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SUMMARY

The proliferation of AI across a variety of domains (vision, language, speech, recom-

mendations, games) has led to the rise of domain-specific accelerators for deep learning. At

design-time, these accelerators carefully architect the on-chip dataflow to maximize data

reuse (over space and time) and size the hardware resources (PEs and buffers) to maximize

performance and energy-efficiency, while meeting the chip’s area and power targets. At

compile-time, the target Deep Neural Network (DNN) model is mapped over the accelerator.

The mapping refers to tiling the computation and data (i.e., tensors) and scheduling them

over the PEs and scratchpad buffers respectively, while honoring the microarchitectural

constraints (number of PEs, buffer sizes, and dataflow).

The design-space of valid hardware resource assignments for a given dataflow and the

valid mappings for a given hardware is extremely large ( O(1024)) per layer for state-of-the-

art DNN models today. This makes exhaustive searches infeasible. Unfortunately, there can

be orders of magnitude performance and energy-efficiency differences between an optimal

and sub-optimal choice, making these decisions a crucial part of the entire design process.

Moreover, manual tuning by domain experts become unprecedentedly challenged due to

increased irregularity (due to neural architecture search) and sparsity of DNN models. This

necessitate the existence of Map Space Exploration (MSE). In this thesis, our goal is to

deliver a deep analysis of the MSE for DNN accelerators, propose different techniques to

improve MSE, and generalize the MSE framework to a wider landscape (from mapping to

HW-mapping co-exploration, from single-accelerator to multi-accelerator scheduling). As

part of it, we discuss the correlation between hardware flexibility and the formed map space,

formalized the map space representation by four mapping axes: tile, order, parallelism, and

shape. Next, we develop dedicated exploration operators for these axes and use genetic

algorithm framework to converge the solution. Next, we develop ”sparsity-aware” technique

to enable sparsity consideration in MSE and a ”warm-start” technique to solve the search

xxiii



speed challenge commonly seen across learning-based search algorithms. Finally, we

extend out MSE to support hardware and map space co-exploration and multi-accelerator

scheduling.
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CHAPTER 1

INTRODUCTION

Deep Neural Network (DNNs) have become an indispensable tool in the solution toolbox

for a variety of complex problems such as object detection, machine translation, language

understanding, autonomous driving, and so on. There is a growing demand for specialized

DNN accelerators pursuing high performance with high energy, power, and area efficiency.

Different applications, objectives, and design budgets create a massive accelerator design

space.

In order to achieve high efficiency across a wide range of DNNs, state-of-the-art DNN

accelerators are often designed with flexibility to adapt to various workloads [1, 2, 3]. These

accelerators allow different strategies (i.e., mappings) for mapping workloads onto the

accelerator to maximize performance and energy efficiency. This flexibility imposes a

unique challenge for deployment: finding a high-quality mapping between a DNN workload

and the flexible accelerator during runtime. From the space of all legal mappings (i.e., the

map space) of a workload, the user of such a flexible accelerator needs to find and utilize

the best mapping to unlock the full potential of the DNN accelerator.

As a result, map space exploration (MSE) is critical for DNN accelerator efficiency. It is

a complex and challenging problem because the search space is often massive. Prior work

has clearly defined the MSE problem [4, 5, 6, 7], cleanly separating it from the hardware

architecture design problem, and has proposed various search algorithms (i.e., mappers) [4,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 7, 29, 30, 31,

32, 33] to find optimized mappings for DNN accelerators and workloads.

Despite the success achieved by these prior efforts, MSE remains a computationally

challenging problem. This is because the search space for legal mappings for even a

single layer of a modern DNN (e.g., ResNet-50) on a typical edge class accelerator [1] is ∼

1



PE

…

…

…

G
lo

ba
l B

uf
fe

r (
L2

) PE PE PE

PE PE

PEPEPE

…D
R

AM
 

3 4
1 2

7 8
5 6

Time

1 2 3 4

1 2 1 2

t=1 t=2

Tile Scheduling Spatial Partitioning

Mapping on entire
accelerator at time = 1

Dataflow

PE0 PE1 PE2 PE3

1 2 3 4
3 3 3 3
1 1 1 1

…
7 8
5 6

3 4
1 2

… …K

3
1

4
2

C

S
R

X
Y

C

N

X’

Y’
N

…

Filter Tiles Input Tiles Output Tiles

151331
… 161442

…

Number: Tile IDs
Data / Computation Tile Sizing

Number: Tile IDs

Ordering ParallelismTiling 

(Resnet50)

Mapping

Private Buffer (L1)

AL
U

AL
U

AL
U…

A BM

NK

K

GEMM
WorkloadCONV2D Notation

B Batch size

K Output channel

C Input channel

Y Input Height

X Input Width

R Weight Height

S Weight Width

M Matrix-A Rows

N Matrix-B  Rows

K Contraction sizes

Accelerator
CONV2D

Fig. 1.1: The overview of DNN Workload, Accelerator, and Mapping.

O(1024) [5, 6] which would require more time than the age of the earth to search exhaustively

(assuming 1msec to evaluate each mapping sample). This gets exacerbated as newer and

ever-larger DNN models are being created with increasing frequency, especially thanks to

the success of neural architecture search techniques [34, 35, 36, 37, 38]. Furthermore, the

advent of compressed-sparse DNNs [39, 40, 41, 42, 43, 44, 45], whose mappings are not

performance-portable across sparsity levels, further increase MSE burden.

This thesis aims to develop a scalable MSE for complex DNN workloads. It tackles the

following challenges.

1.1 Challenges

1.1.1 Linkage between HW Accelerator Flexibility and Map Space

Traditionally, the efficiency of domain-specific accelerator ASICs has come from special-

ization, i.e., the control path and datapath in the accelerator are tailored to the deep neural

networks (DNNs) that are expected to run on the accelerator. In other words, the number of

mappings that an accelerator can support (aka map-space) is restricted. To this end, there

has been growing interest in developing flexible DNN accelerators. Flexibility allows the

accelerator to better tailor itself to the diverse set of layer parameters within the current

DNN being mapped [46, 47], instead of targeting the average case. While the notion HW
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flexibility described above makes intuitive sense, the field of DNN accelerators today is

inconsistent about the definition. We find that “flexibility” has been used loosely to refer

either to the ability to handle different loop tiling/blocking [10], and/or support for different

loop orders [12], and/or the ability to spatially partition across different dimensions [48],

and/or the ability to logically support different PE aspect ratios [49]. In fact, there is also

inconsistency in whether flexibility is a hardware feature [46] or simply a term for compiler

loop-transformations over a fixed inner tile [10, 50]. This in-formalism is a serious barrier

to the adoption of flexibility features, as it hinders precise quantification of the cost/benefit

tradeoff. Moreover, it is a lack of formalism on how different levels of flexibility impact the

map space and the performance of the accelerator.

1.1.2 Efficient Mapper

The search algorithm in MSE is called – Mapper. Although multiple prior works [9, 51, 52,

30, 53, 54, 55, 56, 57, 18] have studied the mapping problem for DNN accelerators, the size

of the map space (exceeding O(1024) even for a single layer of a DNN) makes the problem

highly challenging. To cope with this challenge, most prior works restrict the search space.

For e.g., coarse-grained strided exhaustive search [23, 12, 16, 17, 22], random search [4],

fixed parallelism [23, 16, 22, 56, 57, 18], or limited search for tile sizes for one or more

fixed dataflows [21, 12]). Alternately, ML-based search techniques have also been leveraged

for guided search to increase sampling efficiency [31, 24, 26, 27]; however, they need to

restrict some aspects of the map space (e.g., fixing the parallelism levels) to adapt to the

ML algorithms. Such restrictions of the mapping space can lead to local optimal mappings

which are significantly sub-optimal, as recent works have highlighted [4, 8].

1.1.3 Scalability of MSE

Despite the success achieved by the design of an efficient mapper, the scalability of MSE

remains challenging because of two issues: speed and dynamic sparsity in workloads. 1)
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Speed. Most mappers search for mapping in a layer-by-layer fashion, the run time of MSE

inevitably increases linearly with the layers of DNN models, increasing compilation times

significantly. More importantly, the emergence of techniques like neural architecture search

is leading to new DNN models coming out frequently with highly irregular tensor shapes.

This naturally increases the demand for efficient MSE. In this regard, the search speed of

MSE is a critical concern. 2) Dynamic sparsity in workloads. Mapping need to be optimized

for the specific sparsity level of the workloads. While the sparsity of the weight is often fixed

for a trained DNN model, the sparsity of activations is dynamic. When facing activation

sparsity, we would either under-utilize the hardware because of inefficient mapping or would

need to re-launch the MSE again and again for every input-activation.

1.1.4 Mapping and HW Co-exploration

The next question we want to answer is that can we extend MSE to support Mapping HW

co-exploration. However, HW-Mapping co-exploration is not trivial. The search space is the

cross-product of HW space (as large as O(1012)1) and mapping space (as large O(1024) [5]),

which can lead to an design space as large as O(1036). Therefore basic techniques like

exhaustive searches become impractical. An optimization-based algorithm (e.g., RLs, GA,

simulated annealing, and so on) is needed. A naive optimization-based HW-Mapping

co-optimizer can be formulated as follows. One can formulate a two-loop optimization

process, where the outer-loop optimizes the HW, and the inner-loop (which takes in the

HW parameters from outer-loop) optimizes the mapping or vice versa. E.g., a highly tuned

mapper GAMMA [5] requires about 10 mins to converge to a mapping solution of a given

HW configuration. For a two-loop optimization, the found solution at inner-loop (mapper)

becomes the feedback of one single sampling point of HW optimizer at outer-loop, where

outer-loop can easily require more than 10K sampling points. A naive two-loop optimization

requires 1.6M sampling points and more than 1,600 hours, which is challenging for practical

1Assuming PEs:128x128 and maximum buffers:100MB, the number of combinations is O(1012).
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Fig. 1.2: The proposed optimization loop for Map Space Exploration (MSE) or Design
Space Exploration (DSE).

usage.

1.2 Thesis Contributions

1.2.1 Flexion: Accelerator Flexibility and Map Space

We present a formal definition of the flexibility of an accelerator that refers to the percentage

of explorable/supported map-space out of all possible (i.e., exhaustive, as formally defined

in Section §3.2) mappings for a DNN layer. As these map-spaces can be overwhelmingly

complex, we identify a complementary abstraction: we taxonomize flexibility into four axes

– tile size (T), order (O), parallelism (P), and array shape (S). Identifying each axis with a

binary 0/1 value enables us to create 16 flexibility classes within which various accelerators

can fall, enabling a systematic classification of prior work. For each axis, we identify both

the hardware support needed and the software loop transformations it exposes to a mapper.

1.2.2 Gamma: Efficient DNN Mapper

We propose encoding scheme transforms the mapping problem into an optimization problem,

which enables the user to directly use off-the-shelf optimization algorithms for mapping.

These form our baselines. We introduce new GA operators, enabling a domain-specific

flexible search space, unlike most off-the-shelf optimization algorithms. We automate

Gamma as a black-box optimizer for the HW-mapping problem. This reduces the learning
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curve and saves manual-tuning effort for ML practitioners exploring the HW-mapping

space. Gamma encapsulates an end-to-end workflow, which generates outputs compatible

with an open-source cost model [58]. We have released Gamma as an open-source DNN

Mapper [59].

1.2.3 Demystifying MSE: Techniques for Improving the Scalability of MSE

We compare three wide categories of mappers: random-based [4] (i.e., heuristic pruning),

feedback-based [5] (i.e., black-box optimization and reinforcement learning), and gradient-

based [6] (i.e., surrogate models), and analyze their trade-offs. We conduct a sensitivity

analysis of different mapping axes to understand the contribution of each axis. We then

perform case studies that reveal distinguishing characteristics of good and bad mappings.

Based on our findings, we propose two novel techniques to enhance the state-of-the-art in

MSE. (i) We propose a “warm-start” technique to initialize the MSE with previous mapping

solutions from previous layers in the replay buffer based on a similarity metric, enabling

the mapper to start at a better point and converge faster. (ii) We propose a “sparsity-aware”

technique to search for a mapping that can perform well across a range of target activation

sparsity. We believe these techniques can be augmented over existing MSE tools, making

them more robust and scalable for future DNNs.

1.2.4 DiGamma: Mapping and HW Co-exploration

We propose a HW-Mapping co-optimization framework, which takes in any DNN model(s),

design objective, budget, and constraint, and generates an accelerator design point, HW

(i.e., numbers of PEs, number of memory levels, sizes of buffers at each level) and mapping

(i.e., parallelism, loop order, clustering, tile sizes). We abstract the detail of performance

modeling for different DNNs, and chip constraints and provide a generic interface, where

many existing optimization algorithms can be plugged in. We propose an efficient design

point encoding, which describes both HW and mapping with a list of parameters. Our
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encoding method constructs a compact representation of the cross-coupled design space that

boosts the efficiency of the optimization algorithms. We propose a domain-aware genetic

algorithm-based optimization method. It is specifically designed for HW-Mapping design

space and comes with specialized optimization operators to step through the design space in

a structured manner, and its HW exploration strategy respects the interaction between HW

and mapping.

1.2.5 MAGMA: Mapping across Multi-Accelerators

We extend MSE to support mapping across multi-accelerator. We propose an optimization

framework called Multi-workload Multi-accelerator Mapping Explorer (M3E). In the frame-

work, (i) we develop an efficient encoding scheme to encode the search space of the mapping;

(2) we develop several modules to enable the found mapping to effectively orchestrate the

data movement across sub-accelerator cores; (3) we enable several commonly used black-

box optimization algorithms and two reinforcement learning methods to be leveraged as the

underlying optimization methods. In M3E, we break the multi-tenant mapping problem into

two components: sub-accelerator selection and job prioritization. Sub-accelerator selection

is where we assign each job a sub-accelerator to execute; job prioritization is where we

order the jobs that are assigned to a sub-accelerator. Each component creates an immense

design space by itself. The full design space is the combinatorial probability of both, which

becomes as large as O(1e81) (§7.1.6). It also motivates us to design a sample-efficient opti-

mization algorithm. We propose a custom genetic algorithm-based optimization method for

this mapping problem, termed Multi-Accelerator Genetic Mapping Algorithm (MAGMA).

We design custom genetic operators in MAGMA, which allows it to structurally explore the

design space and largely increase its sample efficiency.
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1.2.6 ConfuciuX: Automated DNN Accelerator Design

We also develop a framework to automate the HW resource assignment of DNN accelerator

design. Different choices for HW resources can lead to drastically different latency and

energy for a given DNN. Some recent studies have shown that HW resource assignment

plays a more important role in determining the accelerators’ performance than its dataflow

[60]. However, determining the policy for assigning HW resources is still very much an open

problem, with prior works on HW Design-Space Exploration almost exclusively relying

on exhaustive searches [17, 61, 62, 63, 64, 65, 66, 67, 68, 18]. In this thesis, we develop

an autonomous mechanism to efficiently search through the HW design-space. It takes

the target model, platform constraint, deployment scenario, and optimization objective

(latency/energy) as input, and determines an optimized HW assignment strategy (number

of computes and buffers). We leverage reinforcement learning (RL) to perform a global

coarse-grained search, followed by a genetic algorithm (GA) for fine-grained tuning.

1.2.7 FLAT: Dataflow Technique for Mapping Attention Operation

Attention mechanisms, the key building block of transformer models, have enabled state-

of-the-art results across a wide range of machine learning (ML) tasks—from natural lan-

guage processing (NLP) [69, 70, 71], to object detection [72, 73, 74], image classifica-

tion [vision˙longformer, levit, cvt, longshort˙transformer], image generation [75, 76,

77], and music synthesis [78, 79]. we identify that the conventional dataflow/mapping

methods for CONV and FC layers [80, 81, 82, 83] are inadequate for attention layers. This

fundamentally tackles the challenges associated with attention layers by devising a first

in its class many-to-many inter-operator dataflow optimization mechanism, called Fused

Logit Attention Tiling. This optimization particularly fuses multiple many-to-many tensor

operators, while systematically preserving their inter-operator data dependencies, leading

to a significant reduction in off-chip memory bandwidth pressure. In addition, to fully

realize the performance benefit of this inter-operator fusing mechanism, FLAT performs
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a new tiling approach across the fused operators. This tiling enables efficient staging of

quadratically growing intermediate tensors of attention operations on tight-budgeted on-chip

memories, leading to higher performance and energy savings and elevating the scalability

of transformer models up to 64 K inputs. These benefits are unlocked with only modest

hardware changes, integrating into a platform deployable on off-the-shelf DNN accelerators.

1.3 Thesis Statement

MSE bridges the gap between two active trends: (1) efficient DNN model design and the

emergence of sparsity in state-of-the-art DNN models and (2) flexible hardware accelerators

that support diverse mappings via configurable buffer hierarchies [84] and on-chip intercon-

nect topologies as an answer to the first trend. MSE is crucial for extracting performance

and energy efficiency from the accelerator as there can be multiple orders of of difference in

performance and energy-efficiency between good and bad mappings.

1.4 Thesis Overview

This thesis is organized as follows (Figure 1.2):

• Background and Related Works. In chapter 2, we discuss backgrounds and related

works of this thesis.

• Accelerator Flexibility and Map Space Introduction. In chapter 3, we formalize the

definition of accelerator flexibility. Next, we discuss the implied map space of different

levels of accelerator flexibility. The discussion in this chapter set up the context of the

following chapters which are exploring the map space of the fully flexible or partially

flexible accelerator for different DNN workloads.

• Efficient Mapper Design. In chapter 4, we discuss the challenge of an efficient mapper

design. We develop a GA-based mapper to show the performance comparisons with

other black-box methods. We show that with the domain-specific operators, Gamma,

9



the mapper we propose, can achieve the best sampling efficiency.

• Scalability of MSE. In chapter 5, we discuss the upcoming challenge of MSE for future

complex DNN workloads. The DNN Workload becomes increasingly irregular because

of the wide application of neural architecture search and the sparsity of DNN workloads

increases with the development of new pruning techniques. These make DNN workload

more complex and challenging for MSE to solve within limited time constrain. We

propose two practical techniques discussed in chapter 5 to tackle these challenges.

• HW-Mapping Co-exploration. In chapter 6, we discuss how to extend MSE and

Mapper to support a larger search space. In this chapter, we discuss how to extend the

work to support HW-Mapping co-exploration. We extend the mapper in chapter 4 for

this purpose and call it DiGamma.

• Mapping Across Multi-accelerator. In chapter 7, we discuss another dimension

of extension to the DNN MSE. Previously, we focus on single accelerator mapping.

In this chapter, we discuss how can we form the MSE to consider multi-accelerator

mapping. We introduce what is the trending multi-accelerator system architecture, how

the mapping is defined for this map space, and finally how we design a mapper for this

map space.

• Automating DNN Accelerator Design. Previously, we focus on map space discussion,

which works on a given HW accelerator. In chapter 8, we discuss the design space of

an DNN accelerator. We focus on HW resource allocation problem for HW accelerator,

which essentially allocates Processing Element (compute) and Buffer (memory). We

use the same optimization framework we developed throughout the previous chapter

for MSE and change the search space to HW resources of the accelerator, essentially

becoming a design space exploration problem (DSE). We leverage RL for this DSE

problem.

• Mapping Design for New DNN Operation. In §A.1, we show a case study on a new
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DNN operation, attention. We show how to develop new mapping for attention operation.

We analyze the performance bottleneck of attention and develop a fusion-based technique

to tackle the problem.

• Conclusion and Future Works. In chapter 9, we conclude this thesis with a summary

of our contribution and future works.
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CHAPTER 2

BACKGROUND

This chapter provides background for the topics covered in this thesis, including background

of DNNs and DNN HW accelerators, concepts and examples of DNN mappings, and

introductions of common optimization methods for design space exploration.

2.1 DNN Workloads

Different Deep Nueral Networks (DNNs) are developed for different applications. In this

thesis, we focus on the performance of the DNNs (We use the term “performace” to refer to

hardware-wise performance indexes such as latency, energy, power, and area. We use the

term “quality” to refer to the application-wise criteria such as accuracy, precision, fitness

and so on. In this thesis, we focus on DNN accelerator performance optimization.) A

DNN model is usually made of tens to hundreds of DNN layers and other operators.

There are different types computation of a DNN layer such as convolution, including

1D/2D convolution, depth-wise convolution, point-wise convolution, Fully-Connected (FC),

Einsum (a general tensor computations), Attention, and so on. Also, a DNN layer could be

made of different “shape”. For example, different output/input channel sizes, number of

nodes, sizes if hidden dimensions and so on. These DNN layers can be represented with

a general loop-nest GEMM computation. For example, a CONV2D can be represented as

7 for-loops, and GEMM can be represented as 3 for-loops, as shown in Figure 2.1. Other

operators include various of activations (e.g., ReLU, tanh, sigmoid), pooling, batchnorm,

softmax, and so on, which could not be represented as loop-nest of GEMM computations.

These operators are usually mapped on spatial function units or CPU of DNN accelerators,

or on the host server, instead of the parallel processing elements (array of PEs) on the DNN

accelerators. This thesis focusing on performance optimizations of “DNN layers” on the

12



for B=[0, 16):
for K=[0, 64):

for C=[0, 64):
for Y=[0, 56):
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for R=[0, 3):

for S= [0,3):
…

B Batch size

K Output channel

C Input channel

for M=[0, 512):
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R Weight Height
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Fig. 2.1: The loop-nest representation of CONV2D and a Matrix Multiplication (GEMM).

DNN accelerators and leave “other operators” as future work.

In this thesis, we use individual DNN layers as our target workload.

Problem Domain. In this thesis, we consider widely used DNN layers including CONV,

FC, GEMM, and Attention, whose computation are affine transformation and perfect nested

loop. Affine transformation means a geometric transformation that preserves lines and

parallelism [85]. For examples scaling, reflection, rotation and compositions of them in any

combination and sequence are affine transformation. Most of the DNN layers are affine

transformation. More general computation or imperfect loop nest [86, 87] are not considered

in this thesis. The perfect loop-nest means the computation is at the inner-most loop-nest

(Figure 2.1(a)), while imperfect loop-nest means the computations could be interleaved with

computation (Figure 2.1(b)).

2.2 Accelerator Hardware Configuration

A canonical spatial DNN accelerator often houses an array of Processing Elements (PEs),

as shown in Figure 2.3. Each PE has one to several ALU units to compute partial sums,
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for B=[0, 16):
for K=[0, 64):

for C=[0, 64):
for Y=[0, 56):

for X=[0, 56):
for R=[0, 3):

for S= [0,3):
O[..] = I[..] × W[..] 

for B=[0, 16):
for K=[0, 64):

for C=[0, 64):
for Y=[0, 56):

O[..] = I[..] + A[..] 
for X=[0, 56):

for R=[0, 3):
for S= [0,3):

O[..] = I[..] × W[..] 

(a) (b)

Fig. 2.2: An example of (a) perfect loop-nest and (b) imperect loop-nest.

PE

…

…

…

G
lo

ba
l B

uf
fe

r (
L2

) PE PE PE

PE PE

PEPEPE

…
Target Accelerator

Private Buffer (L1)

AL
U

AL
U

AL
U…

D
R

AM
 

Fig. 2.3: A DNN accelerator architecture template.

and private local (aka “L1”) buffers to store weights, input activations, and partial sums.

The accelerator also houses a global shared (aka “L2”) buffer to prefetch activations and

weights from DRAM for the next tile of computation that will be mapped over the PEs and

L1 buffers. Networks-on-Chip (NoCs) are used to distribute operands from the global L2

buffer to the L1 buffers in the PEs, collect the partial or full outputs, and write them back to

the global L2 buffer.

2.3 Dataflow and Mapping

Each layer of a DNN can be expressed as a multi-dimensional loop nest over the input

and weight tensors. A CONV2D layer has 6 loops (7 with batching) while a FC layer (i.e.,

GEMM operation) has 3 loops. At runtime, these loop bounds may be smaller than the
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hardware resources available (leading to under-utilization) or greater than them (leading

to multiple temporal passes). Scheduling the loop involves splitting these loops into sub-

partitions (tiles) and re-ordering the resulting loop nest. Different accelerators choose to

execute different loop levels temporally (via serialization through the same PE) or spatially

(via parallelization across distinct PEs, or clusters of PEs). The choice of parallelization may

allow some input tensors to be multicasted to multiple PEs, amortizing expensive accesses.

Similarly, parallelized partial-sum contributing to the same output allows for the use of

efficient spatial reduction hardware. The number of tiling levels, loop order, and parallelism

dimensions are collectively referred to as the accelerator’s dataflow in prior work [83, 46].

The dataflow, with specific tile sizes at each level of the accelerator’s buffer hierarchy, is

called a mapping [47, 46], as shown in Figure 1.1.

2.4 The Impact of Mapping

2.4.1 Optimal Mappings

The same workload can be mapped to the HW by various different ways of mappings. A

good and bad mappings can have up to 2 order of magnitude difference in latency, power,

and energy, as shown in Figure 2.6. This is also observed in [68, 4, 6, 10]. Therefore to

search for the optimal mapping for the given workload become one critical issue.

2.4.2 Efficient Mappings Example

We often use “stationary” to characterize the behavior of the computation [83]. For example

“weight-stationry” [80, 89, 90, 91, 92] means we organize the compute order to keep the

same slices/tiles of weights on the PE array to be reused across different slices/tiles of inputs

and outputs. Similarly, we have “input-stationary” reusing the inputs and “output-stationary”

reusing the outputs [81, 93, 94].

We show a weight-stationary mapping in Figure 2.4, and we assume the underlying HW

is a 1D systolic array. The weights are pre-fetched onto the local scratchpad of PEs and
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Fig. 2.4: A weight-stationary example. This is example is referenced from [88].
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(b) Latency-Area (a) Energy-Latency

Min Max
Latency 
(cycles) 8.18E+06 1.85E+09

Energy (nJ) 1.12E+10 8.34E+10
Power (mW) 1.52E+05 2.24E+09
Area (!"!) 1.77E+09 4.57E+13

SL size 
(Bytes) 2.62E+02 9.90E+06

SG size 
(Bytes) 2.82E+03 1.54E+07

(c)HW perf. statistics

(nJ)
(cycles)

Fig. 2.6: The HW performance of randomly sampled HW-mapping in the design space on
an example layer (second layer of VGG16). (a) The Energy to Latency plot, (b) The Latency
to Area plot, and (c) The HW performance statistics of the sampled HW mappings.

remain stationary. At each cycle, we will stream in the corresponding inputs, which also

introduce the partial sum in the PEs. The partial sum will be forwarded to the neighbor PEs

to accumulate the result. After all the partial sums are accumulated the output will be stored

back to the global buffer.

In contrast, we show a output-stationary mapping in Figure 2.5. The weights are pre-

fetched onto the local scratchpad of PEs. Then we stream in the inputs. The partial sums

are still collecting the multiplication result. However, the difference is that the partial sums

remain stationary in each PE. They kept accumulating the results in each PE. Then after all

the partial sums are collected, the outputs are stored back to the global buffer.

2.4.3 Performance-efficient v.s. Energy-efficient Mappings

In different use-case, we will target different objectives such as best performance (minimum

latency), best energy-efficiency, and so on. Often, we will also use multi-objective such as

performance and energy to find the mappings on the Pareto frontier. In the following, we

show some illustrative examples to demonstrate what’s the factors causing mappings to be

performance-efficient, energy-efficient, or both performance and energy-efficient.

The Effect of Buffer Mapping

In Figure 2.7, we show a 3-level mapping. In Figure 2.7(a), each level of mapping is mapped

onto one of the buffer level. For example, L3 mapping is used to described mapping from
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for x1= [0, 9, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

L2 Mapping

L1 Mapping

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

(a)

for x2= [0, 27, 9):

for s2= [0, 9, 9):

for x1= [0, 9, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

for x2= [0, 27, 9):

for s2= [0, 9, 9):

(b)

DRAM (L3)

Shared Buffer (L2)

MAC

Local Buffer (L1) 

x = x2+x1+x0 

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

s = s2+s1+s0 PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

x = x2+x1+x0 
s = s2+s1+s0 

Fig. 2.7: The level of buffer mapping effects. (a) option 1 mapping between MAC and L1,
L2 and off-chip, (b) option 2 mapping between MAC and off-chip.
off-chip to shared buffer; L2 mapping is used to described mapping from shared-buffer

to local buffer. However, the same 3-level of mapping can also be mapped entirely to the

off-chip buffer level, as shown in Figure 2.7(b). The on-chip shared buffer and local buffer

are not utilized. The benefit of (b) is that it will hugely reduce the number of memory access

of on-chip memory while the number of off-chip access is kept the same. Therefore (b) is a

more energy-efficient mapping. However, off-chip memory usually has smaller BW, which

might cause this mapping to be off-chip BW bounded and becoming sub-optimal with the

respect to (latency) performance. However, the off-chip BW boundedness depends on the

workload. If the workload has massive reuse opportunity, the limited off-chip BW could be

sufficient for (b) and makes (b) an both energy and performance-efficient mapping.

The Effect of Tile Sizes on Ameliorating BW Bottleneck

In Figure 2.8, we show two mappings with different tile sizes at input (x) dimensions. In (a),

we use tile size of 27 at L3 level; in (b), we use tile size of 3 at L3 level. We assume the

shared L2 buffer is large enough to hold the tiles introduced by these two different kinds

of tiling strategies. Fetching larger tile from off-chip can reduce the frequency to interact

with off-chip, less likely to be bottlenecked by off-chip BW. For example in (b), we are

frequently requesting new elements from off-chip, the speed of off-chip access need to be

on-par with the MAC processing frequency to not be bottlenecked. Therefore, given a fixed

sizes of buffer hierarchies, we often see mappings with larger tile sizes have better energy
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for x1= [0, 27, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

L2 Mapping

L1 Mapping

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

(a)

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

for x2= [0, 81, 27):

for s2= [0, 9, 9):

for x1= [0, 3, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

L3 Mapping

L2 Mapping

L1 Mapping

for x2= [0, 81, 3):

for s2= [0, 9, 9):

(b)

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

x = x2+x1+x0 
s = s2+s1+s0 

x = x2+x1+x0 
s = s2+s1+s0 

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

27
81

x

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

3
81

x

Fig. 2.8: The Effect of tile sizes on ameliorating BW bottleneck. (a) option 1 with larger
input tile size, (b) option 2 with smaller input tile size.
and performance efficiency.

The Effect of Tile Sizes on Reuse

Different tile sizes will also introduces different reuse opportunity. In Figure 2.9, we show

two mappings with different tile sizes at weight (s) dimensions. In (a), we use tile size of

3 at L3 level; in (b), we use tile size of 9 at L3 level. Note that this is a weight-stationary

mapping since we map weight (s) at the outer most loop. In (a), 3 elements of s are fetched

on-chip and being reused to multiplied with x. The x will be read iteratively from off-chip to

on-chip. Owing to the folding of s, the full x will be read from off-chip to on-chip iteratively

by 3 times. In contrast, in (b), the full s is fetched on-chip, and hence x will only need be

read from off-chip to on-chip iteratively by 1 times. Reducing the number of memory read

from off-chip as in (b) can often makes the mapping more energy-efficient.
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for x1= [0, 9, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

L2 Mapping

L1 Mapping

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) x = x2+x1+x0 
s = s2+s1+s0 

for x2= [0, 81, 9):
for s2= [0, 9, 3):

for x1= [0, 9, 3):

for s0= [0, 3, 1):
for x0= [0, 3, 1):

for s1= [0, 9, 3):

PartialSum[x][s] = Weight[s]*Input[x+s]
Output[x] += PartialSum[x][s] 

L2 Mapping

L1 Mapping
x = x2+x1+x0 
s = s2+s1+s0 

for x2= [0, 81, 9):
for s2= [0, 9, 9):L3 Mapping

L3 Mapping

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

(a)
(b)

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

x

Iteratively read 3 times

Shared Buffer (L2)

MAC

DRAM (L3)

Local Buffer (L1) 

x

Iteratively read 1 time

Fig. 2.9: The Effect of tile sizes on reuse. (a) option 1 with larger weight tile sizes, (b)
option 2 with smaller weight tile sizes.

2.4.4 Map Space Exploration

In the above examples, we have shown the performance impact of different mapping

decisions and how critical a good mapping decision is. To pursue for optimal performance,

we often form a mapping optimization framework to search for the optimal mapping. This

framework is called – Map Space Exploration (MSE).

2.5 DNN Accelerator Cost Model

Frameworks like MAESTRO [68] and Timeloop [4] use detailed analytical modeling to

evaluate different mapping strategies of a DNN on the accelerators. We leverage MAESTRO

[68] as our underlying cost model because of its ability to support the target detailed mapping

space. It supports most of the common DNN layers such as CONV, depth-wise CONV,

and Fully connected. As shown in Figure 2.10, it takes in a DNN model (or layer), a

mapping strategy, and the HW parameters of the modeling accelerators and MAESTRO

estimates the statistics such as latency, energy, runtime, power, and area. The HW parameters
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Shared Buffer (L2 Buffer)

PE 0
Private L1

ALU

PE N-1
Private L1

ALU

PE 1
Private L1

ALU

..
.

Network-on-Chip (NoC)

SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) Y’;
TemporalMap(3,3) X’;
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y’;
TemporalMap(3,3) X’;
TemporalMap(3,3) R;
TemporalMap(3,3) S;

L2: Par. dim.

L1: Par. dim.

Tile sizes

Compute 
order

L2-
Mapping

L1-Mapping

Level of 
Parallelism 

DNN Model HW ParamsMapping

MAESTRO
(Detailed Analytical Model – models accelerators with arbitrary dataflows and HW implementations)

…Hierarchy

Latency, Throughput, Energy, …

Fig. 2.10: The workflow of MAESTRO [68].

inputs include the number of PE, local and global buffer sizes, NoC latency and bandwidth,

memory read/write bandwidth, and so on. A mapping strategy describes tiling, compute

order, parallelism, and level of tiling/ parallelism (Figure 2.10), which we will have a

detailed discussion in chapter 3.

2.6 Optimization Methods

We introduce the optimization methods we will use in this thesis in the following. In map

space exploration, we will call the the optimization methods – Mappers. We categorize

them into three broad categories, heuristic-based, feedback-based, and gradient-based

(Figure 2.11). The heuristic-based is often the faster to acquire one sample. The feedback-

based in general will use learning methods to improve its sampling function to improve its

sampling efficiency across time. The gradient-based will train a surrogate model offline

to replace the external and unusually non-differentiable cost model such as MAESTRO.

Then, the gradient base will use the trained surrogate model to perform gradient updates to

optimize its solution. We list different methods in each category as follows.
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Heuristics 
based

Gradient 
based

Feedback 
based

(black-box,
RL)

Surrogate 
model is tied 
to one or few 
accelerator 
configurations
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cost-model
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algorithm
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efficiency

High sampling 
efficiency

Slow: heavy exploration 
algorithm & frequently 
interacting with cost-
model

e.g., 
Random-Pruned

e.g., Gamma

e.g., 
Mind Mappings

Other 
methods

ü

!

ü

!

ü

!

Exploration Methods
(Mappers)

e.g., CoSA
(Polyhedral, MIP, MCMC,..)

Fig. 2.11: The categories of different exploration algorithms (Mappers) in Map Space
Exploration.

2.6.1 Heuristics-based

Exhaustive search will lead to a global optimum but is nearly impossible to sweep for vast

design spaces.

Grid search is an exhaustive search with a coarse-grain sampling step, which makes the

process approachable.

Random search randomly samples design points in an unknown search space and keeps

the best solution. It has been shown to be competitive for optimization problems in various

fields [95, 96, 97, 98].

2.6.2 Feedback-based

Simulated annealing [99] adds an exploitation step to random search (which is always

exploring). It randomly samples and accepts points that improve the objective, but also
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with a certain probability accepts points that may worsen the objective. The probability

is controlled by a hyper-parameter temperature. Higher temperature will increase the

probability to accept worse points, causing more randomness, and vice versa. Simulated

annealing is used for compiler optimization for CPU and software [100] and also tile and

loop scheduling for DNN workload [101].

Genetic Algorithm (GA) [102] is a method where we encode the dimension of each

design point as a gene. With all the dimensions specified, a design point is called a genome.

We initialize the algorithm with several randomly sampled design points (genomes) and these

genomes form a generation. Then we evaluate the fitness of individuals of this generation.

We keep well-performing individuals and use them to reproduce the next generation with

mutation and crossover. Generation by generation, GA will converge to an optimized point.

STOKE [103] and TensorComprehensions [31] use GA to search the space of DNN code

optimization.

Bayesian Optimization [104] builds a surrogate for the objective and quantifies the

uncertainty in that surrogate using a Bayesian machine learning technique. The optimization

method can be constructed by the Gaussian process, Random forest, or Tree Parzen Estimator.

It selects the next values to evaluate by applying criteria to the surrogate. It evolves the

surrogate model and sampling criterion simultaneously. The concept is to limit the evaluation

of the objective function by spending more time choosing the next values for sample

efficiency. Some works use Bayesian optimization to search for DNN hyper-parameters

[105, 106, 107].

Differential Evolution (DE)[108]. The algorithm flow of DE is similar to GA. The

difference is that in GA we mutate the gene by random number. However, in DE we mutate

by the difference vector, which we explain next. When mutation, we sample two parents

and extract their difference on each dimension to formulate a difference vector. Next, we

sample another parent and mutate it by adding the difference vector to it. DE is often found

converge faster than GA [109], and is one of the most used optimization methods in many
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applications [110, 111, 112].

(1 + λ )-ES [113]. Evolutionary Strategy (ES) is a branch of EA, which contains only

a mutation operator. The (1 + λ )-ES is a strategy, where for each parent we mutate it to

reproduce λ number of mutated children. The parent and children compete with each other

by their fitness values and the best one will go to the next generation.

Covariance matrix adaptation evolution strategy (CMA-ES) [114]. In CMA-ES,

we maintain the mean and covariance matrix of a population, which helps the algorithm to

have adaptive step-size when approaching optimum. The algorithm works as follows. We

select several best-performing individuals as elites and calculate their mean. We calculate

the covariance matrix of the elites with a tweak, where we calculate each variance value by

the current elite and the old mean value. The made covariance matrix will reflect the degree

of improvement of these elites over the last generation. Large improvement values imply

the current populations are still far from optimum, leading to larger variances. Therefore

when we sample the next generations by the updated mean and covariance matrix, we would

take a larger step, and vice versa. The CMA-ES has been empirically outperforming other

optimization methods in many applications [115].

Test-based Population-Size Adaptation (TBPSA) [116] is an augmented CMA-ES

that varies the population size along evolution to tackle noisy environment. We estimate

the trend of the population’s fitness values. When the fitness values start to converge, the

algorithm will adapt to have a smaller population size. When the environment is noisy and

fitness values start to have a larger fluctuation, the algorithm will adapt to have a larger size

again. TBPSA is found more robust in noisy environments [116].

Particle Swarm Optimisation (PSO) [117]. In PSO, the basic unit in the population is

called particle. Different from GA, each particle only tracks the global best (gbest), which

is the best performing particle (individual) in the population and has no direct interaction

(crossover) with others. It updates its parameter by gbest and the self best, or so-called

parent best (pbest), which is the best performing self across generations. The gbest and
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pbest enable particle to explore global and local optimum respectively, which update its

parameter x as follow:

v = ωv+Cp × r1 × (pbest − x)+Cg × r2 × (gbest − x) (2.1)

x = x+ v (2.2)

The r1 and r2 are random number sampled from normal distribution N(0,1). The Cp and

Cg are the set hyperparameter to focus more on local or global information. ω is the

hyperparameter that controls the momentum of the update. This simple optimization scheme

is widely used in the optimization problems [118, 119].

Passive Portfolio (pPortfolio)[120] A well-diversified portfolio is important for opti-

mization. The pPortfolio strategy is to maximize diversity by spreading the risk broadly to

multiple instances. For example, we launch two (or K numbers of) optimization methods

(CMA-ES, DE), each with a half (or 1/K numbers) of the total sampling points, and use

the best performing solution provided by one of them. The pPortfolio is the opposite of

an active strategy (in which we keep optimizing one algorithm) and is sometimes a better

strategy for its diversity [120].

Reinforcement Learning Reinforcement Learning (RL) algorithms are often used

in games [121, 122] as they are useful in sequential decisions. More formally, this is a

Markov decision process (MDP). In this thesis, we show that determining the appropriate

number of PEs and buffers for a series of DNN layers to minimize the overall platform

latency/energy while staying within an area or power budget can be viewed as a MDP.

Therefore we find RL algorithms to be a promising approach for this problem to increase

the sample efficiency of the search, compared to baseline optimization methods that use no

information from the current state. The goal of an RL agent is to continuously interact with

an environment, observe the current state, take one or more actions, observe the reward

from the environment, and update its underlying policy network. With time, the policy
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network learns to predict actions that can maximize reward. We discuss our RL-based HW

resource exploration next.

2.6.3 Gradient-based

Gradient-based [6] trains a neural network-based surrogate model via offline sampling of

millions of data points collected from the cost model. It uses the loss gradient to update its

solution. During MSE, it utilizes gradient-descent on this surrogate model to find mappings,

instead of searching.

2.7 Summary

In this chapter, we have introduced the minimum background for the following chapters,

including the background of DNN accelerator, the concept of DNN mapping, the Map

Space Exploration (MSE) framework, and the different optimization algorithms that are

heavily used in the MSE. These background can cover the related topics discussed across

different chapters. In the following, we will have a deep dive into different part of these, e.g.,

chapter 3 focuses on the discussion of DNN accelerator and mapping, chapter 4 focuses on

optimization algorithm design, chapter 5 focuses on analysis of MSE framework, and so

on.
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CHAPTER 3

FLEXION: A FORMALISM OF DNN ACCELERATOR FLEXIBILITY AND THE

IMPLICATION OF MAP SPACE

Traditionally, the efficiency of domain-specific accelerator ASICs has come from special-

ization, i.e., the control path and datapath in the accelerator are tailored to the deep neural

networks (DNNs) that are expected to run on the accelerator. In other words, the number of

mappings that an accelerator can support (aka map-space) is restricted.

