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SUMMARY

This thesis consists of three applications of the circle method in number theory prob-
lems. In the second chapter, we study a question of Graham. Are there infinitely many in-
tegers n for which the central binomial coefficient (2:) is relatively prime to 105 = 3-5-77?
By Kummer’s Theorem, this is the same as asking if there are infinitely many integers n,
so that n added to itself base 3, 5, or 7, has no carries. A probabilistic heuristic of Pom-
merance predicts that there should be infinitely many such integers n. We establish a result
of a statistical nature supporting Pommerance’s heuristic. The proof consists of a Fourier
analysis method, as well as geometrically bypassing an old conjecture about the primes.

In the third chapter, we discover an unexpected cancellation on the sums involving
exponential functions. Applying this theorem on the first terms of the Ramanujan-Hardy-
Rademacher expansion for the partition function gives us a natural proof of a “weak” pen-
tagonal number theorem. We find several similar upper bounds for many different partition
functions. Additionally, we prove another set of “weak” pentagonal number theorems for
the primes, which allows us to count the number of primes in certain intervals with small
error. Finally, we show an approximate solution to the Prouhet-Tarry-Escott problem using
a similar technique. The core of the proofs is an involved circle method argument.

The fourth chapter of this thesis is about an endpoint scale independent /¥ —improving
inequality for averages over the prime numbers. The primes are almost full-dimensional,
hence one expects improving estimates for all p > 1. Those are known, and relatively easy
to establish. The endpoint estimates are far more involved however, engaging for instance
Siegel zeros, in the unconditional case, and the Generalized Riemann Hypothesis (GRH) in
the general case. Assuming GRH, we prove the sharpest possible bound up to a constant.
Unconditionally, we prove the same inequality up to a logarithmic factor. The proof is
based on a circle method argument, and utilizing smooth numbers to gain additional control

of Ramanujan sums.

Xiil



CHAPTER 1
INTRODUCTION

In this dissertation, we use the notation f(x) ~ g(z), which means that there exists C' > 0
such that

i 051 = O

In particular, we show f ~ ¢ if C' = 1. We sometimes need to use f(x) = O(g(x)) or

f(z) < g(x), which both of them mean that

|f ()]

hglsololpm < 0.
Also we say f(z) = o(g(x)) if
S ()]
liminf ——— = 0.
s Jg(a)

and f(z) = w(g(x)) if g(x) = o(f(x)). Finally we would like to emphasize that the
constants in these notations are functions of a specific variable like y. In that case we write

them like ~,, <., O,(f(x)), ...

1.1 On the Distribution of Prime Numbers

One of the major results involving the distribution of primes is the Prime Number Theorem,

which in its simplest form states that

m(x) ~

oa@ (1.1)



where 7(z) is the number of primes less than or equal to z. We need the definition of
the Riemann zeta function for the rest of the argument. Define the following function for

Re(s) > 1:

In order to extend the definition to the whole complex plane, we can use a specific explicit
formula, which is explained later, and use analytic continuation to extend the definition up

to Re(s) = 1/2. To further expand the definition to the whole complex plane, define
1 s /S
£(s) = 55(5 — )m 2F(§)C(5). (1.2)

It is known that we have the functional equation:

§(s) = €1 —s),

we can use analytic continuation to expand the definition of ( to the whole plane. Note that
¢ has a simple pole at s = 1 and trivial zeroes at {—2n} for n € N. The statement (1.1) is
basically the same as saying the Riemann Zeta function ((s) does not have zero on the line

Re(s) = 1. A stronger result gives

1 Noala)
Uo(z) := Z A(n) + §A(x) = 2 + O(ze~*V!8@)) for a universal constant ¢ > 0 (1.3)

n<r

and A is the Von Mangoldt function. To prove this result we need to show that there exists a
zero-free region in the critical strip 0 < Re(s) < 1. One can show that the zero-free region

for (o + it) is

C

>1——————forsomec >0
log(|t] + 2) ¢



Aside from this zero-free region and counting the number of zeroes of the zeta function,
we also need another ingredient to prove (1.3). We can prove the following explicit formula

for Uy in terms of ¢ function:

1
Vo) =a— Y -2l log(l— a7
O(x) 'y e P C(O) 9 Og( x )

+0 ((logx) min (ﬁ 1) + M) .

where the sum is over the nontrivial zeroes p of the Riemann zeta function. Related to this
matter, we have the Riemann Hypothesis (RH), which assumes that all zeroes of the zeta

function ((s) lie on the critical line Re(s) = 3. Assuming the RH we can show that
U(zr) =z + O(LE% log ).
In a more general case, we can define the L—function L(s, x) to be

L(s,x) := Z % for Re(s) > 1

neN

where Y is a Dirichlet Character. We can use analytic continuation to extend L(s, x) to
the whole complex plane for every nonprincipal character . Zeroes of L—functions are
important as they have a direct relation with the distribution of prime numbers in arithmetic

progressions. A well-known result states that there are no zeroes in the region

C

>1— —————forsomec >0
log q(1 + [¢])

for just one exception in some cases of ¢q. This special zero is called a Siegel zero and the

character , is called the exceptional character. An application of studying the zeroes of



L(s, x) is the Siegel-Walfisz Theorem, which states that

v 2Px(x
(r;q,7) = Z A(n) + %A(z)lxzr = 50 + ¢(>c<]§ﬁ) + O(queeV1os@)

n=r (mod q)

where (3 is the Siegel zero. Note that exceptional characters happen rarely. In fact, if ¢, is
the n'™ integer with an exceptional character, then there exists C' > 0 such that ¢, ., > ¢¢.
The Generalized Riemann Hypothesis (GRH) assumes that the non-trivial zeroes of L(s, x)

are living on the line Re(s) = 1. Using the GRH one can show that

U(z;q,r) = ﬁ +0 (x%(log qx)z) .

Obviously in this case, we do not have any Siegel zeroes. There are more generalized
categories of L—functions, whose definitions we will not provide here.

Related to the distribution of prime numbers, an integer x is called y—smooth, if all
of the prime factors of = are less than or equal to y. In other words, if p|x, then p <
y. An important property of the smooth numbers that we will use in chapter 4 is their
multiplicative property. That is, if z, 2 are y—smooth numbers, then zz is also a y—smooth
number.

One of the central questions in this area is to count the number of the y—smooth num-
bers x < N, which is denoted by W (N, y) (see [1]). Note that ¥(N,y) < N,andify > N,
then obviously W(N,y) = N. Dickman in [2] showed that for any fixed u > 1, we have

the following estimate for ¥ (z, y):
U(z,y) ~ zp(u) where y = z'/*

and p(y) is called the Dickman-De Brujin function and is non zero as z — co. It is obvious



that p(u) = 1 for 0 < v < 1 and it is shown that
p(u) =1—log(u) forl <u <2

and

o) = [ oty (14
The sieve methods produce the estimate
U(x, zt") = (1 —logu) + o(z) for 1 < u < 2.
Rankin proved the upper bound
U(z, (log x)A) — =& +0(1/loglogx) (1.5)

Assuming the Riemann hypothesis it is shown in [3] that

log(u + 1)
logy

U(z, 2V = wp(u) (1 +0 ( )) fory > (log 7)***

Another interesting problem in this area is to count the number of smooth numbers in short

intervals. A challenge problem is to prove that
U(z + cv/x,z%) — U(x, %) > 0 for all « > 0 and large z > 0 (1.6)

Croot in [4] showed that one can get (1.6) for o = ﬁé + €. He in fact proved the following

lower bound:

U(z + cy/a, %) — V(z, 2%) » _vr

(log .T)log 4+e€



This bound has been improved in [5]. Soundarajan in [6] proved the challenge problem

(1.6) assuming the RH.

1.2 Partition Theory

Theory of Partitions has been a subject of interest in mathematics for centuries. We denote
the partition function p(n) as the number of representations of the positive integer n as sum
of increasing positive integers. For example p(4) = 5;since4d =1+1+1+1lord=1+3
ord=1+1+20ord=2+20r4=4(1+ 3and3 + 1 are considered to be the same).

The generating function of the number of partitions is:

F(q) = Zp(n)qn = H (Z qmn> = H 1 —1q” for [¢| < 1.

One of the main properties of partition functions is that they satisfy the Pentagonal Number

Theorem. Let G,, = w be the pentagonal numbers, then

Z (=1)"p(z = Gn) =0

Gn<x

In other words, the Pentagonal Number theorem states that

0 o0
H (1—¢") =1+ Y (-1 (qk(ggﬂ) + qmg_l)) (1.7)
n=1 k=1

There are different proofs for this combinatorial property (see, for example, [7]). An exact

formula for p(n) is a well-known result due to Rademacher, Hardy, and Ramanujan.

2 e | @ [s0b (/30 - 30)
g D1 wlh k)e” - 1

0<h<k T — =
(h,k)=1

%\



where w(h, k) is a sum over some roots of unity.
Aside from the usual partitions, there are variants of it which have been studied exten-
sively. For example, let ()(n) be the number of partitions of n with odd parts. An exact

formula for ()(n) has been proved in [8]. Simply speaking, ()(n) can be approximated as

Q(n) =A— [0 ™

. — +O0(v/Q(n)).

r=n

where A is a certain constant and I; is the second type Bessel function with degree zero.
More generally, let p(n; o, M) be the number of partitions with parts of the form Mt + «,
1l <a<M-—1,and (o, M) = 1. It is shown in [9, Theorem 4] that p(n; o, M) has the

following form:

T 7V/12Mn—60a2+6Ma—M?2
mese(57) 1 ( 7

B

™

) + O(eVar

p(n; o, M) =

N

). (1.9)

VI12Mn — 602 + 6Ma — M?

1.3 Vinogradov Mean Value Theorem

An old problem in number theory proposed by Waring asks for the number of ways that
one can write an integer n into the sum of k' powers. In other words, it asks for 7, ;()

the number of solutions for the following equation:

x=al +ak+ - af fora; e NU{0}.

Related to this problem, one might ask for the number of solutions J,, (V) for the

following system of equations:

ay +---+a, =by+---+b where0 <a;,b; < Nand1 <r <k (1.10)

The main conjecture of this topic is to prove that for all n, £ > 1 and all large /N and every



e>0
Jui(N) Sppe N (N” + N’M—%’f(’f“)) . (1.11)

Obviously there are around N™ trivial solutions where {a;} = {b;}. The nontrivial cases
of the upper bound (1.11) occurs when k% < 2n. Using the same technique as the Waring
problem, Vinogradov proved inequality (1.11) for &% < nlog(n).

Conjecture (1.11) was proved for £ = 3 by Wooley in 2014 and k£ > 4 by Bourgain,
Demeter, and Guth in 2016. Wooley used an efficient congruence method, which helped
him to apply the Vinogradov method inductively. Bourgain, Demeter and Guth used de-
coupling, induction on scales, and symmetries over the Fourier transform of fj on a certain
submanifold.

As an application, we view the same problem as (1.10) with a different perspective. We
want to find the range of (k, n) where a nontrivial solution for (1.10) exists. Remember that
a straightforward argument shows that n should be bigger than k. We call a solution for the
case k = n — 1 a perfect solution. Finding a perfect solution is extremely hard, and n = 12
is the largest known n for a perfect solution (see [10]). We present here three categories of
results. The first type of result is to find a constructive solution, that is to explicitly give
a;, b;. To our knowledge the best possible range for k in this case is actually O(logn). In
the other category, we only care about the existence of solutions, which are called non-
constructive solutions. The best current range for this case is k¥ = O(n'/?), which is also
achievable using an elementary Pigeon-hole argument. We will give this proof in chapter
3. The last category is to give a “statistical”” solution, which means that > al — b} will not
be zero, but very small for every 1 < r < k.

Note that using the Vinogradov mean value theorem (1.11), the trivial upper bound
becomes sharper when n < 2k? (the right hand side becomes N"*¢). So we expect to have

a harder time finding a nontrivial solution. In chapter 3 we will give statistical solutions in



this out-of-reach range.

1.4 Trigonometric Sums Over Primes

After studying the coefficients of Dirichlet’s series on a certain equation based on the zeta
functions we reach an inequality called Vaughn’s identity. That is let |f| < 1 be an arith-
metic function over integers and UV < N. Then
D fm)A(n) S U+ (logN) D1 max | Y f(rt)]

t<Uv N

I<w<N
n<N wWLr<

. _
+ N2(log N) max max f(mj)f(mk)
IR 0% T P YN P Y,

J

(1.12)

This formula gives a trivial estimate when f is completely multiplicative.
As a result of this inequality, we can pick f to be an exponential function and arrive at

the following theorem.

Theorem 1.13. Assume that

Then Vinogradov proved that

S A(n)e (—na) < N(log N)? (q—1/2 NV %) .
n<N

Theorem 1.13 implies that for a large enough ¢, the Discrete Fourier transform of A is

small.



1.5 Ramanujan’s Sums

In this section, we mention a few properties that are related to the Gauss sums. We start

with Ramanujan’s sum, given by

T,(x) = Z e(ax/q). (1.14)

achq

Throughout, we denote A, = {a € Z/qZ : (a,q) = 1}, so that |A,| = ¢(q), the totient
function. This lower bound on the totient function is well known: For all 0 < € < 1, we

have

o(q) » Ty gt (1.15)
log log q

Cancellative properties of the Ramanujan sums are very important for us, and are ex-

pressed in different ways. The first of these is

(x)=plq)  (g,7)=1 (1.16)

The next cancellation property is known as Cohen’s identity:

M rala+ 1) = p(g)7y(—2). (1.17)
refy
Define the Gauss sum
1 ab
G(xg,a) := — ble(—).
(Xq: @) oF g(;d q)x( Je( q)

We also need to use the following properties of the Gauss sums. Assume that y is a non-

principal character and @ > 1. Also let x* modulo ¢* be the primitive character corre-

10



sponding to y modulo ¢ (obviously ¢*|q). It is known that

x (@ q
Glxga) = G061 )y dxg(n(o2) (1.18)
dlged(ana/a®) 1

in particular, if (a,q) = 1, then G(x, @) = Xq4(a)G(x4, 1). Also we always have the

inequality

q gcd(a, q)\/q* if X 1s not principal
’G(an a)’ <

g ' ged(a, q)q* Otherwise.

In the case that y, is a real character, we have |G(x,, a)| = /qif gcd(a, q) = 1. Otherwise,

if r = ged(q, a), then

1
Glx @) = 55X (@ ()T OG e (1.19)

In particular, if x is the primitive real character, we get G(x,, a) = G(xq, 1)x(a)l,—;.

1.6 Ergodic Theorem: Discrete Theory

After Birkhoff’s theorem, Bourgain started the discrete generalized harmonic analysis field
in the 1980s by proving the ergodic theorem along the square integers. Today, it is a vi-
brant field with several recent important results. Although there are various transference
theorems to connect the discrete settings with the continuous results, note that the proofs
are generally harder in the discrete cases.

Bourgain generalized the Birkhoff Ergodic Theorem for the square integers. For [ €

L2(X),

11



One of his results was the fact that sup,; Ky is an #?—bounded operator, for 1 < p < oo.

In order to prove this theorem, he created the multifrequency argument.

Theorem 1.20. Let \i, - - , \;, € R be distinct points with |\; — \s| = 279 fori # s. Then

L

2 eQe) (@ = e(=Ae) f) (2)

(=1

< (log L) || £ [I2
2

sup
J>Jjo

where ¢; can be certain smooth Schwartz functions.

Inequalities like in theorem 1.20 are called a gquantitative result, while the Birkhoff

theorem was a qualitative statement.

1.6.1 Ergodic Theorem Along the Prime Numbers

We also may study the average over sets other than polynomials. These kinds of problems
are considered to be ergodic theorems with arithmetic weights. We can consider the set of

primes, related to the Vinogradov theorem, to study

Tvf(x):= < >, An)f(z—n)

The set of primes is “full dimensional”, so one can see that in an appropriate sense, an ¢
function is improved to an ¢* function. Our result in chapter 4 gives such an improving
upper bound. We can also check the cases where p # 1, which are not the endpoints. There

is the following ¢” —improving bound for 1 < p < 2:
11 1 1
|| TNf ||€P/$ N# » || f ||£p where ]—) + z? =1

We can say that these inequalities are improving, since we improve from ¢? to (7.

12



1.7 Schanuel’s Conjecture

Let @ be the set of algebraic numbers, and

L := {x such that z = log y for some y € Q}.

There are many problems involving the set Il in transcendental number theory. For ex-
ample, the Hermite—Lindemann theorem states that any nonzero element of L is transcen-
dental. Also any pair of elements A;, A, € L\{0} which are independent over QQ should
be linearly independent over Q. A generalization of this result is known as the Baker’s

theorem, which states that:

Theorem 1.21. Assume that Ay, --- , \, € L are independent over Q, and B1,-- - , B» € Q.

Also assume that H is the maximum of heights of (; (For the definition of height, please see

[11, 12, 13]). Then

MBr+ -+ M| > HC

where C'is an effectively computable constant with respect to r, \; and maximum degree of
Bi.

It immediately, gives the following result: For algebraic numbers a;,--- ,a, # 0,1,
and for rationally independent algebraic irrational numbers (31, - - - , 3, the number af e afr
is a transcendental number.

Baker’s theorem concludes the question regarding the transcendence of the value at
algebraic numbers of the polynomials with algebraic coefficients. A more general question,
which is still a conjecture asks for transcendence of rational functions with coefficients that
are algebraic numbers. In other world, we are interested in the following conjecture:

Conjecture 1 (Schanuel’s Conjecture). Assume that zq, - -- , z, € C are linearly indepen-

dent over the rational numbers. Then the field extension F' = Q(z1,- -, z,,e*, -+ ™)
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has transcendence degree at least v over Q).

As a particular case, Schanuel’s conjecture states that for distinct prime numbers ¢4, - - - , g,
the set
(o —
loggi”  "logg,

is independent over Q. Although this conjecture does not seem achievable at the moment,

there is partial progress like in [14] and [15].

1.8 Thesis Organization

This thesis has four chapters. The first chapter is the introduction, which consists of the
necessary preliminaries. In the second chapter we study the Graham problem about the
p—divisibility of the central binomial coefficients. We show that for every » > 1, and all

distinct (sufficiently large) primes py, ..., p, > po(r, €), there exist infinitely many integers

2n
n

n such that (") is divisible by these primes to only low multiplicity. From a theorem
of Kummer, an upper bound for the number of times that a prime p; can divide (2:) is
1 +logn/log p;; and our theorem shows that we can find integers n where for j = 1, ..., 7,
p; divides (*") with multiplicity at most ¢ times this amount. This work is under review for
publication (see [16]).

