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SUMMARY

This thesis mainly concerns the invariants and semi-algebraic invariants on quadrics on

varieties. In chapter 1, we discuss bounds on an algebraic invariant of quadratic monomial

ideals which inscribes the complexity of the ideals. In chapter 2, we introduce a semi-

algebraic invariant which quantifies the structural difference between the cone of sums of

squares and the cone of nonnegative quadratic forms on the space of quadrics on varieties.

The semi-algebraic invariant is bounded below by an algebraic invariant of the variety. We

compare the semi-algebraic invariant and algebraic invariant on rational curves obtained by

the projection of rational normal curves away from a point.

1. Bounds on regularity of quadratic monomial ideals

The minimal graded free resolution of square-free monomial ideals can be investi-

gated combinatorially through the Stanley-Reisner correspondence between the ide-

als and simplicial complexes. In particular, the square-free quadratic monomial ide-

als are the Stanley-Reisner ideals of the clique complexes of simple graphs.

Regarding of the correspondence, we study the bounds on the algebraic invariant,

Castelnuovo-Mumford regularity, of edge ideals in terms of properties on the corre-

sponding simple graphs. The main theorem is the graph decomposition theorem that

provides a bound on the regularity of a non-edge ideal which corresponds to a graph

by the regularity of edge ideals that correspond to proper subgraphs of the graph. By

combining the graph decomposition theorem with results in structural graph theory,

we proved, improved, and generalized many of the known bounds on regularity of

square-free quadratic monomial ideals.

2. Hankel index of non-ACM curves of almost minimal degree.

The Hankel index of a real variety is an invariant that quantifies the difference be-

tween nonnegative quadrics and sums of squares on the variety. Note that the Hankel
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index is a semi-algebraic invariant that is difficult to compute and the values are

known for only a few cases. The project is motivated by a result [1] that showed

an intriguing bound of Hankel index of a variety by an algebraic invariant, Green-

Lazarsfeld index, of the variety. In addition, the Hankel index of arithmetrically

Cohen-Macaulay variety of almost minimal degree is determined by the Green-Lazarsfeld

index of the variety. Therefore, Grigoriy Blekherman, Justin Chen, and I investigated

the Hankel index of the non-ACM curves of almost minimal degree.

Since any smooth non-ACM curve of almost minimal degree is a rational curve,

obtained by the projection of a rational normal curve away from an outer point, we

focus on studying the Hankel index of the rational curves and compared the Hankel

index with the Green-Lazarsfeld index of the curves. We found new rank of the

center of the projection which detects the Hankel index of the rational curves, and

moreover we found the rational curves are the first class of examples that the bound

of the Hankel index by the Green-Lazarsfeld index is strict.
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CHAPTER 1

BOUNDS ON REGULARITY OF QUADRATIC MONOMIAL IDEALS

Suppose I is a square-free monomial ideal in a polynomial ring. Due to the Stanley-Reisner

correspondence, we can study Betti-numbers of the monomial ideal I by the homology of

subcomplexes of the simplicial complex ∆I that corresponds to the ideal I . In particular, if

the ideal is generated by square-free quadratic monomials, then there is a correspondence

between simple graphs and the ideals. Moreover, we can study the algebraic invariants of

ideals through the properties of corresponding graphs.

We consider bounds on Castelnuovo-Mumford regularity of a square-free quadratic

monomial ideal over a field of characteristic 0. Many recent papers investigated regularity

of such ideals [2][3][4][5][6][7], see also [8] for a survey. In the literature, the quadratic

monomial ideals are called edge ideals by associating the generators of the ideal to the

edges of the complement of a simple graph.

1.1 Edge ideals, clique complexes of graphs, and Betti numbers

Suppose I is a quadratic square-free monomial ideal in a polynomial ring over a field k

of characteristic 0. One can associate the quadratic monomial ideal I to a simple graph G

by taking variables as vertices and the quadratic generators of I as non-edges of the graph

G. More explicitly, suppose I = (xixj : i, j ∈ {1, . . . , n}) is a square-free quadratic

monomial ideal in k[x1, . . . , xn]. Then, the ideal I corresponds to the simple graph G =

(V,E) where the vertex set is V = {1, · · · , n} and the edge set is E = {ij : xixj /∈ I}

Now, we can associate the quadratic monomial ideal I with the simplicial complex

∆G arised from graphs G. Given a graph G, the clique complex of G, denoted by ∆G,

is the simplicial complex that consists of t-simplices (i1, i2, . . . , it) whenever the induced

subgraphs on t vertices are complete graph of size t. Remark that the ideal I is the Stanley-
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Reisner ideal of the clique complex ∆G. i.e. I = {x1 · · ·xr : {x1 . . . xr} /∈ ∆G} [9,

Chapter 2].

Example 1.1.1. Suppose I is a square-free quadratic monomial ideal in S := k[x1, x2, x3, x4]

generated by two monomials x1x4 and x2x4. Then, the ideal I = I(G) is associated with

the simple graph G = (V,E) where V = {1, 2, 3, 4} and E = {12, 13, 23, 34}. Then, the

clique complex ∆G of the graph G is the simplicial complex

∆G = {{1}, {2}, {3}, {4}, {12}, {13}, {14}, {23}, {34}, {123}} ⊂ 2V .

Remark that the ideal I(G) is the Stanley-Reisner ideal of ∆G since any non-faces of ∆G

is contained in the ideal I(G).

I = 〈x1x4, x2x4〉
I(G) G ∆G

Figure 1.1: Stanley-Reisner Correspondence

Since square-free monomial ideals are Stanley-Reisner ideals, we can study the Betti

numbers of the monomial ideals through the homologies of subcomplexes of the corre-

sponding simplicial complex. In particular, the subcomplexes of clique complexes of a

graph are the clique complexes of induced subgraphs of the graph. Denote by G[W ] the

induced subgraph on a subset of vertices W of a graph G = (V,E). Then, we obtain a

version of Hochster’s formula for quadratic monomial ideals.

Theorem 1.1.2 (Hochster). Suppose I(G) is the non-edge ideal of a graph G = (V,E) in

S = k[V ]. Then for j ≥ i+ 1,

βi,j(S/I(G)) =
∑
|W |=j

dimk(H̃j−i−1(∆G[W ])),
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where W runs over all subsets of the vertex set of G of size t.

It means that the total sum of homology of subcomplexes of size |W | is the Betti num-

bers of the quadratic monomial ideal.

The Castelnuovo-Mumford regularity of the ideal is the maximum degree of entries in

differentials of the minimal free resolution of the ideal. (See section A.1 for the explicit

definition of Castelnuovo-Mumford regularity of ideals.) Regarding the Stanley-Reisner

correspondence between quadratic monomial ideals and simple graphs, we define regular-

ity of a graph G to be the Castelnuovo-Mumford regularity of the corresponding ideal I ,

denoted by reg(G). Note that, by Hochster’s formula, the regularity of G is the maximum

dimension of subcomplexes of the simplicial complex ∆G whose homology is non-zero.

Example 1.1.3. Suppose I is a square-free quadratic monomial ideal in S := k[x1, x2, x3, x4]

generated by two monomials x1x3 and x2x4. Then, the ideal I = I(G) is associated with

the simple graph G = (V,E) where V = {1, 2, 3, 4} and E = {12, 14, 23, 34} and its

clique complex is ∆G = {{1}, {2}, {3}, {4}, {12}, {14}, {23}, {34}} ⊂ 2V . i.e. ∆G is a

cycle of length four. Therefore, by Theorem 1.1.2, β2,4 = 1 since β2,4 = dimk(H̃1(∆G))

and β1,2 = 2 since there are two subsets of the vertex set of size two in ∆G whose number

of connected components is two.

Indeed, the minimal graded free resolution of S/I over the ring S is

0 // S(−4)⊕1 // S(−2)⊕2 // S( // S/I // 0)

Thus, the Betti diagram of S/I is

Table 1.1: Betti diagram for Example 1.1.3

0 1 2
0 1 - -
1 - 2 -
2 - - 1

In this example, the Castelnuovo-Mumford regularity of S/I is 3 and the Green-Lazarsfeld

index of the variety (or the coordinate ring S/I) is 1.
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1.2 Graph decomposition theorems

Our main tool for bounding regularity is the following decomposition theorem, which is

based on a straightforward application of Hochster’s formula [10] and the Mayer-Vietoris

sequence [11].

Theorem 1.2.1. Let G be a graph. Let G1 and G2 be subgraphs which cover cliques of G

(i.e. any clique of G is a clique in either G1 or else G2.) Then,

reg(G) ≤ max{reg(G1), reg(G2), reg(G1 ∩G2) + 1}.

Proof. Let W be an induced subgraph of G. Let W1 = W ∩ G1 and W2 = W ∩ G2.

We claim that a subcomplex of ∆W is the union of subcomplexes of ∆W1 and ∆W2. Let

F = (v1, . . . , vt) be a face in ∆W . Then G(F ) is a clique in G, and since G1 and G2

cover cliques of G, we see that F is a face of either W1 or W2, and the claim follows.

Additionally, we have ∆(W1 ∩W2) = ∆W1 ∩∆W2.

Now, we prove the main inequality. Letm = max{reg(G1), reg(G2), reg(G1∩G2)+1}.

Given any induced subgraph W , by the Mayer-Vietoris sequence [11, p.149], we have

following exact sequence of complexes

· · · → H̃i(∆(W1 ∩W2))→ H̃i(∆W1)⊕ H̃i(∆W2)→ H̃i(∆W )

→H̃i−1(∆(W1 ∩W2))→ H̃i−1(∆W1)⊕ H̃i−1(∆W2)→ H̃i−1(∆W )→ · · ·

Since regularity of G1 ∩ G2 is at most m − 1, we have H̃i(∆(W1 ∩ W2)) = 0 for all

i ≥ m − 2. Therefore, H̃i(∆W ) ' H̃i(∆W1) ⊕ H̃i(∆W2) for all i ≥ m − 1. Since both

G1 and G2 have regularity at most m, H̃i(∆W1) = H̃i(∆W2) = 0 for all i ≥ m− 1. Thus,

H̃i(∆W ) = 0 for all i ≥ m− 1 and regularity of G is at most m.

Our first application deals with the case of defining G1 and G2 via a cutset. Suppose G
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is a simple graph consisting of the vertex set V (G) and the edge set E(G). For a subgraph

G′ of G we use G \G′ to denote the induced subgraph on V (G) \ V (G′).

Theorem 1.2.2 (Cut-set/Separator decomposition). Let T be an induced subraph ofG such

that the induced graph G\T is disconnected. Let C1, . . . , Ck be the connected components

of G \ T and Gi be induced subgraphs on vertices of Ci and T for i = 1, . . . , k. Then,

reg(G) ≤ max{reg(Gi)i=1,...,k, reg(T ) + 1}.

Proof. Let G1 be the induced subgraph on vertices of C1 and T and let G′1 be the induced

subgraph on ∪ki=2V (Ci) ∪ V (T ). In other words, G′1 = G \ C1. Then, we can see that G1

andG′1 cover all cliques ofG. Indeed, if a vertex in C1 and a vertex in ∪ki=2Ci are contained

in a clique in G, the induced subgraph on the two vertices must be an edge of G. However,

it is not possible because C1 and ∪ki=2Ci are disjoint. Therefore, two induced subgraphs G1

and G′1 cover all cliques in G. Then, by Theorem 1.2.1, we have

reg(G) ≤ max{reg(G1), reg(G′1), reg(T ) + 1}.

Now, let G′j be the induced subgraph on vertices of Cj+1, . . . , Ck, and T for j = 2, . . . , k.

Then, by the same process,

reg(G′j−1) ≤ max{reg(Gj), reg(G′j), reg(T ) + 1}

Thus,

reg(G) ≤ max{reg(G1), reg(G′1), reg(T ) + 1}

≤ max{reg(G1), reg(G2), reg(G′2), reg(T ) + 1}
...

≤ max{reg(Gi)i=1,...,k, reg(T ) + 1}.
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We call T in Theorem 1.2.2 a separator of G. Note that Theorem 1.2.2 generalizes a

decomposition result used by Dao, Huneke and Schweig in [2, Lemma 3.1].

Recall that an open neighborhood NG(v) of a vertex v is the induced subgraph on the

vertices adjacent to v, and a closed neighborhood NG[v] of v is the induced subgraph on v

and all vertices adjacent to v. Decomposition in [2] arises as a special, but very useful case,

where T is the open neighborhood of a vertex v. i.e. an open neighborhood of a vertex of

G is a separator of G. An additional simplification comes from the fact that regularity of

the open and closed neighborhoods of v are the same. Therefore, we obtain the following

Vertex Neighborhood Decomposition theorem.

Corollary 1.2.3 (Vertex Neighborhood Decomposition). Let v be any vertex of a graph G.

Then,

reg(G) ≤ max{reg(G \ v), reg(NG(v)) + 1}.

G NG[v] NG(v) G \ v

Figure 1.2: Vertex Neighborhood decomposition

Proof. By Theorem 1.2.2, we have reg(G) ≤ max{reg(G \ v), reg(NG[v]), reg(NG(v)) +

1}, where NG(v) is the open neighborhood of v in G and NG[v] is the closed neighborhood

of v in G. So, it suffices to show that reg(NG[v]) = reg(NG(v)). This follows by a simple

application of Hochster’s formula, since the clique complex ∆H of an induced subgraph

H of NG[v] with v ∈ H is contractible.
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So far, we have only considered graph decompositions coming from induced subgraphs,

but we now define a useful decomposition where this is not the case. Let M be a subgraph

of G. Let GM be the induced subgraph of G on vertices in M and vertices of G which

are adjacent to both vertices of some edge of M . Namely, GM = G[V (M) ∪W ] where

W is a subset of vertices in G such that k ∈ W if ik ∈ E(G) and jk ∈ E(G) for some

ij ∈ E(M). Also, for a subgraph G′ of G, we use G − G′ to denote the subgraph of G

obtained by deleting all edges of G′. i.e. G−G′ = (V (G), E(G)−E(G′)). Then, we have

following decomposition theorem.

Theorem 1.2.4. Let M be a subgraph of a graph G. Then,

reg(G) ≤ max{reg(G−M), reg(GM), reg(GM −M) + 1}

Proof. We first claim that G−M and GM cover all cliques of G. Let F be any clique in G.

If F does not contains any edges in M , then G −M contains the clique F . Suppose that

F contains some edges of M . If all vertices in F is contained in M , then F is contained in

GM since GM contains M . If v is any vertex in F outside of M , then uv, wv ∈ F for some

uw ∈ E(F ∩M). This implies that v ∈ V (GM) and so F ⊆ GM since both F and GM are

induced subgraphs ofG. In addition, the intersection ofG−M andGM isGM−M . Indeed,

V (GM ∩ (G −M)) = V (GM ∩ G) = V (GM) and E(GM ∩ (G −M)) = E(GM −M).