Specialization is unfortunately a double-edged sword. While high specialization enables

DNN accelerator ASICs to provide higher performance and better energy-efficiency than

CPUs and GPUs, it restricts the accelerator from adapting to the growing diversity in DNN

models today. This is becoming a key challenge, given how rapidly the field of ML is

evolving, since it is highly probable that accelerator chips will be obsolete by the time they

reach the market.

To this end, there has been growing interest in developing flexible DNN accelerators1.

Flexibility provides a two-fold benefit. First, it allows the accelerator to better tailor itself to

the diverse set of layer parameters within the current DNN being mapped [46, 47], instead

of targeting the average case. For example, the CONV2 1 early layer in ResNet-50 has

56x56 activations with 64 channels, whereas the CONV5 3 late layer in ResNet-50 has 7x7

activations with 2048 channels. An accelerator that only supports parallelism on activations

can result in severe under-utilization on the late layer, and vice versa for one that only

supports parallelism on channels. Second, it helps “future-proof” the accelerator. For

instance, consider an accelerator such as Eyeriss [124], developed in 2014 for accelerating

AlexNet [125], the state-of-the-art network at that time for image classification, which had

3x3, 5x5 and 11x11 filters; Eyeriss is severely under-utilized for newer DNN models that

1This chapter builds on the idea of Flexion developed by Hyoukjun Kwon [123]
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use layers such as pointwise (i.e., 1x1 filters) convolutions (e.g., MobileNetV2 [126]), as

demonstrated by its successor Eyeriss v2 [48], or attention (e.g., BERT [127]).

While the notion of flexibility described above makes intuitive sense, the field of DNN

accelerators today is inconsistent about the definition. We find that “flexibility” has been

used loosely to refer either to the ability to handle different loop tiling/blocking [10], and/or

support for different loop orders [12], and/or the ability to spatially partition across different

dimensions [48], and/or the ability to logically support different PE aspect ratios [49]. In

fact, there is also inconsistency in whether flexibility is a hardware feature [46] or simply a

term for compiler loop-transformations over a fixed inner tile [10, 50]. This in-formalism is

a serious barrier to the adoption of flexibility features, as it hinders precise quantification

of the cost/benefit tradeoff. Moreover, the addition of large map-spaces confounds the

accelerator Design-Space Exploration (DSE) problem as concepts such as partial flexibility

cannot be precisely expressed or numerically assessed by existing DSE flows.

In this chapter, we present a novel formal definition and precise quantification of ac-

celerator flexibility. We also quantify the corresponding cost for flexibility, including area

and energy. We then couple that with an abstraction that allows its incorporation into a

first-of-its-kind flexibility-aware automated DSE, without making the problem intractable.

As a debut work in this field, we cannot claim to be exhaustive. However, we advocate

that our formalism can be the first step toward the accelerator community moving towards

consensus on the costs and benefits of flexible accelerators.

3.1 Axes of Accelerator Flexibility

We define accelerator flexibility as “how many different ways can we compute this workload.”

In other words, flexibility aims to describe a device’s ability to run different mappings (i.e.,

re-arrangements or transformations) of the same starting loop nest, as opposed to unrelated

loop nests from different programs (which might be a measure of programmability).

We follow a bottom-up approach toward understanding flexibility. In this section, we
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Fig. 3.1: (a) Flexibility TOPS and prior work. (b) For any workload, a unique mapping involves
choosing individual points from the map-space actually supported by the target accelerator.

identify axes of flexibility and qualitatively discuss the performance benefit and HW cost

for supporting each. In §3.2, we identify the map-spaces exposed by each axis. In §7.2, we

discuss our mechanism to search through these flexibility-constrained map-spaces.

3.1.1 Axes Taxonomy

Informed from existing work of accelerators [128, 3, 129, 130, 131, 80, 132, 48, 81] and

map space exploration tools (MAESTRO [128], Timeloop [47], TVM [24], and so on [10,

133]), where intra-layer mappings are captured as loop nests, we identified and unified the

knobs that these tools vary when doing map-space exploration. We distill flexibility into

four axes2.

(1) Tile sizes (T): The ability to change bounds and aspect ratios of data tiles from one

or more operand tensors per level of the buffer hierarchy [84].

(2) Loop order (O): The ability to change the loop orders iterated per tiling level.

(3) Loop parallelization (P): The ability to change which tensor dimensions are paral-

lelized per tiling level. This represents the spatial partitioning of data (i.e., across PEs).

2We only consider intra-layer mapping (which most accelerators target) and did not consider inter-layer
mapping.
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Fig. 3.2: The benefit of having flexibility in (a) Tile, (b) Order, (c) Parallelism, and (d) Shape.
Example GEMM operation of ZMN = AMK ×BKN on 4x4 PE array. The subscript t indicates that
these are tiles of the overall computation. The inflexible accelerator is weight stationary (tensor B),
using a loop ordering of K → N → M.
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…
for kt=[0, 16, 1):

for ct=[0, 64, 1):
for rt=[0, 3, 1):

for st=[0, 3, 1):
for yt=[0, 4, 1):

for xt= [0, 4, 1):
par_for kp=[0, 16, 1):

par_for cp= [0, 64, 1):
…
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Fig. 3.3: DNN accelerator with NVDLA-style mapping.
(4) Array shape (S): The ability to change the logical shape and clustering of the

accelerator’s hardware resources. This determines the number of tiling levels and the

maximum tile sizes for the tensor dimensions being mapped in parallel (i.e., spatially) over

the accelerator array.

We refer to the four axes as flexibility TOPS (tiling, order, parallelism, shape), as a

mnemonic with the well-known performance metric Tera-Operations Per Second. Figure 3.3

shows an example of NVDLA mapping [80], where in the 6-order for loop of convolution,

tile sizes are (16, 64, 3, 3, 4, 4), loop order is (K, C, R, S, Y, X), loop parallelization is (K,

C) parallelism, and array shape is (64x16).

Scope of Classification. Note that the four axes we described exhaustively capture

the space of intra-layer mappings which has been the target of several recent mapping

optimizers [6, 134, 135, 7, 47]. We assume that an accelerator runs each layer sequentially,

consistent with state-of-the-art DNN accelerators [132, 124, 8, 81, 80, 3, 49], and flexible

accelerators can change the mapping alone one or more of these axes for each layer. Note

that inter-layer mapping strategies (e.g., loop fusion [136]) can be a outer-loop on top and

not the focus of this study. Further, aspects of DNN accelerators tangentially related to the

flexibility that we explicitly leave to future work include sparsity and compression, bit-serial

arithmetic, and alternate algebraic refactorings such as Winograd [137] or UCNN [138], and

processing-in-memory and near-memory architectures.
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3.1.2 Classes of Accelerator Flexibility

We introduce a notation to concisely describe an accelerator as a binary vector [XT ,XO,XP,XS]

where:

X =


0 if |Mappingssupported|= 1 (inflexible)

1 if |Mappingssupported|> 1 (some flexibility)
(3.1)

|Mappingssupported| is the number of legal mappings for a given workload (i.e., DNN layer)

over a given accelerator.

Our taxonomy creates 16 accelerator classes - with Class 0 (i.e., [XT ,XO,XP,XS] =

[0,0,0,0]) being the least flexible and Class 15 (i.e., [1,1,1,1]) being the most. The intent

of this taxonomy is to enable a coarse classification of accelerators and allow a systematic

study of cost-benefit analysis. In Figure 3.1(a), we do a best-effort classification of several

current accelerators into these classes. Figure 3.1(b) then demonstrates the role of a com-

piler/mapper: it generates unique mappings by selecting from the subset of the map-space

that is actually supported by the target accelerator [47].

3.1.3 Benefits of Mapping Flexibility Per Axis

In Figure 3.2 we show how each axis of flexibility can enhance performance and/or energy-

efficiency depending on the workload dimensions. For simplicity, we use a GEMM mapped

on a 4x4 array throughout the example.

In Figure 3.2(a), suppose we have a GEMM with (M=8, K=4 and N=8). It is tiled such

that the size of A tiles (i.e., input activations) is 16 (Mt=4,Kt=4), and that of B tiles (i.e.,

weights) is 32 (Nt=8,Kt=4) - assuming this constraint comes from the sizes of the input

and weight buffers around the array. The 32 weights will require two iterations or passes

through the 4x4 PE array during which time 16 of the weights will remain stationary; the

33



two sources of inefficiency are (i) the same inputs will be read from the global buffer and

streamed during each iteration (increasing energy), and (ii) switching the stationary tile will

lead to a stall. Now consider a flexible accelerator, where the global buffer is soft-partitioned

and can be configured to store a tile of 32 inputs (Mt=8,Kt=4) and 16 weights (Nt=4,Kt=4)

instead. Now, the 16 weights will remain stationary as the 32 inputs stream. Here only one

iteration (although longer) will be needed, only one L2 buffer read for each input required

and no stall to switch stationary tiles, potentially reducing energy and runtime.

In Figure 3.2(b), the A tile has size 16 while the B tile has size 32. Keeping the B tile

stationary requires two iterations and two reads of the A tile, leading to a similar issue as

Figure 3.2(a). In contrast, if we could switch the loop order to keep the input tile stationary

instead as the flexible accelerator does, we can finish the computation in one iteration with

fewer buffer reads, enhancing performance and energy-efficiency.

In Figure 3.2(c), suppose the GEMM is not square, but rectangular. In the default

mapping discussed so far, the parallelism is across the K and N dimensions which leads to

a utilization of only 50%. Here the K dimension is reduced spatially across the columns

(like the TPU [132]). If the accelerator could support flexible parallel dimensions, then we

could switch to MN parallelism (i.e., output-stationary dataflow), performing the reduction

temporally within each PE. Now each PE operates on a separate output and we get 100%

utilization.

In Figure 3.2(d), we see that the dimensions of the weight tile (2×8) do not match those

of the 4x4 array, leading to two iterations, each with 50% utilization. Flexibility in the

shape of the physical array would enable it to emulate a logical 2×8 aspect ratio instead,

increasing utilization to 100%.

As shown in Figure 3.2, different axes of flexibility provide different opportunities to

enhance utilization and/or reuse. In fact, in some cases more than one choice exists for

enhancing the utilization. E.g., the benefit achieved by flexible shape for the tall-skinny

GEMM in Figure 3.2(d) could also be achieved by switching to MN parallelism like
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Fig. 3.4: HW Overhead for Flexibility Support (highlighted in yellow). (a) Flexible Tile Size HW
Support: Soft-partitioned Scratchpads. (b) Flexible Loop Order HW Support: Configurable Address
Generators. (c) Flexible Parallelism HW Support: Spatial and Temporal Reduction. (d) Flexible
Shape HW Support: NoC support for PE clustering.

Figure 3.2(c). This motivates this paper’s focus on dissecting the performance and energy

benefits along each axis of flexibility.

3.1.4 Hardware Support for Flexibility Per Axis

However the flexibility is not free. It comes with an area cost, as we characterize later in

Table 3.2. For example, a multi-casting circuit takes a larger area than a uni-cast; flexible

choices of inputs introduce multiplexers whose area cost grows with number of choices. We

characterize the specific hardware cost of each axis of flexibility via Figure 3.4 as follows.

Tile: To support tile flexibility, the accelerator needs to be able to access different tiles

in the buffer. As shown in Figure 3.4(a), this costs additional Base (memory start point),

Bound (data length), and Current (the current address pointer) Registers for input, weights,

and outputs buffers, which are controlling/monitoring the data flow of accessing current tiles.

In addition, to be able to support more varieties of tile shapes, the accelerator should have a

software-controlled soft-partitioned buffer (instead of hard-partitions across each operand)

to enable more tiling opportunities, shown in Figure 3.4(a) via a multiplexer/demultiplexer.

Order: To support different loop orderings, the accelerator needs to allow tiles from
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different tensors being stationary versus streaming. It needs to have additional address

counters and address generators for inputs, weights, and outputs, as shown in Figure 3.4(b).

Each PE also needs a register to store the counter value it should count up to before

discarding the stationary tile.

Parallelism: To support different parallelism dimensions, we need three additional

address counters and address generators. In addition, we need a dedicated multiplexer

in front of each PE to select between a spatial or temporal reduction path, as shown in

Figure 3.4(c).

Shape: Shape flexibility requires the ability for the accelerator to mimic (i) a larger

row/column by sending the same operand across multiple rows/columns and/or (ii) a smaller

row/column by breaking into multiple parts. E.g., in Figure 3.2(d), the flexible accelerator

runs two spatial reductions of size two on the same column. Feature (i) needs a richer

distribution NoC topology to multicast the operand across multiple rows/columns. Feature

(ii) requires demuxes at the output of each PE to allow it to forward the output to the

neighbor or directly to the L2 buffer via a reduction NoC that provides these connections, as

Figure 3.4(d) shows. Prior work [46, 49] has discussed implementation choices for such

NoCs.

We wish to highlight that beyond the area and power cost incurred by the components

described above (which we find in our evaluations to not be very significant over the MAC,

buffer, and NoC required by an inflexible accelerator), a key cost for adding flexibility

support is that of engineering and verification. This is why a systematic understanding of

the benefits of flexibility is valuable for DNN accelerator developers.

(a) Venn diagram of map space of a class-X target accelerator. (b) Hardware-dependent

Flexion. (c) Workload-dependent Flexion. (d)A 2D example of the relationship between

flexibility axes, flexibility class, and degree of flexibility. Definitions are in Table 3.3.
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3.2 Formal Flexibility-Constrained Map Space Definition

Given the above insights, we now formalize how hardware flexibility and workload special-

ization precisely affect the feasible map space.

3.2.1 Definitions of Map Space and Flexibility

Table 3.3 summarizes the key definitions. We omit the mathematical equations in the interest

of space, instead use the Venn diagrams in Figure 3.5 to guide the discussion.

Target accelerator: The accelerator whose map-space is being evaluated.

Workload: Within the scope of our evaluations, this refers to a given layer of a given

DNN model, since we consider the accelerators mapping layers one by one. The venn

diagrams and definitions from this section will however also hold for workloads referring to

full models or fused layers.

Mapping: A design-point in the map space, which precisely describes the value for T,

O, P, and S.

Class-X: We use class-X to denote the class of the target accelerator (§3.1.2). Note that

accelerators with different configurations of HW resources such as number of PEs, buffers,

and NoCs are all called class-X accelerators as long as their supporting flexibility axes are

categorized into X class. Note that the following definitions apply to all of the 16 accelerator

classes, i.e., we can use it to discuss map-space and flexibility of class-0011 with two axes

enabled, class-1111 with four axes enabled, and so on.
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Map space: the design space of the mapping of a class-X accelerator. E.g. the map

space of class-0011 will expand along the two flexible axes P and S, while T and O are

fixed values across all mappings. These fixed values are often practically hard-coded at

accelerator design-time for simplifying hardware design (§3.1.4).

Hardware-dependent Map Space: We define two hardware-dependent map-spaces: CX

and AX .

CX is used to denote the map space of a class-X accelerator given a constraint in total

HW resources available. Therefore, CX is a constrained map space. Taking Class-1xxx

accelerators as an example, the total buffer size within the accelerator will directly limit

the number of possible tiling choices. Similarly, for Class-xxx1, the total number of PEs

are the constraint. No such resource constraints exist for order and parallelism. CX can be

viewed as the map-space of a fully-flexible accelerator within that class. Note that CX is

workload-agnostic. For e.g., C1000 captures all possible tile sizes that can fit in the buffers,

agnostic of tile sizes that make sense for the workload (as we discuss later in this section).

Thus in Figure 3.5, it captures a map-space beyond what the specific workload needs.

Given the same HW resource constraint, the target accelerator in class-X might add

additional constraints, creating its own map space AX . AX will always strictly be a subset

of CX , as shown in Figure 3.5. For e.g., given a total buffer size, an accelerator with hard

partitioned buffers for inputs, weights and outputs will cover a smaller map-space (i.e., AX )

than theoretically possible in one that provides full flexibility in partitioning the buffers (i.e.,

CX ).

Workload Map Space: This denotes the possible mappings for a given workload ω

regardless of underlying HW, noted as (W ω
X ). For example, for a CONV layer in ResNet50

(CONV2 1), with 64 output and 64 input channels, 3x3 weight kernel, and 56x56 activations,

the entire workload map space is all the possible combinations of 6 parameters with values

from 1 to its dimension size (e.g., 1-64 for output channel). However, not every tiles can fit

into the limited on-chip buffer (whose map space is captured by CX ). Therefore, for C-1xxx
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class, CX often cannot cover the full W ω
X , as Figure 3.5 shows.

Workload-dependent Map Space: This is the intersection of hardware-dependent map

space (CX and AX ) and the workload map space (W ω
X ), which creates Cω

X and Aω
X in Fig-

ure 3.5.

Feasible Map Space: Aω
X , the map space of the target accelerator on a given workload,

is the actual map space the mapper is allowed to explore. The size of Aω
X is the value of

|Mappingssupported| in Equation 3.1.

Flexibility Fraction or Flexion: The fraction of supported map space to the possible

map space.

Hardware-dependent Flexion (H-F): Accelerators in the same flexibility class can be

implemented with different degree of flexibility, whose feasible map space percentage is

AX /CX . We call this hardware-dependent Flexion (H-F).

Workload-dependent Flexion (W-F): Different workloads will have different shapes

and sizes of the map space. To understand how much portion of the map space the target

accelerator can support for the current workload, we define workload-dependent Flexion

(W-F) as Aω
X /W ω

X .

3.2.2 Full and Partial Flexibility

Any accelerator in class-X can have a grey-scaled degree of flexibility support (0¡ flexibility

degree ¡=1) . This is illustrated for two axes of flexibility (for simplicity) in Figure 3.5(d). For

ease of referring, we use the terms FullFlex-X, PartFlex-X and InFlex-X in our evaluations

in §3.4 and §3.5. For e.g., FullFlex-0001 is an accelerator that supports all possible shapes

S (such as MAERI [49]), while PartFlex-0001 is an accelerator that supports a subset of

shapes S (e.g., Eyeriss [124] to simplify hardware), and InFlex-0001 supports no flexibility

in shape (such as the 128x128 systolic array within TPU-v3 [132])3.

3InFlex-0001 is equivalent to InFlex-0000 but we make the S-bit high for ease of comparison against the
partial and fully flexible versions in that class.
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Fig. 3.6: Flexibility-Aware Automated Design-Space Exploration Framework.

3.3 Flexibility-Aware Design-Space Exploration

Ideally, the above formalism is (A) precise enough to capture a quantifiable constraint

on the shape of the map-space, and (B) abstract enough not to make the DSE problem

intractable. To demonstrate this, we extend an open-source DNN mapper, GAMMA [134,

59], which uses a genetic algorithm to search through a large search-space (∼1024 [134]) in

a sample-efficient manner. We use the same genetic search technique for DSE and MSE

where applicable.

Modules for Flexibility-awareness. The native mapper only supports either inflexible

accelerators (accelerators in class-0000 aka InFlex-0000) or fully flexible accelerator in class-

1111 (FullFlex-1111). We extend it with two additional features: (i) Ability to constrain the

search within 16 different accelerator classes (i.e., FullFlex-xxxx). (ii) Ability to constrain

the search further in each class for PartFlex accelerators.

These features are implemented by adding different levels of constraints to the map space

of the native mapper. It includes modules for understanding the flexibility specification

from input, encoding flexibility into constraints and updating the mapping exploration

operators [134] correspondingly4.

Modules for Area, Power for Estimating Cost of Flexibility. To estimate hardware

overhead, we implemented RTL of the various components described in Figure 3.4, synthe-

sized them using Synopsys DC with Nangate 15nm library [139] and used Cadence Innovus

4We do not go into engineering details in the interest of space, but will open-source the mapper upon paper
acceptance.
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Table 3.1: Hardware resources and baseline flexibility TOPS.

HW Resources Number of PEs: 1024, on-chip buffer: 100KB

Mapping Config
T: [K:64,C:16,Y:3,X:3,R:3,S:3] tile size,
O: KCYXRS order, P: K-C parallel, S: 16x64 PE array

Table 3.2: Area cost of accelerators with different flexibility.

InFlex T-Flex O-Flex P-Flex S-Flex PartFlex FullFlex
Area
µm2 736,843 763,874

(+0.004%)
738,458
(+0.21%)

737,720
(+0.11%)

737,055
(+0.02%)

738,209
(+0.19%)

739,576
(+0.37%)

for place-and-route. We synthesized the SRAM buffers with SAED32 education library

from Synopsys, and scaled it to 15nm. The final cost model takes in the mapping constraint

file to understand the required flexibility of the accelerator and outputs its area/power/energy

cost. We modularized these building block and build a cost model, which is embedded in

flexibility-aware DSE (Flexibility overhead cost estimator in Figure 3.6).

Toolflow. As shown in Figure 3.6, the flexibility-aware DSE takes in DNN model

description, baseline HW resources, and HW flexibility specification. Three of them together

defines (or so-called selects) the map space that the internal MSE tool works on. After

its internal MSE tool converges or reaches a pre-defined number of sampling budget5, it

terminates the optimization and outputs the best-found design point and its HW performance

(runtime, energy, area, and power).

3.4 Evaluation I: Isolation Study on Flexibility Axes

In this section, we demonstrate how architects could utilize the flexibility-aware toolflow

to tractably explore different map-space constraints on candidate designs. Simultaneously,

we leverage the toolflow constraints to target the DSE in order to isolate and quantify the

contributions of the T/O/P/S axes.
5Throughout the experiments, we set the genetic algorithm hyper-parameter as 100 populations, 100

generations, and thus having 10K sampling budget. The mutation/crossover rate and execution rate of other
evolving functions as 0.5. We set these by applying a hyper-parameter search [140].
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3.4.1 Methodology

Workloads. We use MnasNet [141], which is a high speed and high accuracy model found

by Neural Architecture Search (NAS), for our evaluation, since networks found by NAS have

been recently achieving state-of-the-art performance.We also look into three types of models:

Vision (Alexnet [125], Resnet50 [142], MobilenetV2 [126]), Language (BERT [127]), and

Recommendation (NCF [143], DLRM [144]).

Target Accelerators. For the targeted isolation studies, we formulate three accelerators

with different levels of flexibility: i) an inflexible accelerator (InFlex), using a fixed and

unchangeable TOPS configuration, ii) a partially flexible accelerator (PartFlex) with some

constrained capabilities that we describe in the relevant sections, and iii) a fully flexible

accelerator (FullFlex), which can support the full map-space, as was described earlier in

§3.2.2. These accelerators are built with the HW resources and baseline configuration listed

in Table 3.1, and the area overhead for different flexibility is shown in Table 3.2. For each

study, we characterized the full neural network across all layers and present the overall

runtime, energy, and energy-delay product (EDP) for the best-found mappings. Furthermore,

we then present detailed analysis of three layers with significantly different aspect ratios

from MnasNet to illustrate the correlation between performance.

Optimization Objective. Across our experiments, we set the optimization objective to

minimum runtime. However, other objectives such as energy, area, energy-delay-product

(EDP), performance-per-watt, and so on, are all feasible. We can also use multi-objective

formulation to optimize two or more objectives simultaneously.

Map-space Visualization. Finally, for each of the targeted isolation studies, we present

a Venn diagram in the style of Figure 3.5 drawn to scale (provided in each figure) with

the areas capturing the number of mappings. Each Venn diagram plots the average of the

metrics across all layers of the model.

Axis Isolation. We investigate the impact of standalone flexibility of Tile (class-1000),

Order (class-0100), Parallelism (class-0010) and Shape (class-0001) with the target accelera-
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Fig. 3.7: Tile Axis Isolation. (a) Performance comparisons of accelerators with different level of Tile
flexibility running Mnasnet model. (b) Venn diagram of Tile map space on Mnasnet. We use on-chip
buffer size=4K in this experiments. Scale: Total Data points in W ω

T = π(40)2. Runtime/Energy/EDP
are normalized against values of InFlex-1000.

tors described by varying the constraints given to the tool. This aspect of the evaluation is not

intended to reflect the typical usage of the tool, but rather as a limit study that characterizes

the most extreme points in the overall design space.

3.4.2 Isolation: Tile Flexibility

We study the impact of tile flexibility with three kinds of accelerators: InFlex-1000 (or

InFlex-00006), uses the fixed baseline tile sizes; PartFlex-1000 uses hard-partitioned buffer

with partition ratio of 1:1:1 for weight, input, and output buffer, and uses flexible tile sizes;

6InFlex-X (X=0000 to 1111) indicate the same constraint in all 16 classes.
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Fig. 3.8: The runtime performance and workload Flexion of fully-Tile-flexible accelerators with
different buffer sizes. (W-F: Workload-dependent Flexion.)

FullFlex-1000 uses soft-partitioned buffer and flexible tile sizes. Note that the hardware

trade-off between hard-partitioning and soft-partitioning significantly increases the energy

per on-chip memory access, but can also result in fewer expensive off-chip accesses [47].

Map Space. Hardware-dependent Flexion (H-F) AX/CX is decided by the partitioning

strategy which is around 0.22 for 1:1:1 partition. Value 0.22 is the area ratio of AX over CX

in Figure 3.7(b). Aω
X is the intersection of W ω

X and AX , showing how many different tiles

that workload ω can explore and are supported by the accelerators. Aω
X of InFlex-1000 is 1,

since it leverages only 1 choice, while Aω
X of PartFlex-1000 will be smaller than the one for

FullFlex-1000, since hard-partitioning is a stricter constraint. These can be observed by the

increase of overlapped area of W ω
X and AX from InFlex-1000 to FullFlex-1000. Note that the

workload-dependent Flexion (W-F) Aω
X /W ω

X is directly related to the ratio of the supported

map space to the entire map space, where larger values implies the given flexibility in the

investigating accelerator can support the current workload better.

Performance. PartFlex-1000 allows the tile sizes to be flexible, which reduce runtime

by 98%, as shown in Layer-1 (L1) in Figure 3.7(a). It chooses smaller K, C sizes and larger

Y, X sizes to tailor for Layer-1. While enabling soft-partitioning (FullFlex-1000), with

more tile choices, the runtime improves by another 6×. In Layer-16, the C tile sizes are
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Table 3.3: Definition of Map Space and Flexibility.

CX Map space of an accelerator class (class-X)
AX Map space of the target accelerator in class-X
W ω

X Map space of workload ω

Cω
X CX ∩W ω

X . Workload-dependent map space of class-X

Aω
X

AX ∩W ω
X . Feasible map space. Workload-dependent

map space of the target accelerator

H-F
AX/CX . Hardware-dependent Flexion of the target
accelerator. Supported map space percentage
in the entire class-X map space.

W-F
Aω

X /W ω
X . Workload-dependent Flexion of the

target accelerator. Supported map space percentage
in the entire workload ω space.

chosen to divide the C dimension size perfectly. The tile configurations are chosen under

the criterion of best runtime, and thus energy does not show significant difference. However,

if we used least energy as criterion, different points would be picked, demonstrating a larger

energy difference between InFlex-1000 and PartFlex-1000/FullFlex-1000. Overall, with

this criterion, in class-1000, FullFlex-1000 can achieve speedup of 4.8× and 1.9× over

InFlex-1000 and FullFlex-1000 in end-to-end Mnasnet.

Sensitivity Analysis: Buffer Size. The space of supported tile shapes is directly affected

by the buffer size, which is the intersection area of SX and W ω
S in Figure 3.7(b). As shown in

Figure 3.8, with increasing buffer sizes, the workload-dependent Flexion increases and the

runtime improves. We can observe that the runtime improvement saturates at a buffer size

of around 6.4KB, which is sufficient for most of the layers in MnasNet. Conversely, when

the buffer size is small, the flexibility to execute on soft-partitioned buffer (FullFlex-1000)

becomes more valuable to achieve a good runtime.

Takeaways. For a model like Mnasnet with large diversity in layer dimensions, we find

that tile flexibility is crucial for the accelerator to capture the map-space. For the most part,

the hard-partitioned PartFlex-1000 provides significant runtime benefits over an InFlex-1000

but is strictly worse than FullFlex-1000. We also observe that tile flexibility is more crucial

for accelerators with smaller buffer sizes.
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InFlex0100 PartFlex0100 FullFlex0100(a)

(b)
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4.5 (data points) X=0100

PE=16x64 Accel Runtime Energy EDP H-F W-F Chosen 
InFlex0100 1.00 1.00 1.00 0.001 0.04 YXKCRS

PartFlex0100 0.82 1.003 0.82 0.004 0.13 KCRSYX
FullFlex0100 0.80 0.9997 0.80 1.00 1.00 CXYKRS

FullFlex1111 0.002 0.99 0.002 - - YCKSXR

InFlex0100 1.00 1.00 1.00 0.001 0.04 YXKCRS

PartFlex0100 0.77 0.998 0.77 0.004 0.13 KCRSYX
FullFlex0100 0.74 0.997 0.74 1.00 1.00 CKXYRS

FullFlex1111 0.002 1.29 0.002 - - KCYRXS

InFlex0100 1.00 1.00 1.00 0.001 0.01 YXKCRS

PartFlex0100 1.00 1.09 1.09 0.004 0.03 KCRSYX
FullFlex0100 0.997 1.001 0.998 1.00 1.00 KCXYRS

FullFlex1111 0.0003 0.48 0.0001 - - KSYRXC

InFlex0100 1.00 1.00 1.00 0.001 0.01 -

PartFlex0100 0.90 1.02 0.91 0.004 0.03 -
FullFlex0100 0.89 0.996 0.89 1.00 1.00 -

FullFlex1111 0.004 1.00 0.004 - - -

Layer16
(120,40,28

,28,1,1)

Layer21
(40,120,28

,28,1,1)

Layer29
(1,480,14,
14, 5,5)

Mnasnet-
Model

Fig. 3.9: Order Axis Isolation. (a) Performance comparisons of accelerators with different level
of Tile flexibility running Mnasnet model. (b) Venn diagram of Tile map space on Mnasnet. Run-
time/Energy/EDP are normalized against values of InFlex-0100.
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3.4.3 Isolation: Order Flexibility

The three types of accelerators are configured as follows: InFlex-0100, using the output-

stationary order YXKCRS, PartFlex-0100, with three order choices including output, input,

and weight stationary order, and FullFlex-0100, with flexible order.

Map Space. H-F AX/CX is affected by the number of supported order choices, which

depends on the available HW support described in Figure 3.4. For order, the map space does

not depend on the number of compute or memory resources such as PEs and buffer sizes.

Therefore, CX can encompasses all design points in W ω
X , as shown in Figure 3.9(b).

Performance. From Layer-16 in Figure 3.9(a), we observe that simply adding 3 out

of 6! order choices—and consequently increasing workload Flexion by a small amount—

improves runtime to a near-optimal value. This demonstrates that for accelerator design,

partially supporting order flexibility may expose a better cost-performance trade-off, if the

supported order choices expose distinct behaviors. In our evaluation, we also found that

many different orders will end up with the similar runtime. This observation motivates

the design of PartFlex–0100, a simpler and lower-cost accelerator that achieves similar

performance as FullFlex–0100. Overall, in class-0100, full flexibility support can still

achieve 1.12× and 1.01× speedup over the two baselines.

Takeaways. We find that the output stationary loop-order in InFlex-0100 works rea-

sonably well across all layers. Adding support for three loop-orders (output, weight and

input) in PartFlex-0100 gets nearly the same performance as supporting all 6! loop orders in

FullFlex-0100.

3.4.4 Isolation: Parallelism Flexibility

The three types of accelerators are as follows: InFlex-0010, using default K-C parallelism,

PartFlex-0010, with a choice of K-C or Y-X parallelism, and FullFlex-0010.

Map Space. Since we investigate CONV-accel (6-dim) and consider two-way paral-

lelism. We have CX =6x5=30 different choices, while the AX for InFlex-0010 and PartFlex-
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InFlex0010 PartFlex0010 FullFlex0010(a)

(b)
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1.5 (data points)
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X=0010

PE=16x64 Accel Runtime Energy EDP H-F W-F Chosen 
InFlex0010 1.00 1.00 1.00 0.03 0.08 KC

PartFlex0010 0.48 1.59 0.76 0.07 0.17 YX
FullFlex0010 0.46 1.20 0.55 1.00 1.00 XK

FullFlex1111 0.00003 0.90 0.00002 - - XK

InFlex0010 1.00 1.00 1.00 0.03 0.08 KC

PartFlex0010 0.88 1.85 1.63 0.07 0.17 YX
FullFlex0010 0.48 1.50 0.72 1.00 1.00 KS

FullFlex1111 0.00006 0.92 0.00006 - - KC

InFlex0010 1.00 1.00 1.00 0.03 0.05 KC

PartFlex0010 0.50 0.50 0.25 0.07 0.10 YX
FullFlex0010 0.05 1.62 0.09 1.00 1.00 RS

FullFlex1111 0.0001 0.16 0.00001 - - KY

InFlex0010 1.00 1.00 1.00 0.03 0.07 -

PartFlex0010 0.81 0.87 0.70 0.07 0.14 -
FullFlex0010 0.59 0.99 0.58 1.00 1.00 -

FullFlex1111 0.0004 0.56 0.0002 - - -

Layer10
(72,24,56,

56,1,1)

Layer16
(120,40,28
, 28,1,1)

Layer29
(1,480,14,

14,5,5)

Mnasnet-
Model

Fig. 3.10: Parallelism Axis Isolation. Performance comparisons of accelerators with different level
of Parallelism flexibility running Mnasnet model with (a) 16x64 PE array and (b) 32x32 PE array. (c)
Venn diagram of Parallelism map space on Mnasnet. PRuntime/Energy/EDP are normalized against
values of InFlex-0010.
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0010 is 1 and 2, respectively.

Performance. Figure 3.10(a) shows that different workloads can have different optimum

parallelism choices, and supporting only a subset of choices may not be sufficient to

approach optimal performance (Layer-16, 19). Layer-29 is a depth-wise CONV, where

there is no cross-input channel computation. InFlex-0010’s restriction of parallelism only

across K and C dimensions deprives it of other parallelism opportunities such as YX- or

RS-parallelism, which could be a better choice for this layer. Overall in class-0010, FullFlex-

0010 consistently achieves around 1.6× and 1.3× better runtime relative to the fixed and

partially flexible accelerators, respectively.

Takeaways. We observe the flexibility in parallelism is highly-sensitive to the shape

of the physical array. We also see that non-conventional parallelism choices (such as XK

or KS) are found by the mapper, suggesting that supporting full flexibility in parallelism

choices is valuable.

3.4.5 Isolation: Shape Flexibility

The accelerators compared are as follows: InFlex-0001, using a square PE array, PartFlex-

0001-A, a flexible PE array composed of a modular 16 × 16 PE-array building block,

PartFlex-0001-B, a flexible PE array with a 4×4 building block, and FullFlex-0001.

Map Space. CX is decided by the size of the PE array. AX for the PartFlex-0001 is the

number of different array shapes that can be composed by the smaller building block. A

smaller building block can enable more fine-grained PE array shape exploration and thus

exposes a larger configuration space, which can be observed by the different size of AX for

the two partially flexible accelerators in Figure 3.11(b).

Performance. When the size of parallelism dimension is larger than the size of the

building block (32× 32, 16× 16, 4× 4, or flexible), we need to fold the computation.

When they are not perfectly divisible, the last fold of computation will introduce compute

under-utilization, as shown in Layer-15 and Layer-16 of PartFlex-0001-A in Figure 3.11(a).
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InFlex0001 PartFlex0001A FullFlex0001
(a)

(b)

PartFlex0001B
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9 (data points) X=0001

PE=1024 Accel Runtime Energy EDP H-F W-F Chosen 
InFlex0001 1.00 1.00 1.00 0.001 0.01 32x32

PartFlex0001A 0.67 1.00 0.67 0.004 0.06 48x16
PartFlex0001B 0.50 0.97 0.48 0.06 0.25 24x42
FullFlex0001 0.50 0.97 0.48 1.00 1.00 24x42
FullFlex1111 0.04 0.95 0.03 - - 72x14
InFlex0001 1.00 1.00 1.00 0.001 0.03 32x32

PartFlex0001A 0.75 0.98 0.74 0.004 0.08 16x64
PartFlex0001B 0.63 0.99 0.62 0.06 0.25 40x24
FullFlex0001 0.63 0.99 0.62 1.00 1.00 40x25
FullFlex1111 0.04 0.96 0.04 - - 8x128
InFlex0001 1.00 1.00 1.00 0.001 0.01 32x32

PartFlex0001A 0.89 0.99 0.88 0.004 0.05 16x48
PartFlex0001B 0.89 0.99 0.88 0.06 0.25 16x48
FullFlex0001 0.87 0.99 0.86 1.00 1.00 24x42
FullFlex1111 0.80 1.21 0.97 - - 24x42
InFlex0001 1.00 1.00 1.00 0.00 0.02 -

PartFlex0001A 0.98 1.00 0.97 0.00 0.04 -
PartFlex0001B 0.96 0.99 0.95 0.06 0.20 -
FullFlex0001 0.96 0.99 0.95 1.00 0.98 -
FullFlex1111 0.15 1.03 0.15 - - -

Layer15
ParSize:
[72, 40]

Layer16
ParSize:
[40, 120]

Layer25
ParSize:
[80, 480]

Mnasnet-
Model

Fig. 3.11: Shape Axis Isolation. (a) Performance comparisons of accelerators with different
level of Tile flexibility running Mnasnet model. (b) Venn diagram of Tile map space on Mnasnet.
Runtime/Energy/EDP are normalized against values of InFlex-0001.
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Fig. 3.12: The runtime performance and workload Flexion of fully-Shape-flexible accelerators with
different size of PE arrays. (W-F: Workload-dependent Flexion)

Interestingly, PartFlex-0001-B can mostly reach optimum performance, since most of the

layers have K, C dimension sizes that are multiples of 4. Note that we use the default

K-C parallelism strategy in this experiment. PartFlex-0001-B reaches almost the same

performance as the fully-flexible one with only 6% flexibility. Overall, we observe that

full flexibility achieve speedup of 1.05×, 1.02×, and 1.001× over the three baselines,

respectively.

Sensitivity Analysis: Array Size. A larger number of PEs can allow more array

configuration options and hence has larger hardware Flexion, as shown in Figure 3.12. We

can also observe the diminishing return around 45×45 to 64×64 points when the provided

number of PEs is starting to become larger than the maximum K-C parallelism that some of

the layers can leverage, leading to under utilization of the PEs.

Takeaways. We observe the flexibility in array shape is highly crucial for utilization

across layers. However, it is highly sensitive to the dimensions being mapped spatially.

This indicates that flexibility in P and S go hand-in-hand (more discussion on this in §3.5).

One key observation is that a partially flexible accelerator using multiple fixed-size small

arrays (e.g., 4x4) reaches almost the same performance as the fully-flexible one. This

observation is consistent with some design choices in the existing accelerator designs, e.g.,

the 4×4 matrix multiplier in CUDA tensor cores [145]. The partially flexible accelerators
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Flexibility Class Alexnet Mnasnet Resnet50 Mbnet BERT DLRM NCF

InFlex0000-Alexnet-Opt 1.00 1.00 1.00 1.00 1.00 1.00 1.00
InFlex0000-X-Opt 1.00 0.96 0.92 0.96 0.25 0.14 0.07

FullFlex1000-Alexnet-Opt 0.14 0.57 0.07 0.48 0.25 0.99 0.99

FullFlex0100-Alexnet-Opt 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FullFlex0010-Alexnet-Opt 1.00 0.92 1.00 0.88 1.00 0.25 0.57
FullFlex0001-Alexnet-Opt 1.00 0.82 0.91 0.88 1.00 0.58 0.63
FullFlex0011-Alexnet-Opt 1.00 0.51 0.60 0.53 0.90 0.10 0.12
FullFlex0101-Alexnet-Opt 1.00 0.60 0.65 0.61 0.90 0.16 0.40
FullFlex1001-Alexnet-Opt 0.08 0.57 0.07 0.37 0.22 0.32 0.18
FullFlex0110-Alexnet-Opt 1.00 0.60 0.65 0.61 0.90 0.16 0.40
FullFlex1010-Alexnet-Opt 0.06 0.17 0.07 0.15 0.22 0.04 0.04
FullFlex1100-Alexnet-Opt 0.14 0.33 0.07 0.30 0.22 0.66 0.60
FullFlex1110-Alexnet-Opt 0.06 0.17 0.09 0.15 0.22 0.04 0.04
FullFlex1011-Alexnet-Opt 0.06 0.15 0.09 0.14 0.22 0.04 0.04
FullFlex0111-Alexnet-Opt 1.00 0.51 0.60 0.53 0.90 0.10 0.12
FullFlex1101-Alexnet-Opt 0.08 0.33 0.12 0.30 0.22 0.16 0.18
FullFlex1111-Alexnet-Opt 0.06 0.15 0.07 0.14 0.22 0.04 0.04
PartFlex1111-Alexnet-Opt 0.52 0.42 0.20 0.39 0.26 0.07 0.07
Underline: Reach better runtime over InFlex0000-Alexnet-Opt.
Bold: Reach better runtime over InFlex0000-X-Opt.
Fig. 3.13: Runtime performance of accelerators with different flexibility. InFlex-0000-X-Opt means
class-0000 (fixed) accelerator that is optimized for DNN model X (X= Alexnet, Mnasnet, etc.). The
runtime in each row is normalized by the runtime of the values of InFlex-0000-Alexnet-Opt.

are also sufficient for many manual-design CNNs, e.g., ResNet50 [142], VGG16 [146],

whose dimension sizes are mostly multiples of 64 in K, C dimensions. However, shape

flexibility could become increasingly important because of two use cases, as follows. (1)

More and more neural network designs are relying on NAS, which could generate more

diverse layer shapes. MnasNet is one such NAS network, but it is highly modularized, while

more diverse networks could be developed in future to target different applications. (2)

Pruning techniques can change layer shapes in diverse ways.