In the third chapter, we study an unexpected cancellation involving exponential sums.
Following attempts at an analytic proof of the Pentagonal Number Theorem, we report on
the discovery of a general principle leading to an unexpected cancellation of oscillating
sums. It turns out that sums in the class we consider are much smaller than would be
predicted by certain probabilistic heuristics. After stating the motivation, and our theorem,
we apply it to prove several results on the Prouhet-Tarry-Escott Problem, integer partitions,
and the distribution of prime numbers. We solve an approximate version of the Prouhet-

Tarry-Escott Problem, and in doing so we give some evidence that a certain pigeonhole

argument for solving the exact version of the Problem can be improved. In fact, our work
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in the approximate case exceeds the bounds one can prove using a pigeonhole argument,

which seems remarkable. Also, we prove that

2 D)= ) ~ (=124 p(n),

2<n

where p(n) is the usual partition function. We get a “Weak pentagonal number theorem”,
in which we can replace the partition function p(n) with Chebyshev ¥ function. Our result
is stronger than one would get using a strong form of the Prime Number Theorem and also
a naive use of the Riemann Hypothesis in each interval, since the widths of the intervals
are smaller than e2V?, making the Riemann Hypothesis estimate “trivial”. This project is
also under review for publication (see [17]).

In the last chapter, we study an ergodic average along the primes. We prove sharp (P-
improving for these averages, and sparse bounds for the maximal function. The inequality
assuming the GRH is sharp. The proof depends upon the Circle Method, and an interpola-
tion argument of Bourgain. This work has been published in Math Research Letter journal

(see [18]). Related to this topic, we also published a similar result in [19].
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CHAPTER 2
ON A CONJECTURE OF GRAHAM ON THE P-DIVISIBILITY OF CENTRAL
BINOMIAL COEFFICIENTS

2.1 Introduction

In [20] and [21] it is mentioned that R. L. Graham had offered $1,000 to settle the problem
of whether or not there are infinitely many integers n such that ( ”) is relatively prime to
105 = 3 -5 - 7. From the following theorem of Kummer [22] we immediately see that
Graham’s problem is equivalent to asking whether there are infinitely many integers n > 1

with the property that when we add n to itself in bases 3, 5, and 7, there are no carries.

Kummer’s Theorem: For a prime p we have that the number of times that p divides (T’;)

equals the number of carries when adding the numbers m and n — m in base-p.

In other words, are there infinitely many integers n > 1 such that all the base-3 digits are
in {0, 1}, all the base-5 digits are in {0, 1, 2}, and all the base-7 digits are in {0, 1,2, 3}? If
so, then there are infinitely many integers n such that gecd (( ) 105) = 1; and if not, then
there are at most finitely many integers n > 1 with ged (( ) 105)

n [23], Erd6s, Graham, Ruzsa, and Straus proved that for every pair of primes p, q,
there are infinitely many integers n > 1 with gcd (( ) pq) = 1; however, there are no such
results in the literature for 3 or more primes (though, for example, there are results [24, 25]
on when ( ) is coprime to n and [26] when ( ) is squarefree). Apart from whether one
can give a proof of whether there are or aren’t infinitely many n with ged (( ) 105) =1,
one can at least ask whether it’s plausible or not that such integers n > 1 exist. Pomerance
gave a simple heuristic for why there should exist infinitely many n > 1 with this property
(see, for example, [27]): if we choose a random n € [1,z], the probability that all its

base-3 digits are in {0, 1} should be about (2/3)'°8(*)/1083 ~ 5,037 the probability that all
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its base-5 digits are {0, 1,2} should be about (3/5)°8(@)/1085 ~ 7=0-32; and the probability
that all its base-7 digits are {0, 1,2, 3} should be about (4/7)1°8()/1087 ~ 5029 Assuming

independence, the probability that a random n € [1, x| satisfies all three conditions is about

ZL’_O'37ZE_O'32ZL’_O'29 — 0.02

2799, So, we would expect there to be about 2°-°2 numbers n € [1, z]
with the property that ged ((*'), 105) = 1, which clearly tends to infinity the larger we take
x to be.

One can extend Pomerance’s heuristic to any number of odd primes, making the same
independence assumptions (that the events F, ..., E,. are mutually independent, where for
a randomly chosen integer n € [1,z], E; is the event that the base-p; digits of n are
in {0,1,...,(p; — 1)/2}). When one does this, one would expect there to exist infinitely
many integers n > 1 such that ged ((2:) NUREE pr) = 1, for distinct odd primes py, ..., p,
provided that
r log <% + i)

SN N ) . 2.1
2 log(p;) = @D

j=1
and that (using the Borel-Cantelli Lemma) there should be only finitely many such n if the
> 1s replaced with a <. We make no guesses about the possible case when the left-hand-
side equals 1, exactly — if it is even possible.

What is interesting here is that even if we consider a slight weakening of the problem
where we allow (21?) to be divisible by the primes p;, ..., p, to low multiplicity, we get the
same condition (2.1) guaranteeing the existence of infinitely many such n > 1: in light of
Kummer’s theorem, the number of times that a prime p; can divide a number 7 is at most
about 1 + log(n)/log p;, since this is an upper bound on the number of base-p; digits of n.

If we select a random n € [1, x|, the probability that all but at most & of the base-p; digits

arein {0,1,2,..., (p; — 1)/2} is

_ [logx/logpj] 1+ 1 log(z)/logp;—k 1 1 i
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for k = o(log x). This has size (assuming k& = o(log x))

+ 5 )
2 2p;

(1 1 )uo(l))log(as)/logpj

which, apart from the factor 1 — o(1) in the exponent, has the same form as the probability
for the case where every base-p; digit of n is in {0, 1, ..., (p; — 1)/2}. Making the same
independence assumptions as before, we thus would expect that if (2.1) holds, then there
should exist infinitely many integers n > 1 where for j = 1,...,r, p; divides (2:) to
multiplicity at most o(logn); and, if, instead, the left-hand-side of (2.1) is > 1, we would

expect there to be only finitely many such n > 1.

In this paper, we don’t quite prove that (2.1) implies there are infinitely many such

n = 1, but we do prove something in this direction:

Theorem 2.2. Suppose r > 1, € > 0, and let py,...,p, = co(r,e) be distinct primes,
where cy(r, €) is some function of  and € (can be deduced from the proof). Then, there is a

sequence ni,Na, ... of integers n such that foralli =1, ...;r,

2n elogn
"\ \ n S Togp
gpi

where v,(x) denotes the number of times the prime p divides .

2n
n

As we said, a trivial upper bound for v, ((*")) is 1 + (log n)/log p;, since n has at most
this many base-p; digits; so the theorem is saying that we can find infinitely many n where
we are smaller than this amount by a factor ¢, for all the primes py, ..., p,, simultaneously.
As one will see, the proof is fairly technical. What would greatly simplify it is if
one had that the numbers 1/log 2, 1/log p, ..., 1/ log p, were linearly independent over the

rationals. This is not known to be true for arbitrary sets of primes, but it would follow from

the following conjecture:

Schanuel’s Conjecture [28] Given any n complex numbers z1, ..., z,, that are linearly in-
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dependent over the rationals, the field extension Q(z, ..., z,, €*, ..., €**) has transcendence

degree at least n over Q.

If Schanuel’s Conjecture holds, then taking n = r + 1, and taking z; = log2, 2, =
log p1s - Zr41 = log p,, we see that Q(log 2, log p1, ..., log p,) has transcendence degree

r + 1. Now suppose we had a linear combination

A A Ar
1 2 4 A

-0
log 2 + log p1 + log p, ’

where \q, ..., \,;1 € Q and not all 0. Without loss, assume that \; # 0. Then, the linear

relation would imply that

Q(log2,log py, ...,logp,) = Q(logpi,logpy,...,logp,),

which can have transcendence degree at most r, which would be a contradiction. Thus, no

such linear relations can hold.

2.2 Proof of the Main Theorem

As we said in the introduction, the central binomial coefficients in the statement of the
theorem are somewhat of a distraction, in light of Kummer’s Theorem. This theorem im-
plies that if all but at most £(logn)/log p, of the base-p; digits of n are < p;/2 — 1, then
vy, ((*")) < e(logn)/logp;; and establishing that there are infinitely many integers n

with this property (few base-p; digits that are > p;/2 — 1) is the path we will take to prove

Theorem 2.2.

In carrying out this verification, we will make use of the following theorem:

Theorem 2.3. Suppose that p, ..., p, are distinct primes. For i = 1,....,r, and n > 1,

deﬁne
n(log2)/logp;}—1 n(log 2)/log p;—[n(log2)/log p;]—1
al(n) e pZ{(g)/ g Di} _pi(g)/ g pi—[n(log2)/logp;] ’
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Define, for H > landi = 1,2,...,7,

di d d i
U;(H) = {p—l p—§+---+p—§ : 0 < dy,..,dy < %} + [o, pT)‘ (2.4)

Then, for every ¢ > 0 and some H = H(N) tending to infinity slowly with N (in a sense
that can be made precise by following the proof), we have that for N > 1 and for arbitrary
sequences of real numbers {5;(n)}_, i =1,...,r,

#Hn <N 35 <20 = 1r fsay() + BN UM o gy (o)

N

Now let us see that this theorem implies Theorem 2.2: it clearly suffices to prove that

for each integer NV sufficiently large, we can find an integer n satisfying

Nz« < 2N,
so that for all 7 = 1,2, ...,r, all but at most £(logn)/logp; of the base-p, digits of n are
< pj/3.
So, let us suppose N is given. Let f(/N) denote the minimum possible value of the ratio
on the left-hand-side of (2.5), for some choice of H = H(N) tending to infinity with IV,
over all choices of {3;(n)}*_;,i = 1,...,r. Note that
f(N) = 1-0(1).

Next, let
(= ((N) = |min((1 — f(N))""2 H(N)"2].

(It’s also worth mentioning that the exponent 1/2 here is a little arbitrary, and can be re-

placed with any exponent in (0, 1), as far as our proof below.)
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Let
N’ = |N/{].

‘We now construct the number

(N'=1)

n = nOQZN,—i-leE + -+ ny

as follows: we start by letting np = 1. Assume we have constructed ng, ..., ng_1. Now we

show how to construct ng: for j = 1, ..., r, we let

Bi(6(N'—d)) = T ;
J

where for an integer h we define

I ((N"— h)log2 1
gih log p; ’

(Alternatively: m; , is the unique integer so that 2/(N'=") /p; " lies in [1/p;, 1).)

If it exists, we let 1 < ng < 2°¢ be any integer where
{nqa;(((N" = d)) + B;(((N" —d))} € U;(H). (2.6)

If no such ng, exists, just let ng = 0.

In order to see that this construction works, we begin by noting that for any integer A,

h(log2)/logp;
O[(h) _ {'h(logQ)/logpj}fl _ pj ! _ 2_h
J J [R(log 2)/log pj]+1 h'?
p; p;

where /' is the unique integer such that this belongs to the interval [1/p;, 1).
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Thus, when we go to construct n;, we will have

2€N’ + 2€(N’—1) N QZ(N'—d)
naa (N = ) 4 (0N — ) = PSS T
J

It follows that if we write

(N'—=d)

n02€N’ + nlgé(]\f’—l) Lot ndQZ = o+ cpj + Czp? +, 2.7)

where 0 < ¢; < p; — 1, then from (2.6) we deduce that if ng # 0 then

by

0 < ij,d—la ij’d—Qa SEED) ij,d—H < 3’

and so in particular, since m; 4 — m; 41 < ¢+ 1= o(H(N)), we have that 0 < ¢, < p;/3
for

Mjdr1 S U < Myg.

Now, if we continue adding on additional terms to (2.7),
Ngs1 20V 747D 20N A=) (2.8)
these will only have an effect on the terms ctpz- where
t < mjap1 + [(lognas1)/logp;] +1 < myjg1 +el(log2)/logp; + 1.
Thus, the terms cup;‘ where
mjar1 +el(log2)/logp;+1 < u < mjgq

in (2.7) will be unchanged, as will all the other higher-order terms with u > m 4.
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Now we distinguish two possbilities for each d < N': we let D* be those d such that
there does exist an ngy < 2 where (2.6) holds, and we let D’ be those d for which it
doesn’t.

For each d € D* we have that for each j = 1, ..., 7, at most £/(log 2)/ log p; + 1 base-p;
digits ¢, with m; 441 < u < m;q are > p;/3; and for each d € D’, in the worst cast for
every j = 1,...,r, all of the ¢, with m; 4.1 < u < m;4 could be > p,/3. Note that in this
case (the case d € D) there are at most ¢ + 1 bad digits ¢, with m; g1 < u < mjg.

Now, Theorem 2.3 implies that the number of d < N’ for which (2.6) doesn’t hold is at
most

N1 - f(N)) <

All told, the total number of bad base-p; digits that are > p; /3 in this case, over all d € Dt
1s at most

(£ +1)o(N') = o(N),

for every j = 1,...,7. And the total number of bad base-p; digits arising for the d € D’ is
at most

N'(el(log2)/logp; + 1) < &N,

foreachj =1,...,7.
In total, then, for every j = 1, ..., 7, the number of bad base-p; digits (that are > p,/2)
is at most

eN + o(N).

But since € > 0 was arbitrary, it’s obvious that for every 5 = 1, ..., 7, the number of bad

base-p; digits is €/V. This is just what we need to show in order to prove Theorem 2.2.
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2.3 Proof of Theorem 2.3

In proving this theorem we will need to understand how the vectors

(a1(n), az(n), ..., a.(n))

n(log2)/1 -1 n(log2)/1 -1
_ (pi (log2)/logp1} ’pé (log2)/log p2}

. plntos2)/ogpr) 1)

are distributed, as we vary over n < N.

2.3.1 The 2-dimensional case

To better understand what is going on, we first consider the case where » = 2. There
are two possibilities: the first possibility is that there do not exist integers n1, ng, n3, with

ni,ng, ng # 0, such that
log 2 log 2

nq + No = ns. (29)
log py log p

If this occurs, then as a consequence of

Theorem 2.10 (Multidimensional Weyl’s Theorem). Suppose 1,191, ..., ¥, are real numbers
that are linearly independent over the rationals. Then, for J = (91, ...,0,) € R", the

sequence {kJ}_, is uniformly distributed in R" /7.

(see [29, example 6.1]) we have that the vector (n(log 2)/log p1, n(log 2)/log p2) is uni-
formly distributed mod 1 as we vary over n = 1,2, 3, ...; and, therefore, the set (a1 (n), as(n))
is dense in the box [1/p1, 1] x [1/pa, 1].

The second possibility is that there do exist integers ny, no, ng # 0 such that (2.9) holds
(If n; were allowed to be 0, then we would have that (2.9) implies n,log2 = ng3log ps,
which can only hold if ny = ng = 0; and a similar thing occurs for when ny = 0 or when
ns = 0; so, if one of these n; were 0, the others would have to be as well.)

By multiplying through by —1 as needed, we can assume no > 0; and we will assume

24



that the p; and p, are arranged so that
Ini/ng| < 1.
We will show that the set
(ar(n), ag(n)) = (p{"toe®/tospi=t pfelosdflosral=hy 1y 9 93 (@.11)

is contained in a union of a finite set of non-linear curves. It turns out that, moreover, the
set is equidistributed on these curves (when we restrict to [1/py, 1] x [1/p2, 1]) with respect
to the right measure; though, we don’t actually need the full strength of such a statement,

so don’t bother to prove it.

We claim that for each integer n > 1,

nlog2 ny (nlog?2
g P2 ng  1ogp1

where f(n) € S, a finite set of possibilities. To see this, we begin by rewriting (2.9) as

nlog2 nny ninlog?2

= — . (2.12)
log po ny  ny logp
Now we write
log 2 log 2 log 2 log 2
nosE l" o8 ] + {” o8 } - k(n)ng—i—a(n)—l—{n °8 } (2.13)
log p1 log p1 log p1 log p1

where k(n) is an integer, and 0 < a(n) < ny — 1. We also write

n = £(n)ng + b(n), where 0 < b(n) < ny — 1, and ¢(n) € Z.
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It follows, then, upon plugging this and (2.13) into (2.12), that

nlog 2 a(n)ny  my {nlog2}

b(n)ns
— v anns g _alnjm
log ps (r)ns + 1 () ng g | logp

Thus, since |n/ns| < 1,

{nlogQ} _ {b(n)ns a(mnl}*ﬂ{”bﬁ}m, where 6 € {0,1, —1}.

log po n2 Na ny ( log py

We would take 6 = 0 if the preceding terms add to a number in [0, 1); take § = 1 if they
produce a number in [—1,0); and take 6 = —1 if they produce a number in [1, 2].
It follows that we may take S to be

b
S = {{E_%} : a)b:O,l,...,ng—l} + {0717_1}'

n2 ng

Thus,

S| < 3n3.

We conclude that, forn > 1,

(pin log 2/10gp1}71’ pénlog 2/logp2}71)

_ <pi7110gp/10.%‘pl}*17 C(n)p;(nl/nz){nlogp/10gp1}71>’ (2.14)

where ¢(n) = pg("), where, recall, f(n) € S.

As we vary over n < N, and let N — oo, all the points (2.14) lie on set of at most

|S| < 3n3 curves of the form

C, = {(p 1, cSpQ_(nl/nQ)t_1 : 0 <t <1}, where ¢ = p3, where s € S.
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2.3.2 None of these curves are lines

Each of these curves are just dilates of one another in the second coordinate. So, to show

that none are lines, it suffices to show that the curve with points

1) = (o 7 ™)

Y

is not a line.

To see this it suffices to prove that

poA ™,
which is clearly the case, since upon raising both sides to the n, power, if they were equal
we would have

ni

py? = p, M,

which can’t hold if p; and ps are distinct primes.

