
INFORMATION EXTRACTION FROM MESSY DATA, NOISY SPECTRA,
INCOMPLETE DATA, AND UNLABELED IMAGES

A Dissertation
Presented to

The Academic Faculty

By

Hongzhen Tian

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Georgia Institute of Technology

The H. Milton Stewart School of Industrial & and Systems Engineering

Georgia Institute of Technology

August 2021

© Hongzhen Tian 2021



INFORMATION EXTRACTION FROM MESSY DATA, NOISY SPECTRA,
INCOMPLETE DATA, AND UNLABELED IMAGES

Thesis committee:

Dr. Chuck Zhang, Advisor
The H. Milton Stewart School of Indus-
trial & and Systems Engineering
Georgia Institute of Technology

Dr. Yajun Mei, Co-advisor
The H. Milton Stewart School of Indus-
trial & and Systems Engineering
Georgia Institute of Technology

Dr. Jianjun(Jan) Shi
The H. Milton Stewart School of Indus-
trial & and Systems Engineering
Georgia Institute of Technology

Dr. Ben Wang
The H. Milton Stewart School of Indus-
trial & and Systems Engineering
Georgia Institute of Technology

Dr. Yan Wang
The George W. Woodruff School of Me-
chanical Engineering
Georgia Institute of Technology

Date approved: May 20, 2021



Whatever happens, happens for the best.

A saying



For my beloved parents, husband Sheng



ACKNOWLEDGMENTS

I was born and grew up in a small village in the countryside, and I’m the fourth girl in a

financially stretched farming family. My mother has no chance to receive any school edu-

cation, but she deeply believes that knowledge alters one’s fate. Although she is influenced

by patriarchal thought somehow, she never looks down upon me. On the opposite, she sup-

ports gender equality and always encourages me to prove girl power, and motivates me to

chase my dream, both emotionally and materially. Fortunately, I inherited her bravery and

self-confidence, aggressiveness and optimism.

I always took first place, being the shiniest star in school until the end of high school.

In the college entrance examination, I got the highest score among candidates from 19

high schools in the county, which is sensational and makes me and my families relatively

reputable in the community. Following the unexpected honor, I received a very generous

scholarship, about $15, 000, from my high school. I really appreciate that amazing schol-

arship, which broke the shackles and gave wings to my dreams. Since then, economic

independence liberated my imagination. Though the distribution of education resources is

heavily uneven, the college entrance examination gives us, the vulnerable groups, a life-

changing chance. This is one of the fairest things I met and change my life for the first

time.

In 2013, I was admitted to the Energy and Power Engineering school in Xi’an Jiaotong

University. Studying and living with outstanding peers from all over the country, I realized

that I’m nobody but a “small town exam expert”. I don’t have any well-trained artistic

expertise, nor a broad vision from the family education. But fortunately, I met a lot of

brilliant people here who lead and encourage me along the way. My friends, like Jiayue

Fan in UCSD, Bingyu Wang in TAMU, Xin Shen in Yale, Yu Li in Princeton, Jiandong Wu

in PKU, Yuwen Yang in SJTU, and Xiangkun Cao in Cornell, and many other extraordi-

nary friends, helped me recognized my dream, and we rushed to our dream step by step,

v



helping each other and encouraging each other. In my Junior year, Dr. Erjiang Hu be-

came my advisor. He gave me meticulous and enlightening instructions on doing research,

which inspired my love for scientific research and helped me publish my first paper. These

experiences together lead me to the decision of pursuing a Ph.D. degree abroad.

In 2017, Dr. Chuck Zhang gave me the chance to join his group at Georgia Tech.

Admission to my dream school and dream Ph.D. program is the second life-changing op-

portunity for me. At Georgia Tech, I got the chance to take courses from the professors that

can be seen on classic textbooks, collaborate with the top researchers all over the world,

get supervised by the worship professors on yearning topics. During my graduate years at

Georgia Tech, I deeply understand what is called “peer pressure” and realize the power of

a platform. Also, Dr. Zhang always makes the group a big family, which gives us a sense

of belonging and engagement.

Dr. Yajun Mei rebuilds me from a very struggling status. The beginning of my Ph.D.

years was a challenging hard mode for me as it came with the overwhelming course and

research requirements, as well as a new and lonely living mode. For a long time, I live in

anxiety, depression, and self-denial, lost confidence, courage, and motivation. Like a ray of

sunshine shining into my Ph.D. life, Dr. Mei keeps on affirming my academic ability and

giving me detailed practical instructions, both academically, behaviorally, and mentally.

Like a knowledgeable father, he taught me how to think and talk properly, introduced me

to some promising projects and excellent collaborators like Dr. Zev, encouraged me to do

life plans like obtaining a driver’s license and running married family life. Gradually, I was

recharged with confidence and cheerfulness, and figure out a clear study and career path.

I would like to thank the members of my thesis committee for their help in the prepara-

tion of this work – Dr. Jianjun Shi, who helped to shed new light on many of my ideas, and

guides me by his academic achievements and lofty character. Dr. Ben Wang, who always

puts up with great questions, provides golden advice and set high standards for us. And

Dr. Yan Wang, who drives me to think about the extension of a methodology to broader

vi



application fields.

Special thanks are due to the friends and colleagues who made this work possible. Andi

Wang and Jialei Chen were invaluable both as friends and as sounding boards for some of

my more outlandish ideas. Dr. Zev Cohen Reuven, introduced by Dr. Mei, was also a major

influence, and I’m glad we were able to help each other with our special expertise. With his

organization and the help from my husband, our statistical model becomes a mobile App

available in Apple Store. Besides, he helps me a lot in my job hunting by providing solid

recommendations during the reference check.

Also, I would like to thanks Shancong Mou, Zhaonan Liu, Xuzhou Jiang, Jianfeng Shi,

Daniel Cantrell, Jarod Weber, Michael McCracken, Chin-yuan Tseng, Zhen Zhong, Chen

Jiang, Chen Feng, Dan Tu, Wan Qin, and Ray Liu, for the smooth collaborations, good

companies, and deep friendship.

Also, I would like to show my deep gratitude to the Chinese Scholarship Council (CSC)

for the CSC-GT joint scholarship, which covers my living expenses for all 4 years along

my pursuing the Ph.D. degree. Besides, I also appreciate the George Fellowship which

recognizes my efforts in research in the health systems and analytics area. These financial

aids not only covered my living expenses but also improved the living quality of my parents

who are far away in the countryside.

In the end, I would like to thank my husband, Sheng Zhang, for the selfless love and

endless support to me. We met in Georgia Tech, fell in love, and got married here. Without

his company, I cannot imagine how would I survive some terrible moments. He has been

teaching me a lot of professional knowledge, giving me a sense of safety and hope. He is

the witness of my Ph.D. life and he’s going to be the witness of the rest of my life, as we

promised to each other at our wedding.

vii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Treatment Effect Modeling for FTIR Signals Subject to Multiple
Sources of Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.0.1 Note to Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Uncertainty Analysis and Proposed Solution . . . . . . . . . . . . . . . . . 15

2.2.1 Uncertainties in FTIR Metrology and Spectra Modeling . . . . . . . 15

2.2.2 Step 1: Estimate the Template Spectra x0 . . . . . . . . . . . . . . 19

viii



2.2.3 Step 2: Estimate δ and g from the Post-exposure Spectra . . . . . . 21

2.2.4 Solution Procedure for Problem (Equation 2.8) . . . . . . . . . . . 23

2.2.5 Find the Most Interpretable Pattern of Modification g . . . . . . . . 24

2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Case Study: Investigation of Real FTIR Spectra . . . . . . . . . . . . . . . 32

2.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Implementation of the Proposed Method on Real Data . . . . . . . 35

2.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3: Incomplete Data Analysis with An Application on Ductal Gallstone
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Background of the CBDS Project . . . . . . . . . . . . . . . . . . . 42

3.1.2 Existing Popular Methods of Dealing With Incomplete Data . . . . 44

3.1.3 Recommended Approach for Our Clinical Dataset–KNN Imputation 45

3.1.4 Motivation of Proposing the Multistage Sequential Decision-Making
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Proposed Active Learning-Based Multistage Sequential Decision-Making
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Data Organization for 2-stage Model as Example . . . . . . . . . . 53

3.2.4 Our Proposed Model vs. Existing Ordinal Logistic Regression . . . 54

3.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



3.3.1 Joint Likelihood of Proposed Model with Common Coefficients
Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Computation: optim solver in R Software . . . . . . . . . . . . . . 65

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Results Comparison: Baseline Approach vs. Proposed Method
with Common Coefficients Assumption . . . . . . . . . . . . . . . 70

3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Data Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Performance Comparison: Baseline Approach vs Proposed Algorithm 75

3.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 4: Unsupervised Image Segmentation with an Application on the Fail-
ure Mode Analysis for Airplanes . . . . . . . . . . . . . . . . . . . . 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Problem Formulation, Literature Review, and Baseline Approach . . . . . . 83

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Literature Review of Image Segmentation . . . . . . . . . . . . . . 85

4.2.3 Baseline Approach - Superpixels Clustering Methodology . . . . . 95

4.3 Proposed Method – RG-filter . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Case Study – Experiments on CFRP Images . . . . . . . . . . . . . . . . . 97

4.4.1 Image Segmentation Experiments on Existing Methods . . . . . . . 98

4.4.2 Image Segmentation Experiments on Proposed method – GR-filter . 103

4.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



Chapter 5: Summary and Future Research . . . . . . . . . . . . . . . . . . . . . 107

5.1 Summary of Original Contributions . . . . . . . . . . . . . . . . . . . . . 107

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



LIST OF TABLES

3.1 Descriptive statistics for demographic, laboratory, and imaging data . . . . 76

4.1 Rule of identifying failure mode from pixel pairs . . . . . . . . . . . . . . 85

4.2 Overview of Superpixels-Based Image Segmentation . . . . . . . . . . . . 87

xii



LIST OF FIGURES

2.1 The experimental setup. The CFRP coupons were processed by plasma,
and the plasma distance is set at h1, ..., hn. The FTIR measurements were
taken before and after the plasma exposure to capture the change of chem-
ical components on the CFRP surface. . . . . . . . . . . . . . . . . . . . . 13

2.2 Raw FTIR signals collected collected from the CFRP coupons in the our
experiments ( Figure 2.1) before plasma exposure (a) and after plasma ex-
posure at various distances (b). . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The sample variance (the dashed line) and the sample mean (the solid line)
of the FTIR signals obtained from the experiment in Figure 2.1. . . . . . . . 17

2.4 Our proposed two-step framework. . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Simulated δ function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Simulated g function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Simulated FTIR signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Estimation results of proposed Step 1 on the simulated data in Fig Fig-
ure 2.7 (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 The δ function reconstructed by the proposed procedure. . . . . . . . . . . 30

2.10 The reconstructed g̃ solved from (Equation 2.8). . . . . . . . . . . . . . . . 30

2.11 The plot of function G(θ, φ) for simulation data, where θ ∈ [0, 2π], φ ∈
[0, π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 The g function reconstructed by the proposed procedure. . . . . . . . . . . 31

2.13 Corrected pre-exposure FTIR signals from real experiments and the tem-
plate signal (the wider line in the middle). . . . . . . . . . . . . . . . . . . 33

xiii



2.14 The effect of plasma exposure δ versus the corresponding plasma distance
in real experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.15 The signal g̃, as solved from the problem (Equation 2.8). . . . . . . . . . . 36

2.16 The plot of function G(θ, φ) for real data, where θ ∈ [0, 2π], φ ∈ [0, π]. . . 37

2.17 The pattern of modification g (the solid line) and the extracted template
curve x0 (the dashed line) as reference for results explanation. . . . . . . . 37

3.1 Introduction to CBDS [42]. Gallstones in CBD are tricky to detect. Failing
to remove them can cause severe infection . . . . . . . . . . . . . . . . . . 42

3.2 The missing map of clinical data for the gallstone evaluation. . . . . . . . . 43

3.3 The framework of the proposed multistage sequential decision-making model,
where K is the number of stages, π(j)

i is the probability of patient i having
disease estimated by the predictive model in stage j, Uj and Lj is the cutoff
points on the estimated probability in stage j, and CK is the single cutoff
point in the last stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 A simple 2-stage sequential decision-making model. . . . . . . . . . . . . . 53

3.5 Mean coefficients estimation comparison among ground truth (black line),
mean coefficients estimated from baseline approached individually (blue
and green line), and mean coefficients estimated from proposed method
jointly (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 (a) Standard deviation of coefficients estimation from two methods, and
(b) relative efficiency of the proposed method with respect to the baseline
method. Both plots demonstrate the high efficiency of the proposed method
on parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Mean prediction metrics for 2 stages with coefficients estimated from base-
line approach individually (blue and green line), and coefficients estimated
from proposed method jointly (red and black line). Note that the blue and
black lines are too close to each other to distinguish them from each other
visually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Coefficients comparison between coefficients obtained from 2 methods for
features in stages 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



4.1 Several typical CFRP pairs. These images demonstrate the pairing relation-
ship and indicate the challenges associated with the raw data. . . . . . . . . 84

4.2 Types of adhesive bond failure of SLJ specimen [63]: a) cohesive failure,
b) adhesive failure, c) adherent (substrate) failure. . . . . . . . . . . . . . . 85

4.3 An example of the expected outcome from raw data. The raw image data
(figure to the top right), and the expected outputs, including failure modes
distribution (figure in the middle row) and proportion (figures in the last row). 86

4.4 Performance comparison of several popular clustering algorithms on 5 datasets
with different structure/shape [99]. Every column corresponds to a certain
clustering method, and each color indicates a predicted cluster. . . . . . . . 94

4.5 Raw image data used as an example for image segmentation experiments. . 98

4.6 Comparison of pixel-labeling results of several global thresholding meth-
ods, Isodata, Li, Mean, Minimum error, Otsu, Triangle, and Yen. . . . . . . 99

4.7 Pixel-labeling results of the Otsu’s global thresholding and adaptive thresh-
olding/local thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Pixel-labeling result of simple K-means algorithm with K = 2. . . . . . . . 100

4.9 Pixel-labeling results of 4 popular algorithms: Felzenszwalb’s method, SLIC,
Quickshift, and Compact Watershed. . . . . . . . . . . . . . . . . . . . . . 101

4.10 Pixel-labeling results of the baseline approach (figures to the bottom), where
the superpixels are obtained from Felzenszwalbs’s method and SLIC method
(figures to the top), and the clustering algorithm in step is the k-means clus-
tering with K = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.11 Pixel-labeling results of the proposed RG-filter with different coefficients:
α = {0.6, 0.8, 1.0, 1.2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.12 Final results of binary pixel-pairing: failure mode distribution on the recov-
ered CFRP pairs (A face flip up). The three colors indicate 3 failure modes
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



SUMMARY

Data collected from real-world scenarios are never ideal but often messy because data

errors are inevitable and may occur in creative and unexpected ways. And there are al-

ways some unexpected tricky troubles between ideal theory and real-world applications.

Although with the development of data science, more and more elegant algorithms have

been well developed and validated by rigorous proof, data scientists still have to spend

50% to 80% of their work time on cleaning and organizing data, leaving little time for ac-

tual data analysis. This dissertation research involves three scenarios of statistical modeling

with common data issues: quantifying function effect on noisy functional data, multistage

decision-making model over incomplete data, and unsupervised image segmentation over

imperfect engineering images. And three methodologies are proposed accordingly to solve

them efficiently.

In Chapter 2, a general two-step procedure is proposed to quantify the effects of a

certain treatment on the spectral signals subjecting to multiple uncertainties for an engi-

neering application which involves materials treatment for aircraft maintenance. With this

procedure, two types of uncertainties in the spectral signals, offset shift and multiplicative

error, are carefully addressed. In the two-step procedure, a novel optimization problem

is formulated to estimate the representative template spectrum first, and then another op-

timization problem is formulated to obtain the pattern of modification g that reveals how

the treatment affects the shape of the spectral signal, as well as a vector δ that describes

the degree of change caused by different treatment magnitudes. The effectiveness of the

proposed method is validated in a simulation study. Furtherly, in a real case study, the

proposed method is used to investigate the effect of plasma exposure on the FTIR spectra.

As a result, the proposed method effectively identifies the pattern of modification under

uncertainties in the manufacturing environment, which matches the knowledge of the af-

fected chemical components by the plasma treatment. And the recovered magnitude of
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modification provides guidance in selecting the control parameter of the plasma treatment.

In Chapter 3, an active learning-based multistage sequential decision-making model is

proposed to assist doctors and patients to make cost-effective treatment recommendations

when some clinical data are more expensive or time-consuming to collect than other lab-

oratory data. The main idea is to formulate the incomplete clinical data into a multistage

decision-making model where the doctors can make diagnostics decisions sequentially in

these stages, and actively collect only the necessary examination data from certain patients

rather than all. There are two novelties in estimating parameters in the proposed model.

First, unlike the existed ordinal logistic regression model which only models a single stage,

a multistage model is built by maximizing the joint likelihood function for all samples in

all stages. Second, considering that the data in different stages are nested in a cumula-

tive way, it is assumed that the coefficients for common features in different stages are

invariant. Compared with the baseline approach that models each stage individually and

independently, the proposed multistage model with common coefficients assumption has

significant advantages. It reduces the number of variables to estimate significantly, im-

proves the computational efficiency, and makes the doctors feel intuitive by assuming that

newly added features will not affect the weights of existed ones. In a simulation study, the

relative efficiency of the proposed method with regards to the baseline approach is 162%

to 1,938%, proving its efficiency and effectiveness soundly. Then, in a real case study, the

proposed method estimates all parameters very efficiently and reasonably.

In Chapter 4, a simple yet very effective unsupervised image segmentation method,

called RG-filter, is proposed to segment engineering images with no significant contrast

between foreground and background for a material testing application. With the challenge

of limited data size, imperfect data quality, unreachable binary true label, we developed

the RG-filter which thresholding the pixels according to the relative magnitude of the R

channel and G channel of the RGB image. To test the performance of the existed image

segmentation and proposed algorithm on our CFRP image data, we conducted a series

xvii



of experiments over an example specimen. Comparing all the pixel labeling results, the

proposed RG-filter outperforms the others to be the most recommended one. in addition, it

is super intuitive and efficient in computation. The proposed RG-filter can help to analyze

the failure mode distribution and proportion on the surface of composite material after

destructive DCB testing. The result can help engineers better understand the weak link

during the bonding of composite materials, which may provide guidance on how to improve

the joining of structures during aircraft maintenance. Also, it can be crucial data when

modeling together with some downstream data as a whole. And if we can predict it from

other variables, the destructive DCB testing can be avoided, a lot of time and money can be

saved.

In Chapter 5, we concluded the dissertation and summarized the original contributions.

In addition, future research topics associated with the dissertation have also been discussed.

In summary, the dissertation contributes to the area of System Informatics and Control

(SIAC) to develop systematic methodologies based on messy real-world data in the field

of composite materials and healthcare. The fundamental methodologies developed in this

thesis have the potential to be applied to other advanced manufacturing systems.

xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation

With the development of data science, more and more beautiful algorithms have been

well established and validated by rigorous proof. However, there are always some un-

expected tricky troubles between ideal theory and real-world application. This is be-

cause the data from real-world problems are not always ideal but often messy. Messy

data—heterogeneous values, missing entries, and large errors—is a major obstacle to auto-

mated modeling. Data cleaning is the first step in any data processing pipeline, and the way

it’s carried out has serious consequences for the results of any subsequent analysis. Yet this

step is generally performed using ad-hoc methods.

Fourier-transform infrared spectroscopy (FTIR) is a widely adopted technique for char-

acterizing the chemical composition in many physical and chemical analyses. However,

FTIR spectra are subject to multiple sources of uncertainty, and thus the analysis of them

relies on domain experts and only can lead to qualitative conclusions. However, the demand

of quantifying the effects of a univariate factor, such as plasma surface treatment, on spec-

tral measurements subjecting to such multiplicative and offset uncertainties arises. With a

systematic way of understanding the functional effect on noisy functional data, people can

select optimal surface treatment parameters such as plasma distance, gain an understanding

of the effect of plasma exposure on the CFRP material, and identify several chemical bonds

that are affected by plasma exposure.

Incomplete data are commonly seen in real-world scenarios since data with certain in-

formation comes with a price. This is especially true in the healthcare area, where the doc-

tors aim at making diagnoses as accurate as possible and determines the treatment recom-

1



mendation based on limited examinations. To address the issues caused by incomplete data

in clinical modeling, there are many widely used methods developed according to missing

patterns, such as simple deletion on feature or record, mean/median/mode/zeros substi-

tution, regression imputation, last observation carried forward, expectation-maximization

(EM), etc. [1, 2, 3]. These methods were developed from two basic ideas roughly. One

is deleting the records or features with missing values, which will lead to a waste of avail-

able data and some modeling problems caused by limited data size. And the other one is

“guessing” or “learning” the missing data from the observed data, which of course, is kind

of dangerous for clinical modeling since the synthetic data brings extra uncertainties surely.

The engineering images collected from composite materials usually have limited data

size, imperfect data quality, unreachable true labels. This makes it challenging to iden-

tify the failure modes distribution and proportion over the surface of a large piece of the

composite material. The failure mode analysis is critical in the surface characterization of

composite materials in aircraft joining and maintenance. After figuring out the distribution

and proportion of failure modes, people can better understand the weak link during the

bonding of composite material, which may give some clue on how to improve the joining

and maintenance of aircraft. More importantly, the segmentation results can be crucial data

when modeling together with some downstream data as a whole. Once we can predict the

failure mode proportion and distribution directly from some surface characterizing vari-

ables, the expensive, time-consuming, and destructive DCB testing can be avoided, and

naturally, a huge amount of time and money will be saved.

1.2 Research Objectives

The objective of this proposal is to develop basic, composable modeling tools for robust

data inference by exploiting structure in the data set, developing models that accept data

with noisy, uncertain, or missing values, and will produce clean and complete data sets. The

research involves developing novel algorithms for denoising and tolerancing incomplete
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and imperfect data by exploiting spatiotemporal, network, and low dimensional structures.

These methods of preprocessing data will allow researchers to draw power from the

data that they do have and to perform any kind of analysis they normally would perform

on ideal data. Applications range from social science surveys to medical informatics, from

manufacturing analytics to marketing, from finance to hyperspectral imaging, and beyond.

1. develop a general procedure to (i) characterizes the underlying uncertainties of the

FTIR spectra, and (ii) describes the nonlinear effect of plasma exposure on the post-

exposure FTIR spectra.