3.5 Evaluation II: Accelerator Future-Proofing

In this experiment, we demonstrate how this chapter enables a first-of-its-kind experiment:

assessing the advantage of adding flexibility to an accelerator at design time in terms of
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future-proofing, quantifying the trade-off between hardware cost and the performance gain

on “future” workloads. To start, we design an inflexible accelerator tailored for Alexnet,

InFlex-0000-Alexnet-Opt, by finding a fixed configuration of TOPS to optimize its runtime.

This represents an accelerator such as Eyeriss [124] which was a optimized for a fixed

workload in a certain year (∼2014).

Fixed Alexnet-Opt Accel on Future Models. We now progress our accelerator into

the future. When new neural network models (model X) are introduced. We design InFlex-

0000-X-Opts, representing a new accelerator optimized just for this new workload—though

for comparison purposes we always use roughly the same number of hardware resources

as InFlex-0000-Alexnet-Opt. First, we use the InFlex-0000-Alexnet-Opt to run the future

models and compare the performance witht the future model (X) optimized InFlex-0000-

X-Opt. We observe that InFlex-0000-Alexnet-Opt can achieve similar performance to

InFlex-0000-X-Opt when X is a CNN model, which follows the intuition since Alexnet is

also a CNN, which might share similar characteristics. However, for fully-connected (FC)

layer dominated models such as BERT, DLRM, and NCF, we see 1/0.25 = 4x to 1/0.07=14x

slowdown. This shows that a fixed configuration can hurt performance when new models

start to show notably different characteristics (e.g., CONV- vs FC-dominated).

Single-Axes Flexible Alexnet-Opt Accel on Future Models. Next, we go back to the

“past” to explore the effect of adding single-axes flexibility when designing Alexnet-Opt

accelerator, as shown in rows 3-6 of Figure 3.13.

We see that in MnasNet, FullFlex-1000-Alexnet-Opt is 1.00/0.57 = 1.75× better than

InFlex-0000-Alexnet-Opt. We found tile flexibility to be crucial for the three CNNs and

BERT. However, it is not as effective in DLRM and NCF. The reason is as follows. In this

experiment, InFlex-0000-Alexnet-Opt found Y-K parallelism to be optimal for Alexnet, and

this stays valid for other CNNs, too. BERT is composed of matrix-matrix multiplications,

the GEMM (M,N,K) dimensions got mapped to the (K conv,C,Y) dimensions of the CONV

accelerator respectively. The Y-K parallelism in the accelerator helped BERT as well.
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However, DLRM and NCF use matrix-vector multiplications, where the K dimension

is 1 for the vector. Mapping them on the InFlex-0000-Alexnet-Opt accelerator leads to

under-utilization along the Y-parallelism dimension of the accelerator, leading to loss in

performance. In order to run DLRM and NCF efficiently, the ability to switch to other

parallelism strategies become crucial.

Multiple-Axes Flexible Alexnet-Opt Accel on Future Models. There are 10 other

variants of combinatorial flexible accelerators, as shown in row 7-16 of Figure 3.13. We see

that (P)+(S) together (0011) work well and show significant performance gain compared

to the separated counterpart (0010, 0001). (T)+(P) with only two flexibility axes enabled

can achieve comparable performance with FullFlex-1111-Alexnet-Opt in multiple cases.

Interestingly, we see that (T)+(O) works much worse than (T)+(P). This shows that (T),

which individually works well still needs to find the right other flexibility axes to have

another level of performance boost.

Fully Flexible Alexnet-Opt Accel on Future Models. Finally, we investigate two

kinds of flexible accelerators: FullFlex-1111-Alexnet-Opt, and PartFlex-1111-Alexnet-Opt.

PartFlex-1111-Alexnet-Opt uses the configurations described in the evaluations in §3.4

(using variant A for Shape).

While more flexibility support introduces larger area cost, it is noteworthy that it brings

with potential to leverage better runtime even in the original AlexNet. This is because

AlexNet itself has a lot of variation across its layers. A fixed accelerator that optimizes for

the average-case across all layers may miss the potential to reach the best case for each

individual layer. For e.g., FullFlex-1111-Alexnet-Opt speeds up the baseline InFlex-0000-

Alexnet-Opt by 1/0.06=16.7x times in Alexnet. Furthermore, FullFlex-1111-Alexnet-Opt

constantly achieves better performance than InFlex-0000-X-Opts.

Takeaways. Accelerators optimized for certain layers (such as CONV2D) are more

future proof, even if the layer dimensions of future models change. This is because most

models show abundant parallelism across the input and output channels. Often tile flexibility
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seems sufficient to capture most benefits. However, for FC-dominated layer types, flexibility

in parallelism and shape starts reaping more benefits since there are fewer dimensions

and GEMMs can be irregular. As models with several other layer types emerge (e.g.,

FC/DWCONV/Attention/...), investing in flexibility is valuable.

3.6 Related Work

Flexible DNN accelerators. Flexibility support in DNN accelerators is an active topic of

research, with several “flexible” accelerators proposed over the years [12, 48, 49, 3, 129].

The taxonomy from this work can tease out the specific axes of flexibility each provided and

enable quantitative comparisons.

Mapping Tools. Several mapping tools have been proposed to search through map-

spaces of flexible accelerators. In this work, we extend GAMMA [134] to support flexibility-

aware optimization.

3.7 Summary

We demonstrate that increased formalism of the notion of flexibility leads to concrete benefits.

Namely: (A) the ability to taxonomize existing accelerators along flexibility axes, (B) the

ability to precisely quantify the shape of a map-space against a theoretical upper-bound, and

(C) the ability to integrate flexibility into existing DSE flows. We identify that in several

cases, partial flexibility along some of the axes is sufficient for capturing an optimized

mapping. Most significantly, our evaluation of a 2014-style accelerator demonstrates that a

design-time investment in flexibility can lead to concrete improvements in future-proofing

after deployment time.

Of course, the field of deep learning is changing incredibly rapidly. Turing Complete

platforms such as GPUs and CPUs will undoubtedly continue to play a key and irreplaceable

role as the main platforms that allow machine learning experts to rapidly innovate. However,

we believe that it is equally important that the most successful neural network architectures
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can be accelerated via hardware specialization, without ASIC designers risking complete

obsolescence after deployment. Ultimately, the key reason flexible mapping support can be

omitted from hardware designs is not area or energy, but simply design and verification effort,

as well as mapper toolchain support. We hope that the research in this chapter will ultimately

lead to more research that allows architects to quantify the benefits of “future-proofing”

with the same level of precision as present-day budgets. Finally, while most existing DSE

framework focus on finding the “optimal design point”, our approach armed with the ability

to systematically constructing map-spaces of fully/partially flexible accelerators, opens an

interesting future avenue of research to identify “regions of optimal (i.e., high-performing)

design space”, leading to better explainability of the DSE algorithms and interpretability of

the accelerator deign space.
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CHAPTER 4

GAMMA: A GA-BASED MAPPER

In the previous section, we clearly define the map space of the DNN accelerator, which

includes Tiling, Ordering, Parallelism, and Shape, four mapping axes. Next, we discuss

how to create an algorithm for optimal mapping search. We call the search algorithm for

mapping – mapper.

Potentially, all the optimization algorithms can be plugged into the Map Space Explo-

ration (MSE) framework and becomes a viable mapper. However, the sampling efficiency of

the mapper is the key for it to be useful. In this chapter, we will discuss why finding optimal

mapping is important, how to create an efficient mapper, and what insight we learn from the

development of this new mapper.

Although multiple prior works [9, 51, 52, 30, 53, 54, 55, 56, 57, 18] have studied the

mapping problem for DNN accelerators, the HW-mapping search space (exceeding O(1036)

even for a single layer of a DNN, as shown later in §7.1.6) makes the problem highly

challenging. To cope with this challenge, most prior works restrict the search space. For

e.g., coarse-grained strided exhaustive search [23, 12, 16, 17, 22], random search [4], fixed

parallelism [23, 16, 22, 56, 57, 18], or limited search for tile sizes for one or more fixed

dataflows [21, 12]). Alternately, ML-based search techniques have also been leveraged

for guided search to increase sampling efficiency [31, 24, 26, 27]; however, they need to

restrict some aspects of the mapping space (e.g., fixing the parallelism levels) to adapt to the

ML algorithms. Such restrictions of the mapping space can lead to local optimal mappings

which are significantly sub-optimal, as recent works have highlighted [4, 8].

To efficiently deal with the massive search space of HW-mappings, we propose GAMMA

(Genetic Algorithm-based Mapper for ML Accelerators). Unlike prior works, GAMMA

performs a complete search, considering all three aspects of HW-mapping (tiling strategy,
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computation order, and parallelization strategy). Furthermore, GAMMA can explore up

to three levels of parallelism within the mapping, unlike prior works that target one to

two levels. Thus GAMMA can work across both single-accelerator [82, 147] and multi-

accelerator [8] systems. The key novelty in GAMMA is (i) a specialized genetic encoding

of all three aspects of HW mapping, (ii) specialized mutation and crossover operators to

evolve new mappings, and (iii) new genetic operators to model the behavior of adding and

removing levels of parallelism. We also develop a closed-loop workflow by integrating

GAMMA with a popular analytical cost-model for DNN mappings called MAESTRO [58]

to fully automate the mapping search problem.

4.1 Challenges with Baseline Methods

The baseline methods in §2.6 can all be used for HW-mapping search. However many

algorithms (e.g., CMA-ES, PSO, DE, and also standard GA) work in rigid search space,

i.e., the number of parameters in a design point is pre-defined, which restricts the levels of

parallelism (§2.3) to a pre-defined number and shrinks the potential search space by log

scale. Our goal is to parameterize the level of parallelism as well. We need a framework that

accepts input with flexible lengths. There are many possible ways to realize such a flexible

framework, such as adding an extra auto-encoder [148] or using an sequence-to-sequence

structure [149] at the input layer. However, they require another level of optimization,

training, or approximation, which brings in relatively large overhead comparing to the

optimization algorithm (DE, ES, standard GA) itself.

4.2 Genetic Algorithms (GA)

In this chapter, we develop a GA-based search technique. We list some common terminology

for GA, namely gene, genome, elite, population, we will use across this chapter in Table 7.1.

A genome is a mapping solution in our context. We reproduce the next generation by

mutation and crossover. The goal of GA is to retain well-performing genes across the
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Table 4.1: Terminology in Genetic Algorithm (GA).
Term Description
Gene An encoded value that represents accel. sel. or job prio. of a job.

Genome A series of genes that represent the entire schedule about accel. sel. or job
prio. of a batch of jobs.

Individual A series of genomes that fully represent the schedule of a batch of jobs.

Generation
An entire set of individuals forms a generation.
The generation evolves with time by mutation/crossover and selection of
the well-performing individuals to the next generation.

Crossover Blend two parents’ genes to reproduce children’s genes.
Mutation Randomly perturb a parent’s genes to reproduce children’s genes.

evolution.

Benefits of GA. GA is one of the most popular algorithms for the scheduling problem

for its lightness and simplicity [150, 151, 152, 153, 154]. Research shows GA reaches

competitive performance with deep reinforcement learning [155, 156], and hyperparameter

optimization problem. STOKE [103] and TensorComprehensions [31] use GA to search the

space of DNN code optimization. s.

Challenges with standard GA. Standard GA still falls into the pits of the algorithm

needing rigid input length. To this end, we develop a way to adopt GA to our problem by

designing a novel evolution mechanism, which allows it to be flexible, without adding up

immense overhead such as adding encoder or training an seq-to-seq model. We discuss

these details next.

4.3 Methodology

4.3.1 GAMMA Encoding scheme

We design a specific genetic encoding scheme for the HW mapping problem. For a 1-level

mapper, we encode them into a (7, 2) dimensions of the genome, which contains 7 pairs of

genes, as shown in Figure 4.1(a). A pair of the gene contains a DNN layer tensor notation

(e.g, K, C) and its tile size. The ordering of pairs reflects the computation order. The first pair

of gene tells the parallelizing dimension. The 2-level mapper in Figure 4.1(b) is encoded in
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K C R S X K Y
- 20 3 3 15 64 10

K C R S X K Y C X Y S R K C
- 20 3 3 15 64 10 !!" 5 5 1 1 8 1

(a) 1-level mapper

(b) 2-level mapper

Compute order

Parallelizing dim. Tile size

L2 mapper L1 mapper

L1 mapper

!!" < min(#PEs, tile size in L2 (20))

Gene
Genome

Genome

Fig. 4.1: The GAMMA encoding example of (a) 1-level mapper and (b) 2-level mapper.

the same manner. PL1 describes number of parallel L1-mappers, which is constrained by the

number of available PEs (the number of PEs defines the maximum amount of parallelism.),

and the corresponding tile size of the chosen parallelizing dimension (since we need at least

one element to distribute into each parallelism unit). The L1-mapper describes the inner

loop. The L2-mapper describes the outer loop, while containing PL1 number of instances of

L1-mapper.

4.3.2 Decoding Genomes into a Mapping

We outline how we describe the three aspects of mapping space in the cost model, and show

how the genomes from GAMMA are decoded into the cost model’s description. Figure 4.2(a)

is a mapper description in GAMMA and Figure 4.2(b) is its corresponding description in

the cost model (MAESTRO). The order of K, C, X, Y, R, S from left to right in (a) and

top to bottom in (b) reflect the computation order. The number paired with dimension in

(a) and the number inside the bracket in (b) reflects the tiling size on each dimension. In

MAESTRO, we note the parallelized dimension as SpatialMap and remaining dimensions

as TemporalMap. Therefore we mark the first element (indicating parallelizing dimension)

in (a) as SpatialMap in (b). A level of mapper in GAMMA can be translated as a Cluster in

MAESTRO, in which tiling strategy, computation order and parallelism dimensions are

fully described. We formulate multiple level of parallelism by concatenating the cluster. The

L1 and L2 mapper are decoded into the bottom and upper cluster.
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SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) Y’;
TemporalMap(3,3) X’;
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y’;
TemporalMap(3,3) X’;
TemporalMap(3,3) R;
TemporalMap(3,3) S;

K K C R S X Y C C K Y X R S
- 1 64 3 3 3 3 64 1 1 3 3 3 3

L2: Par. dim.

L1: Par. dim.

Tile sizes

Compute 
order

Decoded. 
L2-Mapping

Decoded. 
L1-Mapping

!!" = 64

L2-Mapper L1-Mapper

(a) Genome of 2-level mapper

(b) Decoded 2-level genome in cost model (MAESTRO) ’s description

Level of Par. 

Fig. 4.2: (a) GAMMA’s description of a 2-level mapper and (b) its decoded description for
cost model (MAESTRO) of a NVDLA-like [80] 2-level mapper.
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Elites
Sol.

DNN model/ 
DNN layers

Objective
(Latency/Energy)
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HW resources 

(PE/SL/SG)

HW eval. environment

HW Perf. 
Estimation

Fitness Evaluation Decode 
Extract Obj.
Check cstr.

HW 
statistics

Evaluation

Children

Gene 
decoder

Accel. DNN 
HW Mapper 

(Sol.)
(FPGA/ Programmable ASIC)

Configure

High speed

Low power Energy 
efficient

GAMMA

(MAESTRO)

(a) Structure and algorithm flow

(b) The summary of evolution in GAMMA

Optimization 
methods Description

Mapping Space Aspects
Tile 

Strat.
Com. 
Ord.

Par. 
Dim.

Par. 
Level

Baseline Methods Defined a Par. Level. Encode Tile Strat., Com. Ord., Par. Dim. into 
fixed length inputs, and evolve them with algorithms. ✓ ✓ ✓ ✘

G
A

M
M

A

Crossover Randomly pick two genomes from the parent subset. 
Interchange the value of their tile size. ✓

Mutation Mutate Dim.: Sample a new Par. Dim.
Mutate Tile size: Randomly pick a gene pair, sample a new tile size. ✓ ✓

Reorder Randomly pick two gene pairs. Swap their order. ✓
Growth Concatenate a randomly initiated L1-mapper at the tail. ✓
Aging Remove the L1-mapper at the tail. ✓

Summary ✓ ✓ ✓ ✓

Fig. 4.3: (a)The structure and algorithm flow of GAMMA, and (b) The summary of evolution
in GAMMA.
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4.3.3 Algorithm Flow

Figure 4.3 shows the flow of the GAMMA algorithm. We discuss the detail of each function

block next. We first describe how we adopt the generic evolution operators, Crossover

and Mutation, to the HW-mapping problem, and then introduce three additional evolution

operators (Reorder, Growth and and Aging) in GAMMA.

Initialization. Assuming population size P, we randomly initialize P number of the

1-level mappers. The only restriction is each tile size is smaller than the corresponding layer

dimension.

Evolution: Crossover. Crossover is to take advantage of the genes in some well-

performing genomes, which forms a parents subset. We randomly pick two genomes from

the parents subset. We blend their genes by interchanging the value of the tile size.

Evolution: Mutation - Parallel Dim. With a certain probability, which is set by the

mutation rate of the algorithm, we mutate the parallelism dimension by randomly sampling

one of the 6 dimensions of the tensor and setting it as a new parallelism dimension.

Evolution: Mutation - Tile Size. With a certain probability, we randomly pick paired

genes and assign a new random tile size for them. If the tile-size in the mapping does not

fit within the SL buffer of the PE for that operand, it is given a large penalty during its

evaluation, as we discuss later in §4.3.4.

Evolution: Reorder. Reorder is another format of mutation. We pick two paired genes

and swap their position in the genome, which reflect the reordering of the mapping.

Evolution: Growth. With a certain probability, we grow the genome by appending a

randomly initialized 1-level genome to the current genome, as shown in Figure 4.1(b). The

original L1 mapper will be promoted to L2-mapper, and the newborn genome is noted as

the new L1-mapper.

Evolution: Aging. The natural phenomenon of a person’s DNA keep shortening in the

lifespan is known as DNA aging. With a certain probability, we will ”age” the genome by

cutting out the tail of genome, an L1-mapper, which moves genome from (b) back to (a) in

63



Figure 4.1.

Evaluate and Selection. After evolution, we evaluate the populations by interacting

with the evaluation environment (Env), which we will describe in §4.3.4. Env will feedback

the fitness of each individual. We select the population that is eligible to enter the next

generation by the ranking of their fitness.

4.3.4 Flow for Automated Mapping Search

Constraint

Our target is to find the HW mapping of a DNN layer that fits within limited HW resources

- PEs and buffers. Different mapping lead to drastically different requirement of HW

resources, especially the buffer sizes. Note that a mapping implicitly runs over multiple

time iterations if the number of computations in the dimension to paralleize exceeds the

number of available PEs; however, the local (SL) buffer and global (SG) buffer sizes to run

each iteration (which comes from the tile sizes) is a hard constraint when searching through

the map-space.

Objective

The target is to minimize the objective. The objective could be any HW performance index

that the user is interested in such as latency, power, energy, area, energy-delay-product

(EDP), or other combinations of them. Minimizing the objective is not a trivial task since

there is no straight-forward solution even for a common tensor shape of a DNN layer.

Minimizing the latency as an example, the most efficient choice of parallelizing dimension

involves the shape of tensor, available PEs to parallelize, available SL/SG buffers to house

the fetched data, and the tile size of each dimension. All the decisions (or genes) correlate

and jointly decide the latency. Some common heuristics of parallelizing across activations

dimensions at the early layers and across channel dimensions at the late layers in CNN

becomes challenging when involving HW resource constraint and the multi-level parallelism

flexibility of mapping strategy.
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Interactive Environment (Env)

Structure: The Env is initialized with the target DNN layer, the accelerator constraint, and

the optimization objective (latency/energy/power). Env contains a HW performance cost

model, where we leverage MAESTRO [58] for its ability to model and evaluate arbitrary

spatial accelerators and mappings. When interacting with GAMMA, Env takes in an entire

generation of populations, decodes them into the input format of the cost model as describe

in §4.3.2, and feeds into the cost model to gather the statistics of their HW performance.

Finally, using the fitness function, which we discuss next, Env extracts fitness scores and

returns them to GAMMA.

Fitness Function: We extract the corresponding reward value (= -Perf. index) from the

statistics according to the set objective, and substitute it into the fitness function. We give

the individual a large penalty - a negative infinite - when the constraint is not met. That is,

the evolved mapping require more HW resources than the accelerators’ constraint, which

is then not suitable for the targeting accelerators. The fitness function is summarized as

following.

Fitness =


reward, if constraint met

−In f inite, others
(4.1)

4.4 Evaluation of GAMMA

DNN Models. In our experiment, we consider five CNN models with different complexity:

VGG16 [146], MobileNet-V2 [126], ResNet-50 [142], ResNet-50 [142], MnasNet [141].

HW resources of Platforms. We consider two platforms with different number of HW

resource: cloud platform (which resembles the HW resources in cloud TPU[82]) and edge

platform (which resembles the HW resources in Eyeriss chip[147]), as shown in Table 4.2.

Target Systems. We consider three kinds of accelerator systems as shown in Table 4.3.
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Table 4.2: The HW resources in different platforms.

# PEs SL size (on-chip) SG size (on-chip)
Edge Platform 168 512B 108KB
Cloud Platform 65,536 4MiB 24MiB

Table 4.3: Three target systems (Accel’s infrastructures).
System Description

S1:Fixed 
2D Accel

Accelerator with 2D PE array (row x col) with fixed aspect ratio. This fixes !!" to number of
rows, and level of parallelism to 2. Example: TPU, NVDLA.

S2: 
Flexible 
2D Accel

Accelerator with 2D PE array with flexible aspect ratio. The PE array can be configured to

flexible 2D shape, which relax the choices of 	!!". We also relax the level of parallelism to be
1 or 2. Example: Eyeriss, Eyeriss_v2.

S3: 
Scale-out 
2D Accel

Accelerator scaling out 2D structure. Accelerator comprises multiple 2D PE array instances,

enabling parallelism across PE arrays. The level of parallelism is either 2 or 3. L1 and L2

mappers map within and L3 mapper maps across the PE arrays. Example: Simba, Tetris.

4.4.1 Target Search Methods and Parameters.

We compare three sets of methods, described below. We set the maximum sampling points

as 10K for all methods and compare the HW performance of their searched solutions.

Baseline Optimization Methods. We compare with a suite of optimization meth-

ods whose implementations are adopted from Nevergrad [157]. The methods, and their

experimental parameter settings are summarized in Table 7.3.

Fixed Dataflows from prior accelerators. We also compare with some widely rec-

ognized HW-mappings inspired by dataflows within prior accelerators: NVDLA-like [80]

(parallelizing K and C dim.), Eyeriss-like [83] (parallelizing Y and R dim.), and ShiDianNao-

like [81] (parallelizing Y and X dim). All three of them have fixed 2-level parallelism

dimensions. We create custom mappings (i.e., dataflow + tile-size) by setting appropriate

tile sizes that fit within the SL buffers for both the edge and cloud platforms .

GAMMA. We set the populations=200, generations=50, and the mutation/crossover rate

and execution rate of other evolving functions as 0.5.

4.4.2 S1: Fixed 2D Accel.

In Figure 4.4(a), we run the baseline algorithms and GAMMA to search for the HW-mapping

for each of the 20 layers in ResNet-18 with S1 setting (i.e., 2 levels of parallelism) and
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Fig. 4.4: The performance of found solutions across a suite of optimization methods on
different target systems (S1, S2, S3) and different platform constraints (Edge, Cloud) for
ResNet-18.

NAN: The method cannot find a solution that fits in the platform constraint within 10K samples.
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Table 4.4: Supported optimization algorithms in M3E.

Alg. Description
AI-MT-

like
A manual-tuned mapper for multi-core accelerator targeting vision and 
language workloads.

Herald-
like

A manual-tuned mapper for multi-core heterogenous accelerator targeting 
vision workloads.

stdGA Genetic Algorithm. We use mutation rate: 0.1, crossover rate: 0.1.

DE Differential Evolution. We use weighting for local DV: 0.8, weighting for 
global DV: 0.8, in the experiment.

CMA-ES Covariance Matrix Adaptation-ES. We use 1/2 of the best performing 
individuals as an elite group in the experiment.

TBPSA Test-based Population-Size Adaptation. 
We set the initial population size as 50 and let it evolve in the experiment. 

PSO Particle Swarm Optimization. We use weighting for global best: 0.8, weighting 
for parent best: 0.8, with momentum !: 1.6.

RL A2C
Advantage Actor-Critic. We use policy and critic networks composed by 3 
MLP layers with 128 nodes, discount factor: 0.99, learning rate: 0.0007, 
RMSProp optimizer.

RL PPO2
Proximal Policy Optimization. We use policy and critic networks composed by 
3 MLP layers with 128 nodes, discount factor: 0.99, clipping range: 0.2, 
learning rate: 0.00025, Adam optimizer.

MAGMA A GA-based optimization algorithm that houses domain-specific genetic 
operators for multi-core heterogenous accelerator mapping problem.

edge platform constraint. We record the best solution (lowest latency) of each algorithm

after they execute 10K samples (most comparing algorithms converge after 10K samples).

Figure 4.4(a) shows the latency of each algorithm’s solutions, where we also plot the

corresponding latency when using fixed dataflow. We observe the baseline algorithms and

the fixed-dataflows are with competitive performance. However, GAMMA can consistently

find better solutions than both methods.

Valid solution and different platform constraints. The HW-mapping is invalid when

its requirement of HW resources exceeds the platform constraint. Some methods cannot

find any valid solutions that conform to the constraint after 10K sampling. Therefore some

methods have no solutions (NAN) in some cases as shown in Figure 4.4(a). We did not show

the result of Random Search here, since it ends up finding no solution for most of the cases,
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which also infers the complexity of the search space (it cannot find a valid solution in 10K

samples). When we have more HW resource budget as Cloud platform in Figure 4.4(b), all

baseline optimization methods can start to find valid solutions and optimize on them. This

shows how the imposed constraints increase the complexity of the problem.

Despite the fact that the optimization methods fail in some cases, their solutions are

competitive to manual-design ones (fixed-dataflow) when they succeed, as shown in Fig-

ure 4.4(a)-(b). It shows the potential of automating the HW-mapping design process by

properly formulating it into an optimization problem, which can significantly relieve the

domain expert’s effort on the back-and-forth tuning process. The challenge is the occasional

failing of some methods. Moreover, GAMMA can consistently find valid and better solu-

tions than others. Comparing with others, GAMMA finds solutions costing 224× to 440×

less latency in Edge platform and 153× to (1.3E+7)× less latency in Cloud platform.

4.4.3 S2: Flexible 2D Accel.

Objective: Latency. Figure 4.4(c)-(d) compares latency for accelerators with flexible

aspect ratios (i.e., the accelerator can support both 1-level and 2-levels of parallelism).

One interesting observation is that the fixed ShiDianNao-like dataflow and NVDLA-like

dataflow shows better performance than baseline optimization methods at early and late

layers respectively. This is because ShiDianNao-like dataflow parallelizes along X, Y

dimensions and early layers of ResNet-18 have high X-Y values; similarly NVDLA-like

parallelizes along C-K and late layers have high C-K values. For the baseline methods, since

the number of parallelism dimensions is fixed, we search for the best 1-level and 2-level

solution for 5K points each, and pick the better one. GAMMA searches across both 1-level

and 2-level via the growth and aging operators described earlier. GAMMA finds valid and

better solutions than others. Compared with other techniques, GAMMA finds solutions

with 209× to 1,035× less latency in Edge and 337× to (7.1E+5)× less latency in Cloud

platform.

Objective: Energy. Energy consumption depends on the number of active computations,
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Fig. 4.5: The energy consumption of S2 on ResNet-18.

memory accesses, and SL/SG buffer usages. In the Edge platform in Figure 4.5(a), fixed

dataflow show no advantage, and most optimization methods can find better solutions than

the fixed dataflows. In the Cloud platform in Figure 4.5(b), optimization methods show

competitive or better performance than Eyeriss-like and ShiDianNao-like dataflow. However,

NVDLA-like dataflow shows high energy efficiency, since the K, C dimensions expand in

ResNet-18, which gives more advantage to the dataflow that is skilled at layer with large

K, C dimensions (NVDLA-like). They finish the computation with shorter time and less

memory access, and hence cost less energy. However, these advantages do not show up

when NVDLA-like dataflow is in the tight constraint (Edge platform), which has less SL/SG

buffer and limited the parallelism opportunity. Across all fixed dataflow and optimization

methods, GAMMA finds solutions costing 11× to 36× less energy in Edge platform and

2× to 42× less energy in Cloud platform.

4.4.4 S3: Scale-out Flexible 2D Accel.

In S3, we consider a more flexible scale-out infrastructure, which works in the design space

of 3-level mapper.

that can not only support 2D PE arrays, but can form number of 2D PE array instances

to parallelize computation in the third dimension. The number of parallelism is set to either

2-level or 3-level of parallelism. The 2-level (3-level) parallelism means we parallelize one

dimension across PE arrays and one (two) dimension within PE arrays.

The growth of search space. Increasing the level of parallelism will exponentially
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C S C Y K R X K X S Y C K R
- 1 150 8 475 1 8 168 7 1 7 149 1 1

Late layer: Layer 18: Dim.: [512 256  14  14   1   1]

Y S X C R Y K C S R K Y X C
- 5 222 3 1 4 45 2 2 4 20 1 1 2

Early layer: Layer 1: Dim.: [ 64   3 224 224   7   7] Dim.: [ K C Y X R S]

Y C R K S X Y K K Y C S R X C R K X S Y C
- 38 1 67 1 22 16 67 1 15 37 1 1 17 1 1 1 8 1 1 1

Med layer:  Layer 8: Dim.: [128  64  56  56   1   1]

Fig. 4.6: GAMMA’s found mapping of early, medium, and late layer of ResNet-18 in
Figure 4.4(e).

increase the search space, which makes the performance of the optimization methods more

critical to the found solutions. As shown in Figure 4.4(e)-(f), the number of cases that

methods fail to find solution becomes significant. However, GAMMA can consistently

find valid and better solutions, costing 241× to 644× less latency in Edge platform and

657× to (1.2E+5)× less latency in Cloud platform. Figure 4.4(g)-(h) shows the end-to-end

latency of GAMMA in different accelerator systems. We can find GAMMA performs the

best in S3, where the design space is several order larger than S1 and S2 but with more

flexibility. It shows that GAMMA can explore the design space with sample efficiency and

takes advantage of the flexibility of the mapping space.

Deep-dive into found solution. Figure 4.6 shows the HW-mapping solutions found by

GAMMA on ResNet-18. At the early layer (Y, X dominant, Y=224, X=224), GAMMA

found a mapper that parallelizes along Y dim at L2-mapper. At the medium layer (Y=56,

K=128, C=64, X=56), GAMMA found a 3-level mapper, which maps across Y, K, and C

dimensions. At the late layer (K, C dominant, K=512, C=256), GAMMA parallelize C at

L2-mapper and K at L1-mapper. From the above observation, we find the automatically

evolved solutions are consistent with some heuristic and insight from the manual-designed

dataflows 1 [83, 81, 80].

Other DNN models and end-to-end performance Table 4.5 shows the performance of

1The found solutions also show that by relaxing some tile size heuristics such as deciding tile size by the
integral multiple of PEs array sizes could help reach better solutions.
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Table 4.5: End-to-end performance and energy on S3 for a suite of DNN models using fixed
mappings versus GAMMA. Bold means lowest values.

Obj. Accel. GAMMA NVDLA-
like

Eyeriss-
like

ShiDian
Nao-like GAMMA

NVDLA-
like

Eyeriss-
like

ShiDian
Nao-like GAMMA NVDLA-

like
Eyeriss-
like

ShiDian
Nao-like GAMMA NVDLA-like

Eyeriss-
like

ShiDian
Nao-like

Edge 9.67E+05 1.46E+07 4.06E+07 7.23E+06 8.31E+05 1.43E+07 5.00E+07 8.44E+06 5.20E+05 8.41E+06 2.29E+07 3.89E+06 6.49E+06 1.04E+11 4.57E+08 1.31E+08
Cloud 1.85E+05 9.33E+05 4.04E+07 6.04E+06 1.39E+05 4.03E+06 4.97E+07 7.46E+06 3.41E+04 6.28E+05 2.28E+07 3.37E+06 3.84E+04 2.91E+06 4.55E+08 1.13E+08
Edge 5.23E+08 3.31E+09 9.62E+09 1.02E+10 4.58E+08 3.41E+09 9.707E+09 1.031E+10 1.59E+08 1.52E+09 4.647E+09 4.984E+09 1.19E+09 3.53E+10 1.1753E+11 1.245E+11
Cloud 4.12E+08 8.13E+08 9.61E+09 1.02E+10 3.72E+08 7.71E+08 9.706E+09 1.030E+10 1.17E+08 2.57E+08 4.646E+09 4.978E+09 1.13E+09 2.14E+09 1.1751E+11 1.244E+11

Energy
(nJ)

MobileNet-V2 MnasNet ShuffleNet ResNet50

Latency
(cycles)

Obj. Accel. GAMMA NVDLA-
like

Eyeriss-
like

ShiDian
Nao-like GAMMA

NVDLA-
like

Eyeriss-
like

ShiDian
Nao-like GAMMA NVDLA-

like
Eyeriss-
like

ShiDian
Nao-like GAMMA NVDLA-like
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Fig. 4.7: End-to-end latency improvement over generations with GAMMA for S3 system
and edge platform constraint.

GAMMA comparing to fixed dataflow on other widely-used DNN models. Here, for the

interest of space, we only list the end-to-end performance, which is the sum of latency/energy

of all the layers. Table 4.5 shows no fixed dataflow is good across all DNNs and platforms.

For e.g., when considering latency, ShiDianNao-like performs the best on Edge platform,

and NVDLA-like performs the best on Cloud platform. In contrast, the energy numbers

follow NVDLA-like < Eyeriss-like < ShiDianNao-like; NVDLA-like gets advantage over

the other two for energy via reuse across K and C dimensions (which dominate in most

CNN-based models). Among all experiments in Table 4.5, GAMMA always provides the

lowest latency and energy. Across models and platforms, GAMMA finds solutions costing
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Table 4.6: Two stage optimization for inter-layer parallelism on ResNet-18 * and VGG16 †

for a multi-accelerator (S3) pipelined deployment. In the 1st state, we optimize for latency
and identify the bottleneck layer (highlighted in bold), which determines the pipeline latency.
In the 2nd stage, we optimize for energy (or power) by allowing the latency of other layers
to increase, while staying less than the pipeline latency.

Layer
Latency
(cycles)

Power
(mW)

Latency
(cycles)

Power
(mW)

Latency
(cycles)

Energy
(nJ)

Latency
(cycles)

Energy
(nJ)

1 4.9E+03 8.0E+02 7.1E+04 2.5E+02 1.1E+02 3.2E+06 3.8E+04 2.8E+06
2 1.6E+05 5.1E+02 1.6E+05 4.4E+02 1.0E+04 1.2E+08 5.2E+04 2.5E+07
6 4.2E+04 4.2E+02 1.3E+05 2.5E+02 2.9E+04 1.4E+08 6.1E+04 7.6E+07
7 4.6E+03 3.3E+02 6.5E+04 2.5E+02 8.9E+02 8.8E+06 2.4E+04 5.8E+06
8 4.9E+04 2.6E+02 1.5E+05 2.5E+02 6.1E+04 1.8E+07 6.1E+04 1.8E+07

11 2.9E+04 5.6E+03 1.5E+05 2.5E+02 2.6E+04 9.7E+07 3.7E+04 5.5E+07
12 1.3E+04 1.5E+04 1.4E+05 2.5E+02 2.2E+04 6.9E+07 4.2E+04 2.1E+07
13 4.1E+04 3.0E+02 1.5E+05 2.5E+02 2.5E+04 1.6E+07 5.1E+04 8.9E+06
16 2.1E+04 5.8E+02 5.9E+04 2.5E+02 2.3E+04 1.8E+08 3.7E+04 6.5E+07
18 4.9E+04 9.0E+03 1.5E+05 2.5E+02 5.5E+04 1.3E+07 5.9E+04 9.0E+06
19 2.6E+04 2.0E+04 1.4E+05 2.5E+02 1.0E+04 8.9E+07 3.8E+04 6.7E+07

Max. 1.6E+05 2.0E+04 1.6E+05 4.4E+02 6.1E+04 1.8E+08 6.1E+04 7.6E+07
Ave. 5.0E+04 6.4E+03 1.3E+05 2.8E+02 1.8E+04 7.1E+07 4.3E+04 3.1E+07
VGG16

Max. 2.7E+06 1.3E+05 2.7E+06 2.5E+02 1.8E+06 1.3E+09 1.8E+06 3.3E+08
Ave. 3.3E+05 3.3E+04 1.3E+06 2.5E+02 3.1E+05 6.7E+08 1.1E+06 1.4E+08

Summary for Model VGG16

ResNet
18

Exp: Latency - Power Exp: Latency - Energy
1st stage 2nd stage 1st stage 2nd stage

* We only display the layers with unique shape. Maximum and Average are calculated based on all 20 layers of ResNet-18. † We display
the summary of VGG16 for the interest of space.

5× to (1.2E+5)× less latency and 2× to (1.6E+4)× less energy. Figure 4.7 tracks how

GAMMA converges to its solution across generations; this shows its sample efficiency via

rapid improvement over generations.

4.4.5 Two-stage Optimization for Inter-layer

So far in this chapter, we consider three systems: S1, S2, and S3, to parallelize the com-

putation of a DNN layer, whose scenario can be termed as intra-layer parallelism. Next,

we show how GAMMA can also be applied to the scenario of inter-layer parallelism. We

consider a S3 system with inter-layer parallelism scenario, used in prior multi-accelerator

systems [8, 13, 19], where each accelerator is handling one layer of a model, and the entire
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model is executed as layer-wise pipeline manner on the system.

Motivation The pipelined system can often bring higher throughput. However, it also

owns the problem of being bottleneck by critical block. The layer-wise pipelined accelerator

can be bottlenecked by some computation-heavy layer. As the bottleneck latency exists and

may not be able to be further optimized, in this case, we relax other non-critical blocks by

relaxing their timing constraint to achieve overall lower energy/power of the system.

Structure We apply a two-stage optimization method, where we optimize latency first

and then power/energy at the second stage.

Stage I: optimize latency. We use GAMMA to find the mapping that optimizes the

latency of each layer. We identify the bottleneck layer, whose latency decides the pipeline

latency of the system.

Stage II: optimize power/energy. With the pipeline latency decided, we relax other

layers by applying GAMMA again but optimizing power/energy at this stage with the

awareness of not exceeding the pipeline latency. This is formulated by adding a heavy

penalty when the searched solution exceeds the pipeline latency.

With the designed two-stage optimization, we could optimize the throughput of a layer-

wise pipelined system at the first stage and further optimize its power/energy efficiency at

the second stage.

Results Table 4.6 shows the HW performance of each layer in ResNet-18 in the 2-stage

optimization scheme. In the Latency-Power experiment, we optimize latency first and their

power next. After the first stage, it shows that the latency is bottleneck by the second layer,

and it decides the pipeline latency. With the awareness of the pipeline latency, we optimize

power at the second stage and find we could reduce the power by 95% comparing to the first

stage when remaining at the same pipeline latency. The Latency-Energy experiment shows

58% reduction on energy consumption. Likewise, we execute the same flow on VGG16 and

found it also effectively reduce the power by 99% and energy by 78% respectively.
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4.5 Related Works

4.5.1 Dataflow Design in DNN Accelerators

Dataflow design has been a popular topic in the research of DNN Accelerators. Multiple

hand-designed dataflows have been used across accelerators, categorized [83] as output-

stationary [81, 93, 94], weight-stationary [80, 89, 90, 91, 92], row-stationary [83], input

stationary, and no local reuse [158, 159]. In this work, we provide a framework to automati-

cally determine an optimized dataflow and mapping. GAMMA can be used at compile-time

to configure in the mapping if the underlying accelerator supports multiple dataflows [2,

12], or at design-time to determine the right dataflow for a custom accelerator developed for

running a fixed set of DNNs.

4.5.2 HW Mapping Space Search and Exploration

Many recent works have been developed to tackle DNN HW mapping. However, since the

search space is extremely large, many of them restrict the search space by considering only

part of the aspects of the HW mapping search space. Some consider a limited combination

of HW mappings and pick among them [12]. Some constrain the parallelizing dimension

to a few choices [13, 14, 15, 16]. Some fixed the computation order to a subset of all

combinations [17, 18, 19, 20, 21]. Some vastly reduce the space of tiling sizes [22] by

a heuristic, or large step size, e.g., power of two [23]. Interstellar [10, 9] considers all

three aspects of HW-mapping, but they constrain the search space by limiting the choice

on each aspect such as the choices of loop order, parallelizing dimension. All these prior

arts exclusively rely on exhaustive/random search with the help of coarse-grained striding

enumeration or heuristics-based pruning. On the other hand, to search the mapping space

with sample efficiency, Suda et. al[16] and TensorComprehensions [31] uses genetic

algorithm, AutoTVM [101, 24] uses simulated annealing and boosted tree, Reagen et.

al, [26] uses Bayesian optimization, RELEASE [27] uses RL to formulated a more guided
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search by ML technique. However, these ML-based algorithms need to work in a pre-defined

rigid design space, where the level of parallelism is restricted, and hence the mapping space

is constrained. The mappers in Timeloop [4] and Simba [8] explore the full search space;

however, they rely on exhaustive/random search. In this work, we explore a full search

space, but with a ML-based guided search method with sample efficiency.

4.6 Summary

GAMMA constructs and searches through a comprehensive map-space comprising of

computation order, tile-sizes, parallelization strategy, and up to three parallelization levels,

enabling it to target a wide variety of fixed and flexible single and multi-accelerator systems.

The proposed encoding scheme transforms the HW-mapping problem to an optimization

problem, which enables the user to directly use off-the-shelf optimization algorithms for

mapping. These form our baselines. GAMMA introduces three new GA operators, enabling

a domain-specific flexible search space unlike most off-the shelf optimization algorithms.

