomly selected points. An example of the selected sample points can

be seen in Fig. 5.7a, while the resulting iteration counts can be seen in Fig. 5.7b. We see

that we can get lower iteration counts with no additional computation.

Furthermore, it is necessary to find points that lie near-uniform grid points during the

data-driven-based SMASH construction. Intuitively, by having the selected points be uni-

formly distributed over the dataset, the low-rank approximation should be a good represen-

tation of the original dataset. Thus, the preconditioner would be a suitable preconditioner.

We can see in Fig. 5.8b that such a point selection (seen in Fig. 5.8a) further decreases the
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Fig. 5.8: Demonstrating grid point selection for Nyström-based preconditioning.

number of iterations required.
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CHAPTER 6

LARGE-SCALE GAUSSIAN PROCESSES VIA HIERARCHICAL MATRICES

As discussed in the Chapter 5, Gaussian processes are used for their powerful prediction

abilities. However, they are computationally expensive for large problems. Within the hy-

perparameter optimization of Gaussian processes and prediction with Gaussian processes,

the computational bottleneck is theO(n3) solution of linear systems. This chapter develops

a framework for large-scale Gaussian process hyperparameter optimization and prediction

using hierarchical matrices, which can achieve O(n log n) hyperparameter optimization

and prediction, as demonstrated in Section 6.4.

We begin with a description of why such a matrix-free framework would be desired in

Section 6.1, and the notation used for this chapter. In Section 6.2 we build up the framework

for prediction (Section 6.2.1) and tuning (Section 6.2.2). Following this, we discuss the

considerations that are required for a practical implementation (Section 6.3), including

the numerical issues that arise from the rank deficiency (Section 6.3.1), preconditioning

(Section 6.3.2), and other implementation details (Section 6.3.3).

Finally, we provide numerical experiments in Section 6.4, which demonstrate our method’s

accuracy, explore the impact of length scale, and demonstrate the effectiveness of this

framework over numerous simulations.

6.1 Motivation and Notation

The hyperparameter optimization and prediction of Gaussian processes involve solving

with the correlation matrix R in many operations. As such, it becomes infeasible to solve

very large problems using direct methods, such as Cholesky decomposition. Iterative meth-

ods are a set of methods that provide an approximate solution that is iteratively improved.

Krylov subspace methods are a class of iterative methods that can be performed in a matrix-
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free manner, which for solving Ax = b requires only the ability to perform matrix-vector

products with A. For certain problems, iterative methods can achieve asymptotic improve-

ment, with an ideal Krylov subspace method takingO(1) iterations withO(1) matrix-vector

products per iteration, and thus, if the matrix-vector product takes O(n) time, a solution

could be calculated in O(n) time, rather than O(n3) via direct methods. As discussed in

Chapter 5, preconditioning plays an important part in the solution of linear systems. In turn,

the solution of linear systems plays an important part in prediction, especially in hyperpa-

rameter optimization. The role of hyperparameter optimization is emphasized because,

during optimization, many hyperparameter combinations are tested, which may include

both very smooth and very non-smooth kernels. This can result in numerical instability,

which we address in Section 6.3. smashGP is a framework that provides the ability for full

Gaussian process regression, hyperparameter optimization, and prediction to be performed

using matrix-free methods with preconditioners designed for Gaussian processes.

The notation used in this chapter is distinct from that used in Chapter 5, as this chapter

delves deeper into the statistical underpinnings of Gaussian processes without the assump-

tion of a zero mean. In this chapter, we have observations (data points) Ỹi = Y (si) + εi,

for i = 1, . . . , n where εi ∼ N(0, τ 2), with noiseless observations Y at locations si. Y fol-

lows a n-variate Gaussian distribution Y ∼ N(µ,Σ), with constant mean µ, without loss

of generality. This leads to a noiseless correlation matrix of R = R(si, sj) for i, j = 1 : n,

and Σ = σ2R where σ2 is the process’s variance, andR is the kernel function being used –

in this case the Gaussian kernel with length scale θ. r(s) is the kernel evaluated between a

sample point s and the training points.

Optimizing the hyperparameters of a Gaussian process means ascertaining optimal val-

ues for the hyperparameters, given the observations Ỹ . This is often done using L-BFGS-B

by minimizing the likelihood given by

L(Ỹ ) =
1

(2π)(n/2)|Σ̃|(1/2)
exp

(
−1

2
(Ỹ − µ)>Σ̃−1(Ỹ − µ)

)
. (6.1)
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The number of parameters is often reduced by defining v = σ2 + τ 2, the total variance,

and α = σ2/(σ2 + τ 2), the proportion of the variance explained by Y (s). This allows us to

rewrite Σ̃ = vRα with Rα = αR + (1− α)I . In turn, this gives us µ̂ and v̂ defined as

µ̂ =
1
>
nR
−1
α Ỹ

1>nR
−1
α 1n

v̂ =
1

n
(Ỹ − µ̂1n)>R−1

α (Ỹ − µ̂1n). (6.2)

Thus, the log-likelihood can be calculated as

−2 logL(µ̂, v̂, α, θ; Ỹ ) = n log(2π) + n log v̂ + log |Rα|+ n, (6.3)

with derivative

−2
∂L(µ̂, v̂, α, θ; Ỹ )

∂φk
= −(Ỹ − µ̂1n)>R−1

α

∂Rα

∂φk
R−1
α (Ỹ − µ̂1n)/v̂+ tr

(
R−1
α

∂Rα

∂φk

)
, (6.4)

where φ = (α, θ)>.

We also have the noisy mean prediction given by

m(s) = µ̂+ α̂r(s)>R−1
α (Ỹ − µ̂1n), (6.5)

and variance given by

s2(s) = σ̂2(1− α̂r(s)>R−1
α r(s)) + (1− α̂r(s)>R−1

α 1n)2/(1>n (v̂Rα)−1
1n). (6.6)

.

6.2 Matrix-Free Gaussian Process Framework

To perform Gaussian process prediction Eq. 6.2, 6.5, and 6.6 are used, while for optimiza-

tion Eq. 6.3 and 6.4 must also be used. As such, a matrix-free Gaussian process framework

must be able to calculate these values in a matrix-free manner. First, we build up a frame-
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work for matrix-free prediction, given a set of hyperparameters, using matrix-free linear

solvers and matrix-vector products. Second, we provide a similar framework for calculat-

ing the optimal hyperparameters associated with a given dataset. This involves providing

a matrix-free log-likelihood and derivative calculations, which rely upon log determinants

traces, and matrix-vector products. We will first discuss the methods which can be used for

matrix-free prediction. Then we will discuss the methods used in matrix-free optimization,

followed by an analysis of the difficulties encountered by them.

6.2.1 Prediction

The predictive mean and the predictive variance are defined in Eq. 6.5, and 6.6, which

rely on µ̂, v̂ of Eq. 6.2. To calculate these values without forming the dense matrix of

Rα requires only the ability to apply Rα as a matrix-vector product and to solve Rα with

a vector/matrix. There exist many methods which can be used to solve a linear system.

Two direct methods used are Gaussian elimination for general matrices and Cholesky fac-

torization for symmetric positive definite matrices [54]. These direct methods have the

advantage of (in exact math) providing the exact solution after a finite number of steps

have been performed. On the other hand, iterative methods exist that begin with an initial

guess and refine this guess until a certain tolerance is reached. GMRES is a Krylov sub-

space iterative method used for general matrices, while Preconditioned Conjugate Gradient

is the typical method for solving symmetric positive definite systems [64, 65, 55]. One ad-

vantage of Krylov subspace methods is that rather than directly accessing the matrix, they

work by building up a subspace via matrix-vector products, allowing for rapid iteration

when matrix-vector products can be performed quickly, such as when there is a sparse rep-

resentation. In particular, the Gaussian kernel results in symmetric positive definite kernel

matrices. Thus, the Preconditioned Conjugate Gradient method can be used to solve the

system that arises from the kernel matrix.

Calculating the matrix product of Rα with some vector x , which is needed for opera-
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tions including the solve, given a matrix product of R can be done with only a few steps.

We observe

Ra ∗ x = (αR + (1− α)I)x (6.7)

= αRx+ (1− α)x (6.8)

= α(Rx) + (1− α)x (6.9)

and thus, the cost of performing Rαx given Rx consists of scaling a vector followed by

the addition of a vector - two parallel operations ofO(n) cost. As Preconditioned Conjugate

Gradient requires only matrix-vector products to solve a linear system, we can solve R−1
α y

for a vector y via the Preconditioned Conjugate Gradient method using R in a completely

matrix-free manner given α.

Algorithm 4 Pointwise prediction
INPUT: Solve covariance matrix Rα, Evaluation of r(s), mean µ̂, training points response
Ỹ

OUTPUT: prediction yp, variance var
Ψ← R−1

α (Ỹ − µ1)
yp = µ̂+ α̂(r(s)> ∗Ψ)
if Variance is desired then

v ← (ỹ−µ̂1)Ψ>

n

σ ← αv
tmp1← R−1

α r(s)
val1← αr(s)tmp1
R1← R−1

α 1

val2 = (1−α∗r(s)>R1)2

1>R1

var = σ ∗ (val1) + v ∗ val2
end if

Thus using Alg. 4, we can perform the mean prediction, seen in Eq. 6.5, and the

predictive variance in Eq. 6.6, given a set of hyperparameters θ, α.
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6.2.2 Hyperparameter Optimization

The act of finding the optimal hyperparameters to be used for Gaussian process regression is

known as training, tuning, or hyperparameter optimization. As with optimization problems,

many methods are available to go about hyperparameter optimization. The L-BFGS-B

method [66] is the typical method used for finding the hyperparameters associated with

Gaussian processes [67], where it is used to find the minimum log-likelihood. To optimize

via L-BFGS-B, both the function being optimized and its derivative needs to be calculated.

In the case of Gaussian process regression, this is given by Eq. 6.3 and 6.4 respectively.

Similar to the prediction, the tuning of Gaussian process hyperparameters can be cal-

culated without direct access to R using matrix-free methods. In addition to the eval-

uations and solutions covered in Section 6.2.1, the training also requires calculating the

log-likelihood and its derivative - Eq. 6.3 and 6.4. We observe that this requires not only

the solution of linear systems with Rα, it also requires calculating log |Rα|, β> ∂Rα∂Ψ
β and

Tr(Rα
∂Rα
∂· ) for β = R−1

α (Ỹ − µ̂) and · = α, θ. As such, we will now build the various

operations required to evaluate the log-likelihood and, in turn, the hyperparameter tuning.

The first operation we will discuss is the calculation of log |Rα|. Recall that, for a n×n

matrix A,

log |A| = log(det(A)) (6.10)

= Tr(log(A)) (6.11)

=
∑
i

(log(λi)) λi = eig(A) (6.12)

(6.13)

And thus to calculate the log determinant of Rα, we simply have to calculate Tr(f(Rα))

where f(x) = log(x).

As Rα is symmetric positive definite, one method for achieving this is Stochastic Lanc-
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zos Quadrature (SLQ) [68]. This method utilizes the matrix-free Lanczos algorithm to

provide eigenvalue estimates, which can then be used to estimate the matrix trace function

of a symmetric positive definite matrix. This matrix-free trace estimation can also be used

in the other operations required for the training.

The next operation we will consider is Tr(R−1
α

∂Rα
∂α

). From [69] we have that ∂Rα
∂α

=

R− I .

Thus, we have

Tr(R−1
α

∂Rα

∂α
) = Tr(R−1

α (R− I)) (6.14)

= Tr((αR + (1− α)I)−1(R− I)). (6.15)

Thus, we can estimate Tr(f(R)) with f(x) = 1/(αx+(1−α))(x−1), using matrix-vector

products via SLQ.

Next, we will consider β>(R− I)β.

β>(R− I)β = β>Rβ − β>β (6.16)

= β>(Rβ)− β>β (6.17)

And thus we can calculate β>(∂R
∂α

)β simply using a matrix-vector product with R.

Next, let us consider Tr(R−1
α

∂Rα
∂θ

). From [70] we have that ∂Rα
∂θ

= E/θ3 ◦R where E is

the squared Euclidean distance matrix and ◦ is the elementwise (Hadamard) product. Thus,

if we have a matrix-free approximation of ∂Rα
∂θ

, we can calculate Tr(R−1
α

∂Rα
∂θ

) by using a

matrix-free trace estimation where the matrix-vector product x = R−1
α

∂Rα
∂θ
∗ y is performed

in two parts: z = ∂Rα
∂θ
y, followed by x = R−1

α z, as seen in Alg. 5.