2.4 Generalizing to higher dimensions

Now suppose we have r primes py, ..., p,, and we wish to understand the possible vectors

(pin10g2/10gp1}_1 énlogQ/logpg}—17 pinlogQ/long}—l% (215)

5 ey

given that we have relations similar to (2.9). In this case, there can be more than one such

relation. We can express this set of relations as

log 2 log 2 log 2

a1 a1,2 +otar, = Q1,41
log p1 log po log p;
log 2 log 2 log 2

g1 & + ag2 & + -+ ak,ri = Qkpr+1,
log p1 log ps log pr
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where all the a; ; € Q, where £ < r — 1, and where all these relations are linearly indepen-
dent. Note that if there were k£ = r linearly independent relations, then this would imply
that all the log 2/ log p; are rational numbers, which would imply that for eachi = 1, ..., r,
log 2 and log p; are linearly dependent over the rationals, which we know is false, as it
would imply that there is an integer power of 2 that equals an integer power of p;.

Upon applying row-reduction to these equations, and permuting the p;’s as needed, we
can reduce the above system to the following one: for j = 1, ..., k, we have

log 2 b log 2 log 2

———— = bji—— 4+ bjrp—— + bjri1,
log pr—j+1 " log 7 log pr_i o

where the b;;, € Q. We have, also, that (recalling that the p;’s have been permuted from

their original ordering)

log 2 log 2

1, e
log p log pr—k

are independent over Q. (2.16)

We note that this holds also in the case & = 0, where there are no linear relations as above.

Getting a common denominator, we can rewrite the above as: for j = 1, ..., k, we have

log 2 1 log2 jr— log 2 j,T
og _ m]71 og g m], k 0og + m.% +1’ (217)
log pr—j+1 n; logp n; logp.— L

where, forall j =1,...,kand h = 1,...,r — k,r + 1, the n; > 1 and the m; j, are integers.

Now, we claim that forn > 1,and j = 1, ..., k,

log 2 : log 2 - log 2
{&}_gj(n)+@{%}+...+mm k{nog } (2.18)

log pr—j+1 n; log p1 U log pr—,

where g;(n) takes on values in a finite set S of possibilities.

To see this, we proceed as with the 2-dimensional case: for j = 1,....,k and h =
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1,...,7 — k, we define the numbers ¢; ,(n) € Z and 0 < a;,(n) < n; — 1 as follows

nlog 2 { nlog 2 }
= lip(n) -nj+ajp(n) + .
log ph J,h( ) J JJl( ) log ph
Thus, from (2.17) we have that
log 2 ey ; ; ; log 2
e _nlogs Z n)mp + aJ,h(n)'mJ,h n mjih {7; og } + nbjpr.
og Pr— —j+1 h=1 n] n] 0g Ph,

Taking the fractional part of both sides, we find that

nlog 2 7“_"th(n)m-h v min (nlog?2
(rrise ) (Stoma) | (s fris2l) o
10gp7‘*j+1 h=1 n] h=1 n] logph

where 9§, is an integer chosen so as to make the right-hand-side of this equation be a real

number in [0, 1). Clearly, §; € {—A, —A +1,...,0, ..., A}, where

A=1+r- maxwmjh‘J.
Thus, if we let
= {cj/n; + j=1,..,k,and0<c¢; <n; —1} + {-A,-A+1,..,0, 1,..., A},

then from (2.19) we see that

{ nlog2 } — o) +§mj7h{nlog2}
J )

log pr—j11 = n; (logpn

where g;(n) € S.

Thus, proceeding as in the 2-dimensional case, we see that the set of points (2.15) all
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lie on one of the following finite set of surfaces given as follows:
trp—1 01 (t1 vty g)—1 b ) —
(plil 17 pgg 17 L 1? ’ Clpri(zill tr—k) _ Ckpfk(th tr—k) 1>7 (2.20)

where
fori =1,..,k, ¢ = p’,,,; forsomes;e S,

and where

Ng—i+1

9(151,... B 2 Mg — z+1h

We note that for £ = 0 (no linear relations) the surface (2.20) just becomes

t1—1 to—1 t.—1
(pl ) p2 ) ) prr )

2.5 Passing to parameterized curves

2.5.1 An illustrative example

We would like to break these surfaces up into a union of parameterized curves of the form

¢ ¢ t
(c1-af, e g,y - ),

where the «a;’s are all distinct, and none of the ¢;’s are 0. One attempt at doing this would
be to take a surface of the form (2.20), and set all but one of the ¢;’s to fixed values. For

example, if our surface were of the form

(1, P%, p5T"), t1,t2 € [0,1), 2.21)

then if we were to freeze ¢; and vary 5, we would get a curve of the form

(Ca péa d pg)

30



Unfortunately, only two coordinates vary, not all three. However, if we parameterize dif-
ferently, then we can get a full, 3-dimensional curve: lett; = ¢, t, = t + 6 mod 1, where o

is fixed and ¢ varies in [0, 1). Then, we get the parameterized curve

(pl, c-ph, d-p3h), (2.22)

where ¢ = p3, d = p}. Actually, this isn’t quite right, since, for example 2t > 1 for
t > 1/2; we need to introduce another curve to account for these possibilities. Basically,
we consider all curves of (2.22) where c € {p3, p5 '} and d € {p3, p3~*, p5~2}. This covers

all the cases; and, as we vary over all § € [0, 1), we get a union of curves, where this union

is exactly the surface (2.21) when restricted to (1/py, 1] x (1/pa, 1] x (1/ps, 1].

2.5.2  Applying this idea to the surface (2.20)

To attempt something similar for the surfaces (2.20), we will choose
ty=t, to =Lt + 0y, t3 = L2 4+ 89, oo, tpp = L F " 4+ 6,51, (2.23)
where the 01, ...,0,_1_1 € [0, 1), and where L is an integer chosen suitably large so that
pi = 0;(1,L,L* ..., L" "1 % 0.
It isn’t hard to see that one can take
L < 2-lem(ny,...,ng) max |m .
Using the parameterization (2.23), we will get that

ei(tla-'-atr—k> = tez(LLa Lga-'-7Lr_k_1)+9i(Oa 517"'757‘—16—1) = t'pi+9i<0a517"'75r—k—1)
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and applying this to (2.20), we will get curves of the form

_ _ r—k—14_ _ _
(ptl 17 d2p§t 17 ceey dr—kpf_k ¢ 17 dr—k-i—lpﬁl,t]prlla d’/‘pfkt 1)7 (224)
where

5 5 Or—k—1
d2 = p217 d3 = p327 ceey d?"—k =DPr_r >

and

601(0,01,-,0r_p—1) 01:(0,01 .0, 0p_f—
dr_p41 = Dp_ji1 Cry ey dp = ple(0o =1y

)

where the c; are of the form pff_ pyi» Where s; € S.

Similar to how we dealt with (2.22) not quite covering all possible curves, we actually
need to expand the set of possibilities for the d;, given a fixed choice for ¢y, ..., d,_ (that
is, our curves (2.24) don’t quite cover everything): we need to also include dilates by
integral powers of the p;, to handle, for example, p! not always being in the range (1/ps, 1]
(basically, the exponent Lt needs to be considered mod 1). Thus, in fact, we want to

consider the d;’s in dilated sets
dy e pY' Dy, ds € PDy, ... dy_y € 275 Dyy, (2.25)
and
drisr € 0oy Ve Dy, ey dy € pH OIS D (2.26)

where

Dj = {p; : ’Z’<[},j:2,,7’,

where I is a suitably large integer. A trivial upper bound for / would be " max; ; |m; ;|.
Of course, with such a large collection of possible curves, some may fail to intersect

(1/p1,1] x -+ x (1/py, 1], and so will not contain any points of the form (2.15) at all. Tt will
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not cause a problem, because all we were interested in was a set of disjoint curves that do

cover all those points, and that can be suitably discretized later to prove certain theorems.

2.5.3 An important property of the parameterized curves

When all is said and done, the curves from the previous section that we generate have the

form

t—1 qat q3t qrt
(pl , €2Po” 5, €3P3 , .., eTprT )7

where the ¢;’s are non-zero rational numbers. An important property here is the fact that
p1, Py, ..., p¥r are all distinct, which fulfills a goal mentioned at the beginning of section

2.5. This property holds since if two of them were equal, we would have, for example,

ilogp; = q;logp;,
yet we know that the log p;’s are linearly independent over Q.

2.6 Discretized curves

Now we produce discretized versions of the curves produced in section 2.5. We begin by
defining C to be the set of all curves produced at the end of subsection 2.5 with the property

that the curve has non-empty intersection with the set

['i= (1/p1,1] x (1/p2,1] x -+ x (1/p,, 1].

Now, any curve in C may be parameterized by a vector

(81 ooy Byt €y e Ch Ty oy T, (2.27)

where

Ci =Py, Wheres; € S, i =1,k and e Dy, i =2,...,r. (2.28)
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The 1, ..., §,_x_1 can take on a continuum of values in [0, 1), while the values taken on by
the ¢y, ..., g, T2, ..., T, are finite in number.

Given a prime P satisfying

P > (max p;)*!

G=1,r ’

we define a family of sets F as follows: for each choice of numbers 0 < fi, ..., f_x_1 <
P — 1, and choice of ¢y, ..., ¢g, Ta, ..., 7, as above, let F'(f1, ..., fr—k—1,C1, s Chy T2y ooy Ty)

denote the set of all points

(x1, 22, ..., z,) € {0,1..., P —1}",

such that there exists a curve in C with parameter vector (2.27), incident to a point (y1, ..., y,) €
I, such that

(61,...6,) € (fi/P, ..., f.)P) +[0,1/P], (2.29)

and

(Y1, ..., yr) € (21/P,...,x./P) +[0,1/P]". (2.30)

If this set F'(f1, ..., fr—k—1,C1, .-, Ck, T2, ..., Tr) 1S non-empty, then we add it to the family
JF; otherwise, we don’t.
One can easily see that, since there are at most P"~*~1 choices for fi, ..., f,_x_1, and

since there are only a bounded number possibilities for the ¢;’s and 7;s,

|F| < PrF 1

Likewise, for each choice of the f;’s, there is at least one choice of the other parameters
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making F'(f1,..., fr—k—1,C1, -, Ck, T2, ..., T,-) NON-empty; and so, we have that

Pr—k—l g |]:'| S Pr—k—l‘

2.7 Two propositions and the proof of Theorem 2.3

The two propositions we will need to prove Theorem 2.3 are:

Proposition 2.32. We have that for every point x € {0, 1,2, ..., P — 1},

#{n <N : (a;(n),..,a.(n))ex/P+1[0,1/P)"} < N|F|7'P~L

And:

Proposition 2.33. Suppose

K(t> = (Clei7 CQG; ceey Cref*)

and suppose that

Fc{01,.,P—1)

(2.31)

(2.34)

is the set of all vectors such that if (y1, ..., y,) = K(t), for some t € [0, 1), then there exists

(1, ...,x,) € F such that

1

(Y1, s Yr) € F($1,$27---,$r) +[0,1/P)".

Now, let

Ay, Ay, ..., A, < Fp, with ‘A1|,...,|AT| = P

We claim that for all but at most o( P) elements (x4, ..., x,) € F, there exist

1<n<P"% and (6,,...,6,) € {0,1,....,[P7]}",
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such that

N1y ey ) — (B0, ey 60) € (A1t A1+ Ao) x (Agt Apt As)x- - - x (At A+ A,). (2.35)

2.7.1 Completion of the proof of Theorem 2.3

Let 8 = (B4, ..., Br) € [0,1)" be arbitrary. Let 5’ = (/3, ..., 5.) € {0, ..., P — 1}" be defined

via
B Bi+1
FJ < B < JP : (2.36)
Thus, (' is some kind of discretized version of P - 3.
We will later apply Proposition 2.33 using, for j = 1, ..., 7,
Aj = =378+ {di[P/pj] + da[P/p3] + -+ + du[P/pi] © 0 <di,...,dy < p;/10}

+{0,1,....[P/pi] —1}.
(Note that 37! denotes the multiplicative inverse of 3 in F.) We note that
1451 > (p;/10)"(P/pf) = P/10™.
This follows from the fact that all the expressions
di|P/pj| + - + du|P/p] + z, where 0 < di, ..., dy < p;/10,

are unique mod P for arbitrary x (it is easy to see this, using a similar proof as the one
showing base-p; representations are unique).

We will have that, working in Fp,

Aj-i-Aj-i-Aj = —5§+{61[P/pj]+"'+6H[P/pf] : 0<€1,...,6H <3[p]/1OJ}

+{0,1,...,3-[P/pi"] — 3} (2.37)
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Thinking of this set as a subset of {0, 1,2, ..., P — 1}, if we divide its elements by a factor

P, then we get a set of numbers contained in the set

B e e e 3p;
——L 4 —1+—;+~--+—g:0<61,...,eH<ﬁ— + error + Z,

where the error is the sum total of the errors in approximating the (e;/P)[P/p}| by e;/p;
this error is bounded from above by Hp;/3P. It is clear, then, that P~1(A; + A; + A;) is

contained in the set

3p; 1+ Hp;/3
_BJ+{E+6—Z++6—Z : 0<€1,‘..,6H<ﬁ—1}+ lo, —+ p]/ :|—|—Z,
pj pj pj 10
where the (3; satisfies (2.36).

We now let

F = F(fl,...,fr_k_l,cl,...,Ck,TQ,...,TT) eF (238)

be one of the sets in F; F' is thus a discretized version of a curve of general shape (2.34),
where the (;’s depend on the choice of fi, .., fr—x—1,c¢1, ..., Ck, T2, ..., Tr.
Applying Proposition 2.33 to the curve F, using € to be some function a little slower-

decaying than (log P)~! as a function of P — say, take ¢ = (log P)~"/2

— and then dividing
(2.35) through by a factor P (interpreting coordinates now as integers instead of elements
of Fp), we get that for all but o( P) of the (x4, ..., z,) € F, if we let (y1,...,y,) € [0,1) be

such that
Z; Z; +1
L < . < ,
p =Y P

then there exists 1 < n < P™¢ such that forj=1,...,7,

. ! D) A )
nyj+6je%+%+[0, F] c P‘l(Aj+Aj+Aj)+6”Pj+[0, F]+Z
c U;(H)+2Z,
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where, recall, U;(H) is defined in (2.4). Note that in deducing this last containment we
have used the fact that §;/P < P™’s=1 which is much smaller than 1 / ij , the width of the

—-1/2

interval in the definition of U;(H), using ¢ = (log P)~'/*. Taking fractional parts of both

sides, we get that, forall j =1, ..., 7,
{nyj +/Bj} € Uj(H). (2.39)
‘We will use the notation
F = " U F*,

where F” denotes the exceptional set of 2 € F for which we don’t get (2.39) holding for
every y € x + [0,1/P); and F* denotes the rest of F. Note that from what we just proved,
|F’| = o(P), and so |F*| = |F| — o(P).

We will say that an integer n < N is good if
Is< 2V j=1,..,r, {saj(n)+ B;(n)} e U;(H)

and, otherwise, we will say that it is bad. We have that the number of n < NV that are bad

1s at most

DI #n <N ¢ (ai(n),...,a(n)) € x/P +[0,1/P)"}

FeF zepb

Applying Proposition 2.32 and (2.31) we get that this count is

< Y IFINPTF = |F|-o(P)- NPT"F = o(N).
FeF

This completes the proof of Theorem 2.3.
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2.8 Proof of the Proposition 2.32

Fix a point z = (x1,...,2,) € F%. We will only focus on conting the n < N such that
(a1(n), ..., ar_1(n)) to belong to (1, ..., x,_x)/P + [0,1/P)"~*. This is legal, since the
proposition only claims an upper bound.

Now, since oj(n) = pj»nlogz/logpj}_l, in order for this to belong to z;/P + [0,1/P), we

need that {nlog2/logp;} belongs to a certain set I; + Z, where /; is an interval of width

at most 1/P log pj. Thus, our goal is to count the number of n < N such that

log 2 log 2 log 2
({nog }_1’{nog }_1’ m’{nog }—1)6[1X]2X'-'XIT—I@+ZT_]€.
log p1 log po log pr 4,

Now, from (2.16) and Theorem 2.10 we have that the number of such n < N is, asymp-

totically,

N(I| - |L—g| + o(1)) < NP™"TF < N|F|7'P7,

where the last expression follows from (2.31). Note that the implied constants for the <’s
depend on the p;’s.
This completes the proof since the upper bound on the set of n < N has the form

claimed by the proposition.

2.9 Proof of Proposition 2.33

Basic setup

For this proof we will use discrete Fourier methods. Given a function f : [, — C, and a

vector (ay, ...,a,) € {0,1,2,..., P — 1}", we define the Fourier transform

flay, ap) = 2 Fn, o) 2T ) (P,
(n1,...,nr)e{0,1,...,P—1}7
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A consequence of Parseval is that

Z |/1\A1><A2><~--><Ar(317~~a37")|2 = PT|A1|"'|AT|~

0<s1,...,8r<P—1

Thus, if () is the set of all places (sq, ..., s,,) where
‘/1\A1 ><A2><--~><AT(817 e sr)| > ]31”(1—35)7

then

|Q| < P_ZT(1_3E)PT|A1|---|AT| < Pﬁr(g

Let ' < @ be all those places (s1, ..., s,) € @, |s;| < P/2, satisfying the additional

constraint that

_ 3_ .
|s;| < P =12

Let N = |

, and note that

N < ’Q’ < P6T€.

Now we let F denote the set of all (x1, ..., x,) € F, such that there exists (sq, ...

Q' (s1,...,s:) # (0,...,0), such that

1

(1, ey @) - (81, ees Sp)
< P(7r3=2r)e”

P

_ Hxlsl—i—---—i-:msr

P

Theorem follows if we can show |E| = o(P)

(2.40)

(2.41)

We will show that |E| = o(P). If this holds, then let us see how it implies the conclusion

of the Proposition: let L = [log P],

U := {0,1,2,....[P"/L]}",
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=

and define g(0) = g(d1, ..., d,) to be the following L-fold convolution

-

g(6) == ly=1p=-- = 1y(dy, ..., 6,).

