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SUMMARY

This thesis consists of three applications of the circle method in number theory prob-

lems. In the second chapter, we study a question of Graham. Are there infinitely many in-

tegers n for which the central binomial coefficient
`

2n
n

˘

is relatively prime to 105 “ 3 ¨5 ¨7?

By Kummer’s Theorem, this is the same as asking if there are infinitely many integers n,

so that n added to itself base 3, 5, or 7, has no carries. A probabilistic heuristic of Pom-

merance predicts that there should be infinitely many such integers n. We establish a result

of a statistical nature supporting Pommerance’s heuristic. The proof consists of a Fourier

analysis method, as well as geometrically bypassing an old conjecture about the primes.

In the third chapter, we discover an unexpected cancellation on the sums involving

exponential functions. Applying this theorem on the first terms of the Ramanujan-Hardy-

Rademacher expansion for the partition function gives us a natural proof of a “weak” pen-

tagonal number theorem. We find several similar upper bounds for many different partition

functions. Additionally, we prove another set of “weak” pentagonal number theorems for

the primes, which allows us to count the number of primes in certain intervals with small

error. Finally, we show an approximate solution to the Prouhet-Tarry-Escott problem using

a similar technique. The core of the proofs is an involved circle method argument.

The fourth chapter of this thesis is about an endpoint scale independent ℓp´improving

inequality for averages over the prime numbers. The primes are almost full-dimensional,

hence one expects improving estimates for all p ą 1. Those are known, and relatively easy

to establish. The endpoint estimates are far more involved however, engaging for instance

Siegel zeros, in the unconditional case, and the Generalized Riemann Hypothesis (GRH) in

the general case. Assuming GRH, we prove the sharpest possible bound up to a constant.

Unconditionally, we prove the same inequality up to a logarithmic factor. The proof is

based on a circle method argument, and utilizing smooth numbers to gain additional control

of Ramanujan sums.

xiii



CHAPTER 1

INTRODUCTION

In this dissertation, we use the notation fpxq » gpxq, which means that there exists C ą 0

such that

lim sup
xÑ8

|fpxq|

|gpxq|
“ C;

In particular, we show f „ g if C “ 1. We sometimes need to use fpxq “ Opgpxqq or

fpxq À gpxq, which both of them mean that

lim sup
xÑ8

|fpxq|

|gpxq|
ă 8.

Also we say fpxq “ opgpxqq if

lim inf
xÑ8

|fpxq|

|gpxq|
“ 0.

and fpxq “ ωpgpxqq if gpxq “ opfpxqq. Finally we would like to emphasize that the

constants in these notations are functions of a specific variable like y. In that case we write

them like »y, Ày, Oypfpxqq, ...

1.1 On the Distribution of Prime Numbers

One of the major results involving the distribution of primes is the Prime Number Theorem,

which in its simplest form states that

πpxq „
x

logpxq
(1.1)
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where πpxq is the number of primes less than or equal to x. We need the definition of

the Riemann zeta function for the rest of the argument. Define the following function for

Repsq ą 1:

ζpsq :“
ÿ

nPN

1

ns

In order to extend the definition to the whole complex plane, we can use a specific explicit

formula, which is explained later, and use analytic continuation to extend the definition up

to Repsq ě 1{2. To further expand the definition to the whole complex plane, define

ξpsq :“
1

2
sps ´ 1qπ´ s

2Γp
s

2
qζpsq. (1.2)

It is known that we have the functional equation:

ξpsq “ ξp1 ´ sq,

we can use analytic continuation to expand the definition of ζ to the whole plane. Note that

ζ has a simple pole at s “ 1 and trivial zeroes at t´2nu for n P N. The statement (1.1) is

basically the same as saying the Riemann Zeta function ζpsq does not have zero on the line

Repsq “ 1. A stronger result gives

Ψ0pxq :“
ÿ

năx

Λpnq `
1

2
Λpxq “ x ` Opxe´c

?
logpxq

q for a universal constant c ą 0 (1.3)

and Λ is the Von Mangoldt function. To prove this result we need to show that there exists a

zero-free region in the critical strip 0 ă Repsq ă 1. One can show that the zero-free region

for ζpσ ` itq is

σ ě 1 ´
c

logp|t| ` 2q
for some c ą 0

2



Aside from this zero-free region and counting the number of zeroes of the zeta function,

we also need another ingredient to prove (1.3). We can prove the following explicit formula

for Ψ0 in terms of ζ function:

Ψ0pxq “ x ´
ÿ

ImpρqăT

xρ

ρ
´
ζ 1p0q

ζp0q
´

1

2
logp1 ´ x´2

q

` O

ˆ

plog xqmin

ˆ

x

T ∥ x ∥
, 1

˙

`
x log2pxT q

T

˙

.

where the sum is over the nontrivial zeroes ρ of the Riemann zeta function. Related to this

matter, we have the Riemann Hypothesis (RH), which assumes that all zeroes of the zeta

function ζpsq lie on the critical line Repsq “ 1
2
. Assuming the RH we can show that

Ψpxq “ x ` Opx
1
2 log xq.

In a more general case, we can define the L´function Lps, χq to be

Lps, χq :“
ÿ

nPN

χpnq

ns
for Repsq ą 1

where χ is a Dirichlet Character. We can use analytic continuation to extend Lps, χq to

the whole complex plane for every nonprincipal character χ. Zeroes of L´functions are

important as they have a direct relation with the distribution of prime numbers in arithmetic

progressions. A well-known result states that there are no zeroes in the region

σ ě 1 ´
c

log qp1 ` |t|q
for some c ą 0

for just one exception in some cases of q. This special zero is called a Siegel zero and the

character χq is called the exceptional character. An application of studying the zeroes of

3



Lps, χq is the Siegel–Walfisz Theorem, which states that

Ψpx; q, rq :“
ÿ

năx
n”r pmod qq

Λpnq `
1

2
Λpxq1x”r “

x

ϕpqq
`
xβχpxq

ϕpqqβ
` Opqxe´c

?
logpxq

q

where β is the Siegel zero. Note that exceptional characters happen rarely. In fact, if qn is

the nth integer with an exceptional character, then there exists C ą 0 such that qn`1 ą qCn .

The Generalized Riemann Hypothesis (GRH) assumes that the non-trivial zeroes of Lps, χq

are living on the line Repsq “ 1
2
. Using the GRH one can show that

Ψpx; q, rq “
x

ϕpqq
` O

´

x
1
2 plog qxq

2
¯

.

Obviously in this case, we do not have any Siegel zeroes. There are more generalized

categories of L´functions, whose definitions we will not provide here.

Related to the distribution of prime numbers, an integer x is called y´smooth, if all

of the prime factors of x are less than or equal to y. In other words, if p|x, then p ď

y. An important property of the smooth numbers that we will use in chapter 4 is their

multiplicative property. That is, if x, z are y´smooth numbers, then xz is also a y´smooth

number.

One of the central questions in this area is to count the number of the y´smooth num-

bers x ă N , which is denoted by ΨpN, yq (see [1]). Note that ΨpN, yq ď N , and if y ą N ,

then obviously ΨpN, yq “ N . Dickman in [2] showed that for any fixed u ě 1, we have

the following estimate for Ψpx, yq:

Ψpx, yq „ xρpuq where y “ x1{u

and ρpyq is called the Dickman-De Brujin function and is non zero as x Ñ 8. It is obvious
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that ρpuq “ 1 for 0 ď u ď 1 and it is shown that

ρpuq “ 1 ´ logpuq for 1 ď u ď 2

and

ρpuq “
1

u

ż u

u´1

ρptqdt. (1.4)

The sieve methods produce the estimate

Ψpx, x1{u
q “ xp1 ´ log uq ` opxq for 1 ď u ď 2.

Rankin proved the upper bound

Ψpx, plog xq
A

q “ x1´ 1
A

`Op1{ log log xq. (1.5)

Assuming the Riemann hypothesis it is shown in [3] that

Ψpx, x1{u
q “ xρpuq

ˆ

1 ` O

ˆ

logpu ` 1q

log y

˙˙

for y ě plog xq
2`ϵ

Another interesting problem in this area is to count the number of smooth numbers in short

intervals. A challenge problem is to prove that

Ψpx ` c
?
x, xαq ´ Ψpx, xαq ą 0 for all α ą 0 and large x ą 0 (1.6)

Croot in [4] showed that one can get (1.6) for α “ 3
14

?
e

`ϵ. He in fact proved the following

lower bound:

Ψpx ` c
?
x, xαq ´ Ψpx, xαq "

?
x

plog xq
log 4`ϵ

5



This bound has been improved in [5]. Soundarajan in [6] proved the challenge problem

(1.6) assuming the RH.

1.2 Partition Theory

Theory of Partitions has been a subject of interest in mathematics for centuries. We denote

the partition function ppnq as the number of representations of the positive integer n as sum

of increasing positive integers. For example pp4q “ 5; since 4 “ 1` 1` 1` 1 or 4 “ 1` 3

or 4 “ 1 ` 1 ` 2 or 4 “ 2 ` 2 or 4 “ 4 (1 ` 3 and 3 ` 1 are considered to be the same).

The generating function of the number of partitions is:

F pqq :“
8
ÿ

n“0

ppnqqn “

8
ź

n“1

˜

8
ÿ

m“0

qmn

¸

“

8
ź

n“1

1

1 ´ qn
for |q| ă 1.

One of the main properties of partition functions is that they satisfy the Pentagonal Number

Theorem. Let Gn “
np3n`1q

2
be the pentagonal numbers, then

ÿ

Gnďx

p´1q
nppx ´ Gnq “ 0

In other words, the Pentagonal Number theorem states that

pq; qq8 :“
8
ź

n“1

p1 ´ qnq “ 1 `

8
ÿ

k“1

p´1q
k
´

q
kp3k`1q

2 ` q
kp3k´1q

2

¯

(1.7)

There are different proofs for this combinatorial property (see, for example, [7]). An exact

formula for ppnq is a well-known result due to Rademacher, Hardy, and Ramanujan.

ppnq “
1

π
?
2

8
ÿ

k“1

¨

˚

˝

?
k

¨

˚

˝

ÿ

0ďhăk
ph,kq“1

ωph, kqe´ 2πihn
k

˛

‹

‚

d

dx

¨

˚

˝

sinh
´

π
k

b

2
3
px ´ 1

24
q

¯

b

x ´ 1
24

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

x“n

˛

‹

‚

,

(1.8)
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where ωph, kq is a sum over some roots of unity.

Aside from the usual partitions, there are variants of it which have been studied exten-

sively. For example, let Qpnq be the number of partitions of n with odd parts. An exact

formula for Qpnq has been proved in [8]. Simply speaking, Qpnq can be approximated as

Qpnq “ A
d

dx

¨

˝I0

¨

˝π

d

x ` 1
24

3

˛

‚

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

x“n

` Op
a

Qpnqq.

where A is a certain constant and I0 is the second type Bessel function with degree zero.

More generally, let ppn;α,Mq be the number of partitions with parts of the form Mt ˘ α,

1 ď α ď M ´ 1, and pα,Mq “ 1. It is shown in [9, Theorem 4] that ppn;α,Mq has the

following form:

ppn;α,Mq “

π cscpπα
M

qI1

´

π
?
12Mn´6α2`6Mα´M2

3M

¯

?
12Mn ´ 6α2 ` 6Mα ´ M2

` Ope
π

?
n

?
3M q. (1.9)

1.3 Vinogradov Mean Value Theorem

An old problem in number theory proposed by Waring asks for the number of ways that

one can write an integer n into the sum of kth powers. In other words, it asks for rn,kpxq

the number of solutions for the following equation:

x “ ak1 ` ak2 ` ¨ ¨ ¨ akn for ai P N Y t0u.

Related to this problem, one might ask for the number of solutions Jn,kpNq for the

following system of equations:

ar1 ` ¨ ¨ ¨ ` arn “ br1 ` ¨ ¨ ¨ ` brn where 0 ď ai, bi ď N and 1 ď r ď k (1.10)

The main conjecture of this topic is to prove that for all n, k ě 1 and all large N and every

7



ϵ ą 0

Jn,kpNq Àn,k,ϵ N
ϵ
´

Nn
` N2n´ 1

2
kpk`1q

¯

. (1.11)

Obviously there are around Nn trivial solutions where taiu “ tbiu. The nontrivial cases

of the upper bound (1.11) occurs when k2 ă 2n. Using the same technique as the Waring

problem, Vinogradov proved inequality (1.11) for k2 À n logpnq.

Conjecture (1.11) was proved for k “ 3 by Wooley in 2014 and k ě 4 by Bourgain,

Demeter, and Guth in 2016. Wooley used an efficient congruence method, which helped

him to apply the Vinogradov method inductively. Bourgain, Demeter and Guth used de-

coupling, induction on scales, and symmetries over the Fourier transform of fk on a certain

submanifold.

As an application, we view the same problem as (1.10) with a different perspective. We

want to find the range of pk, nq where a nontrivial solution for (1.10) exists. Remember that

a straightforward argument shows that n should be bigger than k. We call a solution for the

case k “ n´ 1 a perfect solution. Finding a perfect solution is extremely hard, and n “ 12

is the largest known n for a perfect solution (see [10]). We present here three categories of

results. The first type of result is to find a constructive solution, that is to explicitly give

ai, bi. To our knowledge the best possible range for k in this case is actually Oplog nq. In

the other category, we only care about the existence of solutions, which are called non-

constructive solutions. The best current range for this case is k “ Opn1{2q, which is also

achievable using an elementary Pigeon-hole argument. We will give this proof in chapter

3. The last category is to give a “statistical” solution, which means that
ř

ari ´ bri will not

be zero, but very small for every 1 ď r ď k.

Note that using the Vinogradov mean value theorem (1.11), the trivial upper bound

becomes sharper when n ă 2k2 (the right hand side becomes Nn`ϵ). So we expect to have

a harder time finding a nontrivial solution. In chapter 3 we will give statistical solutions in

8



this out-of-reach range.

1.4 Trigonometric Sums Over Primes

After studying the coefficients of Dirichlet’s series on a certain equation based on the zeta

functions we reach an inequality called Vaughn’s identity. That is let |f | ď 1 be an arith-

metic function over integers and UV ă N . Then

ÿ

năN

fpnqΛpnq À U ` plogNq
ÿ

tďUV

max
1ďwďN

ˇ

ˇ

ÿ

wďrďN
t

fprtq
ˇ

ˇ

` N
1
2 plogNq max

UďMďN{V
max

V ďjďN{M

¨

˝

ÿ

V ăkďN{M

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

Mămăminp2M,N
j
,N
k

q

fpmjqfpmkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

1
2

.

(1.12)

This formula gives a trivial estimate when f is completely multiplicative.

As a result of this inequality, we can pick f to be an exponential function and arrive at

the following theorem.

Theorem 1.13. Assume that

|α ´
a

q
| ă

1

q2

Then Vinogradov proved that

ÿ

năN

Λpnqe p´nαq À NplogNq
3
´

q´1{2
` N´1{5

`
q

N

¯

.

Theorem 1.13 implies that for a large enough q, the Discrete Fourier transform of Λ is

small.

9



1.5 Ramanujan’s Sums

In this section, we mention a few properties that are related to the Gauss sums. We start

with Ramanujan’s sum, given by

τqpxq “
ÿ

aPAq

epax{qq. (1.14)

Throughout, we denote Aq “ ta P Z{qZ : pa, qq “ 1u, so that |Aq| “ ϕpqq, the totient

function. This lower bound on the totient function is well known: For all 0 ă ϵ ă 1, we

have

ϕpqq "
q

log log q
" q1´ϵ. (1.15)

Cancellative properties of the Ramanujan sums are very important for us, and are ex-

pressed in different ways. The first of these is

τqpxq “ µpqq pq, xq “ 1. (1.16)

The next cancellation property is known as Cohen’s identity:

ÿ

rPAq

τqpx ` rq “ µpqqτqp´xq. (1.17)

Define the Gauss sum

Gpχq, aq :“
1

ϕpqq

ÿ

b pmod qq

χpbqep
ab

q
q.