We automate GAMMA as a black-box optimizer for the HW-mapping problem. This

reduces the learning curve and saves manual-tuning effort for ML practitioners exploring

the HW-mapping space. GAMMA encapsulates an end-to-end workflow, which generates

outputs compatible with an open-source cost model [58]. We will open-source the GAMMA

infrastructure after the paper gets published. With new DNN models and new accelerators

being proposed at an unprecedented rate, GAMMA allows researchers to quickly explore

the HW efficiency of emerging DNNs without time-consuming human-in-the-loop mapping

and tuning processes.
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CHAPTER 5

DEMYSTIFYING MAP SPACE EXPLORATION AND THE IMPROVEMENT

TECHNIQUES

In chapter 3 and chapter 4, we define the map space of DNN accelerator and propose an

sampling efficient mapper to explore the map space. In this chapter, we will give a deep

dive analysis on the mappers and the whole MSE framework. We want to answer why

one mapper is better than the other and how the mapper actually increase the sampling

efficiency. we hope these insights can propel the follow-up works on developing new and

more powerful mapper.

Next, we identify the challenge of the MSE framework for the new complex DNN

workloads, which is capability and the sparsity in the workloads. We propose two simple

but powerful techniques to ameliorate these challenges.

Map space exploration (MSE) is critical for DNN accelerator efficiency. It is a complex

and challenging problem because the search space is often massive. There are various search

algorithms (i.e., mappers) [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 7, 29, 30, 31, 32, 33] to find optimized mappings for DNN accelerators and

workloads.

Despite the success achieved by these prior efforts, MSE remains a computationally

challenging problem. This is because the search space for legal mappings for even a

single layer of a modern DNN (e.g., ResNet-50) on a typical edge class accelerator [1] is ∼

O(1024) [5, 6] which would require more time than the age of the earth to search exhaustively

(assuming 1msec to evaluate each mapping sample). This gets exacerbated as newer and

ever larger DNN models are being created with increasing frequency, especially thanks to

the success of neural architecture search techniques [34, 35, 36, 37, 38]. Furthermore, the

advent of compressed-sparse DNNs [39, 40, 41, 42, 43, 44, 45], whose mappings are not
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Fig. 5.1: A loop-nest representation of a NVDLA-like [80] mapping.

performance-portable across sparsity levels (a key finding in this chapter), further increase

MSE burden.

Researching more sophisticated scalable and sparsity-aware MSE techniques is at least

partially hampered by the fact that even though prior approaches have empirically shown

that their techniques work, none of them demonstrate why they work and the insight behind

their optimization techniques.

To this end, this chapter aims to develop scalable MSE approaches for future complex

DNN workloads. However, instead of proposing yet another mapper that just works,

we first distill the knowledge from prior mappers spanning heuristics and learning-based

optimization approaches to demystify MSE as a problem. We analyze their behavior, learn

from their best traits, and use these learnings to scale MSE to more complex workloads.

5.1 Map Space Exploration (MSE)

A canonical MSE framework is shown in Figure 5.2. Several prior works [4, 6, 5, 7,

160] have identified MSE as a separate problem distinct from accelerator design-space
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Fig. 5.2: A canonical Map Space Exploration framework.

exploration (DSE). DSE includes identifying the right compute and memory configurations

for an accelerator (§2.2), as shown by the accelerator configuration in Figure 5.2, within

constraints such as total FLOPS, area, and power. MSE, meanwhile, takes the accelerator

configuration and DNN workloads (size, shape, and additional features such as sparsity

level of weight and/or activations) as input and finds optimized mappings given an objective

(e.g., latency, throughput, energy, energy-delay-product (EDP), and so on). MSE may be

run at compile time within a mapping optimizer [135] after an accelerator is deployed,

or at design-time in conjunction with DSE for co-optimizing the mapping and hardware

configuration [25, 161].

The MSE process often includes three parts: Representation of search space, Evaluation

method, and Exploration method. The representation will define the scope of the searching

problem and the size of the search space. After the search space is defined, we form an

optimization loop that includes exploration and evaluation. The optimization continues till

the MSE converges, or reaches a given sampling budget or wall-clock run time budget.

5.1.1 Evaluation Method (Cost Model)

In MSE, we often rely on a DNN accelerator cost model to estimate the performance of

a certain mapping on a given accelerator for a given workload. These cost models are

typically analytical, enabling rapid evaluation of different design-points in a matter of ms.

Some widely used cost models include Timeloop [4], MAESTRO [68], dMazeRunner [9],
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Interstellar [10], SCALE-sim [162] and others [163, 164]. These cost models can model

different kinds of accelerators (systolic arrays [162], flexible spatial arrays [68, 4, 9], sparse

accelerators [165], and so on) and capture each accelerator’s map space in different formats.

In this chapter, we use Timeloop [4] as our cost model1 which is validated against real

chips [147, 8].

5.1.2 Representation

The map space includes Tiling, Order, and Parallelism. How this map space is represented

can often determine the success or failure of the MSE process. The efficiency of the rep-

resentation ties closely to the underlying DNN accelerator cost model, described above.

For example, Timeloop [4] uses loop-nest representation for mappings (thereby describ-

ing the computation to be run over space and time) while MAESTRO [68] uses a set of

data-centric directives to represent which data elements are mapped over space and time;

Timeloop supports detailed buffer hierarchies while MAESTRO infers the hierarchies from

the mapping; Timeloop has strict constraints on tile size choices across hierarchies and

parallelism dimensions while MAESTRO imposes loose constraints on them (and factors in

the inefficiency by run time report), and so on. All these different details should be carefully

understood to create a compact map-space representation, to avoid searching through invalid

mappings. In this chapter we leverage the Timeloop representation, and ensure that all the

candidate mappings generated by various mappers during MSE are all legal.

5.1.3 Exploration Method (Mapper)

The exploration algorithm in MSE (Figure 5.2) is called a mapper. Dozens of different DNN

mappers have been proposed, which we categorize into random search based [4, 8, 9, 10, 11],

feedback-based (including reinforcement learning and black-box optimization) [5, 24, 25,

1Timeloop includes both a cost model and mappers. Throughout this chapter, we refer to the former as
Timeloop and the latter as Timeloop-mapper. Timeloop-mapper itself supports a variety of search heuristics,
with the default being Random-Pruned. We also run other mappers using Timeloop as the cost model.
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160, 29, 28], gradient-based [6], and others (including mathematical optimization, MCMC,

polyhedral transformations, and heuristics) [7, 29, 30, 31, 32, 33] (Figure 5.2). The random

search-based either apply random sampling on the search space or apply pruned random

search [4, 135], which prunes off the redundant search space to increase the sampling

efficiency. The feedback-based use a learning algorithm to interact with the cost model and

keep improving its solution. The run time of both random search-based and feedback-based

depend heavily on the run time of the cost model, potentially becoming the bottleneck of

the MSE run time. Gradient-based methods uses a differentiable surrogate model, which

eliminates this bottleneck and can update the solution directly by the gradient of the loss.

We do a deeper dive within these three types in §5.2.3.

5.1.4 Why MSE Matters

MSE bridges the gap between two active trends: (1) efficient DNN model design [126, 166,

167] (which has led to a huge diversity in layer shapes/sizes and emergence of sparsity in

state-of-the-art DNN models) and (2) flexible hardware accelerators that support diverse

mappings (dataflows + tile sizes) via configurable buffer hierarchies [84] and on-chip

interconnect topologies [2, 3] as an answer to the first trend. MSE is crucial for extracting

performance and energy-efficiency from the accelerator as there can be multiple orders of of

difference in performance and energy-efficiency between good and bad mappings, as prior

works have demonstrated [4, 5, 6].

While several mappers are being actively developed [4, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 7, 29, 30, 31, 32, 33], there is no work, to the

best of our knowledge, that has focused on understanding how different mappers navigate

the map-space, how different mapping axes contribute to the performance, and trade-offs

between search approaches, which is the focus of this chapter.
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5.2 Quantitative MSE Analysis

In this section, we perform a quantitative analysis of the three classes of mappers described

in §5.1.3 to identify when and why one works better than the other. The goal of this analysis

is to educate the DNN accelerator research community on Mapper design, rather than

propose yet another mapper.

5.2.1 Methodology

Workload. We consider workloads from different models: Resnet [142], VGG [146],

Mnasnet [34], Mobilenet [126], and Bert-large [69]. Some frequently referenced workloads

across different experiments are described in Table 5.1.

Hardware Accelerator. We model the hardware accelerator using Timeloop [4]. The

hardware accelerator we evaluate houses three-level of buffer hierarchies: DRAM, a 64KB

shared global buffer, and 256B private local buffer for each of the 256 PE. Each PE houses

4 ALU units (Accel-B in Table 5.1). We also model the accelerator the Mind Mappings

paper [6] uses (Accel-A), whose configuration is similar but with different sizing as shown

in Table 5.1.

Objective. We use multi-objective – Energy and Latency (Delay), throughout the

optimization process. When optimization finishes, we select the solution with the highest

Energy-Delay-Product (EDP) on the Pareto frontier. We use EDP as the performance criteria

of found mapping. Note that any formulation of the objective can also be used such as

power, area, performance-per-watt, performance-per-mm2, and so on.

Experiment Platform. We run experiments using a desktop with a 12-core Intel I7-

6800K CPU and a Nvidia GTX1080 to train the surrogate model in Mind Mappings.
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Fig. 5.3: Comparisons of different types of mappers. Top figures show the converge curve
across number of samples. Bottom figures show the converge curve across wall clock time.
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Table 5.1: The description of the relevant workloads and accelerator configurations used
across evaluations.

Workload (B,K,C,Y,X,R,S)

Resnet Conv_3 (16,128,128,28,28,3,3)

Resnet Conv_4 (16,256,256,14,14,3,3)

Inception Conv_2 (16,192,192,27,27,5,5)

Workload (B,M,K,N)

Bert-Large KQV (16,1024,1024,512)

Bert-Large Attn (16,512,1024,512)

Bert-Large FF (16,4096,1024,512)

Accelerator 
Configuration

Accel 
A

512 KB shared buffer, 
64 KB private buffer 
per PE, 256 PEs, 1 
ALUs per PE

Accel 
B

64 KB shared buffer, 
256 B private buffer 
per PE, 256 PEs, 4 
ALUs per PE

5.2.2 Size of Map Space

The size of the map space heavily depends on representation. In this chapter, we follow

the efficient representation used by Timeloop to represent the three mapping axes. We use

CONV2D (7 for-loop) as workload and 3-level of buffer hierarchy (DRAM, L2, L1) as

architecture configuration as an example to guide the discussion of map space.

Tile sizes. Buffers at each level of the scratchpad memory hierarchy will have a dedicated

tile size for each of the dimensions, as shown by the different tile sizes within the 7 for-loops

of the L2 mapping in Figure 5.1. The total possible combination depends on the tensor

shape of each workload and increases exponentially with the number of buffer hierarchies.

Loop Order. Each buffer level would have a dedicated permutation of loop order. E.g.,

in Figure 5.1, the loop order in L2 mapping from outer to inner loop is (B,K,C,R,S,Y,X).

The total combinations become (7!)3 (we have 3 buffer levels in our example).

Parallelism. Parallelism happens across levels of compute units (2-level of compute

units in Figure 5.1, i.e., across PEs and ALUs). At each level of the compute unit, we can

choose to parallelize from 0 (no parallelism) to 7 (all parallelism) dimensions. The total

combination becomes 27×2.

Map-Space. The Cartesian product of these sub-spaces leads to the size of the entire
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EDP

Entire design space

High Perf

Design point
Random-Pruned

Mind Mappings
Gamma

High-performance region

(a)

(b)

Low Perf

Gamma reaching one 
of the high-
performance regions

Fig. 5.4: (a) shows the sampled points by exhaustively sampling the search space of (Resnet
Conv 4, Accel-A). The 3D visualization is projected by PCA dimension reduction. (b)
shows the sampled points of different types of mappers in this search space.

map space, which is at the level of O(1021) for the workloads discussed in §7.2.

5.2.3 Understanding Mapper Sampling Efficiency

As discussed in §5.1.3, we categorize state-of-the-art mappers into three major techniques

(Figure 5.2). We select state-of-the-art mappers out of each category and compare their

characteristics with respect to search speed and sampling efficiency2. We select Timeloop’s

Random-Pruned [4] from random-based, Gamma [5] from feedback-based, and Mind

Mappings [6] from gradient-based methods3.

2The performance improvement over number of sampled points.
3Random-Pruned and Mind Mappings both natively work with the Timeloop cost model. Gamma was

originally demonstrated with MAESTRO, but we extended its open-source codebase [5] to use the Timeloop
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Tile Order Parallelism

Resnet Conv_3, Accel-A Resnet Conv_4, Accel-A Inception Conv_2 , Accel-AEDP EDP
EDP

(a) (b) (c)Num. of Generations Num. of Generations Num. of Generations
0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

1 generation includes 20 samples

Fig. 5.5: Mapping axes sensitivity analysis using the mutation operators in Gamma [5]. E.g.,
Tile (blue): means mutating tile only, i.e, only tile is explored, and other mapping axes are
fixed, similarly for (mutate-)Order and (mutate-)Parallelism.

• Random-Pruned (random-based): Random-Pruned [4] uses random sampling on a

pruned search space. The pruning strategies are based on heuristics, e.g., permutations

do not matter for the innermost tiling level and for tile sizes that are one [4].

• Gamma (feedback-based): Gamma [5], a genetic algorithm (GA) based method, keeps

a population of candidate solutions, uses specifically designed mutation operators to

perturb populations to explore different mapping axes (tile, order, parallelism), and uses

crossover to create next generations of populations. Gamma has been shown to beat

other optimization techniques, including reinforcement learning [5, 168].

• Mind Mappings (gradient-based): Mind Mappings [6] trains a neural network based

surrogate model via offline sampling of millions of data points collected from the

cost model. It uses the loss gradient to update its solution. During MSE, it utilizes

gradient-descent on this surrogate model to find mappings, instead of searching.

In the following evaluation case study, we show two sets of accelerator configurations:

Accel-A, on which the surrogate model is trained, and Accel-B, an unseen accelerator

configuration for the surrogate model.

Trained Accelerator Configuration (Accel-A)

Iso-sampling points Comparisons. We set the sampling budget to 5,000 points and

compare the sampling efficiency of algorithms in the top figures of Figure 5.3(a)(b). The

cost model for this chapter. We leave the task of porting representative mappers from the others category
(§5.1.3) on to a common cost model and analyzing them as future work.
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Table 5.2: MSE for workload with weight sparsity. In each columns, the blue cell shows
the performance of the optimized mapping for the sparse workload; the rest of the cells
shows the performance of the same mapping tested with the workload with different sparsity.
We highlight the best-performing cell of each row by green text. We can observe that the
blue cells overlap with green texts, indicating that different workload with different sparsity
levels do require different mapping to optimize the performance.

Density 1.0 0.5 0.1 0.01

Density
1.0 3.7E+10 3.9E+10 5.8E+10 1.6E+12
0.5 1.0E+10 4.9E+09 9.1E+09 3.9E+11
0.1 8.0E+08 6.6E+07 6.4E+07 8.3E+08
0.01 5.0E+07 3.1E+04 4.8E+04 1.6E+04

Density
1.0 3.1E+10 3.6E+10 1.0E+11 4.3E+11
0.5 8.3E+09 4.9E+09 1.4E+10 9.6E+10
0.1 5.5E+08 9.1E+07 2.3E+07 3.7E+08
0.01 3.0E+07 7.0E+05 6.4E+03 5.4E+03

Density
1.0 1.1E+13 1.3E+13 1.5E+13 5.9E+14
0.5 3.4E+12 2.0E+12 2.3E+12 1.5E+14
0.1 3.5E+11 1.3E+10 5.1E+09 4.0E+10
0.01 3.3E+09 9.4E+06 3.3E+06 6.2E+05
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(a) (b) (c)

EDPEDP

Num. of Generations Num. of Generations Num. of Generations

EDP

CrossoverCrossover+Tile+Order+ParallelismStandard-GA Tile+Order+Parallelism

Resnet Conv_3, Accel-A Resnet Conv_4, Accel-A Inception Conv_2 , Accel-A

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1 generation includes 20 samples

Fig. 5.6: Crossover (blending two mappings) sensitivity analysis using operators in
Gamma [5]. Standard-GA uses the standard mutation and crossover (without domain-
specific operators along each mapping axes designed in Gamma [5]).

Table 5.3: The optimized EDP performance of inner and outer product style mapping on
sparse-dense GEMM workloads in Bert-large model [69]. The workload density indicates
the density of the sparse matrix. Bert-large KQV: the key/ query/ value projection operations.
Bert-large Attn: the attention operation, Bert-large FC: the FC operations at the end of
attention blocks.

Workload
Density

Inner
Product

Outer
Product

Inner
Product

Outer
Product

Inner
Product

Outer
Product

1.0 7.6E+11 9.8E+11 1.9E+11 2.5E+11 7.8E+14 9.1E+14
0.5 1.1E+11 1.4E+11 2.8E+10 3.6E+10 1.5E+14 1.5E+14
0.1 9.0E+08 1.6E+05 3.4E+08 3.6E+08 1.4E+12 1.1E+08

0.01 1.9E+05 1.6E+05 2.0E+05 8.0E+04 1.8E+08 1.1E+08

Bert-large  KQV Bert-large Attn Bert-large FC
EDP (cycles uJ)
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Table 5.4: Comparisons of sparsity-aware technique and static-density heuristic when
tackling the activation sparsity. The static-density heuristic searches mapping for a fixed
density level (1.0, 0.5, or 0.1), marked as blue cells. Sparsity-aware technique searches the
mapping scored with its performance across 5 density level (1.0, 0.8, 0.5, 0.2, and 0.1). We
highlight the best-performing one in each row with green text. It indicates that sparsity-
aware technique can find mapping with comparable performance to the static-density ones
across a range of sparsity (density 1.0 - 0.05).

Workload
Density

Sparsity-
aware

Static density
1.0

Static density
0.5

Static density
0.1

1.0 2.40E+13 2.39E+13 2.41E+13 2.46E+13
0.9 1.75E+13 1.94E+13 1.76E+13 1.79E+13
0.8 1.23E+13 1.54E+13 1.24E+13 1.26E+13
0.7 8.26E+12 1.18E+13 8.30E+12 8.46E+12
0.6 5.21E+12 8.69E+12 5.24E+12 5.34E+12
0.5 3.02E+12 6.06E+12 3.02E+12 3.10E+12
0.4 1.55E+12 3.90E+12 1.56E+12 1.59E+12
0.3 6.59E+11 2.21E+12 6.63E+11 6.77E+11
0.2 1.98E+11 1.00E+12 1.99E+11 2.04E+11
0.1 4.78E+10 2.65E+11 4.81E+10 4.78E+10

0.05 1.28E+10 7.34E+10 1.29E+10 2.67E+10

1.0 7.77E+15 7.77E+15 7.93E+15 7.83E+15
0.9 5.67E+15 6.33E+15 5.79E+15 5.71E+15
0.8 3.99E+15 5.00E+15 4.08E+15 4.02E+15
0.7 2.67E+15 3.84E+15 2.74E+15 2.69E+15
0.6 1.69E+15 2.82E+15 1.73E+15 1.70E+15
0.5 9.78E+14 1.97E+15 9.78E+14 9.83E+14
0.4 5.02E+14 1.26E+15 5.21E+14 5.05E+14
0.3 2.13E+14 7.16E+14 2.23E+14 2.14E+14
0.2 6.39E+13 3.22E+14 8.64E+13 6.38E+13
0.1 1.55E+13 8.37E+13 4.49E+13 1.53E+13

0.05 4.12E+12 2.25E+13 2.53E+13 3.98E+12

Resnet Conv_3, Accel-B

Inception Conv_2, Accel-B

EDP (Energy uJ)
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EDP

Different sets of EDP values

# of order 
combinations 5040

# of different 
EDP values 16

Best EDP:
3.0E+10

Worst EDP: 4.3E+10

14.4x better

XY..,XB..,XR..,XS..,SX..

C.., RC.., SC..

Level Order Parallel dims Tile Size (B,K,C,Y,X,R,S)

DRAM XBRYSKC - (16,4,4,7,14,1,1)

L2 CXYRSBK KC (1,16,16,1,1,1,1)

L1 KRXBSCY C (1,4,4,2,1,3,3)

Optimized 
mapping
(Found by 
mapper)

Optimized mapping: EDP: 3.0E+10 (cycles uJ), Latency:1.8E+6 (cycles), Energy: 1.7E+4 (uJ)

Order group:

Order group:

Fig. 5.7: The EDP difference of the same mapping with different loop order. We sweep
through all 7! order combinations assuming all the buffer level utilize the same order. The
7! different mapping leads to 16 different EDP performance, with the best and the worst
EDP differs by 14.4x times (under Resnet Conv 4, Accel-B).
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Fig. 5.8: The workflow of Warm-start and Sparsity-aware techniques in MSE.

random-based method progresses the slowest over number of samples. Among the gradient-

based and feedback-based, the gradient-based method progresses faster at the start owing to

its direct gradient feedback. However, with more number of samples, the feedback-based

method starts to perform better. It is because the gradient-based method is more prone to

fall into local optimum (discussed later) while the feedback-based methods typically work

well for global optimization problems.

Iso-time Comparisons. We set a tight time budget, 20 seconds, and track the perfor-

mance to wall clock time in the bottom figures of Figure 5.3(a)(b). Despite their better
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Fig. 5.9: Performance comparisons of initialized solution by Random Init and two types
of warm-start Init comparing to the final optimized performance (after search). The EDP
values are normalized by final optimized EDP (green bars).

1e10VGG Conv_1, Accel-B VGG Conv_13, Accel-B

(a) (b)Num. of Generations Num. of Generations

EDP
Random Init Warm-start

Fig. 5.10: The performance convergence curve with random initialization and warm-start
(by similarity) initialization at the (a) first layer and (b) a later layer of VGG16.

sampling efficiency, the feedback-based and gradient-based methods do not show a clear

edge over the random-based method within tight wall-clock run time budget. Random-based

methods do not have costly built-in learning algorithms as the other two and hence can run

more number of samples given the same time budget, which is essential when the run time

budget is strictly tight. Specifically, the run time of the searching algorithm in Gamma and

Mind Mappings is about 10x larger than Random-Pruned.
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Fig. 5.11: The benefit of warm-start (by similarity) when executing MSE for the DNN
models. Warm-start MSE achieves comparable EDP performance to default MSE, but
converge 3.3-7.3x faster. Different colors represent different layers of the models.

Accelerator configuration not in the Training Dataset (Accel-B)

We use the same set of workloads as in Figure 5.3(a)(b), but change the accelerator con-

figuration to Accel-B, which is not in the training dataset of the surrogate model of the

gradient-based method. As shown in Figure 5.3(c)(d), the gradient-based method cannot

perform as well as it did for the trained accelerator configuration, Accel-A. It demonstrates

that the trained surrogate model does not generalize across accelerator configurations. Note

that we can also re-train the surrogate model for the new accelerator configuration, which

will recover the performance. However, it will require another full-fledged DNN train-

ing. Besides, we also need to collect 1 - 5 million of new training data to achieve quality

results [6].
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Variance of Accelerator Configurations. The random-based and feedback-based

method take workloads and accelerator configurations as inputs and therefore are agnostic

to variance in accelerator configurations. In contrast, the gradient-based method train its

surrogate model based on a collected training dataset. The training dataset includes collected

workloads and collected accelerator configurations. While surrogate model can generalize

the workload encoding across different DNNs models [6], the generalization of accelerator

configurations is more challenging since arbitrary buffer levels, buffer sizes, PE sizes, and

other details (Figure 5.2) can be made. Thus the surrogate model is tied to one or few

accelerator configurations.

Visualization of the Sampling Points

To better understand how different algorithms behave in the map space, we plot their sam-

pling points in Figure 5.4 using the workload and accelerator configuration in Figure 5.3(a).

Figure 5.4(a) shows the entire map space while dark red represent higher-performance

points. There is a large low-performing region at the center while some small clusters of

the high-performing points (green circle) scatter across the space. Figure 5.4(b) shows the

points different algorithms actually sampled. Given the limited 5,000 sampling budget, the

random-based method only samples around the lower-performing region because most of

the design points sit here. The gradient-based method (Mind Mappings) starts with the

lower-performing region and gradient-updates to the higher-performing regions at the right.

However, it sits at the local optimum. The feedback-based method (Gamma) also starts with

a lower-performing region but can explore a wider region faster because of its population-

based method (population-based method is common in many feedback-based algorithms).

Gamma reached one of the high-performance regions, as shown in Figure 5.4(b).

Takeaway:

• Learning-based methods, including gradient-based and feedback-based, can keep im-

proving the quality of the sampling function over searching iterations, leading to better
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sampling efficiency.

• When the time constraint is strictly tight so that the learning-based methods cannot yet

gather adequate data to improve their sampling function (i.e., still at exploration phase

instead of exploitation), the random-based method is the most cost-effective choice.

• The surrogate model of the gradient-based method is trained on a collected training

dataset, where the accelerator configuration is often fixed. The trained surrogate model

cannot generalize across different accelerator configurations.

We pick Gamma, a feedback-based method, as our main mapper for the rest of the

discussion in this chapter.

5.2.4 Understanding Mapper Search Operators

Recall that there are three mapping axes in the map space, tile, order, and parallelism.

Gamma has dedicated genetic operators to explore along these axes, i.e., mutate-tile, mutate-

order, and mutate-parallelism. It also houses a crossover operator to blend two high-

performant mappings to create the next candidate mapping samples. Note that each genetic

operator is specifically tuned to adapt to this map space as shown in the Gamma paper [5],

which is the key source of sampling efficiency over other black-box optimizers, including RL

and standard GA. As Figure 5.6 shows, full-fledged Gamma (dotted orange line) performs

an order of magnitude better than standard GA across the three evaluated workloads.

Mapping Axis Sensitivity Analysis

In Figure 5.5, we explore each mapping axis individually (keeping the other two fixed) via

the mutation operator in Gamma [5] such as mutate-tile for tile exploration, mutate-order

for order exploration and so on. We find mutate-tile to have the highest impact on EDP

compared to the other components.
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Crossover Sensitivity Analysis

Gamma has crossover operator which blends two mapping points to create the next candidate

mapping points. We execute a sensitivity analysis of crossover in Figure 5.6. We find that

disabling crossover (light green) can hugely impact the potential performance compared to

full-fledged Gamma (dotted orange). However, crossover-only without other operators (dark

blue) is also not adequate. Crossover working with all the dedicated mutation operators for

the three maxing axes (dotted orange) can maximize the sampling efficiency of the mapper

(Gamma) and ends up giving the most optimized performance.

Takeaway:

• If one were to incrementally implement different exploration functions along the map-

ping axes, starting with the tile exploration could be the most cost-effective option.

• Blending two high-performance mappings (crossover) can effectively create another

high-performance mapping.

• The ability to explore different order and parallelism dimensions choices is not as critical

as tile size exploration to optimize EDP performance.

• Note that even when fixing the order or parallelism throughout the optimization process,

at the initialization stage, we still randomly initialized order and parallelism for the

initial populations (a groups of initial sampling points). It implies that few explorations

of order and parallelism are often adequate to give competitive mapping. It is owing to

the fact that many combinations of order or parallelism will lead to similar latency or

energy performance, as we discuss later in §5.2.4.

• The performance difference of two mapping for the same problem can be as large as 3

orders of magnitude difference, consistent with prior works [5, 68, 4, 6].
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Loop Order Sensitivity Analysis

We perform a sweep of loop order permutations to demonstrate our observation that many

order permutations lead to similar performance as observed above. We use the found

mapping in the experiment setting in Figure 5.6(a) and swap out the order permutation by

enumerating through all the possibilities. The search space is as large as (7!)3=1.28E+11.

We add a constraint that each level of the buffer will use the same order to relax the

complexity, which becomes 7!=5,040 choices. Figure 5.7 shows that there are only 16

different EDP values out of 5,040 different mappings. We can observe some patterns in

each of the same performance mapping groups, as shown in Figure 5.7. For example, “XY..”

means the permutation starting with XY. The loop order at the DRAM buffer level of the

original mapping found by Gamma (XB..) also falls in the high-performance order group.

Takeaway. Many order permutations will lead to similar energy or latency performance.

This is why various loop orders can be placed into large ”stationarity” buckets (such as

weight/ input/ output/ row stationary [83, 68, 4] or inner/ outer product [165].

5.2.5 Understanding Sparse Accelerator Mappings

Need of MSE for Flexible Sparse Accelerator

There is a series of research proposing ways to prune DNN models [39, 40, 41, 42, 43,

44, 45]. However, the pruned models often cannot achieve as much performance gain

in hardware as proven by the algorithmic analysis because of the increase complexity to

find efficient mapping. There are several sparse accelerators [3, 169, 170, 171, 172, 173,

174, 175] for efficiently running sparse workloads, skipping zeros in the weights and/or

activations. However, they often employ a fixed mapping (or a limited set of mappings).

Given the nascent domain, MSE for flexible sparse accelerators is relatively unexplored,

with one study looking into it [165] in contrast to several MSE studies for flexible dense

accelerators [25, 160, 29, 28, 7, 9, 30, 31, 32, 33, 6, 5, 24]. This leaves MSE for sparse
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accelerators and workloads an area with plenty of opportunity to explore.

We use TimeloopV2, aka Sparseloop [165], as the cost model to explore the map space

in a flexible sparse accelerator, and leverage Gamma as the mapper. Besides the three

components mentioned before, Sparseloop also models hardware and software optimizations

(e.g., power gating and compressed tensors) in sparse DNN accelerators, while preserving

the same mapping representation for Gamma.

Mapping Search for Sparse Weight

For model pruning, we often focus on pruning out the weight of the models, essentially

some weight becomes zero. Density 1.0 means dense weight, and density 0.5 means 50% of

the weights are zero. In Table 5.2, we use workloads with different weight densities and use

MSE to search for optimized mappings. The performance of found mappings are recorded

in the blue cell. For example, the mapping found for Resnet CONV 3 with 0.5 density has

EDP performance of 4.9E+9 (cycles uJ).

Do we need different mappings for different sparsity? We take the optimized mapping

targeting a specific workload with a specific density (blue cell) and test it with the same

workload with different densities. For e.g., at the top-left blue cell (Table 5.2), we have

an optimized mapping for the dense workload (density 1.0). Then we use the same exact

mapping and test its performance under 0.5, 0.1, 0.01 density, whose performance is recorded

in the bottom cells. We perform the same experiment for the other three columns. We

mark the best-performing cell across each row with green text. We can observe that the

best-performing ones always located in the blue cell, meaning to optimize mapping for

specific sparsity of the workload is needed to pursue the best performance.

Takeaway. A dense mapping cannot generalize across sparsity workloads. Different

sparsity levels of the workload require different mappings to maximize the performance.
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Sparse Inner and Outer Product

An observation that many sparse accelerators papers have made is that inner product acceler-

ators often perform better for low sparsity workloads and outer product accelerators perform

better at high amounts of sparsity [176, 172]. We study this general observation using

the MSE framework. We assume the underlying sparse accelerator is flexible to support

both inner and outer product style mapping. Inner and outer product styles are essentially

affecting the loop order. Therefore, we fix the loop order and perform MSE for the other two

axes (parallelism and tile sizes). Table 5.3 shows that the inner product style with optimized

mapping consistently outperforms the outer product counterparts for workload density larger

than 0.5, while the outer product style has an edge over the inner product style at densities

smaller than 0.1.

Takeaway. From the viewpoint of MSE, we are able to validate the observation that

inner product style mappings are better for denser workloads while outer product style works

better at high sparsity.

5.2.6 Lessons Learnt

We summarize the key takeaways from our analysis:

• The feedback based mapper has the highest sampling efficiency and can directly work

for any workload and accelerator configurations. However, it has the highest wall-clock

time to acquire one sample.

• Tile is the most critical mapping axis to explore.

• MSE needs to consider sparsity.

5.3 Improving MSE

From our detailed analysis and takeaways from §5.2, we focus on two open-challenges for

next-generation mappers.
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Challenge I: Speed. As discussed in §5.2.3, while feedback-based mappers (such as

Gamma [5]) offer the highest sample-efficiency, the time to run the search operators for each

data point is around 20ms, 10x more costly than random-based mappers (such as Random-

Pruned [4]). Moreover, since we find the optimized mapping in a layer-by-layer fashion

(§5.2.3), the run time of MSE inevitably increases linearly with the layers of DNN models,

increasing compilation times significantly. More importantly, emergence of techniques like

neural architecture search is leading to new DNN models coming out frequently with highly

irregular tensor shapes. This naturally increases the demand for efficient MSE. In this regard,

the search speed of MSE is a critical concern.

Challenge II: Dynamic sparsity. Mapping need to be optimized for the specific sparsity

level of the workloads (§5.2.5). While the sparsity of the weight is often fixed for a trained

DNN models, the sparsity of activations is dynamic. When facing activation sparsity, we

would either under-utilize the hardware because of inefficient mapping or would need to

re-launch the MSE again and again for every input-activation.

We address these two challenges with two novel techniques that we believe can extend

the state-of-the-art mappers.

5.3.1 Warm-start

Motivation

We introduce a warm-start technique to reduce the search time. It is inspired by two

observations. (1) Informed by the study in §5.2.4 and §5.2.4, we know that order and

parallelism are often less sensitive from workload to workload. (2) Because of the nature of

the DNN operations (CONV, FC, and others), consecutive layers often have some dimensions

the same or similar to each other. Therefore potentially the mapping of the later layers can

be inspired by the found mapping of the previous layer.
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Proposed Warm-start Search Mechanism

Figure 5.8 shows our warm-start flow. We introduce a replay buffer within the MSE

framework which stores the optimized mapping of each workload (i.e., DNN layer) that

has been run so far. We initialize the algorithm with the solution of the highest-similarity

workload in the replay buffer.

MSE Flow. Warm-start works via the following flow. Step-1: When the new workload

comes, we compare the workload similarity to the workloads in the replay buffer. We use

editing distance as the similarity metric. Step-2: Initialize the algorithm with the mapping

with the highest-similarity by (i) Inherit the order and parallelism parts of the solution, and

(ii) Scale the tile sizes to match the tensor dimensions of the current workload. Step-3: Run

the search algorithm.

Walk-Through Example. In Figure 5.8 as an example, there are two workloads that are

finished with their final optimized mapping stored in the replay buffer. The next workload,

workload-3, comes and will go through warm-start block before entering optimization loop.

In the warm-start block, we use editing distance to compare the similarity between the

current workload and the workloads in the replay buffer. E.g., workload-3 is only differ from

workload-1 at C-dimension, leading to editing distance of 1; similarity, editing distance with

workload-2 is 3 (K, Y, X). Therefore, we pick the stored optimized mapping for workload-1

(Map1), scale it to match the tensor shape of workload-3 (i.e., multiply C tile size by 2

at the outer-most tiling level (L3 mapping)), and use it as the initialized mapping for the

optimization.

Similarity. Typically, for most DNNs we find that previous layer has the highest-

similarity score. However, there are some exceptions: 1) the layers can come out-of-order

because of other compiler decisions or 2) irregular tensor shapes of the workloads created

by neural architecture search.
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Evaluation

The Impact of Warm-start Initialization. Warm-start is an initialization technique. Fig-

ure 5.9 shows the effect of warm-start initialization. We measure the performance of the

initialized mapping of warm-start by similarity (yellow bar), warm-start by previous layers

(red bar), and the default random initialization (blue bar) in Figure 5.9. We evaluate work-

loads from two DNN models, VGG [146] and Mnasnet [34]. Many DNN models are made

by human experts, where the shape of each layer are often designed with high regularity

such as VGG [146] and Resnet [142]. In these models, warm-start by previous layers and

warm-start by similarity make no difference, since the highest-similarity layers are almost

always the previous layers, as shown in workload ID 1 - 4. However, the shape of the

workloads in the Mnasnet, a network found by neural architecture search, are more irregular.

Therefore warm-start by similarity becomes essential, providing 2x better performance than

warm-start by previous layers. However, both warm-start strategies are effective and are

2.1x and 4.3x better than random initialization.

The Impact of Warm-start Search. We demonstrate how warm-start can reduce the

time to converge. Figure 5.10 shows the converge curve of the first layer and a later layer to

perform MSE on VGG16 [146]. For the first layers (VGG Conv 1), there are no previous

solution in the replay buffer. Therefore searches with random initialization and warm-start

initialization have no difference. However, for the later layers (VGG Conv 13), the searches

with warm-start start with better points and converge faster.

We perform MSE for all layers in 4 DNN models with and without warm-start. Fig-

ure 5.11(a) shows that searching with warm-start does not affect the quality of the found

solutions, i.e., the EDP values are as low as the default algorithm. Simultaneously, warm-

start can converge 3.3x-7.3x faster (we define time-to-converge as the time to reach 99.5%

of performance improvement. In the figure we use the number of generation-to-converge,

which is an equivalent index of time-to-converge.). We can observe that Mnasnet [34] yields

the least speedup. It is because Mnasnet is a network found by neural architecture search
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whose tensor shape of each layer/ workload is more irregular. Therefore scaling from old

solutions will be not as close to the optimized solutions as the ones in regular networks such

as Resnet [142], VGG [146], Mobilenet [126], which are manual designed. However, even

that, the warm-start for Mnasnet can still converge 3.3x faster.

Takeaway:

• Mappings have hierarchies (§5.2.2). Each level of hierarchy is built with the micro

building block formed by its down-stream hierarchy. Warm-start is essentially reusing

those already found high-performance micro building blocks to construct new mappings

for new workloads.

• Warm-start by similarity is beneficial for both regular (designed by human experts) and

irregular (designed by ML algorithms) DNN models.

• Warm-start technique can reduce time-to-converge for MSE, which is essential for both

time-critical tasks and large-scaled MSE.

• The replay buffer we use is per accelerator configuration and per DNN model, i.e., we

clear up the replay buffer when evaluating new DNN model for the sake of demonstrating

the learning phase of the replay buffer. However, in practice, we do not need to clear up

the replay buffer. The replay buffer will become a cache of high performance mappings

across models and can bootstrap a wide range of workloads.

5.3.2 Sparsity-aware MSE

Motivation

In §5.2.5 we identified the need different mappings for different sparsity of workloads.

While tackling weight sparsity is straightforward because weight sparsity is often fixed at

model deploy time, tackling activation sparsity is challenging. It is not practical to search

for an optimal mapping for each new input-activation. We want to seek out if we can learn a

mapping that can generalize across a range of sparsity levels to tackle the dynamic sparsity

in activations?

102



Proposed Sparsity-aware Search Mechanism

We propose sparsity-aware mapping search, which works as follows. When executing MSE,

we don’t look at the actual density level of each activation (since it is dynamic). Instead,

we assume and impose sparsity in the workload when executing MSE. We impose the

activation to have a density from 1.0 to 0.1, which is the typical range of activation density in

DNN [3, 169, 170, 171, 172, 173]. Next, when executing MSE, we score the mapping by the

performance of this mapping on workload across the sweep of density levels (Figure 5.8).

Scoring a Mapping. We score a mapping by the weighted sum of the performance.

We use a heuristic that “the hardware performance (e.g., latency, energy) is with positive

correlation to the density of the workload” to decide the weighting. We pick the weighting

by the factorial of density4. For example, assuming we have two density levels, 0.5 and 1.0,

with hardware performance Per f0.5 and Per f1.0, then the (weighted sum) score is: Per f0.5
0.5 +

Per f1.0
1.0 .

Evaluation

We compare the “sparsity-aware” (§5.3.2) with “static-density” in Table 5.4. Both “sparsity-

aware”and “static-density” are agnostic to the actual workload density. “Static-density

1.0” always assumes the workload is dense when searching. “Static-density 0.5” searches

the mapping assuming the workload has 0.5 density, and “Static-density 0.1” assumes 0.1

density. “Sparsity-aware” searches the mapping assuming the workload density range from

1.0 - 0.1. Specifically, we use 5 density levels: 1.0, 0.8, 0.5, 0.2, and 0.1 (blue cells in

the first column), which are picked by heuristics. That is, when evaluating the mapping in

the optimization loop, we scored the mapping by the performance of this mapping under

workload density levels of 1.0, 0.8, 0.5, 0.2, and 0.1, and used the weighted sum of the

performance as the final scores for the mapping. The scores are used to select which

4We pick the weighting linear to density, since we experiment on activation sparsity in our evaluation.
When we experiment on weight and activation sparsity together, following the same methodology, we will use
(density)2.
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mappings proceed to the next iteration of the optimization loop.

We test the found mappings of the four strategies (columns) in Table 5.4 by workload

with density from 1.0 to 0.05. The performance of each is recorded in the corresponding rows.

We make two observations: 1) The “sparsity-aware” can reach comparable performance to

the “static-density” ones at the density levels, for which the “static-densities” are specifically

optimized. For example, “static-density 1.0” found a mapping with EDP 2.39E+13 (cycles

uJ) at density level 1.0. The mapping found by “sparsity-aware” can perform at a comparable

EDP of 2.40E+13 (cycles uJ). 2) Aware of a range of sparsity (1.0 - 0.1), “sparsity-aware”

can successfully find a mapping that can generalize across a range of sparsity. A fixed

mapping found by “sparsity-aware” can achieve (in geomean) 99.7% of performance to the

performance of each of the mappings specifically searched for different density levels.

Takeaway:

• Our “Sparsity-aware” technique is essentially a regularization technique in MSE. It

prevents the MSE from finding mappings overfitted for one sparsity level.

• Sparsity-aware technique enables MSE to find a fixed mapping that is generally suitable,

not claiming to be optimal but is comparable, for a range of sparsity levels. It tackles the

practical cases of dynamic activation sparsity in DNN networks after Relu activations or

other sparsifying operations.

• We use a density range of 1.0 - 0.1 because we focus on DNNs whose activation sparsity

is usually in this range [3, 169, 170, 171, 172, 173]. However, tensor operations in

high-performance computing, which has different range of sparsity, can apply different

density ranges.

