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Summary

Videos captured from wearable cameras, known as egocentric videos, create a con-

tinuous record of human daily visual experience, and thereby offer a new perspective for

human activity understanding. Importantly, egocentric video aligns gaze, embodied move-

ment, and action in the same “first-person” coordinate system. The rich egocentric cues

reflect the attended scene context of an action, and thereby provide novel means for rea-

soning human daily routines.

In my thesis work, I describe my efforts on developing novel computational models that

learn the embodied egocentric attention for the automatic analysis of egocentric actions.

First, I introduce a probabilistic model for learning gaze and actions in egocentric video

and further demonstrate that attention can serve as a robust tool for learning motion-aware

video representation. Second, I develop a novel deep model to address the challenging

problem of jointly recognizing and localizing actions of a mobile user on a known 3D map

from egocentric videos. Third, I present a novel deep latent variable model that makes

use of human intentional body movement (motor attention) as a key representation for

forecasting human-object interaction in egocentric video. Finally, I propose a novel task of

future hand segmentation from egocentric videos, and show how explicitly modeling the

future head motion can facilitate future hand movement forecasting.

xv



CHAPTER 1

INTRODUCTION

Video captured from a “first-person” egocentric point of view has emerged to offer a new

perspective for human activity understanding. The automatic analysis of egocentric video

is often referred to as egocentric vision. Recently, the fast commercialization of wear-

able cameras and people’s growing interest in sharing their daily life on social media have

enabled the collection of large-scale egocentric video dataset, and thereby facilitate the

research in egocentric vision. Moreover, egocentric activity understanding has become a

prevailing research topic, because of its potential application on Augmented Reality (AR)

and Robotics. For example, the AR experience can benefit from an accurate understanding

of the user’s perception, attention, and actions; a mobile robot’s efficiency can be improved

by imitating how humans explore and exploit the environment from egocentric videos.

Besides the practical applications, egocentric video has several unique properties, which

point to exciting research directions. Importantly, egocentric video enables the recording

of human daily visual experience while the camera wearer interacts with the world, and

thereby couples visual perception with actions. Notably, the camera viewpoint is guided by

the head movement of the camera wearer and is thus driven by visual attention. Therefore,

the visual signals in the eyes of the “beholder” reveal how the camera wearer attends to the

scene context during daily activities. In addition, the egocentric video reflects the camera

wearer’s presence in the 3D world, which links actions with the surrounding 3D spatial

scene context. Furthermore, the intentional body movements provide powerful cues for

predicting future actions from egocentric videos.

The motor behaviors incorporated in the egocentric video serve as novel tools for under-

standing how humans interact with the environment. The primary goal of my thesis work

is to model egocentric representations that attend to the meaningful scene context for un-

1



derstanding egocentric actions. Computational models of attention mechanism have been

developed for different tasks by different communities. The Transformer architecture [1]

learns to implicitly identify important features of the input data via scaled dot-product at-

tention units. Another body of literature [2, 3] seeks to develop visual attention models

that predict gaze behavior as developed in psychology research. The egocentric attention

representation investigated in my thesis is not limited to the gaze data. We argue that atten-

tion under the egocentric vision paradigm is embodied: Apart from the gaze behavior, the

sensory-motor behavior in the form of head and hand movements also reflect how human

attends to the scene context during daily actions.

Previous works [4, 5, 6] explored egocentric cues such as hand masks, gaze measure-

ments, and object features in designing computational models for recognizing egocentric

actions. A weakness of these approaches is that additional egocentric cues are needed for

the model to make an inference. In order to address this weakness, we factorize the ego-

centric attention as a latent representation, so that the model can automatically discover the

embodied egocentric cues for action understanding from only video frames. Furthermore,

prior egocentric works have primarily considered the attention mechanism as a saliency

map defined on the image plane. In my thesis work, I further explore how the attended 3D

environment context can facilitate action recognition and how embodied motor attention

can characterize the future representation for action anticipation. Going beyond predict-

ing the action category, I also examine the novel problem of predicting the detailed shape

of future hand movements during human daily routines by explicitly modeling how visual

attention drives intentional head movements.

1.1 Thesis Statement

Embodied egocentric attention provides an effective tool for addressing the tasks of action

recognition, localization, and anticipation, and hand motion forecasting.
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1.2 Thesis Outline

My thesis work can be organized into four main topics: Attention and Actions in Ego-

centric Video (Chapter 3), Egocentric Activity Recognition and 3D Localization (Chapter

4), Human-Object Interaction Anticipation in Egocentric Video (Chapter 5), Future Hand

Segmentation in Egocentric Video (Chapter 6).

1.2.1 Attention and Actions in Egocentric Video

The starting point of my dissertation is to develop a visual attention model for recogniz-

ing egocentric actions. In this chapter, I first address the task of joint gaze estimation and

action recognition in egocentric video. Our method describes the participant’s gaze as a

probabilistic variable and models its distribution using stochastic sampling units in a deep

network, and uses sampled gaze attention map to guide the aggregation of visual features

in action recognition, thereby providing coupling between gaze and action. Furthermore, I

demonstrate how to leverage the predicted attention map as a vehicle to distill the learned

motion representation from a reference flow network to a student RGB network. Our at-

tention distillation method thereby addresses the challenging problem of learning motion

representations from only RGB frames.

This work demonstrates the benefits of using probabilistic units to account for the un-

certainty within the supervisory signal of eye gaze data, and thereby significantly improves

the performance of the joint model of gaze and actions. Moreover, the attention mechanism

provides a robust tool for learning motion-sensitive representation from both exocentric and

egocentric videos. More details of this work are presented in Chapter 3.

1.2.2 Egocentric Activity Recognition and 3D Localization

The second problem addressed in my thesis work is how to leverage the attended surround-

ing 3D scene context to jointly recognize and localize the actions of a mobile user on a
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known 3D map from egocentric videos. To this end, I propose a novel two-stream deep

probabilistic model. Our model takes a Hierarchical Volumetric Representation (HVR) of

the 3D environment and an egocentric video as inputs, infers the 3D action location as a

latent variable, and recognizes the action based on the video and 3D contextual cues sur-

rounding its potential locations.

Our method demonstrates strong results on both action recognition and 3D action lo-

calization across seen and unseen environments. We believe our work points to an excit-

ing research direction at the intersection of egocentric vision and 3D scene understanding.

More details of this work are presented in Chapter 4.

1.2.3 Human-Object Interaction Anticipation in Egocentric Video

Besides action recognition, my thesis work also studies the challenging problem of action

anticipation by factorizing hand movements as attentional cues. We observe that the in-

tentional hand movement reveals critical information about the future activity. Motivated

by this observation, I adopt intentional hand movement as a feature representation, and

propose a novel deep network that jointly models and predicts the egocentric hand motion,

interaction hotspots, and future action. Specifically, we consider the future hand motion

as the motor attention, and use the predicted motor attention to select the discriminative

spatial-temporal visual features for predicting actions and interaction hotspots.

Through extensive experiments, I demonstrate that motor attention can significantly

benefit action anticipation performance. Moreover, our method also has the capability of

accurately predicting future hand movements and interaction hotspots. More details of this

work are presented in Chapter 5.

1.2.4 Future Hand Segmentation in Egocentric Video

The last piece of my thesis work utilizes the future head motion as an embodied repre-

sentation to address the problem of pixel-wise visual anticipation under the challenging
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egocentric setting. I introduce the novel problem of anticipating a time series of future

hand masks from egocentric video. To model the stochasticity of future head motions, we

propose a novel deep generative model – EgoGAN, which uses a 3D Fully Convolutional

Network to learn a spatio-temporal video representation, generates future head motion us-

ing Generative Adversarial Network (GAN), and then predicts the future hand masks based

on the video representation and the generated future head motion.

Though the head motion can not be used as a conventional attention map for selecting

salient visual features, it still reflects how the visual attention drives the scene context

change. Our experiments suggest that explicitly modeling the future head motion with

GAN can improve the performance of future hand segmentation by a notable margin. More

details of this work are presented in Chapter 6.

1.3 Contributions

My dissertation makes the following contribution:

• I propose a novel joint model for learning gaze and actions from egocentric video and

show that the attention mechanism can serve as a robust tool for learning a motion-

aware video representation. Our work provides valuable insights into attention-based

recognition, and a step towards learning spatio-temporal video features.

• I demonstrate the 3D geometric and semantic context of the surrounding environment

provides critical information that complements video features for egocentric action

understanding.

• I introduce a novel deep latent variable model that makes motor attention a first-class

player for forecasting human-object interactions.

• I propose to use a generative adversarial network that explicitly models the under-

lying distribution of possible future head motion to address the novel task of future

hand mask forecasting from egocentric videos.
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CHAPTER 2

RELATED WORK

In this chapter, I discuss the relevant literature of my thesis work. These previous works

are organized as follows:

• Egocentric Vision Section provides a thorough survey of research progress on ego-

centric action recognition, anticipation, gaze estimation, etc.

• Action Recognition Section describes previous works on learning spatial-temporal

video representation for action recognition.

• Visual Attention Section reviews previous works on developing attention mechanism

for visual recognition.

• Human-Scene Interaction Section reviews the literature on understanding human ac-

tivity in the context of environmental cues.

• Human Body Motion Forecasting Section discusses previous efforts on designing

computation models for anticipating the human body motion.

2.1 Egocentric Vision

The advent of wearable cameras has led to growing interest in egocentric vision (see

massive-scale egocentric video dataset [7] and recent surveys in [8, 9]). In this section,

I review prior works on egocentric action recognition and anticipation, as well as gaze

estimation and hand analysis.

Egocentric action understanding has been the subject of many recent efforts. Earlier

works adopt hand crafted features for recognizing egocentric actions. Spriggs et al. [10]
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proposed to segment and recognize daily activities using a combination of video and wear-

able sensor data. Kitani et al. [11] used a global motion descriptor to discover egocentric

actions. Fathi et al. [12] presented a joint model of objects, actions and activities. Pirsiavash

and Ramanan [13] further advocated for an object-centric representation of FPV activities.

Novel deep models were further developed for egocentric action recognition. Ryoo et al.

[14] developed a novel pooling method for understanding egocentric videos using deep

models. Poleg et al. [15] used temporal convolutions on motion fields for long-term ac-

tivity recognition. Sudhakaran et al. [16] developed a two-stream LSTM model with an

attention mechanism for egocentric action recognition Kazakos et al. [17] proposed to fuse

video and audio signals for egocentric action recognition. Wray et al. [18] made use of text

descriptions of egocentric actions for zero-shot learning. Another line of work considered

the problem of egocentric action anticipation.Shen et al. [19] investigated how different

egocentric modalities affect the action anticipation performance. Wei et al. [20] utilized a

probabilistic model to infer 3D human attention and intention. Tagi et al. [21] addressed

a novel task of predicting the future locations of an observed subject in egocentric videos.

Ryoo et al. [22] proposed a novel method to summarize pre-activity observations for robot-

centric activity prediction. Soran et al. [23] adopted the Hidden Markov Model to compute

the transition probability among sequences of actions. A similar idea was explored in [24].

Furnari et al. [25] considered the task of predicting the next-active objects. Their recent

work [26] proposed to factorize the anticipation model into a “Rolling” LSTM that sum-

marizes the past activity and an “Unrolling” LSTM that makes hypotheses of the future

activity. Ke et al. [27] proposed a time-conditioned skip connection operation to extract

relevant information for action anticipation. Previous efforts also modeled the conversa-

tions [28] and reactions [29, 30] in social interactions.

A rich set of literature seeks to understand various egocentric cues. Li et al. [31] es-

timated egocentric gaze using hand and head cues. They [4] further showed the benefits

of gaze-indexed visual features in a comprehensive benchmark. Dessalene et al. [32] fo-

7



cused on predicting the hand-object interaction region of an action. Fathi et al. [5] utilized

hand-eye coordination to design a probabilistic model for gaze estimation. Zhang et al.

[33] predicted future gaze by estimating gaze from predicted future frames. Both Singh et

al. [34] and Ma et al. [6] explored the use of multi-stream networks to capture egocentric

attention. Li et al. [35] addressed the egocentric hand detection task by posing the problem

as a model recommendation task. Huang et al. [36] adopted an unsupervised clustering al-

gorithm to learn common grasping modes from egocentric videos. Recently, Cai et al. [37]

proposed a Bayesian-based domain adaptation framework for hand segmentation on ego-

centric video frames. My thesis work shares the same motivation of utilizing egocentric

cues to reason about human daily actions. Importantly, our works are the first to model the

egocentric cues as latent representations for egocentric action understanding. In Chapter 3,

I propose a novel deep latent variable model for joint learning of gaze and actions in the

egocentric video. In Chapter 5, I discuss how to utilize motor attention — the intentional

body movement, to address the challenging problem of forecasting human-object interac-

tions from egocentric perspective. And in Chapter 6, I further introduce a novel generative

adversarial network to address the task of future hand segmentation from egocentric videos.

2.2 Action Recognition

There is a large body of literature on action recognition. Recent review papers [38, 39]

provide comprehensive surveys on this topic. Here, we mainly discuss the literature on

recognizing trimmed video clips, which is related, but distinctly different from problems of

temporal action localization (e.g., ActivityNet [40]), or spatio-temporally action detection

(e.g., AVA [41]). Recent efforts focus on developing deep models for action recognition.

Simonyan and Zisserman [42] proposed two-stream networks that learn to recognize an

action from both optical flow and RGB frames. 3D convolutional networks were further

proposed [43, 44, 45] to capture spatio-temporal features beyond a single frame. However,

their performance using video frames alone falls far behind their two-stream versions [45].
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There are several recent attempts in recovering the motion cues encoded in videos from

RGB frames alone. Bilen et al. [46] proposed a dynamic image network that makes use

of the parameters of a ranking machine that captures the temporal evolution of the video

frames. Ng et al. [47] proposed to jointly predict action labels and flow maps from video

frames using multi-task learning. This idea is extended by Fan et al. [48], where they fold

the TV-L1 flow estimation [49] into their TVNet. Without using flow, Tran et al. [50]

demonstrated that factorized 3D convolutions (2D spatial convolution and 1D temporal

convolution) can facilitate the learning of spatio-temporal features. A similar finding was

also presented by Xie et al. [51]. Tran et al. [52] further proposed a dense 3D group con-

volutional network for video classification. Feichtenhofer et al. [53] proposed to combine

a low frame rate, high-resolution slow stream with a high frame rate, low-resolution fast

stream for action recognition. Yang et al. [54] proposed a temporal pyramid network for

learning video representation at different temporal resolutions.

My thesis work shares the similar motivation of learning motion-aware video repre-

sentation, yet takes a vastly different route. We propose to distill the predicted attention

from a flow network to an RGB network. A similar idea was also explored in two previous

works [55, 56]. These methods assume that the reference flow model has better recognition

performance, and seek to regularize the learning of an RGB stream by asking the RGB net-

work to mimic the features from the flow network. Consequently, those methods might fail

where the flow stream under-performs the RGB stream, e.g., on egocentric action recog-

nition datasets [57]. In Chapter 3, I present a novel model that drops the assumption of a

strong reference flow network, and thus is more robust for learning motion-sensitive video

representation.

2.3 Visual Attention

Attention mechanism has been widely used for visual recognition. Here, I mainly discuss

selective visual attention that highlights discriminative regions. This is very different from
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the recent efforts on self-attention, i.e., self-similarity [1, 58, 59] adopted in the transformer

architecture. Recently, selective attention has been explored in deep models for object

recognition [60] and image captioning [61]. Attention enables these models to “fixate”

on image regions, where the decision is made based on a sequence of fixations. Several

attention mechanisms are proposed for deep models. For example, Sharma et al. [62]

integrated soft attention in LSTMs for action recognition. Li et al. [63] further extended

the attention-based image captioning model [61] into videos. Specifically, they combined

LSTMs with motion-based attention to infer the location of the actions. Girdhar et al.

[64] modeled top-down and bottom-up attention using bilinear pooling. Wang et al. [65]

proposed a residual architecture for soft attentions.

There have been a few works that showed the benefits of gaze-indexed or hand-indexed

visual features for egocentric action recognition [4, 34, 19]. However, these methods re-

quire side information in addition to the input image at testing time, e.g., hand masks [34,

4], object information [6], or human gaze [19]. More recently, Sudhakaran et al. [66,

16] presented LSTM models with soft attention for FPV action recognition. Furnari and

Farinella [26] proposed to combine two LSTMs with attention for FPV action anticipation.

However, these methods did not explicitly model the unique egocentric cues. Built on those

previous works, my thesis work provide a systematic study of the utility of attention model

in action recognition, and further shows that probabilistic attention serves as an ideal tool

to distill motion cues from a flow network to an RGB network. I also demonstrate how

different forms of egocentric attentional representations can facilitate the understanding of

human actions.

2.4 Human-Scene Interaction

Human-Scene constraints have been proven to be effective in reasoning about human body

pose [67, 68, 69]. In this section, we focus on the most relevant prior works on visual affor-

dance. Affordance can be helpful for scene understanding [70, 71, 72], human-object in-
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teraction recognition [73], and action analysis [74, 75]. Several recent works have focused

on estimating visual affordances that are grounded on human-object interaction. Chen et

al. [76] proposed to estimate likely object interaction regions by learning the connection

between subject and object. Fang et al. [77] proposed to estimate interaction regions by

learning from demonstration videos. However, none of these previous works considered

future anticipation. Grabner et al. [70] proposed to predict object functionality by hallu-

cinating an actor interacting with the scene. A similar idea was also explored in [78, 79].

Savva et al. [80] predicted action heat maps that highlight the likelihood of an action in

the scene by partitioning scanned 3D scenes into disjoint sets of segments and learning a

segment dictionary. Gupta et al. [81] presented a human-centric scene representation for

predicting the afforded human body poses. Delaitre et al. [71, 82] introduced a statistical

descriptor of person-object interactions for object recognition and human body pose pre-

diction. Fang et al. [77] proposed to learn object affordances from demonstrative videos.

Nagarajan et al. [83] proposed to use backward attention to approximate the interaction

hotspots of future action. Our design of environment prior introduced in Chapter 4 is built

on these previous efforts on human-scen interaction.

Far fewer works have considered the environmental factors and the spatial grounding of

egocentric activity. Guan et al. [84] and Rhinehart et al. [85] jointly considered trajectory

forecasting and egocentric activity anticipation with online inverse reinforcement learning.

The most relevant works to my thesis work are recent efforts on learning affordances for

egocentric action understanding [86, 74]. Nagarajan et al. [86] introduced a topological

map environment representation for long-term activity forecasting and affordance predic-

tion. Rhinehart et al. [74] considered a novel problem of learning “Action Maps” from

egocentric videos. However, methods that use ground plane representations of the envi-

ronment [74] or environmental functionality as the context [86] may lack the specificity

provided by 3D proximity. In contrast to these prior efforts, the focus of Chapter 4 of my

thesis work is to exploit the geometric and semantic information of the 3D environment
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map to address our novel task of joint egocentric action recognition and 3D localization.