2. develop a sequential decision-making model to help doctors making reliable diag-

nostic decisions and treatment recommendations with enough confidence in a cost-

effective and convenient way. This model allows the doctor to actively collect only

the necessary data in a sequential way rather than collecting all the data at the begin-

ning.

3. develop an unsupervised image segmentation algorithm for the image data obtained

from CFRP specimen after DCB testing and obtain the failure mode distribution and

proportion.

1.3 State-of-the-art

As a spectrum, FTIR signal subjects to multiple types of uncertainty, such as sample-

generated noise, instrument-generated noise, computationally generated noise, and some

externally generated noise [4]. To decrease the level of uncertainty in FTIR measurements,

many preprocessing techniques were developed [5, 6, 7, 8]. Cornel et al. [5] reviewed mul-

tiple FTIR signal correction techniques before analyzing FTIR signals. However, most of

them are ad-hoc methods that do not fully characterize the sources of uncertainty and error

patterns involved in the FTIR spectra. For example, in the standard normal variate (SNV)
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transformation, people normalize the observed spectrum via its individual mean and indi-

vidual standard deviation. This makes the SNV sensitive to noisy entries in the spectrum.

Also, by centering and scaling the individual spectrum, it will eliminate some quantita-

tive information, such as the magnitude difference on FTIR caused by plasma exposure.

The multiplicative scatter correction (MSC) method corrects FTIR signals by regressing

the observed spectra over the reference spectrum, usually, the sample means, and solve it

via ordinary least square. However, defining an appropriate reference spectrum is the main

challenge of MSC [9]. Also, the MSC model fails to consider the magnitude-dependent

noise on the FTIR spectra. Based on the MSC, the extended multiplicative scatter correc-

tion (EMSC) [10] was developed. It involves higher-order terms of reference spectrum, the

pure spectrum of individual chemical components, and the interference effects to reduce

or eliminate the pathlength variation [9, 11]. However, the EMSC cannot be wildly used

due to the lack of pure spectra of chemical matter, especially for very occasional users. In

order to quantify the function treatment effect on FTIR spectra, the challenge is that surface

treatments usually have nonlinear effects on the FTIR signals. Although there exist some

quantitative analysis with regard to FTIR, such as simple multiple linear regression, neural

networks [12], principal component analysis (PCA) [13], principal component regression

(PCR) and partial least-squares regression (PLSR) [5], they are mainly developed for pre-

dicting other response variables through high-dimensional FTIR spectra. Quite the oppo-

site, we aim to study the functional effect of a certain univariate factor on FTIR. However,

due to the nonlinearity, the univariate factor effect on the high-dimensional measurements

cannot be characterized through existing methods such as the functional linear models [14].

For most of the popular machine learning models, more features often contain more

crucial information, lead to larger variable selection space, higher modeling accuracy, and

more stable performance. However, in real-world scenarios, some informative features

could be expensive and hard to obtain. This is especially the case in clinical trials. Every

clinical data point comes with a price, such as clinical procedures, staff and admin, site
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monitoring, site retention, and lab costs. Especially, some clinical examinations could be

invasive and painful, or request staying still for a long time, or comes with some side effects

like radiation. Therefore, those unwanted examinations are expected to be taken only when

necessary, especially for pediatric patients. However, some patients are willing to take these

expensive and informative examinations for more accurate diagnoses. These precious data,

though observed in a small subset of the patients’ population, induce the researchers to

take them into consideration. Therefore, a commonly seen challenge of investigating the

clinical case is incomplete data. In other words, not all patients have all features observed,

but the researchers aim to use the observed data to the maximum without any waste. To

address the issues caused by incomplete data in statistical modeling, there are many widely

used methods developed according to missing patterns, such as simple deletion on feature

or record, mean/median/mode/zeros substitution, regression imputation, last observation

carried forward, EM, etc. [1]. These methods were developed from two basic ideas roughly.

One is deleting the records or features with missing values, which will lead to a waste of

available data and some modeling problems caused by limited data size. And the other one

is “guessing” or “learning” the missing data from the observed data, which of course, is

kind of dangerous for clinical modeling since the synthetic data brings extra uncertainties

surely.

Image segmentation is the process of partitioning a digital image into different regions

(sets of pixels, also known as superpixels) based on the characteristics of pixels. The goal

of segmentation is to simplify and/or change the representation of an image into something

that is more meaningful, easier, and efficient to analyze. Image segmentation is typically

used to locate or identify objects and boundaries (lines, curves, etc.) in images. More

precisely, image segmentation is the process of assigning a label to every pixel in an im-

age such that pixels with the same label share certain characteristics [15]. Segmentation

impacts a number of domains, from the filmmaking industry to the field of medicine [16].

For example, image segmentation can be used to crop out the foreground and place it into
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certain backgrounds, track objects in a sequence of images, and identify the injured muscle

and measure the bone or tissue in the medical field. The algorithms for image segmenta-

tion implementation have been well-developed these years. Three typical methodologies

are developed for image segmentation: image segmentation by thresholding, pixel-wise

clustering, and deep learning. Experiments show that the image segmentation result highly

depends on the data structure, and people should choose the proper algorithm according to

the data set case by case. For our CFRP image data, the problem associated with these seg-

mentation methods is the number of label types. Usually, the existing methods segment the

image into a lot of different regions with different labels in the mask. In implementations,

often the cases, the number of segmentation is equaled to the type or level of labels with a

one-to-one unordered relationship. Roughly speaking, the more the regions segmented, the

finer the boundary identification. However, in our cases, we expect fine boundaries yet two

types of labels only, pink adhesive film, or black CFRP substrate.

1.4 Organization of the Dissertation

This dissertation is organized in a multiple-chapter format. Each of Chapters 2, 3, and 4

are written as a research paper or technical report, some of which have been accepted or

submitted for journal publications.

In Chapter 2, a general two-step procedure is proposed to quantify the effects of a

certain treatment on the spectral signals subjecting to multiple uncertainties. With this

procedure, two types of uncertainties in the spectral signals, offset shift and multiplicative

error, are carefully addressed. In the two-step procedure, a novel optimization problem

is formulated to estimate the representative template spectrum first, and then another op-

timization problem is formulated to obtain the pattern of modification g that reveals how

the treatment affects the shape of the spectral signal, as well as a vector δ that describes

the degree of change caused by different treatment magnitudes. The effectiveness of the

proposed method is validated in a simulation study. Furtherly, in a real case study, the
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proposed method is used to investigate the effect of plasma exposure on the FTIR spectra.

As a result, the proposed method effectively identifies the pattern of modification under

uncertainties in the manufacturing environment, which matches the knowledge of the af-

fected chemical components by the plasma treatment. And the recovered magnitude of

modification provides guidance in selecting the control parameter of the plasma treatment.

In Chapter 3, a multistage sequential decision-making model is proposed to help the

doctor make predictions and give treatment recommendations. The main idea is to formu-

late the incomplete clinical data into a multistage decision-making model where the doctors

can make diagnostics decisions sequentially in these stages, and actively collect only the

necessary examination data from certain patients rather than all. There are two novelties

in estimating parameters in the proposed model. Firstly, unlike the existing ordinal logistic

regression model which only models a single stage, we write the joint likelihood function

for all stages and maximize it for the global optimum. Secondly, considering that the data

in different stages are nested in a cumulative way, it is assumed that the coefficients for

common features in different stages are invariant. For both simulation study and real case

study, the proposed method is proved to effectively estimate the coefficients and cutoff

points for all stages in the multistage model. It estimates all parameters simultaneously to

reach the global optimum and fully considers the cumulative characteristics between these

stages by making common coefficients assumption.

In Chapter 4, a simple yet very effective unsupervised image segmentation method,

called RG-filter, is proposed to segment engineering images with no significant contrast

between foreground and background. With the challenge of limited data size, imperfect

data quality, unreachable binary true label, we developed the RG-filter which thresholding

the pixels according to the relative magnitude of the R channel and G channel of the RGB

image. To test the performance of the existing image segmentation and proposed algorithm

on our CFRP image data, we conducted a series of experiments over a specimen as an

example. Comparing all the pixel labeling results, the proposed RG-filter outperforms the
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others to be the most recommended one. What’s more, it is super intuitive and efficient in

computation. The proposed RG-filter can help to analyze the failure mode distribution and

proportion on the surface of composite material after destructive testing.

In Chapter 5, we concluded the dissertation and summarized the original contribu-

tions. In addition, future research topics associated with the dissertation have also been

discussed.
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CHAPTER 2

TREATMENT EFFECT MODELING FOR FTIR SIGNALS SUBJECT TO

MULTIPLE SOURCES OF UNCERTAINTIES

Fourier-transform infrared spectroscopy (FTIR) is a widely-adopted technique for charac-

terizing the chemical composition in many physical and chemical analysis. However, FTIR

spectra are subject to multiple sources of uncertainty, and thus the analysis of them relies

on domain experts and only can lead to qualitative conclusions. This study aims to ana-

lyze the effect of a certain treatment on FTIR spectra subject to two commonly observed

uncertainties, the offset shift and the multiplicative error. Due to these uncertainties, the

pre-exposure FTIR spectra are modeled according to the physical understanding of the

uncertainty – observed spectra can be viewed as translating and stretchering an underly-

ing template signal, and the post-exposure FTIR spectra are modeled as the translated and

stretchered template signal plus an extra functional treatment effect. To provide engineering

interpretation, the treatment effect is modeled as the product of the pattern of modification

and its corresponding magnitude. A two-step parameter estimation algorithm is developed

to estimate the underlying template signal, the pattern of modification, and the magnitude

of modification at various treatment strength. The effectiveness of the proposed method is

validated in a simulation study. Furtherly, in a real case study, the proposed method is used

to investigate the effect of plasma exposure on the FTIR spectra. As a result, the proposed

method effectively identifies the pattern of modification under uncertainties in the manu-

facturing environment, which matches the knowledge of the affected chemical components

by the plasma treatment. And the recovered magnitude of modification provides guidance

in selecting the control parameter of the plasma treatment.
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2.0.1 Note to Practitioners

FTIR spectrometer is often used to characterize the surface chemical composition of a

material. Due to the large uncertainties associated with the nature of spectrometer and the

measurement environment, the FTIR signals are usually examined visually by experienced

engineers and technicians in industrial applications, which can be both time-consuming

and inaccurate. To understand the effect of plasma exposure on the surface property of

carbon fiber reinforced polymer material, the elimination of uncertainties associated with

FTIR signals is investigated, and a systematic method is proposed to quantify the effect

of surface treatments on FTIR signals. A two-step analytic procedure is proposed, which

provides the information on how the plasma exposure distorts the FTIR signals, and how the

plasma distance relates to the magnitude of the distortion. The methodology in this article

can be used to analyze the treatment effect on a variety of spectroscopic measurements that

are subject to uncertainties such as offset and scaling errors, which expands the applications

of in-situ handheld spectrometer metrology in manufacturing industries.

2.1 Introduction

FTIR measurements provide a sensitive and non-destructive way of understanding the ma-

terial’s chemical composition. Like most structural spectroscopic techniques, it character-

izes the chemical composition of the material by capturing the absorbance or reflectance

of light in a range of frequencies [17, 18]. Specifically, the FTIR spectrometer irradiates a

beam of infrared light that contains a range of spectral components on the sample, and mea-

sures the intensity of the absorbed light at every frequency. As each chemical bond in the

material only absorbs the infrared radiation at its characteristic frequency, the absorbance

intensity of each light component indicates the amount of corresponding chemical bond

in the examined sample [18, 10, 17]. The signals measured by an FTIR spectrometer are

called the FTIR spectra. It takes the form of a high dimensional vector, representing the
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infrared absorption intensities at a range of frequencies.

In recent decades, the application of FTIR on the surface characterization of carbon

fiber reinforced polymer (CFRP) composites becomes popular [18, 19, 20, 21, 22]. CFRP

materials express significant attention in the aerospace industry for its improved properties

such as lightweight and excellent strength. However, safety concerns on its bonding quality

are essential due to its low surface free energy [19]. In order to improve CFRP bonding

quality, surface modification methods have been developed to improve CFRP surface en-

ergy, including thermal treatment, wet chemical or electrochemical oxidation, plasma and

laser treatment, gas-phase oxidation, coating treatment, etc [20, 23, 21].

Among these surface modification methods, plasma exposure is an effective, conve-

nient, and non-destructive option that allows for greater control over the number of un-

wanted reaction pathways [24, 25, 26, 27, 22, 20]. One of the most important operating

parameters that control the intensity of the plasma treatment is the gap between the plasma

nozzle and the sample surface, known as the plasma distance. Previous research indi-

cated that smaller plasma distance that causes more intense plasma exposure to the sample

increases the wettability of the material by modifying the chemical composition and the

physical structures of its surface layer [25, 27, 23], which in turn improves the bonding

quality between CFRP panels in aerospace applications.

To have a deeper understanding of the mechanism of plasma treatment on the CFRP

surface, it is worthwhile to investigate how the plasma distance affects the treatment re-

sult, i.e., the change of chemical composition of the CFRP sample. Because the chemical

components of the CFRP sample are characterized by FTIR measurements, this study aims

at proposing a methodology to model the statistical effect of plasma treatment at different

distances on the FTIR signals, also referred to as treatment effect. Specifically, consider

the experiment detailed in Figure 2.1, where the pre-exposure FTIR measurements and

post-exposure FTIR measurements are taken on a number of CFRP coupons. The strength

of treatment, described by the plasma distance, is set to prescribed values from 2mm to
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22mm. With the FTIR measurements, it can be investigated that how the plasma distance

affects the FTIR signals taken from the samples. The methodology proposed in this study

also tackles a general objective of understanding the statistical effect of a certain factor on

spectral signal observations.

Modeling the treatment effect from FTIR signals involves two major challenges. First,

as a spectrum, FTIR signal subjects to multiple types of uncertainty, such as sample-

generated noise, instrument-generated noise, computationally generated noise, and some

externally generated noise [4]. Among them, the most widely mentioned noise sources

include light scattering, optical path length variations, temperature variations, and readout

noise [10, 17, 5, 28]. The uncertainty sources mentioned above result in offset shift and

multiplicative error on FTIR measurements, and the latter also influences the magnitude of

random noise on FTIR measurements.

To decrease the level of uncertainty in FTIR measurements, many preprocessing tech-

niques were developed [5, 6, 7, 8]. Cornel et al. [5] reviewed multiple FTIR signal correc-

tion techniques before analyzing FTIR signals. However, most of them are ad-hoc methods

that do not fully characterize the sources of uncertainty and error patterns involved in the

FTIR spectra. For example, in the standard normal variate (SNV) transformation, people

normalize the observed spectrum via its individual mean and individual standard deviation.

This makes the SNV sensitive to noisy entries in the spectrum. Also, by centering and

scaling the individual spectrum, it will eliminate some quantitative information, such as

the magnitude difference on FTIR caused by plasma exposure. The multiplicative scatter

correction (MSC) method corrects FTIR signals by regressing the observed spectra over the

reference spectrum, usually the sample mean, and solve it via ordinary least square. How-

ever, defining an appropriate reference spectrum is a main challenge of MSC [9]. Also, the

MSC model fails to consider the magnitude-dependent noise on the FTIR spectra. Based

on the MSC, the extended multiplicative scatter correction (EMSC) [10] was developed. It

involves higher-order terms of reference spectrum, the pure spectrum of individual chemi-
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cal component, and the interference effects to reduce or eliminate the pathlength variation

[9, 11]. However, the EMSC cannot be wildly used due to the lack of the pure spectrum

of chemical matter, especially for very occasional users. Therefore, the objective of this

study is to develop a simple yet effective spectra correction method specifically for FTIR

and corresponding quantitative analysis later.

Figure 2.1: The experimental setup. The CFRP coupons were processed by plasma, and
the plasma distance is set at h1, ..., hn. The FTIR measurements were taken before and after
the plasma exposure to capture the change of chemical components on the CFRP surface.

The second challenge is that surface treatments usually have nonlinear effects on the

FTIR signals. For example, the effect of the plasma exposure is nonlinear in general [26],

as when plasma distance is small the effect of adjusting plasma distance for one unit is very

significant, whereas when plasma distance is long, changing the plasma distance for one

unit will barely affect the FTIR signal. Existing studies reported that FTIR signals can be

affected in different forms, e.g., change of peak height, peak wideness, peak shape, joining

or separation of peaks [5, 18]. Although there exist some quantitative analysis with regard

to FTIR, such as simple multiple linear regression, neural networks [12, 29], principal

component analysis (PCA) [13], principal component regression (PCR) and partial least-
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squares regression (PLSR) [5], they are mainly developed for predicting other response

variables through high-dimensional FTIR spectra. Quite the opposite, we aim to study the

functional effect of a certain univariate factor on FTIR. However, due to the nonlinearity,

the univariate factor effect on the high-dimensional measurements cannot be characterized

through existing methods such as the functional linear models [14].

To tackle these challenges and achieve our objectives, a statistical procedure is devel-

oped in this study that (i) characterizes the underlying uncertainties of the FTIR spectra,

and (ii) describes the nonlinear effect of plasma exposure on the post-exposure FTIR spec-

tra. Based on the proposed model, a two-step parameter estimation procedure is developed.

In the proposed procedure, an optimization problem is formulated to estimate the template

FTIR signal that is representative for all measurement spectra first, and then another op-

timization problem is formulated to represent the effect of plasma exposure. To validate

our methodology, experiments are conducted to collect FTIR measurements from CFRP

samples before and after plasma exposure, as shown in Figure 2.1. And the measurements

are plotted in Figure 2.2.

The contribution of our work is twofold. In terms of statistical analysis, a preprocess-

ing algorithm is proposed to derive a template spectrum from FTIR spectra obtained from

repetitive measurements, and a general strategy is developed to quantify the nonlinear treat-

ment effect on spectral measurements. The methodology is applicable to a large variety of

studies that involve investigating the effects of a univariate factor on spectral measurements

subjecting to similar multiplicative and offset uncertainties. In terms of manufacturing en-

gineering, a strategy is developed to select optimal surface treatment parameters such as

plasma distance, gain an understanding of the effect of plasma exposure on the CFRP ma-

terial, and identify several chemical bonds that are affected by plasma exposure.

In Section 2.2, the data characteristics are examined carefully and the statistical anal-

ysis is presented in detail. Our models are then proposed accordingly. In Section 2.3, the

performance of the proposed two-step methodology on synthetic data is reported. In sec-
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tion 2.4, the analytical result of a real case study is demonstrated. Finally, the article is

concluded with further discussion in Section 2.5.

2.2 Uncertainty Analysis and Proposed Solution

In this section, the sources and patterns of variations on the signal data collected from the

FTIR metrology are analyzed first, and then a statistical model that describes the uncertain-

ties of these signals is proposed. Based on the statistical model, two optimization problems

are formulated to estimate the template signal and capture the effect of the surface treatment

on the spectral signals.

2.2.1 Uncertainties in FTIR Metrology and Spectra Modeling

Recall that the measurements of the FTIR spectrum are subject to multiple uncertainties.

Among these uncertainties, the offset shift and multiplicative error are dominant. As shown

in Figure 2.2 (a), signals obtained from the pre-exposure CFRP surfaces are similar in

shapes, as if generated by vertically stretching and moving a template signal randomly. In

this article, the variation of the vertical scale is referred to as “multiplicative error”, and the

variation of the vertical location is referred to as “offset shift”. According to the literature

[10, 17, 5], the offset shift is mainly caused by light scattering and the multiplicative error

is mainly caused by optical path length variations related to the handheld nature of the

device.

Besides, it can be seen that the uncertainty is magnitude dependent since the variance

of the signal is more significant at the peaks of the signal, as shown in Figure 2.3. This phe-

nomenon is common in light-based spectroscopy. For example, Yue et.al [4] summarized

multiple error sources in greater detail for Ramen spectra, a similar metrology in material

analysis.

With such observations, it is natural to assume that all the pre-exposure signals come
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(a) Pre-exposure FTIR signals

(b) Post-exposure FTIR signals

Figure 2.2: Raw FTIR signals collected collected from the CFRP coupons in the our ex-
periments ( Figure 2.1) before plasma exposure (a) and after plasma exposure at various
distances (b).

from a common template signal. Then, the pre-treatment signal is modeled as

x0,i = a0,i (x0 + ε0,i) + b0,i1, i = 1, . . . , n (2.1)
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Figure 2.3: The sample variance (the dashed line) and the sample mean (the solid line) of
the FTIR signals obtained from the experiment in Figure 2.1.

where x0,i =
(
x

(1)
0,i , . . . , x

(p)
0,i

)>
∈ Rp denotes the i-th pre-exposure signal, x0 ∈ Rp denotes

the common template signal, a0,i ∈ R is the factor for the multiplicative error, b0,i ∈ R is

the factor for the offset, and ε0,i ∈ Rp is the noise vector whose elements are independent

and follow a normal distribution ε(j)
0,i ∼ N (0, σ2) , i = 1, . . . , n; j = 1, . . . , p, and 1 =

(1, . . . , 1)> ∈ Rp.

Note that in the formulation (Equation 2.1), the parameters are not identifiable without

further constraints, since the tuple (a0,i, x0, b0,i) and (ka0,i, (x0 − µ1)/k, b0,i + a0,iµ)

correspond to the same probability model for x0,i for any k and µ. To make the model

identifiable, two additional constraints are applied to x0:

‖x0‖2 = x>0 x0 = 1, x>0 1 = 0 (2.2)

In this formulation, it is assumed that the FTIR spectral measurements are statistically

independent with each other. This is because the area that the FTIR equipment samples is

very small, about 200 µm2 at wavenumber 1700 cm−1, according to the operation manu of
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our 4300 Handheld FTIR from Agilent. Therefore, the handheld FTIR equipment cannot

collect pre-exposure and post-exposure measurements at exactly the same location on the

sample. Also, note that the random error ε0,i is first added to the template signal x0, and

then affected by the multiplicative error factor a0,i. Therefore, the standard deviation of

the noise from the signal is proportional to the multiplicative error, and thus every entry

of the observed pre-exposure signals follows a normal distribution with different variance

x
(j)
0,i ∼ N

(
a0,ix

(j)
0 + b0,i, a

2
0,iσ

2
)

. This observation corroborates with the property of FTIR

signals discussed earlier.

The proposed model is different from the model proposed by Yue et al. [4] where x(j)
0,i ∼

N
(
x

(j)
0 , ax

(j)
0 + b

)
, because the multiplicative error and offset error are not considered in

Yue’s model. As will be seen later, estimating x0 in our model is different from simply

denoising the raw signals analytically. Also, our representation of the signals is different

from the MSC approach [10, 5], which implicitly assumes that all signals have the same

error magnitudes in calculating the sample mean as the template signal.