5.4 Related Works

Map Space Exploration. Many mappers (search algorithms) with different algorithmic

techniques are proposed to tackle the MSE problem. Timeloop-mapper [4], Simba [8],

dmazeRunner [9], Interstellar [10], and others [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
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22, 23] use random sampling on a raw or pruned search space. Gamma [5], Autotvm [24],

and others [31, 16, 168] use genetic algorithms. HASCO [25] and Reagen et. al [26]

uses Bayesian optimization, RELEASE [27], ConfuciuX [160], and FlexTensor [28] uses

reinforcement learning. Mind Mappings [6] uses a neural network-based surrogate model to

replace the cost model and directly uses backpropagation to learn a solution that maximizes

the objective. There are also other techniques such as mixed-integer programming in

CoSA [7], MCMC search in FlexFlow [29], and others [30, 31, 32, 33]. There have been

plenty of mappers proposed. However, a deeper analysis of how the MSE works and how

different mapping axes contribute to the performance is often lacking. This is the focus of

this work.

5.5 Summary

Specifically, our contributions are two-fold. (1) This is the first work, to the best of our

knowledge, to quantitatively compare three wide categories of mappers: random-based [4]

(i.e., heuristic pruning), feedback-based [5] (i.e., blackbox optimization and reinforcement

learning), and gradient-based [6] (i.e., surrogate models), and analyze their trade-offs. We

conduct a sensitivity analysis of different mapping axes to understand the contribution of

each axis. We then perform case studies that reveal distinguishing characteristics of good and

bad mappings. Our analysis reveals that: (i) random search is inefficient, (ii) gradient-based

search converges fast but requires prior knowledge of the accelerator architecture, and (ii)

feedback-based search is more adaptable and sample-efficient, but requires higher cost to

acquire each sample. Our analysis also shows that optimality of a dense DNN mapping does

not port over to a sparse DNN.

(2) Based on our findings, we propose two novel techniques to enhance the state-of-the-

art in MSE. (i) We propose a “warm-start” technique to initialize the MSE with previous

mapping solutions from previous layers in the replay buffer based on a similarity metric,

enabling the mapper to start at a better point and converge faster. In our evaluations, we find
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that warm-start can help the mapper converge to a similar performance point 3.3x-7.3x faster.

(ii) We propose a “sparsity-aware” technique to search for a mapping that can perform well

across a range of target activation sparsity. A fixed mapping found by our “sparsity-aware”

approach can achieve 99.7% of the performance of each of the mappings specifically tailored

for the various density levels. We believe these techniques can be augmented over existing

MSE tools, making them more robust and scalable for future DNNs.
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CHAPTER 6

DIGAMMA: A HW-MAPPING CO-EXPLORATION MAPPER

So far we have a thorough discussion on Map Space Exploration (MSE), where we had

formally define the map space (chapter 3), proposed an efficient mapper (chapter 4), and

analyze different mappers and components in MSE framework (chapter 5). The next topic

we want to explore is how we can extend the MSE to support larger design space. As

mention in chapter 2, the design space of DNN accelerator includes: i) HW resources and ii)

mapping. So far, we focus on the discussion of optimizing mapping. In this chapter, we will

discuss how to extend the mapping exploration to HW-Mapping co-exploration.

With the growth of AutoML, optimizing HW and Mapping together automatically

with AI/ML offers a potential solution. However, how to effectively co-optimize the HW

and mapping is still an open question. To address this, we propose a HW-Mapping co-

optimization framework (Co-opt Framework) and an optimization algorithm, which search

the HW resources configuration and the optimized mapping simultaneously.

6.1 Technical Approach

Problem Formulation. Under a design budget (e.g., chip area) and given a DNN model,

we aim to design an accelerator with optimized HW resource configuration for PEs, local

buffer (L1), and global buffer (L2), and an optimized mapping strategy.

6.1.1 High-level Overview

We integrate the two searching loops, HW and mapping, into one unified optimization

process, and propose 1) a HW-Mapping co-optimization framework (Co-opt Framework).

Note that there are two main factors deciding the effectiveness of an optimization framework:

efficiency of the design-point encoding and efficiency of the optimization/ search algorithm.
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Work

HW Space Mapping Space
Co-
opt Search TechniquePE 

Array 
Sizing

Buffer 
Sizing Tile Order Parall-

elism
Clust-
ering

RELEASE (RL4RealLife’19) x x ✓ x x x - Deep RL
ConfuciuX (MICRO’20) ✓ ✓ x x x x - Deep RL

Interstellar (ASPLOS’20) ✓ ✓ x x ✓ x x Two-step Heuristic
AutoSA (FPGA’21) ✓ x x x x x - Exhaustive Search

AutoTVM (OSDI’18) x x ✓ ✓ ✓ ✓ - Simulated Anneal
Timeloop (ISPASS’19) x x ✓ ✓ ✓ ✓ - Pruned Search

dMazeRunner (TECS’19) x x ✓ ✓ ✓ ✓ - Pruned Search

SIMBA (MICRO’19) x x ✓ ✓ ✓ ✓ - Random Search
GAMMA (ICCAD’20) x x ✓ ✓ ✓ ✓ - GA

FlexTensor (ASPLOS’20) x x ✓ ✓ ✓ ✓ - RL

CoSA (ISCA’21) x x ✓ ✓ ✓ ✓ - Mixed-Integer 
Programming

MindMapping (ASPLOS’21) x x ✓ ✓ ✓ ✓ - Gradient-based

HASCO (ISCA’21) x ✓ ✓ ✓ ✓ ✓ x
Two-step Opt: 

(HW) Bayesian Opt
+ (Map) RL

DiGamma ✓ ✓ ✓ ✓ ✓ ✓ ✓ Co-opt with 
Specialized GA 

Two-step opt/heuristic: Two steps (two search space) are optimized sequentially and independently.
Tiling: Tile size, tensor splitting. Order: Compute order. Parallelism: Spatial Map. Clustering: PE array 
reshaping, buffer hierarchy management, choice for levels of parallelism.

Fig. 6.1: State-of-the-Art HW and Mapping optimization frameworks.
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Objective 
(latency, 
energy)

Model
(ResNet)

Design 
Budget (Area, 

Power)

HW Configuration:  
# of PEs, # of Buffers

Mapping: 
Tiling, Order, Parallelism.

An Accelerator Design

Optimization

Evaluation

Decoding to 
a HW config 
+ Mapping 

Efficient
Encoding of 
HW config + 

Mapping

Opt. alg.
(③DiGamma,

CMA,…)

Co-opt Framework①

②

Design 
Constraint
(Fixed HW)

Fig. 6.2: HW/Mapping Co-optimization Framework. Our three technical contributions are
highlighted.
In this chapter, we propose 2) an efficient encoding method for HW configuration and

mapping and 3) a sample-efficient optimization algorithm (DiGamma).

6.1.2 HW-Mapping Co-optimization Framework

Co-opt Framework takes the input of target model, optimization objective, design budget,

an optimization algorithm, and (optionally) a design constraint, and generates an optimized

accelerator design point with HW configuration and mapping strategy. The design constraint

is optional, for supporting two additional use-cases: 1) Fixed-HW: when the researcher/ engi-

neer already has a designed accelerator and only wants to search for an optimal mapping; 2)

Fixed-Mapping: when the researcher has a manual-tuned mapping (e.g., NVDLA [80]) and

wants to understand the optimal HW configurations for designing a specialized accelerator

(e.g., understanding the compute to memory balance). Co-opt Framework can deal with

these constraints by restricting the design space accordingly. As shown in Figure 6.3(a),

Co-opt Framework includes an optimization block, where different optimization algorithms
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…
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O Output buffer

(f)

W = &$'$($)$
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Decoding
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PE

PE
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…

……

…
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PE
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…

…

…

…

PE

for "-level Configs Accelerator: (Part of Decoding)

Const-
raint

Checker

10
5

2
-1
3
1

Evaluated fitness value 
(e.g., Latency + constraint checking)

Encoded Individual (A Design Point)
Encoding value (A HW/Mapping Parameter)

Map: Clustering

Fig. 6.3: (a) Co-opt Framework, (b-c) the HW-Mapping encoding representation, and
(d-e) the corresponding decoded accelerator configuration. (f) The formula for calculating
minimum on-chip buffer requirement. (g) The definition of notations.
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can be plugged and played, and an evaluation block, where the proposed design points are

evaluated and scored to guide the algorithms.

Optimization Block.

One main goal of this chapter is to develop a generic framework for HW-Mapping co-

optimization that is not tiled with any optimization/searching algorithms. We abstracted the

underlying detail of taking different DNN models as inputs, understanding different design

budgets, encoding/decoding of HW and mapping, and so on, and expose a generic interface

for all the optimization algorithms. The only task left for any optimization algorithm (from

any optimization library [157] or custom-designed) is to find a list of parameters (together

forming a design point) that yields the highest reward (fitness). The sampling budget, which

is the number of design points the algorithms are allowed to sample, is a hyper-parameter of

optimization block that can be set by the users. It controls the number of optimization loops

(optimization, evaluation, optimization,...) in the framework.

Evaluation Block.

The evaluation block includes a decoding module (described in §6.1.3) and a fitness evalua-

tion module. The fitness evaluation includes a HW performance evaluator and a constraint

checker (Figure 6.3(a)).

HW Performance Evaluator. We evaluate all design points using an open-source

HW performance evaluator, MAESTRO [68], which has detailed micro-architectural HW

models and is validated against chip prototypes. MAESTRO takes in the accelerator design

(HW and mapping) and outputs a detailed HW performance report including latency, area,

power, energy, and so on. In the evaluation, we use HW resource area as the constrained

design budget which includes the area of PEs, L1 and L2 buffers1. Constraint Checker.

In constraint checker, if the required resources (e.g., area or power) of the proposed design

1A complete chip area will also include NoCs, logics, routing, clock trees, pin placement, and others,
which need other physical layout considerations and are not considered in MAESTRO and this chapter.
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point is larger than the provided budget, we invalidate the design point by re-assigning it a

negative fitness value.

6.1.3 Encoding of Design Point

Encoding: Design Space Description

One of our key contributions is a customized encoding, as shown in Figure 6.3(b-c) (notation

shown in Figure 6.3(g)), to describe an accelerator design-point. Our encoding captures

the compute resources, mapping, and the memory hierarchy. We show a 2-hierarchy

level accelerator in Figure 6.3(b-c) as an example. Each key-value pair represents a gene.

L1-config (yellow) shows the accelerator configuration (HW and mapping) of a 1-D PE

array. πL1, a HW parameter, shows the length of the 1-D PE array. The rest of the genes

(P,C,K,Y ,X ,R, and S) describe the mapping parameters for the 1-D PE array, including tiling,

order, and parallelism. The value genes describe the tile sizes of the corresponding key

dimension. The order of key genes describes the compute order. P gene tells the dimension

to parallelize the compute across 1-D PE array. L2-config shows the HW and mapping

across several 1-D PEs arrays, effectively describing a 2-D PE array. πL2, a HW parameter,

shows the number of instantiated 1-D PE arrays, while the rest mapping genes decide the

mapping parameters across 1-D PE arrays. Similarly, a 3-level hierarchy (i.e., several 2D

arrays) can also be described.

Decoding: Design Point Derivation

When evaluating the fitness/performance of each individual’s genes, we decode them back

to an exact accelerator design point. Figure 6.3(d)(e) shows the decoded accelerator of the

proposed design point by Figure 6.3(b)(c), respectively. The πL2 and πL1 genes decide the PE

array sizes and aspect ratio. Therefore different PE arrays are configured in Figure 6.3(d)(e).

The P values of L2 and L1 implies how the compute are fetched and parallelized to the PE

arrays, e.g., K-C parallelism and X-Y parallelism in Figure 6.3(d)(e). The order of the genes
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decides the computation order for each tile in the PE arrays. Finally, tile sizes and levels of

hierarchies (or called clustering) (e.g., two levels of cluster/ hierarchy in Figure 6.3(b)(c))

determine the minimum buffer requirement to house weight, input, and output tensor at both

L2 and L1 buffers.

6.2 Optimization Algorithm

6.2.1 Leveraging Existing Algorithms

With the thriving of AutoML, many optimization algorithms have been developed for auto-

matically searching through a given design-space. They achieve state-of-the-art performance

across many domains, including neural architecture search, AI-controlled game, chip de-

sign [177], and so on. Co-opt Framework provides a generic interface enabling us to plug

and play many of these existing algorithms (which we leverage from nevergrad [157]), as

shown in the experiments in §6.3.2).

However, the design space of HW-Mapping co-optimization is un-smoothed and extreme

large. This challenges the search efficiency of the optimization algorithms and makes some

of them ineffective under limited sampling budgets (§6.3.2). This motivates our proposed

algorithm, which customizes a genetic algorithm.

6.2.2 Background of Genetic Algorithm.

In genetic algorithm (GA), we often call an encoded value of a candidate a gene, each

encoded candidate: an individual, a bag of candidates: a population, and one iteration of

optimization loop: a generation. Baseline GA has two standard genetic operators: crossover

(blend the genes of individuals and reproduce populations for the next generation) and

mutation (perturb the genes of each individual).

Research shows GA reaches competitive performance with deep reinforcement learning

[155, 156], and hyper-parameter optimization problem. Comparing to many optimizations

methods, GA is light, fast, and highly parallelizable [155, 156]. However, the key challenge
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is its sample efficiency.

GAMMA [5] is an open-source genetic algorithm, tuned for DNN mapping optimization

over given HW configurations of accelerators. Despite the effectiveness of GAMMA as a

mapping search tool, using it naively to search for HW resources and mapping together will

result in a two-loop optimization, which is extremely inefficien.

6.2.3 DiGamma: Domain-aware Genetic Algorithm

DiGamma uses the encoding presented in §7.1.1 to describe design-points. It then perturbs

these to search through the co-optimization space. Rather than using conventional genetic

operators (crossover, mutations) to perturb the genes arbitrarily, which is shown to have

poor sample efficiency (§6.2.2), we develop specialized genetic operators (i.e., optimization

operators) for individual HW and mapping genes to capture the structure of the design space,

as described next.

The genetic operators responsible for mapping (tiling, order, parallelism, clustering)

are modified from GAMMA [5]. Additionally, we implement a HW genetic operator to

perturb the PE configuration, where the values of πL2 and πL1 decide the total number of

PEs and the aspect ratio of PE array. Further, for L1 and L2 buffer sizes, we employ a buffer

allocation strategy to decide the most optimized buffer allocations of a given individual

(Figure 6.3(b)(c)) by the minimum buffer requirement derived at decoding block (§6.1.3),

i.e., we allocate the exact amount of buffer needed at both L2 and L1 to maximize buffer

utilization. We summarize the developed specialized genetic operators and their different

perturbing ability across HW and Mapping space in Figure 6.4.

6.3 Evaluations

6.3.1 Setup

Across our experiments, we use the optimizing objective of minimum latency which becomes

the performance metric when evaluating the quality of the found solution. Other objectives
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Operators
HW Space Mapping Space

PE Array 
Shape & Size

Buffer 
Sizing Tiling Order Parallelism Clustering

Crossover ✓ ✓ ✓
Reorder ✓

Grow/Aging ✓ ✓ ✓
Mutate-Map ✓ ✓ ✓
Mutate-HW ✓ ✓
✓: Adapted from Gamma.        ✓: Added features in DiGamma.     

Fig. 6.4: GAMMA’s genetic operators† and their perturbing space‡.
†: Mutate-HW: Mutation operating on HW space, which tweaks the PE size/shape and also affects the
allocated buffer. Mutate-Map: Mutation operating on mapping space and co-affecting buffer choices in HW
space.
‡: Definition of each space can be found in Figure 6.5.

can also be specified to DiGamma such as power, energy, EDP.

DNN Models. We experiment 7 DNN models across 3 popular DNN applications: vision

(MobilenetV2, Resnet18, Resnet50, Mnasnet), language (BERT), and recommendation

(DLRM, NCF).

Edge/ Cloud Platform Resources. We evaluate accelerator design under two types

of platform resources: edge and cloud. We set the chip area budget for area of PEs and

on-chip buffers as 0.2mm2 for accelerators in edge [8, 178] and 7.0mm2 for accelerators in

cloud [8].

Area Cost Model. To estimate area cost, we implemented RTL of the various compo-

nents in Figure 6.3(d-e), synthesized them using Synopsys DC with Nangate 15nm library

and used Cadence Innovus for place-and-route. We synthesized the SRAM buffers with

SAED32 education library from Synopsys.

Sampling Budget of Optimization Algorithms. We set the sampling budget (maximum

number of sampled points throughout the search process) as 40K points for all the investi-

gated optimization algorithms. For DiGamma, it means population size times number of

generations cannot exceed 40K, which takes about 20 mins of CPU-time.

Baseline Optimization Algorithms. We take 8 other optimization algorithms, which are
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Work

HW Space Mapping Space
Co-
opt Search TechniquePE 

Array 
Sizing

Buffer 
Sizing Tile Order Parall-

elism
Clust-
ering

RELEASE (RL4RealLife’19) x x ✓ x x x - Deep RL
ConfuciuX (MICRO’20) ✓ ✓ x x x x - Deep RL

Interstellar (ASPLOS’20) ✓ ✓ x x ✓ x x Two-step Heuristic
AutoSA (FPGA’21) ✓ x x x x x - Exhaustive Search

AutoTVM (OSDI’18) x x ✓ ✓ ✓ ✓ - Simulated Anneal
Timeloop (ISPASS’19) x x ✓ ✓ ✓ ✓ - Pruned Search

dMazeRunner (TECS’19) x x ✓ ✓ ✓ ✓ - Pruned Search

SIMBA (MICRO’19) x x ✓ ✓ ✓ ✓ - Random Search
GAMMA (ICCAD’20) x x ✓ ✓ ✓ ✓ - GA

FlexTensor (ASPLOS’20) x x ✓ ✓ ✓ ✓ - RL

CoSA (ISCA’21) x x ✓ ✓ ✓ ✓ - Mixed-Integer 
Programming

MindMapping (ASPLOS’21) x x ✓ ✓ ✓ ✓ - Gradient-based

HASCO (ISCA’21) x ✓ ✓ ✓ ✓ ✓ x
Two-step Opt: 

(HW) Bayesian Opt
+ (Map) RL

DiGamma ✓ ✓ ✓ ✓ ✓ ✓ ✓ Co-opt with 
Specialized GA 

Two-step opt/heuristic: Two steps (two search space) are optimized sequentially and independently.
Tiling: Tile size, tensor splitting. Order: Compute order. Parallelism: Spatial Map. Clustering: PE array 
reshaping, buffer hierarchy management, choice for levels of parallelism.

Fig. 6.5: State-of-the-Art HW and Mapping optimization frameworks.
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widely-used and achieving state-of-the-art performance across different tasks, as baselines.

The algorithms include: Random search, standard GA (stdGA), Particle Swarm Optimization

(PSO), Test-based Population-Size Adaptation (TBPSA), (1 + 1)-evolution strategy ((1+1)-

ES), Differential Evolution (DE), Passive Portfolio (Portfolio), and Covariance matrix

adaptation evolution strategy (CMA).

Baseline HW and Mapping Optimization Schemes. We formulate two kinds of

HW and mapping optimization schemes and compare them with DiGamma, listed as

follows.

• HW-opt: optimizing HW while mapping is fixed. The HW is optimized by grid search

approach over number of PEs and buffer sizes. Note that the entire HW configuration

design space is as large as O(1012), which is hard to enumerate through, and therefore

we use grid search. For mapping, we use the manual-designed NVDLA (dla)-like [80],

ShiDianNao (shi)-like [81], and Eyeriss (eye)-like [178].

• Mapping-opt: optimizing mapping while HW is fixed. The mapping is optimized

by GAMMA [5], a mapping optimizer for a given HW configuration. We cherry-

picked three sets of HW configurations: Buffer-focused (small compute + large buffer),

compute-focused (large compute + small buffer), and Medium-Buf-Com (medium Buffer

+ medium compute) configuration for both edge and cloud settings. Note that the design

is area constrained, therefore compute and buffer resources are traded-off with each

other.

• HW-Map-co-opt: using DiGamma to co-optimize both HW and mapping2.

6.3.2 Comparisons with Baseline Optimization Algorithms

Figure 6.6 shows the achieved performance (latency) by different optimization algorithms.

Note that the proposed Co-opt Framework is a supportive back-end and can work well with

2The hyper-parameters of DiGamma, (mutation rate, crossover rate, elite ratio, population size to number
of generations ratio, and so on), are decided by a Bayesian optimization-based search process [179].
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Values
Scheme
Method Random stdGA PSO TBPSA (1+1)-ES DE Portfolio CMA DiGamma

 
Resnet18 N/A 4.7 169.3 N/A N/A 0.8 0.8 1.0 0.5
Resnet50 N/A N/A 110.9 0.7 21.7 1.1 0.3 1.0 0.3

Mbnet-V2 N/A 29.0 1.0 0.5 0.5 0.2 3.7 1.0 0.2
Mnasnet N/A 5.3 27.6 0.1 33.5 0.04 0.04 1.0 0.04
BERT N/A N/A N/A 1.0 2.0 10.0 0.5 1.0 0.4
NCF 229.8 88.4 N/A 133.6 0.5 N/A 1.9 1.0 0.4

DLRM 304.7 151.5 1.2 168.8 2.8 5.2 15.6 1.0 0.8
GeoMean 264.6 24.9 14.4 2.9 3.2 0.8 0.9 1.0 0.3
 
Resnet18 N/A 64.9 1652.5 0.4 373.6 N/A 0.3 1.0 0.03
Resnet50 N/A 116.2 1904.7 3593.7 N/A 1.5 6.4 1.0 0.3

Mbnet-V2 0.8 0.8 20.8 0.8 8.9 3.2 0.6 1.0 0.4
Mnasnet N/A 10.8 0.2 0.1 0.2 N/A 10.6 1.0 0.1
BERT 10669.5 18.9 27.2 13173.1 1043.3 42.3 2.3 1.0 1.2
NCF 47.1 15.0 0.6 0.3 41.2 0.6 0.4 1.0 0.01

DLRM 3481.5 17.1 0.8 28.0 54.1 4230.0 27.9 1.0 0.6
GeoMean 193.3 16.4 14.5 10.8 34.6 13.8 2.3 1.0 0.1

Latency
HW-Map-co-opt

Platform Resources: Edge

Platform Resources: Cloud

Values
Scheme
Method Random stdGA PSO TBPSA (1+1)-ES DE Portfolio CMA DiGamma

 
Resnet18 N/A 6.3 46.2 N/A N/A 1.2 1.2 1.0 0.7
Resnet50 N/A N/A 12.0 0.7 20.8 1.1 0.3 1.0 0.3

Mbnet-V2 N/A 20.0 1.1 0.4 0.6 0.2 2.7 1.0 0.2
Mnasnet N/A 1.0 2.5 0.1 35.3 0.04 0.04 1.0 0.05
BERT N/A N/A N/A 0.7 2.6 13.2 0.7 1.0 0.5
NCF 179.3 78.4 N/A 105.0 0.5 N/A 1.9 1.0 0.4

DLRM 211.2 83.1 1.2 140.5 1.6 5.2 15.8 1.0 0.7
GeoMean 194.6 15.3 4.5 2.4 3.1 0.9 1.0 1.0 0.3
 
Resnet18 N/A 30.3 19.1 0.1 201.7 N/A 0.3 1.0 0.03
Resnet50 N/A 113.9 262.8 1352.9 N/A 1.4 4.5 1.0 0.3

Mbnet-V2 1.4 1.4 28.6 1.4 20.5 6.1 1.3 1.0 0.7
Mnasnet N/A 7.2 0.2 0.1 0.3 N/A 12.0 1.0 0.1
BERT 1528.0 14.6 12.0 7659.3 990.3 35.8 2.4 1.0 1.3
NCF 39.2 10.8 0.8 0.4 14.9 0.8 0.6 1.0 0.01

DLRM 2098.1 8.8 0.6 16.0 53.0 760.0 26.1 1.0 0.4
GeoMean 115.7 12.6 5.5 7.3 30.6 11.4 2.5 1.0 0.1

Latency-Area-Product
HW-Map-co-opt

Platform Resources: Edge

Platform Resources: Cloud

Fig. 6.6: Performance comparisons of different optimization algorithms. Both latency and
latency-area-product are normalized by the values of CMA, the best-performing baseline
(lower is better). We highlight the best performing algorithm in different tasks (DNN
models) in bold. N/A means the algorithm cannot find valid solution that fits in the area
constraint under the set 40K sampling budgets.
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Value

Scheme HW-Map-
co-opt

Method
Grid-S
HW   +
dla-like

Grid-S
HW +

shi-like

Grid-S
HW   +
eye-like

Buffer-
focused +
Gamma

Medium-
Buf-Com
+ Gamma

Compute-
focused +
Gamma

DiGamma

Resnet18 7.8 94.8 29.8 3.7 2.4 1.0 0.8
Resnet50 3.6 88.4 27.8 3.7 1.9 1.0 0.8
Mbnet-V2 2.4 48.5 15.9 2.9 1.8 1.0 0.7
Mnasnet 2.5 61.2 20.5 3.5 2.0 1.0 0.7
BERT 1.3 4.1 1.1 5.6 2.8 1.0 0.8
NCF 1.8 908.0 482.4 5.2 2.7 1.0 0.8

DLRM 1.8 890.8 473.4 4.7 2.4 1.0 1.0
GeoMean 2.6 97.4 35.3 4.1 2.3 1.0 0.8

Resnet18 8.6 877.6 275.7 1.1 1.2 1.0 0.2
Resnet50 3.4 786.9 141.0 1.1 0.9 1.0 0.4
Mbnet-V2 3.2 276.4 90.6 1.1 0.9 1.0 0.4
Mnasnet 3.6 322.6 107.9 1.1 0.9 1.0 0.4
BERT 1.0 100.3 26.6 3.0 1.5 1.0 0.7
NCF 1.0 12288.1 6528.1 2.3 1.2 1.0 0.9

DLRM 1.3 10846.3 5763.9 1.8 1.1 1.0 0.7
GeoMean 2.4 972.6 324.8 1.5 1.1 1.0 0.5

Latency
HW-opt

(Optimzing HW, Fixed Mapping)
Mapping-opt

(Fixed HW, Optimizing Mapping)

Platform Resources: Edge

Platform Resources: Cloud

Fig. 6.7: Latency of the found solution by different optimization scheme. Latency values are
normalized by the values of best-performing baseline method (Compute-focused + Gamma).
Grid-S: grid search. Buffer-focused: large buffer design. Compute-focused: large PE arrays
design. Meidum-Buf-Com: medium buffer and PE arrays design.
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!!" P Y C R K X S !!# P K S C X R Y
33 K 7 2 2 33 83 3 12 X 1 3 1 12 1 1

HW-Map-co-opt
(DiGamma)

Mapping-opt 
(Compute-
focused HW +
Gamma)

HW-opt 
(Grid-S HW +
dla-like)

!!" P S R X K Y C !!# P C X R S Y K
56 K 3 1 9 56 1 3 9 X 1 9 1 3 1 1

!!" P K C Y X R S !!# P K C Y X R S
7 K 7 64 3 3 3 3 64 C 1 64 3 3 3 3

Scheme Latency 
(cycles)

Area 
(mm2)

Lat-Area-
Product

PE Area : Buffer Area 
Ratio

HW-opt (dla-like) 3.74E+06 1.99E+05 7.44E+11 67 : 33
Mapping-opt (Com-focused) 1.14E+06 1.83E+05 2.08E+11 39 : 61
HW/Map-co-opt (DiGamma) 9.80E+05 1.99E+05 1.95E+11 56 : 44

Area Constraint: 2.00E+5 (mm2)

Fig. 6.8: The solution found by different optimization schemes and their corresponding
performance on Mnasnet at edge resources.

many state-of-the-art algorithms such as DE, Portfolio, and CMA. Considering both stability

(without N/A) and performance, CMA is the best-performing one among the compared

baseline algorithms. The performance value of CMA represents the best performance

that Co-opt Framework could bring before discussing the new algorithm, DiGamma.

Therefore, we normalize the values in Figure 6.6 by the value of CMA. We walk through

more detail of Figure 6.6 and discuss DiGamma’s performance, next.

At edge settings, some algorithms can achieve compatible performance with DiGamma

in specific tasks such as DE and Portfolio in Mnasnet, however not stable with the respect to

the stability across tasks (Figure 6.6). E.g., DE did not find any solution in NCF, and Portfolio

performed 15.6x worse than CMA in DLRM. Besides the latency value of different solutions,

we also show their corresponding latency-area-product, since some solution/designs could

trade-off areas for better latency. E.g., in BERT cases, TBPSA ranks 2nd across 8 baseline

algorithms in latency performance. However, with the respect to latency-area-product,

TBPSA is the best among baseline algorithms, meaning it has better area efficiency to

achieve similar latency performance comparing to others. Moreover, the poor performance

of standard GA contrasts the effectiveness of DiGamma’s domain-aware optimization
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operators. At cloud settings, the wider design space in cloud cases increases the complexity

of the optimization tasks. Multiple algorithms are not able to find any valid solutions

or can only achieve relatively bad performance. In addition, some performance-leading

algorithms such as DE, Portfolio, and CMA at edge settings, become unstable and have

much larger swing of achieved performance across different tasks/models at cloud settings.

In contrast, DiGamma can stably achieve compatible or better performance than others.

Overall, comparing to best-performing baseline algorithm (CMA, Portfolio), DiGamma

achieves (geomean) 3.0x and 10.0x better latency performance at edge and cloud settings,

respectively.

6.3.3 Comparisons with Baseline HW-Mapping Schemes

In Figure 6.7 we found that, among the compared methods, using heuristic HW configuration

(Compute-focused) with existing mapping searching tool (GAMMA) can yield the best

performance, whose value is thus used to normalized the values in Figure 6.7. It represents

the best achievable relative performance gain before proposing Co-opt Framework and

DiGamma. We describe more detail of Figure 6.7, next.

Comparing with HW-opt. In this experiment, we model the scenario that the re-

searchers designed an optimized mapping for certain DNN models such as NVDLA [80],

ShiDianNao [81], and Eyeriss [178] mapping and want to explore their performance across

different models. However, different tasks/ DNN models expose different characteristics

(e.g., in general, CNNs are more compute-intensive, and recommendation models are more

memory-intensive). To achieve better performance, the researcher could apply optimization

algorithms to search for optimal HW configurations (PEs and buffers). Here, we use the

grid search approach to search through different PEs and buffers configurations. In Fig-

ure 6.7, we could observe that DiGamma constantly achieve better performance across

three different HW-opt methods, where DiGamma is (geomean) 3.25x and 4.8x better than

the best-performing method (Grid-S + dla-like), in edge and cloud settings, respectively.
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Comparing with Mapping-opt. In this experiment, we model the scenario that the

researchers designed a mapping optimization algorithm, however relying on a pre-defined

HW configuration, which become an inductive bias from the human. For example, different

researchers will design different balances between compute and memory resources, where

we model with three sets of configurations (§6.3.1). Note that the previously effective

strategy of exhaustive grid search does not fit this scenario, since grid searching HW plus

mapping optimizations will form two loops of the optimization process, whose required

sampling budget and search time increase exponentially. In Figure 6.7, we can observe that

DiGamma is 1.25x and 2.0x better than the best-performing method (Compute-focused +

Gamma), in edge and cloud settings, and more importantly, without the need of human-in-

the-loop to cherry-pick the HW configurations.

6.3.4 Explanation of Found Solutions

Figure 6.8 shows three solutions of different optimization schemes for Mnasnet at edge

resources. In HW-opt, we could observe the output/input-channel (K-C) parallelism features

of dla-like mapping. In Mapping-opt, we could observe the mapping optimizer find an

unique mapping strategy, channel and activation (K-X) parallelism, which is different from

dla-like (K-C), shi-like (Y-X), and eye-like (Y-R, row-stationary). DiGamma also finds

a mapping with K-X parallelism for Mnasnet, however with better compute and buffer

balance, therefore achieving 3.8x and 1.6x better performance than HW-opt and Map-opt.

6.4 Related Work

HW Resources Allocations Optimizations. The HW resource allocation problem has been

widely-studied in the FPGA community [180, 181, 182, 17, 62, 65, 66, 63, 61, 64, 67, 183].

With the fast-growing of DNN/ML researches, the DNN ASIC accelerator design starts to

find the need of autonomous optimization methods to assisted the accelerator design for

speeding-up chip design time [184, 185, 186, 187, 188]. Recently, more and more ML
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techniques are integrated in the chip design process, such as reinforcement learning (RL)

[189, 190] and GNN [191].

Mapping Optimizations. Many mapping optimization methods have been proposed.

Techniques includes: formulating a more comprehensive design space for better capturing

the accelerator behavior [5, 4, 8], improving the design space description for search effi-

ciency [10, 9, 15], and incorporating different ML techniques in the optimization process [27,

26, 101, 24, 16, 31].

These prior efforts focus on the optimization of either HW or mapping independently.

In this work, we co-optimize the mapping and HW together.

6.5 Summary

We propose a HW-Mapping co-optimization framework (Co-opt Framework), which takes

in any DNN model(s), design objective, budget, and constraint, and generates an accelerator

design point, HW (i.e., numbers of PEs, number of memory levels, sizes of buffers at

each level) and mapping (i.e., parallelism, loop order, clustering, tile sizes). We abstract

the detail of performance modeling for different DNNs, chip constraints and provide a

generic interface, where many existing optimization algorithms can be plugged in. We

propose an efficient design point encoding, which describes both HW and mapping with

a list of parameters. Our encoding method constructs a compact representation of the

cross-coupled design space that boosts the efficiency of the optimization algorithms. We

propose a domain-aware genetic algorithm-based optimization method. It is specifically

designed for HW-Mapping design space and comes with specialized optimization operators

to step through the design space in a structured manner, and its HW exploration strategy

respects the interaction between HW and mapping.
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CHAPTER 7

MAGMA: A GA-BASED MAPPER FOR MULTI-ACCELERATOR SYSTEM

So far we discuss Map Space Exploration (MSE) or Mapping-HW co-exploration for single

accelerator. However, as AI workloads continue to drive up the demand for compute,

there is a trend towards building large accelerators housing several sub-accelerator/arrays.

Key examples include MCM-based SIMBA [8], wafer-scale Cerebras [192] or scaled-

out platforms [193, 194, 195]. Some recent studies have also explored heterogeneous

multi-accelerator designs enabled via reconfiguration [129] or separate heterogeneous sub-

accelerators [196]. In this chapter, we will discuss what is the new research opportunity

with respect to mapping on these multi-accelerator architectures, what are the challenges to

port existing mappers into this problem domain, and how we tackle these challenges by a

new mapper design for these new DNN acceleration platforms.

With the emergence of such platforms, enabling multi-tenancy, i.e., multi-DNN mappings

on the an accelerator/ platform, is a natural use-case. Data center workloads often run three

categories of inference tasks: vision, language and recommendation, and in each task it

involves variants of related DNN models. In this chapter, we target all three use cases

and focus on batched-job tasks (jobs launched in bulk without latency constraint but with

high-throughput need), e.g., Google photo auto-editing, image tagging, video processing,

and voice processing.

There have been a few recent works looking into the problem of mapping multi-DNN

workloads on multiple accelerator cores. PREMA [197] develops a mapper for multi-tenant

language tasks, however targeting single-core accelerator. AI-MT [194] successfully designs

a mapper for homogeneous multi-core accelerators and shows performance improvement

over vision and language tasks. Herald [196] targets heterogeneous multi-core accelerators

and systematically analyzes the benefit of heterogeneity in dataflows across the accelerator
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cores for AR/VR workloads (vision tasks). These works demonstrate the impact of a

mapping (of DNNs) for the new multi-tenant multi-core accelerators, which is of rising

interest. However, all these approaches rely on manually-designed heuristics. This limits

their scalability to diverse accelerator back-ends and emerging workloads. In this chapter,

we develop an automatic mapping search process which includes two specific contributions

(i) an optimization framework and (ii) a novel optimization algorithm.

7.1 Optimization Framework (M3E)

We propose a mapping optimization framework for multi-tenant heterogeneous accelerator.

The structure of our proposed framework called M3E is shown in Figure 7.1.

At a high-level, the M3E consists of an optimization phase and an evaluation phase. At

evaluation phase, the candidate mapping is evaluated by the cost model. At optimization

phase, the optimization algorithm tweak the mapping based on the feedback from the

evaluation phase. The optimization-evaluation loop happen iteratively until the targeting

objective converges or after a fixed set of time epochs.

The mapping consists of two key components:

• Sub-accelerator selection: the assignment of each job to a specific sub-accelerator.

• Job prioritization: execution order of jobs on a given sub-accelerator.

To successfully frame a problem into an optimization process, there are two critical

pillars: encoding (how the search space is described) and optimization algorithm (how the

search space is explored). We describe them as follows.

7.1.1 Encoding

An encoded mapping should encode the joint strategy of job prioritization and sub-accelerator

selection. We encode them into a series of values with two separate sections, as shown

in Figure 7.2. The sub-accelerator selection section decides which job goes to which sub-

accelerator. The job-prioritizing section decides the order of the jobs in each sub-accelerator.
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Optimization

Constraint
(System BW)

Fitness Function Decoder 
Evaluate Obj. 
(Throughput)
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HW cost model
(MAESTRO)
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Analysis Table 
Generator

(1k, 10)
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(2k, 3)

..

A
B

(1k,30)

(3k, 5)

…

(10k, 1)

C

Job S-Accel1

(1k, 2)

…(No-stall Latency, Req. BW)

Description of Jobs

Mapping
(global mapping)Output:

Decode 
encoded 
mapping

Optimization Algorithm

Fig. 7.1: The structure and flow† of M3E.

The length of the section is equal to group size. A full mapping consists of two sections

with total length 2x group size. We describe the encoding using the example in Figure 7.2

assuming two sub-accelerators and a group size of 5.

Sub-accelerator Selection Section. Each value describes the sub-accel ID for the

corresponding job. For example, jobs J1 and J4, are assigned to sub-accel 1, and J2, J3,

and J5 are assigned to sub-accel 2 as shown in the sub-accel selection part of the decoded

assignment in Figure 7.2.

Job Prioritizing Section. Each value describes the priority of the corresponding job.

The priority value ranges from 0 to 1, where 0 is the highest priority. We order the job

assigned to a certain sub-accelerator by the order of priority value. For example, J1 runs

before J4 in sub-accel 1 as shown in the job prioritizing part of the decoded assignment in

Figure 7.2.

7.1.2 Optimization Algorithms Supported

With an encoded search space and the support of building blocks of M3E (described later

in §7.1.4), we support several popular optimization algorithms, as shown in Table 7.3.
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J1, J4

J2, J3, J5
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Sub-accel sel. Job Prioritizing
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Decoded Mapping

J2, J3, J5

Decoding
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Accel 1
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Sub-accel Selection Sec. Job Prioritizing Sec.

J1 J2 J3 J4 J5 J1 J2 J3 J4 J5

1
2

2
1

2
0.1

0.8
0.4

0.7
0.3

Fig. 7.2: The encoding scheme of M3E.

We include multiple black-box optimization methods such as Differential Evolution [108],

Covariance Matrix Adaptation Evolution Strategy [114], and Particle Swarm Optimiza-

tion [117]. In addition, we also include two widely-used reinforcement learning methods

— Advantage Actor-Critic (A2C) [198] and Proximal Policy Optimization (PPO2) [199].

Finally, we also support our novel optimization algorithm called MAGMA (§7.2). With

the established framework, M3E can also easily be extended to support other algorithm

proposals.

7.1.3 Objective and Constraints

We target throughput as our main objective. However, other objective can also be set

(e.g., latency, energy) or formulated (e.g., energy-delay-product, performance-per-watt).

The objective can simply be specified as an input to the M3E, as shown in Figure 7.1.

We consider BW constraint (however similarly, other constraints can also be specified).

The BW constraints include accelerator-to-host BWs (e.g.,PCIe, M.2) and host memory

BW (eg., DRAM/HBM BW), which are common constraints in the practical deployment
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Sub-accel 1
Sub-accel Allocation result

BW Allocation result

: Job1 : Job2 : Job3 : Job4 : Job5

J1, J4

Decoded

J5, J3, J2

Sub-
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Order
time

time

System
BW

Jobs finished time
Sub-accel 2

Sub-
accel 2

(a) (b)
Optimized 
Mapping

BW Allocator

Fig. 7.3: (a) Mapping description from the decoder. (b) The example BW and sub-
accelerators allocation results.

scenario [park2018deep, 196]. For simplicity of the optimization framework, we take the

minimum of the two (the more stringent BW constraint), as the BW constraint known by

the optimization framework, and we name this constraint — system BW.

7.1.4 Building Blocks of M3E.

BW Allocator

However, in a multi-core accelerator, system BW to the accelerator becomes a global shared

resources between cores (sub-accelerators). To evenly allocate the same amount of BW to all

the sub-accelerators is an often applied heuristics. However, it will increases the possibility

of compute resource under-utilization. E.g., in a normal single-accelerator case, depth-wise

CONV jobs are often more memory-intensive than regular 2D CONV jobs, which can make

the accelerator under-utilized when running depth-wise CONV while it is fully-utilized

when it runs 2D CONV. In the multi-core accelerator, where the system BW is a global

shared resources [park2018deep], it gives us a chance to reallocate the BW to alleviate the

under-utilization problem by proving more BW to core running memory-intensive jobs and

proving only adequate BW to cores running compute-intensive jobs, which motivates the

BW allocator (Algorithm Algorithm 1). The BW allocator is reallocating the BW based on

the memory BW intensity of different jobs running on different sub-accelerators.

In detail, receiving the mapping, the BW allocator lookup those jobs’ no-stall latency

(§7.1.4) and required BW from the job analysis table (§7.1.4), and allocates the system BW
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to each sub-accelerator at each time frame with the ratio of their required BWs. It outputs

the detailed BW allocation results, as shown in Figure 7.3(b).