Thus, by Theorem 1.2.1, reg(G) ≤ max{reg(G−M), reg(GM), reg(GM −M) + 1}

Similarly to vertex-neighborhood decomposition in Theorem 1.2.3, if we take M to be

an edge e = ij in Theorem 1.2.4, then we can bound regularity of G by regularity of two

subgraphs.

Corollary 1.2.5 (Edge-neighborhood decomposition). Let G be a graph and e = ij be an

edge in G. Then,

reg(G) ≤ max{reg(G− e), reg(Ge − e) + 1}.

7



G Ge Ge − e G− e

Figure 1.3: Edge Neighborhood decomposition

Proof. By Theorem 1.2.4, it suffices to show that reg(Ge) ≤ reg(Ge − e) + 1 for edge

e. Indeed, for any graph G, reg(G) ≤ reg(G \ v) + 1 for any vertex v by Corollary

Theorem 1.2.3, and so we have

reg(Ge) ≤ reg(Ge \ i) + 1

≤ reg(Ge − e) + 1,

for the edge e = ij because Ge \ i is an induced subgraph of Ge − e.

We will use this decomposition to describe complements of bipartite graphs that have reg-

ularity 3 in section 1.4.

1.3 Hereditary Families

Let G be a family of graphs. We call G a hereditary family if it is closed under taking

induced subgraphs, or equivalently under deleting vertices.

Theorem 1.3.1 (Hereditary theorem). Let G be a hereditary family with the following prop-

erty: there exists t ∈ N, such that for any G ∈ G there is a separator G′ of G with

reg(G′) ≤ t. Then regularity of any G ∈ G is at most t+ 1.

Proof. Let G be a hereditary family with the above property for some t ∈ N. We will

induct on the number of vertices n in graphs of G . The base case n = 1 is trivial, since
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t ≥ 0 and G includes the one vertex graph. Now consider the inductive step. Let G ∈ G

be a graph on n+ 1 vertices, and let G′ be a separator of G. Applying Theorem 1.2.2 with

T = G′, we get the desired inequality by the induction assumption.

Chordal graphs form a hereditary family, and it is known in [12] that any chordal graph

contains a vertex v such that neighborhood of v is a complete graph. Therefore we imme-

diately obtain the following result of Fröberg:

Corollary 1.3.2. Let G be a chordal graph. Then regularity of G is at most 2.

Moreover, we can see that regularity of any hole is at least 3 and therefore chordal

graphs are the only graphs of regularity at most 2. On the other hand, by combining

Fröberg’s result with neighborhood decomposition Theorem 1.2.3 we can give a criterion

for graphs that have regularity at most 3:

Corollary 1.3.3. Let G be a hereditary family of graphs with the following property: for

any G ∈ G there is a vertex v of G which has a chordal neighborhood. Then regularity of

any G ∈ G is at most 3.

To illustrate the power of the Theorem 1.3.3, we give a quick proof of a generalization

of a result by Nevo [13, Section 5]. Let F ′ be a graph on four vertices consisting of an

isolated vertex and a triangle. He showed that if G does not contain F ′ and a four-cycle as

induced subgraphs then regularity of G is at most three. We note that not containing a four-

cycle as an induced subgraph corresponds toG satisfying condition N2,2. (See Appendix A

for details.) Let F be a graph on five vertices consisting of an isolated vertex and two

triangles sharing an edge. We show that ifG does not contain a four-cycle and F as induced

subgraphs, then regularity of G is at most 3, which is a weaker condition on G.

Corollary 1.3.4. Let G be the hereditary family of graphs that do not contain F and the

four cycle as induced subgraphs. Then regularity of any G ∈ G is at most 3.

9



Proof. We will show that any G ∈ G contains a vertex with a chordal neighborhood. Sup-

pose not, and let G ∈ G be a graph such that no vertex of G has a chordal neighborhood.

Let v be the vertex of minimal degree inG. Observe that v is not connected to all vertices of

G, otherwise G is the complete graph, which is a contradiction. It follows by our assump-

tion that NG(v) contains a hole C of length at least 5, and there exists w ∈ G such that v is

not connected to w. SinceG is F -free we see that w must be connected to two non-adjacent

vertices u1, u2 of C. But then the induced subgraph on u1, v, u2, w is a 4-cycle, which is a

contradiction.

We also generalize Theorem 1.3.4 to the case where G does not contain larger cycles

as induced subgraphs. Recall that a graph G not containing an `-hole for ` = 4, ..., p + 2

with p ≥ 2 is equivalent to G satisfying condition N2,p. Let a fan Fi for i ≥ 1 be the graph

consisting of an isolated vertex and the graph join of a path on i+ 1 vertices and a distinct

vertex. With essentially the same proof as Theorem 1.3.4 we can also show the following:

Corollary 1.3.5. If for some i ≥ 2 a graph G is `-hole free for ` = 4, ..., i+ 2 and does not

contain Fi as an induced subgraph, then regularity of G is at most 3.

It is known that if G is perfect and does not contain 4-holes or if G is even-hole free,

then there is a vertex in G whose neighborhood is chordal (for 4-free perfect graphs see

[14] and for even-hole free graphs see [15]). Moreover, both 4-hole free perfect graphs and

even-hole free graphs form hereditary families. Thus, we obtain another criterion to make

graphs to have regularity 3.

Corollary 1.3.6. If G is perfect and does not contain 4-holes, or if G is even-hole free then

regularity of G is at most 3.

It follows from the Strong Perfect Graph Theorem [16], that G is perfect and 4-hole

free if and only if G is 4-hole free and also odd-hole free. Thus Theorem 1.3.6 implies that

if G is 4-hole free, and regularity of G is at least 4, then G must contain both even and odd

holes. This observation is used for improving a bound on regularity in section 1.6.
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1.4 Complements of bipartite graphs whose regularity are three

Fernández-Ramos and Gimenez gave an complete description of bipartite graphs associated

to edge ideals that have regularity 3 in [17]. We give an independent proof of their result

by using Theorem 1.2.5.

Note that we work with the complements of bipartite graphs since we work over the

non-edge ideals, i.e. the complement of graphs of edge ideals. Let G be the complement

of a bipartite graph H with bipartition of vertices X and Y . Let B be the subgraph of G

with V (B) = V (G) and the edge set consisting of edges of G between vertices in X and

vertices in Y . i.e. B = G(V (G), E(X, Y )). We call B the bipartite part of G. We recall

chordal bipartite graphs [18, Section 12.4].

Definition 1.4.1. A chordal bipartite graph is a bipartite graph which contains no induced

cycles of length greater than four.

It is shown in [19] that any chordal bipartite graph G with bipartition of vertices X and

Y contains an edge ij for i ∈ X and j ∈ Y such that the induced subgraph on vertices

of NG(i) and NG(j) is a complete bipartite graph. Such an edge ij is called a bisimplicial

edge. Additionally, it is known in [19] that the subgraph G− ij is again a chordal bipartite

graph. This implies that subgraphs obtained by deleting a bisimplicial edge from a chordal

bipartite graph are also chordal bipartite graphs.

Combining Theorem 1.2.5 with property of chordal bipartite graph, we get an exact

description of complements of bipartite graphs of regularity 3.

Theorem 1.4.2. Let G be the complement of a bipartite graph. Regularity of G is 3 if and

only if G contains a hole and the bipartite part B of G is chordal bipartite.

Proof. Suppose that the complement G of a bipartite graph H has at least one hole and

the bipartite part B of G is a chordal bipartite graph. Since G contains at least one hole,

regularity of G is at least 3. To show that regularity of G is at most 3 we induct on the
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number of edges ` in B. The base case ` = 0 is simple, since G is then chordal and

therefore reg(G) ≤ 2. Now we consider the induction step. Let G be the complement of a

bipartite graph such that its bipartite part B is a chordal bipartite graph with ` + 1 edges.

Then B contains a bisimplicial edge e. By Theorem 1.2.5,

reg(G) ≤ max{reg(G− e), reg(Ge − e) + 1}.

Since e is a bisimplicial edge in B, Ge − e is a chordal graph, and reg(Ge − e) ≤ 2. In

addition, reg(G− e) ≤ 3 by the induction assumption, and the desired result follows.

Conversely, suppose that bipartite part B of G contains a hole of length at least 6. We

claim that ∆G contains a subcomplex whose second (reduced) homology is not zero. Let

G′ be the subgraph of G induced by vertices that form the shortest hole in B. Let X ′ and

Y ′ be the partitions of vertices G′ (induced from the partition of vertices of G). Let v

be any vertex of X ′. Then, the closed neighborhood NG′ [v] and the deletion G′ \ v of v

cover cliques of G′. Observe that H̃1(∆NG′ [v]) = H̃1(∆(G′ \ v)) = 0 since ∆NG′ [v] is

contractible, and any hole in G′ − v is covered by cliques of size 3, but H̃1(∆NG′(v)) 6= 0

since NG′(v) contains a hole (of length 4). Since H̃2(∆G′) → H̃1(∆NG′(v)) is surjective

by the Mayer-Vietoris sequence, H̃2(∆G′) 6= 0 , and this implies that regularity of G is at

least 4.

1.5 Regularity and Genus of graphs

The following bound on regularity is well-known in [20, Lemma 2.1] (or see [21] for a

geometric proof), but we provide a short proof for the sake of completeness.

Lemma 1.5.1. If the number of vertices of G is at most 2n − 1, then regularity of G is at

most n.

Proof. We use induction on n. For n = 1, regularity is obviously at most 1 since there are

no generators in the non-edge ideal of the graph. Assume that any graph with at most 2`−1
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vertices has regularity at most `. Let G be a graph on 2` + 1 vertices. Note that by Theo-

rem 1.2.3 we can delete a vertex v without changing regularity if reg(G) > reg(NG(v))+1.

After deleting such vertices, if possible, let v be the vertex of minimal degree in G. If the

degree of v is 2`, then G is a complete graph (which has regularity 1). Therefore, we can

assume that degree of v is at most 2`− 1. Then, we have

reg(G) ≤ reg(NG(v)) + 1 ≤ `+ 1,

since NG(v) contains at most 2`− 1 vertices.

In fact, the bound in Theorem 1.5.1 is tight. Let Kn(2) be the complete n-partite graph,

with each part of size two. Note that the ideal of Kn(2) is a complete intersection of n

quadrics, so the Koszul complex (with weighting degree of variables by two) is the minimal

graded free resolution of the ideal. Thus regularity of Kn(2) is n+ 1.

Recall that the genus of a graph G is the minimal genus of an orientable surface Sg

into which G can be embedded. (See [22] for reference.) Note that any graphs can be

embedded into an orientable surface Sg for some genus g and the genus of graphs inscribes

a topological complexity of the simple graphs. By using Theorem 1.5.1 we can immediately

give an alternative proof of a result in [21] that any planar graphs have regularity at most

4 and it is tight. We note that this is the case of genus 0 and we can provide bounds on

regulairty of graphs in terms of arbitrarily genus.

Theorem 1.5.2. Let g be the genus of a graph G. Then, regularity of G is at most b1 +

√
1 + 3gc+ 2.

Proof. Let |V | be the number of vertices, |E| be the number of edges, and |F | be the num-

ber of (2-dimensional) faces in the embedding ofG. By considering the Euler characteristic

of the surface S into whichG is embedded, we see that |V |−|E|+|F | = 2−2g. Recall that

2|E| =
∑
v∈V

deg(v) =
∑
F∈∆2

`F where ∆2 is the set of 2-cells in the embedding and `F is the
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number of edges in the face F . In particular, 2|E| =
∑
F∈∆2

`F ≥ 3|F | since `F ≥ 3 for any

face F . Let d be the minimal degree of G. Then, 2|E| =
∑
v∈V

deg(v) ≥ d|V |. Therefore,

2− 2g = |V | − |E|+ |F |

≤ |V | − |E|+ 2

3
|E| = |V | − 1

3
|E|

≤ |V | − d

6
|V | = 6− d

6
|V |.

Moreover, we can see that |V | ≥ d+2 since d ≤ deg(v) ≤ |V |−2. Note that, if d = |V |−1,

the graph is complete graph, which can be excluded. Thus,

6(2g − 2) ≥ (d− 6)|V | ≥ (d− 6)(d+ 2)⇒ 0 ≥ d2 − 4d− 12g.

This implies that d ≤ 2 +
√

4 + 12g = 2 + 2
√

1 + 3g. Let v be the vertex of degree d.

Then, reg(NG(v)) ≤ b1
2
b2 + 2

√
1 + 3gcc + 1 = b1 +

√
1 + 3gc + 1. By Theorem 1.3.1,

reg(G) ≤ b1 +
√

1 + 3gc+ 2.

Note that this bound is indeed tight. It is known in [23, Section 4.4] that the genus

of 2-regular complete n-bipartite graphs Kn(2)(= K2,2,...,2) is at least (n−3)(n−1)
3

. More-

over, the genus of Kn(2) is exactly (n−3)(n−1)
3

if n 6≡ 2 mod 3 by [24]. In this case,

we have reg(Kn(2)) = n + 1 and the right hand side of inequality in Theorem 1.5.2 is

b1 +
√

1 + 3 (n−3)(n−1)
3

c+ 2 = n+ 1.

1.6 Bounds on regularity of graphs without small holes

Even though regularity of a graph can depend linearly on the number of vertices n, ifG does

not contain small holes, then regularity of G can be bounded from above by a logarithmic

function of n. It was shown in [25] that absence of small holes corresponds to the ideal

satisfying property N2,p for some p ≥ 2.
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Theorem 1.6.1. Let p ≥ 2 and I(G) be the non-edge ideal corresponding to a graph G.

Then, the followings are equivalent.

1. The minimal graded free resolution of I(G) is (p− 1)-step linear.

2. The graph G does not contain a hole Ci of length i for i ≤ p+ 2.

3. I(G) satiesfies N2,i for all 2 ≤ i ≤ p.

It was shown in [2] that if G satisfies N2,p for p ≥ 2, then

reg(G) ≤ log p+3
2

n− 1

p
+ 3.

We also provide (a similar and) asymptotically better upper bound on regularity of graphs.

Theorem 1.6.2. Suppose that G satisfies property N2,p for p ≥ 2. Then,

reg(G) ≤ min{log p+3
2

(n(p+ 1)

p(p+ 3)

)
+ 3, log p+4

2

( n(p+ 2)

(p+ 1)(p+ 4)

)
+ 4}.