We also need to use the following properties of the Gauss sums. Assume that χ is a non-

principal character and a ě 1. Also let χ˚ modulo q˚ be the primitive character corre-

10



sponding to χ modulo q (obviously q˚|q). It is known that

Gpχq, aq “ Gpχ, 1q
ÿ

d| gcdpa,q{q˚q

dχ˚
q˚p

a

d
qµp

q

dq˚
q (1.18)

in particular, if pa, qq “ 1, then Gpχq, aq “ χ̄qpaqGpχq, 1q. Also we always have the

inequality

|Gpχq, aq| À

$

’

’

&

’

’

%

q´1`ϵ gcdpa, qq
?
q˚ if χ˚

q˚ is not principal

q´1`ϵ gcdpa, qqq˚ Otherwise.

In the case that χq is a real character, we have |Gpχq, aq| “
?
q if gcdpa, qq “ 1. Otherwise,

if r “ gcdpq, aq, then

Gpχq, aq “
1

ϕpq{rq
χ˚
q˚pa{rqχ˚

q˚p
q

rq˚
qµp

q

rq˚
qτpχ˚

q˚q1r|q{q˚ . (1.19)

In particular, if χ is the primitive real character, we get Gpχq, aq “ Gpχq, 1qχpaq1r“1.

1.6 Ergodic Theorem: Discrete Theory

After Birkhoff’s theorem, Bourgain started the discrete generalized harmonic analysis field

in the 1980s by proving the ergodic theorem along the square integers. Today, it is a vi-

brant field with several recent important results. Although there are various transference

theorems to connect the discrete settings with the continuous results, note that the proofs

are generally harder in the discrete cases.

Bourgain generalized the Birkhoff Ergodic Theorem for the square integers. For f P

L2pXq,

KNfpxq :“
1

?
N

ÿ

kă
?
N

fpT k2xq converges µ ´ almost everywhere.

11



One of his results was the fact that supN KN is an ℓp´bounded operator, for 1 ă p ď 8.

In order to prove this theorem, he created the multifrequency argument.

Theorem 1.20. Let λ1, ¨ ¨ ¨ , λL P R be distinct points with |λi ´λs| ě 2´j0 for i ‰ s. Then

›

›

›

›

›

sup
jąj0

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

ℓ“1

epλℓxq pϕj ˚ ep´λℓ¨qfq pxq

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

2

À plogLq
3 ∥ f ∥2

where ϕj can be certain smooth Schwartz functions.

Inequalities like in theorem 1.20 are called a quantitative result, while the Birkhoff

theorem was a qualitative statement.

1.6.1 Ergodic Theorem Along the Prime Numbers

We also may study the average over sets other than polynomials. These kinds of problems

are considered to be ergodic theorems with arithmetic weights. We can consider the set of

primes, related to the Vinogradov theorem, to study

TNfpxq :“
1

N

ÿ

năN

Λpnqfpx ´ nq

The set of primes is “full dimensional”, so one can see that in an appropriate sense, an ℓ1

function is improved to an ℓ8 function. Our result in chapter 4 gives such an improving

upper bound. We can also check the cases where p ‰ 1, which are not the endpoints. There

is the following ℓp´improving bound for 1 ă p ă 2:

∥ TNf ∥ℓp1 À N
1
p1 ´ 1

p ∥ f ∥ℓp where
1

p
`

1

p1
“ 1

We can say that these inequalities are improving, since we improve from ℓp to ℓp1 .

12



1.7 Schanuel’s Conjecture

Let Q̄ be the set of algebraic numbers, and

L :“ tx such that x “ log y for some y P Q̄u.

There are many problems involving the set L in transcendental number theory. For ex-

ample, the Hermite–Lindemann theorem states that any nonzero element of L is transcen-

dental. Also any pair of elements λ1, λ2 P Lzt0u which are independent over Q should

be linearly independent over Q̄. A generalization of this result is known as the Baker’s

theorem, which states that:

Theorem 1.21. Assume that λ1, ¨ ¨ ¨ , λr P L are independent over Q, and β1, ¨ ¨ ¨ , βr P Q̄.

Also assume that H is the maximum of heights of βi (For the definition of height, please see

[11, 12, 13]). Then

|λ1β1 ` ¨ ¨ ¨ ` λrβr| ą H´C

where C is an effectively computable constant with respect to r, λi and maximum degree of

βi.

It immediately, gives the following result: For algebraic numbers α1, ¨ ¨ ¨ , αr ‰ 0, 1,

and for rationally independent algebraic irrational numbers β1, ¨ ¨ ¨ , βr the number αβ1

1 ¨ ¨ ¨αβr
r

is a transcendental number.

Baker’s theorem concludes the question regarding the transcendence of the value at

algebraic numbers of the polynomials with algebraic coefficients. A more general question,

which is still a conjecture asks for transcendence of rational functions with coefficients that

are algebraic numbers. In other world, we are interested in the following conjecture:

Conjecture 1 (Schanuel’s Conjecture). Assume that z1, ¨ ¨ ¨ , zr P C are linearly indepen-

dent over the rational numbers. Then the field extension F “ Qpz1, ¨ ¨ ¨ , zr, e
z1 , ¨ ¨ ¨ , ezrq
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has transcendence degree at least r over Q.

As a particular case, Schanuel’s conjecture states that for distinct prime numbers q1, ¨ ¨ ¨ , qr,

the set

t
1

log q1
, ¨ ¨ ¨ ,

1

log qr
u

is independent over Q. Although this conjecture does not seem achievable at the moment,

there is partial progress like in [14] and [15].

1.8 Thesis Organization

This thesis has four chapters. The first chapter is the introduction, which consists of the

necessary preliminaries. In the second chapter we study the Graham problem about the

p´divisibility of the central binomial coefficients. We show that for every r ě 1, and all r

distinct (sufficiently large) primes p1, ..., pr ą p0pr, εq, there exist infinitely many integers

n such that
`

2n
n

˘

is divisible by these primes to only low multiplicity. From a theorem

of Kummer, an upper bound for the number of times that a prime pj can divide
`

2n
n

˘

is

1 ` log n{ log pj; and our theorem shows that we can find integers n where for j “ 1, ..., r,

pj divides
`

2n
n

˘

with multiplicity at most ε times this amount. This work is under review for

publication (see [16]).

In the third chapter, we study an unexpected cancellation involving exponential sums.

Following attempts at an analytic proof of the Pentagonal Number Theorem, we report on

the discovery of a general principle leading to an unexpected cancellation of oscillating

sums. It turns out that sums in the class we consider are much smaller than would be

predicted by certain probabilistic heuristics. After stating the motivation, and our theorem,

we apply it to prove several results on the Prouhet-Tarry-Escott Problem, integer partitions,

and the distribution of prime numbers. We solve an approximate version of the Prouhet-

Tarry-Escott Problem, and in doing so we give some evidence that a certain pigeonhole

argument for solving the exact version of the Problem can be improved. In fact, our work
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in the approximate case exceeds the bounds one can prove using a pigeonhole argument,

which seems remarkable. Also, we prove that

ÿ

ℓ2ăn

p´1q
ℓppn ´ ℓ2q „ p´1q

n2´3{4n´1{4
a

ppnq,

where ppnq is the usual partition function. We get a “Weak pentagonal number theorem”,

in which we can replace the partition function ppnq with Chebyshev Ψ function. Our result

is stronger than one would get using a strong form of the Prime Number Theorem and also

a naive use of the Riemann Hypothesis in each interval, since the widths of the intervals

are smaller than e
1
2

?
x, making the Riemann Hypothesis estimate “trivial”. This project is

also under review for publication (see [17]).

In the last chapter, we study an ergodic average along the primes. We prove sharp ℓp-

improving for these averages, and sparse bounds for the maximal function. The inequality

assuming the GRH is sharp. The proof depends upon the Circle Method, and an interpola-

tion argument of Bourgain. This work has been published in Math Research Letter journal

(see [18]). Related to this topic, we also published a similar result in [19].
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CHAPTER 2

ON A CONJECTURE OF GRAHAM ON THE P -DIVISIBILITY OF CENTRAL

BINOMIAL COEFFICIENTS

2.1 Introduction

In [20] and [21] it is mentioned that R. L. Graham had offered $1,000 to settle the problem

of whether or not there are infinitely many integers n such that
`

2n
n

˘

is relatively prime to

105 “ 3 ¨ 5 ¨ 7. From the following theorem of Kummer [22] we immediately see that

Graham’s problem is equivalent to asking whether there are infinitely many integers n ě 1

with the property that when we add n to itself in bases 3, 5, and 7, there are no carries.

Kummer’s Theorem: For a prime p we have that the number of times that p divides
`

n
m

˘

equals the number of carries when adding the numbers m and n ´ m in base-p.

In other words, are there infinitely many integers n ě 1 such that all the base-3 digits are

in t0, 1u, all the base-5 digits are in t0, 1, 2u, and all the base-7 digits are in t0, 1, 2, 3u? If

so, then there are infinitely many integers n such that gcd
``

2n
n

˘

, 105
˘

“ 1; and if not, then

there are at most finitely many integers n ě 1 with gcd
``

2n
n

˘

, 105
˘

“ 1.

In [23], Erdős, Graham, Ruzsa, and Straus proved that for every pair of primes p, q,

there are infinitely many integers n ě 1 with gcd
``

2n
n

˘

, pq
˘

“ 1; however, there are no such

results in the literature for 3 or more primes (though, for example, there are results [24, 25]

on when
`

2n
n

˘

is coprime to n and [26] when
`

2n
n

˘

is squarefree). Apart from whether one

can give a proof of whether there are or aren’t infinitely many n with gcd
``

2n
n

˘

, 105
˘

“ 1,

one can at least ask whether it’s plausible or not that such integers n ě 1 exist. Pomerance

gave a simple heuristic for why there should exist infinitely many n ě 1 with this property

(see, for example, [27]): if we choose a random n P r1, xs, the probability that all its

base-3 digits are in t0, 1u should be about p2{3qlogpxq{ log 3 « x´0.37; the probability that all
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its base-5 digits are t0, 1, 2u should be about p3{5qlogpxq{ log 5 « x´0.32; and the probability

that all its base-7 digits are t0, 1, 2, 3u should be about p4{7qlogpxq{ log 7 « x´0.29. Assuming

independence, the probability that a random n P r1, xs satisfies all three conditions is about

x´0.37x´0.32x´0.29 “ x´0.98. So, we would expect there to be about x0.02 numbers n P r1, xs

with the property that gcd
``

2n
n

˘

, 105
˘

“ 1, which clearly tends to infinity the larger we take

x to be.

One can extend Pomerance’s heuristic to any number of odd primes, making the same

independence assumptions (that the events E1, ..., Er are mutually independent, where for

a randomly chosen integer n P r1, xs, Ej is the event that the base-pj digits of n are

in t0, 1, ..., ppj ´ 1q{2u). When one does this, one would expect there to exist infinitely

many integers n ě 1 such that gcd
``

2n
n

˘

, p1 ¨ ¨ ¨ pr
˘

“ 1, for distinct odd primes p1, ..., pr,

provided that

´

r
ÿ

j“1

log
´

1
2

` 1
2pj

¯

logppjq
ă 1; (2.1)

and that (using the Borel-Cantelli Lemma) there should be only finitely many such n if the

ą is replaced with a ă. We make no guesses about the possible case when the left-hand-

side equals 1, exactly – if it is even possible.

What is interesting here is that even if we consider a slight weakening of the problem

where we allow
`

2n
n

˘

to be divisible by the primes p1, ..., pr to low multiplicity, we get the

same condition (2.1) guaranteeing the existence of infinitely many such n ě 1: in light of

Kummer’s theorem, the number of times that a prime pj can divide a number n is at most

about 1 ` logpnq{ log pj , since this is an upper bound on the number of base-pj digits of n.

If we select a random n P r1, xs, the probability that all but at most k of the base-pj digits

are in t0, 1, 2, ..., ppj ´ 1q{2u is

—

ˆ

rlog x{ log pjs

k

˙ˆ

1

2
`

1

2pj

˙logpxq{ log pj´k ˆ
1

2
´

1

2pj

˙k

,
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for k “ oplog xq. This has size (assuming k “ oplog xq)

ˆ

1

2
`

1

2pj

˙p1´op1qq logpxq{ log pj

,

which, apart from the factor 1 ´ op1q in the exponent, has the same form as the probability

for the case where every base-pj digit of n is in t0, 1, ..., ppj ´ 1q{2u. Making the same

independence assumptions as before, we thus would expect that if (2.1) holds, then there

should exist infinitely many integers n ě 1 where for j “ 1, ..., r, pj divides
`

2n
n

˘

to

multiplicity at most oplog nq; and, if, instead, the left-hand-side of (2.1) is ą 1, we would

expect there to be only finitely many such n ě 1.

In this paper, we don’t quite prove that (2.1) implies there are infinitely many such

n ě 1, but we do prove something in this direction:

Theorem 2.2. Suppose r ě 1, ε ą 0, and let p1, ..., pr ě c0pr, εq be distinct primes,

where c0pr, εq is some function of r and ε (can be deduced from the proof). Then, there is a

sequence n1, n2, ... of integers n such that for all i “ 1, ..., r,

νpi

ˆˆ

2n

n

˙˙

ď
ε log n

log pi
,

where νppxq denotes the number of times the prime p divides x.

As we said, a trivial upper bound for νpip
`

2n
n

˘

q is 1` plog nq{ log pi, since n has at most

this many base-pi digits; so the theorem is saying that we can find infinitely many n where

we are smaller than this amount by a factor ε, for all the primes p1, ..., pr, simultaneously.

As one will see, the proof is fairly technical. What would greatly simplify it is if

one had that the numbers 1{ log 2, 1{ log p1, ..., 1{ log pr were linearly independent over the

rationals. This is not known to be true for arbitrary sets of primes, but it would follow from

the following conjecture:

Schanuel’s Conjecture [28] Given any n complex numbers z1, ..., zn that are linearly in-
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dependent over the rationals, the field extension Qpz1, ..., zn, e
z1 , ..., eznq has transcendence

degree at least n over Q.

If Schanuel’s Conjecture holds, then taking n “ r ` 1, and taking z1 “ log 2, z2 “

log p1, ..., zr`1 “ log pr, we see that Qplog 2, log p1, ..., log prq has transcendence degree

r ` 1. Now suppose we had a linear combination

λ1
log 2

`
λ2

log p1
` ¨ ¨ ¨ `

λr`1

log pr
“ 0,

where λ1, ..., λr`1 P Q and not all 0. Without loss, assume that λ1 ‰ 0. Then, the linear

relation would imply that

Qplog 2, log p1, ..., log prq “ Qplog p1, log p2, ..., log prq,

which can have transcendence degree at most r, which would be a contradiction. Thus, no

such linear relations can hold.

2.2 Proof of the Main Theorem

As we said in the introduction, the central binomial coefficients in the statement of the

theorem are somewhat of a distraction, in light of Kummer’s Theorem. This theorem im-

plies that if all but at most εplog nq{ log pj of the base-pj digits of n are ď pj{2 ´ 1, then

vpj
``

2n
n

˘˘

ď εplog nq{ log pj; and establishing that there are infinitely many integers n

with this property (few base-pj digits that are ą pj{2 ´ 1) is the path we will take to prove

Theorem 2.2.