2.5 Human Body Motion Forecasting

Here we mainly discuss previous investigations on forecasting the human body motions

using generative models. Fragkiadaki et al. [87] proposed to use a recurrent network for

predicting and generating the human body poses and dynamics from videos. A similar idea

was also explored in [88]. Walker et al. [89] utilized Variational Autoencoders (VAE) for

predicting the dense trajectories of video pixels. They further leveraged human body poses

as an intermediate feature for generating future video frames with a Generative Adversarial

Network (GAN) [90]. Gupta et al. [91] explored a GAN-based model for forecasting hu-

man trajectories. Zhang et al. [92, 93] developed a Conditional Variational Autoencoder to

generate human body meshes and motions in 3D scenes. Despite the success in forecasting

body motion, the use of GANs was largely understudied in egocentric vision. Zhang et

al. [33] used a GAN to generate future video frames and further predict future gaze fix-

ation. Though GAN has the capability of addressing the uncertainty of data distribution,

using GANs to directly forecast pixels in video [94] remains a challenge, especially when

there exists drastic background motion in the egocentric videos [33]. In the final piece of

my thesis work, we propose to use the adversarial training mechanism to model the un-

derlying distribution of possible future head motion, which captures the drastic change of

scene context for future hand segmentation in the egocentric video.
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CHAPTER 3

ATTENTION AND ACTIONS IN EGOCENTRIC VIDEO

3.1 Introduction

Attention mechanism, imitating the human visual system that highlights important fore-

ground regions, has been developed for action recognition models. Focusing on critical

regions of video can eliminate the potential distraction of irrelevant background pixels and

allows the model to focus on the key elements of the action. Egocentric video provides a

new perspective for understanding human visual attention, as gaze, action and video are

aligned in the same egocentric coordinate system, and therefore gaze fixation is naturally

embodied in the camera wearer’s actions. This observation motivates us to propose a joint

model that learns the attention map from gaze measurements during the production of ac-

tions, and thereby guides action recognition.

A major challenge for the joint modeling task is the uncertainty in gaze measurements.

Around 25% [95] of our gaze within daily actions are saccades—rapid gaze jumps during

which our vision system receives no inputs [96]. To address this challenge, we characterize

gaze as a latent distribution of attention in the context of an action, represented as an

attention map in egocentric coordinates. Specifically, we model the latent distribution of

gaze as stochastic units in a deep network. This representation allows us to sample attention

maps. These maps are further used to selectively aggregate visual features in space and time

for action recognition. Our model thus both encodes the uncertainty in gaze measurement,

and models visual attention in the context of actions.

In addition to selecting important feature representations, the attention module may

also provide an attractive vehicle to efficiently and effectively learn representations of both

appearance and motion information. Consider the example in Figure 3.1 (a), where we
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(a) Two-Stream Networks

Appearance Attention

Motion Attention

(b) Our Attention Distillation Model

Distilled Motion Attention

Appearance AttentionRGB Frames

Flow Maps

RGB Frames Only

Figure 3.1: RGB and flow networks attend to different aspects of an action, yet both
are essential for recognition. (a) Attention maps from RGB and flow streams of I3D
[45] by Grad-Cam [97]. (b) Attention maps from our attention distillation model. Our
model jointly infers appearance and motion attention from only RGB frames, improves
the performance of the RGB stream, and is significantly more efficient than two-stream
models.

adopt Grad-Cam [97] to compute attention maps from the appearance (RGB) and motion

(flow) streams of a trained I3D model. The attention maps from the RGB and flow streams

are qualitatively different. The appearance modality learns to focus on the actor’s body

and part of the active object (flute), while the motion modality highlights the moving fin-

gers. Intuitively, both appearance attention for highlighting object properties and motion

attention for understanding actor moving patterns are needed to recognize the actions.

With optical flow as an additional modality, the two-stream network learns motion-

based representation that attends to important moving regions, however, it is computation-

ally expensive. A two-stream model can be 100 times slower than the single RGB stream

version [55], largely due to the costly computation of optical flow. While 3D convolu-

tional networks have the capacity to capture the temporal dynamics of video frames [98],

their performance still lags behind the two-stream models. Moreover, 3D convolutional

networks fail to learn the same motion-based attentional representation as the flow stream

model, demonstrating that the flow field provides an indispensable cue. In this context, we

address the following research questions: Does a deep model need explicit flow inputs to

learn motion-based attentional representations? How can we bridge the gap between an
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RGB stream network and its two-stream version without incurring the extra computational

cost? Several previous works have addressed the challenge of learning a video representa-

tion that encodes motion information using a single RGB stream [50, 56, 55, 99, 100]. Our

work shares the same motivation, but pursues a very different approach that makes motion

attention as the first-class player.

Specifically, we present a novel video representation learning method called attention

distillation. Our method makes use of an explicit probabilistic attention model, and lever-

ages motion information available at training time to predict the motion-sensitive attention

features from a single RGB stream. In addition to their utility in visualizing and under-

standing learned feature representations, we argue that attention models provide an attrac-

tive vehicle for mapping between sensing modalities in a task-sensitive way. Once learned,

our model requires only RGB frames as inference inputs, and jointly predicts appearance

and motion attention maps for action recognition. We conduct extensive experiments and

demonstrate that our attention distillation enables more accurate action recognition across

several video datasets, while remaining very efficient.

To summarize, this chapter has the following contributions:

• I propose a novel joint model for learning gaze and actions in egocentric video, and

show the proposed model can significantly benefit action recognition performance.

• I present a systematic study of different choices of attention modules for action recog-

nition and show that a general form of probabilistic attention module can better fa-

cilitate video representation learning.

• I introduce a novel method for learning motion-based attentional representations

from RGB frames. Through extensive experiments, I demonstrate that our approach

distills motion knowledge into an RGB network by mimicking the attention map of

a reference flow network.

This work was a collaboration with Prof. Yin Li, Dr. Yun Zhang. The work was published
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in ECCV 2018 as a poster paper [101] and BMVC 2020 [102] as an oral paper.

In the following sections, I first introduce a novel joint model for learning gaze and

actions in egocentric video. I Finally, I present detailed experimental results to show the

benefits of our proposed models and then conclude this chapter.

3.2 Joint Modeling of Gaze and Actions

In this section, we present the details of our joint model of gaze and action in egocentric

video. Our inspiration comes from the observation that gaze can be characterized by a

latent distribution of attention in the context of an action, represented as an attention map

in egocentric coordinates. This map identifies image regions that are salient to the current

action, such as hands, objects, and surfaces. Building on this intuition, we develop a deep

latent variable model for joint action recognition and gaze estimation.

3.2.1 Model Overview

We denote an input first person video as x = (x1, ..., xt) with its frames xt indexed by

time t. Our goal is to predict the action category y for x. We assume egocentric gaze

measurements g = (g1, ..., gt) are available during training yet need to be inferred during

testing. gt are measured as a single 2D gaze point at time t defined on the image plane

of xt. We reparameterize gt as a 2D saliency map gt(m,n), where the value of the gaze

position is set to one and all others are zero.

Figure 3.2 presents an overview of our model. Our model takes a video x as input and

outputs the distribution of gaze q as an intermediate result. We then sample the gaze map g

from this predicted distribution. g encodes location information for actions and thus can be

viewed as a source of action proposals. Finally, we use the attention map to select features

from the network hierarchy for recognition.
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Figure 3.2: Proposed joint model of gaze and action. Our network takes multiple RGB
and flow frames as inputs, and outputs a set of parameters defining a distribution of gaze
in the middle layers. We then sample a gaze map from this distribution. This map is used
to selectively pool visual features at higher layers of the network for action recognition.
During training, our model receives action labels and noisy gaze measurement.

3.2.2 Modeling Gaze with Stochastic Units

Our main idea is to model g(m,n) as a probabilistic variable to account for its uncertainty.

More precisely, we model the conditional probability of p(y|x) by

p(y|x) =

∫
g

p(y|g, x)p(g|x)dg. (3.1)

Intuitively, p(g|x) estimates gaze g given the input video x. p(y|g, x) further uses the

predicted gaze g to select visual features from input video x to predict the action y. Inspired

by [103, 104], we approximate the intractable posterior p(g|x) with a carefully designed

qπ(g|x). Specifically, we define q(m,n) on a 2D image plane of the same size M × N as

x. q is parameterized by πm,n, where

q(m,n) = q(gm,n = 1|x) =
πm,n∑
m,n πm,n

. (3.2)

π = qψ(X) is the output from a deep neural network qψ. q(g|x) thus models the probabilis-

tic distribution of egocentric gaze. Thus, our deep network creates a 2D map of πm,n. π

defines an approximation qπ to the distribution of the latent attention map. We then sample
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the gaze map g̃ from qπ for recognition, and use a sampled gaze map g̃ to selectively ag-

gregate visual features φ(x) defined by network φ. In our model, this is simply a weighted

average pooling, where the weights are defined by the gaze map g̃. We then send pooled

features to the recognition network f . Now we have

p(y|g, x) = f(Σm,ng̃m,nφ(x)m,n) = softmax
(
W T
f (Σm,ng̃m,nφ(x)m,n)

)
. (3.3)

The sum operation is equivalent to spatially re-weighting individual feature channels. recog-

nition network f has the form of a linear classifier, followed by a softmax function.

3.2.3 Training and Inference

Loss Function. Given our noise model of gaze p(g|x), we now minimize our loss function

as the negative of the empirical lower bound, given by

−
∑

g log p(y|g, x) +KL[q(g|x)||p(g|x)]. (3.4)

Our objective function thus has two terms: (a) the negative log likelihood term as the cross

entropy loss between the predicted and the ground-truth action labels using the sampled

gaze maps; and (b) the KL divergence between the predicted distribution q(g|x) and the

gaze distribution p(g|x). Note that when the prior distribution of gaze is not available as

supervisory signal, we replace p(g|x) with a uniform distribution U .

Reparameterization. Our model is fully differentiable except for the sampling of g̃. To

allow end-to-end back propagation, we re-parameterize the discrete distribution q(m,n)

using the Gumbel-Softmax approach as in [105, 106]. Specifically, instead of sampling

from q(m,n) directly, we sample the gaze map g̃ via

g̃m,n ∼
exp((log πm,n +Gm,n)/τ)∑
m,n exp((log πm,n +Gm,n)/τ)

, (3.5)
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where τ is the temperature that controls the “sharpness” of the distribution. G follows the

Gumbel distribution G = − log(− logU), where U is the uniform distribution on [0, 1).

3.2.4 Approximate Inference

During testing, we feed an input video x forward through the network to estimate the gaze

distribution q(g|x). Ideally, we should sample multiple gaze maps g̃ from q, pass them into

our recognition network f(g, x), and average all predictions. This is, however, prohibitively

expensive. Since f(g, x) is nonlinear and g has hundreds of dimensions, we will need many

samples g̃ to approximate the expectation Eg[f(g, x)], where each sample requires us to

recompute f(g̃, x). We take a shortcut by feeding qπ into f to avoid the sampling. We note

that qπ is the expectation of g̃, and thus our approximation is Eg[f(g, x)] ≈ f(E[g], x).

This shortcut does provide a good approximation. Recall that our recognition network

f is a softmax linear classifier. Thus, f is convex (even with the weight decay on Wf ). By

Jensen’s Inequality, we haveEg[f(g, x)] ≥ f(E[g], x). Thus, our approximation f(E[g], x)

is indeed a lower bound for the sample averaged estimate of Eg[f(g, x)]. Using this deter-

ministic approximation during testing also eliminates the randomness in the results due to

sampling. We have empirically verified the effectiveness of our approximation.

3.3 Attention Distillation for Learning Video Representations

The two-stream architecture [42, 45] has proven to be an effective framework to exploit

appearance and motion cues for action recognition. However, a two-stream model can be

100 times slower than its single RGB stream version [55]. Several previous works address

the challenge of learning video features that encode motion information using a single RGB

stream [50, 56, 55, 99, 100]. In addition, learning motion-sensitive representation from

egocentric videos is even more challenging due to the drastic head motion. In this section,

going beyond modeling the connection between gaze and action, I demonstrate a more

general approach that utilizes the attention mechanism for transferring the learned motion
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Figure 3.3: Proposed attention distillation method. Our model (c) takes multiple RGB
frames as inputs and adopts a 3D convolutional network as the backbone. It outputs two at-
tention maps using the attention module (b), based on which the action labels are predicted.
The motion map is learned by mimicking the attention from a reference flow network (a).
The appearance map is learned to highlight discriminative regions for recognition. These
two maps are used to create spatio-temporal feature representations for action recognition.

knowledge from a flow network to an RGB network for both third-person and egocentric

action recognition.

3.3.1 Model Overview and Key Components

We denote the input video as x = {x1, x2, ..., xT}, where xt is a frame of resolutionH×W

with t as the frame number. Given x, our goal is to predict a video-level action label y. We

leverage the intermediate output of a 3D convolutional network φ to represent x. Figure 3.3

presents an overview of our method. Our model takes multiple video frames x as inputs

and learns to predict two attention maps based on φ(x): AM for motion attention and AA

for appearance attention. Based on these two maps, the model further aggregates visual

features that will be passed into the final recognition sub-network. During training, we

match AM to the attention map ÃM from the reference flow network. For testing, only the

input video is required for recognition. In following sections, I detail detail the design of

our key components.
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3.3.2 Attention Generation

We explore two different approaches for generating an attention map from the features

φ(x), including soft attention [65] and its probabilistic version [101].

Soft Attention. Attention maps can be created by a linear function of wa ∈ RCφ over the

feature map φ(x),

FA(φ(x)) = softmax(wa ∗ φ(x)), (3.6)

where ∗ is the 1x1 convolution on 3D feature grids. Softmax is applied on every time slice

to normalize each 2D map.

Probabilistic Soft Attention. An alternative approach is to further model the distribution

of linear mapping outputs as discussed in [101], namely

A ∼ p(A) = softmax(wa ∗ φ(x)) (3.7)

where we model the distribution of A. During training, an attention map can be sampled

from p(A) using Gumbel Softmax trick [105, 106]. We follow [101] to regularize the

learning by adding additional loss term of

LR =
∑
t

KL [A(t)||U ] , (3.8)

whereKL[·] is the Kullback-Leibler divergence and U is the 2D uniform distribution (Hφ×

Wφ). This term matches each time slice of the attention map to the prior distribution. It is

derived from variational learning and accounts for (1) the prior of attention maps and (2)

additional regularization by spatial dropout [101]. During testing, we directly plug in p(A)

(the expected value of A) for approximate inference.

Note that for both approaches, we restrict FA to a linear mapping without a bias term.

In practice, this linear mapping avoids the trivial solution of generating a uniform attention

map by setting w to all zeros. This all-zero solution almost never arises during training

when using a proper initialization of w.

21



3.3.3 Attention Guided Recognition

Our recognition module makes use of an attention map A to select features from φ(x).

Again, we consider two different models for the attention guided recognition.

Attention Pooling. Inspired by [65, 107], we design the function FR as

ỹ = FR(φ(x),A) = softmax
(
W T
r (A⊗ φ(x))

)
(3.9)

where ⊗ denotes the tilted multiplication A ⊗ φ(x) =
∑

t,h,wA(t, h, w)φ(x)t,h,w,c. This

operation is equivalent to weighted average pooling with the weights shared across all

channels.

Residual Connection. Using the attention map to re-weight features helps to filter out

background noise, yet may also increase the potential risk of missing important foreground

features. This drawback was discussed in [65]. We follow their solution of using a residual

connection to the attention map, given by

ỹ = FR(φ(x),A) = softmax
(
W T
r ((A+ I)⊗ φ(x))

)
, (3.10)

where I is a 3D tensor of all ones. Intuitively, this operation further adds average pooled

features to the representation before the linear classifier. By adding the residual term, the

features learned by the network are preserved.

3.3.4 Attention Distillation

The key to our approach lies in the use of attention distillation during training. Specifically,

we assume that a reference flow network is given as the teacher network. The teacher

model also uses an attention mechanism for recognition. Moreover, its motion attention

map ÃM is used as additional supervisory signal for training our RGB network. This RGB

network is thus the student model that mimics the motion attention map. With probabilistic

attention modeling, the imitation of the attention maps is enforced by using the loss

LA =
∑
t

KL
[
AM (t)||ÃM (t)

]
. (3.11)
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This loss minimizes the distance between the attention maps at every time step t. In our

implementation, our teacher flow network is trained with the same attention mechanism.

Once trained, the weights of the teacher model remain fixed during the learning of the

student model. At testing time, only the student model (RGB network) is used for inference.

3.3.5 Our Full Model

Putting everything together, we summarize our full model with probabilistic soft attention

and attention distillation. Specifically, our model estimates the two probabilistic attention

maps AM ∼ FM
A (φ(x)) (motion) and AA ∼ FA

A (φ(x)) (appearance). These maps are

further used to predict the action labels. This is given by

ỹ = FMR (φ(x),AM ) + FAR(φ(x),AA) (3.12)

where each FR follows Equation 3.9. We use equal weighting for FM
R and FA

R . We found

that tuning the weights has negligible effect on the performance in practice.

Loss Function. Our training loss is defined as

L = CE(ỹ, y) + λ1

∑
t

KL
[
AM (t)||ÃM (t)

]
+ λ2

∑
t

KL
[
AA(t)||U

]
, (3.13)

where CE is the cross entropy loss between the predicted labels ỹ and the ground-truth

y. The first KL term (from Equation 3.11) enforces that the motion attention AM should

mimic the attention map ÃM from the reference flow network. Finally, the second KL term

(from Equation 3.8) regularizes the learning of the appearance attention.

3.4 Experiment and Results

3.4.1 Gaze and Actions

Dataset. We use the Extended GTEA Gaze+ egocentric video dataset [57] to evaluate our

method. The dataset has both action annotation and gaze tracking data at every frame.

Evaluation Metric. We use standard metrics for both gaze and actions.

• Gaze: We consider gaze estimation as binary classification. We evaluate all fixation points
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Table 3.1: Ablation study on backbone networks and probabilistic modeling. We show
F1 scores for gaze estimation and mean class accuracy for action recognition.

(a) Backbone Network: We compare
RGB, Flow, late fusion and joint train-
ing of I3D for action recognition. Joint
training works the best.

Networks
Action Acc

(Clip)
Action Acc

(Video)
I3D RGB 43.69 47.26
I3D Flow 32.08 38.31

I3D Fusion N/A 48.84
I3D Joint 46.42 49.79

(b) Probabilistic Modeling: We
compare our model to its determin-
istic version (Gaze MLE). We also
study the effect of Dropout.

Methods
Gaze
F1

Action
Acc

I3D Joint N/A 49.79
Gaze MLE 24.68 51.12
Soft-Atten 10.27 50.30

Ours (Prob.) 32.97 53.30
Ours w. Dropout 32.66 52.12

and ignore untracked gaze or saccade in action clips. We report the Precision and Recall

values and their corresponding F1 score.

