
ON THE MODELING OF DYNAMIC-SYSTEMS USING SEQUENCE-BASED
DEEP NEURAL-NETWORKS

A Dissertation Proposal
Presented to

The Academic Faculty

By

Antoine Richard

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2022

© Antoine Richard 2022

ON THE MODELING OF DYNAMIC-SYSTEMS USING SEQUENCE-BASED
DEEP NEURAL-NETWORKS

Thesis committee:

Prof. Cédric Pradalier
Computer Science
Georgia Institute of Technology

Prof. Alexandre Locquet
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Kira Zsolt
Computer Science
Georgia Institute of Technology

Prof. Bloch Matthieu
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. Geist Matthieu
Brain Team
Google Research

Date approved: 4/29/2022

ACKNOWLEDGMENTS

I would like to thank my supervisors, Prof. Cédric Pradalier and Prof. Matthieu Geist,

for giving me the unique opportunity of doing a thesis with them. Their support, guidance,

and mentorship have enabled me to explore many exciting topics. During this Thesis, I have

learned tremendously about my research field, but also about me. I have had a blast, and for

that, I am deeply grateful.

I would like to express my appreciation to the rest of the committee members, Prof.

Matthieu Bloch, Dr. Zsolt Kira, and Prof. Alexandre Locquet, for the precious time they

spent reading my thesis.

I am grateful to my amazing friends and coworkers at GeorgiaTech without whom this

thesis would not have been possible. Stéphanie Aravecchia, Antoine Mahé, and Luis Batista,

thank you for helping me with my experiments in the cold of the winter, shivering while

we waited for “Kiki” to perform its tasks. Pete Schroepfer, Dr. Assia Benbihi, thank you

for your mentoring, advice, and support. Your experience and our talks had a tremendous

impact on me and this thesis. I would also like to thank Dr. George Chahine, Othmane

Ouabi, and Laura Monnier, for our interesting discussions and the time we shared.

I would also like to thank Dr. Offer Rozenstein for inviting me to Israel. I had a great

time doing research in your lab, and I hope we will have the opportunity to collaborate again

in the future. Lior Fine, thank you for the warm welcome, your assistance on the irrigation

methods, and conducting the experiments with the farmers.

Finally, I would like to thank my parents François and Florence Richard, my girl-

friend Camille Gardelle, and my brother Maxime, for their boundless love, support, and

understanding. I would also like to thank my childhood friends, and the Calpe for their

support.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . x

List of Figures . xi

List of Acronyms . xvi

Summary .xviii

Chapter 1: Introduction . 1

1.1 About the PhD dissertation topic . 1

1.2 Low-Dimensional Systems Modeling: Application to Crops-Water-Consumption 1

1.2.1 Achieving Expert Level Irrigation using DNN based Crop-Modeling 2

1.2.2 Filling Gaps in Evapotranspiration Measurements 2

1.3 Data-Efficient Modeling & Control for Robotic Systems 3

1.3.1 Prioritized Data Sampling for Improved Modeling 3

1.3.2 Prioritization applied to control . 3

1.4 Model Based Reinforcement Learning for mobile robots 4

1.4.1 MBRL for navigation in GPS denied environments 4

1.4.2 Dynamic model separation for modular MBRL 4

iv

1.4.3 Improving the reusability, robustness and transferability 5

1.5 Publications . 5

Chapter 2: Fundamentals & Literature Survey 7

2.1 Fundamentals on Deep Neural Networks 7

2.1.1 What is Deep Learning? . 7

2.1.2 Vocabulary . 8

2.1.3 Commonly used Layers . 8

2.1.4 Common Architectures . 14

2.1.5 Optimization . 17

2.2 Survey on Neural-Network based Modeling & Sequence Processing 18

2.2.1 Non-Recurrent Architectures . 19

2.2.2 Recurrent Architectures . 19

2.2.3 Attention & Exotic Architectures 20

2.2.4 Neural-Networks & Uncertainty Estimation 21

2.3 Survey on Sampling Schemes for Efficient Neural-Network Training 22

Chapter 3: Low-Dimensional Systems Modeling: Application to Crops-Water-
Consumption . 24

3.1 Achieving Expert Level Irrigation using DNN based Crop-Modeling 26

3.1.1 Motivation . 26

3.1.2 Related Work . 27

3.1.3 Proposed Methods . 28

3.1.4 Baseline, Experiment & Evaluation 31

v

3.1.5 Web Platform . 33

3.1.6 Irrigation Results . 34

3.1.7 Discussion . 35

3.1.8 Conclusion . 36

3.2 Filling Gaps in Evapotranspiration Measurements 37

3.2.1 Motivation . 37

3.2.2 Formal Description of the Problem 38

3.2.3 Related Work . 39

3.2.4 Fundamentals on Transformers . 42

3.2.5 Proposed Approach . 46

3.2.6 Evaluation Datasets . 49

3.2.7 Evaluation Metrics . 52

3.2.8 Results . 54

3.2.9 Discussion & Conclusion . 58

3.3 Conclusion on Irrigation Modeling . 61

Chapter 4: Data-Efficient Modeling & Control for Robotic Systems 62

4.1 Introduction . 62

4.2 Prioritization Applied to Dynamics Modeling 63

4.2.1 Motivation . 63

4.2.2 Related Work . 64

4.2.3 Model Identification . 65

4.2.4 Importance Sampling . 66

vi

4.2.5 Experiments . 69

4.2.6 Results . 73

4.2.7 Conclusion on Prioritization . 76

4.3 Prioritization and Model Predictive Controllers 77

4.3.1 Motivation . 77

4.3.2 Related work . 78

4.3.3 Model Predictive Path Integral (MPPI) 79

4.3.4 Simulation Setup . 82

4.3.5 Results . 87

4.3.6 Application to a real world scenario 101

4.3.7 Conclusion Prioritization Applied to MPC 105

4.4 Conclusion . 106

Chapter 5: Model Based Reinforcement Learning for mobile robots navigation . 107

5.1 Introduction . 107

5.2 Fundamentals on Reinforcement Learning 108

5.2.1 What is Reinforcement Learning 108

5.2.2 Markov Decision Processes, Policy & Value Functions 109

5.2.3 Model-Free & Model-Based Reinforcement Learning 111

5.3 Fundamentals on Dreamer . 113

5.3.1 Recurrent State Space Model . 113

5.3.2 Learning Behaviors . 115

5.4 Robotic Systems & Task . 118

vii

5.4.1 Robotic systems . 118

5.4.2 Task definition . 120

5.4.3 Training . 121

5.5 Model Based Reinforcement Learning for mobile robots 126

5.5.1 Motivation . 126

5.5.2 Related Work . 128

5.5.3 Method . 130

5.5.4 Environment & Domain Randomization 131

5.5.5 Experiments . 132

5.5.6 Result . 134

5.5.7 Conclusion . 138

5.6 Dynamic model separation for modular MBRL 139

5.6.1 Motivation . 139

5.6.2 Related Work . 141

5.6.3 Method . 143

5.6.4 Robots, Task & Evaluation . 150

5.6.5 Simulation Results . 151

5.6.6 Real World Results . 154

5.6.7 Conclusion . 155

5.7 Improving the reusability, robustness and transferability 157

5.7.1 Motivation . 157

5.7.2 Related Work . 159

5.7.3 Method . 163

viii

5.7.4 Experiments . 166

5.7.5 Results . 171

5.7.6 Discussion & Conclusion . 179

5.8 Conclusion on Model Based RL . 181

Chapter 6: Conclusion . 182

6.1 Summary of Contributions . 182

6.2 Perspective and Future Work . 183

6.3 acknowledgement . 183

References . 184

ix

LIST OF TABLES

2.1 A list of commonly used activation functions. 13

3.1 RMSE and MBE of our model and KNN on the toy problem. Our problem
easily bests the KNN approach. 54

3.2 RMSE and MBE of of our model and REddyProc applied on real Eddy-
Covariance (EC) data (lower RMSE and MBE values indicate better model
performance). Values range from -50 to 800. 56

4.1 Simulated Drone k-fold cross validation results. Lower is better. 73

4.2 Flexible robotic arm k-fold cross validation results. Lower is better. 74

4.3 CD Player Arm k-fold cross validation results. Lower is better. 75

4.4 Real drone K-fold cross validation results. Lower is better. 75

4.5 Neural networks overall performance. The PER and gradient upper-bound
networks were selected as the best performing parameters in multi-step
accuracy. Lower is better. 88

5.1 Results (simulated and real system). Target velocity 1m/s, target distance
from the shore 10meters. 134

5.2 The modules that make our world model. 164

5.3 Each line is a configuration. All the configurations are tested for three
different imagination horizons: 15, 30 and 45, making for a total of 18
different training configurations. Configurations with a ⋆ have been trained
five times with different seeds and an horizon of 30. 168

x

LIST OF FIGURES

3.1 A tomato field in the Hula Valley, Israel. 24

3.2 A map of Israel and our main testing in Gadot. 25

3.3 The UAVs used when collecting aerial images in the fields. 29

3.4 An eddy covariance tower in a field. Coworker for scale. 31

3.5 An overhead imagery of our experimental field and the different plots corre-
sponding to each treatment. 32

3.6 The irrigation website on a web browser and a smartphone. 34

3.7 Results of the different treatments over the whole season. 35

3.8 Four gaps in the eddy covariance data (green), and the gap filled by our
neural network (orange) as well as the real value (blue). 37

3.9 The transformer architecture. The encoder is on the left, the decoder is on
the right. (Image from [37]) . 43

3.10 The positional encoding of a sequence of size 32 with a depth, dmodel , of
128. (Image from Lil’Log*) . 45

3.11 Our architecture for gap filling . 47

3.12 The different sites where the data has been acquired. C stands for cotton,
W stands for wheat, T stands for tomato. The number gives the year of the
recording. 51

3.13 The different variables accessible to the network to make its predictions. . . 52

3.14 Gap filling quality comparison of our model (NN), with KNN on the toy
problem on large gaps. 55

xi

3.15 Attention weights for the different sequence sizes on real data. The periodic-
ity of the data was understood and leveraged by the attention mechanism. . 55

3.16 Deep learning (DL) model performances using combinations of different
meteorological variables (Rn – net radiation; rH – relative humidity; WS
– wind speed; Tair – air temperature; ‘W/o met. vars.’ – without meteoro-
logical variables, i.e., time of day only) as model inputs compared to the
common gap-filling method, marginal distribution sampling (MDS). Bars
represent the standard deviation of the mean. 59

4.1 The two tracks used to evaluate the different learning paradigm and param-
eters of the MPPI (first row), associated with their respective cost maps
(second row). 83

4.2 The PER results on the unbalanced dataset. Left: single-step accuracy.
Right: multi-step accuracy. The colder the color the lower the RMSE. The
lower the RMSE the better. 88

4.3 The gradient upper-bound results on the unbalanced dataset. Left: single-
step accuracy. Right: multi-step accuracy. The lower the RMSE the better.
The narrower the orange area the better. 89

4.4 The PER results on the fully random dataset. Left: single-step accuracy.
Right: multi-step accuracy. The colder the color the lower the RMSE. The
lower the RMSE the better. 90

4.5 The gradient upper-bound results on the fully random dataset. Left: single-
step accuracy. Right: multi-step accuracy. The lower the RMSE the better.
The narrower the orange area the better. 91

4.6 Comparison of standard neural network (STD) and prioritized (PER/GRAD)
version on a composite track . 91

4.7 Comparison of standard neural network (STD) and prioritized (PER/GRAD)
version on a square track . 92

4.8 Average map-cost and variance over several trials for different number of
sample trajectories. Lower is better. 93

4.9 Average map-cost and variance over several trials for different number of
time-steps per trajectory . 95

4.10 Average map-cost and variance over several trials for different sampling
variance . 96

xii

4.11 Snapshot of the robot position (dot) and their trajectory (line). Command
sampling variance at 0.15: left; and variance at 2.0: right. 97

4.12 Average velocity over several trials for different number of time-steps.
Higher is better. 98

4.13 Average velocity over several trials for different values of variance. Higher
is better. 99

4.14 Average velocity over several trials for different number of samples. Higher
is better. 100

4.15 Left our USV equipped with its sensors, right top view of our test environ-
ment: soccer field for scale. (Lac Symphonie, 57000 Metz, France, Google
Maps, 2020) . 101

4.16 The USV and its shore-following task. Black is a zero cost area, blue has
a gradually increasing cost as we move away from the track, orange has a
positive cost of 500, green is collision and has a positive cost of 10000. . . . 102

4.17 Top: cost of the USV along the trajectory shown on the bottom left. For
the cost. A lower cost indicates a better performance. The colors on the
three plots match so the costs can be associated easily to the position. On
the bottom right, a satellite image of the lake is given. 104

5.1 An agent interacting with its environment. 108

5.2 Left model free learning, right model based policy learning. 112

5.3 The update step of the RSSM. “stoch” is the stochastic state, while “deter”
is the deterministic state. The blue “+” is a concatenation operation, the gray
“x” is the reparametrization trick (recall Equation 2.13). 114

5.4 The observation step of the RSSM. “obs” is the observation of the system,
“stoch” is the stochastic state, “deter” is the deterministic state. The blue
“+” is a concatenation operation, the gray “x” is the reparametrization trick
(recall Equation 2.13). 114

5.5 An illustration of the reconstruction process. Image from [122]. 115

5.6 The learning process of Dreamer. Image from [122]. 117

5.7 Left the real Kingfisher, right the simulated Heron. 118

xiii

5.8 The simulated Husky. 119

5.9 State-space/Action-space illustration. 120

5.10 The Unmanned Surface Vehicle (USV) and its shore-following task. (Colors
are illustrative.) . 121

5.11 Probability density function depending on the number of steps. Each color
corresponds to a step. 122

5.12 Possible spawn positions generated by the curriculum-based spawner. The
training was cut into 4 phases for better readability. The warmer the color of
the arrow, the higher the difficulty setting. 124

5.13 The Heron dashing around the Symphonie lake. 127

5.14 Simulation and Real environments: (a) and (c) are the simulated and real
lake (Lac Symphonie, 57000 Metz, France, Google Maps, 2020), (b) is a
simulated channel . 132

5.15 The velocity of the USV around our lake. Left the USV without the swim-
ming board, right the USV with the swimming board. 136

5.16 The three concepts of the proposed extension of Dreamer: (a) Using its
replay buffer, the agent learns to encode environment high-dimension sen-
sory observation and proprioceptive input into a compact latent environment
state (). Additionally, using a similar process, the agent learns to encode
proprioceptive inputs and actions into a latent physical state (). Both of
these states are then used to estimate the reward (). (b) Using both learned
latent spaces, the agent predicts state values (🏆) and actions () as in the
original Dreamer. (c) The agent observes its environment and predicts the
best action. More details about the algorithms used here can be found in
algorithm 8. 144

5.17 RSSM reconstruction of proprioceptive variables, 5 observations followed
by 45 predictions. 145

5.18 Box plots illustrating the benefits of using a separated state for the dynamics
(ours) vs not using one (Dreamer). High value indicates better performances.
Small spread indicates better consistency. Results obtained in simulation. . 152

5.19 Environment transfer results. Higher values indicate better performances,
smaller spread indicates better consistency. Results obtained in simulation. . 154

xiv

5.20 Real world experiment. First row, overhead imagery of the deployment site,
with the full trajectory of the agents in yellow. Center row: zoom on the
bottom right corner of the lake, the trajectory of the agent can be seen in
yellow. Last row, comparison of the forward velocities reached by the two
agents. Overhead imagery from Google Earth, 2021, trajectories plotted
using Google Earth KML API. 156

5.21 Our agent controlling the USV on a frozen lake. The agent follows the shore
and maintains a target velocity while breaking 4mm thick ice. 158

5.22 The different type of environments used to evaluate the models. 170

5.23 Aggregated performance of all the models, on all the tracks, based on their
horizons. 171

5.24 The velocities and distance rewards reached by one of the top controller on
a fixed velocity tracking task. 173

5.25 The velocities reached by the system, as well as the commands sent by the
agent. 174

5.26 Aggregated performance based on the training scenario. A has a simulation
goal of 0.5m/s. B and C have a simulation goal of 1.0 m/s. D has simulation
goals between 0.3 and 1.3 m/s. A and B are trained on imagination velocities
between 0.5 and 1.0 m/s; C and D are trained on velocities between 0.3 and
1.3 m/s. 175

5.27 The performance of different policies around the lake. 177

5.28 The performance of our policies around a frozen lake, and in a scenario
where the GPS signal is lost. The same policy but in ideal conditions was
added for reference. 178

5.29 Different goals reached by our policy on the real USV. 178

xv

LIST OF ACRONYMS

ARMA Auto Regressive Moving Average

CNN Convolutional Neural Network

DA Domain Adaptation

DL Deep Learning

DNN Deep Neural Network

DR Domain Randomization

EC Eddy-Covariance

ELU Exponential Linear Unit

ET EvapoTranspiration

GCRL Goal Conditioned Reinforcement Learning

GRU Gated Recurrent Unit

KL Kullback-Leibler

KNN K-Nearest Neighbour

LAI Leaf Area Index

LReLU Leaky ReLU

LSTM Long Short-Term Memory

LUT Look Up Table

MBE Mean Bias Error

MBRL Model Based Reinforcement Learning

MBRL Model Free Reinforcement Learning

MDP Markov Decision Process

MDS Marginal Distribution Sampling

xvi

MDV MeanDiurnalVariation

MIMO multiple-input multiple-output

ML Machine Learning

MLP Multi Layer Perceptron

MPC Model Predictive Control

MPPI Model Predictive Path Integral

MSE Mean Squared Error

NLG Natural Language Generation

NLP Natural Language Processing

NN Neural-Network

PER Prioritized Experience Replay

POMDP Partially Observable Markov Decision Process

PPK Post Processing Kinematic

PReLU Parametric ReLU

ReLU Rectified Linear Unit

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RTK Real Time Kinematic

SELU Scale ELU

SISO single-input single-output

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

USV Unmanned Surface Vehicle

VAE Variational Auto-Encoder

xvii

SUMMARY

The objective of this thesis is the adaptation and development of sequence-based Neural-

Networks (NNs) applied to the modeling of dynamic systems. More specifically, we will

focus our study on 2 sub-problems: the modeling of time-series, the modeling and control

of multiple-input multiple-output (MIMO) systems. These 2 sub-problems will be explored

through the modeling of crops, and the modeling and control of robots. To solve these

problems, we build on NNs and training schemes allowing our models to out-perform the

state-of-the-art results in their respective fields.

In the irrigation field, we show that NNs are powerful tools capable of modeling the

water consumption of crops while observing only a portion of what is currently required

by reference methods. We further demonstrate the potential of NNs by inferring irrigation

recommendations in real-time.

In robotics, we show that prioritization techniques can be used to learn better robot dy-

namic models. We apply the models learned using these methods inside an Model Predictive

Control (MPC) controller, further demonstrating their benefits. Additionally, we leverage

Dreamer, an Model Based Reinforcement Learning (MBRL) agent, to solve visuomotor

tasks. We demonstrate that MBRL controllers can be used for sensor-based control on real

robots without being trained on real systems. Adding to this result, we developed a physics-

guided variant of DREAMER. This variation of the original algorithm is more flexible

and designed for mobile robots. This novel framework enables reusing previously learned

dynamics and transferring environment knowledge to other robots. Furthermore, using this

new model, we train agents to reach various goals without interacting with the system. This

increases the reusability of the learned models and makes for a highly data-efficient learning

scheme. Moreover, this allows for efficient dynamics randomization, creating robust agents

that transfer well to unseen dynamics.

xviii

CHAPTER 1

INTRODUCTION

1.1 About the PhD dissertation topic

The proposed dissertation topic emerged from the wish of evaluating and developing

machine-learning algorithms to model dynamic systems and deploy them in the field.

We will explore three different domains: the modeling of low-dimensional dynamic sys-

tems, the application of control to these systems, and finally, the modeling and control of

high-dimensional systems. To test the modeling capacities of NNs, we chose to apply them

on two types of “systems”: crops, and robots. Across these two domains, we will meet the

same problems: modeling a dynamic system with few data points and a strongly unbalanced

dataset. As we solve the different problems we will use similar methods starting from

Multi Layer Perceptron (MLP) to Long Short-Term Memorys (LSTMs) to Transformers.

Furthermore, in all the problems that we will encounter, the inputs are always processed

sequentially. Finally, all the methods developed here are built and designed to be applied

and deployed in the field, on real systems.

1.2 Low-Dimensional Systems Modeling: Application to Crops-Water-Consumption

Crops and their water consumption are a compelling, low-dimensional, subject of study.

Indeed, they present cycles that are often based on the time of the day, but also the seasons.

We designed NNs capable of natively leveraging the cycles in crops to improve their

accuracy. The NN presented here have been developed to solve two tasks: a forward

prediction task, and a gap-filling task. In practice, our architectures learn to model the

crops’ water consumption, also known as EvapoTranspiration (ET). This task is particularly

interesting as crops exhibits day/night cycles and rapidly changing dynamics.

1

1.2.1 Achieving Expert Level Irrigation using DNN based Crop-Modeling

Initially, to evaluate the potential of NNs in the field, we tested them on a forward prediction

task. This is the usual application case of NNs where they are given a set of inputs and

tasked with predicting an output. With this experiment, we wanted to see if a NN could

estimate the ET of crops using only recordings from two tomato fields. To do so, we

designed an algorithm to forecast the growth of the crop canopy. Then, using the forecasted

canopy growth and a carefully selected set of meteorological variables, we trained a NN to

estimate the water consumption at a half-hourly rate. We then developed a mobile app and a

server-backend to predict the ET. This application was then used by farmers to irrigate their

fields in real-time. In the real field experiment, we showed that our model was capable of

performing as well as an expert with access to soil moisture levels, and better than standard

irrigation practices in Israel. This algorithm is about to be tested on a large scale in the Hula

Valley by Tomato farmers.

1.2.2 Filling Gaps in Evapotranspiration Measurements

Then, we moved on to a more challenging task: filling gaps in measurement streams. In this

task, we have measurement streams with 10 to 30% missing values. The data losses occur

over a continuous period of time, creating large gaps in the data.

Our goal is to reconstruct the missing values inside these gaps. To account for the

day/night cycles present in crop ET measurements, we designed an NN architecture in-

spired by Transformers. To fill gaps in ET measurements, most often, the literature uses

an interpolation technique called Marginal Distribution Sampling (MDS). This method

leverages the day/night cycles present in the data to fill the gaps without modeling the crop

itself. In the end, our architecture demonstrated superior capacities when compared to the

state-of-the-art methods while being highly sample efficient. In particular, it better estimated

local trends and offered a gain of around 15% in Root Mean Squared Error (RMSE) on

real-world datasets[1].

2

1.3 Data-Efficient Modeling & Control for Robotic Systems

When learning robots’ dynamic models, one of the key limiting factors is interacting with

the physical system to collect the data required to learn. Indeed, collecting data on real

systems is often a very long and costly process; even simulators are relatively expensive to

run. In the following, we focus on improving the training efficiency of NNs. Furthermore,

we investigate if the techniques used to make NNs more efficient can also improve the

quality of a controller using said NNs.

1.3.1 Prioritized Data Sampling for Improved Modeling

To assess the performance of the different prioritization schemes, we first applied on a

system identification task two techniques: the Prioritized Experience Replay (PER) and the

gradient upper bound. These methods draw samples with higher error more often. This can

improve the performance of NNs. However, if there are outliers in the data, it may also

degrade their performance. Hence, to better understand how they can be applied to learn

robots’ dynamic models, we studied the impact of their hyperparameters. To do so, we

recorded datasets from different systems, with or without data-inbalance, and performed

grid searches to find the most optimal parameters. In the end, we showed that these methods

were capable of properly identifying the models even with poor action-space/state-space

exploration.

1.3.2 Prioritization applied to control

With the characterization of the prioritization methods’ parameters done, we then applied

them to the control of robotic systems. In particular, we used the dynamic models learned

using the prioritization inside an MPC controller, and analyzed their impact on the controller

performances. In simulation, we demonstrate that these methods can provide a significant

performance uplift in particular when the system has not fully explored its action/state space,

3

or when the model was learned on a strongly unbalanced dataset. Finally, we applied the

lessons learned in simulation on a real boat tasked with following lakeshores at a given

velocity. This boat successfully performed its task, however, it had a high computational

cost and required for the dynamic model to be learned on the real system.

1.4 Model Based Reinforcement Learning for mobile robots

To improve upon the results of the MPC controller, we explored model-based policy learning.

A computationally lighter alternative to MPC. We use MBRL with policy learning to control

and model robotic systems using both low and high dimension inputs, such as velocity

readings or laser scanners.

1.4.1 MBRL for navigation in GPS denied environments

Using state-of-the-art MBRL with policy learning, we studied its performance on the same

shore following task as the MPC. However, this algorithm had only access to the laser-

scanner measurements. With this test the objective was twofold. First, we wanted to compare

the performance of the two approaches in simulation and make sure the Reinforcement

Learning (RL) agent was capable of controlling our robot as well as the MPC. Second, we

studied the transferability of the learned policy from the simulation to the real world. In

[2], we showed that not only it was capable of doing so, but our system out-performed the

state-aware MPC controller even though the RL agent had never been trained on the real

system. We further assessed the robustness of the system by increasing its drag, deploying

it in flooded environments, and an frozen lake where the robot had to break through a 2 to

5mm thick ice layer.

1.4.2 Dynamic model separation for modular MBRL

Building on the same MBRL algorithm, we modified it to be better suited to mobile robots.

In general, when learning how to solve a task, MBRL algorithms learn a so-called world

4

model. It models the environment in which the robot evolves as well as the robot itself.

Here, we chose to split this model into two submodels, one learns the dynamic model of the

robot, while the other learns the residual. This allows changing the dynamic model while

preserving environment knowledge and vice-versa. In this model, we add the physical state

measurement to the inputs of the model. Overall, in [3], we show that this model performs

better and is more robust than its predecessor.

1.4.3 Improving the reusability, robustness and transferability

So far, all the models learned to navigate at a single velocity. In order to improve the

flexibility of our models, we introduced a mechanism to allow agents to reach multiple

velocities efficiently. Our method was extensively tested both in simulation and on a real

system. During these experiments, policies trained with this method showed superior power

efficiency and strong robustness. Moreover, we have investigated efficient ways to further

improve the robustness of the learned policies. These showed promising simulation to real

transfer results.

1.5 Publications

The proposed thesis was the motivation behind the following first author publications:

• Richard A., Fine L., Malachy N., Pradalier C., Tanny J., & Rozenstein O., Data-Driven

Estimation of Actual Evapotranspiration to Support Irrigation Management,

AAAI, AIAFS Workshop, 2022.

• Richard A., Aravecchia S., Geist M., & Pradalier C., Learning Behaviors through

Physics-driven Latent Imagination, Conference on Robot Learning (CORL), 2021.

• Richard A., Aravecchia S., Schillaci T., Geist M., & Pradalier C., How To Train Your

HERON, ICRA RA-L, 2021.

• Richard A., Fine L., Rozenstein O., Tanny J., Geist M., & Pradalier C., Filling Gaps

in Micro-Meteorological Data, European Conference on Machine Learning (ECML

5

PKDD), 2020.

• Mahé A.*, Richard A.*, Aravecchia, S., Geist M., & Pradalier C., Evaluation of pri-

oritized deep system identification on a path following task, JINT, 2020. (*Shared

first authorship)

• Mahé A.*, Richard A.*, Geist M., & Pradalier C. Importance Sampling for Deep

System Identification, ICAR, 2019. (*Shared first authorship)

The work aforementioned has also led to the following submissions as second author:

• Fine L., Richard A., Tanny J., Pradalier C., Rosa R. & Rozenstein O., Introducing

State-of-the-Art Deep Learning Technique for Gap-Filling of Eddy Covariance

Crop Evapotranspiration Data, Water, 2022.

• Pradalier C., Schroepfer P., Richard A., A Graph-based Approach to the Initial

Guess of UWB AnchorSelf-Calibration, IROS, 2022. (Submitted)

• Khazem S., Richard A., Constant T., Fix J., & Pradalier C., A modern Toolbox for

high precision Trees’ Xray analysis, Computer and Electronics in Agriculture, 2022.

(Submitted)

• Venkataramanan A., Richard A., & Pradalier C., A Data Driven Approach to Gener-

ate Realistic 3D Tree Barks, Graphical Models (GMOD), 2022. (Submitted)

6

CHAPTER 2

FUNDAMENTALS & LITERATURE SURVEY

Black box modeling using neural-network has been around for a long time [4]. However,

until recently, their usage was limited due to their huge data requirements, their lack of

reliability, and the computational power required to train and infer them. Yet, today, these

problems are starting to fade away, as the amount of data and compute available on edge

devices has kept increasing over the last decade. Because our application domains are

fairly different, each chapter in this thesis will include its own literature survey. In this

chapter, we will focus on the elements that are commonly shared across each application

field. First, in section 2.1 we provide a brief introduction on NNs as well as a presentation of

the architectures relevant to this thesis. Then, in section 2.2 we present part of the literature

on NN architectures designed for sequential processing and system identification. This

section also discusses works on estimating the uncertainty in neural-networks predictions

on both regression and classification tasks. Finally, Section 2.3 focuses on work related to

making the neural-networks training more efficient.

2.1 Fundamentals on Deep Neural Networks

This thesis makes extensive uses of NNs we invite the readers that want to refresh their

memory to follow this short summary about Deep Neural Networks (DNNs).

2.1.1 What is Deep Learning?

Deep Learning (DL) is a subfield of Machine Learning (ML) that enables an algorithm, or

model, to solve a task by learning from a set of data. The reason behind its name is that the

models are usually deep, i.e. they have a lot of “layers” stacked together. This subfield is

usually separated into three categories: supervised learning, unsupervised learning, semi-

7

supervised learning. In supervised learning, the model is learned by providing for each

element of the dataset the complete answer to the problem it must solve. This implies having

a dataset that has been labeled. Conversely, in unsupervised learning, the algorithm does not

have access to the solution of the problem. Hence, no labels are needed. Semi-supervised

learning methods sit in between these two categories. In this scenario, only a small portion

of the data has been labeled. Or, alternatively, the algorithm could start with an empty

dataset. It would then collect its own data to learn from. This setup is commonly found in

reinforcement learning.

2.1.2 Vocabulary

• Generalization: The ability of a NN to work on data outside its training distribution.

This is a highly desirable feature for a model.

• Regularization: A process that consists in modifying the learning algorithm to improve

its generalization capacities. An exhaustive list of regularization techniques can be

found in [5].

• Overfitting: The fact that a NN over-learned on its training data. This results in a model

with a high precision on its training set, but with a poor accuracy on the real data. I.e. a

model that does not generalize.

• Underfitting: The fact that a NN fits poorly to the training data. This results in an

unusable model.

• Latent space: is an embedding of a set of samples. Within that space, the samples that

are the most similar to each other are positioned closer.

2.1.3 Commonly used Layers

The most basic element of any DNN is the artificial neuron. While it is called an artificial

neuron it does not realistically model a biological neuron. A more realistic approach to

8

biological neurons is spiking neural networks [6] that we will not cover here. This neuron

takes as an input x ∈ IRN, and outputs a y ∈ IR. The neuron itself is composed of a weight

vector w ∈ IRN and a scalar bias b ∈ IR. The model of the neuron is given by Equation 2.1,

where σ is the activation function.

y = σ(wT x+b). (2.1)

σ can either be a linear or non-linear function, but most of the time they are non-linear

functions, enabling the NN to learn complex non-linear mappings. Among the most common

activation functions one can find Rectified Linear Units (ReLUs) or softmax, more on them

in subsubsection 2.1.3.

Dense Layers

Dense layers, or fully connected layers, are with convolutions the main building blocks of

neural-networks today. The dense layer is the simplest layer. It is composed of a multitude

of artificial neurons organized in a computationally friendly fashion. A dense layer with

N ∈ IN neurons and an input x ∈ IRM has N weights w ∈ IRM organized in a matrix of

weights W ∈ IRN×M. Similarly, the biases are organized in a single array B ∈ IRN. The

output y ∈ IRN is given by the equation in Equation 2.2, where σ is applied to each element

of the resulting array.

y = σ(W T x+B). (2.2)

Convolution Layers

A convolution layer [7] is a function dedicated to the analysis of grid-structured inputs. This

function processes three types of inputs, time series x1D ∈ IRL×C, images x2D ∈ IRH×W×C,

and voxels or videos x3D ∈ IRH×W×D×C, where L is the length of the time series, W and H

are respectively the width and height of the image or voxel, and D is the depth of the voxel

9

or the number of frame in the video stream. C is the number of channels in the input. Unlike

dense layers whose weights match the size of the input, convolution layers have a kernel

of fixed size, unrelated to the size of the input. A typical 2D convolution has its kernel

defined by K ∈ RN×M×O, where N,M ∈ IN are the size of the kernel, and O is the number

of learnable filters. N and M define the “reach” of the convolution, the local region within

which the convolution will analyze the data. In addition to their kernel, convolutions use

a bias b ∈ IRO. Once the convolution is applied it returns an output y ∈ IRH×W×O, the 2D

convolution operation is given in Equation 2.3, where i, j ∈ IN are the position in the 2D

grid, and o is the current filter that is being applied.

yi, j,o = σ(
C

∑
c=1

N

∑
n=1

M

∑
m=1

Kn,m,oxi−n, j−m,c +bo). (2.3)

This process is applied on every single cell of the grid O times, the number of filters.

Here, for the sake of simplicity, we do not consider border effects that reduces the size of

the output by half of the kernel size. However, to prevent this from happening, one can use

padding.

Recurrent Layer

Recurrent layers, also referred to as cells, are different from the previously seen layers as

they have a feedback connection. Their previous output is connected to their input. They

rely on their “state” also known as “hidden-state” to detect patterns in sequences of inputs.

The term sequence implies that the data are chronologically ordered, it can be time-series,

video frames, etc... An exampled of a basic Recurrent Neural Network (RNN) layer is given

in Equation 2.4, where x(t) ∈ IRN∀t ∈ [1,T] is the input with T the size of the sequence.

s ∈ IRM is the state of the recurrent layer, W1 ∈ IRN×M and W2 ∈ IRM×M are the weights of

the model.

10

s(t) = y(t−1).

y(t) = σ(x(t)W1 + s(t)W2).

(2.4)

More complicated and commonly used recurrent cells can be found in subsubsec-

tion 2.1.3 and subsubsection 2.1.3.

Long-Short-Term Memory

LSTMs[8], are a more advanced type of RNN. They feature good memory capacities while

being relatively light-weight. LSTMs are explicitly designed to remember information for

long periods of time. To do so, an LSTM unit is composed of four components: the cell

c, the input gate i, the output gate o, and the forget gate f . The gates regulate the flow of

information into and out of the cell while the cell remembers past values. The equations that

rule the behavior of the LSTM are given in Equation 2.5. W are the inputs weights and U

are the hidden state weights, B is the bias. x is the input, y is the output and hidden-state, c

is the cell state.

f (t) = σs(Wf x(t)+U f s(t−1)+B f).

i(t) = σs(Wix(t)+Uis(t−1)+Bi).

o(t) = σs(Wox(t)+Uos(t−1)+Bo).

c̃(t) = σh(Wcx(t)+Ucs(t−1)+Bc).

c(t) = f (t)c(t−1)+ i(t)c̃(t).

y(t) = o(t)σh(c(t))

(2.5)

The key idea behind how the LSTM work can be seen in Equation 2.5 with c(t). In this

equation, the previous cell state c(t−1) is factorized with forget gate. This step is used by

the LSTM to remove information from the cell state. Then, some “fresh” information is

11

added through the input gate, using the past hidden state y(t− 1) and the new input x(t).

This relatively simple process allows the LSTM to remember or discard information.

Gated Recurrent Unit

Gated Recurrent Units (GRUs)[9] are a simpler version of the LSTMs. Their output gate

was removed, and they have fewer parameters. Their simpler structure allows for faster

execution, and eases the learning on small datasets, as fewer parameters need to be learned.

Their performance on most task are akin to the one of the LSTMs. The GRU are made

of two gates, the update gate u, the reset gate r, and a cell that is also the output y. The

equations that rule the behavior of the GRU are given in Equation 2.6. W are the inputs

weights and U are the hidden state weights, B is the bias, x is the input.

u(t) = σs(Wux(t)+Uus(t−1)+Bu).

r(t) = σs(Wrx(t)+Urs(t−1)+Br).

ỹ(t) = σh(Whx(t)+Uh(r(t)y(t−1))+Bh).

y(t) = (1−u(t))y(t−1)+u(t)ỹ(t)

(2.6)

Activation functions

Activation functions are arguably one of the most important component in a NN, they come

in many flavors, and it can be hard to keep track of all existing functions. In Table 2.1, we

present a non-exhaustive list of the most commonly used functions.

In general, we can split the activation function into two groups: the saturated activation

functions, and the non-saturated activation functions. Over the last decade, non-saturated

activation functions have slowly replaced their saturated counterparts. Indeed, saturations

can lead to the vanishing gradient problem: preventing the network from learning correctly.

Yet, the strong non-linearity of saturated activation functions can be better for some appli-

cation domains. Among the non-saturated function we find the sigmoid, the softmax, and

12

Table 2.1: A list of commonly used activation functions.

Activation Reference
Mish [10]
Swish [11]
GELU [12]
ReLU [13]
ELU [14]

Leaky ReLU [15]
SELU [16]

SoftPlus
SReLU [17]
ISRU [18]
TanH
RReLU [19]

the hyperbolic-tangent. The sigmoid activation function features a smooth non-linearity, as

shown in Equation 2.7

f (x) =
1

1+ e−x∀x ∈ IR
. (2.7)

The hyperbolic tangent, is simply the mathematical function often shorten as tanh. This

function is very similar to the sigmoid. The main differences are a negative mapping and a

steeper gradient. Another commonly used function in classifier is the softmax, its equation

is given in Equation 2.8.

f (x) j =
ex j

∑k = 1Kexk
∀ j ∈ 1, ...,K. (2.8)

All of these functions are “dense” functions. This means that their gradient is more expensive

to compute than, for instance, the ReLU gradient, which is “sparse”.