Note that, unlike the previous trace estimation, this does not involve a general matrix

function, and thus a trace estimator such as Hutchinson’s can be used, as seen in Alg. 6
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Algorithm 5 x = R−1
α

∂Rα
∂θ
y

z ← ∂Rα
∂θ
y

x← R−1
α z

Logdet SLQ, f(x) = log(x);A = Rα

β>(R− I)β H2approximation of R
Tr(R−1

α
∂Rα
∂α

) SLQ, f(x) = 1
αx+(1−α))(x−1)

;Ay = Ry

Tr(R−1
α

∂Rα
∂θ

) Hutchinson, Ay = Alg. 5(y)

β> ∂Rα
∂θ
β H2 approximation of ∂Rα

∂θ

Table 6.1: Overview of operations used for optimization.

[71].

Algorithm 6 Hutchinson’s Estimator
tr(A) ≈ 1

nv

∑nv
i=1 z

>
i Azi, z ∼ {−1, 1}m

Finally, we will consider the calculation of β> ∂Rα
∂θ
β. Once again, we use a matrix-free

approximation to ∂Rα
∂θ

to provide the ∂Rα
∂θ
β matrix-vector product.

Thus, we now have all the building blocks required for calculating the log-likelihood,

the derivative of the log-likelihood, and the predictive mean and predictive variance, and

can thus train and provide mean and variance predictions. A summary can be seen in Table

6.1.

6.3 Practical Considerations

While in the previous section, we provided a high-level basis for the algorithms required to

achieve good performance in accuracy and computation time. However, several additional

considerations must be considered. In this section, we will discuss numerical issues that

arise during these computations, how they can be alleviated, and implementation details to

achieve efficient computations.
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6.3.1 Numerical Issues

One of the underlying assumptions in Gaussian processes is that the kernel used is smooth,

allowing for interpolation between points. This additionally makes the kernels used the

target of many methods to exploit the near rank deficient nature of the matrix, including

those based on the Nyström method [72]. However, this near rank deficiency can result in

algorithmic breakdowns, as the algorithms may rely on the matrices being positive definite,

which must be considered when designing any framework. Notably, the smoother the ker-

nel is (the larger the length scale, the more points there are, and the closer the points are),

the more numerically rank-deficient the kernel matrix may be.

Traditional full Gaussian processes that use direct methods partially alleviate this issue

by using a nugget, a perturbation to the diagonal of the kernel matrix associated with the

measurement noise. The diagonal perturbation shifts the eigenvalues by the nugget, thus

decreasing the likelihood of having numerically negative eigenvalues. However, depend-

ing on the eigenvalue spectrum of the matrix, this may not be enough, and the Cholesky

decomposition may fail, indicating a numerically non-positive definite matrix. In this case,

variations such as the Modified Cholesky decomposition may be used [73]. Simulations,

where the measurement error would be zero, may prove difficult using direct methods for

Gaussian processes as a nugget may not be applied.

One advantage that the matrix-free methods described above have over traditional full

Gaussian processes is that as the algorithms depend on the eigenvalue estimates, and as the

eigenvalues are lower bounded (as the eigenvalues of R have a lower bound of 0, as it is

positive definite, the diagonal shift will shift them upwards) we can exploit this information

to correct for the numerically negative eigenvalues. Particularly, in the case of the log

determinant, any eigenvalue estimate smaller than the nugget can be replaced with the

nugget.
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6.3.2 Preconditioning Linear Systems

As mentioned previously, it is quite common for the underlying matrices to be poorly con-

ditioned, which may hurt the convergence of the matrix-free solutions. Preconditioning can

be used to better condition the systems, allowing for quicker convergence during the solu-

tion of linear equations. Preconditioning of the kernel matrices associated with Gaussian

process regression is discussed in detail in Section 5.

6.3.3 Implementation Details

By implementing the previous sections, a framework for matrix-free Gaussian processes

can be developed. However, careful consideration must be given to the implementation to

achieve efficient performance. This section discusses various implementation details that

aim to increase the performance achieved by matrix-free Gaussian process frameworks.

Blocking

First, we will discuss the use of achieving high performance by increasing the size of the

linear algebra operations being performed. This can allow for better use of the hardware,

such as reducing the number of jumps, reads from memory, and increasing cache use, which

can increase the percentage of theoretical FLOPs obtained.

The most obvious area where this can be implemented is during the prediction, where

rather than considering each prediction point sequentially, the points are considered as a

vector. This leads to a mean prediction for m points Xp with n training points Xt being

performed as

ypred = µ̂1m + α̂R(Xp, Xt)R
−1
α (Ỹ − µ̂1n) (6.18)

whereR−1
α (Y −µ̂) occurs frequently enough in calculations where it should be stored when

first calculated. Thus, prediction consists only of a m× n matrix-vector product, followed
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by a scaling and vector addition (this can be performed as a fused-multiply-add (FMA))

[74, 75].

Similarly, the prediction variance can be calculated as

varpred = σ̂2(1− α̂1m>R(Xp, Xt)R
−1
α R(Xt, Xp))+

(1− α̂R(Xp, Xt)R
−1
α 1n).2

(1>n (v̂Rα)−11n)
, (6.19)

where .2 corresponds with squaring the matrix elementwise.

Algorithm 7 Block prediction.
INPUT: Covariance matrix Rα, Kernel R, Prediction points Xp, mean µ̂, training points
Xt, training points response Ỹ

OUTPUT: prediction yp, variance var
Ψ← R−1

α (Ỹ − µ̂1)
yp = µ̂1 + α(R(Xp, Xt) ∗Ψ)
if Variance is desired then

v ← (Ỹ−µ̂1)Ψ>

n

σ ← αv
tmp1 = R−1

α R(Xt, Xp)
val1 = α1>R(Xp, Xt)tmp1
R1← R−1

α 1

val2 = (1−α∗R(Xp,Xt)R1).2

1>R1

var = σ ∗ (val1) + v ∗ val2
end if

Next, we will consider the variance prediction. First, R−1
α 1 and Ỹ − µ̂1 can both be

calculated and stored for reuse. To calculate σ̂2(1−α1R(Xp, Xt)R
−1
α R(Xt, Xp)) we begin

with R−1
α R(Xt, Xp). We can perform the R−1

α R(Xt, Xp) calculation in a blocked fashion.

This can be performed in a single large solve via a blocked CG algorithm [55, 76], or split

into blocks to be processed in parallel using such a blocked CG algorithm. Once this is

calculated, the corresponding block can be right multiplied with the corresponding block

of K(Xp, Xt) before performing a column-wise sum, yielding the desired value. Next, we

can calculate the val2 vector as written in Alg. 4. From this, the resulting variance vector

can be calculated simply by combing the val1 and val2 vectors in Alg. 4.

The Hutchinson estimator provides significant parallelization, as all samples are in-
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dependent of each other and can be formulated as a combination of matrix products and

elementwise products [77]. If we let the number of samples be nv, then we can generate a

matrix from the Rademacher Distribution (where each element is either -1 or 1), perform

a matrix product with A (the matrix whose trace we are estimating), yielding B, then cal-

culating the dot product of each column of Z with the corresponding column of B, and

summing the results. This can be performed by taking the element-wise product of Z and

B, then summing the result. The pseudocode for the algorithm can be seen in Alg. 8.

Algorithm 8 Blocked Hutchinson
Z ← {−1, 1}m×nv
B ← AZ
return

∑
ij(Z◦B)ij

nv

Similar to the Hutchinson estimator, as the Stochastic Lanczos Quadrature requires

many samples, SLQ provides an excellent opportunity for performance increase from block-

ing. Trace function estimation via Stochastic Lanczos Quadrature relies upon a block Lanc-

zos algorithm. We can see in Alg. 9 that the Lanczos Algorithm ((6.15) of [78]) can be

adapted to have a block form while exploiting level 2 and 3 BLAS. This reduces needing

m ∗ nv matrix-vector products of size n with A to requiring m matrix-matrix products of

size n× nv, which will provide the benefits of using level 3 BLAS-like functions.

Algorithm 9 Block Lanczos - without full reorthogonalization
Let b1 = [β1

1β
2
1 . . . β

nv
1 ] = 0

Let V be a series of nv n×m matrices, where m is the subspace size
Choose initial vectors V 1 of size n× nv with columnwise unity norm
for j=1,. . . ,m do

W ← AV j

W ← W − V j−1 ∗ diag(bj−1)
αv ← 1

>(W ◦ V j)
W j = W j − V j diag(αjv)
bj+1 ← 1

>(W j ◦W j)
V j+1 = W j diag(bj+1)−1

end for
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Additional Implementation Details

As the log determinant must be calculated for a matrix that is likely to be near rank deficient,

as well as having an eigenvalue floor, one can exploit these properties to develop an efficient

Lanczos Based Density of States (Landos) algorithm to calculate the log determinant and

trace functions [79].

We observe that, for a sufficiently smooth problem, and thus numerically rank deficient,

the problem has r << n numerical eigenvalues with magnitude greater than the noise floor

and n − r numerical eigenvalues with magnitude of the noise floor. The spectrum of such

a problem can be seen in Fig. 5.4b. As the log determinant can be calculated as the sum of

the log of the eigenvalues ∑
i

log(λi),

the eigenvalues which compose the noise floor contribute the most to the log-determinant.

Their contribution can be calculated as

n∑
i=r

(log(λi)) = log(α) ∗ (n− r).

However, r is not known apriori.

By using Landos, we can estimate the spectral density and thus obtain an estimate

of the number of eigenvalues with magnitude around α - giving us an approximation of

r. Furthermore, by using Landos with the log function, we can get the contribution of

the r eigenvalues to the log determinant, yielding a matrix-free approximation to the log

determinant. This log determinant is likely to work well when the noise used is small and

when the rank r is small.
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6.4 Numerical Experiments

In this section, we evaluate the performance of smashGP using simulations. First, we de-

scribe the method used to generate simulation data. Next, we compare the accuracy and

computation time to fit a Gaussian process for smashGP, which uses hierarchical matrix-

free operations, and DiceKriging [80], which uses dense matrix decomposition and inver-

sion. DiceKriging is presently the fastest R implementation (with a C backend) to learn a

Gaussian process but still requiresO(n3) operations andO(n2) memory. Then, we investi-

gate the impact of the mask on smashGP and another method, SPDE. Finally, we compare

the predictive accuracy of smashGP with state-of-art methods for large-scale spatial mod-

eling with Gaussian processes.

6.4.1 Simulations

Data Generation

To allow the flexible testing of different methods on various problems to examine how the

techniques can handle different types of problems, we developed generating code for sim-

ulations. This data generation allows us to examine the impact of many factors, including

problem size, noise in the data, smoothness of the data, and spatial correlation of the testing

data. This is achieved through Perlin noise [81], which allows for procedural generation

of noise that relatively smoothly transitions over space. A highly detailed yet controlled

dataset can be created by combining multiple noise levels. We utilize the ambient R

package with gen perlin to generate independent layers of a given size. In particular,

for level k, we use a frequency of 5 ∗ (2k), scaling the noise by 1/max(1, k). A normally

distributed noise is added to every location, representing measurement noise. This creates

a fractal-like noise, which can be used in spatial prediction due to its spatially correlated

data. An example of this can be seen in Fig. 6.1a, where Fig. 6.1b, 6.1c demonstrates the

resulting surface after scaling and summing the different levels.
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(a) Different layers of Perlin noise with varying frequencies

(b) Texture with three layers of Perlin noise (c) Texture with five layers of Perlin noise

Fig. 6.1: Data generation using Perlin noise.

(a) Perlin test data, 20% (left), 50% (right) (b) Random test data, 20% (left), 50% (right)

Fig. 6.2: Examples of the training and test datasets using Perlin noise. The test data appears
in solid black.
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To determine a mask of missing data, either a single layer of Perlin noise is used (of

selectable frequency), or a layer of uniformly distributed random values is used. For a

selectable parameter t of the test percentage, the locations associated with the largest t%

of the domain are selected as test data. The Perlin noise mask could correspond with cloud

or tree coverage, masking the elevation of the terrain. An example of these masks can be

seen in Fig. 6.2. The uniform mask may correspond with how data might be sampled for

machine learning tasks.

6.4.2 Comparison with Baseline

We begin with comparing smashGP with the DiceKriging R package for Gaussian process

regression, demonstrating its accuracy and performance [80]. Both are configured to use an

isotropic length scale and train on 80% of the test data while testing on the remaining 20%.

The Gaussian kernel is used, and nugget estimation is enabled for Dice. The data used for

this experiment can be seen in Fig. 6.3. One desirable property of the Perlin noise is that it

is sampled from a continuous domain, and thus multiple resolutions can be used. Thus, we

test for a variety of resolutions, ranging from a 25× 25 grid (625 points) up to a 140× 140

(19600 points) for both and up to a grid of 316× 316 for smashGP (99856 points).