• Action: We treat action recognition as multi-class classification. We report mean class

accuracy at the clip level (24 frames) and at the video level.

Ablation Study. We start with a comprehensive study of our model on the EGTEA Gaze

dataset. Our model consists of (1) the backbone network for feature presentation; (2) the

probabilistic modeling; and (3) the attention guided action recognition. We separate out

these components and test them independently.

Backbone Network: RGB vs. Flow. We evaluate different network architectures on

EGTEA dataset for FPV action recognition. Our goal is to understand which network

performs the best in the egocentric setting. Concretely, we tested RGB and flow streams of

I3D [45], the late fusion of two streams, and the joint training of two streams [108]. The

results are summarized in Table 3.1a. Overall, EGTEA dataset is very challenging, even

the strongest model has an accuracy below 50%. To help calibrate the performance, we

note that the same I3D model achieved 36% on Charades [109, 110], 74% on Kinetics and

99% on UCF [45].

Unlike Kinetics or UCF, where flow stream performs comparably to RGB stream, the

performance of I3D flow stream on EGTEA is significantly lower than its RGB counter-

part. This is probably because of the frequent motion of the camera in FPV. It is thus more
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difficult to capture motion cues. Finally, the joint training of RGB and flow streams per-

forms the best in the experiment. Thus, we choose this network as our backbone for the

rest of our experiments.

Modeling: Probabilistic vs. Deterministic. We then test the probabilistic modeling part of

our method. We focus on the key question: “What is the benefit of probabilistic modeling

of gaze?” To this end, we present a deterministic version of our model that uses maximum

likelihood estimation for gaze. We denote this model as Gaze MLE. Instead of sampling,

this model learns to directly output a gaze map, and apply the map for recognition. Dur-

ing training, the gaze map is supervised by human gaze using a pixel-wise sigmoid cross

entropy loss. We keep the model architecture and the training procedure the same as our

model. And we disable the loss for gaze when fixation is not available.

We compare our model with Gaze MLE for gaze and actions, and present the results

in Table 3.1b. Our probabilistic model outperforms its deterministic version by 2.2% for

action recognition and 8.3% for gaze estimation. We attribute this significant gain to the

modeling. If the supervisory signal is highly noisy, allowing the network to adapt the

stochasticity will facilitate the learning.

Regularization: Sampling vs. Dropout. To further test our probabilistic component, we

compare our sampling of gaze map to the dropout of features. As we discussed in Sec 3.4,

the sampling procedure in our model can be viewed as a way of “throwing away” features.

Thus, we experiment with enabling Dropout directly after the attention pooled feature map

in the model. Specifically, we compare two models with the same architecture, yet one

trained with Dropout and one without. The results are in Table 3.1b. When Dropout is

disabled, the network performs slightly better for action recognition (+1.2%) and gaze

estimation (+0.3%). In contrast, removing Dropout from the backbone I3D will slightly

decrease the accuracy [111]. We postulated that with regularization from our sampling,

further dropping out the features will hurt the performance.

Attention for Action Recognition. Finally, we compare our method to a soft attention
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Table 3.2: Action Recognition and Gaze Estimation. For action recognition, we report
mean class accuracy at both clip and video level. For gaze estimation, we show F1 scores
and their corresponding precision and recall scores.

(a) Action Recognition Results: Our
method outperforms previous methods by at
least 3.5%. †: methods use human gaze dur-
ing testing.

Methods Clip Acc Video Acc
EgoIDT+Gaze† [4] N/A 46.50

I3D+Gaze† 46.77 51.21
EgoConv+I3D [34] N/A 48.93

Gaze MLE 47.41 51.12
Our Model 47.71 53.30

(b) Gaze Estimation Results: Our model
is comparable to the state-of-the-art meth-
ods. †: methods jointly model gaze and
actions.

Methods F1 Prec Recall
EgoGaze [31] 16.63 16.63 16.63*
Simple Gaze 30.10 25.14 37.48

Deep Gaze [33] 33.51 28.04 41.62
Gaze MLE† 24.68 18.55 36.86
Our Model† 32.97 27.01 42.31

model (Soft-Atten in Table Table 3.1b) using the same backbone networks. Similar to our

model, this method fuses the two streams at the end of the 4th and 5th conv blocks. Soft

attention map is produced by 1x1 convolution with Sigmoid activations from the fused

features at the 4th conv block. This map is further used to pool the fused features (by

weighted averaging) at the 5th conv block for recognition. Thus, this soft attention map re-

ceives no supervision of gaze. A similar soft attention mechanism was used in a concurrent

work [112].

For action recognition, Soft-Atten is worse than gaze supervised models by 0.8-3%,

yet outperforms the base I3D model by 0.5%. These results suggest that (1) soft atten-

tion helps to improve action recognition even without explicit supervision of gaze; and (2)

adding human gaze as supervision provides a significant performance gain. For gaze esti-

mation, Soft-Atten is worse (-14%) than any gaze supervised models, as it does not receive

supervision of gaze.

Egocentric Action Recognition. We now describe our experiments on egocentric action

recognition. Specifically, we consider the following baselines:

• EgoIDT+Gaze [4] combines egocentric features with dense trajectory descriptors [113].

• I3D+Gaze is inspired by [4, 5], where the ground truth human gaze is used to pool the

network features for action recognition.
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• EgoConv+I3D [34] uses hand mask and head rotation as additional streams of egocentric

cues for FPV action recognition.

• Gaze MLE is a deterministic version of our model that directly applies the gaze map for

recognition without sampling.

Our results for action recognition are shown in Table 3.2a. Our full model reaches

the accuracy of 53.30% and outperforms all baseline methods by a significant margin,

including those that use human gaze during testing. Notably, even using human gaze at

test time, I3D+Gaze is only slightly better than Gaze MLE (+0.1%). We argue that these

results provide a strong evidence to our modeling of uncertainty in gaze measurements. A

model must learn to account for this uncertainty to avoid misleading gaze points, which

will distract the model to action irrelevant regions.

Egocentric Gaze Estimation. We now present our results for egocentric gaze estimation.

We compare our model to the following baseline methods.

• EgoGaze [31] makes use of hand crafted egocentric features, such as head motion and

hand position, to regress gaze points.

• Simple Gaze is a deep model inspired by our previous work [5].

• Deep Gaze [33] is the FPV gaze prediction module from [33]

• Gaze MLE is the deterministic version of our joint model.

Our gaze estimation results are shown in Table 3.2b. Again, deep models outperform

hand crafted features by a large margin. We also observe that models with KL loss are con-

sistently better than those that use cross entropy loss. Moreover, the joint models slightly

decrease the gaze estimation performance when compared to gaze-only models.

Visualization of Gaze and Action. we visualize the outputs of gaze estimation and action

labels from our model in Figure 3.4. Our gaze outputs often attend to foreground objects

that the person is interacting with.
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Predicted: Cut Cucumber GT: Cut Cucumber Predicted: Turn on Faucet  GT: Turn on Faucet Predicted: Open Fridge  GT: Open Fridge

Predicted: Take Plate   GT: Put Eating Utensil Predicted: Open Drawer   GT: Open Cabinet Predicted: Cut Bell Pepper  GT: Cut Cucumber

Figure 3.4: Visualization of our gaze estimation and action recognition. We plot the
output gaze heat map and print the predicted action labels and ground-truth labels. Both
successful (first row) and failure cases (second row) are presented.

3.4.2 Attention Distillation

Dataset. We make use of both third-person action recognition datasets UCF101 [114],

HMDB51 [115], and egocentric action recognition dataset EGTEA [57] for our experi-

ments. We evaluate mean class accuracy and report the results using the first split of these

datasets.

Attention Guided Action Recognition We start from an ablation study of attention-guided

action recognition. Specifically, we evaluate different combinations of attention modules

and compare their results to those from models without attention. Our experiments show

that the proper design of the attention mechanism can consistently improve the performance

of action recognition across multiple datasets. We now present our baselines and results.

Baselines. We consider the different combinations of how the model generates attention

maps (Soft vs. Probabilistic Attention) and how the attention maps are used for recog-

nition (Attention Pooling vs. Residual Connection). In addition, we also show how the

approach to combining motion attention and appearance attention affects the recognition

performance. The valid combinations include the following:

• Soft-Atten combines soft attention and attention pooling for recognition similar to [107].

• Soft-Res is the residual attention in [65] that adds residual connection to Soft-Atten.

• Prob-Atten combines probabilistic attention with attention pooling as in [101].
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Table 3.3: Evaluations of attention modules. We compared 3 different design choices
with RGB/flow stream on three datasets. Prob-Atten provides a consistent performance
boost on both streams and across datasets.

Method UCF101 HMDB51 EGTEA
Flow I3D 94.0 73.9 38.3

Flow Soft-Atten 94.7 74.1 39.1
Flow Soft-Res 95.2 74.4 39.5

Flow Prob-Atten 94.9 74.2 40.4
RGB I3D 94.8 70.9 47.3

RGB Soft-Atten 94.7 70.8 48.6
RGB Soft-Res 94.9 70.1 48.6

RGB Prob-Atten 95.1 71.3 49.1

We note that the combination of Prob+Res is invalid, as it violates the probabilistic mod-

eling of attention. In practice, we also found its training to be unstable. Therefore, we

report the results of three valid designs for both RGB and flow stream and the vanilla I3D

models (our backbone) using the same input sequence length (24 frames) in Table 3.3.

Adding attention to the backbone recognition network almost always improves the perfor-

mance. Importantly, Soft-Res decreases the performance of RGB stream on HMDB51 and

Soft-Atten decreases the performance of RGB stream on HMDB51 and UCF101. More in-

terestingly, Prob-Atten is the most robust design choice, despite the lack of human gaze as

a supervisory signal as in [101]. Across all of the modalities and datasets, Prob-Atten can

consistently improve the recognition accuracy (+0.3%/0.4%/1.8%) for the RGB stream

and (+0.9%/0.5%/2.1%) for the flow stream. The performance boost from the attention

module is larger for the flow stream in comparison to the RGB stream. Moreover, attention

modules provide more significant boost for egocentric actions (EGTEA). We conjecture

that the explicit modeling of attention helps to suppress background objects in first person

video.

Impact of Attention Distillation. Table 3.4 compares our results with previous methods

on UCF101/HMDB51. We denote our models using Prob-Atten for distillation as Prob-

Distill. Prob-Distill outperforms all previous state-of-the-art methods of motion represen-

tation learning. Specifically, our results are at least 1.2% better than previous state-of-the-
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Table 3.4: Action recognition results on UCF101 and HMDB51 datasets. We com-
pare the results of our model with previous works. Our model outperforms state-of-the-art
methods that use only RGB stream and the same input sequence length by ∼ 1%. *For fair
comparison, we report results of I3D models that use 24 frames as inputs–the same as our
model.

Method UCF101 HMDB51
Dynamic Image [46] 90.6 61.3
ActionFlowNet [47] 83.9 56.4

TVNet [48] 94.5 71.0
I3D RGB* [45] 94.8 70.9
FeatMatch [116] 94.3 70.7

MARS [55] 94.6 72.3
Ours (Prob-Distill) 95.7 72.0

Two Stream ResNeXt [55] 95.6 74.0
MARS+Flow ResNeXt [55] 94.9 74.5

Two Stream I3D* 96.7 74.8
Prob-Distill+Flow I3D* 97.4 75.7

art methods for learning motion-aware video representations from RGB frames, including

Dynamic Image [46], ActionFlowNet [47] and TVNet [48]. Our model also outperforms

MARS [55], our direct competitor, by 0.9% on UCF101 and performs on-par with MARS

on HMDB51 when using a similar sequence length, despite the fact that MARS uses a

stronger backbone network. It is worth noting that this performance boost is significant

for action recognition. In contrast, with 50 more layers, ResNet101 is only 0.7% bet-

ter than ResNet50 on HMDB51 [98]. Moreover, Prob-Distill also outperforms another

feature distillation method – FeatMatch [116] by a significant margin (+1.4%/1.3% on

UCF101/HMDB51). These results support our argument that distilling attention maps is

more robust than distilling network features for motion representation learning. Finally, a

late fusion of our model with a reference flow network helps to further boost the perfor-

mance.

Table 3.5 presents our results on a large scale dataset—20BN-V2. With 1/5 of the

temporal receptive field as TRN [117], our model with RGB frames outperforms TRN

RGB by 1.1%/1.5% in top-1/top-5 accuracy. And our method improves the backbone by

2.6%/3.0% in top-1/top-5 accuracy. Further fusion of our model with a flow network im-
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Table 3.5: Action recognition results on on 20BN-V2 dataset [118]. Our model achieves
the best performance among networks that uses RGB frames. Fusing our model with a flow
network also outperforms two stream baseline by a significant margin.

Method Top-1/Top-5 Acc Temporal Footprints
TRN RGB [117] 48.8 / 77.6 5 sec

TRN RGB+Flow [117] 55.5 / 83.1 5 sec
I3D RGB 47.3 / 76.1 1 sec
I3D Flow 46.7 / 75.9 1 sec

Ours (Prob-Distill) 49.9 / 79.1 1 sec
Two Stream I3D 53.7 / 82.5 1 sec

Prob-Distill+Flow I3D 54.6 / 83.0 1 sec

proves the results by a large margin (+4.7%), again outperforming the two stream baseline.

Learning from a Weak Flow Network. Crasto et al. [55] pointed out that their model ran

into a failure mode when the reference flow network has worse performance than the RGB

network. To support our claim that attention distillation can leverage a flow-based teacher

network even when the flow network does not provide strong baseline performance, we

report the results of our model on the EGTEA Gaze+ dataset. Due to severe ego-motion,

flow-based models are less effective than RGB models on this dataset. For instance, I3D

Flow is 9% worse than I3D RGB (38.3% vs. 47.3%). Despite a much weaker teacher model,

Prob-Distill achieves 49.5%, outperforming the best attention-based I3D models for both

RGB (Prob-Atten 49.1%) and Flow (Prob-Atten 40.4%). This indicates that even with a

weak teacher model, our proposed method is robust for video representation learning.

Distillation without Forgetting. Feature distillation might “overwrite” the features from

RGB stream with the features from flow stream. This is evidenced by the result that fus-

ing MARS with reference flow stream network lags behind the two stream version of the

network (MARS + Flow ResNeXt vs. Two Stream ResNeXt in Table 3.4). In contrast,

fusing our Prob-distill model with a reference flow model (Prob-Distill + Flow I3D in Ta-

ble 3.4) further improves the accuracy and outperforms the two-stream I3D model (+0.5%

on UCF101, +0.7% on HMDB51 and +0.9% on 20BN-V2). These results indicate that

our attention distillation model does not simply copy the feature from the reference flow

network, as the distilled RGB model can still preserve meaningful appearance features.
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Note that our single-stream (Prob-Distill) results still lag behind the two stream net-

works when using the same input sequence length (Two Stream I3D*). This gap reveals

that our model does not fully capture the concepts of motion that are encoded in the two

stream networks. Nonetheless, we believe that our model provides a key step forward

for learning motion-aware representations from RGB frames. Note that some most re-

cent works achieved better performance on the benchmark datasets using more advanced

network structure [98, 119, 51, 120], additional features [121], or a longer temporal foot-

print [45, 55]. In this context, our work provides a novel method for learning video repre-

sentations and a robust strategy for knowledge distillation.

Does the attention help to localize actions? We evaluate our output attention for ac-

tion localization using THUMOS’13 localization dataset [122]–a subset of UCF101 with

bounding box annotations for actions. We present our evaluation metric and discuss our

results.

• Evaluation Metric. We consider action localization as binary labeling of pixels and report

the F1 score from Precision-Recall (PR) curve. Specifically, we first rescale both attention

maps and video frames into a fixed resolution (56× 56). We then enumerate all thresholds

and binarize the attention map. Each threshold defines a point on the PR curve. Given

a binary attention map, a positive pixel is considered as a true positive if it is inside the

bounding box, or it is within 10-pixel “tolerance zone” of the box. This tolerance is added

to compensate for the reduced resolution of the attention map, as in [123]. We report the

best F1 score on the curve and its corresponding precision and recall.

• Results. We compare attention maps from our model to a set of baseline methods, includ-

ing a fixed Gaussian distribution (center prior), a latest deep saliency model (DSS [124]),

and our Soft-Atten (RGB/Flow). The results are shown in Table 3.6. Our appearance atten-

tion beats the baselines of center prior and Soft-Atten (RGB), but is worse than Soft-Atten

(flow). Our motion attention achieves the highest score among all methods that only re-

ceive action labels as supervision, and only under-performs DSS. We have to emphasis that
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Table 3.6: Results of action localization using attention maps on THUMOS’13 local-
ization test set [122]. We report the best F1 score and its precision and recall. Our motion
attention outperforms all baselines that are trained with only action labels.

Method Prec Recall F1
Gaussian (center prior) 52.6 20.6 29.6

Saliency Map (DSS [124]) 51.2 47.7 49.4
Soft-Atten (RGB) 33.8 40.5 36.9
Soft-Atten (Flow) 39.2 50.0 44.0
Our Appearance 31.5 52.1 39.2

Our Motion 36.3 62.6 46.0

directly comparing our results to DSS is unfair. DSS is trained with pixel-level annotations

using external data and runs at the original video resolution, while our attention maps are

trained using clip-level action labels and down-sampled both spatially (32x) and tempo-

rally (8x). These results suggest that our attention maps help to locate the spatial extent of

actions.

Does our method learn better motion representation? We further study how the tempo-

ral order of the input video frames will affect the recognition performance. We conduct an

experiment of classifying reverted videos as in [51, 117]. Specifically, we invert the frame

order for all testing videos of UCF101 and HMDB51. We compare their recognition re-

sults with those from normal temporal order. If a model truly rely on motion representation

for the recognition, this inversion will significantly decrease the recognition performance.

We test the vanilla I3D RGB and flow models, as well as our model. And the results are

presented in Table Table 3.7. Not surprisingly, I3D flow model has the largest performance

drop. In contrast, I3D RGB is barely affected by the reverted arrow of time. Our model

has a performance drop that is larger than I3D RGB yet much smaller than I3D flow. This

is consistent with our results on action recognition. Our model does not capture the same

level of motion information as the flow network.

How is the motion encoded? It is also possible that our model simply copies the motion

attention map without encoding motion in the network. To eliminate this hypothesis, we

experimented with training an RGB network that directly combines a reference motion at-
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Table 3.7: Inverting the arrow of time for action recognition. We train the models on
normal samples, yet test them on videos with reversed temporal order. A large performance
drop indicates that the model has to rely on motion information for the recognition.