The large ReLU family is composed of three primary functions : the standard ReLU, the

Leaky ReLU (LReLU), and the Parametric ReLU (PReLU). First applied to neural networks

13

in [13] the ReLU is defined as in Equation 2.9.

yi =

xi, if xi ≥ 0

0, otherwise
(2.9)

Introduced in [15], the LReLU is defined as in Equation 2.10 where α is generally a fixed

value.

yi =

xi, if xi ≥ 0

−xi
α
, otherwise

(2.10)

The LReLU prevents some “locked” neurons from blocking the learning of the whole

stack by propagating some of the gradients to the upper layers. PReLUs are akin to the

LReLUs with the exception that the parameter α is learned along with the rest of the network

parameters.

Among the many activations functions, computer vision architectures seem to favor

ReLUs style functions as well as Swish/Mish. In reinforcement learning, architectures tend

to prefer Exponential Linear Units (ELUs), Scale ELUs (SELUs), SoftPlus, and Swish.

2.1.4 Common Architectures

The field of machine learning has produced a wide variety of architectures over the last years.

However, they all adhere to similar construction principles. In the following we provide the

basic elements to understand the different architectures that will be discussed in this Thesis.

Multi-Layer Perceptrons & Convolutional Neural Networks

MLPs, or Feed-Forward, are the most primitive type of neural-network. They are made

of a succession of dense layers (subsubsection 2.1.3), sometimes separated by batch-

normalization, and dropout layers. It is also common to find them at the end of encoders.

14

Autoencoder

An auto-encoder is a type of architecture designed to perform unsupervised feature extraction.

Its objective is to learn a representation, or encoding, of a dataset. This is usually done

to reduce the dimension of said data, and ease its manipulation. This type of architecture

features two main elements, the encoder, and the decoder. The data is sent through the

encoder, which compresses the data and projects it onto a compact latent space. The

compressed data is then decompressed by the decoder, whose goal is to reconstruct the

original data. This process is similar to a lossy compression algorithm. Regarding the

encoder and decoder, they can be made of any layer. Often they are made using Convolutional

Neural Networks (CNNs), but it is not a defining element. The one thing that matters is the

dimension reduction. Formally, the auto-encoding process can be written as in Equation 2.11.

Where x is the input, x̂ is the reconstructed input, Fenc is the encoder, z the encoded variable,

and Fdec is the decoder.

x̂ = Fdec(Fenc(x))

= Fdec(z)
(2.11)

To learn how to reconstruct the input multiple option are possible. One can use a

standard Mean Squared Error (MSE), or more complicated loss functions. Auto-encoders

style architectures are particularly popular in Generative Adversarial Networks. In these

networks, the loss is often the combination of the prediction of another neural-network, and

one or more human designed cost functions.

Variational Auto-Encoder

The following description gives an overview of Variational Auto-Encoder (VAE), the reader

can refer to [20] for a more thorough description. VAEs[21] are often assimilated to regular

15

auto-encoders as they share the same type of structure. However, there are significant

differences, most notably on their goal and mathematical formulation. Similarly to auto-

encoders, VAEs encode the data onto a reduced latent space. However, the main goal of that

latent space is to make the generation of novel realistic data easier. The term “variational”

comes from the similarities this architecture shares with variational inference methods in

statistics.

Initially, one might believe with a given learned decoder, generating new content should

be as easy as sampling a random point from the latent space and decoding it. However, for

this to be true, the latent space must be regular enough. Yet, when we train an auto-encoder,

nothing is done to enforce the regularity of the latent space. Hence, to ensure that this is the

case, VAE leverage regularization techniques. The main difference between a VAE and an

auto-encoder, is that the former encodes the input into latent distributions, when the latter

encodes them into a latent space. The encoding/decoding process is given in Equation 2.12.

Where x is the input, x̂ is the reconstructed input, Fenc is the encoder, µ and σ the mean

and standard deviation of a set of normal distributions, p(z|x) the latent distribution, z the

encoded variable, and Fdec the decoder.

µ,σ = Fenc(x)

p(z|x) =N (µ,σ)

z∼ p(z|x)

x̂ = Fdec(z)

(2.12)

In Equation 2.12, the sampling step is not differentiable, hence this equation must be

reworked to allow the gradients to be propagated. Equation 2.13 shows the reparametrization

trick, allowing gradients to be back-propagated inside the network.

16

ε ∼N(0,1)

z = σε +µ

(2.13)

To ensure that the network learns a well regularized latent space, the loss needs to be

more constrained than the one used with auto-encoders. From a formal perspective, this

problem can be rewritten within the variational inference framework. With x our input, the

goal is to find z, a random vector jointly-distributed with x. To do so, we learn an encoder

who approximates a posterior distribution qφ (z|x), and a decoder who learns the likelihood

distribution pθ (x|z). Hence, the loss function must make sure that pθ (x|z) is as close as

possible to qφ (z|x). This is commonly done using the Kullback-Leibler (KL) divergence.

However, most often, to optimize this type of network the literature uses the Evidence Lower

Bound loss, or ELBO (Eq. Equation 2.14). The complete derivation of the ELBO is given in

[20].

L= Eqφ (z|x)[log pθ (x|z)]−DKL(qφ (z|x)||pθ (z)) (2.14)

2.1.5 Optimization

For the architectures and layers presented earlier to be applied to a problem, we first need

to find a set of parameters that can solve it. In NNs this is done using gradient-based

optimization algorithms. To apply these algorithms, we need to compute an error between

the current results of the algorithm and its targets. The goal is to refine the value of the

weights inside the network to improve the performance of the model. Using the fact that all

the operations inside the network are differentiable, the optimization schemes can leverage

the chain rule to compute the gradient for each operation within the network. This process

of computing gradients is commonly referred to as backpropagation. Finally, the only thing

missing to optimize the networks’ weights is the learning rate. The learning regulates the

17

learning process by weighting the gradient update.

While there exists a wide diversity of optimizers, most of the modern literature relies

on Adam [22]. Its main advantage over optimizers such as the Stochastic Gradient Descent

(SGD) is that its learning rate is auto-adaptative. It uses the average of the gradients’

moments to automatically tune the learning rate for each parameter of the network. Moreover,

it has a built-in decay, which means that over time the learning rate will decrease, making

the convergence faster and more accurate. In this thesis, we used Adam for the whole of the

trainings, as it is particularly robust [23].

2.2 Survey on Neural-Network based Modeling & Sequence Processing

This survey is focused on black-box modeling using NNs, while there exists many ways

of modeling non-linear systems[24], we chose to rely on one of the most flexible methods:

neural-networks[4].

The past ten years have seen NNs achieve exceptional results across a broad range of

applications, in particular in Computer Vision, and Natural-Language-Processing. Addi-

tionally, recent advances in computing-hardware brought multi-teraFLOP performances

to a credit card format with power-draw inferior to 15W. All this, coupled to the broader

availability of data make deep-learning-based approaches extremely compelling.

When modeling dynamic systems, the models often rely on a sequence1 of inputs to

predict a sequence of data-points or a single data-point. Among the NNs architectures used

to model dynamic systems we can find MLPs[25, 4, 26], 1D CNNs [27, 28, 29], RNNs [30],

LSTMs[8, 31, 32, 33], and GRUs [9, 34]. All in all, those models can be categorized into

two categories: non-recurrent-models, and recurrent-models.

1The term sequence implies that the used data are chronologically ordered

18

2.2.1 Non-Recurrent Architectures

Non-recurrent models include MLP and 1D CNN. The MLP is one of the most common

NN architectures used for system identification. It relies on stacked dense layers, and their

activation functions. The MLPs’ relative simplicity makes them very interesting, as they

can be linearized and integrated inside controllers. Furthermore, they are quick to infer,

making them ideal for real-time execution. Their main drawback is that they process the

input sequence indifferently of the order of the sequence elements. Hence, they are unaware

of time dependencies and cannot model them.

1D CNNs[35, 28, 27], which consists of stacked 1D convolutional layers, partly solve

this issue. By construction, a 1D CNN processes its input sequence using local features

(depending on the size of the kernel), which means that even though it was not designed for

that purpose, it processes the data in an ordered fashion. This observation is at the root of

network like WaveNets[28] which enhance this behavior by using atrous convolutions[36] of

larger sizes as the network gets deeper. This temporal processing is compelling as it behaves

a bit like a recurrent neural network but without the added complexity of those networks.

Also, when MLPs are mostly used for sequence to next point predictions, 1D CNNs can

be used for seq2seq processing. In this case, the 1D CNN takes as an input a sequence and

then outputs another sequence. This process would be analog to image segmentation, and

similar architectures could be used. Their main disadvantages lie in the extra amount of

hyper-parameters, increased complexity, and the fact they are still not processing the data

with respect to its temporality.

2.2.2 Recurrent Architectures

Despite the fact that from a physical standpoint, the dynamic of a system depends on time.

None of the previously cited architectures genuinely account for the temporality of the data.

On the contrary, the family of RNN architectures is designed to explicitly depend on time.

To do so they process the sequence elements iteratively.

19

The LSTMs were invented to capture long-term dependencies better. They rely on

three gates (the input gate, the output gate, and the forget gate) used to predict the output

and update their hidden state. Those gates are a form of regulation allowing more or less

information to flow through them. GRUs, as introduced in [9], are somewhat similar to

the LSTMs, but they combine the forget and input gates into one gate called the update

gate. The main drawback of the recurrent architectures is their hidden state that needs to be

handled expertly to maximize the performances of the networks.

2.2.3 Attention & Exotic Architectures

Recent advances in the field of Natural-Language-Processing have seen the rise of a new type

of model that, like MLP, is non-recurrent, while still being to account for the temporality

of the sequence like a recurrent network would. These models called Transformers are

faster to train and infer that their recurrent counterparts while reaching higher performances

in Natural-Language-Processing tasks. To achieve those results, models such as [37, 38]

leverages a mechanism called self-attention to draw global dependencies between input and

output. Self-attention, the mechanism at heart of these model is an attention mechanism that

puts in relation different elements of a single sequence in order to compute a representation

of that sequence.

On top of these generalist architectures new studies have shown promising physics-ruled

neural-network such as [39, 40, 41]. This architecture draw inspiration from the Lagragian

and Hamiltonian mechanics to design and constrain neural-networks such that they are more

robust and learn systems that abide by the law of energy conservation. The main drawback

of these contributions is that they often make constant energy assumption and/or consider

perfect observability of the system which can be problematic in system where the cause for

energy losses are not observable. Also, one could consider [42, 43], yet, these approaches

based on Restricted Boltzman Machine scale poorly to high dimension inputs such as 2D

lasers or images.

20

2.2.4 Neural-Networks & Uncertainty Estimation

In addition to neural network architectures, recent works[44, 45, 46] focused on evaluating

the uncertainty of the NNs predictions. The lack of confidence on the NNs predictions

is one of the main factors holding back the widespread adoption of these approaches in

real-systems [44, 47]. While Bayesian NNs[46, 48, 49, 50] have been around for a couple

years, their measure of the uncertainty was unreliable in particular on regression tasks. New

studies[51, 52] based on evidential deep learning opened new research perspectives but

were so far limited to classification tasks. Fortunately [44] introduced a novel formulation

of evidential deep learning that can be applied to continuous problems such as system

modeling.

One of the first method used to evaluate the confidence of the network was the Monte-

Carlo dropout[46], its main advantage relies in its simplicity. The network is train with

dropout layers, and is also inferred with the dropout layers active. In this method, the

network is executed n times. The average of the predictions gives the network’s results,

and the entropy or the standard deviation of the predictions gives the uncertainty. However,

it is known that neural-network are over-confident by nature[53]. Hence, this method can

still lead to inaccurate uncertainty estimations. Also, this method is not good at catching

out-of-distribution samples[44].

More recently, [44] showed that non-Bayesian neural-networks can be trained to predict

a continuous model and estimate both data (aleatoric) and model (epistemic) uncertainties.

Deep evidential learning places the uncertainty over a likelihood function, instead of the

network weights as in Bayesian NNs. With evidential learning, each sample adds support

to a learned higher-order evidential distribution. Sampling from this distribution yields

instances of lower-order likelihood functions from which the data was drawn. By training a

NN to output the hyperparameters of the evidential distribution, a representation of both

epistemic and aleatoric uncertainty can then be learned without the need for sampling.

21

2.3 Survey on Sampling Schemes for Efficient Neural-Network Training

A NN is as good as its dataset[54]. This means that to achieve optimal performance, a lot of

data-points are necessary. The sample inefficiency of NNs leads to the need to generate large

demonstration datasets. These are often very unbalanced [55] and the training is saturated

with common samples while interesting data points have little impact on the learning process.

Usually, in classification tasks, this problem can be handled using class balancing methods

such as balanced sampling, weighted sampling or applying a bias to the loss of the network.

However, in tasks such as system modeling this is not that trivial: there are no classes and if

we take the example of robotic systems, sampling uniformly over the state or action space is

not always feasible.

All in all, properly learning hard cases is hindered by the imbalance of the data. The

capacity of NNs to keep improving over new data by continuously training has been used

to alleviate this problem [25]. However, this implies that we keep training the network

on very well-known situations while new pieces of information are only seen once in

a while. Identifying the informative samples on which to focus the learning makes it

more efficient[56]. This is the philosophy behind one of the most used algorithm in RL:

the prioritized experience reply. This method uses the loss of the model on the training

set’s samples to estimate how important those samples are. Then, it generates a sampling

distribution based on the samples’ importance to focus the training on the samples where

the model has a higher loss.

While this method proved itself in RL, the PER suffers from major drawbacks. It necessi-

tates the tuning of multiple parameters: α , β , and how often the sampling distribution must

be updated. Tuning α and β makes [57]’s work unpractical, as a large grid searches have to

be performed to acquire optimal prioritization parameters. Then, the update frequency of the

sampling distribution is hard to tune, if it is refreshed too often the training loses efficiency,

if it is not refreshed often enough the samples’ importance remains the same even though

22

their usefulness has evolved. However, one of the main advantages of this method is that it

permits a fine control over how the prioritization is done. This is particularly interesting as

it allows putting a low amount of prioritization at the beginning of the training to grasp the

general modeling concept, and then increase the prioritization as the training reaches its end

to maximize the learning of hard cases.

In [58] they study different sampling method and show that the loss of the network on a

given sample can be used as an indicator of the sample’s importance. However, [59] also

outlines that using the loss can results in degraded learning performances. Fortunately, they

show an interesting mechanism that alleviates both the tedious parameter tuning present

in the prioritized experience replay and the need to update the sample importance based

on the most recent network state. In their experiments the loss is no longer used as an

estimate of a sample importance. Instead, they rely on an estimation of the gradient norm.

Note that one could use the real gradient, but the computational cost is prohibitive. The

prioritization weights are no longer saved for the time of the epoch but recomputed at

every iteration on a super-batch2. This has two advantages: first as the super-batch is

sampled uniformly which naturally reduces the over-fitting risks; second, it ensures that

the scores are accurate for this instance of the network, thus preventing the risk to keep

giving a high importance to samples that have become easy and further mitigating the

over-fitting risk. Nevertheless, these advantages come at a cost: because the scores have to

be recomputed at every iteration, the training process is slower than before. To get over that

problem, a trigger is introduced to perform importance sampling only when we estimate

that gradient acceleration is possible. This trigger is computed for free when the backward

pass is performed. All in all, they showed that their approach out-performed all previous

prioritization methods on classification tasks.

2A super-batch is a batch n times larger than the batch size used for training. In their work, it is suggested
to chose a super-batch 3 times larger than the batch size

23

CHAPTER 3

LOW-DIMENSIONAL SYSTEMS MODELING: APPLICATION TO

CROPS-WATER-CONSUMPTION

This chapter focuses on the modeling of low-dimension systems using neural-networks. The

models are learned and applied to crops. The goal is to model the water usage of fields

based on their current state and the weather. Figure 3.1 shows the type of fields our methods

are applied to.

Figure 3.1: A tomato field in the Hula Valley, Israel.

Crops and their water consumption are a compelling, subject of study. Indeed, they

present cycles that are often based on the time of the day, but also the seasons. In the

following sections, we present NNs capable of natively leveraging the cycles in crops to

improve their accuracy. The models presented here have been developed to solve two tasks:

a forward prediction task (section 3.1), and a gap-filling task (section 3.2).

We applied our method in a specific region of the world, the Middle East. The rapid

temperature change in this region is particularly interesting for irrigation experiments and

24

crop modeling. Indeed, the plants grow very quickly, and the water consumption can

increase drastically over short time periods, making modeling them hard.

Figure 3.2: A map of Israel and our main testing in Gadot.

Figure 3.2 shows our main testing site in northern Israel. This site was used to collect data

as well as a test area for our irrigation techniques. The work carried out in this chapter was

done in collaboration with our Israeli partners, in particular Lior Fine, and Offer Rozenstein.

They acquired the data and helped us better understand the systems we wanted to model.

Without further ado, let’s get modeling.

25

3.1 Achieving Expert Level Irrigation using DNN based Crop-Modeling

3.1.1 Motivation

Water demand is expected to increase by 55% globally between 2000 and 2050, mainly for

manufacturing, electricity, and domestic use [60]. This will leave a small margin to increase

water use in agriculture, and therefore, it is imperative to optimize the irrigation process.

A precise estimation of crop water consumption, or evapotranspiration (ETc), can improve

irrigation management and lead to similar yields while reducing water usage throughout

the growing season. Tomato (Lycopersicon esculentum Mill) is one of the most important

vegetable crops globally, with production estimated by 180 million tons in 2017 [61]. It

is also one of the most demanding in water [62]. Accordingly, improvement in tomato

irrigation could result in significant water savings. Therefore, tomato is a suitable model

crop for the evaluation of irrigation strategies.

A key challenge to achieve precise irrigation, i.e. using just the right amount of water,

is to be able to estimate the water need of the plant as well as the evaporation related to

the environment. Hence, when modeling the model of a crop, one needs to model the

environment demand as well crop’s. Another interesting effect, is that as the plant grows,

the environment demand decreases and the crop’s water need increases. This is due to plant

canopy getting larger over the growing season. Thus, estimating the crop water consumption

is not trivial, it depends on many variables such as the meteorological variables, the size

of the crop’s canopy, or their age. Please note that the plant canopy growth depends on the

crop type, the amount of energy received. It is not just a function of the time.

For these reasons, precision irrigation is expensive, and often require experts. In Israel,

the current best practice to determine the correct irrigation dose requires an agromet scientist,

as well as an array of tensiometers. This is impractical for small farms or developing

countries.

In this section we propose two methods, with pros and cons, to address the aforemen-

26

tioned issues. Specifically, the estimation of Kc from UAV multispectral imagery, and the

application of an NN trained to predict latent heat fluxes based on meteorological data.

These methods were tested against the current best practice in processing tomato irrigation

and were shown to perform as well while being cheaper and simpler to use.

3.1.2 Related Work

The FAO-56 crop coefficient approach is one of the most commonly applied irrigation

management methods [63]. Using this approach, ETc is estimated based on the reference

evapotranspiration from a hypothetical crop (ET0) and is given by ETc = Kc×ET0, where

ET0 is commonly derived using the Penman-Monteith method, while Kc for specific crops

in specific environments is empirically determined in water consumption experiments to

isolate the atmospheric evaporative demand from the plant reaction. Standard Kc tables

based on such experiments may not be sufficiently accurate when the regular crop devel-

opment is inhibited by stress factors or irregular weather conditions. Therefore, remote

sensing estimations of Kc based on vegetation indices that reflect the ground cover and

crop development level in near-real-time, can serve as surrogates of Kc that overcome this

limitation [64, 65].

In a previous study [66], Kc estimation models were developed for processing tomatoes

based on Sentinel-2 imagery that is available at a frequency of 5 days at 10–20m spatial

resolution, and Venµs imagery that are available at a frequency of 2 days at 5–10m spatial

resolution [67]. This development facilitates estimating Kc at a high enough temporal

resolution for irrigation decisions that well capture within-field variability. However, in

cloudy environments, even such a high revisit time may not be enough to support near-real-

time estimations of Kc from optical satellite imagery. In addition, satellite pixels are too

coarse to properly estimate Kc in narrow experimental plots. However, low flying Unmanned

Aerial Vehicles (UAVs) can overcome such limitations. An UAV can capture imagery on

days not covered by satellite overpass, and even under clouds [68]. Moreover, the spatial

27

resolution of imagery from low altitude remote sensing is better suited for small plots [69].

Kc estimations from UAVs equipped with multispectral cameras have been previously used.

In parallel with the increased use of UAV, in recent years there is an upsurge in the

use of machine learning for system modeling, not only for remote sensing data but also

for irrigation management (e.g.,[70, 71]). Recently, [72] highlighted the potential of using

deep learning techniques in geoscience for modeling dynamic time series. Wide research

was done on prediction of reference evapotranspiration using machine learning ([73] and

references therein), but few on actual evapotranspiration measurements over agricultural

crops. Some work focused on using MLP to gap in ETc time series [74, 75, 1]. However,

here we want to make running predictions of the ETc values. This is significantly harder as

we do not have access to the past or future ETc values. A key issue when trying to estimate

running crop’s ETc values is that as the crop grows, its evapotranspiration increases as well.

This means that we need to learn two things: The impact of the meteorological variable on

the crop evapotranspiration, and how to model the plant growth.

3.1.3 Proposed Methods

We present two different methods aimed at maximizing tomato yield by irrigation man-

agement. To do so, we developed two original methods and built a mobile application

to instructs farmers with irrigation recommendations based on our models. The different

methods used are detailed in the following sub-sections.

Irrigation Estimation from UAV

The first method we present here consists of flying a UAV equipped with a multispectral

camera to acquire images and estimate Kc to compute the required irrigation dose. The

drones used can be seen in Figure 3.3. Figure 3.4 shows one of the eddy covariance tower

used to collect data

The Kc estimation model developed for Sentinel-2 [66] was applied to multispectral

28

Figure 3.3: The UAVs used when collecting aerial images in the fields.

imagery acquired with a Micasense1 RedEdge-MX Sensor. This work by [66] used eddy

covariance measurements of the actual crop water consumption during three growing

seasons to calculate the actual Kc and model it using spectral vegetation indices derived

from spaceborne multispectral imagery. To apply this model to imagery acquired by the

RedEdge-MX Sensor, a relative calibration between Sentinel-2 Level-2A products and

RedEdge-MX imagery was carried out. We used co-acquired imagery of agricultural fields

from four different dates and crops. UAV imagery was processed into orthomosaics using

Pix4Dmapper (Pix4D S.A., Prilly, Switzerland). Satellite and UAV images were then

resampled to 10 m resolution, and the area of the field was masked. Subsequently, linear

regression models were fitted for overlapping pixels of Sentinel-2 and RedEdge-MX bands

with similar central wavelengths. The result was transformation equations from Sentinel-2

to RedEdge-MX reflectance values for which the Kc estimation models could be applied to.

UAV flights took place at the irrigation experiment site in Gadash Farm in the Hula Valley

(33◦10’55”N 35◦34’57”E) every 5-10 days during the 2020 growing season from an altitude

of 50 m above the ground, with front and side overlap was 85% to facilitate the generation

1Seattle, Washington, USA

29

of a good equality orthomosaic. The average Kc value in UAV-treatment replicates together

with ET0 data from a nearby meteorological station (Kavul station; 33◦06’03”N35◦36’34”E)

was used to calculate the actual ETc in this experimental treatment and to instruct the grower

with an irrigation recommendation via the mobile application.

Irrigation Estimation using a NN

The second method consists in using an NN to predict the ETc. To do so, the NN used

meteorological variables collected from local weather stations, and the average Leaf Area

Index (LAI) of the control treatment. The LAI is measured on a fortnightly basis while

the weather variables can be acquired at a ten-minute sampling rate or higher. Since the

irrigation was applied every day, we first needed to build an algorithm capable of forecasting

the LAI while taking into account past measurements.

Given that we only had LAI recordings from four past experiments, we chose to use

a K-Nearest Neighbour (KNN) algorithm to predict future LAI values with a two days

sampling rate. This meant that at the beginning, the LAI was modeled as the mean of all the

past measurements, and then as we started collecting measurements, the extrapolated points

followed the growth curve of the most similar examples in the database. To interpolate

between the predicted points we fitted a spline on top of them, relaxing the shape of the

predicted curve, and making the sampling process more convenient.

To estimate the daily irrigation dose, we trained a neural-network to predict the latent-

heat-flux, a common proxy for ETc. To do so, we used the LAI, acquired with the method

outlined above, in combination of the following variables: the net-radiation, the temperature,

the humidity, the wind speed, the time-of-the-day, and the days since germination. These

variables are acquired by scrapping data from local weather stations, while the latent-

heat-flux was measured using the eddy-covariance method during in previous collection

campaigns in the region. Figure 3.4 shows of this tower installed in a freshly sowed field. We

sampled all these variables at a 30 minutes rate and used them to train an MLP. This MLP

30

Figure 3.4: An eddy covariance tower in a field. Coworker for scale.

was composed of two dense layers with 48 neurons each, and a last dense layer with a single

neuron. To minimize overfitting, we added dropout layers in-between each dense layer. All

layers used LReLU activations [15], except for the last layer, which had no activation. The

network weights were regressed using the adam optimizer, with a learning rate of 1e-5, and

the drop rate was set to 0.3. Regarding the optimization function, we used a huber-loss as

it made the training less rigid, and allowed to account for the inaccuracies in the variables

fed to the network. To make our training more efficient, we also relied on a PER training

scheme [57]. In the end, this models allowed us to predict the ETc at a half-hourly rate. To

get the daily treatment recommendation we integrated the predicted values over a whole day.

3.1.4 Baseline, Experiment & Evaluation

Baseline

To compare our methods, we used the current best-practice irrigation in Israel. This control

treatment consisted of an expert relying on a set of soil tensiometers to determine the

irrigation dose. The water tension in three depths was used as feedback to confirm the

31

correct irrigation; if a desired water tension threshold was not reached, the next irrigation

could be supplemented to reach the target value. Three more treatments were derived from

the control treatment as ratios of 50%, 75%, and 125% of the control irrigation dose.

Experiment

To evaluate the different methods, we conducted an irrigation trial in an experimental crop-

farm close to some of our previous data-collection campaigns (33◦10’55”N 35◦34’57”E).

We selected the processing tomato cultivar H-4107 and transplanted them with a plant

density of 2500 plant/dunam. After transplanting, the entire field was irrigated with 30mm

water in order to fill the soil profile. Then it was irrigated according to the irrigation expert

guidance for two months after which the irrigation trial began. In total, we tested six different

irrigation treatments: 1) “Control” – the ’best-practice’ irrigation, our baseline.

Figure 3.5: An overhead imagery of our experimental field and the different plots corre-
sponding to each treatment.

2) 50% of the control. 3) 75% of the control. 4) 125% of the control. 5) “ANN” –

irrigation based on the trained machine learning model. 6) “UAV” - the irrigation based on

the Kc estimated from the UAV. The main assumption in this experiment was that the natural

variability, which originates in environmental conditions, genetic material, equipment and

management, is considerably smaller than the differences from the different irrigation

treatments. Each treatment had six repetitions as can be seen in Figure 3.5 where each

repetition was comprised of three 10 m by 2 m rows (60 m2). The effects of the environmental

conditions were also be mitigated by the scattering of the different repetitions across the

32

field.

Evaluation

To evaluate the performance of the different methods we used three evaluation metrics: the

yield, water use efficiency, and brix. The yield is the most important metric, it is a measure

of the fresh biomass of harvested tomato fruit per unit of area (e.g., ton / dunam).

This metric is supplemented by the water use efficiency, calculated by dividing the total

yield (kg) with the total applied irrigation (m3) in each treatment. The overall goal of the

irrigation experiment was to maximize the yield while maximizing the water use efficiency

at the same time. However, the optimization of the water use efficiency should not be done

to the detriment of the yield. Hence, for now, having a higher yield is more desirable than

having a higher water use efficiency.

Finally, Degrees Brix is a measure of the sugar content in an aqueous solution. One

brix degree corresponds to one gram of sugar for 100 grams of liquid. In the case of the

Tomatoes, the brix level is a common way to quantify their quality; higher is better, but

there is usually a trade-off between quality and quantity. In general, less irrigation typically

results in higher Brix but lower yield.

3.1.5 Web Platform

To enable farmers to apply our irrigation recommendation, we have developed a backend

server using an Amazon Web Services EC2 instance2. The backend was used to extract data

automatically from the weather station3 using the selenium web driver4, as well as running

the neural-networks. On top of this, we have built a website on which the farmers could

connect to get the irrigation dose for the day. Figure 3.6 shows the original website in 2020.

In 2021, for our new testing campaign, the website has been remodeled to allow farmers

2https://aws.amazon.com/?nc2=h lg
3https://meteo.co.il/home/map?TargetIds=9,3,0,1
4https://www.selenium.dev/documentation/webdriver/

33

https://aws.amazon.com/?nc2=h_lg
https://meteo.co.il/home/map?TargetIds=9,3,0,1
https://www.selenium.dev/documentation/webdriver/

Figure 3.6: The irrigation website on a web browser and a smartphone.

to insert field measurements themselves. This new website, built with the help of the ministry

of agriculture, can be seen here: https://irrigation-dss.agri.gov.il/.

3.1.6 Irrigation Results

In this section, we compare the different treatments using the metrics defined earlier. Fig-

ure 3.7, shows the metrics for each method throughout the season. The histograms show

both the average performance of the treatments across the six repetitions and their standard

deviation. As can be seen on Figure 3.7b, the control, the NN, and the UAV, all achieve a

similar yield, around 12 tons/dunam. The 125% treatment achieves the highest yield, while

the 50% treatment achieves the lowest yield, 8.5 ton/dunam. On the same graph, we can also

see that the 125% treatment consumed a lot more water than the control, while its yield was

not significantly higher than the other methods. This shows, that our methods and the control

are performing near the optimal yield/irrigation ratio. At the same time, the 50% treatment

and 75% treatment consumed much less water but their yield is drastically reduced. The

same pattern can be seen in Figure 3.7a, the 50% and 75% treatment both have a high water

use efficiency but this comes at the cost of the yield, which is not desirable as we are first

and foremost interested in the yield. On the other side of the spectrum, we can see that the

125% treatment has the lowest water use efficiency while it does not have a significantly

better yield than the other treatments. In the end, we can see that from the irrigation and

yield perspective our methods performed as well as the best-practice irrigation (control).

The brix measurement shown in Figure 3.7c, displayed very large variance across the

34

https://irrigation-dss.agri.gov.il/

(a) Water use efficiency,
higher is better.

(b) Yield against irrigation.
Red, higher is better; blue,
lower is better.

(c) Brix, higher is better.

Figure 3.7: Results of the different treatments over the whole season.

different repetitions of each treatment. The 50% treatment was slightly higher then the rest

but this difference was not statistically significant.

Overall, this experiment, in which we delivered live recommendation to the farmer, was

successful. The whole of the pipeline, from data-scrapping, to predicting, and sending the

prediction worked reliably for the full summer season. This allowed us to show that the

irrigation recommendation from the NN and the UAV almost perfectly agreed with the best

practice, both in the total amount and rate of irrigation throughout the season. Moreover,

they resulted in a similar yield and brix levels.

3.1.7 Discussion

In this experiment, we showed that methods based on NN could be used to achieve expert

level irrigation. The main advantage of this method compared to the baseline resides in its

low running cost, and ease of use. However, this method is timely to set-up as it requires

careful calibration of the system. This calibration is unique to the area and crop-type, which

means it has to done again for every new locations. Furthermore, it requires no supervision

and is transparent to use. This makes it particularly interesting in developing countries,

where the cost of advanced equipment and the availability of domain experts remain a key

limitation to a wider adoption of efficient irrigation methods.

The other method, the UAV, is more expensive to run but does not require region-

35

specific calibration and allows for highly accurate irrigation recommendation. It can be used

anywhere on earth, deployed quickly, and does not need expert supervision.

3.1.8 Conclusion

Both novel approaches to determine the irrigation dose in processing tomatoes were found to

perform equally to the control treatment of the best common practice for processing tomato

irrigation. While the control treatment relied on an experienced agronomist specialized

in vegetable crops cultivation that had the benefit of feedback from soil tensiometers, the

experimental approaches, the estimation of Kc from an UAV, and the NN, did not. This

makes these methods particularly interesting as they alleviate the need of crop experts and

hence make efficient irrigation more affordable, which is crucial to broader the usage of

high precision irrigation techniques. In our experiments, the multispectral imagery-based Kc

estimation model, originally calibrated for Sentinel-2, was successfully transferred to work

from a UAV with a multispectral camera payload. The trained NN model demonstrated

its validity by estimating ET accurately. There were no significant differences in the yield

quality and quantity between the approaches in the irrigation experiment. Although the

study included only one irrigation experiment, the results illustrate the capacity and ease-of-

implementation of novel techniques based on UAVs and NNs for irrigation management.

36

3.2 Filling Gaps in Evapotranspiration Measurements

3.2.1 Motivation

A precise estimation of crop ET is of importance to quantify terrestrial water budgets

for irrigation purposes and to understand evaporation, transpiration, and photosynthesis

processes. Most ET estimation methods are indirect and thus provide only an approximate

estimation. Direct methods are expensive and technically complex [76] but provide a fairly

accurate and reliable estimate of ET. The EC method is a direct approach for measuring

field-scale ET over crops [77]. Most EC systems provide a time series of half-hourly average

fluxes of latent and sensible heat and CO2 as well as momentum fluxes. Unfortunately, the

percentage of missing data is between 20 and 60% of the original dataset [78] due to gaps

of various lengths caused by different factors, including sensor malfunction, power breaks,

and data quality filtering. To calculate daily, monthly, or yearly sums, these gaps must be

0 100 200 300 400 500 600

0

200

400

600

800 groundtruth
pred
input

0 100 200 300 400 500 600

0

200

400

600

800 groundtruth
pred
input

0 100 200 300 400 500 600

0

200

400

600

800 groundtruth
pred
input

0 100 200 300 400 500 600

0

200

400

600

800 groundtruth
pred
input

Figure 3.8: Four gaps in the eddy covariance data (green), and the gap filled by our neural
network (orange) as well as the real value (blue).

reliably filled. Furthermore, when gaps occur in the data (e.g., when studying the ET diurnal

curve or when comparing to other high-temporal-resolution ET measurement methods)

accurate gap filling is required. The EC method is also widely used to measure fluxes over

37

various crops [79]. These crops are managed ecosystems with rapid change throughout a

growing season. In a warm climate, as illustrated in this article, a typical crop cycle could

last 3-4 months, during which the conditions in the field change dramatically, mainly due

to variations in the leaf area index and canopy structure. As a result, the boundary layer

properties and the albedo change during the cropping period and large temporal variations

of measured heat fluxes are observed [80]. Additionally, due to the warm climate, ET fluxes

reach much higher values (and, as a result, higher errors when estimating them) than natural

ecosystems like forests and grasslands in European climates. Further-more, gaps occurring

during the short growing season lead to a limited amount of valid data, putting a strain on

modeling the data in the gaps. These characteristics of EC measurements over field crops

make gap-filling a challenging task.

3.2.2 Formal Description of the Problem

The system we want to model can be formulated as in Equation 3.1, where xi(t) is the

set of observed variables such that ∀i ∈ [1,n],∀t ∈ [1,T], xi(t) ∈ IR and zi(t) is the set of

non-observed variables such that ∀i ∈ [1,m],∀t ∈ [1,T], zi(t) ∈ IR.

y(t) = f (x1(t), ..,xn(t),z1(t), ..,zm(t)) ∈ IR

∀i ∈ [1,n],∃τi ∈ IR s.t. xi(t) = xi(t+ τi)+ ε

∃τ ∈ IR s.t. y(t) = y(t+ τ)+ ε

(3.1)

We will denote as x the “sequence of observations” of our system, and y the “sequence

of targets” of our system. The systems modeled are pseudo periodic with xi and y values

that are relatively similar from one day to another. The goal of our model will be to recover

the missing values from the target sequence using the sequence of observations and the

sequence of targets with missing values. The model is deployed offline, hence it can use

values before, during, and after the gap. As such, it takes as inputs a sequence of observed

38

variables Xi(t) = [xi(t−T),xi(t+1−T)..,xi(t)], the sequence of targets with missing values

Ydeg(t) = [y(t−T),y(t +1−T), ..,y(t)], and a mask indicating where the data is degraded

M(t) = [y(t−T),y(t +1−T), ..,y(t)]. T being the length of the sequence processed. The

function g our models will learn is given in Equation 3.2.

Ŷ(t) = g(X1(t), ..,Xn(t),Ydeg(t),M(t)) ∈ IRT (3.2)

3.2.3 Related Work

Machine Learning Applied to Fill-Gaps

There are many methods applicable to fill gaps in data-streams, for instance, early methods

used to replace missing data using Look Up Table (LUT). It consists in using the previous

occurrence that resembles most the point we are trying to recover. A different approach

to this problem, is to use KNN. Here, we consider that only the target data y(t) ∈ IR is

corrupted, but that the remaining data xi(t) ∈ IR is correct. Hence, we can fit a probability

distribution over Y |X , and the missing values can be recovered by sampling the marginal

distribution over X and computing P(Y |X). In practice, it amounts to performing a local

weighted average over available values of Y |X . The weights are proportional to their distance

from X , and only samples in the vicinity of the gap are used. The main drawback of those

methods is that they solely rely on the neighboring points. Hence, if the weighting window is

too small, there may not be occurrences similar to the points to be filled. However, when the

horizon increases, the impact of non-observable variables (latent variables) may significantly

deteriorate the filling quality. This is particularly true in systems with high paced dynamics,

where the latent variables are responsible for amplitudes changes.