We see in Table 6.2 the metrics between both the methods, with the difference column

being the relative difference. This includes both the direct error metrics of mean absolute

error (MAE) and root mean squared error (RMSE) and the uncertainty metrics INT and

CVG. Thus, we see that smashGP can achieve the same accuracy as the Dice package,

which uses full precision calculations without any approximations. In Fig. 6.4 a compari-

son of the timings for smashGP and Dice is presented. We observe that the scaling of Dice

very closely matches the trend line across the whole range, as would be expected for a fully

dense and direct calculation. On the other hand, smashGP takes longer to start with, but

as the problem size increases, so does the benefit of using smashGP. Above 6400 points, a

small problem for hierarchical matrices, smashGP outperforms Dice. We see that the total
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(a) Underlying (25 × 25, 140 × 140) data for smashGP vs Dice
comparison.

(b) Mask used for smashGP vs.
Dice.

Fig. 6.3: Demonstrations of the data used to compare smashGP and Dice.

Table 6.2: Performance comparison between smashGP and DiceKriging for different prob-
lem sizes

.
MAE RMSE INT CVG

Num.
Points smashGP Dice Rel.

Diff. smashGP Dice Rel.
Diff. smashGP Dice Rel.

Diff. smashGP Dice Rel.
Diff.

625 0.0892 0.0886 0.0069 0.1132 0.1127 0.0042 0.5203 0.5235 -0.0060 0.9040 0.9040 0.0000
900 0.0817 0.0812 0.0058 0.1015 0.1006 0.0083 0.4947 0.4496 0.1003 0.8722 0.8944 -0.0248

1600 0.0568 0.0573 -0.0092 0.0740 0.0743 -0.0037 0.3382 0.3550 -0.0471 0.9375 0.9125 0.0274
2500 0.0331 0.0331 -0.0002 0.0433 0.0433 -0.0001 0.1930 0.1930 0.0000 0.9360 0.9360 0.0000
3600 0.0263 0.0264 -0.0002 0.0373 0.0374 -0.0036 0.1612 0.1620 -0.0055 0.9264 0.9347 -0.0089
4900 0.0231 0.0231 0.0001 0.0322 0.0321 0.0007 0.1286 0.1282 0.0026 0.9143 0.9153 -0.0011
6400 0.0186 0.0186 -0.0015 0.0251 0.0251 -0.0016 0.1105 0.1107 -0.0017 0.9383 0.9352 0.0033
8100 0.0166 0.0166 0.0003 0.0220 0.0220 0.0003 0.1027 0.1028 -0.0012 0.9420 0.9414 0.0007

10000 0.0178 0.0178 0.0009 0.0233 0.0232 0.0009 0.1006 0.1008 -0.0024 0.9260 0.9245 0.0016
14400 0.0165 0.0165 -0.0002 0.0217 0.0217 -0.0003 0.0966 0.0966 -0.0005 0.9201 0.9201 0.0000
19600 0.0143 0.0143 0.0002 0.0188 0.0188 0.0000 0.0884 0.0880 0.0053 0.9227 0.9242 -0.0017

tuning time for smashGP scales better than Dice.

6.4.3 Investigating Length scales

The next set of tests performed with the simulation data investigates the impact of the

smoothness of the data and the clustering of the mask. In this case, three variables are

being tested, the amount of data withheld for testing (20%, 40%), the number of levels

of noise (3,5), and the clustering of the mask. We can see the example of the smooth

underlying data in Fig. 6.5. We can see the resulting accuracy comparing smashGP, Dice,

and SPDE, a stochastic partial differential equation method, in Fig. 6.6. We observe that as

the mask becomes more uniform, the RMSE tends to decrease in all cases. This is logical,
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npts

5000
10000

50000
100000

500000
1000000

5000000

1000 5000 10000 50000 100000

C:mf:smash:prec:int 6.72x^1.21 R² = 0.946 R:dice 1.5E-04x^2.48 R² = 0.997

C:mf:smash:prec:int and R:dice

Fig. 6.4: Comparing the tuning time for smashGP and DiceKriging.

as this corresponds with having more information surrounding the missing data, and thus

a better guess can be made on the missing data. Similarly, when the amount of test data

is increased, the RMSE increases as less information is available in the training set. We

observe that for smoother data, Dice and smashGP perform better than SPDE, while for

rough data, SPDE performs better. This may be since Dice and smashGP are based on

Gaussian process regression directly, they only have a single isotropic length scale to be

optimized. We observe in the smooth case that the methods have a more drastic initial

dropoff in RMSE, while the convergence is more gradual for the rougher data.

6.4.4 Comparison Tests

Now that we have established that smashGP closely matches the baseline Dice in met-

rics for a wide variety of problems, we will now compare various methods on the same

dataset. In addition to the SPDE method previously seen, we also test the LatticeKriging,

GPyTorch, and Partition-based methods [82, 83, 76]. These methods correspond with the

Competition Case Study Paper methods [84], with LatticeKriging and SPDE being Sparse

Precision methods and Partition being a Sparse Covariance method. Using the data gen-
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(a) Underlying smooth surface.
(b) A variety of example test data with low (top) and high
(bottom) testing percentages.

Fig. 6.5: Varying the test data for both low and high testing percentages.
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High Test Perc, Rough Data

Fig. 6.6: Comparing smashGP against Dice and SPDE for differing grid sizes.
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erator discussed in the previous subsection, we use a measurement noise with a standard

deviation of 0.005 and 0.01, a uniform testing mask, and a Perlin-based mask, a testing

percentage of 20% and 50%, as well as two different noise levels. The high smoothness

case corresponds with two levels of Perlin noise, while the low smoothness case corre-

sponds with three levels. These tests were repeated for 50 samples to ensure the statistical

significance of the results.

Table 6.3 contains the averaged MAE over the tests, while Table 6.4 contains the aver-

aged RMSE. We see that smashGP performs very well for the tests with high smoothness

while still performing competitively in the low smoothness case. This likely relates to the

underlying Gaussian processes used in smashGP only having a single isotropic length scale,

while the other methods may make alternative statistical assumptions. On the other hand,

when looking at the interval score, which is a metric for uncertainty quantification in Fig.

6.5, smashGP outperforms the other methods in nearly all the tests. Fig. 6.6 demonstrates

that smashGP has the best coverage in the case of a Perlin mask while still performing com-

petitively in the Random noise mask case. This demonstrates the effectiveness of smashGP

in both cases where the data itself is fairly smooth or where uncertainty quantification is

needed, which often is required to ensure the accuracy of simulations. Thus, as smashGP

scales asymptotically better than native methods, it can help expand the types of problems

which can be tackled with Gaussian process regression.
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Table 6.3: Comparison of MAE over 50 simulation replicates. Results are in the form of
mean (standard deviation).

MAE
Smooth. Noise Test % Test mask smashGP GPyTorch SP latticeKrig SPDE

Low

0.005
20%

Random 0.00459(0.00005) 0.05859(0.00178) 0.00476(0.00005) 0.00469(0.00004) 0.00503(0.00004)
Perlin 0.02133(0.00216) 0.06945(0.00381) 0.02478(0.00155) 0.02047(0.00143) 0.02024(0.00146)

50%
Random 0.00486(0.00006) 0.04045(0.00172) 0.00532(0.00009) 0.00503(0.00005) 0.00509(0.00003)
Perlin 0.04014(0.00378) 0.06253(0.00858) 0.03926(0.00300) 0.03309(0.00247) 0.03152(0.00228)

0.01
20%

Random 0.00867(0.00006) 0.05884(0.00166) 0.00921(0.00010) 0.00889(0.00007) 0.00899(0.00008)
Perlin 0.02424(0.00147) 0.06956(0.00389) 0.02854(0.00189) 0.02380(0.00144) 0.02330(0.00143)

50%
Random 0.00894(0.00005) 0.04096(0.00170) 0.00969(0.00013) 0.00930(0.00006) 0.00936(0.00008)
Perlin 0.04219(0.00338) 0.06275(0.00856) 0.04238(0.00299) 0.03587(0.00251) 0.03405(0.00224)

High

0.005
20%

Random 0.00416(0.00003) 0.05640(0.00168) 0.00440(0.00004) 0.00451(0.00004) 0.00451(0.00004)
Perlin 0.00758(0.00039) 0.06806(0.00444) 0.01752(0.00155) 0.01424(0.00115) 0.01092(0.00074)

50%
Random 0.00422(0.00002) 0.03640(0.00130) 0.00464(0.00004) 0.00474(0.00004) 0.00469(0.00005)
Perlin 0.01542(0.00180) 0.06113(0.00877) 0.03356(0.00337) 0.02698(0.00271) 0.02065(0.00190)

0.01
20%

Random 0.00823(0.00006) 0.05652(0.00173) 0.00853(0.00006) 0.00866(0.00007) 0.00860(0.00038)
Perlin 0.01209(0.00046) 0.06829(0.00442) 0.02087(0.00143) 0.01778(0.00115) 0.01476(0.00073)

50%
Random 0.00837(0.00003) 0.03685(0.00129) 0.00877(0.00006) 0.00893(0.00006) 0.00870(0.00005)
Perlin 0.01927(0.00180) 0.06124(0.00884) 0.03586(0.00322) 0.03004(0.00273) 0.02389(0.00190)

Table 6.4: Comparison of RMSE over 50 simulation replicates. Results are in the form of
mean (standard deviation).

RMSE
Smooth. Noise Test % Test mask smashGP GPyTorch SP latticeKrig SPDE

Low

0.005
20%

Random 0.0058 (0.0001) 0.0732 (0.0022) 0.0060 (0.0001) 0.0059 (0.0001) 0.0063 (0.0001)
Perlin 0.0345 (0.0042) 0.0870 (0.0049) 0.0346 (0.0024) 0.0299 (0.0023) 0.0290 (0.0023)

50%
Random 0.0061 (0.0001) 0.0504 (0.0022) 0.0068 (0.0001) 0.0063 (0.0001) 0.0064 (0.0000)
Perlin 0.0621 (0.0063) 0.0797 (0.0106) 0.0549 (0.0045) 0.0473 (0.0038) 0.0445 (0.0036)

0.01
20%

Random 0.0109 (0.0001) 0.0735 (0.0021) 0.0116 (0.0001) 0.0111 (0.0001) 0.0113 (0.0001)
Perlin 0.0359 (0.0028) 0.0871 (0.0050) 0.0384 (0.0027) 0.0331 (0.0022) 0.0320 (0.0022)

50%
Random 0.0112 (0.0001) 0.0510 (0.0021) 0.0122 (0.0002) 0.0117 (0.0001) 0.0117 (0.0001)
Perlin 0.0623 (0.0056) 0.0800 (0.0106) 0.0578 (0.0045) 0.0498 (0.0038) 0.0468 (0.0034)

High

0.005
20%

Random 0.0052 (0.0000) 0.0704 (0.0021) 0.0055 (0.0000) 0.0057 (0.0000) 0.0056 (0.0001)
Perlin 0.0109 (0.0010) 0.0852 (0.0056) 0.0253 (0.0024) 0.0213 (0.0020) 0.0157 (0.0013)

50%
Random 0.0053 (0.0000) 0.0450 (0.0016) 0.0059 (0.0000) 0.0059 (0.0000) 0.0059 (0.0001)
Perlin 0.0253 (0.0043) 0.0782 (0.0111) 0.0486 (0.0054) 0.0400 (0.0044) 0.0307 (0.0033)

0.01
20%

Random 0.0103 (0.0001) 0.0705 (0.0022) 0.0107 (0.0001) 0.0108 (0.0001) 0.0108 (0.0005)
Perlin 0.0161 (0.0010) 0.0855 (0.0056) 0.0287 (0.0022) 0.0248 (0.0019) 0.0198 (0.0012)

50%
Random 0.0105 (0.0000) 0.0455 (0.0016) 0.0110 (0.0001) 0.0112 (0.0001) 0.0109 (0.0001)
Perlin 0.0285 (0.0039) 0.0783 (0.0111) 0.0507 (0.0052) 0.0428 (0.0044) 0.0339 (0.0032)

Table 6.5: Comparison of INT over 50 simulation replicates. Results are in the form of
mean (standard deviation).