Figure 7.3(b), a BW allocation results, as an example, we can tell, jobs J1 and J5 will

be launched in Sub-accel-1 and Sub-accel-2, concurrently. Sub-accel-2 will be allocated

more BW because it is running a more BW-intensive job. When Sub-accel-2 finishes J5

and launches J3, the BW will be re-allocated to reflect the change of live running jobs

in the accelerators, where Sub-accel-1’s BW is reduced and reallocated to Sub-accel-2 in

Figure 7.3.

Job Analyzer

The job analyzer takes the jobs description as input and estimates the no-stall latency and its

required BW for each sub-accelerator using a cost model (described below) to generate a

job analysis table as Figure 7.1 shows. This table serves as a performance lookup table by

the BW allocator (§7.1.4) within the optimization loop.

HW cost model for Sub-Accelerators

In M3E, we leverage MAESTRO [58] as our underlying cost model for each sub-accelerator

because of its ability to support diverse accelerator dataflows and configurations1. It supports

most of the common DNN layers such as CONV, depth-wise CONV, and fully connected.

Given a DNN layer, a HW resource configuration (PE, SL size, SG size, NoC latency, and

BW), and a mapping/dataflow strategy, MAESTRO estimates the statistics such as latency,

energy, runtime, power, and area.

1In this chapter, we explore heterogeneity with the aspect of different specialized DNN accelerators
configurations (PEs, buffer size, dataflows). However, M3E is general enough, so that it could also consider
generic architectures such as CPUs/GPUs/TPUs by plugging in their cost models.
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Job Analysis Table

Job Analyzer profiles each job in the task by the cost model [58] and stores the profiling

results in the Job Analysis Table. In the optimization process, Job Analysis Table serves as

a quick look-up table for fitness evaluation to avoid frequently querying the cost model. The

profiling has two main information: no-stall latency and no-stall bandwidth, described next.

No-stall Latency. We define no-stall latency as the latency for running each job on each

sub-accelerator, assuming it has sufficient memory bandwidth (i.e., not memory-bound).

No-stall Bandwidth. We define no-stall bandwidth as the minimum bandwidth require-

ment from each sub-accelerator to make it stay compute-bound, not memory-bound.

7.1.5 M3E Workflow

Set-up: At the start, the user/host sets up the optimizer by feeding in the jobs descriptions,

configurations (number of PEs, dataflow) of each sub-accelerators, the system constraint

(system BW), and objective (e.g., throughput).

Pre-process: Job analyzer Job Analyzer prepares the Job Analysis Table, as shown in

Figure 7.1.

Optimization Loop: Optimization phase: optimization algorithm updates the encoding

mapping based on the feedback from the evaluation block. Evaluation phase: Decoder

decodes encoded mapping into a mapping description, as shown in Figure 7.3(a). BW

Allocator takes in the mapping description and allocates the BW for each sub-accelerator.

Fitness function extracts the objective and sets it as fitness value.

This finishes one loop/ epoch of optimization. The optimization loop stops when M3E

reaches the set sampling budget (the number of allowed sampling data points in a search

process).
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Algorithm 1 BW Allocator
Input: Mapping description
Output: BW alloc

t , t=1,2...T
Get Latt , an array of no-stall latency for the parallel jobs at time t, t=0
Get BW req

t , an array of required BW for the parallel jobs at time t, t=0
CurJobst = Latt ×BW req

t
while CurJobst is not empty do

if sum(BW req
t ) < BWsys then

BW alloc
t = BW req

t
else

BW alloc
t = BW req

t ×BWsys
sum(BW req

t )

end if
runtimes =CurJobst

BW alloc
t

runtime = min(runtimes)
CurJobst -= runtime×BW alloc

t
accelnext = argmin(CurJobst )
t += runtime
Fetch the next Lat and BW req of sub− accelnext , compute CurJobt and insert into BW req

t , Latt and
CurJobst .

end while

7.1.6 Search Space

The full search space of the proposed framework is the combinatorial combination of

the choices for sub-accelerator selection and job prioritizing. Assuming the accelerator

has 4 sub-accelerator and we use the group size of 60. The size of the design space is

(60!)/(15!)4 × (15!)4 = 60! = O(1e81) which is extremely massive. Therefore the sample

efficiency2 of the optimization methods, which decides the convergent rate, becomes a key

factor. We describe our proposed sample-efficient optimization method, next.

7.2 Optimization Algorithm (MAGMA)

MAGMA is a GA-based search technique. Its key difference from standard GA is that

it customizes the optimization algorithm’s exploration momentum and mechanism (i.e.,

genetic operators in GA context) for the target search space.

2Performance improvement over the number of sampling budget.
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Table 7.1: Terminology used in MAGMA Algorithm.

Term Description
Gene An encoded value that represents accel. sel. or job prio. of a job.

Genome A series of genes that represent the entire schedule about accel. sel. or job
prio. of a batch of jobs.

Individual A series of genomes that fully represent the schedule of a batch of jobs.

Generation
An entire set of individuals forms a generation.
The generation evolves with time by mutation/crossover and selection of
the well-performing individuals to the next generation.

Crossover Blend two parents’ genes to reproduce children’s genes.
Mutation Randomly perturb a parent’s genes to reproduce children’s genes.

7.2.1 Why GA?

Research shows GA reaches competitive performance with deep reinforcement learning [155,

156], and hyper-parameter optimization problem. STOKE [103] and Tensor Comprehensions

[31] use GA to search the space of DNN code optimization. From a search time perspective,

GA is light and fast [155, 156] comparing to many optimizations methods since the

optimization mechanism in GA uses simple operations (e.g., crossover and mutations). A

key challenge with standard GA however is that it is not sample-efficient. We address this

issue using our customized operators (§7.2.2).

7.2.2 MAGMA Algorithm Details

Terminology and Basics of GA

We list the common terminology of GA we use throughout the paper in Table 7.1, namely

gene, genome, individual, generation. The basic mechanism in GAs is to create a population

of individuals in each generation. All individuals are evaluated and sorted based on their

fitness. The best performing individuals are used as parents to create a new population

of individuals using genetic operators ( §7.2.2). The goal of GA is to perturb genes (i.e.,

components of the schedule) and retain well-performing ones across generations.
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Genetic operators

Standard GA Operators. The standard genetic operators in GA consist of mutation and

crossover. The standard mutation operator randomly mutates some genes. The standard

crossover operator samples a pivot point and exchanges the genes of parents according to

that pivot point. The sampling efficiency of the GA relies on the efficiency of the genetic

operators to sample high-quality next generation.

MAGMA Operators. In MAGMA, we inherit the standard mutation mechanism and

design three specialized crossover genetic operators. Different crossover operators are

designed to preserve different dependency of genes while exploration. They allow us to

explore the scheduling problem in a more strategical manner. We describe the genetic

operators next.

Mutation. During mutation, we randomly select multiple genes (according to the

mutation rate) and mutate them to random values. Figure 7.4(a) shows an example when

mutating at the third and second genes of two genomes respectively. On the right side of

the figure, it shows how the son’s genes/schedule are generated by the dad’s mutation. J3

is moved to sub-accel 1 because of the first mutation. J2 is moved to a higher priority in

sub-accel 2 because of the second mutation. In our experiments, we use a mutation rate of

0.05.

Crossover-gen. This is a genome-wise crossover. First, we randomly sample a type of

genome to crossover. Next, we randomly sample a pivot point and exchange the genes of the

genomes. There are two benefits of genome-wise crossover. First, we keep the perturbation

to the level of the genome, which potentially keeps the good characteristics of the other

un-touched genomes, and therefore is more stable throughout the evolution. Second, we

eliminate the order dependency of the genomes. The genomes are independently representing

their features, where the order of them provides no information ( i.e., representing Sub-accel

Sel. genome first and Job Prio. Genome later does not make the J5 of Sub-accel Sel. and

J1 of Job Prio. strongly correlated despite their being next to each other.). Therefore, a
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genome-wise crossover, which operates genomes independently, enables us to perturb the

gene without unnecessary assumptions of the genome order. Crossover-gen becomes the

major crossover function, which we set the crossover rate as 0.9.

Figure 7.4(b) shows an example that we pick the second genome (Job Prio.) as the

crossover region and the third location of the region as the pivot point. With the respect

of schedule change after crossovering, in the example, the orders of J4 and J5 in mom’s

schedule are passed to son’s schedule.

Crossover-rg. This is a range crossover mechanism structured to preserve the the

dependency of genes across genomes. For example, in Figure 7.2, the first and the sixth

genes are dependent, since they are both representing some features for J1. We randomly

pick a range of genome (e.g., the 3rd to the 5th locations of each genome) and simultaneously

crossover all the genes falling into the picked region from both genomes, and thus the cross-

genome dependency is preserved. With the respect of scheduling change after crossovering,

the order and accel selection of J3, J4, and J5 are exchanged between two individuals, as

shown in Figure 7.4(c). Crossover-rg has crossover rate of 0.05.

Crossover-accel. This is a crossover method to preserve the dependency of job ordering

within an sub-accelerator. We randomly select a sub-accelerator and pass the job ordering

information of this sub-accelerator to the children. For example, in Figure 7.4(d), we select

sub-accel 2. Next, we check the Sub-accel Sel. genome of Mom, copy the genes related

to sub-accel 2 (the first and second genes of both genomes in (e)), and paste them to son’s

genomes.

To increase load balancing, the original jobs assigned to sub-accel 2 in Son will be

randomly mutated. Crossover-accel has crossover rate of 0.05.

Hyper-parameter Tuning

The above mentioned mutation, crossover rates, populations sizes, and elite ratios are hyper-

parameters in MAGMA. We applied a hyper-parameter search via a Bayesian optimization
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Table 7.2: Accelerators configurations/ settings of the experiments.

Setting Description # of sub-accels (height of PE array, dataflow style, buffer)
S1 Small Homog 4 4x(  32, HB, 146KB)

S2 Small Hetero 4 3x(  32, HB, 146KB), 1x(  32, LB, 110KB) 

S3 Large Homog 8 8x(128, HB, 580KB)

S4 Large Hetero 8 7x(128, HB, 580KB), 1x(128, LB, 434KB)

S5
Large Hetero 

BigLittle
8

3x(128, HB, 580KB), 1x(128, LB, 434KB)
3x(  64, HB, 291KB), 1x(  64, LB, 218KB)

S6 Large Scale-up 16
7x(128, HB, 580KB), 1x(128, LB, 434KB)
7x(  64, HB, 291KB), 1x(  64, LB, 218KB)

2D PE array: h (height)	× w (width) (PEs),   w=64, in the experiments

framework [140] to select a set of hyper-parameters that makes MAGMA achieve the highest

performance across multiple workloads.

7.2.3 Warm-Start of MAGMA

In this section, we present the techniques we implement to enable the warm-start of the

algorithm. Warm-start is a well-known technique in black-box optimizations to enable faster

convergence or reaching better objective value. Warm-start works as follows. There are

series of tasks to be solved by the optimization algorithms. If the current task is the same

or similar to the previous solved tasks, we can take the previous solution to initialize the

algorithms. We also implement an warm-start engine, which recognize if the current task fall

within the same types of tasks (Vision, Recommendation, or Language), i.e., whether it is

similar to the previous solved task. If tasks are within the same type of task, the warm-start

engine will take over the initialization job from Init engine (initializing algorithm randomly).

In our experiment (§7.3.7), we found warm-start is a useful add-on technique in MAGMA.
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Table 7.3: Supported optimization algorithms in M3E.

Alg. Description
AI-MT-

like
A manual-tuned mapper for multi-core accelerator targeting vision and 
language workloads.

Herald-
like

A manual-tuned mapper for multi-core heterogenous accelerator targeting 
vision workloads.

stdGA Genetic Algorithm. We use mutation rate: 0.1, crossover rate: 0.1.

DE Differential Evolution. We use weighting for local DV: 0.8, weighting for 
global DV: 0.8, in the experiment.

CMA-ES Covariance Matrix Adaptation-ES. We use 1/2 of the best performing 
individuals as an elite group in the experiment.

TBPSA Test-based Population-Size Adaptation. 
We set the initial population size as 50 and let it evolve in the experiment. 

PSO Particle Swarm Optimization. We use weighting for global best: 0.8, weighting 
for parent best: 0.8, with momentum !: 1.6.

RL A2C
Advantage Actor-Critic. We use policy and critic networks composed by 3 
MLP layers with 128 nodes, discount factor: 0.99, learning rate: 0.0007, 
RMSProp optimizer.

RL PPO2
Proximal Policy Optimization. We use policy and critic networks composed by 
3 MLP layers with 128 nodes, discount factor: 0.99, clipping range: 0.2, 
learning rate: 0.00025, Adam optimizer.

MAGMA A GA-based optimization algorithm that houses domain-specific genetic 
operators for multi-core heterogenous accelerator mapping problem.

7.3 Evaluations

7.3.1 Methodology

Target DNN Models

We consider three different types of tasks/ applications with their corresponding models

collected from PyTorch [200]: Vision ([201, 202, 203, 34, 126, 204, 205, 206, 207, 146]),

Language ([208, 209, 127, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,

223, 224, 225]), and recommendations ([226, 227, 228, 144, 229, 230]). The models are

the ones used for the batched high-throughput applications (e.g., photo auto-editing, image

tagging, and video / voice processing) that we are targeting.
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Task and Benchmark

We categorize the jobs into Vision, Language (Lang), Recommendation (Recom), and Mix (a

complex tasks with vision, language, and recommendation model involved simultaneously),

four different types of tasks. We build a benchmark including different tasks motivated

by the Facebook’s inference accelerator jobs [park2018deep, anderson2021first], edge

data centers for AI applications [richins2020missing], Herald [196]. AI-MT [194], and

others [shen2019nexus]. In the benchmark, we collect models from the four different types

of tasks and create several workloads. Each workload contains hundreds to thousands of

jobs (one job include a batch of activations and weight parameters of a layer). We chopped

them into several “dependency-free” group similar to prior works [194]. The objective of

the optimization algorithm is to execute these group with the highest possible throughput.

We set the default group size to be 100 but also study the effect of group size in §7.3.7.

Accelerators

We consider two classes of accelerator: Small and Large. For each class, we consider multi-

core homogeneous and heterogeneous accelerator settings with different PEs, dataflow, and

on-chip buffer. We construct six different multi-core accelerators, motivated by [196, 194,

82, 8], as our test-bed in Table 7.2. S1 and S3 represent homogeneous accelerators. S2, S4-6

represent heterogeneous accelerators. The accelerators are modeled with MAESTRO [58].

We uniformly set one dimension of the 2D PEs array to 643 and scale the PEs array size by

increasing the other dimension. We consider three kinds of PEs configuration: 32 × 64 for

Small accelerator [231, 232, 233, 234, 235], 64 × 64 and 128 × 64 for Large accelerator.

The dataflow style (discussed next) and target tile sizes determine the buffer sizes for both

SL and SG [68].

Sub-Accelerator Dataflow Styles. For our evaluations, we pick two distinct dataflow

3Based on our observation, most of the popular models that we collected, especially language and
recommendation ones, are manually designed to have the tensor shape formed by the multiples of 64. Setting
one dimension to 64, which aligns with the tensor shape, ensures higher utilization rate.
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styles for the heterogeneous sub-accelerators: High Bandwidth usage dataflow style (HB)

(inspired by NVDLA) [80]) and relatively Low Bandwidth usage dataflow style (LB)

(inspired by Eyeriss [178]). The HB-style parallelizes across channel dimensions, and shows

high-efficiency on late layers for CNN-based (vision) models, while the LB-style parallelize

across activations dimensions and excels on the early layers of CNN-based models [68]. For

Language and Recommendation, we found the HW-style is more compute efficient but BW

intensive, while LB-style is less compute efficient but also less BW demanding (Figure 7.6).

Therefore we house both these sub-accelerators in a BW constrained accelerator platform

to act as a good test for our optimizer to learn and exploit their difference. M3E is general

enough to run with any heterogeneous combination of two or more accelerator styles.

System BW. The accelerators are executing under frequency 200MHz and bit-width of

1 Byte. For the system BW, at the Small accelerator, we consider the BW to be range from

1GB/s to 16GB/s, which is the range of DDR1-DDR4 BW [236] and PCIe1.0 - PCIe3.0 [237]

BW; at the Large accelerator, we consider the BW to be range from 1GB/s to 256GB/s,

which is the range of DDR4-DDR5 [238] and HBM BW [239] and PCIe3.0 - PCIe5.0 and

upcoming PCIe6.0 BW [237].

Evaluation Metric In all experiments, we use throughput as objective.

7.3.2 Mapper Settings.

Baseline Manual-tuned Mapper. We use the mapper from Herald [196] and AI-MT [194]

as the baseline methods (Herald-like and AI-MT-like). Note that the mapper in Herald [196]

is manual-designed targeting multi-core heterogeneous system with Vision tasks, and the

mapper in AI-MT is manual-designed targeting multi-core homogeneous system with Vision

and Language tasks. In our evaluation, we also tested their performance in Recommendation

and Mix tasks and on both homogeneous and heterogeneous accelerators.

Optimization methods. We enable many commonly-used optimization methods in

M3E. The specific hyper-parameters settings are listed in Table 7.3. For fair comparisons,
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Fig. 7.6: (a) The average per-job no-stall latency and required BW for no-stall across
different models on high (HW) and low (LB) bandwidth mapping style. (b) Average no-stall
latency and (c) average BW required for no-stalls across all involved jobs.

all optimization methods are given the same sampling budget, 10K data points. Note that

batched-job tasks are not latency sensitive, where the jobs and optimization process are

executed off-line. Therefore the search time of different methods is not our main concern;

instead, the objective of these tasks are to utilize the underlying hardware as efficient as

possible, i.e, maximizing the throughput of the underlying hardware.

MAGMA. MAGMA is also one of the optimization methods. We set the number of

individuals in a generation, to be as large as group size. We also constraint MAGMA to have

the same 10K sampling budget, and use population size of 100, and thus have 100 epochs

for optimizing. As for search time, we run the experiments on a desktop with Intel i9-9820

CPU. MAGMA takes about 0.25 seconds per epoch, and 25 seconds for a full optimization

process.

7.3.3 Latency-BW Characteristics of DNNs

We start by showing the latency characteristics and bandwidth requirements of the DNN

models from the three types of tasks when running by itself on two separate dataflow styles

(HB and LB). We show three of the models from each type of tasks and the average across
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Fig. 7.7: The experiment results on multi-core homogeneous small accelerator (S1) with
BW=16 across four tasks. Throughput values are normalized by the value of MAGMA. The
absolute throughput values of MAGMA in (a-d) are: 249, 397, 194, and 329 GFLOPs.
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Fig. 7.8: The experiment results on multi-core heterogeneous (a)(b) small (S2, BW=16)
and (c)(d) large (S4, BW=256) accelerator on Vision and Mix tasks. Throughput values are
normalized by the value of MAGMA. The absolute throughput values of MAGMA in (a-d)
are: 254, 271, 254, and 383 GFLOPs.
all the models in that type of tasks in Figure 7.6(a). The average values across all model

across both accelerators are plotted in Figure 7.6(b-c). In general, we can see that the

per-job latency of the Vision models is higher because more compute is needed in the CONV

dominant models. However, CONV is generally less memory-bound than FC. The data also

shows that usually Vision has the lowest BW requirement, and Recommendation has the

largest.

7.3.4 Homogeneous Accelerators

We examined the Small homogeneous accelerator (S1) with system BW=16 GB/s across

different tasks. As shown in Figure 7.7, Herald-like and AI-MT-like mapper works rather

well across four different tasks. The result form AT-MT-like shows that even though it is

designed considering vision and language tasks, it also work adequately well in recommen-

dation and even mix task. Likewise, Herald-like is designed for vision task and work well

when applying to others. For optimization methods, they can reach similar performance

as Herald-like and AI-MT-like. Note that, these optimization methods are not originally
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concatenate the four independent no-stall latency (averaged required BWs) into a stacked
bar and show the total values. In (c), throughput values are normalized by the value of S5.
designed for this specific mapping task. However, they work adequately well working in

the M3E framework. Overall, MAGMA outperform others. MAGMA reach performance

(geomean) 1.4x and 1.41x better than Herald and AI-MT, and (geomean) 1.6x better than

other optimization methods.

7.3.5 Heterogeneous Accelerators

We examined the Small (S2) and Large (S4) heterogeneous accelerators across different

tasks in Figure 7.8. In the following results, we will focus on presenting the result of Mix

task, since it is a more complex task and is a fair realistic use-case in nowadays’ inference

data centers [park2018deep, anderson2021first]. In Figure 7.8, we also present Vision

task result as baselines, since both Herald-like and AI-MT-like has Vision task as target.

Small Heterogeneous Accelerators (S2). As shown in Figure 7.8(a), Herald-like per-
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forms well, while AI-MT-like has comparatively lower performance. It shows the different

characteristic of two algorithms. Herald-like is designed for heterogeneous accelerator

while AI-MT-like is targeting homogeneous accelerator, which explains the performance

difference. For optimization methods, many of them reach comparable performance to

Herald-like, while PSO and CMA have lower performance (comparable to AI-MT-like). For

a more complex Mix task (Figure 7.8(b)), AI-MT-like has comparatively worse performance.

Many optimization methods undergo lower performance, too. However, the two RLs meth-

ods stands out. Overall, MAGMA outperforms others in both tasks. by geomean, MAGMA

is 2.3x better than Herald, 39.5x better than AI-MT, 13.4X better than optimization methods

excluding RLs. RLs and MAGMA have compatible performance and MAGMA achieve

slightly better result 1.01x better.

Large Heterogeneous Accelerators (S4). In large accelerator, the mapping task be-

comes more complex since the design space of the mapping grows. As shown in Fig-

ure 7.8(c)(d), Herald-like perform rather well in Vision task. However, at a more complex

Mix task and a more complex large accelerator case, Herald-like starts to undergo lower

performance. Many more basic optimization process cannot tackle the large and complex

design space as well (Figure 7.8(d)). However, RLs starts to shine and reach good perfor-

mance. Overall, MAGMA outperform others in both tasks. by geomean, MAGMA is 1.7x

better than Herald, 52x better than AI-MT, 10x better than optimization methods exclud-

ing RLs, and 1.3x better than RLs. Note that the contribution of this chapter is both the

framework M3E (which enables the other optimization methods) and algorithm MAGMA.

Before this chapter, the best performing mapper in Large heterogeneous accelerator setting

is Herald-like, which harvests only 20% of maximum throughput enabled by M3E in Mix

task, as shown in Figure 7.8(d).

BW-limited Environment. We examine the performance of Small accelerator at

BW=16GB/s and Large accelerator at BW=256GB/s. However, in a heavy-loaded in-

ference data center, the BW is a precious resource, where a big portion of it could also be
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occupied by other applications and leads to a more BW-limited environment. At a more

BW-limited environment, mappers become crucial for smartly ordering the jobs to exploit

the limited BW. We examine the effect of BW by a BW sweep in Figure 7.9. For both Small

and Large accelerators, with the decrease of BWs, MAGMA stands out more obviously by

reaching better relative performance. For example, in Figure 7.9(a), MAGMA is (geomean)

1.2x better than others when BW=16GB/s, but MAGMA is 1.6x better than other when

BW=1GB/s. Similar observation can be made in Figure 7.9(b).

Sub-accelerator Combinations

In this experiment, we examine the performance change in different settings, S3 (Large

Homogeneous), S4 (Large Heterogeneous), S5 (Large Heterogeneous, BigLittle) of the

Large accelerator.

Homogeneous versus Heterogeneous. In the following experiment, we discuss the per-

formance implication of a homogeneous versus heterogeneous accelerator using MAGMA

algorithm. The LB-style sub-accelerators usually take larger runtime but lower BW require-

ments than HB-style in language and recommendation tasks, as shown in Figure 7.6(a). The

jobs analysis in Figure 7.10(a-b) reflect the fact that S4, in general, induces more no-stall

latency but requires less BW than S3. Therefore, when BW is limited (BW=1), the hetero-

geneous setting enables accelerator to leverage the difference of BW requirement among

sub-accelerators to relax the BW contention. Thus S4 reaches better performance than S3 at

BW=1 in Figure 7.10(c). However, when the BW is mostly sufficient (BW=256GB/S), the

performance will reflect more of the behavior of the no-stall latency. Thus S3 reaches better

performance.

Bigs versus BigLittle. We consider an accelerator with a smaller setting, BigLittle (S5),

comparing to Bigs (S3, S4). It is obvious when the BW budget is sufficient (BW=256GB/S),

BigLittle will perform worse than both of the Bigs (S3, S4) as shown in Figure 7.10(c),

and can be verified by the jobs analysis in Figure 7.10(a). However, BigLittle has smaller
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Fig. 7.11: Jobs analysis of the averaged (a) per-job no-stall latency and (b) required BW of
fixed and flexible PEs arrays. Performance evaluation of MAGMA with fixed or flexible
PEs array on (c) Vision and (d) Mix. Throughput values are normalized by the value of
flexible accelerator.
BW requirement because of its smaller sub-accelerator size, as shown in Figure 7.10(b).

Therefore, as shown in Figure 7.10(c), when the BW is limited (BW=1), BigLittle (S5)

with the least amount of resources reaches the best performance. This observation shows

that in a multi-core heterogeneous system, in addition to making the compute cores more

powerful (adding more compute resources to them), striking the balance between each cores

is another key consideration for boosting the performance.

7.3.6 Flexible Accelerator

In this experiment, we consider accelerators where the PE array dimensions are configurable,

such as FPGAs [240], CGRA [2], or programmable accelerators [241, 242, 243], and

demonstrate their performance by applying mapping found by MAGMA.

Accelerator Configuration. We extend the setting of S1 (Small, fixed) and S3 (Large,

fixed) to have flexible accelerators. The number of PEs in the sub-accelerator are fixed

(the same as in Table 7.2). However, the shape of 2D PE arrays is flexible, that is we
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Table 7.4: The performance of warm-start on (a) Mix, S4, BW=1. (b) The averaged
performance across different tasks and different accelerator (S1-S6) under BW=1. All the
values are normalized by the values of Trf-100-ep of each columns. Raw (highlighted in
orange) is the throughput without warm-start. Trf-0-ep (highlighted in green) is warm-start
and before further optimization. Trf-1-ep is warm-start with one epoch of optimization,
and likewise for Trf-30-ep. Trf-100-ep (highlighted in blue) represents a full optimization
process.

(a) Perf. on Mix, S4, BW=1 (b) Ave. perf, across S1-S6

Mix-S4
BW=1

Insts0
(Optim
-ized)

Insts1
(Warm
-start)

Insts2
(Warm
-start)

Insts3
(Warm
-start)

Insts4
(Warm
-start)

Ave.
(Warm
-start)

Raw 0.02 0.04 0.02 0.09 0.05 0.03
Trf-0-ep 1.00 0.32 0.60 0.78 0.58 0.51
Trf-1-ep 1.00 0.43 0.73 0.96 0.88 0.68
Trf-30-ep 1.00 0.99 0.98 0.99 0.99 0.99
Trf-100-ep 1.00 1.00 1.00 1.00 1.00 1.00

 BW=1 Mix Vision Lang Rec

Raw 0.02 0.04 0.014 0.004
Trf-0-ep 0.48 0.28 0.52 0.88
Trf-1-ep 0.67 0.40 0.79 0.95

Trf-30-ep 0.97 0.93 0.97 0.99
Trf-100-ep 1.00 1.00 1.00 1.00

Averaged across  S1-S6

can configure the routing among the PEs. This enables the sub-accelerator to run various

dataflows or mappings [2]. The maximum size of SLs are fixed as 1KB in each PE, and SGs

are fixed as 2MB in each sub-accelerator.

Dataflow Strategy. We pick the dataflow strategy of the sub-accelerator to maximize

the utilization of the PEs array. In order to maximize the utilization, we will align the PEs

array dimension to be the factor of the the parallelizing dimension of the tile as much as

possible. For example if the parallelizing dimension of the tile is (2, 15), which is going

to map over the y and x dimension of the PEs array with 16 PEs. The potential PE array

shape could be 2×8 while aligning to the factor of y dimension, or 3×5, 5×3, and 1×15

while aligning to the factor of x dimension. We examine these combinations, evaluate their

expected latency by the HW cost model, and pick the lowest latency one as our PE array

configurations.

Evaluations. From the performance analysis in Figure 7.11(a-b), we can observe that for

both Vision and Mix tasks, flexible outperforms fixed in ave. per-job no-stall latency, owing

to its ability to maximizing the utilization rate of the PEs array. However, it would also incur

higher BW requirement. It is because the flexible mapping we found is to maximize the PE
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utilization rate, which also increases the number of data to fetch per tile to keep PEs busy.

From all scenario in Figure 7.11(c-d), flexible outperforms fixed. The results conclude

that with flexible accelerators (ASIC of FPGA), we could further increase the accelerator

performance without providing additional compute HW resources (PEs) if the accelerators

(or sub-accelerators) have configurable PEs array shape.

7.3.7 More about MAGMA Algorithm

Analysis of found solutions. To understand the effect of different mapping, we show the

detailed sub-accelerator selection and the corresponding BW allocation results of mapping

found by two of the mappers, Herald-like and MAGMA. We showcase what is actually

happening on the accelerator in an execution duration of one group of jobs in Figure 7.12.

We found that MAGMA can distribute the BW-intensive jobs (Recommendation, Language)

across the runtime to balance the BW requirement (Figure 7.12(c-d)). In contrast, Herald-

like (Figure 7.12(a-b)) tries to use BW intensively at the beginning, which causes BW

competition. Finally, it causes longer finish time of a group of jobs comparing to MAGMA.

Warm-start of MAGMA. In the following, we show the usefulness of warm-start

technique in MAGMA. In the experiments, we use MAGMA to optimize on a group of jobs,

Insts0. Then, we test, and optimize on the other four different group of jobs. Table 7.4(a)

shows that by directly applying previous knowledge (Trf-0-ep), we could achieve 16x better

performance than the usual starting points, randomly initialization (Raw). By warm-start

followed by one epoch/ step of optimization (Trf-1-ep), we could already receive 93% of

the expected performance gain of a full optimization (Trf-100-ep). We execute the same

experiment for different types of tasks and for different setting (S1-S6) (Table 7.4(b)).

We can observe for BW-intensive tasks, Language and Recommendation, the previous

knowledge become more important, and therefore the performance gain from the warm-start

become significant. Overall, by warm-start and before further optimization is run (Trf-0-ep),

MAGMA can achieve 7.4x to 152x better performance than the the usual starting points

148



(Raws).

Ablation Study of Group Size. Throughout the evaluation, we use the benchmark with

a set group size of 100, It establishes a fair comparisons of the performance of different

mappers. Also, in practice, group size is often a pre-defined system parameter as the

formulated benchmark. However, a larger (or smaller) group size is also valid. We execute

a group size sweep in Figure 7.13 using MAGMA algorithm. It tells that increasing or

decreasing the group size does not affect the overall performance drastically. However, a

too small group size (e.g., 4) will lead to lower performance.

7.4 Related Works

Mapping DNN Jobs on Single Accelerator. Several mappers have been proposed for

the problem of mapping a single DNN layer efficiently on an accelerator. These include

manual-designed mapping search [17, 12], heuristic-based mapping search [4, 23, 21, 18]

and optimization/ML methods [189, 5, 6, 7, 16]. These works fall within the local mapping

phase within individual accelerator cores.

Multi-tenant Mapping for DNN Accelerators. Prophet [244] builds a runtime pre-

diction model for multi-tenancy on GPU. AI-MT [194] develops a heuristic for DNN job

mapping for multi-PE arrays. Prema [197] explores preemptive multi-tenancy on a NPU.

Herald [196] and Planaria [129] use manual-designed mapping for assigning jobs to sub-

accelerators or reconfigurable PEs array. SCARL [245] utilizes RL for the mapping problem.

In this work, we target multi-DNNs mapping and compared MAGMA against prior arts [194,

196], black-box optimizations [116, 102, 108, 114, 117], and RLs [198, 199].

Multi-tenant Scheduling for CPUs and GPUs. Multi-tenancy has been investigated

for decades for multi-tasking on a single CPU and job ordering in CPU clusters [246, 247]

or in GPUs [248, 249]. GAs [150, 151, 152, 153, 154], PSO [250], CMA-ES [251], and

other optimizations have also been used. Some works leverage RL for jobs ordering over

clusters such as DeepRM [252], Decima [253] and Thamsen et al. [254]. However, they
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presume a unified abstraction of the underlying cluster, where heterogeneity of the system is

not considered.

7.5 Summary

This chapter presents a mapping optimizer for multi-tenant DNN accelerators. The key

takeaways are as follows. (i) Heuristic and optimization methods have been used successfully

for the design space of local-mapping (i.e., dataflow design). However, global-mapping

forms a new drastically different search space. A new mapper for global mapping is needed

for upcoming platforms. (ii) The search space for this (global-) mapping is extremely

enormous. The search sample-efficiency of baseline optimization methods is not sufficient

to find optimized solutions. (iii) We develop an optimization algorithm called MAGMA that

customizes its exploration momentum and mechanism (genetic operators in this chapter)

for the target search space and outperform the existing related works and other well-known

optimization methods.
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CHAPTER 8

CONFUCIUX: A RL-BASED HW RESOURCE ALLOCATION ALGORITHM FOR

DNN ACCELERATORS

So far we base our discussion from the stand points of map space exploration. In chapter 3,

we discuss how the accelerator’s HW flexibility support affects the size of map size and its

performance on different DNN workloads. Then in chapter 4-7, we discuss given a fully or

partially flexible accelerator how we efficiently search for the best mapping for it. In this

chapter, we will discuss the DNN accelerator design from the stand point of HW resource

Design space Exploration (DSE). That is, in this chapter, we pre-defined the flexibility

of the accelerator either it is completely inflexible or with limited flexibility. Then, we

discuss how different HW resource allocation (with the pre-defined flexibility) impact the

accelerator performance. In chapter 3-7, we are using the perspective of DNN compilers

to infer the accelerator performance across DNN workloads, which helps DNN architect

to make different design decision. In this chapter, we will use the perspective of DNN

architect to show how the architect can leverage the learning from chapter 3-7, develop a

DSE framework for HW resource allocation task, and improve the efficiency of its searching

algorithm.

Given a set of supported mappings/ dataflows (because of the pre-defined HW flexibility),

the assignment of HW resources is the next crucial part of the DNN accelerator design

process. In fact, for the same dataflow, different choices for HW resources can lead to

drastically different latency and energy for a given DNN. Some recent studies have shown

that HW resource assignment plays a more important role in determining the accelerators’

performance than its dataflow [60]. However, determining the policy for assigning HW

resources is still very much an open problem, with prior works on HW Design-Space

Exploration almost exclusively relying on exhaustive searches [17, 61, 62, 63, 64, 65, 66,
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67, 68, 18].

The focus of this chapter is on the aforementioned HW resource assignment problem.

The HW resource assignment depends on how they will be used by the DNN during runtime.

We consider two deployment scenarios in this chapter. Layer Sequential (LS) involves

mapping and running the DNN layer by layer on the accelerator, while Layer Pipelined (LP)

maps and runs the entire DNN model over the accelerator. The LS approach is typically

leveraged in cloud settings for larger models [142] that do not fit on-chip, while the LP

approach is popular when running smaller optimized models [126, 141, 166] on IoT devices.

The HW resource assignment problem is an optimization problem where the design goal

is to achieve an objective such as minimum end-to-end latency or energy, while meeting

some platform (IoT/Cloud) constraints such as maximum power or chip area. The design-

space of valid solutions is non-trivial. Consider an LP deployment; suppose we have a

total of P PEs and B buffers that fit within the area/power budget and need to be divided

among N layers of the DNN. Assuming each layer gets at least one PE and one buffer, the

number of combinations for PEs and buffers is
(P−1

N

)
and

(B−1
N

)
respectively [255]. This

makes the total possible design choices
(P−1

N

)
×
(B−1

N

)
, which is O(1072) for an accelerator

with 128 PEs, 128 buffers running the 52-layer MobileNet-V2. This design-space is nearly

impossible to enumerate to search exhaustively for an optimum solution, as we discuss in.

8.1 Methodology

In this chapter, we cast the DNN accelerator resource assignment DSE challenge as a

reinforcement learning (RL) problem using REINFORCE [256] for a global search, followed

by a GA for local fine-tuning. Figure 8.1 demonstrates the workflow of ConfuciuX. We

provide a high-level overview next.

The inputs to ConfuciuX are the target DNN model, the deployment scenario, the

optimizing objective, and the platform constraints, and it outputs an optimized HW resource

assignment strategy, as shown in Figure 8.1. The first stage of ConfuciuX trains a RL
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Fig. 8.1: Overview of ConfuciuX.

agent to recommend an optimized assignment of PEs and buffers for a target DNN, platform

constraint, and deployment scenario. The agent is trained by having it continuously generate

resource assignments as “actions” which are evaluated by a detailed but fast analytical

model for DNN accelerators called MAESTRO [58] that acts as the environment (Env). The

“rewards” output by the environment are used to train the underlying policy network, with

the aim of maximizing the reward.

We incorporate platform constraints (area/power) as inputs to the environment to punish

actions that violate the constraints. To speed up the search process, the RL agent searches

through the HW assignments in a coarse-grained manner. Once it converges to an optimized

strategy, we fine-tune the assignment further using GA. We discuss the various components

of ConfuciuX next.

8.1.1 DNN Model Deployment on Accelerators

We focus on two DNN model deployment scenarios illustrated in Figure 8.2.

Layer Sequential (LS). We use the same underlying architecture to run the DNN

model layer-by-layer. The specific (PE, buffer) design-point is chosen at design-time by

some heuristic such as one that performs the best for most layers of the target DNNs.

Naturally, over-provisioning and under-utilization may happen for some of the layers during
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Fig. 8.2: DNN deployment scenarios and corresponding HW assignments. In Layer Sequen-
tial (LS), each layer of the model is mapped one by one on the entire accelerator, with all
on-chip compute and memory assigned to it; in Layer Pipelined (LP), the entire model is
mapped and run in a pipelined manner, with the compute and memory partitioned across all
layers.

deployment since they favor different HW resource configuration [89, 257, 258, 259]. We

quantify this further in §8.2.

Layer Pipelined (LP). With the advancement of technology, more computation logic

can sit in a single chip. Many efficient models are being designed to fit completely onto

the chip for embedded platforms [166, 126]. LP maps and runs the entire DNN model over

the accelerator. For this model, we assume an underlying accelerator can heterogeneously

partition the (PE, buffer) resources at either design-time (e.g., ASIC [241, 242, 243]) or

compile-time (e.g., CGRA [2]/FPGA [18]). The challenge becomes finding the optimum

(PE, buffer) distribution for each layer, which is crucial for maximizing performance [17,

61, 62, 63, 64, 65, 66, 67].

8.1.2 RL Agent

In our system, the RL agent processes the target DNN model in a layer-wise manner. We

term the whole process (episode in RL parlance) as an epoch. We treat each layer as a
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different time-step. At each time-step, the agent makes two actions per-layer: the number

of PEs and Buffers. It interacts with the environment to collect the rewards. We feed the

rewards, along with the previous layer’s actions to the policy function, to help the agent

optimize sequential decisions. The policy network gets updated at the end of each epoch.

An epoch terminates when the agent fails the constraint or successfully made 2N actions for

a N-layer model.

Choice of RL Algorithm: REINFORCE. Modern RL algorithms [199, 260, 261,

262, 198, 263] typically use two underlying neural networks - an “actor” and a “critic”.

The actor formulates the policy for taking actions while the critic approximates the value

function that predicts expected reward to help the training of policy. We experimented with

a suite of RL algorithms for ConfuciuX and found that REINFORCE [256] works best.

We show these results in §8.2.3. REINFORCE only has an actor network (no critic), and

updates its underlying policy network directly using rewards from the Env. Since the design

space of HW resource assignments is extremely discrete and irregular, we observed that RL

algorithms with critic networks fail to approximate the value function accurately and in turn

disturb the policy learning process. We show this later in §8.2.3.

Policy Network Architecture. The policy network in REINFORCE is a neural network

tasked to learn the policy to maximize the probability of receiving better reward. We use an

RNN as the policy network with one LSTM hidden layer of size 128. The reasoning behind

an RNN-based network is as follows. We impose a hard constraint on the overall area (or

power) consumption. Each action (PE, buffer) adds to area/power. Thus, any future action

should depend on the previous action. The recurrent connections in the RNN capture this

relationship and learn the constraint. We implemented and evaluated both RNN-based and

MLP-based policy networks and provide a quantitative analysis in §8.2.7. We found RNN is

essential for constraining the full trajectory of actions to conform to a global constraint.
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8.1.3 Observation (State)

We construct a 10 dimensional observation space. At tth time step, the observation (Ot) is

expressed as follows

Ot = (Kt ,Ct ,Yt ,Xt ,Rt ,St ,Tt ,APE
t ,ABu f f er

t , t) (8.1)

The layer shape (assuming convolutions) results in the first 7 dimensions1. Kt and Ct are

number of output and input channels. Yt and Xt are the size of Y and X axis of the input

activations. Rt and St are the size of Y and X axis of the weight kernel. Tt is the indicator

of layer type such as CONV or DWCONV (Depth-wise CONV). APE
t and ABu f f er

t are the

actions of the previous layer which we feed into the RNN controller. The last dimension t

indicates tth layer. Finally, we normalize all the dimensions of observation to the range of

[-1, 1] to stabilize the training.