Now, let

(z1,....3,) € F\E (2.42)

be any of the |F'| — o(P) vectors such that (2.41) fails to hold, for every (si,...,s,) € Q.
Let

M = [P,

and let f be the indicator function for the set
{(—=nzy, —nxzg, ..., —nx,) : 1 <n < M}.
Then, we have that if
Lapoonr * Lagsxa, * Lagcoxa, * g« f(0) > 0, (2.43)

then there exists 1 < n < M and (dy, ..., d,), so that (2.35) holds.
Expressing the left-hand-side of (2.43) in terms of Fourier transforms, one sees that it

equals:

P Z Ta s, (51 0y 800951, oo ) F (51,001 S7)

= P73 Taeea, (310 ()£ (3). (2.44)

We split the terms in the second sum into the term with (sq,...,s,) = (0,...,0), the

terms ($1, ..., s,) € @, and then the remaining terms.
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The contribution of the term (s, ..., s,) = (0,...,0) is
P M|U|MAL - | A2 (2.45)

Now suppose (s1, ..., 5,) € Q\Q'. Then, for some 7 = 1, ..., r we have that pi-(ri-ne o

|s;] < P/2. Thus,
§@)| < [ [min(UIM", [s:i/P|75) < [U[H=07 PP =il < UL + 1) P)",
1=1

It follows, then, that the contribution of all such (s, ..., s,) € Q\Q’ to the right-hand-side

of (2.44) is bounded from above by
PTN|A - [APIU((L + 1) PT) "M,

which is much smaller than (2.45), on account of the ((L + 1) P~"¢)" factor, even when
using the crude upper bounds: |A;| < P,i=1,...,r,and M < P7’¢, N < P,
Next, we consider the contribution of all terms with (sq,...,s,) € @’. Then, since

(21, ..., z,) satisfies (2.42), and in particular that it is not £, we have that

|f(517 . 5r>’ _ Z 627rm(:v1 ..... 2r)(81,e.58r) /P
1s<sn<M
1
<
(@1, .y zp) - (81, ey S2) /P
< P(7r3—2r)a‘

So, the contribution of the terms in (2.44) with (s1, ..., s,) € @', (s1,...,5;) # (0,...,0), is,
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by Parseval,

< P_T’P(77"3—27’)€|U‘L Z |/1\A1><~~-><A7-(81’ ""87’)‘3
0<s81,...,8p,<P—1
< P_T+(7T.3_27«)5|U|L|A1| ‘AT’ Z |/1\A1><.--><AT(817-.'7S7')‘2
Ogsly-"vs”'gp_l
< POPA R A
< P_(1+E)TM|U|L|A1|3 e |Ar‘3>

which is smaller than the contribution of the term with (s1,...,s,) = (0,...,0) given in
(2.45).

Finally, we consider the contribution of the remaining terms. For these terms we have
Ta,scxn, (515 8,)| < PTO730 <Ay |A | P72

Using this in those terms on the right-hand-side of (2.44), we find that, using Parseval again,

they contribute at most

P_T_QTEM‘U‘L|A1"”|AT| Z ‘TA1><“'><AT(817"WS7”)|2

0<s1,..,8p<P—1

< P727‘5M‘U|L’A1‘2__.’AT’2 < PfrfrsM|U|L’Al‘3...‘AT’Z’)’

which is also appreciably smaller than the contribution of the term with (sq,...,s,) =
(0,...,0), as in (2.45).

Thus, there exists 1 < n < M and 0 < 8y, ...,d, < P™¢ so that
n(xl, ...,ZE,«) + ((51,...,(57«) € (3141) X (?)AQ) X+ X (?)AT)

And since this holds for (1 — o(1))|F| vectors (z1, ..., z,) € F', the proposition is proved.
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Proving |E| = o(P)

We begin by noting that we may assume that ()’ contains at least one non-zero vector, since

~

otherwise in the previous subsection we never need to make use of bounds on | f(s1, ..., s,/
nor reference to (1, ..., x,.) — we obtain the same bounds independent of choice of (z1, ..., z;),
which would imply that £ is empty.

We note, by the pigeonhole principle, that there exist (s1, ..., s,.) € @', such that (2.41)
holds for at least |E|/N vectors (z1, ..., x,) € E. Call this new set of vectors E' < E; so,
we have

|E'| = |E|/N.

Let us suppose, for proof by contradiction, that

|E|/N > P77, (2.46)

Note that if we establish a contradiction, then we would be forced to conclude that

’E‘ < Nplf’?rs < Plfre,

which would imply |E| = o(P), and which is just what we wanted to show.

For each ¥ = (z1, ..., z,) € E’, lett = t(¥) be any value of ¢, so that if ¥ = K (¢), then

i e (#/P,....,x,/P) +[0,1/P)". (2.47)

Also, for any vector ¢ € [0,1)", let w(v) denote the unique Z € {0, ..., P — 1}", so that
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Now, if we consider the set of all points in a cube

1 T
U —= 2.4
w + lO, P} 7 (2.48)

where w0 is some arbitrary r-dimensional vector, the function 7 will map that set to a set of

size at most 2”. Thus, if we let
T := {t(¥) : T€ E'},

then we claim that any interval of width P! can have at most 2" log P elements of T'. The
reason this holds is that if we restrict ¢ to an interval I of width at most (P log P)~", then the
coordinates of K (t) will vary by o(1/P); and so, the set { K(¢t) : t € I} will be contained
in one of the cubes (2.48), which can correspond to at most 2" vectors 7 € {0, 1, ..., P—1}".

By picking at most one element of 7" in each interval of width P!, we can pass to a

subset
T' < T, where |T'| > 27"|T|(log P)~* = 27"|E'|(log P)™! > pi=Tre—o),

such that every pair of elements of 7” is at least 1/P apart.
Furthermore, we eliminate the elements of 7” that are < P~% in size. Call this new

set T” < T'. There can be at most P1=8<t°() elements in 7" that are < P~%"¢; and so,
‘T”‘ > ‘T/’ . P1—8ra+o(1) > Pl—?ra—o(l)
Now we index the elements or 77 as follows:

T” = {tl, tQ, ceey tn},
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where

1 < tg < -+ < t,.

Then, we extract disjoint subsets 71, ..., T, < T" as follows: we let

T, = {t; : (20 —2)n/2r <j < (2i —1)n/2r},

which satisfies

T3 » n/r » |T"| > PTe—l) (2.49)
Let
d(T;,T;) = nin it — ul.

Since the elements of 7" are spaced at least 1/P apart, we must have that

min  d(T;,T;) = n/2rP > P~ree), (2.50)

1<i<j<r
Define, also, the associated intervals
Ii = [tr@i—2)m/2r]s L @im1)n/2r]]-

Note thatif ¢t € T}, then ¢t € I,.
We now define uq, ..., u, as follows: we let u; be any element in the interval /; such that

|/ (w)| is minimal, where

h(t) == (s1,..,8,)  K(t) = s1G00 + -+ + 8.0

Note that

R'(t) = 5,(10% log 0y + 52(o051og by + - - - + 5,.(.0% log b,
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Bundling together A/ (u1), ..., h'(u,), we get the following matrix equation

U1 w1

01 92
U9 U9

0% 0y

U U
| 91 T 92 T

s:C-log 6,

(2.51)

Now we need the following lemma (which makes use of an idea from [30, page 99,

book 2, example 1], though our proof is self-contained):

Lemma 2.52. Let

0 <21 < 29 < -+

be two sets of increasing real numbers. Define the matrix

o > ,r,—r+1/2($r + 1)—(r—1)yr(xr/xl)—w1,31/1+y2+~~+yr00’

Let
o = min [
(e1semes cr)
I(e1,-er)lg=1
Then,
where
0p := min
i=1,...,r—1

Cr]'A”Q

,,,,,

,,,,,

Y1
x?”

Y2
x?"

xyr

T

< xp,and 0 < yp < Yo < -

[T osa/aa) /D = (@i fm)2 1),

1<j<t<r

(2.53)

Note that when r = 1 this gives 0 > z¥' (and oo = 1 since the minimum is empty), and it



is easy to see that o exactly equals x¥" in this case.

Applying this lemma to (2.51), using z; = 6; and y; = u;, @ = 1, ..., 7, reordering the
columns as necessary (because 61, 6, ... may not be in increasing order), and shuffling the
ordering of the coordinates of the column vector in left-hand-side of (2.51) accordingly
(if you reorder the columns of the square matrix, you have to do the same for the column

vector), we conclude that

[(B' (1), oo ' (u )2 = of[(s1¢ilog b1, 822 log s, ..., .G, log 6, ) [

> o min[Gloghi| - (51,502
where o satisfies (2.53). Letting i = 1, ..., r be any value where |h/(u;)| is maximal, that is,

W (u;)| = ‘maXT|h'(uj)|,

.....

we will have that for every ¢ € [;,

W@ = (W) = r 20 (), B ()2 = 7"‘1/20'mjin G 1og 05 [[(s1, .. 57) |-

(2.54)
By the Cauchy-Schwarz inequality we also have the following upper bound that holds for
any t € I;:

B ()] < rl/2 m]aX|Cj9§- log 0;] - [(s1, ..., Sr)|2-

We wish to bound o from below. First, note that fora > land 0 < v <t < 1,

ot —at = au(atfu o 1) _ au(e(tfu)loga o 1)

> o"(t—u)loga.
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Thus, since

P < uy < o0 < ou, <1,
and since (2.50) holds, one sees that for any i,¢' = 1,...,7,and 6; /0y > 1,7 < {,

—u;)(logb;/6y)
r—1

(Qi/(gi,>uz/(r—1)_<9i/9i,)w/(r—1) - (Qi/gi,)w/(r—l) (ue

> kP W g g,
where

Thus, (2.53) implies

o > P—7r3a/2—o(1) ]

(The implied constants in the o(1) depend on r, ¢, the z;’s and y;’s; the term o(1) tends to

0 as P — o0.) It follows from (2.54) that for every t € [;,
W) > P70 (51 s s (2.55)

In particular, this means that h'(¢) # 0 for all ¢ € I;, so that h(t) is either strictly

increasing on the interval /;, or strictly decreasing on the interval /;.

Now, for t € T; we have that
(B = [(s1, - 80) - KO < (515 80) 2 K@) < (51, 80) 22 (2.56)
Applying (2.41) and (2.47), we also conclude that
|h(t)| < P20z, (2.57)

where | - || denotes the nearest integer function.
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Now, combining (2.49) and (2.56), and applying the Pigeonhole Principle, we let 7} be
a maximal subset of 7; where the nearest integer to all the h(t), t € T/, is the same. We
have that

77| > PO (s, )15 (2.58)

And from (2.57) we have that if z is the nearest integer to all the elements of 77, we get
that

For every t € T/, |h(t) — z| < P~(7° =20z, (2.59)

However, we will see that this cannot hold, by using the Mean Value Theorem and the
bound (2.55): without loss of generality, assume h(t) is increasing in I; (we know it is
either increasing or decreasing, and it doesn’t matter which). Write the set 7] in increasing
order as

/ / /
o<ty < - < t,.

Since h in increasing across this set, we have that

h(ty) < h(ty) < --- < h(t,).

n

Now, from the Mean Value Theorem, (2.55), the fact that the t;-’s are spaced at least 1/P

apart, and our bound on |77| in (2.58), we have that

min [W(t)] = (0//P) P70 (51,8,

telt) ]

[P (t1) = At > [t =1,

n’|

> P7(7T3/2+7T‘)670(1).

This is impossible, since from (2.59) we deduce from the triangle inequality that

h(th) = h(ti,)| < PO

n

We conclude that (2.46) is false, and so our theorem is proved.
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2.9.1 Proof of Lemma 2.52

The claim clearly holds for » = 1. Assume we’ve proved it for all 1 < r < k. Now we

prove it for r = k£ + 1: So, we assume we have a matrix of that size; and assume, for proof

by contradiction, that (2.53) fails to hold.

We let (¢q, ..., cg11) denote a vector of norm 1 such that

ller - ewn] - Al = o
Define
k+1
f(x) = Z ¢,
j=1
and note that since f(z;) is the ith coordinate of [¢; -+ ¢xi1] - A, we must have

(2.60)

all of which are rather small in magnitude, since we are assuming (2.53) fails to hold,

making o very small. We wish to show (for reasons explained below) that there exist

21, ..., 2k, Where

Ty < z; < Tiy1, 1= 172,...,]{7,

such that

[f(z) > (/)™ [f (@)l and | f(z)] > |f(za)l, 0 =1,k

To see that such z; exist, let
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and note that

1+6
Then, consider the numbers
Flas), fa™0), f@i ™), L @) = flai).

Written as a row vector we have

[F(s) fla ™) - fa)] = e - ol -V,

where -~ ~
w @ (@)
37?2 (xi/2>1+6/k (xly2>1+5
Vo=
I x?;kﬂ (x?zgk+1)1+6/k (:C?kﬂ)l'“s |

The square matrix V' here is a Vandermonde (well, after dividing out by certain factors

down columns), so its determinant can be explicitly computed:

K3 K3 (3

det(V) A H (1:3/45//"7 _ :L,Zj/j‘s/k>_ (2.61)

1<j<t<k—+1

Letting J = VVT, we then also have

(2 (2

det(J) _ det(V)2 _ x2y1+2y2+---+2yk+1 H (xyzd/k_xlyjts/k)Q‘

1<j<l<k+1

A crude upper bound on the largest eigenvalue of J can be found as follows: let 1 be

the maximum value of the entries of .J. We note that

< Ye|2 < 2Yk+1
po< (k1) max oS < (k4 D)k +1)
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Then, for any vector ¢ := (vy, ..., V1) satisfying |]o = 1, we have that all the entries of

J¥ can be bounded from above by

plvl < p(k + )]0

Thus,

wk+1) < (k+ 1) (g + 1)20

is an upper bound for any eigenvalue for .J.
Also, if a > 0 is the smallest eigenvalue (in magnitude) of J, and # > 0 the largest

eigvenvalue (in magnitude) of J, then since det(.J) is the product of its eigenvalues,

det(J) < apt.

So, recalling that |(cy, ..., cx41)]2 = 1, we have

[(F (@), F@ ), N = (er ) VYT (e, o )T
>
> det(J) - B7*

> det(J) - ((k + 1)2(zpp + 1)2ue1)

= det(V)?((k + 1)*(xpeq + 1)2+1)7F,
Note that the first inequality here is by the Rayleigh Principle:

- T

min  (c1, .y Chr1)J(Cry oy Cly1) = .
(c1seesCly1)
[(eqsesepy1)l=1

Thus,

P @O = (e 1) P @+ 1) det(V)).

(2

-----
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Now, since we are operating under the assumption that (2.53) fails to hold for r = £ + 1,

expressing (2.60) in terms of det(V") (and using (2.61) ), we find that
f(@:)] < o < (k+ 1) (@ + 1) 78 (240 /1) ¥ [det (V)]
Thus

max;—_,..., W f @) = (@ /o) )], and = (g /z0)" | f (i),

We therefore have found the z; we were looking for, since: First, for j = 0, ...,k we

have that

1456 /k

T Sz =Ty < Tiya,

where the j arising from the max above cannot be j = 0 or j = k, since the max is bigger

than | f(x;)| and | f(z;41)|- And, second, we also have

[f ()| = (@r /)" [ f ()] > (zif2:)" | ()],

and

[FGEIl > [l

Now, if we let

gla) = " f(z),

then note that for this choice of 7 (chosen by the max above),

9l = =z f Gl > 27" [f ()] = lg(w)l,
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and, likewise,

l9(zi)| =

7 M) = 5 (o)l > 2 i (@ia)] =

Thus, by Rolle’s Theorem, there exists a point w; € (x;, x,,1) where the derivative

But, since

we find that

so, we have that
y2—y1
w1

ng st

Y2—Y1
Wy,

Ys—uy1

Ys—y

Ys—y1
Wy,

—Y1
w?le+1 Yy

Ye+1—Y1
wy*

Yk+1—Y1
Wy,

1,2, ...k
k+1

anYi—Y1
> e,
j=1

Ck+1(yk+1 - yl)

(2.62)

However, the induction hypotheses for the case r = k tells us that the square matrix on the

left is non-singular (in fact, it gives a non-trivial lower bound, in magnitude, for its smallest

singular value). So this is impossible.

We conclude that our assumption that (2.53) was wrong is incorrect, and so the induc-

tion is proved.
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CHAPTER 3
ON A CLASS OF SUMS WITH UNEXPECTEDLY HIGH CANCELLATION, AND
ITS APPLICATIONS

3.1 Introduction

Remember that the Pentagonal Number Theorem of Euler asserts that for an integer x > 2,
Y, (1"l = Ga) =0
Gn<zx

n(3n—1)
2

where G,, = is nth pentagonal number. Various proofs of this theorem have been
developed over the decades and centuries (see [7]); but we wondered whether it was possi-
ble to produce an “analytic proof”, using the Ramanujan-Hardy-Rademacher formula (1.8)

for p(x): Considering just the first two terms in this formula, one sees that (see [31])

p(x) = pa(x) + O(\/p(x)), where py(z) =

V12e6V24z—1 . 6
2x — 1 m24r —1)°

So, the Pentagonal Number Theorem implies

D (=1)"pa( = Gn) < Vap(); (3.1)

Gn<zx

In fact, one can get a better bound by using more terms in the Ramanujan-Hardy-Rademacher
expression; one might call this a “Weak Pentagonal Number Theorem”, which is an inter-
esting and non-trivial bound for the size of this oscillating sum of exponential functions
(=1)"p2(z — Gn).

It is worth pointing out that this bound is much smaller than what would be expected
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on probabilistic grounds: if we consider a sum

S(X17X27 o ) = Z ang(l‘ - Gn)v

Gn<z

where the X,,’s are independent random variables taking the values +1 and —1, each with
probability %, then
E(S?) = )] pa(z—Gn)*

Gn<zx

So the quality of bound we would expect to prove is

YRS (Z pa(x—Gn)z) < Vap(),

Gn <z

However, the bound (3.1) is much smaller than the RHS here.

What we have discovered is that (3.1) is just the tip of the iceberg, and that there is a
very general class of sums like this that are small - much smaller than one would guess

based on a probabilistic heuristic. Roughly, we will prove that

D (=DM — Ssmall”, (3.2)

fn)<z
where f is a quadratic polynomial (with positive leading coefficient), and ¢ is some con-
stant. It is possible to produce a more general class of sums with a lot of cancellation; and
we leave it to the reader to explore. As a consequence of this and the Ramanujan-Hardy-

Rademacher expansion for p(n), we will prove that

2 (=)'ple =17 ~ 623/4—;’15? (3.3)

2<z

As another category of results, we will also prove a corollary of Theorem 3.8 related to

57



prime numbers. In fact let > 0 be large enough and 7' = ¢% 7%V Then

5w (e o) e (30 ()

0<l<3+/aT

Finally we will develop polynomial identities that occur naturally in the Taylor expansion

in (3.2). For example

Z (42 — 40%)*" — Z (42* — (20 + 1)*)*" = polynomial w.r.t.  with degree 2r — 1.