The FTIR measurements obtained after the treatment procedure, such as plasma expo-

sure, are also subject to offset shift and multiplicative error, etc. Moreover, the treatment

effect leads to the shape change from the template signal. For all samples obtained with

different strengths of the treatments, it is assumed that the plasma treatment results in the

same pattern of change on the signals, and the plasma distance only affects the overall

magnitude of changes in an FTIR signal. In the current example, the magnitude of change

is larger when the plasma nozzle is closer to the CFRP coupon. From the above reasoning,

the post-exposure template is modeled as x0 + δig, where g ∈ Rp represents the pattern

of modification: the shape change of the template caused by plasma exposure. The value

δi represents the magnitude of modification on the i-th spectrum, and δ = (δ1, . . . , δn) >

is referred to as the vector of effects. Therefore, the following model is introduced for the
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post-exposure signal:

x1,i = a1,i (x0 + δig + ε1,i) + b1,i1, i = 1, . . . , n (2.3)

Like the pre-exposure model (Equation 2.1), x1,i =
(
x

(1)
1,i , . . . , x

(p)
1,i

)>
∈ Rp denotes

the i-th post-exposure signal, a1,i and b1,i represent the multiplicative error and the offset

shift, respectively. Note that here a1,i and b1,i are also independent on the a0,i and b0,i in

the pre-exposure signals. The error ε1,i is the noise vector following the same distribution

as ε0,i, and is independent on ε0,i.

Similar to the pre-exposure model (Equation 2.1), the parameters in the post-exposure

model (3) are not identifiable, and therefore, the additional constraint ‖g‖2 = 1 is imposed.

Also, each element of g is assumed to be close to 0, since the change of the chemical

composition caused by the surface treatment corresponds to certain peaks on an FTIR signal

rather than all frequency bands on the FTIR signal. Note that the magnitude vector δ is very

flexible without further constraints.

In the above pre-exposure model (Equation 2.1) and post-exposure model (3), the un-

certainties involved with the FTIR measurements and the effect of the exterior treatment on

the CFRP surfaces are fully characterized. In the following subsections, a two-step proce-

dure is developed to estimate the template signal x0, the pattern of the signal change g and

the magnitude of the signal change δ. In the first step, the pre-exposure signals are used to

estimate the template signal x0. And in the second step, the template signal x0 estimated

in Step 1 is regarded as known and fixed, and the post-exposure signals are used to estimate

the pattern of modification g and the vector of effect δ.

2.2.2 Step 1: Estimate the Template Spectra x0

In Step 1, our objective is to estimate the template signal x0 in model (Equation 2.1) from

the pre-exposure FTIR measurements x0,1,x0,2, . . . ,x0,n. Recall that the existing ad-hoc
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methods for estimating the template signal have no guarantee to eliminate the error to the

greatest extent [5]. In this study, the maximmum likelihood estimation (MLE) principle is

adopted to develop a computational efficient algorithm to estimate a0, b0, and x0.

Based on the pre-exposure model (1), it is clear that x0,i ∼ N
(
a0,ix0 + b0,i1, a

2
0,iσ

2I
)

, where σ2 = var(ε
(j)
0,i ). Thus, the log-likelihood function is

` (a0, b0,x0;x0,i) = −n
2

ln
(
2πσ2

)
−

n∑
i=1

‖x0,i − a0,ix0 − b0,i1‖2

2a2
0,iσ

2
−

n∑
i=1

ln |a0,i| (2.4)

Note that the log-likelihood function has to be optimized subject to the constraints in

(Equation 2.2). It is computationally challenging to find the solution for this constrained

optimization jointly over the parameter space (a0, b0, σ
2, x0) of the dimension 2n + 1 +

(p−1) = 2n+p. To circumvent this difficulty and focus on the parameters x0, we propose

to investigate the main term related to x0 in the (Equation 2.4) and minimize the objective

function:
n∑
i=1

‖x0,i − a0,ix0 − b0,i1‖2/a2
0,i

Re-parameterize c0,i = a−1
0,i and d0,i = −a−1

0,i b0,i and apply the constraints in the model

(1), the optimization problem needs to be solved becomes as follows:

min
x0,c0,d0

n∑
i=1

‖c0,ix0,i + d0,i1− x0‖2

subject to x>0 1 = 0, ‖x0‖2 = 1 (2.5)

where c0 = (c0,1, . . . , c0,n)> and d0 = (d0,1, . . . , d0,n)>, and ‖ · ‖ represents the Euclidian

norm. The parameters a0,i, b0,i can be computed by c−1
0,i and −c−1

0,i d0,i, respectively.

Given x0, the optimal value of c0,i, d0,i can be calculated from solving least square
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problems:  ĉ0,i (x0)

d̂0,i (x0)

 =

 x>0,ix0,i x>0,i1

1>x0,i p


−1  x>0,ix0

1>x0


Plug them in (Equation 2.1) and denote Hi = x0,ix

>
0,i

(
x>0,ix0,i

)−1
[
I− 11>

p

]
, the ob-

jective of (Equation 2.5) is transformed to

f (x0, c0 (x0) ,d0 (x0)) =
n∑
i=1

‖Hix0 − x0‖2

Then, it can be further written as f (x0, c0 (x0) ,d0 (x0)) = x>0 Mx0, where M =∑n
i=1 V

>
i Vi, and Vi = Hi − I, and thus the problem (Equation 2.5) is transformed to

min
x0,c0,d0

x>0 Mx0

subject to x>0 1 = 0, ‖x0‖2 = 1 (2.6)

The objective function becomes a quadratic function of x0, and thus the problem is

essentially an eigen problem with linear constraint. It can be shown that the solution x̂0 to

this problem is Pv, where P = I− 11> and v is the eigenvector of PMP corresponding

to the smallest eigenvalue [30].

2.2.3 Step 2: Estimate δ and g from the Post-exposure Spectra

In Step 1, the estimation of the template signal x0 was obtained from the last step based on

the pre-exposure signals. In Step 2, this template is regarded as known and our objective

is to estimate g ∈ Rp and δ = (δ1, . . . , δn)> from the post-exposure signals. Like problem

(Equation 2.5), the δ, g can be estimated by solving the following least square problem
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(Equation 2.7):

min
δ,g1,c1,d1

n∑
i=1

‖c1,ix1,i + d1,i1− (x0 + δig)‖2
2

subject to ‖g‖2 = 1 (2.7)

However, similar to the problem in Step 1, the parameters c1,i, d1,i, and δi are not

identifiable without further constraints. To solve the identifiability issue, the pattern of

modification g can be any function obtained from the linear combination of g̃,1 and x0,

where g̃ is the component of g in the null space of 1 and x0. In what follows, the vector g̃ is

first estimated by solving problem (Equation 2.7) subject to two constraints on g : g>x0 =

0 and g>1 = 0, which leads to problem (Equation 2.8):

min
δ,g̃,c1,d1

n∑
i=1

‖c1,ix1,i + d1,i1− (x0 + δig̃)‖2
2

subject to g̃>x0 = 0, g̃>1 = 0 (2.8)

After that, it will be discussed that how to find the pattern of modification g = ε1x0 +

ε21+
√

1− ε21 − ε22g̃ with the best interpretability in the sense of minimum ‖g‖1. Note that

the reason to minimize ‖g‖1 is because g is supposed to be sparse according to its physical

meaning aforementioned, but the g̃ is not sparse statistically. Rather, the most important

property of g̃ is being orthogonal to x0 and 1.
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2.2.4 Solution Procedure for Problem (Equation 2.8)

For the simplicity of notations, the subscript ”1” in c1,i, d1,i and x1,i are dropped. Then, the

objective function in (Equation 2.8) can be rewritten as

F (δ, g̃,c,d) =
n∑
i=1

p∑
j=1

(cixij + di − x0,j − δig̃j)2

=
∥∥(c1>)�X + d1> − 1x>0 − δg̃>

∥∥2

F
(2.9)

where c = (c1, c2, . . . , cn)> ,d = (d1, d2, . . . , dn)>, and X = [x1, . . . ,xn]>. The operator

� is the elementwise product of two matrices. To solve problem (Equation 2.9), the block-

wise coordinate descent method (BCD) is proposed, as illustrated in Algorithm 1.

Algorithm 1 Block-wise Coordinate Descent Algorithm
1: Initialization: δ ← 0 and arbitrary g̃
2: loop
3: Given δ and g̃, update c and d:

[c,d]← arg minc,d F (δ, g̃, c,d);
4: Given c and d, update δ and g̃:

[δ, g̃]← arg minδ,g̃ F (δ, g̃, c,d)
subject to g̃>1 = 0; g̃>x0 = 0 and ‖g̃‖2 = 1;

5: end loop

In this algorithm, the optimization problem in line 3 can be solved by multiple least-

square formulations to obtain (ci, di)
>, which can be seen from (8). The closed-form solu-

tion to line 3 is  ci

di

 =

 x>i xi x>i 1

1>xi p


−1  x>i (x0 + δig̃)

1> (x0 + δig̃)


Denote M =

(
c1>

)
�X + d1> − 1x>0 . Line 4 is equivalent with solving the problem
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(Equation 2.10):

[δ, g̃] = argminδ,g̃
∥∥M− δg̃>∥∥2

F

subject to g̃>1 = 0, g̃>x0 = 0, ‖g̃‖2 = 1 (2.10)

In this formulation, the constraint ‖g̃‖ = 1 specifies the scale of g̃, so that it has an

unique solution. Note that under the constraints that g̃>1 = 0 and g̃>x0 = 0, the objective

of (Equation 2.10) can be reduced to

∥∥M− δg̃>∥∥2

F

=
∥∥∥M− M̃ + M̃− δg̃>

∥∥∥2

F

=
∥∥∥M̃∥∥∥2

F
+
∥∥∥M− M̃− δg̃>

∥∥∥2

F

where M̃ = HM,H = X̃0

(
X̃>0 X̃0

)−1

X̃>0 , and X̃0 = [1, x0]. Geometrically, M̃ is

obtained by projecting every column of M onto the space spanned by 1 and x0. Then,

the minimizer of problem (Equation 2.10) can be obtained from solving the reduced-rank

problem:

[δ, g̃] = arg min
δ,g̃

∥∥∥M− M̃− δg̃>
∥∥∥2

F

Let the singular value decomposition of (M − M̃) be M − M̃ =
∑

k λkukv
>
k , with

λ1 ≥ λ2 ≥ · · · . The solution g̃ is the first right singular vector v1, and δ is λ1u1. See, for

example, Theorem 2.4.8 of Golub et al. [31].

2.2.5 Find the Most Interpretable Pattern of Modification g

After g̃ is obtained from last step, the pattern of modification g can be any function ob-

tained from the linear combination of g̃,1 and x0. As our objective is to understand the

change of chemical components, it is desirable for g to be close to zero in most elements,

corresponding to frequencies that are not the peaks of the FTIR signal. For this reason,
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we aim to find θ ∈ [0, 2π] and φ ∈ [0, π] to minimize G(θ, φ) = ‖g(θ, φ)‖1, where

g(θ, φ) = g̃ cosφ+ 1√
p

cos θ sinφ+ x0 sin θ sinφ. After solving

(θ∗, φ∗) = arg min
θ,φ

G(θ, φ)

the pattern of modification g is obtained as

g (θ∗, φ∗) = g̃ cosφ∗ +
1
√
p

cos θ∗ sinφ∗ + x0 sin θ∗ sinφ∗

As discussed earlier, the pattern of modification g will help us understand the change of

chemicals: it provides a map of the treatment effect on all frequency bands, giving compre-

hensive information on how the chemical bonds change as a result of the surface treatment.

For a better and easier understanding, the proposed two-step procedure is visualized in

the flow chart in Figure 2.4. The template signal x0 is estimated from the pre-exposure

signals first. And then, with the known template signal x0, the pattern of modification g

and the vector of effect δ are estimated from the post-exposure signals. Note that the final

g with the best interpretability is obtained after a little bit of further optimization.

2.3 Simulation Study

In this section, the proposed two-step methodology is implemented on synthetic data with

the uncertainties described in Section 2.2 to validate its effectiveness.

In our simulation, to mimic the real experimental data, the true template signal x0 is

chosen by averaging and standardizing some signals obtained from the experiment. First,

the pre-exposure signals are generated from the template signal x0 according to our model:

x0,i = a0,i (x0 + ε0,i) + b0,i1, i = 1, . . . , 33. Then, to generate the post-exposure signals,

the true value for the vector of effect is designed as δ = [8 5 3 2 2 2 2 2 2]>, as shown in

Figure 2.5. The simulated pattern of modification g is shown in Figure 2.6. For each δi, i =

1, . . . , 9, three post-exposure signals are generated by adding δig onto the baseline signals
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Figure 2.4: Our proposed two-step framework.

that are also subject to the aforementioned uncertainties: x1,i = a1,i (x0 + δig + ε1,i) +

b1,i1, i = 1, . . . , 27. As a result, 27 post-exposure signals are obtained as shown in

Figure 2.7. Here, the number of synthetic signals, 33 for pre-exposure and 27 for post-

exposure, is set in consistency with the sample size in our experiments to be detailed in the

next section. The analysis of the real data will be illustrated in the next section as well.

In Step 1, the template signal x0 with the aligned pre-exposure FTIR signals are esti-

mated by solving problem (Equation 2.5), and the result is shown in Figure 2.8 (a). The

thinner lines are the aligned pre-exposure signals ĉ0,ix0,i + d̂0,i1, and the wider line in the

middle is the reconstructed template signal x0. Compared with the raw data seen in Fig-

ure 2.7, the pre-exposure signals are well aligned. Figure 2.8 (b) shows the comparison of

the true template signal and the reconstructed template signal estimated by the proposed

algorithm. The two curves almost coincide, which implies that the template signal is ex-

tracted accurately and thus the effectiveness of the proposed algorithm on pre-exposure

FTIR spectra is verified.

Then, the pre-exposure template FTIR signal x0 is regarded as known and the proposed
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Figure 2.5: Simulated δ function.

Figure 2.6: Simulated g function.

BCD algorithm is implemented on the simulated post-exposure signals to estimate the vec-

tor of effect δ and the pattern of modification g. After solving the problem (Equation 2.8),

the estimation of the vector of effect δ and component of the pattern of modification g̃ are
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(a) Simulated pre-exposure signals (the thinner lines) and the true template signal x0 (the wider line
in the middle)

(b) Simulated post-exposure signals

Figure 2.7: Simulated FTIR signals.

obtained, as shown in Figure 2.9 and Figure 2.10.

In Figure 2.9, the estimated vector of effect δ is plotted against the treatment magni-

tude. From this figure, it can be seen that the shape of δ is very similar to that of the true
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(a) Corrected simulated pre-exposure FTIR signals and the reconstructed template signal (the wider
line in the middle)

(b) (b) Comparison of normalized true template signal (solid line) and reconstructed template signal
(circles) estimated by the proposed algorithm

Figure 2.8: Estimation results of proposed Step 1 on the simulated data in Fig Figure 2.7
(a).

value δ illustrated in Figure 2.5. It verifies that the accuracy of the proposed algorithm

on estimating the vector of effect δ. Though the estimated vector of effect δ has a differ-
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Figure 2.9: The δ function reconstructed by the proposed procedure.

Figure 2.10: The reconstructed g̃ solved from (Equation 2.8).

ent magnitude from the ground-truth in Figure 2.5 due to the constraint on its scale, their

trends are very similar. The small variation between them is caused by the estimation error

of a1,b1, and the random error ε1.

Figure 2.10 illustrates the shape of g̃. To find the pattern of modification g with the best
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Figure 2.11: The plot of function G(θ, φ) for simulation data, where θ ∈ [0, 2π], φ ∈ [0, π].

Figure 2.12: The g function reconstructed by the proposed procedure.

interpretability, we need to find θ∗, φ∗ that minimize the value of G(θ, φ). To understand

the structure of G(θ, φ), its values are plotted for all θ ∈ [0, 2π] and φ ∈ [0, π], as shown

in Figure 2.11. From this figure, it can be seen that G(θ, φ) is highly non-convex with
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multiple local minima. Among these local minima, the one with φ ≈ 0 or φ ≈ π is selected

as an optimum, as the function g is desired to be mainly determined by g̃, and thus cos(φ)

be close to 1. Therefore, the local optimum is determined to be θ∗ = 1.8972, φ∗ = 0.8741,

and the resulted vector of g is illustrated in Figure 2.12.

The estimated g function in Figure 2.12 is consistent with the ground-truth of g in

Figure 2.6. Our simulation study verifies the accuracy of the proposed algorithm on the

estimation of g as well. Note that the magnitude of the absorbance is significantly different

from the ground-truth in Figure 2.6. Similar to the reconstructed δ function, such difference

is believed to be caused by the constraints in solving the optimization problem. The shape

of ĝ is close to g thereof.

There are several obstacles for us to fairly compare the performance of existing ap-

proaches with the proposed two-step procedure. First, in the signal correction step, the per-

formance of the proposed method is very similar to the SNV and MSC. It has been proved

in [9, 32] that the SNV and MSC are linearly interchangeable: xMSC ≈ xSNV · sX + X,

where s̄x is the average standard deviation of all spectra, and X is the grand mean over all

spectra. Our proposed method is also similar to MSC, except the idea behind: the refer-

ence spectrum is estimated by formulating an MLE optimization problem rather than set

a known reference spectrum, and an adjusted variance term is adopted. Secondly, for the

univariate effect quantification step, there are little existing comparable ways for extracting

the pattern of the effect g and the magnitude of that effect δ.

2.4 Case Study: Investigation of Real FTIR Spectra

The study is motivated by the engineering problem of understanding the effect of plasma

exposure on the CFRP panels at various plasma distance. In this section, we further demon-

strate how to implement the proposed method to quantify the effect of plasma exposure,

and discuss how the results benefit manufacturing engineering. First, the setting of the ex-

periment is introduced to illustrate how the pre-exposure and post-exposure FTIR signals
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Figure 2.13: Corrected pre-exposure FTIR signals from real experiments and the template
signal (the wider line in the middle).

Figure 2.14: The effect of plasma exposure δ versus the corresponding plasma distance in
real experiments.

are collected when the plasma distance varies. Then, the proposed analysis procedure is

demonstrated in detail and our findings are then discussed.
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2.4.1 Experiments

The experiment is elaborated in Figure 2.1. The goal of this experiment is investigating the

effect of plasma exposure on the CFRP panels at various plasma distance. Four steps are

conducted sequentially in this experiment to collect data.

First, prepare test coupons. Eleven 1” × 1” CFRP test coupons are prepared from

the same batch of CFRP panels. The CFRP panels are manually fabricated with carbon

fiber called # 1530 3K Plain Weave Carbon Fiber Fabric, the product of Fibre Glast, and

HexPlyr M20 266oF (130oC) curing epoxy matrix, the product of Hexcelr. To avoid

potential interference, the CFRP panels are specially kept clean and pristine without any

sanding or artificial contamination.

After preparing the CFRP test coupons, take the FTIR signal measurements three times

on each of the eleven test coupons to obtain n = 33 pre-exposure FTIR spectra. The FTIR

spectrometer adopted in our experiment is 4300 Handheld FTIR from Agilent Company.

On a small area on the sample, about 200µm2 at wavenumber 1700cm−1, it captures the

absorbance intensity of infrared light whose wavenumber (determined by frequency) is

between 650cm−1 and 4000cm−1. Within this range, each FTIR spectrum is represented

by a signal containing p = 1798 equidistant data points. The pre-exposure FTIR signals

are denoted as x0,1, . . . , x0,n ∈ Rp and plotted in Figure 2.2 (a).

Then, these eleven test coupons are processed with atmospheric plasma with prescribed

plasma distances h = 2mm, 4mm, ..., 22mm in order to understand the effect of plasma

treatment when the plasma distance varies. In this study, the plasma distance is chosen

as the univariate factor to illustrate our methodology because it is one of the factors that

our industrial collaborators are most interested in. The plasma distance is set by manually

adjusting the relative location of the plasma nozzle to the plasma platform. And the range

and step size of plasma distance is designed by our engineer according to visual observation

on the plasma torch in our lab experimental scenario.

Finally, three repeated FTIR measurements are taken again on each test coupon soon
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after plasma treatment, with the same procedure as the pre-exposure measurement. Sim-

ilarly, the post-exposure FTIR signals are denoted as x1,1, . . . , x1,n ∈ Rp, and plotted in

Figure 2.2 (b), where multiple colors are used to distinguish different plasma distances.

Note that a reported disadvantage of plasma modification is the time dependency of the

induced changes, i.e., aging [33]. Therefore, the second FTIR measurements would be

performed within half an hour after plasma treatment to avoid storage stability issues [24].

It is noticed that the six post-exposure FTIR signals collected from the two coupons

that underwent the plasma exposure with 2mm and 4mm plasma distances are significantly

different from the signals obtained from the other coupons. Observations from the two

post-exposure samples indicate that their surfaces are highly likely to be carbonized due to

the excessive heat caused by the strong plasma exposure [22]. Therefore, these six FTIR

measurements are eliminated from our analysis, and the post-exposure spectra contain 27

FTIR signals.

2.4.2 Implementation of the Proposed Method on Real Data

Similar to the procedure of simulation on synthetic data, the proposed methodology is

implemented on real FTIR data collected from the experiment described in the last part.

In Step 1, the template signal x0 and the aligned pre-exposure FTIR signals are es-

timated by solving problem (Equation 2.5), and the result is shown in Figure 2.13. The

thinner lines are all the aligned pre-exposure signals ĉ0,ix0,i + d̂0,i1, and the wider line in

the middle is the template signal x0. Compared with the raw data seen in Figure 2.2, the

pre-exposure signals are well aligned, and the template signal x0 is the representation of

these curves.

Then, the proposed BCD method is implemented on the post-exposure signals to quan-

tify the effect of plasma surface treatment. Similar to the process in the last section, the

vector of effect δ and the signal g̃ can be obtained by solving the problem (Equation 2.8),

as shown in Figure 2.14 and Figure 2.15.
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The vector of effect δ is plotted against the plasma distance in Figure 2.14. From this

figure, it can be seen that the effect of the plasma treatment is more significant as the plasma

distance is small, and gradually decreases as the plasma distance increases, and generally

becomes constant after the plasma distance gets greater than 10mm. From such a trend,

it can be seen that a smaller plasma distance tends to cause a more significant chemical

change, which corresponds to better surface quality indicated by the contact angle. This

result confirms our previous experiment that the wettability of the CFRP material is higher

when smaller plasma distance is used, as long as the CFRP surface is not carbonized (also

mentioned in [34]).