With the rise of deep neural-networks, these methods are being challenged. Standard

MLPs have been successfully used to fill gaps in slowly changing time-series. Those

time-series have no hidden local trends and very large data-banks which make the system

identification process easy. In this case, MLPs are often using the observation of the system

39

xi(t) at a given point to predict the value of y(t). Yet, it is not uncommon to see MLPs using

Xi(t) to predict y(t) or Y(t). However, when processing sequences, MLP are suboptimal

as they cannot natively embed temporal relations, and cannot extract patterns over long

sequences. This means that if those networks were used for rapidly changing systems, they

would not be able to extract local trends to re-scale their forecasts.

RNNs are a good alternative to MLPs when processing sequences. The recurrent nature

of RNNs allows them to remember past information, and architectures such as LSTMs [8, 81]

and GRUs [9] are commonly used to solve time-series forecasting problems. Unfortunately,

to the best of our knowledge, in the case of gap filling, the machine learning literature has

little to offer. While these methods address the problems encountered with MLPs, they

have limitations of their own. Indeed, LSTMs and GRUs suffer from limited memory

capacity and range. Because they are recurrent architectures, the hidden-state of the network,

which is comparable to a memory, will go through n transformations, with n the number

of elements in the sequence. This means that correlating information from elements at the

beginning of the sequence with those at the end will get harder as the sequence gets longer.

Additionally, properly initializing the RNNs’ hidden state is tricky and can lead to prediction

errors, especially in the case of small datasets.

This memory capacity is one of the key points alleviated by Transformers [37] and more

recently Bert [38]. The mechanism at their root, self-attention, offers the benefits of recurrent

models without their downsides. In this section we make heavy use of Transformers, hence,

we provide an introduction to this type of networks in subsection 3.2.4. It also presents why

their properties make them particularly well suited for gap-filling.

Gap Filling in Irrigation

In order to solve the aforementioned problem, various gap-filling methods that use available

data to reconstruct the missing parts have been developed [78, 82, 83, 84, 74, 85, 86, 87,

1]. Most of the methods are based on empirical techniques that derive and parameterize

40

the relations between certain drivers and the fluxes. Usually, the drivers are meteorological

variables (e.g., air temperature, solar radiation, etc.) measured on-site or at a nearby

meteorological station. Several methods have been suggested in the literature, from basic

methods like Mean Diurnal Course and Lookup Tables [82], and their integrated version

(Mean Distribution Sampling; [83]), to more sophisticated ones such as nonlinear regression

[78, 82, 84], artificial neural networks [74, 85, 86] and random forests [87]. A comprehensive

comparison of 15 gap-filling techniques based on ten benchmark datasets showed that

different methods performed almost equally well, suggesting little room for improvement

[78]. However, these datasets are year-long and represent European forests, which are

characterized by conditions that are much less time-varying than those of the rapidly

changing croplands. Furthermore, most of the methods presented in that comparison and

the broader literature have been developed and tested on CO2 flux rather than on ET.

Unlike the shallow networks, used in most studies on gap filling and modeling of EC

flux data [74, 85, 86], DL models can learn to extract features and take advantage of the

spatial or temporal structure of the data streams in a hierarchical way. EC and additional bio-

meteorological measurements from flux towers generate multi-dimensional time series, and

these, in general, have been the topic of application of these new classes of neural networks

[88]. Recently, Reichstein et al. [72] highlighted the potential of using DL techniques in

geoscience for modeling dynamic time series. In the context of ET estimation, DL has

been evaluated for interpolating local ET prediction to regional scale by correlating terrain

appearance with ET [89]. However, as far as we know, this kind of model has never been

examined in the context of gap-filling of EC data.

Only a few papers have dealt with gap-filling of crop ET [82, 90, 91, 92]. These

studies, used various methods, e.g., MDS, Kalman Filter, Multiple Linear Regression, and

MeanDiurnalVariation (MDV). In recent years, however, new advances in machine learning,

specifically DL, were developed, with high capabilities in time series modeling. Nevertheless,

so far, none of the studies on ET gap-filling available in the literature employed NN. Hence,

41

the major goal of this research was to examine the suitability of such DL approached to fill

gaps in eddy covariance ET data over crops.

3.2.4 Fundamentals on Transformers

A Transformer is an NN architecture introduced by [37] which makes use of the self-

attention mechanism, weighting differently each element of the input sequence based

on its significance. Similarly to RNNs, transformers are designed to handle sequential

data. Unlike the RNNs, transformers do not necessarily process the data iteratively or in

order. This makes them faster, as they can process a whole sequence at once. While their

original intended application was primarily Natural Language Processing (NLP) and Natural

Language Generation (NLG), the last two-year have seen increased usage of Transformers

in computer vision, where they seem particularly performant on large datasets [93, 94].

Overview

The original Transformer architecture is structured similarly to an auto-encoder. It features

an encoder that projects a sequence [X1(t), ..Xn(t)] ∈ IRNxT into a latent space Z(t) ∈ IRMxT

with M >> N. And a decoder that decodes this latent space to create a novel sequence

[Y1(t), ..Yk(t)] ∈ IRKxT. If we take the example of translating a sentence in French into

English, the encoder takes in a given French sentence, encodes it into a latent sequence, and

the decoder turns it into an English sentence. The latent space represents a shared language

between the encoder and the decoder. Figure 3.9 shows the original transformer architecture.

To achieve this, the first thing the networks does is “embedding” the input, or projecting

it to a higher dimension space. Then it adds a positional encoding, allowing the network to

know the position of each element in the sequence. With all this done, it can now extract

contextual information from the embedded data. To do so, it uses its “multi-head attention”

blocks, which contain the self-attention layers. Once this step is done, we can get the latent

space by mixing the output of the different attention heads through some dense layers (Feed-

42

Figure 3.9: The transformer architecture. The encoder is on the left, the decoder is on the
right. (Image from [37])

Forward). The decode operation is a bit more complicated. Instead of simply decoding the

latent space, the current output is encoded, and sent through a masked attention layer. The

mask prevents the network from accessing the real data at training time. When inferring the

model, this data does not exist yet. This results of the masked-attention process is then used

to pull information from the latent space, which are then mixed through some more dense

layers, and finally projected to the desired output shape.

There are two elements that make transformers so performant at processing sequences:

the positional encoding, and the attention mechanism. So let us start by exploring how the

attention works in transformers.

43

Scaled Dot-Product Attention

In transformer, the Scaled Dot-Product Attention computes the correlation for every combi-

nation of elements pairs in the sequence under the form of an attention matrix. The process

of the attention is given in Equation 3.3, where input is the encoded input. Wki , Wqi and

Wvi , are projection weights of a given attention-head i, used to compute the key K ∈ IRdk ,

the query Q ∈ IRdk , and the value V ∈ IRdk . A is the attention matrix, or attention weights,

which once applied onto the value V gives the output of the Scaled dot product. Please note

that in some instances, V can be acquired using a different input. This can be seen on the

second attention mechanism in the decoder of transformer.

K =Wkiinput

Q =Wqiinput

V =Wviinput

A = so f tmax
(

KQ√
dk

)
out put = AV

(3.3)

Overall, the attention weights in A are defined by how each element of the sequence

projected to Q are influenced by all the elements in the sequence projected to K. The softmax

is applied to make an even distribution between 0 and 1 and ease the learning process. When

applying multi-head attention, the idea is that while the input remains the same, the weights

in the Wki , Wqi , Wvi matrices will be different for each head. Hence, the network can learn

with each head different type of element association.

Positional Encoding

Unlike RNNs, which recurrently process the elements of the sequence, attention models

cannot know where the different elements are positioned inside the sequence. To alleviate

44

this issue, transformers use a positional encoding, which gives a unique value (an identifier)

to each element of the sequence. Despite the potential benefits of learning this encoding

[95], which could improve the performance, [37] shows that there are no benefits from

using a learned positional encoding. Instead, they used sine and cosine functions given

in Equation 3.4 to encode the position. pos ∈ IN is the position in the sequence, i is the

dimension of the encoded input.

PE(pos,2i) = sin

 pos

10000
2i

dmodel

PE(pos,2i+1) = cos

 pos

10000
2i

dmodel

 (3.4)

A visual representation of this function in given in Figure 3.10. The left axis represents

the position of each element of the sequence, while the top axis is the depth of the encoding.

It can be seen that each element has a unique encoding.

* https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

Figure 3.10: The positional encoding of a sequence of size 32 with a depth, dmodel , of 128.
(Image from Lil’Log*)

Benefits for gap filling

Now that we know how transformers works, let us have a look at what makes them well

suited to fill gaps in data. If we recall the one of the key limitation of RNNs is their memory,

and the difficulty to correlate elements that are far apart in a sequence. With transformers,

this is not a problem anymore. The positional encoding coupled to the attention mechanism

45

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

allows associating elements across the whole sequence without any loss. Furthermore,

because each attention heads works in parallel to one another, increasing the capacity of the

network is relatively cheap. Another advantage of the transformers is the ability to visualize

the attention matrices. These matrices can give insights about what is important in the input

data. Finally, the positional encoding can be manipulated to easily account for cyclicity in

the data, such as day/night cycles.

3.2.5 Proposed Approach

When building our model dedicated to filling gaps, we took inspiration from the canonical

attention architecture: Transformer5. However, instead of using the whole model, we only

relied on a single part of the transformer model: the encoder. Our architecture can be seen

in Figure 3.11 This simplification of the encoder/decoder architecture reduces the number of

parameters within the model, reducing its complexity and making it easier to train. Similarly

to transformer, our architecture features multiple attention-heads which process embedded

inputs.

Initial results with a single head showed poor performances: the network was having

a hard time separating the different variables. Indeed, in the case of the X sequence, the

model should look everywhere, but in the case of the Ydeg sequence, it should not use values

inside the gap. Hence, based on that observation, and in an effort to minimize the learning

complexity, we chose to manually assign different variables to our network heads. We used

three attention heads: one head processes the observation sequence, another head processes

the target sequence, and finally, the last head processes a concatenation of observation and

target sequences. Ideally, we would let the model learn how to separate the variables on its

own, but, due to the limited training samples, this was not feasible on our evapotranspiration

datasets.

After applying the multi-head attention mechanism, the output heads are concatenated

5Complete details of the architecture is given in subsection 3.2.4.

46

Figure 3.11: Our architecture for gap filling

and passed to a feed-forward layer: two dense layers with LReLU [15] activation function,

and a dropout layer. Similarly to [96], our models performed approximately 10% better

when using LReLUs over normal ReLUs. After the feed-forward layer, a dense layer is used

to project back the output of our feed-forward layer to a one-dimensional sequence: the

target sequence with its missing data filled.

Furthermore, to improve the performance of the network we use a mask M in the overall

structure to copy the non-gap-points, and set the values of Ydeg inside the gap to −1. This

tells the network it should not consider these values, −1 was chosen as the inputs are

[0,1] normalized, so they clearly stand out. Using that same mask, we implemented a full

skip-branch, directly copying the original target value onto the output. This prevents the

network from learning a complicated function, where part of the target sequence is copied,

and the rest is changed to fill the gap. As of now, the detection of the gaps in the data is

47

handled by the EddyPro software6. This software is one of the most prevalent in the field

and features a wide panel of failure detection methods.

To natively account for the cycles, we modified the positional encoding function. Instead

of using the position of the elements in the sequence to perform the positional encoding, we

chose to use the value of the primary periodic variable: in the case of the micro-climatic data,

the time of the day. Hence, the positional encoding becomes cyclic. This lets us account for

the periodic time dependencies natively. Similarly to the Transformer model, we use sine

and cosine functions with the modifications mentioned above, as can be seen in Equation 3.5.

pos ∈ IN is the position in the sequence, i is the dimension, and t(pos) ∈ IN is period.

PE(pos,2i) = sin

 t(pos)

10000
2i

dmodel

PE(pos,2i+1) = cos

 t(pos)

10000
2i

dmodel

 (3.5)

Despite the appeal to learn the encoding [95], which should, in theory, allow the network to

learn the frequencies that make most sense for the problem at hand, we chose not to. Firstly,

based on the conclusion of [37], it seems that there are no benefits from using a learned

positional encoding. Secondly, this lets us reduce the complexity of the learning process in

regard to the limited amount of training examples at our disposal.

From a practical perspective, the positional encoding depends on the period from the

different sequences of the batch, which have different time offsets. This means that it cannot

be computed ahead of time. Thus to maximize performance, the positional encoding is

computed directly within the network’s graph.

6 https://www.licor.com/env/products/eddy covariance/software.html

48

https://www.licor.com/env/products/eddy_covariance/software.html

3.2.6 Evaluation Datasets

We tested our model on two cases: a real use case from the field of agriculture and a toy case

to demonstrate that our approach also scales to other related problems. For the application

on real data, we aim to demonstrate that our methodology is capable of strong generalization

by learning on a growing season in different crop fields and using this knowledge to fill gaps

in situations that were not encountered before: a different crop at a different season at a

different location.

Toy Problem

To test our architecture, we developed a small toy problem that features similar construction

to our general problem. We create 3 variables xi(t) ∈ IR, t ∈ IN s.t. xi(t) = αi + sin(t ∗

γ + τi) ∗βi + εi and γ is computed such that the periodicity of the variables is 48 points.

Additionally, we create a latent variable (which will not be observed by our methods)

z1(t) ∈ IR defined as z1 = sin(t ∗ω) where ω is set such that the periodicity of z1 is 720

points. We chose 720 as this is larger than the maximum scope of our neural-networks. We

then combine those variable to form Equation 3.6.

y(t) =
∣∣∣x1(t)2× ex2(t)× log

(
x3(t)

)∣∣∣× (z1(t)+2
)
+ ε (3.6)

This problem is interesting because the cyclicity of the positional encoding of our networks

is set to 48 points and not 720 points. Hence, our model will have to adapt to the amplitude

change created by z1 and extract local trends to estimate the correct values. A total of 70,000

points were generated. On this problem, we compare ourselves to a KNN method with a

maximum window of 300 points on each side of the gap. It is set to use up to 15 points as

long as their L∞-norm is below 5% error. If no points matching this condition are found, it

then works as a LUT. We are also comparing ourselves to an MLP model that we acquired

doing a grid-search for the optimal set of dense layers.

49

Evapotranspiration

To evaluate our model on a real-world scenario, we chose to apply it to ET measurements.

These measures of ET are acquired using an EC device. An EC tower measures latent heat

flux (i.e. water vapor flux) from a crop. This can be used to infer the crop water consumption

and hence its evapo-transpiration. Additionally, the tower also records the relative humidity

in the air, along with the sun radiation, the wind speed and the air temperature. These 4

variables, which we will call meteorological data, are the only variables our neural network

has access to, to reconstruct the missing point in the ET.

Please note that sometimes the tower had sensors failures as well. In order to avoid

having gaps in our input data, we used values from a nearby meteorological station to fill in

the missing meteorological values. The files used to train and evaluate our model come from

six different measurement campaigns and feature two growing seasons in three different

types of crops: processing tomatoes, cotton, and wheat. These recordings were acquired at

different seasons: winter and summer, and in different regions in Israel: north and south. The

direct consequence is that the amplitudes of the variables change significantly between the

different recordings. Figure 3.12 shows how the variable we want to fill gaps in fluctuates.

Each recording has 5 variables, the latent heat flux (i.e. our target), the net radiation, the

relative humidity, the air temperature, and the wind speed. Figure 3.13 shows typical values

for different crops. Those files are recorded with a half-hourly rate over a period of 3

to 4 months. In total, this makes for about 3000 to 4000 continuous gap-free-points per

recording.

To evaluate our networks on those crops, we could not train and test on each recording

individually. This would result in too little data to train or evaluate our model properly.

Also, it would mean that our model would be tuned for this specific recording, and would

not be able to generalize to other crops, making our approach impractical. We verified this

hypothesis using tomato crops and then chose to do 6 different train/test sets. To do so, we

put all our recordings but one in the training and the remaining one in the test. We ran the 6

50

Figure 3.12: The different sites where the data has been acquired. C stands for cotton, W
stands for wheat, T stands for tomato. The number gives the year of the recording.

possible combinations and obtained 6 different datasets.

This dataset exhibits interesting behaviors when compared to similar problems, for

instance in forestry. Here, the hot middle-eastern climate coupled to the spring season

creates rapid changes in the plant canopy, increasing its leaf area index which in-turns

increases the water it consumes. Ideally, we would include a vegetation variable, like the

leaf-area index to our model, but this variable is very tedious to acquire, and in most cases

is not measured. Using vegetation indices (e.g. NDVI - Normalized Difference vegetation

index) derived from remote sensing data[97] could also be considered, but they often exhibits

gaps and are not applicable to small fields. This is why in the end, we did not consider

any vegetation variables in our experiments. On this dataset we only compare ourselves to

REddyProc. As the MLP performed worsed than the REddyProc its results are not presented

here.

51

Figure 3.13: The different variables accessible to the network to make its predictions.

3.2.7 Evaluation Metrics

We chose to evaluate our approach on different sequences and gap sizes. To do so, we gener-

ated sequences with 3 different lengths: 192, 384, and 576 points, equivalent respectively to

4, 8, and 12 days on the real data. For each of these lengths, one model is learned. We will

refer to sequences of 192 points as small (S), 384 points as medium (M), and 576 as large

(L).

When considering our real data, the limited quantity of data-points was a problem. Even

for small sequences, we only had 82 unique non-overlapping sequences. To increase that

number, we generated sequences using a moving window with a stride of one. This allowed

us to generate about 2500 sequences out of one recording. This high redundancy in our

data explains why we aimed to minimize the network’s parameters: to prevent overfitting.

Additionally, we chose to generate gaps of random size, and at random positions when

52

sampling batches during both training and testing. This further increases the quantity of

available data and further mitigates the risk of overfitting. In the small sequences, the gaps

ranged from 24 to 72 points; in the medium ones, the gaps ranged from 72 to 144 points,

and in the large ones, the gaps ranged from 144 to 288. This is slightly higher than the usual

30% missing data in average in EC measurements.

To evaluate our approach on the real data, we compare ourselves to the most prevalent

tool in the field: REddyProc [98]. This tool, developed by the Max-Planck Institute, is

strictly dedicated to fill gaps within flux measurements by EC systems. Embedded as an

R package, it relies on the MDS, and in some extreme cases on the MDV to recover the

missing points. The main restriction of this tool comes from the techniques it uses. As it is

based on MDS, a window of at least 7 days on each side of the gap is being used. Since the

size of this window cannot be changed, the two approaches were compared using different

sequence lengths to fill the gaps: Our network sees a much smaller horizon of points due to

memory limitation of our GPUs. Also, using 14-day windows (7 on each side) and 6-day

gaps would be equivalent to use sequences of 960 points, which we could not do with our

data-recordings as it would result in too few sequences.

Finally, to evaluate the results of the different methods, we sample 100 gaps from the

test set. On these gaps, we compute the RMSE and the Mean Bias Error (MBE) between

the methods results and the ground-truth EC measurements. The MBE is the mean of all

the errors on a given gap. For each gap the percentage of improvement is computed and the

mean and standard deviation of the improvement is also reported. The metrics are computed

per gap and then averaged. Additionally, we compute the standard deviation for each of the

metrics. The objective of the MBE metric is to make sure that the model has a zero centered

error. In irrigation, it is used to indicate the bias induced on the daily or seasonal sums of

the water loss. Finally, to ensure the repeatability of our results, all our models are trained

3 times with a different optimizer seed, different test samples, and different training batch

orders. The presented results are an average of the 3 runs.

53

Table 3.1: RMSE and MBE of our model and KNN on the toy problem. Our problem easily
bests the KNN approach.

Seq Size Methods
RMSE MBE

mean std mean std

S
Ours 0.09 0.021 0.008 0.021
MLP 0.16 0.041 0.0016 0.044
KNN 0.48 0.21 -0.016 0.21

M
Ours 0.12 0.04 -0.004 0.026
MLP 0.25 0.08 -0.007 0.096
KNN 0.54 0.21 0.011 0.23

L
Ours 0.25 0.09 -0.007 0.033
MLP 0.41 0.09 -0.016 0.15
KNN 0.69 0.19 0.04 0.34

3.2.8 Results

Toy Case

On the toy problem, our approach outperforms both MLP and the KNN algorithm despite

the larger view horizon of the KNN. As can be seen in table Table 3.1, which summarizes

the results for the different gap-size, our approach is consistently better than KNN and MLP

across all metrics except for the MBE on large sequence sizes. This can be explain by the

nature of the MBE metric: it is the mean of the error, thus one value can slightly change

the overall result even more here since the error values are very small. Hence it is more

important to focus on the variance of the MBE as it depicts how is fluctuates over various

gaps. Fig Figure 3.14 compares the KNN method (in blue) to our architecture (in orange).

We can see that our approach better fits the data. Our attention-based model is able to extract

the local trend, whereas KNN is being tricked by the long term amplitude changes created

by the latent variable z1. [ht]

Evapotranspiration Data

Table Table 3.2 summarizes our models’ performance on the EC datasets. Based on the

RMSE results, our model performs statistically better or as well as the reference method:

54

0 100 200 300 400 500 600
points

0

2

4

6

8

10

12

y

Toy-Problem Data Recovery
KNN
Ours
MLP
GT

150 200 250 300 350
points

2

4

6

8

y

Toy-Problem Data Recovery: zoom
KNN
Ours
MLP
GT

Figure 3.14: Gap filling quality comparison of our model (NN), with KNN on the toy
problem on large gaps.

Observation-head Target-head Full-head

L
ar

ge
se

qu
en

ce
M

ed
iu

m
se

qu
en

ce
Sm

al
ls

eq
ue

nc
e

Figure 3.15: Attention weights for the different sequence sizes on real data. The periodicity
of the data was understood and leveraged by the attention mechanism.

REddyProc. Only on large gaps on C12 does it perform slightly worse in average, but

the difference is not statistically significant. On another hand, our model performs much

better than the baseline on the Tomato crops. This is particularly visible on the Tomato 2

experiment, which yields an average improvement of 30% across all gaps. This is interesting

55

Table 3.2: RMSE and MBE of of our model and REddyProc applied on real EC data (lower
RMSE and MBE values indicate better model performance). Values range from -50 to 800.

Crops Seq Size Methods
RMSE

RMSE Improvements
MBE

mean std mean std

C11

S
Ours 44.2 13.2 +12% ± 17% -0.9 8.4

REddyProc 51.8 17.4 2.1 13.8

M
Ours 53.9 13.4 +7% ± 14% -3.9 13.9

REddyProc 57.0 13.5 9.1 12.2

L
Ours 46.7 7.62 +10% ± 10% -0.5 7.4

REddyProc 52.9 12.7 0.9 5.7

C12

S
Ours 43.2 13.9 +10% ± 15% -0.7 12.0

REddyProc 48.1 13.9 0.1 14.0

M
Ours 48.0 11.9 +4% ± 22% 0.1 12.1

REddyProc 51.0 12.0 -5.5 9.7

L
Ours 49.5 14.6 -10% ± 49% 2.2 12.3

REddyProc 47 10.9 -1.1 8.6

T19a

S
Ours 30.9 14.0 +29% ± 19% -10.5 11.7

REddyProc 54.6 24.0 -4.1 19.3

M
Ours 31.0 4.2 +35% ± 12% -2.6 4.8

REddyProc 49.9 14.9 0.6 10.7

L
Ours 44.6 9.1 +35% ± 12% -4.4 5.4

REddyProc 71.9 23.8 -3.3 12.8

T19b

S
Ours 32.4 9.1 +19% ± 25% -1.2 9.1

REddyProc 42.1 13.2 -3.4 16.6

M
Ours 36.4 6.88 +14% ± 20% -1.6 8.5

REddyProc 44.2 12.34 -5.9 13.0

L
Ours 37.8 4.1 +13% ± 15% 1.0 5.9

REddyProc 44.4 9.2 -1.6 9.8

W18

S
Ours 37.9 12.2 +7% ± 30% -8.9 9.4

REddyProc 46.44 13.58 -7.6 22.5

M
Ours 38.0 8.1 +0% ± 25% -4.3 4.8

REddyProc 37.5 11.4 6.5 5.8

L
Ours 37.9 4.6 +0% ± 13% -8.9 4.2

REddyProc 38.7 6.6 -1.7 8.5

W19

S
Ours 26.0 7.2 +0% ± 30% 4.5 6.3

REddyProc 28.42 13.6 -1.8 10.3

M
Ours 27.9 4.8 +2% ± 21% 7.5 7.4

REddyProc 29.9 9.1 -0.8 9.2

L
Ours 29.9 3.3 +7% ± 17% 7.2 4.9

REddyProc 31.9 7.0 -2.8 6.9

56

as tomatoes are summer crops with a quick canopy growth. These particularities lead to

faster ET dynamics than the one encountered in the other crops present in this dataset.

The superior performance of our network on this crop shows that our approach performs

well on a system with high dynamics, which was our original goal. Additionally, the

constant performance of our network demonstrates that, despite its smaller time horizon,

our architecture is more reliable than REddyProc. Regarding the MBE our model performs

as well as REddyProc. Overall, the MBE quantifies the irrigation bias but not the accuracy

of the prediction, hence our prediction keeps similar performances.

Figure Figure 3.15 shows examples of attention matrices for the different attention heads.

Each of those matrices translates the cross-correlation between the elements of the same

sequence. Let us define A, an attention matrix for a sequence of size k s.t. A ∈ Rk×k and

i, j ∈ [1,k], the position of two elements inside that same sequence; then the value A(i, j) is

a measure of how strong the correlation between the elements i and j is. The brighter the

pixels in the image, the stronger the correlation. The attention matrices of our networks

present periodic patterns. The periodic patterns show that our architectures are leveraging

the periodicity of the data to fill the missing values in our sequences. One can also see that

on the target-heads, the center of the matrix is less bright than on the other heads. This is

due to the fact that the target heads avoid using the values inside the gaps.

If one looks at the last row of figure Figure 3.15, one can see some patterns and at some

point a variation in that pattern, this can easily be seen on the target-head’s weights where a

black band appears. This is where the gap is located inside the data. What this black band

means, is that the network learns not to use data where there are gaps in order to fill the

missing values. Similar things can be seen on the medium and large sequences (on the target

head), but the gap is not fully black. Instead, during the nights, the network is still trying

to make use of the data. This is probably due to the network having difficulties detecting

the gap or to a lack of training data. On the other heads, a similar pattern can be seen, but

the gap is not clearly visible. However, what is visible are the nights: during the nights the

57

values are homogeneous and the variables all have the same weights. This is represented by

this darker bands that can be seen in the different heads weights.

Finally, using this training-testing split, we show that our network achieves solid perfor-

mances without even training on the dataset which we aim to fill. This demonstrates the

strong generalization capacities of our method and makes it almost as convenient as the

MDS since its application would be training-free.

3.2.9 Discussion & Conclusion

In this section, we examined a novel deep learning gap-filling method for crop ET measured

by eddy covariance. The method was tested on a database containing different crops and

demonstrated superior performance than the widely-used gap-filling method, MDS. Overall,

the DL method showed a significant decrease in RMSE throughout all datasets and gap

lengths Table 3.2. The DL method examined here was able to “learn” from a relatively

small database containing only six ET measurement campaigns over agricultural fields and

success-fully fill gaps of up to six days. Across all different datasets and gap lengths, the

DL method showed a more accurate (lower RMSE) and precise (lower standard deviation)

prediction of ET flux than did MDS.

Moreover, the present DL method has some crucial advantages over past MLs methods.

First, using a model developed for a certain crop and season, the DL method does not need

to be trained on the specific dataset being gap-filled. Secondly, the DL includes natural

embedding of time – i.e., the method learns the data as a time sequence rather than as

individual points. The benefits are (1) faster runtime, in the order of seconds versus minutes,

(2) easier implementation after the model is trained, and (3) minimal data input of about

12 days instead of a full-year as required in [78], making the method more suitable for

short growing seasons of annual crops. The minimal data input is possible because our DL

model relies mainly on the values of the neighboring days and in addition on modeling

of the relations between the meteorological variables and the flux. The ML methods [78]

58

require a whole year because they are based on modeling the relationship between the

meteorological variables and the flux only, without an understanding of the time or the

sequence of the values. Therefore, our approach is advantageous compared to previously

developed techniques, especially for cases with limited training data.

Figure 3.16: Deep learning (DL) model performances using combinations of different
meteorological variables (Rn – net radiation; rH – relative humidity; WS – wind speed; Tair
– air temperature; ‘W/o met. vars.’ – without meteorological variables, i.e., time of day
only) as model inputs compared to the common gap-filling method, marginal distribution
sampling (MDS). Bars represent the standard deviation of the mean.

The sensitivity analysis on the predictors, given in Figure 3.16, shows an increase in

RMSE when net radiation was excluded. Excluding any other variable do not result in a

significant increase in RMSE. Furthermore, using net radiation as a single predictor shows

a significantly lower RMSE than any other single variable, even when comparing to the

MDS method. The high correlation between latent heat flux and net radiation in relation to

the other meteorological variables, can be seen in the diurnal courses (Figure 3.13) where

LE and Rn curves are well aligned. These results indicate that net radiation is the most

important predictor of ET, relating to the fact that radiation is the primary source of energy

59

for the ET process, and therefore is the limiting factor in the system. This is in agreement

with [99], who showed that solar radiation was the most essential factor when tested on

different reference ET calculation methods. Additionally, they showed that air temperature

was the second most important factor, although this is not evident in this section, perhaps

due to auto-correlation of the data (the similarity between points at the same time of day

but on neighboring days), which reduces the importance of the predictors, in general. Some

limitations of the suggested gap-filling method should be noted. Although this section

suggests that the method is insensitive to adding data from different crops, the model must

be trained on data similar enough to that of the gap-filled dataset (similar crops, climate,

ecosystems, etc.), because of its dependency on previously trained datasets. Additionally,

the method was tested on a relatively small database with specific characteristics, and more

testing in different conditions, ecosystems, and ET fluxes is needed. The method proposed

here is based on recent advances in deep learning methodologies [37]. Hence, as is, it cannot

be used at this stage as a convenient off-the-shelf tool for routine gap-filling like the MDS

tool developed by [100].

60

3.3 Conclusion on Irrigation Modeling

In conclusion, in this chapter, we presented two methods that achieved state-of-the-art results

on two different tasks. Despite the limited amount of data available, they clearly showed

the superiority of NNs over traditional methods. However, these studies have only been

conducted on a small scale. To validate these results, the methods should be applied to

more crops, in more countries. Future work should focus on deploying these approaches

onto more diverse data around the world. We believe that NNs are outstanding function

approximators that are currently under-utilized in agronomy.

Another key element of the NNs that is not addressed here is their reliability. In real-

world applications, it is critical to know how much one can trust the estimations of its model.

While most white-box models do not provide this, the fact that they are easy to understand

allows practitioners to know when they can be applied. With NNs, due to their black-box

nature, knowing the region of applicability of the model is harder. Hence, we believe that

future work should also focus on the estimation of the uncertainty. While this problem has

been studied on classification problems, in regression few works have reliable uncertainty

estimation. This area of DL is one of the rare that is not crowded and has ample room for

high-impact contributions.

61

CHAPTER 4

DATA-EFFICIENT MODELING & CONTROL FOR ROBOTIC SYSTEMS

4.1 Introduction

In this chapter, we study how to efficiently model robotic systems. In particular, we apply

importance sampling to learn the dynamic model of robots. Indeed, when learning robots’

dynamic models, the main limiting factor is data collection. The amount of data required

to learn NNs-based models is often fairly high, requiring to run the robot for a long time.

Moreover, on some naturally unstable robots, collecting many sample next to the instabilities

is impossible. This will result in the data containing only a few samples from these hard-

cases. Conversely, the large majority of the data will come from stable states. This creates

an unbalance. In turn, it can lead to learning a model that works well in most cases but fails

as the robot ventures near these unstable states. Thus, it is critical to find ways to leverage

every bit of data at our disposal.

In classification, this task is relatively easy as we can sample data with respect to classes,

but in regression setups it is not that trivial. This is why we propose to use importance

sampling, a group of method that uses the performance of the network to compute a dataset’s

sampling distribution. This enables to learn model even when the data is strongly unbalanced.

The drawback is that these techniques may put a lot of emphasis on outliers. Thus, we

first evaluate their modeling capacities on different scenarios, with balanced, unbalanced,

and real noisy-data. Then, we apply them on a MPC problem. We evaluate if the gains

in modeling accuracy also translates into improved performance. Finally, we apply this

knowledge on a real system where we use the MPPI to control an USV. The work presented

in this chapter was done in collaboration with Antoine Mahé. He helped to acquire the data

on the real systems, brought is robotics experience and knowledge regarding the PER.

62

4.2 Prioritization Applied to Dynamics Modeling

4.2.1 Motivation

Model identification is often the first step in designing the command of a dynamical system.

Nowadays, the most commonly used method is Auto Regressive Moving Average (ARMA).

Its simple implementation and light computational weight made of ARMA the de facto

standard in the field of system identification for the last fifty years.

Yet, recently, building on the boom of deep learning, and dedicated hardware capable of

inferring simple models more than a thousand times per second, NNs have made a remarked

entrance in this field. They have produced impressive results with their high versatility, and

their capacity to learn continuously over time [25]. Unfortunately, those methods require a

massive amount of data to converge properly.

Regrettably, collecting data from a robotic system naturally leads to the construction of

a dataset with command distribution issues [55]. The distribution of the commands on real

systems can be strongly unbalanced, as we experienced in our data acquisition where most

of the samples are generated with commands near the origins. Most commands sent during

data acquisition comes from states where the operator (or the controller) is comfortable.

This leads to some areas of the model’s action space being visited only a few times while

others are continually experienced. This results in limited generalization capabilities of the

network.

To cope with those problems there has been some recent research proposing to improve

the quality of deep neural networks model training by sampling a subset of the data based

on how they perform on them [57, 58, 101]. The common idea is to evaluate how useful

samples are for the training, then increase or decrease their weight based on their importance.

In order to improve the ability to train NN onunbalanced datasets we use two different

sampling mechanisms. Those methods evaluate which samples are most suited to improve

the model performances at a given time during training.

63

In this section, we take advantage of these ideas to propose a model-identification method

based on NN that are able to learn a complex dynamic despite noisy and unbalanced datasets.

We demonstrate the method on different conditions and systems and compare it to other

identification methods such as ARMA or more classical NNs training.

4.2.2 Related Work

Since the 1970’s ARMA [102] has been the way to go for most black-box system identifica-

tion. Such models are particularly simple to understand and implement. They rely on linear

difference equations (their transfer functions are rational fractions), based on the past states

and inputs of the system. The linearity of these equations enables the computation of the

system parameters with a least-squares method. As a result, the fitting of an ARMA model

is not computationally expensive; this makes it possible to perform efficient grid-search over

the orders of the filter (orders of the numerator and denominator of the transfer function).

The last decade has seen Deep Learning achieving outstanding results in many tasks,

over a very large field of applications, ranging from computer vision to natural language

processing. Control and system identification are no exceptions. section 2.2 provide an

overview of the litterature on NNs applied to system identification.

To train these networks a lot of data is necessary which implies an important amount of

demonstration of the system in its environment. The sample inefficiency of NNs leads to

the need to generate large demonstration datasets. These are often very unbalanced [55]

and the training is saturated with common samples while interesting data points do not have

any impact on the learning process. All in all, properly learning hard cases is hindered by

the imbalance of the data. section 2.3 presents the current state-of-the-art on efficient NN

learning.

In this section, we apply various importance sampling methods to system identification.

Those approaches are evaluated on standard datasets [103] and custom datasets that exhibit

various degrees of non-linearity, unbalancing and noise. Building on the promising simulated

64

result of [56] we expand the prioritize experience replay method to real world data and show

its applicability of on standard datasets. Moreover, we propose to use an other prioritization

scheme that alleviate the hyperparameter complexity of the previous algorithm.

4.2.3 Model Identification

Linear system identification of the ARMA family have been used for decades with success.

When u(t) and x(t) respectively denote the system’s input and output at time t, ARMA’s

model of the system is given by the following discrete-time linear difference equation:

x(t)+
p

∑
k=1

akx(t− k) =
q

∑
k=1

bku(t− k) (4.1)

It is more intuitive to consider this equation as a way to determine the next output value

given previous observations and a set θ =
{

a1, ...,ap,b1, ...bq
}

of parameters:

x(t) =−
p

∑
k=1

akx(t− k)+
q

∑
k=1

bku(t− k) (4.2)

The linearity of the model makes it easy to compute the optimal parameters θ ∗ using the

linear least-square method.

More recently, the ARMA methods have been challenged by NNs, as they expanded the

range of system that can easily be modelled from data. In particular, non-linear systems are

no longer an issue using a NN [104].

In this section we chose to use a standard MLP, with 2 hidden layers. Not only has

this kind of networks been extensively used and studied in the last decades [25], but their

simplicity also highlights the performances of our algorithms and their impact on the final

results. To properly learn the dynamic of the system, the historic of the twelve previous

commands and states is used. This time horizon gives the MLP a memory of the previous

events which proved to be sufficient for the considered systems. Thus, it made sense not

to use LSTM as the required time horizon can easily be known. Additionally, LSTMs add

65

unnecessary complexity to this study where our focus is on the data and the optimization,

not the architecture of the networks.

To learn the model, a multi-parameter regression is computed. The cost-function used

is the MSE, but its implementation within TensorFlow [105] has been slightly modified to

allow easier computation of the network’s gradient.

4.2.4 Importance Sampling

Learning a dynamic which is poorly represented in the dataset is hard. This is particularly

true on datasets which have not been acquired for the specific purpose of model identification.

Indeed, large model identification datasets tend to be filled with redundant information. To

cope with this issue, we apply importance sampling mechanisms to the training process.