[O|<z [l|<z

Many of the results stated above can be deduced from the following:

Theorem 3.4. Letb,d € R, a,c > 0; Also, let h(x) = (ax + )" for a, 3,t € R. Then

Z (—1)recvVem@tntdp (0 (an? + b + d)) < eWTINVE(3.5)

n:an?+bn+d<zx

where w > 0 is defined as follows. Set

A = sup

r=0

\/\/ar\/ar2 +24+7’\/5_7T_r

c
Then w = min(1, A).

Remark 3.6. Obviously forcing w to be less than one is to avoid getting a trivial result,

and if a, c,r are chosen in such a way that A > 1 then this theorem becomes useless.
Conjecture 2. Observing the numerical results suggest that

D=1V = v,

2<zx
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There is another generalization when we pick a complex c in (3.5). In this case, having
an upper bound for the sum is harder, as we have both the fast growth of exponential

functions and the extra oscillation coming from the imaginary exponent.

Theorem 3.7. For large enough x > 0, let T := T(z) be at least Q(x?) as x — 0. Also

leta+if € Cand0 < o < 1+ € forafixede > 0, and 3 < \/T. Then for arbitrary § > 0

D) (el g [V O T,

2<Tzx

Note that if 3 = 0 and 7" sufficiently large, theorem 3.7 becomes a special case of
theorem 3.4 fora = 1, b,d = 0, and ¢ — 0 with a weaker result.

Even these theorems do not exhaust all the cancellation types of oscillatory sums of this
form, for we can replace the square-root by a fourth- root, and then replace the quadratic
polynomial with a quartic. We will not bother to develop the most general theorem possible

here. Next, we prove three applications for these oscillation sums.

3.1.1 Applications to the Chebyshev ¥ function

We show that in the “Weak pentagonal number theorem” we can replace the partition func-

tion p(n) with Chebyshev W function.

Theorem 3.8. Assume € > 0, x is large enough and a = 1 — Lﬂ We have

Z (*l)l\;[/ (6\/ m—lQe_z?,aﬂ) < 6(1—%-&-6)\/5 = ewﬁ' (39)

4a
2<ge3 V®

We give an argument to show a relation between the theorem and the distribution of

prime numbers. A weak version of theorem can be written as

\I/(eﬁ) =9 Z (\1/ (6W> -0 <e m_(z;))) + O (e(%“)ﬁ) where 1" := ¢

0<t<NzT/2
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Define

20)2 20—1)2
I = U (e\/x_(T> 76\/55—( T> )

0<l<vzT/2

One can see that the measure of [ is almost half of the length of the interval [0, eV*].
Roughly speaking theorem 3.8 states that the number of primes in I, with weight log(p), is
half of the number of primes, with the same weight. This prime counting gives a stronger
result than one would get using a strong form of the Prime Number Theorem and also
the Riemann Hypothesis(RH), where one naively estimates the W function on each of the
intervals. Because the widths of the intervals are smaller than eg, making the Riemann
Hypothesis estimate “trivial”’. However, a less naive argument can give an improvement

like corollary 3.10. See table 3.1 for comparison.

PNT | Naive RH + Theorem 3.4 | Our unconditional result | Our result with RH
1.41 091 0.79 0.47

Table 3.1: The upper bound of w in (3.9)

Corollary 3.10. Assuming RH

_4(+a) - "
Z (_1)1\11 (6\/50—12@ 3 f) < 6(%—§+6)\/E < 60'47\/5. (3.11)
2(1+4a)
2<ge 3 V7

The proof needs careful computations of a cancellation sum involving zeroes of the
Riemann zeta function. In fact, we use our cancellation formula to control the low-height
zeroes; The Van der Corput bound for exponential sums combined with the Montgomery

Mean-value theorem to control the high-height zeroes.

Remark 3.12. Note that numerical results up to x < 300 show a very smaller error term
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in comparison to (3.11). In particular, for example,

N (~1) (VLT < 50 where T ~ 20000

1<2400

Remark 3.13. A more applicable identity may be the case with fewer terms (with lower

frequency) in (3.9). We can choose the parameters to get

Z (_1)1\1,(6\/1—126*26\/5) < 22e(-VT

12 <ge2eVT

This identity does not give the same level of cancellation as RH anymore but still is bet-

ter than the best cancellation one can get from the current unconditional estimates for W

function. Also, the advantage is that the intervals <e\/m_(%)26ﬁ, e\/”"_(%_l)%ﬁ) are not
as small as what we had in (3.9). So it possibly is more suitable for combinatorial applica-

tions.

3.1.2  Applications to the usual and restricted partitions

A generalization of the Pentagonal Number Theorem is the second application of the can-
cellation result. It is an interesting question to find the second dominant term of gen-
eral,“Meinardus type” integer partitions. Our result is applicable in general if the second
term of Meinardus’s Theorem for an arbitrary partition function is known. But the known
asymptotic formulas rely heavily on analytic properties of the parts. For many types, we

see a formula like

1

Aw) ~ (gl e (1=

)+mMmﬂ (3.14)
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where 0 < s < 1 and 6, r,¢ > 0 and k(n) is a linear polynomial and g(n), h(n) are rational

functions. For example for the usual partition function we have

/12 2 2 g

— _ T —1 _ — —0 =
g(n) 1 h(n) 36(24n ), k(n) 36(24n 1) , s=46 5

1
=7r = —
2
Assuming a partition function has form (3.14), we can conclude that for a quadratic poly-

nomial ¢(n) = an® + bn + d

2 (DA —t(6) < X (n)
Lt(l)<n
where k = max(w, s) and w is defined as in Theorem 3.4, and s in (3.14). As long as

r < 1, we can get a nontrivial approximation of the Pentagonal Number Theorem. We give

a few specific examples.

First, we mention a weak pentagonal number theorem for certain approximations of the

partition function.

Proposition 3.15. Let

-

€ —_

Y4 4$\/§

V12 612 x

pa(x) = ( - 5)ev Ve
24 -1  7(242 —1)2

\/éem‘a: B 12\/667rix 3 )e%\/m
24x — 1 m(24x — 1)5

pa(x) = (

be the “first” term, first “two” terms, and second “two” terms of Ramanujan-Hardy-
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Rademacher formula, respectively. Then

GZ (—1)'pi(z — Gy) < pla)*H (3.16)
G%ﬂ(—l)l(l o —1Gz) —)pa( = Gi) < pl2)"! (3.17)
GZ (—1)'\/pi(z — G) < p(a) "% (3.18)
> psla = 17) < pla)*0® (3.19)
2<zx

Note that equation (3.19) does not have the factor (—1)!, because >, w(h,2) in equa-
tion (1.8) is (__\/15)1 So it can cancels out the other (—1)! from the weak pentagonal number
theorem to eliminate the cancellation. In fact, if we put (—1)!, we get the following propo-

sition.

Proposition 3.20. For large enough x

S Dmle - )~ S,

2<x

So if py(x) = pa(x) + p3(x) is the first “four” terms in the Ramanujan-Hardy-Rademacher

expression for the partition function, then we get

DENNELE ) (321)

We mention another set of examples. Remember from (1.9) that p(n; a, M) is the
number of partitions with parts of the form Mt + o, 1 < a < M — 1, and (o, M) = 1.

Theorem 3.4 can show a weak pentagonal number expression like

Z (—=1)"p (z — am® — bm — d; o, M) = “small function w.r.t. z, v, a, M.

am?2+bm-+d<z
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We check two cases M = 2 and M = 5 as examples.

Corollary 3.22. Let q1(n) be the first “two” term in the expansion of q(n) in equation (2?).

For large n

Also for p = 5, see [32], there exists a constant A > 0 such that

B Ta T/ 60N —
p(n;a,b) = L(s)e 5+ O(/p(n;a,5)).
(60n — A)1

Corollary 3.23. Let h(n) be the first two term in the expansion of p(n; a,5). For large n

S (= 1)'h(n - 2) <p(n;a,5)°

12<n

M (~1)p(n — £%:0,5) <4/pln; a,5).

2<n

Note that if we generalize theorem 3.4 for third or fourth or in general nth root, we
might be able to prove more expressions like the Pentagonal Number Theorem. As an
example, we can prove a “pentagonal number theorem” for py(n), which is the number of

partitions of n with parts that are k™ powers of positive integers (see (2?)).

3.1.3 Applications to the Prouhet-Tarry-Escott Problem

Another application of our method involves the so-called Prouhet-Tarry-Escott Problem
(see chapter 1). One could consider a weakening of this problem, where the left and right
hand sides of (1.10) are merely required to be “close to each other”. One way to naturally

view this approximation is to interpret {a;}, {b;} as events in two discrete uniform random
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variables A, B both of whose moments (up to a certain level) and their moment generat-
ing functions are “close”; i.e. the probability density function of these random variables
becomes almost the same. Approximating moment generating functions is an important
problem in the literature - see for example [33, 34]; and what we are interested in is that
the probability space is a subset of Q. This makes the problem non-trivial.

This problem can be also viewed from another perspective that is related to the Vin-
gradov mean value theorem (see chapter 1 or check the survey paper [35] for more infor-

mation).

Let us formulate the problem as follows.

Problem 3.24. Let 0 < ¢ = ¢(N,n, k) < 1 be the smallest constant such that there exist

sequences ofintegers
1<a1<a2<---<an<N and 1<61<62<<bn<N

that do not overlap, i.e. a; # bj, such that forall 1 <r <k,

n

>la;—b

i=1

< N (3.25)

How small can we take c to be for various ranges of k and n?

As we mentioned in chapter 1, there has been little progress in solving the original PTE
problem since the 19th century. For example for an ideal solution (when & = n — 1) the
largest known solution is for n = 12, see [10]. To our knowledge, the best constructive
solution is perhaps for the range k£ = O(log(n)). Using a pigeonhole argument we can do
much better, and give non-constructive solutions with k as large as k& ~ ¢4/n. In section 3.5
we will briefly explain this argument, which gives one of the best known non-constructive
ways to solve the problem 3.24.

Even applying the pigeonhole argument to the approximate version (Problem 3.24) we
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cannot make k£ much larger; for example, we cannot prove the existence of non-decreasing

sequences a; and b; such that
\Zaf —b| < N'U"me)  forall 1<r< Vvnlog?(n).

In other word, one cannot guarantee that the value of ¢ in Problem 3.24 should look like
¢ < 1—1/4/log(N) when k > /nlog”(n). We will see that this range for ¢ is much, much
weaker than what our construction gives. This suggests that it might be possible to beat the
bounds that the pigeonhole principle gives for the exact version of the problem. In section
3.5, we will give a proof to the following theorem, which states a constructive solution for

problem 3.24 when M (n) is much bigger than \/n.

Theorem 3.26. Let L > 1 and m € N and define M = [(QL)%QH%J Define for 1 < i <

n:= L™

Mm
log(M)’

a; = M*™ 1 — (20 —2)* b= M — (20— 1) 1<r<k<,

Then

2 CL _ Z br 2m+1 +m<7’ai+l. (3.27)

1<i<L 1<i<L

So we have two sets of around n integers less than N := M?*™"', and they are satisfying

1
~ nl_E.

the equation (3.25) wzth <c<1l-—

For example if we put m = 3 in Theorem 3.26; we get the next corollary.

nb/7

Corollary 3.28. Equation (3.25) has a constructive solution for % <c and k ~ Toa(n)

as follows. For1 <i < /N

ai=N-—(2i—2)’eN and b =N-(2i—1)*€eN.
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Then forall 1 <r < k ~ N3 we have

log(r)

"log(N) | (3.29)

r4+1 r+1
Daj- Y W<rNT N

1<isn 1<isn

Remark 3.30. There is a conjecture in [36] stating that if {a,, = 0}, {b, = 0} be an ideal

solution of Prouhet-Tarry-Escott and a, < by, then for all 1
(CL,‘ — bi)<ai+1 — bi+1) < 0. (331)

Although our example cannot resolve the conjecture, it shows that equation (3.31) is not

true for the solutions of Problem 3.24 for any c.

Remark 3.32. Note that we can win by a constant factor - i.e. increase M (n) by a constant,

if we pick a suitable quadratic polynomial q(l) instead of I>.

Lastly, we investigate the problem more concretely by viewing a;, b; as polynomials.
Then this cancellation sum can be considered as an operator in Z[x] which cuts the degree

to half.

Theorem 3.33. Let M € N, and define f,.(M) := Z\e|<2M(_1)E<4M2 — %), Then, f,.(M)
is a polynomial of degree r — 1 in M when r is even, and is a polynomial of degree r in M

when r is odd; that is, when r is even,
(M) = co(r) + cr(r)M + -+ + oy (r)M"™ 1,

where cy(T), ..., c,_1(r) are integer functions of v only (and not of M). The same general
form holds for r odd, except that the degree here is r, not r — 1. Furthermore, under the

assumption r < % we have that all the coefficients have size O(r"*¢).
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3.2 Proof of the oscillation sums

In this section we mainly prove theorems 3.4 and 3.7. First, we mention a lemma.

Lemma 3.34. Let z = A+iB be a complex number and q(s) = as*+bs + ¢ be a quadratic

polynomial and x € R. Then

Re ( T q(z)) - \/% <\/D2 + (2aAB + bB)? + D> (3.35)
Im ( T q(z)> - \/% (\/DZ + (2aAB + bB)* — D). (3.36)

where

D:=x—(A*-B%a—bA—c.

Proof. We only prove (3.35). We have

r—q(z) =2 — (A* — B*)a — bA — ¢ — i(2ABa + bB).

It impliess that

Re <\/a:——q(z)> — {/D? + (24AB + bB)? cos (% fan~! (QGABT”B)) .

1+cos(2y)
2

1
1+y2

Noting that cos?(y) = and cos(arctan(y)) =

Re (/o —q(2)) = D2+ (2048 1 0B) | L

5 2\/1+ 2aAB+bB

Straightforward computation results in equation (3.35). [

Next, we prove Theorem 3.4.
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Proof. Let q(z) := az®> + bz + d and f(z) = +/x — q(z) with branch points oy, ay. We
choose (—a0, ;] U [ag, ) as the branch cut and let G be the interior of the square with

vertices

2
(5 sz,

a a
where © > 0 will be chosen later. Note that
\/E 2b
Qo > _ - —
a a

and we have a similar condition for a;. Without loss of generality we assume that 7 is

holomorphic inside G'.

ga! u\/T

Bz

— X -

Poles

V2

—ur\/T V3

Figure 3.1: The contour ~y

Let g(z) = e“/3), which is analytic inside G. Define
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Assume that 7y is the boundary of GG (see figure 3.1). Using the residue theorem

f H(z)dz =2mi Y. Res(H(2))|:, = 2mi Y (—1)"h(n)eV1m), (3.37)

zj: poles g(n)<z

We wish to show that the integral in LHS has size of at most e““V?. First assume that we

choose z € 31 U 3. S0 z =t + duy/z for — /2 + 22 <t < /T — 2 Ift — o(\/x), then

Va —az? — bz —d ~ /(1 + au?). Otherwise by lemma 3.34

T — at? + au2x)2 + 4a?t2u?x + = + aulx — at?
R —az2—bz—d) < \/(
e(\/x az z ) \/ 5

(3.38)

A straightforward computation shows that the maximum of RHS of (3.38) is at t = o(+/x).

So

Re(Vx — az? — br — d) < A/z(1 + au?).

As ¢ > 0, we conclude in both cases that ecV@—ez"~bz=d < ey z(l+au®) Al we have

| sin(7z)| ~ 2™V, So we will get that for 2 € 71,73
[H(z)| s eV/ritod)mme (3.39)

We desire to make the contribution from z € <1, 3 to be approximately equal to the con-
tribution from z € 75, v4. It means that we need cy/x(1 4+ au?) — wu\/z < wea/x, where
w 1s defined in the theorem. We need to express u in terms of w. After solving this we get

two cases. If 72 # ac?, then

—cwm + V72 — ac® + accw?

e <. (3.40)
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Otherwise, we will get
< u. (3.41)

Now we compute the case z € ¥2, 74. We have z = i\/g F %b + it and —u\/x <t <

uy/z. If t = o(y/x), then y/x — q(2) = o(4/z). Otherwise, using lemma 3.34

Rel F—q(z))s\/t\/&\/athri“t\/&-

Let t = ry/x. We need to choose a proper « as follows.

244
c\/m/a\/ar +2 +T\/a—7rr

o = argmax,.

Also we assume that i\/g F %} is far enough from integers (otherwise we shift the legs
72, 74 slightly to avoid Re(z) being near to integer). So we conclude that | sin(7rz)| > A >

0 for a fixed A\. Then we have

eV aGp(z)

[ O oy
72,74

(V)

sin(7z)

Finally in order to satisfy (3.40) and (3.41) and the fact that « > r, we choose

—cwr + /72 — ac® + actw? c(1 —w?)
u = max 5 5 ,a] or wu=max| ———= «a.
T — ac 2mw

where

2+4
w:\/a\/&\/aa +2+04\/6_@

- .
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In this paper, we need two versions of the Van der Corput lemma. The versions we give
here are a little different than what is known in [37]. But these versions are straightforward

and enough for the purpose of this paper.

Lemma 3.42. [Simpler version] Let F(x) be a second differentiable function in (a,b);

, and |G(z)| < R for x € (a,b). Assume that S is a piecewise

also 0 < M < |F'(z) F'(z)

monotone function. Then

PO (x)dr <

=
Sk

(3.43)

a

Lemma 3.44. [38] Suppose that f(z) is a real-valued function such that 0 < \y < f"(z)
for all x € [a,b], and suppose that | f®) (x)| < A3 and that | fV(x)| < Ay throughout this
interval. Put f'(a) = «, f'(b) = 0. For integers v € [a — 1,0 + 1] let x,, be the root of the

equation f'(x) = v. Then

) e?ﬂi(f(:cl,)—yaz,,)

Z e27rif(n) _ Gﬂ Z
a<n<b a—1<v<0+1 \/m

+ 0 (log(4+6—a))+ 0N, 2 (0 —a+2))
+ O (MA2+ AN (b —a)(0 — a +2)) .
Note that if f”(z) < —Xy < 0, then ¢T will change ¢~ .