Proof. Given a graph G, there is an induced subgraph G0 such that reg(G) = reg(G0) =

reg(NG0(v)) + 1 for any vertex v in G0. Indeed, we can keep deleting vertices y such that

reg(G) = reg(G \ y) until we arrive at a graph G0, where reg(G0 \ v) = reg(G0) − 1 for

any vertex v of G. Then, by Theorem 1.2.3 we have reg(G0) = reg(NG0(v)) + 1 for any

vertex v in G0. We call such G0 a trimming of G. Note that a trimming is not unique.

Let x0 be a vertex of minimal degree in G0. Let G1 be a trimming of the open neigh-

borhood NG0(x0) of x0 in G0. Now we repeat this process: let xi be a vertex of minimal

degree in Gi and let Gi+1 be a trimming of the open neighborhood of xi in Gi. We obtain

a sequence of induced subgraphs Gi of G such that

reg(G) = reg(G0) = reg(G1) + 1 = · · · = reg(Gt) + t.

Let ` be the maximal integer such that G` contains a hole, and let Cm be the hole in G` of
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smallest length m, with m ≥ p+ 3 ≥ 5. Note that Cm is a hole that is present in all graphs

Gi, with 0 ≤ i ≤ `. We use di to denote the degree of xi in Gi. We claim that for 1 ≤ i ≤ `

the sum of the degrees of vertices of Cm in NG`−i
[x`−i] is at most

md`−i −
mi(m− 3)

2i−1
,

which we prove by induction on i. The base case is i = 1: a vertex of Cm is connected

to exactly two vertices of Cm and can be connected to all other vertices in NG`−1
[x`−1].

Therefore, the sum of degrees of vertices of Cm is at most 2m + m(d`−1 + 1 − m) =

md`−1 −m(m− 3).

For the inductive step, assume that the sum of the degrees of vertices ofCm inNG`−i+1
[x`−i+1]

is at most md`−i+1− mi−1(m−3)
2i−2 . Observe that any vertex in G`−i+1 not connected to x`−i+1

can be adjacent to at most two vertices of Cm. Otherwise G`−i+1 is forced to have a 4-hole,

which is a contradiction. Since degree of x`−i+1 in G`−i+1 is at least the degree of any

vertex of Cm is G`−i+1 we see that there are at least

1

2

(
md`−i+1 − (md`−i+1 −

mi−1(m− 3)

2i−2
)

)
=
mi−1(m− 3)

2i−1
(1.1)

vertices in G`−i+1 \NG`−i+1
[x`−i+1].

Any vertex of NG`−i
[x`−i] belongs to exactly one of NG`−i

[x`−i] \ Gl−i+1, or Gl−i+1 \

NGl−i+1
[xl−i+1], or NGl−i+1

[xl−i+1]. As before, any vertex of Gl−i+1 \NG`−i+1
[x`−i+1] can

be adjacent to at most two vertices in Cm, and a vertex of Cm can be adjacent to all vertices

of NG`−i
[x`−i] \G`−i+1. Therefore,

∑
v∈Cm

degNG`−i
[x`−i]

(v) ≤ m|NG`−i
[x`−i] \G`−i+1|+ 2|G`−i+1 \NG`−i+1

[x`−i+1]|

+
∑
v∈Cm

degNG`−i+1
[x`−i+1](v).
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Using the induction assumption on
∑

v∈Cm
degNG`−i+1

[x`−i+1](v) we see that

∑
v∈Cm

degNG`−i
[x`−i]

(v) ≤ md`−i − (m− 2)
(
|G`−i+1 \NG`−i+1

[x`−i+1]|
)
− mi−1(m− 3)

2i−2
.

By (Equation 1.1) we see that

(m− 2)
(
|G`−i+1 \NG`−i+1

[x`−i+1]|
)

+
mi−1(m− 3)

2i−2
≥ mi(m− 3)

2i−1
,

and therefore ∑
v∈Cm

degNG`−i
[x`−i]

(v) ≤ md`−i −
mi(m− 3)

2i−1
,

as desired. The argument above shows that there are at least mi(m−3)
2i

vertices in G`−i \

NG`−i
[x`−i]. Since G`−i+1 is a subgraph of NG`−i

[x`−i], we see that

|G`−i| − |G`−i+1| ≥
mi(m− 3)

2i
.

Therefore,

|G`−i| ≥
i∑
t=1

mt(m− 3)

2t
+m,

and by summing the above geometric series we see that

|G`−i| ≥
mi+1(m− 3)

2i(m− 2)
.

Plugging in i = `, we see that

n ≥ |G0| ≥
m`+1(m− 3)

2`(m− 2)
≥ p(p+ 3)`+1

2`(p+ 1)
.

Thus,

reg(G) ≤ reg(G`+1) + `+ 1 ≤ log p+3
2

(
n(p+ 1)

p(p+ 3)

)
+ 3,
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which gives us the first upper bound.

For the second upper bound, we observe that if regularity of G is at least four, then G

contains both even and odd holes by Theorem 1.3.6. With the same setting above, regularity

of NG`−2
(x`−2) (or equivalently, G`−1) is four. Let m be the length of the smallest hole in

NG`−2
(x`−2). Then NG`−2

(x`−2) must also contain a hole of size m + 2α + 1 for some

positive integer α. We can now apply the same process as above to bound number of

vertices of G`−i using this larger hole to obtain

|G`−i| ≥
(m+ 2α + 1)i(m+ 2α− 2)

2i−1(m+ 2α− 1)
,

for 2 ≤ i ≤ `. By taking i = `, we see that

n ≥ |G0| ≥
(m+ 2α + 1)`(m+ 2α− 2)

2`−1(m+ 2α− 1)
≥ (p+ 4)`(p+ 1)

2`−1(p+ 2)
.

Thus,

reg(G) ≤ reg(G`+1) + `+ 1 ≤ log p+4
2

n(p+ 2)

(p+ 1)(p+ 4)
+ 4.

Note that the former term in the bound in Theorem 1.6.2 is slightly better (if n ≥ p+3
2

)

than the bound in [2, Theorem 4.9] and the former term will be smaller than the latter term

if the size of a graph is relatively small. However, the latter term of the bound is better

asymptotically.
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CHAPTER 2

HANKEL INDEX, ALMOST REAL RANK, AND SUMS OF SQUARES

2.1 Overview: Hankel index of rational curves

A central problem in real algebraic geometry is understanding the differences between

the sums of squares (SOS) cones and the cones of non-negative polynomials (PSD) on

varieties. To see the structural difference between the SOS cones and the cone of PSD

quadrics on varieties, we study the Hankel index of the varieties. The Hankel index of a

variety X , denoted by η(X), is a representative semi-algebraic invariant that measures the

structural gap between the two cones. (See section 2.2 for details.) By [1], the Hankel index

is bounded below by an algebraic invariant called the Green-Lazarsfeld index, denoted by

α(X). Moreover, the inequality is tight for all known cases such as arithmetically Cohen-

Macaulay (ACM) varieties of almost minimal degree. So, we investigated the Hankel index

on (smooth) non-ACM curves of almost minimal degree. i.e. the rational curves that is the

images of projection of rational normal curves away from points outside of second secant

of the rational normal curve [26].

Since now, we assume that X is a rational curve that is the image of the projection of

a rational normal curve Cd of degree d away from a point p (outside of Cd). Then, α(X)

is obtained by the (complex border) rank of the center p with respect to Cd (cf. [27]).

In other words, the Green-Lazarsfeld index of the rational curve X is determined by the

smallest number of points in Cd that spans p. However, we found that the Hankel index

η(X) of X is obtained by a new rank of p, called the almost-real rank of p, which realizes

a decomposition of p as a (linear) combination of almost-real points on Cd.

Theorem 2.1.1. Let Cd be a rational normal curve of degree d in Pd. Let πp : Pd 99K Pd−1
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be the projection away from the center p ∈ Pd\ Sec2(Cd) and X = πp(Cd). Then

η(X) = ar-rkCd
(p)− 2

where ar-rkCd
(p) is the minimal number of almost-real points in Cd that spans p.

Not only did we discover a new rank of the center p which detects the Hankel index

η(X), but we also found that the rational curves are the first class of examples such that the

inequality between the two indexes is strict.

2.2 Hankel index of variety

Recall that both the SOS cone and the cone of PSD quadrics on varieties X are closed cone

on space of quadrics on X . Moreover, the facets of each cones correspond to the extreme

rays of the dual cones because of duality. Therefore, one can study the differences of the

facet structures of the cones by investigating the differences of the extreme rays of dual

cones.

Let P ?
X be the dual cone of non-negative quadratic forms on the variety X and Σ?

X be

the dual cone of sums of squares on the variety. The cone Σ?
X is a spectrahedron, i.e. a slice

of the cone of positive semidefinite (PSD) matrices with a linear subspace. We call Σ?
X the

Hankel spectrahedron of X . By identifying a linear functional ` in Σ?
X with a PSD matrix

we say the rank of ` is the matrix rank of the quadratic forms. Rank one extreme rays of

Σ∗X are precisely the extreme rays of P ?
X . Therefore, if P ∗X ( Σ∗X we can quantitatively

measure the difference between these cones by analyzing the ranks of extreme rays of Σ∗X

that are greater than one.

Definition 2.2.1. (cf. [1, Definition 1]) The Hankel index of X , denoted η(X), is defined

to be the minimal rank of a(n extreme) ray ` ∈ Σ?
X \ P ?

X , or∞ if Σ?
X = P ?

X .

In other words, the Hankel index of a variety X is minimal rank of extreme rays of the

dual cone of SOS which is bigger than one.
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The Hankel index is a subtle invariant which is often quite hard to compute. Indeed, the

Hankel index of varieties is known for only a few cases. For example, varieties of minimal

degree, arithmetically Cohen-Macaulay (ACM) varieties of almost minimal degree, vari-

eties defined by quadratic squarefree monomial ideals, some general canonical curves, and

Veronese embeddings of P2 (see [1, Theorem 28] and [28]).

2.3 Waring ranks of binary forms

Since we will work with the rational normal curves, we can identify the points with the

binary form F (p). (See Section C.3 for details). Regarding the identification, the ranks of

points with respect to rational normal curves are connected to another classical notion on

binary forms: Waring rank of the binary forms F (p), i.e. shortest length of the decompo-

sition of F (p) as a sum of powers of linear forms. In [27, Theorem 1.1(2)] it was shown

that for such curves, the Green-Lazarsfeld index equals the complex Waring border rank

of F (p) minus 3. Remark that the complex Waring border rank of F (p) can be investi-

gate through the lowest degree element of apolar ideal of the polynomial F (p). Moreover,

the elements in the apolar ideal that can be factored into distinct linear forms generate the

decompositions of the binary form F (p) as a linear combination of power sums of linear

forms. (See section C.1 for details.)

2.4 Almost reality

We now introduce a central notion for this chapter, which is that of a binary form almost

splitting over R, or a univariate polynomial having almost all real roots. For technical

reasons we will need to include the possibility of one pair of roots being nondistinct, so

that the resulting rank is intermediate between a true rank and a border rank.

Definition 2.4.1. Let F ∈ R[x, y]d. We say that F has almost real roots if F has ≥ d − 2
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simple linear factors over R. Equivalently, F has a factorization over R of the form

F = q ·
d−2∏
i=1

li, {l1, . . . , ld−2, q} pairwise relatively prime

where li are linear and q is quadratic. A polynomial F with almost real roots thus belongs

to exactly one of 3 classes: (i) F has all simple real roots, (ii) F has a unique nonreal

complex conjugate pair of roots, (iii) F has a unique double real root (note that in cases

(ii) and (iii), all other roots are real and simple).

In analogy with Theorem C.2.2, we define the almost real rank of F as

ar-rk(F ) := min

r
∣∣∣∣ ∃g ∈ (F )⊥r with

almost real roots


Remark 2.4.2. One can generalize the definition above to arbitrary (i.e. not necessarily

binary) forms. Given a form F ∈ R[x1, . . . , xn], define the almost real rank of F as the

minimal length of a zero-dimensional subscheme Z ⊆ Pn−1
C such that I(Z) ⊆ (F )⊥ and

Z has either (i) all reduced real points, or (ii) exactly 1 nonreal conjugate pair of points,

or (iii) exactly 1 double point. In this article though, we will only use the notion of almost

real rank for binary forms.

Note that for any F ∈ R[x, y]d, it follows from the definitions that C -b. rk(F ) ≤

ar-rk(F ) ≤ R -rk(F ). For more properties of almost real rank, see Section 2.7.

The Hankel index of X is determined by the shortest decomposition of F (p) into as a

sum of powers of almost real forms, (cf. Section 2.4 for precise definitions), which we call

the almost real rank of F (p).

Theorem 2.4.3. Let X = πp(Cd) be a projection of a rational normal curve Cd of degree

d away from a point p ∈ Pd \C3
d , with corresponding binary form F (p) ∈ R[x, y]d. Then
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the Hankel index of X is given by

η(X) = ar-rk(F (p))− 2.

This theorem elucidates the semialgebraic nature of the Hankel index, and demonstrates

two ways in which it differs from the Green-Lazarsfeld index: the difference between

rank and border rank, and the difference between almost real decompositions and complex

decompositions.

We note an interesting technical detail of the proof of Theorem 2.4.3. To prove an

upper bound on Hankel index we need a construction of rays in Σ?
X \ P ?

X , and for this we

use point evaluations at points of X in special position. Such constructions using Cayley-

Bacharach relations were used in [29] and more generally in [30] (the idea goes all the way

to Hilbert’s original proof). Until now these construction only used reduced points of X ,

but in this paper we use non-reduced 0-dimensional subschemes of X . The use of such

non-reduced configurations is necessary, and cannot be replicated by reduced points.

2.5 Construction of rays in Σ?
X

We now turn to the proof of Theorem 2.4.3, which will span the next two sections. In

this section, we give a general procedure for constructing elements in Σ?
X of ranks between

ar-rk(F (p))−2 and d−3, whose kernels are basepoint-free. By Theorem B.2.3, this shows

that if ar-rk(F (p)) > 3, then η(X) ≤ ar-rk(F (p))− 2.

Choose r with ar-rk(F (p)) ≤ r ≤ d− 1, and choose a form g ∈ (F (p))⊥r with almost

real roots. We assume that no proper divisor of g is in (F (p))⊥ (which is automatic when

r = ar-rk(F (p)), and can be arranged when r ≥ degF ◦). Then there is a factorization

over C

g =:
r∏
i=1

li

of g into linear forms li =: aix+ biy ∈ C[x, y]1 where either
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1. All li’s are distinct and real, or

2. All li’s are distinct, and there is exactly one conjugate pair lr = lr−1, or

3. All li’s are real, and there is exactly one repeated factor lr = lr−1.

For the first two cases, the construction that we give below has appeared before, e.g. in [29,

Theorem 6.1 and Theorem 7.1] (for Veronese embeddings of projective spaces) and [30,

Proposition 3.2 and Procedure 3.3]. Case (3) however is new, specifically dealing with a

non-reduced zero-dimensional scheme.