Some dynamic systems are more difficult to identify than others. For instance, the velocity

variations of the drone used in our experienced are way easier to identify in a straight line

than during a 180-degree turn. Moreover, as operators, we tend to demonstrate systems in

conditions where we already have a good understanding of the system behavior. Thus, the

interesting data where the network should learn the most is the rarest. This leads traditional

learning approaches to fail to train on those seldom seen events.

Prioritize Experience Replay

To answer this problem, we propose to adapt the prioritization scheme introduced in [57] for

reinforcement learning to the context of system identification. Indeed, prioritization forces

the training on harder samples even if they are scarce. The adaptation of this sampling

strategy to system identification yielded encouraging results, as illustrated in [56]. In

practice, we use the loss of the network prediction to estimate the training value of a sample.

The samples that lead to the highest errors are the one where the network has the most

learning to do. Hence, the network prediction errors are collected to compute a probability

distribution over the samples, which is then used for sampling the dataset for the next

66

training session. This process is detailed in the algorithm algorithm 1.

Algorithm 2: Data prioritization from [57] adapted to system identification.
data
K : number of trials
MLP : neural network model
trainingData← data
sampleWeight← /0
for k = 0 to K do

MLP← Train(trainingData)
N number of samples in data
for i = 0 to N do

δi←
∥∥Yi−MLP(Xi,Ui)

∥∥
P(i)← δ α

i
∑k δ α

k

wi←
(

1
N

1
P(i)

)β

sampleWeighted←{wi}0≤i≤N
trainingData← sample data di ∼ P(i)

One of the limitations of this approach is that it focuses on a small subset of samples.

Although that focus improves its data efficiency, it also increases the risk of over-fitting.

Noisy datasets are also hard to learn from, as it is harder to make the distinction between

complex cases and outliers. To mitigate those problems and make the method practical,

hyperparameters are introduced. Those parameters allow choosing how much the training

should focus on hard cases. The probability of choosing the sample i during the sampling is

given in Equation 4.3 where δi is the score of sample i, in our case the error between the NN

prediction and the actual observation.

P(i) =
δ α

i

∑k δ α
k

(4.3)

However, the sensibility to the hyperparameters make the approach difficult to apply

and makes a systematic, tedious grid search mandatory to find optimal values for these

parameters.

67

Gradient Upper-Bound

Another way to prioritize samples is to use the gradient upper-bound, as explained in [59].

As its name implies, the gradient upper-bound method relies on an approximation of the

norm of the network’s gradient. [101, 106] showed that the gradient norm represents what a

network can learn from a data-point. In comparison, the loss of the network on which the

prioritized experience replays relies is a poor approximation of it. As a result, drawing from

a loss-based distribution is less efficient than using a distribution homogeneous to the norm

of the gradient.

Yet, computing the gradient norm is prohibitively expensive. In order to alleviate this

issue [59], introduce an accurate and computationally inexpensive estimation of it, that is

the gradient upper-bound. This so-called gradient upper-bound is obtained by computing

the norm of the gradient between the loss and the last activation layer of the network.

Furthermore, this approach, which constantly updates the probabilities of drawing the

samples, has fewer hyperparameters than the prioritized experience replay. Indeed, instead

of updating the weights at some arbitrary training step, or epoch, this technique samples

super-batches, i.e. n-time larger batches than the standard training batches. From these

super-batches, a distribution based on the gradient upper-bound is computed, and a standard

batch is sampled from it. This as two implications: because the super-batches are sampled

uniformly, it reduces both the risk of over-fitting and the risk of focusing on outliers.

However, depending on the size of the super-batches, the training time can be significantly

extended. Algorithm algorithm 3 shows our implementation of the gradient prioritization

scheme.

68

Algorithm 4: Data prioritization from [59].
data
N : number of steps
ssbs : super-batch size
bs : batch size
trainingData← data
for i = 0 to N do

super batch ssbs←−− U(trainingData)
g = get gradient upper bound(super batch)
G← distribution f rom g
weights← 1

Bg

batch bs←− G(super batch)
train step(batch,weights)

4.2.5 Experiments

Evaluation

To evaluate the model, we consider two metrics. The first one which will be referred as

single step accuracy expresses the next-point prediction accuracy. Its value is computed

using the MSE of all the prediction made on the test set. This metric is used to evaluate the

instantaneous prediction accuracy. The second one is a trajectory prediction accuracy, later

it will be referred as multistep accuracy. In this case a time horizon is selected (15 samples

for the drone, 30 for DaISy), and the network iterates over its own predictions. The model

is run over 60 different trajectories from our test set. The final metric is the MSE of those

trajectories. The latter evaluation score is the one we use to select our hyperparameters

during the grid search.

Datasets

After validating the concept on a simulated drone, we test our approach on standard system

identification dataset collected from real systems. Finally, we move onto a more challenging

dataset, consisting of a real drone fitted with an Real Time Kinematic (RTK) GPS.

69

Parrot Bebop Drone In order to test the validity of the new optimization method and the

importance sampling, we first evaluate our approach using a simulated drone. The simulation

is done in Gazebo [107], using ROS [108] and a drone emulated by the rospackage tum

simulator1. The system includes the simulated drone and its low-level controller. The dataset

created for this experiment is a combination of two trajectory generation algorithms. The

first one only moves the drone in the plan in straight line, there is no vertical and no angular

command sent. The second algorithm move the drone such as it uniformly explores the

action space while not crashing. The aggregation of samples from both data generation

schemes produce an unbalanced dataset that we use to train our model. On the real drone,

the data is acquired by the uniform exploration algorithm detailed earlier on. As such this

dataset is balanced. To acquire the position of the drone an RTK GPS has been set up on it.

The acquisition was made using the RTK mode, and not Post Processing Kinematic (PPK)2

as this would not be representative of a real time system. Also, we rarely reached a fix

solution state but were most of the time in a good float solution state. Hence, the precision is

roughly 20cm, and we can see some discontinuities in the data. Moreover, the drone crashed

into some trees. This implies that the data contains strong outliers.

DaISy DaISy [103] is a large open source system identification database of real and

simulated systems. Because our scope is robotics, we chose, to study two robotic systems,

namely the flexible robot-arm and the CD-player arm.

• Flexible robot arm is a single-input single-output (SISO) system, the input command is

the reaction torque of the structure, while the measured state is the acceleration of the

arm. This dataset is balanced.

• For the CD-player arm, a MIMO system, the inputs commands are the actuators forces,

while the output is the tracking accuracy of the arm over the x, y coordinates. This

dataset is balanced.
1 http://http://wiki.ros.2org/tum simulator
2The PPK mode is computed offline after that the system has run.

70

http://http://wiki.ros.2org/tum_simulator

The size of this datasets is small: about a thousand samples. They are here to illustrate that

our methods work at least as well as previous methods even when the data is well-balanced

and contains few samples.

ARMA

In order to enable comparisons between our algorithm and a more standard system iden-

tification method, we modeled our system with an ARMA filter. The AR and MA orders

are found through a grid search. The goal is to find the lowest orders providing the most

accurate results.

Neural Networks

As described earlier we chose to use MLPs to learn the model of the different systems.

To emphasize the versatility of our method, we used the same architecture to fit all of the

models depicted in this section. This architecture is similar to the one used in Auto-Rally

[25]: it has two hidden layers with a width of 32. The input is made of a state vector X ,

and a command vector U , for all of the datasets the commands and states history are the

same length. It has been set to twelve samples. In the case of the drone, this represents 2.4

seconds, enough to catch the dynamics of the model. All of the models are trained using

TensorFlow [105] with the ADAM [22] optimizer and a learning rate of 0.001. All the

networks trained for a total of 25,000 iterations, with a batch size of 16. Finally, the input

data are normalized individually, that means that each command input and state input have

been normalized independently. Thus, the networks predict normalized states.

Prioritization

In this section, we evaluate two prioritization schemes: first we try the sampling based on the

prioritized experience replay which relies on the loss of the samples to assess the importance

of a sample, and then we use the gradient upper-bound to estimate the importance of a

71

sample.

Prioritized experience replay In all of our experiments, we retrain our networks five

times while sampling on a loss-based distribution obtained with the previous iteration of

the network. In order to choose the hyperparameters, we perform a grid search where we

look for the combination of α , β that yields the best accuracy. α is comprised between 0

and 1, this parameter allows increasing the prioritization of hard cases. At the same time,

we search for the β parameter also included within 0 and 1. Its goal is to compensate for

the bias introduce by the prioritization. High values of alpha rapidly lead to over-fitting and

focusing on outliers. Details about the roles of α and β can be found in [57].

Gradient prioritization When training using the gradient upper-bound, the gradients are

computed between the loss and the last activation layer. To do so, the original implementation

of TensorFlow’s MSE is modified to allow access to the per-example MSE instead of the

batch MSE. The only parameter to tune is the super-batch size: to select it we perform a grid

search where the super batch size varies between 60 and, 10000 samples per super-batches.

Grid Searches

To appropriately select the hyperparameters on all of our approaches, we use a k-fold-

cross-validation methodology. The dataset is split in five equal parts, four for training and

validation, one for testing. The data allocated to the training is split into five more sets,

four for training and one to validate the hyperparameters. Furthermore, the datasets are

normalized: the mean and the variance of each command and state are extracted from the

training set and used to normalize both on the input data and output data. Finally, each

experiment is run ten times to average the results. The best hyperparameters for a given test

set are selected using the trajectory-based accuracy.

72

4.2.6 Results

Drone Simulations

The simulated dataset has the particularity to have little noise, but is unbalanced. As such,

we expect our prioritization scheme to perform better than the regular training. The results

of the experiments on the simulated drone can be seen in table Table 4.1. It shows that

the importance sampling scheme bring a 5 to 10% on single step accuracy. The gradient

prioritization scheme noted GRAD in table Table 4.1 consistently outperforms the baseline,

i.e. the training without any form of prioritization noted as STD. We can see that the

Prioritized Experience Replay results are less constant, this is most probably due to the

complexity of properly choosing the hyperparameters. In multistep accuracy we can draw

similar conclusion as the Gradient outperforms the non-prioritized approach. Here again, the

edge provided by our method allows for a 5 to 10% increase in overall performance. Please

note that those results do not rely on hand-picked hard cases, but rather on trajectories taken

at random in the test set. As such, this shows that our methods improve the performance

of the networks in general. Additionally, we can see that the traditional method: ARMA is

nowhere close to the performances of the NNs.

Table 4.1: Simulated Drone k-fold cross validation results. Lower is better.

Test set 0 1 2 3 4
Single Step Accuracy

ARMA 0.836 0.873 0.850 0.855 0.883
STD 0.311 0.346 0.109 0.329 0.481
PER 0.298 0.328 0.122 0.316 0.492
GRAD 0.298 0.331 0.100 0.315 0.473

Multi-Step Accuracy
ARMA 1.003 0.986 1.056 0.983 0.958
STD 0.214 0.263 0.166 0.257 0.709
PER 0.227 0.271 0.179 0.250 0.685
GRAD 0.202 0.271 0.155 0.239 0.705

73

DaISy

Those datasets are short, and their command distributions are balanced. This means that

our methods should have little impact on the training results, but more importantly, we are

interested in assessing that in the case of a small and/or balanced dataset they do not end up

degrading the training performances.

SISO: Robotic Flexible Arm As shown in table Table 4.2 the training using Prioritized

Experience Replay (PER), gives better results on both single-step accuracy and multistep

accuracy. This result is interesting as it shows that even on small balanced datasets our

methods can increase the performance. Only on 1 out of the 5 test sets, the training without

any prioritization (STD) gave better results. On the other hand, the gradient based sampling

scheme (GRAD) consistently made marginally worse predictions than the two others.

Table 4.2: Flexible robotic arm k-fold cross validation results. Lower is better.

Test set 0 1 2 3 4
Single Step Accuracy

ARMA 0.0454 0.0364 0.0671 0.0432 0.0485
STD 0.00031 0.00162 0.00503 0.00610 0.00144
PER 0.00012 0.00135 0.00518 0.00565 0.00038
GRAD 0.00052 0.00188 0.00623 0.00660 0.00123

Multi Step Accuracy
ARMA 2.220 3.379 1.359 1.921 3.173
STD 0.00065 0.00422 0.0104 0.0141 0.00239
PER 0.00033 0.00347 0.0115 0.0117 0.00074
GRAD 0.00097 0.00489 0.0138 0.0148 0.00214

MIMO: CD Player Arm As table Table 4.3 shows, the results here are blurrier, the PER

still outperforms its counterparts in single-step accuracy. Yet, in multi-step accuracy, we can

only conclude that the methods are equivalent as we cannot pick a method that consistently

performs better than the other. However, this clearly shows that despite the small dataset and

the fact that the data are balanced our method do not decrease the training performances.

74

Table 4.3: CD Player Arm k-fold cross validation results. Lower is better.

Test set 0 1 2 3 4
Single Step Accuracy

STD 0.0197 0.0185 0.0149 0.0173 0.0173
PER 0.0191 0.0181 0.0148 0.0180 0.0171
GRAD 0.0199 0.0184 0.0154 0.0175 0.0183

Multi Step Accuracy
STD 0.0933 0.0845 0.0685 0.0773 0.0896
PER 0.0948 0.0825 0.0717 0.0799 0.0850
GRAD 0.0961 0.0834 0.0751 0.0710 0.0842

Real Drone

Table 4.4: Real drone K-fold cross validation results. Lower is better.

Test set 0 1 2 3
Single Step Accuracy

ARMA 0.778 0.812 0.783 0.804
STD 0.179 0.549 0.144 0.116
PER 0.190 0.563 0.162 0.134
GRAD 0.165 0.560 0.137 0.108

Multi Step Accuracy
ARMA 1.054 1.012 1.046 1.014
STD 0.863 0.738 0.543 0.804
PER 0.861 0.720 0.519 0.783
GRAD 0.890 0.728 0.534 0.822

On the real system, our model and training methods are put to the test. The acquisition

periods have to be short due to limited battery life. The weather and in particular the

wind make proper model identification complicated. Additionally, we recall that we never

achieved RTK fix only a good float3 resolution. Yet, despite the aforementioned issues, our

approaches do not degrade performances on this balanced dataset. To the contrary, they

slightly improve the performance showing that those methods are resilient to outliers and do

not over-fit on noisy data.

3In fix mode the RTK GPS as an accuracy bellow 5cm, in float the localization is comprised between 1m
and 5cm, in our case the localization was around 20cm

75

4.2.7 Conclusion on Prioritization

In this section we demonstrated that the gradient-upper bound method is a viable alternative

to the PER for system identification. We showed that even without complex hyperparameter

fine-tuning it achieves comparable result to previous methods on unbalanced dataset of a

simulated drone. Furthermore, we expand those methods on standard dataset as well as on

a dataset we collected with a real drone. We provide a thorough comparison of different

identification methods:ARMA, standard NNs training, prioritized experienced replay NNs

training, and gradient upper-bound NNs training. Furthermore, we show that even on small

datasets, our approaches do not degrade the performances.

76

4.3 Prioritization and Model Predictive Controllers

4.3.1 Motivation

Inspection tasks are more and more reliant on autonomous robotic systems. Precision

agriculture, building inspection and river monitoring are such tasks that benefit greatly from

the improvement of unmanned vehicles [109, 110]. However, most robotic applications

require an expert to accomplish the missions of the system. This dependency is often a

limitation: in situations where communications are limited, such as underwater exploration

or underground mines monitoring, autonomy becomes a requirement.

In order to provide this much needed autonomy, control algorithms are continuously

being developed and improved upon. One controller commonly used in this context is the

MPC. It relies on a model of the system for optimizing a cost function over a receding horizon.

This family of controllers has been successfully used in a variety of applications [111, 112],

and is now widely adopted in the industry [113].

By definition, MPCs require a model of the system’s dynamics to be able to control

it, and plan its movement. This modeling of the robotic system is still an active area of

research. The well known ARMA algorithm is the de facto method to perform system

identification. Its light computational cost and simplicity made ARMA the way to go for

black-box modeling.

Yet, recent development in machine learning have pushed the search for new modeling

schemes able to more easily cope with complex non-linear systems. Moreover, the ability

of NNs to learn over time [25] offers interesting possibilities, increasing the relevance

of deep learning for system identification. Unfortunately, this approach suffers from its

computational cost and its data inefficiency.

While recent advances in hardware and well optimized frameworks addressed the high

computational cost requirement, the lack of per-sample efficiency of the NNs-based methods

remains a major problem when dealing with robotic system [55]. Indeed, collecting data is

77

often a tedious and costly process that tends to produce unbalanced datasets. On robots, it is

particularly hard to explore exhaustively the state and action spaces, as the robot may not be

stable and exploring these state could result in damaging the robot. Also, if the dynamics

of the robot is learned from commands sent by an operator, the robot may only explore a

subspace of the state-action space, leading to a biased and incomplete dataset.

This problem can also be commonly found in image classification and RL. Alas, as

system identification is a regression task, most of the common methods from the computer

vision fields are inapplicable as they rely on the classes to re-balance the datasets. Nonethe-

less, recent work in the field of RL [57] suggests focusing the NNs training on the samples

that are most useful to their convergence. [57, 58, 101] showed that using prioritization

schemes, NNs are capable of learning from highly unbalanced datasets on both RL tasks

and image classification tasks. In this section, we study if these schemes are also applicable

to the field of system identification. To evaluate the performance gain brought by those

schemes, we will apply them in an MPC on a track-following task.

In this section, we use the MPPI [114] controller. This controller can work with any

dynamic model and has been shown to work well [115, 25] coupled to NNs on robotic

systems. This section presents a thorough study of the importance sampling scheme, along

with their application on an MPC. We study the impact of different parameters of the MPPI

and show how they influence the robustness of the control algorithm across the different

learning schemes. Finally, we apply the MPPI to a real system.

4.3.2 Related work

This work leverages both Neural-Networks and Prioritization schemes to learn dynamic

models. A complete review of the state of the art on these problems can be found in

section 2.2, and section 2.3.

To demonstrate the benefits of the samples prioritization when applied to system identi-

fication, we use them on a “race against the clock” task as part a of an MPC. MPCs have

78

been used to control drones [116, 117] and rovers [118, 119] with impressive success. MPC

algorithms optimize the trajectory of a system such that it follows the trajectory that yields

the lowest cost. Unfortunately, most of the well-known MPC algorithms such as the LQR

or H∞ controllers require the model of the robot to be written in a closed-form equation.

This is something that we do not have as the model is a NN. Hence, in our study we use the

MPPI, an MPC controller first defined in [115] and then refined in [114]. The particularity

of this controller is its high flexibility, it can work with almost every cost function or model.

For instance, the cost function can implement both objectives and constraints, which is very

useful in autonomous control where both mission and security are often in competition.

However, this controller is very expensive to run when compared to LQR or H∞ controllers.

Because it relies on both a NN and a monte-carlo optimization scheme, this algorithm

requires to run on a GPU which limits its application to fairly large robotic systems.

In this section, we apply various importance sampling methods to system identification.

Those approaches are evaluated on a custom dataset that exhibit a strong non-linearity, and

unbalancing. We expand the prioritize experience replay and gradient upper-bound method

to an MPC task and show its advantage over non-prioritized models. We then demonstrate

the ability of these models to perform robotic tasks of various difficulties on a USV. We

explore how the MPPI behaves as its main parameters change, and how these changes

translate to the different prioritization schemes. We conclude this section by applying our

findings on a real system, and provide insights on the main challenges that arose when we

deployed the MPPI in the field.

4.3.3 MPPI

To correctly steer the robot, the MPPI controller is built on two main components: a dynamic

model and a cost-function. The dynamic model, which uses a NN, is used to infer future

trajectories. The cost-function measures three metrics: a position cost, inferred from the cost

map defined in the world frame, a velocity cost, which is computed based on the system’s

79

velocities in the robot frame, and a heading cost which is based on the heading of the USV.

Hence, to be able to accurately compute these costs, we rely on a state Xt . More

specifically, in our setting, our state Xt is composed of the 2D pose of the robot in the world

frame xt , yt , and θt along with its velocities in the robot frame: the linear velocity vlint ,

the lateral velocity vlatt and the angular velocity ωt . The position update is done using a

kinematic update as shown in Equation 4.4, while the next velocity is given by the NN. It is

worth noting that the dynamic model predicts the next velocities in the robot frame. Hence,

they have to be projected into the world frame to update the pose of the robot.

vxt =−sin(θt)vlint + cos(θ)vlatt

vyt = cos(θt)vlint + sin(θ)vlatt

xt+1 = xt + vlint dt

yt+1 = yt + vlatt dt

θt+1 = θt +ωtdt

. (4.4)

To find the optimal trajectory to follow, the MPPI samples N sequences of commands

over a time horizon of T time-steps. Using these sequences of commands and running them

through the dynamic model gives N trajectories from which the cost-function can infer

the costs. Based on the cost of the trajectories, the optimal set of commands found at the

previous optimization step is updated and applied to the system until the next optimization

step. In our implementation, we reduced the update frequency to 5Hz to match the relatively

slow pace of our system. For comparison, in [115], the update rate is set to 40Hz. Because

of this, the commands are no longer smoothed using the Savitsky-Golay filter as it is in [114,

alg. 2]. A pseudo-code of our implementation can be seen in algorithm 5. Even though we

sample our commands at 5Hz, we send commands to the system at a rate of 20Hz. To do so

we apply a linear interpolation on the set of optimal commands found by the MPPI.

As briefly mentioned earlier, the cost function used to optimize the MPPI trajectory is

80

composed of 3 components:

• A cost-map: this component of the cost function makes sure that the robot remains on

the track. In our case the cost-map is computed based on the quadratic distance from

the track.

• A velocity cost: this component of the cost function makes sure that the USV moves

on the track at the desired speed. It is computed using Equation 4.5, where vtarget is the

desired speed and v the actual speed of the USV.

vel cost =

∣∣vtarget− v
∣∣

0.0001+ v
. (4.5)

• Finally, the last element of the cost function is a heading cost. It is computed based on

the difference between the heading of the robot and the heading of the track. This cost

is the error between the desired heading and the actual heading. The desired heading

is set for each segment and follow the track counterclockwise direction. This cost is

given by : head cost =
∣∣θtarget−θ

∣∣. This element of the cost is only used in the square

track (see subsection 4.3.4).

In the end, the total cost is given by Equation 4.6, with α1, α2 and α3 regulating the weights

of the different components of the cost function.

cost = α1pos cost+α2vel cost+α3head cost. (4.6)

Experiments

In this section we explain how the experiments are performed, what is evaluated, and how it

is evaluated.

81

Algorithm 5: Model Predictive Path Integral [114]
F : Dynamic model
T : number of timesteps
K : number of sampled trajectories
φ : cost function
ut : commands sent at step t
st : state at step t
U = u1,u2, . . . ,uT : initial control sequence
Sample εk = ε1

k ,ε
2
k , . . . ,ε

T
k ∼N(µ, σ2)

for k = 0 to K−1 do
for t = 1 to T do

ut = ut + ε t
k

st+dt ← F(st ,ut)
Sk ={st for t in [0,T]}
Ck← φ(Sk)

β ← mink[Ck]
η ← ∑

K−1
k=0 exp(−(Ck−β))

for k = 0 to K−1 do
wk← 1

η
exp(−(Ck−β))

for t = 1 to T do
ut = ut +∑

K
k=1 wkε t

k
return U

4.3.4 Simulation Setup

We tested our approach in simulation using the Gazebo software4, a simulator that allows

creating complex simulations with custom robots and hardware. The simulation of the

USV itself is done using the heron package5 along with the uuv-simulator6. The first one

provides a simulated version of Clearpath Robotics’s Heron an USV, while the latter provides

advanced water buoyancy simulation, and realistic thrust non-linearities that imitates the

real USV behavior. All the experiments were carried out using ROS7, a well known robotic

middleware.

To evaluate the impact of the different parameters and models, we created two different

tracks with a width of half a meter. The first one, a simple one, features smooth curves and

4gazebosim.org
5github.com/heron/heron simulator
6github.com/uuvsimulator/uuv simulator
7www.ros.org

82

gazebosim.org
github.com/heron/heron_simulator
github.com/uuvsimulator/uuv_simulator
www.ros.org

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Simple Track

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Advanced Track

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Simple Track Cost-Map

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Square Track Cost-Map

Figure 4.1: The two tracks used to evaluate the different learning paradigm and parameters
of the MPPI (first row), associated with their respective cost maps (second row).

slow changes, while the second one has abrupt orientation changes. The two tracks can be

seen in Figure 4.1. From these tracks we compute a cost map used by the MPPI to plan its

trajectories. In our case, the resolution of the cost map is 10cm/pixel, and their values are

computed from the following rules: if the pixel is on the track then its cost is 0, if the pixel is

outside the track then its cost is determined by its squared distance in pixels from the track.

The two cost maps can be seen in Figure 4.1. This is different from the implementation of

the cost-map in the original MPPI [25, 114] code. In the latter, the cost map was binary

with 0 for the track and 1 outside of it. In our experiments, we have found that having a

83

gradient around the track helps the USV to stay on it: if it ventures outside of the track, the

gradient helps the USV to come back to it.

Neural Networks

In the following subsection, we detail the dataset used to train the NNs along with how the

networks are trained and evaluated.

Dataset

To train the NNs that are used to predict the dynamics of the system, we need to create a

dataset. To create a system identification dataset, the most efficient method is to sample

random commands and send them to the system for a random amount of time. Unfortunately,

even though this method works perfectly in simulation, in the real world it does not work

for obvious reasons. With this in mind, we created a dataset that is a combination of

straight lines and turns at different velocities that we mixed with twenty percent of random

commands. In addition to being closer from what a real dataset looks like, this dataset should

also show how the PER and the gradient upper-bound can leverage the random samples to

improve their prediction performances.

Training parameters

The NNs used in this section are simple MLPs. More precisely, these MLPs feature two

dense layers with 32 neurons, and a final layer with 3 neurons: one for the linear velocity,

one for the lateral velocity, and finally one for the angular velocity. The activation function

used are LReLU [15], and there is no activation function in the final layer. The input of

the network is a flattened sequence of the six previous states and commands. While these

networks can look simplistic, this answers a performance need: with up to 1,000,000 forward

passes per seconds, the networks need to be light enough to run in real time on an embedded

platform. Before training, the dataset is normalized by subtracting its mean and dividing

84

it by its standard deviation. To perform the regression, an L2 loss is used. Finally, we use

the Adam optimizer [22] with a learning rate of 0.001. All the networks are trained using

Tensorflow [105] version 1.15.

Evaluation

To evaluate the performance of the networks, we build two datasets. The “full-random”

dataset: a balanced dataset, and an “unbalanced” dataset. Both the “full random” dataset

and the “unbalanced” dataset are split into three subsets: a training set, a validation set and

a test set. In the “full random” dataset, all the subsets are comprised of samples obtained

by generating random commands. However, for the “unbalanced” dataset, only the test

set is composed of samples acquired using random commands. Both the training and the

validation set are made of a mix of straight line and random commands, as defined in

subsubsection 4.3.4. Overall, both datasets include about 1 millions samples. The goal

here is to see if the networks trained with PER or gradient upper-bound will achieve better

performances than the standard training procedures. To evaluate the different schemes,

we trained them with all the combinations of parameters 5 times and averaged the results

for each combination of parameters. In the case of the PER, we trained 5 networks, for

each combination of α and β , with α and β ranging between 0.1 and 0.9 with a 0.1

increment. For the gradient upper-bound, we trained 5 networks for different super-batch

size values. Specifically, we took as super-batch size every power of 2 between 32 and 8196.

Additionally, to show how those networks would perform in the case of a dataset acquired

only by applying random commands, we also included the results of these comparisons on

a fully random dataset in addition to the mix one detailed in subsubsection 4.3.4. In this

case, we want to see if these methods perform worse than the standard one when applied to

a well-balanced dataset, for instance by focusing the networks’ training on outliers.

To evaluate the performance of the networks, we consider two metrics:

• The Root Mean Squared Error (RMSE) of the network when predicting the next state

85

of the system. It will be referred to as single-step accuracy.

• The RMSE of the network over a trajectory of 15 points. In this case the network

iterates over its own predictions 15 times. It will be referred to as multi-step accuracy.

For both of these metrics, we report the average and the standard deviation of the RMSE

over the 5 runs.

In our experiments, we also evaluated the impact of the different parameters of the MPPI.

We studied the impact of the following parameters:

• The number of samples: this is the amount of trajectories that are sampled in the Monte-

Carlo optimization process. A small amount of samples means that the trajectories

generated will most likely not sufficiently cover the area of space that is interesting.

On the other hand, a large amount of samples means that the trajectory will cover a

broader space and that the chances of having scattered trajectories is lower. The main

drawback of having a large amount of samples is an increase in computational cost. In

this study, we vary the number of samples between 500 and 6000.

• The number of time-steps: this is how far the MPPI predicts in the future. Too few

time-steps, and the sampled trajectory will not go far enough in the future. This

means that the algorithm will not be able to account for the slow dynamics of the boat

and its high slippage; the algorithm will not anticipate enough and may not be able

to turn correctly. However, with too many time-steps the problems comes from the

dynamic model learned using the NN: for every time-step, the model iterates on its own

predictions, thus increasing the prediction error over time. In this study, the number of

time-steps vary between 5 and 40.

• The variance of the sampling: this parameter rules how new trajectories are sampled. As

shown in algorithm 5, the new commands are sampled by taking the optimal commands

found at the previous optimization step, and adding noise onto them. The variance

itself is how much noise will be applied. Too much noise, and the trajectories will be

sparse requiring a high amount of samples to compensate; not enough noise, and the

86

trajectories will be generated in a very small cone leading to a suboptimal solution. All

in all, we tested different variance values ranging from 0.15 to 2.0.

All these experiments were carried out on the square track. Its abrupt turns helped better

differentiate the parameters. On these experiments, the results are the average of 15 runs,

along with the standard deviation between these runs. We also compared how the different

learning paradigms impact the evolution of the parameters. To do so, we tested all the

networks described previously, and reported the results of the best performing networks

across all parameters.

When evaluating the MPPI we monitor two distinct metrics: its performance in terms of

how well it stays in the track, and its average velocity. While we could have studied the cost

on the velocity, we chose not to as it is very noisy, and no useful information can be taken

out of it. This is due to the exponential penalty added to the velocity cost as the USV slows

down.

4.3.5 Results

Neural Networks training results

First, we present the results of the NNs training, with and without a sample prioritization

scheme. Here, we expect the different prioritization schemes to perform better than the

baseline, in particular on the unbalanced dataset. The main question is which of the PER or

gradient upper-bound perform better. We evaluate them on two datasets: a dataset solely

comprised of random commands and an unbalanced dataset. All the results presented in the

tables and figures below are reporting the average of 5 trainings with different optimizer

seeds.

Figure 4.2 and Figure 4.3 show the grid-search results of the gradient upper-bound and

the PER prioritization schemes on the unbalanced dataset. Figure 4.4 and Figure 4.5 show

the grid-search results of the gradient upper-bound and the PER prioritization schemes on

the fully random dataset.

87

Figure 4.2: The PER results on the unbalanced dataset. Left: single-step accuracy. Right:
multi-step accuracy. The colder the color the lower the RMSE. The lower the RMSE the
better.

Table 4.5: Neural networks overall performance. The PER and gradient upper-bound
networks were selected as the best performing parameters in multi-step accuracy. Lower is
better.

full random dataset unbalanced dataset
single-step RMSE multi-step RMSE single-step RMSE multi-step RMSE
mean std dev mean std dev mean std dev mean std dev

PER 0.060 0.006 0.18 0.021 0.068 0.0048 0.26 0.088
GRAD 0.052 0.007 0.17 0.024 0.070 0.0029 0.25 0.024
STD 0.066 0.014 0.27 0.101 0.082 0.0028 0.40 0.1

Let us first have a look at Figure 4.2: it shows that the best results are obtained with both

a high α and a high β . This means that to achieve the best results, the PER must put the

emphasis on the more difficult samples (α) but also compensate as much as possible the

bias that they introduce (β). Additionally, if we look at the color distribution, it is always

better to pick a large β , while α seems to be less important. If we now look at Figure 4.4,

we can see that on the fully random dataset, the single step prediction is more homogeneous

in performance, with the notable exception of selecting a high α coupled to low β . This

behaviour, which can also be found on the unbalanced dataset indicates that if the PER does

not compensate for the bias, then it most likely overfits on outliers, hence degrading the

general model performance. Interestingly, when considering the multi-step accuracy of the

88

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.05

0.06

0.07

0.08

0.09

0.10

RM
SE

SingleStep RMSE for different superbatch-size values
average
std_dev

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.25

0.30

0.35

0.40

0.45

RM
SE

MultiStep RMSE for different superbatch-size values
average
std_dev

Figure 4.3: The gradient upper-bound results on the unbalanced dataset. Left: single-step
accuracy. Right: multi-step accuracy. The lower the RMSE the better. The narrower the
orange area the better.

full random dataset (Figure 4.4), we can see that the color distribution is similar to the one

of the unbalanced dataset. This indicates that the PER scheme helps improve multi-step

performances in general, which is confirmed by the results shown in Table 4.5.

We can now move on to Figure 4.3 showing the impact of the gradient upper-bound

parameters on the unbalanced dataset. On this figure, it can be seen that, as the super-

batch-size increases, the single-step performance also increases. However, on the multi-step

RMSE, the accuracy is saturating once the super-batch-size exceeds 2048 samples. Yet,

as the super-batch-size further increases the variance diminishes. When comparing these

results to the fully random dataset (Figure 4.5), the multi-step accuracy appears to be ruled

by the same phenomenon with a saturation of the performances after 2048. Surprisingly,

on the single-step accuracy, the increase in super-batch size initially penalizes the accuracy,

and as it reaches a value larger than 2048, the accuracy remains somewhat constant with a

variance slightly increasing. This could be due to a focus on irrelevant samples that degrades

the performances.

Finally, table Table 4.5 compares the different learning schemes. As can be seen on this

table, as expected, both the PER and the gradient upper-bound consistently perform better

than the standard training method on the mean RMSE. The most interesting element of this

89

Figure 4.4: The PER results on the fully random dataset. Left: single-step accuracy. Right:
multi-step accuracy. The colder the color the lower the RMSE. The lower the RMSE the
better.

table is the large performance boost that these methods offer on the multi-step accuracy,

with almost 30% of performance increase on both datasets. Furthermore, from the standard

deviation on the different metrics, one can see that the prioritization schemes reduce the

variance among the trainings. This is particularly interesting as it means that training with

these methods provides models which are more reliable.

MPPI results on the cost-map

Here, we first present the results of the different models when applied in the MPPI on a

“race against the clock” task. We then compare the results of the two tracks and discuss

how some of the MPPI parameters influence the robustness of the control. As detailed in

subsubsection 4.3.4, the results reported in the figures are averaged over 15 runs.

Comparing the different schemes on the simple track

First, the controller is tested on the simple track. It is composed of straight lines followed by

arcs forming a loop. The main difficulty on this track arises from the discontinuity in the

track’s curvature where a straight line and an arc meet. Figure 4.6 shows how the different

learning schemes performed after 670 time-steps of 0.2 seconds. The models shown are

90

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

RM
SE

SingleStep RMSE for different superbatch-size values
average
std_dev

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.16

0.18

0.20

0.22

0.24

0.26

0.28

RM
SE

MultiStep RMSE for different superbatch-size values
average
std_dev

Figure 4.5: The gradient upper-bound results on the fully random dataset. Left: single-step
accuracy. Right: multi-step accuracy. The lower the RMSE the better. The narrower the
orange area the better.

0 5 10 15 20 25
x

0

5

10

15

20

25

y

USV trajectory

STD
GRAD sbs = 768
PER a = 07 b = 01

Figure 4.6: Comparison of standard neural network (STD) and prioritized (PER/GRAD)
version on a composite track

91

the best performing ones for their category. The best PER model is obtained α = 0.7 and

β = 0.1 while the best gradient model is obtained for a suberbatch size of 768.

We can see here, that the models using prioritized sampling perform better than the

one using the standard training procedure. When using the standard model, the controller

overshoots as it reaches the track, and struggles to keep up with the pace of the prioritized

networks. The network trained using the gradient method overshoots on the first curvature

change at x = 20;y = 4 but manages to follow the track and beats the other models in the

race. Finally, the PER method manages to stay on the track rather well and is closely

following the gradient based method.

Comparing the different models on the advanced track

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

Figure 4.7: Comparison of standard neural network (STD) and prioritized (PER/GRAD)
version on a square track

92

To test the capacity of the algorithms, we repeat the previous experiment on a much

more challenging track: a square track. The 90 degrees turns present major difficulty for the

USV due to its slow dynamics and high lateral slippage. Despite the complexity of this task,

all the models managed to follow the track once we added the heading cost. Without it, they

used to stay stuck in the corners. Figure 4.7 shows the trajectories followed by the different

models on their best run. On that run, the PER is the fastest, but the gradient-based model

is the one with the lowest map-cost, showing that it respects the track better. The detail of

the costs is as follows : the gradient achieves an average map-cost of 3.9 and an average

global cost of 20.0, the PER achieves an average map-cost of 6.9 and an average global cost

of 18.7 while the standard method gets an average map-cost of 6.7 and an average global

cost of 22.3.

1000 2000 3000 4000 5000 6000

2.5

5.0

7.5

10.0

12.5

st
an

da
rd

 d
ev

ia
tio

n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

1000 2000 3000 4000 5000 6000
number of samples

10

15

20

m
ea

n

mean of the mean cost over trials

Figure 4.8: Average map-cost and variance over several trials for different number of sample
trajectories. Lower is better.

93

Figure 4.8 shows how the mean of the map-costs evolves as the amount of samples used

in the optimization process increases. In our specific setup, using less than 500 samples

makes the controller highly unstable, leading to the failure of the track following task for

all the models. On the other hand, after 4000 samples we are reaching the limit of what

our python implementation can achieve in real time. Above 6000 samples, the controller

cannot work properly anymore as it is no longer running in real time, and hence suffers from

a delay between its observations and the optimal trajectories it finds.