Dataset Method Mean Class Accuracy
Original Reverted Delta∆

UCF101
I3D RGB 94.8 94.7 0.1
I3D flow 94.0 89.9 4.1

Ours 95.7 95.1 0.6

HMDB51
I3D RGB 70.9 70.2 0.7
I3D flow 73.9 66.0 7.9

Ours 72.0 70.6 1.4

tention map and its own appearance attention map for action recognition. The reference

motion attention is produced by a flow network during both training and testing. And the

rest of this network follows exactly the same architecture as our model. This model has an

accuracy of 95.1%/71.6% on UCF101/HMDB51, under-performing our model by -0.6%/-

0.4% on UCF101/HMDB51. These results indicate that the distillation process not only

generates motion attention maps, but also learns motion-aware representation.

Visualization of Attention Maps. To better understand our model, we visualize both mo-

tion and appearance attention maps from our model. We also compare these maps with at-

tention maps created by our Soft-Atten models from RGB and flow streams in Figure 3.5.

Notice that these two attention maps are qualitatively different across all methods. The

appearance attention is likely to cover foreground objects or actors, while the motion atten-

tion focuses on the moving parts. Moreover, the appearance attention from our model can

better localize the foreground regions of actions than those of Soft-Atten from the RGB

stream, while the motion attention from our model remains similar to the Soft-Atten from

the flow stream. We also find that the attention maps from our model are more “diffused”.

This is because the regularization by a uniform distribution in Prob-Atten leads to smoother

attention maps.
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3.5 Conclusion

In this chapter, I first introduce a novel deep model for jointly estimating gaze and recog-

nizing actions in egocentric video. The core innovation is to model the noise in human

gaze measurement using stochastic units embedded in a deep neural network. Our model

predicts a probabilistic representation of gaze, and uses it to select features for recogni-

tion. I then present a novel method that makes use of the attention map as a vehicle to

learn a motion-aware video representation. I further present extensive experiments to show

the benefits of our approach. Our works thus provide a novel means of developing more

expressive deep models using attention mechanisms.
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Figure 3.5: Visualization of attention maps (Ours vs. Soft-Atten using the same I3D
backbone). For each video clip, we re-interpolate the attention maps and plot them on the
first and last frame. Red regions indicate higher value of attention. Our model produces
appearance and motion attention maps that are qualitatively different and index key action
regions.
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CHAPTER 4

EGOCENTRIC ACTIVITY RECOGNITION AND 3D LOCALIZATION

4.1 Introduction

Egocentric videos implicitly and naturally connect the camera wearer’s activities to the

relevant 3D spatial context, such as the surrounding objects and their 3D layout. While

this observation has been true since the beginning of egocentric vision, it is only recently

that 3D scene models that can capture this context have become readily available, due to

advances in 3D scanners [125] and Augmented Reality (AR) headsets [126]. Figure 4.1

(a) gives an example of a 3D scan of a subject’s apartment in which the 3D layout of the

furniture and appliances is known a priori. How could we design a computational model

that leverages such 3D map to reason about the camera wearer’s activities and the 3D

locations in which they are performed, e.g. , drawing a picture while sitting on the sofa?

In this chapter, we introduce the new task of the joint recognition and 3D localization of

egocentric activities given trimmed videos and a coarsely-annotated 3D environment map.

We provide a visual illustration of our problem setting in Fig. Figure 4.1 (b). Two major

challenges arise in our task. First, standard architectures for egocentric activity recognition

are not designed to incorporate 3D scene context, requiring a new design of action recog-

nition models and associated 3D scene representations. Second, the exact ground truth for

the locations of actions in a 3D scene that is the size of an entire apartment is difficult

to obtain, due to ambiguities in 2D to 3D registration. As a remedy, we leverage camera

registration using structure-from-motion that yields “noisy” locations, which requires the

model to address the uncertainty in action locations during training.

To address the challenge of leveraging context in recognition, we develop a Hierarchi-

cal Volumetric Representation (HVR) to describe the semantic and geometric information
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Draw Picture+

Egocentric Video Frames Coarse 3D Environment  Map

Input
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Figure 4.1: (a) Motivation:The activities of daily life take place in a 3D environment,
and the semantic and spatial properties of the environment are powerful cues for activity
recognition. (b) Our Proposed Task: Given an input egocentric video sequence and a
3D volumetric representation of the environment (carrying both semantic and geometric
information), our goal is to detect and localize activities, by jointly predicting the action
label and location on the 3D map where it occurred.

of the 3D environment map (see Fig. Figure 4.2 (a) and Chapter 4.2 for explanation). We

further present a novel deep model that takes egocentric videos and our proposed 3D envi-

ronment HVR as inputs, and outputs the 3D action locations and the activity classes. Our

model consists of two branches. The environment branch makes use of a 3D convolutional

network to extract global environmental features from HVR. Similarly, the video branch

uses a 3D convolutional network to extract visual features from the input video. The en-

vironmental and visual features are further combined to estimate the 3D activity location,

supervised by the results of camera registration. Moreover, we tackle the second challenge

of noisy localization by using stochastic units to account for uncertainty. The predicted

3D activity location, in the form of a probabilistic distribution, is then used as a 3D atten-

tion map to select local environmental features relevant to the action. Finally, these local

features are further fused with video features for recognition.

Our method is trained and evaluated on the recent, freely-available Ego4D dataset [7],

which contains naturalistic egocentric videos and photo-realistic 3D scene reconstructions
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along with 3D static object annotations. We demonstrate strong results on action recog-

nition and 3D action localization. Specifically, our model outperforms a strong baseline

of 2D video-based action recognition methods by 4.2% in mean class accuracy, and beats

baselines on 3D action localization by 9.3% in F1 score. Furthermore, we demonstrate that

our method can generalize to unseen environments not present in the training set yet with

known 3D maps and object labels.

To summarize, this chapter has the following contributions:

• I propose a novel task of egocentric action recognition and localization on a 3D

environment map.

• I introduce a novel environment representation and a novel computational model to

address our proposed task.

• I show that our method achieves consistent performance improvement on both action

recognition and 3D localization for both seen and unseen splits.

This work was a collaboration with Dr. Chao Li, Dr. Ling Ma, Dr. Kiran Somasun-

daram, and Prof. Kristen Grauman. The work was published in ECCV 2022 [127] as a

poster paper.

4.2 Method

We denote a trimmed input egocentric video as x = (x1, ..., xt) with frames xt indexed

by time t. In addition, we assume a global 3D environment prior e, associated each with

input video, is available at both training and inference time. e is environment specific, e.g.

, the 3D map of an apartment. Our goal is to jointly predict the action category y of x and

the action location r on the 3D map. r is parameterized as a 3D saliency map, where the

value of r(w, d, h) represents the likelihood of action clip x happening in spatial location

w, d, h.1 r thereby defines a proper probabilistic distribution in 3D space.
1For tractability, we associate the entire activity with a specific 3D location and do not model location

change over the course of an activity. This is a valid assumption for the activities we address, such as sitting
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Figure 4.2: (a) Hierarchical Volumetric Representation (HVR). We rasterize the seman-
tic 3D environment mesh into two levels of 3D voxels. Each parent voxel corresponds to
a possible action location, while the children voxels compose a semantic occupancy map
that describes their parent voxel. (b) Overview of our model. Our model takes video
clips x and the associated 3D environment representation e as inputs. We adopt an I3D
backbone network φ to extract video features and a 3D convolutional network ψ to extract
the global environment features. We then make use of stochastic units to generate sampled
action location r̃ for selecting local 3D environment features for action recognition. Note
that ⊗ represents weighted average pooling, while ⊕ denotes concatenation along channel
dimension.

4.2.1 Joint Modeling with the 3D Environment Representation

3D Environment Representation. Existing 3D environment representations are not de-

signed for egocentric action understanding. We seek to design a representation that not

only encodes the 3D geometric and semantic information of the 3D environment, but is

also effective for 3D action localization and recognition.

Inspired by previous works on human-scene interaction (see discussions in Chapter

2.4), we introduce a Hierarchical Volumetric Representation (HVR) of the 3D environment.

We provide an illustration of our method in Figure 4.2(a). We assume the 3D environment

reconstruction with object labels is given in advance as a 3D mesh (see Sec.4 for details).

We first divide the 3D mesh into X × Y × Z parent voxels, that define all possible action

locations. We then divide each parent voxel into multiple voxels at a fixed resolutionM and

down, playing keyboards, etc. This is different from the active research on SLAM [128]
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further assign an object label to each child voxel based on the object annotation. Specifi-

cally, the object label of each child voxel is determined by the majority vote of the vertices

that lie inside that child voxel. Note that we only consider static objects of the entire envi-

ronments and treat empty space as a specially-designated “object” category. Therefore, the

child voxels compose a semantic occupancy map that encodes both the 3D geometry and

semantic meaning of the parent voxel.

We further vectorize the semantic occupancy map and use the resulting vector as a

feature descriptor of the parent voxel. The 3D environment representation e can then be

represented as a 4D tensor, with dimension X × Y × Z × (M3). Note that higher reso-

lution M can better approximate the 3D shape of the environment. Our proposed HVR is

thus a compact and flexible environment representation that jointly considers the 3D action

location candidates, geometric and semantic information of the 3D environment.

Joint Learning of Action Category and Action Location. We present an overview of

our model in Figure 3.2(b). Specifically, we adopt a two-pathway network architecture.

The video pathway extracts video features with an I3D backbone network φ(x), while the

environment pathway extracts the global 3D environment features with a 3D convolutional

network ψ(e). Visual and environmental features are jointly considered for predicting the

3D action location r. We then adopt stochastic units to generate sampled action r̃ for

selecting the local environment features relevant to the actions. Local environment features

and video features are further fused together for activity recognition.

Our key idea is to utilize the 3D environment representation e for jointly modeling the

action label y and 3D action location r of video clip x. We consider the action location r

as a probabilistic variable, and model the action label y given input video x and environ-

ment representation e using a latent variable model. Therefore, the conditional probability

p(y|x, e) is given by:

p(y|x, e) =

∫
r

p(y|r, x, e)p(r|x, e)dr. (4.1)
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Notably, our proposed joint model has two key components. First, p(r|x, e) models the

3D action location r from video input x and the 3D environment representation e. Second,

p(y|r, x, e) utilizes r to select a region of interest (ROI) from the environment represen-

tation e, and combines selected environment features with the video features from x for

action classification. During training, our model receives the ground truth 3D action loca-

tion and action label as supervisory signals. At inference time, our model jointly predicts

both the 3D action location r and action label y. We now provide additional technical

details in modeling p(r|x, e) and p(y|r, x, e).

4.2.2 3D Action Localization

We first introduce our 3D action localization module, defined by the conditional probabil-

ity p(r|x, e). Given the video pathway features φ(x) and the environment pathway features

ψ(e), we learn a mapping function to predict location r, which is defined on a 3D grid of

candidate action locations2. The mapping function is composed of 3D convolution opera-

tions with parameters wr and a softmax function. Thus, p(r|x, e) is given by:

p(r|x, e) = softmax(wTr (φ(x)⊕ ψ(e))), (4.2)

where ⊕ denotes concatenation along the channel dimension. Therefore, the resulting ac-

tion location r is a proper probabilistic distribution normalized in 3D space, and r(w, d, h)

can be considered as the expectation of video clip x happening in the spatial location

(w, d, h) of the 3D environment.

In practice, we do not have access to the precise ground truth 3D action location and

must rely on camera registration results as a proxy. Using a categorical distribution for

p(r|x, e) thus models the ambiguity of 2D to 3D registration. We follow [57, 129] to adopt

stochastic units in our model. Specifically, we follow the Gumbel-Softmax and reparame-

terization trick from [105, 106] to adopt the following differentiable sampling mechanism:

2The 3D grid is defined globally over the 3D environment scan.
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r̃w,d,h ∼
exp((log rw,d,h +Gw,d,h)/θ)∑
w,d,h exp((log rw,d,h +Gw,d,h)/θ)

, (4.3)

where G is a Gumbel Distribution for sampling from a discrete distribution. This Gumbel-

Softmax trick produces a “soft” sample that allows the gradients propagation to video path-

way network φ and environment pathway network ψ. θ is the temperature parameter that

controls the shape of the soft sample distribution. We set θ = 2 for our model. Notably, the

expectation of sampled 3D action locationE[r̃] can be modeled by the distribution p(r|x, e)

using Equation 4.2.

4.2.3 Action Recognition with Environment Prior

Our model further models p(y|r, x, e) with a mapping function f(r̃, x, e) that jointly con-

siders action location r, video input x and 3D environment representation e for action

recognition. Formally, the conditional probability p(y|r, x, e) can be modeled as:

p(y|r, x, e) = f(r̃, x, e) = softmax(wTp Σ(φ(x)⊕ (r̃ ⊗ ψ(e)))), (4.4)

where ⊕ denotes concatenation along channel dimension, and ⊗ denotes the element-wise

multiplication. Specifically, our method uses the sampled action location r̃ for selectively

aggregating environment features ψ(e) and combines the aggregated environment features

with video features φ(x) for action recognition. Σ denotes the average pooling operation

that maps 3D feature to 2D feature, and wp denotes the parameters of the linear classifier

that maps feature vector to action prediction logits.

4.2.4 Training and Inference

We now present our training and inference schema. At training time, we assume a prior

distribution of action location q(r|x, e) is given as a supervisory signal. q(r|x, e) is obtained

by registering the egocentric camera into the 3D environment (see more details in Sec.4).
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Note that we factorize p(r|x, e) as latent variables, and based on the Evidence Lower Bound

(ELBO), the resulting deep latent variable model has the following loss function:

L = −
∑
r

log p(y|r, x, e) +KL[p(r|x, e)||q(r|x, e)], (4.5)

where the first term is the cross entropy loss for action classification and the second term

is the KL-Divergence that matches the predicted 3D action location distribution p(r|x, e)

to the prior distribution q(r|x, e). During training, a single 3D action location sample r̃ for

each input within the mini-batch will be drawn.

Theoretically, our model should sample r̃ from the same input multiple times and take

average of the predictions at inference time. To avoid such dense sampling for high di-

mensional video input, we choose to directly plug in the deterministic action location r

in Equation 4.4. Note that the recognition function f is composed of a linear mapping

function and a softmax function, and therefore is convex. Further, r̃ is sampled from the

probabilistic distribution of 3D action location r, similar to the formulation in [101, 129],

r is thus the expectation of r̃. By Jensen’s Inequality, we have:

E[f(r̃, x, e)] ≥ f(E[r̃], x, e) = f(r, x, e). (4.6)

That being said, f(r, x, e) provides an empirical lower bound ofE[f(r̃, x, e)], and therefore

provides a valid approximation of dense sampling.

4.3 Experiments and Results

We now present our experiments and results, we first describe the dataset and evaluation

metrics. We then present our main results on action recognition and 3D action localization,

followed by detailed ablation studies to verify our model design. We further show how our

model generalizes to a novel environment, and provide visualization and discussion of our

results.

44



4.3.1 Dataset and Benchmarks

Datasets. Note that existing egocentric video datasets (EGTEA [57], and EPIC-Kitchens [130],

etc.) did not explicitly capture the 3D environment. We follow [74] to run ORB-SLAM

on EGTEA and EPIC-Kitchens. However, less than 30% of frames can be registered, and

the quality of the reconstructed point cloud is unsatisfactory. Our empirical finding is that

existing visual SfM methods can not address the naturalistic egocentric videos. In con-

trast, the newly-developed Ego4D [7] dataset has a subset that includes egocentric videos,

high-quality 3D environment reconstructions, and 3D static objects annotation.

The subset contains 60 hours of video from 105 different video sequences captured by

Vuzix Blade Smart Glasses with a resolution of 1920×1080 at 24Hz. It captures 34 dif-

ferent indoor activities from three real-world living rooms, resulting in 6868 action clips.

Similar to [130], we consider both seen and unseen environment splits. In the seen envi-

ronment split, each environment is seen in both training and testing sets (5163 instances

for training, and 1705 instances for testing). In the unseen split, all sequences from the

same environment are either in training or testing (4392 instances for training, and 2476

instances for testing). We will release the both seen and unseen splits on this subset. As

discussed in [7], the photo-realistic 3D reconstruction of the environment is obtained from

the state-of-the-art dense reconstruction system [131]. Furthermore, the static 3D object

meshes are annotated by painting an semantic label over the mesh polygons. 35 object

categories plus a background class label are used in annotation. It is worthy noting that

the static object annotations can be automated with the state-of-the-art 3D object detection

algorithms.

Prior Distribution of 3D Activity Location. To obtain the ground truth of the activity

location for each trimmed activity video clip, we first register the egocentric camera in

the 3D environment using a RANSAC based feature matching method. Specifically, we

first build a base map from the monochrome camera streams for 3D environment recon-

struction using Structure from Motion [132, 133]. The pre-built base map is a dense point
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Table 4.1: Comparison with other forms of environment context. Our Hierarchical
Volumetric Representation (HVR) outperforms other methods by a significant margin on
both action recognition and 3D action localization. The best results are highlighted with
boldface, and the second-best results are underlined.

Method
Action Recognition 3D Action Localization

Mean Cls Acc Top-1 Acc Prec Recall F1
I3D-Res50 37.48 55.15 8.14 38.73 13.45
I3D+Obj 37.66 55.11 10.04 35.08 15.61

I3D+2DGround 38.69 55.37 10.88 36.19 16.73
I3D+SemVoxel 39.23 56.07 11.26 38.77 17.45
I3D+Affordance 39.95 55.82 11.55 35.35 17.41

Ours(HVR) 41.64 56.94 16.71 35.55 22.73

cloud associated with 3D feature points. We then estimate the camera pose of the video

frame using active search [134]. Note that registering the 2D egocentric video frames in a

3D environment is fundamentally challenging, due to the drastic head rotation, featureless

surfaces, and changing illumination. Therefore, we only consider the key frame camera

registration, where enough inliers were matched with RANSAC. As introduced in Chapter

4.2, the action location is defined as a probabilistic distribution in 3D space. Thus, we

map the key frame camera location into the index of the 3D action location tensor, with its

value representing the likelihood of the given action happening in the corresponding parent

voxel. To account for the uncertainty of 2D to 3D camera registration, we further enforce a

Guassian distribution to generate the final 3D action location ground truth.

Evaluation Metrics. For all experiments, we evaluate the performance of both action

recognition and 3D action localization, following the protocols.

• Action Recognition. We follow [130, 57] to report both Mean Class Accuracy and Top-1

Accuracy.

• 3D Action Localization.We consider 3D action localization as binary classification over

the regular 3D grids. Therefore, we report the Precision, Recall, and F1 score on a down-

sampled 3D heatmap (×4 in X, Y direction, and ×2 in Z direction) as in [101].
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4.3.2 Action Understanding in Seen Environments

Our method is the first to utilize the 3D environment information for egocentric action

recognition and 3D localization. Previous works have considered various environment con-

texts for other tasks, including 3D object detection, affordance prediction, etc. Therefore,

we adapt previous proposed contextual cues into our proposed joint model and design the

following strong baselines:

• I3D-Res50 refers to the backbone network from [110]. We also use the network feature

from I3D-Res50 for 3D action localization by adopting the KL loss.