In carrying out this verification, we will make use of the following theorem:

Theorem 2.3. Suppose that p1, ..., pr are distinct primes. For i “ 1, ..., r, and n ě 1,

define

αipnq :“ p
tnplog 2q{ log piu´1
i “ p

nplog 2q{ log pi´rnplog 2q{ log pis´1
i ,
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Define, for H ě 1 and i “ 1, 2, ..., r,

UipHq :“

"

d1
pi

`
d2
p2i

` ¨ ¨ ¨ `
dH
pHi

: 0 ď d1, ..., dH ď
pi
3

*

`

„

0,
1

pHi

˙

. (2.4)

Then, for every ε ą 0 and some H “ HpNq tending to infinity slowly with N (in a sense

that can be made precise by following the proof), we have that for N ě 1 and for arbitrary

sequences of real numbers tβipnqu8
n“1, i “ 1, ..., r,

#tn ď N : D s ď 2εH @ j “ 1, ..., r, tsαjpnq ` βjpnqu P UjpHqu

N
ě 1 ´ op1q. (2.5)

Now let us see that this theorem implies Theorem 2.2: it clearly suffices to prove that

for each integer N sufficiently large, we can find an integer n satisfying

2N{2
ă n ď 2N ,

so that for all i “ 1, 2, ..., r, all but at most εplog nq{ log pj of the base-pj digits of n are

ď pj{3.

So, let us supposeN is given. Let fpNq denote the minimum possible value of the ratio

on the left-hand-side of (2.5), for some choice of H “ HpNq tending to infinity with N ,

over all choices of tβipnqu8
n“1, i “ 1, ..., r. Note that

fpNq ě 1 ´ op1q.

Next, let

ℓ “ ℓpNq :“ tminpp1 ´ fpNqq
´1{2, HpNqq

1{2u.

(It’s also worth mentioning that the exponent 1{2 here is a little arbitrary, and can be re-

placed with any exponent in p0, 1q, as far as our proof below.)
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Let

N 1 :“ tN{ℓu.

We now construct the number

n :“ n02
ℓN 1

` n12
ℓpN 1´1q

` ¨ ¨ ¨ ` nN 1

as follows: we start by letting n0 “ 1. Assume we have constructed n0, ..., nd´1. Now we

show how to construct nd: for j “ 1, ..., r, we let

βjpℓpN
1
´ dqq :“

n02
ℓN 1

` n12
ℓpN 1´1q ` ¨ ¨ ¨ ` nd´12

ℓpN 1´d`1q

p
mj,d

j

,

where for an integer h we define

mj,h “

„

ℓpN 1 ´ hq log 2

log pj

ȷ

` 1.

(Alternatively: mj,h is the unique integer so that 2ℓpN 1´hq{p
mj,h

j lies in r1{pj, 1q.)

If it exists, we let 1 ď nd ď 2εℓ be any integer where

tndαjpℓpN
1
´ dqq ` βjpℓpN

1
´ dqqu P UjpHq. (2.6)

If no such nd exists, just let nd “ 0.

In order to see that this construction works, we begin by noting that for any integer h,

αjphq “ p
thplog 2q{ log pju´1
j “

p
hplog 2q{ log pj
j

p
rhplog 2q{ log pjs`1
j

“
2h

ph
1

j

,

where h1 is the unique integer such that this belongs to the interval r1{pj, 1q.

21



Thus, when we go to construct nd, we will have

ndαjpℓpN
1
´ dqq ` βjpℓpN

1
´ dqq “

n02
ℓN 1

` n12
ℓpN 1´1q ` ¨ ¨ ¨ ` nd2

ℓpN 1´dq

p
mj,d

j

.

It follows that if we write

n02
ℓN 1

` n12
ℓpN 1´1q

` ¨ ¨ ¨ ` nd2
ℓpN 1´dq

“ c0 ` c1pj ` c2p
2
j ` ¨ ¨ ¨ , (2.7)

where 0 ď ci ď pj ´ 1, then from (2.6) we deduce that if nd ‰ 0 then

0 ď cmj,d´1, cmj,d´2, ..., cmj,d´H ď
pj
3
,

and so in particular, since mj,d ´ mj,d`1 ă ℓ ` 1 “ opHpNqq, we have that 0 ď cu ď pj{3

for

mj,d`1 ď u ď mj,d.

Now, if we continue adding on additional terms to (2.7),

nd`12
ℓpN 1´d´1q, nd`22

ℓpN 1´d´2q, ... (2.8)

these will only have an effect on the terms ctptj where

t ď mj,d`1 ` rplog nd`1q{ log pjs ` 1 ď mj,d`1 ` εℓplog 2q{ log pj ` 1.

Thus, the terms cupuj where

mj,d`1 ` εℓplog 2q{ log pj ` 1 ă u ď mj,d

in (2.7) will be unchanged, as will all the other higher-order terms with u ą mj,d.
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Now we distinguish two possbilities for each d ď N 1: we let D7 be those d such that

there does exist an nd ď 2εℓ where (2.6) holds, and we let D5 be those d for which it

doesn’t.

For each d P D7 we have that for each j “ 1, ..., r, at most εℓplog 2q{ log pj ` 1 base-pj

digits cu with mj,d`1 ď u ď mj,d are ą pj{3; and for each d P D5, in the worst cast for

every j “ 1, ..., r, all of the cu with mj,d`1 ď u ď mj,d could be ą pj{3. Note that in this

case (the case d P D5) there are at most ℓ ` 1 bad digits cu with mj,d`1 ď u ď mj,d.

Now, Theorem 2.3 implies that the number of d ď N 1 for which (2.6) doesn’t hold is at

most

Np1 ´ fpNqq ď
N

ℓ2
“ opN 1

q.

All told, the total number of bad base-pj digits that are ą pj{3 in this case, over all d P D7,

is at most

pℓ ` 1qopN 1
q “ opNq,

for every j “ 1, ..., r. And the total number of bad base-pj digits arising for the d P D5 is

at most

N 1
pεℓplog 2q{ log pj ` 1q ă εN,

for each j “ 1, ..., r.

In total, then, for every j “ 1, ..., r, the number of bad base-pj digits (that are ą pj{2)

is at most

εN ` opNq.

But since ε ą 0 was arbitrary, it’s obvious that for every j “ 1, ..., r, the number of bad

base-pj digits is εN . This is just what we need to show in order to prove Theorem 2.2.

23



2.3 Proof of Theorem 2.3

In proving this theorem we will need to understand how the vectors

pα1pnq, α2pnq, ..., αrpnqq

“ pp
tnplog 2q{ log p1u´1
1 , p

tnplog 2q{ log p2u´1
2 , ..., ptnplog 2q{ log pru´1

r q.

are distributed, as we vary over n ď N .

2.3.1 The 2-dimensional case

To better understand what is going on, we first consider the case where r “ 2. There

are two possibilities: the first possibility is that there do not exist integers n1, n2, n3, with

n1, n2, n3 ‰ 0, such that

n1
log 2

log p1
` n2

log 2

log p2
“ n3. (2.9)

If this occurs, then as a consequence of

Theorem 2.10 (Multidimensional Weyl’s Theorem). Suppose 1, ϑ1, ..., ϑr are real numbers

that are linearly independent over the rationals. Then, for ϑ⃗ “ pϑ1, ..., ϑrq P Rr, the

sequence tkϑ⃗u8
k“1 is uniformly distributed in Rr{Zr.

(see [29, example 6.1]) we have that the vector pnplog 2q{ log p1, nplog 2q{ log p2q is uni-

formly distributed mod 1 as we vary over n “ 1, 2, 3, ...; and, therefore, the set pα1pnq, α2pnqq

is dense in the box r1{p1, 1s ˆ r1{p2, 1s.

The second possibility is that there do exist integers n1, n2, n3 ‰ 0 such that (2.9) holds

(If n1 were allowed to be 0, then we would have that (2.9) implies n2 log 2 “ n3 log p2,

which can only hold if n2 “ n3 “ 0; and a similar thing occurs for when n2 “ 0 or when

n3 “ 0; so, if one of these ni were 0, the others would have to be as well.)

By multiplying through by ´1 as needed, we can assume n2 ą 0; and we will assume
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that the p1 and p2 are arranged so that

|n1{n2| ď 1.

We will show that the set

pα1pnq, α2pnqq “ pp
tnplog 2q{ log p1u´1
1 , p

tnplog 2q{ log p2u´1
2 q, n “ 1, 2, 3, ... (2.11)

is contained in a union of a finite set of non-linear curves. It turns out that, moreover, the

set is equidistributed on these curves (when we restrict to r1{p1, 1s ˆ r1{p2, 1s) with respect

to the right measure; though, we don’t actually need the full strength of such a statement,

so don’t bother to prove it.

We claim that for each integer n ě 1,

"

n log 2

log p2

*

“ fpnq ´
n1

n2

"

n log 2

log p1

*

,

where fpnq P S, a finite set of possibilities. To see this, we begin by rewriting (2.9) as

n log 2

log p2
“

nn3

n2

´
n1

n2

n log 2

log p1
. (2.12)

Now we write

n log 2

log p1
“

„

n log 2

log p1

ȷ

`

"

n log 2

log p1

*

“ kpnqn2 ` apnq `

"

n log 2

log p1

*

, (2.13)

where kpnq is an integer, and 0 ď apnq ď n2 ´ 1. We also write

n “ ℓpnqn2 ` bpnq, where 0 ď bpnq ď n2 ´ 1, and ℓpnq P Z.
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It follows, then, upon plugging this and (2.13) into (2.12), that

n log 2

log p2
“ ℓpnqn3 `

bpnqn3

n2

´ kpnqn1 ´
apnqn1

n2

´
n1

n2

"

n log 2

log p1

*

.

Thus, since |n1{n2| ď 1,

"

n log 2

log p2

*

“

"

bpnqn3

n2

´
apnqn1

n2

*

´
n1

n2

"

n log 2

log p1

*

` δ, where δ P t0, 1,´1u.

We would take δ “ 0 if the preceding terms add to a number in r0, 1q; take δ “ 1 if they

produce a number in r´1, 0q; and take δ “ ´1 if they produce a number in r1, 2s.

It follows that we may take S to be

S “

""

bn3

n2

´
an1

n2

*

: a, b “ 0, 1, ..., n2 ´ 1

*

` t0, 1,´1u.

Thus,

|S| ď 3n2
2.

We conclude that, for n ě 1,

pp
tn log 2{ log p1u´1
1 , p

tn log 2{ log p2u´1
2 q

“ pp
tn log p{ log p1u´1
1 , cpnqp

´pn1{n2qtn log p{ log p1u´1
2 q, (2.14)

where cpnq “ p
fpnq

2 , where, recall, fpnq P S.

As we vary over n ď N , and let N Ñ 8, all the points (2.14) lie on set of at most

|S| ď 3n2
2 curves of the form

Cs :“ tppt´1
1 , csp

´pn1{n2qt´1
2 : 0 ď t ă 1u, where cs “ ps2, where s P S.
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2.3.2 None of these curves are lines

Each of these curves are just dilates of one another in the second coordinate. So, to show

that none are lines, it suffices to show that the curve with points

zptq :“ ppt1, p
´pn1{n2qt
2 q,

is not a line.

To see this it suffices to prove that

p1 ‰ p
´pn1{n2q

2 ,

which is clearly the case, since upon raising both sides to the n2 power, if they were equal

we would have

pn2
1 “ p´n1

2 ,

which can’t hold if p1 and p2 are distinct primes.

2.4 Generalizing to higher dimensions

Now suppose we have r primes p1, ..., pr, and we wish to understand the possible vectors

pp
tn log 2{ log p1u´1
1 , p

tn log 2{ log p2u´1
2 , ..., ptn log 2{ log pru´1

r q, (2.15)

given that we have relations similar to (2.9). In this case, there can be more than one such

relation. We can express this set of relations as

a1,1
log 2

log p1
` a1,2

log 2

log p2
` ¨ ¨ ¨ ` a1,r

log 2

log pr
“ a1,r`1

...

ak,1
log 2

log p1
` ak,2

log 2

log p2
` ¨ ¨ ¨ ` ak,r

log 2

log pr
“ ak,r`1,
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where all the ai,j P Q, where k ď r ´ 1, and where all these relations are linearly indepen-

dent. Note that if there were k “ r linearly independent relations, then this would imply

that all the log 2{ log pi are rational numbers, which would imply that for each i “ 1, ..., r,

log 2 and log pi are linearly dependent over the rationals, which we know is false, as it

would imply that there is an integer power of 2 that equals an integer power of pi.

Upon applying row-reduction to these equations, and permuting the pj’s as needed, we

can reduce the above system to the following one: for j “ 1, ..., k, we have

log 2

log pr´j`1

“ bj,1
log 2

log p1
` ¨ ¨ ¨ ` bj,r´k

log 2

log pr´k

` bj,r`1,

where the bj,h P Q. We have, also, that (recalling that the pj’s have been permuted from

their original ordering)

1,
log 2

log p1
, ...,

log 2

log pr´k

are independent over Q. (2.16)

We note that this holds also in the case k “ 0, where there are no linear relations as above.

Getting a common denominator, we can rewrite the above as: for j “ 1, ..., k, we have

log 2

log pr´j`1

“
mj,1

nj

log 2

log p1
` ¨ ¨ ¨ `

mj,r´k

nj

log 2

log pr´k

`
mj,r`1

nj

, (2.17)

where, for all j “ 1, ..., k and h “ 1, ..., r ´ k, r ` 1, the nj ě 1 and the mj,h are integers.

Now, we claim that for n ě 1, and j “ 1, ..., k,

"

n log 2

log pr´j`1

*

“ gjpnq `
mj,1

nj

"

n log 2

log p1

*

` ¨ ¨ ¨ `
mj,r´k

nj

"

n log 2

log pr´k

*

, (2.18)

where gjpnq takes on values in a finite set S of possibilities.

To see this, we proceed as with the 2-dimensional case: for j “ 1, ..., k and h “
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1, ..., r ´ k, we define the numbers ℓj,hpnq P Z and 0 ď aj,hpnq ď nj ´ 1 as follows

n log 2

log ph
“ ℓj,hpnq ¨ nj ` aj,hpnq `

"

n log 2

log ph

*

.

Thus, from (2.17) we have that

n log 2

log pr´j`1

“

r´k
ÿ

h“1

ℓj,hpnqmj,h `
aj,hpnqmj,h

nj

`
mj,h

nj

"

n log 2

log ph

*

` nbj,r`1.

Taking the fractional part of both sides, we find that

"

n log 2

log pr´j`1

*

“

#

r´k
ÿ

h“1

aj,hpnqmj,h

nj

+

`

˜

r´k
ÿ

h“1

mj,h

nj

"

n log 2

log ph

*

¸

` δj, (2.19)

where δj is an integer chosen so as to make the right-hand-side of this equation be a real

number in r0, 1q. Clearly, δj P t´∆,´∆ ` 1, ..., 0, ...,∆u, where

∆ “ 1 ` r ¨ max
j,h

Z

|mj,h|

|nj|

^

.

Thus, if we let

S :“ tcj{nj : j “ 1, ..., k, and 0 ď cj ď nj ´ 1u ` t´∆,´∆ ` 1, ..., 0, 1, ..., ∆u,

then from (2.19) we see that

"

n log 2

log pr´j`1

*

“ gjpnq `

r´k
ÿ

h“1

mj,h

nj

"

n log 2

log ph

*

,

where gjpnq P S.

Thus, proceeding as in the 2-dimensional case, we see that the set of points (2.15) all
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lie on one of the following finite set of surfaces given as follows:

ppt1´1
1 , pt2´1

2 , ..., p
tr´k´1
r´k , c1p

θ1pt1,...,tr´kq´1
r´k`1 , ..., ckp

θkpt1,...,tr´kq´1
r q, (2.20)

where

for i “ 1, ..., k, ci “ psir´k`i, for some si P S,

and where

θipt1, ..., tr´kq “

r´k
ÿ

h“1

mk´i`1,h

nk´i`1

th.