The result in Figure 2.14 can provide a valuable guideline to plasma parameter se-

lection during CFRP surface preprocessing in aircraft maintenance. Although there is an

upper bound of plasma distance under which the plasma treatment is effective, the shape

of the vector δ tells us that 10 mm is approximately the threshold, as plasma treatment at a

longer distance will barely change the FTIR curve. In other words, the analysis gives us a

relatively quantitative and persuasive understanding of the surface treatment effect on the

FTIR measurements.

Figure 2.15: The signal g̃, as solved from the problem (Equation 2.8).
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Figure 2.16: The plot of function G(θ, φ) for real data, where θ ∈ [0, 2π], φ ∈ [0, π].

Figure 2.17: The pattern of modification g (the solid line) and the extracted template curve
x0 (the dashed line) as reference for results explanation.

In Figure 2.15, the pattern of modification g that minimizes the value of G(θ, φ) is

found based on g̃. The structure of G(θ, φ) is illustrated in Figure 2.16. The local optimum

is determined to be θ∗ = 0.0009, φ∗ = 0.5053, and the resulted vector of g is illustrated in
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Figure 2.17.

Recall that the pattern of modification g illustrates the effect of plasma exposure on

all frequency bands. The change of FTIR gives comprehensive information on how the

chemical bonds changed as the result of plasma exposure [26, 18, 17]. According to the raw

FTIR data shown in Figure 2.2 and chemical information of materials of the test coupons,

with the help of the IR absorption table [35], it can be concluded that the peaks of FTIR

signals roughly correspond to the following chemical bonds: O–H, C–H, C=O, C=C, C–O.

From Figure 2.17, it can be seen that when the wavenumber is within the range of

3200−3700cm−1, 2750−3200cm−1, 1650−1800cm−1, and 1000−1300cm−1, the pattern

of modification g has several significant positive values. It implies that the corresponding

chemical bonds, including O–H, C–H, C=O, and C–O, are created by plasma exposure.

When wavenumber is in the range of 1600 − 1750cm−1 and 650 − 1000cm−1, the pattern

of modification g oscillates and takes negative values, which implies that the corresponding

chemical bonds, mainly C=C, are decreased by plasma exposure. The pattern of modifica-

tion g in the rest frequency regions tends to be around zero, which means that plasma does

not change the chemical bonds whose characteristic wavenumbers are in those regions.

Our result agrees with existing researches on the effects of plasma exposure on materi-

als. For example, it is suggested in [20] that the plasma grafting to the carbon fiber surface

increased the proportion of oxygen atoms, and that the plasma modified carbon fiber shows

a significant increase in oxygen and nitrogen concentration [19, 22], and plasma treatment

can generate chemical groups on CFRP such as O–H, –COOH,[36, 22], C=O or O–C = O

[22].

Finally, it is worthwhile to note that our experiment is conducted under lab conditions.

The results of the data analytics may be slightly different in real industrial processes, which

involves different types of materials, different devices, and possibly other chemical stains

on the sample panels. However, our analytical procedure is applicable to data collected

from any process conditions, as long as the assumptions on the data given in Section 2.2.1
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holds.

2.5 Conclusion and Discussion

In this article, a general procedure is proposed to quantify the effects of a certain treatment

on the spectral signals subjecting to multiple uncertainties. With this procedure, two types

of uncertainties in the spectral signals, offset shift and multiplicative error, are carefully

addressed. In the two-step procedure, a novel optimization problem is formulated to esti-

mate the representative template spectrum first, and then another optimization problem is

formulated to obtain the pattern of modification g that reveals how the treatment affects the

shape of the spectral signal, as well as a vector δ that describes the degree of change caused

by different treatment magnitudes.

This methodology is illustrated by a motivating example of quantifying the plasma

treatment effect on CFRP coupons through FTIR measurements. In the case study, the

effective range of the plasma distances is revealed from the vector of effects δ, and the af-

fected chemical bonds are identified from the pattern of modification g. In future research,

a promising step is mapping g to the chemical compounds with the help of the FTIR spec-

tra libraries [37]. The knowledge on the modification of chemicals can shed some light on

how the surface treatment changes the chemical composition of the material, which further

indicates which chemicals shall be added or avoided to improve the surface quality before

composite joining and repairing in aircraft manufacturing and maintenance.

Our technique is suitable and promising to quantify the effect of a large class of sur-

face treatments apart from the plasma treatment. The pattern of modification g reveals the

general effect pattern of a certain surface treatment in a range of treatment magnitude, pro-

viding a new way to understand the intrinsic reasons behind the improvement of surface

quality. Recall that the surface treatment methods have been well-developed, including

thermal treatment, wet chemical or electrochemical oxidation, plasma treatment, gas-phase

oxidation, coating treatment, etc., applying and extending this method to solve more prob-
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lems in the manufacturing industry is a direction for our further research.

Also, the method in this article is applicable to analyze the data obtained from a wide

range of spectral measurements, including ultraviolet-visible spectroscopy (UV-Vis) [38],

X-ray diffraction (XRD) [39], Raman spectroscopy [40, 41] etc., when the background

noise leads to uncertain offset and the uncertain signal level results in the multiplicative

error. Typically, these uncertainties are of greater magnitude in real manufacturing envi-

ronments than in lab conditions, due to the inexperienced operators and the uncontrolled

surroundings. Therefore, the analytic methodology proposed in this article also helps to

broaden the application scope of portable spectrometers, such as the handheld FTIR de-

vices.

Finally, the methodology of this study can also be extended. For example, this study

assumes that the pattern of modification g is identical under all levels of treatment. New

methodologies can be developed in future research, based on the assumption that the pattern

of modification is different for distinct levels of surface treatment.
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CHAPTER 3

INCOMPLETE DATA ANALYSIS WITH AN APPLICATION ON DUCTAL

GALLSTONE EVALUATION

Incomplete data must frequently be dealt with in healthcare decision making to determine

accurate diagnoses and form treatment recommendations based on a limited amount of

clinical data. In this study, a multistage sequential decision-making model is developed

to actively collect only the necessary patient data in a sequential manner. There are two

novelties in the proposed model. First, unlike the existing ordinal logistic regression model

which only models a single stage, we estimate the parameters for all stages together. Sec-

ond, it is assumed that the coefficients for common features in different stages are kept

consistent. The effectiveness of the proposed model is validated on both a simulation co-

hort and testing cohort. Compared with the baseline model where the data is modeled

individually and independently, the proposed model improves the estimation efficiency by

62%-1838%. For both simulation and testing cohorts, the proposed method is more ef-

fective, stable, interpretable, and computationally efficient on parameter estimation. The

proposed method can be easily extended to a variety of scenarios where decision-making

can be done sequentially with only necessary information.

3.1 Introduction

In this section, firstly, the background of the common bile duct stone (CBDS) is introduced

and the objective is claimed. Then, with the challenge of a highly incomplete dataset, the

ad-hoc methods for dealing with incomplete data are reviewed. Finally, the motivation of

proposing our multistage sequential decision-making model is explained.
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3.1.1 Background of the CBDS Project

Figure 3.1 shows the location of CBDS [42]. Gallstone are solid particles that can form

from cholesterol, bilirubin, and other substances within the gallbladder. These densities

are often benign when localized to the gallbladder, but can cause pain, infection, and liver

damage when they become stuck in the common bile duct (CBD) and impede the flow of

bile into the digestive tract. A stone that becomes impacted in the CBD, can be difficult

to detect definitively, but its presence requires a procedural intervention, endoscopic retro-

grade cholangiopancreatography (ERCP). As with most procedures, ERCP requires anes-

thesia and carries the risk of complications, including pancreatitis, infection, and bleeding.

As a result, it is imperative to ensure that ERCP is only performed when there is a stone

definitively obstructing the duct. This is particularly true in children. Therefore, in this

research, our objective is to definitively predict the presence of a CBD stone in a child with

high accuracy and specificity.

Figure 3.1: Introduction to CBDS [42]. Gallstones in CBD are tricky to detect. Failing to
remove them can cause severe infection
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Figure 3.2: The missing map of clinical data for the gallstone evaluation.

The probalility of the existence of CBDS can be estimated from the clinical data, in-

cluding demographic data, laboratory test data, and imaging data, such as MRI and US

data. Given the estimated probability of the existence of the CBDS, the doctor can then de-

cide the procedure type accordingly. For example, if the probability of the existence of the

ductal gallstone is higher than 95%, the ERCP procedure will be considered. Otherwise,

the Cholangiogram may be preferred to remove the gallbladder directly.

Thus, the expected outcome is the probability estimation of the existence of CBDS.

The status of the existence of CBDS is either existing or not, which can be denoted as “1”

(there is stone) and “0” (no stone) in a statistical way, respectively. Therefore, the modeling

task is, building a predictive model for a supervised binary classification task. The model

should reveal the relationship between the existence of the CBDS (response variable Y )

and other features/variables (predictor variables X) from clinical trials, yet interpretable
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and intuitive.

The data comes from our collaborator, doctors from Emory Pediatrics Residency Train-

ing Program. The data is collected from 316 pediatric patients, each has 17 features

(X1 ∼ X17) collected at most. The challenges associated with this clinical dataset are

clear: (1) The clinical data is often precious with limited sample size. The limited data

size restricts the usage of most advanced deep learning algorithms, which often require a

big dataset for training and learning [43]. (2) Missing data is commonly seen for most fea-

tures. Deleting features with a high missing rate will lose some treasurable data and is not

acceptable. In this gallstone dataset, the missing ratio is pretty big. Figure 3.2 shows the

distribution of missing values (NAs), and the table shows the number of NAs. In this case,

we have to deal with the missing values first to avoid numeric issues in the computation.

For most of the popular machine learning models, more features often contain more

crucial information, leading to higher modeling accuracy and more stable performance.

However, in real-world scenarios, some informative features could be expensive and hard to

obtain. This can be a particular problem in clinical decision making. Obtaining additional

clinical data often comes with a price, including delayed time to intervention, cost, and

complications. This price can be particularly high in pediatric care. As a result, a common

clinical challenge is decision making based on incomplete data.

To address the issues caused by incomplete data in statistical modeling, many widely-

used methods are developed according to missing patterns, such as simple deletion on

feature or record, mean/median/mode/zeros substitution, regression imputation, last obser-

vation carried forward, EM, etc. [1]. In the next section, we’ll briefly review the existing

methods dealing with incomplete data.

3.1.2 Existing Popular Methods of Dealing With Incomplete Data

The most common ways of dealing with missing data can be summarized as follows:

1. Ad-hoc methods
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• Complete case analysis. Case deletion or feature deletion.

• Mean/median/mode/“0” imputation.

• Predictive imputation. Create a model to predict variables with NAs based on

other features. The predictive model can be almost every kind of predictive

model, such as logistic regression, random forest, etc.

• Indicator method. Use dummy variable (1/0) indicates missing status.

• Last observation carried forward.

2. Multiple Imputation. Multiple imputation results in a number of complete datasets

which can be analyzed separately and then the results combined using rules set out

by Rubin [44].

3. Expecation-Maximisation (EM) algorithm. EM algorithm, introduced by Dempster

et al. [45], use a maximum likelihood approach to estimate the parameters of the

model.

The choice of these methods depends on the characteristics of the dataset and the target

users of the model. For example, we cannot simply delete the observations with NAs,

otherwise only 11 out of 316 observations (patients) are kept for analysis. Neither can

we delete the features with NAs which will lead to a huge loss of information. The naı̈ve

imputation method, such as mean/mode/median imputation, cannot be convincing enough

and be of a high risk of potential danger. Other widely used benchmark methods, such as

substituting missing values with 0/mean/median/mode, are helpful in a way but have their

drawbacks as well. To maximum the information available, we propose to learn NAs from

the non-missing values as much as possible.

3.1.3 Recommended Approach for Our Clinical Dataset–KNN Imputation

The k-nearest neighbors (KNN) algorithm enables us to “guessing” the missing value based

on the similarities (distance) between the patients. The first k most similar neighbors will
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contribute to the estimation of the NAs of a patient. And the amount of their contribution,

the weights, depends on their similarities. Thus, the key point here is the similarity measure

between 2 observations. We propose to consider the following three similarity metrics:

1. Euclidean Distance: d(x, y) =
√

(x− y)S−1(x− y)

2. Mahanlanobis Distance: d(x, y) =
√

(x− y)S−1(x− y)

If the S is the identity matrix, the Mahalanobis distanc becomes Euclidean distance

If the S is diagonal, the Mahalanobis distance becomes standardized Euclidean dis-

tance.

3. Cosine Distance (Pearson correlation coefficient)

Cosine Distance:

cos (m,m′) =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

Cosine distance is equivalent to the Pearson correlation coefficient. In detail, Cosine

distance = 1 – cosine similarity. Here is the simple proof:

Pearson correlation coefficient:

ρ (m,m′) =
∑

j(Xj,m−X̄j)(Xj,m′−X̄j)√∑
j(Xj,m−X̄j)

2∑
j(Xj,m′−X̄j)

2 =
(Vm−V̄ )

>
(Vm′−V̄ )

||Vm−V̄ ||2·||Vm′−V̄ ||2

=
U>mUm′

||Um||2·||Um′ ||2
= cos < Um, Um′ >

The higher the similarity between the patients, the higher the likelihood that they have

similar potential values on unseen features (NAs). Thus, the estimation for the NA is the

weighted or unweighted means of the top k most similar neighbors. And if weighted, the

weights depend on their similarities:

Wj,m =

∑′
m sim (m,m′)Xi,m′∑′
m |sim (m,m′)|
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The KNN imputation is recommended because it not only works well but also makes

our collaborator doctors feel reasonable. In our other research, the KNN imputation outper-

forms other methods in the downstream predictive modeling on the prediction of CBDS.

After the completion of the dataset, the classifier can be trained accordingly, such as

logistic regression, support vector machine, decision trees, random forest, neural networks,

etc. And the KNN imputation plus L1 penalized logistic regression was adopted in one of

our publications based on this dataset.

3.1.4 Motivation of Proposing the Multistage Sequential Decision-Making Model

In the last section, we briefly reviewed some popular methods of dealing with incomplete

data in statistical modeling.These methods were developed from two primary approaches.

One is deleting the records or features with missing values, which will lead to a waste of

available data and some intrinsic problems associated with limited data size. The other

approach is “guessing” or “learning” the missing data from the observed data, which can

be dangerous for clinical modeling since the synthetic data brings extra uncertainties.

To circumvent such drawbacks, in this research, a multistage sequential decision-making

model is proposed. We aim to develop a sequential decision-making model to help make

reliable diagnostic decisions and treatment recommendations with high positive predictive

value and in a cost-effective and convenient manner. In this model, some patients possess

fewer laboratory results often due to test availability and provider experience, while other

patients have a more comprehensive laboratory evaluation.

There are several benefits to the proposed model. This novel platform allows the health-

care provider to actively collect only the necessary data sequentially rather than collecting

all the data at inception. As a result, the diagnostic process can be faster, more convenient,

and cost effective, while retaining significant accuracy. In the research setting, our model

offers a novel solution to address challenges raised by incomplete data through offering

sequential decision-making in an active learning way. Active learning is a special case of
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machine learning in which a learning algorithm can interactively query a user (or some

other information source) to label new data points with the desired outputs [46]. The active

learning-based model allows some missing data yet guarantees reliability and prediction

accuracy, which makes the incomplete data missing “at control” rather than missing at

random.

In Section 3.2, the proposed model is elaborated with a 2-stage simplest case as an

example. In Section 3.3, the details and novelties about the parameter estimation for the

proposed model are discussed. In Section 3.4, the performance of the proposed methodol-

ogy on synthetic data is reported. In section 3.5, the analytical result on our real clinical

data is demonstrated. Finally, the article is concluded with further discussion in Section

3.6.

3.2 Proposed Active Learning-Based Multistage Sequential Decision-Making Model

In this section, first, we’ll formulate the problem in detail. Then, the framework of the

proposed active learning multistage sequential decision-making model is illustrated. Fi-

nally, to clarify the details of the proposed model, such as data organization and model

formulation, a 2-stage model is elaborated as the simplest example.

3.2.1 Problem Formulation

The motivation for formulating the proposed multistage decision-making model is elabo-

rated on in Section 3.1.4. In the proposed framework, one important thing is to identify

a proper predictive model for every stage as the building block. The basic requirement of

the predictive model is providing ordered outcomes: almost surely healthy (“0”), indeter-

minate(“0.5”), and almost surely sick (“1”). Also, the predictive model should have good

interpretability for doctors and patients who are not familiar with data science, and work

stable with limited data size. After comparing the performance of different machine learn-

ing models, such as the popular neural networks, random forest, logistic regression, our
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collaborator doctor prefers the logistic regression model, which gives a stable and pretty

good performance, yet easy to interpret. Therefore, what to do next is building a general-

ized logistic regression model as building blocks for each stage.

In the proposed framework, general categorization is required to utilize the model. Pa-

tients must be stratified to: certainly healthy (“0”), indeterminate (“0.5”), and certainly sick

(“1”). After comparing the performance of different machine learning models, including

neural networks, random forest, logistic regression, we selected a logistic regression model,

which provided stability and accuracy with easy interpretability. In the sections to follow,

a generalized logistic regression model will be utilized as a building block for each stage.

Multiclass logistic regression, also called softmax/multinoulli/multinomial regression,

is a classification method that generalizes logistic regression to multiclass problems, i.e.

with more than two possible discrete outcomes (K > 2). The idea behind this classification

model is one-vs-all or one-vs-rest, which means K binary classifier models will be trained

to ensure every class has a binary classifier to identify whether a sample belongs to this

specific class or not. This is similar to our scenario on the multiple-outcomes property.

However, the above approach of modeling ignores the ordering of the categorical dependent

variable. We are not trying to classify cats, dogs, and elephants, but classifying low-risk

patients, medium-risk patients, and high-risk patients.

The ordinal logistic regression model, also called the ordered logit model or propor-

tional odds model, overcomes this limitation by calculating the log of the odds of cumula-

tive events [47, 48, 49]. Unlike simple logistic regression, ordinal logistic models consider

the probability of an event and all the events that are below the focal event in the ordered

hierarchy. Ordinal logistic regression assumes that the coefficients that describe the re-

lationship between, say, the lowest versus all higher categories of the response variable

are the same as those that describe the relationship between the next lowest category and

all higher categories, etc. It assumes different intercepts θj for different categories. The

sequence of θj can also be interpreted as cutoff points on a continuous variable Y ∗, the

49



linear combination of explanatory variables, in the latent variable explanation. This model

seems to be a promising candidate for our case. However, the existing ordinal logistic re-

gression only deals with a single model which can only be a sub-model of our multistage

sequential decision-making model. Therefore, in this research, we’ll develop our own mul-

tistage model with the existing ordinal logistic regression model as a building block for

each stage, but estimate the parameters in all stages together. The contribution of our work

is twofold. In terms of statistical analysis, an active learning model is proposed in a mul-

tistage decision-making process. This learning algorithm can interactively query a patient

to collect additional clinical data for collecting necessary information [50]. Also, the pro-

posed model introduces a novel way of dealing with incomplete data by allowing some data

to be absent and modeling with incomplete but necessary data directly, rather than guessing

the incomplete data with uncertainty. To apply this model in a clinical setting, a general

strategy is developed to making diagnostic decisions and treatment recommendations se-

quentially when some laboratory data are more expensive, invasive, or time-consuming to

collect than other data. By recommending only requisite testing to those patients in whom

symptoms do not support a definitive diagnosis, the proposed process is fast, cost-effective,

yet reliable.

3.2.2 Model Framework

The proposed multistage sequential decision-making model is shown in Figure 3.3.

To achieve the goal of optimizing the diagnosis process for doctors, this framework

recommends the following procedure:

First, group all possible patients’ features into K categories according to their charac-

teristics, such that each category of features corresponds to one stage. The earlier stages

should involve features that are patient-friendly, costless, but properly less informative.

And the latter stages should involve some cutting-edge technology, time-consuming, ex-

pensive, unwanted but more informative examinations. For example, in stage 1, the de-
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Figure 3.3: The framework of the proposed multistage sequential decision-making model,
whereK is the number of stages, π(j)

i is the probability of patient i having disease estimated
by the predictive model in stage j, Uj andLj is the cutoff points on the estimated probability
in stage j, and CK is the single cutoff point in the last stage.

mographic data of the patients are collected without any lab-test or imaging examinations.

This may include the patient’s characteristics such as age, gender, BMI, and family history

of certain diseases. And in stage 2, for example, the lab-test data would be collected. The

features in this stage are more informative but cost more time and money as well as pa-

tients’ satisfaction. For example, blood or urine tests usually give more accurate and direct

information about the status of a patient. And in later stages, imaging data can be involved,

such as X-Ray imaging, computerized tomography (CT) scan, ultrasound (US) examina-

tion, Magnetic resonance imaging (MRI). These kinds of examinations may involve some

potential side-effects, expensive, and special requirements such as staying still for a long

time which may be hard for pediatric patients.

Then, at each stage, a predictive model is trained to estimate the probability of being

sick according to the features in current and all former stages. The predictive models will

quantify the probability of being sick via those currently available features which could be

more objective and stable compared with the doctor’s empirical estimation. If the patient i

is apparently healthy (probability of sick π(1)
i < L1) or strongly suspected to be sick (prob-

ability of sick π(1)
i > U1), the model would label the patient as “0” or “1” respectively, and

indicates the doctor to recommend the treatment choice confidently: suggest the patients

51



with label ′1′ to accept treatment such as surgery, and patients with label ′0′ to stop wor-

rying, relax and go back home. For the rest of the patients whose probability of sick falls

in between the cutoff points, they will be labeled as “0.5” and would be suggested to take

more tests by going to the next stage. And for the last stage, as it is the last stage in the

proposed model, no more technical choice available currently, the doctor has to make treat-

ment recommendations anyway. Thus, in this stage, only one threshold, CK , is designed to

classify the patient as either healthy or sick.

Finally, for a new patient, the doctors can follow this framework with trained parameters

to make diagnosis decisions and recommend treatments accordingly. In such a way, the

features in different stages are collected sequentially, actively, and only when necessary.