INT
Smooth. Noise Test % Test mask smashGP GPyTorch SP latticeKrig SPDE

Low

0.005
20%

Random 0.0269 (0.00032) 3.2006 (0.04093) 0.0365 (0.00153) 0.0276 (0.00028) 0.0311 (0.00041)
Perlin 0.1273 (0.01777) 3.1967 (0.04539) 0.3004 (0.03408) 0.1545 (0.01877) 0.1709 (0.02294)

50%
Random 0.0286 (0.00037) 1.6359 (0.12357) 0.0450 (0.00203) 0.0298 (0.00029) 0.0304 (0.00018)

Perlin 0.2565 (0.03700) 1.9220 (0.58792) 0.5832 (0.06685) 0.2974 (0.03720) 0.2850 (0.03211)

0.01
20%

Random 0.0509 (0.00044) 3.2075 (0.04051) 0.0647 (0.00190) 0.0522 (0.00047) 0.0529 (0.00059)
Perlin 0.1410 (0.00991) 3.2043 (0.04511) 0.2931 (0.03551) 0.1567 (0.01522) 0.1547 (0.01696)

50%
Random 0.0524 (0.00035) 1.6437 (0.12034) 0.0680 (0.00231) 0.0548 (0.00038) 0.0552 (0.00049)

Perlin 0.2500 (0.02451) 1.9398 (0.58196) 0.5559 (0.06288) 0.2716 (0.03129) 0.2365 (0.02291)

High

0.005
20%

Random 0.0244 (0.00020) 3.1087 (0.04195) 0.0348 (0.00147) 0.0265 (0.00025) 0.0279 (0.00045)
Perlin 0.0444 (0.00292) 3.1084 (0.04763) 0.2069 (0.03234) 0.1068 (0.01527) 0.0775 (0.00950)

50%
Random 0.0247 (0.00013) 1.4450 (0.13101) 0.0344 (0.00175) 0.0280 (0.00023) 0.0291 (0.00051)

Perlin 0.0942 (0.01412) 1.6853 (0.65200) 0.5653 (0.08719) 0.2740 (0.04968) 0.1942 (0.02950)

0.01
20%

Random 0.0483 (0.00034) 3.1170 (0.04196) 0.0562 (0.00103) 0.0508 (0.00043) 0.0512 (0.00473)
Perlin 0.0710 (0.00337) 3.1165 (0.04854) 0.1970 (0.02706) 0.1169 (0.01237) 0.0941 (0.01159)

50%
Random 0.0491 (0.00021) 1.4598 (0.13656) 0.0605 (0.00172) 0.0525 (0.00032) 0.0512 (0.00029)

Perlin 0.1147 (0.01177) 1.7090 (0.64433) 0.4958 (0.07767) 0.2525 (0.04234) 0.1744 (0.02211)
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Table 6.6: Comparison of CVG over 50 simulation replicates. Results are in the form of
mean (standard deviation).

CVG
Smooth. Noise Test % Test mask smashGP GPyTorch SP latticeKrig SPDE

Low

0.005
20%

Random 0.9508 (0.0021) 1.0000 (0.0000) 0.9972 (0.0008) 0.9502 (0.0019) 0.9066 (0.0050)
Perlin 0.9348 (0.0086) 1.0000 (0.0000) 0.7207 (0.0158) 0.8742 (0.0127) 0.8192 (0.0149)

50%
Random 0.9504 (0.0019) 1.0000 (0.0000) 0.9984 (0.0003) 0.9517 (0.0015) 0.9504 (0.0064)
Perlin 0.9131 (0.0125) 1.0000 (0.0000) 0.6285 (0.0157) 0.8127 (0.0137) 0.7799 (0.0131)

0.01
20%

Random 0.9504 (0.0021) 1.0000 (0.0000) 0.9939 (0.0012) 0.9497 (0.0019) 0.9418 (0.0024)
Perlin 0.9427 (0.0064) 1.0000 (0.0000) 0.7676 (0.0165) 0.9064 (0.0102) 0.8888 (0.0159)

50%
Random 0.9504 (0.0016) 1.0000 (0.0000) 0.9937 (0.0012) 0.9505 (0.0014) 0.9435 (0.0018)
Perlin 0.9341 (0.0098) 1.0000 (0.0000) 0.6746 (0.0157) 0.8590 (0.0121) 0.8625 (0.0102)

High

0.005
20%

Random 0.9506 (0.0023) 1.0000 (0.0000) 0.9978 (0.0008) 0.9498 (0.0018) 0.9042 (0.0034)
Perlin 0.9434 (0.0064) 1.0000 (0.0000) 0.7738 (0.0217) 0.9046 (0.0139) 0.8906 (0.0129)

50%
Random 0.9509 (0.0015) 1.0000 (0.0000) 0.9956 (0.0015) 0.9508 (0.0015) 0.9038 (0.0051)
Perlin 0.9314 (0.0098) 1.0000 (0.0000) 0.6164 (0.0210) 0.8088 (0.0199) 0.8056 (0.0174)

0.01
20%

Random 0.9502 (0.0021) 1.0000 (0.0000) 0.9890 (0.0020) 0.9499 (0.0018) 0.9368 (0.0206)
Perlin 0.9422 (0.0076) 1.0000 (0.0000) 0.8246 (0.0183) 0.9265 (0.0107) 0.9366 (0.0238)

50%
Random 0.9509 (0.0017) 1.0000 (0.0000) 0.9925 (0.0018) 0.9503 (0.0014) 0.9423 (0.0016)
Perlin 0.9401 (0.0064) 1.0000 (0.0000) 0.6881 (0.0207) 0.8533 (0.0175) 0.8735 (0.0212)
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Part II

Parallel Quantum Chemistry
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The theory of quantum mechanics can be used to understand the properties and motions

of electrons via electronic structure calculations. These calculations are required in vari-

ous scientific disciplines, including chemistry, chemical engineering, material science, and

quantum computing, and are prohibitively expensive. As such, there exists a significant

demand for efficient algorithms, methods, and implementations to allow for rapid calcu-

lations for a wide range of accuracies, system sizes, and physical systems. In this part,

we investigate such computations, specifically the use of 3D matrix-matrix multiplications

in a holistic Chebyshev-filtered subspace iteration engine accelerated via GPUs, and ex-

ploit new methods and hardware to advance the speed and the size of problems that can be

considered.

At the core of electronic structure theory is the Schrödinger Equation, which in its

time-independent form is given by

ĤΨ = EΨ, (6.20)

where Ĥ is the Hamiltonian operator, Ψ is a wave function, and E is the energy [85].

This equation describes how a wave function evolves, and it can be seen as an eigenvalue

problem. Thus, it is apparent that it can only be solved analytically for very small systems

and must be solved numerically for larger systems. Rather than numerically solving the

equations directly, various approximations are performed to make the problem tractable.

The particular method which we consider is Chebyshev-filtered subspace iteration for

self-consistent fields [10, 86]. This method is based on Kohn-Sham density functional the-

ory, which is used for the high accuracy to cost ratio [87]. In particular, Kohn-Sham den-

sity functional theory operates by considering not the many-body wave function seen in the

Schrödinger Equation but instead considers a series of single-electron orbitals. This idea

depends upon the Hohenberg-Kohn theorems, which state that “the ground state properties

of a many electron-system depend only on the electronic density” and that “the correct
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ground state density for a system is the one that minimizes the total energy through the

functional E[n(r)]” [88]. Thus, we can estimate the properties of a system by finding an

estimate for the electronic density.

From this, a self-consistent field iteration can be performed based on the equations

[−∇
2

2
+ Vtotal(ρ(r), r)]Ψi(r) = EiΨi(r). (6.21)

Vtotal(ρ(r), r) = Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r) (6.22)

ρ(r) =
∑
|Ψi(r)|2. (6.23)

By beginning with an initial density for ρ, the total potential can be calculated, Vtotal,

which allows us to solve for Φ, the discretized Ψ matrix. This Φ can then be used to

update ρ. This is repeated until the difference in energy between two iterations is less

than some prescribed tolerance. In this part, we investigate how to effectively perform

this self-consistent field iteration by exploiting modern hardware and algorithms. Notably,

we have four contributions: we investigate the use of advanced matrix-matrix products,

investigate acceleration using GPUs, investigate GPU accelerated distributed eigensolvers,

and finally use an implementation of these to compare against a baseline implementation,

demonstrating the cases where such methods are helpful.
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CHAPTER 7

PARALLEL QUANTUM CHEMISTRY

Electronic structure calculations can be used to calculate the motion and properties of

electrons accurately. These calculations require calculating (approximate) solutions to the

Schrödinger Equation

ĤΨ = EΨ, (7.1)

where Ĥ is the Hamiltonian operator, Ψ is a wave function and E is the energy. One com-

monly used method is Kohn-Sham density functional theory (DFT) [89, 90]. However, at

the core of Kohn-Sham Density Functional Theory is the solution to an eigenvalue problem,

which becomes prohibitively expensive for large problems. Chebyshev-filtered subspace

iteration is a method that reduces the cost associated with the eigensolve by instead refining

a subspace via Chebyshev polynomials [10, 91, 86]. We have created a high-performance

Parallel Computation Engine (libPCE) to perform Chebyshev-filtered subspace iteration in

a distributed manner on GPUs. Many of the steps involved in Chebyshev-filtered subspace

iteration require the multiplication of matrices, where the number of rows is orders of mag-

nitudes larger than the number of columns. As such, traditional matrix-matrix algorithms

and implementations fail to perform well, particularly in the distributed case. Our engine

has been designed to provide standalone routines that can replace the computation routines

currently used in such DFT codes, including the SPARC package (Simulation Package for

Ab-initio Real-space Calculations) [8]. This document investigates how to best exploit

modern hardware and methods for Chebyshev-filtered subspace iteration to create a high-

performance implementation.

In particular, the contributions we provide are as follows: First, we provide a dis-

tributed memory GPU-based implementation to leverage GPUs’ computational power and
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efficiency. Second, we investigate various eigensolvers available to determine which eigen-

solvers are helpful depending on the problem faced and the hardware available. Third, we

investigate the use of advanced matrix-matrix products to accelerate various kernels within

Chebyshev-filtered subspace iteration, allowing the scaling to large problems and hard-

ware systems. Finally, we compare the cumulative effects of the GPU, eigensolver, and

matrix-matrix products and demonstrate cases where they are most helpful.

7.1 Background

Theory and Modeling

Chebyshev-filtered subspace iteration for self-consistent-field calculations is primarily mo-

tivated by the ability to reduce the cost associated with solving the eigenproblem at the

center of self-consistent-field calculations [86].

From [90], we have the Kohn-Sham equations, which provide a one electron approxi-

mation of the Schrödinger with the energy dependent on a functional of the charge density

[−∇
2

2
+ Vtotal(ρ(r), r)]Ψi(r) = EiΨi(r). (7.2)

These equations end up being nonlinear and using the notation for total potential from [86]

we have

Vtotal(ρ(r), r) = Vion(r) + VH(ρ(r), r) + VXC(ρ(r), r) (7.3)

which depends on the charge density from Eq. 7.2. As such, a self-consistent-field loop is

used, which terminates when the change in total potential is less than some tolerance, as

seen in Alg. 10.

Solving the eigenproblem in Step 2 of Alg. 10 ends up being the most computationally

expensive step for large problems. As such Chebyshev-filtered subspace iteration (seen in

Alg. 11) was developed by Zhou et al. to replace the eigensolve in all but the first iteration

[86]. Chebyshev-filtered subspace iteration begins with an eigenbasis corresponding to
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Algorithm 10 Algorithm 2.1 for Self-Consistent Iteration from [86].

1: Initial guess for ρ(r), get Vtotal(ρ(r), r).
2: Solve Eq. 7.2 for Ψi(r), i = 1, 2 . . .
3: Compute new charge density ρ = 2

∑nocc
i=1 |Ψi(r)|2.

4: Solve for new Hartree potential VH from ∇2VH(r) = −4πρ(r).
5: Update VXC and Vion; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + VXC(ρ, r) (often fol-

lowed by a potential-mixing step).
6: If ||Ṽtotal − Vtotal|| < tol, stop; Else, Vtotal ← Ṽtotal, goto 2.

the occupied states of the Hamiltonian, which is then iteratively improved via Chebyshev

filtering.

The size of the matrices involved in Chebyshev-filtered subspace iteration are often

highly non-square. In particular, the Φ matrix ends up being the largest matrix, with the

number of rows equal to the number of finite-difference points, Nfd, and the number of

columns equal to the number of states Nstates, where Nfd >> Nstates. This results in an

inefficient parallelization when using traditional distributed matrix-matrix products. Due to

this aspect ratio, different kernels will have different ideal distributions, as discussed next.

Algorithm 11 Algorithm 4.2 For SCF Loop with CheFSI from [86].

1: Initial guess for ρ(r), get Vtotal(ρ(r), r).
2: Solve Eq. 7.2 for Ψi(r), i = 1, 2 . . ..
3: Compute new charge density ρ = 2

∑nocc
i=1 |Ψi(r)|2.

4: Solve for new Hartree potential VH from ∇2VH(r) = −4πρ(r).
5: Update VXC and Vion; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + VXC(ρ, r) (often

followed by a potential-mixing step).
6: If ||Ṽtotal − Vtotal|| < tol, stop; Else, Vtotal ← Ṽtotal, call Alg. 12 to get s approximate

wave functions; goto 3.

We will focus on four kernels, the Hamiltonian, HΦ, the two sets of matrix-matrix

products (projection and subspace rotation), and the eigensolve. The HamiltonianH matrix

is of size Nfd × Nfd, but is applied as an operator, the eigensolve is of size Nstates ×

Nstates which results in the same sized V matrix, while the Φ matrix is Nfd ×Nstates. We

observe that for the Φ matrix, the different kernels have different preferred distributions.