We note that for k “ 0 (no linear relations) the surface (2.20) just becomes

ppt1´1
1 , pt2´1

2 , ..., ptr´1
r q.

2.5 Passing to parameterized curves

2.5.1 An illustrative example

We would like to break these surfaces up into a union of parameterized curves of the form

pc1 ¨ αt
1, c2 ¨ αt

2, ..., cr ¨ αt
rq,

where the αj’s are all distinct, and none of the cj’s are 0. One attempt at doing this would

be to take a surface of the form (2.20), and set all but one of the tj’s to fixed values. For

example, if our surface were of the form

ppt11 , p
t2
2 , p

t1`t2
3 q, t1, t2 P r0, 1q, (2.21)

then if we were to freeze t1 and vary t2, we would get a curve of the form

pc, pt2, d ¨ pt3q.
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Unfortunately, only two coordinates vary, not all three. However, if we parameterize dif-

ferently, then we can get a full, 3-dimensional curve: let t1 “ t, t2 “ t ` δ mod 1, where δ

is fixed and t varies in r0, 1q. Then, we get the parameterized curve

ppt1, c ¨ pt2, d ¨ p2t3 q, (2.22)

where c “ pδ2, d “ pδ3. Actually, this isn’t quite right, since, for example 2t ą 1 for

t ą 1{2; we need to introduce another curve to account for these possibilities. Basically,

we consider all curves of (2.22) where c P tpδ2, p
δ´1
2 u and d P tpδ3, p

δ´1
3 , pδ´2

3 u. This covers

all the cases; and, as we vary over all δ P r0, 1q, we get a union of curves, where this union

is exactly the surface (2.21) when restricted to p1{p1, 1s ˆ p1{p2, 1s ˆ p1{p3, 1s.

2.5.2 Applying this idea to the surface (2.20)

To attempt something similar for the surfaces (2.20), we will choose

t1 “ t, t2 “ Lt ` δ1, t3 “ L2t ` δ2, ..., tr´k “ Lr´k´1t ` δr´k´1, (2.23)

where the δ1, ..., δr´k´1 P r0, 1q, and where L is an integer chosen suitably large so that

ρi :“ θip1, L, L
2, ..., Lr´k´1

q ‰ 0.

It isn’t hard to see that one can take

L ď 2 ¨ lcmpn1, ..., nkqmax
i,j

|mi,j|.

Using the parameterization (2.23), we will get that

θipt1, ..., tr´kq “ t¨θip1, L, L
2, ..., Lr´k´1

q`θip0, δ1, ..., δr´k´1q “ t¨ρi`θip0, δ1, ..., δr´k´1q
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and applying this to (2.20), we will get curves of the form

ppt´1
1 , d2p

Lt´1
2 , ..., dr´kp

Lr´k´1t´1
r´k , dr´k`1p

ρ1t´1
r´k`1, ... drp

ρkt´1
r q, (2.24)

where

d2 “ pδ12 , d3 “ pδ23 , ..., dr´k “ p
δr´k´1

r´k ,

and

dr´k`1 “ p
θ1p0,δ1,...,δr´k´1q

r´k`1 c1, ..., dr “ pθkp0,δ1,...,δr´k´1q
r ck,

where the ci are of the form psir´k`i, where si P S.

Similar to how we dealt with (2.22) not quite covering all possible curves, we actually

need to expand the set of possibilities for the di, given a fixed choice for δ1, ..., δr´k (that

is, our curves (2.24) don’t quite cover everything): we need to also include dilates by

integral powers of the pi, to handle, for example, pLt2 not always being in the range p1{p2, 1s

(basically, the exponent Lt needs to be considered mod 1). Thus, in fact, we want to

consider the di’s in dilated sets

d2 P pδ12 D2, d3 P P δ2
3 D3, ..., dr´k P p

δr´k´1

r´k Dr´k, (2.25)

and

dr´k`1 P p
θ1p0,δ1,...,δr´k´1q

r´k`1 c1Dr´k`1, ..., dr P pθkp0,δ1,...,δr´k´1q
r ckDr, (2.26)

where

Dj “ tpij : |i| ď Iu, j “ 2, ..., r,

where I is a suitably large integer. A trivial upper bound for I would be rLr maxi,j |mi,j|.

Of course, with such a large collection of possible curves, some may fail to intersect

p1{p1, 1sˆ¨ ¨ ¨ˆp1{pr, 1s, and so will not contain any points of the form (2.15) at all. It will
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not cause a problem, because all we were interested in was a set of disjoint curves that do

cover all those points, and that can be suitably discretized later to prove certain theorems.

2.5.3 An important property of the parameterized curves

When all is said and done, the curves from the previous section that we generate have the

form

ppt´1
1 , e2p

q2t
2 , e3p

q3t
3 , ..., erp

qrt
r q,

where the qj’s are non-zero rational numbers. An important property here is the fact that

p1, p
q2
2 , ..., p

qr
r are all distinct, which fulfills a goal mentioned at the beginning of section

2.5. This property holds since if two of them were equal, we would have, for example,

qi log pi “ qj log pj,

yet we know that the log pi’s are linearly independent over Q.

2.6 Discretized curves

Now we produce discretized versions of the curves produced in section 2.5. We begin by

defining C to be the set of all curves produced at the end of subsection 2.5 with the property

that the curve has non-empty intersection with the set

Γ :“ p1{p1, 1s ˆ p1{p2, 1s ˆ ¨ ¨ ¨ ˆ p1{pr, 1s.

Now, any curve in C may be parameterized by a vector

pδ1, ..., δr´k´1, c1, ..., ck, τ2, ..., τrq, (2.27)

where

ci “ psir´k`i, where si P S, i “ 1, ..., k; and τi P Di, i “ 2, ..., r. (2.28)
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The δ1, ..., δr´k´1 can take on a continuum of values in r0, 1q, while the values taken on by

the c1, ..., ck, τ2, ..., τr are finite in number.

Given a prime P satisfying

P ą p max
j“1,...,r

pjq
2H ,

we define a family of sets F as follows: for each choice of numbers 0 ď f1, ..., fr´k´1 ď

P ´ 1, and choice of c1, ..., ck, τ2, ..., τr as above, let F pf1, ..., fr´k´1, c1, ..., ck, τ2, ..., τrq

denote the set of all points

px1, x2, ..., xrq P t0, 1..., P ´ 1u
r,

such that there exists a curve in C with parameter vector (2.27), incident to a point py1, ..., yrq P

Γ, such that

pδ1, ..., δrq P pf1{P, ..., fr{P q ` r0, 1{P s
r, (2.29)

and

py1, ..., yrq P px1{P, ..., xr{P q ` r0, 1{P s
r. (2.30)

If this set F pf1, ..., fr´k´1, c1, ..., ck, τ2, ..., τrq is non-empty, then we add it to the family

F ; otherwise, we don’t.

One can easily see that, since there are at most P r´k´1 choices for f1, ..., fr´k´1, and

since there are only a bounded number possibilities for the cj’s and τj’s,

|F | À P r´k´1.

Likewise, for each choice of the fj’s, there is at least one choice of the other parameters
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making F pf1, ..., fr´k´1, c1, ..., ck, τ2, ..., τrq non-empty; and so, we have that

P r´k´1
À |F | À P r´k´1. (2.31)

2.7 Two propositions and the proof of Theorem 2.3

The two propositions we will need to prove Theorem 2.3 are:

Proposition 2.32. We have that for every point x P t0, 1, 2, ..., P ´ 1ur,

#tn ď N : pα1pnq, ..., αrpnqq P x{P ` r0, 1{P q
r
u À N |F |

´1P´1.

And:

Proposition 2.33. Suppose

Kptq “ pζ1θ
t
1, ζ2θ

t
2, ..., ζrθ

t
rq (2.34)

and suppose that

F Ď t0, 1, ..., P ´ 1u
r

is the set of all vectors such that if py1, ..., yrq “ Kptq, for some t P r0, 1q, then there exists

px1, ..., xrq P F such that

py1, ..., yrq P
1

P
px1, x2, ..., xrq ` r0, 1{P q

r.

Now, let

A1, A2, ..., Ar Ď FP , with |A1|, ..., |Ar| ě P 1´ε.

We claim that for all but at most opP q elements px1, ..., xrq P F , there exist

1 ď n ď P 7r3ε, and pδ1, ..., δrq P t0, 1, ..., rP 7r3ε
su

r,
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such that

n¨px1, ..., xrq ´ pδ1, ..., δrq P pA1`A1`A2qˆpA2`A2`A2qˆ¨ ¨ ¨ˆpAr`Ar`Arq. (2.35)

2.7.1 Completion of the proof of Theorem 2.3

Let β “ pβ1, ..., βrq P r0, 1qr be arbitrary. Let β1 “ pβ1
1, ..., β

1
rq P t0, ..., P ´ 1ur be defined

via
β1
j

P
ď βj ă

β1
j ` 1

P
. (2.36)

Thus, β1 is some kind of discretized version of P ¨ β.

We will later apply Proposition 2.33 using, for j “ 1, ..., r,

Aj :“ ´3´1β1
j `

␣

d1rP {pjs ` d2rP {p2j s ` ¨ ¨ ¨ ` dHrP {pHj s : 0 ď d1, ..., dH ă pi{10
(

` t0, 1, ..., rP {pHj s ´ 1u.

(Note that 3´1 denotes the multiplicative inverse of 3 in FP .) We note that

|Aj| " ppj{10q
H

pP {pHj q “ P {10H .

This follows from the fact that all the expressions

d1tP {pju ` ¨ ¨ ¨ ` dHtP {pHj u ` x, where 0 ď d1, ..., dH ă pj{10,

are unique mod P for arbitrary x (it is easy to see this, using a similar proof as the one

showing base-pj representations are unique).

We will have that, working in FP ,

Aj ` Aj ` Aj “ ´β1
j ` te1rP {pjs ` ¨ ¨ ¨ ` eHrP {pHj s : 0 ď e1, ..., eH ď 3tpj{10uu

` t0, 1, ..., 3 ¨ rP {pHj s ´ 3u (2.37)
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Thinking of this set as a subset of t0, 1, 2, ..., P ´ 1u, if we divide its elements by a factor

P , then we get a set of numbers contained in the set

´
β1
j

P
`

"

e1
pj

`
e2
p2j

` ¨ ¨ ¨ `
eH
pHj

: 0 ď e1, ..., eH ă
3pj
10

´ 1

*

` error ` Z,

where the error is the sum total of the errors in approximating the pej{P qrP {pijs by ej{pij;

this error is bounded from above by Hpj{3P . It is clear, then, that P´1pAj ` Aj ` Ajq is

contained in the set

´βj `

"

e1
pj

`
e2
p2j

` ¨ ¨ ¨ `
eH
pHj

: 0 ď e1, ..., eH ă
3pj
10

´ 1

*

`

„

0,
1 ` Hpj{3

P

ȷ

` Z,

where the βj satisfies (2.36).

We now let

F “ F pf1, ..., fr´k´1, c1, ..., ck, τ2, ..., τrq P F (2.38)

be one of the sets in F ; F is thus a discretized version of a curve of general shape (2.34),

where the ζj’s depend on the choice of f1, .., fr´k´1, c1, ..., ck, τ2, ..., τr.

Applying Proposition 2.33 to the curve F , using ε to be some function a little slower-

decaying than plogP q´1 as a function of P – say, take ε “ plogP q´1{2 – and then dividing

(2.35) through by a factor P (interpreting coordinates now as integers instead of elements

of FP ), we get that for all but opP q of the px1, ..., xrq P F , if we let py1, ..., yrq P r0, 1q be

such that
xj
P

ď yj ă
xj ` 1

P
,

then there exists 1 ď n ď P 7r2ε such that for j “ 1, ..., r,

nyj ` βj P
nxj
P

`
β1
j

P
`

„

0,
2

P

ȷ

Ď P´1
pAj ` Aj ` Ajq `

β1
j ` δj

P
`

„

0,
2

P

ȷ

` Z

Ď UjpHq ` Z,
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where, recall, UjpHq is defined in (2.4). Note that in deducing this last containment we

have used the fact that δj{P ă P 7r3ε´1, which is much smaller than 1{pHj , the width of the

interval in the definition of UjpHq, using ε “ plogP q´1{2. Taking fractional parts of both

sides, we get that, for all j “ 1, ..., r,

tnyj ` βju P UjpHq. (2.39)

We will use the notation

F “ F 5
\ F 7,

where F 5 denotes the exceptional set of x P F for which we don’t get (2.39) holding for

every y P x ` r0, 1{P q; and F 7 denotes the rest of F . Note that from what we just proved,

|F 5| “ opP q, and so |F 7| “ |F | ´ opP q.

We will say that an integer n ď N is good if

D s ď 2εH @ j “ 1, ..., r, tsαjpnq ` βjpnqu P UjpHq

and, otherwise, we will say that it is bad. We have that the number of n ď N that are bad

is at most
ÿ

FPF

ÿ

xPF 5

#tn ď N : pα1pnq, ..., αrpnqq P x{P ` r0, 1{P q
r
u

Applying Proposition 2.32 and (2.31) we get that this count is

À
ÿ

FPF
|F 5

|NP´r`k
“ |F | ¨ opP q ¨ NP´r`k

“ opNq.

This completes the proof of Theorem 2.3.
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2.8 Proof of the Proposition 2.32

Fix a point x “ px1, ..., xrq P Fr
P . We will only focus on conting the n ď N such that

pα1pnq, ..., αr´kpnqq to belong to px1, ..., xr´kq{P ` r0, 1{P qr´k. This is legal, since the

proposition only claims an upper bound.

Now, since αjpnq “ p
tn log 2{ log pju´1
j , in order for this to belong to xj{P ` r0, 1{P q, we

need that tn log 2{ log pju belongs to a certain set Ij ` Z, where Ij is an interval of width

at most 1{P log pj . Thus, our goal is to count the number of n ď N such that

ˆ"

n log 2

log p1

*

´ 1,

"

n log 2

log p2

*

´ 1, ...,

"

n log 2

log pr´k

*

´ 1

˙

P I1 ˆ I2 ˆ ¨ ¨ ¨ ˆ Ir´k ` Zr´k.

Now, from (2.16) and Theorem 2.10 we have that the number of such n ď N is, asymp-

totically,

Np|I1| ¨ ¨ ¨ |Ir´k| ` op1qq À NP´r`k
À N |F |

´1P´1,

where the last expression follows from (2.31). Note that the implied constants for the À’s

depend on the pj’s.

This completes the proof since the upper bound on the set of n ď N has the form

claimed by the proposition.

2.9 Proof of Proposition 2.33

Basic setup

For this proof we will use discrete Fourier methods. Given a function f : Fr
P Ñ C, and a

vector pa1, ..., arq P t0, 1, 2, ..., P ´ 1ur, we define the Fourier transform

pfpa1, ..., arq :“
ÿ

pn1,...,nrqPt0,1,...,P´1ur

fpn1, ..., nrqe
2πipa1,...,arq¨pn1,...,nrq{P .
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A consequence of Parseval is that

ÿ

0ďs1,...,srďP´1

|p1A1ˆA2ˆ¨¨¨ˆArps1, ..., srq|
2

“ P r
|A1| ¨ ¨ ¨ |Ar|.

Thus, if Q is the set of all places ps1, ..., srq where

|p1A1ˆA2ˆ¨¨¨ˆArps1, ..., srq| ě P rp1´3εq,

then

|Q| ď P´2rp1´3εqP r
|A1| ¨ ¨ ¨ |Ar| ď P 6rε

Let Q1 Ď Q be all those places ps1, ..., srq P Q, |si| ă P {2, satisfying the additional

constraint that

|si| ď P 1´p7r3´rqε, i “ 1, 2, ..., r. (2.40)

Let N “ |Q1|, and note that

N ď |Q| ď P 6rε.