Proof of Theorem 3.7.

Let 7" > 0 and ~y be the contour with vertices

++/n2T + iu/x

where n = 13:% — e and 0 < u will be determined later (see figure 3.2). Let

e(aJriB)«/zf%

sin(7z)

hT(Z)
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g8 u\/x

V4

——O—O—O—M-—o—o—?—o—o—-n—o—o—o———>
NG

—UA/T E

Figure 3.2: Contour ~y for complex c case

We take the branch cut to be (—c0, —vaT'| U [V 2T, ). The Residue Theorem implies

02

JhT(Z)dZ —omi 3 (—1)feler T
R

2<Txn

(3.45)

Now we compute the case where z € v1,73. S0 z = t & tuy/x and —/Tzn < t < \/Txn.

As x < +/T we have

If t\/z = o(\/T), then noting = — % = z + o(2) we conclude that

T — N Vz +C(x,T) + iB(x,T),where B(x,T) = O(\/LT) and C'(z,T) = 0(5).

T
(3.46)
Otherwise, recall that in the worst case, ¢t ~ VxT. We use lemma 3.34 to get
\/7 D s el it S D VAt s ottt
T 2 ! 2
(3.47)
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2
Because of the range of values of ¢, 2 — & = (1 — n)z. So

2 4ut?x 242
\/<x_ﬁ)2+4u2t2x_<x_t_): T2 < 2ut ‘
N =

2 2 2
E ESO T
T (1—n)T

Noting that |3| < /T

: 2? zu’n |f] 7
Re | (a+iBA|z— = | < an/z + —<Vrlatu
<< ) T) =T =
So for z € 1, v3 we have
(a+iﬁ)\/zfﬁ
e R GV O (3.48)
sin(mz)
We will later choose proper w, 1, u such that
1 log(T')
a+u —Tu + < w. (3.49)
(1—mn) 2z

Next we assume that z € v9,v,. We have z = +4/naT + it and —uy/x < t < ur/x. As

tsﬁg{*/ithen%ﬁSUmd%

22|z A + 2T (1 —n)? + (1 —n)vaT
T

+i\/\/4t277+$T(1 —-n)? (1 —n)\/ﬁ>

< 7 = o(1). We use lemma 3.34 to conclude that
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This together with the fact that |3| < +/T imply that

Re ((OH—Z'B) x—2—;> <« (1—77)x+%4/177_t2n<a\/m+|t|,/1i—n

Again we assume that /277 is far away from the integers; so as sin(7z) > A > 0 for some

fixed A, therefore for z € v, 4

(a+ip) a2

T eVt (y/ 75 )

~

e

sin(mz)

As , /% < 7, the maximum of the following function occurs at y = 0:

Gly) = av/(T=n) + 9y [ —wm.

We conclude that

2mi Z (—1)Ze(o‘+w)vx_% thT(z)dz
v

2<Txn

< VT TV T IVE | e/ (1-mVE, (3.50)

A straightforward calculation shows that

< Z eV < VaTervei=m,

zTn<?<Tx

Z (_1)le(a+iﬁ) z—%

zTn<?2<Tzx

For a sharper bound, we use lemma 3.44 to control the tail. Without loss of generality

assume that 3 < 0. We prove that for | 3| < v/T,

| Fu v
— e

~ +
In<P<Tz—T |5| +1 |/B| +1

+ log x. 3.51)

It is trivial to get the bound for [5| < 1, so we assume otherwise. Let f({) := 3¢ +

75



1/2
L (:17 — %) . Then

1Bl et Ba N
1035 (t-F)  SO=gge-p
3Bzl AN 38 402 2
FO) = _27;12 (z — f) i FU) = _QWI{:?([B + 7)(33 - T) 2,

First we evaluate f’ at the endpoints. Without loss of generality we consider \/xTn < ¢ <

vaT'—T'. Assuming that n < 0.9, we have

P = 5 = P o gy e o, (3.52)
(VT —T) = % - 5—”2”3:T_T < /7. (3.53)

As £, fB3) f@_ £O) are positive, we can find Ay, A3, A, easily at the endpoints.

)\ _ . f 1 g _ " _ ‘/B‘ N ’5‘
i ﬁmnierimf (0) = f"(vaTn) 2nT\a(l—n)p? ~ Ty
*351’ /B 1’3/2
A3 = sgu{)/if(i&)(g) - f(3)(m) _ = (xT . T)1/2 < | 7[3/2
VTzn<b<+/xT-T
— 38z 72
Ay = sulj/if@)(g) — fO(VaT =T) = (e —4) 5 IBT!2 G
VTxn<l<A/zT-T
It implies that
2y-3 2 292
AT 4+ ANt <

Noting that f'(v/2T —T) — f'(v/zTn) = O(y/x) and applying lemma 3.44 implies the

equation (3.51). For 2Tn < t? < 2T — T we define

S(t) := Z (—1)%"” o

xTn<e2<t?

Similar to what we just did, we know that |S(t)| < x°t/A/|B] < A/x''T/|B8| for Ty <
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t? < T — T. Using Abel’s summation formula we get

Z (—1)tele+i®) Y

zTn<2<Tx—T

VT -T
< [S(VaT —T)|e® + [S(\/naT)|exV w4 f S(t)v(t)dt
nz
(3.55)
where v(t) := 4 exp (om [x — %) . We bound the integral in the RHS.
xT—T o VT =T ts(t)ea\/:pf%
J Sy(t)dt = -2 f Be X " gy
Nz Flwer o -2
Straightforward computation gives that
2
tS(t)e*V*TT T 3/2 N
G(t) := (t)e < Z flogz 4 | eoV/Oomey /o
\Jr—E 8] + 1 18] +1
T
It implies that
zT-T
T T 3/2 Tl
J S(t)v(t)dt| < ’ T log x + T ) e Ummay/pr
nxT T \/|B|+1 |ﬁ|+1

T 252 VT2
< —$+\/Elog:v—|— T e/,
A8+ 1 8] +1

This, (3.51), and (3.55) give

, 2 T x5/2 T 12
Z (_1)56(04"45) x—% < E + \/E]ng + . e® (1717):5'
Tn<C2<Tz—T |B| +1 |ﬁ’ +1
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Considering the range of /3 in our application, we conclude that

a+i :rfﬁ a+1 :vfE a+i T—
Moo pfelerneT | N (pfelerVET S (el
zTn<2<Tx zTn<2<Tx—T oT-T<?<Tx
3T
4[] /Bﬁ eV VT, (3.56)

‘We used a trivial bound for the second sum. We want to have

Z (_1)Ze(a+i6) x?% < T ew\/i‘
2<Tx |5| +1

Adding (3.50) and (3.56) we need to have

a1l —n<w
a+u,/ﬁ—wu+ﬁlog(|ﬁ]+l)<w.

(3.57)

Remember that = — €. Comparing with 3, if we choose u large enough then the left

T
1472

hand side of the second condition in (3.57) becomes negative. So

1
= -
TN R TS
from the first condition. This completes the proof. 0

3.3 Proof related to prime distribution

Inspired by the proof of the Prime Number Theorem (PNT) we compute the following sum

in two ways.

I+e+ivT ¢'(s) esy/m—%
—ds
+€7i\/T C(S) S

(3.58)

P
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In this section, we assume that 1" < e3Ve,

Lemma 3.59. For large enough x

IetivT f1 s\/z—2 L o
Cls)e ds < VTze Vird TV (3.60)

> 1|

=Tz 1T G(8) 8

Proof. We consider the contour y in figure 3.3, where € > 0 is a very small real number
and U is a very large real number far enough from any negative even integer —2m. Using

the Residue Theorem

'(s es\/@
o

2<Tx S) s

— ; L : s«/zfg CI<S) x,%

= 2m£2<ZTx(—1) <<££Ié€ (C(S))> +e
m x—% —2m x—%

Ty _> B:61)
Pm 2m

1<m<U/2

+
| Im(pum)| <V'T

where p,, is the m'* non trivial zeroes of the Rieman zeta function.

T Critical line
\/ " 2

1+€

T =

Figure 3.3: The contour

An easy computation shows that the first and fourth terms in the RHS sum have contri-
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bution at most +/7'z. Using Theorem 3.4 (by tending ¢ — 0) the second term is bounded

from above by v/TzeV® . We can use Theorem 3.7 to show that

D (=DfermVET g To_ (imrtave
[Im(py,)| + 1

Finally, using the fact that

Z;

(o) <7 TT(Pm)

Njw

converges, we can conclude that the third term of RHS of (3.61) has contribution at most

1 4\
Taz:'e(VHW2 " )f. So we have

> (—D‘J %es :_T ds < VT Virz VT (3.62)
v

2<Tx

514/ z—ﬁ
As “— — tends to zero for Re(s) — —oo, we can pick U large enough to have

J Cl s 8 N Z Jl+€+iﬁ <,<S) eS\/I—gds
5 1+e—iT C(S) s
1>€ Jl—&-e—i\/T C/(S> es—«/m—%ds

—v—ivT C(5) S

Z2<T:v 2<Tx

+ 3

2<Tx

—U+iVT 1 sy/x—%
+ Y (—1)ff (ls)e ds.  (3.63)
1

2<Tx +€+i\/T C(S) S

The second integral in the RHS is

VT (1(g) 65@
1) eV T
eg;m( g J—U—iﬁ C(s) s
W) VT YT () B (1 VT
- -1 S 2<Tx
e J—U—iﬁ C(s) s ! +J—i\/T ¢(s) s

P2<Tx

<\/ﬂf

ds

ds

60\/5 1+e

VT f

O'*Z

T)
C(o—iVT)

1
v TerU(VH’r2 +E)ﬁda.
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Note that in the last inequality we used Theorem 3.7. We can use the fact that C?/(0 +
it) = 3, 77—, + O(log(t)) to choose a proper T such that %(0 +iv/T) < log?(T) for

— <o <1+ e Sowe have

e

1+e—i/T C/(S) esy/x—%
D J_U—z\/f ((s) S ¢
(0—1\/7)
(J—Z\F)

1+7'r E)ﬁdo'

< VT logX(T) + f; [ h

The third integral can be similarly bounded. This, (3.62), and (3.63) give the result. L]

Proof of Theorem 3.8. We compute (3.58) another way. We have

1+e+ivT 41 sq/w—% 14e+iv/T © A s«’x—%
¢'(s)e ds — 2 (_1)ZJ (n)e is

ve—ivT C(8) s =T lte—ivT = T° S

> |

2<Tx
1+6+1\FA wﬁ%
:Z(—l)e Z + 2 f ns - ds | := A1 + Ay
5 e—iT
2<Tx L<n<e /m_% /aciT - 1+
(3.64)

First we compute A;. Again, we use the contour + in figure 3.3 to compute the integral.
I,E

Knowing (<

> 1, we conclude that the integrand is tending to zero as Re(s) — —oo.
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Considering sufficiently large U and Using the Residue Theorem give

S

Ax ey Y A ()

I+e+ivT -7\ d
Yy Y aw| [ S
P<Tz 2 ~U+iVT n
1<n<eVIT T
1+e—iV/T 96*% ’ d
SDIC D SERYON BN )
P<Tz 2 —U—ivT n
1<n<eVIT T
5} 1+e+iVT m*% Sd
=omi Y (~1)'w (e x-’T) NI A@)J ‘ «
P2<Tzx P<Tx 22 ~U+iVT n 5
n<e T
' 14+e—ivT e xfé SdS
NG A(n)f - — (3.9
—U—wvT

We bound the integrals in RHS. Define

- AN
(V)= Ao | 3 &

_ i n S
UiV 2oy log?(n)

Inspired by a mean value method by Montgomery in [39] there exists VT < V < 2T
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such that

Y W= Y (5:7v)

s 2\ 1/2

ItetiV 2
- 3 (| A ds

— ; n S
UiV g <Tz—Tlog?(n)

o+it |2 1/2

2VT plte a5
< 2, A (%f I e =t
VT J-U o

02<Tx—Tlog?(n)

A l4e "(\/EJr o=3) | (2T Gy dt
< 4(”) f Z € = \/7 F 2 t2
wier VT 0 i dh oy " vr T

1+e€ 20 xf— o\/T 2
+ > /i%) > J — f L N 10,

2 2
o+t
n<ev® 22<T(x—log?( a

We use Lemma 3.42 for G(t) := —i— and F(t) := t(\/x — g — \/x - %) (.e. F'(t) =

g{%—\g) for the off-diagonal terms in the last expression of RHS in (3.66). Note that we could

get the same result without using the lemma, but this way is more straightforward. Then

N

02 02
1+e oo F4yfo-F)

_4F
T w0z gn S am| 3 | mm—a

n<eV® 2<2<T(z—log?(n)) -U
2\ 2
1 62(1+e) ;B—%
+\_ﬁ Z A(n) Z n2(1+e)

n<eVe 22<T(z—log?(n))

N[

4 (1+€e)v/z (1+€)v/z
< Z T(m) \/Ee Z \/Ee A(n)
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where 7(m) is the number of divisors of m. So there exists VT <V < 24/T we have

1+etiV —2\° 1 (l+evz
e T\ ds xie log T’
Sam| oy S T Y s T
n<ev® ULV 2 o1(a—log?(n)) n<ev®

This and (3.65) imply that

2<Tzx

2 Te(l+evz
A =2mi ) (~1)'w (e w—’T) +0 <L> . (3.67)

VT Critical line
\/\ I/ ’7/
|
|
|
I
|
| 1+€
% |y SN
| T
|
|
|
i
|
—A/T-71| !

Figure 3.4: The contour ~/

2
-~

sn’

Next we compute Ay. We consider contour 7' in Figure 3.4. As a does not have

poles inside 7/, choosing large enough U and using the Cauchy’s integral theorem give

. 2 . 2
A Z ( 1)l Z JUH\/T A(n) esmd Z JU_Z\/T A(n) esmd
2 =~ - _—as — s
02 <Tx @< lterivT T° S Ii%< lte—iyT M° S

<
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Similar to y,,, we define z,, as follows:

AV =Am) Y () f R

; sn’
T(z—log?(n))<f2<Tx tetiV’

In this case, we will have

ds

v | i
1

fetiv  SNP

2= 2, Al 2

n n<ev® T(azflog2 (n))<?<Tx

U+iV s zfﬁ

+ Y Am| Y] (—1)5J ¢ SnST ds| . (3.68)

eﬁ<n 62<TZ‘ I+etiV

As these cases are similar, we only compute the bound for the case eV* < n. There exists

VT <V < 24/T such that

2
1 T ; d
Y V€ 5w X Al J f ] I a—
eﬁ<n ef<n I+e €2<TZ‘ n (U +t )
02 02
U VT zt (\/z— AL —Az—-2)
S A f etz - )f L o
fef<n e TL 7 €2<42<T1‘ VT (U +i )
1
2 2
2T U Z (_1)%5 m_% do p
nQo( 2+t2)
VT Jite |pp 2y g

ef<n

= Y Al JU o R f v zNﬁi{f#ﬁ)czm

2 2
/7 ol
e\f<n l+e Z2<52<T:B T ( )

ﬁ

D=

s ([T [ e
4T 20 O'2+t2)

2<Tx

(3.69)

Let F(t) = t(\/x - g — \/x - %) and G(t) = W Then we conclude that |F"(t)| >
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55 and |G(1)

NG Using lemma 3.42

| ~ 02+T)

SIS

A 1 U ea(\/x—?-‘r\/x—?)d
Z |Zn( \/7 Z Z 2 _ g% £+e n2o g

eVT<n eVZ<n PB<2<Tx 2
e(1+evz
Z 1+e
n
\ﬁ evVZ<n
1
6(1+e)\/5 ( T(m)) 2
1+e Z
e\r<n n m<Tx m

NEA Z A( )6(1+E)‘/5 - W log(T)el+Ive
n < .
weﬁ<n nite \4/?

So there exists /T < V < 24/T such that

&z log(T)eLtove
Aes X L)) 5 SRR (370
eﬁén T

Putting (3.67) and (3.70) into (3.64) and comparing it with (3.60) gives

3
Z <—1>l‘1/ <6M> < \/T$€(1+E)V 1-%—% + f_4€(1+6)\/5.
P2<Tx \/T

4(1+5)
Taking T' = e Valloy/ i) gives the desired result. 0

3.4 Proof related to the pentagonal number theorem.

We start this section by proving the weak pentagonal number theorem for truncation of the

usual partition function.

We start with the proof of proposition 3.15.

Proof. For (3.16) we only need to put ¢ = ’N\/E, a=32,b=—1 d=0intheorem 3.4; for

equation (3.18), pick ¢ = \/lé, a= %, b= —%, d = 0 and use Theorem 3.4; and for equation
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i

(3.19) we need to pick ¢ = 7 anda=1,andb=d = 0.