In the case of the Hamiltonian operator, a band parallel (column) distribution can be used
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Algorithm 12 Algorithm 4.1 For Chebyshev-Filtered Subspace Method From [86].
1: Get the lower bound blow from previous Ritz values (use the largest one).
2: Compute the upper bound bup of the spectrum of the current discretized Hamiltonian
H .

3: Perform Chebyshev filtering on the previous basis Φ, where Φ contains the discretized
wave functions of Ψi(r), i = 1, . . . , s : Φ = Chebyshev-filter(Φ,m, blow, bup)
(Alg. 13).

4: Orthonormalize the basis Φ
5: Perform the Rayleigh-Ritz step:

(a) Compute Ĥ = ΦTHΦ.

(b) Compute the eigen-decomposition of Ĥ : ĤQ = QD where Q contains the
eigenvectors of Ĥ , D contains the non-increasingly ordered Ritz values of H .

(c) ’Rotate’ the basis: Φ := ΦQ.

Algorithm 13 Algorithm 4.3 For Chebyshev-Filter From [86].
1: Purpose: Filter vectors in X by a m degree Chebyshev polynomial that dampens the

interval [a, b], and output the filtered vectors in Y .
2: e = (b− a)/2; c = (b+ a)/2;
3: σ = e/(a− c);
4: σ1 = σ
5: Y = (HX − cX)σ1/e;
6: for i = 2 : m do
7: σ2 = 1/(2/σ1 − σ);
8: Ynew = 2(HY − cY )σ2/e− σσ2X;
9: X = Y ;

10: Y = Ynew;
11: σ = σ2;
12: end for
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effectively, as all columns can be computed independently. On the other hand, splitting

the finite difference domain (row decomposition) reduces communication for the matrix-

matrix product but requires communication when applying the Hamiltonian. Furthermore,

as mentioned earlier, the Φ matrix is of size Nfd × Nstates with Nfd >> Nstates. As

such, additional care needs to be taken to ensure that the data distributions strike a balance

for both computational load and communication during operations involving it. Notably,

traditional distributed matrix-matrix methods fail to maintain high efficiency in such cases.

In the following sections, we provide a background on the different components that we

focus on – the matrix-matrix products, the eigensolves, the Hamiltonian, and the use of

GPUs to accelerate these computations.

7.1.1 3D Matrix-Matrix Products

The first component which we will discuss is three-dimensional matrix-matrix products.

Three-dimensional matrix-matrix products show promise for achieving optimal communi-

cation and computation. Advanced methods such as SUMMA, 2.5D, 3D, CARMA, and

COSMA achieve lower I/O during the performance of matrix-matrix products, including

ones with significantly different row/column sizes, such as those seen in SCF calculations

[92, 93, 94, 95, 96, 97]. However, they tend to use custom data distributions, which intro-

duce an overhead, making them difficult to use in general-purpose linear algebra libraries.

In the case where we are already looking at specific distributions in this application, this

leads to the question: can we see the benefits of 3D matrix-matrix products when we can

control the data distributions?

Matrix-matrix products are a core computational kernel in linear algebra, computa-

tional science, and scientific computing (in addition to machine learning and many other

domains). As such, significant work has been performed to allow for rapid computations

of matrix-matrix products. In a serial CPU implementation (and others), one important

consideration is the use of blocking to make the best use of cache lines, and vector op-
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erations. Efficient implementations are available such as those seen in BLAS, MKL, and

ATLAS, which may take into consideration the micro-architecture the code is being run on,

available cache space, and many other optimizations. [98, 99, 100]

When matrix-matrix multiplications are performed in distributed memory, additional

considerations must be considered. In particular, one must balance computational ef-

ficiency (such that the amount of redundant calculations compared to the serial case is

bounded), communication efficiency, and memory efficiency (to allow matrix-matrix prod-

ucts to scale to many processors). Furthermore, in the case which is faced in the Chebyshev-

filtered subspace iteration framework, the matrices involved are very non-square, where

with the number of rows much greater than the number of columns. Thus, selecting a

matrix-matrix product that scales to very large number of nodes and can handle very non-

square matrices is paramount to achieving an efficient implementation. Naive 1D and 2D

partitionings fail to be both cost-optimal and memory optimal. Cannon’s algorithm is a 2D

algorithm that can achieve cost optimality and memory optimality at the expense of addi-

tional messages [101]. However, it does have drawbacks, namely requiring a square grid of

processors. A Scalable Universal Matrix Multiplication Algorithm (SUMMA) is another

2D algorithm based on broadcast-multiply-roll algorithm with reduced memory usage. It

has been integrated into the SCALAPACK distributed linear algebra package [97] [102].

3D matrix-matrix products were introduced to allow increased parallelism by utilizing ad-

ditional memory [92]. 2.5D Matrix-matrix products provide an interpolation between the

2D and 3D matrix-matrix products, which is optimal for the case of square matrices [96].

CARMA introduced a recursive partitioning that provides asymptotic optimality for all

matrices and processor grids. However, the number of processors must be a square grid

[93]. COSMA, in turn, provides a partitioning based on red-blue pebbling, which aims to

provide an optimal decomposition in all scenarios [95].

We will now provide a brief review of 3D matrix-matrix multiplications before review-

ing the CA3DMM method for matrix-matrix multiplications. The work involved in matrix-
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matrix products can be modeled as a 3D cuboid, where the faces correspond with the input

and output matrices C = AB. In turn, the cuboid can be partitioned into further cuboids

where the volume of the cuboid corresponds with the amount of computation being per-

formed, and the surface area corresponds with the amount of communication performed.

However, with 3D algorithms, there are (without loss of generalization) p1/3 copies for

each matrix, which increases the memory required to perform the matrix-matrix multipli-

cations. The upside is that with the data present on additional cores, communication is

reduced compared to traditional 2D algorithms. The 2.5D algorithm, developed in [96],

interpolates between these two methods, allowing for memory usage to be scaled to the

available memory usage. Thus, it can be communication optimal for all memory sizes.

As an alternative to grid-based multiplications, breadth-first and depth-first search re-

cursive algorithms have been developed, which approach the topology hierarchically. This

results in algorithms that do not require tuning and are cache-oblivious. CARMA is an

approach that provides an asymptotically optimal method which is also cache and net-

work oblivious. It proceeds by recursively splitting the current problem along the largest

dimension and solving the resulting subproblem with either a breadth-first or depth-first

approach, depending on memory availability. The downside of this algorithm is due to

its simple, greedy nature, where it splits along the largest dimension. This results in an

increase in communication volume (by a constant factor
√

3).

COSMA is a method that, rather than splitting the matrix and mapping them to a tree,

instead calculates an optimal sequential schedule and maps the schedule domain to the

matrices. This results in a method that is I/O optimal for all matrix sizes and processor

counts. The algorithm begins by using the red-blue pebble game to model data reuse, then

parallelizes the schedule and derives a domain decomposition.

CA3DMM is an algorithm that breaks the matrix-matrix multiplication into square sub-

problems, allowing Cannon’s algorithm to be used. It achieves this by determining a pro-

cessor grid based on decomposing the original problem via a multi-objective optimization
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problem, maximizing the number of processors used while minimizing the communication.

The subproblems are calculated using Cannon’s algorithm, which requires some duplica-

tion of the input data, followed by a reduction. From [103], the algorithm is described in

Alg. 14.

Algorithm 14 CA3DMM Algorithm from [103].
1: Generate the process grid pm × pn × pk + pr, and let pl := min(pm, pn), s ←
max(pm, pn)/pl. Processes P:,:,ik form a mn-plane group, processors Pim,in,: form a
k-column group

2: Redistribute A and B matrices from input layout to CA3DMM initial layout
3: If s > 1 split each mn-plane group in s Cannon groups with pl × pl processes in each

Cannon group, use allgather to duplicate A or B block between Cannon groups. If
s = 1, a mn-plane group is a Cannon group.

4: All pk × s Cannon groups perform 2D Cannon algorithm in parallel.
5: All pm×pn k-column groups reduce-scatter the partial C blocks to get the final C block
6: Redistribute C matrices to the specified layout

These advanced methods demonstrate significant wall time improvement on modern

supercomputer architectures compared to traditional methods such as SCALAPACK, es-

pecially in cases with very non-square matrices. The downside of these more advanced

methods is that they require custom specialized data structures and distributions, which are

unlikely to be compatible with pre-existing scientific computing codes which commonly

utilize the block-cyclic distribution used by SCALAPACK. Thus, they may not function

well as a drop-in replacement due to the increased communication time required for data

redistributions. The combination of the structure of calculations in Chebyshev-filtered sub-

space iteration being known ahead of time, and the matrices involved having large aspect

ratios, with many nodes used in the computation, make it a promising application to test

such advanced algorithms in comparison to the traditional block-cyclic structures.

7.1.2 Hamiltonian

The second component that we will discuss is the Hamiltonian. The application of the

Hamiltonian Hx for some vector x could be explicitly formed, then performed via sparse-
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matrix operations. However, when the structure is known ahead of time, it is often more

efficient (particularly on GPUs) to perform the matrix-matrix products as an operator –

never explicitly forming the matrix. In our case, we will consider the operation

(a∇2 + b diag(v) + cI)x (7.4)

where ∇ is the Laplacian, v is the effective potential, and the cI term is used for the

diagonal shift during the Chebyshev filtering for scalars a, b and b.

Laplacian

The computation associated with the discretized Laplacian, in a serial environment, can

be performed as a modified stencil update, as a finite difference discretization is used.

In particular, only the elements along each of the three axes are required. As such, we

can apply the stencil on the CPU quickly utilizing the simple algorithm seen in Alg. 15.

The source domain refers to the domain for which the current processor calculates the

results, while the extended domain refers to the domain extended by the halo exchange to

include all the points required for the local calculations. However, while the algorithm can

be parallelized pointwise trivially, this has a very low arithmetic intensity. Each element

requires reading from O(6r) points, with very poor spatial locality in two dimensions.

7.1.3 Eigensolver

The third component we will discuss is the eigensolver used within Chebyshev-filtered sub-

space iteration. As mentioned previously, while Chebyshev-filtered subspace iteration can

reduce the computation required for the eigensolve, the eigensolve within the Chebyshev-

filtered subspace iteration ends up being the most expensive operation for large problems.

Thus, it is imperative to fully exploit the available hardware to solve the eigenproblem.

There are several packages that provide eigensolves, which we will consider SCALA-
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Algorithm 15 Stencil application with y = (a∇2 + b diag(v) + cI)x0, where∇2 and c are
encoded in coefs. x is in the extended domain and v0, y in source domain.
INPUT: Source domain [x, y, z]spos to [x, y, z]epos, with extended domain

[x, y, z]sposex to [x, y, z]eposex

for k = zspos, kp = zsposex ; k < zepos; k ++ kp ++ do
for j = yspos, jp = ysposex ; j < yepos; j ++ jp ++ do

for i = xspos, ip = xsposex ; i < xepos; i ++ ip ++ do
res← 0
for r = 1 . . . r do

resx = (x0[kp][jp][ip+ r] + x0[kp][jp][ip− r]) ∗ coefsx[r]
resy = (x0[kp][jp+ r][ip] + x0[kp][jp− r][ip]) ∗ coefsy[r]
resz = (x0[kp+ r][jp][ip] + x0[kp− r][jp][ip]) ∗ coefsz[r]

end for
y[k][j][i]← res+ b(v0[k][j][i] ∗ x0[kp][jp][ip])

end for
end for

end for

PACK, cuSOLVER, and ELPA due to their production-ready and efficient codes [104, 105,

106, 107].

SCALAPACK is the de-facto library for distributed memory linear algebra [105]. It

supports a variety of operations, including eigensolves via multiple algorithms. In particu-

lar, we will look at the expert driver, which uses bisection once the matrix has been tridi-

agonalized. ELPA provides a distributed eigensolver and provides a two-stage tridiagonal-

ization approach [107, 104]. This two-stage approach attempts to increase the number of

Level-3 operations, reducing the bottleneck created by the memory-intensive single-stage

tridiagonalization. Furthermore, a GPU implementation is provided for ELPA. Finally,

cuSOLVER is the eigensolver provided by NVIDIA for their GPUs [106]. cuSOLVER

provides a Jacobi-based eigensolver and a divide-and-conquer-based eigensolver for a sin-

gle GPU. Despite this single GPU limitation, we find that cuSOLVER performs very well

for problems of up to around 20,000 states compared with distributed CPU codes.
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7.1.4 GPU

The final component we will discuss is using GPUs to accelerate the computationally ex-

pensive kernels. From Alg. 12, we see that the kernels used in Chebyshev-filtered subspace

iteration can be formulated as either dense or structured linear algebra computations. As

such, the use of accelerators such as Graphics Processing Units is promising.