One of the key elements in the proposed model is the cutoff criteria. Given cutoff

criteria, the predictive model will filter the patients into three groups, or two in the final

stage,until all patients have been decided, or all possible examinations have been done

in the final stage. And in the proposed model, the cutoff points are not prescribed but

parameters to be optimized.

Another key element is the predictive model in each stage. In the proposed multistage

model, ordinal logistic regression is adopted as the basic predictive model in each stage.

What’s special is, the patients’ groups in the different stages have a nested structure rather

than independent. What’s more, the features in the current stage k includes all the features

in former stages and newly added features in category k. Since the data in different stages

are nested, it inspires us to consider the predictive models in different stages together rather

than isolatedly. And the details here will be discussed in the parameter estimation part in

Section 3.3.

In what follows, we’ll use the simplest example, a 2-stage decision-making model, to

illustrate the proposed active learning style multistage sequential decision-making model.
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3.2.3 Data Organization for 2-stage Model as Example

As discussed earlier, the features can be divided into several categories, each corresponds

to a certain stage in our multistage model. The criteria for feature grouping are flexible

which can be adjusted according to real scenarios case-by-case. Basically, we recommend

the following principles for reference:

1. For the features inside a category, the cost of collection and the information contained

should be similar. For example, all indices can be obtained from one examination

such as a blood test.

2. For different feature categories, the should be a gap between the expense and infor-

mation contained.

3. Make sure each category contains some useful information, and avoid too many cat-

egories. For example, there’s no need to split each variable into one category, espe-

cially less informative variables, such as gender, age, race, etc.

Figure 3.4: A simple 2-stage sequential decision-making model.

To illustrate the data organization for the proposed model, without loss of generality,

we take the simplest case, a 2-stage sequential decision-making model in Figure 3.4, as an

example as follows.
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• Stage 1:
{
y

(1)
i ;x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1

}
=
{
y(1);X(1)

}
, i = 1, 2, . . . , N1,

y
(1)
i ∈ {“0”, “0.5”, “1”};

• Stage 2:
{
y

(2)
i ;x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1

;x
(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,p2

}
=
{
y(2);X(2)

}
, i = 1, 2, . . . ,

N2, y
(2)
i ∈ {“0”, “1”};

Here, the superscripts (1) and (2) denote the stage 1, p1 and p2 are the number of

features collected in category 1 and category 2, respectively. The number of patients labeled

in the 2 stages are N1 and N2, respectively. Note that, the feature set for stage 2, X(2)

contains the feature set for stage 1, X(1), i.e. X(1) ∈ X(2), and the number of features in

stage 2 is actually p1 + p2. In other words, the data in the 2 groups have a nested structure

rather than statistically independent.

3.2.4 Our Proposed Model vs. Existing Ordinal Logistic Regression

In our multistage decision-making model, the building block in each stage is essentially

an ordinal logistic regression model. As aforementioned, the existing logistic regression in

each stage can satisfy our needs of giving ordered multiclass outputs, which can serve as a

filter in each stage to split patients into 3 groups based on the ordered probability of being

sick: almost surely healthy, almost surely sick, or indeterminate and better to the next stage

to take more examinations.

Ordinal logistic regression can be seen as a form of a generalized linear model (GLM)

similar to the logistic regression. In logistic regression, the response variable Yi has a lo-

gistic distribution (or normal or extreme-value or Cauchy distribution with scale parameter

one) and a linear model for the mean: logit E(Y ) = β>x. In ordinal logistic regression,

the response variable Yi will fall into several ordinal categories with proper estimated cutoff

points. Instead of finding the cutoff points that work directly on Yi, people find the cutoff

points on the linear predictor Y ∗i instead for convenience:

Y ∗i = β>xi + εi (3.1)
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Here the Y ∗i is regarded as an underlying continuous latent variable such that it would be

the response variable in an ordinary linear model [51]. And εi is the error term.

Therefore, in the proposed 2-stage sequential decision-making model, we’ll have the

following expression for the sub-models in the two stages, respectively:

Y
(1)
i =


0, if Y (1)∗

i < L∗1

0.5, if L∗1 ≤ Y
(1)∗
i < U∗1

1, if Y (1)∗
i ≥ U∗1

, Y
(2)
i =


0, if Y (2)∗

i < C∗2

1, if Y (2)∗
i ≥ C∗2

(3.2)

Note that here the cutoff points {L∗1, U∗1 , C∗2} applying on the latent variable Y ∗ is not

the cutoff points {L1, U1, C2} applying on the probability estimation πi in the Figure 2.4.

Instead, the former set needs to go through a link function projection to get the latter.

Recall that in our multistage model, the output Yi ∈ {“0”, “0.5”, “1”} represents “la-

beled as healthy”, “unclear, go to next stage”, and “labeled as sick”, respectively. And for

the last stage, Yi ∈ {“0”, “1”} indicates “labeled as healthy” and “labeled as sick” sim-

ilarly. And the outputs are ordered, i.e. Yi ≤ Yi+1. Thus, if we look at the sub-models

in each stage individually, it is a special case of the existing ordinal logistic regression

model with the latent variable interpretation. However, in the proposed multistage sequen-

tial decision-making model Equation 3.2, Y (1)∗
i = β(1)>x

(1)
i and Y (2)∗

i = β(2)>x
(2)
i . Recall

that X(1) ∈ X(2), the data in different stages have a nested structure rather than indepen-

dent, which makes the existing ordinal logistic regression problematic. In what follows,

we’ll start with existing ordinal logistic regression, and develop our proposed model based

on it.

Existing Ordinal Logistic Regression Model

The scenario in the ordinal logistic model is a categorical variable Y with ordered outcomes

1, 2, ..., J and predictors X = X1, X2, ..., Xp. In the latent variable interpretation, it is

assumed that there is a real-valued latent variable Y ∗, same to Equation 3.1. Suppose that
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the manifest response Y results from grouping the underlying variable Y ∗ using cutoff

points θ1 < θ2 < . . . < θJ−1, so that:

Y =



1, if y∗ ≤ θ1

2, if θ1 < y∗ ≤ θ2

3, if θ2 < y∗ ≤ θ3

...

J, if θJ−1 < y∗

(3.3)

Defining θ0 = −∞ and θJ = ∞, then, the above model Equation 3.3 will lead to the

following conclusion:

y = j ⇐⇒ θj−1 < y∗ ≤ θj

From these assumptions, we can derive the conditional distribution of y as

P (y = j | x) = P (θj−1 < y∗ ≤ θj | x)

= P
(
θj−1 < β

>x+ ε ≤ θj
)

= F
(
θj − β>x

)
− F

(
θj−1 − β>x

) (3.4)

where β, θj are model coefficients and cutoff points to be estimated from the data, P is

the abbreviation of probability, and F is the cumulative distribution function (CDF) of the

error term ε, and takes on the role of the inverse link function.

Note that the error term ε in Equation 3.1 may have various distributions, such as lo-

gistic or probit or complementary log-log or Cauchit (corresponding to a Cauchy latent

variable). Especially, for a probit version model, we have ε ∼ N(0, 1), and for logit ver-

sion of model, we have ε ∼ Logistic(0, 1). When we assume that the error term ε follows

the standard logistic distribution, the model can be called ordinal logistic regression, or-

dered logit model, or proportional odds model. In what follows we’ll focus on the ordinal
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logistic regression. This means we’ll have

F (t) =
1

1 + e−t

Naturally, we have the following expression:

P (Y ≤ j) = P (ε ≤ θj − β>X) = F
(
θj − β>X

)
=

1

1 + e(β
>X−θj)

Cumulative Link Model and Proportional Odds Model

The above expression coincides well with the proportional odds model explanation. To

understand the proportional odds model, one should first review the cumulative link model

(CLM) because the proportional odds model is a member of a wider family of models

called cumulative link models [52]. To use category ordering, it models the cumulative

probabilities like follows:

P (Y ≤ j | x) = π1(x) + · · ·+ πj(x), j = 1, . . . , j, . . . , J. (3.5)

where πj = P (yi = j|xi) and
∑J

j=1 πij = 1.

Naturally, a cumulative logits are defined as [52]:

logit[P (Y ≤ j | x)] = log
P (Y ≤ j | x)

1− P (Y ≤ j | x)

= log
π1(x) + · · ·+ πj(x)

πj+1(x) + · · ·+ πJ(x)
, j = 1, . . . , J − 1

The relationship between cumulative link model and proportional odds model is as

follows: a model for logit[P (Y ≤ j)] along is an ordinary logit model for a binary re-

sponse—categories {1, ..., j} vs. categories {j + 1, ..., J}. A model that simultaneously
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uses all cumulative logits called the proportional odds model, which can be represented as

logit[P (Y ≤ j | x)] = θj + β>x, j = 1, . . . , J − 1 (3.6)

where θj is the intercept for the jth cumulative logit model, and the sequence θj are

increasing with j.

The definition of the proportional odds model can be explained by the Equation 3.7.

If x1 and x2 are different data points, with the cumulative link model Equation 3.6 they

satisfies
logit [P (Y ≤ j | x1)]− logit [P (Y ≤ j | x2)]

= log
P (Y ≤ j | x1) /P (Y > j | x1)

P (Y ≤ j | x2) /P (Y > j | x2)

=β> (x1 − x2)

(3.7)

From Equation 3.7, it can be seen that the odds ratio of the event yi ≤ j at x1 relative

to the same event at x2, which is independent of j. Thus, the cumulative odds ratio is

proportional to the distance between x1 and x2 which motivated McCullagh [47] to denote

the cumulative logit model a proportional odds model. As the name suggests, the model

only applies to data that meet the proportional odds assumption [47]. The proportional

odds assumption is that the number added to each of these logarithms to get the next is the

same in every case. In other words, these logarithms form an arithmetic sequence. The

model states that the number in the last column of the table—the number of times that

that logarithm must be added—is some linear combination of the other observed variables.

Thus, the proportional odds model is identical to the linear logistic model [48]:

logit(P (Y ≤ j)) = log
P (Y ≤ j)

1− P (Y ≤ j)
= log

P (Y ≤ j)

P (Y > j)
= θj − (β1X1 + · · ·+ βpXp)

The logistic function is the inverse of the logit-function, so the predicted probabilities
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P̂ (Y ≤ j) are

P̂ (Y ≤ j) =
eθ̂j−(β̂1X1+···+β̂pXp)

1 + eθ̂j−(β̂1X1+···+β̂pXp)

Naturally, the predicted probability for each class is

P̂ (Y = j) = P̂ (Y ≤ j)− P̂ (Y ≤ j − 1) (3.8)

Clearly, we can seen that Equation 3.8 is equivalent to Equation 3.4.

Then, given a new observation xnew, the probability that it belongs to each category,

[π1(xnew), π2(xnew), ..., πJ(xnew)], can be calculated respectively. And the maximum prob-

ability indicate the most likely class that xnew) belongs to.

3.3 Parameter Estimation

There is a couple of ways to estimate parameters in the model (Equation 3.2). The first

one is the baseline approach that estimating the parameters in two stages separately by

assuming the β(1) and β(2) are independent without considering the nested structure and

potential correlations between the two adjacent stages. That is, conduct the ordinal logistic

regression model for each stage independently with existing software packages.

The second method of parameter estimation is to assume that β(1) and β(2) share some

common parts. Recall that the feature data in the current stage contains the feature in all

former stages, e.g:

X(2) =
{
x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1

;x
(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,p2

}
=
{
X(1);x

(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,p2

}

In other words, the feature in every stage is actually the “cumulative available features”.

Such property of data inspires us to make the following assumption: the model coefficients
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should have consistent common parts correspondingly, e.g

β(2) =
{
β

(1)
1 , β

(1)
2 , . . . , β(1)

p1
; β

(2)
1 , β

(2)
2 , . . . , β(2)

p2

}
=
{
β(1); β

(2)
1 , β

(2)
2 , . . . , β(2)

p2

}

Under such assumption, β(1) ∈ β(2).

One significant advantage of such an assumption is saving the computational cost. In

the baseline approach, the total number of parameters in ζ to be estimated is (p1+p2+pK)+

2(K− 1) + 1 for a K-stage model, and people have to conduct a ordinal logistic regression

for each stage, totally K times. While in the second method with the common coefficients

assumption, the total number of parameters to be estimated is only pK + 2(K− 1) + 1, and

all these parameters can be estimated in one time.

Another significant advantage of such an assumption is reducing the variance of pa-

rameter estimation. In the baseline approach, single models are trained on the subgroup of

observations in that stage without making use of the observations stopping at former stages.

In this case, the observations in every stage reduce significantly stage by stage. But in the

proposed model, the parameters for every stage are estimated together simultaneously with

all observations involved, which should make the parameter estimation more stable.

Therefore, in what follows, we’ll focus on the parameter estimation for the proposed

model with common coefficients assumption. Along the direction of MLE, the unknown

parameters can be denoted as ζ:

ζ =
{
β(2), θ

(1)
1 , θ

(1)
2 , θ

(2)
1

}

where {L∗1, U∗1 , C∗2} in the proposed 2-stage model is actually equivalent to
{
θ

(1)
1 , θ

(1)
2 ; θ

(2)
1

}
in the exited ordinal logistic regression formulation. and all the unknown parameters in-

cluded in ζ will be estimated jointly.
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3.3.1 Joint Likelihood of Proposed Model with Common Coefficients Assumption

To estimate the parameters ζ in the proposed model, the probability modeling style inspires

the adoption of MLE. Similarly, we start with the existing ordinal logistic regression. The

log-likelihood of the proportional odds model for a single training example xi, yi can be

stated as

logL (β,θ | xi, yi) =
J∑
j=1

I(yi = j) log
[
F
(
θj − β>xi

)
− F

(
θj−1 − β>xi

)]
(3.9)

where I(yi = j) is the indicator function, θ0 = −∞ and θJ = ∞, and θj is the cutoff

points on Y ∗ between the jth and j + 1th category.

Obviously, the joint log-likelihood function for all samples would be the summation of

the single sample likelihood:

logL (β,θ |X, Y ) =
N∑
i=1

J∑
j=1

I(yi = j) log
[
F
(
θj − β>xi

)
− F

(
θj−1 − β>xi

)]
The parameter estimation for the existing ordinal logistic regression has been well studied

since the log-likelihood objective function owns a lot of proved nice properties. McCullagh

presented a Fisher scoring algorithm for ML estimation, expressing the likelihood in the

form Equation 3.9 using cumulative probabilities. McCullagh showed that sufficiently large

n guarantees a unique maximum of the likelihood [47, 52]. Burridge and Pratt showed

that the log-likelihood is concave for many cumulative link models, including the logit,

probit, and complementary log-log [52]. Iterative algorithms usually converge rapidly to

the ML estimates. The optimization computing algorithms are developed based on these

nice properties. The existing approaches compute the maximum-likelihood estimates by

iteratively reweighted least squares (IRLS). And actually, in R software, all GLM are fit

using IRLS estimation method for the log-likelihood. IRLS is used to find the MLE of a

GLM and find an M-estimator in robust regression, as a way of mitigating the influence of
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outliers in an otherwise normally distributed data set.

Developed upon the existing ordinal logistic regression model, our proposed model

involves two significant novelties. Firstly, our target is to estimate all the parameters ζ

in all stages jointly, while the existing ordinal logistic regression model only deals with

the individual model in each stage independently. Meanwhile, building ordinal logistic

models independently for each stage sequentially will be adopted as a baseline approach for

comparison. Secondly, as we discussed earlier, we expect the coefficients have consistent

common parts in a cumulative way. Thus, for our proposed multistage model, the joint

likelihood function for all samples in all stages would be like follows:

`(ζ) =
K∑
k=1

Nk∑
i=1

Jk∑
j=1

I(y
(k)
i = j) log

[
F
(
θ

(k)
j − β

(k)>x
(k)
i

)
− F

(
θ

(k)
j−1 − β

(k)>x
(k)
i

)]

where logL (ζ |X, Y ) is rewritten as `(ζ) for simplicity, K is the number of stages in

the proposed multistage sequential decision-making model, Nk is the total number of pa-

tients/observations in the kth stage, and Jk is the number of categories in the kth stage for

which we have

Jk =


3, if 1 ≤ k < K

2, if k = K

Given the joint likelihood function for all stages, the next step is to estimate all the

parameters ζ simultaneously. For the MLE algorithm, the key is to find the gradient of the

likelihood function. We can find the gradient for each parameter individually as follows:

∂`(ζ)

∂β(k)
=

Nk∑
i=1

Jk∑
j=1

I(y
(k)
i = j)

(−x(k)
i )
[
f
(
θ

(k)
j − β

(k)>x
(k)
i

)
− f

(
θ

(k)
j−1 − β

(k)>x
(k)
i

)]
F
(
θ

(k)
j − β

(k)>x
(k)
i

)
− F

(
θ

(k)
j−1 − β

(k)>x
(k)
i

)
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∂`(ζ)

∂θ
(k)
j

=

Nk∑
i=1

Jk∑
j=1

I(y
(k)
i = j){

f
(
θ

(k)
j − β

(k)>x
(k)
i

)
F
(
θ

(k)
j − β

(k)>x
(k)
i

)
− F

(
θ

(k)
j−1 − β

(k)>x
(k)
i

)
−

f
(
θ

(k)
j − β

(k)>x
(k)
i

)
F
(
θ

(k)
j+1 − β

(k)>x
(k)
i

)
− F

(
θ

(k)
j − β

(k)>x
(k)
i

)}
Recall that F is the CDF of the error term ε ∼ Logistic(0, 1), and f(t) = F ′(t) is the

probability density function (PDF) of ε:

F (t; 0, 1) =
1

1 + e−t
, f(t; 0, 1) =

1

(et/2 + e−t/2)2

Note that the coefficient in stage k, β(k), contains β(k−1) and newly added coefficients

for features in the kth stage, which makes the coefficients in different stages of different

length. To deal with this issue, we propose to find the gradient in each stage ∂`(ζ)

∂β(k) individu-

ally first. And then, add them together with the front ends aligned, and pad the shorter ends

with 0’s:
∂`(ζ)

∂β
=

[
∂`(ζ)

∂β(1)
; 0, 0, ..., 0

]
+ ...+

[
∂`(ζ)

∂β(K)

]
In computation, the indicator function I(y

(j)
i = j) can be replace with a mask matrix

with boolean values. Also, the indicator function can be avoided data preprocessing in the

training process. For example, people can split the patients into different groups to mark

the identity, use Gk,j to denote the group of patients who have label j in stage k. Take our

2-stage illustrating case as an example, the log-likelihood function can be written as:

`(ζ) =
∑

i,ni∈G1,1

log
{

1− F
(
U∗1 − β(1)>x

(1)
i

)}
+

∑
i,ni∈G1,0

logF
(
L∗1 − β(1)>x

(1)
i

)
+

∑
i,ni∈G1,0.5

log
{
F
(
U∗1 − β(1)>x

(1)
i

)
− F

(
L∗1 − β(1)>x

(1)
i

)}
+

∑
i,ni∈G2,1

log
{

1− F
(
C∗2 − β(2)>x

(2)
i

)}
+

∑
i,ni∈G2,0

logF
(
C∗2 − β(2)>x

(2)
i

)
(3.10)

63



Since here β(2) =
{
β(1), β1; β2, ..., βp2

}
, to avoid any potential confusing notation, we

rewrite them as:

β(1) = {α1, ..., αm, ..., αp1}, β(2) = {α1, ..., αm, ..., αp1; β1, ..., βm, ..., βp2}

ζ = {α1, ..., αm, ..., αp1; β1, ..., βm, ..., βp2 ; L∗1, U
∗
1 , C

∗
2}

Given the joint log-likelihood function, we can write the derivative for each coefficient

in ζ individually accordingly.

For the common coefficients, αm for m = 1, ..., p1, we have:

∂`(ζ)

∂αm
=

∑
i,∀ni∈G1,1

x
(1)
i,mf

(
U∗1 − β(1)>x

(1)
i

)
1− F

(
U∗1 − β(1)>x

(1)
i

) +
∑

i,∀ni∈G1,0

−x(1)
i,mf

(
L∗1 − β(1)>x

(1)
i

)
F
(
L∗1 − β(1)>x

(1)
i

) +

∑
i,∀ni∈G1,0.5

−x(1)
i,m

[
f
(
U∗1 − β(1)>x

(1)
i

)
− f

(
L∗1 − β(1)>x

(1)
i

)]
F
(
U∗1 − β(1)>x

(1)
i

)
− F

(
L∗1 − β(1)>x

(1)
i

) +

∑
i,∀ni∈G2,1

x
(2)
i,mf

(
C∗2 − β(2)>x

(2)
i

)
1− F

(
C∗2 − β(2)>x

(2)
i

) +
∑

i,∀ni∈G2,0

x
(2)
i,mf

(
C∗2 − β(2)>x

(2)
i

)
F
(
C∗2 − β(2)>x

(2)
i

)
(3.11)

For the coefficients for newly added features in stage 2, βm for m = 1, ..., p2, we have:

∂`(ζ)
∂βm

=
∑

i,∀ni∈G2,1

x
(2)
i,mf

(
C∗2−β

(2)>x
(2)
i

)
1−F

(
C∗2−β

(2)>x
(2)
i

) +
∑

i,∀ni∈G2,0

x
(2)
i,mf

(
C∗2−β

(2)>x
(2)
i

)
F
(
C∗2−β

(2)>x
(2)
i

) (3.12)

For the cutoff points in all 2 stages, we have:

∂`(ζ)
∂U∗1

=
∑

i,∀ni∈G1,1

−f
(
U∗1−β

(1)>x
(1)
i

)
1−F

(
U∗1−β

(1)>x
(1)
i

) +
∑

i,∀ni∈G1,0.5

f
(
U∗1−β

(1)>x
(1)
i

)
F
(
U∗1−β

(1)>x
(1)
i

)
−F
(
L∗1−β

(1)>x
(1)
i

)
(3.13)

∂`(ζ)
∂L∗1

=
∑

i,∀ni∈G1,0

f
(
L∗1−β

(1)>x
(1)
i

)
F
(
L∗1−β

(1)>x
(1)
i

) +
∑

i,∀ni∈G1,0.5

−f
(
L∗1−β

(1)>x
(1)
i

)
F
(
U∗1−β

(1)>x
(1)
i

)
−F
(
L∗1−β

(1)>x
(1)
i

)
(3.14)

∂`(ζ)
∂C∗2

=
∑

i,∀ni∈G2,1

−f
(
C∗2−β

(2)>x
(2)
i

)
1−F

(
C∗2−β

(2)>x
(2)
i

) +
∑

i,∀ni∈G2,0.5

f
(
C∗2−β

(2)>x
(2)
i

)
F
(
C∗2−β

(2)>x
(2)
i

) (3.15)
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3.3.2 Computation: optim solver in R Software

There exist many well-developed software packages for implementing the existing ordinal

logistic regression model [53]. In R software, several packages on CRAN implements

CLMs. polr from MASS [54] implements standard CLMs allowing for the 5 standard link

functions but no further extensions; the VGAM package [55] includes CLMs via the vglm

function using the cumulative link. vglm allows for several link functions as well as partial

effects. The lrm and orm functions from the rms package [56] also implements CLMs

with the 5 standard link functions but without scale effects, partial or structured thresholds.