• I3D+Obj uses object detection results from a pre-trained object detector [135] as con-

textual cues as in [26]. This representation is essentially an object-centric feature that

describes the attended environment (i.e. , where the camera wearer is facing towards),

therefore 3D action location can not used for selecting surrounding environment features.

• I3D+2DGround projects the object information from the 3D environment to 2D ground

plane. A similar representation is also considered in [74]. Note that the predicted 3D action

location will also be projected to 2D ground plane to select local environment features.

• I3D+SemVoxel is inspired by [136], where we use the semantic probabilistic distribution

of all the vertices within each voxel as a feature descriptor. Therefore, the resulting envi-

ronment representation is a 4D tensor with dimension X × Y × Z × C, where X , Y , Z

represent the spatial dimension, and C denotes the number of object labels from the 3D

environment mesh annotation introduced in Sec.4.

• I3D+Affordance follows [86] to use the afforded action distribution as feature descriptor

for each voxel. The resulting representation is a 4D tensor with dimensionX×Y ×Z×N ,

where N denotes the number of action classes.The afforded action distribution is derived

from the training set.

Results. Our results on the seen environment split is listed in Table 4.1. Our method out-

performs I3D-Res50 baseline by a large margin (4.2%/1.8% on Mean Cls Acc/Top1 Acc)

on action recognition. We attribute this significant performance gain to explicitly modeling
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the 3D environment context. As for 3D action localization, our method outperforms I3D-

50 by 9.3% – a relative improvement of 69%. Notably, predicting the 3D action location

based on video sequence alone is erroneous. Our method, on the other hand, explicitly

models the 3D environment factor and thus improves the performance of 3D action local-

ization. In subsequent sections, we will show that the performance improvement does not

simply come from additional input modalities of 3D environment, but attributes to a careful

design of 3D representation and probabilistic joint modeling.

Comparison on environment representation. We now compare HVR with other forms of

environment representation. As shown in Table 4.1, I3D+Obj has minor improvement on

the over all performance, while I3D+2DGround, I3D+SemVoxel and I3D+Affordance can

improve the performance of action recognition and 3D localization by a notable margin.

Those results suggest that the environment context (even in 2D space) plays an important

role in egocentric action understanding. More importantly, our method outperforms all

previous methods by at least 1.7% for action recognition and 5.3% for 3D action local-

ization. These results suggest that our proposed HVR is superior to a 2D ground plane

representation, and demonstrates that using the semantic occupancy map as the environ-

ment descriptor can better facilitate egocentric understanding.

Although our method requires the annotation of static objects, we are the first to show

how the 3D scene proximity can facilitate egocentric video understanding. Moreover, base-

line methods like I3D+SemVoxel and I3D+2DGround both use the same static objects

annotation to describe the environment context as our method. Therefore, it is a fair experi-

ment comparison between our approach and those methods. I3D+Affordance also requires

extra inputs, in the form of afforded action distribution across the entire 3D map, which

directly links each voxel in the map to the most likely action for that location, a much

stronger prior than our HVR representation. Note that the affordance map requires that the

observation of action instances densely cover the full 3D scene. Therefore, we argue that

I3D+Affordance is less scalable than our model.

48



Table 4.2: Ablation study for the 3D representation. We present the results of our method
that adopts different semantic occupancy map resolution M .

Method
Action Recognition 3D Action Localization

Mean Cls Acc Top-1 Acc Prec Recall F1
I3D-Res50 37.48 55.15 8.14 38.73 13.45

I3D+SemVoxel 39.23 56.07 11.26 38.77 17.45
Ours (M = 2) 39.04 56.26 12.19 36.82 18.32
Ours (M = 4) 41.64 56.94 16.71 35.55 22.73
Ours (M = 8) 40.06 56.04 16.13 39.84 22.96

4.3.3 Ablation Studies

We now present detailed ablation studies of our method on seen split. To begin with,

we analyze the role of semantic and geometric information in our hierarchical volumetric

representation (HVR). We then present an experiment to verify whether fine-grained envi-

ronment context is necessary for egocentric action understanding. Furthermore, we show

the benefits of probabilistic joint modeling of action and 3D action location.

Semantic Meaning and 3D Geometry. The semantic occupancy map carries both geo-

metric and semantic information of the local environment. To show how each component

contributes to the performance boost, we compare Ours with I3D+SemVoxel, where only

semantic meaning is considered, in Table 4.2. Ours outperforms I3D+SemVoxel by a no-

table margin for action recognition and a large margin for 3D localization. These results

suggest that semantic occupancy map is more expressive than only semantic information

for action understanding, yet it has smaller impact on action recognition than 3D action

localization.

Granularity of 3D Information. We further show what level of 3D environment granu-

larity is needed for egocentric action understanding. By the definition of occupancy map,

increasing the resolution M of children voxels will approximate the actual 3D shape of

the environment. Therefore, we report results of our method with different occupancy map

resolution in Table 6.1. Not surprisingly, low occupancy map resolution lags behind Ours

for action recognition by 2.6% ↓ and 3D action localization by 4.4% ↓, which again shows
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Table 4.3: Ablation study for joint modeling of action category and 3D action loca-
tion. Our proposed probabilistic joint modeling can consistently benefit the performance
on action recognition and 3D action localization.

Method
Action Recognition 3D Action Localization

Mean Cls Acc Top-1 Acc Prec Recall F1
I3D-Res50 37.48 55.15 8.14 38.73 13.45

I3D+GlobalEnv 35.99 54.93 8.82 36.40 14.20
I3D+DetEnv 39.37 55.88 14.11 32.66 19.71

Ours 41.64 56.94 16.71 35.55 22.73

the necessity of incorporating the 3D geometric cues. Another interesting observation is

that higher resolution can slightly increase the 3D action localization accuracy by 0.2%,

yet decreases the performance on action recognition by 1.6% ↓. These results suggest

that fine-grained 3D shape of the environment is not necessary for action recognition. In

fact, higher resolution will dramatically increase the feature dimension of the environment

representation, and thereby incurs more barriers to the network.

Joint Learning of Action Label and 3D Location. We denote a baseline model that

directly fuses global environment features, extracted by the same 3D convolutional net-

work adopted in our method, with video features for action grounding as I3D+GlobalEnv.

The results are presented in Table 4.3. Interestingly, I3D+GlobalEnv decreases the per-

formance of I3D-Res50 backbone network by 1.5% ↓ /0.2% ↓ for action recognition and

has marginal improvement for 3D action localization (+0.8%). We speculate that this is

because only 3 types of environment representation available for training may lead to over-

fitting. In contrast, our method makes use of the learned 3D action location to select inter-

esting environment features associated with the action. As the action location varies among

different input videos, our method can utilize the 3D environment context without running

into the pitfall of overfitting, and therefore outperforms I3D+GlobalEnv by 5.7%/2.0% for

action recognition and 8.5% for 3D action localization.

Probabilistic Modeling of 3D Action Location. As introduced in Sec.4, considerable un-

certainty lies in the prior distribution of 3D action location, due to the challenging artifact of

2D to 3D camera registration. To verify that the probabilistic modeling can account for the
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Table 4.4: Experimental results on unseen environment split. Our model show the
capacity of better generalizing to an unseen environment with known 3D map. The best
results are highlighted with boldface, and the second-best results are underlined.

Method
Action Recognition 3D Action Localization

Mean Cls Acc Top-1 Acc Prec Recall F1
I3D-Res50 29.24 52.22 6.20 45.14 10.90

I3D+2DObject 29.91 53.05 6.31 42.22 10.98
I3D+2DGround 30.06 53.87 6.95 41.27 11.90
I3D+SemVoxel 30.19 53.37 7.03 43.55 12.11

Ours 31.55 55.33 7.50 44.97 12.86

uncertainty of 3D action location ground truth, we compare our method with a determinis-

tic version of our model, denoted as DetEnv. DetEnv adopts the same inputs and network

architecture as our method, except for the differentiable sampling with Gumbel-Softmax

Trick. As shown in Table 4.3, Ours outperforms DetEnv by 2.3% for action recognition and

3.0% for 3D action localization. These results demonstrate the benefits of the stochastic

units adopted in our method.

Remarks. To summarize, our key finding is that both 3D geometric and semantic con-

texts convey important information for action recognition and 3D localization. Another

important take home is that egocentric understanding only requires a sparse encoding of

geometric information. Moreover, without a careful model design, the 3D environment

representation has minor improvement on (or even decreases) the overall performance as

reported in Table 4.3.

4.3.4 Generalization to Novel Environment

We further present experiment results on the unseen environment split in Table 4.4. Our

model outperforms all baselines by a notable margin on both action recognition and 3D ac-

tion localization. Note that the affordance map requires the observation of action instances

on the 3D spatial location and thus cannot be applied on the unseen split. These results

suggest that explicitly modeling the 3D environment context can improve the generaliza-

tion ability to unseen environments with known 3D maps. However, the performance gap
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Pred: Play Keyboard 

GT: Play Keyboard
Pred: Pick up Book from Floor

GT: Pick up Book from Floor

Pred: Pick up Cell Phone

GT: Pick up Cell Phone

Pred: Pick up Poster

GT: Measure Poster

Pred: Chat over Cell Phone

GT: Chat over Cell Phone

Pred: Draw Pictures

GT: Draw Pictures

Figure 4.3: Visualization of predicted 3D action location (projected on top-down view
of the reconstructed 3D scene) and action labels (captions above the video frames). We
present both successful and failure examples. We also show the “zoom-in” spatial region
of the action location to help readers to better interpret our action localization results.

is smaller in comparison to the performance boost on seen split. We speculate that this is

because we only have two different types of environments for training and therefore the

risk of overfitting on unseen split is further exemplified.

4.3.5 Discussion

Visualization of Action Location. We visualize our results on seen environment split.

Specifically, we project the 3D saliency map of action location on the top-down view of the

3D environments. As shown in Figure 4.3, our model can effectively localize the coarse

action location and thereby select the region of interest from the global environment fea-

tures for action recognition. By examining the failure cases, we found that the model may

run into the failure modes when the video features are not sufficiently discriminative (i.e.

, when the camera wearer is standing close to a white wall.) Another interesting observa-
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tion is that the model may output a “diffused” heatmap, when the foreground active objects

take up the majority of the video frames (right column of Figure 4.3). This is because the

model receives uniform prior as supervisory signals when the camera registration fails for

an action clip. In these cases, our model opts for predicting a diffused heat map of action

location to prevent itself from missing important environment features. In doing so, our

model might still be able to successfully predict the action labels, despite the failure of

camera registration.

4.4 Conclusion

In this chapter, I introduce a deep model that makes use of egocentric videos and a 3D

map to address the novel task of joint action recognition and 3D localization. The key

insight is that the 3D geometric and semantic context of the surrounding environment pro-

vides critical information that complements video features for action understanding. The

key innovation of our model is to characterize the 3D action location as a latent variable,

which is used to select the surrounding local environment features for action recognition.

Our model demonstrated impressive results on seen and unseen environments when eval-

uated on the newly released Ego4D dataset [7]. We believe our work provides a critical

first step towards understanding actions in the context of a 3D environment, and points to

exciting future directions in connecting egocentric vision and 3D scene understanding for

Augmented Reality and Human-Robot Interaction.
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CHAPTER 5

HUMAN-OBJECT INTERACTION ANTICIPATION IN EGOCENTRIC VIDEO

5.1 Introduction

The human ability of “looking into the near future” remains a key challenge for computer

vision. Consider the example in Figure 5.1, given a video shortly before the start of an

action, we can easily predict what will happen next, e.g., the person will take the canister

of salt. Even without seeing any future frames, we can vividly imagine how the person will

perform the action, e.g., the trajectory of the hand when reaching for the canister or the

location on the canister that will be grasped.

There is convincing evidence that our remarkable ability to forecast other individu-

als’ actions depends critically upon our perception and interpretation of their body motion.

The investigation of this anticipatory mechanism dates back to 19th century, when William

James argued that future expectations are intrinsically related to purposive body move-

ments [137]. Additional evidence for a link between perceiving and performing actions

was provided by the discovery of mirror neurons [138, 139]. The observation of others’

actions activates our motor cortex, the same brain regions that are in charge of the planning

and control of intentional body motion. This activation can happen even before the onset of

the action and is highly correlated with the anticipation accuracy [140]. A compelling ex-

planation from [141] suggests that motor attention, i.e., the active prediction of meaningful

future body movements, serves as a key representation for anticipation. In this chapter, I

introduce our efforts on developing the first computational model for motor attention that

can enable more accurate action prediction.

Despite these relevant findings in cognitive neuroscience, the role of intentional body

motion in action anticipation is largely ignored by the existing literature [142, 143, 144,
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Action Segment

Last Observable Frame

Intentional Movement Interaction Hotspots

Observable Video Segment Anticipation Time

Take Canister?
Take Bowl?
Take Cup?

Action
Prediction… …

Action Starting Frame

Last Observable Frame

Figure 5.1: What is the most likely future interaction? Our model takes advantage of
the connection between motor attention and visual perception. In addition to future action
label, our model also predicts the interaction hotspots on the last observable frame and hand
trajectory (in the order of yellow , green, cyan, and magenta) between the last observable
time step to action starting point. Visualizations of hand trajectory are projected to the last
observable frame (best viewed in color).

145, 25, 26, 24, 27]. In this work, we focus on the problem of forecasting human-object

interactions in First Person Vision (FPV). Interactions consist of a single verb and one or

more nouns, with “take bowl” as an example. FPV videos capture complex hand move-

ments during a rich set of interactions, thus providing a powerful vehicle for studying the

connection between motor attention and future representation. Several previous works have

investigated the problems of FPV activity anticipation [25, 26] and body movement pre-

diction [146, 88, 87, 90]. We believe we are the first to utilize a motor attention model for

FPV action anticipation.

Specifically, we propose a novel deep model that predicts “motor attention”—the future

trajectory of the hands, as an anticipatory representation of actions. Based on motor atten-

tion, our model further localizes the future contact region of the interaction, i.e., interaction

hotspots [83] and recognizes the type of future interactions. Importantly, we characterize

motor attention and interaction hotspots as probabilistic variables modeled by stochastic

units in a deep network. These units naturally deal with the uncertainty of future hand

motion and contact region during interaction, and produce attention maps that highlight

discriminative spatial-temporal features for action anticipation.

During inference, our model takes video clips shortly before the interaction as inputs,

and jointly predicts motor attention, interaction hotspots, and action labels. During training,
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our model assumes that these outputs are available as supervisory signals. To evaluate

our model, we report results on two major FPV benchmarks: EGTEA Gaze+ and EPIC-

Kitchens. In the experiment section, we show our approach outperforms prior state-of-the-

art methods by a significant margin. In addition, we present extensive ablation studies to

verify the design of our model and evaluate our model for motor attention prediction and

interaction hotspots estimation. Our model demonstrates strong results for both tasks.

To summarize, this chapter has the following contributions:

• I propose a novel joint model for predicting motor attention, interaction hotspots, and

future action categories.

• I present a systematic ablation study to demonstrate the benefits of motor attention

module, interaction hotspots module, and stochastic units adopted in our method.

• Our proposed method achieved the state-of-the-art performance on existing egocen-

tric benchmark datasets.

This work was a collaboration with Prof. Yin Li, and Prof. Siyu Tang. The work was

published in ECCV 2020 [129] as an oral paper.

5.2 Problem Setting and Model Overview

We consider the setting of action anticipation from [147]. Denote an input video segment

as x : [τa − ∆τo, τa]. x starts at τa − ∆τo and ends at τa with duration ∆τo > 0 as the

“observation time”. Our goal is to predict the label y of an immediate future interaction

starting at τs = τa + ∆τa, where ∆τa > 0 is a fixed interval known as the “anticipation

time.” Moreover, we seek to estimate future hand trajectoriesM within [τa, τs] (projected

back to the last observable frame at τa), and to localize interaction hotspotsA at τa (the last

observable frame).

To summarize, our model seeks to anticipate the future action y by jointly predicting the

future hand trajectoryM and interaction hotspotsA at the last observable frame. Predicting
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Figure 5.2: Proposed model for forecasting egocentric human-object interaction. A
3D convolutional network φ(x) is used as our backbone network, with features from its
ith convolution block as φi(x) (a). A motor attention module (b) makes use of stochastic
units to generate sampled future hand trajectories M̃ used to guide interaction hotspots
estimation in module (c). Module (c) further generates sampled interaction hotspots Ã
with similar stochastic units as in module (b). Both M̃ and Ã are used to guide action
anticipation in anticipation module (d). During testing, our model takes only video clips
as inputs, and predicts motor attention, interaction hotspots, and action labels. Note that ⊗
represents element-wise multiplication for weighted pooling.

the future is fundamentally ambiguous, since the observation of future interaction only

represents one of the many possibilities characterized by an underlying distribution. Our

key idea is thus to model motor attention and interaction hotspots as probabilistic variables

in order to account for their uncertainty. We present an overview of our model in Figure 5.2.

Specifically, we make use of a 3D backbone network φ(x) for video representation

learning. Following the approach in [148, 149], we utilize 5 convolutional blocks, and de-

note the features from the ith convolution block as φi(x). Based on φ(x), our motor atten-

tion module (b) predicts future hand trajectories as motor attentionM and uses stochastic

units to sample from M. The sampled motor attention M̃ is an indicator of important

spatial-temporal features for interaction hotspot estimation. Our interaction hotspot mod-

ule (c) further produces an interaction hotspot distributionA and its sample Ã. Finally, our

anticipation module (d) makes use of both M̃ and Ã to aggregate network features, and

predicts the future interaction y.
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5.3 Joint Modeling of Human-Object Interaction

Formally, we consider motor attentionM and interaction hotspots A as probabilistic vari-

ables, and model the conditional probability of the future action label y given the input

video x as a latent variable model, where

p(y|x) =

∫
M

∫
A
p(y|A,M, x)p(A|M, x)p(M|x) dA dM, (5.1)

p(M|x) first estimates motor attention from video input x. M is further used to estimate

interaction hotspots A (p(A|M, x)). Given x,M and A, the action label y is determined

by p(y|A,M, x). Our model thus consists of three main components.

Motor Attention Module tackles p(M|x). Given the network features φ2(x), our model

uses a function FM to predict motor attention M. M is represented as a 3D tensor

of size Tm × Hm × Wm. Moreover, M is normalized within each temporal slice, i.e.,∑
w,hM(t, w, h) = 1.

Interaction Hotspots Module targets at p(A|M, x). Our model uses a function FA to

estimate the interaction hotspots A based on the network feature φ3(x) and sampled mo-

tor attention M̃. A is represented as a 2D attention map of size Ha × Wa. A further

normalization constrained that
∑

w,hA(w, h) = 1.