24(:E7 z(3z—1)

We prove equation (3.17). Let f(z) = 7 3—62H and b? = 5. We choose the

branch cut (—o0, ;] U [a,90). Then let G be the interior of the square with vertices (see

figure 3.1)
2
+4 f g T1+ibya,
Define
24(z 2(32*1))71
h(z) B ef(2) B e’ 36
sin®(7z) sin®(7z)

Using the residue theorem

fh(z)dz = 27 - Z Res(h(z;))

z;: poles

We compute the residues of h(z). We know that for z near to ¢ € Z we have

1 (-1)' (L)

(sin(rz2))?  7w3(z — )3 * 2r(z — )

6 = IO 4 0yl — )+ LSOO g0, po

2

Also

2(3z — —1/2
(f(2)) =7(1 - 62) (24(m — %) _ 1)

2(3z — —3/2
(f(2))" = —144mz (24(35 - %) _ 1)
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So we have

Res h(2)|.—e = (—1)%e/® (27T (f'(¢ ))27:3' f”(f))

B (—1)fef® o Cpna 144z
- 2m(24(z — Gy) — 1) (24(:5 Ge) =1+ (160 w¢24(x—G¢)—1)

B (—1)te/© ot 144x
C2m(24(z — Gy) — 1) ’ m/24(x — Gy) — 1

= D (=1)'pa(a - Gy). (3.75)

We bound the integral. First assume that we choose z € v, U 3. So z = t + iby/z for
—7/ % +1 <t <4/% — 1. For large enough x we have

2U(p — 2(32—=1)\ 1 2
< % AN

Similar to the proof of theorem 3.4 for z € vy, 73
o z(3z—1)\ _
e P =

Also [sin®(7z)| ~ 1e3™V7, and considering b = 5 we get that

(4 /g + 0% —3b) = 0. (3.76)

So the contribution of the horizontal legs is at most o(z). Now we compute the case z €
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V2,71 We have z = +4/22 F 1 + it and —by/z < t < by/z. We have

D)1 o o 20T 2itvBr— 3P F Tit— (V6 +/2)yr +4
=-r— =X —

36 37 3 2

Wl N

24(z— 23271

36

24(x — 222Dy _q
s o R S L
36 3

Using lemma 3.34 we have

If t = o(y/z), then = o(x). Otherwise, since /z,t are negligible in com-

. 2
parison to x, ¢

R \/24(x_z(3z21))_1 <\/L TR 3 377
e - \2\/3(\/ T 8T+ ) 3.77)

Hence in any case we get

i 24(a— 23271y
e 36 - w\/%ﬁ(\/3t2+8+t\/§)73wt 378
G | S ' (5.78)

Maximizing for ¢ in the RHS of (3.78), we get that the integral in the LHS of (3.73) can be

at most €21V It completes the proof. O
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Proof of Proposition 3.20. We have

Cp(x — €2) = vGem ! _ 12 o T/ B) -1
Z( Uipsle = ) = V6 2(24(93—@)—1 7r(24(:1:—€2)—1)%)

2<zx 2<zx
—one?
:\/66%\/%3;7—1+m‘x ex/mwlfﬁ%ﬂ)( 1 +O( 1 ))
Uz —02) =1
2<z (IL’ a ) N x
1
R 61"—2«/2493—1-&-#7;1‘ Z 6—22/202
7
4'%.\/6 P2<\/rlnz
where

The last expression in the above can be approximated as follows

1 e%m_”rm Z 6_% - 1 6%\/24:c—l+7riac J‘OO 6—t2/202dt
43:\/6 2<y/rlnz 41’\/6

—o0
_ Y 27[_6%\/24ac—l+7riac
4:6\/6

Tx

e
T 93/41/4 p(x).

We need the next lemma.

Lemma 3.79. With the same notation as theorem 3.4

2 (-1)"1, (C\/:c —an? + bn + d) h(n) = O (ecwﬁ> : (3.80)

n:an?+bntd<zx

where [, is the Bessel function.

Before we mention the proof note that for fixed o and large enough z




Proof. Since the proof is very similar to proof of 3.4, we skip the details. Let H(z) =

h@)a(ve—") ””)_Zz) and ¢(n) = an® + bn + d and assume the contour ~y in 3.1. Then

sin(mz

> ()2 (ev/z— (D)) he) = L H(2)dz

L:q(l)<z

For z € 71,73

< /x(1+au2)—ﬂ'u\/:?'
emUNT ~

Also for z € 9,74

VeoZiitava ., o
) < 1 (o2 (Var s ) ) < e S s

with the same notation as in proof of theorem 3.4. As the bound of argument of Bessel

function is the same as exponents in the proof of theorem 3.4 we get the same bound. [

Proof of corollaries 3.22 and 3.23. For corollary 3.22 pick a = 1, and ¢ = 4/ % in

21

the Lemma 3.79. For corollary 3.23 pick ¢ = G and ¢ = 1 in Lemma 3.79. [

3.5 Proof related to the Prouhet-Tarry-Escott problem

It is worth establishing a “baseline result” related to problem 3.24 for N large, relative to
k,n, that we get easily from a Pigeonhole Argument: consider all vectors (x, 22, --- , z¥)

k+1)/2. and if two

with 1 < 2 < N. The sum of n of these lie in a box of volume n* N*(
such sums belong to the same box with dimensions N¢ x N2¢ x - - - x N*¢_then they give a
solution to (3.24) for all 1 < i < k. The number of non over-lapping N¢ x - - - x N*¢ boxes

that fit inside our volume n* N*(*+1/2 ig at most nk NA-9k(E+1)/2. and with a little work

one can see that the large box can be covered with approximately (up to a constant factor)
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this many smaller boxes. If this (the number of smaller boxes in a covering) is smaller than
the number of sets of n vectors (x, 2%, --- , z*) that produce our vector sum (this count is
at least % for N large enough relative to n) then we get a “collision”, that is a pair of

sequences ai, - - - ,a, and by, --- , b, leading to a solution to 3.24 forall 1 < ¢ < k. In

other words, we get such a solution when

a-okk+y  N"
nkN 2 <

nl
For N large, then, we get that there is a solution so long as

2n
1l—— .
c > ki + 1) (3.81)

When £ is a little smaller than v/2n, note that the RHS is negative, implying that we can
take ¢ = 0 (since it must be non-negative).

Curiously, when £ is only a little bigger than \/n (say, 1/n log(n)), then this pigeonhole
argument only gives us pairs of sequences with ¢ near to 1. Basically, then, we don’t get
a much better result for the weakening than we do for the original Prouhet-Tarry-Escott

Problem, if we insist on finding solutions with ¢ < % say.

We prove a lemma before introducing a set of solutions for the weak Prouhet-Terry-

Escott problem (problem 3.24).

Lemma 3.82. For large x, let k < % and T := T(x) = o(x). Then for every 1 < r <

k there exists ¢ > 0 such that

3 (D) (aT — )% < Va(Tz)i(Ar)? (3.83)

2<2T

Remark 3.84. Note that the proof becomes easier if we just choose r to be even. But we

propose a more general case here.
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Proof. Let u = o(/), to be determined later. Define

(2T — 2%)
sin(mz)

(N1

fr(2) =

Let v be the contour in Figure 3.5. Using the residue Theorem

f fr(2)dz = 2mi Z (—1)" (Tz — 52)% .

2<aT

M u\/T
Tz V4

———0—0—0—&'-'-—0—0—?—0—0—-“—.—.—.———}
N

V2

—Ur/T T3

Figure 3.5: The contour ~y

Let z € v1,73. S0 2 =t + iuy/x and —v/ 2T <t < v/2T. Then

2
‘xT—zQ‘

= (3:T + wlx — t2)2 + 4t*u’z.

Note that u is a constant as x tends to infinity and 7" = o(x). With simple computation we

can conclude that the RHS is maximaized at ¢ = 0, so on 7y, 73 we have

fr(2)] < }xT + U2$|£ eTTIE (IT)ie—mx/?

By assumption r < k < +/x/log(xT), so we can pick u to be large enough so as the

contribution of horizental legs become small. For 5,74 we have z = ++2T + it and
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—un/T < t < us/x. We can show that
‘xT — z2|2 = t* + 4t%2T.
So we need to maximize the RHS of the following expression for ¢ < u+/x
[fr(2)] < (t' + 4t%2T) e

Simple computation shows that it happens when ¢t ~ C'r for some C' > 0. Hence, there

exist A > 0 such that

T

I 4607 (24 2) < (e

This completes the proof. 0

Remark 3.86. We could increase the height of vertical lines of figure 3.5 to x*, o > %
to make it possible for k to become bigger - say k > x. This in turn results in larger

k = M (n) and larger error term.

Proof of Theorem 3.26. Let M be a large number.
;= M2m+b - (27/ o 2)2 Y = M2m+b _ <2Z o 1)2

Then max(z7,y") ~ M?*™*. Lemma 3.82 concludes that for z = M?™ and T' = M" and

1<r<k

Z [L’ _ Z yz < +eM(2m+b) +m.

If we pick k < #]‘?M) and b = 1, then the result follows. ]
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Proof of Theorem 3.33. We first show that f,. (M) is a polynomial in M — that is,
fr(M) = co(r) + 1 (r)M + - + cq(r)M*,

where d is yet to be determined. This follows upon applying the binomial theorem to the
terms in the definition of f, (M), together with the fact that 35, _,,, (—1)%* is a polynomial
in M. The coefficients are obviously integers and we also can show the coefficients as sums
involving Bernouli numbers. Note that the degree d of that polynomial doesn’t depend on
M.

Let’s assume that 7 is even. We now leverage this fact to prove that d = r — 1. To do
this, note that it suffices to prove that |f,.(M)| = o.(M"), and |f,.(M)| », M"~1. To put

that another way: fix r, and then we show that

log(].f-(M)])

—r— 1
M- log(M) :

Write f,.(M) as the contour integral

AM?2 — 22y
2mff )z 1= o %d
where vy is in figure ??. Note that because f has a removable singularity at z = +2M, it is
possible to compute the contribution of the integral in these vertical legs.
Now, one easily sees that the contribution of v1, 3 is negligible, and at least for M large
relative to r the main contribution will come from the part of the contour near the real axis.
These two parts of the contour can be parametrized as z = 2M + it and 2 = —2M + 1it,

[t| < 2M. So, for M large relative to  we will have that the integral is

1 (M (—4Mit + 2) 1M (—amit)” 1 (M (=AMt
N_J (—4Mit + )dtz—J (AMit) —f rAMGTE L orr?)
_om  sin(mit) _on Sin(mit) _om  sin(mit)
0 r+1
~0+ Z(—4M@')7"—1J ————dt ~ cM" !,
T o Sin(mit)
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M M

V4

V2

Figure 3.6: The contour ~y

for a constant c that depends only on 7. Note that the first term of RHS is zero by symmetry.
This means that f,.(M) is of degree  — 1. Also we bound the size of f,.(M ) from above in
M

the range r < Toa (il

f f(2)dz ~ Mt < erlos(r+loglog(r)) pyr—1,
-
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CHAPTER 4
ENDPOINT /# IMPROVING ESTIMATES FOR PRIME AVERAGES

4.1 Introduction

We consider discrete averages over the prime integers. The averages are weighted by the

von Mangoldt function.

Anf(z) = f(z —n)A(n) 4.1)

Our interest is in scale free ¢" improving estimates for these averages. The question presents
itself in different forms.

For an interval [ in the integers and function f : I — C, set

Do = [ D] @2)

zel

If » = 1, we will suppress the index in the notation. And, set Logz = 1 + |logz|, for
x> 0.

The kind of estimate we are interested in takes the the following form, in the simplest
instance. What is the ‘smallest’ function ¢ : [0,1] — [1, o0) so that for all integers N and

indicator functions f,g : I — {0, 1}, there holds

N=HANf, 9 < Db (o)

That is, the right hand side is independent of N, making it scale-free. We specified that
f, g be indicator functions as that is sometimes the sharp form of the inequality. Of course

it is interesting for arbitrary functions, but the bound above is not homogeneous, so not the
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most natural estimate in that case.

The points of interest in these two results arises from, on the one hand, the distinguished
role of the prime integers. And, on the other, endpoint results are significant interest in Har-
monic Analysis, as the techniques which apply are the sharpest possible. In this instance,
the sharp methods depend very much on the prime numbers.

For the primes, we expect that the Riemann Hypothesis to be relevant. We state uncon-
ditional results, and those that depend upon the Generalized Riemann Hypothesis (GRH).
Remember that according to GRH all zeroes in the critical strip 0 < Re(s) < 1 of an
arbitrary L—function L(f, s) are on the critical line Re(s) = 3. Under GRH, the primes

are equitably distributed mod ¢, with very good error bounds. Namely,

Y(w,q,0) = g An) = 57 + Ol log?(q))- (4.3)

n=a (mod q)

Theorem 4.4. There is a constant C' so that this holds. For integers N > 30, and interval
I of length N, the following inequality holds for all functions f = 1p and g = 1g with
F.Gcl

Log({f>r{g>1) assuming GRH
N7 A6 < Cilods * ”” @)

(Log({f)r{g)r))?

The inequality assuming GRH is sharp, as can be seen by taking f to be the indicator
of the primes, and g = 1. It is also desirable to have a form of the inequality above that

holds for the maximal function
A*f = sup|An f|.
N

Our second main theorem is sparse bound for A*. The definition of a sparse bound is

postponed to Definition 4.52. Remarkably, the inequality takes the same general form,
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although we consider a substantially larger operator.

Theorem 4.6. For functions [ = 1p and g = 1¢, for finite sets F, G C Z, there is a sparse

collection of intervals S so that we have

(A*f,9) < Y LDy r(Log(fHi<oyn)'|1], (4.7)

IeS

where we can take t = 1 under GRH, and otherwise we take t = 2.

The sparse bound is very strong, implying weighted inequalities for the maximal oper-
ator A*. These inequalities could be further quantified, but we do not detail those conse-
quences, as they are essentially known. See [40].

This subject is an outgrowth of Bourgain’s fundamental work on arithmetic ergodic the-
orems [41, 42]. These inequalities proved therein focused on the diagonal case, principally
(P to (P estimates for maximal functions. Bourgain’s work has been very influential, with
a very rich and sophisticated theory devoted to the diagonal estimates. We point to [43,
441, and very recently [45, 46]. The subject is very rich, and the reader should consult the
references in these papers.

Shortly after Bourgain’s first results, Wierdl [47] studied the primes, and the simpler
form of the Circle method in that case allowed him to prove diagonal inequalities for all
p > 1, which was a novel result at that time. The result was revisited by Mirek and
Trojan [48]. The approach of this paper differs in some important aspects from the one in
[49]. (The low/high decomposition is dramatically different, to point to the single largest
difference.)

The subject of sparse bounds originated in harmonic analysis, with a detailed set of ap-
plications in the survey [50], with a wide set of references therein. The paper [51] initiated
the study of sparse bounds in the discrete setting. While the result in that paper of an ‘e
improvement’ nature, for averages it turns out there are very good results available, as was

first established for the discrete sphere in [52, 53]. There is a rich theory here, with a range
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of inequalities for the Magyar-Stein-Wainger [54] maximal function in [55]. Nearly sharp
results for certain polynomial averages are established in [56, 57], and a surprisingly good
estimate for arbitrary polynomials is in [58]. The latter result plays an interesting role in
the innovative result of Krause, Mirek and Tao [59].

The ¢P improving property for the primes was investigated in [60], but not at the end-
point. That paper result established the first weighted estimates for the averages for the
prime numbers. This paper establishes the sharp results, under GRH. Mirek [61] addresses
the diagonal case for Piatetski-Shapiro primes. It would be interesting to obtain /¥ improv-

ing estimates in this case.

Our proof uses the Circle Method to approximate the Fourier multiplier, following
Bourgain [41]. In the unconditional case, we use Page’s Theorem, which leads to the
appearance of exceptional characters in the Circle method. Under GRH, there are no ex-
ceptional characters, and one can identify, as is well known, a very good approximation to
the multiplier.

The Fourier multiplier is decomposed at the end of §4.3 in such a way to fit an inter-
polation argument of Bourgain [62], also see [63]. We call it the High/Low Frequency
method. To acheive the endpoint results, this decomposition has to be carefully phrased.
There are two additional features of this decomposition we found necessary to add in. First,
certain difficulties associated with Ramanujan sums are addressed by making a significant
change to a Low Frequency term. The sum defining the Low Frequency term (4.28) is over
all ()-smooth square free denominators. Here, the integer () can vary widely, as small as 1
and as large as N'/10, say. (The largest Q-smooth square denominator will be of the order
of €.) Second, in the unconditional case, the exceptional characters are grouped into their
own term. As it turns out, they can be viewed as part of the Low Frequency term. The
properties we need for the High/Low method are detailed in §4.4. The following sections

are applications of those properties.
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4.2 Notation

We write A < B if there is a constant C so that A < CB. In such instances, the exact
nature of the constant is not important.

Let F denote the Fourier transform on R, defined for by

FFE) = fR f@)e o de,  fe I\R).

The Fourier transform on Z is denoted by ]?, defined by

F&) =D fme >, fe ! (z).

neZ

Throughout this chapter, we denote A, = {a € Z/qZ : (a,q) = 1}, so that |4,| =

®(q), the totient function. We have

q
— < <qg-—1. 4.8
Tog Log g ?(q) <q (4.8)

It is known that for non-principal characters x, we have |G(x, a)| < q_%, see [64, Chapter

3]. As for the principal character, if x is identity, then we get Ramanujan’s sum

c(n) == $(@)G(1aya) = Y e(). 4.9)

reAy q

Let x, denote the exceptional character. It is a non-trivial quadratic Dirichlet character
modulo g, that is x, takes values —1,0, 1, and takes the value —1 at least once. We also
know that Y, is primitive, namely that its period is g. As a matter of convenience, if ¢ does
not have an exceptional character, we will set x, = 0, and 8, = 1. These properties are
important to Lemma 4.45.

Page’s Theorem uses the exceptional characters to give an approximation to the prime
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counting function. Counting primes in an arithmetic progression of modulus ¢, we have

1/}(]\[’ q77“) _— 4+ Mﬁq_llﬂq < Ne° logN. (410)

N X
o(q)  o(q)

4.3 Approximations of the Kernel

Denote the kernel of Ay with the same symbol, so that Ay(z) = N7' Y _\ A(n)d,(z).

It follows that

The core of the paper is the approximation to Z]\V(f ), and its further properties, detailed in
the next section.

Set

]@:Lﬁz (-1, L<p<l (4.11)

We write My = M3, when 3 = 1, which is the standard average. For 3 < 1, these are not
averaging operators. They are the operators associated to the exceptional characters. The

Fourier transforms are straight forward to estimate.

Proposition 4.12. We have the estimates

| My (€)| < min{1, (N]¢])'}, (4.13)
|J\7fv<§)l < (NfEH, (4.14)
If\?{é(&) — BTN < NP (4.15)
For integers g and a € A,
L&) = G(La,, a)My(€) — Gxg a) M (€) (4.16)

We state the approximation to the kernel at rational point, with small denominator.
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Lemma 4.17. Assume that |§ — o < N71Q for some 1 < a < ¢ < Q and ged(a, q) = 1.
Then
— — O(QN—2%¢),  Assuming GRH
Al - Ts - )+ { @.18)
O(Qe=Vn), Otherwise
Proof. We proceed under GRH, and return to the unconditional case at the end of the
argument. The key point is that we have the approximation (4.3) for ¢)(V; ¢, 7). Set a :=

& — %. Using Abel summation, we can write

NMpy(a) = Ne(aN) — v Ne(av/N) — 2ria J\Nﬁem dt + O(V/'N).

Turning to the primes, we separate out the sum below according to residue classes mod q.