Overall, the average map-cost is decreasing as the number of samples increases, up to

the point where the computational cost becomes a limiting factor. We can see on the mean

graph that on average the prioritized versions perform better than the classic ones. The

gradient method in particular obtains very good results compared to the other methods. In

Figure 4.7, we see that the PER is faster than the gradient. However, Figure 4.8 shows that

the gradient is more reliable than the other approaches, with a better average cost. It is

important to note that the comparison in Figure 4.7 is on the best run only, while Figure 4.8

show the results over 15 trials.

Figure 4.9 shows the influence of the length of the trajectories being evaluated by the

MPPI. Below 5 steps, the trajectories are so short that they cannot take into account the

dynamics of the USV, making the controller useless. Above 40 steps, the computational cost

becomes so high that, as encountered before, the optimal trajectories cannot be given in real

time, leading first to degraded performances and then to the divergence of the controller. In

terms of average map-cost, the standard model is worse than the prioritized models. We can

also see that increasing the number of time-steps improves the performance of the controller

until 25 steps, after which the performances decrease slightly. This may be caused by the

fact that as the trajectory gets longer the position error of the model increases, as explained

in subsubsection 4.3.5.

In Figure 4.10, we show the results for different variance values when sampling new

commands. With too little variance, below 0.15, the controller can not find any relevant

94

5 10 15 20 25 30 35 40
0

10

20

30

40
st

an
da

rd
 d

ev
ia

tio
n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

5 10 15 20 25 30 35 40
number of timestep step

10

20

30

40

m
ea

n

mean of the mean cost over trials

Figure 4.9: Average map-cost and variance over several trials for different number of time-
steps per trajectory

trajectory and fails completely. As the variance grows beyond 1.5, the performances

decrease, to the point where the algorithm fails and the costs diverge. Figure 4.11 helps

better understand the behavior of the system with a low and a high variance. With a low

variance, the system does not explore enough and finds a suboptimal trajectory. This can be

observed from the many small oscillations on the system trajectory. Also, because the MPPI

uses the previous optimal command to sample new commands, the acceleration will be

slower using a small variance. On the other hand, with a variance of 2.0 we sample over the

whole of the action space. While it can be interesting, it also means that the trajectories will

be sparser. This is visible on the oscillations in the straight line that are not present on figure

Figure 4.7 that was acquired with a variance of 0.6. The gradient model encounters some

issues at the 0.9 variance mark due to one run that diverged. Otherwise, the consistency

95

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15
st

an
da

rd
 d

ev
ia

tio
n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
variance of sampling

5.0

7.5

10.0

12.5

15.0

17.5

m
ea

n

mean of the mean cost over trials

Figure 4.10: Average map-cost and variance over several trials for different sampling
variance

of prioritized methods observed in the previous graph is still true. We can also see that an

increased variance slightly improves the performance of the standard and PER version.

Overall, it is observed that the prioritized models lead to better results in terms of map-

cost. Moreover, for this experiment the MPPI worked best for a number of samples between

1500 and 4000, a number of time-step between 15 and 30 and a variance between 0.4 and

0.8.

MPPI velocity results

In this section, we have a look at how the different parameters of the MPPI impact the

average velocity of the USV. Furthermore, we compare the velocity of the different learning

schemes.

96

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

Figure 4.11: Snapshot of the robot position (dot) and their trajectory (line). Command
sampling variance at 0.15: left; and variance at 2.0: right.

Let us start by analyzing the impact of the number of times-steps on the mean velocity

around the track. From Figure 4.12, it can be seen that, as the number of time steps increases,

the velocity of the USV decreases. This makes sense, since with more time-steps the network

can plan farther ahead, and anticipates the sharp corners of the track. Another interesting

point is that the standard model is going faster than the prioritized models. This indicates

that the estimation made by the standard model is not as good as the prioritized model.

Hence, it believes it can go faster and will end-up going outside the track. This behavior can

be seen in Figure 4.9, Figure 4.8, Figure 4.10 where the standard model almost always has a

higher map-cost than the prioritized models. Similar behavior can be seen on Figure 4.13,

Figure 4.14 where the standard model is constantly faster than the prioritized approach. In

the end, while the standard model goes faster on average, this extra velocity is misused and

leads to worst performance on the track-following task.

97

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0

0.6

0.8

1.0

1.2

1.4

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0

0.6

0.8

1.0

1.2

1.4

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0
number of timestep

0.6

0.8

1.0

1.2

1.4

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Figure 4.12: Average velocity over several trials for different number of time-steps. Higher
is better.

98

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
0.0

0.2

0.4

0.6

0.8

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
0.0

0.2

0.4

0.6

0.8

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
sampling variance

0.0

0.2

0.4

0.6

0.8

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Figure 4.13: Average velocity over several trials for different values of variance. Higher is
better.

99

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
0.4

0.6

0.8

1.0

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
0.4

0.6

0.8

1.0

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
number of sample

0.4

0.6

0.8

1.0

m
ea

n
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Figure 4.14: Average velocity over several trials for different number of samples. Higher is
better.

100

4.3.6 Application to a real world scenario

In the following we apply the MPPI to a real robotic system, in a real-world scenario:

following a lake shore. In this use-case, unlike in simulation, the trajectory to follow is not

known a priory. Instead, a track is inferred in real-time using the onboard sensors of the

robot.

Problem definition and setup

In this subsection, we used the know-how presented previously to make an USV au-

tonomously follow lake shores. To tackle this task, we relied on the Kingfisher, a 1.5

meter long catamaran from Clearpath Robotics. We fitted our USV with a 20 meters-range

SICK LMS111 2D-LIDAR, and an EMLID Reach RS+ RTK-GPS. The GPS was used to

acquire the boat state which usually provides a localisation with a precision of at least 5cm

at 5Hz. On the computational side, an Intel Atom was used for low-level computations, and

an NVIDIA Xavier was used to run the MPPI. Figure Figure 4.15, shows our real system

and the test environment.

Figure 4.15: Left our USV equipped with its sensors, right top view of our test environment:
soccer field for scale. (Lac Symphonie, 57000 Metz, France, Google Maps, 2020)

Unlike the previous subsection, we do not follow a virtual GPS track; instead, we build

a track that follows the shore at a 10 meters distance. To do so, we convert the output of the

2D-LIDAR into a local track. We then use this local track as the cost-map for the MPPI.

101

����������

����������

��������������

��������������������

������
����

������	����������������������

��������

�������

Figure 4.16: The USV and its shore-following task. Black is a zero cost area, blue has a
gradually increasing cost as we move away from the track, orange has a positive cost of 500,
green is collision and has a positive cost of 10000.

The main difference between this method and the one presented before, is that the map is no

longer fixed but changes with every new MPPI step. An illustration of the system and its

task can be found in Figure 4.16.

In the end, the cost function that we used to solve this task is similar to the one shown in

Equation 4.6, and the target velocity was set to 0.7m/s: the maximum velocity the system

could reach while performing its task reliably. The heading term was removed from the

cost function as we do not have a smooth and well-defined trajectory to follow, but rather a

track to stay on. Regarding the MPPI parameters, we leveraged the previously found results

and chose the parameters that made most sense in an embedded application. As a result,

we opted for 1500 samples and 20 time-steps. As for the variance, we found that 0.3 was a

good value for the real system, as we will see in subsubsection 4.3.6. Finally, we trained

our NN using a PER scheme on a dataset collected in the real environment with the method

described in subsubsection 4.3.4. For this dataset, we also used a grid-search to find the

optimal PER parameters.

Results

Because performing grid-searches on a real system is prohibitively expensive, we chose to

only report one experiment in the result section and explain how we tuned some parameters.

102

Figure 4.17 shows the trajectory followed by the USV along with the cost in position and

velocity associated to this trajectory.

Here we only show a third of the run, the remaining part having been frequently inter-

rupted by fishermen. During this run, the USV maintained a velocity of 0.83m/s±0.19m/s,

and a distance from the shore of 9.5m± 2.5m. As we can see on the velocity cost, this

constraint is fairly well respected. We can observe a few high spikes: these happen when the

robot goes backward because it came too close to the shore. Regarding the distance from

the shore, the cost values may seem large, but this is because LIDARs measurements are

noisy in natural environments. Since the leaves do not reflect the laser beams well and the

branches are small objects, the laser beams only hit them partially, and it results in incorrect

distance measurements. Finally, because our laser only has a 270◦ field of view, there is a

blind spot which leads to a deformation of the local path when the robot is not parallel to

the shore. Nonetheless, the USV performed well, and across our testing it never collided

with the shore and managed to go around most of the obstacles. The main limitation of the

approach was that when facing obstacles that have an acute angle relatively to the shore the

boat could turn back.

On the real system, we found that the sweet-spot for the command variance sampling

was around 0.3, when in simulation values from 0.5 to 1.0 seemed to work best. Having a

larger variance would lead to instability. This could be explained by the constraints faced

by our embedded system. In simulation, we can see that optimal amount of samples range

from 2000 to 4000 and the ideal horizon was around 25. This was not achievable with

our implementation on the Xavier. Hence, we reduced the number of particles, which

in-turn forced us to reduce the variance of the command sampling to prevent the MPPI from

becoming unstable.

103

Figure 4.17: Top: cost of the USV along the trajectory shown on the bottom left. For the
cost. A lower cost indicates a better performance. The colors on the three plots match so the
costs can be associated easily to the position. On the bottom right, a satellite image of the
lake is given.

104

4.3.7 Conclusion Prioritization Applied to MPC

Following the work done in section 4.2, this section investigated the potential benefits

of using importance sampling scheme for deep model identification. After showing the

advantage of our method when modeling the USV, we showed that it translated into good

performance on a track-following task for two different tracks. Then, we studied the

reliability of the controller for the different models depending on the algorithms parameters.

We showed that the prioritization improves the controllers’ performances. The gradient-

based method outperformed every other methods in most cases. Even though these methods

bring significant performance boost, both the PER and gradient upper-bound require grid

searches to work optimally. This can be seen on datasets where there are outliers to which

the PER is very sensitive to. Additionally, the main drawback of the MPPI and the NNs

in general comes from their inability to correctly estimate their uncertainty. Yet, recent

advances in the field [44, 46, 120] show promising results.

105

4.4 Conclusion

In this chapter, we have shown that prioritization methods can be used to improve the

accuracy of dynamic systems modeling. We compared two different method, the PER and

the gradient upper-bound. We showed that even though the gradient upper-bound has fewer

hyperparameters, it performs better than the PER in average. When applied inside an MPPI

controller, we proved that these methods improve the performance of the controller and its

reliability. However, we believe that the main limitation of these methods is their inability

to estimate the uncertainty. Recent advances in this field [44, 46, 120] show promising

results. Future work should focus on implementing these inside the MPPI framework. An

interesting application could consist in leveraging the uncertainty in the state to increase the

variance or the number of particles inside the MPPI. For instance, when the model is certain

of its prediction, the variance could be smaller than when the uncertainty is large. At the

same time, if the variance is smaller, then the controller does not need as many particles,

reducing the computational cost of the MPPI. Another interesting area of study could be

to learn a function similar to the value function in reinforcement learning. This function

could then be used to adjust the sampling variance at run-time, improving the accuracy of

the controller in low-variance scenarios, while allowing the controller to get out of complex

situations by greatly increasing the sampling’s variance.

106

CHAPTER 5

MODEL BASED REINFORCEMENT LEARNING FOR MOBILE ROBOTS

NAVIGATION

5.1 Introduction

In this chapter, we study how model-based reinforcement learning can be used to efficiently

teach robots to solve navigation tasks in outdoor environments. Understanding how to

efficiently teach robots to solve tasks is critical, as collecting samples from real robots is

prohibitively expensive. Furthermore, simulating robots in complex environments is not

that cheap as well. While novel simulators like IsaacSim1 promises faster GPU enabled

simulations, training still has a cost. This is why we used MBRL[121] in this thesis. An

efficient form of RL that leverages a learned transition model to learn how to act. In

the following sections, we will start with a quick overview of what RL is along with a

presentation of Dreamer[122], a state-of-the-art MBRL algorithm that we built on in this

thesis. Then, we will see the type of robots we used as well as the task they solved. We

explore how we can apply Dreamer on a real robot without training it on the said robot,

but on a simulated version instead. We start by modeling the system using high dimension

exteroceptive inputs. Then, we integrate the robot’s physical state into the loop. In this

configuration, we use both high-dimension and low-dimension inputs to model the system.

To improve the reusability of the models, we learn two transition functions, one for the

dynamics, one for the rest of the environment. This allows changing the dynamic model

while preserving environment knowledge and vice-versa. Finally, we leverage this model to

efficiently learn how to reach different velocity goals.

1https://developer.nvidia.com/isaac-sim

107

https://developer.nvidia.com/isaac-sim

5.2 Fundamentals on Reinforcement Learning

5.2.1 What is Reinforcement Learning

Reinforcement Learning (RL) can be seen as the machine learning solution to the control

problem. In this paradigm, an agent is interacting with the world by taking actions and ob-

serving the response of that world (in a sequential manner). This agent receives (numerical)

rewards (given by some oracle) that are local information about the quality of the control.

The aim of this agent is to learn to take action-sequences that will maximize the sum of

the rewards over this sequence. One major difference between RL and control, is what the

reward does. In control, the error is used as active feedback to steer the system in the right

direction. However, in RL, the reward is only used as a means to learn. Once the system

has learned, it does not need to know what the reward is. This short section provides an

introduction to the field of reinforcement learning. We invite the reader to refer to reference

textbooks to learn more about RL [123, 124, 125, 126].

In RL, the agent is interacting with a system, often referred to as the environment or the

world. If we wanted to train a robot to solve a manipulation task, for instance, this “world”

Figure 5.1: An agent interacting with its environment.

108

would encompass both the robot and everything that is related to the task it is trying to solve.

An example of an agent interacting with a system can be seen in Figure 5.1.

For each time step, the system observes the world and acquires its state. Using this state,

the agent can pick an action. This action is then applied to the world, which in turn returns a

reward. This reward can be any numerical value. If the reward is predominately null, then

the reward is called sparse. Sparse reward problems are often harder to learn. With the

action sent to the world, the environment updates itself and this process can be repeated.

The goal of deep RL is then to learn a function called “policy” that will maximize the sum

of rewards over a trajectory.

Let us illustrate that with a robotic car that must follow a road. In this case, the state of

the car could be an image provided by a forward-facing camera. The actions of the agent

can be defined as the amount of throttle and steering sent to the car. The goal of our agent

could be to stay on the right side of the road. The reward could consist of one point for

staying on the right side of the road, minus one point if the car is not there, and minus ten

points if the car has an accident. The agent would control the car at a given frequency, and

for each step, it would receive a reward.

To formalize this type of problem mathematically, reinforcement learning leverages

Markov Decision Process (MDP). So let us start by defining them.

5.2.2 Markov Decision Processes, Policy & Value Functions

A Markov Decision Process or MDP is a tuple S,A,P,r,γ where:

• S is the (finite) state space

• A is the (finite) action space

• P∈ ∆
S×A
S is the Markovian transition kernel. The term P(s′|s,a) denotes the probability

of transiting in state s′ given that action a was chosen in state s. The transition kernel

is Markovian because the probability to go to s′ depends on the fact that action a was

chosen in state s, but it does not depend on the path followed to reach this state s. This

109

means that to be Markov, s must contain all the information necessary to get s′. This

assumption is at the core of everything presented here.

• r ∈ IRS×A is the reward function, it associates the reward r(s,a) for taking action a in

state s. The reward function is assumed to be uniformly bounded.

• γ ∈ (0,1) is the discount factor. Depending on its value, it will give more or less

importance to long-term rewards. The closer is γ to 1, the more importance we give to

rewards far in time. Usually, this parameter is set to a value close to 1 such as 0.99.

So, the system is in state s ∈ S, the agent chooses an action a ∈ A and gets the reward r(s,a),

then the system transits stochastically to a new state s′, this new state is drawn from the

conditional probability P(.|s,a). Please note that if the agent has only a partial observation

of its world, for example, if our car driver cannot differentiate between the left and right

lane, the dynamics are no longer Markovian. This is known as Partially Observable Markov

Decision Process (POMDP).

The function that rules the way an agent chooses its actions is called a policy, noted

π ∈ AS. In state s, an agent using policy π chooses the action π(s). Hence, the problem RL

tries to solve is finding the best policy. However, to do so, we need to be able to evaluate the

quality of a policy. A common evaluator of a policy quality is the value function: vπ ∈ IRS.

This so-called value function provides the discounted cumulative sum of rewards obtained

by following the policy π from the current state s.

vπ(s) = IE[
∞

∑
t=0

γ
tr(St ,π(St))|S0 = s,St+1 ∼ P(.|St ,π(St))] (5.1)

Equation 5.1 gives the analytic expression of the value function for an agent in state s

with a policy function π . The concept of this function is to estimate how well a policy is

currently doing. If the policy, the reward, and the transition functions are known, then the

value function can be computed analytically. In this calculation, one can see that the rewards

acquired along the trajectory are discounted by γ . There are other means to evaluate a policy,

110

but the value function is the most common one. Because a value function can evaluate the

quality of a policy, it also allows comparing them Equation 5.2.

π
1 ≥ π

2⇐⇒∀ ∈ S,vπ1(s)≥ vπ2(s). (5.2)

To solve an MDP one needs to find the optimal policy π∗s.t.vπ∗ ≥ vπ∀π ∈ AS. Hence,

the optimal policy satisfies Equation 5.3.

π
∗ ∈ argmax

π∈AS
(vπ) (5.3)

These equations can then be used to solve the MDP. However, we will not explore

these derivations here. Our goal was to provide definitions of key terms in RL. We invite

the curious reader to refer to [123]. Yet, before carrying on with the rest of the thesis, let

us take the time to explain the differences between two branches of RL: model-free and

model-based RL.

5.2.3 Model-Free & Model-Based Reinforcement Learning

Reinforcement Learning is usually separated into two fields: Model-Free, and Model-Based.

The main difference between these two approaches lies in their training philosophy. In

Model Free Reinforcement Learning (MBRL) the actor is learned by interacting with the

system. This is the only thing that is learned along with the value function, as is required by

most deep RL techniques. The core idea behind MBRL is that learning a policy function is

sufficient, and thus, it rejects the concept of planning for most real-world scenarios.

In MBRL the first thing that is learned is a transition function. This transition function

can serve multiple purposes. With it, one can create a MPC controller, a good example

of that is the MPPI[25], or some of the work of Chelsea Finn[127]. The benefit of this

method is that once the transition function is learned, one can apply any cost function and

the controller should work. Here, we say should because the system may wander outside

111

the training distribution of the transition function, which could cause the system to fail.

Nonetheless, this is extremely practical as the actor does not have to be learned, and can

easily be adapted. This is particularly desirable in robotic setups. Another way of using this

known transition function can be to learn a policy from it. In Planet[128] or DREAMER[122,

129] they use a learned transition function to train a model-free actor. The advantage of

this method is that it allows generating billions of so-called imagined trajectories, greatly

increasing the sample efficiency of model-free methods. Finally, another way to use them

is a combination of policy learning and planning. A great example of that can be seen in

MuZero[130], where they learn both a policy and a transition function. Figure 5.2 shows the

difference between a model-free agent and a model-based agent with policy learning. In this

thesis, we focus on model-based reinforcement learning with policy learning.

Figure 5.2: Left model free learning, right model based policy learning.

112

5.3 Fundamentals on Dreamer

In this thesis, we build on Dreamer, a strong MBRL agent. In the following section, we

present how this agent works.

5.3.1 Recurrent State Space Model

Dreamer leverages a process called latent imagination to learn behaviors. Latent imagination

consists in predicting a sequence of latent states of fixed length. In Dreamer, this is done by

using a Recurrent State Space Model or RSSM. The RSSM is a VAE that acts as a Bayesian

filter. As such, it has two functions: an observe function, which allows using observations

to update its internal state; and an update function, which predicts the next internal state

given an action. As their name suggests, RSSMs are recurrent models. They use a GRU

to propagate and encode prior information. More precisely, the core mechanism behind

RSSMs is that their state is made of two components. A deterministic part, which is the

hidden state of the GRU, and a stochastic part, which is the variational part of the model.

To understand their relationship, we need to see how the model works. Figure 5.3 shows

the update function. On it, we can see that the first feedforward layer acts as a transition

function, taking in the action and the past stochastic state that are then sent to the GRU. The

GRU updates the deterministic state and acts as a regularizer preventing the stochastic state

from changing too fast. The output of the GRU, is then sent through a feedforward layer,

after which the reparametrization trick is applied to update the stochastic state.

As shown in Figure 5.4, to update the state of the RSSMs using observations, we

start by applying the update function. Then the resulting deterministic state, and the new

observations are concatenated and sent through a feed-forward layer, whose output gives the

stochastic state after applying the reparametrization trick. A more detailed explanation of

RSSM can be found in [128, Sec.3].

To learn its world model, Dreamer uses input reconstruction like a VAE would. A

113

FeedForward

FeedForward

GRU

Stoch Action

+

Deter Deter

ε~N(0,1) x

Stoch

FeedForward

FeedForward

GRU

Stoch Action

+

Deter

ε~N(0,1) x

Stoch

FeedForward

FeedForward

GRU

Stoch Action

+

Deter

ε~N(0,1) x

Stoch

t+1t t+1

t

t+1

t+1 t+2 t+3

t+3t+2

t+2

t+2

t+3

Figure 5.3: The update step of the RSSM. “stoch” is the stochastic state, while “deter”
is the deterministic state. The blue “+” is a concatenation operation, the gray “x” is the
reparametrization trick (recall Equation 2.13).

FeedForward

Stoch Action

Deter

ε~N(0,1) x

Stoch

t t+1

t

t+1

+

Detert+1

Obs t+1

Update Function

FeedForward

Stoch Action

ε~N(0,1) x

Stoch

t+1 t+2

t+2

+

Detert+2

Obs t+2

Update Function

FeedForward

Stoch Action

ε~N(0,1) x

Stoch

t+2 t+3

t+3

+

Detert+3

Obs t+3

Update Function

Figure 5.4: The observation step of the RSSM. “obs” is the observation of the system, “stoch”
is the stochastic state, “deter” is the deterministic state. The blue “+” is a concatenation
operation, the gray “x” is the reparametrization trick (recall Equation 2.13).

114

o1

r1 a1 r2 a2 r3
 ̂ ̂ ̂

o1
 ̂ o2o2

 ̂ o3o3
 ̂

Figure 5.5: An illustration of the reconstruction process. Image from [122].

sequence of images is sent through the RSSM. Each image ot is first encoded, then

recurrently processed by the observation function. This gives us a sequence of states

st ⇐⇒ (stocht ,detert), which are then concatenated and sent to a decoder network. The

output of the decoder is the reconstructed input ôt . Similarly to a VAE, this network is

trained by minimizing the ELBO loss. The reconstruction ensures that the agent learns a

compact representation of the world that it can then use to learn how to play. The last thing

that is missing here is a reward signal rt . Thus, on top of the input reconstruction, the RSSM

also learns to reconstruct the reward from its latent state. A depiction of this process can

be seen in Figure 5.5, where r̂t is the reconstructed reward, and at is the action sent at time

t. Now that we know how an RSSM works, let us see how we can leverage them to learn

behaviors.

5.3.2 Learning Behaviors

To learn behaviors, Dreamer uses an RSSM to generate novel trajectories. But why is an

RSSM interesting in the first place? There are at least three big advantages to using this kind

of model. First, an RSSM can be viewed as a simulator, a blazing fast one. Indeed, because

the RSSM is a neural network, it can be “batchified”. This means that a single GPU can now

simulate thousands of trajectories concurrently. In Dreamer, they use this to generate 2500

115

trajectories per batch with a horizon of 45 points. An outstanding number of simulations ran

in parallel in less than a second. Second, the stochastic state inside the RSSM can generate

previously unseen situations. This should make the agent more robust to out-of-distribution

events. Third, this model can be used to learn offline. One can deploy its robot, collect data,

update the RSSM, and use them to update its policy. This is ideal for most robotic setups.

To learn a policy, Dreamer uses the well-known actor-critic framework. We recall that

Dreamer uses the following quantities: o an observation, r ∈ IR the reward, a an action.

Using ot , at and the RSSM one can get st . Using st one can also obtain r̂t , and ôt . This

dynamic model is formally defined by Equation 5.4.

representation model: p(st | st-1,at-1,ot)

transition model: q(st | st-1,at-1)

reward model: q(rt | st)

decoder model: q(ot | st).

(5.4)

Using this transition model, and a policy aτ ∼ q(aτ | sτ), we can generate a sequence

of state, and a sequence of imagined rewards. These sequences can then be used to learn a

value function who will approximate the lambda return of the policy from a given state, as

in Equation 5.5.

v(st)≈ IEq(.|sτ)

(
t+H

∑
τ=t

γ
τ−trτ

)
(5.5)

The goal of the agent is to maximize the value. The algorithm used to learn behaviors using

Dreamer is given in algorithm 6. A depiction of the learning process is given in Figure 5.6.

On this figure, we can see that using an observation we get a latent state, and then using the

learned transition function and our policy we get a sequence of latent-states. Then for each

of this state we compute the reward, and the value. Which we in turn use to refine the policy.

More details about Dreamer can be found in [122, Sec.3].

116

o1

r1 a1v1 r2 a2v2 r3 a3v3
 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

Figure 5.6: The learning process of Dreamer. Image from [122].

Algorithm 6: Dreamer (Algorithm from [122])

Initialize dataset D with S random seed episodes.
Initialize neural network parameters θ ,φ ,ψ randomly.
while not converged do

for update step c = 1..C do

// Dynamics learning

Draw B data sequences {(at ,ot ,rt)}k+L
t=k ∼D.

Compute model states st ∼ pθ (st | st−1,at−1,ot).
Update θ using representation learning.

// Behavior learning

Imagine trajectories {(sτ ,aτ)}t+H
τ=t from each st .

Predict rewards E
(

qθ (rτ | sτ)
)

and values vψ(sτ).

Compute value estimates Vλ (sτ).
Update φ ← φ +α∇φ ∑

t+H
τ=t Vλ (sτ).

Update←−α∇ψ ∑
t+H
τ=t

1
2

∥∥vψ(sτ)Vλ (sτ)
∥∥2.

// Environment interaction
o1← env.reset()
for time step t = 1..T do

Compute st ∼ pθ (st | st−1,at−1,ot) from history.
Compute at ∼ qφ (at | st) with the action model.
Add exploration noise to action.
rt ,ot+1← env.step(at).

Add experience to dataset D←D∪{(ot ,at ,rt)
T
t=1}.

Model components
Representation pθ (st | st-1,at-1,ot)
Transition qθ (st | st-1,at-1)
Reward qθ (rt | st)
Action qφ (at | st)
Value vψ(st)

Hyper parameters
Seed episodes S
Collect interval C
Batch size B
Sequence length L
Imagination horizon H
Learning rate α

117

5.4 Robotic Systems & Task

5.4.1 Robotic systems

Heron

Figure 5.7: Left the real Kingfisher, right the simulated Heron.

The simulation and the real experiments were performed using similar systems. The real

robot is a Clearpath Robotics Kingfisher, while the simulated robot is a Clearpath Robotics

Heron (the Kingfisher’s new version). In both simulated and real experiments, our USV

is equipped with a SICK LMS111, a 20 meter-range and 270◦ field of view 2D-LiDAR

running at 50Hz. To acquire the pose of our robot we use a REACH RS+, an RTK GPS

from Emlid coupled to a pair of IMU that we use to get the heading of our robot. These

informations are then fused inside an EKF that provides pose and velocity estimates. The

weight distribution of the real and simulated systems are different: our real system was

adapted to carry an NVIDIA Jetson Xavier and the RTK GPS. On the real system, an Intel

Atom is used for low-level computations, while the Jetson Xavier at base clocks is used to

compute and apply the agent policy. Both computers are running ROS with a single master.

The main challenge of this system is its inertia. With its current configuration, our

Kingfisher’s weight is around 35 kg, and it only has two 400 W motors (one left, one right).

Hence, if an agent wants to take turns correctly, it needs to anticipate.

On the real system, the RL agent runs on Ubuntu 18.04 with ROS melodic, CUDA 10.0,

118

python 2.7 and TensorFlow 2.1 [105]. The agent model has not been converted using Tensor

RT or any other DNN compilers and can run easily at 12Hz on the Xavier.

Husky

Figure 5.8: The simulated Husky.

The second system we tested our method on is an Unmanned Ground Vehicle (UGV): a

Clearpath Robotics Husky. This USV is a four driving wheels robot designed for outdoor

applications. Because our real robot is not equipped with any GPU yet, we only tested it

in simulation. The Husky in simulation is equipped with the same SICK LMS111 than the

Heron.

State-Space

In our experiments, our robots are given access to three proprioceptive variables: their linear

velocity, their transversal velocity, and their angular velocity. All these velocities are given

in the robot frame, as illustrated in Figure 5.9. Regarding the action-space of the robots, the

commands are values in the range [−1,1]. The Kingfisher has a two-dimensional action

space, where each dimension controls the amount of current sent to the turbine in each of its

floats. As for the Husky, the first component of its action space requests a linear velocity in

m/s while the second one requests an angular velocity rad/s.

119

(a) Kingfisher/Heron (b) Husky

Figure 5.9: State-space/Action-space illustration.

5.4.2 Task definition

This appendix gives more details on the task the reinforcement learning agent were trained to

do. The task that we solved is a sensor-based navigation task. More precisely, we teached a

robot to follow lake and river shores at a fixed distance and a fixed velocity. This is motivated

by applications involving long-term monitoring of natural environments (for example, to

assess that the shores are not moving over time). To follow the shore, our agent relies on

a laser scanner and has access to its velocities (forward velocity, lateral velocity, angular

velocity). Figure 5.10 shows the robot and the task it has to accomplish.

The reward of our agent is based on two independent metrics: ∆d , the distance of the

agent from the target shore distance dt , and ∆v, the difference between the agent’s velocity

v and the target linear velocity vt . In all our experiments, we set vt = 1.0 and dt = 10.

Furthermore, we penalize the agent if it gets too close to the shore or if it goes backward.

The reward R is defined as follows:

R = 1.0×Rv +2.5×Rd

120

with Rv and Rd given by:

Rd = max(−20,1−0.5(dt−d)2)

Rv =

1−|vt−v|

vt
, if v≥ 0.05

−0.625, otherwise

This reward is computed when training the model, and learned as part of it. The agent is

trained on the learned reward (estimated solely from the laser-scan measurements, through

the learned embedding).

����������

����������

��������������

��������������������

������
����

������	����������������������

��������

�������

Figure 5.10: The USV and its shore-following task. (Colors are illustrative.)

5.4.3 Training

To train our robots, we used Gazebo: a robotic simulator, coupled to ROS, a robotic

middleware. The USV dynamics simulation is handled by the uuv-simulator package.

Each agent was trained in TensorFlow [105] for 1000 episodes of 500 steps amounting to 0.5

million interactions with the simulated environment. All our agents were trained purely in

simulation, and were never fine-tuned on real-data. During the training, we applied a simple

fixed-step curriculum learning. At the beginning of the training, the robot spawned close

121

from the requested distance to the shore. As the training progressed, the agent spawned

farther from that position with different headings. More details about the hyper-parameters,

our training setup, the curriculum and others can be found bellow.

Curriculum

The curriculum learning of the robot is done by spawning the robot in increasingly difficult

positions. To do so, we use a normal density probability function f (x) with x ∈ [0,1]. The

mean of the probability density function µ , starts at 0 and shifts towards 1 as the training

progresses. The equation is given in Equation 5.6 and examples of the probability function

can be seen in Figure 5.11, where σ = 0.25.

f (x) = e
−(x−mu)2

2σ2 (5.6)

Figure 5.11: Probability density function depending on the number of steps. Each color
corresponds to a step.

To spawn the robot, we pick a random position (pideal x, pideal y on the ideal trajectory.

122

The heading pideal θ associated with this position is set to be tangent to this trajectory. Please

note that the ideal distance is known beforehand, as the environment was generated using

a cad model of known geometry. Using the probability density function f , we draw d

and ε , numbers between [0,1], and then apply the equations given in Equation 5.7 with,

max distance =±4, max angle =±3π

4 .

pspawn x =pideal x + cos(pideal θ +π/2)×d×max distance

pspawn y =pideal y + sin(pideal θ +π/2)×d×max distance (5.7)

pspawn θ =pideal θ + arctan2(−d,5)± ε×max angle

Equation 5.7 moves the spawning position along the normal to the ideal trajectory.

Ideally, the boat would spawn on the perfect trajectory, and its angular position would

be computed using the tangent to that trajectory. However, as the distance to the ideal

trajectory becomes large, this angle is no longer ideal. This is why we introduce the term

arctan2(−d,5), which sets the boat heading such that it reaches the ideal trajectory after

five meters.

Examples of spawn positions generated by the curriculum can be seen in Figure 5.12

Our curriculum setup is designed such that the agent learns to drive around the lake in a

single direction. To do so, we start by a warm-up phase of 250,000 steps, where the agent

always spawns in the ideal position with the shore of the lake on its right. This creates a lot of

samples on which the shore of the lake is on the right side of the agent. Naturally, this leads

to the agent being more comfortable with the shore on its right side. We observed during

field experiments that an agent trained this way would always fall back to this configuration.

Counterintuitively, this behavior is highly desirable, as an agent trained this way will never

do U-turns and retrace its steps. During the rest of the curriculum, between the step 250,000

and 1,000,000, we gradually increase the value of mu. During this phase, the boat faces

increasingly difficult situations. And finally, for the remaining steps, we leave the curriculum

123

Figure 5.12: Possible spawn positions generated by the curriculum-based spawner. The
training was cut into 4 phases for better readability. The warmer the color of the arrow, the
higher the difficulty setting.

at the maximum difficulty setting.

124

ROS & Learning interactions

The way the RL agent interacts with ROS and gazebo can be described as follows:

Algorithm 7: Training Interaction

Start the Gazebo simulation SIM.
Start the ROS synchronization node RS.
Start the ROS agent node RA.
Start the training code T R.
while not converged do

T R.request new episode(RS).
RS.reset(SIM).
RS.refresh agent(RA).
RA.fetch new weight(T R).
RA.start interaction().
RA.done(RS).
RS.done(T R).
T R.fetch last episode(RA).
T R.train().

125

5.5 Model Based Reinforcement Learning for mobile robots

5.5.1 Motivation

Autonomous navigation in natural environments is critical in areas such as agriculture,

inspection or environment monitoring. In these tasks, robots have to perform actions in

complex and unstructured scenes, constantly changing. This requires them to have an

in-depth understanding of their surroundings and own dynamics. To solve such tasks, a

robot needs either a behavior model or a local planner. When using a local planner, the

controller needs a dynamic model to follow the path and optionally an interaction model to

know how changes in the environment impact the system.

Nowadays, most of the controllers use this kind of design [118]. However, as they rely

on an accurate depiction of the robot dynamics, they require measuring the state of the

system precisely. This means that the robot is carrying an expensive suite of sensors to

acquire its state. Even though these approaches perform well, their cost, and the size of

the sensors, make them hard to apply on small embedded systems. Furthermore, some

sensors such as RTK-GPSs only work reliably in open-sky areas, making them impractical

to use in occluded spaces, in forests, or in adverse meteorological conditions. Based on

these observations, controllers based only on a small number of sensors such as cameras or

laser scanners have gained interest over the recent years. The rise of these approaches was

facilitated by the fast growth of the RL field [131], with its numerous benchmarks and the

ever-increasing computational resources available on low-power devices. Building on this,

an increasing amount of studies lean on RL-based controllers for their robot; among the

popular methods, model-free techniques such as A3C [132] or SAC [133] have been used

extensively [134, 135]. However, these approaches are rarely deployed in the field. This

could be due to the cumbersomeness of training RL agents, and the issues inherent to field

robotics.

In this section, we teach an under-actuated USV that exhibits thrust non-linearities to

126

Figure 5.13: The Heron dashing around the Symphonie lake.

follow lake and river shores using Dreamer [122], a MBRL technique. MBRL is particularly

interesting in robotics as it is more efficient than MBRL, reducing the amount of interaction

with the environment needed to train the model. Another interesting point is that Dreamer,

which uses latent imagination, natively learns the dynamics of the system to build its world

model. To do so, our agent is exclusively provided with measurements from a laser scanner

and must navigate at a fixed distance from the shoreline. Please notice, this task is not a path

following task, as we rely on the environment to reactively find a path to follow. To the best

of our knowledge, this is the first time Dreamer is being applied onto robots.

Yet, such RL agents come with disadvantages: they still require a lot of interactions to

reach satisfying performances; as they learn by trial and error, they need to be constantly

monitored to prevent accidents. A solution to this is either to use a very accurate simulator, or

spend time training the model in the real environment, which is incredibly time-consuming

and risky. To alleviate these issues, efforts have been made to create methods that allow to

127

train agents in simulation and deploy them in real-life [136, 135]. Most of them rely either

on Domain Randomization (Domain Randomization (DR)) [137] or Domain Adaptation

(DA) [138]. While DA uses some real world data to adjust its parameters, DR does not.

Here, although we apply DR, our study is more focused on what type of data-representation

is used by the agent to minimize the use of these methods and deploy the agent without ever

training it on the real system.

Our contribution are: 1) training an RL agent solely in simulation to perform a shore-

following task and applying it successfully on the real system in different weather conditions

including moderate rain, and wind; 2) evaluating different data representations and how they

fare in a zero-shot deployment; 3) reporting on lessons learned and giving some advice to

practitioners.

5.5.2 Related Work

Designing algorithms to tackle reactive navigation problems is an active field of research

in robotics since the 80s, as detailed in [139]. Many of these methods apply learned (RL)

policies [140]. Actually, RL for policy search in robotics has been studied for decades [121,

141], and was applied to solve state-aware problems way before Deep RL came to be.