Anticipation Module makes use of the predicted motor attention and interaction hotspots

for action anticipation. Specifically, sampled motor attention M̃ and sampled interaction

hotspots Ã are used to aggregate feature φ5(x) via weighted pooling. An action anticipation

function FP further maps the aggregated features to future action label y.

5.3.1 Motor Attention Module

Motor Attention Generation. The motor attention prediction function FM is composed of

a linear function with parameter WM on top of network features φ2(x). The linear function

is realized by a 3D convolution and a softmax function is used to normalize the attention

map. This is given by ψ = softmax(W T
Mφ2(x)), where the output ψ is a 3D tensor of size
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Tm×Hm×Wm. We further model p(M|x) by normalizing ψ within each temporal slice:

Mm,n,t =
ψm,n,t∑
m,n ψm,n,t

, (5.2)

where ψm,n,t is the value at location (m,n) and time step t in the 3D tensor of ψ. AndM

can be considered as the expectation of p(M|x).

Stochastic Modeling. Modeling motor attention in the context of forecasting human-object

interaction requires a mechanism for addressing the stochastic nature of motor attention in

developing the joint model. Here, we propose to use stochastic units to model the uncer-

tainty. The key idea is to sample from the motor attention distribution. We follow the

Gumbel-Softmax and reparameterization trick introduced in [105, 106] to design a differ-

entiable sampling mechanism:

M̃m,n,t ∼
exp((logψm,n,t +Gm,n,t)/θ)∑
m,n exp((logψm,n,t +Gm,n,t)/θ)

, (5.3)

where G is a Gumbel Distribution used to sample from discrete distribution. This Gumbel-

Softmax trick produces a “soft” sampling step that allows the direct back-propagation of

gradients to ψ. θ is the temperature parameter that controls the “sharpness” of the distribu-

tion. We set θ = 2 for all of our experiments.

5.3.2 Interaction Hotspots Module

The predicted motor attention M is further used to guide interaction hotspots estimation

p(A|x) by considering the conditional probability

p(A|x) =

∫
M
p(A|M, x)p(M|x)dM. (5.4)

In practice, p(A|x) is estimated using sampled motor attention M̃ based on p(A|M̃, x) and

p(M̃|x). For each sample M̃, p(A|M̃, x) is defined by the interaction hotspots estimation

function FA. FA takes the input of a motor attention map M̃ and φ3(x), and has the form

of a linear 2D convolution parameterzied by WA followed by a softmax function.

p(A|M̃, x) = softmax
(
W T
A (M̃ ⊗ φ3(x))

)
, (5.5)
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where ⊗ is the Hadamard product (element-wise multiplication). The result p(A|M, x) is

a 2D map of size Ha × Wa. Intuitively, M̃ presents a spatial-temporal saliency map to

highlight feature representation φ3(x). FA thus normalizes (using softmax) the output of

a linear model on the selected features M̃ ⊗ φ3(x), and is a convex function. Finally, a

similar sampling mechanism as in Eq. Equation 5.3 can be used to sample Ã from p(A|x).

5.3.3 Anticipation Module

We now present the last piece of our model—the action anticipation module. The action

anticipation function p(y|A,M, x) = FP (A,M, x) is defined as a function of the sampled

motor attention map (3D) M̃, sampled interaction heatmap (2D) Ã and the network feature

φ5(x). This is given by

p(y|Ã,M̃, x) = softmax
(
W T
P Σ

(
M̃ ⊗ φ5(x)

)
+W T

P Σ
(
Ã � φ5(x)

))
, (5.6)

where ⊗ is again the Hadamard product. Σ is the global average pooling operation that

pools a vector representation from a 2D or 3D feature map. � is to use a 2D map (Ã)

to conduct Hadamard product to the last temporal slice of a 3D tensor φ5(x). This is

because the interaction hotspots Ã is only defined on the last observable frame. WP is a

linear function that maps the features into prediction logits. FP is a combination of linear

operations followed by a softmax function, and thus remains a convex function.

5.3.4 Training and Inference

Training our proposed joint model is challenging, as p(M|x) and p(A|M, x) are intractable.

Fortunately, variational inference comes to the rescue.

Prior Distribution. During training, we assume that reference distributions of future hand

position Q(M|x) and interaction hotspots Q(A|x) are known in prior. These distributions

are derived from manual annotation.

Variational Learning. Our proposed model seeks to jointly predict motor attention M,

interaction hotspots A, and the action label y. Specifically, we inject posterior p(A,M|x)

60



into p(y|x) and optimize the resulting latent variable model by maximizing the Evidence

Lower Bound (ELBO). However, the prior distribution of Q(A,M|x) is not available for

training. Hence, we further approximate p(A,M|x) by factorizing it into p(A|x) and

p(M|x). Namely, we assume that A andM is conditionally independent given the input

x. Thus, we have

KL[p(A,M|x)||Q(A,M|x)]

=KL[p(A|M, x)||Q(A|M, x)] +KL[p(M|x)||Q(M|x)].

The ELBO of our proposed joint model can be derived as

log p(y|x) ≥ Ep(A,M|x)[log p(y|A,M, x)]− log(p(A,M|x))]

=
∑
A,M

log p(y|A,M, x)−KL[p(A,M|x)||Q(A,M|x)]

=
∑
A,M

log p(y|A,M, x)−KL[p(A|x)||Q(A|x)]−KL[p(M|x)||Q(M|x)].

Therefore, the loss function L is given by

L = −
∑
A,M

log p(y|A,M, x) +KL[p(A|x)||Q(A|x)] +KL[p(M|x)||Q(M|x)]. (5.7)

The first term in the loss function is the cross entropy loss for action anticipation. The

last two terms use KL-Divergence to align the predicted distributions of motor attention

p(M|x) and interaction hotspots p(A|x) to prior distributions (Q(M|x) and Q(A|x)).

Approximate Inference. At inference time, our model could have drawn many samples of

motor attention M̃ and interaction hotspots Ã for the anticipation. However, the sampling

and averaging is computationally expensive. We choose to feed deterministic M and A

into Eq. Equation 5.5 and Eq. Equation 5.6 at inference time. Note that FA and FP are

convex, since they are composed of linear mapping function and softmax function. By
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Jensen’s inequality, we have

E[FA(M̃, x)] ≥ FA(E[M̃], x) = FA(M, x), (5.8)

E[FP (Ã,M̃, x)] ≥ FP (E[Ã], E[M̃], x) = FP (A,M, x) (5.9)

Therefore, such approximation does serves as a shortcut to avoid sampling during testing,

by providing a valid lower bound of E[FP (Ã,M̃, x)] and E[FA(M̃, x)],

5.4 Experiment and Results

5.4.1 Dataset and Benchmark

Datasets. We make use of two FPV datasets: EGTEA Gaze+ [101, 57] and Epic-Kitchens [147].

We report results on the first split of the EGTEA dataset and follow [26] to split the public

training set into training and validation sets with 2513 action classes. We set the anticipa-

tion time as 0.5 seconds for EGTEA and 1 second [147] for EPIC-Kitchens.

Evaluation Metrics. Our model is evaluated for action anticipation, and interaction hotspots

estimation across EGTEA (using split1) and EPIC-Kitchens (using the train/val split from [26]).

Specifically, we consider the following metrics:

• Action Anticipation. We report Top1/Mean Class accuracy on EGTEA as in [4] and

Top1/Top5 accuracy as on EPIC-Kitchens following [26].

• Interaction Hotspots Estimation. We report F1 score as in [101] and KL-Divergence

(KLD) as in [83] using a downsampled heatmap (32x) at the last observable frame.

• Motor Attention Prediction. We report the average and final displacement errors between

the most confident location on a predicted attention map and the ground-truth hand points,

similar to previous work on trajectory prediction [150]. Note that the motor attention maps

are downsampled by a factor of 32/8 in space/time. Hence, we report displacement errors

normalized in spatial and temporal dimension.
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Table 5.1: Action anticipation results on Epic-Kitchens. Ours+Obj model outperforms
state-of-the-art by a notable margin. See discussions of Ours+Obj in Chapter 5.4.2.

Method
Top1/Top5 Accuracy

Verb Noun Action

s1

2SCNN [147] 29.76 / 76.03 15.15 / 38.65 4.32 / 15.21
TSN [147] 31.81 / 76.56 16.22 / 42.15 6.00 / 18.21

TSN+MCE [151] 27.92 / 73.59 16.09 / 39.32 10.76 / 25.28
Trans R(2+1)D [24] 30.74 / 76.21 16.47 / 42.72 9.74 / 25.44

RULSTM [26] 33.04 / 79.55 22.78 / 50.95 14.39 / 33.73
Ours 34.99 / 77.05 20.86 / 46.45 14.04 / 31.29

Ours+Obj 36.25 / 79.15 23.83 / 51.98 15.42 / 34.29

s2

2SCNN [147] 25.23 / 68.66 9.97 / 27.38 2.29 / 9.35
TSN [147] 25.30 / 68.32 10.41 / 29.50 2.39 / 9.63

TSN+MCE [151] 21.27 / 63.66 9.90 / 25.50 5.57 / 25.28
Trans R(2+1)D [24] 28.37 / 69.96 12.43 / 32.20 7.24 / 19.29

RULSTM [26] 27.01 / 69.55 15.19 / 34.38 8.16 / 21.20
Ours 28.27 / 70.67 14.07 / 34.35 8.64 / 22.91

Ours+Obj 29.87 / 71.77 16.80 / 38.96 9.94 / 23.69

Table 5.2: Comparison between our methods and previous state-of-the-art results
RULSTM. See Chapter 5.4.2 of our submission for discussion of Ours+Obj.

Method Tasks Training Supervision Testing Inputs End-to-End

RULSTM [15] Action Anticipation Action Labels
Object Cls & Boxes

RGB + Object Feat.
+ Flow No

Ours
Action Anticipation
Visual Affordance

Motor Attention Pred

Action Labels
Hand & Hotspots RGB Yes

Ours+Obj
Action Anticipation
Visual Affordance

Motor Attention Pred

Action Labels
Object Cls & Boxes

Hand & Hotspots
RGB + Object Feat. No

5.4.2 Action Anticipation Results on EPIC-Kitchens

To compete for EPIC-Kitchens anticipation challenge, we used the backbone network

CSN152. We trained our model on the public training set and report results using top-1/5

accuracy as in [147]. Table 5.1 compares our results to latest methods on EPIC-Kitchens.

Our model outperforms strong baselines (TSN and 2SCNN) reported in [147] by a large

margin. Compared to previous best results from RULSTM [26], our model archives +2%/-

1.9%/-0.3% for verb/noun/action on seen set, and +1.3%/-1.1%/+0.6% on unseen set of

EPIC-Kitchens. Our results are better for verb, worse for noun and comparable or better

for actions. Notably, RULSTM requires object boxes & optical flow for training and ob-
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ject features & optical flow for testing. In contrast, our method uses hand trajectories and

interaction hotspots for training and needs only RGB frames for testing.

To further improve the performance, we fuse the object stream from RULSTM with

our model (Ours+Obj). Compared to RULSTM, Ours+Obj has a performance gain of

+3.2%/+2.9% for verb, +1.1%/+1.6% for noun, and +1.0%/+1.8% for action (seen/unseen).

It is worthy pointing out that RULSTM benefits from an extra flow network, while ours+Obj

model takes additional supervisory signals of hands and hotspots. Note that our perfor-

mance boost does not simply come from those extra annotations. In a subsequent ablation

study, we have shown that simply training with these extra annotations has minor improve-

ment, when used without our proposed probabilistic deep model.

We note that it is not possible to make a direct apples-to-apples comparison between

our model and RULSTM [26], as the two models used vastly different training signals.

In Table 5.2, we present the experiment setup of our method and RULSTM. Both RULTM

and our model (Ours) use various supervisory signals for training, yet our model only

needs RGB frames for inference and is end-to-end trainable. Ours+Obj model does require

more training signals in comparison to RULSTM, yet it does not need optical flow for two-

stream architecture. We have to point out that, from practical prospective, we care more

about the data modality during testing time. Therefore, using more supervisory signals

for training does not compromise the contribution of our method. Moreover, our method

also address the challenging problem of motor attention prediction and interaction hotspots

estimation. In terms of performance, our model is comparable to RULSTM without using

any side information for inference. When using additional object stream during inference

as in RULSTM, our model outperforms RULSTM by a relative improvement of 7%/22%

on seen/unseen set. More importantly, our model also provides the additional capabilities

of predicting future hand trajectories and estimating interaction hotspots.
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Table 5.3: Ablation study for action anticipation. We compare our model with backbone
I3D network, and further analyze the role of motor attention prediction, interaction hotspots
estimation, and stochastic units in joint modelling. See discussions in Chapter 5.4.3.

Method
EGTEA Epic-Kitchens

Top1 Accuracy / Mean Cls Accuracy Top1 Accuracy / Top5 Accuracy
Verb Noun Action Verb Noun Action

I3D-Res50 48.01/31.25 42.11/30.01 34.82/23.20 30.06/76.86 16.07/41.67 9.60/24.29
JointDet 48.58/32.21 43.95/31.26 35.69/23.59 30.16/76.86 16.25/41.71 9.76/24.40

Hotspots Only 47.95/31.94 44.02/32.53 35.50/23.82 30.21/75.93 16.57/42.28 9.66/24.33
Motor Only 49.35/32.34 45.69/33.93 36.49/25.13 30.63/76.69 17.28/42.56 10.21/25.32

Ours 48.96/32.48 45.50/32.73 36.60/25.30 30.65/76.53 17.40/42.60 10.38/25.48

Table 5.4: Ablation study for interaction hotspots estimation. Jointly modeling motor
attention with stochastic units can greatly benefit the performance of interaction hotspots
estimation. (↑/↓ indicates higher/lower is better)

Method
EGTEA Epic-Kitchens

Prec ↑ Recall ↑ F1 ↑ KLD ↓ Prec ↑ Recall ↑ F1 ↑ KLD ↓
I3DHeatmap 12.82 37.53 19.11 2.66 17.20 77.39 28.15 3.07

JointDet 16.11 41.82 23.26 1.84 17.32 85.79 28.83 2.21
Ours 17.43 48.81 25.69 1.62 17.86 86.59 29.60 1.99

5.4.3 Ablation Study

We present ablation studies of our model. We evaluate each component of our model,

and then contrast our method to a series of baselines on motor attention prediction and

interaction hotspot estimation. For all of our ablation studies, we adopt the lightweight I3D-

Res50 [110] as backbone network to reduce computational cost. Our model is evaluated for

action anticipation, motor attention prediction and interaction hotspots estimation across

EGTEA (using split1) and EPIC-Kitchens (using the train/val split from [26]).

Benefits of Joint Modeling. As a starting point, we compare our model with a backbone

I3D-Res50 model. We present the results of action anticipation in Table 5.3. Specifi-

cally, our model improves noun and action prediction by +3.4%/1.8% on EGTEA and

+1.3%/0.8% on EPIC-Kitchens. Moreover, we show that our model improves the perfor-

mance of interaction hotspots estimation. We consider the baseline I3D model that only

estimates interaction region with interaction hotspots module as I3DHeatmap. As shown

in Table 5.4, our model improves the F1 score by 6.6%/1.5% on EGTEA/EPIC-Kitchens.
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Stochastic Modeling vs. Deterministic Modeling. We further evaluate the benefits of

probabilistic modeling of motor attention and interaction hotspots. To this end, we com-

pare our model with a deterministic joint model (JointDet). JointDet has the same archi-

tecture as our model, except for the stochastic units. As shown in Table 5.3, JointDet

slightly improve the I3D baseline for action anticipation (+0.87% on EGTEA and +0.16%

on EPIC-Kitchens), yet lags behind our probabilistic model. Specifically, our model out-

performs JointDet by 0.91% and 0.62% on EGTEA and EPIC-Kitchens. Moreover, in

comparison to JointDet, our model has better performance for interaction hotspots estima-

tion (+2.4%/+ 0.8% in F1 scores on EGTEA/EPIC-Kitchens). These results suggest that

simply training with extra annotations might fail to capture the uncertainty of visual antic-

ipation. In contrast, our design choice of probabilistic modeling can effectively deal with

those uncertainty, therefore helps to improve the performance of joint modeling.

Motor Attention vs. Interaction Hotspots. Furthermore, we evaluate the contributions

of motor attention and interaction hotspots for FPV action anticipation. We consider two

baseline models in Table 5.4: I3D model equipped with only motor attention module (Mo-

tor Only), and I3D model equipped with only interaction hotspots module (Hotspots Only).

Both models underperform the full model across the two datasets, yet the gap between

Motor Only and the full model is smaller. These results suggest that both components con-

tribute to the performance boost of action anticipation, yet the modeling of motor attention

weights more than the modeling of interaction hotspots.

Interaction Hotspots Estimation. We present additional results on interaction hotspots

estimation. We compare our results to the following baselines:

•Center Prior represents a Gaussian Distribution at the center of the image.

•Grad-Cam uses the same I3D network, and produces a saliency map via Grad-Cam [97].

•EgoGaze considers possible gaze position as salient region of a given image. This model

is trained on eye fixation annotation from EGTEA-Gaze+ [152]. The assumption is that the

person is likely to look at the interaction hotspots.
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Table 5.5: Motor attention prediction results on EGTEA. Our model compares
favourably to strong baselines. (↑/↓ indicates higher/lower is better)

Method Avg. Disp. Error ↓ Final Disp. Error ↓
Kalman Filter 0.32 0.48

GPR 0.29 0.37
LSTM 0.22 0.35
Ours 0.23 0.36

•DSS Saliency predicts salient region during human object interaction. This model is

trained on pixel-level saliency annotation from [124].

•EgoHotspots is the latest work [83] for estimating interaction hotspots.

Our results are shown in Table 5.4. Our model outperforms the best baselines (EgoGaze

and EgoHotspots) by 5.4% on EGTEA and 3.6% on EPIC-Kitchens in F1 scores. These

results suggest that our proposed joint model can effectively identify future interaction

region. Another observation is that our model performs better on EPIC-Kitchens than

EGTEA. This is probably due to the larger number of available training samples.

Motor Attention Prediction. We report our results on motor attention prediction on

EGTEA dataset. We consider the following baselines:

•Kalman Filter describes the hand trajectory prediction problem with the state-space model,

and assumes linear acceleration during the update step.

•Gaussian Process Regression (GPR) iteratively predicts the future hand position using

Gaussian Process Regression.

•LSTM adopts a vanilla LSTM network for trajectory forecasting. We use the implementa-

tion from [150].

The results are presented in Table 5.5. Our model outperforms Kalman filter and GPR,

yet is slightly worse than LSTM model (+0.01 in both errors). Note that all baseline meth-

ods need the coordinate of the first observed hand for prediction. This simplifies trajectory

prediction into a less challenging regression problem. In contrast, our model does not need

hand coordinates for inference. A model that relies on the observation of hand positions

will encounter failure cases when the hand has not been observed, while our model is still
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capable of “imagining” the possible hand trajectory. See “Operate Microwave” and “Wash

Coffee Cup” in Figure 5.3 for example results from our model.