8.1.4 Action Space

At each time step, the agent makes an action pair (PE, Buffer), which formulates the action

space. To efficiently step through the huge design space, the RL agent uses coarse-grained

steps to navigate through it. In particular, we use L = 12 different values for the PEs and

Buffers, as shown in Table 8.1. We demonstrate the effect of L later in §8.2.7. The specific

values for PE at each level are chosen by the marginal observed return of HW performance

to the number of PEs. For example, increasing PE from 1 to 2 could potentially double

the HW performance, while increasing PE from 64 to 65 would provide slight or mostly

no improvement. We choose the Buffer size value at each level according to the input

of dataflow-style at design time. In NVDLA-style, with 3×3 weight as an example, we

dispatch the computation to each PE along K dimension (Figure 8.3). Each PE would

receive k number of 3×3 weights, 3×3 corresponding inputs, and generate k number of

1for other layers like MLP/GEMM, we use three dimensions (M,N,K) to describe the (M,K), (K,N) and
(M,N) matrices.
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Fig. 8.3: Different HW resource combinations with the same NVDLA-style dataflow.

outputs, which makes the buffer size 9× k+9×1+1× k, where k=1, 2,..., 12, as shown in

Table 8.1. Note that once the RL agent converges, ConfuciuX uses fine-grained steps using

GA to get to an optimized configuration, as described later in §8.1.8.

8.1.5 Platform Constraint and Objective

Each action pair (PEs, Buffers) defines the per-layer power/area constraint consumption

and the per-layer energy/latency cost, which are our optimization targets. The goal of the

accelerator design process is to optimize the cost for running the entire model, while meeting
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Table 8.1: The level values of action pair.

Action level values
PEs 1,  2,  4,  8, 12, 16,  24,  32,  48,  64,  96,  128

Buffers (e.g., NVDLA-style) 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129

the platform constraint.

Constraint. The accelerator is constrained by the budget of the targeted platform. We

consider two categories of constraints: power and chip area. We have full flexibility to

design architecture such as assigning a different number of PEs and Buffers or changing

dataflow-style, as long as the design meets the constraint. In this chapter, we evaluate power

and area constraints across cloud and IoT platforms, as described in §7.2.

Objective. We evaluate two design objectives in this chapter: minimum overall latency

and minimum overall energy cost when the entire model is run on the accelerator, either via

LS or LP. Other objectives can also be considered (say EDP or Power/Area for instance).

While approaching the objective, the design should always fit the platform constraint.

Minimizing the latency and energy is a non-trivial task since their dependence on the

number of PEs and Buffers is not straight-forward. For e.g., increasing PEs would increase

the level of parallelism; however, it would also increase the number of fetched data, which

could potentially increase the latency. As for energy, increasing PEs and Buffers would

increase the power; however, it could potentially decrease the energy because of the shorter

execution time.

Co-optimization of layers. The RL agent is trained to be aware of the platform

constraints. The agent should learn to optimize the resource assignment for each layer and

the allocation of the constraint budget at hand to each layer simultaneously. We use RNN as

the backbone of RL agent to enable it to memorize its entire epoch of decisions so that it

could be aware of the consumption of the total budget. The Env checks the budget that is

still left (Lbudget) at every time step, and penalizes the RL agent once it is violated.
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8.1.6 Reward Function

Reward. Since we are executing in a sparse reward domain, where the performance is only

given at the end of the episode, we train the agent with a temporal layer-wise performance

feedback for reward shaping. The sum of the layer-wise performance does not directly

indicate the final entire model performance, which is our objective. However, it guides the

RL agents.

We construct the reward function R as follows.

R =


Pt −Pmin, if Lbudget ≥ 0

Penalty, otherwise
(8.2)

Pt is the HW performance2 of the current layer. Pmin is the current lowest layer-wise

performance across all time-steps and all epochs. This is tracked during the training process.

We find that the Pmin term stabilizes the training. The insight behind it is as follows.

First, as shown in Figure 8.3, the reward value for HW performance, such as number of

cycles, can be extremely large, which can make the relative improvement seem insignificant

across epochs. Thus, keeping a Pmin across all epochs emphasizes the relative difference.

Second, the term Pmin makes the reward always positive while the platform constraint is

not violated, which makes the RL agent easier to learn from positive reward and negative

penalty.

Penalty. We penalize the RL agent when the resource constraint is violated. To teach the

RL agent to forbid the failing point with reasonable penalty, we accumulate all the rewards

experiences in this episode, and use negative of the accumulated value as a penalty. The

reason is that the range of reward for different HW performance (latency, energy) can have

an order of magnitude difference. Therefore, a threshold-based constant penalty [264, 265,

266], which is usually applied, is not feasible. Also, we need the penalty that is at the correct

2We use the term performance for generality. It could be latency, or energy, or any other objective we are
minimizing.
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scale so that it is large enough to penalize the agent and small enough to not deviate the

learned policy too much once bad decision is made.

At the end of the episode, we normalize rewards in each time step to standard distribution

and use the standardized reward to train the agent. We also apply a discount factor (d). We

empirically found d = 0.9 is a generic good default value for this problem.

8.1.7 Interactive Environment (Env)

Structure. The Env is initialized with the target model(s), dataflow, platform constraint, and

the optimizing objective (latency/energy). Env tracks the consumed constraints of each time

step and the Pmin across all episodes.

HW performance estimator (eval). We use MAESTRO [58], an open-source DNN

accelerator microarchitectural model, to determine the performance of each accelerator

design-point during the training process. MAESTRO takes the DNN model, dataflow-style,

and HW configuration as an input. Internally, it estimates all possible reuse opportunities

for the given dataflow and HW resources, and estimates statistics such as latency, energy,

runtime, power, and area. MAESTRO’s HW model assumes a spatial DNN accelerator with

PEs, L1 buffers, a shared L2 buffer, and an NoC between the buffers. It can support any

dataflow (specified via a data-centric DSL [68]). The number of PEs is an input parameter,

while the L1 and L2 buffer sizes are estimated based on the tile-sizes for the dataflow. It

supports both layer-wise and model-wise evaluation.

8.1.8 Local fine-tuning using GA

We use a two-stage optimization to search for a fine-grained solution, as shown in Figure 8.1.

The first and major part is the RL based coarse-grained global search. The second is the

Genetic Algorithm (GA) based fine-grain local search. We use two-stage optimization for

efficiency, since increasing the level of actions, L by 1 would increase the design space by

(L+1
L )2N .
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RL shows higher sample efficiency and converges to better optimum point comparing to

other optimization methods, as shown later in §8.2. GA is simple and fast, but converging

to less optimum value comparing to RL or sometimes cannot converge. According to the

observation of the behavior of GA, it sometimes fails to learn the constraint and optimize

the objective simultaneously, leading to a great portion of populations actually violating

the constraint, which pollute the genomes of the future generation. However, if we start

GA with a good initialization and mutate/crossover genes carefully, which decreases the

complexity of the problem, GA could reach good result. Therefore, GA becomes a good

candidate as a second stage fine-tuning if we initialize it with the first-stage solution. Even

though a continuous RL algorithm [260, 261, 262] could be another candidate for the second

stage, we find that the problem complexity of the second stage is simple that GA is adequate

to tackle it. The details of the GA algorithm are described next.

Initialization. Assuming a DNN model with N layers, a design-point would include

N actions for PEs and N actions for Buffers. We encode this design-point into a genome

with 2N genes, where a gene represents an action for PE or Buffers. We initialize the first

population with the genome formulated by the solution from the first (RL) stage.

Local mutation. We mutate the gene locally. We only mutate the gene by a step

difference of the current value. For e.g., for a gene representing PE=64, we could mutate it

to value in the range of [60, 68] when the step is 4. This conservative mutation can reduce

the number of invalid genomes, which does not conform to the constraint, and assure we

have good portion of valid parents to reproduce.

Local crossover. The crossover of two genomes is unlikely to conform to the constraint,

since it can break the learnt relationship between HW resource assignment of each layer. For

e.g., suppose we have parents A and B, both with good fitness and lie within the constraint.

However, A tends to assign more HW resources on early layers and B tends to assign more

HW resources on late layer. When we blend their genes for the next generation, the platform

constraints might get violated by some children: a child with early genes from A and late
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Table 8.2: Platform constraint settings.

Platform 
Constraint Descriptions

Unlimited
No constraint. Since we set each action to 12-level, we measured 
the maximum constraint (power/area) consumption,	𝐶!"#$%/'%$'(') , 
by evaluating entire model with uniform action pair (𝑝*+,-, 𝑏*+,-).

Cloud Loose constraint. We set the constraint at 50% 𝐶!"#$%/'%$'(') .

IoT Tight constraint. We set the constraint at 10% 𝐶!"#$%/'%$'(') .

Extreme small 
IoT (IoTx)

Extremely tight constraint. 
We set the constraint at 5% 𝐶!"#$%/'%$'(') .

genes from B may over-request HW resources for every layer, violating the constraints.

Alternately, a child with early genes from B and late genes from A may under-request HW

resources for each layer, leading to less performance. Thus, we crossover the genome locally

within a parent by exchanging genes for (PE, Buffers) between two layers of a model. In

other words, we pick two pairs of genes representing the (PE, Buffers) of two layers of

a models and swap them. This conservative self-crossover preserves most of the learnt

relationship between layer and resources and adds an exploration effect.

8.2 Evaluations of ConfuciuX

8.2.1 Methodology

DNN Models

In our evaluations, we consider three CNN models with different complexity: MobileNet-V2

[126], MnasNet [141], and ResNet-50 [142]. We also evaluate three GEMM-based ML

models: GNMT [267] for machine translation, transformer [268] for language understanding

and NCF [269] for collaborative filtering.

Accelerator Platforms

We consider three different classes of platforms: Cloud server, IoT device and extremely

small IoT, and, for comparison, an unconstrained platform as shown in Table 8.2. We
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consider three dataflows: NVDLA-style [80] (-dla) (parallelizing K and C dim.), Eyeriss-

style [83] (-eye) (parallelizing Y and R dim.), ShiDianNao-style [81] (-shi)(parallelizing

Y and X dim). We use L=12 levels of action values for PE and Buffers, where (pnth,bkth)

represents assigning nth-level of PEs and kth-level of Buffers.

Baseline Optimization/Search Methods

We evaluate the following optimization methods as baselines.

Grid search. We enumerate through the design space with the stride of s in the L=12

level, (e.g., (p1th,b1th), (p1th,b(1+s)th
)...). We set maximum epochs E ps. We emulate through

the design space until the number of sampling points reached E ps.

Random search. We randomly sample E ps design points and keep the best solutions as

a result.

GA [102]. The baseline is a general GA algorithm, not the specially designed local

fine-tuning one as described in §8.1.8. The GA is set with 100 population, and
⌈

E ps
100

⌉
generations. The mutation rate and crossover rate is set as 0.05.

Simulated Annealing [99]. The simulated annealing is implemented with temperature

of 10 with step size of 1 and adopted to discrete integer space.

Bayesian optimization [104]. We set the algorithm to run for E ps iterations, where

E ps points are sampled by the algorithm. We adopt it to discrete integer space. We set the

number of the optimizer to 5 for the Gaussian process, since we empirically find this setting

has better performance.

State-of-the-art RL algorithms. We consider state-of-the-art RL algorithms that are

successful in many control problems. We consider both continuous and discrete methods. We

compare with A2C [198], ACTKR (Actor Critic using Kronecker-Factored Trust Region)

[263], and PPO2 [199]. Both continuous and discrete versions of the three algorithms

are experimented. Across all the experiments, we found the discrete version converge to

better value. Hence, we will only show the result of the discrete version in the comparisons
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Fig. 8.4: Searching for per-layer PEs/Buffers configurations to optimize latency/energy
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latency/energy. Heuristic A: Determine the PEs/Buffers with the most compute-intensive
layer (Layer-38) and apply the same configuration for all the layers. Heuristic B: Determine
the PEs/Buffers by the configuration that optimizes end-to-end whole model latency/energy.

table. We also consider DDPG [260], SAC [262], and TD3 [261] in continuous space. All

comparisons run for E ps epochs.

ConfuciuX (Global)

We only consider the first-stage global search, Con’X (global), throughout the comparisons

against baseline methods, for fairness. The second-stage fine-tuning can be added on top of

the first-stage results. The benefit of the second-stage is explicitly discussed in §8.2.5.

8.2.2 Per-layer study for LS deployment

We start by showing the HW performance of different action pairs (pnth,bkth) with 12 level

of values each, which is Y-axis and X-axis in Figure 8.4. We sweep through (pnth,bkth)

with exhaustive search and color it with their corresponding latency/energy value. Red

indicates large latency/energy values while purple indicates small ones. For each layer,
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the contour is drastically different. Each layer require distinct action pairs (pnth,bkth) to

reach optimal values (purple). The contour becomes a flat region when the PEs or Buffers

are over-provisioned. Latency of layer-12 as an example, when PE is larger than the 9th

level and Buffer is larger than the 3rd level, the latency remains the same because of over-

provisioning. The two separate purple region in latency of Layer-34 indicates that there are

two region of tiling size, which we map to the buffer, can optimize the latency. For Layer-23

(DWCONV), increasing the tile size of the mapping dimension (K) does not help because

of the irrelevance of each output channel (K) in DWCONV. As for energy, larger number of

PEs and Buffers can potentially decrease the energy because of shorter execution time as

in layer-12 and layer-34. We can observe there are sweet spot for buffer size in Layer-23,

where all the channel is mapped to one PE. At this end, increasing PE would not increase the

energy, since extra PE will be idle. Also decreasing Buffers cause more times of fetching,

which increase the energy consumption.

Con’X consistently finds the optimal action pair for each layer, and its solution is as-good

or better (fewer PEs and buffers for same latency or energy) than the baseline methods and

two common heuristics. Figure 8.4 also shows that there is no action pair that suits all the

layers. Thus, for a LS scenario, a designer can use Con’X to find optimal configurations for

each layer, and then pick the one that provides optimum values across most layers.

8.2.3 LP Deployment

Next, we consider LP deployment (i.e., all layers of the model mapped on the accelerator)

with platform constraints. For all the comparisons, we compare the algorithm performance

by comparing their best solutions after E ps = 5,000 epochs.

Converged solutions across DNNs, Dataflows, and Platforms

We ran baseline optimization methods and RL algorithms for a suite of DNNs (CNN- and

GEMM-based) with varying dataflow styles and platform constraints. The objective is set
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Table 8.3: Converged solution of LP deployment.

GA PPO2 Con'X (global)

MbnetV2-dla IoT NAN 3.6E+07 3.2E+07
MbnetV2-eye IoTx NAN 4.1E+07 3.7E+07
MbnetV2-shi IoTx NAN 4.9E+07 4.0E+07
Mnasnet-dla Cloud 2.1E+07 2.3E+07 2.1E+07
Mnasnet-eye IoTx NAN 4.1E+07 3.9E+07
Mnasnet-shi IoTx NAN 4.4E+07 4.3E+07
Resnet50-dla Cloud 2.2E+08 2.4E+08 2.2E+08
Resnet50-eye Cloud 2.3E+08 2.3E+08 2.2E+08
Resnet50-shi Cloud 3.2E+08 3.4E+08 3.1E+08
GNMT-dla IoTx NAN 2.4E+08 5.4E+07
GNMT-eye IoT 9.8E+07 1.4E+08 9.8E+07
GNMT-Shi IoT 2.5E+10 2.4E+10 2.4E+10

Transformer-dla IoTx NAN 7.3E+08 1.6E+06
Transformer-eye IoT 3.5E+06 6.6E+05 1.9E+05
Transformer-shi IoT 7.3E+08 7.2E+08 7.2E+08

NCF-dla IoTx NAN 7.3E+07 7.2E+07
NCF-eye Cloud 1.20E+06 1.4E+06 1.1E+06
NCF-shi IoT 6.6E+08 6.6E+08 6.6E+08

Model
Obj. (min.):

Latency
Cstr.: Area

Optimization Results (cycles)

Bold indicates the best results among GA, PPO2 and this work.
NAN indicates that constraint (area) not met in Eps (5000) epochs.
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Table 8.4: Converged solutions after 5000 epochs for various optimization methods across
four platforms with different constraints. DNN=MobileNet-V2, Dataflow=NVDLA-style,
Deployment=LP

Grid Random SA GA Bayes.
Opt.

Con'X
(global)

Latency Area: Unlimited 5.3E+08 3.6E+07 6.2E+07 2.1E+07 3.7E+07 2.1E+07
Latency Area: Cloud 5.3E+08 3.4E+07 9.6E+07 2.1E+07 3.7E+07 2.1E+07
Latency Area: IoT 5.3E+08 7.1E+07 NAN NAN 7.2E+07 3.2E+07
Latency Area: IoTx 5.3E+08 NAN NAN NAN NAN 5.6E+07
Latency Power: Cloud 5.3E+08 3.6E+07 9.9E+07 2.2E+07 3.7E+07 2.2E+07
Latency Power: IoT 5.3E+08 NAN 1.2E+08 NAN 1.6E+08 3.7E+07
Latency Power: IoTx 5.3E+08 NAN NAN NAN NAN 5.6E+07
Energy Area: Unlimited 8.5E+09 1.8E+09 1.3E+09 1.2E+09 1.5E+09 1.2E+09
Energy Area: Cloud 8.5E+09 1.8E+09 1.3E+09 1.2E+09 1.5E+09 1.2E+09
Energy Area: IoT 8.8E+09 NAN NAN NAN 2.4E+09 1.4E+09
Energy Area: IoTx 8.6E+09 NAN NAN NAN NAN 1.7E+09
Energy Power: Cloud 8.5E+09 1.8E+09 1.3E+09 1.2E+09 1.5E+09 1.2E+09
Energy Power: IoT 8.6E+09 NAN NAN NAN 4.1E+09 1.4E+09
Energy Power: IoTx 8.6E+09 NAN NAN NAN NAN 1.7E+09

Objective
(min.) Constraint

Optimization Results (cycles)

Results:  Latency: (cycles), Energy: (nJ).  Bold indicates the best results among algorithms.
NAN indicates that constraint (area/power) not met in Eps (5000) epochs.

to minimize the latency of the entire model. Therefore the lower the reached value, the

better the solution is. In the interest of space, we show the results with the best performing

baselines, GA and PPO2, in Table 8.3. GA can reach good optimized value when the

constraint is loose (cloud), but it fails in some tight constraint cases (IoT, IoTx). Both PPO2

and Con’X(global) can find solutions in any type of constraint. Across all the experiments,

Con’X(global) finds the solution with the same or better performance than PPO2 and GA.

Deep-dive with optimization methods

Table 8.4 compares the solutions attained by various optimization methods and Con’X(global)

for MobileNet-V2 under four platform constraints for a NVDLA-style accelerator. The

objective is set to minimize the latency or energy of the entire model. Random, SA, and

GA fail to come up with a feasible solution when faced with tight constraint (IoT). Also,
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Fig. 8.5: The learning curve of the critic network.
Bayesian optimization fails in extreme tight constraint (IoTx). Con’X(global) successfully

learns the constraint behavior and optimizes the objective together. Con’X(global) generates

the most optimized design points with 86% lower latency and 70% lower energy, on average

across baselines.

Deep-dive with RL algorithms

We compare Con’X(global) with other state-of-the-art RL algorithms in the same setting as

the previous experiment, as shown in Table 8.5. All the RL agents are able to find feasible

solutions in all situations. Considering the complexity of the algorithm, DDPG [260],

SAC [262], and TD3 [261] generally consume more search time and memory overhead.

Across all comparisons, we find Con’X(global) and PPO2 [199] reach better objective value.

Con’X(global) converges to the optimized value 4.7 to 24 times faster than alternate RL

algorithms.

Analysis of critic networks.

In many advanced RL algorithms such as A2C [198], ACTR [263], PPO2 [199],

DDPG [260], SAC [262] and TD3 [261], critic networks are used to approximate the

underlying value functions, which in turn train the policy network. The REINFORCE-based
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Table 8.5: Comparison of search-time and converged solutions across state-of-the-art RL
techniques.

Optimized
Results

Search
Time

Optimized
Results

Search
Time

Optimized
Results

Search
Time

Optimized
Results

Search
Time

MbnetV2 Latency Area: IoT 5.4E+07 2:45 4.0E+07 12:01 3.6E+07 1:34 1.1E+08 24:20
MbnetV2 Latency Area: IoTx 9.6E+07 1:20 5.6E+07 3:55 5.6E+07 1:20 1.8E+08 11:41
MbnetV2 Latency Power: IoT 6.5E+07 1:49 4.7E+07 3:59 4.5E+07 2:13 1.7E+08 27:32
MbnetV2 Latency Power: IoTx 7.3E+07 1:00 6.6E+07 4:05 6.8E+07 1:15 6.3E+09 3:30
MbnetV2 Energy Area: IoT 1.8E+09 0:36 1.7E+09 3:55 1.5E+09 1:25 2.3E+09 3:10
MbnetV2 Energy Power: IoT 1.9E+09 0:31 1.8E+09 2:15 1.6E+09 0:57 2.0E+09 9:56
ResNet50 Latency Area: Cloud 3.8E+08 6:38 3.5E+08 16:51 2.4E+08 6:37 2.5E+08 25:27
ResNet50 Latency Power: Cloud 3.8E+08 6:38 3.5E+08 8:06 2.4E+08 6:47 2.5E+08 25:18
ResNet50 Energy Area: Cloud 1.4E+10 6:38 1.4E+10 14:35 9.1E+09 6:46 1.3E+10 25:11
ResNet50 Energy Power: Cloud 1.6E+10 6:45 1.3E+10 16:26 9.7E+09 6:57 1.3E+10 16:26
MnasNet Latency Area: IoT 4.6E+07 5:04 3.7E+07 12:32 3.3E+07 5:08 6.4E+07 23:12
MnasNet Latency Power: IoT 6.5E+07 5:23 4.3E+07 12:12 4.2E+07 5:40 9.8E+07 25:50
MnasNet Energy Area: IoT 1.8E+09 0:58 1.6E+09 3:48 1.4E+09 1:43 2.1E+09 9:52
MnasNet Energy Power: IoT 1.8E+09 0:36 1.8E+09 3:39 1.7E+09 1:15 2.9E+09 9:44

DDPG

Memory Overhead (MB) 5.3 5.3 5.3 13.9

Model Objective
(min.) Constraint

A2C ACKTR PPO2

Optimized
Results

Search
Time

Optimized
Results

Search
Time

Optimized
Results

Search
Time

MbnetV2 Latency Area: IoT 4.7E+07 10:23 3.8E+07 8:22 3.2E+07 0:25
MbnetV2 Latency Area: IoTx 1.0E+08 3:00 8.2E+07 2:34 5.6E+07 0:35
MbnetV2 Latency Power: IoT 6.2E+07 10:09 1.8E+08 5:56 3.7E+07 0:43
MbnetV2 Latency Power: IoTx 1.1E+08 2:30 7.6E+07 2:25 5.6E+07 0:32
MbnetV2 Energy Area: IoT 2.0E+09 1:21 1.8E+09 3:34 1.2E+09 0:48
MbnetV2 Energy Power: IoT 1.9E+09 1:40 1.4E+09 3:50 1.4E+09 0:53
ResNet50 Latency Area: Cloud 2.5E+08 13:09 2.4E+08 8:36 2.2E+08 0:46
ResNet50 Latency Power: Cloud 2.6E+08 8:05 2.4E+08 8:04 2.3E+08 0:46
ResNet50 Energy Area: Cloud 1.1E+10 12:40 1.3E+10 9:38 7.6E+09 1:20
ResNet50 Energy Power: Cloud 1.1E+10 12:12 1.3E+10 12:46 7.6E+09 1:05
MnasNet Latency Area: IoT 3.6E+07 9:29 7.2E+07 6:32 2.8E+07 0:27
MnasNet Latency Power: IoT 5.6E+07 13:04 9.1E+07 6:02 3.5E+07 0:42
MnasNet Energy Area: IoT 1.8E+09 3:25 1.7E+09 2:56 1.4E+09 0:30
MnasNet Energy Power: IoT 1.9E+09 2:50 2.7E+09 1:27 1.4E+09 0:39

Memory Overhead (MB) 16 18.1 2.1

Model
Objective

(min.)
Constraint

SAC TD3 Con'X (global)

Results: Latency: (cycles), Energy: (nJ)        Search time: (hrs:mins)       
Bold indicates the best results among algorithms.
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(a)Obj.(min.): Latency, 
Cstr.: IoT area

(b) Obj.(min.): Energy, 
Cstr.: IoT area

(cy.) (nJ)

Fig. 8.6: The fast convergence and sample efficiency of Con’X (global).

used in ConfuciuX, on the other hand, only has an actor network that learns directly from the

reward. As Table 8.5 shows, we found that REINFORCE [256] in Con’X(global) converges

to better solutions than all the actor-critic RL algorithms. Our intuition is that this is because

the function of the HW performance of the accelerator are too discrete and irregular for

a critic neural network to learn well, and this in turn adversely affects the learning of the

policy networks. To verify this intuition, we extract the critic network from the implemented

alternate RL algorithms [199, 260, 261, 262, 198, 263] and conduct a standalone experiment

to test its ability to approximate the underlying value function. The task is to take the “state

values” as input and predict the corresponding reward of that state. We use per-layer latency

of MobileNet-V2 as reward. We use mean square error and gradient decent to train the

network. We show the root mean square error (RMSE) when training with different size of

data, as shown in Figure 8.5. 260,000 is the maximum possible data points critic network

can experience under the RL tasks of E ps = 5,000 with MobileNet-V2. We can observe

that the training and testing loss is hard to converge to a feasible value (the best RMSE is

5.3e+4, which means the predicted latency (reward) by critic network is in average 5.3e+4

cycles difference to the ground-truth ones) which means the critic network did not learn

reward value well. This could potentially misguide the policy network.
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Sample efficiency and convergence

In the experiments against baseline optimization methods and other RL algorithms, we

found Con’X(global) has the fastest convergence rate. We show two convergence traces

as examples in Figure 8.6 for MobileNet-V2. With rapid convergence, our method heads

toward the objective with more sample efficiency. On the contrary, the exhaustive search

needs to enumerate and search through L2N , 12104=O(10112), data points for the search

space of 52-layer MobileNet-V2 with two actions per layer and 12 level of values per action,

which is near impossible to finish.

8.2.4 Dataflow-HW co-automation

We extend ConfuciuX to co-automate the per-layer dataflow style decision. Rather than

manually picking one of the dataflow style, we let the agent make this decision. To take

one step further, we let the agent do fine-grained per-layer dataflow style decision, which

we termed as MIX-strategy. The agent now makes three decisions per-layer: PEs, Buffers,

and dataflow style. We found Con’X-MIX can not only pick the best dataflow-style for a

model but also take advantage of MIX-strategy to pick different dataflow-style in different

layers, as shown in Figure 8.9 for MobileNet-V2.In general, if there are no HW resource

constraints, system will favor eye/shi at early layers (larger activations), which parallelize

along activations dimensions, and favor dla at late layers (larger K/C), which parallelizes

along channel dimensions (K/C) in CNN-based networks. However, when considering HW

constraint, it becomes a compound decision trading-off among PE, Buffers, dataflow-style,

and area. From the experiment listed in Table 8.6, we can observe that in a more relaxed

constraint, dla performs better than the other two since most layers in CNN-based networks

have large K/C dim. However, in a tighter constraint, the parallelization ability of dla will

be restricted; Eye/shi, which parallelize activations dim (whose values shrink layer-by-layer

quickly in most CNNs) become more efficient choices. This observation can also explain

the fact that system chooses eye/dla for some of the later layers in Figure 8.9. From the
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Fig. 8.8: Overall latency as a function of epochs across two-stage optimization in ConfuciuX
(MobileNet-V2, Obj.(min.):Latency, Cstr.:IoT area).

experiments listed in Table 8.6, Con’X-MIX further improves the optimization results by

4% to 69% comparing to the best-performing Con’X-dla/shi/eye.

8.2.5 Benefit of Two-stage Optimization

In the above comparing with baseline experiments, we did not use local fine-tuning for

fairness. We now show its effectiveness. We use local GA of 20 populations and run for

2,000 generations. We use local crossover rate of 0.2, local mutation rate of 0.05, and local

mutation step of 4 .

The effect of fine-tuning

We show the two stage optimization results in Table 8.7. We show one of the trace of

reached-value along epochs in Figure 8.8, which is the first row in Table 8.7 and the third

row in Table 8.4. In this case, pure GA cannot find valid solution because of the tight

constraint (IoT). The first-stage global search of Con’X learns to generate a valid solution

first, whose value is recorded as initial valid value in Table 8.7. Then, Con’X starts to

optimize the value while conforming to constraint and reached an optimized point. The first
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Table 8.6: Dataflow and Hardware co-automation.

Con'X-dla
(global)

Con'X-shi
(global)

Con'X-eye
(global)

Con'X-MIX
(global)

MbnetV2 IoT 3.2E+07 3.1E+07 2.9E+07 2.0E+07
MbnetV2 IoTx 5.6E+07 4.0E+07 3.7E+07 3.5E+07
MnasNet Cloud 2.1E+07 3.0E+07 2.9E+07 6.6E+06
MnasNet IoT 2.8E+07 3.5E+07 3.4E+07 1.8E+07
ResNet50 Cloud 2.2E+08 3.1E+08 2.2E+08 7.7E+07
ResNet50 IoT 4.4E+08 4.3E+08 3.1E+08 3.0E+08
ResNet50 IoTx 6.3E+08 6.2E+08 4.9E+08 4.4E+08
GNMT Cloud 2.4E+10 1.1E+07 9.7E+07 6.0E+06
NCF Cloud 6.6E+08 2.6E+06 1.1E+06 6.8E+05
NCF IoT 2.6E+06 6.6E+08 1.2E+06 7.0E+05

Model
Obj. (min.):

Latency
Cstr: Area

Optimization Results (cycles)

stage improves the values from 56% to 99% compared to the initial valid values. Then, local

fine-tuning using GA to further optimizes the solutions, and they improves by another 7% to

93% than the output of the first stage, which are 66% to 99% improvement over the initial

value.

Analysis of Design-Points found by ConfuciuX

In Figure 8.7, at the top, we show how ConfuciuX allocates area to different components

(total PE, total buffers, and per-layer) for MobileNet-V2 and ResNet-50 in an experiment

with total area constrained. The per-layer assignment is highly heterogeneous, which can

be seen by the per-layer PE and Buffer assignment shown at the bottom of Figure 8.7.

In particular, in MobileNet-V2, we observe that the DWCONV layers are assigned less

resources on both PEs and Buffers. This could be because they require less computation and

we are limited by the platform area constraint, which makes the agent reduce the assigned

resources. In ResNet-50, we find that the agent assigns more Buffers to the layers that have

the larger number of input/output channel size (e.g., layers 37,43, and 47).
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Fig. 8.9: Dataflow-HW co-automation with ConfuciuX for MobileNet-V2.
(Obj.(min.):Latency, Cstr:IoT area).

Table 8.7: Two-stage optimization of ConfuciuX.

Optimized
Results (cy.)

Impr.
(%)

Optimized
Results (cy.)

Impr.
(%)

MbnetV2-dla IoT 7.3E+07 3.2E+07 56.1% 2.5E+07 22.7%
MnasNet-dla IoT 1.0E+08 2.8E+07 71.7% 2.3E+07 17.9%
ResNet50-dla Cloud 1.4E+09 2.2E+08 84.1% 2.0E+08 7.0%
ResNet50-dla IoT 7.1E+08 4.4E+08 37.9% 3.3E+08 24.0%
GNMT-dla IoT 4.6E+09 9.5E+06 99.8% 6.2E+06 34.6%
NCF-dla IoT 6.6E+07 2.6E+06 96.1% 1.8E+05 93.1%

Model
Obj. (min.):

Latency
Cstr: Area

Con'X
(global search)

Con'X
(fine-tuning)

Initial
valid
value
(cy.)

175



Table 8.8: Resource assignments for LP deployment at compile time of ConfuciuX.

Platform Constraint Model  PEs  Bufs  PEs  Bufs  PEs  Bufs

ResNet50 4081 7786 2.352E+08 4080 6338 2.346E+08 4096 7958 2.2E+08
MbnetV2 4056 7716 2.5E+07 4032 3710 2.3E+07 4088 7912 2.0E+07
ResNet50 212 3206 1.8E+09 256 2290 1.5E+09 256 3962 1.2E+09
MbnetV2 208 3356 1.13E+08 256 2468 1.08E+08 256 3838 6.9E+07

Cloud FPGA

Cstr: PE: 4096, Buf: 8KB

Edge FPGA

Cstr: PE: 256, Buf: 4KB

Used Cstr. Optimized

Results (cy.)

Used Cstr. Optimized

Results(cy.)

Used Cstr. Optimized

Results(cy.)

Objective: Latency Baseline-dla
ConfuciuX-dla

1st: global search 2nd: local-finetuning

Platform Constraint Model  PEs  Bufs  PEs  Bufs

ResNet50 4000 7758 8.1E+07 4092 7942 6.6E+07
MbnetV2 4064 3944 9.4E+06 4096 7898 6.0E+06
ResNet50 256 3942 1.1E+09 256 3922 8.0E+08
MbnetV2 248 3442 8.7E+07 256 3920 5.7E+07

Cloud FPGA
Cstr: PE: 4096, Buf: 8KB

Edge FPGA
Cstr: PE: 256, Buf: 4KB

Used Cstr. Optimized
Results

Used Cstr. Optimized
Results(cy.)

Objective: Latency
ConfuciuX-MIX

1st: global search 2nd: local-finetuning

8.2.6 LP deployment at compile time

ConfuciuX can also be used for LP deployment at compile time. One common use-case is

for FPGA-based accelerator design. As is common for FPGAs, we impose the maximum

number of PEs and Buffers as constraint (which would depend on the specific FPGA board).

We consider both cloud and edge FPGAs as constraints. The baseline is configured with

uniform number of PE and Buffers for each layer with NVDLA-style dataflow. In Table 8.8,

we show that Con’X(global)-dla performs better than baseline-dla. Then we show that

local-finetuning in Con’X(global)-dla can further improves the value by 7% to 36%. Finally,

we show the two stage results of ConfuciuX-MIX, where the final reached value is 50% to

72% better than baseline-dla.

8.2.7 Policy Network Exploration

We show our design decision process of the policy network. First is the action levels, L,

where we pick L=12, in the experiments. By decreasing L, we decrease the complexity of the

problem but worsen the granularity, and vice versa. As shown in Table 8.9, L=12 is the sweet

spot we found. We also experimented with different type of policy networks: MLP-based
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Table 8.9: Different configurations of the policy network.

Optimized
Results(cy.)

Used
Cstr.

Optimized
Results(cy.)

Used
Cstr.

Optimized
Results(cy.)

Used
Cstr.

MLP Cloud 2.3E+07 63.9% 2.2E+07 96.1% 3.0E+07 26.3%
RNN Cloud 2.1E+07 86.7% 2.1E+07 95.0% 2.3E+07 68.8%
MLP IoT 3.4E+07 97.5% 3.3E+07 97.6% 4.2E+07 95.2%
RNN IoT 3.3E+07 99.2% 3.2E+07 96.6% 4.2E+07 89.1%
MLP IoTx 8.3E+07 99.0% 9.4E+07 88.8% 4.6E+07 97.9%
RNN IoTx 7.1E+07 97.4% 5.6E+07 90.0% 5.4E+07 99.8%

Net
Type

Action Level: 10 Action Level: 12 Action Level: 14Obj. (min.):
Latency

Cstr: Area

and RNN-based, as Table 8.9 shows. We found RNN-based networks converging to better

results, which may be owing to the fact that RNN is taking advantage of remembering the

consumed constraint of previous layers.

8.2.8 Summary

We summarize some key results here. For global search, we observe that RLs can explore

an extremely large design space more effectively and efficiently compared to the baseline

optimization methods. Next, we find that REINFORCE, which does not rely on value

network, can converge faster and reach similar or better results than alternate RL methods

in the discrete and irregular HW performance exploration problem. Next, we demonstrate

that our formulation of REINFORCE-based (Con’X(global)) can not only explore the HW

configuration but also effectively explore the dataflow-style decision simultaneously and

further optimize the results by 4% to 69%. Finally, after a coarse-grained solution is found,

we show that using a specialized GA for fine-tuning the result locally can optimize the result

by another 7% to 93%.

8.3 Related Works

Accelerator HW Design-Space Exploration. Fine-grained HW resource assignment has

been studied extensively for LS deployment on FPGAs [180, 181, 182]. Whole-model LP
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deployment has been shown to be more efficient than LS deployments with uniform resource

assignments for every layer [17, 61, 62, 63, 64, 65, 66, 67]. Many works have focused on

allocating resources for convolution layers in a LP deployment within one FPGA [17, 65],

across multiple FPGAs [63, 61, 64, 67, 183] or in cloud FPGA platforms [66]. Some works

have focused on HW DSE for ASIC accelerators[184, 185, 186] or templated systolic array

structures [187, 188]. Some general frameworks execute the design space exploration at the

architecture level, supporting both ASIC and FPGA [60, 68]. Yang et. al, [60] further shows

that the HW resource assignment dominates the performance of accelerator comparing

to dataflow exploration. For design space exploration, most of these prior works employ

grid/exhaustive search, while techniques for pruning the exploration spaces are manually

developed. However, with myriads of DNN models being designed on a daily basis, it

becomes harder to manually design and tune the policy for the newly constructed search

space. In this work, we develop a ML-based method to automate the search process with

high sample efficiency for both LP and LS scenario.

ML-based methods for DNN compilation and mapping. ML methods have found

value in mapping/compiling DNNs over hardware. TensorComprehensions [31] uses

genetic algorithm, AutoTVM [101, 24] uses simulated annealing and boosted tree, Reagen

et. al, [26] uses Bayesian optimization, RELEASE [27] uses RL, ATLAS [270] uses black

box optimizations, some compiler design [271, 272] use profile-guided optimization to

perform target-independent front-end compiler optimizations on DNNs or linear algebra

computations. Some recent works use RL on HW/SW co-exploration to explore both DNN

and its mapping over hardware [273, 274, 275, 276]. The problem of mapping the DNN

computation graph over multiple devices (CPU/GPU/TPU [82]) has also been explored

through manual heuristics [277, 278, 279] and RL [280, 281, 282]. In contrast to these

works, this work looks at fine-grained design-time assignment of compute and memory

within an accelerator.

Dataflow style optimization. Architecture design of ML accelerators include resource
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assignment and dataflow style design. Dataflow style is a scheduling and compiler optimiza-

tion problem, which has been studied for decades for the generic platform such as CPU or

GPU [9, 51, 52, 30, 53, 54, 55, 56], or for FPGA [57, 18], while they apply grid search

for reaching their objectives. For ML accelerators, some mainstream dataflow style are

manually designed and proven to be efficient, becoming prominent or commercialized [83,

82, 81, 80]. In this work, we focus on the resource assignment part of the accelerator design

flow, and utilize some prominent dataflow styles [83, 82, 81, 80].

8.4 Summary

While efficient DNN models and dataflow style are widely studied for ML accelerators,

HW resource assignment is relatively unexplored. In this chapter, we propose ConfuciuX,

an autonomous strategy to find out the optimized HW resource assignment for a given

DNNs, a dataflow style and platform constraints. ConfuciuX leverages RL for the global

search, augmented with GA for fine-tuning. We quantitatively experiment on different

models, platform constraints and dataflow styles. ConfuciuX demonstrates the highest

sample-efficiency compared to other optimization and RL methods. this chapters shows the

promise of leveraging ML within the DNN accelerator design workflow, with opportunities

for future work across new ML algorithms for learning dataflow/hardware behavior, and

DNN-dataflow-hardware co-design.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORKS

9.1 Summary of Contributions

9.1.1 Formalism of DNN Accelerator Flexibility and the Implied Map Space

We demonstrate that increased formalism of the notion of flexibility leads to concrete benefits.

Namely: (A) the ability to taxonomize existing accelerators along flexibility axes, (B) the

ability to precisely quantify the shape of a map-space against a theoretical upper-bound, and

(C) the ability to integrate flexibility into existing MSE flows. We identify that in several

cases, partial flexibility along some of the axes is sufficient for capturing an optimized

mapping. Most significantly, our evaluation of a 2014-style accelerator demonstrates that a

design-time investment in flexibility can lead to concrete improvements in future-proofing

after deployment time.

Of course, the field of deep learning is changing incredibly rapidly. Turing Complete

platforms such as GPUs and CPUs will undoubtedly continue to play a key and irreplaceable

role as the main platforms that allow machine learning experts to rapidly innovate. However,

we believe that it is equally important that the most successful neural network architectures

can be accelerated via hardware specialization, without ASIC designers risking complete

obsolescence after deployment. Ultimately, the key reason flexible mapping support can

be omitted from hardware designs is not area or energy, but simple design and verification

effort, as well as mapper toolchain support. We hope that this thesis will ultimately lead

to more research that allows architects to quantify the benefits of “future-proofing” with

the same level of precision as present-day budgets. Finally, while most existing DSE

frameworks focus on finding the “optimal design point”, this thesis, armed with the ability

to systematically construct map-spaces of fully/partially flexible accelerators, opens an
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interesting future avenue of research to identify “regions of optimal (i.e., high-performing)

design space”, leading to better explainability of the DSE algorithms and interpretability of

the accelerator design space.

We believe this thesis will help both compiler developers and architects systematically

develop flexibility-aware accelerator designs. Given that flexibility is often not added in HW

to simplify engineering efforts, we envision partial flexibility being ripe for future work. In

the future, we hope the analysis can be expanded to cover even more complex aspects of

data orchestration and generalized beyond DNNs.

9.1.2 Deep Analysis and Improvement of MSE for DNN Workloads

Map Space Exploration is critical for DNN accelerator efficiency. It is a complex and

challenging problem because the search space is often massive. This is because the search

space for legal mappings for even a single layer of a modern DNN (e.g., ResNet-50)

on a typical edge class accelerator is ∼ O(1024) which would require more time than

the age of the earth to search exhaustively (assuming 1msec to evaluate each mapping

sample). This gets exacerbated as newer and ever-larger DNN models are being created

with increasing frequency, especially thanks to the success of neural architecture search

techniques. Furthermore, the advent of compressed-sparse DNNs, whose mappings are not

performance-portable across sparsity levels (a key finding in this thesis), further increases

MSE burden.

Researching more sophisticated scalable and sparsity-aware MSE techniques is at least

partially hampered by the fact that even though prior approaches have empirically shown

that their techniques work, none of them demonstrate why they work and the insight behind

their optimization techniques.