Now we let E denote the set of all px1, ..., xrq P F , such that there exists ps1, ..., srq P

Q1, ps1, ..., srq ‰ p0, ..., 0q, such that

›

›

›

›

px1, ..., xrq ¨ ps1, ..., srq

P

›

›

›

›

“

›

›

›

x1s1 ` ¨ ¨ ¨ ` xrsr
P

›

›

›
ă

1

P p7r3´2rqε
. (2.41)

Theorem follows if we can show |E| “ opP q

We will show that |E| “ opP q. If this holds, then let us see how it implies the conclusion

of the Proposition: let L “ rlogP s,

U :“ t0, 1, 2, ..., rP 7r3ε
{Lsu

r,
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and define gpδ⃗q “ gpδ1, ..., δrq to be the following L-fold convolution

gpδ⃗q :“ 1U ˚ 1U ˚ ¨ ¨ ¨ ˚ 1Upδ1, ..., δrq.

Now, let

px1, ..., xrq P F zE (2.42)

be any of the |F | ´ opP q vectors such that (2.41) fails to hold, for every ps1, ..., srq P Q1.

Let

M :“ rP 7r3ε
s,

and let f be the indicator function for the set

tp´nx1,´nx2, ...,´nxrq : 1 ď n ď Mu.

Then, we have that if

1A1ˆ¨¨¨ˆAr ˚ 1A1ˆ¨¨¨ˆAr ˚ 1A1ˆ¨¨¨ˆAr ˚ g ˚ f p⃗0q ą 0, (2.43)

then there exists 1 ď n ď M and pδ1, ..., δrq, so that (2.35) holds.

Expressing the left-hand-side of (2.43) in terms of Fourier transforms, one sees that it

equals:

P´r
ÿ

ps1,...,srqPFr
P

p1A1ˆ¨¨¨ˆArps1, ..., srq
3
pgps1, ..., srq pfps1, ..., srq

“ P´r
ÿ

s⃗PFr
P

p1A1ˆ¨¨¨ˆArps⃗q3p1Ups⃗qL pfps⃗q. (2.44)

We split the terms in the second sum into the term with ps1, ..., srq “ p0, ..., 0q, the

terms ps1, ..., srq P Q, and then the remaining terms.
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The contribution of the term ps1, ..., srq “ p0, ..., 0q is

P´rM |U |
L

|A1|
3

¨ ¨ ¨ |Ar|
3. (2.45)

Now suppose ps1, ..., srq P QzQ1. Then, for some i “ 1, ..., r we have that P 1´p7r3´rqε ă

|si| ă P {2. Thus,

|pgps⃗q| À

r
ź

i“1

minp|U |
L{r, }si{P }

´L
q ă |U |

Lpr´1q{rP p7r3´rqεL
ď |U |

L
ppL ` 1qP´rε

q
L.

It follows, then, that the contribution of all such ps1, ..., srq P QzQ1 to the right-hand-side

of (2.44) is bounded from above by

P´rN |A1|
3

¨ ¨ ¨ |Ar|
3
|U |

L
ppL ` 1qP´rε

q
LM,

which is much smaller than (2.45), on account of the ppL ` 1qP´rεqL factor, even when

using the crude upper bounds: |Ai| ď P , i “ 1, ..., r, and M ď P 7r3ε, N ď P 6rε.

Next, we consider the contribution of all terms with ps1, ..., srq P Q1. Then, since

px1, ..., xrq satisfies (2.42), and in particular that it is not E, we have that

| pfps1, ..., srq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

1ďnďM

e2πinpx1,...,xrq¨ps1,...,srq{P

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

}px1, ..., xrq ¨ ps1, ..., srq{P }

ď P p7r3´2rqε.

So, the contribution of the terms in (2.44) with ps1, ..., srq P Q1, ps1, ..., srq ‰ p0, ..., 0q, is,
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by Parseval,

À P´rP p7r3´2rqε
|U |

L
ÿ

0ďs1,...,srďP´1

|p1A1ˆ¨¨¨ˆArps1, ..., srq|
3

ď P´r`p7r3´2rqε
|U |

L
|A1| ¨ ¨ ¨ |Ar|

ÿ

0ďs1,...,srďP´1

|p1A1ˆ¨¨¨ˆArps1, ..., srq|
2

ď P p7r3´2rqε
|U |

L
|A1|

2
¨ ¨ ¨ |Ar|

2

À P´p1`εqrM |U |
L

|A1|
3

¨ ¨ ¨ |Ar|
3,

which is smaller than the contribution of the term with ps1, ..., srq “ p0, ..., 0q given in

(2.45).

Finally, we consider the contribution of the remaining terms. For these terms we have

|p1A1ˆ¨¨¨ˆArps1, ..., srq| ă P rp1´3εq
ď |A1| ¨ ¨ ¨ |Ar|P

´2rε.

Using this in those terms on the right-hand-side of (2.44), we find that, using Parseval again,

they contribute at most

P´r´2rεM |U |
L

|A1| ¨ ¨ ¨ |Ar|
ÿ

0ďs1,...,srďP´1

|p1A1ˆ¨¨¨ˆArps1, ..., srq|
2

ď P´2rεM |U |
L

|A1|
2

¨ ¨ ¨ |Ar|
2

ď P´r´rεM |U |
L

|A1|
3

¨ ¨ ¨ |Ar|
3,

which is also appreciably smaller than the contribution of the term with ps1, ..., srq “

p0, ..., 0q, as in (2.45).

Thus, there exists 1 ď n ď M and 0 ď δ1, ..., δr ď P 7r3ε so that

npx1, ..., xrq ` pδ1, ..., δrq P p3A1q ˆ p3A2q ˆ ¨ ¨ ¨ ˆ p3Arq.

And since this holds for p1 ´ op1qq|F | vectors px1, ..., xrq P F , the proposition is proved.
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Proving |E| “ opP q

We begin by noting that we may assume that Q1 contains at least one non-zero vector, since

otherwise in the previous subsection we never need to make use of bounds on | pfps1, ..., srq|,

nor reference to px1, ..., xrq – we obtain the same bounds independent of choice of px1, ..., xrq,

which would imply that E is empty.

We note, by the pigeonhole principle, that there exist ps1, ..., srq P Q1, such that (2.41)

holds for at least |E|{N vectors px1, ..., xrq P E. Call this new set of vectors E 1 Ď E; so,

we have

|E 1
| ě |E|{N.

Let us suppose, for proof by contradiction, that

|E|{N ą P 1´7rε. (2.46)

Note that if we establish a contradiction, then we would be forced to conclude that

|E| ď NP 1´7rε
ď P 1´rε,

which would imply |E| “ opP q, and which is just what we wanted to show.

For each x⃗ “ px1, ..., xrq P E 1, let t “ tpx⃗q be any value of t, so that if y⃗ “ Kptq, then

y⃗ P px1{P, ..., xr{P q ` r0, 1{P q
r. (2.47)

Also, for any vector v⃗ P r0, 1qr, let πpvq denote the unique x⃗ P t0, ..., P ´ 1ur, so that

v⃗ P
1

P
x⃗ `

„

0,
1

P

ȷr

.
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Now, if we consider the set of all points in a cube

w⃗ `

„

0,
1

P

ȷr

, (2.48)

where w⃗ is some arbitrary r-dimensional vector, the function π will map that set to a set of

size at most 2r. Thus, if we let

T :“ ttpx⃗q : x⃗ P E 1
u,

then we claim that any interval of width P´1 can have at most 2r logP elements of T . The

reason this holds is that if we restrict t to an interval I of width at most pP logP q´1, then the

coordinates of Kptq will vary by op1{P q; and so, the set tKptq : t P Iu will be contained

in one of the cubes (2.48), which can correspond to at most 2r vectors x⃗ P t0, 1, ..., P ´1ur.

By picking at most one element of T in each interval of width P´1, we can pass to a

subset

T 1
Ď T, where |T 1

| ą 2´r
|T |plogP q

´1
“ 2´r

|E 1
|plogP q

´1
ą P 1´7rε´op1q,

such that every pair of elements of T 1 is at least 1{P apart.

Furthermore, we eliminate the elements of T 1 that are ď P´8rε in size. Call this new

set T 2 Ď T 1. There can be at most P 1´8rε`op1q elements in T 1 that are ď P´8rε; and so,

|T 2
| ě |T 1

| ´ P 1´8rε`op1q
ě P 1´7rε´op1q.

Now we index the elements or T 2 as follows:

T 2 :“ tt1, t2, ..., tnu,
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where

t1 ă t2 ă ¨ ¨ ¨ ă tn.

Then, we extract disjoint subsets T1, ..., Tr Ď T 2 as follows: we let

Ti :“ ttj : p2i ´ 2qn{2r ă j ă p2i ´ 1qn{2ru,

which satisfies

|Ti| " n{r " |T 2
| ą P 1´7rε´op1q (2.49)

Let

dpTi, Tjq :“ min
tPTi,uPTj

|t ´ u|.

Since the elements of T 2 are spaced at least 1{P apart, we must have that

min
1ďiăjďr

dpTi, Tjq ě n{2rP ą P´7rε´op1q. (2.50)

Define, also, the associated intervals

Ii :“ rtrp2i´2qn{2rs, ttp2i´1qn{2rus.

Note that if t P Ti, then t P Ii.

We now define u1, ..., ur as follows: we let ui be any element in the interval Ii such that

|h1puq| is minimal, where

hptq :“ ps1, ..., srq ¨ Kptq “ s1ζ1θ
t
1 ` ¨ ¨ ¨ ` srζrθ

t
r.

Note that

h1
ptq :“ s1ζ1θ

t
1 log θ1 ` s2ζ2θ

t
2 log θ2 ` ¨ ¨ ¨ ` srζrθ

t
r log θr.
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Bundling together h1pu1q, ..., h
1purq, we get the following matrix equation

»

—

—

—

—

—

—

—

–

θu1
1 θu1

2 ¨ ¨ ¨ θu1
r

θu2
1 θu2

2 ¨ ¨ ¨ θu2
r

...
... . . . ...

θur
1 θur

2 ¨ ¨ ¨ θur
r

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

s1ζ1 log θ1

s2ζ2 log θ2
...

srζr log θr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

h1pu1q

h1pu2q

...

h1purq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.51)

Now we need the following lemma (which makes use of an idea from [30, page 99,

book 2, example 1], though our proof is self-contained):

Lemma 2.52. Let

0 ă x1 ă x2 ă ¨ ¨ ¨ ă xr, and 0 ă y1 ă y2 ă ¨ ¨ ¨ ă yr

be two sets of increasing real numbers. Define the matrix

A :“

»

—

—

—

—

—

—

—

–

xy11 xy12 ¨ ¨ ¨ xy1r

xy21 xy22 ¨ ¨ ¨ xy2r
...

... . . . ...

xyr1 xyr2 ¨ ¨ ¨ xyrr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let

σ :“ min
pc1,...,crq

}pc1,...,crq}2“1

}rc1 ¨ ¨ ¨ crs ¨ A}2 “ min
pc1,...,crq

}pc1,...,crq}2“1

›

›rc1 ¨ ¨ ¨ crs ¨ AT
›

›

2
.

Then,

σ ě r´r`1{2
pxr ` 1q

´pr´1qyrpxr{x1q
´y1xy1`y2`¨¨¨`yr

1 σ0, (2.53)

where

σ0 :“ min
i“1,...,r´1

ź

1ďjăℓďr

ppxi`1{xiq
yℓ{pr´1q

´ pxi`1{xiq
yj{pr´1q

q.

Note that when r “ 1 this gives σ ě xy11 (and σ0 “ 1 since the minimum is empty), and it
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is easy to see that σ exactly equals xy11 in this case.

Applying this lemma to (2.51), using xi “ θi and yi “ ui, i “ 1, ..., r, reordering the

columns as necessary (because θ1, θ2, ... may not be in increasing order), and shuffling the

ordering of the coordinates of the column vector in left-hand-side of (2.51) accordingly

(if you reorder the columns of the square matrix, you have to do the same for the column

vector), we conclude that

}ph1
pu1q, ..., h1

purqq}2 ě σ}ps1ζ1 log θ1, s2ζ2 log θ2, ..., srζr log θrq}2

ě σ ¨ min
i

|ζi log θi| ¨ }ps1, ..., srq}2,

where σ satisfies (2.53). Letting i “ 1, ..., r be any value where |h1puiq| is maximal; that is,

|h1
puiq| “ max

j“1,...,r
|h1

pujq|,

we will have that for every t P Ii,

|h1
ptq| ě |h1

puiq| ě r´1{2
}ph1

pu1q, ..., h1
purqq}2 ě r´1{2σ ¨min

j
|ζj log θj| ¨}ps1, ..., srq}2.

(2.54)

By the Cauchy-Schwarz inequality we also have the following upper bound that holds for

any t P Ii:

|h1
ptq| ď r1{2max

j
|ζjθ

t
j log θj| ¨ }ps1, ..., srq}2.

We wish to bound σ from below. First, note that for α ą 1 and 0 ă u ă t ă 1,

αt
´ αu

“ αu
pαt´u

´ 1q “ αu
pept´uq logα

´ 1q

ą αu
pt ´ uq logα.
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Thus, since

P´8rε
ă u1 ă ¨ ¨ ¨ ă ur ď 1,

and since (2.50) holds, one sees that for any i, i1 “ 1, ..., r, and θi{θi1 ą 1, j ă ℓ,

pθi{θi1q
uℓ{pr´1q

´ pθi{θi1q
uj{pr´1q

ą pθi{θi1q
uj{pr´1q puℓ ´ ujqplog θi{θi1q

r ´ 1

ą κP´7rε´op1q log κ,

where

κ :“ min
i,i1,j“1,...,r

θiąθ
i1

pθi{θi1q
uj{pr´1q.

Thus, (2.53) implies

σ ą P´7r3ε{2´op1q.

(The implied constants in the op1q depend on r, ε, the xi’s and yi’s; the term op1q tends to

0 as P Ñ 8.) It follows from (2.54) that for every t P Ii,

|h1
ptq| ą P´7r3ε{2´op1q

}ps1, ..., srq}2. (2.55)

In particular, this means that h1ptq ‰ 0 for all t P Ii, so that hptq is either strictly

increasing on the interval Ii, or strictly decreasing on the interval Ii.

Now, for t P Ti we have that

|hptq| “ |ps1, ..., srq ¨ Kptq| ď }ps1, ..., srq}2}Kptq}2 À }ps1, ..., srq}2. (2.56)

Applying (2.41) and (2.47), we also conclude that

}hptq} À P´p7r3´2rqε, (2.57)

where } ¨ } denotes the nearest integer function.
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Now, combining (2.49) and (2.56), and applying the Pigeonhole Principle, we let T 1
i be

a maximal subset of Ti where the nearest integer to all the hptq, t P T 1
i , is the same. We

have that

|T 1
i | ą P 1´7rε´op1q

}ps1, ..., srq}
´1
2 . (2.58)

And from (2.57) we have that if z is the nearest integer to all the elements of T 1
i , we get

that

For every t P T 1
i , |hptq ´ z| ď P´p7r3´2rqε. (2.59)

However, we will see that this cannot hold, by using the Mean Value Theorem and the

bound (2.55): without loss of generality, assume hptq is increasing in Ii (we know it is

either increasing or decreasing, and it doesn’t matter which). Write the set T 1
i in increasing

order as

t11 ă t12 ă ¨ ¨ ¨ ă t1n1 .

Since h in increasing across this set, we have that

hpt11q ă hpt12q ă ¨ ¨ ¨ ă hpt1n1q.