Visualization of our method. Finally, we visualize the predicted motor attention, interac-

tion hotspots, and action labels from our model in Figure 5.3. The predicted motor atten-

tion almost always attends to the predicted objects and corresponding interaction hotspots.

Hence, our model can address challenging cases where next-active objects are ambiguous.

These results further show that our proposed motor attention module has the remarkable

ability of “imagining” possible hand movements even without the presence of hands in the

observed video segments. Another interesting observation is that the predicted distribution

of interaction hostpots can be sparse in certain circumstances (e.g., “Open Fridge” or “Take

Condiment”). This is because of the stochastic patterns of human-object interaction: There

might be multiple valid contact regions for interaction, especially when the future active

object has a relatively large scale. This again shows the necessity of the stochastic units in

our proposed method.

However, the occlusion and absence of active objects might make the anticipation prob-

lem extremely challenging even for humans. The failure cases in Figure 5.3 also suggest

that the anticipation model can be biased by on-going action. This is because current FPV

datasets (especially EPIC-Kitchens) segment a continuous action into several same atomic

actions to ensure all action segments have similar temporal dimension. For instance, A

video clip of “cutting onions” for 20 seconds is segmented into 7 or 8 shorter clips all

having the same “cutting onions” label. This increases the transition probability of staying

in current action state, and thereby biases the model. Therefore, the ability of predicting

when exactly the action will end is important for more accurate action prediction model.

This task is also related to the action localization problem in the literature [41].
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5.4.4 Remarks and Discussion

We must also point out that our method has certain limitations, which point to exciting

future research directions. For example, our model requires additional annotations for

training, which might bring scalability issues when analyzing other datasets. These dense

annotations can indeed be approximated using sparsely annotated frames as discussed in

Sec. 4.1. We speculate that more advanced hand tracking and object segmentation models

can be explored to generating the pseudo ground truth of motor attention and interaction

hotspots. Moreover, our model shares a similar conundrum faced by previous work on

anticipation. Our model is likely to fail when future active objects are not observed. See

“Close Fridge Drawer”and “Put Coffee Maker” in Figure 5.3. We conjecture that these

cases requires incorporating logical reasoning into learning based methods—an active re-

search topic in our community.

5.5 Conclusion

In this chapter, I propose a novel deep model that jointly predicts motor attention, interac-

tion hotspots, and future action labels in egocentric vision. Importantly, I demonstrate that

motor attention plays an important role in forecasting human-object interactions. More-

over, I show that characterizing motor attention and interaction hotspots as probabilistic

variables can account for the stochastic pattern of human intentional movement. I conduct

extensive experiments on two major egocentric video datasets (EGTEA Gaze+ and EPIC-

Kitchens) and show that our model design can improve the performance of human-object

interaction anticipation by a significant margin. We believe that our model provides a solid

step towards the challenging problem of visual anticipation.
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Pred: Take Eating Utensil   GT: Take Eating Utensil Pred: Take Bread GT: Take Bread Pred: Take Paper Towel GT: Take Paper Towel Pred: Operate Microwave GT: Operate Microwave

Pred: Take Bread   GT: Take Condiment Pred: Take Pan GT: Move Around Bacon Pred: Open Fridge Drawer GT: Take Bread Container Pred: Suqeeze Washing Liquid GT: Wash hand

Pred: Take Bowl   GT: Take Plate Pred: Cut Tomato GT: Open Drawer Pred: Close Drawer GT: Take Cucumber Pred: Open Faucet GT: Put Sponge

Pred: Take Condiment GT: Take Condiment Pred: Open Fridge GT: Open Fridge Pred: Take Condiment GT: Take CondimentPred: Take Paper Towel  GT: Take Paper Towel

Pred: Take Onion GT: Take Onion Pred: Cut Onion GT: Cut Onion Pred: Stir Rice GT: Stir Rice Pred: Put Down Oil GT: Put Down Oil

Pred: Put Down SaucePan GT: Put Down Spatula Pred: Take Cuttingboard GT: Pour Onion Pred: Put Down Bottle GT: Close Tap Pred: Grate Carrot GT: Close Tap

Pred: Cut Meat GT: Cut Meat Pred: Cut Onion GT: Cut Onion Pred: Pick Up Tomato GT: Pick Up TomatoPred: Remove Leaf GT: Remove Leaf

Pred: Wash Plate GT: Close Tap Pred: Pick Up Potato GT: Return Bag Pred: Wash Plat GT: Fill Water Filter Pred: Stir Food GT: Put Stock

Figure 5.3: Visualization of motor attention (left image), interaction hotspots (right
image), and action labels (captions above the images) on sample frames from EGTEA
(first row) and EPIC-Kitchens (second row). Both successful (green label) and failure
cases (red label) are shown. Future hands position are predicted at every 8 frames and
plotted on the last observable frame with the order of yellow, green, cyan, and magenta.
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CHAPTER 6

FUTURE HAND SEGMENTATION IN EGOCENTRIC VIDEO

6.1 Introduction

The egocentric vision paradigm provides an ideal vehicle for studying the relationship be-

tween visual anticipation and intentional motor behaviors, as head-worn cameras can cap-

ture both human visual experience and related sensory-motor signals. In the previous chap-

ter, I demonstrate how such a relationship can be used for egocentric action anticipation.

However, the problem of forecasting the detailed shape of hand movements in egocentric

video remains unexplored. This is a significant deficit because many everyday motor be-

haviors cannot be easily categorized into specific action classes and yet play an important

role in preparing and executing our routine activities. Such a general prediction capability

could enable new applications in AR and robotics, such as monitoring for safety in danger-

ous environments, or facilitating human-robot collaboration via improved anticipation.

To bridge this gap, in this chapter, I introduce the novel task of forecasting a detailed

representation of future hand movements in egocentric video. Specifically, given an ego-

centric video, we seek to predict the hand masks of future video frames at three time points

defined as short-term, middle-term, and long-term future (see Figure 6.1 for a visual illus-

tration of our problem setting). This task is extremely challenging for two reasons: 1) hands

are deformable and capable of fast movement, and 2) head and hand motion are entangled

in the egocentric video. Addressing these challenges requires the ability to 1) address the

inherent uncertainty in anticipating the no-rigid hand movements, and 2) explicitly model

the coordination between head and hand [153].

We attack the unique challenges of hand segmentation prediction by introducing a novel

deep model – EgoGAN. Our model adopts a 3D Fully Convolutional Network (3DFCN) as
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∆2 ∆3
Input Video Anticipation Segment

∆1

Figure 6.1: Future hand segmentation task: Given an input egocentric video, our goal is
to predict a time series of future hand masks in the anticipation video segment. ∆1, ∆2,
and ∆3 represent the short-term, middle-term, and long-term time points in the anticipation
segment, respectively. The entanglement between drastic head motion and non-rigid hand
movements poses a significant technical barrier in computer vision. Here, we visualize our
results on this challenging task (best viewed in color).

the backbone to learn spatio-temporal video features for pixel-wise visual anticipation.

We then utilize a Generative Adversarial Network (GAN) for hand masks anticipation.

Instead of using GAN to generate future video frame pixels from egocentric videos as

in [33], our key insight is to use the GAN to model an underlying distribution of possible

future head motion. The adopted generative adversarial training schema can account for the

uncertainty of future hand movements anticipation. In addition, the generated future head

motion provides ancillary cues that complement video features for anticipating complex

egocentric hand movements. Our end-to-end trainable EgoGAN model uses future hand

masks as supervisory signals to train the segmentation network and estimated sparse optical

flow maps from head motions (by masking out the hands) to train the Generator and the

Discriminator. At inference time, our model predicts a time series of future hand masks

based only on the egocentric video frame inputs.

To summarize, this chapter has the following contributions:

• I introduce a novel problem of predicting a time series of future hand masks from

egocentric videos.

• I propose a novel deep generative model – EgoGAN, that hallucinates future head

motions and further predicts future hand masks.
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• I present comprehensive experimental results to show the benefits of our method

on two benchmark egocentric video datasets: EPIC-Kitchens 55 [147] and EGTEA

Gaze+ [57].

This work [154] was a collaboration with Wenqi Jia and was published in ECCV 2022

as a poster paper.

6.2 Method

Given an input egocentric video x = {x1, ..., xt}, where xt is the video frame indexed by

time t, our goal is to predict a time series of future hand masks h = {ht+∆1 , ht+∆2 , ht+∆3}.

As illustrated in Figure 6.1, we consider hand segmentation as a binary classification prob-

lem: the value of hi(x, y) can be viewed as the probability of spatial position (x, y) being a

hand pixel at time step i, where i ∈ {t+ ∆1, t+ ∆2, t+ ∆3}. ∆1, ∆2, and ∆3 represent the

time steps for short-term, middle-term, and long-term future segmentation, respectively.

This three-steps-ahead visual anticipation setting is also used in previous works on future

image segmentation [155, 156].

I now present an overview of our EgoGAN model in Figure 6.2. We make use of a 3D

Fully Convolutional Network (3DFCN) φ as the backbone model for future hand segmenta-

tion. The 3DFCN is composed of a 3D convolutional encoder φE and a 3D deconvolutional

decoder φD. We further adopt a Generative Adversarial Network (GAN) for learning fu-

ture head motions. Specifically, a Generator network (G), composed of 3D convolutional

operations, is used to generate future head motion mg based on the encoded video feature

φE(x). A Discriminator Network (D) is trained to distinguish the fake future head motions

mg from real future head motions mr. Finally, φD combines mg and φE(x) for predicting

future hand masks. In the following sections, we detail each key component of our model.

73



Encoder Decoder𝜙𝐸 𝜙𝐷
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Figure 6.2: Overview of our proposed EgoGAN model. Our network takes multiple ego-
centric video frames as the inputs, and outputs future hand masks at different time steps. It
is composed of a 3D Fully Convolutional Network (3DFCN) and a Generative Adversarial
Network (GAN). The Encoder Network φE in the 3DFCN extracts video features from the
input frames, and is then separated into two branches: (1) encoded feature φE(x) is fed into
the Generator (G) in for generating fake future head motion mg, and a Discriminator (D)
is trained to distinguish the generated future head motion from the real ones; (2) mg is con-
catenated to φE(x) and the concatenated tensor are then fed into the Decoder Network φD
in 3DFCN. Finally, the encoder features are further combined with corresponding decoder
features using skip connections for future hand mask prediction.

6.2.1 3D Fully Convolutional Network

We first introduce the 3D Fully Convolutional Network (3DFCN) backbone in our method.

We make use of the I3D model [110] as the backbone encoder network φE for learn-

ing spatio-temporal video representations. Following [148, 149], φE has 5 convolutional

blocks, and thereby produces video features at different spatial and temporal resolutions.

Following [157], we construct the decoder network φD symmetric to φE . Therefore, φD

is also composed of 5 deconvolution layers. We denote the encoder and decoder video

features from the ith convolutional block as φiE(x) and φiD(x), respectively. (See Fig. Fig-

ure 3.2 for the index naming of φE and φD.) The features of each decoder layer are com-

bined with the features from the corresponding encoder block with skip connections and

are then fed into the next layer. Formally, we have:

φi+1
D (x) = deconv(φiD(x) + φ6−i

E (x)), (6.1)
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where i ∈ {1, 2, 3, 4}. We design our decoder so that φiD produces a feature map with

the same tensor size as φ6−i
E (x). The deconvolution operation is implemented with 3D

transposed convolution. Note that the last deconvolution layer of φD produces a tensor

with the same size as the input video (T ×W ×H). We further apply a 3D convolutional

operation with kernel size of k × 1 × 1 to predict the future hand mask tensor h with size

3 × W × H , where each temporal slice corresponds to the predicted hand masks of the

short-term, middle-term, and long-term future video frames.

6.2.2 Generative Adversarial Network

The key to our approach is to use the Generative Adversarial Network (GAN) to halluci-

nate the future head motions for future hand mask segmentation. Our design choice stems

from the observation that head motion causes drastic changes of the active object cues and

background scene context captured in the egocentric videos, and this motion is closely re-

lated to hand movements. Therefore, we seek to explicitly encode the future head motions

cues for hand motion anticipation. Moreover, visual anticipation has intrinsic ambiguity –

similar current observations may correspond to different future outcomes. This observation

motivates us to use the adversarial training scheme to account for the inherent uncertainty

of future representation. In this section, we introduce the egocentric head motion repre-

sentation. We then describe the design choice and learning objective of the GAN from our

method.

Egocentric Head Motion Representation. In the egocentric setting, head motion is im-

plicitly incorporated in the video itself. Thus, we follow [31] to use the sparsely sampled

background optical flow to represent the egocentric head motion. As mentioned before, the

real future head motion is denoted as mr, and is only available for training.

Generator Network and Discriminator Network. The generator network (G) takes video

feature φE(x) as inputs and generates future head motions mg = G(φE(x)). Follow-

ing [158, 33, 159, 90], G does not take any noise variables as additional inputs. This is
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because the φE(x) is a latent representation that incorporates the noisy signals of visual

anticipation. G is composed of multiple 3D convolutional operations and a nonlinearity

function, and is trained to produce a realistic mg that is difficult to distinguish from mr

for an adversarially-trained discriminator network (D). D takes future head motion samples

as inputs and determines whether the input sample is real or fake. It is composed of 3D

convolutional operations and a sigmoid function for binary classification, and is trained to

classify the input sample as either real or generated.

Learning Objective of GAN. We now formally define the objective function of the GAN

in our method. The objective function for training the discriminator network is given by:

Ld = Lce(D(mr), 1) + Lce(D(mg), 0), (6.2)

where Lce is the standard cross-entropy loss for binary classification. The generator loss

Lg can be formulated as:

Lg = Lce(D(mg), 1) + λ|mg −mr|. (6.3)

Here, we follow [160] to adopt a traditional L1 distance loss that encourages the generated

sample to be visually consistent with the real sample, while λ denotes the weight to balance

the two loss terms.

6.2.3 Full Model of EgoGAN

We now summarize the full architecture of our proposed EgoGAN model. The main idea

is to explicitly model the underlying distribution of possible future head motion mg with

the GAN, and use mg as additional cues to facilitate future hand mask segmentation from

the video representations of the encoder network. Specifically, the video feature from the

last encoder block φ5
E(x) and generated future head motions mg are concatenated and fed
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into the first layer of the decoder as inputs. Therefore, we have:

φ1
D(x) = deconv(φ5

E(x)⊕mg). (6.4)

Hence, the decoder network jointly considers φE(x) and mg for predicting future hand

masks h.

Training and Inference. We adopt the standard adversarial training pipeline in [161],

where G and D are trained to play against each other. Therefore, we let the gradients

alternatively flow through D, and then G. We then use the binary cross-entropy loss to train

the 3DFCN backbone:

Lseg = Lce(φD(φE(x),mg), ĥ), (6.5)

where ĥ denotes the ground truth of future hand masks. Note that our model does not need

the future head motion as additional inputs for making an inference. Instead, our model is

capable of generating future head motion and further predicting future hand masks based

on only raw video frames. Notably, we freeze the encoder weights during the gradient step

on G and D, and freeze the generator weights during the gradient step on the 3DFCN to

isolate their training processes from each other.

6.3 Experiments

In this section, we present our experiments and results. We start with a description of the

datasets, annotations, and evaluation metrics used in our experiments. We then provide

detailed ablation studies to validate our model design, and compare our method to previous

state-of-the-art methods on future image segmentation. Furthermore, we provide visualiza-

tions and additional discussions of our method.
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6.3.1 Dataset and Metrics

Dataset. We make use of two egocentric video benchmark datasets: EPIC-Kitchens 55 [147]

and EGTEA Gaze+ [57]. For the EPIC-Kitchens dataset, we set δ1,2,3 = {1, 15, 30}, which

corresponds to a long-term anticipation time of 1.0s. As for the EGTEA dataset, we set

∆1,2,3 = {1, 6, 12}, which corresponds to an anticipation time of 0.5s, because EGTEA has

a smaller angle of view in comparison with the EPIC-Kitchens. The same anticipation time

setup is also adopted in [129]. To encourage our model to capture the meaningful prepara-

tion and planning process of daily actions, we segment the data so that the long-term future

frame is chosen right before the beginning of each trimmed action segment annotated in

EPIC-Kitchens and EGTEA. We use the train/val split provided by [26] for EPIC-Kitchens

55 and the train/test split1 from EGTEA. We remove the instances where hands are not

captured within the anticipation segment, which results in 11,935/2,746 (train/val) samples

on EPIC-Kitchens, and 4,042/991 (train/test) samples on EGTEA.

Hand Mask Ground Truth. For the EPIC-Kitchens dataset, we use the domain adaption

method introduced in [37] to generate the ground truth hand masks. [37] has empirically

verified the quality of generated hand masks. As for the EGTEA dataset, we train a 2D

FCN model for frame-level hand segmentation using the provided hand mask annotation.

As discussed in [162], the FCN model can generalize well on the entire dataset. We thus

use the inference results on the anticipation video frames as the ground truth of future hand

masks.

Metrics. As discussed in Chapter 6.2, we consider future hand segmentation as a pixel-

wise binary classification problem. Previous future image segmentation works [163, 164]

use pixel accuracy and mIoU as evaluation metrics. However, pixel accuracy does not

penalize the false-negative prediction of the long-tailed distribution, and mIoU can not

properly evaluate the shape of the predicted masks for binary segmentation. Therefore, we

follow [101, 129] to report Precision and Recall values together with their corresponding

F1 scores.
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Table 6.1: Analysis of variations in our approach. We conduct detailed ablation studies
to validate our model design, and further show the results of variations of our method to
demonstrate the benefits of using the GAN for modeling future head motion. *: HeadDir
takes future head motions as additional input modalities at inference time, which in fact
violates the future anticipation setting (See more discussion in Chapter 6.3.2.). The best
results are highlighted with boldface.