However, those approaches often failed to process directly high dimensional inputs such as

images. This is where Deep RL steps in, as NNs allow them to process complex inputs and

act upon them.

Deep RL for Perception-Based Control

The emergence of deep learning has led to breakthroughs in many fields, and RL is no

exception. The resulting field, Deep RL, is presented in [131]. Perception-based control

happens to be the very task tackled by one of the most iconic Deep RL agent, namely

DQN [142], an agent that achieves human-performance on a suite of classic video games.

As of today, RL agents can be separated into two main families: model-free and model-based

128

agents.

As their name suggests it, model-free agents do not try to learn transition or reward

models. They are some of the most successful RL algorithms to date [143, 144, 133],

including for robotics. For example, [135] uses A3C [132] to perform a visual servoing task

where the agent follows a yellow marker in the image. Yet, one big disadvantage of MBRL

is that it usually requires a huge amount of interactions.

On the other hand, model-based approaches are much more data-efficient but they often

lagged behind the best model-free agents. As model-based agents learn the transition model

and the reward model, they can interact with the environment virtually, mitigating the need

for interaction with the real system. However, they then learn an imperfect model, which

can deteriorate their performances. In [128, 122], the model is learned from simulation and

used to train the policy. This allows the agents to train the policy for hundreds of billions of

time-steps, without interacting with the real system.

Zero Shot Learning & Domain-Randomization

Even though data efficiency is getting more and more attention from the RL community,

training an agent in the real world for millions of steps remains cumbersome. To avoid

this, a set of methods grouped under the name DR have been developed. Robotics has

seen an extensive use of DR applied to visual servoing [145, 146, 137]. For example, [145,

146] apply DR by making changes in the 3D scenes by randomly changing illumination or

textures. This allows training object-detectors and collision detectors that work in the real

world without ever being trained in it.

DR has also been used to change the dynamics of the system for learning robust poli-

cies [137, 147, 148]. DR does not require real-world data, but training a model under DR

takes more time than what it would have if the true system was known. Finally, [135]

trains an A3C agent to follow yellow semantic labels in simulation and shows that the agent

transfers seamlessly between the simulation and the real world. This task is akin to a visual

129

servoing task, where the robot is steered solely based on the label it has to follow.

In this section, we apply Dreamer [122], a MBRL agent, and use DR to learn a policy

that is robust to the perturbation that can occur in the real world.

5.5.3 Method

This subsection details how the RL agent is trained, in simulation, to perform a shore-

following task, both in simulation and on the lake. To learn more about how Dreamer works,

please refer to section 5.3. To follow the shore, our agent relies only on a SICK laser scanner.

Its goals are to remain at a fixed distance from the shore, to maintain a constant velocity,

and to turn around the lake in a single direction. Figure 5.10 shows the robot and the task it

has to accomplish.

Dreamer’s modularity allows us to feed it with an observation and reconstruct something

completely different. We study two types of observations and reconstructions.

Laser Measurements

The most naive way of using Dreamer with a 2D laser-scan is to change its encoders and

decoders to process the laser-scans directly. To do so, we replaced the encoder/decoder based

on 2D CNNs by 1D CNNs. In addition to this modification of Dreamer, we also project

the laser-scans to a continuous representation. By default, laser-scans are a discontinuous

representation of a 2D world: the laser points that are not reflected are set to zero or infinity.

To alleviate this issue, we set all the zeros in the laser-scan to an arbitrary large value and

compute its inverse. This creates a continuous representation where points close from the

USV have a large value and points far from it have a small value. Finally, to make the laser

more robust to the brutal changes that happen in a natural environment, we use an operation

that would be similar to a min pool with a stride of 2. In the end, we remove 7 points on

each side such that the final laser-scan has a shape of 1x256x1 making it easy to manipulate

using convolution and pooling operations.

130

Laser Projection

While using the laser-scan directly can sound appealing, the transfer between simulation

and real environment is difficult. Indeed, in our natural environment, the movement of the

leaves, or small branches, and the partial reflection of laser points due to the semi-transparent

character of the vegetation make real and simulated laser-scans very different. Thus, we

choose to transform the laser-scans into a robust representation. To do so, we create an

image representing a local map with a width of 20 meters and a height of 12 meters, the

map has a resolution of 1 pixel per 10cm. The origin of the map, the position of the robot,

is set 2 meters from the top and 10 meters from the left and its background is blue. Then

we convert laser-scans into points in the map and trace 4 meters red circles on top of each

point. Finally, we trace a black one-meter wide curve 10 meters from the shore to represent

the track and resize the map to a 64x64 image. This representation is robust to changes and

behave similarly in simulation and in the real world, as shown later.

5.5.4 Environment & Domain Randomization

In the real world, the system’s dynamics can be impacted by at least two environmental

factors: wind and water current. To compensate for those, we add water current to the

simulation. More precisely, at the beginning of each episode we draw a water current

velocity from a uniform distribution in the range [0, 0.4] m/s and set its direction randomly.

Additionally, as our real system has gone under significant modifications its characteristics

are different from the one used in simulation. To account for that and the approximations of

the simulator, we also change the water density at the beginning of every episode. Before

the agent starts playing we draw a density from a uniform distribution in the range [1000,

2500] kg/m3. Finally, we also make the agent spawn close and far from the shore to make

sure it learns how to recover from such events.

131

5.5.5 Experiments

The system used in these experiments is the clearpath kingfisher. More about this system in

subsubsection 5.4.1.

(a) (b) (c)

Figure 5.14: Simulation and Real environments: (a) and (c) are the simulated and real lake
(Lac Symphonie, 57000 Metz, France, Google Maps, 2020), (b) is a simulated channel

Simulation Environments

We trained our models in simulation using Gazebo2, a simulator that supports advanced

physics modeling and allows to create custom robots. The simulation of the USV is done

using the ROS packages heron-simulator3 (simulated version of Clearpath’s Heron) and

uuv-simulator4 (water buoyancy simulation and thrust non-linearities mimicking the real

USV behavior). To train our agent, we have replicated our real test environment: a lake

around which we have planted approximately 1000 trees to create a feature rich and intricate

shoreline. We also test our agent in other simulated environments to ensure that it has

learned something that can be applied in a wide variety of situations, as can be seen in

Figure 5.14 (a, b).

Real Environment

Our real test environment is a small artificial lake with approximately 1.7 km of shoreline.

As can be seen in Figure 5.14 (c) it presents two main complexities, a hairpin bend on the far

right of the lake, and a small island that creates a narrow passage. Additionally, we deployed
2gazebosim.org
3github.com/heron/heron simulator
4github.com/uuvsimulator/uuv simulator

132

gazebosim.org
github.com/heron/heron_simulator
github.com/uuvsimulator/uuv_simulator

our system in various weather conditions, such as light rain, and wind with average speed of

40 kmph, and gust of wind reaching up to 60 kmph. Furthermore, our lake also features a

very active and curious wild-life including swans and ducks that act as moving obstacles.

Training parameters

All our agents are trained for 2000 episodes of 500 steps, the agent plays 12 times per

second. This makes for a total of 1.000.000 simulation steps, or about 24 hours of play time.

Although we could have played at a higher frequency, we noticed no improvement from

50Hz to 12Hz: we decided to stay at 12Hz. All training parameters are provided on our git

repository.

Baseline

Initially, our USV was controlled using a PID controller and a linear model of the system.

This controller was not only hand-engineered for the environment but failed to reach veloci-

ties higher than 0.4 m/s. Hence, we compare the RL agent to a strong MPPI controller [115],

using a cost function similar to the reward of our agent. The MPPI is a monte-carlo-based

controller that requires a model of the system. Here this model is learned by a NN using

the real USV, but unlike our method which is relying solely on a 2D laser scanner, the

MPPI uses the on-board RTK GPS and IMU to infer its state: linear velocity, and angular

velocity. The Neural-Network used to model the system was pre-trained in simulation on

1.000.000 samples and fine-tuned on the real-system with 100.000 samples. Both trainings

were done using the PER scheme and a grid-search was used to find the optimal parameters.

We collected samples on the real USV as the MPPI would not converge on the real system

when using the model acquired in simulation.

133

Table 5.1: Results (simulated and real system). Target velocity 1m/s, target distance from
the shore 10meters.

Simulated system Real system
Representation Ideal P2P Ideal L2P Ideal P2P Ideal L2P Extra Drag P2P Wind + Rain P2P MPPI
Collisions 0.0 0.0 0.0 0.5 0.0 0.0 0.0
Interventions 0.0 0.0 0.0 1.2 0.0 0.0 0.7
Velocity (m/s) 1.1 ± 0.22 1.04 ± 0.18 0.99 ± 0.17 0.98 ± 0.18 0.73 ± 0.12 0.97 ± 0.18 0.83 ± 0.19
Distance (m) 9.8 ± 0.77 9.9 ± 0.23 9.9 ± 1.67 11.1 ± 2.9 10.32 ± 1.51 9.9 ± 1.77 9.5 ± 2.5

Evaluation

To evaluate the performances of the different agents and the different representations, we

record the following metrics: 1) the number of collisions the agent has with the environment

per 10 minutes; 2) the number of times the agent fails to perform its shore-following task per

10 minutes; 3) the USV average linear speed ± its standard deviation; 4) the USV average

distance from the shore ± its standard deviation.

To further assess the robustness of the system, we also study how the agent reacts when

facing a hard situation, such as the hairpin bend, or when the agent starts too close or far

from the shore. Furthermore, we deploy the agent in challenging weather conditions and

also assess its behavior when its dynamic change.

5.5.6 Result

Data Representation

We evaluate how the different data representations compare, both in simulation, and in real

life. In these experiments, we trained 2 types of agents: “Projection To Projection”: P2P

(reconstructs laser projections from observed laser projections) and “Laser To Projection”:

L2P (reconstructs laser projections from observed laser measurements). An L2L agent was

also experimented, but not included for the sake of page limits. Its results are less good than

the other agents’, this could be tied to the difficulties of generating the values of a laser-scan

in unstructured environment where most of the points are not reflected.

As can be seen in Table 5.1, the L2P is the best performing approach in simulation. The

134

laser-scans offer a high resolution input and provide farther information than the projection

of the laser-scans it reconstructs. This allows the world model of the agent to be more

accurate both instantaneously and over multiple time steps. However, the convergence of

this model is more delicate than the P2P one, as the decoder of the L2P agent must learn a

more complex task. To alleviate this issue, we found it ideal to first train the P2P agent and

then use it to collect around 100 episodes for the L2P agent. This allows to optimize the

world model of the L2P agent before letting it explore its environment. It has two benefits:

it prevents an explosion of the value loss, and it reduces the total time required to train the

agent.

On the real lake, the results are different: P2P performs best. Overall, the P2P agents

have always performed their task perfectly: with over 8.2 kilometers traveled during our

experiments with this agent, the USV never required human assistance to fulfill its task.

Regarding how well it kept its distance from the shore, with a mean of 9.9 meters and a

standard deviation of 1.67 meters, the results are not drastically different from those in

simulation. Concerning L2P, the agent performs globally well, but its performances are far

from what it reached in simulation. This is due to the significant difference between real

and simulated laser-scans. Nonetheless, both the P2P and the L2P agents are capable of

maintaining a velocity of 0.99m/s even if they do not directly measure it. This demonstrates

that our agents, despite that they only have access to the laser-scans, are capable of estimating

both the velocity of the system and their distance from the shore.

Finally, we observe that compared to other previously tried approaches for this task: a

PID controller with a linear model, and the MPPI; the RL is the only one that is capable of

following the shore at high speed. Furthermore, the RL is capable of following the shore in

a single direction even-though its reward does not explicitly enforce it.

135

50 25 0 25 50 75 100 125

200

100

0

100

200
USV velocity in m/s

0.6

0.8

1.0

1.2

1.4

1.6

50 25 0 25 50 75 100 125

200

100

0

100

200
USV + DRAG velocity in m/s

0.6

0.8

1.0

1.2

1.4

1.6

Figure 5.15: The velocity of the USV around our lake. Left the USV without the swimming
board, right the USV with the swimming board.

Robustness

To assess the robustness of our agent, we attach to our USV a swimming board with a fin

perpendicular to the forward direction. This device greatly increases the drag of the robot.

We want to see how this contraption affects the behavior of the agent and if it is still capable

of fulfilling its task. Because the P2P agent was the most reliable in the previous field tests,

we only show its results here, on 2.2 kilometers traveled during our experiments. As can be

seen in Figure 5.15 the RL agent is capable of fulfilling its task despite the radical change

in the system dynamics. However, its velocity is seriously impacted, as the average speed of

the USV with the extra drag is much lower.

If we look at the commands sent to the system, we can see that without the extra drag,

the agent uses 90% of the available power to steer the boat, whereas with the drag it uses

95% of the power. This shows that it is trying to compensate for its lower speed, but is

probably limited by the power of the engines. While the agent does not reach the target

velocity, it can be seen from Table 5.1 that its behavior remains very close to the system

without the swimming board. Most notably, the agent maintained a similar distance to

the shore, and never required assistance. In addition to the swimming board test, we also

tested our approach under a strong wind and moderate rain. As can be seen in Table 5.1,

136

the metrics of the model are not that different from the one acquired under ideal weather

conditions. Furthermore, all the RL agents were capable to swiftly avoid the swans, and

kept following the shore.

Domain Randomization

When we first trained the agents with DR their performances decreased. Initially, we had

a very aggressive random spawn policy that would make the USV spawn close from the

shore. The idea behind it is that if the boat spawns close from the shore, then the agent

learns how to quickly reach the correct distance and will know how to deal with complex

situations. The main problem with this method is that with our settings, the episodes are not

long enough, and the agents are not spending enough time navigating at the optimal distance

from the shore, which decreases their performances. To make matter worse, agents trained

without DR are as good as agents trained with DR to get out of hard situations. Which led us

to reconsider the initial aggressive spawning strategy. Once this done, DR did provide some

improvements on the L2P agent. Without DR, the agent could lose track of the shore after

large bushes, requiring human intervention to get back close to the shore. With DR, we did

not notice this behavior any longer, which indicates that DR improved the robustness of the

system. All in all, DR is delicate to tune, but with software like gazebo some settings can

be changed very easily through ROS services to mimic how the behavior of the system can

change: for instance changing the water density is an easy way to simulate battery voltage

drop or weight changes.

Baseline Comparison

In Table 5.1 we also compare the different agents to MPPI, a state-aware model predictive

controller. Across all metrics, the P2P agent performed better than the MPPI. This is

interesting because the MPPI is not only more computationally expensive, but was also

trained on the real system. Before being able to perform its task, we train a Multi-layer-

137

perceptron to learn the dynamics of the system using its entire state (linear and angular

velocities). While it is surely possible to tune the MPPI to improve its results, these same

results show that our model can be trained in simulation, dropped on the lake and perform

better than an algorithm that was tuned, trained, and optimized on the real task. Furthermore,

our agent is capable of recovering from cases where its heading is facing the opposite

direction we want it to navigate, whereas the MPPI does not. It means that during a survey

the MPPI can, from time to time, change its forward direction, following the shore on its

right side, although it should follow it on its left side, or the other way around. Our agent

does not.

5.5.7 Conclusion

In this section, we taught a robot to solve a navigation task only based on a 2D laser

scanner in an unstructured and natural environment by training it only in simulation. We

demonstrated that the behavior learned by the robot is robust to changes in the dynamics,

but also in the environment. Our agents performed well when facing moving obstacles,

swans, or when we changed drastically their dynamics by increasing their drag. Moreover,

despite that they are solely relying on a laser scanner the agents are capable of estimating

their speed and their distance from the shore, making this solution applicable in many other

environments.

138

5.6 Dynamic model separation for modular MBRL

5.6.1 Motivation

Early forms of controllers, such as classic optimal control or dynamic programming, make

use of a supposedly known model of the environment. On the learning side, RL can also

learn a model and use it to train an agent.

It is only during the last decade that MBRL algorithms capable of controlling systems

using high dimension inputs, such as raw images, were developed. These advances allowed

their use on robots for solving complex tasks, on which traditional methods failed [149,

150]. In robotics, it is of paramount importance to learn quickly, as acquiring samples is

not only ludicrously time-consuming, but can also be dangerous for both the robot and the

operator overseeing the agent. Hence, due to their high sample efficiency and their potential

resort to offline learning [151, 152], world models make for a compelling choice in robotics

applications.

Yet, because most of the agents are meant to be used on classic benchmarks such as

Atari [153], OpenAI Gym [154] or the DeepMind control suite [155], they process either

images or low proprioceptive variables (for example, position or speed), but rarely both. In

robotics, most of the works that used MBRL for solving high-dimensional tasks discard the

proprioceptive variables [149, 150, 156], even though they could have been acquired fairly

easily. Other works, such as [157, 127], make use of both, but embed them as a single model.

Unfortunately, with neural networks there is no way of accessing the dynamics of the system

directly integrated inside the environment because they make for a single black-box model.

All in all, this means that the world model learned by an agent will be unique to this system.

By contrast, we argue that a world-model should be made of two components: an

environment, which encompasses everything that the agent can sense using laser-scanners

or cameras, and the dynamics, i.e. the set of physical equations and variables that rule the

movement of the mobile robot in the world. To do so, within the paradigm of MDPs, we

139

decompose the total state of the system in two parts, one related to the environment and

one to the dynamics of the robot, Stot = (Senv
t ,Sdyn

t), and we assume that the transition from

state to state can be decomposed as a change of the dynamics in response to the applied

action, and a change of the environment in response to the new dynamics, P(Stot
t+1|Stot

t ,at) =

P(Sdyn
t+1|S

dyn
t ,at)P(Senv

t+1|Senv
t ,Sdyn

t).

A concrete example of why such representations are powerful is to think of car manufac-

turers. All manufacturers make different cars with different physical properties, yet those

cars all share the same environment: the road. Hence, a method like ours could allow the

cars to share their environment while having their own dynamics, speeding up the training

process and potentially allowing the distributed training of heterogeneous agents.

Furthermore, it makes sense in robotics applications to use proprioceptive information, as

most real robotic tasks involve low level physical constraints coupled to high level perception

constraints. In the end, MBRL is a very promising solution to bring more autonomy to

real-robots, yet we think it would be better suited to mobile robotics application if it was to

natively account for the robots’ dynamic.

In this section, we modify one of the strongest latent-model agent, Dreamer [122], and

integrate the dynamics as an independent part of the world model. As such, our world

model will feature two states: an environment state that uses low dimensions proprioceptive

variables to transition from one state to another (P(Senv
t+1|Senv

t ,Sdyn
t+1)), and a physical state,

that uses the action sent by the agent to transition from one state to another (P(Sdyn
t+1|S

dyn
t ,at)).

While it might seem fairly similar to the original world model with an observation of the

proprioceptive input in addition to the images, it is not. Decoupling the dynamics from the

environment allows for interesting manipulations within the imagination process used to

learn the actor. Because the dynamics is no longer attached to the environment, we can

now swap the dynamic model of a robot for the dynamic model of another robot, as long

as their proprioceptive states are of the same size. Moreover, our method ensures that the

imagination roll-out have environment-states that are consistent with the physical-states.

140

Eventually, we can use an analytic approximation of the robot dynamic model to alleviate

the need to rely on a learned model.

Our contributions can be summarized as follows: (1) we propose a latent-state repre-

sentation that decouples the environment from the dynamics to better fit mobile robots;

(2) we test this method in simulation and on a real robot and show that it robustifies the

agents compared to the baseline; and (3) we demonstrate that this method can also be used

to transfer an environment from one robot to another in a zero-shot setup.

5.6.2 Related Work

Model-Based Reinforcement Learning.

The earliest form ofMBRL is probably optimal control. In optimal control, the model of

the system is typically known, and an optimal controller is computed using methods such

as LQR. Until recently MBRL algorithms such as Pilco [158], among others [121], were

designed to process and model low dimensional inputs. These methods were applied to

robotic applications [141, 159] with impressive results, but they were limited and struggled

to control systems using high dimension sensory inputs such as images. However, with

the advent of deep-neural-network, MBRL was applied successfully to high dimensions

inputs, as shown in the comprehensive survey of [160]. As of today, MBRL performances

are nearing if not exceeding the performances of model-free agents [122, 129]. The main

advantage of MBRL relies on its higher sample efficiency when compared to the model-free

agents. Methods based on Variational VAE [21], such as latent state methods [128, 122, 129],

can learn robust policies thanks to the VAE stochastic states. Unfortunately, as these methods

started processing higher dimension inputs, they also started to disregard proprioceptive

information as it made solving the task easier.

141

Dreaming applied to real-world.

Latent-state methods have shown impressive results when applied on real robots. [156]

applies Dreamer on a 1/10th racecar with a LIDAR and compares it to other model-free

methods in simulation. They show that, on their task, Dreamer performs better than other

MBRL algorithms, such as DDPG [161] or PPO [162]. They also demonstrate that Dreamer

transfers well from simulation to real robots, in well controlled environments. [150] also

applies Dreamer on an USV with a LIDAR and trains it in simulation on a shore following

task. They then deploy it on the real robot, without retraining it, and evaluate the robustness

of the approach by both changing the dynamics of the real systems and evaluating it in

different weather conditions. Both of these works also use Dreamer as their backbone,

but unlike ours, they completely disregard the physical state of the system. [149] shows

an application of latent models to a real world system using cameras. In [157], they rely

on latent state model and integrate both the physical state of the system and high level

distance sensors to move their robot around. However, they still consider the systems

dynamics to be part of the whole model. A work that is closer to ours is [163], in which they

learn from images the Lagrangian dynamic of a system, and then use it to reconstruct the

observed images. In its current state, [163] is not applicable to real robots: the examples

are simplistic, and make strong approximations about the dynamic model. [164] also shares

similarities with the work presented here: they use Graph Neural Networks to perform

system identification as in [165], and then apply a MPC controller and RL on the predicted

physical states. The main difference with our work, is that we don’t only have a dynamic

module but also a perception module. In our method, the outputs of the dynamic module are

used to predict the next perception state, and both of their latent states are then used by the

actor to decide on which action to apply next.

142

5.6.3 Method

We now show how our model differs from the original implementation of Dreamer[122],

which we started from. As in Dreamer, we solve a Partially Observable Markov Decision

Process (POMDP), with discrete time steps t, for which we have continuous actions at ,

high dimension sensory inputs ot , low dimension proprioceptive inputs xt , and rewards rt

generated by the environment.

Similarly to Dreamer, our version is articulated around three main concepts: the learning

of the world model from previous experiences (Figure 5.16a), the learning of the behavior

inside the imagination process (Figure 5.16b), and finally the application of the policy using

observations from the environment to collect new samples (Figure 5.16c).

Unlike the original Dreamer, our agent does not rely on a single latent state. Instead, we

consider that this single state can be decomposed into two states Stot
t = (Senv

t ,Sdyn
t), where

P(Stot
t+1|Stot

t ,at) = P(Sdyn
t+1|S

dyn
t ,at)P(Senv

t+1|Senv
t ,Sdyn

t). In practice, we consider that we can

learn a function qφ (xt |Sdyn
t), this means that we can further decompose P(Stot

t+1|Stot
t ,at) =

P(Sdyn
t+1|S

dyn
t ,at)P(Senv

t+1|Senv
t ,xt) as we will be able to estimate xt from Sdyn

t within the imagina-

tion. In [122, 129], the latent dynamic model is composed of three modules: a representation

module pη(st | st-1,at-1,ot), a transition module qη(st | st-1,at-1) , and a reward module

qη(rt | st). With this setup, both the representation and transition modules embed the dy-

namics of the system and the understanding of the environment. This limits the capacities

of the world model. Hence, we propose to separate the dynamics of the system from the

environment. To do so, we change the latent dynamic model of Dreamer to include two

states: Senv
t the environmental state, and Sdyn

t the physical state. We then add two extra

modules and slightly modify the inputs of the original latent dynamic model. The new latent

143

Φ

ΦΦ

Φ

ΦΦ ΦΦ

�� ��

�� ��

��

��^ ^ ^

��

�� ��

��

�� ��

��

�� �� ��

^ ^ ^

��
^

��
^

��
^

(a) Learn dynamics

Φ
��

��

Φ
����^ ^ ��

🏆
��^

Φ
����^ ^ ��

🏆
��^

Φ
����^ ^ ��

🏆
��^

(b) Learn behavior in imagination

Φ
��

��

��

Φ
��

��

��

Φ
��

��

��

Φ
��

Φ
��

(c) Play

Figure 5.16: The three concepts of the proposed extension of Dreamer: (a) Using its replay
buffer, the agent learns to encode environment high-dimension sensory observation and
proprioceptive input into a compact latent environment state (). Additionally, using a
similar process, the agent learns to encode proprioceptive inputs and actions into a latent
physical state (). Both of these states are then used to estimate the reward (). (b) Using
both learned latent spaces, the agent predicts state values (🏆) and actions () as in the
original Dreamer. (c) The agent observes its environment and predicts the best action. More
details about the algorithms used here can be found in algorithm 8.

144

dynamic model is

Dynamics representation module: pφ (S
dyn
t | Sdyn

t-1 ,at-1,xt)

Dynamics transition module: qφ (S
dyn
t | Sdyn

t-1 ,at-1)

Environment representation module: pη(Senv
t | Senv

t-1 ,xt-1,ot)

Environment transition module: qη(Senv
t | Senv

t-1 ,xt-1)

Reward module: qη(rt | Senv
t ,Sdyn

t).

(5.8)

Learning dynamics & Reconstructing Observations

To learn both the dynamics and the environment, we rely on Recurrent State Space Models

(RSSM) [128]. RSSMs can be seen as non-linear Bayesian filter [166], with an observation

step and a prediction step. During the observation step, the RSSM is given its previous

state and an observation, and outputs a compact latent state. During the prediction step, the

RSSM is given its previous state and command, and outputs a compact latent state. This

prediction step of the RSSM is the transition function, and the combination of a prediction

and an observation is the representation module.

Figure 5.17: RSSM reconstruction of proprioceptive variables, 5 observations followed by
45 predictions.

145

Algorithm 8: Physics Driven Dreamer

Fill dataset D with N random actions episodes.
Initialize neural network parameters θ ,η ,ψ randomly.
if load dynamics then

Load network parameters φ .
else

Initialize neural network parameters φ randomly.
while not converged do

if refine dynamics then
for update step i = 1..I do

// Dynamics learning

Draw B data sequences {(at ,xt)}k+L
t=k ∼D.

Compute dynamic states
Sdyn

t ∼ pφ (S
dyn
t | Sdyn

t−1,at−1,xt).
Update φ using representation learning.

for update step c = 1..C do

// Environment learning

Draw B data sequences {(xt ,ot ,rt ,at)}k+L
t=k ∼D.

Compute dyn states
Sdyn

t ∼ pφ (S
dyn
t | Sdyn

t−1,at−1,xt).
Compute env states
Senv

t ∼ pη(Senv
t | Senv

t−1,xt−1,ot).
Update η using representation learning.

// Behavior learning
Imagine trajectories
{(Senv

τ ,Sdyn
τ ,aτ ,xτ)}t+H

τ=t from each (Senv
t ,Sdyn

t).
Predict rewards and values

E
(

qη(rτ | Senv
τ ,Sdyn

τ)
)

, vψ(Senv
τ ,Sdyn

τ).
Update θ and ψ using behavior learning.

// Environment interaction
o1← env.reset()
for time step t = 1..T do

Compute Sdyn
t ∼ pφ (S

dyn
t | Sdyn

t−1,at−1,ot) from his-
tory.

Compute Senv
t ∼ pθ (Senv

t | Senv
t−1,xt−1,ot) from history.

Compute at ∼ qφ (at | Senv
t ,Sdyn

t) with the action
model.

Add exploration noise to action.
rt ,ot+1← env.step(at).

Add experience to dataset D←D∪{(ot ,at ,rt)
T
t=1}.

Model components
Dynamics pφ (S

dyn
t | Sdyn

t-1 ,at-1,xt)

D-Transition qφ (S
dyn
t | Sdyn

t-1 ,at-1)
Environment pη(Senv

t | Senv
t-1 ,xt-1,ot)

E-Transition qη(Senv
t | Senv

t-1 ,at-1)

Reward qη(rt | Senv
t ,Sdyn

t)

Action qθ (at | Senv
t ,Sdyn

t)

Value vψ(Senv
t ,Sdyn

t)

Hyperparameters
Number of random episodes N
Collect interval C
Physics train step I
Batch size B
Sequence length L
Imagination horizon H
Learning rate α

146

We consider two RSSMs: one learns the dynamics of the system and the other learns the

environment.

() The RSSM that learns the dynamics takes as input both the raw proprioceptive variables

and the actions. To teach the network to embed within its latent state relevant informa-

tion, we also train a decoder to reconstruct the proprioceptive variables associated with

that state. Figure 5.17 shows examples of reconstructed states.

Dynamics observation module: qφ (S
dyn
t | Sdyn

t-1 ,xt)

Dynamics transition module: qφ (S
dyn
t | Sdyn

t-1 ,at-1)

Dynamic reconstruction module: qφ (x̂t | Sdyn
t).

(5.9)

() The RSSM that learns the environment takes as input a high dimension sensory obser-

vation and the latent dynamic state. We then train another network to reconstruct from

its latent state the inputs or a projection of it.

Environment observation module: qη(Senv
t | Senv

t-1 ,ot)

Environment transition module: qη(Senv
t | Senv

t-1 ,xt-1)

Environment reconstruction module: qη(ôt | Senv
t).

(5.10)

Using these two latent states, Senv and Sdyn, we also learn to predict the reward that

will be given by the environment qη(rt | Senv
t ,Sdyn

t). Regarding the optimization of these

networks, we use the same method as Dreamer [122, Sec. 4] with a caveat: the dynamics is

not trained jointly with the environment and the reward. To train the dynamics, we propose

two options. In the first option, we do not learn the dynamic model. For instance, one could

use an already learned dynamic model and keep it fixed for the whole of the training. This is

interesting as the physical model remains constant throughout the training. It helps learning

the value and the reward model faster than if we were to learn it from scratch. Also, it offers

the possibility to completely remove the learning and neural network components from the

147

dynamic estimation, by using an analytical model, for instance. In robotics, this makes

sense, as good analytical/learned models are often already known. If we don’t know the

dynamics, the second option is to learn it as we discover our environment. However, to ease

the optimization of the actor, the reward, and the value, we do not train the dynamics at

the same rate as the rest of our agent’s neural networks. We train the dynamics less often,

but for more steps than the other components. While this technique does not offer as much

stability as the first method, it still increases the overall stability of the learning process.

Learning behaviors

With the learning of the system dynamics and environment covered, we can now use them

in the imagination process. The imagination generates imagined trajectories from which

the actor is learned. In the original Dreamer, imagined trajectories start from latent states

st obtained from actual observations, and follow the predictions of the transition model

sτ ∼ q(·|sτ-1,aτ-1) and the policy aτ ∼ q(·|sτ). In our case, we use the dynamic transition

model as a physic engine for the imagination, and the environment transition model as the

rendering engine. This means that to imagine a trajectory, we start from a pair of latent states

(Senv
τ ,Sdyn

τ) obtained from actual observations, and iteratively apply the transitions models

given in Eqs. Equation 5.9 and Equation 5.10, the policy being given by aτ ∼ q(·|Senv
τ ,Sdyn

τ).

As this process goes along, the proprioceptive variables xτ are reconstructed from the

physical state Sdyn
τ using qφ (x̂t | Sdyn

t). They are then used inside the environment transition

model. An important note is that, since RSSMs are VAEs, if we sample from the stochastic

state to reconstruct the physics, then the imagined proprioceptive variables will be noisy.

To prevent that, we take the mode of the distribution which generates smooth physical

predictions. Once we have a set of trajectories, we can get each pair of states (Senv
τ ,Sdyn

τ)

and use them to estimate the reward and value associated with them. Using these, we train

the policy and the value estimator using the same technique as the original Dreamer [122,

Sec. 3].

148

Environment Transfer

Unlike Dreamer, our method allows transferring environments from one robot to another.

In this context, we consider that both robots share the same sensors and same state-space.

We also consider that the environments in which the robots are going to evolve are similar.

Let us consider robot A, with already known dynamics modules pA
φ
(Sdyn

t | Sdyn
t-1 ,at-1,xt),

qA
φ
(Sdyn

t | Sdyn
t-1 ,at-1). Let us consider robot B, with already known environment modules

pB
η(S

env
t | Senv

t-1 ,xt-1,ot), pB
η(S

env
t | Senv

t-1 ,xt-1), qB
η(rt | Senv

t ,Sdyn
t), and a pre-collected set of

samples of robot B interacting with its environment. To learn the actor of robot A, using

the environment of robot B, we learn entirely offline the actor, the reward, and the value,

using the set of experiences collected on robot B. It should be noted that we would not need

to retrain the reward if it was rewritten as qB
η(rt | Senv

t ,xt). The main disadvantage of this

method is that because we are using experiences collected on robot B, the observation of

the dynamics will match the dynamics of robot B and not the one of robot A. However,

as the imagination progresses the dynamics will match the one of robot A. Another issue

can arise if the robots are radically different. In this case, the samples collected on robot

B will most likely not explore the state-space of robot A enough to control it perfectly.

Nonetheless, as we will demonstrate later, it allows learning good preliminary policies to

further refine the agent from. The exact algorithm used to learn the agent policy is given in

algorithm 9. Besides, the state-space of both robots must be the same, which makes this

method mostly aimed towards mobile robots. Examples of the state-space of our robots are

given in subsubsection 5.4.1.

149

Algorithm 9: Offline Learning, and Environment Transfer

Fill dataset D with all the episodes collected on Robot
B.
Initialize neural network parameters θ ,ψ randomly.
Load neural network parameters η from robot B.
Load neural network parameters φ from robot A.
for training step c = 1..C do

// Reward Finetuning

Draw B data sequences {(xt ,ot ,rt ,at)}k+L
t=k ∼D.

Compute dyn states
Sdyn

t ∼ pφ (S
dyn
t | Sdyn

t−1,at−1,xt).
Compute env states
Senv

t ∼ pη(Senv
t | Senv

t−1,xt−1,ot).
rt ∼ qη(rt | Senv

t ,Sdyn
t)

Update reward qη using representation learning.

// Behavior learning
Imagine trajectories
{(Senv

τ ,Sdyn
τ ,aτ ,xτ)}t+H

τ=t from each (Senv
t ,Sdyn

t).
Predict rewards and values

E
(

qη(rτ | seτ ,S
dyn
τ)
)

, vψ(Senv
τ ,Sdyn

τ).
Update θ and ψ using behavior learning.

Model components
Dynamics pφ (S

dyn
t | Sdyn

t-1 ,at-1,xt)

D-Transition qφ (S
dyn
t | Sdyn

t-1 ,at-1)
Environment pη(Senv

t | Senv
t-1 ,xt-1,ot)

E-Transition qη(Senv
t | Senv

t-1 ,at-1)

Reward qη(rt | Senv
t ,Sdyn

t)

Action qθ (at | Senv
t ,Sdyn

t)

Value vψ(Senv
t ,Sdyn

t)

Hyperparameters
training steps C
Batch size B
Sequence length L
Imagination horizon H

5.6.4 Robots, Task & Evaluation

Robots

To evaluate our approach we use two robots (subsubsection 5.4.1,subsubsection 5.4.1): an

USV and an UGV. The USV is a Clearpath Heron, a small catamaran with a turbine in each

hull. There are two action dimensions: the first element controls the left turbine, the second

element controls the right one. This means that to drive in a straight line, the agent must

send the same value to both turbines. The UGV is a Clearpath Husky, a skid-steer ground

robot controlled with a twist input. The size of the action of the Husky is 2, but unlike

the Heron, the first element controls the forward velocity, while the second controls the

angular velocity. Both robots share similar sensors: a 2D laser-scanner, an RTK GPS and a

9DoF IMU. To prevent damaging our robots’ actuators, we saturate their acceleration before

150

applying the output of the policy. More information regarding the exact specifications of the

USV and UGV can be found in subsubsection 5.4.1 and subsubsection 5.4.1. We teach our

agent to solve a sensor-based navigation task: the robots must follow the shore of a lake at a

fixed distance while maintaining a set forward velocity. Hence, the reward generated by the

environment is made of two components: a low-level constraint, the velocity, and a high

level constraint, the distance from the shore. The exact description of the task and reward is

available in subsection 5.4.2.

To fulfil their tasks, the robots rely on a 2D laser-scanner and on their own velocity,

estimated from the fusion of the RTK GPS and the IMU through an Extended Kalman

Filter (EKF). Using the EKF, we provide to the agent three proprioceptive variables: its

forward-velocity, its lateral-velocity, and its angular-velocity. The action space of both

robots is [−1,1]2.

Evaluation

We test our method both in simulation and on a real USV. In simulation, to evaluate the

performance of our method, we used the different components of the reward as metrics.

Each model ran for two hours and at the end of each run we collected the standard deviation,

the mean, the 10% quantile and 90% quantile of the rewards. In the real world, we cannot

compute the distance reward accurately: our estimation of the distance to the shore is

uncertain because of the high level of noise of the laser data in a natural environment. This is

particularly true because the experiments were carried out in late spring, where the luxurious

vegetation makes laser-scans highly unreliable. For this reason, we will not be evaluating

the agent distance from the shore, but we will visually inspect the followed trajectories.

5.6.5 Simulation Results

We compare our method to the original version of Dreamer, and illustrate the benefits of

having a separated state for the dynamics. All models trained with our approach have been

151

trained with a fixed dynamic model. This means that the dynamics was learned ahead of

time and could not be refined during the training process. This was done to show that we

could have used analytical models instead.

Unmanned Surface Vehicle

To show the benefits of using a separated state for the dynamics, we ran a benchmark

using the USV. To verify that the agents perform optimally, we first run a test where they

are deployed in their original training environment. Then, to evaluate how the agents

behave when the dynamics change, we multiply the simulated robots damping factor by

two. Increasing this factor makes the robots’ dynamics softer: for the same inputs, the

acceleration will be slower. To test the robustness to perturbations in the dynamics, we also

run a test with the original dynamics and a constant water current with a speed of 0.4m/s.