Now, from the Mean Value Theorem, (2.55), the fact that the t1j’s are spaced at least 1{P

apart, and our bound on |T 1
i | in (2.58), we have that

|hpt11q ´ hpt1n1q| " |t11 ´ t1n1 | min
tPrt1

1,t
1
n1 s

|h1
ptq| ě pn1

{P qP´7r3ε{2´op1q
}ps1, ..., srq}2

ě P´p7r3{2`7rqε´op1q.

This is impossible, since from (2.59) we deduce from the triangle inequality that

|hpt11q ´ hpt1n1q| À P´p7r3´2rqε.

We conclude that (2.46) is false, and so our theorem is proved.
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2.9.1 Proof of Lemma 2.52

The claim clearly holds for r “ 1. Assume we’ve proved it for all 1 ď r ď k. Now we

prove it for r “ k ` 1: So, we assume we have a matrix of that size; and assume, for proof

by contradiction, that (2.53) fails to hold.

We let pc1, ..., ck`1q denote a vector of norm 1 such that

}rc1 ¨ ¨ ¨ ck`1s ¨ A} “ σ.

Define

fpxq :“
k`1
ÿ

j“1

cjx
yj ,

and note that since fpxiq is the ith coordinate of rc1 ¨ ¨ ¨ ck`1s ¨ A, we must have

|fpxiq| ď σ, i “ 1, ..., k ` 1, (2.60)

all of which are rather small in magnitude, since we are assuming (2.53) fails to hold,

making σ very small. We wish to show (for reasons explained below) that there exist

z1, ..., zk, where

xi ă zi ă xi`1, i “ 1, 2, ..., k,

such that

|fpziq| ą pzi{xiq
y1 |fpxiq|, and |fpziq| ą |fpxi`1q|, i “ 1, ..., k.

To see that such zi exist, let

δ “
log xi`1

log xi
´ 1,
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and note that

x1`δ
i “ xi`1.

Then, consider the numbers

fpxiq, fpx
1`δ{k
i q, fpx

1`2δ{k
i q, ..., fpx1`δ

i q “ fpxi`1q.

Written as a row vector we have

rfpxiq fpx
1`δ{k
i q ¨ ¨ ¨ fpxi`1qs “ rc1 c2 ¨ ¨ ¨ ck`1s ¨ V,

where

V :“

»

—

—

—

—

—

—

—

–

xy1i pxy1i q1`δ{k ¨ ¨ ¨ pxy1i q1`δ

xy2i pxy2i q1`δ{k ¨ ¨ ¨ pxy2i q1`δ

...
... . . . ...

x
yk`1

i px
yk`1

i q1`δ{k ¨ ¨ ¨ px
yk`1

i q1`δ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The square matrix V here is a Vandermonde (well, after dividing out by certain factors

down columns), so its determinant can be explicitly computed:

detpV q “ x
y1`y2`¨¨¨`yk`1

i

ź

1ďjăℓďk`1

px
yℓδ{k
i ´ x

yjδ{k
i q. (2.61)

Letting J “ V V T , we then also have

detpJq “ detpV q
2

“ x
2y1`2y2`¨¨¨`2yk`1

i

ź

1ďjăℓďk`1

px
yℓδ{k
i ´ x

yjδ{k
i q

2.

A crude upper bound on the largest eigenvalue of J can be found as follows: let µ be

the maximum value of the entries of J . We note that

µ ď pk ` 1q max
j,ℓ“1,...,k`1

|xyℓj |
2

ď pk ` 1qpxk`1 ` 1q
2yk`1 .
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Then, for any vector v⃗ :“ pv1, ..., vk`1q satisfying }v⃗}2 “ 1, we have that all the entries of

Jv⃗ can be bounded from above by

µ}v⃗}1 ď µpk ` 1q}v⃗}8.

Thus,

µpk ` 1q ď pk ` 1q
2
pxk`1 ` 1q

2yk`1

is an upper bound for any eigenvalue for J .

Also, if α ą 0 is the smallest eigenvalue (in magnitude) of J , and β ą 0 the largest

eigvenvalue (in magnitude) of J , then since detpJq is the product of its eigenvalues,

detpJq ď αβk.

So, recalling that }pc1, ..., ck`1q}2 “ 1, we have

}pfpxiq, fpx
1`δ{k
i q, ..., fpx1`δ

i qq}
2
2 “ pc1, ..., ck`1qV V

T
pc1, ..., ck`1q

T

ě α

ě detpJq ¨ β´k

ą detpJq ¨ ppk ` 1q
2
pxk`1 ` 1q

2yk`1q
´k

“ detpV q
2
ppk ` 1q

2
pxk`1 ` 1q

2yk`1q
´k.

Note that the first inequality here is by the Rayleigh Principle:

min
pc1,...,ck`1q

}pc1,...,ck`1q}“1

pc1, ..., ck`1qJpc1, ..., ck`1q
T

“ α.

Thus,

maxj“0,...,k|fpx
1`jδ{k
i q| ě pk ` 1q

´k´1{2
pxk`1 ` 1q

´kyk`1 |detpV q|.
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Now, since we are operating under the assumption that (2.53) fails to hold for r “ k ` 1,

expressing (2.60) in terms of detpV q (and using (2.61) ), we find that

|fpxiq| ď σ ď pk ` 1q
´k´1{2

pxk`1 ` 1q
´kyk`1pxk`1{x1q

´y1 |detpV q|.

Thus

maxj“0,...,k|fpx
1`jδ{k
i q| ě pxk`1{x1q

y1 |fpxiq|, and ě pxk`1{x1q
y1 |fpxi`1q|.

We therefore have found the zi we were looking for, since: First, for j “ 0, ..., k we

have that

xi ď zi :“ x
1`jδ{k
i ď xi`1,

where the j arising from the max above cannot be j “ 0 or j “ k, since the max is bigger

than |fpxiq| and |fpxi`1q|. And, second, we also have

|fpziq| ě pxk`1{x1q
y1 |fpxiq| ą pzi{xiq

y1 |fpxiq|,

and

|fpziq| ą |fpxi`1q|.

Now, if we let

gpxq :“ x´y1fpxq,

then note that for this choice of j (chosen by the max above),

|gpziq| “ z´y1
i |fpziq| ą x´y1

i |fpxiq| “ |gpxiq|,
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and, likewise,

|gpziq| “ z´y1
i |fpziq| ě z´y1

i |fpxi`1q| ą x´y1
i`1 |fpxi`1q| “ |gpxi`1q|.

Thus, by Rolle’s Theorem, there exists a point wi P pxi, xx`1q where the derivative

g1
pwiq “ 0, i “ 1, 2, ..., k. (2.62)

But, since

gpwq “ w´y1fpwq “

k`1
ÿ

j“1

cjw
yj´y1 ,

we find that

g1
pwq “

k`1
ÿ

j“2

cjpyj ´ y1qw
yj´y1 ;

so, we have that

»

—

—

—

—

—

—

—

–

wy2´y1
1 wy3´y1

1 ¨ ¨ ¨ w
yk`1´y1
1

wy2´y1
2 wy3´y1

2 ¨ ¨ ¨ w
yk`1´y1
2

...
... . . . ...

wy2´y1
k wy3´y1

k ¨ ¨ ¨ w
yk`1´y1
k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

c2py2 ´ y1q

c3py3 ´ y1q

...

ck`1pyk`1 ´ y1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0

0

...

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

However, the induction hypotheses for the case r “ k tells us that the square matrix on the

left is non-singular (in fact, it gives a non-trivial lower bound, in magnitude, for its smallest

singular value). So this is impossible.

We conclude that our assumption that (2.53) was wrong is incorrect, and so the induc-

tion is proved.
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CHAPTER 3

ON A CLASS OF SUMS WITH UNEXPECTEDLY HIGH CANCELLATION, AND

ITS APPLICATIONS

3.1 Introduction

Remember that the Pentagonal Number Theorem of Euler asserts that for an integer x ě 2,

ÿ

Gnďx

p´1q
nppx ´ Gnq “ 0

where Gn “
np3n´1q

2
is nth pentagonal number. Various proofs of this theorem have been

developed over the decades and centuries (see [7]); but we wondered whether it was possi-

ble to produce an “analytic proof”, using the Ramanujan-Hardy-Rademacher formula (1.8)

for ppxq: Considering just the first two terms in this formula, one sees that (see [31])

ppxq “ p2pxq ` Op
a

ppxqq, where p2pxq “

?
12e

π
6

?
24x´1

24x ´ 1

ˆ

1 ´
6

π
?
24x ´ 1

˙

.

So, the Pentagonal Number Theorem implies

ÿ

Gnďx

p´1q
np2px ´ Gnq À

a

xppxq; (3.1)

In fact, one can get a better bound by using more terms in the Ramanujan-Hardy-Rademacher

expression; one might call this a “Weak Pentagonal Number Theorem”, which is an inter-

esting and non-trivial bound for the size of this oscillating sum of exponential functions

p´1qnp2px ´ Gnq.

It is worth pointing out that this bound is much smaller than what would be expected
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on probabilistic grounds: if we consider a sum

SpX1, X2, ¨ ¨ ¨ q “
ÿ

Gnăx

Xnp2px ´ Gnq,

where the Xn’s are independent random variables taking the values `1 and ´1, each with

probability 1
2
, then

EpS2
q “

ÿ

Gnďx

p2px ´ Gnq
2.

So the quality of bound we would expect to prove is

|S| À

˜

ÿ

Gnďx

p2px ´ Gnq
2

¸
1
2

À 4
?
xppxq,

However, the bound (3.1) is much smaller than the RHS here.

What we have discovered is that (3.1) is just the tip of the iceberg, and that there is a

very general class of sums like this that are small - much smaller than one would guess

based on a probabilistic heuristic. Roughly, we will prove that

ÿ

fpnqďx

p´1q
nec

?
x´fpnq

“ “small”, (3.2)

where f is a quadratic polynomial (with positive leading coefficient), and c is some con-

stant. It is possible to produce a more general class of sums with a lot of cancellation; and

we leave it to the reader to explore. As a consequence of this and the Ramanujan-Hardy-

Rademacher expansion for ppnq, we will prove that

ÿ

l2ăx

p´1q
lppx ´ l2q „

eπix
a

ppxq

23{4x1{4
. (3.3)

As another category of results, we will also prove a corollary of Theorem 3.8 related to
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prime numbers. In fact let x ą 0 be large enough and T “ e0.786
?
x. Then

ÿ

0ďℓă 1
2

?
xT

Ψ

ˆ

re

b

x´
p2ℓq2

T , e

b

x´
p2ℓ´1q2

T s

˙

“ Ψpe
?
x
q

ˆ

1

2
` O

´

e´0.196
?
x
¯

˙

.

Finally we will develop polynomial identities that occur naturally in the Taylor expansion

in (3.2). For example

ÿ

|ℓ|ďx

p4x2 ´ 4ℓ2q2r ´
ÿ

|ℓ|ăx

p4x2 ´ p2ℓ ` 1q
2
q
2r

“ polynomial w.r.t. x with degree 2r ´ 1.

Many of the results stated above can be deduced from the following:

Theorem 3.4. Let b, d P R, a, c ą 0; Also, let hpxq “ pαx ` βqt for α, β, t P R. Then

ÿ

n:an2`bn`dăx

p´1q
nec

?
x´pan2`bn`dqhpx ´ pan2

` bn ` dqq À epw`ϵqc
?
x. (3.5)

where w ą 0 is defined as follows. Set

∆ :“ sup
rě0

d

?
ar

?
ar2 ` 4 ` r

?
a

2
´
πr

c

Then w “ minp1,∆q.

Remark 3.6. Obviously forcing w to be less than one is to avoid getting a trivial result,

and if a, c, r are chosen in such a way that ∆ ą 1 then this theorem becomes useless.

Conjecture 2. Observing the numerical results suggest that

ÿ

ℓ2ăx

p´1q
ℓe

?
x´ℓ2

“ eop
?
xq.
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There is another generalization when we pick a complex c in (3.5). In this case, having

an upper bound for the sum is harder, as we have both the fast growth of exponential

functions and the extra oscillation coming from the imaginary exponent.

Theorem 3.7. For large enough x ą 0, let T :“ T pxq be at least Ωpx2q as x Ñ 8. Also

let α` iβ P C and 0 ď α ă 1` ϵ for a fixed ϵ ą 0, and β ă
?
T . Then for arbitrary δ ą 0

ÿ

l2ăTx

p´1q
lepα`iβq

b

x´ l2

T À

d

Tx

|β| ` 1
e
αp

b

2
2`π2 `δq

?
x

`
?
T .

Note that if β “ 0 and T sufficiently large, theorem 3.7 becomes a special case of

theorem 3.4 for a “ 1, b, d “ 0, and c Ñ 0 with a weaker result.

Even these theorems do not exhaust all the cancellation types of oscillatory sums of this

form, for we can replace the square-root by a fourth- root, and then replace the quadratic

polynomial with a quartic. We will not bother to develop the most general theorem possible

here. Next, we prove three applications for these oscillation sums.

3.1.1 Applications to the Chebyshev Ψ function

We show that in the “Weak pentagonal number theorem” we can replace the partition func-

tion ppnq with Chebyshev Ψ function.

Theorem 3.8. Assume ϵ ą 0, x is large enough and a “ 1 ´

b

2
2`π2 . We have

ÿ

l2ăxe
4a
3

?
x

p´1q
lΨ

ˆ

e

?
x´l2e´ 2a

3
?
x

˙

À ep1´a
3

`ϵq
?
x :“ ew

?
x. (3.9)

We give an argument to show a relation between the theorem and the distribution of

prime numbers. A weak version of theorem can be written as

Ψpe
?
x
q “ 2

ÿ

0ăℓă
?
xT {2

ˆ

Ψ

ˆ

e

b

x´
p2ℓ´1q2

T

˙

´ Ψ

ˆ

e

b

x´
p2ℓq2

T

˙˙

` O
´

ep 5
6

`ϵq
?
x
¯

where T :“ e
2

?
x

3 .
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Define

I :“
ď

0ăℓă
?
xT {2

ˆ

e

b

x´
p2ℓq2

T , e

b

x´
p2ℓ´1q2

T

˙

One can see that the measure of I is almost half of the length of the interval r0, e
?
xs.

Roughly speaking theorem 3.8 states that the number of primes in I , with weight logppq, is

half of the number of primes, with the same weight. This prime counting gives a stronger

result than one would get using a strong form of the Prime Number Theorem and also

the Riemann Hypothesis(RH), where one naively estimates the Ψ function on each of the

intervals. Because the widths of the intervals are smaller than e
?
x
2 , making the Riemann

Hypothesis estimate “trivial”. However, a less naive argument can give an improvement

like corollary 3.10. See table 3.1 for comparison.

PNT Naive RH + Theorem 3.4 Our unconditional result Our result with RH
1.41 0.91 0.79 0.47

Table 3.1: The upper bound of w in (3.9)

Corollary 3.10. Assuming RH

ÿ

l2ăxe
2p1`aq

3
?
x

p´1q
lΨ

ˆ

e

b

x´l2e´
4p1`aq

3
?
x

˙

À ep 2
3

´a
3

`ϵq
?
x

À e0.47
?
x. (3.11)

The proof needs careful computations of a cancellation sum involving zeroes of the

Riemann zeta function. In fact, we use our cancellation formula to control the low-height

zeroes; The Van der Corput bound for exponential sums combined with the Montgomery

Mean-value theorem to control the high-height zeroes.

Remark 3.12. Note that numerical results up to x ă 300 show a very smaller error term
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in comparison to (3.11). In particular, for example,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lă2400

p´1q
lΨpe

?
300´l2{T

q

ˇ

ˇ

ˇ

ˇ

ˇ

ă 50 where T „ 20000.