Graphics Processing Units (GPUs) have become a common addition to many High-

Performance Computing (HPC) clusters due to their ability to provide very efficient compu-

tations for computationally intensive tasks, with General Purpose GPUs considered as pow-

erful Single Instruction Multiple Threads (SIMT) accelerators. The computational strength

of GPUs results from the many (on the order of thousands) of threads available. This makes

GPUs particularly well suited for dense or structured linear algebra kernels. The GPUs seen

in HPC systems typically have a high-bandwidth memory separate from that used by the

CPU. However, due to this separate memory pool, there exists a significant cost associated

with transferring data from the CPU main memory to the GPU memory and vice versa. As

such, to design particularly practical implementations, care must be taken in selecting what

data is transferred and when. When such care is taken, great performance uplift can be seen

– for example, the NVIDIA V100 GPU can achieve 7000 double-precision GFLOPS. In

comparison the Intel Xeon 6226 Gold CPU can achieve a theoretical 1037 GFLOPS [108]

1.

The use of accelerators such as GPUs provides the potential for significant speedup

compared to CPU-only codes due to their raw power. For example, over 96% of Sierra’s

125 petaflops of peak performance comes from GPUs [110]. However, many high-level

considerations must be taken when writing GPU codes compared to CPU codes. First,

the cost of allocating memory is significantly higher on GPUs compared to CPU memory

allocations. As such, one typically will want to limit the amount of dynamic memory allo-

cation done. Second, data transfers between CPU and GPU memory tend to be expensive

132 Double-precision operations per cycle (2 AVX-512 Units) * 12 Cores * 2.4Gcycles/second [109]
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and have high latency. Thus, it tends to be preferred to limit the number of transfers, do-

ing as much computation as possible on the GPU before returning data to the CPU. Third,

because of the architecture of GPUs, they perform best when threads are performing the

same operations, and memory access is coalesced. Finally, GPUs have significantly more

threads than CPUs, so care must be taken in selecting algorithms that allow for parallelism

and high levels of thread occupancy. We have designed our computation engine with these

and other considerations in mind to allow for a performance increase.

We have created an implementation of Chebyshev-filtered subspace iteration, which

uses the components discussed, including advanced matrix-matrix products and distributed

GPU-based calculations, to achieve high performance. We first created a distributed mem-

ory CPU code to investigate how best to create a holistic implementation of Chebyshev-

filtered subspace iteration. Our implementation uses a band + domain distribution for the Φ

matrix (the largest dense matrix used in calculations), allowing for large-scale parallelism.

This code uses the CA3DMM 3D matrix-matrix product library [103] for distributed mem-

ory matrix-matrix products. Furthermore, it includes support for distributed nodes with

GPUs, which aims to reduce the number of transfers of Φ size matrices between the CPU

and GPU. We can use this implementation to observe the relative timings of the different

kernels and measure changes with different eigensolvers and observe the scaling with prob-

lem sizes and the number of ranks and nodes. This platform allows us to investigate the use

of CA3DMM or other 3D matrix-matrix products in SCF iterations.

7.2 Implementation

In this section, we discuss the implementation of libPCE, which is then used to provide the

results in the next section. This section begins by discussing considerations for the GPU

implementation and the kernels involved and going into detail on the Hamiltonian and

GPU Laplacian implementation. Next, an investigation into the eigensolvers is performed

to understand when each eigensolver may be preferred.
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7.2.1 GPU

We begin with a discussion of practical considerations for GPU acceleration. As men-

tioned previously, the package developed provides computational routines which can be

used in SCF-based chemistry codes, including SPARC [8]. When using SPARC for quan-

tum molecular dynamics (MD), each MD step performs an SCF loop to determine the

energies and properties involved. The GPU implementation has been designed such that

the Φ matrix, which is the largest matrix involved in computations, is only transferred to

and from the GPU at the beginning and end of the SCF loop – a single time per MD step.

Future implementations may be able to transfer only at the initial step, updating the data

in place on the GPU during force and related computations. We will consider four ker-

nels that use the Φ matrix for the computations as follows: The matrix-matrix products

(including subspace rotation and projection), the Laplacian operator, the nonlocal operator,

and the eigensolve. Two GPU implementations have been developed for CA3DMM, one of

which is prioritized when GPU memory usage is preferred, and the other when reducing the

wall time is prioritized. In the first case, the implementation simply uses cuBLAS rather

than BLAS to provide local matrix-matrix products. In the latter case, a multiple buffer

approach is used, allowing the communication and computation to be overlapped. Even

the memory-efficient approach results in a single-node performance increase from around

1.3 double-precision TFLOPS to 5.1 double-precision TFLOPS for multiplication of two

matrices of size 10,000. This experiment was performed with two Intel Xeon 6226 Gold

CPUs per node and NVIDIA V100 GPUs. In a preliminary test, we found a 1.4x speedup

on a single node compared to the reference CPU implementation (SPARC).

For small problems (with an eigensolve of no more than a few thousand by a few thou-

sand), the most expensive operation is observed to be the Chebyshev filtering. The primary

kernel associated with the Chebyshev filtering is applying the Hamiltonian operator many

times. This Hamiltonian is further decomposed into two parts, the nonlocal operator and

the Laplacian operator. The Laplacian operator consists of a stencil that is applied to each
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point in the finite-difference domain. As the stencil has a radius, in the distributed case,

when the data is distributed by domain, data from neighboring processors is required for a

local processor to compute its edge elements. Due to its shape, the set of points from the

neighboring processors is known as the halo, and the exchange of such data is called the

halo exchange. To perform the Laplacian operator, first, a data redistribution corresponding

with the halo exchange is performed, followed by a stencil application. The halo exchange

on GPUs is parallelized using GPU streams, which allows for the packing and unpacking of

data to be performed in parallel at the coarse-grain level of each neighbor and the fine-grain

level of individual finite-difference points. When compared to the CPU implementation,

where it was found that overlapping the computation of the local part with communication

of the halo domain, we found that the GPU implementation performed better where the

entire communication was performed first, followed by the computation of the whole do-

main. This is likely due to the overhead associated with applying the stencil to many small

domains.

The stencil calculation needs to be handled with care due to its relatively low arithmetic

intensity. For a stencil with radius r, O(6r) doubles must be read, where the spatial local-

ity of the data is poor. [111] presents a 3D finite-difference code on GPUs which utilizes

shared memory and can allow the reuse of elements once read. However, it is insufficient

for our requirements – it does not consider the halo domain, does not allow the use of dif-

ferent coefficients for each dimension and does not parallelize over the columns. Thus, we

have developed an efficient Laplacian application that can apply the stencil and the other

functions required for the Laplacian and Chebyshev filtering. In this section, we develop

an efficient Laplacian application based on the 3D finite differences code mentioned above.

The two main ideas in this implementation are to maximize the thread occupancy of the op-

eration, achieving enough parallelism to saturate the threads of the GPU while minimizing

the amount of reading from global data (due to the cost associated with such reads).

This is achieved by using the shared memory available on GPUs, which allows for
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threads in the same thread block to access memory that is shared between the threads,

but with much faster access than global memory. In particular, we can exploit this by

having a thread wavefront move over the domain, where each thread will store the data

corresponding with its active element into shared memory, amortizing the reads. By this,

we mean that all active threads will be considering a plane in space, which advances at

each step. Thus, the nearby 4r threads will be able to read from shared memory, rather than

from global memory, for that data.

In practice, as on CPU, when performing y ← (a∇2 + b diag(v) + c)x, the x vector is

in the halo-exchange extended domain, while v and y are in the source domain, with a, b, c

being scalars. Furthermore, we apply this to the many columns of Φ at once, independently

and in parallel (as will be discussed). To achieve high occupancy, we want to have many

threads active (up to the limit of one thread per input element), while drawing from shared

memory as much as possible. Thus, to accommodate for the limited shared memory, we

parallelize over 2D slices (planes) in space, where we store the actively considered elements

in shared memory.

Pseudocode for a single thread can be seen in Alg. 16. Observe how the thread front

progresses over the z dimension, reading from the global memory, storing it into shared

memory, calculating the resulting value, then storing it back into global memory. However,

while this expands upon [112] by having a different coefficient per direction, as well as

handling b and v, this pseudocode does not include the changes required for a distributed

memory code, where elements that need to be calculated require halo elements which them-

selves do not need to be calculated. We can further add parallelism over the reference im-

plementation (SPARC), by utilizing the 3D CUDA grid, by assigning the third dimension

to the columns of Φ, which allows for all columns of Φ to be calculated in parallel, further

increasing the occupancy and thus performance.
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Algorithm 16 GPU Pseudocode, see Alg. 15 for more details
for each z from zspos to zepos do

Read current element from global memory xex
Store current into shared memory
res← coef [0] ∗ current
for r = 1; r <= radius; r + + do

res+ = the elements at distance r away (scaled by the relevant coefficient), from
shared memory in the x and y directions, but from global memory for z direction

end for
val← res+ b(v0[idx] ∗ current)
y[idx]← val

end for
.

7.2.2 Eigensolver

As previously mentioned, we consider a few eigensolver packages: SCALAPACK, cu-

SOLVER, and ELPA. Each of these eigensolvers targets different regimes, and to effec-

tively utilize them, it is imperative to understand in which cases they work well and which

they do not. in this section, we investigate the impact of problem size and the number of

nodes for various problems to investigate the tradeoffs between the eigensolvers.

In Fig. 7.1, we compare these eigensolvers for varying problem sizes and demonstrate

the CA3DMM matrix-matrix product of the same size. The matrices tested are random

symmetric positive definite matrices of the appropriate size. We can see that for problem

sizes under 20k states, the most rapid eigensolve is cuSOLVER, for which the data starts

and ends on the same GPU. In the case of the ELPA GPU solver, until the eigensolve

gets to around 40k states, the overhead associated with the GPU computations makes it

less preferable than the ELPA CPU solver. Notably, the ELPA GPU solver is only GPU

accelerated – some computation is done on the CPU, and ELPA expects the data to start

on the CPU. Thus, it requires an additional data transfer in the libPCE case where the data

would otherwise be on the GPU already. We see in Fig. 7.1b that the CA3DMM matrix-

matrix product has near-perfect weak scaling, while the ELPA eigensolves achieve fairly

good scaling, with the CPU scaling better than the GPU. The SCALAPACK eigensolver
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Fig. 7.1: The scaling of different methods for different size problems.

has the worst scaling.

In Fig. 7.2, we see the scaling of the various methods when holding the problem size

constant. In the 10k case, the cuSOLVER is the fastest, even compared to the second-

fastest method with the optimal number of nodes. However, cuSOLVER on the tested GPU

runs out of memory around a problem of size 20k. For the 40k problem, the problem size

per GPU is large enough that ELPA GPU can outperform the CPU version. These results

demonstrate that the tested eigensolvers do not sufficiently scale to many nodes. We see in

Fig. 7.1b that the matrix-matrix product provided by CA3DMM can scale to many nodes

well.

7.3 Single Node Results

We present single node results in Fig. 7.3 which compare libPCE against the reference

implementation (SPARC). The problem considered is Al500, which has 900 states, corre-

sponding with an eigensolve of size 900 × 900 and a finite difference domain of size 503.

We see that the most expensive operation, the Chebyshev filtering, is reduced from 23.38

seconds to 12.56 seconds for this problem. In a larger problem, the eigensolve would take a

larger portion of time, which results in the need for an efficient eigensolve, as investigated
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Fig. 7.2: The scaling of different methods for a various number of nodes.

in the previous section.

7.4 Block-Cyclic Implementation

To understand how 3D matrix-matrix products compare to the traditional block-cyclic dis-

tribution, a block-cyclic implementation was created. This section describes the design,

design decisions, and benefits and drawbacks of the block-cyclic implementation.

The Φ matrix for the Chebyshev filtering is stored in a band+domain “hybrid” decom-

position. As such, a redistribution must be performed to be used in a block-cyclic case.

While a curious overview of the hybrid distribution may appear as though it is a block (but

not cyclic) distribution, as each block is a contiguous part of the matrix, it is incompatible

with the block-cyclic distribution as the row sizes of each block correspond with the do-

main, and thus may not be the same for each block. Combined with the requirements of

SCALAPACK to perform calculations, where the same processor “context” must be used

for each matrix in matrix-matrix products (pdgemms), several different matrix layouts are

involved.

First, a pure block-cyclic distribution of Φ is desired, which allows for rapid evaluation

of, for example, ΦTΦ,ΦTHΦ and ΦV . This block-cyclic distribution uses the same proces-

sor grid as the hybrid decomposition but ensures that all blocks are the same size and uses a
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Fig. 7.3: A comparison of the GPU implementation of the Parallel Computation Engine
against the reference implementation.

default block size of the minimum of 64, or d Nfd
NProcs

e in each direction. This processor grid

will be called the Φ-grid. The results of ΦTΦ and ΦTHΦ are both square matrices, which

will be used in the eigensolve, indicating that we would want a block-cyclic square grid

distribution. Thus, we select the largest processor square grid of the available processors,

which we will refer to as the square-grid. Similar to the previous block-cyclic distribution,

the block size is selected as the minimum of 64 and d Ncols
Nprocs

e for the process grid.