1. Simple real roots

By apolarity (Theorem C.1.4), F (p) may be expressed as a linear combination of

(l1)d⊥, . . . , (lr)
d
⊥, i.e. there exist c1, . . . , cr ∈ R such that

F (p) =
r∑
i=1

ci(li)
d
⊥ (2.1)

Note that since no proper factor of g is in (F (p))⊥, each coefficient ci in (Equa-

tion 2.1) is nonzero.

We now construct elements in Σ?
X of rank r − 2. Let p1, . . . , pr ∈ Pd correspond to

the r roots of g (explicitly, pi = νd([ai : bi])). Consider a linear combination

` :=
r∑
i=1

di`
2
pi
∈ (R(Cd)2)? (2.2)

with (as yet unspecified) coefficients di ∈ R, where `pi = evaluation at pi (note that

`pi corresponds to the binary form (li)
d
⊥ ∈ R[x, y]d). Then as in Theorem C.5.1, `

gives rise to a quadratic form Q` on R(Cd)1, as well as its restriction q` to R(X)1.

Next, we claim that if the di are chosen so that

d1, . . . , dr−1 > 0,
r∑
i=1

c2
i

di
= 0, (2.3)
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then rank(q`) = r− 2. To show this, we choose coordinates to reduce to a computa-

tion with matrices. Let

Z := {p1, . . . , pr} ⊆ Cd

be the zero-dimensional variety of the points pi. The coordinate ring R(Z) satisfies

dimRR(Z)1 = r, with basis {ei}ri=1 given by indicator functions of the points, i.e.

ei(pj) = δij . (One can of course write down explicit polynomial representatives on

Pd for the ei’s via interpolators (with a suitable padding up to degree d), although we

will not need such representatives.) If I(Z) is the defining ideal of Z in Cd, then via

the isomorphism R(Z) ∼= R(Cd)/I(Z), a quadratic form on R(Cd)1 whose kernel

contains I(Z)1 (such as Q`) induces a quadratic form on R(Z)1, which is in turn

represented as an r × r matrix.

The choice of basis {ei}ri=1 then allows for a convenient expression of the matrix of

the induced quadratic form Q̃` on R(Z)1: namely, Q̃` is represented by a diagonal

matrix diag(d1, . . . , dr) in this basis. Note that the conditions (Equation 2.3) imply

that dr < 0 (recall that ci 6= 0), so by Theorem C.6.3, Q̃` has Lorentz signature (since

r ≤ d+1, any set of r points on Cd are in linearly general position, so the functionals

`p1 , . . . , `pr ∈ (R(Cd)2)? are linearly independent).

On the other hand, we may also consider the quadratic form induced by q` on the

points π(Z) := {π(p1), . . . , π(pr)}. The key difference is that the points π(p1), . . . , π(pr) ∈

X are not in linearly general position – indeed, the projection map π can be viewed

as a projectivization of the vector space quotient R[x, y]d � R[x, y]d/ span{F (p)},

so the linear relation (Equation 2.1) gives a linear dependency

0 =
r∑
i=1

ci`π(pi) ⇐⇒ `π(pr) = − 1

cr

r−1∑
i=1

ci`π(pi) (2.4)

expressing the last point evaluation `π(pr) in terms of the others. In particular, on

removing the last point π(pr), the coordinate ringR(π(Z \{pr})) has a basis {ei}r−1
i=1
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for its degree 1 part (note that π(Z\{pr}) is in linearly general position in Pd−1). This

gives a quadratic form q̃` on R(π(Z \ {pr}))1 induced by q`: explicitly, substituting

(Equation 2.4) into (Equation 2.2) gives the expression
r−1∑
i=1

di`
2
π(pi)

+
dr
c2
r

( r−1∑
i=1

ci`π(pi)

)2

for (the linear functional corresponding to) q̃`. Setting

D := diag(d1, . . . , dr−1), c :=

[
c1 . . . cr−1

]T
,

we see that the matrix of q̃` in the basis {ei}r−1
i=1 is given by D +

dr
c2
r

ccT . Finally,

observe that the vector D−1c is in the kernel of q̃`:

(D +
dr
c2
r

ccT )(D−1c) = c +
dr
c2
r

ccTD−1c

= c

(
1 +

dr
c2
r

(
r−1∑
i=1

c2
i

di

))
= 0

by (Equation 2.3). Theorem C.6.5 then implies that q` is PSD (which implies that

` ∈ Σ?
X) of rank r − 2.

It remains to show that for any ray ` constructed satisfying (Equation 2.2) and (Equa-

tion 2.3), ker(q`) is basepoint-free. The following reasoning will also apply to the

cases in Item 2 and Item 3. First, we claim that ker(q`) can have no basepoints out-

side of π(Z): if not, then ker(Q`) would have a basepoint outside of Z. However,

by Theorem C.6.1, ker(Q`) = (g)d ⊆ (F (p))⊥d is an R-vector space of dimension

d+ 1− deg g = d+ 1− r which consists of binary forms vanishing at all the points

of Z (to orders specified by multiplicities of factors of g in the case of a double root

in Item 3), thus cannot have another common zero outside of Z by Theorem C.6.2. It

thus suffices to eliminate the possibility of any point of π(Z) as a basepoint, but this

follows since the vector D−1c in ker(q`) has all nonzero entries in the basis {ei}r−1
i=1 .

2. One complex pair

Assume g has one pair of nonreal roots lr = lr−1. The general argument will fol-
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low the outline of the first case, so we focus only on the differences (which will

mainly be in the last two functionals). Essentially, rather than using two functionals

arising from evaluations at complex conjugate points, we use the real and imagi-

nary parts of one complex point evaluation. Over C, there is an expression F (p) =∑r−2
i=1 ci(li)

d
⊥+ cr−1(lr−1)d⊥+ cr(lr)

d
⊥, and independence of the forms {(li)d⊥}ri=1 and

conjugate-symmetry forces cr = cr−1. By rescaling lr ∈ C[x, y]1 we may assume

that cr = 1 (so that cr−1 = 1 as well), and thus write the analogue of (Equation 2.1)

in the form

F (p) =
r−2∑
i=1

ci(li)
d
⊥ + 2 Re((lr)

d
⊥) (3′)

where c1, . . . , cr−2 ∈ R are all nonzero, since no proper factor of g is in (F (p))⊥.

We then construct the functional in Σ?
X . As before, choosing p1, . . . , pr ∈ Pd cor-

responding to the roots of g (with pr = pr−1 a nonreal conjugate pair), we obtain a

linear functional ` :=
∑r−2

i=1 di`
2
pi

+ dr`
2
pr + dr`pr

2 ∈ R(Cd)
?
2, which becomes

` :=
r−2∑
i=1

di`
2
pi

+ 4α(Re((lr)
d
⊥)2 − Im((lr)

d
⊥)2)− 8β(Re((lr)

d
⊥) Im((lr)

d
⊥)) (4′)

where α := Re(dr)
2

, β := Im(dr)
2

. We claim that if the di are chosen so that

d1, . . . , dr−2 > 0, β 6= 0,
α

α2 + β2
+

r−2∑
i=1

c2
i

di
= 0, (5′)

then q` has rank r−2 and basepoint-free kernel. Indeed, writing `1, . . . , `r for the im-

ages of (l1)d⊥, . . . , (lr−2)d⊥, 2 Re((lr)
d
⊥), 2 Im((lr)

d
⊥) in R(Cd)

?
1, and choosing forms

in R(Cd)1 dual to the functionals `1, . . . , `r, we see that the matrix of Q`

∣∣∣
span{ei}

is

given by

D 0

0 A

 where D := diag(d1, . . . , dr−2), A :=

 α −β

−β −α

, so that Q`
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has Lorentz signature (note that det(A) < 0). Expressing (Equation 3′) in the form

`r−1 = −
r−2∑
i=1

ci`i, (6′)

setting c :=

[
c1 . . . cr−2

]T
, and substituting (Equation 6′) into (Equation 4′) gives

the matrix

q̃` =

D + αccT βc

βcT −α

 .

Finally, observe that the vector

D−1c
−β

α2+β2

 is in ker q̃`, and has all nonzero entries:

D + αccT βc

βcT −α


D−1c
−β

α2+β2

 =

c + αccTD−1c− β2

α2+β2 c

βcTD−1c + αβ
α2+β2


=

c(1 + αcTD−1c− β2

α2+β2 )

β(cTD−1c + α
α2+β2 )


=

αc(cTD−1c + α
α2+β2 )

β(cTD−1c + α
α2+β2 )

 = 0.

The reasoning that ker(q`) is basepoint-free was already explained at the end of the

first case.

3. One double root

Assume g has a unique real double root lr = lr−1 (with all other roots real and

simple). In this case, the two functionals we use correspond to evaluation at the

double point, as well as differentiation followed by evaluation. From apolarity, there
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is a relation

F (p) =
r−2∑
i=1

ci(li)
d
⊥ + cr−1(lr)

d
⊥ + crlr(lr)

d−1
⊥ (3′′)

where as before c1, . . . , cr ∈ R are all nonzero. Let `1, . . . , `r ∈ R(Cd)
?
1 be the

linear functionals corresponding to (l1)d⊥, . . . , (lr−2)d⊥, (lr)
d
⊥, 2lr(lr)

d−1
⊥ , and consider

the linear functional in (R(Cd)2)? defined by

` :=
r−1∑
i=1

di`
2
i + dr`r−1`r. (4′′)

We claim that if the di are chosen so that

d1, . . . , dr−1 > 0, dr−1 − 2
drcr−1

cr
− d2

r

c2
r

r−2∑
j=1

c2
j

dj
= 0 (5′′)

then q` has rank r− 2 and basepoint-free kernel. Indeed, the matrix of Q` (restricted

to the subspace of R(Cd)1 spanned by forms dual to `1, . . . , `r) is given by

D 0

0 A


where D := diag(d1, . . . , dr−2), A :=

dr−1
dr
2

dr
2

0

, hence has Lorentz signature

(note that det(A) < 0). Writing (Equation 3′′) in the form

`r = − 2

cr

r−1∑
i=1

ci`i, (6′′)

setting c :=

[
c1 . . . cr−2

]T
, and substituting (Equation 6′′) into (Equation 4′′)

gives the matrix

q̃` =

 D −dr
cr

c

−dr
cr

cT dr−1 − 2drcr−1

cr

 .
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As before, we exhibit a kernel vector

D−1c
cr
dr

 with all nonzero entries:

 D −dr
cr

c

−dr
cr

cT dr−1 − 2drcr−1

cr


D−1c

cr
dr

 =

 c− c

−dr
cr

cTD−1c + cr
dr

(dr−1 − 2drcr−1

cr
)


=

 0

cr
dr

(dr−1 − 2drcr−1

cr
− d2r

c2r
cTD−1c)

 = 0.

We remark that the (LHS of the) equation in (Equation 5′′) is precisely the Schur com-

plement q̃`/D (this provides another proof that q̃` is PSD but not PD). As a quadratic

in dr
cr

, this equation always has 2 real solutions (as the discriminant (2cr−1)2 +

4dr−1cTD−1c is > 0 by (Equation 5′′)).

As before, the reasoning that ker(q`) is basepoint-free was given at the end of the

first case.

2.6 Lower bound

In this section, we prove a lower bound on the Hankel index in terms of the almost real

rank of the center of projection, showing that our construction in Section 2.5 of rays of

minimal rank is sharp. Throughout, let X = πp(Cd) be a projection with center p of a

rational normal curve Cd ⊆ Pd. We assume that the center p is not contained in C3
d (which

implies d ≥ 6), and as in Section C.3, we associate to p a binary form F (p) ∈ R[x, y]d.

Theorem 2.6.1. We have the following bound on the Hankel index of a projected rational

normal curve X with center of projection F (p):

η(X) ≥ ar-rk(F (p))− 2.

Proof. Fix a ray ` ∈ Σ?
X . By Theorem C.5.1(v), we get L ∈ R[x, y]2d such that `(·) =
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〈·, L〉, and quadratic forms Q` on R[x, y]d and q` := Q`

∣∣∣
H

where H = (F (p))⊥d
∼= R(X)1.

Note that q` is PSD since ` was an element of Σ?
X , which implies by Theorem C.6.4 that

Q` has at most one negative eigenvalue.

We now further assume that ker q` is basepoint-free. By Theorem C.6.3, this implies

that Q` is not PSD, as otherwise q` would be a sum of point evaluations, contradicting

Theorem B.2.3. It follows that Q` has Lorentz signature (+, . . . ,+,−).

Consider the apolar ideal (L)⊥ = (L⊥, L
◦), and set s := degL⊥ (so that degL◦ =

2d + 2 − s). By Theorem C.6.1, ker(Q`) = (L)⊥d , and since this space is nonzero (being

basepoint-free), one must have s ≤ d (in particular, s < degL◦). Write

L⊥ :=
t∏
i=1

ldii

where li ∈ R[x, y]1 are distinct linear forms and
∑
di = s.

We next claim that L⊥ has almost real roots, which is the core of this proof. For

convenience, say that a form G has a triple root if G has a real root of multiplicity 3,

and all other roots are real and simple. We first show, via a perturbation argument, that

either L⊥ has almost real roots, or L⊥ has a triple root. Then, we show that L⊥ does not

have a triple root.

Thus, suppose that L⊥ does not have almost real roots, nor a triple root. The key idea

for the perturbation argument is the following: we may approximate L⊥ by a sequence of

polynomials, all of which have at least 2 pairs of simple complex roots. Intuitively, each

pair of simple complex roots contributes a negative eigenvalue to the signature, and then

continuity implies that Q` has ≥ 2 negative eigenvalues, a contradiction.

To be precise, we consider the following types of replacements of certain factors of L⊥,
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depending on the way that L⊥ fails to have almost real roots/a triple root:

(x− α)2(x− α)2 −→ (x− α− ε)(x− α− ε)(x− α + ε)(x− α + ε)

(x− a)4 −→ (x− a)4 + ε4

(x− a)2(x− b)2 −→ ((x− a)2 + ε2)((x− b)2 + ε2)

(x− α)(x− α)(x− a)2 −→ (x− α)(x− α)((x− a)2 + ε2)

(here α ∈ C \R, and a, b ∈ R are distinct). Then for all sufficiently small ε > 0, the

polynomial Lε obtained from L⊥ by performing one of the above replacements has ≥ 2

pairs of simple complex roots, and satisfies Lε → L⊥ as ε → 0 (if L⊥ already has 2 pairs

of simple complex roots, then we may take Lε = L⊥). Taking apolar ideals of the form

(Lε, L
◦) gives a sequence of degree 2d forms converging to L, and with this associated

quadratic forms Qε → Q`. Then each Lε has ≥ 2 pairs of simple complex roots, so Qε has

≥ 2 negative eigenvalues. Furthermore, dim ker(Qε) = dim(Lε)d = d− s + 1 is constant

in ε. Then continuity of eigenvalues implies that Q` has ≥ 2 negative eigenvalues (as no

negative eigenvalue can become positive without crossing zero, and the number of zero

eigenvalues stays constant), contradicting the fact that Q` has Lorentz signature.