Since £ = % + a,

PIRDINCESEDY DR (NG

I<N 0<r<q (<N
ged(r,q)=1 {=r mod q

— Z e(%) Z e(al)A(0).

reAq (<N
{=r mod q

Examine the inner sum. Using Abel’s summation formula, and the notation ¢/ for prime

counting function, we have

D1 elahA(l) = G(N:g Pe(aN) - (VN g, r)e(av/N)

(SN
/=r mod q

— 2mia JN U(t; g, r)e(at)dt + O(VN).
VN

At this point we can use the Generalized Riemann Hypothesis. From (4.3), it follows
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that

N — N
T clathl) — grBin(e) = Vi) = SrselaN)e(a)

/=r mod q

- 27riaf e(ta)((t;q,r) —t) dt + O(V'N)
VN

1 Q N 1 1
< Nzt 4+ —f tzredt + O(Nz™)
N Jun
g QN%+E.

The proof without GRH uses Page’s Theorem (4.10) in place of (4.3). We omit the

details.

]

The previous Lemma approximates Ay (&) near a rational point. We extend this ap-

proximation to the entire circle. This is done with these definitions.

Venl(€) = > G(1a,, a)My(€ — a/q)ns(€ — a/q), (4.19)
a/qER s

Wen©) = Y. Glxg. )My (€ — a/q)ns(€ — a/q), (4.20)
a/qeER s

Re={a/q : ae A, 2° <q<2°t}, 4.21)

and Ry = {0}. Further 1[_/41/4) < 7 < 1[—1/21/2)» and 15(§) = 1(4°€). In (4.27), recall
that if g is not exceptional, we have x, = 0. Otherwise, x, is the associated exceptional

Dirichlet character. Given an integer N = 2", set

~ eVt where ¢ is as in (4.18)
N = (4.22)

N5 under GRH
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Lemma 4.23. Let N = 2". Write Ay = By + Erry, where

By= > Via—W. (4.24)

s 25<(N)1/400
Then, we have ||Erry fllee < (N)7Y190| £|| 2.

Proof. We estimate the ¢? norm by Plancherel’s Theorem. That is, we bound
IAN = Byl somy < (N)~H10%.

Fix ¢ € T, where we will estimate the L norm above. By Dirichlet’s Theorem, there

are relatively prime integers a, ¢ with 0 < a < ¢ < (N)"® with

1
€ —a/q| < el

The argument now splits into cases, depending upon the size of q.
Assume that ()40 < ¢ < (N)'5. This is a situation for which the classical Vino-
gradov inequality [65]*Chapter 9 was designed. That estimate is however is not enough

for our purposes. Instead we use [64, Chapter 9] for the estimate below.
’//1]\\/(5)‘ < (q—1/2 + (q/N)1/2 + N_1/5)10g3N < (N>—1/1000'

So, in this case we should also see that éj\v(f ) satisfies the same bound. The function é]\\/'
1S a sum over @ and W; The argument for both is the same. Suppose that 175\,1(5 ) # 0.
The supporting intervals for 75({ — a/q) for a/q € R, are pairwise disjoint. We must have

1€ — ap/qo| < 272 for some ag/qo € R, where 2° < (N)1/490 Then,

€ — ao/qo| = |ao/q0 — a/q| — |€ —a/q| = (qq0) " —q¢ > = ¢o .
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But then by the decay estimate (4.13), we have
(G (La, a0) My (€ — an/qo)| £ (Ngg )™ < N7HA)H

This estimate is summed over s < (V)4 to conclude this case.

Proceed under the assumption that ¢ < Ny = (N)¥4%, From Lemma 4.17, the inequal-

ity (4.18) holds.

—

An(&) = L€ - 2) + O(N; )

The Big O term is as is claimed, so we verify that B},(g) — [77\,77(5 -9 < No_l/Q.
The analysis depends upon how close ¢ is to a/q. Suppose that |£ —a/q| < $N; ?. Then
a/q is the unique rational b/r with (b,r) = 1 and 0 < b < r < N, that meets this criteria.

That means that

Br(€) = L3¢ — a/g)ns(€ — a/q)

where in the last term on the right, 2° < ¢ < 257!, By definition n,(§ — a/q) = n(4°(€ —
a/q)), which equals one by assumption on £. That completes this case.
Continuing, suppose that there is no a/q with |¢ — a/q| < N, 2. The point is that we

have the decay estimates (4.13) and (4.14) which imply
Ve B NG 3/5
[Mn(€ = a/q)l + [My(€ — a/g)l S [N~ a/g)] < 7 S N7 s,

But then, from the definition (4.16), we have

T5(E -9 < NP,
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And as well, trivially bounding Gauss sums by 1, we have

by just summing over all a/q € R, with s < (N)"/40_ That completes the proof.

]

The discussion to this point is of a standard nature. We state here a decomposition of

the operator By defined in (4.24). It encodes our High/Low/Exceptional decomposition,

and requires some care to phrase, in order to prove our endpoint type results for the prime

averages. It depends upon a supplementary parameter (). This parameter () will play two

roles, controlling the size and smoothness of denominators. Recall that an integer ¢ is (-

smooth if all of its prime factors are less than (). Let S be the collection of square-free

(-smooth integers.

VIRE) = Y G(La, ) Ma(E — a/a)n.(€ — afa).

a/qeR s
qESQ

V@R (¢) = > G, a)My(& - a/q)n(€ — a/g),
a/qER s
q¥Sq

Wonl&) = S Glxg ) ME (€ — afq)na(€ — afq),

a/qeER s

Define

LOQ,N = Z ‘/5%107
s

Higy = Z VR — W,

s QSQSg(N)I/‘IOO

EXQJV = Z Ws,n

s:25<Q

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

Concerning these definitions, in the Low term (4.28), there is no restriction on s, but the
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sum only depends upon the finite number of square-free ()-smooth numbers in Sg. (Due to
(4.42), the non-square free integers will not contribute to the sum.) The largest integer in
S will be about 9, and the value of @ can be as big as N. In the High term (4.29), there
are two parts associated with the principal and exceptional characters. For the principal
characters, we exclude the square free ()-smooth denominators which are both larger than
@ and less than (N)/4%° These are included in the Low term. We include all the denom-
inators for the exceptional characters. In the Exceptional term (4.30), we just impose the
restriction on the size of the denominator to be not more than (). This will be part of the
Low term.

The sum of these three terms well approximates B .

Proposition 4.31. Let 1 < Q < N. We have the estimate

Bty o fllee < (N) 72| f |2, (4.32)
We have the estimate
[Erry n flle < (N)72(1 e 4.33)
where
Errly = Log,v + Hig,v + Exy +Erry — By. (4.34)

Proof. From (4.24), we see that

Ery(6) = Y VER(©)

s 1 25> (N)1/400

Recalling the definition of V%' from (4.25), it is straight forward to estimate this last sum

in L*(T), using the Gauss sum estimate G(14,,a) < @. O
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4.4 Properties of the High, Low and Exceptional Terms

The further properties of the High, Low and Exceptional terms are given here, in that order.

4.4.1 The High Terms

We have the ¢? estimates for the fixed scale, and for the supremum over large scales, for

the High term defined in (4.29). Note that the supremum is larger by a logarithmic factor.

Lemma 4.35. We have the inequalities
) loglo
|Hig e $ 220 Qng (4.36)

loglog @ - log @
Q

| sup [Hign flll2 < [1f]]ez- (4.37)
N>Q?
We comment that the insertion of the () smooth property into the definition of Vs%hi in

(4.26) is immaterial to this argument.

Proof. Below, we assume that there are no exceptional characters, as a matter of con-
venience as the exceptional characters are treated in exactly the same manner. For the

inequality (4.36), we have from the definition of the High term in (4.29), and (4.26),

[Hign|lee—e = ||Hig | Lo (r)

R

s:Q<25<N

DI 174 PR

s:Q<25<N

3 max melG(L o)
s:Q<25<N

1
S max —
B 25\ 25+1
S QSZSSN <q< ¢(Q)

log1
S logs- 2 < loglog @
s Q<23 Q

L(T)

A

N

A

A
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The first line is Plancherel, and the subsequent lines depend upon definitions, and the fact

that the functions below are disjointly supported.
{ns(-—a/q) + 2°<q<2"' ae Al

Last of all, we use a well known lower bound ¢(q) » ¢/loglogq.

For the maximal inequality (4.37), we have an additional logarithmic term. This is
direct consequence of the Bourgain multi-frequency inequality, stated in Lemma 4.38. We

then have

I sup [Higw fllle < 33 | sup V3]l

s Q<23
1 log @) - loglog
< s+ max —— - ||flle < flle2-
X s W 2By )
[
Lemma 4.38. Let 0y, . ..,0; be points in T with min;..|0; — 0| > 27202 We have the
inequality
J ~ ~
| sup | Y37 (72 3wl = 0)ma (- = a/a)|||, < 1087 - 1171
N>450 i=1 i=1 14

This is one of the main results of [42]. It is stated therein with a higher power of log .J.
But it is well known that the inequality holds with a single power of log J. This is discussed

in detail in [60].

4.42 The Low Terms

From the Low terms defined in (4.28), the property is
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Lemma 4.39. For a functions f, g supported on interval I of length N = 2", we have

N~ Logn *f,9) $1ogQ - {f>r{g)r- (4.40)

The following Mobius Lemma is well known.

Lemma 4.41. For each q, we have

S G(1Lay, a) F (W - - — afa))(x) = %cqw). (4.42)

Proof. Compute

N Ga, ) F 7 (My .- — a/)) (@) = My » F'ny(2) Y. G(1a,. a)elaz/q).

acAy acAq

We focus on the last sum above, namely

Sy(x) = Z G(1,4,a)e(xa/q)

aEAq
Z 2 a(r +x)/q)
¢(q reAq acAq
ZLZc(vw—a:):@c (—x) (4.43)
o) & ola)
The last line uses Cohen’s identity. [l

The two steps of inserting of the property of being () smooth in (4.25), as well as

dropping an restriction on s in (4.28), were made for this proof.

Proof of Lemma 4.39. By (4.42), the kernel of the operator Log y is

Logn(z) = My = ]—"_1775(9:) - S(—x),

where Z () (4.44)

q€Sq
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We establish a pointwise bound ||.S||s~ < log @, which proves the Lemma.

Assume x # 0. We exploit the multiplicative properties of the summands, as well as
¢>(( )) () = pp(z). Let Q; be the primes p < @
such that (p, z) = 1, and set Qs to be the primes less than () which are not in Q;.

The multiplicative aspect of the sums allows us to write

1(q) _Ma) oy
@Ct](_ )_ ¢(Q1> CI1< ) ,U<QQ)

where ¢ = ¢1¢2, and all prime factors of ¢; are in Q. If Q; is empty, set ¢; = 1. Thus,
S(z) = Si(x)S>(x), where the two terms are associated with Q; and Qs respectively. We

have

S@= Y My

q is @1 smooth Qb(Q)

] o)

o, cb(p

H1+ A,

peQ1

This is so, since z1(p)c,(z) = 1. It is a straight forward consequence of the Prime Number
Theorem that A, < log(@). Here, and below, we say that ¢ is Q smooth if all the prime
factors of ¢ are in the set of primes Q.

The second term is as below, where d = |Qs|. Here, in the definition (4.28), there is no

restriction on s, hence all the smooth square free numbers are included. If Q, = ¢, then
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Ss(x) = 1, otherwise

Sp(w) = >, ulg)

q is Q2 smooth

-5 ()

<

If z = 0, then S(0) = Sy(z) = —1. That completes the proof.

O]
4.4.3 The Exceptional Term
The Exceptional terms are always of a smaller order than the Low terms.
Lemma 4.45. Let x be an exceptional character modulo q. For x € Z,
q
Y Glx.a)e(aa/a)| = == (4.46)

acAy ¢(q)

provided (x,q) = 1, otherwise the sum is zero.

Proof. 1t is also known that exceptional characters are primitive - see [64, Theorem 5.27].

So the sum is zero if (z,q) > 1. We use the common notation

T(x,x) = Y xla)e(az/q)
acAq

which is ¢(q)G(x, ). Assuming (z,q) = 1,

T(x;a) = 7(x, 1).
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This leads immediately to

M rea)e() =70 1) Y xa)e(— L)
acAy q acAy q
70006 _ lr0)Px(@)
(q) o))

It is known that |7(x)|? = ¢ for primitive characters. And the exceptional character is

quadratic, so this completes the proof. [

Lemma 4.47. For a function f supported on interval I of length N = 2", we have

(Exqn *f)e < (loglogQ)? - {f)r. (4.48)

The term on the left is defined in (4.30).

Proof. Following the argument from Lemma 4.39, we have

Exon(z) = >, D Glxg a)e(za/q) - My« F~ ', (x).

q<Q acAy

Above, 2% < g < 2%*!, The interior sum above is estimated in (4.46). Using the lower

bound on the totient function in (4.8), we have

Exqn(2)f < loglog Q- (f)r Z L.

q<Q

q exceptional

We know that the exceptional ¢ grow at the rate of a double exponential, that is for g, being
the vth exceptional ¢, we have ¢, » C¢", for some C' > 1. It follows that the sum above is

at most log log Q. ]
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4.5 Proofs of the Fixed Scale and Sparse Bounds

Proof of Theorem 4.4. Let N = 2", and recall that f = 1y and g = 15 where F,G < I,
and interval of length V.

Let us address the case in which we do not assume GRH. We always have the estimate

N~YANF, 9> S n-{FHlgdr (4.49)

Hence, if we have (f);{g); < e*V"/1% the inequality with a squared log follows.
We assume that e=“V™ < (f);{g);, and then prove a better estimate. We turn to the
Low/High/Exceptional decomposition in (4.28)—(4.30), for a choice of integer () that we

will specify. We have
Ayx = LOQ,N + HiQ7N — EXQ,N +Erry + EI‘I’EV (4.50)

These terms are defined (4.28), (4.29), (4.30), (4.24) and (4.34) df respectively.

For the ‘High’ term we have by (4.36),

logl
Nt £9) < EEL gy

The same inequality holds for both Errg x f and Err’Q’ ~ f by Lemma 4.23 and Proposi-
tion 4.31.

Concering the Low term, by (4.40), we have

N_1|<LOQ,N f, g>| < log Q<f>l<g>l

The Exceptional term satisfies the same estimate by (4.48).
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Combining estimates, choose () to minimize the right hand side, namely

N"YANS,9) < % [Fgr]” +108Q - (rropr. (@51)

This value of () is

log@ ~1/2
Qm ~ [{Hkgr]

Since e~V < (f)1{g)r. this is an allowed choice of Q). And, then, we prove the desired

inequality, but only need a single power of logarithm.

Assuming GRH, from (4.49), we see that the inequality to prove is always true provided
{i{gdr < eN~Y4 Assuming this inequality fails, we follow the same line of reasoning
above that leads to (4.51). That value of @ will be at most N''/4, so the proof will complete,

to show the bound with a single power of the logarithmic term.

Turning to the sparse bounds, let us begin with the definitions.

Definition 4.52. A collection of intervals S is called sparse if to each interval I € S, there
is a set By < I so that 4|E;| = |I| and the collection {E; : I € S} are pairwise disjoint.

All intervals will be finite sets of consecutive integers in Z.

The form of the sparse bound in Theorem 4.6 strongly suggests that one use a recursive
method of proof. (Which is indeed the common method.) To formalize it, we start with the
notion of a linearized maximal function. Namely, to bound the maximal function A* f, it
suffices to bound A, f(z), where 7 : Z — {2" : n e N} is a function, taken to realize
the supremum. The supremum in the definition of A* f is always attained if f is finitely

supported.

Definition 4.53. Let Iy an interval, and let f be supported on 31y. A map 7 : [y —
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{1,2,4,...,|Io|} is said to be admissible if

sup My f(z) < 10(f)3r,.1-
Nz=7(x)

That is, T is admissible if at all locations x, the averages of f over scales larger than 7(x)

are controlled by the global average of f.

Lemma 4.54. Let f and T be as in Definition 4.53. Further assume that  and g are

indicator functions, with g supported on 1. Then, we have

[Tl A f, 9) < {10110 - (L0 f 31019 10,1)", (4.55)

where t = 1 assuming RH, and t = 2 otherwise.

Proof. We restrict 7 to take values 1,2,4,...,2" ... . Let |[y] = Ny = 2"°. We always

have the inequalities

‘IO‘_1<ATf7 g> < n0<f>10,1<g>10,1

’10’71<1T<TATf7 g> < (lOg T)<f>10,1<g>10,1'

The top line follows from admissibility.
We begin by not assuming GRH. Then, the conclusion of the Lemma is immediate if
we have (Log{f)r,1{g)1,.1)* » no. It is also immediate if log 7 < (Log{f)1,.1{9)15.1)*

We proceed assuming

Py = C(Log<f>1071<g>1071)2 < ¢omin{ng, log 7}, (4.56)

where 0 < ¢y < 1 is sufficiently small.
We use the definitions in (4.28)—(4.30) for a value of Q < e“V™ that we will specify.

We address the High, Low, Exceptional and both Error terms, as in (4.50). First, the Error
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terms. The error terms come in the form of Erry from Lemma 4.23 and Err’y from (4.33).
Both are similar. Concerning the second error term, from the estimate (4.34) and (4.56),

we have by a straight forward square function argument,

[Errg. fI3< D, |Errgan flI

n: pg <n<no

<IflE D e

n: pgénéno

< 112 - poe™ < N1 £l22 - <Fsrol@Dron.

This provided C' in (4.56) is large enough. This is a much smaller estimate than we need.
The second error term in Proposition 4.31 is addressed by the same square function argu-
ment.

For the High term, apply (4.37) to see that

, log @ - log log )
| sup [Higy flls < —228 282 f||o. (4.57)
N>Q?2 Q

For the Low term the definition of admissibility and (4.40) that

1o~ Log,r(x) f (@), 9) < (log Q){f)r{g)r-

The Exceptional term also satisfies this bound.

‘We conclude that

log @ - loglog @
Q

[Lo] 7' (A f,9) < rragyre +1log Q- {f)i{g)r.

This is optimized by taking () so that

Q ~1/2
Toglog O [<Foloy]
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And this will be an allowed value of () since (4.56) holds. Again, the resulting estimate is

better by power of the logarithmic term than what is claimed.

Under RH, the proof is very similar, but a wider range of (’s are allowed. In particular,

only a single power of logarithm is needed.
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