(a) Experimental Results on EPIC-Kitchens Dataset

Method
EPIC-Kitchens (Precision/ Recall/ F1 Score)

short-term middle-term long-term
Future Gaze N/A N/A N/A
HeadDir* 70.55/ 71.33/ 70.94 43.15/ 53.66/ 47.83 30.51/ 49.60/ 37.78

3DFCN (w/o GAN, w/o Head) 69.51/ 70.81/ 70.15 42.51/ 51.66/ 46.64 29.88/ 47.46/ 36.67
HeadReg (w/o GAN, w/ Head) 70.46/ 70.25/ 70.36 41.41/ 52.55/ 46.32 29.22/ 48.50/ 36.47
PixelGan (w/ GAN, w/o Head) 69.12/ 71.60/ 70.34 43.83/ 51.32/ 47.28 30.76/ 47.48/ 37.33
EgoGAN (w/ GAN, w/ Head) 70.89/ 71.24/ 71.07 43.79/ 53.23/ 48.05 31.39/ 48.57/ 38.14

(b) Experimental Results on EGTEA Gaze+ Dataset

Method
EGTEA (Precision/ Recall/ F1 Score)

short-term middle-term long-term
Future Gaze 45.17/ 59.94/ 51.51 38.63/ 64.02/ 48.19 35.71/ 63.78/ 45.78
HeadDir* 44.58/ 63.87/ 52.51 41.29/ 60.65/ 49.13 39.36/ 59.02/ 47.23

3DFCN (w/o GAN, w/o Head) 43.62/ 61.69/ 51.11 40.25/ 58.93/ 47.83 37.83/ 58.32/ 45.89
HeadReg (w/o GAN, w/ Head) 43.54/ 61.03/ 50.82 41.31/ 55.24/ 47.27 36.87/ 58.23/ 45.15
PixelGan (w/ GAN, w/o Head) 43.78/ 61.33/ 51.09 38.38/ 63.81/ 47.93 35.53/ 63.41/ 45.54
EgoGAN (w/ GAN, w/ Head) 44.91/ 61.48/ 51.91 41.10/ 59.90/ 48.75 38.16/ 59.88/ 46.61

6.3.2 Model Ablations and Analysis

To validate our model design, we conduct experiments of ablations and variations in our

model. Specifically, we investigate how the egocentric head motion cues facilitate future

hand segmentation and demonstrate the benefits of using the GAN for modeling future

head motion. We also show how modeling future gaze as attentional representation affects

the future hand segmentation performance.

Benefits of Encoding Future Head Motions. As a starting point, we compare the model

that uses only the 3D Fully Convolutional Network (denoted as 3DFCN) with the model

that directly takes future head motion as an additional input modality (denoted as HeadDir).

HeadDir shares the same backbone network as 3DFCN, but requires the future head mo-

tions for making an inference and therefore violates the future anticipation setting, where

the model can not use any information from the anticipation video segment for making an
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inference. HeadDir quantifies the performance improvement when the egocentric head mo-

tion cues are explicitly encoded into the model in a two-stream structure [42]. The experi-

mental results are summarized in Table 6.1. Compared to 3DFCN, HeadDir achieves a large

performance gain on EPIC-Kitchens (+0.8%/1.2/1.1% in F1 score for short/middle/long

term anticipation), and reaches (+1.4%/1.3%/1.3%) on EGTEA.

Our method, on the other hand, outperforms 3DFCN by a large margin on both EPIC-

Kitchens(+0.9%/1.5%/1.8%) and EGTEA (+0.8%/0.9%/0.7%). More importantly, our

method improves HeadDir by +0.1%/0.2%/0.4% on EPIC-Kitchens. This result suggests

that the GAN from our model does not simply learn to predict a future head motion flow

map; instead, it models the underlying distribution of possible future head motion and

thus improves the future hand anticipation accuracy by addressing the inherent uncertainty

of visual forecasting. It is to be observed that our model slightly lags behind HeadDir

(0.6%/0.4%/0.6% ↓) on EGTEA, because EGTEA has fewer samples to train our deep

generative model. And we also re-emphasize that our method does not use any additional

inputs at inference time as in HeadDir.

The Effect of GAN. To further show the benefits of using the GAN for learning future

head motions, we consider a baseline model – HeadReg, that uses a regression network to

predict future head motions with only L1 distance in Equation 6.3. Note that the regres-

sion network is implemented the same way as the generator network from EgoGAN. As

shown in Table 6.1, without using adversarial training mechanism in our approach, Head-

Reg lags behind our model by 0.7%/1.7%/1.7% ↓ and 1.1%/1.5%/1.5% ↓ in F1 score for

short/middle/long term anticipation on EPIC-Kitchens and EGTEA, respectively. These

results support our claim that the GAN can address the stochastic nature of representation

and thereby outperforms HeadReg by a large margin on the future hand segmentation task.

Video Pixel Generation vs. Head Motion Generation. We denote another baseline model

that directly uses a GAN for anticipating future hand masks, as PixelGAN. This model is

composed of the 3DFCN backbone network that generates the future hand masks, and a
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discriminator network that classifies whether the given hand masks are real or not. The

results are presented in Table 6.1. Importantly, the adversarial training schema in Pix-

elGAN slightly decreases the performance of 3DFCN model on EGTEA, and has minor

improvement on EPIC-Kitchens. We speculate that this is because directly using a GAN

for predicting future hand masks cannot effectively capture the drastic change of scene

context in egocentric video. In contrast, our model uses a GAN to explicitly model the

head-hand coordination in the egocentric video thereby is capable of more accurately fore-

casting egocentric hand masks.

Future Head Motion vs. Future Gaze. Furthermore, we present experimental results on

how modeling future gaze fixation affects future hand segmentation. Note that the gaze

tracking data is only available for the EGTEA dataset. Specifically, we make use of a

GAN to model the probabilistic distribution of future gaze fixation. Instead of concate-

nating future gaze with encoded video features as in Equation 6.4, we follow [101] to

use gaze distribution as a saliency map to select important spatio-temporal video features

with element-wise multiplication. As shown in Table 6.1, the resulting future gaze model

slightly outperforms the baseline 3DFCN model, yet lags behind our model that uses head

motion as the key representation (0.7%/0.6%/0.6% ↓ in F1 score on EGTEA). Previous

work [31] suggested that eye-head-hand coordination is important for egocentric gaze es-

timation, while our results further show that exploiting the eye-head-hand coordination is

also beneficial for pixel-wise egocentric visual anticipation. Moreover, future head motion

potentially plays a more important role than future gaze fixation on our fine-grained hand

forecasting task.

Results of Generated Future Head Motion. Our model also has the capability of gener-

ating future head motions. In Table Table 6.2, we compare our methods with HeadReg –

the only baseline model that predicts future head motion. We use the standard endpoint

error (EPE) as evaluation metric. On the EPIC-Kitchens dataset, our method outperforms
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Table 6.2: Experimental results on generated future head motion. We calculate the
endpoint error (EPE) between the generated head motion and the ground truth head motion.
Our method outperforms HeadReg on the EPIC-Kitchens dataset and works on-par with
HeadReg on the EGTEA dataset.

Method Epic-Kitchens (EPE ↓) EGTEA (EPE ↓)
HeadReg 10.39 5.27

EgoGAN(Ours) 7.08 5.16

Table 6.3: Experimental results using different backbone networks. Our model
achieves consistent performance improvement when using different backbone networks.
(See more discussion in Section 6.3.2.)

(a) Experimental Results on EPIC-Kitchens Dataset

Method Backbone Epic-Kitchens (Precision/ Recall/ F1 Score)
short-term middle-term long-term

3DFCN I3DRes50 69.51/ 70.81/ 70.15 42.51/ 51.66/ 46.64 29.88/ 47.46/ 36.67
I3DRes101 69.48/ 70.96/ 70.21 42.32/ 52.80/ 46.98 29.97/ 48.37/ 37.01

EgoGAN I3DRes50 70.89/ 71.24/ 71.07 43.79/ 53.23/ 48.05 31.39/ 48.57/ 38.14
I3DRes101 69.17/ 74.05/ 71.53 44.09/ 53.79/ 48.46 30.79/ 52.60/ 38.85

(b) Experimental Results on EGTEA Gaze+ Dataset

Method Backbone EGTEA (Precision/ Recall/ F1 Score)
short-term middle-term long-term

3DFCN I3DRes50 43.62/ 61.69/ 51.11 40.25/ 58.93/ 47.83 37.83/ 58.32/ 45.89
I3DRes101 44.66/ 61.81/ 51.85 40.49/ 59.72/ 48.26 35.70/ 66.18/ 46.38

EgoGAN I3DRes50 44.91/ 61.48/ 51.91 41.10/ 59.90/ 48.75 38.16/ 59.88/ 46.61
I3DRes101 45.69/ 60.42/ 52.03 39.40/ 64.27/ 48.85 36.92/ 64.43/ 46.94

HeadReg by a significant margin. The performance improvement of our method is smaller

on the EGTEA dataset, due to fewer available training samples. These results suggest that

the GAN from our model can generates more realistic future head motion.

Results Using I3D-Res101 Backbones. We further show our method can generalize to

different backbone encoder networks. In Table 6.3, we report the future hand segmentation

results of both our method and 3DFCN baseline using I3DRes50 and I3DRes101 backbone.

Importantly, with 50 more layers, I3D-Res101 backbone, can only improve the model per-

formance by +0.1%/0.3%/0.3% on EPIC-Kitchens and +0.7%/0.4%/0.5% on EGTEA.

Our model has a larger performance improvement than switching to dense encoder net-

work. Moreover, the EgoGAN model with I3D-Res101 improves 3DFCN-I3DRes101 by

+0.1%/0.1%/0.3% on EGTEA and +0.5%/0.4%/0.7% on EPIC-Kitchens. These results
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Table 6.4: Comparison with previous state-of-the-art methods on future image seg-
mentation. Our results consistently outperform the second-best results (across all meth-
ods) by +1.3% on EPIC-Kitchens and +0.7% on EGTEA in average F1 score. *: We
re-implement the model to take raw video frames as inputs as our method (See more discus-
sion in Chapter 6.3.3). The best results are highlighted with boldface, and the second-best
results are underlined.

(a) Experimental Results on EPIC-Kitchens Dataset

Method
Epic-Kitchens (Precision/ Recall/ F1 Score)

short-term middle-term long-term
X2X [155] 68.69/ 69.35/ 69.02 40.81/ 50.61/ 45.18 28.14/ 45.76/ 34.85

ConvLSTM [156] 69.02/ 69.44/ 69.22 42.72 /51.78/ 46.82 30.01/ 48.01/ 36.94
FlowTrans [164] 69.38/ 69.70 /69.54 42.90/ 52.02/ 47.02 30.19/ 47.56/ 36.94
EgoGAN (Ours) 70.89/ 71.24/ 71.07 43.79/ 53.23/ 48.05 31.39/ 48.57/ 38.14

(b) Experimental Results on EGTEA Gaze+ Dataset

Method
EGTEA (Precision/ Recall/ F1 Score)

short-term middle-term long-term
X2X [155] 42.96/ 59.32/ 49.84 38.70/ 59.89/ 47.01 36.55/ 59.67/ 45.33

ConvLSTM [156] 44.55/ 59.43/ 50.93 38.28/ 63.54/ 47.78 36.58/ 62.04/ 46.03
FlowTrans [164] 44.22/ 61.36/ 51.40 40.38/ 58.62/ 47.82 35.04/ 64.34/ 45.37
EgoGAN (Ours) 44.91/ 61.48/ 51.91 41.10/ 59.90/ 48.75 38.16/ 59.88/ 46.61

further show the robustness of our method. (Note that the performance improvement on

EGTEA is relatively small with I3DRes101 backbone, due to the limited training data and

dense backbone encoder.)

6.3.3 Comparison to State-of-the-Art Methods

We are the first to address the challenging problem of future hand segmentation from ego-

centric video. Previous works1 have considered the related problem of future image seg-

mentation. Therefore, we adapt previous state-of-the-art future image segmentation meth-

ods to our problem setting and consider the following strong baselines:

•X2X [155] proposes a recursive method that uses the anticipated mask at time step t + 1

as an input to interactively predict the future masks at time step t+ 2, and t+ 3.

•FlowTrans [164] jointly predicts the masks and optical flow at time step t + 1 and recur-

1We note that another branch of prior work addresses the problem of video segmentation [165, 166, 167,
168, 169]. These methods track instances masks over time, and therefore can not be used to address the future
segmentation problem where the future video frames are not available as inputs for the tracking model.
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sively predicts the future masks with preceding flow and masks.

•ConvLSTM [156] uses a Convolutional LSTM to model the temporal relationships of

image features, and use both the sequence of image features and output of the ConvLSTM

module for future image segmentation.

It is worth noting that the baseline methods [155, 164, 156] adopt a weaker backbone

network than ours. To show that the performance gain of our method does not come from

a stronger video feature encoder, we re-implement the above methods with the same I3D-

Res50 backbone network as our model. Moreover, both FlowTrans and ConvLSTM assume

accurate semantic segmentation of observable video frames is available as inputs, but our

model seeks to forecast future hand segmentation using only raw video frames, and thus is a

more challenging and practical setting. In addition, accurate semantic segmentation results

on egocentric video frames are difficult to obtain, due to the domain gap and lack of train-

ing data. Therefore, for a fair comparison, we implement the ConvLSTM and FlowTrans

models to take the same input as our method.

The experimental results are summarized in Table 6.4. Among all baseline methods,

FlowTrans achieves the best performance for short-term anticipation. However, it is less

effective for long-term anticipation, due to the error accumulation of predicted future op-

tical flow. ConvLSTM can better capture the long-term temporal relationship and thereby

achieve the best baseline performance for long-term anticipation. Instead of encoding the

temporal connection with recursive prediction, we found that the 3D deconvolution is effec-

tive for capturing the temporal correlation of anticipation video segments, and in doing so

predicts the future hand masks in one shot. More importantly, our method outperforms pre-

vious best results (underlined in Table 6.4) by +1.5%/1.0%/1.2% and +0.5%/0.9%/0.6%

in F1 score for short/middle/long term hand mask anticipation on EPIC-Kitchens and

EGTEA, respectively. These results once again demonstrate the benefits of explicitly mod-

eling future head motion with a GAN.
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Figure 6.3: Visualization of our results. From left to right, each column presents the future
hand segmentation results of short-term (t+ ∆1), middle-term (t+ ∆2), and long-term(t+
∆3) time steps from the EPIC-Kitchens dataset. Predictions from our method EgoGAN and
the best baseline FlowTrans are presented in each sample. (See more discussion in Chapter
6.3.4)

6.3.4 Discussion

Visualization. We visualize the results from both our method EgoGAN and the best base-

line FlowTrans on EPIC-Kitchens in Figure 6.3. Even though our proposed problem of
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future hand segmentation from egocentric video poses a formidable challenge in computer

vision, our method can more accurately predict the hand region of future frames, capture

the hand shape and poses compared to FlowTrans. Notably, as the uncertainty increases

with the anticipation time, our model may produce blurry predictions, yet can still robustly

localize the hand region.

Remarks. To summarize, our quantitative results indicate that future head motion carries

important information for future hand movements. We show that explicitly modeling the

underlying distribution of possible future hand movements with a GAN enables the model

to predict the future hand masks more accurately. Another important takeaway is that our

method is more effective than directly using a GAN for predicting future hand masks, as

reported in Table 6.1. Furthermore, our visualizations demonstrate that our method can

effectively predict future hand masks.

6.4 Conclusion

In this Chapter, we introduce the novel task of predicting a time series of future hand

masks from egocentric videos. We present a novel deep generative model EgoGAN to

address our proposed problem. The key innovation of our method is to use a GAN module

that explicitly models the underlying distribution of possible future head motion for a more

accurate prediction of future hand masks. We demonstrate the benefits of our method on

two egocentric benchmark datasets, EGTEA Gaze+ and EPIC-Kitchens 55. We believe our

work provides an essential step for visual anticipation as well as video pixel generation, and

points to new research directions in the egocentric video.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Egocentric vision has emerged as a prevailing research topic due to the advancements in

wearable cameras and potential applications in Augmented Reality (AR) and Human-Robot

Interaction (HRI). One unique property of egocentric video is the embodiment incorporated

in the sequential frames: the visual signals are coupled with the sensory-motor behaviors of

the camera wearer. The primary goal of my thesis is to characterize embodied egocentric

cues as attention mechanisms for understanding human daily actions, including recogni-

tion, anticipation, and localization. In this Chapter, I restate the contribution of my thesis

and then discuss several promising future research directions in egocentric vision and arti-

ficial social intelligence.

7.1 Conclusion

To summarize, my thesis work makes the following contributions:

• In Chapter 3, I introduce a novel deep model for joint learning of gaze and actions in

egocentric video. Through extensive experiments, I demonstrate that our proposed

joint model can improve the action recognition performance by a notable margin.

• In Chapter 3, I also show that the attention mechanism provides a novel means for

distilling motion information from the optical flow stream to the RGB stream. The

experiments suggest that our attention distillation method can facilitate the learning

of motion-sensitive video representation.

• My thesis work introduces a novel task of egocentric activity recognition and local-

ization on a 3D map in Chapter 4. By leveraging the attended 3D scene context, the
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proposed novel deep model can significantly boost the performance of both action

recognition and 3D localization.

• Another contribution of my thesis work is to use the intentional hand movements as

a key representation for action anticipation. As discussed in Chapter 5, our method

not only achieves state-of-the-art performance on action anticipation, but also has the

capability of forecasting future hand movements and interaction hotspots.

• The last piece of my thesis work addresses the novel task of future hand segmenta-

tion from egocentric video. I introduce a novel deep generative adversarial network

that explicitly models intentional head movements for pixel-wise egocentric visual

anticipation, and thereby produces promising results on our proposed task.

7.2 Future Work

In my thesis work, I mainly investigate the problem of understanding human-object interac-

tion using trimmed video sequences and strong supervision. Recent AR glasses (e.g. Aria

Glass and Hololens) enable the continuous capture of multiple-sensing modalities from a

human-centric perspective. As a result, understanding the untrimmed, continuous, multi-

modal egocentric videos is an exciting future research topic. Here, I briefly discuss my

future research agenda in this direction.

Open World Egocentric Action Recognition. Most existing literature on action under-

standing addressed the trimmed video setting, where the meaningful action segment is

given for making an inference. However, in real-world scenario, the exact starting and

ending time of an action may not be available, especially for the continuous capture with

the egocentric camera. Moreover, the video action recognition model does not possess

the generalization ability to understand actions that are not yet present in the training set.

Therefore, it is critical to develop an online action recognition model that can localize the

interesting segments from continuous egocentric video streaming, and understand novel
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objects and actions. One future research direction is to explore the open-world egocentric

action recognition problem. I plan to develop a never-ending learning video model that

can understand the functionality of a novel object by observing how the camera is interact-

ing with the object. This capability may promise a new generation of AR assistants that

gradually learns the user’s daily routines without any customization.

Towards Computational Theory of Mind. As humans, since infancy, we develop the abil-

ity to attribute the mental states to ourselves and others. This remarkable ability is often

referred as Theory of Mind (ToM) [170]. Having a Theory of Mind enables us to interpret

and anticipate the behavior, emotion, and decision making process of others as well as our

own. Can we endow an AI system with the Theory of Mind ability? Egocentric video may

serve as an ideal vehicle to study the problem of ToM, as both non-verbal communications

(gesture and gaze behavior) and verbal communications (language and audio) are simul-

taneously captured from a human-centric perspective. Our recent efforts [7] on collecting

the egocentric social video dataset already provide a solid step in this direction. As for

future work, I plan to explore how the multi-modal transformer architecture can be used

for understanding human ToM using this newly captured dataset.
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