To conclude that L⊥ has almost real roots, it remains to eliminate the possibility that

L⊥ has a triple root. We will show that if L⊥ has a triple root, then ker q` is not basepoint-

free. Suppose the roots of L⊥ have multiplicities (d1, . . . , ds−2) = (1, . . . , 1, 3). Setting

l := ls−2, by apolarity we may write

L =
s−3∑
i=1

di(li)
2d
⊥ + ds−2(l⊥)2d + ds−1l(l⊥)2d−1 + dsl

2(l⊥)2d−2 (2.5)

for some d1, . . . , ds ∈ R. Write `1, . . . , `s for the functionals in R(Cd)
?
1 corresponding to
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(l1)d⊥, . . . , (ls−3)d⊥, (l⊥)d, l(l⊥)d−1, l2(l⊥)d−2. Then (Equation 2.5) may be expressed as

` =
s−2∑
i=1

di`
2
i + ds−1`s−2`s−1 + ds`s−2`s (2.6)

(note that `s−2`s = `2
s−1). Since L⊥ ∈ H = (F (p))⊥ (shown below), there is also a relation

0 =
s∑
i=1

ci`i

with ci ∈ R. Note that since a proper factor of L⊥ may lie in (F (p))⊥, we cannot say a

priori whether any particular ci is nonzero. We thus consider cases depending on whether

cs is nonzero.

If cs 6= 0, then substituting `s = − 1
cs

∑s−1
i=1 ci`i into (Equation 2.6) gives a matrix for q̃`

(with respect to {`1, . . . , `s−1}) whose last diagonal entry (= coefficient of `2
s−1)) is 0. If

cs = 0, then substituting `i = − 1
ci

∑s−1
j 6=i cj`j (for some 1 ≤ i ≤ s− 1) into (Equation 2.6)

gives a matrix for q̃` (with respect to {`1, . . . , ˆ̀
i, . . . , `s}) whose last diagonal entry (=

coefficient of `2
s)) is 0. Thus in any case q̃` can be represented by a matrix with last diagonal

entry 0, and since q̃` is PSD, this implies that the entire last column of q̃` must be 0. Then

ker(q̃`) is generated by the vector
[
0 . . . 0 1

]T
, but this implies that ker(q`) is not

basepoint-free (as each of the roots of l1, . . . , ls−1 would be basepoints).

This shows that L⊥ has almost real roots. Next, we show that L⊥ is contained in the

apolar ideal of the center (F (p))⊥. If L⊥ has simple roots, then the points onX correspond-

ing to these roots cannot be in linearly general position: if they were, then Theorem C.6.3

implies that ` would be a sum of point evaluations, contradicting Theorem B.2.3(iii). This

means precisely that F (p) can be written as a linear combination of dth powers of roots of

L⊥, so by apolarity L⊥ ∈ (F (p))⊥.

Next, suppose that L⊥ does not have simple roots, and define the following “reduction
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of order” polynomial

L̃⊥ :=
t∏
i=1

l
ddi/2e
i

with the key property that L⊥ divides L̃⊥
2
. We claim that

(L̃⊥)d ∩H = ker(q`) = (L⊥)d ∩H. (2.7)

To see this, note that for f ∈ H , one has f ∈ ker(q`) ⇐⇒ q`(f) = 0 (as q` is PSD on H –

this need not be the case if q` were indefinite). Together with Theorem C.6.1, this gives the

second equality. For the first equality, note that L⊥ ∈ (L̃⊥) =⇒ (L⊥)d∩H ⊆ (L̃⊥)d∩H .

Conversely, any f ∈ (L̃⊥)d ∩ H is of the form f := gL̃⊥ (for some g ∈ R[x, y]d−deg L̃⊥
),

hence satisfies q`(f) = 〈g2(L̃⊥)2, L〉 = 0, since L⊥ divides L̃⊥
2
, and 〈L⊥, L〉 = 0.

In view of (Equation 2.7): given that L⊥ 6= L̃⊥, one has (L⊥)d ( (L̃⊥)d, but since the

intersections of these subspaces with the hyperplane H coincide, it must be the case that

dim(L⊥)d, dim(L̃⊥)d differ by exactly 1 (note that dimension decreases by at most 1 when

intersecting with a hyperplane, and does not change precisely when the subspace is already

contained in the hyperplane). From this we deduce that (L⊥)d ⊆ H , hence L⊥ ∈ (F (p))⊥

by Theorem C.1.5. (Note that this argument also shows that degL⊥ ≤ 1 + deg L̃⊥, which

gives another proof thatL⊥ has at most one multiple real root, which must be of multiplicity

≤ 3).

Putting the above results together, we see that L⊥ ∈ (F (p))⊥ has almost real roots, so

ar-rk(F (p)) ≤ degL⊥ = s. Now dim ker(Q`) = dim(L)⊥d = dim(L⊥)d = d − s + 1, so

rank(Q`) = d + 1 − dim ker(Q`) = s, and by Theorem C.6.5, rank(q`) = rank(Q`) − 2.

Thus rank(`) = rank(q`) = s − 2 ≥ ar-rk(F (p)) − 2. Since this holds for any ray ` with

ker(q`) basepoint-free, in particular it holds for any extreme ray of Σ?
X which is not a point

evaluation, so η(X) ≥ ar-rk(F (p))− 2 as desired.
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2.7 Studies on almost real rank

As shown by our main result Theorem 2.4.3, the almost real rank of a form is an interesting

quantity to study. In this section, we investigate almost real rank of binary forms in general.

To begin, the following proposition characterizes some cases where the almost real rank is

small.

Proposition 2.7.1. Let d ≥ 3 and F ∈ R[x, y]d, with apolar ideal (F )⊥ = (F⊥, F
◦) of

type (d1, d2).

1. ar-rk(F ) = d1 ⇐⇒ F⊥ has almost real roots.

2. If ar-rk(F ) > d1, then ar-rk(F ) ≥ d2.

3. ar-rk(F ) = 1 ⇐⇒ d1 = 1 ⇐⇒ R -rk(F ) = 1.

4. ar-rk(F ) = 2 ⇐⇒ d1 = 2 ⇐⇒ C -b. rk(F ) = 2.

5. ar-rk(F ) = 3 ⇐⇒ d1 = 3 and F⊥ is not a cube (of a linear form).

(If d1 = d2, we interpret “F⊥ has almost real roots” to mean “there exists a form in (F )⊥d1

with almost real roots”, and similarly in (5)).

Proof. Omitted.

Remark 2.7.2. One can stratify all degree d binary forms by almost real rank as follows:

write Vi := H0(OP1(i)) for the vector space of (real) degree i binary forms. Let ϕ1,d :

P(V1)→ P(Vd) be the dth Veronese map, and for r ≥ 2, define the map

ϕr,d : P(V2)× (P(V1))r−2 × Pr−1 → P(Vd)

(q, (lj)
r−3
j=0, [c0 : . . . : cr−1]) 7→

r−3∑
j=0

cjl
d
j + cr−2q1 + cr−1q2
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(here q1, q2 are the degree d forms corresponding to the complex linear factors of the

quadric q as in Section 2.5, e.g. if q = l2, then q1 = ld, q2 = l⊥(l)d−1). By Theorem C.1.4,

the image of ϕr,d is precisely the set of degree d binary forms of almost real rank ≤ r. Re-

stricting ϕr,d to the (open) subset where q, l0, . . . , lr−3 are relatively prime, and removing

the image of ϕr−1,d, gives the set of degree d binary forms of almost real rank = r.

From this description, one can deduce various structural properties of the set of forms

of a given almost real rank. For instance, ϕ2,d is injective (for d ≥ 3), so the set of forms

with almost real rank ≤ 2 has dimension 3. Also, when r = bd+2
2
c = bd

2
c + 1, ϕr,d is

dominant, corresponding to the fact that the generic type is (r, d+2−r), and among forms

of degree r, those with almost real roots are typical. For dimension reasons, this is the

least value of r for which ϕr,d can be dominant, with general fibers of dimension 0 (resp.

1) when d is odd (resp. even).

It is natural to ask what the maximal almost real rank is for binary forms of degree d.

This is answered by the next theorem:

Theorem 2.7.3. For any d ≥ 3 and F ∈ R[x, y]d, ar-rk(F ) ≤ d− 1.

Proof. First we reduce to the case that 1 < C -rk(F ) < d. If C -rk(F ) = d, then the

apolar ideal (F )⊥ is of type (2, d) (cf. Theorem C.2.2), so ar-rk(F ) = 2 ≤ d − 1 by

Theorem 2.7.1(4). Additionally, if C -rk(F ) = 1, then ar-rk(F ) = 1 as well. Thus we may

assume 2 ≤ C -rk(F ) ≤ d− 1.

We now induct on d. For the base case d = 3, the apolar ideal is of type (2, 3), so

again ar-rk(F ) ≤ 2. For the inductive step, choose any direction u = (u1, u2) ∈ R2,

corresponding to a linear form lu(x, y) := u1x+u2y. Then by induction, the apolar ideal of

the directional derivative Du(F ) = 〈lu, F 〉 contains a form with almost real roots of degree

≤ d − 2 (note that Du(F ) 6= 0, since C -rk(F ) > 1 by assumption =⇒ lu 6∈ (F )⊥).

By multiplying an additional factor if necessary, we may choose G ∈ (Du(F ))⊥ of degree

= d−2 with almost real roots. ThenG·lu ∈ (F )⊥ is of degree d−1. Since C -rk(F ) ≤ d−1,

we may also choose H ∈ (F )⊥ of degree = d− 1 with simple complex roots.
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We claim that for sufficiently small ε ∈ R, the form Gε := G · lu + εH ∈ (F )⊥ has

almost real roots. First, observe that there are only finitely many ε such that Gε does not

have simple roots: these are given by the roots of the discriminant of Gε, viewed as a

polynomial in ε (note that this polynomial is nonzero, since H has simple roots). Thus by

avoiding these finitely many choices of ε, we may assume that Gε has simple roots, and so

it suffices to show that Gε has at most 1 pair of complex roots.

For |ε| sufficiently small, any simple root of G · lu gives a simple root of Gε (by deho-

mogenizing we may consider a simple root of a univariate real polynomial, which is e.g.

negative to the left of the root and positive to the right, and this is stable under small per-

turbation). Thus we need only consider the following cases: (i) G · lu has a triple root, and

(ii) G · lu has 2 double roots. In case (i), since Gε has simple roots, the triple root of G · lu

induces either 3 distinct real roots of Gε, or 1 real root and 1 complex pair, and since all

other roots of G · lu are real and simple in this case, we get at most 1 pair of complex roots

of Gε.

In case (ii), suppose G · lu has 2 double roots, and let p be one of these. If p is a root of

H , then p is also a root of Gε for any ε, so the double root p of G · lu induces 2 real roots

of Gε (one of which is p, which implies that the other root must be real). Otherwise, if p

is not a root of H , then G · lu will either be nonnegative or nonpositive in a neighborhood

of p while H(p) is nonzero, so by choosing the sign of ε appropriately, the double root p of

G · lu will again induce distinct real roots of Gε. Hence in either case the other double root

of G · lu gives at most 1 complex pair of roots of Gε.

Remark 2.7.4. There are some instances in which the type of the apolar ideal determines

the almost real rank. Some cases of this are listed in Theorem 2.7.1. Another example of

this occurs in degree 6: if a real binary sextic F has an apolar ideal of type (4, 4), then

ar-rk(F ) = 4. To see this, note that if F⊥, F ◦ were both 4th powers, then F⊥−F ◦ has almost

real roots. Moreover, if both F⊥ and F ◦ have two pairs of complex roots, then F⊥, F ◦ is

globally positive, in which case a suitable R-linear combination of F⊥, F ◦ has at least a
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pair of real roots. Thus without loss of generality F⊥ has at most 1 root of multiplicity 3,

or 2 double roots, or 1 double root and 1 complex pair of roots, and by the reasoning in the

proof of Theorem 2.7.3, there exists a form in (F )⊥4 with almost real roots.

We next characterize when the maximal almost real rank of d − 1 is achieved, which

serves as a converse of Theorem 2.7.3:

Theorem 2.7.5. Let d ≥ 5 and F ∈ R[x, y]d. Then ar-rk(F ) = d− 1 ⇐⇒ F⊥ is a cube

of a linear form ⇐⇒ (F )⊥ contains a cube of a linear form (but no quadratic forms).

Proof. If F⊥ is a cube of a linear form, then (F )⊥ is of type (3, d−1) and ar-rk(F ) ≥ d−1

by Theorem 2.7.1(2, 5). Conversely, we show that if d ≥ 5 and (F )⊥ contains no cubes,

then ar-rk(F ) ≤ d− 2, by induction on d.

We first rule out small types: let (d1, d2) be the type of (F )⊥. If d1 ≤ 3, then (with the

assumptions of no cubes) ar-rk(F ) ≤ d− 2 by Theorem 2.7.1. This is enough to cover the

base case d = 5, and by Theorem 2.7.4, this also covers the case d = 6. Thus we assume

for the remainder of the proof that d1 ≥ 4.

Now suppose F is a form of degree d ≥ 7. Note that either (Dx(F ))⊥ or (Dy(F ))⊥

does not contain a cube of a linear form: if not, say l31 ∈ (Dx(F ))⊥ and l32 ∈ (Dy(F ))⊥,

then (F )⊥ would contain 2 independent quartics xl31, yl
3
2, which can only happen if d1 ≤ 3

(since d1 = 4 =⇒ d2 = d − 2 ≥ 5), which has already been covered. Without loss

of generality we may assume (Dx(F ))⊥ does not contain a cube of a linear form. By

induction, there is a form g ∈ (Dx(F ))⊥ of degree ≤ d − 3 with almost real roots. Then

xg ∈ (F )⊥ is of degree ≤ d − 2, and since F ◦ ∈ (F )⊥ has degree ≤ d − 2 as well,

the reasoning in the proof of Theorem 2.7.3 shows that there exists a form in (F )⊥d−2 with

almost real roots.

The characterization above yields sharp bounds on the Hankel index for the curves

studied in this paper:
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Corollary 2.7.6. Let X = πp(Cd) be a projection of a rational normal curve Cd away from

a point p ∈ Pd \C3
d . Then 2 ≤ η(X) ≤ d− 4. In particular, if d = 6, then η(X) = 2.