To transfer from Φhybrid, the hybrid distribution of Φ, to ΦΦ currently requires two steps.

One to transfer Φhybrid to a block (not cyclic) distribution, which will then allow the use of

SCALAPACK’s pdgemr2d to redistribute to a block-cyclic distribution ΦΦ.

Unfortunately, due to the constraints required by SCALAPACK, performing M ←

ΦTΦ and H ← ΦT (HΦ), has Φ on the Φ-grid, while we would want M,H to be on the

square-grid. Thus, we must create temporary distributions M,H , which are square ma-

trices but on the Φ-grid of processors. Thus, we perform MΦ ← ΦTΦ, before transferring

MΦ to the square grid, and similar for HΦ ← ΦT Ĥ . Note that we can reuse the memory

for MΦ and HΦ as they have the same distribution.

Once M,H are both distributed cyclically (on square-grids), SCALAPACK’s dis-
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tributed eigensolve psdygvx can be used, with the resulting eigenvectors V distributed

in the same fashion of M and H , on the square-grid. However, once again, we must again

have a redistribution to perform ΦΦ ← ΦΦV , as V is distributed as Vsquare. Thus, we trans-

fer V to the Φ-grid, VΦ, allowing us to perform ΦΦ ← ΦΦVΦ. We then transfer Φ back to

the hybrid grid for future iterations.

GPU

When GPU support is requested for libPCE with block-cyclic matrix-matrix products, the

Φ matrix in the hybrid distribution is stored in GPU memory to allow for the rapid eval-

uation of the Chebyshev filtering. However, in the block-cyclic implementation, where

SCALAPACK is used for the matrix-matrix products, we must ensure that the data is on

the CPU for the matrix-matrix products. Due to the effectiveness of the cuSOLVER eigen-

solver, which solves on a single GPU but is very performant, we must ensure that the data

is on the memory of a single GPU for the eigensolve portion.

Fortunately, the modifications required to (1) allow the use of SCALAPACK when the

data is initially on the GPU and (2) to allow the use of cuSOLVER for rapid eigensolves

are simple. First, we can transfer the Φhybrid data from the GPU to the CPU initially and

in parallel without any communication. Once the data is on the CPU, the SCALAPACK

matrix-matrix products proceed similarly to the CPU-only regime. The only difference

arises from the need to have all the data on a single rank for the eigensolve. Fortunately,

we can achieve this again without any additional redistributions compared to the CPU-only

case. Rather than redistribute V from the Φ-grid to square-grid, we instead redistributed

to a root-grid, where only a single node has data. As the square-grid is only used for the

eigensolve, this is a simple drop-in replacement. As in the CPU case, after the eigensolve,

we will redistribute V from the root-grid to the Φ-grid. Finally, once Φ ← ΦV has been

performed, the Φ matrix must be returned to the CPU.

The largest drawback of this method is that, as the number of GPUs on a system tends
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Fig. 7.4: A comparison of using block-cyclic matrix-matrix products and CA3DMM
matrix-matrix products.

to be significantly less than the number of CPUs, and the matrix-matrix products are per-

formed using SCALAPACK (CPU only), the matrix-matrix products take a considerable

amount of time. A simple way to alleviate this would be to provide a distributed memory

GPU matrix-matrix product that uses the block-cyclic structure.

We display results comparing libPCE with the different matrix-matrix products and

eigensolve backends in Fig. 7.4. The first run uses CA3DMM on the CPU with 24

ranks and uses ELPA for the eigensolve, titled “CA3DMM ELPA CPU”. The second is

CA3DMM on the GPU with two ranks (and 1 GPU per rank) using cuSOLVER on a single

GPU for the eigensolve, titled “CA3DM cuSOLVER GPU”. Next are the cyclic methods.

The first is entirely on the CPU using block-cyclic SCALAPACK matrix-matrix products,

using SCALAPACK as the eigensolver, titled “Cyclic CPU”. The final is using block-cyclic

SCALAPACK matrix-matrix products on the CPU, using cuSOLVER on the GPU for the
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eigensolve, title “Cyclic GPU”. Note that this results in few CPU threads being used in the

matrix-matrix products.

As expected, the time taken for the eigensolve in the cyclic and CA3DMM methods

remains close to the same, as they are both using cuSOLVER as the eigensolver. The cyclic

GPU subspace rotation takes more time than the cyclic CPU and CA3DMM cases due to

the need to redistribute the data back to hybrid form and transfer the resulting data to the

GPU. We observe that the Cyclic GPU matrix-matrix products (projection and subspace

rotation) take a significant amount of time. This is as the matrix-matrix products are being

performed on the CPU, of which there are only two ranks. The Chebyshev filtering times

between cyclic and CA3DMM remain the same, as there are no differences between them.

7.5 Multi-Node Multi-GPU Numerical Experiments

In this section, we utilize the methods built up in the previous sections to perform large-

scale experiments to demonstrate the effectiveness of a multi-node multi-GPU distributed

Chebyshev-filtered subspace iteration implementation on GPUs. The experiments are per-

formed on a system with 256 aluminum atoms, with an electronic temperature of 100,000k

and ionic temperature of 100,000k, and unless noted otherwise, a cell size of 30.605 with

a mesh spacing of 0.75 (a 413 finite difference domain) and 10,000 states. Unless noted

otherwise, there are 2 GPUs per node, 24 CPU processes per node, with 13 nodes – leading

to an eigensolve grid of size 52 in the GPU case or 172 in the CPU case. These were per-

formed on the Phoenix cluster at Georgia Institute of Technology, with 2 NVIDIA V100s

per node and 2 Intel Xeon 6226 Gold processors per node. The numerical experiments

performed include scaling the number of finite-difference points and scaling the number

of states. Multiple methods are compared, including using ELPA, SCALAPACK, and cu-

SOLVER to perform the eigensolve, using SCALAPACK and CA3DMM for the matrix-

matrix products, and using the CPU or GPU implementation. In the case of SCALAPACK

matrix-matrix products, a block-cyclic distribution is used.
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Fig. 7.5: A comparison of SCALAPACK-based and CA3DMM-based methods, varying
the number of finite-difference points.

7.5.1 Scaling the Finite-Difference Domain

In the set of experiments shown in Fig. 7.5, we scale the number of finite-difference points.

A breakdown of the experiments split by the kernel can be seen in Fig. 7.6. When con-

sidering the Φ matrix, increasing the number of finite-difference points (Nfd) results in

changing the number of rows, increasing the so-called aspect ratio of the matrix. The num-

ber of finite-difference points ranges from 383(54872) with the most coarse mesh spacing

of 0.8 to 773(456533) in the finest mesh spacing of 0.4. We observe in Fig. 7.6c that

the CA3DMM matrix-matrix products on the CPU perform significantly better than the

SCALAPACK-based products on the CPU. We observe that in Fig. 7.6a for the most fine

case, CA3DMM with cuSOLVER performs the best, corresponding with the largest aspect

ratio. As the grid becomes coarser, the benefits seen by the GPU and CA3DMM become

less prominent, as the overhead associated with CPU computation increases relative to the
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(b) The time taken for Chebyshev filtering.
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(c) The times taken for projection and subspace
rotation.
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(d) The times taken for the eigensolve.

Fig. 7.6: The computation time associated with different kernels for different finite-
difference grids.
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Fig. 7.7: A comparison of SCALAPACK-based and CA3DMM-based methods, varying
the number of finite-difference points.

problem size, and the aspect ratio becomes closer to one.

7.5.2 Scaling the Number of States

In the set of experiments shown in Fig. 7.7, we scale the number of states, which scales the

number of columns of the Φ matrix. A breakdown of the experiments split by the kernel

can be seen in Fig. 7.8. When considering the Φ matrix, increasing the number of states

results in changing the number of columns, decreasing the so-called aspect ratio of the

matrix. Notably, this increases the size of the eigensolve.

We observe in Fig. 7.8b that the choice of eigensolve does not significantly impact the

Chebyshev filtering time and that the GPU methods outperform the CPU methods for all

tested cases. We observe in Fig. 7.8c that on the CPU, CA3DMM outperformed SCALA-

PACK even with the aspect ratio closest to one. Furthermore, we observe that for the

larger aspect ratios, the GPU outperforms the CPU. However, when the number of states
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(b) The time taken for Chebyshev filtering.
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(c) The time taken for the projection and sub-
space rotation.

2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

PCE (CPU, CA3DMM, ELPA) PCE (CPU, SCALAPACK, ELPA) PCE (GPU, CA3DMM, cuSOLVER) PCE (GPU, CA3DMM, ELPA)

103 104

Nstates

100

101

Se
co

nd
s

(d) The time taken for the eigensolve.

Fig. 7.8: The computation time associated with different kernels for different number of
states.
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increases, we do see that CA3DMM on the CPU outperforms the GPU. In Fig. 7.8d we

observe that the most rapid eigensolver is cuSOLVER on the GPU, and except for the

largest problems that ELPA on the CPU outperforms ELPA on the GPU. This aligns with

the eigensolver tests shown in the previous section. Cumulatively, we can see in Fig. 7.8a

that across the entire range, the most rapid total time is demonstrated by libPCE on the

GPU using CA3DMM and cuSOLVER.

7.6 Conclusions

These results and the discussed considerations show cases where advanced matrix-matrix

products and GPUs can outperform their traditional counterparts, despite the overhead they

require. In the case of advanced matrix-matrix products, as the matrices being consid-

ered become more and more non-square, CA3DMM’s improvements over SCALAPACK

increase. Furthermore, across all tested problems, we see that the GPU implementation

of the Chebyshev filtering can outperform the CPU implementation. The benefit of the

GPU for matrix-matrix products and eigensolves varies based on the problem. Still, we

observe that the total time taken for the GPU codes is better than the CPU-based codes

in nearly all cases, and in the cases tested where this is not the case, the timings are very

close. From this, it is clear that there are benefits to using advanced matrix-matrix products

and GPUs to accelerate such Chebyshev-filtered-subspace-iteration-based DFT codes with

a few hundred processes and a few dozen GPUs.

7.7 Future Work

The results presented above demonstrate that there is promise in using alternative distri-

butions, matrix-matrix products, and eigensolves to reduce the overall wall time seen dur-

ing Chebyshev-filtered subspace iteration. Each of these can be investigated to varying

degrees. Due to the costs associated with the data redistributions required for each com-

putational kernel and the tradeoffs between the distributions, further investigation should
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be performed to determine what combination of distributions may be optimal. As part of

this, a more thorough comparison of 3D matrix-matrix-based methods against traditional

methods in this context should be performed. Furthermore, when considering GPUs, a

significant portion of the costs seen are associated with the transfer of data from the CPU

to the GPU and vice versa. Thus, an implementation that does not require the transfer of

a Φ sized matrix would be able to reduce such communication costs. Finally, as we see

that the current distributed eigensolvers do not scale to many nodes for the problem sizes

considered, it may be promising to develop an alternative eigensolver.

As mentioned previously, there exists a tradeoff between the band (column) and domain

(row) distributions, in which the band + domain distribution provides a balance between the

two. However, determining the optimal number of processors and the topology to be used

is a difficult task. Furthermore, the internal distribution used by the matrix-matrix products

may also play a role in the overall wall time. Currently, the CA3DMM package only sup-

ports a 2D block-based matrix distribution compared to the commonly used block-cyclic

distribution. It may be possible to select a common distribution for both the eigensolve and

matrix products, reducing the number of redistributions.

Currently, there are many limitations with the GPU-based eigensolvers. The ELPA

GPU eigensolver is only GPU accelerated and, as such, still has certain kernels performed

on the CPU. This results in the ELPA code assuming that the data starts on the CPU, which,

if the rest of the SCF kernel is performed on the GPU, requires a data transfer. On the other

hand, the cuSOLVER eigensolver only works for a single GPU, which with the V100s hit

memory limits around a problem size of 20k states. An additional option, cuSOLVERMG,

allows multiple GPUs to be used but is still limited to a single node. Thus, there exists

space to investigate an alternate eigensolver approach. In particular, between 20k and 100k

points, the problem is too large to be solved efficiently on a single GPU but too small to be

solved efficiently with the large distributed ELPA GPU code.

Finally, it may be that the ideal eigensolve process distribution may use fewer proces-
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sors than available. An investigation may be done into a hybrid MPI+OpenMP paralleliza-

tion scheme to allow multiple threads to work together in shared memory while taking

advantage of the scaling achieved through distributed memory. Alternatively, it may be

found that using all processes makes the problem size too small per process and reduces

performance. For example, in Fig. 7.2 it is seen that the wall time increases when eight

nodes are used compared to six nodes. Thus, using only a subset of processors or nodes

may be found to increase wall time.