A Bayesian alternative is implemented in the brms package [57] which includes structured

thresholds in addition to random-effects.

In our joint-optimization problem, we’ll follow the framework of the existing polr()

function in R software, and adopt the optim() function as optimization solver with some

modification to solve our specific joint optimization problem. The polr() function in the

package MASS in R software is popular for solving the ordinal logistic regression. In

polr(), optim() is adopted to solve the optimization problem. The optim() is a func-

tion designed for general-purpose optimization based on Nelder–Mead, quasi-Newton and

conjugate-gradient algorithms. It includes an option for box-constrained optimization and

simulated annealing.

When using the optim() solver, it’s important to specify the input parameters properly.

One is the objective function fn to be minimized (or maximized), and the other is a function

gn to return the gradient for the “BFGS”, or “CG”, or “L-BFGS-B” methods. In our 2-stage

example case, obviously, the parameter to be optimized over is ζ, the objective function to

be minimized fn is the negative joint log-likelihood function Equation 3.10, and the gradi-

ent function gn would be the combination of the gradients, Equation 3.11, Equation 3.12,

Equation 3.14, Equation 3.13, and Equation 3.15:

gn =

[
∂`(ζ)

∂α1

, ...,
∂`(ζ)

∂αp1
;

∂`(ζ)

∂β1

, ...,
∂`(ζ)

∂βp2
;

∂`(ζ)

∂L∗1
,
∂`(ζ)

∂U∗1
,
∂`(ζ)

∂C∗2

]
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Similar to the existing polr() function, we choose the “BFGS” method here for solving

the optimization problem. “BFGS” is the abbreviation for Broyden–Fletcher–Goldfarb–Shanno

algorithm, an iterative method for solving unconstrained nonlinear optimization problems

[58]. It is a quasi-Newton method (also known as a variable metric algorithm), specifically

that published simultaneously in 1970 by Broyden et. al. [59]. It uses function values and

gradients to build up a picture of the surface to be optimized. It updates an approximation

to the inverse Hessian using the “BFGS” update formulas, along with an acceptable point

line search strategy. This method appears to work best with analytic gradients according to

the documentation.

Another important input for this optim() solver is variable initialization. It is nontrivial

to find a proper start location for the parameter set ζ0 since a bad initial value may force

the result trapped in the local optimum due to the nature of polr() function. To find a

reasonable initial location, in the existing ordinal logistic regression, the K categories are

reclassified into 2 categories with a single cutoff point in the middle, and then a regular

logistic regression is used to estimate the coefficients β which will serve as the initial value

of β. And in the proposed model with common coefficients assumption, the initial value

would be set as the mean vector of the coefficients estimated from the independent single-

stage ordinal logistic regression model.

In the next section, a simulation study is conducted to illustrate the proposed multistage

sequential decision-making model with common coefficients assumption. The performance

of the proposed model is then compared with that of the baseline approach where the stages

are treated individually with an existing ordinal logistic regression model.

3.4 Simulation Study

In this section, a simulation is conducted to verify the effectiveness and simplicity of the

proposed methodology. First, the dataset, {X(1), Y (1);X(2), Y (2)} is generated with pre-

scribed coefficient β(1),β(2) and classification threshold {L∗1, U∗1 , C∗2}. With the dataset
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and model parameters as ground truth, we first conduct a baseline approach. In the base-

line approach, we use the existing ordinal logistic regression package and train 2 classifiers

independently for each stage. Then, we implement the proposed 2-stage algorithm with

common coefficients assumption and estimate the parameters in all 2 stages ζ simultane-

ously. Finally, we’ll compare the performance of the baseline model and proposed model

in the aspect of the prediction performance, stability, model interpretability, and simplicity.

3.4.1 Synthetic Data Generation

Let N1 = 10, 000 denotes the total number of synthetic patients at the beginning.

Feature Set Generation –X(1) andX(2)

We design the features of patients as follows:

• X1 ∼ Bernoulli(0.3)

• X2 ∼ N(−1, 1)

• X3 ∼ N(1, 1)

• X4 ∼ N(0, 2)

• X5 ∼ Bernoulli(0.4)

• X6 ∼ N(−1, 1)

• X7 ∼ N(0, 1)

For stage 1, we assume the category 1 includes the first 4 features: X(1) = {X1, X2, X3, X4}.

Then, for stage 2, 3 new feature in category 2 are added and the cumulative features for

stage 2 are:

X(2) = {X1, X2, X3, X4;X5, X6, X7} =
{
X(1);X6, X7, X8

}
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Noise Term Generation – ε(1) and ε(2)

We designed the error term as follows:

ε(1) ∼ Logistic(0, 1), ε(2) ∼ Logistic(0, 1)

where the first parameter in the logistic distribution is the location parameter and the second

one is the scale parameter.

In the proposed model, the error term ε follows standard logistic regression for both

stages. Note that if the error term ε follows logistic regression with other parameters,

such as ε(1) ∼ Logistic(0, 0.1), the estimation of β and θ will be scaled according to the

inherent model assumption in the probability style formation. For example, in Equation 3.2,

if the scale of ε is not fixed to “1”, the number of solution for β and {L∗1, U∗1 , C∗2} would

be infinite as the the optimal solution is on a hyperplane rather than a point.

Weights Generation – β(1) and β(2)

The coefficient/weight is designed as:

β(1) = [2, 2, 2, 2]

β(2) = [β(1), 4, 4, 4] = [2, 2, 2, 2, 4, 4, 4]

Given feature set, we can calculate the latent variable Y ∗ according to Equation 3.1:

Y (1)∗ = β(1)>x(1) + ε(1), Y (2)∗ = β(2)>x(2) + ε(2)
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Cutoff points and True label Generation – θ and Y (1), Y (2)

Next, we can cut the continuous latent variable Y ∗ with cutoff points, respectively. To cut

the Y ∗ into ordered categories, we design the cutoff points as follows:

L∗1 = −2.2, U∗1 = 2.2, C∗2 = 0.5

The value −2.2 and 2.2 are chosen because U1 = F (2.2) = 0.9 and L1 = F (−2.2) = 0.1

which seems to be reasonable assumption of cutoff points on probability estimation Y .

With these predefined classification thresholds, the Y (1)∗ can be cut off into 3 categories,

the corresponding true label Y can be obtained accordingly:

Y
(1)
i =


0, if Y (1)∗

i < L∗1

0.5, if L∗1 ≤ Y
(1)∗
i < U∗1

1, if Y (1)∗
i ≥ U∗1

, Y
(2)
i =


0, if Y (2)∗

i < C∗2

1, if Y (2)∗
i ≥ C∗2

Also, given the above prescribed cutoff points, we have N2 ≈ 1
3
N1.

In the simulation, we adopt the Monte-Carlo method and run the data generation and

parameter estimation 100 times.

The story behind this synthetic data set is as follows: there is N1 = 10, 000 pa-

tients in total at the beginning, and all the patients have the features in category 1 col-

lectcd, including X(1) = {X1, X2, X3, X4}. With the ordinal logistic regression model

in stage 1 which has coefficients β(1) and classification thresholds L∗1 and U∗1 , the pa-

tients with the probability of being sick larger than 0.9 or less than 0.1 are classified as

almost surely sick (“1”’) or almost healthy (“0”), respectively. The rest of the patients

are labeled as Y (1) = “0.5” and recommended to the next stages to take more exami-

nations. For this subgroup, N2 patients in total, their features in category 2, including

X5, X6, X7, are actively learned, which makes the cumulative feature set for stage 2 be-

comes X(2) = {X1, X2, X3, X4, X5, X6, X7}. Similarly, given the (ordinal) logistic re-
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gression model in stage 2 with prescribed model coefficients beta(2) and classification

threshold C∗2 , the ground truth in stage 2 can be obtained accordingly.

3.4.2 Results Comparison: Baseline Approach vs. Proposed Method with Common

Coefficients Assumption

The baseline approach and proposed method with common coefficients assumption are

conducted on the synthetic data set generated in the last section. In the baseline approach,

the data in 2 stages are treated separately. In the first stage, a standard ordinal logistic

regression is applied to data in stage 1 via polr() function in the MASS package in R. And

in the second stage, a standard logistic regression is applied on data in stage 2 via the glm()

function in R. And in the proposed model with common coefficients assumption, all the

parameters in 2 stages are estimated together via MLE. Note that the common coefficients

assumption indicates that the ˆβ(2) = { ˆβ(1); β̂5, β̂6, β̂7} where the coefficients for common

features keep consistent in later stages.

In what follows, we’ll evaluate the mean and the standard deviation of the parameter

estimation to evaluate the accuracy and stability of the two methods.

In Figure 3.5, we visualize the comparison of the mean coefficients estimated from

the two methods. From Figure 3.5, we can see that the coefficients estimated from the

proposed method coincide slightly better with the ground truth for both stages. To quantify

the advantage, we can quantify the distance between the estimated coefficients and the

ground truth with mean square error (MSE). The MSE of the proposed 2-stage model is

0.0003, while the MSE of the baseline method conducted in stage 2 individually is 0.0011;

the MSE of the proposed model for the coefficients in stage 1 is 2.25× 10−6, and the MSE

of the baseline method conducted in stage 1 individually is also 7.62× 10−6.

Figure 3.6 (a) shows the standard deviation (std) of coefficients estimation from the

methods. It can be seen that the standard deviation of estimation from the proposed method

is significantly smaller than those from baseline methods in both stages. This is a impor-
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Figure 3.5: Mean coefficients estimation comparison among ground truth (black line),
mean coefficients estimated from baseline approached individually (blue and green line),
and mean coefficients estimated from proposed method jointly (red line).

tant advantage of the proposed methods since it proves the stability and robustness of the

proposed method. The reason behind is also straightforward: in the proposed methods, all

available data is involved in the parameter estimation, while in the baseline method, only a

small subset of the data is involved in the parameter estimation in later stages.

Define the relative efficiency of the proposed model with respect to the baseline model

as e(T1, T2) = var(T2)
var(T1)

, where T1 and T2 represent the estimators for β̂ in the proposed

model and baseline model, respectively. Figure 3.6 (b) shows the relative efficiency of

the proposed method. It can be seen that the relative efficiency of the estimator in the

proposed model for the coefficients in stage 1 is very big, as high as 19.38. And for the

estimator for the coefficients in stage 2, the lowest relative efficiency is still as high as 1.62.

This indicates that the efficiency of the parameter estimation is improved 62% 1838% in

the proposed methodology. Efficiency in statistics is important because they allow one to

compare the performance of various estimators. Usually, a more efficient estimator can be

much more valuable. The relative efficiency strongly proved the efficiency of the proposed
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(a) Standard deviation of coefficients estimation from two methods.

(b) Relative efficiency of the proposed model with respect to the baseline model

Figure 3.6: (a) Standard deviation of coefficients estimation from two methods, and (b)
relative efficiency of the proposed method with respect to the baseline method. Both plots
demonstrate the high efficiency of the proposed method on parameter estimation

methodology.

Figure 3.7 shows the mean prediction metrics for prediction for 2 stages with coeffi-

cients estimated from the two methods respectively. The evaluation metrics include sen-
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Figure 3.7: Mean prediction metrics for 2 stages with coefficients estimated from base-
line approach individually (blue and green line), and coefficients estimated from proposed
method jointly (red and black line). Note that the blue and black lines are too close to each
other to distinguish them from each other visually.

sitivity (Sensi.), specificity (Speci.), positive predictive values (PPV), negative predictive

values (NPV), and balanced accuracy, precision, recall, F1 value, prevalence, detection rate

(Detec. Rate), detection prevalence (Detec. Prev.), and balanced accuracy (Bal. Accu).

Balanced accuracy is a metric that one can use when evaluating how good a binary classi-

fier is. It is especially useful when the classes are imbalanced, i.e. one of the two classes

appears a lot more often than the other. In our dataset, we can see that the overall ratio of

patients with and without CBDS are Y0.5 : Y1 = 120 : 196 ≈ 0.38 : 0.62, and the ratio in

the stage 1 is Y0 : Y0.5 : Y1 = 99 : 189 : 29, in stage 2 is Y0 : Y1 = 98 : 91. Therefore, the

balanced accuracy for the prediction in stage 1 is worthy of reference.

From the predictive performance comparison in Figure 3.7, it can be seen that the pro-

posed method has a significant advantage for the prediction for stage 2 with almost higher

values in every index, especially the prevalence, and detection rate, and detection preva-

lence. And for the prediction for stage 1, there’s no significant difference between the

proposed method and baseline method, as we can see that the blue and black lines are too

close to each other to distinguish them from each other visually.

For the estimation of cutoff points, the baseline method and the proposed method give
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the mean estimations as follows respectively:

mean{L̂∗1, Û∗1 , Ĉ∗2}baseline = {−2.201, 2.192, 0.536}

mean{L̂∗1, Û∗1 , Ĉ∗2}proposed = {−2.199, 2.197, 0.506}

And the standard of deviation of the estimations for the thresholds by two methods are as

follows:

std{L̂∗1, Û∗1 , Ĉ∗2}baseline = {0.061, 0.064, 0.178}

std{L̂∗1, Û∗1 , Ĉ∗2}proposed = {0.057, 0.062, 0.119}

Compare with the ground truth, {L∗1, U∗1 , C∗2}ground truth = {−2.2, 2.2, 0.5}, both methods

work pretty well. And the proposed method has s a little bit smaller mean deviation and

smaller standard deviation, working slightly better than the baseline methods.

Overall speaking, the proposed 2-stage model provides a more accurate and more stable

estimation of the model coefficients since it involves all data in the parameter estimation.

Also, in implementation, the proposed algorithm enjoys a big advantage of computational

convenience since we estimated all parameters in ζ at once. And actually, the common

coefficients assumption in the proposed model reduces the number of parameters to be

estimated from 4 + 7 + 2 + 1 = 14 to 7 + 2 + 1 = 10 since the coefficients for features in

stage 1 are not repeatedly estimated in later stages but assumed to be consistent instead.

3.5 Case Study

In this section, we’ll conduct the baseline approach and our proposed algorithm with com-

mon coefficients assumption on the aforementioned real clinical dataset from the hospital.

We still adopt the simplest version of our proposed mode – a 2-stage sequential decision-

making model.
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3.5.1 Data Review

In the proposed model, we have N1 = 316 patients in the first stage. And based on the

missing profile, we filter the patients who have features in the category 2 into the second

stage and make their label in the first stage as Y (1)
i = 0.5, i = 1, ..., N2. And hereN2 = 189.

Note that here we made the assumption that if a patient has features in the next stage

observed, the patient should be labeled as “0.5” at the current stage. The reason for this

assumption is that we believe that the doctor only recommends more examinations to a

patient who has unclear symptoms at the current stage (“0.5”). In other words, the real data

comes from the doctor’s knowledge and experience, and the missing pattern is not missing

at random but deliberately interfered with.

The data for the two stages are like follows:

• Stage 1:
{
y

(1)
i ;x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,11

}
=
{
y(1);X(1)

}
, i = 1, 2, . . . , 316,

y
(1)
i ∈ {“0”, “0.5”, “1”};

• Stage 2:
{
y

(2)
i ;x

(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,11;x

(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,4

}
=
{
y(2);X(2)

}
,

i = 1, 2, . . . , 189, y
(2)
i ∈ {“0”, “1”};

where features in X(1) includes hemolytic disease, gender, age, body mass index (BMI),

total bilirubin, Alanine transaminase (ALT), Aspartate transaminase (AST), lipase, amal-

yse, Gamma-glutamyl transferase (GGT), Alkaline phosphatase (ALP). These features in-

clude demographic and laboratory blood test measurements. For features in X(2), based

on X(1), it involves new imaging test data, including common bile duct (CBD) diameter

and the presence of CBDS by US and MRI examinations, respectively. The descriptive

statistics were calculated for all variables of interest in Table 3.1.

3.5.2 Performance Comparison: Baseline Approach vs Proposed Algorithm

The proposed method and baseline method are conducted and compared on the organized

real data similar to the simulation study. Figure 3.8 visualizes the coefficients for features
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Table 3.1: Descriptive statistics for demographic, laboratory, and imaging data

CBD Stone Present No CBD Stone Present p-value
Total patients 120 196
IOC 81 196
ERCP 39 0
Hemolytic disease 23(19.2%) 49(25.0%) 0.270
Female 81(67.5%) 123(62.8%) 0.400
Age (yrs) 13.8± 3.3 13.6± 3.6 0.883
BMI (kg/m2) 25.7± 8.0 24.5± 8.7 0.125
Total bilirubin (mg/dL) 5.6± 8.3 2.6± 5.2 < 0.001
ALT (U/L) 258.5± 195.8 132.9± 146.2 < 0.001
AST (U/L) 153.3± 135.6 87.9± 110.6 < 0.001
Lipase (U/L) 578.4± 1516.9 268.4± 517.8 0.538
Amylase (U/L) 113.6± 197.8 119.3± 190.9 0.011
GGT (U/L) 296.0± 202.0 232.5± 216.1 0.024
Alkaline phosphatase (U/L) 247.1± 189.6 179.7± 98.1 0.014
CBD diameter (mm, by US) 7.4± 3.8 5.6± 3.8 < 0.001
Presence of CBD stone (US) 11(13.4%) 3(3.1%) 0.012
CBD diameter (mm, by MRI) 9.3± 3.8 8.3± 2.6 0.420
Presence of CBD stone (MRI) 28(54.9%) 10(19.6%) 0.041

in category 1 estimated by the baseline approach and proposed 2-stage model.

It can be seen that with the baseline line approach, the coefficients estimated by the two

individual models are similar to each other for most features, X2 ∼ X11, but significantly

different for X1. While with the proposed 2-stage model, the coefficients estimated for

feature X1 ∼ X11 seems to be a kind of weighted average of the coefficients obtained from

baseline individual models and falls in between. Note that the estimated coefficients for

features in stage 2 are not plotted here. This is because the β̂
(1)

hardly affect β̂
(2)

, but the

β̂
(2)

affect β̂
(1)

in some way. Thus, we focus on the comparison on the estimated common

coefficients.

Compared with the baseline methods, the coefficients estimated by the proposed method

have no dramatic spikes. Also, with the common coefficients assumption, our collabora-

tor doctors feel more comfortable since newly added features will not affect the weights

of existing ones. More importantly, in the proposed model, no matter how many stages

the doctors prefer to use, the calculation can be done at once, which is much simpler than

76



Figure 3.8: Coefficients comparison between coefficients obtained from 2 methods for
features in stages 1.

building an individual model for each stage.

Given the parameters ζ̂ estimated by the proposed model, when a new patient comes,

the doctor can first recommend the patient to take examinations included in category 1,

and calculate the Ŷ (1) accordingly. Based on the L̂1 and Û1, the patient will be labeled as

healthy (“1”), sick (“0”), or unclear and recommended to next stage (“0.5”). Then, only

the patients whose symptoms are ambiguous are recommended to take extra examinations.

In other words, only the necessary data are learned actively and sequentially, and the de-

cisions are made sequentially. Definitely, this makes the whole diagnosis process quicker

and cheaper, more intelligent and friendly. Besides, the doctors can adjust the multistage

sequential decision-making model flexibly by designing the number of stages and the fea-

tures in each stage. More details can be found in the feature grouping recommendations in

Section 3.2.
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3.6 Conclusion and Discussion

In this study, to augment healthcare clinical decision-making based on limited examina-

tions, a multistage sequential decision-making model is developed to actively collect only

minimal necessary diagnostic data.To illustrate the proposed model, we optimized a 2-

stage model on synthetic data in the simulation study and applied the proposed algorithm

to pediatric patients with suspicion for obstructive common bile duct stones in an effort

to more efficiently and accurately arrive at a diagnosis that allowed expedited intervention

with ERCP. In both the simulation study and real case study on collected pediatric data,

the proposed method is more effective, stable, interpretable, and simpler in estimating the

coefficients and cutoff points for all stages. It estimates all parameters simultaneously and

fully considers the cumulative characteristics between these stages by making common

coefficients assumption.

One limitation of the proposed methodology is that it involves all variables without

selection. A potential future improvement to the model will be the addition of L1 regular-

ization term to the objective function to realize the variable selection.

Also, we can extend our proposed algorithm to satisfy more real-world cases with spe-

cial requirements. For example, consideration of expense, delay to intervention, and need

for invasive testing can be specified and minimized with modification to the objective func-

tion as follows:

min
N1,N2,ζ

− logL(ζ | X, Y ) + λ (c1N1 + c2N2)

where the c1, c2 are the relevant cost per patient in stage 1 and stage 2, respectively. λ is

the tuning parameter to adjust the weight between the negative likelihood and the relevant

cost to the test. Note that here the N1, N2 can also be variables to be optimized over since

the relevant cost depends on the number of patients in each stage.

In a healthcare setting, the penalty for misdiagnosis can vary based on the patient and

diagnosis. For example, false-positive detection may lead to unnecessary procedures or
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excess intervention, while false-negative detection may result in missed or delayed treat-

ment. For such cases with weighted penalties on different types of misclassification, we

can modify the objective function by specifying the penalties as follows:

min
ζ
− logL(ζ | X, Y )−λ1

∑
i

I ((yi = 0.5 | 1) , ŷi = 0)−λ2

∑
i

I ((yi = 0 | 0.5) & ŷi = 1)

where the λ1 and λ2 are the tuning parameter for false-negative prediction and false-positive

prediction, respectively.

The proposed algorithm is also applicable to a broad range of decision-making scenar-

ios outside of healthcare as it utilizes active learning to drive the sequential collection of

minimal requisite information, rather than all possible information simultaneously. This

will be an area of future development.
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CHAPTER 4

UNSUPERVISED IMAGE SEGMENTATION WITH AN APPLICATION ON THE

FAILURE MODE ANALYSIS FOR AIRPLANES

Image analysis refers to extracting meaningful information from digital images by digital

image processing techniques [60]. Among them, image segmentation is a very hot topic

that simplifies and/or changes the representation of an image into something that is more

meaningful and easier to analyze, and thus is popular in object detection and tracking in

medical imaging, traffic control systems, etc. In this project, our objective is to analyze the

failure modes distribution and proportion on the surface of the CFRP specimen after the

double cantilever beam (DCB) testing to investigate the surface property such as fracture

toughness. From the image data captured from the CFRP specimen after the DCB testing,

our task is to identify the attribution of each pixel, pink adhesive film or black CFRP sub-

strate, on both pieces of the originally bonded specimens, which is essentially unsupervised

image segmentation.