Proof. If ar-rk(F (p)) = d − 1, then (F (p))⊥ contains a cube by Theorem 2.7.5. By

apolarity, this implies that p ∈ C3
d , a contradiction. Thus ar-rk(F (p)) ≤ d− 2, so η(X) ≤

d− 4 by Theorem 2.4.3.

As preparation for determining the typical almost real ranks, it is useful to know explicit

forms which attain a given almost real rank. We thus compute the various ranks of mono-

mials xd−iyi ∈ R[x, y]d. When i = 0, xd−iyi = xd is a power of a linear form, hence has

real (and complex) [border] rank 1. By symmetry, we may therefore assume 1 ≤ i ≤ bd
2
c.

In general, the apolar ideal is

(xd−iyi)⊥ = (yi+1, xd−i+1).

From this we see that C -b. rk(xd−iyi) = i + 1 and C -rk(xd−iyi) = d − i + 1 (cf. Theo-

rem C.2.2). Since xd−iyi has all real roots, we also have R -rk(xd−iyi) = d.

Proposition 2.7.7. For d ≥ 1 and 0 ≤ i ≤ bd
2
c,

ar-rk(xd−iyi) =



1 if i = 0

2 if i = 1

d− 1 if i = 2

d− 2 otherwise.

Proof. The cases i = 0, 1 follow from Theorem 2.7.1; the case i = 2 is covered by Theo-

rem 2.7.5. This includes all cases with d ≤ 5.

It thus suffices to show that if d ≥ 6 and 3 ≤ i ≤ bd
2
c, then ar-rk(xd−iyi) > d − 3.

The cases d = 6 (resp. d = 7) are covered by Theorem 2.7.4 (resp. Theorem 2.7.1). Now

39



suppose d ≥ 8. Every form of degree d− 3 in (xd−iyi)⊥ can be expressed as

a0x
d−3 + . . .+ ai−4x

d−i+1yi−4 + bd−i−4x
d−i−4yi+1 + . . .+ b0y

d−3

with (i− 3) + (d− i− 3) = d− 6 coefficients a0, . . . , ai−4, bd−i−4, . . . , b0 ∈ R, where we

take no ai’s if i = 3 (so that the support of this polynomial has a gap of size 4). By the

Descartes’ Rule of Signs, the number of distinct nonzero real roots of this polynomial is

at most the number of sign changes betwen adjacent coefficients, hence is ≤ d − 7. Thus

ar-rk(xd−iyi) > d − 3, and so Theorems Theorem 2.7.3 and Theorem 2.7.5 imply that

ar-rk(xd−iyi) = d− 2.

In particular, we see that for monomial projections, the almost real rank is essentially

independent of i (and depends only on whether Xi is contained in the rational normal

surface scroll S(1, d− 3)), and is much larger than the complex border rank (with a gap of

at least dd
2
e − 3, hence the gap is unbounded as d→∞).

An amusing corollary of Theorem 2.7.7 is the existence, in any degree≥ 4, of univariate

real polynomials with almost real roots whose supports have a gap of size 3, i.e. the Rule

of Signs bound is sharp for these polynomials (athough the existence of such polynomials

is not sufficient to prove Theorem 2.7.7). For more on the sharpness of the Rule of Signs

bound, cf. [31].

Finally, we consider the problem of determining which almost real ranks are typical.

Our presentation follows that of [32]. Recall that a property P of degree d forms is said

to be typical if, on identifying the set of degree d forms with Rd+1, there is a nonempty

Euclidean open set of degree d forms all of which have property P . We say that an almost

real rank r is typical if the property “has almost real rank = r” is typical. For F ∈ R[x, y]d,

we say that F is a typical form of almost real rank r if F lies in an open set of R[x, y]d

which consists of forms of almost real rank r.

Note that the condition “(F )⊥ contains a cube” in Theorem 2.7.5 is equivalent to saying
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that F has a real root of multiplicity≥ d−2, which is not a typical property. It follows that

d−1 is not a typical almost real rank. Moreover, Theorem 2.7.2 implies that any r < bd+2
2
c

cannot be a typical almost real rank. It turns out that these are the only obstructions for an

almost real rank to be typical, as will be shown in Theorem 2.7.9. To this end, we first

characterize the typical forms of a given almost real rank:

Lemma 2.7.8. Let F ∈ R[x, y]d with (F )⊥ of generic type, and set r = ar-rkF . Then F

is a typical form of almost real rank r if and only if all forms in (F )⊥r−1 have at least two

pairs of complex roots (counted with multiplicity).

Proof. Suppose that F is typical of almost real rank r, and there exists g ∈ (F )⊥r−1 such that

g has at most one pair of complex roots. In any ε-neighborhood of g there exists a form gε

such that gε has almost real roots. For any ε > 0 we have dim(gε)d = dim(g)d = d− r+ 2,

and as ε approaches 0, (gε)d approaches (g)d. Therefore the orthogonal complement of

(gε)d also approaches the orthogonal complement of (g)d as ε goes to 0. We conclude that

in any neighborhood of F there exist forms of almost real rank at most r − 1, which is a

contradiction.

Conversely, let F ∈ R[x, y]d with (F )⊥ of generic type and ar-rkF = r. Suppose that

all forms in (F )⊥r−1 have at least two pairs of complex roots. For ε > 0 sufficiently small,

the ε-neighborhood of F contains only forms with apolar ideals of generic type (as having

non-generic type is a Zariski-closed condition). For such ε, fix Fε in the ε-neighborhood

of F . Within this neighborhood, the ideal (Fε)
⊥ (i.e. the sequence of graded components

of (Fε)
⊥) depends continuously on the coefficients of Fε. Now both conditions “all forms

in (F )⊥r−1 have at most one pair of complex roots” and “there exists a form in (F )⊥r with

almost real roots” are stable under sufficiently small perturbation, which shows that F is

typical of almost real rank r.

Theorem 2.7.9. For d ≥ 5, any r with bd+2
2
c ≤ r ≤ d− 2 is a typical almost real rank.

Proof. We first show that d− 2 is always a typical almost real rank. By Theorem 2.7.3 and
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Theorem 2.7.5, it suffices to show that for each d ≥ 5, there exists a nonempty open set of

degree d forms with almost real rank > d− 3. For 5 ≤ d ≤ 7, we may verify this directly:

if d = 5, then a general form (which is of type (3, 4)) has almost real rank 3; the case d = 6

is covered by Theorem 2.7.4; and for d = 7, there is an nonempty open set of forms F

of type (4, 5) for which F⊥ has only complex roots (i.e. is a product of 2 strictly positive

quadrics). For d ≥ 8, it follows from Theorem 2.7.8 and the proof of Theorem 2.7.7 that

the “balanced” monomial xd
d
2
eyb

d
2
c (which is of generic type) is a typical form of almost

real rank d− 2.

For the remaining ranks, we induct on the degree d. For the base cases d = 5, 6, we

have that d− 2 = bd+2
2
c is a typical almost real rank by the above. For the inductive step,

fix the following data:

1. a rank dd+2
2
e ≤ r ≤ d− 2,

2. a typical form F ∈ R[x, y]d of almost real rank r (by perturbing F if necessary, we

may assume that (F )⊥ = (F⊥, F
◦) is of generic type),

3. a nonzero form S := C1F⊥ + C2F
◦ ∈ (F )⊥r with almost real roots.

We will exhibit a form H of degree d+ 1 such that (H)⊥ is of generic type, (H)⊥ ⊆ (F )⊥,

and S ∈ (H)⊥. By Theorem 2.7.8 this shows that H is a typical form of almost real rank

r, so r is a typical almost real rank in degree d+ 1. This is enough for the induction, since

we already know that (d+1)−2 is a typical almost real rank in degree d+1 (note also that

dd+2
2
e = b (d+1)+2

2
c). We consider two cases depending on the parity of d, namely d = 2k

for k ≥ 3, or d = 2k − 1 for k ≥ 4.

First, suppose d = 2k − 1 is odd, so that degF⊥ = k, degF ◦ = k + 1. We claim

that there exists a linear form L ∈ R[x, y]1 such that C1 − LC2 has a real root which is

not a root of LF⊥ + F ◦. If not, then for every linear form L, we have that every root

of C1 − LC2 is a root of LF⊥ + F ◦. Now for any (a, b) ∈ R2 with F⊥(a, b) 6= 0 and

C2(a, b) 6= 0, there exists a linear form L such that L(a, b) = C1(a,b)
C2(a,b)

, i.e. (a, b) is a root
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of C1 − LC2. By assumption (a, b) is also a root of LF⊥ + F ◦, so L(a, b) = −F ◦(a,b)
F⊥(a,b)

.

Varying over such (a, b), we see that the two rational functions C1/C2 and −F ◦/F⊥ agree

at infinitely many points, hence must be equal. But this implies that S = C1F⊥+C2F
◦ = 0,

a contradiction. We conclude that such an L exists. For such L, set G := LF⊥ + F ◦, write

C1 − LC2 = L1K, where L1 ∈ R[x, y]1 does not divide G, and take H to be the unique

form of degree d + 1 with apolar ideal generated by (L1F⊥, G). Then (H)⊥ ⊆ (F )⊥, and

S = (C1 − LC2)F⊥ + C2G = K(L1F⊥) + C2G ∈ (H)⊥ as desired.

The reasoning in the case d = 2k is similar: here deg(F⊥) = deg(F ◦) = k + 1. We

claim that there exists α ∈ R such that C1 − αC2 has a real root which is not a root of

αF⊥ + F ◦. This follows from the same reasoning as in the case d = 2k − 1 (in fact

even simpler, since there is no choice involved in the scalar α, as opposed to a linear

form). Having obtained such an α, we set G := αF⊥ + F ◦, write C1 − αC2 = L0K,

where L0 ∈ R[x, y]1 does not divide G, and take H to be the unique form of degree

d + 1 with apolar ideal generated by (L0F⊥, G). Then as before, (H)⊥ ⊆ (F )⊥ and

S = (C1 − αC2)F⊥ + C2G = K(L0F⊥) + C2G ∈ (H)⊥.
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APPENDIX A

MINIMAL GRADED FREE RESOLUTIONS

We begin with this chapter by introducing basics on the minimal graded free resolutions of

ideals. For general settings and statements, consult with [33].

Let S be a standard graded polynomial ring in n variables over field k. i.e. S =

k[x1, . . . , xn] with deg(xi) = 1 for each 1 ≤ i ≤ n. Let I be a finitely generated homoge-

neous ideal of the graded ring S. Note that I is a finitely generated S-module.

Definition A.0.1. A minimal graded free resolution F of S/I over S is a sequence of ho-

momorphisms of free S-modules

F : . . . // Fi
di // Fi−1

di−1 // . . . // F1
d1 // F0

such that

1. di−1 ◦ di = 0 for i ∈ Z. i.e. F is a complex.

2. The homologies ker(di)/ Im(di+1) of the complex F vanish for all i ∈ Z. i.e. F is

exact.

3. S/I ' F0/Im(d1)

4. The free modules Fi are graded. i.e. Fi = ⊕j∈ZS(−j) where S(−j) is the graded

S-module such that S(−j)t = St−j . Also, each di is a homomorphism of degree 0.

5. di+1(Fi+1) ⊆ (x1, . . . , xn)Fi for all i ≥ 0. i.e. the resolution is minimal.

Remark that there is unique minimal graded free resolution of S/I over S up to iso-

morphisms. (cf. [33, Theorem 7.5]) Therefore, the ranks of each free graded modules in

the minimal graded free resolution of S/I is an invariant and we define the graded Betti

45



number βi,j = βSi,j(S/I) by the rank of degree j modules in i-th step of the minimal graded

free resolution of S/I over S.

We can create a diagram whose entries are Betti numbers:

Table A.1: Betti diagram

βi
...

p · · · βi,i+p · · ·
...

The diagram is called the Betti diagram or computer table. Note that the i-th column

contains the data at the i-th step of the minimal graded free resolution. Also, the non-

negative integers in p-th row counts the number of copies of the free modules shifted by

degree p.

Now, we introduce some algebraic invariants that are read from the minimal graded free

resolution. Castelnuovo-Mumford regularity of a ring(module) is a representative algebraic

invariant that inscribes algebraic complexity of the ring. Indeed, the Castelnuovo-Mumford

regularity of the coordinate ring of a finite set of points is the same as the interpolation

degree of the set, which is the smallest degree of a polynomial interpolating all points in

the set. Moreover, for a homogeneous ideal I , the Hilbert function in d agrees with the

Hilbert polynomial in d if d is at least the Castelnuovo-Mumford regularity of I . (See [34,

Chapter 4] for details.)

Definition A.0.2. The Castelnuovo-Mumford regularity of S/I , denoted by reg(S/I), is

defined by

reg(S/I) := min{j − i : βi,j(S/I) = 0 for all i}

Note that the regularity is the height of the Betti diagram of the ring because the height

of the diagram is same as the maximal degree of entries of differentials.

Suppose X is a projective variety defined by quadrics. We say the variety X satisfies

the N2,p property (for p ∈ Z>0) if the minimal graded free resolution of the coordinate

46



ring of X is linear for p − 1 steps from beginning. (If X does not generated by quadrics,

we say X does not satisfies N2,1) For example, suppose the defining ideal of a projective

variety X is generated by quadratic homogeneous polynomials. If the minimal graded free

resolution of coordinate ring of X is not linear in first step, the variety X satisfies N2,1

property because X is generated by quadrics, but N2,2 is failed because the first syzygy of

the defining ideal of X is not linear. As the minimal graded free resolution is unique up to

isomorphism, we define the Green-Lazarsfeld index of a variety X (or the coordinate ring

of X) by the maximum number p such that X satisfies N2,p property.

A.1 Stanley-Reisner theory

The square-free monomial ideals can be studied combinatorially through the correspon-

dence between the monomial ideals and the simplical complexes. This correspondence is

called the Stanley-Reisner correspondence, the square-free monomial ideals are called the

Stanley-Reisner ideals, and the simplicial complexes are called the Stanley-Reisner com-

plex. We introduce the Hochster’s formula that implies the graded Betti numbers of mono-

mial ideals equals to the total dimension of homologies of subcomplexes of the Stanley-

Reisner complex. This section is refered the survey [35] and consult with the survey for

more general settings and details of Stanley-Reisner theory.

Let ∆ be a finite simplicial complex on the vertex set V = {x1, . . . , xn}. Recall that

the simplicial complex ∆ is a colleciton of subsets of V such that F ⊆ G ∈ ∆ =⇒

F ∈ ∆ and {xi} ∈ ∆ for all xi ∈ V . The elements of ∆ are called faces. If F is a

face in ∆, then we define (topological) dimension of the face by dimF := |F | − 1 and

dim ∆ := max
F∈∆

(dimF ). Let d = dim ∆ + 1. Given any field k we now define the face ring

(or Stanley-Reisner ring) k[∆] of the simplicial complex ∆.