Remark 3.13. A more applicable identity may be the case with fewer terms (with lower

frequency) in (3.9). We can choose the parameters to get

ÿ

l2ăxe2ϵ
?
x

p´1q
lΨpe

?
x´l2e´2ϵ

?
x
q À x2ep1´ϵq

?
x.

This identity does not give the same level of cancellation as RH anymore but still is bet-

ter than the best cancellation one can get from the current unconditional estimates for Ψ

function. Also, the advantage is that the intervals
´

e
?

x´p2ℓq2ϵ
?
x, e

?
x´p2ℓ´1q2ϵ

?
x
¯

are not

as small as what we had in (3.9). So it possibly is more suitable for combinatorial applica-

tions.

3.1.2 Applications to the usual and restricted partitions

A generalization of the Pentagonal Number Theorem is the second application of the can-

cellation result. It is an interesting question to find the second dominant term of gen-

eral,“Meinardus type” integer partitions. Our result is applicable in general if the second

term of Meinardus’s Theorem for an arbitrary partition function is known. But the known

asymptotic formulas rely heavily on analytic properties of the parts. For many types, we

see a formula like

λpnq „ pgpnqq
q epkpnqq

θ

ˆ

1 ´
1

phpnqqr

˙

` Opλpnq
s
q (3.14)
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where 0 ă s ă 1 and θ, r, q ą 0 and kpnq is a linear polynomial and gpnq, hpnq are rational

functions. For example for the usual partition function we have

gpnq “

?
12

24n ´ 1
, hpnq “

π2

36
p24n ´ 1q , kpnq “

π2

36
p24n ´ 1q , s “ θ “

q

2
“ r “

1

2

Assuming a partition function has form (3.14), we can conclude that for a quadratic poly-

nomial tpnq “ an2 ` bn ` d

ÿ

ℓ:tpℓqăn

p´1q
lλpn ´ tpℓqq À λκpnq

where κ “ maxpw, sq and w is defined as in Theorem 3.4, and s in (3.14). As long as

κ ă 1, we can get a nontrivial approximation of the Pentagonal Number Theorem. We give

a few specific examples.

First, we mention a weak pentagonal number theorem for certain approximations of the

partition function.

Proposition 3.15. Let

p1pxq “
eπ

?
2x
3

4x
?
3

p2pxq “ p

?
12

24x ´ 1
´

6
?
12

πp24x ´ 1q
3
2

qe
π
6

?
24x´1

p3pxq “ p

?
6eπix

24x ´ 1
´

12
?
6eπix

πp24x ´ 1q
3
2

qe
π
12

?
24x´1

be the “first” term, first “two” terms, and second “two” terms of Ramanujan-Hardy-
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Rademacher formula, respectively. Then

ÿ

Glăx

p´1q
lp1px ´ Glq À ppxq

0.14 (3.16)

ÿ

Glăx

p´1q
l
p1 `

1

24px ´ Glq ´ 1
qp2px ´ Glq À ppxq

0.21 (3.17)

ÿ

Glăx

p´1q
l
a

p1px ´ Glq À ppxq
0.065 (3.18)

ÿ

l2ăx

p3px ´ l2q À ppxq
0.065 (3.19)

Note that equation (3.19) does not have the factor p´1ql, because
ř

h ωph, 2q in equa-

tion (1.8) is p´1ql
?
2

. So it can cancels out the other p´1ql from the weak pentagonal number

theorem to eliminate the cancellation. In fact, if we put p´1ql, we get the following propo-

sition.

Proposition 3.20. For large enough x

ÿ

l2ăx

p´1q
lp3px ´ l2q „

eπix
a

ppxq

4
?
8x

.

So if p4pxq “ p2pxq ` p3pxq is the first “four” terms in the Ramanujan-Hardy-Rademacher

expression for the partition function, then we get

ÿ

l2ăx

p´1q
lp4px ´ l2q „

a

ppxq

4
?
8x

. (3.21)

We mention another set of examples. Remember from (1.9) that ppn;α,Mq is the

number of partitions with parts of the form Mt ˘ α, 1 ď α ď M ´ 1, and pα,Mq “ 1.

Theorem 3.4 can show a weak pentagonal number expression like

ÿ

am2`bm`dăx

p´1q
mp

`

x ´ am2
´ bm ´ d;α,M

˘

“ “small function w.r.t. x, α, a,M”.
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We check two cases M “ 2 and M “ 5 as examples.

Corollary 3.22. Let q1pnq be the first “two” term in the expansion of qpnq in equation (??).

For large n

ÿ

l2ďn

p´1q
lq1pn ´ l2q À qpnq

0.151

ÿ

l2ďn

p´1q
lqpn ´ l2q À

3
a

qpnq.

Also for p “ 5, see [32], there exists a constant A ą 0 such that

ppn; a, 5q “
Bπ cscpπa

5
q

b

p60n ´ Aq
3
4

e
π

?
60n´A
15 ` Op

a

ppn; a, 5qq.

Corollary 3.23. Let hpnq be the first two term in the expansion of ppn; a, 5q. For large n

ÿ

l2ďn

p´1q
lhpn ´ l2q Àppn; a, 5q

0.13

ÿ

ℓ2ďn

p´1q
ℓppn ´ ℓ2; a, 5q À

a

ppn; a, 5q.

Note that if we generalize theorem 3.4 for third or fourth or in general nth root, we

might be able to prove more expressions like the Pentagonal Number Theorem. As an

example, we can prove a “pentagonal number theorem” for pkpnq, which is the number of

partitions of n with parts that are kth powers of positive integers (see (??)).

3.1.3 Applications to the Prouhet-Tarry-Escott Problem

Another application of our method involves the so-called Prouhet-Tarry-Escott Problem

(see chapter 1). One could consider a weakening of this problem, where the left and right

hand sides of (1.10) are merely required to be “close to each other”. One way to naturally

view this approximation is to interpret taiu, tbiu as events in two discrete uniform random
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variables A,B both of whose moments (up to a certain level) and their moment generat-

ing functions are “close”; i.e. the probability density function of these random variables

becomes almost the same. Approximating moment generating functions is an important

problem in the literature - see for example [33, 34]; and what we are interested in is that

the probability space is a subset of Q. This makes the problem non-trivial.

This problem can be also viewed from another perspective that is related to the Vin-

gradov mean value theorem (see chapter 1 or check the survey paper [35] for more infor-

mation).

Let us formulate the problem as follows.

Problem 3.24. Let 0 ă c “ cpN, n, kq ă 1 be the smallest constant such that there exist

sequences of integers

1 ď a1 ď a2 ď ¨ ¨ ¨ ď an ď N and 1 ď b1 ď b2 ď ¨ ¨ ¨ ď bn ď N

that do not overlap, i.e. ai ‰ bj , such that for all 1 ď r ď k,

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ari ´ bri

ˇ

ˇ

ˇ

ˇ

ˇ

ď N cr (3.25)

How small can we take c to be for various ranges of k and n?

As we mentioned in chapter 1, there has been little progress in solving the original PTE

problem since the 19th century. For example for an ideal solution (when k “ n ´ 1) the

largest known solution is for n “ 12, see [10]. To our knowledge, the best constructive

solution is perhaps for the range k “ Oplogpnqq. Using a pigeonhole argument we can do

much better, and give non-constructive solutions with k as large as k „ c
?
n. In section 3.5

we will briefly explain this argument, which gives one of the best known non-constructive

ways to solve the problem 3.24.

Even applying the pigeonhole argument to the approximate version (Problem 3.24) we
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cannot make k much larger; for example, we cannot prove the existence of non-decreasing

sequences ai and bi such that

|
ÿ

i

ari ´ bri | ă N rp1´ 1
logprq

q for all 1 ď r ď
?
n log2pnq.

In other word, one cannot guarantee that the value of c in Problem 3.24 should look like

c ă 1´1{
a

logpNq when k ą
?
n log2pnq. We will see that this range for c is much, much

weaker than what our construction gives. This suggests that it might be possible to beat the

bounds that the pigeonhole principle gives for the exact version of the problem. In section

3.5, we will give a proof to the following theorem, which states a constructive solution for

problem 3.24 when Mpnq is much bigger than
?
n.

Theorem 3.26. Let L ě 1 and m P N and define M “ tp2Lq
2m

2m`1 u. Define for 1 ď i ď

n :“ Lm

ai “ M2m`1
´ p2i ´ 2q

2 , bi “ M2m`1
´ p2i ´ 1q

2 , 1 ď r ď k Àm
Mm

logpMq
.

Then

ÿ

1ďiďL

ari ´
ÿ

1ďiďL

bri À rrM p2m`1q r
2

`m
À rra

r`1
2

1 . (3.27)

So we have two sets of around n integers less than N :“ M2m`1, and they are satisfying

the equation (3.25) with 1
2

ď c ă 1 ´ 1
4m`2

and k » n1´ 1
m .

For example if we put m “ 3 in Theorem 3.26; we get the next corollary.

Corollary 3.28. Equation (3.25) has a constructive solution for 1
2

ď c ă 13
14

and k „ n6{7

logpnq

as follows. For 1 ď i ď
?
N

ai “ N ´ p2i ´ 2q
2

P N and bi “ N ´ p2i ´ 1q
2

P N.
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Then for all 1 ď r ď k „ N3{7 we have

ÿ

1ďiďn

ari ´
ÿ

1ďiďn

bri À rrN
r`1
2 À N

r`1
2

`r logprq

logpNq . (3.29)

Remark 3.30. There is a conjecture in [36] stating that if tan ě 0u, tbn ě 0u be an ideal

solution of Prouhet-Tarry-Escott and a1 ă b1, then for all i

pai ´ biqpai`1 ´ bi`1q ă 0. (3.31)

Although our example cannot resolve the conjecture, it shows that equation (3.31) is not

true for the solutions of Problem 3.24 for any c.

Remark 3.32. Note that we can win by a constant factor - i.e. increaseMpnq by a constant,

if we pick a suitable quadratic polynomial qplq instead of l2.

Lastly, we investigate the problem more concretely by viewing ai, bi as polynomials.

Then this cancellation sum can be considered as an operator in Zrxs which cuts the degree

to half.

Theorem 3.33. Let M P N, and define frpMq :“
ř

|ℓ|ă2Mp´1qℓp4M2 ´ ℓ2qr; Then, frpMq

is a polynomial of degree r ´ 1 in M when r is even, and is a polynomial of degree r in M

when r is odd; that is, when r is even,

frpMq “ c0prq ` c1prqM ` ¨ ¨ ¨ ` cr´1prqM
r´1,

where c0prq, ..., cr´1prq are integer functions of r only (and not of M ). The same general

form holds for r odd, except that the degree here is r, not r ´ 1. Furthermore, under the

assumption r À M
logpMq

we have that all the coefficients have size Oprr`ϵq.
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3.2 Proof of the oscillation sums

In this section we mainly prove theorems 3.4 and 3.7. First, we mention a lemma.

Lemma 3.34. Let z “ A`iB be a complex number and qpsq “ as2`bs`c be a quadratic

polynomial and x P R. Then

Re
´

a

x ´ qpzq

¯

“

d

1

2

ˆ

b

D2 ` p2aAB ` bBq
2

` D

˙

(3.35)

Im
´

a

x ´ qpzq

¯

“

d

1

2

ˆ

b

D2 ` p2aAB ` bBq
2

´ D

˙

. (3.36)

where

D :“ x ´ pA2
´ B2

qa ´ bA ´ c.

Proof. We only prove (3.35). We have

x ´ qpzq “ x ´ pA2
´ B2

qa ´ bA ´ c ´ ip2ABa ` bBq.

It impliess that

Re
´

a

x ´ qpzq

¯

“
4

b

D2 ` p2aAB ` bBq
2 cos

ˆ

1

2
tan´1

ˆ

2aAB ` bB

D

˙˙

.

Noting that cos2pyq “
1`cosp2yq

2
and cosparctanpyqq “ 1?

1`y2

Re
´

a

x ´ qpzq

¯

“
4

b

D2 ` p2aAB ` bBq
2

g

f

f

e

1

2
`

1

2
b

1 `
p2aAB`bBq2

D2

.

Straightforward computation results in equation (3.35).

Next, we prove Theorem 3.4.
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Proof. Let qpzq :“ az2 ` bz ` d and fpzq “
a

x ´ qpzq with branch points α1, α2. We

choose p´8, α1s Y rα2,8q as the branch cut and let G be the interior of the square with

vertices

˘p

c

x

a
´

2b

a
q ˘ iu

?
x,

where u ą 0 will be chosen later. Note that

α2 ą

c

x

a
´

2b

a

and we have a similar condition for α1. Without loss of generality we assume that h is

holomorphic inside G.

Poles

´

c

x

a
`

c

b

a

c

x

a
´

c

b

a

´u
?
x

u
?
x

γ4

γ3

γ2

γ1

Figure 3.1: The contour γ

Let gpzq “ ecfpzq, which is analytic inside G. Define

Hpzq “
gpzqhpzq

sinpπzq
.
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Assume that γ is the boundary of G (see figure 3.1). Using the residue theorem

ż

γ

Hpzqdz “ 2πi
ÿ

zj : poles

RespHpzqq|zj “ 2πi
ÿ

qpnqăx

p´1q
nhpnqec

?
x´qpnq. (3.37)

We wish to show that the integral in LHS has size of at most ecw
?
x. First assume that we

choose z P γ1 Y γ3. So z “ t ˘ iu
?
x for ´

a

x
a

` 2b
a

ă t ă
a

x
a

´ 2b
a

. If t “ op
?
xq, then

?
x ´ az2 ´ bz ´ d „

a

xp1 ` au2q. Otherwise by lemma 3.34

Rep
?
x ´ az2 ´ bz ´ dq À

d

a

px ´ at2 ` au2xq2 ` 4a2t2u2x ` x ` au2x ´ at2

2

(3.38)

A straightforward computation shows that the maximum of RHS of (3.38) is at t “ op
?
xq.

So

Rep
?
x ´ az2 ´ bx ´ dq ď

a

xp1 ` au2q.

As c ą 0, we conclude in both cases that ec
?
x´az2´bz´d À ec

?
xp1`au2q. Also we have

| sinpπzq| „ 1
2
eπu

?
x. So we will get that for z P γ1, γ3

|Hpzq| À ec
?

xp1`au2q´πu
?
x (3.39)

We desire to make the contribution from z P γ1, γ3 to be approximately equal to the con-

tribution from z P γ2, γ4. It means that we need c
a

xp1 ` au2q ´ πu
?
x ă wc

?
x, where

w is defined in the theorem. We need to express u in terms of w. After solving this we get

two cases. If π2 ‰ ac2, then

´cwπ ` c
?
π2 ´ ac2 ` ac2w2

π2 ´ ac2
ă u. (3.40)
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Otherwise, we will get

cp1 ´ w2q

2πw
ă u. (3.41)

Now we compute the case z P γ2, γ4. We have z “ ˘
a

x
a

¯ 2b
a

` it and ´u
?
x ă t ă

u
?
x. If t “ op

?
xq, then

a

x ´ qpzq “ op
?
xq. Otherwise, using lemma 3.34

Rep
a

x ´ qpzqq À

d

t
?
a

?
at2 ` 4x ` t

?
a

2
.

Let t “ r
?
x. We need to choose a proper α as follows.

α “ argmaxr

¨

˝c

d

r
?
a

?
ar2 ` 4 ` r

?
a

2
´ πr

˛

‚ , 0 ď r ď u.