Finally, to further stress the agents, we multiply the damping factor by two and add 0.4m/s

of current. The results of this benchmark can be found in Figure 5.18.

ours dreamer

0.8

0.9

1.0

Ve
lo

cit
y

Re
wa

rd

Ideal

ours dreamer
0.4

0.6

0.8

Damping x2

ours dreamer

0.0

0.5

1.0
Current 0.4 m/s

ours dreamer

0.5

0.0

0.5

1.0
Current & Damping

ours dreamer
2.0

2.2

2.4

Di
st

an
ce

 R
ew

ar
d

ours dreamer

1.0

1.5

2.0

2.5

ours dreamer
7.5

5.0

2.5

0.0

2.5

ours dreamer
10

5

0

Figure 5.18: Box plots illustrating the benefits of using a separated state for the dynamics
(ours) vs not using one (Dreamer). High value indicates better performances. Small spread
indicates better consistency. Results obtained in simulation.

Our method is more robust than Dreamer to both dynamics change and perturbations.

Most notably, it maintains a correct velocity reward across the whole benchmark, when

Dreamer fails as soon as the dynamics changes. This suggests that images are not sufficient

to approximate the velocity correctly, and that by using our separated physical state, the

152

actor is able to adapt its behavior to match the desired velocity, despite having never seen

such events in the training. Moreover, having access to a physical state seems to help to

solve the high-level constraints, as our method outperforms the vanilla Dreamer on this part

of the task too. The only exception is when the damping factor is multiplied by two. In this

case, the lower velocity of the robot allows Dreamer to follow the shore better. Overall,

these experiments show that splitting the single latent state into two, one for the physics and

one for the environment, is not only a viable concept but also increases the robustness of the

agent.

USV to UGV transfer

To showcase the transfer capacities of our method, we learn an actor completely offline,

using the environment of the USV and the dynamics of the UGV. This is possible as we

separate the latent-state into those two parts, dynamics and environment. As a reminder,

the USV and the UGV do not react to actions in the same way. The USV is driven by

sending commands to the left and right turbines, when the UGV is driven by sending forward

velocity and angular velocity commands. Furthermore, the dynamics of both systems are

radically different: the USV glides, has a huge inertia and has a significant amount of lateral

velocity whereas the UGV has almost no slippage, no lateral velocity and no inertia. To train

our actor, we first trained our USV to fulfill the shore following task, and we then took its

environment model (including the reward) along with the samples of its interaction with the

simulation. We secondly learned the dynamics of the UGV from a set of past interactions

with the simulation. Finally, using the environment of the USV and the dynamics of the

UGV, we trained the actor entirely offline. We then deployed it in simulation and compared

it to an agent trained on the UGV and on the environment for an equivalent amount of

training steps (300k).

Figure 5.19a and Figure 5.19b show the performance of the agent trained offline with

environment transfer (offline transfer, ours) compared to the agent trained online with its

153

offline transfer online learning

0.6

0.7

0.8

0.9

1.0
Velocity Reward

(a) Velocity reward

offline transfer online learning

2.1

2.2

2.3

2.4

2.5
Distance Reward

(b) Distance reward

15 10 5 0
x position (m)

150

155

y
po

sit
io

n
(m

)

Agents Trajectories
online
offline

(c) Trajectories

Figure 5.19: Environment transfer results. Higher values indicate better performances,
smaller spread indicates better consistency. Results obtained in simulation.

own environment (Dreamer). It is worth noting that we did not include the results of the

RL actor applied directly on the UGV: it completely failed to solve the task because of the

complete difference in the commands mapping. From these results, we can see that the

agent trained online achieves almost perfect results, with an average distance reward of 2.48.

On the other hand, our agent achieves an average reward of 2.4, which amounts to about

±30cm of error on the 10m distance it must keep from the shore. Figure 5.19c shows the

trajectory of the agents in the hardest spot of the simulation: a narrow hairpin-turn. We

can see that the trajectories of the agent learned online are closely packed together. On the

contrary, the trajectories of the agent learned offline are more loosely grouped, indicating

that this policy is less reliable and most likely less overfitted to the environment. These

approximate trajectories can be explained by the fact that the imagination is inaccurate at

its beginning. Since the samples used to generate the starting states of the imagination are

taken from the USV, these starting states contain dynamics that are not feasible on the UGV.

Yet, despite these shortcomings, we demonstrated that we can easily transfer environments

in a fully offline fashion even on robots with fundamentally different dynamics and action

mappings.

5.6.6 Real World Results

Finally, we evaluate our method on a real USV. To do so, we train two agents in simulation,

one with Dreamer and one with our method, and deploy them directly on the real robot

154

in a zero-shot setup. Thus, the dynamics learned by our agents is only approximately

matching the one of the system. We evaluate the performances of both agents on a whole

lap around the lake. These laps are shown in Figure 5.20a, a lap is about 1.6 km long and

takes approximately 20 minutes. During their lap, neither of the agents collided with their

environment. Regarding the trajectories, Figure 5.20b shows that the trajectory followed by

our method is much less winding than the one followed by Dreamer. The reason for that

seems to be that the agent using Dreamer tends to overshoot more than the agent trained

using our method. This overshooting behavior can easily be spotted on the cropped image

of the lake. On the middle right part of the image, we can clearly see the Dreamer agent

overcompensating and navigating toward trees. This behavior cannot be seen on the agent

trained using our method, which follows the shoreline at a much more constant distance.

It further demonstrates that accessing the dynamics makes the policy naturally robust to

changes in the dynamics.

As for the velocity, the right most picture of Figure 5.20c shows that the agent with

a physical state (ours) is the closest from the desired forward velocity. Additionally, our

method shows a smaller spread when compared to the original Dreamer. It is interesting to

note that this model can fulfil its task despite having noise on the physical inputs provided

by the EKF, which is something it had never encountered before. Furthermore, during the

experiments, we observed that our agent was making less brutal accelerations and seemed

to have a more fluid way of steering the boat. All in all, this confirms the simulation results

shown in Figure 5.18: our method is more robust and better matches the forward velocity

target.

5.6.7 Conclusion

In this section, we showed that splitting the latent-state of MBRL into two sub-latent-states,

one for the environment and one for the dynamics, is a viable concept in both the simulated

and real world. In all our experiments, our method was trained with a fixed dynamic model

155

O
ur

s
D

re
am

er

(a) Trajectories (Full) (b) Trajectories
(Zoom)

ours dreamer

0.2

0.4

0.6

0.8

1.0

1.2

Fo
rw

ar
d

Ve
lo

cit
y

(m
/s

)

(c) Velocities

Figure 5.20: Real world experiment. First row, overhead imagery of the deployment site,
with the full trajectory of the agents in yellow. Center row: zoom on the bottom right corner
of the lake, the trajectory of the agent can be seen in yellow. Last row, comparison of the
forward velocities reached by the two agents. Overhead imagery from Google Earth, 2021,
trajectories plotted using Google Earth KML API.

which seems to confirm that similar results could be achieved with analytical models, or any

other system identification method. Through our experiments, we showed that explicitly

adding information about the dynamics of the system make the agent more robust to both

perturbations and changes of the dynamics. Finally, we showed that our method could

achieve environment swaps from one robot to another, allowing to train robots fully offline.

The learned policy could then be deployed on the target system and be refined. Despite

showing strong results, some limitations remain. Most notably, the transfer between systems

will only be possible if they share the same state-space. Additionally, with the current

setup, the dynamics does not explicitly depend on the environment. This could be addressed

by providing either exteroceptive inputs or access to the environment state to the physics

module.

156

5.7 Improving the reusability, robustness and transferability

5.7.1 Motivation

To accomplish sensori-motor tasks robots often must combine perception constraints and

physical constraints. For example, when a mobile robot drives in an complex environment, it

has to balance its trajectory with the velocity it is moving at. Furthermore, we might want this

robot to have the ability to move at different velocities in this environment. Unfortunately,

classical control techniques struggle to solve these tasks because they have a hard time

handling high-dimension inputs, such as LIDARs or images.

Several sub-fields of RL also tried to address this particular type of tasks. However,

these methods have thus far produced either only partial solutions or have been expensive to

implement (e.g., data collection time, compute power). In our section, we demonstrate that

using physics-driven latent imagination [3] (derived from [167]) robots can efficiently learn

how to reach multiple physical goals while following perception constraints.

In RL, every time the specifications of a task changes, the policy must be learned anew.

In comparison, in control theory, to redefine a task with a MPC based controller, the only

thing that needs to be done is to change the cost-function. In robotics, the main problem is

not learning the policy, but interacting with the physical system to collect the data required

to learn. Indeed, collecting data on real systems is often a very long and costly process;

even simulators are relatively expensive to run. In RL, some methods address this issue by

learning models of the environment. These models, also known as world models, can in turn

be used to learn a policy. These methods are gathered under the umbrella of MBRL. They

are particularly well suited to robotics, as once the world model is known, they can be reused

to learn a policy, instead of learning on a simulator, or the physical system. This significantly

reduces the cost of learning a policy. In this study, we teach policies to chase imagined

goals. To do so, we use a world model based on physics-driven latent imagination [3]. This

model, which is designed for mobile robotics, features a modular world model with two

157

Figure 5.21: Our agent controlling the USV on a frozen lake. The agent follows the shore
and maintains a target velocity while breaking 4mm thick ice.

components, a component that learns the dynamics of the robotic system and another that

learns the dynamics of the environment. In all the experiments presented here, we reuse the

robot’s dynamics module of the world model.

Another, orthogonal, approach to this problem consists in learning a policy that can

solve many tasks, alleviating the need to train a new policy for every task. The methods

that allow this behavior are often referred to as Goal Conditioned Reinforcement Learning

(GCRL) [168]. In GCRL, the policy learns to reach different goals in a given environment.

A goal can be the position of a robotic arm’s end-effector, the velocity of a car, or a more

abstract objective, such as making a coffee. Goals are often given under the form of a state,

and to know how well the policy is doing, distance functions [169, 168] are commonly used

as metrics. In this work, we focus on goals that define physical constraints. More precisely,

we apply our policies to robots who must navigate at different velocities.

Overall, all these methods are applied in simulation or to controlled laboratory robotics

setup, and often lack in-depth performance study. Unlike these previous studies, we apply

our method to a system deployed in a natural environment, in adverse weather conditions,

such as a frozen lake, as shown in Figure 5.21.

158

In this section, we propose a novel approach to teach policies how to reach multiple

physical goals while respecting a higher-level perception constraint. This method is designed

with mobile robots in mind. It aims at providing highly reusable components, and learn a

well-behaved controller that generalizes well to out-of-distribution goals. To achieve this,

we use imagination learning [128] to generate long trajectories. In the imagination, the

policy is tasked with reaching random goals that are directly related to the physical state

of the robotic system. This goal is sampled randomly at the beginning of the generation

process. This allows our method to teach policies to reach goals that are far from their

current state.

Our contributions can be summarized as follows: (1) we propose a novel method to

learn how to reach multiple physics-related goals, while imposing high level perception

constraints; (2) we thoroughly evaluate our work in simulation, and analyze the effects of

various hyperparameters on performance; (3) we demonstrate the robustness of our method

by deploying simulation-learned models on a real robot, in a zero-shot setup. Through this

deployment, we verify that the conclusions drawn in simulation still hold on the real system.

5.7.2 Related Work

Model Based Reinforcement Learning has gotten increasing traction over the last years [160,

170]. Until the last decade, MBRL used to focus on lower dimension models [121]. The

earliest form of Model Based Reinforcement Learning can be seen as model-predictive, and

optimal control, which branched to Dyna [171], and more recently into methods such as

Pilco [158]. In recent years, the increase in processing power, and the advent of ConvNet

allowed to learn high-performance visuo-motor policies on an expansive set of tasks, ranging

from video games [172, 128, 167, 129, 130] to robotics [173, 114, 127, 149, 2, 3], with lower

dimension tasks getting less attention. The main advantage of MBRL lies in its high sample

efficiency relatively to MBRL. Also, while recent model free methods such as DRQ [174,

175] can achieve high sample efficiency, they focus data-augmentation on the image space,

159

and not on the dynamics, which are usually a critical component in robotics.

Imagination Learning, often referred to as dreaming, is a branch of MBRL where the

policy is learned entirely by interacting with the world model. One of the most well-known

algorithms is Dreamer [167], in which the world model is a VAE [176] based deep Bayesian

filter, or RSSM [128], with an observe and an update function. It is learned through the

observation and reconstruction of sequences of images. This world model acts as a fast

and highly parallel simulator, that is used to learn the policy. Many studies build on similar

mechanisms, some use reconstruction [167, 128, 3, 157], some do not [177]. Our work

builds on physics-driven latent imagination [3]. In physics-driven latent imagination, the

state is decomposed into two sub-states, an environment state, and a physical state. The

physics’ transition function uses the past physical state and a new action to get the new

physical state, while the environment’s transition function uses the past environment state

and the new physical state to get the environment state. The advantage of this method is that

both states are decoupled and the transition functions can easily be replaced.

Real-world robots are among the most complex applications of RL. They require from

the RL algorithms to be data-efficient as collecting samples on real robots and simula-

tors [107, 178] is expensive, in particular on field robots. These algorithms also need to

be computationally-efficient, as robots are often limited by the size of their battery, and

the computers they can carry. Eventually, they need to be robust and to generalize well

to previously unseen environments. This makes MBRL the go-to choice for most real-

world applications with limited data. When compared to MBRL, MBRL, and in particular

imagination learning [167, 129, 156], has shown superior performance to methods like

PPO [162], D4PG [143] or SAC [133]. Imagination learning has also shown surprisingly

good transferability from simulation to the real-world [3, 2, 156, 157]. Yet, one of the key

limitations of most MBRL methods, and RL in general, is that they only learn how to solve

a single task. To learn a new task, the policy must be learned anew, or distilled into a general

policy [179]. In this work, we focus on learning a policy that can achieve multiple goals,

160

with very high efficiency, through imagination learning.

Goal Conditioned Reinforcement Learning is an area of increasing interest in RL.

These approaches often rely on model-free techniques [180, 181, 168, 182, 183]. In [180,

181, 168], a goal corresponds to a variation of a task in a given environment, the idea being

to teach agents to master a wide range of skills. The main issue with these works is their

lack of sample efficiency. To learn how to reach a goal, they have to simulate a trajectory

where the agents try to reach the said goal. [168, Sec. 4.5] introduce goal relabeling with

HER. They show that reaching goals that are close to the current state is what works best,

and trying to reach random goals does not work. This is due to the fact that this kind of

approach does not learn a transition model and hence cannot simulate novel-trajectories at

training time. Thus, exploring and learning how to solve the different goals require a lot

of interaction with the environment. Building on goal-conditioned value functions [181,

168], [183] introduce them to Temporal Difference Models (TDM). Instead of estimating

the value from the discounted sum of rewards, they estimate the value by using a recursive

value function. The learned value function is then used in an MPC controller to pick the

best action. This method has shown improved performance over HER, but because it is

MPC-based, it is computationally heavier. Most of these approaches focus on settings where

the agent has direct access to the low-dimensional environment state. In comparison, we do

not need for the goal to be the same as the state, and we can augment the state with high

dimensions observations. Overall, these methods’ main issue is the goal-relabeling, as they

have to restrict themselves to samples that are close from the current state. This is where

MBRL shines, and in particular imagination learning, as it can simulate transition functions

over long time horizons, and thus, can reach virtually any goal from any starting state.

Many methods use MBRL to build agents capable of reaching multiple goals [127, 184,

185, 186, 187, 188, 169]. In [127, 184], they propose a visual MPC that learns transition

functions from couples (action, image sequences). With this learned model, they sample

multiple action-sequences and select the first action of the trajectory that leads to the best

161

outcome. The best outcome is decided using different methods such as the probability of

success, a classifier, pixel-distance, or registration. The main drawback of these methods is

their cost at inference time. For each time step, a set of action trajectories are sampled, a set

of video frames are then generated, a score is assigned to each video, and finally the first

action of the video with the best score is selected. While this can be done in real-time with

desktop hardware using short planning-horizons, it is not meant to be used on embedded

systems.

The work of [186] is probably the most similar to ours. They use a VAE and latent space

representation to relabel goals. Similarly to the method presented here, they propose to

recompute the reward on the fly, at training time, based on sampled goals and the current

state. The main difference between our work and theirs [186] is that we have a transition

model, and we can learn offline without the need to sample transitions from the replay buffer.

This allows us to simulate long trajectories through the imagination process.

In [169], they use the imagination process developed in [167] to train a world model.

Then, instead of training a single policy, they train a policy that will explore previously

unseen states, the explorer, and a policy that learns how to reach these states: the achiever.

As demonstrated in their work, this allows the achiever policy to solve for a wide range of

visuo-control tasks, most of which are applied to simulated robotic-arms. By contrast, our

learning strategy is tailored for autonomous navigation, and enforcing physical constraints

on the system. Our work builds on [3], where they separate the dynamic model of the

system from the dynamic model of the environment. Leveraging this separation, we specify

multiple dynamics-related goals and their rewards directly in the imagination process. In

practice, this means that we need to learn only a single policy, as our goals are already

well-defined. Furthermore, we inject the analytic expression of the reward on the dynamics

directly in the imagination, which makes the learning process simpler.

In summary, most methods focus on MBRL, or MPC-like controllers, while we propose

to use model-based policy learning, and more precisely physics-driven latent imagination to

162

reach physics-related goals. The learning is done purely through imagination, which allows

us to set thousands of different goals for each optimization step. The physics separation also

allow us to reuse previously learned blocks, such as the dynamic model. We think that our

work is orthogonal to that of [169] and could be used jointly.

5.7.3 Method

Our goal is to build a modular world model that can be used to learn to a robust controller.

This means that we first have to learn a reusable world model and then use that model to

learn policies capable of solving a set of tasks. The main challenge is to build a structure that

allows for efficient goal relabeling. This need for an efficient way of generating new goals

over long horizons is the reason why we chose to use an imagination learning framework to

design our method.

World Model

MBRL can be seen as a fast and highly-parallel simulator. To model our system and its

environment, we use a physics-driven latent imagination world model [3]. This model splits

the state into two sub-latent-states Stot
t = (Senv

t ,Sdyn
t), one for the environment Senv

t , one for

the dynamics of the robotic system Sdyn
t). Each of these sub-latent-states is acquired using

an RSSM [128]. This allows to learn about the dynamics of the system and to reuse it in

another environment, and vice-versa.

The RSSMs provide us with two key functions, an observe function that allows us to

update the current latent states using observations, and an update function. To observe, the

model learns a function that takes sensor measurements as an input and projects it to an

embedding. This embedding is then processed by the observed function which outputs a

compact latent-state. This state can then be used to reconstruct the observed input, or other

variables related to it. The update function, is the transition function of our world model.

It predicts the next latent states, P(Stot
t+1|Stot

t ,at) = P(Sdyn
t+1|S

dyn
t ,at)P(Senv

t+1|Senv
t ,Sdyn

t). In this

163

model, the dynamics is stepped using the action sent to the system, while the environment

is stepped by the low-level dynamics reconstructed from the dynamic latent state, or the

dynamic’s latent state directly. Using the latent states of the world model, the reward of

the agent can be learned. To summarize, our world model learns the components given in

Table 5.2. ot denotes a high-dimension observation, such as an image or a LIDAR scan, xt

is the low dimension input, such as the physical state of the system, rt is the reward, at is

the action.

Table 5.2: The modules that make our world model.

Modules Environment Model Dynamic Model
Decoder qη(ôt | Senv

t) qφ (x̂t | Sdyn
t)

Observation pη(Senv
t | Senv

t-1 ,xt-1,ot) pφ (S
dyn
t | Sdyn

t-1 ,at-1,xt)

Transition qη(Senv
t | Senv

t-1 ,xt-1) qφ (S
dyn
t | Sdyn

t-1 ,at-1)
Reward qη(rt | Senv

t) Explicit

We chose this model as it allows us to leverage parts from previously learned models. In

all the experiments presented in this section, the dynamic model was fixed and not learned

with the rest of the system. Also, because the dynamic model is well known, the exploration

does not matter as much as in other works [168, 169]. This means that the policies converge

faster, and uses less resources to train. More information about how the model works can

be found in [3]. In Table 5.2, one can notice that we do not learn a reward that uses the

dynamic state. Indeed, in our method, the analytical expression of the dynamic reward is

embedded directly inside the imagination process. In the following section, we will discuss

how the goals are being learned by leveraging explicit rewards.

Learning to Reach Multiple Goals

In classical control theory, a controller is almost systematically defined to have a set of

performance within a range of values. This part of the design of the controller requires

having an analytical, well-formed, model. Here we propose an approach where we learn a

controller over a continuous range of values, this controller will then be tested inside and

164

outside this range of values. In doing so, we evaluate its robustness, and its applicability to

real systems. To allow our agent to chase goals, we augment the state by concatenating the

goal to it. Stot
t becomes Stot

t = (Senv
t ,Sdyn

t ,gt) , where gt is the goal given at time t. With this

new state, we then consider the following policy function: at ∼ q(·|Senv
t ,Sdyn

t ,gt). In this

kind of situation, the limiting point is the amount of interaction we can have with the system.

Let us take the example of a velocity controller in a car. A classical use case would be for

the car to drive anywhere between -15 and 130kmph. With RL, it would take a lot of system

interactions to learn a well-behaved controller that can operate optimally on any values in

Algorithm 10: Physics-Driven GC Dreamer

Fill dataset D with N random actions episodes.
Initialize neural network parameters θ ,η ,ψ randomly.
Load dynamic model parametrized by φ .
while not converged do

for update step c = 1..C do

// Environment learning

Draw B data sequences {(xt ,ot ,rt ,at)}k+L
t=k ∼D.

Compute dynamics states
Sdyn

t ∼ pφ (S
dyn
t | Sdyn

t−1,at−1,xt).
Compute environment states
Senv

t ∼ pη(Senv
t | Senv

t−1,xt−1,ot).
Update η using representation learning.

// Behavior learning
Select random goals gτ .
Imagine trajectories
{(Senv

τ ,Sdyn
τ ,aτ ,xτ ,gτ)}t+H

τ=t from each (Senv
t ,Sdyn

t).
Predict rewards and values

E
(

qη(rτ | Senv
τ)
)
+ f (x̂τ ,gτ), vψ(Senv

τ ,Sdyn
τ ,gτ).

Update θ and ψ using behavior learning.

// Environment interaction
env.reset()
env.set goal()
Play in environment for N steps.

// Add experience to dataset
D←D∪{(ot ,at ,rt)

T
t=1}.

165

between these bounds. This problem is why goal relabeling exists. It allows assigning a new

goal to a given sample at training time. However, in most algorithms, it is almost impossible

to set goals that are too far from the current state, as in these cases, computing the result

of the action taken is not possible. In our method, we use our RSSMs to predict forward

trajectories for which we set random goals. The RSSMs allows us to optimize for any goal

as they provide us with transition functions, allowing us to predict rewards, and the next

states over long time horizons. Furthermore, because the RSSMs are highly parallel, we

can optimize for thousands of goals simultaneously, for every optimization step. In our

experiments, we collect 2000 episodes per training, and train for 100 steps, in between each

episode collection. For each step, we generate 2500 trajectories in which we set a random

goal. This means that each of our policies were trained on 500 millions imagined goals,

allowing us to sample uniformly over the desired control range.

With the ability to predict future states, the limitation now becomes to have a well-

defined reward to learn a controller from. In our case, we chose to separate the reward into

two sub-rewards. The first one, which relates exclusively to the physical state or the actions,

has its equation explicitly written inside the imagination process. As such, it does not need

to be learned. The other one, which is learned, includes the rest of the reward that is needed

to solve the task, i.e. higher dimension inputs. The value function then learns to predict the

n-step returns of the sum of the two rewards. To accommodate for this, we use the following

reward function : R = E
(

qη(rτ | Senv
τ)
)
+ f (x̂τ ,gτ), where f is the analytical expression

of the dynamics sub-reward, and x̂τ is the reconstructed physical state from Sdyn. Finally,

we also change the value function to include the goal, vψ(Senv
τ ,Sdyn

τ ,gτ). The full algorithm

used to train our agents is provided algorithm 10.

5.7.4 Experiments

In the following experiments, we taught an USV to follow lake shores at different velocities.

The velocity being the goals sent to the system. These experiments have been designed to

166

answer the following questions:

1. How important is the imagination horizon when learning to reach multiple goals?

2. Do the targets set in the simulation matter?

3. Can the policy learned in simulation be applied without fine-tuning on the real robot?

And if so, how well does it perform?

To answer these questions, we will first describe the system we will be using, then we will

present the task we want our agent to solve. Next, we will discuss the different training

configurations we chose and evaluated, and finally we will see how we evaluated each

model.

System

All our experiments were carried out using an USV. More details regarding the system can

be found in subsubsection 5.4.1. To evaluate our method, we test it on a shore following

task, for which we can set different linear velocities. In this section, we use the same task as

before (subsection 5.4.2). For clarity’s sake, we repeat the reward formulation. The reward

associated with the task is given in Equation 5.11, where v denotes the linear velocity of the

USV, vgoal the velocity to track, d the distance between the USV and the shore, and finally

dtarget the desired distance from the shore. Equation 5.12 corresponds to the perception

part of the reward, and is learned with the world model by qη(rt | Senv
t). Equation 5.13

corresponds to the dynamic part of the reward, and is embedded inside the imagination

process by f (x̂t ,gt).

R = 2.5×Rdist +Rvel (5.11)

Rdist = max(−20,1−0.5× (dtarget−d)2) (5.12)

Rvel = 1−

∣∣∣∣∣vgoal− v
vgoal

∣∣∣∣∣ (5.13)

167

Training Configurations & Environment

To evaluate and analyze our method, we trained 18 models with different imagination

horizons, target-velocity ranges in simulation, and target-velocities ranges in the imagination.

Table 5.3 shows the different training configurations tested. The first line of the table shows

the least favorable setting. In simulation, the agent is asked to go at a low speed of 0.5

m/s, and the imagination velocities are also limited to the [0.5-1.0] range. This means

that the policy will not explore a lot of its state space, in particular with a short horizon.

The last line of the table is the most comfortable setting, with the simulation matching the

imagination distribution of velocities. Each of these configurations are then trained using

different imagination horizons. Our models are all deployed on the real lake in a zero-shot

Table 5.3: Each line is a configuration. All the configurations are tested for three different
imagination horizons: 15, 30 and 45, making for a total of 18 different training configurations.
Configurations with a ⋆ have been trained five times with different seeds and an horizon of
30.

Simulation velocity range Imagination velocity range
0.5 0.5-1.0 ⋆

0.6-1.0 0.5-1.0
0.6-1.0 0.3-1.3

1.0 0.5-1.0 ⋆
1.0 0.3-1.3 ⋆

0.3-1.3 0.3-1.3 ⋆

setup.

Evaluation

Goal Generation: To compare the different training scenarios, we devised a benchmark

heavily inspired by control theory metrics. In this benchmark we evaluate three behaviors:

1) fixed velocity regime, 2) step response, 3) velocity tracking using sinus and saw-tooth.

The benchmark is done in simulation only, as running it on the real system would take too

much time.

1. To evaluate the quality of the policy in fixed regime, we deploy it in the evaluation

168

environments and set goals within the range [-0.7,1.7]. Each goal is maintained for

one minute. This process is repeated five times. The goal with this test is to see how

well the agents perform on seen velocities, but also on out-of-distribution velocities.

A well-learned-controller should be robust to out-of-distribution targets. Furthermore,

this test will allow us to see if the policy has a static error.

2. Analyzing the system’s response in transient regimes is done by setting velocity goals

that follow square-shaped signals of different periods and amplitudes. This aims at

evaluating if the policy overshoots, as well as the rise time, and fall time. Since our

agents use GRUs to embed their states, there could be a delay between the time the

command is received and the time the command is actually applied.

3. Finally, we assess the velocity-tracking capacities of the policy by sending velocity

goals that follow sinusoidal and sawtooth-shaped signals. With this test, we want to

measure the tracking error, and make sure the policies can adjust for small velocity

increments. This task uses the same combination of periods and amplitudes as the

previous one.

Environments: To evaluate the models, we generated 3 types of simulation environ-

ments. These environments are used to run the benchmark described earlier.

• The simplest environment is a straight line of 400 meters, formed by a set of poles of

20cm radius, separated by a distance of one meter from each other. This environment

was created to see how the models would perform in ideal conditions, where there are

no challenges imposed by the perception task. An image of this environment can be

seen on Figure 5.22a.

• The second type of environment is a succession of half-circles forming a sinusoidal

curve. This curve is made by the poles, with the same separation. An image of this

environment can be seen on Figure 5.22b

• The third and last type of environment is a sawtooth like curve, also made with the

169

same poles and the same separation. An image of this environment can be seen on

Figure 5.22c.

(a) The Line environment. (b) half-circle environment. (c) A sawtooth environment.

Figure 5.22: The different type of environments used to evaluate the models.

Using these environments and the previously defined benchmark, evaluating a model on

one of our servers takes about 1 server-days. This is mostly due to the simulator we use,

Gazebo, which is barely running real-time.

On top of these environments, we also deploy our algorithms in zero-shot transfer on a

real lake. Metrics: To measure the performance of each model, we measure two properties.

The first one evaluates how well the goals are reached. This is done by using the velocity

reward on aggregated data, or the average velocity. The reward is akin to an accuracy. This

makes it particularly well suited to study a large batch of different velocities. On the other

hand it is not really tangible. Hence, when we want to compare un-aggregated data, we

use the average error which is simpler to relate to. The second evaluation criteria is the

distance to the shore. Similarly to the velocity goals, it uses the perception reward, and

the absolute error. In addition, of these metrics, we also measure specific metrics when the

policies follow square-shaped velocity goals. In these instances, we measure the rising and

falling time, as well as how much the policy overshoots.

170

5.7.5 Results

We answer the questions raised in the experiment part. We start by studying the impact

of the imagination horizon, then we explore the importance of the simulation targets, and

finally we demonstrate the transferability of the simulation-learned policies to a real system

in a zero-shot setup.

On the Importance of the Imagination Horizon

We explore the importance of the imagination horizon in our learning process. To mea-

sure the impact of the imagination horizon, we aggregate the results of all our training

configurations by the length of their imagination horizon.

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ve
lo

cit
y

Re
wa

rd

Within

0.5
0.6
0.7
0.8
0.9
1.0

Above

2.0
1.5
1.0
0.5
0.0
0.5
1.0

Below

15 30 4515 30 45
Horizon Length

2.0
2.1
2.2
2.3
2.4
2.5

Di
st

an
ce

 R
ew

ar
d

15 30 4515 30 45
Horizon Length

1.0

1.3

1.6

1.9

2.2

2.5

15 30 4515 30 45
Horizon Length

1.0
0.3
0.4
1.1
1.8
2.5

(a) Fixed regime.

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Rise time

0.00

0.05

0.10

0.15

0.20

Pe
rc

en
t (

%
)

Overshoot

15 30 4515 30 45
Horizon Length

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Fall time

15 30 4515 30 45
Horizon Length

0.4

0.6

0.8

1.0

Ve
lo

cit
y

Re
wa

rd

Tracking Error

(b) Transient regime.
Figure 5.23: Aggregated performance of all the models, on all the tracks, based on their
horizons.

Figure 5.23a shows the fixed regime performance. On the leftmost column, which shows

the performance on the goals that are within the range given in the imagination, we can see

that the longer the horizon, the better the performance. Similar results can be seen on the

goals that are above the training distribution. At first, the results on goals below the training

distribution can seem surprising, with the shorter horizons achieving better performance on

the distance part of the task than the longer horizons. However, the velocity constraint is

171

not respected at all, which means that the shortest horizon models fail to reach their goals,

and hence can more easily maintain their distance to the shore. It is also worth noting

that the models can drive backward, even though they had never been trained to do such a

thing. Even more surprisingly, they manage to do so despite the fact that they cannot see

behind themselves. These experiments show that not only the controller work on the training

distribution, but also generalizes well to out-of-distribution goals. Figure 5.23b shows the

performance of the models on the tracking of square signals. The left column shows the rise

time and fall time based on the horizon length. We can see that longer horizons have shorter

rise time, meaning that the system reaches its target quicker. Similarly, when looking at how

much the models overshoot, the longer the horizon, the less they overshoot. We can also see

that longer horizons improve the tracking performance of the models (bottom right) with

short horizon models struggling to reach the velocity goals. The fall time (bottom left) are

more homogeneous with all horizons having the same median, and longer horizons having a

slightly larger spread. Overall, this confirms the intuition that longer horizons do provide

better performances. However, there is a trade-off. As the horizon get longer, the accuracy

of the world model decreases. While we do not see this behavior here, if the horizon gets

too long, the performance will decrease as shown in [156]. Before moving on to the model

performance comparison, let us analyze how a controller behaves.

Figure 5.24 shows the performance of one of the top controllers on the evaluation

goals. The evaluation environment is the straight line. From this graph, we can see that

the controller is capable of reaching and maintaining the goal velocity well, whether it

is inside or outside the training goal distribution. Inside the training goal distribution the

agent maintains an almost constant performance, except when the goal reach and exceeds

1 m/s. One can observe that the faster the agent goes, the harder it is for it to follow the

shore. While this can be expected, as this kind of system has a lot of sliding, there are other

reasons that could explain this behavior, as we will see later. Another interesting fact is

the backward performance. The controller struggles to maintain the distance to the shore

172

while going backward, yet on a straight line it should be fairly simple. To understand and

explain this behavior we need to take a look at the commands sent by the agent to the system.

Figure 5.25 shows these commands on some evaluation tasks.

On Figure 5.25, the first two columns show a constant velocity tracking task. In this case,

we can see that the agent sends commands with an oscillatory pattern, first more left, then

more right, and then compensate with left, etc. . . This behavior is particularly noticeable

on the first column, the 1 m/s goal. There are two reasons for this behavior. The first is

due to our training environment: never in the training environment the agent is trained to

follow a straight line, it always follows a winding shore line. The second is linked to the

fact that the boat does not exactly spawn at the right distance from the shore, and it has

to compensate for it, which creates oscillations. The faster the boat goes, the stronger the

oscillations, and thus the larger the distance error. This kind of system is particularly hard

to control, as the oscillations on the commands translate in lateral motion that can only be

countered by compensating and introducing further oscillations. When driving on the real

lake, we measured that the lateral velocity was approximately half the goal velocity. At a

1.0
0.5
0.0
0.5
1.0
1.5
2.0

ve
lo

cit
y

(m
/s

) below distribution
in distribution
above distribution
target velocity

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

0.
2

0.
25

0.
3

0.
35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
7

goal velocity (m/s)1.00
1.25
1.50
1.75
2.00
2.25
2.50

di
st

an
ce

 re
wa

rd

below distribution
in distribution
above distribution

Figure 5.24: The velocities and distance rewards reached by one of the top controller on a
fixed velocity tracking task.

173

Figure 5.25: The velocities reached by the system, as well as the commands sent by the
agent.

lower velocity, such as on column two, we can see that these oscillations slowly fade as

time goes. On the remaining three columns, we can see that the policy can follow sawtooth,

sinusoidal, and square goal signals, even though it was never explicitly trained to follow

this kind of signal, always fixed velocity goals. Something interesting to notice on the fifth

column is the sharp accelerations and breaks when the system must slow down or speed

up to catch on with the signals. We can also notice a limited overshooting, and little delay

when matching the goal signal.

In summary, our policies are capable of reaching multiple velocity goals, while main-

taining their distance to the shore. They generalize well to previously unseen goals, and

having a long imagination horizon improves the performance. In our case, increasing the

horizon from 15 to 30 steps provides a major performance uplift, whereas going from 30 to

45 only yields minor improvements.

174

On the Importance of the Simulation Targets

One key question, when learning to reach multiple goals with a world model, is what impact

does the simulation have on the learning of the world model. Here, all the models share the

same pre-learned dynamics. Hence, we will not study their impact on the learning process.

However, the reconstruction of the environment may depend on the velocity range explored.

Ideally, if our model does the dynamics separation well enough, it should not make much

of a difference. We recall that the RSSM, or world model, that learns the environment is

stepped using the physical state and not the action. Hence, extrapolating outside of the seen

velocity range should be simpler that when using actions transitions, as the dynamics of the

robot can be non-linear.

With Figure 5.26, we show that overall, all the configurations provide fairly similar

results. They are organized based on the expected difficulty to learn from them (Table 5.3).

On each plot, the leftmost boxes are the hardest configuration (A), and the rightmost boxes

are the easiest (D). On Figure 5.26a, when comparing the performance on the training

0.80

0.85

0.90

0.95

1.00

Ve
lo

cit
y

Re
wa

rd

Within

0.4

0.6

0.8

1.0
Above

0.5

0.0

0.5

1.0
Below

A B C DA B C D
Configuration

1.9

2.1

2.3

2.5

Di
st

an
ce

 R
ew

ar
d

A B C DA B C D
Configuration

0.0
0.5
1.0
1.5
2.0
2.5

A B C DA B C D
Configuration

2.5
1.5
0.5
0.5
1.5
2.5

(a) Fixed regime.

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Rise time

0.00
0.05
0.10
0.15
0.20
0.25

Pe
rc

en
t (

%
)

Overshoot

A B C DA B C D
Configuration

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Fall time

A B C DA B C D
Configuration

0.6

0.7

0.8

0.9

1.0

Ve
lo

cit
y

Re
wa

rd

Tracking Error

(b) Transient regime.

Figure 5.26: Aggregated performance based on the training scenario. A has a simulation
goal of 0.5m/s. B and C have a simulation goal of 1.0 m/s. D has simulation goals between
0.3 and 1.3 m/s. A and B are trained on imagination velocities between 0.5 and 1.0 m/s; C
and D are trained on velocities between 0.3 and 1.3 m/s.