From this, we can see that there are many avenues that should be investigated to provide

improved performance for the Chebyshev-filtered subspace iteration. This, in turn, would

reduce the time associated with the self-consistent-field iteration, speeding up programs

used for quantum chemistry and molecular dynamics.
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Part III

Algebraic Multigrid Sparse Triple

Matrix Products on GPU
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CHAPTER 8

ALGEBRAIC MULTIGRID SPARSE TRIPLE MATRIX PRODUCTS ON GPU

8.1 Introduction

The iterative solvers discussed thus far in this dissertation have primarily been Krylov-

Subspace-based methods, where the subspace of powers of A applied to an initial vector

is continually expanded until it contains a satisfactory approximate solution x to Ax = b.

These methods can be very general, not relying on the underlying source of data (so long

as the assumptions of a given method are met). There exists another group of methods,

algebraic multigrid (AMG) methods, based upon the multigrid method (MG), which aim

to provide O(n) solves to systems with n unknown by using multiple levels of refinement

[113, 114]. Within AMG, a coarse-grid refinement is used to transfer the error between the

levels of refinement, which is often performed as RAP .

This product can be performed as R(AP ) or (RA)P . However, this requires two sep-

arate matrix-multiplications, in addition to the allocation and usage of a temporary matrix.

The matrices used in AMG tend to be very sparse, and sparse calculations require additional

considerations to take full advantage of the computational ability offered by GPUs. In

[115, 116, 117], methods are developed for performing sparse-matrix-matrix (SpGEMM)

products on the CPU. On GPUs, sparse accumulators are used, as dense accumulators are

infeasible due to the number of threads writing to the same accumulators. Work on such

SpGEMMs has been done on GPUs [118, 119, 120]. Within this section, we develop and

present an algorithm for efficiently performing the sparse triple-matrix product on GPUs,

which in some instances can outperform the naive method of two independent matrix prod-

ucts.
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8.2 Background

GPUs have recently gained popularity due to their efficiency in handling parallel kernels

with high arithmetic intensity. This has led them to become accelerators for applications

such as dense linear algebra, particularly in machine learning and deep neural networks. As

the ecosystem has become more mature, libraries for sparse arithmetic have become avail-

able, including cuSPARSE by NVIDIA for their GPUs [121] and rocSPARSE by AMD for

their GPUs [122]. However, as the space is still developing, the kernels still have much

room to be optimized. In particular, we will be looking at sparse matrix-matrix and sparse

matrix-matrix-matrix products.

While sparse calculations can take advantage of the sparsity of a matrix, with data

structures commonly used by scientific codes, it has increased overhead compared to dense

multiplications. With the Compressed Sparse Row (CSR) format, each row is stored in a

compressed form where the nonzero values are stored consecutively. This allows row oper-

ations such as scaling to be performed rapidly without much overhead. However, adding or

removing elements from a row may require shifting many elements. In the case of matrix-

matrix products, the resulting matrix may have an irregular structure, making it difficult to

perform efficient matrix-matrix products. Notably, because the cost of freeing and allocat-

ing memory on the GPU is much larger than on CPUs, efficient algorithms on GPUs should

avoid reallocating memory – making common algorithms used for CPUs infeasible.

Instead, one method for GPUs is to calculate the number of nonzeros per row first, then

perform the numeric product. One method for performing this is first to perform a naive

row bound calculation, then use these bounds in Cohen’s stochastic estimator [123], then

perform a symbolic multiplication, and finally a numeric multiplication. The symbolic

multiplication determines the sparsity structure of the output matrix, while the numeric

multiplication determines the corresponding values. While this requires more steps than

direct multiplication, these calculations are very parallel and can be performed efficiently
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on GPUs.

A naive lower bound on the number of nonzeros in the row i of C = AB can be

found by taking the maximum number of nonzeros in the rows of B corresponding with

the nonzero columns of the ith row of A. Similarly, an upper bound can be found by taking

the sum of the number of nonzeros.

These bounds can be used in the Stochastic estimator developed in [123] to provide a

more accurate estimate of the number of nonzeros per row. This approach treats the matrix

product as a network of layered bipartite graphs, where the output provides an estimate of

the number of nonzeros in each row.

Once this more refined estimate is obtained, hash tables can be used to perform a sym-

bolic multiplication yielding the exact number of nonzeros per row. A numeric multiplica-

tion can then be performed to yield the desired matrix.

8.3 Triple Matrix Product

During AMG setup, Galerkin Products are typically used to compute the coarse-grid op-

erators. This RAP calculation can be computed via two typical matrix-matrix products,

as either (RA)P or R(AP ). However, this requires at least two different passes over the

data and includes storing a temporary matrix for the initial matrix-matrix product. As such,

computing this computation in a single pass may reduce the computation time and peak

memory usage.

Similar to the algorithm used for the matrix-matrix products described previously, the

method used is to (optionally) compute upper and lower bounds of the number of nonzeros

per row, compute an estimate of the number of nonzeros per row using Cohen’s row count

estimator, perform symbolic multiplication, and finally perform the numeric multiplication.

We will begin with a description of the bounds calculations.
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8.3.1 Bounds

The naive bounds calculation is performed similarly to the bounds calculation used for the

dual matrix product. In the case of triple-matrix vector product, where D = ABC with

A ∈ Rm×k, B ∈ Rk×l, C ∈ Rl×n and D ∈ Rm×n. The corresponding bound for row i of D

can be calculated as the sum or max of the rows of BC corresponding to the nonzeros in

row i, as seen in Alg. 17.

Algorithm 17 Provide a naive bound for a triple matrix product
1: ROWNNZ-NAIVE-ROW-TRIPLE(A, B,C,BoundType)
2: rcA← 0̂
3: for Row i of A do
4: rcBC ← 0̂
5: for Col j of in Ai do
6: nnzJ ← nnz(B,C, j, BoundType)
7: rcBCi ← reduce(nnzJ, rcBCi, BoundType)
8: rcAi ← reduce(rcBCi, rcAi, BoundType)
9: end for

10: end for
11: warpReduce(rcAi, BoundType)

Note that, as written, there is a significant amount of redundant calculation of the row

estimates of BC (up to a duplicate of the average number of nonzeros per row of A).

However, the redundant calculations can be removed by first calculating the row bounds

for each row of BC, effectively memoizing the calculation.

8.3.2 Row Estimate

To obtain the estimated number of nonzeros for each row, Cohen’s algorithm is used, using

an additional layer corresponding with the additional matrix in the multiplication. This is

a four-layer graph is used, with m, k, l, n nodes for each layer, respectively. The last layer

is assigned r random variables from the exponential distribution for each node. Each node

computes the element-wise minima of the vectors by the neighboring nodes in the next layer

for the third, second, and first layers. The estimator of [123] is applied to the first layer to
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achieve the row estimates. The estimate for each row can be performed independently, with

each layer being considered in sequence.

8.3.3 Symbolic Multiplication

The third step of the SpGEMMM kernel is to perform a symbolic multiplication using

hash tables. This occurs by traversing all three matrices, as seen in Eq. 17. The HASH-

SEARCH-INSERT(k, v, count) operation attempts to insert into the hash table at key k

value v, increases count by one if it is a new entry, and returns−1 otherwise. Thus, we can

track how many nonzeros occur in each row by tracking how many repeated inserts are to

the same position. The actual value does not matter in symbolic multiplication, so we use

NULL.

Algorithm 18 Perform symbolic triple matrix product
1: ROWNNZ-SYMBOLIC-TRIPLE(A, B,C,BoundType)
2: for Row i of A do
3: nnzi ← 0
4: for Col j of in Ai do
5: for Col k in Bj do
6: for Col j in Ck do
7: pos←HASH-SEARCH-INSERT(j, NULL,nnzi)
8: if −1 == pos then
9: nnzi ← nnzi + 1

10: failed← 1
11: end if
12: end for
13: end for
14: end for
15: end for
16: return NumNewInserts

8.3.4 Numeric Multiplication

The numeric multiplication is performed similarly to the symbolic multiplication. How-

ever, the value we insert is now important - it must be the numeric value from the mul-

tiplication. As such, in addition to using the column in each matrix, the corresponding
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value has to be tracked as well to perform the multiplication. Thus, in the call in line 7, the

NULL is replaced by adding the product of the three values - one for each of A,B,C - to

the current value in the hash table.

8.4 Numerical Results

Fig. 8.1, we present the performance of using the triple matrix kernel (SpGEMMM) for

computing RAP . This test was done on a cluster with NVIDIA P100 GPUs. We observe

that SpGEMMM performs better than using two SpGEMMs for the 5pt- and 7pt- stencils,

equally well for the 9pt- stencil, and worse in the 27pt- stencil. Thus, it appears that the

primary concern in the performance of RAP is the density of the matrix. A more sparse 2D

kernel can see a more significant speedup than the more dense 3D kernels.
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Fig. 8.1: Computing RAP with the triple matrix product, compared with the matrix-matrix
product R(AP).

From these results, we can see that a triple-matrix product on GPUs can be performed

for certain stencils more efficiently than two successive matrix-matrix products. This is

promising in AMG, as it can accelerate the speedup of calculations.
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Part IV

Conclusion
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CHAPTER 9

CONCLUSION

The modern age has seen immense growth in the amount of computational power available

and the amount of data one can use in computations, and thus an increase in the size of

problems one wants to solve. However, to get the most out of the new systems, new meth-

ods must be developed to take advantage of the available hardware and provide algorithmic

scalability to make previously intractable problems tractable. In this dissertation, we devel-

oped two frameworks - one for parallel quantum chemistry and one for Gaussian process

regression using hierarchical matrices - as well as developed a new method for sparse triple

matrix products on GPUs to increase the size of problems that can be tackled and the speed

at which they can be tackled. In this section, we summarize the contributions detailed in

this thesis.

9.1 Hierarchical Matrices

Hierarchical matrices are a promising set of methods that can speed up many classes of

computations asymptotically. In this dissertation, we expanded hierarchical matrices in a

few directions. First, we developed a new method for constructing hierarchical matrices.

This new method considers the locations of the points involved in the kernel matrix, which

results in a speedup and reduction of memory usage. Furthermore, we developed an on-

the-fly memory mode, which reduces peak memory usage considerably.

Next, we developed new methods which allow hierarchical matrices to extend into

higher dimensions. These methods included using dimensionality reduction techniques to

reduce the dimensionality of the problem being handled. These methods also included us-

ing alternate techniques for determining the bases associated with each node. Furthermore,

a new splitting technique was developed, which increased the percentage of interactions

115



that can be compressed. The combination of these resulted in being able to tackle higher-

dimensional problems.

We then investigated the use of preconditioners for kernels arising from Gaussian pro-

cess regression. This resulted in two preconditioners, a Nyström-based method and an

FSAI-based method, complimentary in the classes of problems they handle well. These

preconditioners significantly reduced the number of iterations required for solves involving

the kernel matrices.

The final development of this dissertation for hierarchical matrices was the develop-

ment of a large-scale Gaussian process regression framework. Within the framework, using

matrix-free methods, combined with the other hierarchical matrix methods covered in the

dissertation, an asymptotic reduction of complexity was achieved. This reduction in com-

plexity is for both the hyperparameter optimization and the prediction phases of Gaussian

process regression.

9.2 Parallel Quantum Chemistry

Quantum chemistry calculations are used in various scientific computing domains, in-

cluding physics, material science, and chemistry. However, the native complexity of the

problems demands efficient approximation methods. In this dissertation, we developed

a distributed memory GPU implementation of Chebyshev-filtered subspace iteration for

Kohn-Sham density functional theory. During the development, we investigated different

matrix-matrix products and different eigensolvers. We identified a gap in the currently

available software for distributed memory GPU eigensolvers when solving problems in the

range of a few tens of thousands of rows and columns to around a hundred thousand rows

and columns. Furthermore, the parallel computation engine (libPCE) outperformed the

reference implementation, which will allow for larger problems and for them to be tackled

faster.
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9.3 Sparse Triple Matrix Products on GPUs

In the final part of this dissertation, we investigated sparse triple matrix products on GPUs.

As sparse matrix calculations require more overhead on GPUs than CPUs, new methods

must be developed to take advantage of GPUs’ computational efficiency and power. By

performing sparse triple matrix products in a manner that exploits the parallelism provided

by GPUs, we achieved a speedup for a variety of problem classes compared to successive

matrix-matrix products.

9.4 Conclusion

New methods must be developed to handle today’s increasingly large and exciting prob-

lems. Through the contributions of this dissertation, we have developed new tools to tackle

such large problems. These tools can be used in scientific computing to further the sci-

ence, which can be done in a wide variety of applications, including machine learning,

computational chemistry, and simulations.
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