In this thesis, we develop scalable MSE approaches for future complex DNN workloads.

However, instead of proposing yet another mapper that just works, we first distill the knowl-

edge from prior mappers spanning heuristics and learning-based optimization approaches to
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demystify MSE as a problem. We analyze their behavior, learn from their best traits, and

use these learnings to scale MSE to more complex workloads.

We propose a “warm-start” technique to initialize the MSE with previous mapping

solutions from previous layers in the replay buffer based on a similarity metric, enabling

the mapper to start at a better point and converge faster. We propose a “sparsity-aware”

technique to search for a mapping that can perform well across a range of target activation

sparsity. A fixed mapping found by our “sparsity-aware” approach can achieve 99.7% of

the performance of each of the mappings specifically tailored for the various density levels.

We believe these techniques can be augmented over existing MSE tools, making them more

robust and scalable for future DNNs.

9.1.3 Search Algorithm/ Mapper

The design of the Mapper is critical for the success or failure of the MSE. For different

applications we demonstrated across different chapters, we follow a workflow described

next. 1) Study the design/map space of the problem. 2) Analyze the performance impact of

different mapping axis. 3) Transform the problem into an optimization problem that can

be plugged into the MSE optimization loop. 4) Develop or adapt open-sourced cost model

(evaluation method) for the problem. 5) Develop Mapper (searching algorithms) for the

specific problem. The mapper we developed includes:

• Gamma: GA-based mapper with domain-specific genetic operator design

• DiGamma: The next version of Gamma, which supports HW and Mapping co-exploration

by extending the genetic encoding and operators in Gamma.

• Magma: A GA-based mapper for searching optimal mapping across multiple accelera-

tors.

• ConfuciuX: An RL-based mapper for HW resource allocation in DNN accelerator.
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9.2 Future Work

9.2.1 MSE for Both Intra- and Inter- Layers

Throughout the thesis, we follow the strategy of layer-by-layer mapping of the DNN models.

Each of the mappings is optimized for a layer inside a DNN model, i.e., intra-operator

mapping. The benefit of mapping is a more efficient data orchestration across buffers

and PEs and exploiting the reuse opportunity in the workloads. However, across layers,

there are also activation reuse opportunities that we did not leverage. In many compiler

frameworks, there are naive heuristics to leverage the immediate activation reuse called –

fusion. However, they often only support basic functionality such as fusing CONV with

Relu, and fusing CONV with Add. The inter-layer (inter-) fusion such as fusing CONV

with CONV is known to be challenging. It is hard to efficiently implement it. However,

potentially with the help of MSE framework, we could leverage the mapper to explore this

huge intra- and inter-layer map space and yield further performance breakthroughs.

Moreover in chapter 8, we explore the potential of using RL and RNN to form a inter-

layer mapper. RL and RNN helps relate one layer of the model to another, learn the

global constraint and local expense, and optimize for accumulated “model-wise” reward.

Indeed, ConfuciuX focused on HW resource allocations, whose problem domain is different.

However, it demonstrates the promising outlook of inter-layer optimization, whose idea

might be leveraged for mapping search problem as well.

An interesting future work is to extend the intra-layer MSE to intra- and inter- layer

co-exploration MSE by leveraging the learnings from ConfuciuX. However, the challenge

for this future direction is obvious – the size of map space. But, we believe this is an

interesting and profitable direction for future work.
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9.2.2 MSE for Heterogeneous System

As AI workloads continue to drive up the demand for computing, there is a trend towards

building large accelerators housing several sub-accelerator/arrays. Key examples include

MCM-based SIMBA [8], wafer-scale Cerebras [192] or scaled-out platforms [193, 194, 195].

Some recent studies have also explored heterogeneous multi-accelerator designs enabled

via reconfiguration [129] or separate heterogeneous sub-accelerators [196]. Moreover, the

system could house multiple of these DNN accelerators, clusters of GPUs/ TPUs, and even

CPUs. How to efficiently map the DNN workloads across the hydrogenous system is still an

open problem.

In chapter 7, we show preliminary work on extending the MSE idea to optimize the

throughput of the MCM-based accelerators. However, because of the inevitable search time

of the MSE, the mappings are searched off-line. It is useful for multiple applications we

identify in chapter 7, however also challenging to be deployed on many real-time system. A

potential approach could be the combination of heuristic and MSE where we analyze and

identify the sweet spot of performance and search-time. Another potential approach could

be we run MSE and extract the learned knowledge of them and encode them into a fixed

rule-based mapping algorithm. This is a thriving new research area. Multiple options could

be explored and we leave them as future work.

9.2.3 MSE for new DNN Operation

DNN models with new DNN operations are constantly being proposed. For example, DNN

models such as Mobilenet featuring depth-wise separable convolution [126], Efficientnet

featuring compound model scaling [166], Once-for-all featuring progressive shrinking of

network [38], SparseTransformer featuring sparsified attention layer [167], and many others.

New DNN operations could create another mapping axis that the canonical MSE didn’t

explore. Therefore including those mapping axes into the MSE to enrich the map space and

release the potential performance gain of these new DNN operations become an interesting

184



future work. For example, in §A.1, we analyze and show that attention operation cannot

be efficiently explored with the typical MSE framework because of its quadratic memory

bottleneck. We develop a specific mapping/ dataflow for the attention operation leveraging

the inter-layer fusion technique. We expect the inter-layer fusion can be added to the MSE

framework to make MSE support attention better. Also, we only demonstrate a specific

example of attention operation. There could be different unexplored mapping axis for

different DNN operations, which could also be studied and added to the MSE.

9.2.4 Sparsity as new Mapping Axis

We have seen in Figure 5.2 that sparsity does matter for the performance of MSE. In

Figure 5.2, we didn’t go into the detail of the compression format, the sparsity pattern,

sparsity-aware training and so on. Since sparsity is an critical factor of MSE performance,

we believe some of these sparsity parameters can potentially become new mapping axes

that we consider in MSE. It would enable MSE to automatically figure out the best sparsity

strategy, which could inform the DNN model designer to design new pruning strategies

and also inform the HW architect to cleverly decide the flexibility support for the diverse

sparsity pattern. Also, an extended study on how to formalize flexibility support for sparsity

is an interesting future work.

9.2.5 Pre-trained Mapper and Transfer Learning

As shown in chapter 3 and Figure 5.2, there are some general mapping strategies that

are transferable between similar workloads. For example, in Figure 5.2, we show that

Parallelism and Order mapping axes are transferable between CONV workloads. However,

these transferable patterns are found by extensive experiments and distilled by human.

DNNs have proven their ability to learn generalized knowledge that can achieve or surpass

human ability. We believe, it is with high potential we could use DNN models to learn the

generalized patterns of mapping, which might “re-discover” some heuristics made by human
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and more excitingly find new patterns that is never explored. We have a preliminary work

on using Transformer pre-training techniques to learn general mapper [283]. We believe

there could be substantial of future work on this promising direction.

9.2.6 Mapping and Neural Architecture Co-Exploration

HW-aware Neural Architecture Search (NAS) has been a popular topic in recent years. How-

ever, most HW-aware NAS utilizes estimations such as FLOPs or the number of parameters

as HW performance, which are the imprecise estimation of the HW performance. Recent

works start to incorporate a more detailed HW cost model to provide HW performance

feedback, which improves the imprecise issue. However, they often need to employ a fixed

mapping to simplify the problem. From the study of this thesis, we understand the perfor-

mance difference between good and bad mapping can be orders of magnitude difference.

Therefore, a fixed mapping could actually bias the NAS to tailor for a bad mapping but not

optimize for the best possible model quality and performance. We envision, with the ripe of

MSE framework, MSE could be potentially plugged into the NAS procedure and push the

Pareto Frontier of HW-aware NAS.
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APPENDIX A

FLAT: AN OPTIMIZED DATAFLOW FOR MITIGATING ATTENTION

BOTTLENECKS

In this thesis, we mainly focus on some extensively used DNN operations such as CONV2D,

Depth-wise CONV, Point-wise, CONV, Fully Connected, GEMM. However, new DNN

operations are also being proposed with the rapid evolution of machine learning. Some

new DNN operations are proven to be useful and can break through the state-of-the-art

performance. One well-known example is the success of Transformer models, whose key

structure is its attention operation. To support the new attention operation efficiently becomes

a new and challenging problem. In this chapter, we discuss what is the key challenge when

running attention operation on a canonical DNN accelerator and propose a new mapping/

dataflow method to ameliorate the challenge.

This chapter fundamentally tackles the challenges associated with attention layers by

devising a first in its class many-to-many inter-operator dataflow optimization mechanism,

called Fused Logit Attention Tiling. This optimization particularly fuses multiple many-to-

many tensor operator, while systematically preserving their inter-operator data dependencies,

leading to a significant reduction on off-chip memory bandwidth pressure. In addition,

to fully realizing the performance benefit of this inter-operator fusing mechanism, FLAT

performs a new tiling approach across the fused operators. This tiling enables efficient

staging of quadratically growing intermediate tensors of attention operations on tight-

budgeted on-chip memories, leading to higher performance and energy savings and elevates

the scalability of transformer models up to 64 K inputs. These benefits are unlocked with

only modest hardware changes, integrating into a platform deployable on off-the-shelf DNN

accelerators.
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A.1 FLAT Dataflow Concept

We design a specialized dataflow strategy, Fused Logit Attention Tiling (FLAT), targeting

the two memory BW-bound operators in the attention layer, L and A. FLAT includes both

intra-operator dataflow and a specialized inter-operator dataflow, executing L and A in

concert.

A.1.1 Identifying Tensor Fusion Opportunity

Figure A.2 plots the operation intensity of single and fused operators in attention layers of

an attention-based model [70]. The green dotted line marks the operation intensity threshold

(ridge point) from memory to compute boundedness in TPU-v3 [284]. We observe that for

FC-based operators (K/Q/V/O), the operational intensity is sufficient to be compute-bound,

while for L/A it is low (as we had also observed via Figure A.3). However, after fusing L

and A (f(L, A)), the effective operational intensity (of the fused operator) is higher. This

motivates us to explore L and A fusion.
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Why not fuse other operators? We did not fuse other operator pairs such as f(Q,

L), f(A, O), or f(V, A), for three reasons. (1) The operational intensity is often sufficient

and can be increased by leveraging batch size to reach compute-bound (Figure A.3). (2)

Fusing two FCs (f(FC, FC)) can achieve higher operational intensity; however since the

operator is already compute-bound, there is not much value in leveraging fusion (and the

additional complexity). (3) We often need finer-granularity dataflow schemes to fit fused

operator tensors on-chip; however fusing two activation-weight computation (f(FC, FC))

can trade-off (weight) reuse opportunity and may reduce actual achievable performance

(§A.2.3).

Why not fuse multiple operators? We did not fuse multiple operators such as f(L, A, O)

or f(K, L, A) for two reasons. (1) Fusing L/A with FC such as f(A, O) or f(K, L) can drop the

potential performance of FCs compared to their single operator performance (Figure A.2).

(2) The more operators we fuse, the more data we need to stage partially on-chip. Since

the on-chip memory is often extremely limited, we need to execute the fused operators at a

much finer granularity, which may lead to a degradation in achievable performance (§A.2.3).

With these analyses, we decide to fuse only L and A.

A.1.2 Challenges with Tensor Fusion Implementation

Fusing L and A operators introduces two key challenges that we discuss here. §A.2 presents

implementation details.

Challenge 1: Respecting data dependencies across operators. Fusing L and A causes

its unique challenge of data dependency owing to the many-to-many Softmax operation

between them. Softmax requires a reduction along a specific dimension of the tensor before

scaling individual elements. Arbitrary inter-loop tiling as employed by prior CONV/FC

fusion techniques [285, 67] violates this data dependency constraint.

Challenge 2: Effectively handling large intermediate tensors that do not fit in

on-chip memory. Recall that the intermediate tensor between L and A has size O(BHN2).
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Table A.1: Buffer requirement for tiling granularity. M: batched Multi-head, B: Batch, H:
Head, R: Row.

Granularity M-Gran B-Gran H-Gran R-Gran
Buffer 

Requirement
O(8BDN+

BH!!)
O(8DN+H!! ) O(8Nd+!!) O(4Rd+

4Nd+RN)

This can easily exceed the on-chip memory capacity of DNN accelerators. Further, the

specific size of the on-chip memory may be highly variable across different accelerators.

Owing to the above challenges, conventionally, we often do not apply tensor fusion to

attention layer and stick to operator-by-operator operation scheme, as shown in Figure A.4(a).

In this work, we use FLAT to enable L-A fusion operation scheme, as in Figure A.4(b). We

describe details next.
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Fig. A.5: For loop of fused L-Softmax-A (or shortened as L-A in the paper) and the choice
of granularity.

A.2 FLAT Dataflow Implementation

To fuse two tensor operators X and Y , we divide the loop nests into two groups: outer-loop

and inner-loop. We use L and A for illustration as shown in Figure A.5, but the principles

are applicable to any set of consecutive tensor operators. The outer-loops are shared across

L and A. The inner-loops are unique for each operator. After fusion, the fused operator has

two inner-loops, which we run one after another (interleaved), and iterate through the shared

outer-loop. Considerations for tile sizes to address the data dependence and on-chip memory

constraints (§A.1.2) are discussed in this section.

A.2.1 FLAT-tile and Execution Granularity

FLAT employs two levels of tiling: intra-operator tiling and inter-operator tiling. We name

each tile in inter-operator tiling, a FLAT-tile. FLAT computes FLAT-tile activations from L

and feeds it through Softmax and to A. FLAT-tiles, the inner-loop in Figure A.5, essentially

specifies how many slices of the partial intermediate tensor are calculated in one pass of the

fused-operator in Figure A.4(b).

The minimum granularity of the FLAT-tile is determined by the data dependence con-

straint of Softmax and called row-granularity (discussed in §A.2.2), for effectively collecting

a group/tile of (input) data that fulfills the Many-to-Many dependency pattern of Softmax.
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We progressively build larger (coarser-grain) tiles, namely, tiling multiple number of rows at

a time (Rx), multiple number of heads (Hx), and finally, multiple number of (micro-)batches

(Bx) in the tile. We refer to these as Row (R-Gran), Head (H-Gran), and Batch (B-Gran)

granularity respectively (discussed in §A.2.3). Further, the most intuitive baseline of moving

the entire intermediate tensor (namely the entire output of L) on-chip is referred to as

Batch-Multi-Head granularity (M-Gran), as shown in Figure A.5.

A.2.2 Managing Constraints from Data Dependency

Basic execution unit: Row-granularity. The Softmax reduction is along the key dimension:

this effectively captures the relative weight of each token in the query sequence against other

tokens in the key sequence. The minimum Softmax execution requires an [1, N] input array,

which in turn requires a query of [1, D] and a key of [D, N], as illustrated in Figure A.1

Step-2 and Step-31. This forms our basic tiling unit (finest granularity)—row-granularity,

which respects the data dependency introduced by the Softmax while keeping minimum

number of elements to pass between L and A. FLAT restricts the tile sizes to operate in

multiples of this row-granularity.

A.2.3 Managing Constraints from On-Chip Memory

M-Gran, B-Gran, H-Gran: Leveraging Limited Reuse of f(L, A)

Coarser granularities require staging larger tiles in the on-chip memory. As sequence lengths

increase this can increase rapidly (recall the O(N2) growth). To fit into the limited on-chip

memory, one may target finer granularities, e.g., moving from M-Gran to B-Gran (i.e.,

effectively tiling micro-batches). In general, while this helps reduce the size of the tile,

when we are tiling two operators at finer granularity at the outer-loop, we may trade-off the

reuse opportunity at the inner-loops. For example, for f(FC, FC) and f(CONV, CONV),

when decreasing the batch size (i.e., micro-batching), we directly reduce the number of

1Note that here we are describing fused L-A operators, where the K, Q, and V tensors are already calculated
and prepared in Step-1.
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times a weight can be reused. The weights need to be re-fetched again and again for

each micro-batch. This effect is exacerbated when considering finer granularities such as

H-Gran for the weight-activation K/Q/V/O operators. The reduced reuse opportunity by

inter-operator tiling reduces the achievable performance, even though the fused operator

has large operational intensity (Figure A.2). In contrast, L and A are activation-activation

operations. Each new activation of L needs to compute with a new activation of A, i.e.,

there are no reuse opportunities at the algorithmic level. Decreasing the tiling granularity

(M-Gran to B-Gran to H-Gran), does not preclude any reuse opportunity, since there are

no reuse opportunities at the algorithmic level. Thus, the finer M-Gran, B-Gran, H-Gran in

FLAT are well-suited for f(L, A).

R-Gran: Extreme Large Sequence Range

To enable very long sequence lengths [286, 287, 288], but with limited on-chip memory

resources [284, 289], we need to tile at even finer granularity, namely R-Gran. However, finer

granularities come with an associated trade-off: when we reduce the number of rows (Rx),

we will also reduce the reuse opportunity in the matrix multiplication itself. For example,

even for L/A fusion, using fewer rows means the same key vectors need to be fetched

multiple times across the interleaved cross-operator outer loops. Further, reducing number

of rows at the outer-loop could also decrease the achievable performance at the inner-loop,

e.g., not enough dimension size to fully utilize PE array. Thus, FLAT co-explores inter-

operator (optimizing the outer-loop) and intra-operator dataflow (optimizing the inner-loop)

to mitigate these potential sources of inefficiencies.

On-chip Buffer Requirement

Table A.1 lists the required on-chip buffer size using FLAT. We derive the R-Gran value

here (others follow similar reasoning). L operator consumes (Rd+Nd)x2 size of the on-chip

buffer (2 to account for double buffering), and A consumes (Nd+Rd)x2. RN for buffering the
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Fig. A.6: Map space exploration framework. (Special Function Unit: for computing non-
linear operations, e.g., softmax, activations.)

intermediate tensor (FLAT-tile) (no double buffering since it does not interact with off-chip

memory), whose on-chip buffer requirement is shown in Table A.1.

A.2.4 HW support to implement FLAT

FLAT requires minimal HW support: (1) controller to recognize our fine-grained dataflow,

and (2) on-chip buffer to be software-addressable to support tiling. These features are

already supported by most accelerators [284, 8, 194, 289].

A.3 Evaluation Methodology

A.3.1 Modeling Methodology

Accelerator simulation. We developed a detailed analytical cost model to estimate the

performance and energy consumption of FLAT across a range of hardware accelerators

configurations, following the same methodology as prior work [4, 58]. We meticulously

model the major microarchitectural blocks commonly shared by most DNN accelerators as

outlined in Figure Figure A.6. Based on this model, we collect the relevant architectural

details, which later are used to compute the accelerator performance metrics. Using this
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simulation methodology enables us to study and grasp the key differences across a range

of dataflow optimizations, while supporting different classes of hardware accelerators,

including TPU-v3 [284], Eyeriss [147], Simba [8]. One of the key features of our simulation

methodology is the detailed modeling of the accelerator memory hierarchy to systematically

assess the memory-boundedness of attention operators and their pressure on off-chip memory

bandwidth.

Energy model. Collecting the detailed activity counts from the analytical model,

we use Accelergy [290] framework to estimate the energy consumption for the major

microarchitectural blocks. That includes compute, on-chip memory, and off-chip memory

communications. Note that FLAT neither alter the total number of computations nor the total

number of accesses to the global buffer. Instead, it optimizes the number of off-chip memory

accesses, which is the major contributor to the overall accelerator energy consumption [291,

83].

Comparison to prior work. There are several popular open-sourced DNN accelerator

modeling frameworks, such as Timeloop [4], MAESTRO [58], and others [10, 9, 162, 163].

However, they have limited support for cross-operator fusion or cross-layer performance

modeling. For example, Timeloop [4] and MAESTRO [58] only model the performance of

an accelerator in a single-layer manner, which narrows their application in modeling fusion

opportunities. In contrast, our framework evaluates the performance of DNN models in

both single-layer and cross-layer manner, enabling various cross-operator fusion studies. To

ensure the integrity and correctness of our framework, we compared the simulation results

from our framework under single-layer modeling to MAESTRO [58]. The performance

metrics are within 1% difference to MAESTRO’s results.

Workloads. We study a range of recent attention-based models, including BERT-

Base [69] (BERT), TransformerXL [70] (TrXL), FlauBERT [292], T5 [293] (T5), and XLM-

MLM-En [71] (XLM). We evaluate these models under different sequences lengths ranging

from N = 512 to N = 64K to imitate attention-based models with long sequence length [294,
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286]. We also study a future-proofing sequence length of size N = 256K. We use a batch

size of 64 for all the models. Note that the batch size choice is immaterial to our dataflow

optimization.

Accelerator configurations. We evaluate the benefits of FLAT on two different accel-

erator regimes, namely cloud and edge accelerators. As outlined in Table A.3, we set the

accelerator configurations in our model following the designs proposed for cloud [284, 289]

and edge [1, 295, 296] accelerators. In all the evaluations, we allot sufficient FLOPs to the

Special Function Unit (Figure A.6) in order to eradicate the expected compute bottlenecks,

uniformly across all the dataflow variants.

Evaluation metrics. For all the evaluations, we use performance and energy savings as

efficiency metrics. For comparisons between different models, we normalize the runtime of

each dataflow by the ideal runtime of the target workload as follows:

Util =
Runtimeideal

Runtimedata f low

; where Runtimeideal is the arithmetic optimal runtime of the current workload. That

is, the total computes in a model divided by the peak FLOPs of the target accelerator.

Runtimedata f low represents the achieved runtime by a dataflow optimization. This normal-

ized runtime metric explains how far the current dataflow is from its arithmetic optimum.

This metric is an indication of the distance to the dataflow compute-boundray in the roofline

model as well as compute resource utilization (Util).

Map-space exploration workflow. We also integrate a map-space exploration (MSE)

workflow (Figure A.6) into our simulation framework. The main purpose of this explo-

ration workflow is to carry out a search algorithm in a predefined map space governed by

the cost model. In this work, we use exhaustive search to find the optimal design point

uniformly across all the dataflow optimizations. MSE includes both intra- and inter-operator

dataflow optimization space (enabling optimal dataflow comparisons with and without

FLAT technique later in Table A.2 and §A.4). The relevant architectural parameters for this
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optimization space are outlined in Figure A.6.

A.3.2 Details of Major Microarchitectural Units

Compute model. We model the compute array as a collection of processing elements

with configurable bandwidth from/to the global on-chip buffers. The compute array model

supports common intra-operator dataflow, including weight, input, and output stationary. In

addition, we model various data distribution and reduction NoCs, including systolic, tree, or

crossbar structures to study the the trade-offs between compute bandwidth and distribution-

collection time [68, 2]. Following this methodology, we model TPU [82] (systolic-array) as

well as other spatial array accceleraors, such as Eyeriss v2 [1] and MAERI [2]). We also

carefully model the overhead of switching tiles for filling and draining data to reflect the

cold start and tailing effect. Finally, we account for softmax operation runtime in all the

evaluations.

Buffering model. Studying dataflow optimization techniques demand for a detailed

modeling of buffers. To achieve this objective, we model PE arrays with local scratchpad

for input, weight, intermediate results, and output storage. We add the on-chip global buffer

to store the intra- and inter-operator tiles. The performance model also includes the data

spilling overhead. That is when the live memory footprint (buffer requirement for staging

data on-chip) is larger than the on-chip global buffer capacity.

Memory bandwidth. Since there are multiple microarchitectural units that access the

on-chip and off-chip memories, we model them as limited bandwidth shared-hardware

resources. That is, if the access rate to a shared memory resource exceeds a pre-defined

bandwidth, the data accesses are throttled. This overhead manifests as longer runtime.

A.3.3 Overview of the Evaluations

We organize the evaluation results as follows:

(1) Efficacy of the FLAT dataflow (§A.4.1, §A.4.2, §A.4.3): We first fix the “headline”
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Table A.2: Comparisons Dataflow Configurations.

Dataflow Design 
Point Description

Naïve
(intra-operator 

dataflow)
Naive

Intra-operator weight-stationary dataflow 
with fixed tile size, seen in many DNN  
accelerators [1][2][27]

Flex
(intra-operator 

dataflow)
Flex-opt

We exhaustively search for optimal intra-
operator dataflow, reflecting the optimal 
solution can be found in existing intra-
operator MSEs/mappers [31][37][45]

FLAT
(intra- and inter-

operator dataflow) FLAT-opt
We exhaustively search for optimal intra-
operator as well as inter-operator dataflow, 
enabled by FLAT.

“HW resources” (i.e., FLOPs and off-chip memory bandwidth) as outlined in Table A.3 and

sweep-and-explore other microarchitectural parameters relevant to the dataflow efficiency,

including on-chip memory size and dataflow variations (Naive, Flex, FLAT). The on-chip

memory size assesses the dataflow optimizations associated to the large intermediate tensor

size in the attention layers. We demonstrate the benefits of FLAT across a range of hardware

and dataflow configurations, without biasing to any specific design point.

(2) Concrete comparison of accelerator design points (§A.5): Next, we pick two

specific hardware design points, namely a cloud and an edge accelerator, with headline HW

resources that closely resemble a TPU-v3 [284] and edge-TPU [296], respectively. For

baseline design, we use the best possible dataflow optimization in the intra-operator map

space following prior techniques [6, 5, 68, 4, 7, 147, 284, 80, 81]. We call this performant

baseline accelerator Flex-opt, against which we compare FLAT-opt, our proposed inter-

operator and tiling dataflow optimization.
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Table A.3: The HW resource configuration of cloud and edge accelerators in the evaluation
sections.

Platform Number of PEs On-chip BW Off-chip BW
Edge 32x32 1TB/sec 50GB/sec
Cloud 256x256 8TB/sec 400GB/sec
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Buffer size:

Util

Fig. A.7: Compute utilization analysis of L-A operators under different dataflow granulari-
ties, running BERT with 512 sequence length with edge platform resources. Flex dataflow
(Flex-X): Flex dataflow with X-granularity. FLAT dataflow (FLAT-X): Flex dataflow with
X-granularity; X could be M (batch-Multi-head), B (Batch), H (head), or R (row).

A.4 Evaluation I: FLAT Dataflow Efficacy

A.4.1 Utilization

Edge accelerator. As described in §A.3.1, lower Util implies higher run time and lower

throughput. Figure A.7 shows the utilization of different dataflow configurations (as outlined

in Table A.2). The Naive dataflow barely achieves to 0.2 utilization for a buffer size ≤

10 MB. Increasing the on-chip buffer to an excessive 100 MB yields a peak utilization of

merely 0.6 for this dataflow. This low utilization is mainly attributed to the bandwidth-

boundedness of attention operations when no dataflow optimization is employed.

Leveraging efficient staging of tensor in on-chip memory, Flex-M can potentially in-

crease the utilization. However, when the on-chip buffer size is not sufficiently sized to

house the intermediate tensors, the accelerator requires to fetch the intermediate tensors

partially from the on-chip memory and the rest from off-chip memory breaking into the lim-
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Fig. A.8: Comparisons of compute utilization across different sequence lengths running
BERT under edge platform resources with sequence length of (a) 512, (b) 4K, and (c)
64K. We sweep the available on-chip buffer from size 20KB to 2GB. We list three level
of performance analysis, L-A: focusing on performance difference at the L, A operators;
Block: consider all operators in the attention block; and Model: a model-wise performance.
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ited off-chip bandwidth wall. Compared to Naive dataflow, this extra pass between on-chip

and off-chip memories diminishes the potential benefits of Flex-M under tightly-budgeted

on-chip buffers scenarios. As we can see in Figure A.7, even increasing the on-chip buffer

capacity to 2 GB is not adequate to fulfill the on-chip buffer size requirement for Flex-M.

Flex-B and Flex-H are two variants with finer granularity of storing the intermediate results.

They have smaller memory footprint for on-chip buffer that translates to a reduction in the

buffer requirement to around 160 MB, while reaching to 0.92 utilization, comparing to 0.6

utilization with 100 MB on-chip storage with Naive dataflow.

Comparing to Flex which only exploits single operation execution (intra-operator),

FLAT further enables cross-operator execution (inter-operator), which gains cross-operator

data reuse opportunity and reduces the off-chip memory access. The fine-grained execution

schemes of FLAT significantly reduces the on-chip buffer requirement, from 2 GB (Naive)

and 160 MB (Flex-H) to just 0.6 MB (FLAT-Rx). These results show the effectiveness

of cross-operator data reuse in mitigating the bandwidth-boundedness and improving the

utilization from 0.6 (Naive) and 0.92 (Flex-H) to a nearly optimal value of 0.99 (FLAT-Rx).

Sensitivity to sequence length. Note that, Flex-opt and FLAT-opt represents the optimal

design points in the Flex and FLAT dataflow design space, respectively. Figure A.8 and

Figure A.9 compare the compute utilization of these dataflows by sweeping the sequence

length for an edge and cloud accelerators, respectively. Flex design space exhaustively has

both dataflows of state-of-the-art DNN accelerators [6, 5, 68, 4, 7, 147, 284, 80, 81] as

well as their other relevant configurations. On the other hand, Flex-opt represents the most

optimal design point across all the evaluations.

As Figure A.8 shows, FLAT-opt consistently outperforms Naive and Flex-opt. Ana-

lyzing the results indicate that though tensor-tensor fusion seems to be complicated and

deemed as non-profitable, FLAT can efficiently execute tensor-tensor fusion in attention

layers and harvest the highest performance gains. In Figure A.8, as the sequence length

increases, the on-chip buffer requirement increases quickly (Table A.1). Under this scenario,
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most of the accelerator design points in Flex design space starts to hit the memory bound-

edness. However, applying the FLAT technique, we can effectively reduce the memory

requirement and thus providing a better scalability to sequence length. At the optimal design

point (FLAT-opt) reaches nearly 1.0 compute utilization with 10×-100× less on-chip buffer

requirement, a scarce and critical hardware resource for accelerators, compared to Flex-opt.

Sensitivity to different operator fusion. So far, we analyze the operator fusion for

only L and A operators, while keeping all the other attention operators non-fused (See the

justification for this decision in §A.1.1). As shown in the first row of Figure A.8 from left

to right, we observe that the effect of L/A operators are diluted as more operator fusions

are unlocked. In attention-based models, FC/GEMM and attention operators, namely L

and A, are generally the most dominant computation. For FC/GEMM, the typical single

(intra-)operator dataflow is often sufficient to reach a high compute utilization, and hence

FLAT-opt and Flex-opt performs equally well for these operators. As we can see, for the

sequence length below 512, both Block-level and Model-level performance is dominated by

FC/GEMM operators. Therefore, the gains from Flex-opt and FLAT-opt are immaterial.

The significant gains from our approach emerge when the sequence length increases beyond

512 to 4K, 16K, and to 64K. Under these long-sequence lengths, the runtime contribution

of L and A operators grows from 12% to 49%, 79%, and 94%, respectively. This increase

causes our proposed FLAT-opt to outperform Flex-opt significantly even in Block and

Model level scenarios.

Cloud accelerator. Figure A.9 shows the evaluation of different dataflow optimizations

for a cloud platform when the sequence length ranges from 4K to 256K. For L/A, Flex-opt

reaches to nearly 0.8 utilization, however with the contingency of a 2GB on-chip buffer

requirement. Moreover, when the sequence length surpasses 16K, the peak utilization

reduces to around 0.6. On the other hand, FLAT-opt reaches to nearly 1.0 utilization, while

significantly reduces the on-chip buffer requirement by 100x-1000x comparing to Flex-opt.
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Fig. A.9: Comparisons of compute utilization across different sequence lengths running
XLM under cloud platform resources with sequence length of (a) 4K, (b) 16K, (c) 256K.
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Fig. A.10: The corresponding energy consumption of each of the data-point in Figure A.8.
The energy numbers are normalized by the largest energy number in each sub-plot.
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Fig. A.11: The corresponding energy consumption of each of the data-point in Figure A.9.
The energy numbers are normalized by the largest energy number in each sub-plot.
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A.4.2 Energy Consumption

Figure A.10 and Figure A.11 show the corresponding energy consumption for the data points

in Figure A.8 and Figure A.9, respectively. It is worth to mention that high utilization does

not directly translate to better energy savings; however, highly correlated. Data points with

high compute utilization generally employ better memory access patterns (e.g., less off-chip

memory access and better data reuse) and thus impose less cost in terms of memory access

energy, the dominant contributor to the overall energy consumption of DNN accelerators. In

Figure A.10 and Figure A.11, we observe that FLAT-opt reduces the energy consumption by

around 1.5×-2.0× comparing to Flex-opt.

A.4.3 Map Space Exploration

Figure A.12 shows a holistic view of the entire design space of FLAT dataflow. The top-left

corner of the diagram indicates high utilization with the least memory footprint. For each

dataflow, there are abundance of parameters that can be tuned under different optimization

objectives and design constraints. For example, while in this work, we focus on maximizing

the compute utilization, one may choose other objectives such as maximizing utilization

normalized to memory footprint size, leading to points in the top-left corner, or the least

memory footprint size, leading to points in the left-most region. From Figure A.12, we

can see that different dataflow configurations in the design space indeed represent notable

differences in performance and memory requirement. This highlights the impact and

importance of the design choices and dataflow optimizations.

A.5 Evaluation II: Accelerator Comparison

As shown in Table A.3, we pick two common hardware configuration design points [284,

289, 1, 295, 296] and evaluate them for both edge and cloud accelerators. We fix the

on-chip buffer capacity to 512KB [296] and 32MB [284] for edge and cloud accelerators,

respectively. Analyzing these accelerators across different dataflow spaces, namely Naive,
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Fig. A.12: The design space of FLAT when running BERT with sequence length of 512
under edge platform resources. Flex dataflow (Flex-X): Flex dataflow with X-granularity.
FLAT dataflow (FLAT-X): Flex dataflow with X-granularity, where X could be M (batch-
Multi-head), B (Batch), H (head), or R (row). The design-point with the highest utilization,
given a buffer constraint represents Flex-Opt and FLAT-Opt (Table A.2).

Flex, and FLAT, forms a concrete and reasonably realistic accelerator design space. Similar

to previous sections, we call the optimal accelerator design point in each design space:

Naive edge, Flex-opt edge, and FLAT-opt edge for edge accelerator, and Naive cloud,

Flex-opt cloud, and FLAT-opt cloud for cloud accelerator, respectively.

Accelerator performance. As show in Figure A.13(a), Flex-opt edge and FLAT-

opt edge share the same normalized runtime for K/Q/V/O and FF1/FF2. This similarity in

performance is because in FLAT-opt edge, both K/Q/V/O and FF1/FF2 are treated as non-

fused operators, and hence the map space for them are the same as the one in Flex-opt edge.

In edge accelerator, when the sequence length is 512, FLAT-opt edge and Flex-opt edge

both reach a near optimal performance. However, when the sequence length increases

to 4K, 16K, and 64K, the performance gap between FLAT-opt edge and Flex-opt edge

widen. For example, at sequence length of 64K, FLAT-opt edge runs 2.8× faster than

Flex-opt edge, showing the efficiency of our dataflow optimization. In the cloud accelerator

(Figure A.13(b)), the performance difference between FLAT-opt cloud and Flex-opt cloud

exaggerates even further. For example, at sequence length of 64K, FLAT-opt cloud runs
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Fig. A.13: End-to-end latency breakdown running: (a) BERT on Edge accelerator, (b)
XLM on Cloud accelerator. Naive e(dge): Edge with Naive dataflow. Flex-opt e(dge):
Edge with optimal Flex dataflow. FLAT-opt e(dge): Edge with optimal FLAT dataflow.
Similarly, for Naive c(loud) and so on. Flex-opt represents the best possible (SOTA) intra-
operator dataflow obtained through exhaustive search of the intra-operator map-space. FLAT
performs inter-operator L-A fusion to relieve memory-bandwidth boundedness and achieves
lower run time. While FLAT realizes benefits even at modest sequence lengths, the gains
are pronounced at larger sequence lengths.

Edge
SeqLen 512 4K 16K 64K 256K 512 4K 16K 64K 256K

Bert 1.02 1.27 2.21 2.84 3.10 0.98 0.78 0.44 0.34 0.31

TrXL 1.02 1.23 2.06 2.75 3.07 0.98 0.81 0.48 0.35 0.31

FlauBert 1.01 1.11 1.62 2.26 2.67 1.00 0.90 0.61 0.43 0.36

T5 1.03 1.34 2.40 2.93 3.13 0.97 0.74 0.41 0.33 0.31

XLM 1.00 1.05 1.35 1.87 2.38 1.00 0.95 0.74 0.52 0.31

Average 1.02 1.20 1.89 2.50 2.85 0.99 0.83 0.52 0.39 0.32
Cloud

Bert 1.16 1.38 1.46 2.23 2.72 0.71 0.68 0.11 0.34 0.27

TrXL 1.13 1.34 1.45 2.20 2.71 0.73 0.27 0.13 0.35 0.27

FlauBert 1.07 1.21 1.42 2.21 2.93 0.87 0.80 0.72 0.49 0.37

T5 1.18 1.43 1.48 2.26 2.73 0.69 0.66 0.50 0.33 0.27

XLM 1.02 1.06 1.13 1.98 3.09 0.97 0.89 0.78 0.50 0.31

Average 1.11 1.28 1.38 2.17 2.83 0.79 0.61 0.33 0.40 0.30

Speedup (Ave. 1.65) Energy Consumption Ratio (Ave. 0.45)

Speedup and energy consumption ratio of: (left) FLAT-opt_e over Flex-opt_e, and (right) FLAT-opt_c over Flex-opt_c. 

Speedup (Ave. 1.75) Energy Consumption Ratio (Ave. 0.56)

Fig. A.14: The end-to-end speedup and energy-consumption ratio of FLAT-opt e(dge) over
Flex-opt e(dge) and FLAT-opt c(loud) over Flex-opt c(loud) on different models.
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Fig. A.15: The required BW to reach compute utilization rate higher than 0.95 in the most
BW-intensive L-A operator when running XLM using Flex-opt c(loud) or FLAT-opt c(loud).

3.07× faster than Flex-opt cloud. That is partly because of the larger model size for

the cloud accelerator that enables FLAT-opt cloud to better utilize the on-chip hardware

resources.

Comparisons across different models. Figure A.14 compares the performance of

different dataflow optimizations across various transformer models. Compared to Flex-

opt edge, FLAT-opt edge delivers 1.75× speedup in edge accelerator, while significantly

reducing the energy consumption by 44%. In cloud accelerator, FLAT-opt cloud achieves

1.65× speedup and 55% energy savings over Flex-opt cloud. These results show the broad

application of FLAT in improving the performance of various attention-based models under

different design constraints.

Memory bandwidth requirement. Effectively using a limited off-chip bandwidth is

an critical factor in the scalability of the hardware accelerator. That is because most DNN

operations are often memory-bound and the off-chip memory bandwidth is often shared

across different microarchitectural components in the system. In Figure A.15, we show the

peak off-chip bandwidth requirement to achieve a compute utilization over 0.95 for L and

A attention operators. The left hand side of the U-shape of Figure A.15 comes from the

increase in the operational intensity and thus decrease of the bandwidth-boundedness as

sequence length increases. The right hand side of the U-shape of Figure A.15 is caused

by the quadratic and linear increase of on-chip memory requirement as sequence length

increases for Flex and FLAT, respectively. On average, FLAT-opt cloud reduces the off-chip

212



bandwidth requirement by 82% against Flex-opt cloud. Similarly, when evaluated under

the edge scenario running BERT, FLAT-opt edge achieves 71% reduction, on average, in

the off-chip bandwidth requirement against Flex-opt edge.

A.6 Background

Dataflow and mapping. Most work on DNN hardware dataflow techniques focus on

individual CONV [80, 81, 83, 5, 4, 8, 12, 29, 10, 9, 13, 14, 15, 18, 19, 20] or GEMM [82,

21] operators. Some recent works consider fusion of multiple CONV operators and leveraged

pipelined execution [285, 67]. Andrei et al. [297] studied operation fusion in Transformers–

however, they only target operation fusion between MatMul operators and element-wise

operators. Recently, Nvidia presented fused multi-head attention [298, 299]. Fusing multiple

heads of the attention operators primarily involves adding an additional loop over the H

independent heads, and considering the resultant operator as a single operator to explore

intra-operator dataflow. This is captured by the Flex dataflow we evaluate. They, however,

do not explore dependent MatMul-softmax-MatMul fusion, which is more complicated.

FLAT targets such fusion and enables much higher performance.

Algorithmic optimization. Techniques such as quantization [300, 301, 302, 303],

pruning [304, 39, 40, 41, 42], and distillation [212, 305, 306, 307] are used for compressing

Attention-based models. There are a large body of algorithmic changes to attention mecha-

nism [308, 309, 310, 311, 294], learned sparsity [312, 286, 313, 314] low-rank and kernel

methods [315, 316, 317, 288], and others [70, 294, 287]. These techniques impact model

quality and are orthogonal to the ideas developed in this paper. FLAT can be leveraged in

association with these techniques when deployed on DNN accelerators to further improve

run time and energy.

Attention accelerators. A3 [318] and ELSA [319] propose dedicated attention accelera-

tors and leverage approximate computation to accelerate attention layers, which trade-off

run time performance with model quality. FLAT, by contrast, does not impact model quality,
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and is a generic yet powerful dataflow technique that can be leveraged on most existing

accelerators.

Compiler optimizations. Fusion is a classic compiler technique widely employed in

HPC [320, 321, 322, 323, 324] and ML compilers [24, 32, 325, 326]. However, in contrast

to our work, ML compilers employ fusion in a limited fashion to fuse matrix operators (FC,

CONV) with element-wise operators [327].

A.7 Summary

We identify that running attention-based models with long sequences is challenging because

of low reuse in certain attention operators and quadratic growth of intermediate memory

footprint, both of which compound memory bandwidth requirements. We propose FLAT,

a novel dataflow for attention layers employing inter-operator fusion (the first work to

investigate this for attention layers), interleaved execution, and efficient tiling to enhance

the operational intensity and provide high compute utilization, reduced off-chip bandwidth

requirements and scalability to long sequence lengths.
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