175

distributions, we can see that all the models perform more or less the same. Except for C.

Because of the slowness of gazebo, we only trained our policies on 5 unique seeds. This

is not large and could explain why the models trained on C are not as good as the others.

Still on Figure 5.26a, for the velocities above the training distribution, the performance of

the policies are better as the training scenario gets easier. Configuration A is the worst on

this scenario, in particular on the distance to the shore. This could indicate that policies

that learned on higher simulation and imagination speeds can better match high velocity

goals. Finally, the results on the velocities are somewhat equivalent for all models with large

variances. This would indicate that the different configurations do not provide improved

performance in this scenario. The results presented in Figure 5.26b are similar to the one

in Figure 5.26a. In the end, it seems that the velocity range in simulation does not matter

that much. This is interesting, as it would mean that we can leverage most of the data to

learn new behavior. These results are also consistent with the great generalization capacities

observed earlier.

On the Transferability of the Policy

When training models in simulation, a natural question is ”how well will they do in the

real world?” In this section, we deploy our policies in a zero-shot setup and compare their

performances. Figure 5.27 shows the performance of our agents on the real lake. We

compare ourselves, “flex phy”, to a regular version of Dreamer “no phy” [2], as well as to

a physics-driven Dreamer “phy” [3]. Both of these policies were trained to reach a single

velocity goal of 1 m/s. The comparison is done with “flex phy” being one of our best

controller, in different scenarios.

On Figure 5.27a, we can see that the method proposed here does not increase the

performance drastically over the physics-driven version. On the one hand, the velocities are

within the same bounds. On the other hand, the distance to the shore, seen on Figure 5.27b

is better maintained by our controller. This could be due to numerous factors specific to

176

this experimental run. We would like to stress that, while our policy does not significantly

improve the performance on a single target, it knows how to reach multiple goals. The

“phy” policy does not, and has to be retrained for each new goal. Interestingly, if we look at

Figure 5.27c we can see that our method consumes significantly less power than both the

“phy” and “no phy” policies. Our method median power consumption is 160 Watts around

the lake when “phy” consumes 320 watts. This amounts to a 50% power decrease, while

maintaining the same performances. It is likely that, since our agent can reach a wide range

of velocities, it understands its action space better, which allows it to be more efficient.

Moving on to Figure 5.28a, where the boat was deployed on a lake with a 4mm thick

ice crust, we can see that the policy struggles to maintain the target velocity. However,

the distance to the shore is well-matched (Figure 5.28b). Figure 5.28c shows the power

drawn when navigating on the frozen lake. We can notice that the motors are almost always

working at full power (the median power consumption is 277 Watts). This means that this

controller truly understood how to move. It does not associate a velocity with a range

of commands, but compensate for the error in velocity by increasing or decreasing the

commands sent to the system. Ideally, we would have wanted to replicate this experiment

no phy phy flex phy
0.2

0.4

0.6

0.8

1.0

1.2

Ve
lo

cit
y

(m
/s

)

goal

(a) Velocity of the boat.

no phy phy flex phy
4

6

8

10

12

14

16

Di
st

an
ce

 (m
)

goal

(b) Distance of the boat from
the shore.

no phy phy flex phy
50

100

150

200

250

300

350

400

Po
we

r (
W

)

(c) Instantaneous power con-
sumption.

Figure 5.27: The performance of different policies around the lake.

177

Ideal Ice No GPS

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ve

lo
cit

y
(m

/s
)

goal

(a) Velocity of the boat.

Ideal Ice No GPS
8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Di
st

an
ce

 (m
)

goal

(b) Distance of the boat from
the shore.

Ideal Ice No GPS
50

100

150

200

250

300

350

400

Po
we

r (
W

)

(c) Instantaneous power con-
sumption.

Figure 5.28: The performance of our policies around a frozen lake, and in a scenario where
the GPS signal is lost. The same policy but in ideal conditions was added for reference.

0.25 0.5 0.75 1.0 1.25 1.5
Velocity goals (m/s)

0.25

0.50

0.75

1.00

1.25

1.50

Ve
lo

cit
y

(m
/s

)

goals

Figure 5.29: Different goals reached by our policy on the real USV.

178

with the “phy” policy, but getting a frozen lake with a thin enough crust to break is rare

and we could not record this policy on a frozen lake yet. This behavior can also be seen

when we cut the GPS signal from the USV. In this case, the velocity is null. Hence, the

policy increases the commands as much as it can to match the target, which it never will.

This translates to the boat moving near its top speed while still following the shore fairly

precisely.

To test that our controller could reach different velocity goals, we tasked our agent to

follow a given goal on a 150 meters long portion of the shore. The results of this test can be

seen on Figure 5.29. We can see that on velocities from 0.25 to 0.75m/s the policy matches

the target fairly well. However, for the velocities between 1.0 and 1.5m/s, the policy fails to

reach its goal. We believe this is due to the perception constraints, and that the USV cannot

drive fast enough without sacrificing its navigation accuracy. It is probable that on a straight

line the USV could have reached higher velocities.

Overall, the policies trained with this method transfer well. However, in comparison to

the simulation, the performances of the agents are degraded. There are multiple reasons for

that, but the main one is probably the fact that the dynamics of the real system is different

from the one the policies learned on, hence it is harder for the policies to control the real

USV. Another key factor is that, when testing on the lake, the shore is extremely different

from the simulation. In a natural environment, and particularly in winter, the laser is much

noisier, and there are many ghost points. If a ghost point appears and then disappears close

to the robot, then it forces the agents to quickly move away from the obstacle.

5.7.6 Discussion & Conclusion

In this section, we presented a method that uses physics-driven latent imagination to teach

a policy to reach different velocity goals, while performing a sensorimotor task, namely

following the border of the environment. In our method, the policies are learned exclusively

through the imagination process. Through thorough simulation experiments, we show that

179

the policies learned with our method can reach the goals they were trained on, but also

goals that they had never seen. Moreover, we study the behavior of the controller when

tracking different goals. From this, we observed that while the agents learned how to reach

different goals, they tend to send commands that result in oscillations. We then showed that

longer horizons improve the overall performance of the learned policy. Building on these

results, we evaluated different training scenarios and concluded that they had little impact

on the quality of the learned policy. This aligns well with the fact that agents learned by our

method have strong generalization capacities. Finally, we deployed one of our policies in a

zero-shot setup on a real lake. We demonstrated that our method was capable of matching

policies trained to reach a single velocity while using less power. We also demonstrated the

robustness of the learned policy by deploying the robot on a frozen lake. In this scenario,

the policy failed to reach the target velocity but was able to maintain the desired distance to

the shore. More importantly, the agent tried to compensate for dynamics change created by

the ice, by using almost all the available power.

180

5.8 Conclusion on Model Based RL

In this chapter, we have shown that MBRL is a viable choice when deploying autonomous

navigation agents in natural environments. In our experiments, we have made ample

demonstrations of zero-shot transfer from the simulation to the real system. Furthermore,

we proved the robustness of our agent by deploying in a variety of weather conditions,

ranging from calm silk waters to a frozen lake. When compared to the MPPI, our agent

not only worked better, but was also more reliable. This is interesting because the MPPI

was using a dynamic model trained on the real boat data. Overall, this shows that the RL is

a very promising alternative to MPC controllers in navigation tasks. Future work should

focus on further robustifying the policies, integrating safety layers, or integrating domain

adaptation within the imagination. Another interesting point would be to apply our methods

to more robots and different tasks. While we do not talk extensively about it in this chapter,

the simulation environment plays a critical role in the learning of the agent. As of today,

our training environments are hand-crafted, which means that they are full of human bias

about what is a hard or a simple environment. Ideally, we would want our environments

to be bias free and their complexity related to the current capacities of the agent. This

is currently explored by researchers like Jeff Clune[189, 190], or Natasha Jacques[191]

and it is our belief that this is the next frontier for reinforcement learning. After all, a

model is only as good as the environment it has been trained on. Thus, we would highly

encourage future work to investigate adversarial environment generation. While this field is

very time-consuming, we are confident that this would be highly rewarding.

181

CHAPTER 6

CONCLUSION

6.1 Summary of Contributions

This thesis studied state-of-the-art modeling techniques based on NNs. We first applied our

methods to the modeling of crop fields. On this problem, we showed that NNs could be used

to estimate the daily irrigation recommendation for a crop field. The methods developed to

solve this problem have been tested on real crop fields and achieved expert-level irrigation

recommendations while observing fewer variables. We then designed a novel technique

based on transformers to fill gaps inside measurement streams. We showed that our method

achieved state-of-the-art results when filling gaps in EC data.

Then we explored different importance sampling schemes to improve the quality of

learned robots’ dynamic models. We started by showing the benefits of using these schemes

by modeling systems with an uneven exploration of their state/action spaces. In these sce-

narios, the importance sampling provided a significant accuracy uplift. We then applied the

models learned with the prioritization inside an MPPI controller. In simulation, we learned

the dynamic model of a small electric boat, and used it to make the boat follow lakeshores.

We showed that the improvement in modeling accuracy provided by the sampling scheme

also translated into increased control performance. Lastly, we applied these techniques to a

real robot and showed that it performed well.

Building on the results of the MPPI, we trained an RL agent to control the boat, solving

the same task as the MPPI. We modified Dreamer, a strong MBRL agent to control the boat

using the laser inputs and performed zero-shot deployment from the simulation to the real

system. We then modified this algorithm to better fit mobile robots. We created a system

with two sub-states, one for the robot dynamics, one for the environment. We showed that

182

our modified version of dreamer performed better than the vanilla version and could transfer

knowledge between different systems. Finally, we further modified this algorithm, allowing

the agent to reach imagined goals. Efficiently teaching the agent to reach multiple goals.

6.2 Perspective and Future Work

As suggested in the conclusions of the different chapters, estimating the uncertainty on

the neural networks’ predictions could be a very interesting research direction. Indeed,

for NNs to be applied to real-world problems, we need to know when they are failing.

However, as of today, few methods allow for accurate measurement of the networks’

uncertainty. Furthermore, when using sampling-based MPC controllers, such as the MPPI,

this uncertainty could be leveraged to regulate the variance of the sampling process.

Regarding the RL, there are many research opportunities. We believe that the most

exciting is adversarial environment generation. When training an agent, the environment

is often designed by a human and contains many biases regarding the difficulty of the task.

However, what a human considers hard, is not necessarily hard for an RL agent. Moreover,

an agent provided with a curriculum may be able to solve tasks that it could not have solved

without said curriculum. Automatizing the generation process of the environments to create

such curriculums could be of tremendous benefit to the robotics learning community.

6.3 acknowledgement

The research presented in this thesis was supported by two grants. One from the Ministry

of Science and Technology (MOST), Israel, under the France-Israel Maimonide Program,

& Ministry of Europe and Foreign Affairs (MEAE), and the Ministry of Higher Education,

Research and Innovation (MESRI) of France. Another from the French Agence Nationale

de la Recherche (ANR) under the reference number ANR-19-CE10-0011.

183

REFERENCES

[1] A. Richard, L. Fine, O. Rozenstein, J. Tanny, M. Geist, and C. Pradalier, “Filling
gaps in micro-meteorological data,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2020, pp. 101–117.

[2] A. Richard, S. Aravecchia, T. Schillaci, M. Geist, and C. Pradalier, “How to train
your heron,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5247–5252,
2021.

[3] A. Richard, S. Aravecchia, M. Geist, and C. Pradalier, “Learning behaviors through
physics-driven latent imagination,” in 5th Annual Conference on Robot Learning,
2021.

[4] O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural
Networks, Fuzzy Models, and Gaussian Processes. Springer Nature, 2020.

[5] R. Moradi, R. Berangi, and B. Minaei, “A survey of regularization strategies for
deep models,” Artificial Intelligence Review, vol. 53, no. 6, pp. 3947–3986, 2020.

[6] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” International journal
of neural systems, vol. 19, no. 04, pp. 295–308, 2009.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[9] K. Cho et al., “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[10] D. Misra, “Mish: A self regularized non-monotonic activation function,” arXiv
preprint arXiv:1908.08681, 2019.

[11] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv
preprint arXiv:1710.05941, 2017.

[12] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

184

[13] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807–814.

[14] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, 2013, p. 3.

[16] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural
networks,” in Advances in neural information processing systems, 2017, pp. 971–
980.

[17] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with s-shaped
rectified linear activation units,” in Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[18] B. Carlile, G. Delamarter, P. Kinney, A. Marti, and B. Whitney, “Improving deep
learning by inverse square root linear units (isrlus),” arXiv preprint arXiv:1710.09967,
2017.

[19] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations
in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[20] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” arXiv
preprint arXiv:1906.02691, 2019.

[21] ——, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[23] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[24] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-oriented road
map,” IEEE Control Systems Magazine, vol. 39, no. 6, pp. 28–99, 2019.

[25] G. Williams et al., “Information theoretic mpc for model-based reinforcement
learning,”

[26] R. Isermann, S. Ernst, and O. Nelles, “Identification with dynamic neural networks-
architectures, comparisons, applications,” IFAC Proceedings Volumes, vol. 30, no. 11,
pp. 947–972, 1997.

185

[27] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, vol. 3361, no. 10,
p. 1995, 1995.

[28] A. v. d. Oord et al., “Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[29] S. Genc, “Parametric system identification using deep convolutional neural net-
works,” in 2017 International Joint Conference on Neural Networks (IJCNN), IEEE,
2017, pp. 2112–2119.

[30] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[31] J. Gonzalez and W. Yu, “Non-linear system modeling using lstm neural networks,”
IFAC-PapersOnLine, vol. 51, no. 13, pp. 485–489, 2018.

[32] A. Brusaferri, M. Matteucci, P. Portolani, and S. Spinelli, “Nonlinear system iden-
tification using a recurrent network in a bayesian framework,” in 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN), IEEE, vol. 1, 2019,
pp. 319–324.

[33] Y. Wang, “A new concept using lstm neural networks for dynamic system iden-
tification,” in 2017 American Control Conference (ACC), IEEE, 2017, pp. 5324–
5329.

[34] A. Rehmer and A. Kroll, “On using gated recurrent units for nonlinear system
identification,” in 2019 18th European Control Conference (ECC), IEEE, 2019,
pp. 2504–2509.

[35] X. Xie, B. Wang, T. Wan, and W. Tang, “Multivariate abnormal detection for
industrial control systems using 1d cnn and gru,” IEEE Access, vol. 8, pp. 88 348–
88 359, 2020.

[36] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
ICLR, 2016.

[37] A. Vaswani et al., “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

186

[39] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, “La-
grangian neural networks,” in ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations, 2020.

[40] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” 2019.

[41] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using physics as
model prior for deep learning,” in International Conference on Learning Represen-
tations, 2018.

[42] J. Qiao, G. Wang, W. Li, and X. Li, “A deep belief network with plsr for nonlinear
system modeling,” Neural Networks, vol. 104, pp. 68–79, 2018.

[43] J. Qiao, G. Wang, X. Li, and W. Li, “A self-organizing deep belief network for
nonlinear system modeling,” Applied Soft Computing, vol. 65, pp. 170–183, 2018.

[44] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep evidential regression,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[45] D. Hafner, D. Tran, T. Lillicrap, A. Irpan, and J. Davidson, “Noise contrastive priors
for functional uncertainty,” in Uncertainty in Artificial Intelligence, PMLR, 2020,
pp. 905–914.

[46] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in international conference on machine learn-
ing, PMLR, 2016, pp. 1050–1059.

[47] S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. I. Valls, and R. Siegwart, “End-to-
end velocity estimation for autonomous racing,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6869–6875, 2020.

[48] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, 2017, pp. 3584–
3593.

[49] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for
computer vision?” In Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 5580–5590.

[50] A. Amini, A. Soleimany, S. Karaman, and D. Rus, “Spatial uncertainty sampling
for end-to-end control,” arXiv preprint arXiv:1805.04829, 2018.

[51] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify
classification uncertainty,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 3183–3193.

187

[52] T. Joo, U. Chung, and M.-G. Seo, “Being bayesian about categorical probability,” in
International Conference on Machine Learning, PMLR, 2020, pp. 4950–4961.

[53] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 41–50.

[54] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effec-
tiveness of data in deep learning era,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 843–852.

[55] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot learning with locally
weighted statistical learning,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, IEEE, vol. 1, 2000, pp. 288–293.

[56] A. Mahé, C. Pradalier, and M. Geist, “Trajectory-control using deep system iden-
tication and model predictive control for drone control under uncertain load.,” in
2018 22nd International Conference on System Theory, Control and Computing
(ICSTCC), Oct. 2018, pp. 753–758.

[57] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[58] A. Katharopoulos and F. Fleuret, “Biased importance sampling for deep neural
network training,” CoRR, vol. abs/1706.00043, 2017. arXiv: 1706.00043.

[59] ——, “Not all samples are created equal: Deep learning with importance sampling,”
CoRR, vol. abs/1803.00942, 2018. arXiv: 1803.00942.

[60] K. Kitamori, T. Manders, R. Dellink, and A. Tabeau, “Oecd environmental outlook
to 2050: The consequences of inaction,” OECD, Tech. Rep., 2012.

[61] FAO, “Faostat: Food and agriculture organization of the united nations-statistics
division,” 2019.

[62] M. Peet, “Physiological disorders in tomato fruit development,” in International
Symposium on Tomato in the Tropics 821, 2008, pp. 151–160.

[63] R. G. Allen, L. S. Pereira, D. Raes, M. Smith, et al., “Crop evapotranspiration-
guidelines for computing crop water requirements-fao irrigation and drainage paper
56,” 1998.

188

https://arxiv.org/abs/1706.00043
https://arxiv.org/abs/1803.00942

[64] O. Rozenstein, N. Haymann, G. Kaplan, and J. Tanny, “Estimating cotton water con-
sumption using a time series of sentinel-2 imagery,” Agricultural water management,
vol. 207, pp. 44–52, 2018.

[65] ——, “Validation of the cotton crop coefficient estimation model based on sentinel-
2 imagery and eddy covariance measurements,” Agricultural Water Management,
vol. 223, p. 105 715, 2019.

[66] G. Kaplan et al., “Estimating processing tomato water consumption, leaf area index,
and height using sentinel-2 and venµs imagery,” Remote Sensing, vol. 13, no. 6,
p. 1046, 2021.

[67] V. Manivasagam, G. Kaplan, and O. Rozenstein, “Developing transformation func-
tions for venµs and sentinel-2 surface reflectance over israel,” Remote Sensing,
vol. 11, no. 14, p. 1710, 2019.

[68] G. Tmušić et al., “Current practices in uas-based environmental monitoring,” Remote
Sensing, vol. 12, no. 6, p. 1001, 2020.

[69] H. Aasen, E. Honkavaara, A. Lucieer, and P. J. Zarco-Tejada, “Quantitative remote
sensing at ultra-high resolution with uav spectroscopy: A review of sensor tech-
nology, measurement procedures, and data correction workflows,” Remote Sensing,
vol. 10, no. 7, p. 1091, 2018.

[70] N. Ohana-Levi et al., “A weighted multivariate spatial clustering model to determine
irrigation management zones,” Computers and Electronics in Agriculture, vol. 162,
pp. 719–731, 2019.

[71] M. Romero, Y. Luo, B. Su, and S. Fuentes, “Vineyard water status estimation
using multispectral imagery from an uav platform and machine learning algorithms
for irrigation scheduling management,” Computers and electronics in agriculture,
vol. 147, pp. 109–117, 2018.

[72] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, et
al., “Deep learning and process understanding for data-driven earth system science,”
Nature, vol. 566, no. 7743, pp. 195–204, 2019.

[73] M. Kumar, N. Raghuwanshi, and R. Singh, “Artificial neural networks approach in
evapotranspiration modeling: A review,” Irrigation science, vol. 29, no. 1, pp. 11–25,
2011.

[74] D. Papale and R. Valentini, “A new assessment of european forests carbon exchanges
by eddy fluxes and artificial neural network spatialization,” Global Change Biology,
vol. 9, no. 4, pp. 525–535, 2003.

189

[75] E. R. Coutinho, R. M. d. Silva, J. G. F. Madeira, P. R. d. O. d. Coutinho, R. A. M.
Boloy, A. R. S. Delgado, et al., “Application of artificial neural networks (anns) in
the gap filling of meteorological time series,” Revista Brasileira de Meteorologia,
vol. 33, no. 2, pp. 317–328, 2018.

[76] S. Weksler, O. Rozenstein, N. Haish, M. Moshelion, R. Walach, and E. Ben-Dor,
“A hyperspectral-physiological phenomics system: Measuring diurnal transpiration
rates and diurnal reflectance,” Remote Sensing, vol. 12, no. 9, p. 1493, 2020.

[77] M. Aubinet, T. Vesala, and D. Papale, Eddy covariance: a practical guide to mea-
surement and data analysis. Springer Science & Business Media, 2012.

[78] A. M. Moffat et al., “Comprehensive comparison of gap-filling techniques for eddy
covariance net carbon fluxes,” Agricultural and Forest Meteorology, vol. 147, no. 3-4,
pp. 209–232, 2007.

[79] C. Moureaux et al., “Eddy covariance measurements over crops,” in Eddy Covari-
ance, Springer, 2012, pp. 319–331.

[80] R. Rosa and J. Tanny, “Surface renewal and eddy covariance measurements of
sensible and latent heat fluxes of cotton during two growing seasons,” Biosystems
Engineering, vol. 136, pp. 149–161, 2015.

[81] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm networks for
improved phoneme classification and recognition,” in International Conference on
Artificial Neural Networks, Springer, 2005, pp. 799–804.

[82] E. Falge et al., “Gap filling strategies for long term energy flux data sets,” Agricul-
tural and Forest Meteorology, vol. 107, no. 1, pp. 71–77, 2001.

[83] M. Reichstein et al., “On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: Review and improved algorithm,” Global change biology,
vol. 11, no. 9, pp. 1424–1439, 2005.

[84] J. Lloyd and J. Taylor, “On the temperature dependence of soil respiration,” Func-
tional ecology, pp. 315–323, 1994.

[85] B. H. Braswell, W. J. Sacks, E. Linder, and D. S. Schimel, “Estimating diurnal
to annual ecosystem parameters by synthesis of a carbon flux model with eddy
covariance net ecosystem exchange observations,” Global Change Biology, vol. 11,
no. 2, pp. 335–355, 2005.

[86] A. M. Moffat, “A new methodology to interpret high resolution measurements of net
carbon fluxes between terrestrial ecosystems and the atmosphere,” Ph.D. dissertation,
2012.

190

[87] Y. Kim et al., “Gap-filling approaches for eddy covariance methane fluxes: A
comparison of three machine learning algorithms and a traditional method with
principal component analysis,” Global change biology, vol. 26, no. 3, pp. 1499–1518,
2020.

[88] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning
and deep learning for time-series modeling,” Pattern Recognition Letters, vol. 42,
pp. 11–24, 2014.

[89] T. Xu et al., “Evaluating different machine learning methods for upscaling evapotran-
spiration from flux towers to the regional scale,” Journal of Geophysical Research:
Atmospheres, vol. 123, no. 16, pp. 8674–8690, 2018.

[90] N. Alavi, J. S. Warland, and A. A. Berg, “Filling gaps in evapotranspiration mea-
surements for water budget studies: Evaluation of a kalman filtering approach,”
Agricultural and Forest Meteorology, vol. 141, no. 1, pp. 57–66, 2006.

[91] N. Boudhina et al., “Evaluating four gap-filling methods for eddy covariance mea-
surements of evapotranspiration over hilly crop fields,” Geoscientific Instrumentation,
Methods and Data Systems, vol. 7, no. 2, pp. 151–167, 2018.

[92] L. Foltnová, M. Fischer, and R. P. McGloin, “Recommendations for gap-filling eddy
covariance latent heat flux measurements using marginal distribution sampling,”
Theoretical and Applied Climatology, vol. 139, no. 1, pp. 677–688, 2020.

[93] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in International Conference on Learning Representations,
2020.

[94] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 10 012–10 022.

[95] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70, JMLR. org, 2017, pp. 1243–1252.

[96] A. Richard, A. Mahé, C. Pradalier, O. Rozenstein, and M. Geist, “A comprehensive
benchmark of neural networks for system identification,” 2019.

[97] M. Lange, B. Dechant, C. Rebmann, M. Vohland, M. Cuntz, and D. Doktor, “Vali-
dating modis and sentinel-2 ndvi products at a temperate deciduous forest site using
two independent ground-based sensors,” Sensors, vol. 17, no. 8, p. 1855, 2017.

191

[98] T. Wutzler et al., “Basic and extensible post-processing of eddy covariance flux data
with reddyproc,” Biogeosciences, vol. 15, no. 16, pp. 5015–5030, 2018.

[99] V. T. Ambas, E. Baltas, et al., “Sensitivity analysis of different evapotranspiration
methods using a new sensitivity coefficient,” Global NEST Journal, vol. 14, no. 3,
pp. 335–343, 2012.

[100] M. Reichstein, A. Moffat, T. Wutzler, and K. Sickel, “Reddyproc: Data processing
and plotting utilities of (half-) hourly eddy-covariance measurements,” R package
version 0.6–0/r9, vol. 755, 2014.

[101] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, “Variance reduction in
sgd by distributed importance sampling,” arXiv preprint arXiv:1511.06481, 2015.

[102] L. Ljung, “System identification,” in Signal analysis and prediction, Springer, 1998,
pp. 163–173.

[103] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel, “Daisy: A database
for identification of systems,” JOURNAL A, vol. 38, pp. 4–5, 1997.

[104] V. A. Akpan and G. D. Hassapis, “Nonlinear model identification and adaptive
model predictive control using neural networks,” ISA transactions, vol. 50, no. 2,
pp. 177–194, 2011.

[105] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in 12th
{USENIX} symposium on operating systems design and implementation ({OSDI}
16), 2016, pp. 265–283.

[106] I. Loshchilov and F. Hutter, “Online batch selection for faster training of neural
networks,” arXiv preprint arXiv:1511.06343, 2015.

[107] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, vol. 3, pp. 2149–
2154.

[108] M. Quigley et al., “Ros: An open-source robot operating system,” in ICRA Workshop
on Open Source Software, 2009.

[109] S. Yaghoubi, N. A. Akbarzadeh, S. S. Bazargani, S. S. Bazargani, M. Bamizan,
and M. I. Asl, “Autonomous robots for agricultural tasks and farm assignment and
future trends in agro robots,” International Journal of Mechanical and Mechatronics
Engineering, vol. 13, no. 3, pp. 1–6, 2013.

192

[110] D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,”
Journal of Infrastructure Systems, vol. 23, no. 3, p. 04 017 004, 2017.

[111] G. Pannocchia, “Offset-free tracking mpc: A tutorial review and comparison of
different formulations,” in Control Conference (ECC), 2015 European, IEEE, 2015,
pp. 527–532.

[112] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control Policies for
Autonomous Aerial Vehicles with MPC-Guided Policy Search,” ArXiv e-prints, Sep.
2015. arXiv: 1509.06791 [cs.LG].

[113] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control engineering practice, vol. 11, no. 7, pp. 733–764, 2003.

[114] G. Williams et al., “Information theoretic mpc for model-based reinforcement
learning,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2017, pp. 1714–1721.

[115] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on, IEEE, 2016, pp. 1433–1440.

[116] T. Naegeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges, “Real-time mo-
tion planning for aerial videography with dynamic obstacle avoidance and viewpoint
optimization,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1696–1703,
Jul. 2017.

[117] J. Dentler, S. Kannan, M. A. O. Mendez, and H. Voos, “A tracking error control
approach for model predictive position control of a quadrotor with time varying refer-
ence,” in Robotics and Biomimetics (ROBIO), 2016 IEEE International Conference
on, IEEE, 2016, pp. 2051–2056.

[118] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “High accuracy path tracking for
vehicles in presence of sliding: Application to farm vehicle automatic guidance for
agricultural tasks,” Autonomous robots, vol. 21, no. 1, pp. 79–97, 2006.

[119] E. Lucet, R. Lenain, and C. Grand, “Dynamic path tracking control of a vehicle on
slippery terrain,” Control engineering practice, vol. 42, pp. 60–73, 2015.

[120] A. Malinin and M. Gales, “Predictive uncertainty estimation via prior networks,” in
Advances in Neural Information Processing Systems, 2018, pp. 7047–7058.

[121] M. P. Deisenroth, G. Neumann, and J. Peters, A survey on policy search for robotics.
now publishers, 2013.

193

https://arxiv.org/abs/1509.06791

[122] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors
by latent imagination,” in ICLR, 2020.

[123] R. S. Sutton, A. G. Barto, et al., “Introduction to reinforcement learning,” 1998.

[124] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: An overview,”
in Proceedings of 1995 34th IEEE conference on decision and control, IEEE, vol. 1,
1995, pp. 560–564.

[125] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lectures on artifi-
cial intelligence and machine learning, vol. 4, no. 1, pp. 1–103, 2010.

[126] O. Sigaud and O. Buffet, Markov decision processes in artificial intelligence. John
Wiley & Sons, 2013.

[127] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017,
pp. 2786–2793.

[128] D. Hafner et al., “Learning latent dynamics for planning from pixels,” in ICML,
2019.

[129] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete world
models,” arXiv preprint arXiv:2010.02193, 2020.

[130] J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a
learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[131] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, Nov. 2017.

[132] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in ICML,
2016.

[133] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy MaxEnt
deep RL with a stochastic actor,” in ICML, 2018.

[134] P. Cai, X. Mei, L. Tai, Y. Sun, and M. Liu, “High-speed autonomous drifting with
deep reinforcement learning,” IEEE RA-L, 2020.

[135] Z.-W. Hong et al., “Virtual-to-real: Learning to control in visual semantic segmenta-
tion,” in IJCAI, 2018.

194

[136] M. Andrychowicz et al., “Learning dexterous in-hand manipulation,” IJRR, vol. 39,
no. 1, pp. 3–20, 2020.

[137] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of
robotic control with dynamics randomization,” in ICRA, 2018.

[138] Y. Chebotar et al., “Closing the sim-to-real loop: Adapting simulation randomization
with real world experience,” in ICRA, 2019.

[139] R. C. Arkin, Behavior-Based Robotics. MIT Press, 1998.

[140] A. Ram, R. C. Arkin, R. J. Clark, and K. Moorman, “Case-based reactive naviga-
tion: A case based method for on-line selection and adaptation of reactive control
parameters in autonomous robotics systems,” IEEE Transactions on SMC, 1992.

[141] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
International Journal of Robotics Research, 2013.

[142] V. Mnih et al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[143] G. Barth-Maron et al., “Distributed distributional deterministic policy gradients,” in
ICLR, 2018.

[144] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model,” arXiv, 2019.

[145] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real
image,” in RSS, 2017.

[146] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the real
world,” in IROS, 2017.

[147] J. Tan et al., “Sim-to-real: Learning agile locomotion for quadruped robots,” in RSS,
2018.

[148] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, 2019.

[149] A. Piergiovanni, A. Wu, and M. S. Ryoo, “Learning real-world robot policies by
dreaming,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2019, pp. 7680–7687.

195

[150] A. Richard, S. Aravecchia, T. Schillaci, M. Geist, and C. Pradalier, “How to train
your heron,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5247–5252,
2021.

[151] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel: Model-based
offline reinforcement learning,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.,
vol. 33, Curran Associates, Inc., 2020, pp. 21 810–21 823.

[152] T. Yu et al., “Mopo: Model-based offline policy optimization,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 14 129–
14 142.

[153] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial Intel-
ligence Research, vol. 47, pp. 253–279, 2013.

[154] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[155] Y. Tassa et al., “Deepmind control suite,” arXiv preprint arXiv:1801.00690, 2018.

[156] A. Brunnbauer et al., “Model-based versus model-free deep reinforcement learning
for autonomous racing cars,” arXiv preprint arXiv:2103.04909, 2021.

[157] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt, “Learning to fly via deep
model-based reinforcement learning,” arXiv preprint arXiv:2003.08876, 2020.

[158] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in Proceedings of the 28th International Conference on
machine learning (ICML-11), Citeseer, 2011, pp. 465–472.

[159] P. Abbeel, A. Coates, M. Quigley, and A. Ng, “An application of reinforcement
learning to aerobatic helicopter flight,” in Advances in Neural Information Pro-
cessing Systems, B. Schölkopf, J. Platt, and T. Hoffman, Eds., vol. 19, MIT Press,
2007.

[160] A. Plaat, W. Kosters, and M. Preuss, “Model-based deep reinforcement learning for
high-dimensional problems, a survey,” arXiv preprint arXiv:2008.05598, 2020.

[161] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning.,” in
ICLR (Poster), 2016.

[162] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

196

[163] Y. D. Zhong and N. Leonard, “Unsupervised learning of lagrangian dynamics from
images for prediction and control,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[164] A. Sanchez-Gonzalez et al., “Graph networks as learnable physics engines for
inference and control,” in International Conference on Machine Learning, PMLR,
2018, pp. 4470–4479.

[165] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al., “Interaction networks for
learning about objects, relations and physics,” in Advances in Neural Information
Processing Systems, 2016, pp. 4502–4510.

[166] D. Fox, S. Thrun, and W. Burgard, Probabilistic Robotics. Kybernetes, 2006, ISBN:
9780262201629.

[167] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors
by latent imagination,” in International Conference on Learning Representations,
2020.

[168] M. Andrychowicz et al., “Hindsight experience replay,” in Proceedings of the
31st International Conference on Neural Information Processing Systems, 2017,
pp. 5055–5065.

[169] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak, “Discovering
and achieving goals via world models,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[170] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based reinforcement learn-
ing: A survey,” arXiv preprint arXiv:2006.16712, 2020.

[171] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,”
ACM Sigart Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[172] D. Silver et al., “A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[173] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning:
Applications on robotics,” Journal of Intelligent & Robotic Systems, vol. 86, no. 2,
pp. 153–173, 2017.

[174] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels,” in International Conference on
Learning Representations, 2021.

197

[175] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering visual continuous control:
Improved data-augmented reinforcement learning,” arXiv preprint arXiv:2107.09645,
2021.

[176] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised
learning with deep generative models,” in Advances in neural information processing
systems, 2014, pp. 3581–3589.

[177] M. Okada and T. Taniguchi, “Dreaming: Model-based reinforcement learning by
latent imagination without reconstruction,” arXiv preprint arXiv:2007.14535, 2020.

[178] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

[179] Y. Teh et al., “Distral: Robust multitask reinforcement learning,” in Advances in
Neural Information Processing Systems, I. Guyon et al., Eds., vol. 30, Curran
Associates, Inc., 2017.

[180] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI, Citeseer, 1993, pp. 1094–
1099.

[181] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approxi-
mators,” in International conference on machine learning, PMLR, 2015, pp. 1312–
1320.

[182] M. Plappert et al., “Multi-goal reinforcement learning: Challenging robotics envi-
ronments and request for research,” arXiv preprint arXiv:1802.09464, 2018.

[183] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models: Model-
free deep RL for model-based control,” in International Conference on Learning
Representations, 2018.

[184] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual foresight: Model-
based deep reinforcement learning for vision-based robotic control,” arXiv preprint
arXiv:1812.00568, 2018.

[185] D. Pathak et al., “Zero-shot visual imitation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, 2018, pp. 2050–2053.

[186] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement
learning with imagined goals,” Advances in Neural Information Processing Systems,
vol. 31, pp. 9191–9200, 2018.

198

[187] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine, “Skew-fit: State-
covering self-supervised reinforcement learning,” arXiv preprint arXiv:1903.03698,
2019.

[188] E. Chane-Sane, C. Schmid, and I. Laptev, “Goal-conditioned reinforcement learning
with imagined subgoals,” in International Conference on Machine Learning, PMLR,
2021, pp. 1430–1440.

[189] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Poet: Open-ended coevolution
of environments and their optimized solutions,” in Proceedings of the Genetic and
Evolutionary Computation Conference, ser. GECCO ’19, Prague, Czech Republic:
Association for Computing Machinery, 2019, pp. 142–151, ISBN: 9781450361118.

[190] R. Wang et al., “Enhanced poet: Open-ended reinforcement learning through un-
bounded invention of learning challenges and their solutions,” in International
Conference on Machine Learning, PMLR, 2020, pp. 9940–9951.

[191] M. Dennis et al., “Emergent complexity and zero-shot transfer via unsupervised
environment design,” Advances in Neural Information Processing Systems, vol. 33,
pp. 13 049–13 061, 2020.

199

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	About the PhD dissertation topic
	Low-Dimensional Systems Modeling: Application to Crops-Water-Consumption
	Data-Efficient Modeling & Control for Robotic Systems
	Model Based Reinforcement Learning for mobile robots
	Publications

	2 | Fundamentals & Literature Survey
	Fundamentals on Deep Neural Networks
	Survey on Neural-Network based Modeling & Sequence Processing
	Survey on Sampling Schemes for Efficient Neural-Network Training

	3 | Low-Dimensional Systems Modeling: Application to Crops-Water-Consumption
	Achieving Expert Level Irrigation using DNN based Crop-Modeling
	Filling Gaps in Evapotranspiration Measurements
	Conclusion on Irrigation Modeling

	4 | Data-Efficient Modeling & Control for Robotic Systems
	Introduction
	Prioritization Applied to Dynamics Modeling
	Prioritization and Model Predictive Controllers
	Conclusion

	5 | Model Based Reinforcement Learning for mobile robots navigation
	Introduction
	Fundamentals on Reinforcement Learning
	Fundamentals on Dreamer
	Robotic Systems & Task
	Model Based Reinforcement Learning for mobile robots
	Dynamic model separation for modular MBRL
	Improving the reusability, robustness and transferability
	Conclusion on Model Based RL

	6 | Conclusion
	Summary of Contributions
	Perspective and Future Work
	acknowledgement

	References