There are several significant challenges associated with image segmentation for failure

mode analysis. For example, limited data size, imperfect imaging quality, unavailable true

pixel labels. All of them limit the use of supervised machine learning algorithms. Be-

sides, these pixels are not independent so that the spatial correlation among them should be

properly considered. And the paring of pixels from symmetric faces which are originally

bonded together should have some tolerance. To overcome these challenges, considering

the specificity of this project, a baseline approach is proposed first: using the superpixels

algorithm to push up the investigation from pixel-level to region-level (superpixels) first,

then cluster the superpixels to binarize the labels of superpixels. The unsatisfactory per-

formance of the baseline method drives us to propose a simple yet very effective method,

named RG-filter, for our imaging data specially.
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Unlike the traditional thresholding methods which work on the compressed grayscale

image and lead to information loss, our proposed RG-filter works on the RGB color image

directly with adjustable multiplicative coefficients and offset parameters. The effective-

ness of the proposed RG-filter is then verified on our CFRP image data from experiments.

The image segmentation results represent the distribution and proportion of failure modes.

From the failure mode analysis, people can better understand the weak link during the

bonding of composite materials, model them together with some downstream data as a

whole, and the time-consuming and destructive DCB testing can be avoided accordingly.

This would be very helpful for the joining and maintenance of aircraft.

4.1 Introduction

Bonding quality between composite material surfaces is the crucial and long-term focus

of aircraft joining and maintenance. The DCB testing is a standard test method for deter-

mining mode I (opening mode, a tensile stress normal to the plane of the crack) fracture

toughness of fabric composites or adhesively bonded joints [61]. The industry standard is

to use a fixed-width DCB to perform the test, which is one of the widely-used methods to

calculate the fracture toughness [62].

The motivation of this project is to identify the failure mode distribution and proportion

over the surface of two pieces of originally bonded CFRP panels after DCB testing. After

figuring out the distribution and proportion of failure mode, people can better understand

the weak link during the bonding of composite material, which may give some clue on

how to improve the quality of joining and repairing for aircraft. More importantly, the seg-

mentation results can be crucial data when modeling together with some downstream data.

Once we can predict the failure mode proportion and distribution directly from some easily

obtained surface characterizing variables, the expensive, time-consuming, and destructive

DCB testing can be avoided, and naturally, a huge amount of time and money will be saved.

There are several significant challenges associated with unsupervised image segmen-
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tation for failure mode analysis. For example, we only have 50 images or so due to the

expensive and time-consuming destructive testing. And the imaging quality is not ideal

due to uneven light and strong reflection during data collection. What’s worse, the true

labels for these pixels are not available. Although our laboratory specialist can roughly

clarify the identity of small regions by visual observation, it is not realistic to label every

pixel for the training of supervised machine learning algorithms.

Another big challenge is, our data is not independent images, but image pairs coming

from the two CFRP panels originally bonded together before DCB testing. Under such a

situation, it is impossible to recover the exact location and paring relationships for pixel

pairs from the symmetric specimen faces. Also, the pixels on the same face are not inde-

pendent and the spatial correlation between them should be properly addressed.

Also, for our CFRP images, the label of the pixels are binary, which limits the direct use

of the existing image segmentation algorithms. This is because the existing image segmen-

tation usually focuses on grouping similar pixels together and identifying finer boundaries,

but the labels of those superpixels are usually increasing integers without physical mean-

ing. They tend to segment an image into many pieces for better boundary detection and

create the same number of labels for them. While in our case, these multiple segment

labels should be further clustered into two groups.

To address the challenges above, in this study, we proposed two segmentation meth-

ods for failure mode analysis after exploring our image data carefully. One is the baseline

approach where we propose to add an extra layer of clustering on the regions rather than

a single pixel. Compared with the existing superpixels algorithm for image segmentation,

it adds one more step to cluster the segmented superpixels which enables us to specify

the level or type of the label. In other words, it enables us to segment the CFRP spec-

imen into many regions of only two types, pink adhesive film or black CFRP substrate.

As we’ll see, the baseline approach does not work ideally, which drives us to propose an

image segmentation method specially for our CFRP image data. In the proposed method,
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we investigate the problem in the thresholding direction. Unlike the existing thresholding

methods which work on the grayscale channel with some information loss, we proposed an

RG-filter method that works directly on the raw RGB image, labels the pixels according to

the relationship between the red (R) channel and green (G) channel.

In Section 4.2, the problem formulation, literature review of image segmentation, and

the baseline approach are elaborated. In Section 4.3, the proposed method is introduced

in detail. Then, in Section 4.4, a series of experiments are conducted on our CFRP image

to compare the performance of the typical existing image segmentation methods, baseline

method, and the proposed method. In the end, this project is concluded and discussed

further in Section 4.5.

4.2 Problem Formulation, Literature Review, and Baseline Approach

In this section, first, the engineering problem is formulated as an unsupervised image seg-

mentation problem in a statistical manner, and the specificity of this project is highlighted.

Then, a thorough literature review over the state-of-the-art for image segmentation is pro-

vided. Finally, a baseline approach is proposed accordingly to tackle these challenges

preliminarily.

4.2.1 Problem Formulation

Figure 4.1 shows 4 typical image pairs captured from originally bonded CFRP pairs after

the DCB testing. In an image, the two CFRP panels are referred to as A face (to the bottom)

and B face (to the top), respectively. On the surface of CFRP specimens, the black substrate

is the CFRP panel manufactured in our lab, and the pink material is the adhesive film used

for bonding the two panels before DSB testing. Though the pixel color/type in the specimen

varies gradually and continuously, it has to be identified with binary labels, either “pink

adhesive films”, or “black CFRP substrate”. Therefore, the color information is critical for

pixel labeling. Also, some other additional information, like texture and brightness, may
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also be helpful or misleading and be captured by machine learning algorithms for pixel

labeling.

Figure 4.1: Several typical CFRP pairs. These images demonstrate the pairing relationship
and indicate the challenges associated with the raw data.

The potential failure modes of adhesive bonds between composite materials are shown

in Figure 4.2. This figure comes from a single-lap joint (SLJ) specimen [63], but the failure

modes are the same as the specimen after the DCB testing in our case. The cohesive failure

refers to the type of brokenness that occurs inside the adhesive film when stretching, see

the purple part in (a). The adhesive failure refers to the detachment between cohesive film

and CFRP substrate when stretching, see (b). And the adherent failure, also called substrate

failure, refers to the brokenness that occurs inside the CFRP substrates, see (c). Different

types of failure modes indicate different relative weak links during the stretching of DCB

testing, which provides some clue for improvement in future bonding work for aircraft

joining and repairing.

The failure mode can be identified after labeling pixel pairs on the broken specimens

according to the labeling rule shown in Table 4.1. The pixel pairs refer to 2 pixels that

originally bonded together at the same location before stretching apart and now lay on A
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Figure 4.2: Types of adhesive bond failure of SLJ specimen [63]: a) cohesive failure, b)
adhesive failure, c) adherent (substrate) failure.

face and B face symmetrically.

Table 4.1: Rule of identifying failure mode from pixel pairs

Pixel Pairs Failure Mode
black-to- black adherent(substrate) failure
pink-to-pink cohesive failure
black-to-pink/pink-to-black adhesive failure

The expected outcome is shown in Figure 4.3, including the distribution of the failure

modes and the proportions of them on the specimens. Therefore, our objective is to develop

an unsupervised image segmentation algorithm for the image data shown in Figure 4.1 and

obtain the segmented results shown in Figure 4.3. Given the distributions and proportions

of different failure modes for adhesive bonding, people can optimize the bonding quality for

aircraft in a more comprehensive analysis, such as involving other isolate studies associated

with CFRP surface quality, adhesive film storage, and CFRP panel manufacturing.

4.2.2 Literature Review of Image Segmentation

Image segmentation is the process of partitioning a digital image into different regions

(sets of pixels, also known as superpixels) based on the characteristics of pixels. The goal
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Figure 4.3: An example of the expected outcome from raw data. The raw image data (figure
to the top right), and the expected outputs, including failure modes distribution (figure in
the middle row) and proportion (figures in the last row).

of segmentation is to simplify and/or change the representation of an image into something

that is more meaningful, easier, and efficient to analyze. Image segmentation is typically

used to locate or identify objects and boundaries (lines, curves, etc.) in images. More

precisely, image segmentation is the process of assigning a label to every pixel in an image

such that pixels with the same label share certain characteristics. Segmentation impacts a

number of domains. For example, in the filmmaking industry, image segmentation can be

used to crop out the foreground and place it into certain backgrounds. Also, it can be used

to track objects in a sequence of images. Besides, in the medical field, it can be used to

identify the injured muscle and measure the bone or tissue [16].

The algorithms for image segmentation have been well-developed these years. In Ta-

ble 4.2, we summarized these image segmentation algorithms based on the ideas and

mechanisms behind them. In what follows, these algorithms are approximately grouped

into three typical methodologies and discussed respectively: thresholding-based methods,
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pixel-wise clustering-based methods, and deep learning-based methods.

Table 4.2: Overview of Superpixels-Based Image Segmentation

Mechanisms Algorithms
Thresholding-based Maximum entropy method

Balanced histogram thresholding
Otsu’s method (maximum variance)

Desnity-based Edge-Augmented Mean Shift (EAMS), Comaniciu and Meer [64], 2002
Quick Shift (QS), Vedaldi and Soatto [65], 2008
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ester [66],1996

Watershed-based Watershed (W), Meyer[67], 1993
Compact Watershed(CW) Neubert and Protzel [68], 2014
Morphological Superpixel Segmentation (MSS), Benesova and Kottman [69], 2014
Water Pixels (WP), Machairas et al. [70], 2010

Graph-based Normalized Cuts (NC), Ren and Malik [71], 2002
Felzenswalb and Huttenlocher (FH), Felzenswalb et al. [72], 2004
Random Walks (RW),Grady et al. [73], 2006
Constant Intensity Superpixels (CIS), Veksler et al. [74], 2010
Entropy Rate Superpixels (ERS), Liu et al.et al, [75], 2011
Boolean Optimization Superpixels (PB), Zhang et al. [76], 2011
Proposals for Objects from Improved Seeds and Energies (POISE),Humayun et al. [77], 2015

Contour evolution Turbo Pixels (TP), Levinshtein et al. [78], 2009
Eikonal Region Growing Clustering (ERGC), Buyssens et al. [79], 2014

Path-based Path Finder (PF), Drucker et al. [80], 2009
Topology Preserving Superpixels (TPS), Dai et al. [81], 2012

Clustering-based Simple Linear Iterative Clustering (SLIC), Achanta et al [82], 2010
k-means clustering, Pedregosa, Fabian et al [83], 2011
Depth-Adaptive Superpixels (DASP), Weikersdorfer et al. [84], 2012
VCells (VC), Wang and Wang [85], 2012
Voxel-Cloud Connectivity Segmentation (VCCS), Papon et al. [86], 2013
Preemptive SLIC (preSLIC), Neubert and Protzel [68], 2014
Linear Spectral Clustering (LSC), Li and Chen [87], 2015

Energy optimization Contour Relaxed Superpixels (CRS), Conrad et al. [88], 2013
Superpixels Extracted via EnergyDriven Sampling (SEEDS), Van den Bergh et al. [89], 2012
Convexity Constrained Superpixels(CCS), Tasli et al. [90], 2013
Extended Topology Preserving Segmentation (ETPS), Yao et al. [91], 2015

Wavelet-based Superpixels from Edge-Avoiding Wavelets (SEAW), Strassburg et al. [92], 2015
Deep Learning-based Region-based semantic segmentation (R-CNN)

Fully convolutional Network-based semantic segmentaion [93], 2015
Weakly supervised semantic segmentation

Methodology I: Image Segmentation by Thresholding

The thresholding method is the simplest and most intuitive method for image segmentation.

Based on a well-designed threshold value, this method binarizes the pixels of continuous

single level or multiple levels, such as grayscale and RGB images. The key of such methods

is identifying the threshold value(s). The overview of several popular algorithms using the

thresholding ideas is shown on the top of Table 4.2. Recently, more thresholding-based
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algorithms are developed towards the direction of multi-dimensional fuzzy rule-based non-

linear thresholds.

Otsu’s method is widely used to perform automatic image segmentation with global

optimal threshold [94]. The output of this algorithm is a single intensity threshold that

separates pixels into two classes: foreground and background. This threshold is determined

by minimizing intra-class intensity variance, defined as a weighted sum of variances of the

two classes, which is equivalent to maximizing inter-class variance. Otsu’s method is a

one-dimensional discrete analog of Fisher’s Discriminant Analysis. It is related to the Jenks

optimization method, and equivalent to a globally optimal k-means[95] performed on the

intensity histogram. The extension to multi-level thresholding as described in the original

paper [94] and computationally efficient implementations have since been proposed [96].

Besides Otsu’s methods, there are also many choices for finding optimal global thresh-

old values. Isodata thresholding is a way to automatically find a threshold for a given gray

value image. The thresholding t is a value on grayscale such that t is halfway in between

the mean of all pixels less than t and the mean of all pixels great than t: t = mL(t)+mH(t)
2

.

In Li thresholding, the objective is minimizing the cross-entropy between the foreground

and the foreground mean, and the background and the background mean. It would give the

best threshold in most situations. Mean thresholding, as its name suggests, is simply taking

the mean grayscale value as the threshold. The minimum algorithm takes a histogram of

the image and smooths it repeatedly until there are only two peaks in the histogram, then

the minimum in between is the threshold value. The triangle method constructs a line be-

tween the histogram peak and the farthest end of the histogram. The threshold is the point

of maximum distance between the line and the histogram. Yen implements thresholding

based on a maximum correlation criterion as a more computationally efficient alternative

to entropy measures.

There also exist some local thresholding algorithms. If the image background is rela-

tively uniform, then you can use a global threshold value as Otsu’s method do. However,
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if there is a large variation in the background intensity, local thresholding, also known as

adaptive or dynamic thresholding, may produce better results. Note that local is much

slower than global thresholding in computation. The idea behind adaptive thresholding is

simple. For example, if we binarize an image using the threshold adaptive function in

Python, which calculates thresholds in regions of size block size surrounding each pixel

(i.e. local neighborhoods). Each threshold value is the weighted mean of the local neigh-

borhood minus an offset value.

Methodology II: Image Segmentation by Pixel-Wise Clustering

Another widely used methodology for implementing image segmentation is clustering at

the pixel level, which we called pixel-wise clustering. With the widespread application of

machine learning algorithms, it is natural to group pixels using the clustering algorithm, a

methodology of unsupervised learning which don’t require the true class label but group

data points into groups based on some properties like distance or similarity.

In pixel-wise clustering, pixels sharing certain features, such as color, intensity, and

texture, are grouped together and represented as a single entity called superpixel. Ren and

Malik [71] introduced the superpixel-based algorithms, where superpixels group pixels

similar in color and other low-level properties such as location coordinate. By involving

location information, the spatial correlation between pixels is toke into consideration.

The contribution of involving superpixels is significant since it addresses two prob-

lems inherent to the processing of digital images: firstly, pixels are merely a result of

discretization; and secondly, the high number of pixels in large images limit the computa-

tional feasibility of many algorithms. By grouping pixels that perceptually belong together,

superpixels heavily reduce the number of primitives for subsequent algorithms [97].

In Table 4.2, the popular superpixel-based image segmentation algorithms are summa-

rized with the help of an overview from David et al. [97]. In what follows, we’ll elaborate

on several typical pixel-wise clustering algorithms for image segmentation.

89



1. K-means [83]

K-means is one of the most widely used clustering algorithms in the data science

and machine learning area. Given a set of observations, k-means clustering aims to

partition the n observations into k(≤ n) sets so as to minimize the within-cluster

sum of squares, i.e. variance. The key idea behind it can be expressed in its imple-

mentation process, a two-step iterative process: after randomly picking k centroids

as group centers, (1) Each data point is classified into the group which has the closest

centroid to it. (2) Based on these classified points, update the centroid for each group

by taking the mean of all the members in the group. Repeat (1) and (2) for a fixed

number of iterations (maximum iterations) or until the group centers don’t change

much between iterations (predefined tolerance). Note that if we modify step (2) a

little bit by choosing real data points as centers (medoids or exemplars) rather than

the group means, it becomes a new algorithm, the k-medoids algorithm.

K-Means has the advantage that it is computationally efficient as we only compute

the distances between points and group centers. Also, it is almost sure to converge

to a locally optimal solution. On the other hand, K-Means has a couple of disadvan-

tages. For example, the number of clusters k is an hyper parameter that determines

the clustering performance and is not trivial to specify. Also, it can reach a global

optimum after several random starts.

2. Mean-Shift Clustering [64]

Mean-shift is a popular non-parametric clustering algorithm based on the idea of

associating each data point to a mode of the underlying probability density function.

It is a sliding window-based algorithm aiming at finding dense areas of data points.

Assume a circular window centered at a random point C with a prescribed radius r is

the kernel. The mean shift algorithm shifts this kernel iteratively to a higher density

region until convergence, just like climbing hills. At every iteration, the kernel is
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shifted to the centroid or the mean of the points within it.

The Mean Shift takes usually 3 inputs: (i) a well-defined distance function for mea-

suring distances between pixels, such as Euclidean distance and Manhattan distance;

(ii) a radius. All pixels within this radius (measured according to the above distance)

will be accounted for in the calculation; and (iii) a value difference. From all pixels

inside radius r, we will take only those whose values are within this difference for

calculating the mean.

The simple clustering criterion has appealing advantages compared to other tradi-

tional clustering techniques: the structure of the clusters may be rather arbitrary and

the number of clusters does not need to be known in advance as mean-shift automati-

cally discover this. Also, being able to converge at the points of maximum density is

quite desirable in real-world applications. The drawback is the selection of window

size/radius r, which can be non-trivial.

3. Simple Linear Iterative Clustering (SLIC) [82]

The SLIC algorithm can be seen as k-means in the five-dimensional (5D) space of

color information (defined by the L, a, b values of the CIELAB colorspace) and

image location (x, y coordinates). SLIC effectively generates compact and nearly

uniform superpixels by clustering pixels based on their color similarity and proximity

in the image plane, a combined 5D space.

The SLIC is the state-of-the-art algorithm to segment superpixels without a high

requirement computational power due to the simplicity of the k-means clustering

mechanism. Meanwhile, it will encounter the drawbacks associated with the k-means

clustering algorithm. In the implementation, it takes 2 input parameters mainly: (i)

the compactness parameter trades off color-similarity and proximity, as in the case

of Quickshift, while (ii) the n segments chooses the number of centers for K-means.
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4. Felzenswalb’ method [72]

Felzenszwalb’s method is a fast 2D image segmentation algorithm that is popular in

the computer vision community. It is an efficient graph-based segmentation method

developed with the motivation to speed up the segmentation of large images. Graph-

based image segmentation accomplishes this by splitting images into tiles that are

processed independently. The connectivity information inherent to graphs allows

performing independent work on parts of the original image, and reconnecting them

to yield an exact result as if processing had occurred globally.

The Felzenszwalb method is developed based on Kruskal’s minimum spanning tree

(MST) algorithm. Edges are considered in increasing order of weight; their endpoint

pixels are merged into a region if this doesn’t cause a cycle in the graph, and if the

pixels are ’similar’ to the existing regions’ pixels. Detecting cycles is possible in

near-constant time with the aid of a disjoint-set data structure. Pixel similarity is

judged by a heuristic, which compares the weight to a per-segment threshold. The

algorithm outputs multiple disjunct MSTs, i.e. a forest, and each tree corresponds to

a segment. The complexity of the algorithm is quasi-linear because sorting edges is

possible in linear time via counting sort.

In the implementation, the algorithm has a single scale parameter that influences the

segment size. The actual size and number of segments can vary greatly, depending

on local contrast.

5. Quickshift method [65]

Quickshift is a relatively recent 2D image segmentation algorithm, based on an ap-

proximation of kernelized mean-shift. Like medoid shift, quick shift operates in

non-Euclidean spaces in a straightforward manner. Therefore it belongs to the fam-

ily of local mode-seeking algorithms and is applied to the 5D space consisting of

color information and image location, similar to the SLIC method. One of the bene-
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fits of Quickshift is that it actually computes a hierarchical segmentation on multiple

scales simultaneously.

In the implementation, Quickshift has two main parameters: σ controls the scale of

the local density approximation, max dist selects a level in the hierarchical segmen-

tation that is produced. There is also a trade-off between distance in color-space and

distance in image-space, given by ratio.

6. Compact watershed [98]

The Compact Watershed is based on Seeded Watershed segmentation but creates uni-

formly shaped superpixels similar to SLIC. The watershed transform is commonly

used as a starting point for many segmentation algorithms. However, without a ju-

dicious choice of seeds, it can produce very uneven fragment sizes, which can be

difficult to deal with in downstream analyses. The compact watershed transform

remedies this by favoring seeds that are close to the pixel being considered.

It is a marker-based algorithm. Starting from user-defined markers, the watershed

algorithm treats pixels values as a local topography (elevation). The algorithm floods

basins from the markers until basins attributed to different markers meet on water-

shed lines. In many cases, markers are chosen as the local minima of the image, from

which basins are flooded.

In the implementation, the user will specify which valley points are to be merged

and which are not, which makes it interactive but not automatic. The “marker-based”

means labeling where the region is a foreground or a background and gives different

labels for known objects. We label the region which is sure of being the foreground

with one color or intensity, and label the apparent background with another color or

intensity. Then, label the indeterminate region with 0. That is the so-called marker.

After that, we apply the watershed algorithm. Then the markers will be updated with

the labels we gave, and the boundaries of objects will have a value of −1.
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Besides these typical image segmentation algorithms, there is a bunch of popular clus-

tering methods that will not be elaborated on in this study. Their performance is shown

in Figure 4.4. In this figure, every column corresponds to the clustering performance of a

certain clustering method, and each color indicates a predicted cluster. From this figure,

we can see that the performance of a clustering method is closely associated with the data

structure/underlying shape. The data structure and density profile should be determining

factors in deciding the clustering mechanism.