Definition A.1.1. k[∆] = k[x1, . . . , xn]/I∆, where

I∆ = (xi1xi2 · · ·xir | i1 < i2 < · · · < ir, {xi1xi2 · · ·xir} /∈ ∆)
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We refer to [35, Section 7] or [9, Corollary 4.9] for Hochster’s formula.

Theorem A.1.2. Assume k is a field of characteristic 0. Suppose I is a square-free mono-

mial ideal of the polynomial ring S = k[x1, . . . , xn] and ∆I is the Stanley-Reisner complex

associated to I . Also, let b be a square-free multidegree. i.e. b ∈ Nn whose entries are

either 0 or 1. Then

βi,b(S/I) = dimk H̃|b|−i−1(∆I [b])

where H̃• is the reduced simplicial homology, ∆I [b] is the subcomplex of ∆I induced by

the multidegree b.

By the Hochster’s formula the regularity of the Stanley-Reisner rings k[∆] is the max-

imal dimension of the subcomplex of the Stanley-Reisner complex that has non-trivial ho-

mology.

Example A.1.3. Let ∆ be the following triangulation of 2-sphere by 5 points:

∆ ={{1}, {2}, {3}, {4}, {5}}

∪ {{12}, {13}, {14}, {23}, {24}, {25}, {34}, {35}, {45}}

∪ {{123}, {124}, {134}, {235}, {245}, {345}}

Figure A.1: Triangulation of 2-sphere by 5 points

Then, the Stanley-Reisner ideal is I = (x1x5, x2x3x4). Indeed, one can check that any

square-free monomials that corresponds to non-faces of ∆ is contained in the ideal I . By

Theorem A.1.2, β2,5(S/I) = 1 because dimk H̃2(∆I [{12345}]) = 1.
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Indeed, the minimal graded free resolution of S/I over the ring S is

0 // S(−5) // S(−2)⊕ S(−3) // S( // S/I // 0)

Thus, the Betti diagram of S/I is

Table A.2: Betti diagram for Example A.1.3

0 1 2
0 1 - -
1 - 1 -
2 - 1 -
3 - - 1

Here, the Castelnuovo-Mumford regularity of S/I is 4 and the N2,1 property is failed

because the ideal I does not generated by quadrics.
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APPENDIX B

THE CONE OF SUMS OF SQUARES AND THE CONE OF NON-NEGATIVE

QUADRATIC FORMS ON VARIETIES

B.1 introduction

The relationship between nonnegative polynomials and sums of squares is a fundamental

topic in real algebraic geometry. This subject has received renewed attention in the last

twenty years due to its connection with polynomial optimization and many applications

[36]. In a foundational paper Hilbert described all the cases in terms of degree and number

of variables where any globally nonnegative polynomial can be written as a sum of squares

of polynomials [37].

A modern approach to this question is to study nonnegative polynomials and sums of

squares on a real projective variety X ⊆ PnR. This allows one to restrict to quadrics, since

degree 2d forms on X are quadrics on the d-th Veronese embedding of X . The two main

objects of interest are:

PX := {f ∈ R(X)2 | f(x) ≥ 0 for all x ∈ X(R)} ,

ΣX :=

{
f ∈ R(X)2 | there exist l1, . . . , lm ∈ R(X)1, f =

m∑
i=1

l2i

}

In fact ΣX ⊆ PX are convex cones in the vector space R(X)2 of all quadrics on X , which

facilitates their study via convex geometry (cf. [36]). For instance, as an extension of

Hilbert’s result, [30, Theorem 1.1] showed that ΣX = PX if and only if X is a variety of

minimal degree, i.e. degX = 1 + codimX . However, the structure of these cones is still

not well understood in general.

It is sometimes more convenient to work with the dual cones because the structures of
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the dual cones are well-known. Indeed, the dual cone of non-negative quadratic forms on

the variety X is a conical hull of the set of point evaluation on X .

The simplest extreme rays in Σ?
X are given by point evaluations. For a point p ∈ X ,

we can pick an affine representative p̃ lying on the line spanned by p, and define a linear

functional `p̃(q) := q(p̃) for all q ∈ R(X)2. Varying the affine representative only rescales

the point evaluation functional, and so by a slight abuse of terminology we will talk about

point evaluations at a point p ∈ X and use `p to denote any of the linear functionals obtained

by using an affine representative of p. Point evaluations are precisely the rank 1 quadratic

forms in Σ?
X : if ` ∈ Σ?

X has rankQ` = 1, then ` = `p for some p ∈ X [30, Lemma 2.3].

Our main object of interest is the Hankel spectrahedron

Σ?
X := {` ∈ R(X)∗2 | `(f 2) ≥ 0, for all f ∈ R(X)1}

This is the dual cone to the sums-of-squares cone of X , and is contained in R(X)?2, the

space of linear functionals on quadrics on X . That it is a spectrahedron can be seen from

an alternate description (cf. [29, Lemma 2.1] and Section C.4)

Σ?
X = S+ ∩ (I(X)2)⊥

where S+ is the cone of PSD symmetric matrices (identified with nonnegative quadratic

forms) on X , and (I(X)2)⊥ is the orthogonal complement of the degree 2 part of the ideal

of X (which comprises linear equations in R(X)∗2).

B.2 Kernels of rays

Definition B.2.1. Let K ⊆ Rn be a convex cone, and ` ∈ K. We say that ` spans an

extreme ray of K if whenever ` = `1 + `2 with `1, `2 ∈ K, one has `1 = λ1`, `2 = λ2` for

some λ1, λ2 ∈ R.
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If ` ∈ K spans an extreme ray of K, we will simply say that ` is an extreme ray of K

(i.e. we do not distinguish an extreme ray from its nonzero elements). For instance, we can

say that every ` ∈ K can be written as a sum of extreme rays.

The dual cone of PSD quadrics on a variety is the conincal hull of point evaluation

(cf. [30, Lemma 2.1]). Also, a linear functional on the dual space of quadrics is a point

evaluation if and only if the rank of the linear functional is one (cf. [29, Lemma 2.4]).

Therefore, the rank of any extreme rays of the dual cone of PSD quadrics on the variety is

one.

Since the dual cone of SOS on a variety is a spectrahedron, we obtain a property for

being extreme rays of the dual cone of SOS on the variety from convex geometry.

Proposition B.2.2 ([29, Lemma 2.2]). Let K = S+ ∩ L be a spectrahedron, and ` ∈ K.

Then ` is an extreme ray of K if and only if ker ` is maximal, i.e. if ker ` ⊆ ker `′ for some

`′ ∈ L, then `′ = λ` for some λ ∈ R.

Recall that if V ⊆ Rd is a space of forms, then a point p is called a basepoint of V if

all forms in V vanish at p. If V has no basepoints, we say that V is basepoint-free.

Remark B.2.3. We take a moment to clarify the relationships between rays with basepoint-

free kernels and sums of point evaluations.

(i) For `i ∈ Σ?
X , ker(

∑
q`i) =

⋂
ker(q`i): for v ∈ R(X)1, one has q`i(v) ≥ 0 with

equality if and only if v ∈ ker(q`i), as q`i is PSD.

(ii) If `p is point evaluation at a point p ∈ X , then p is a basepoint of ker(q`p).

(iii) It follows from (i) and (ii) that if ` ∈ Σ?
X is such that ker(q`) is basepoint-free, then

for any decomposition of ` as a sum of extreme rays ` =
∑
`i of Σ?

X , each extreme ray `i

has rank > 1, i.e. is not a point evaluation. (In fact the converse holds as well: if p is a

basepoint of ker(q`), then there is a decomposition of ` into extreme rays, one of which is

`p. However, note that a sum of extreme rays of rank > 1 may have basepoints.)
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B.3 An algebraic invariant that gives a bound of Hankel index

A surprising connection between the Hankel index and homological properties of the mini-

mal free resolution of the ideal of X was found in [1, Theorem 4 and Theorem 6]: namely,

there is a lower bound η(X) ≥ α(X) + 1, where α(X) is the Green-Lazarsfeld index of X

(here X need not be irreducible). Recall that the Green-Lazarsfeld index of X is defined

as follows: α(X) = 0 if the ideal of X is not generated by quadrics; otherwise it is equal

to one plus the number of steps that the minimal free resolution of the coordinate ring of X

is linear, i.e. has only linear syzygies. In all cases where the Hankel index was known, this

bound was tight.
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APPENDIX C

APOLARITY ON BINARY FORMS

C.1 Apolarity and Ranks

We begin with a brief review of apolarity and the apolar inner product, which is our pre-

ferred method of explicitly identifying primal and dual spaces.

Definition C.1.1. Let k be a field of characteristic 0, and R = k[x1, . . . , xn] a polynomial

ring over k. Consider the “differential” pairing on R defined by

〈f, g〉 := ∂(f) • g (C.1)

where ∂(f) is the differential operator obtained from f by replacing each variable xi with

∂
∂xi

, and • denotes the action of differential operators on polynomials. For a given degree d,

the pairing 〈·, ·〉 restricts to an inner product on Rd, the k-vector space of forms of degree

d. For F ∈ R, the apolar ideal of F is defined as the orthogonal complement of F with

respect to the pairing (Equation C.1), i.e.

(F )⊥ := {f ∈ R | 〈f, F 〉 = 0}.

If F ∈ Rd is homogeneous, then (F )⊥ is a homogeneous ideal.

Remark C.1.2. For any form F , the apolar ideal (F )⊥ is an Artinian Gorenstein graded

ideal. Conversely, every Artinian Gorenstein graded ideal I is of the form (F )⊥, where F

generates the socle of R/I .

We now specialize to the case of binary forms, i.e. forms in 2 variables x, y. Let

F ∈ k[x, y]d be a binary form. Then (F )⊥ is Gorenstein of codimension 2, hence is a
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complete intersection. As this fact will be used repeatedly in the sequel, we introduce

some notation for the generators of this complete intersection:

Definition C.1.3. For F ∈ k[x, y]d, let F⊥, F ◦ ∈ k[x, y] denote forms that satisfy

(F )⊥ = (F⊥, F
◦)

with degF⊥ ≤ degF ◦. If d1 := degF⊥ and d2 := degF ◦, we say that the apolar ideal

(F )⊥ is of type (d1, d2). One always has the relation

d1 + d2 = degF + 2. (C.2)

Note that if d1 < d2, then F⊥ is uniquely defined by F (up to nonzero scale), while F ◦ is

unique modulo the principal ideal (F⊥).

For example, if l = ax+by ∈ k[x, y]1 is a binary linear form, then (l)⊥ is of type (1, 2),

with l⊥ = bx− ay, and l◦ is (the) quadric not in (l⊥).

We are now ready to state the apolarity lemma for binary forms, which characterizes

membership in the apolar ideal:

Lemma C.1.4 (Generalized Apolarity Lemma). cf.[38, Lemma 1.31] Let F ∈ k[x, y]d. For

a given set {l1, . . . , lr} ⊆ k[x, y]1 of linear forms and d1, . . . , dr ∈ N with
∑r

i=1 di ≤ d,

one has
∏r

i=1 l
di
i ∈ (F )⊥ if and only if there exist cij ∈ k (1 ≤ i ≤ r, 0 ≤ j ≤ di− 1) such

that

F =
r∑
i=1

di−1∑
j=0

cij(li)
j(li)

d−j
⊥ .

The case d1 = . . . = dr = 1 is classically referred to as the apolarity lemma, and

characterizes squarefree forms in the apolar ideal via a Waring decomposition of F , as a

sum of dth powers of linear forms.

Another useful criterion for determining membership in the apolar ideal is:
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Lemma C.1.5. Let F ∈ k[x, y]d, and G ∈ k[x, y]n for some n ≤ d. Then G ∈ (F )⊥ if and

only if (G)d ⊆ (F )⊥.

Proof. If G ∈ (F )⊥, then certainly (G)d ⊆ (F )⊥, since (F )⊥ is an ideal. Conversely,

suppose G 6∈ (F )⊥, and set H := 〈G,F 〉 ∈ k[x, y]d−n 6= 0. Since 〈·, ·〉 is a perfect

pairing on k[x, y]d−n, there exists 0 6= K ∈ k[x, y]d−n with 〈K,H〉 6= 0. Then 0 6=

〈K, ∂(G) • F 〉 = ∂(K) • (∂(G) • F ) = ∂(KG) • F , so KG ∈ (G)d \ (F )⊥.

C.2 Ranks of forms

Classically, it is an important problem to decompose a given form as a linear combination

of powers of linear forms. Such decompositions lead various notions of rank of a form,

which are sensitive to the underlying field of scalars.

Definition C.2.1. Let F ∈ R[x, y]d. The real (resp. complex) rank of F is the minimal

number of real (resp. complex) linear forms l1, . . . , lr such that F is an R-linear (resp. C-

linear) combination of ld1, . . . , l
d
r . The real (resp. complex) border rank of F is the minimal

number r such that F is a limit of forms of real (resp. complex) rank r.

Remark C.2.2. Via apolarity, we can reinterpret the various ranks in Theorem C.2.1. In-

deed, it follows from Theorem C.1.4 that for any F ∈ R[x, y]d,

R -rk(F ) = min

r
∣∣∣∣ ∃g ∈ (F )⊥r with r simple

linear factors over R



C -rk(F ) = min

r
∣∣∣∣ ∃g ∈ (F )⊥r with r simple

linear factors over C


R -b. rk(F ) = min

r
∣∣∣∣ ∃g ∈ (F )⊥r which factors

completely over R


C -b. rk(F ) = min{r | (F )⊥r 6= 0} = deg(F⊥)
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Note that any complex rank is at most the corresponding real rank, and any border rank

is at most the corresponding non-border rank. Moreover, if (F )⊥ is of type (d1, d2), then

C -rk(F ) = d1 if and only if F⊥ has distinct factors over C, and equals d2 otherwise (since

F⊥, F
◦ form a complete intersection, thus have no common factors).

C.3 Associating forms to points

A crucial identification throughout section 2.2 is that of associating points in projective

space to (binary) forms. Let νd : P1 → Pd be the d-uple embedding (or dth Veronese map).

Let Cd := νd(P1) ⊆ Pd be the image, which is the standard rational normal curve of degree

d. Given a point p ∈ Pd, consider the vector space of linear forms on Pd vanishing at p

(these generate the vanishing ideal of p). Pulling this space back to P1 via νd gives a d-

dimensional vector space of degree d binary forms, which is a hyperplane in k[x, y]d (the

space of all degree d binary forms). We set F (p) to be the degree d binary form (unique up

to nonzero scale) which is orthogonal to this hyperplane, with respect to the inner product

(Equation C.1).