Figure 4.4: Performance comparison of several popular clustering algorithms on 5 datasets
with different structure/shape [99]. Every column corresponds to a certain clustering
method, and each color indicates a predicted cluster.

Methodology III: Image Segmentation by Deep Learning

Another fantastic way to do image segmentation is the deep convolutional network (CNN),

which is often referred to as semantic segmentation or semantic image segmentation [100,

93]. Generally, a typical semantic segmentation architecture can be roughly thought of as

the combination of an encoder network and a decoder network. The encoder is usually a
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pre-trained classification network like VGG/ResNet followed by a decoder network. The

task of the decoder is to semantically project the discriminative features (lower resolution)

learned by the encoder onto the pixel space (higher resolution) to get a dense classification.

Although very attractive, deep learning methods usually require a huge amount of data

for training, and most of the existing image segmentation methods with deep learning are

supervised learning which requires the true label of the segmentation. Therefore, in this

project, deep learning will not be implemented on our CFRP data.

4.2.3 Baseline Approach - Superpixels Clustering Methodology

In Section 4.2.2, it is was emphasized that the image segmentation result highly depends

on the data structure, and people should choose the proper algorithm according to the prop-

erties of the actual data set. For our CFRP image data, the problem associated with these

segmentation methods is the number of label types. Usually, the existing methods segment

the image into a lot of different regions with different labels in the mask. In implementa-

tions, often the cases, the number of segmentation is equaled to the type or level of labels

with a one-to-one relationship. Roughly speaking, the more the regions segmented, the

finer the boundary identification. However, in our cases, we expect fine boundaries yet

only two types of labels, pink adhesive film or black CFRP substrate.

With such specific requirements, we proposed to add another layer of clustering over

the segmented superpixels to binarize the labels of superpixels into pink or black. The

proposed superpixels clustering methodology is consists of the following two steps: (i)

segment an image using the superpixel-based image segmentation techniques to form over-

segmentations, and then (ii) group the superpixels via a clustering algorithm, such as the

simplest k-means, into 2 groups according to the similarity of those superpixels.

Note that the second step is working on the superpixels rather than single pixels. To

represent each superpixel, the intuitive choice is the average value of pixel members therein

that superpixel, the weighted average can also be considered based on the distance from
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each pixel member to the centroid.

In the implementation, the proposed baseline approach, superpixel clustering method-

ology, is very flexible: the choice of superpixels-based image segmentation algorithm in

step 1 and the final clustering algorithm in step 2 can be any proper combinations. For

experiments in Section 4.4, the superpixels with clear and rational boundaries are picked to

continue step 2 and are clustered into two groups.

4.3 Proposed Method – RG-filter

In this section, based on the visual observation and during image data collection and ex-

ploratory data analysis, a novel yet simple image segmentation method is proposed coming

out of the adaptive thresholding mechanism. It is called RG-filter which labels pixels ac-

cording to the relative magnitude of different color components, red (R) component and

green (G) component, in a thresholding style.

Recall that thresholding is used to create a binary image from a grayscale image. It is the

simplest way to segment objects from a background. Thresholding algorithms implemented

in scikit image in Python can be separated into two categories:

1. Histogram-based. The histogram of the pixels’ intensity is used and certain assump-

tions are made on the properties of this histogram.

2. Local. Only the neighboring pixels are used to process a pixel. These algorithms

often require more computation time.

The key difference between those thresholding methods is the way of identifying the

threshold value. However, as a dimension deduction process, the information in colorful

images will lose a lot of information when transferred to the grayscale images.

To overcome the color information loss during image processing and maximize the

available information, the RGB components are observed closely during image data collec-

tion. When taking photos on the CFRP panels, the camera can provide a real-time strength
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profile of each light component in a given location specified by a probe. It is observed that

when the probe is put on the apparent pink adhesive film region, the R component usually

has a larger value than the G component. While on the obvious black CFRP substrate re-

gion, quite the opposite. The blue component has no clear tendency over different regions.

Thus, the following pixel labeling rule is proposed based on the relative value between R

and G components:

X∗ =


pink(“1”) if αX[R] + β > X[G],

black(“0”) if αX[R] + β ≤ X[G]
(4.1)

where X∗ is the binary label of a pixel, either pink (“1”) or black (“0”), X[R] and X[G]

are the R and G component at that pixel respectively. The tuning parameters, multiplicative

coefficient α and offset β, are used to adjust the filter according to the environment, such as

lighting conditions. For example, when α = 1 and β = 0, the relationship will be simply

comparing the raw values of R and G components.

In real applications, the tuning parameters, multiplicative coefficient α and offset β, can

be adjusted according to visual observation or be optimized automatically if the true pixel

label is available for training.

4.4 Case Study – Experiments on CFRP Images

In this section, to compare the performance of the existing image segmentation methods,

baseline method, and proposed method, image segmentation experiments are conducted on

the example raw image in Figure 4.5.

In this experiment, pixel labeling is done first via image segmentation such as existing

algorithms, baseline method, or the proposed method, and then, binary pixel pairing is con-

ducted to identify the failure mode according to the aforementioned rule in Table 4.1. In

detail, the pixel on both faces of the specimen pair will be labeled as either pink adhesive

film or black CFRP substrate. Recall that there are 3 failure modes for the adhesive bond-
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ing on the composite material, adherent (substrate) failure, cohesive failure, and adhesive

failure. The intuitive visual presentation of the 3 failure modes on the specimen pairs is

black to black, pink to pink, and black to pink (or pink to black). After identifying the

failure mode of each pixel pair location, the failure mode distribution and proportions will

be identified accordingly.

Figure 4.5: Raw image data used as an example for image segmentation experiments.

4.4.1 Image Segmentation Experiments on Existing Methods

Figure 4.6 shows the pixel-labeling results of several popular global thresholding methods,

including the Isodata thresholding, Li thresholding, Mean thresholding, Minimum error

thresholding, Otsu’s thresholding, Triangle thresholding, and Yen thresholding. For this

type of method, the key is identifying the threshold value. The local thresholding method

is also conducted on our image data. Figure 4.7 shows the comparison of pixel-labeling

results of Otsu’s global thresholding and adaptive thresholding/local thresholding.

From Figure 4.6 and Figure 4.7, it can be seen that those popular thresholding methods

cannot segment our image data properly, but the brightness dominates the segmentation,

no matter global thresholds or local thresholds. The reason could be the information loss

during the compression from RGB color images to grayscale images. Grayscale is a range

of monochromatic shades from black to white, which represents the brightness of the pixel
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Figure 4.6: Comparison of pixel-labeling results of several global thresholding methods,
Isodata, Li, Mean, Minimum error, Otsu, Triangle, and Yen.

by a single channel without color information. Since those thresholding methods usually

work on 1D grayscale data, the loss of color information during compressions, such as

the relative values of R, G, and B channels is a common issue. Due to the unsatisfactory

performance on pixel labeling, these thresholding algorithms are not moved forward to the

binary pixel-pairing step.

Figure 4.8 shows the pixel-labeling results of the simple K-means algorithm with K =

2. From the figure to the bottom, it can be seen that due to the strong reflection, the brighter
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Figure 4.7: Pixel-labeling results of the Otsu’s global thresholding and adaptive threshold-
ing/local thresholding.

Figure 4.8: Pixel-labeling result of simple K-means algorithm with K = 2.

pixels in the bottom left region are classified into different groups dominated by the texture

blocks of carbon fiber. With the naked eye, we can see that though the brightness in that

region varies apparently with the texture, that region is actually homogeneous CFRP sub-

strate with little adhesive film. Also, the K-means algorithm is implemented to 3D RGB
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data without location information. Like the drawback of many image processing algo-

rithms, the matrix-like image data will be expanded and tiled into a multiple-dimensional

band in the preprocessing, where the location information is lost. In summary, the image

segmentation results of K-means are not satisfying due to the domination of brightness

caused by strong reflection and the loss of location information.

Figure 4.9 shows the pixel-labeling results of 4 popular algorithms: Felzenszwalb’s,

SLIC, Quickshift, and Compact Watershed. From the segmentation results, it can be seen

that the Quickshift method and Compact Watershed fail to segment our image data ratio-

nally. While Felzenswalb’s method and SLIC method seem to identify the region bound-

aries pretty well. Even so, as aforementioned, the problem associated with these segmenta-

tion methods is that they segment the image into many different regions with distinct labels.

Roughly speaking, the more the segmentation, the finer the detected boundary. While in

our cases, we must relabel those superpixels with binary labels, pink adhesive film, or black

CFRP substrate.

Figure 4.9: Pixel-labeling results of 4 popular algorithms: Felzenszwalb’s method, SLIC,
Quickshift, and Compact Watershed.

This is also the motivation for proposing the baseline method, the superpixel clustering

method, where an extra step clustering is conducted to binarize superpixels. Based on the
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pixel-labeling performance, the superpixels segmented by Felzenswalb’s method and the

SLIC method are moved forward to the step of superpixels binarization.

Figure 4.10: Pixel-labeling results of the baseline approach (figures to the bottom), where
the superpixels are obtained from Felzenszwalbs’s method and SLIC method (figures to the
top), and the clustering algorithm in step is the k-means clustering with K = 2.

Figure 4.10 shows the performance of the proposed baseline approach, superpixel clus-

tering methodology. The figures on the top row show superpixels obtained from Felzen-

szwalbs’s method and the SLIC method. In the second step, the K-means algorithm with

K = 2 is adopted to binarize these superpixels. The figures on the bottom row show the bi-

narized superpixels, also the final pixel-labeling results. Unfortunately, in the second step,

the binarized superpixels failed to represent the pink adhesive and black CFRP substrate

satisfyingly, where the brightness rather than the color dominates the segmentation again.

The potential causes of the poor performance of the baseline approach can be multiple.

First, the strong reflection in data collection, which is similar to the thresholding-based

pixel labeling algorithms which deal with grayscale images. Second, though in the second

step, the K-means algorithm works directly on the RGB color superpixels, each superpixel

is represented by the average value of pixel members inside it. This compresses the infor-

mation of pixels inside a superpixel. As a result, the brightness, a linear combination of R,

G, and B components, also has the chance to dominates over the clustering.
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4.4.2 Image Segmentation Experiments on Proposed method – GR-filter

Figure 4.11: Pixel-labeling results of the proposed RG-filter with different coefficients:
α = {0.6, 0.8, 1.0, 1.2}.

Figure 4.11 shows the pixel-labeling results of the proposed RG-filter with a sequence

of different coefficients: α = {0.6, 0.8, 1.0, 1.2}. On the binarized images, the white pixels

correspond to the pink adhesive film on the original image, and the black pixels correspond

to the black CFRP substrate on the original image. It can be seen that with the coefficient

increasing, the algorithm tends to label more pixels as white (pink adhesive film). Among

them, when α = 0.8, the pixel-labeling results coincide with the visual observation on the

original raw image well. For the first time in this study, the segmentation results are not

dominated by brightness but color information. The reason for the satisfying performance

is straightforward: unlike working on compressed grayscale data, the proposed algorithm

labels pixels directly based on the RGB information where the relative magnitude of dif-

ferent color channels is taken into consideration.
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Figure 4.12: Final results of binary pixel-pairing: failure mode distribution on the recovered
CFRP pairs (A face flip up). The three colors indicate 3 failure modes respectively.

Figure 4.12 shows the final results of the image segmentation when using the optimal

coefficient value, α = 0.8. Recall that after labeling each pixel on two faces from CFRP

pairs originally bonded together, we have to pair these binary pixels by flipping one face

to match the other face according to the rule aforementioned. Therefore, on the bottom

figure in Figure 4.12, the black region corresponds to the black-to-black pixel pairs which

represent the adherent (substrate) failure. The white region corresponds to the white-to-

white pixel pairs which represent the cohesive failure. And the gray region corresponds to

the whit-to-black pixel pairs which indicate the adhesive failure. Besides, the proportion

of the 3 failure modes are adherent : adhesive : cohesive = 0.535 : 0.410 : 0.054.

As aforementioned, the failure mode distribution and proportions are very crucial in com-

posite material analysis. Different failure modes indicate different weak links during the

bonding of composite material, which shed some light on improving the bonding quality

of composite material.
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4.5 Conclusion and Discussion

In this study, a simple yet very effective unsupervised image segmentation method, called

RG-filter, is proposed to segment engineering images with no significant contrast between

foreground and background for a material testing application. The project is to find the

failure mode distribution and proportion over CFRP specimens after DCB testing by im-

plementing unsupervised image segmentation. With the challenge of limited data size,

imperfect data quality, unreachable binary true label, we first proposed a baseline method

called the superpixels clustering algorithm where we add another layer of clustering over

the segmented superpixels to binarize their labels. Then, we developed the RG-filter which

thresholding the pixels according to the relative magnitude of the R channel and G channel

of the RGB image. To test the performance of the existing image segmentation and pro-

posed algorithm on our CFRP image data, we conducted a series of experiments over an

example specimen. Comparing all the pixel labeling results, the proposed RG-filter out-

performs the others to be the most recommended one. In addition, it is super intuitive and

efficient in computation. The proposed RG-filter can help to analyze the failure mode dis-

tribution and proportion on the surface of composite material after destructive DCB testing.

The result can help engineers better understand the weak link during the bonding of com-

posite materials, which may provide guidance on how to improve the joining of structures

during aircraft maintenance. Also, if we can predict it from other variables, the destructive

DCB testing can be avoided, a lot of time and money can be saved.

The proposed RG-filter is suitable for segment images where the foreground and back-

ground have no significant contrast, and the type of segmentation labels is two. If there

are more than 2 types of labels required, multiple filters can be developed according to the

characteristic of the image data. However, with the number of label types increase, identi-

fying the filter can be complicated, this is the limitation of the proposed RG-filter. In this

case, other image segmentation techniques can be involved, see Table 4.2.
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Another limitation of the proposed RG-filter is that the coefficient and offset need to

be adjusted manually according to the specialist’s visual observation currently since the

true label is not available. In the future, the parameter tuning of the proposed RG-filter

algorithm can be improved by formulating some optimization problems. Also, for the

baseline approach, superpixel clustering algorithm, the second step can be modified to

improve the clustering performance, such as involving the affinity propagation algorithm.
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

5.1 Summary of Original Contributions

This dissertation contributes to the area of information extraction from messy data in real-

words applications, especially when the data is functional data with multiple uncertainties,

incomplete data, and unlabeled images. Systematic methodologies were developed for

functional effect quantification on functional noisy data, active learning style sequential

decision-making strategy for incomplete clinical data, and unsupervised image segmenta-

tion for surface characterization in composite materials. This is an interdisciplinary re-

search area. We have developed novel methodologies by integrating advanced statistics,

machine learning and engineering domain knowledge. The original contributions of this

dissertation include the following aspects:

In Chapter 2, a general two-step procedure is proposed to quantify the effects of a

certain treatment on the spectral signals subjecting to multiple uncertainties for an engi-

neering application which involves materials treatment for aircraft maintenance. With this

procedure, two types of uncertainties in the spectral signals, offset shift and multiplicative

error, are carefully addressed. In the two-step procedure, a novel optimization problem

is formulated to estimate the representative template spectrum first, and then another op-

timization problem is formulated to obtain the pattern of modification g that reveals how

the treatment affects the shape of the spectral signal, as well as a vector δ that describes

the degree of change caused by different treatment magnitudes. The effectiveness of the

proposed method is validated in a simulation study. Furtherly, in a real case study, the

proposed method is used to investigate the effect of plasma exposure on the FTIR spectra.

As a result, the proposed method effectively identifies the pattern of modification under
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uncertainties in the manufacturing environment, which matches the knowledge of the af-

fected chemical components by the plasma treatment. And the recovered magnitude of

modification provides guidance in selecting the control parameter of the plasma treatment.

In Chapter 3, an active learning-based multistage sequential decision-making model is

proposed to assist doctors and patients to make cost-effective treatment recommendations

when some clinical data are more expensive or time-consuming to collect than other lab-

oratory data. The main idea is to formulate the incomplete clinical data into a multistage

decision-making model where the doctors can make diagnostics decisions sequentially in

these stages, and actively collect only the necessary examination data from certain pa-

tients rather than all. There are two novelties in estimating parameters in the proposed

model. First, unlike the existing ordinal logistic regression model which only models a

single stage, a multistage model is built by maximizing the joint likelihood function for all

samples in all stages. Second, considering that the data in different stages are nested in a

cumulative way, it is assumed that the coefficients for common features in different stages

are invariant. Compared with the baseline approach that models each stage individually

and independently, the proposed multistage model with common coefficients assumption

has significant advantages. It reduces the number of variables to estimate significantly, im-

proves the computational efficiency, and makes the doctors feel intuitive by assuming that

newly added features will not affect the weights of existing ones. In a simulation study, the

relative efficiency of the proposed method with regards to the baseline approach is 162%

to 1,938%, proving its efficiency and effectiveness soundly. Then, in a real case study, the

proposed method estimates all parameters very efficiently and reasonably.

In Chapter 4, a simple yet very effective unsupervised image segmentation method,

called RG-filter, is proposed to segment engineering images with no significant contrast

between foreground and background for a material testing application. With the challenge

of limited data size, imperfect data quality, unreachable binary true label, we developed

the RG-filter which thresholding the pixels according to the relative magnitude of the R
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channel and G channel of the RGB image. To test the performance of the existing image

segmentation and proposed algorithm on our CFRP image data, we conducted a series

of experiments over an example specimen. Comparing all the pixel labeling results, the

proposed RG-filter outperforms the others to be the most recommended one. in addition, it

is super intuitive and efficient in computation. The proposed RG-filter can help to analyze

the failure mode distribution and proportion on the surface of composite material after

destructive DCB testing. The result can help engineers better understand the weak link

during the bonding of composite materials, which may provide guidance on how to improve

the joining of structures during aircraft maintenance. Also, it can be crucial data when

modeling together with some downstream data as a whole. And if we can predict it from

other variables, the destructive DCB testing can be avoided, a lot of time and money can be

saved.

The proposed two-step functional effect quantification technique is suitable and promis-

ing to quantify the effect of a large class of surface treatments apart from the plasma treat-

ment. The pattern of modification g reveals the general effect pattern of a certain surface

treatment in a range of treatment magnitude, providing a new way to understand the in-

trinsic reasons behind the improvement of surface quality. Recall that the surface treat-

ment methods have been well-developed, including thermal treatment, wet chemical or

electrochemical oxidation, plasma treatment, gas-phase oxidation, coating treatment, etc.,

applying and extending this method to solve more problems in the manufacturing industry

is a direction for our further research. Also, the method is applicable to analyze the data

obtained from a wide range of spectral measurements, including ultraviolet-visible spec-

troscopy (UV-Vis) [38], X-ray diffraction (XRD) [39], Raman spectroscopy [40, 41] etc.,

when the background noise leads to uncertain offset and the uncertain signal level results

in the multiplicative error. Typically, these uncertainties are of greater magnitude in real

manufacturing environments than in lab conditions, due to the inexperienced operators and

the uncontrolled surroundings. Therefore, the analytic methodology proposed in this article
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also helps to broaden the application scope of portable spectrometers, such as the handheld

FTIR devices.

The proposed multistage decision-making model is also applicable to a broad range

of decision-making scenarios beyond the diagnosis process in the healthcare area. The

proposed algorithm adopts the active learning idea, which drives the decision-maker to se-

quentially collect the necessary information only rather all collect all possible information

at once. This is definitely energy-saving, time-saving, and economically effective.

The proposed unsupervised image segmentation algorithm, RG-filter, is crucial to the

downstream work. After figuring out the distribution and proportion of failure models on

the CFRP specimen, people can better understand the weak link during the bonding of

composite material, which may give some clue on improving the joining and maintenance

on aircraft. More importantly, the segmentation results can be crucial data when modeling

together with some downstream data as a whole. Once we can predict the failure mode pro-

portion and distribution directly from some surface characterizing variables, the expensive,

time-consuming, and destructive DCB test can be avoided, and naturally, a huge amount of

time and money will be saved.

5.2 Future Research

Below is a list of important topics that are based on our research in this dissertation and

worth further investigation:

• New methodologies are needed under the scenario when the pattern of modification

g is different for distinct levels of surface treatment. Note that the proposed two-

step procedure for quantifying the functional effect on noisy functional spectra study

assumes that the pattern of modification g is identical under all levels of treatment.To

saftisy the future goal, we can modify the represenation of treatment effect from δig

to δigi where gi is the pattern of modification at treatment level i. The algorithms for

parameter estimation should be developed accordingly.
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• Extend the proposed multistage decision-making model to satisfy more real-world

cases with special requirements. Note that the proposed model didn’t involve the es-

timation of overall clinical relevance cost, didn’t customize the penalty for different

types of misclassification, and cannot enable variable selection. In the future, we can

modify our proposed method in multiple ways to satisfy these special needs. For ex-

ample, in some the cases, the clinical relevance cost, such as the examination-related

financial cost and emotional cost caused by patients’ unwillingness, are specified

and of interest. In this case, the objective can be minimizing all the costs, including

negative likelihood and clinical relevance cost. Also, in some cases, for the doctor’s

decision-making in the real world, the penalty for different types of mistakes can be

case-by-case and vary a lot. For example, false-positive detection may lead to un-

necessary invasive procedures or just excess care, false-negative detection may result

in missing life-saving chances or just a longer diagnosing process. For such cases,

we can modify the objective function by specifying the weights of penalties on dif-

ferent types of miss classification. Besides, we can add L1 regularization term to the

objective function to realize the variable selection.

• Automize the filter parameter optimization and enable multiple-level filtering. Note

that the proposed RG-filter is specially designed for the CFRP images with binary

labels and no significant contrast between foreground and background. And the co-

efficient and offset parameters for the filter are chosen based on visual observation.

In the future, we can artificially label some figures as ground truth to train a super-

vised filter where the parameters can be solved over optimization problems. Also,

multiple level filters can be explored in a proper image dataset.

From the point of view of data analytics methodologies, my future research involves the

development of engineering-driven data analytics methodologies for information extrac-

tion. The high-dimensional, incomplete, heterogeneous, unstructured data and diversity of

real-world specific requirements make this a rich topic with numerous potential avenues of
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investigation. In particular, my research agenda is not limited to develop pure data-driven

models or machine learning techniques but also encompasses raw data preprocessing and

domain knowledge. I would like to continue my research to develop a broader range of

information extraction methodologies to decode the information buried in noise, tackle the

special needs of unstructured data, and let the data tell the story.
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