An alternate way to compute F (p) is: under the d-uple embedding, a point νd([a : b])

on the rational normal curve is associated to the dth-power (ax + by)d ∈ k[x, y]d. Since

points on the rational normal curve are in linearly general position, extending additively

gives a correspondence between all points in Pd and binary forms of degree d. Explicitly,

for p ∈ Pd, we may choose an expression of p as a linear combination of r ≤ d + 1 points

on Cd, say p =
∑r

i=1 cipi. Setting pi =: νd([ai : bi]), we have

F (p) =
r∑
i=1

ci(aix+ biy)d ∈ k[x, y]d

In this way we may consider the various ranks (defined in Sections 2.4 and C.2) of a point

p ∈ Pd, as the ranks of the associated binary form F (p).
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C.4 Quadratic forms vs linear functionals on quadrics

For an embedded nondegenerate projective variety X ⊆ Pn, there is a correspondence

between quadratic forms on X and linear functionals on quadrics on X . Let R = R(X) =⊕
i≥0Ri be the homogeneous coordinate ring ofX . A bilinear form onR1 is a bilinear map

R1×R1 → k, or equivalently a linear map R1⊗kR1 → k. The bilinear form is symmetric

if and only if this descends to Sym2(R1)→ k. Since X is nondegenerate, dimR1 = n+ 1

(i.e. R1 consists of all linear forms on Pd), so there is a natural surjection Sym2(R1)� R2

with kernel I(X)2, the degree 2 part of the defining ideal of X . This yields a bijection

 symmetric bilinear forms on R1

whose kernel contains I(X)2

←→ { linear functionals on R2}

Finally, symmetric bilinear forms onR1 whose kernel contains I(X)2 correspond to quadratic

forms on the variety X . Explicitly, given ` ∈ R(X)?2, we associate to ` a quadratic form

Q` on R(X)1 given by Q`(f) := `(f 2).

C.5 Curves of almost minimal degree

We now specialize to the main class of varieties of interest in this paper. Since PX only

depends on real points ofX , it is natural to restrict to totally real varieties (i.e. real varieties

whose set of real points is Zariski-dense), and since ΣX only depends on the quadratic part

of the coordinate ring of X , it is important to restrict to varieties defined by quadrics. We

consider smooth projective non-ACM curves of almost minimal degree. Such curves arise

as projections of the rational normal curve Cd away from a point (cf. [26, Theorem 1.2]).

Let Sec2(Cd) denote the 3rd secant variety of Cd, i.e. the Zariski closure of the union of

all secant 2-planes to Cd in Pd, meeting Cd in 3 distinct points. For p ∈ Pd \ Sec2(Cd),

let πp : Pd Pd−1 be projection with center p (i.e. away from p). On restriction to

Cd, the rational map πp becomes a morphism, and the image X := πp(Cd) ⊆ Pd−1 is
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a smooth rational curve of almost minimal degree d = degX = codimX + 2. Let

R(X) := R[x0, . . . , xd−1]/I(X) denote the real coordinate ring of X . The assumption

that p 6∈ Sec2(Cd) is equivalent to the statement that I(X) is generated by quadrics, cf.

[27, Theorem 1.1(2)]. Since X is projective, R(X) =
⊕∞

i=0R(X)i is naturally Z-graded.

Figure C.1: Projection of the rational normal curve Cd ⊆ Pd away from a point p

We next spell out a series of basic, but useful, identifications.

Remark C.5.1. (i) The surjection πp : Cd � X induces an injection of coordinate rings

R(X) ↪→ R(Cd), which is naturally graded. In this way R(X)1 is identified with a hyper-

plane H ⊆ R(Cd)1.

(ii) Since p 6∈ Sec2(Cd), the quadratic part of the coordinate ring of X can be identified

with the quadratic part of the coordinate ring of Cd, i.e. R(X)2 = R(Cd)2. Equivalently,

the Hilbert function of X in degree 2 has value 2d+ 1.

(iii) Via the d-uple embedding νd : P1 → Pd, R(Cd)1 can in turn be identified with

R(P1)d = R[x, y]d, the space of all degree d binary forms, and similarly R(Cd)2
∼=

R[x, y]2d.

(iv) The apolar inner product (Equation C.1) on R[x, y]d, along with (iii), gives an

explicit description of the hyperplane H in (i): namely H is the orthogonal complement in

R[x, y]d of the center F (p) (cf. Section C.3), which is also (F (p))⊥d , the degree d part of the

apolar ideal of F (p). Moreover, with respect to the pairing on R[x, y]2d, every functional

` ∈ R[x, y]∗2d can be realized as `(·) = 〈·, L〉 for some L ∈ R[x, y]2d.
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(v) Putting (i) – (iv) together with Section C.4, we may thus associate to any ` ∈ Σ?
X a

binary form L ∈ R[x, y]2d, as well as quadratic forms Q` acting on R[x, y]d ∼= R(Cd)1 and

q` acting on (F (p))⊥d
∼= R(X)1. Note that q` = Q`

∣∣∣
H

is the restriction of Q` to H: when

represented as symmetric matrices, Q` is (d+ 1)× (d+ 1), whereas q` is d× d.

We briefly review what is known about algebraic invariants of curves of almost minimal

degree. First, for any nondegenerate variety Y ⊆ PnC, there is a stratification of Pn by

(higher) secant varieties of Y :

Y ( Y 2 ( Y 3 ( · · · ( Y k−1 ( Y k = Pn

This gives rise to the notion of Y -border rank: for p ∈ Pn, the Y -border rank of p is defined

as rkY (p) := min{i | p ∈ Y i} (cf. [39, 40]). For Y = Cd, it follows from Section C.3

and apolarity that the Cd-border rank of a point is exactly the complex border rank of the

corresponding binary form, i.e. rkCd
(p) = C -b. rk(F (p)).

Next, a fruitful way to study a projected curve X = πp(Cd) is to consider the rational

normal scrolls containing X as a divisor. Recall that a rational normal scroll is a variety

S(a1, . . . , am) which is a join of disjoint rational normal curves of degrees a1, . . . , am in

P
∑m

i=1(ai+1)−1; the tuple (a1, . . . , am) is called the type of the scroll. As dimS(a1, . . . , am) =

m and degS(a1, . . . , am) =
∑m

i=1 ai, every scroll is a variety of minimal degree, and con-

versely any nondegenerate variety of minimal degree is either a quadric hypersurface, the

second Veronese of P2, or a scroll (cf. [41]). It was shown in [27] that the Green-Lazarsfeld

index of X (and even the entire graded Betti table of X) is determined by the types of sur-

face scrolls containing X , which in turn is determined by rkCd
(p):

Theorem C.5.2 ([27, Theorem 1.1]). Let Cd ⊆ Pd be a rational normal curve of degree d,

πp : Pd Pd−1 the projection away from a point p ∈ Pd \C2
d , and X := πp(Cd) ⊆ Pd−1.

Then

1. X is contained in a surface scroll S(a, b) with 1 ≤ a ≤ b if and only if a = rkCd
(p)−
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2, and

2. The Green-Lazarsfeld index of X is given by α(X) = rkCd
(p)− 3.

This implies that

C -b. rk(F (p))− 2 = α(X) + 1 ≤ η(X)

by [1, Theorems 4, 6].

C.6 Some lemmas

The next lemma connects kernels of quadratic forms to apolar ideals of binary forms, which

is key for our main result.

Lemma C.6.1. Let d ≥ 1, L ∈ R[x, y]2d, and Q the quadratic form on R[x, y]d associated

to the functional 〈·, L〉 (as in Theorem C.5.1). Then ker(Q) = (L)⊥d .

Proof. The matrix A of Q is constructed with respect to a basis B = {b0, . . . , bd} of

R[x, y]d as follows: the (i, j) entry of A is 〈bibj, L〉. Given f ∈ R[x, y]d, one has f ∈

ker(Q) ⇐⇒ Q(bif) = 0 for all 0 ≤ i ≤ d ⇐⇒ f ∈ (L)⊥, by Theorem C.1.5.

We also note that vanishing at points on P1 with specified multiplicities imposes inde-

pendent conditions on binary forms.

Proposition C.6.2. Let d ≥ 0, {P1, . . . , Pr} ⊆ P1 and r1, . . . , rr ∈ N be given. Then the

space of degree d binary forms vanishing to order at least ri at each Pi has codimension∑r
i=1 ri in k[x, y]d (we interpret the space as empty if

∑r
i=1 ri > d).

Proof. Vanishing at [a1 : b1], . . . , [ar : br] to orders r1, . . . , rr is equivalent to being divisi-

ble by
∏r

i=1(bix− aiy)ri .

Also, we collect various results from linear algebra which will be needed in the proof

of Theorem 2.4.3.
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Lemma C.6.3. Let A =
∑k

i=1 λiviv
T
i be an n × n symmetric matrix, with vi ∈ Rn. If

{v1, . . . , vk} are linearly independent, then the signature of A is given by the sign pattern

of the coefficients λi.

Proof. Diagonalize A by extending {v1, . . . , vk} to a basis of Rn.

Lemma C.6.4 (Cauchy interlacing). LetA be a real symmetric matrix. IfB is any principal

submatrix of A, then the eigenvalues of B interlace the eigenvalues of A.

Proof. Cf. [42, Theorem 4.3.17].

Corollary C.6.5. Let Q be a quadratic form on Rn with Lorentz signature (n − 1, 1) =

(+, . . . ,+,−), and H ⊆ Rn a hyperplane. Then the following are equivalent for the

restriction Q
∣∣
H

of Q to H:

1. ker(Q
∣∣
H

) 6= 0

2. rankQ
∣∣
H

= n− 2

3. Q
∣∣
H

is positive semi-definite, but not positive-definite.

Proof. Choose a basis of Rn which arises from extending a basis of H , so that if A is the

n× n symmetric matrix representing Q, then Q
∣∣
H

is represented by a principal (n− 1)×

(n − 1) submatrix B of A. Now ker(Q
∣∣
H

) 6= 0 implies that 0 is an eigenvalue of B. If

B had a negative eigenvalue, then Theorem C.6.4 would imply that A has ≥ 2 negative

eigenvalues, contradiction.
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APPENDIX D

MACAULAY 2 PROJECTS

The apolarity for binary forms is very useful when we study the rank of points with respect

to a rational normal curve of degree d because of the correspondence between points in the

projective space Pd and binary forms of degree d. In this chapter, we introduce a Macaulay

2 code that produce random points of given Cd-ranks and give the list of Cd-ranks of points

in a linear space. The code that we create is available in this link.

D.1 Generating random points of given border rank

Let Cd be a rational normal curve of degree d. i.e. the image of d-Uple map (or d-th

Veronese map) of projective line P1. Recall that the Cd-rank of a point p ∈ Pd is the

smallest number k such that Seck−1(Cd) contains the point p. If we choose a point randomly

(without any restrictions), theCd-rank of the point is bd
2
c+1 because the collection of points

whose rank is less than bd
2
c + 1 forms a proper Zariski closed subset of Pd. However, it is

useful if we can choose random points of given rank. For example, random points of the

Cd-rank 1 is random points in Cd.

Through the identification of points in Pd with binary forms of degree d, it suffice to

produce a random binary form F such that its complex Waring border rank of F is r to

produce a random point having border rank r. Let an integer d be the degree of rational

normal curve (embedded in Pd) and an integer 1 ≤ r ≤ bd
2
c+ 1 be the desired border rank

of a point in Pd.

Theorem D.1.1. (cf. Theorem 2.2 in [32]) For any (binary) form F ∈ R[x, y]d (with

standard grading), the apolar ideal F⊥ of F is complete intersection ideal over C. Con-

versely, if I is an ideal generated by two homogeneous polynomials g1 and g2 such that
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deg(g1) + deg(g2)− 2 = d, then there is unique binary form F such that F⊥ = I .

Suppose g1 and g2 are random binary forms such that deg g1 = r and deg g2 = d −

r + 2. Set I = (g1, g2) the ideal generated by the two random binary forms. Then, by

Theorem D.1.1, there exists unique binary form of degree d in the vector space I⊥d up to

constant multiples and we take the binary form F of degree d.

Example D.1.2. The author of [27] proved that the graded Betti numbers of the rational

curve πp(Cd) are uniquely determined by the border rank rkCd
p of the center p of the

projection. In this example, we check the result through Macaulay 2 computer software.

Suppose C6 = ν6(P1) is the rational normal curve of degree 6 and the border rank is

r = 3. We set the ideal I the defining ideal of C6 and pt the random point of the border

rank r. Then, we run the code that computes the Betti diagram of πpt(Cd) 5 times and we

include the result in Figure D.1

Figure D.1: Stable Betti diagrams of πp(C6) with rkCd
(p) = 3
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We can see that the Betti diagrams are stable and could obtain same results when we

change the pairs (d, r) and increase the number of trials.

D.2 List of ranks of points in linear spaces with respect to rational normal curves

Suppose Cd is a rational normal curve of degree d and L is a linear space in Pd spanned by

a (finite) set of points. Then, we can find the list of all Cd-ranks of points in L.

Recall that, for the non-degenerate variety Cd, there is a stratification of Pd by secant

varieties of Cd:

Cd = Sec0(Cd) ( Sec1(Cd) ( · · · ( Secb d
2
c(Cd) ( Secb d

2
c+1(Cd) = Pd .

Also, rkCd
(p) = r + 1 ⇐⇒ p ∈ Secr+1(Cd) \ Secr(Cd) for 0 ≤ r ≤ bd

2
c. More

generally, for a subset T of points in L, T ∩Secr(Cd) = ∅ ⇐⇒ rkCd
(p) > r for any p ∈ T

and T ⊂ Secr(Cd) ⇐⇒ rkCd
(p) ≤ r+1 for p ∈ T . Therefore, we can collect the list of all

ranks of points in the linear space L by checking whether L∩(Secr(Cd) \ Secr−1(Cd)) 6= ∅

for each integer r and finding largest integer r such that L ⊂ Secr(Cd) (for maximal rank

of the list). In other words, the collection of ranks of points in L is obtained by checking

whether
√
I(L) + I(Secr(Cd)) 6=

√
I(L) + I(Secr−1(Cd)) for each r and finding largest

integer r such that I(L) ⊃ I(Secr(Cd)) where I(Y ) is the defining ideal of the variety Y

and
√
I is the radical ideal of I .

Example D.2.1. Suppose we look for the collection of C10-rank of points in a line spanned

by two points in P10. Let pt1 be a point of C10-rank 3 and pt2 be a point of C10-rank 4.

Assume L is a line in projective space P10 spanned by pt1 and pt2. Then, we can find the

collection of all ranks of points in L by running the code ”allRanks” and include the result

in Figure D.2.

Therefore, the line L contains some points of C10-rank 3, 4, 5, and 6.
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Figure D.2: List of all ranks of points in a line L
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