Also we assume that ˘
a

x
a

¯ 2b
a

is far enough from integers (otherwise we shift the legs

γ2, γ4 slightly to avoidRepzq being near to integer). So we conclude that | sinpπrzq| ą λ ą

0 for a fixed λ. Then we have

ż

γ2,γ4

ec
?

x´qpzqhpzq

sinpπzq
À

?
xe

c

c

xα
?
a

?
aα2`4`α

?
a

2
´πα

?
x
hp

?
xq

Finally in order to satisfy (3.40) and (3.41) and the fact that u ě r, we choose

u “ max

ˆ

´cwπ ` c
?
π2 ´ ac2 ` ac2w2

π2 ´ ac2
, α

˙

or u “ max

ˆ

cp1 ´ w2q

2πw
, α

˙

.

where

w “

d

α
?
a

?
aα2 ` 4 ` α

?
a

2
´
πα

c
.
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In this paper, we need two versions of the Van der Corput lemma. The versions we give

here are a little different than what is known in [37]. But these versions are straightforward

and enough for the purpose of this paper.

Lemma 3.42. [Simpler version] Let F pxq be a second differentiable function in pa, bq;

also 0 ă M ă |F 1pxq|, and |Gpxq| ă R for x P pa, bq. Assume that Gpxq

F 1pxq
is a piecewise

monotone function. Then

ż b

a

eiF pxqGpxqdx À
R

M
. (3.43)

Lemma 3.44. [38] Suppose that fpxq is a real-valued function such that 0 ă λ2 ď f2pxq

for all x P ra, bs, and suppose that |f p3qpxq| ď λ3 and that |f p4qpxq| ď λ4 throughout this

interval. Put f 1paq “ α, f 1pbq “ θ. For integers ν P rα ´ 1, θ ` 1s let xν be the root of the

equation f 1pxq “ ν. Then

ÿ

aďnďb

e2πifpnq
“ e

πi
4

ÿ

α´1ďνďθ`1

e2πipfpxνq´νxνq

a

f2pxνq
` O plogp4 ` θ ´ αqq ` Opλ

´ 1
2

2 pθ ´ α ` 2qq

` O
`

pλ23λ
´3
2 ` λ4λ

´2
2 qpb ´ aqpθ ´ α ` 2q

˘

.

Note that if f2pxq ă ´λ2 ă 0, then e
πi
4 will change e´πi

4 .

Proof of Theorem 3.7.

Let T ą 0 and γ be the contour with vertices

˘
a

ηxT ˘ iu
?
x

where η “ π2

1`π2 ´ ϵ and 0 ă u will be determined later (see figure 3.2). Let

hT pzq “
epα`iβq

b

x´ z2

T

sinpπzq
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-
a

Txη

a

Txη

´u
?
x

u
?
x

γ4

γ3

γ2

γ1

Figure 3.2: Contour γ for complex c case

We take the branch cut to be p´8,´
?
xT sYr

?
xT ,8q. The Residue Theorem implies

ż

γ

hT pzqdz “ 2πi
ÿ

ℓ2ăTxη

p´1q
ℓepα`iβq

b

x´ ℓ2

T . (3.45)

Now we compute the case where z P γ1, γ3. So z “ t ˘ iu
?
x and ´

?
Txη ă t ă

?
Txη.

As x À
?
T we have

c

x ´
z2

T
“

c

x ´
t2 ´ u2x ˘ 2iut

?
x

T
„

d

x `
´t2 ¯ 2iut

?
x

T
` Op

1
?
T

q

If t
?
x “ op

?
T q, then noting x ´ t2

T
“ x ` op 1

x
q we conclude that

c

x ´
z2

T
„

?
x ` Cpx, T q ` iBpx, T q,whereBpx, T q “ op

1
?
T

q and Cpx, T q “ op
1

x
q.

(3.46)

Otherwise, recall that in the worst case, t „
?
xT . We use lemma 3.34 to get

c

x ´
z2

T
„

g

f

f

e

b

px ´ t2

T
q2 ` 4u2t2x

T 2 ` px ´ t2

T
q

2
` i

g

f

f

e

b

px ´ t2

T
q2 ` 4u2t2x

T 2 ´ px ´ t2

T
q

2

(3.47)
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Because of the range of values of t, x ´ t2

T
ě p1 ´ ηqx. So

c

px ´
t2

T
q2 `

4u2t2x

T 2
´ px ´

t2

T
q “

4u2t2x
T 2

b

px ´ t2

T
q2 ` 4u2t2x

T 2 ` px ´ t2

T
q

ď
2u2t2

p1 ´ ηqT 2
.

Therefore in all cases for t

Rep

c

x ´
z2

T
q ď

?
x and Imp

c

x ´
z2

T
q ď

d

xu2η

p1 ´ ηqT
.

Noting that |β| ď
?
T

Re

˜

pα ` iβq

c

x ´
z2

T

¸

ď α
?
x `

d

xu2η

p1 ´ ηq

|β|
?
T

ď
?
x

ˆ

α ` u

c

η

p1 ´ ηq

˙

So for z P γ1, γ3 we have

epα`iβq

b

x´ z2

T

sinpπzq
À e

´

α`u
?

η
p1´ηq

´πu
¯?

x
. (3.48)

We will later choose proper w, η, u such that

α ` u

c

η

p1 ´ ηq
´ πu `

logpT q

2
?
x

ă w. (3.49)

Next we assume that z P γ2, γ4. We have z “ ˘
?
ηxT ` it and ´u

?
x ď t ď u

?
x. As

t À
?
x À

4
?
T , then t

?
x

?
T

À 1 and t2

T
À x

T
“ op1q. We use lemma 3.34 to conclude that

c

x ´
z2

T
„ 4

c

x

T

˜

d

a

4t2η ` xT p1 ´ ηq2 ` p1 ´ ηq
?
xT

2

` i

d

a

4t2η ` xT p1 ´ ηq2 ´ p1 ´ ηq
?
xT

2

¸

„
a

p1 ´ ηqx ` it

c

η

T p1 ´ ηq
.
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This together with the fact that |β| ă
?
T imply that

Re

˜

pα ` iβq

c

x ´
z2

T

¸

ď α
a

p1 ´ ηqx `
|β|
?
T

d

ηt2

1 ´ η
ď α

a

p1 ´ ηqx ` |t|

c

η

1 ´ η

Again we assume that
?
xTη is far away from the integers; so as sinpπzq ą λ ą 0 for some

fixed λ, therefore for z P γ2, γ4

epα`iβq

b

x´ z2

T

sinpπzq
À eα

?
p1´ηqx`|t|p

?
η

1´η
´πq.

As
b

η
1´η

ă π, the maximum of the following function occurs at y “ 0:

Gpyq “ α
a

p1 ´ ηq ` y

c

η

1 ´ η
´ yπ.

We conclude that

2πi
ÿ

ℓ2ăTxη

p´1q
ℓepα`iβq

b

x´ ℓ2

T “

ż

γ

hT pzqdz

À
?
Txe

pα`u
?

η
p1´ηq

´πuq
?
x

`
?
xeα

?
p1´ηq

?
x. (3.50)

A straightforward calculation shows that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx

p´1q
lepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

xTηďℓ2ăTx

eα
b

x´ ℓ2

T À
?
xTeα

?
xp1´ηq.

For a sharper bound, we use lemma 3.44 to control the tail. Without loss of generality

assume that β ă 0. We prove that for |β| À
?
T ,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx´T

p´1q
ℓeiβ

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À

?
Tx3{2

a

|β| ` 1
`

?
Tx11

|β| ` 1
` log x. (3.51)

It is trivial to get the bound for |β| ă 1, so we assume otherwise. Let fpℓq :“ 1
2
ℓ `
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β
2π

´

x ´ ℓ2

T

¯1{2

. Then

f 1
pℓq “

1

2
´

βℓ

2πT

ˆ

x ´
ℓ2

T

˙´1{2

f2
pℓq “ ´

βx

2πT
px ´

ℓ2

T
q

´3{2

f p3q
pℓq “ ´

3βxℓ

2πT 2
px ´

ℓ2

T
q

´5{2 f p4q
pℓq “ ´

3βx

2πT 2
px `

4ℓ2

T
qpx ´

ℓ2

T
q

´7{2.

First we evaluate f 1 at the endpoints. Without loss of generality we consider
?
xTη ă ℓ ă

?
xT ´ T . Assuming that η ă 0.9, we have

f 1
p
a

xTηq “
1

2
´
β

?
xη

2π
?
T

px ´ ηxq
´1{2

P r0, 1s (3.52)

f 1
p
?
xT ´ T q “

1

2
´
β

?
xT ´ T

2πT
ă

?
x. (3.53)

As f2, f p3q, f p4q, f p5q are positive, we can find λ2, λ3, λ4 easily at the endpoints.

λ2 “ inf?
Txηăℓă

?
xT´T

f2
pℓq “ f2

p
a

xTηq “
|β|

2πT
?
xp1 ´ ηq3{2

"
|β|

T
?
x

λ3 “ sup
?
Txηăℓă

?
xT´T

f p3q
pℓq “ f p3q

p
?
xT ´ T q “

´3βx

2πT 2
pxT ´ T q

1{2
À

|β|x3{2

T 3{2

λ4 “ sup
?
Txηăℓă

?
xT´T

f p4q
pℓq “ f p4q

p
?
xT ´ T q “

´3βx

2πT 2
p5x ´ 4q À

|β|x2

T 2
. (3.54)

It implies that

λ23λ
´3
2 ` λ4λ

´2
2 À

x9{2

|β| ` 1
.

Noting that f 1p
?
xT ´ T q ´ f 1p

?
xTηq “ Op

?
xq and applying lemma 3.44 implies the

equation (3.51). For xTη ă t2 ă xT ´ T we define

Sptq :“
ÿ

xTηďℓ2ăt2

p´1q
ℓeiβ

b

x´ ℓ2

T .

Similar to what we just did, we know that |Sptq| À x5t{
a

|β| À
a

x11T {|β| for xTη ă

76



t2 ă xT ´ T . Using Abel’s summation formula we get

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx´T

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À |Sp
?
xT ´ T q|eα ` |Sp

a

ηxT q|eα
?

p1´ηqx
`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

?
xT´T

?
ηxT

Sptqvptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

(3.55)

where vptq :“ d
dt
exp

ˆ

α
b

x ´ t2

T

˙

. We bound the integral in the RHS.

ż

?
xT´T

?
ηxT

Sptqvptqdt “ ´
α

T

ż

?
xT´T

?
ηxT

tSptqeα
b

x´ t2

T

b

x ´ t2

T

dt.

Straightforward computation gives that

Gptq :“
tSptqeα

b

x´ t2

T

b

x ´ t2

T

À

˜ ?
Tx3{2

a

|β| ` 1
` log x `

?
Tx11

|β| ` 1

¸

eα
?

p1´ηqx
?
xT

It implies that

ˇ

ˇ

ˇ

ˇ

ˇ

ż

?
xT´T

?
ηxT

Sptqvptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

À

?
xT

T

˜ ?
Tx3{2

a

|β| ` 1
` log x `

?
Tx11

|β| ` 1

¸

eα
?

p1´ηqx
?
xT

À

˜ ?
Tx5{2

a

|β| ` 1
`

?
x log x `

?
Tx12

|β| ` 1

¸

eα
?

p1´ηqx.

This, (3.51), and (3.55) give

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx´T

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À

˜ ?
Tx5{2

a

|β| ` 1
`

?
x log x `

?
Tx12

|β| ` 1

¸

eα
?

p1´ηqx.
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Considering the range of β in our application, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xTηďℓ2ăTx´T

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xT´Tďℓ2ăTx

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À

d

x3T

|β| ` 1
eα

?
p1´ηqx

`
?
Tx. (3.56)

We used a trivial bound for the second sum. We want to have

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓepα`iβq

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

À

d

T

|β| ` 1
ew

?
x.

Adding (3.50) and (3.56) we need to have

$

’

’

&

’

’

%

α
?
1 ´ η ď w

α ` u
b

η
p1´ηq

´ πu ` 1
2

?
x
logp|β| ` 1q ď w.

(3.57)

Remember that η “ π2

1`π2 ´ ϵ. Comparing with β, if we choose u large enough then the left

hand side of the second condition in (3.57) becomes negative. So

w “ α

c

1

1 ` π2
` ϵ

from the first condition. This completes the proof.

3.3 Proof related to prime distribution

Inspired by the proof of the Prime Number Theorem (PNT) we compute the following sum

in two ways.

1

2πi

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds. (3.58)
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In this section, we assume that T ă e
4
3

?
x.

Lemma 3.59. For large enough x

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds À

?
Txe

p 1?
1`π2

`ϵq
?
x
. (3.60)

Proof. We consider the contour γ in figure 3.3, where ϵ ą 0 is a very small real number

and U is a very large real number far enough from any negative even integer ´2m. Using

the Residue Theorem

ÿ

ℓ2ăTx

p´1q
ℓ

ż

γ

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds

“ 2πi
ÿ

ℓ2ăTx

p´1q
ℓ

˜

´

lim
sÑ0

es
b

x´ ℓ2

T

`ζ 1psq

ζpsq

˘

¯

` e

b

x´ ℓ2

T

`
ÿ

|Impρmq|ă
?
T

eρm
b

x´ ℓ2

T

ρm
´

ÿ

1ďmďU{2

e´2m

b

x´ ℓ2

T

2m

¸

, (3.61)

where ρm is the mth non trivial zeroes of the Rieman zeta function.

-U

´
?
T

?
T

1+ϵ
0.5

Critical line

Figure 3.3: The contour γ

An easy computation shows that the first and fourth terms in the RHS sum have contri-
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bution at most
?
Tx. Using Theorem 3.4 (by tending c Ñ 0) the second term is bounded

from above by
?
Txeϵ

?
x . We can use Theorem 3.7 to show that

ÿ

ℓ2ăTx

p´1q
ℓeρm

b

x´ ℓ2

T À

d

Tx

|Impρmq| ` 1
e

p 1?
1`π2

`ϵq
?
x
.

Finally, using the fact that
ÿ

|Impρmq|ă
?
T

1

Impρmq
3
2

converges, we can conclude that the third term of RHS of (3.61) has contribution at most
?
Txe

p 1?
1`π2

`ϵq
?
x
. So we have

ÿ

ℓ2ăTx

p´1q
ℓ

ż

γ

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds À

?
Txe

p 1?
1`π2

`ϵq
?
x
. (3.62)

As e
s

?
x´ ℓ2

T

s
tends to zero for Repsq Ñ ´8, we can pick U large enough to have

ÿ

ℓ2ăTx

p´1q
ℓ

ż

γ

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds »

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds

`
ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ´i
?
T

´U´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds

`
ÿ

ℓ2ăTx

p´1q
ℓ

ż ´U`i
?
T

1`ϵ`i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds. (3.63)

The second integral in the RHS is

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ´i
?
T

´U´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓ

ż ´i
?
T

´U´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds `

ż 1`ϵ´i
?
T

´i
?
T

ζ 1psq

ζpsq

ř

ℓ2ăTxp´1qℓes
b

x´ ℓ2

T

s
ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
?
Tx

ż 0

´8

ˇ

ˇ

ˇ

ˇ

ζ 1pσ ´ i
?
T q

ζpσ ´ i
?
T q

ˇ

ˇ

ˇ

ˇ

eσ
?
x

?
T
dσ `

1
?
T

ż 1`ϵ

0

ˇ

ˇ

ˇ

ˇ

ζ 1psq

ζpsq

ˇ

ˇ

ˇ

ˇ

4
?
Tx2e

σp 1?
1`π2

`ϵq
?
x
dσ.
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Note that in the last inequality we used Theorem 3.7. We can use the fact that ζ1

ζ
pσ `

itq “
ř

ρ
1

σ`it´ρ
` Oplogptqq to choose a proper T such that ζ1

ζ
pσ ˘ i

?
T q À log2pT q for

´8 ď σ ă 1 ` ϵ. So we have

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ´i
?
T

´U´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds

À
?
x log2pT q `

?
x

4
?
T

ż 1`ϵ

0

ˇ

ˇ

ˇ

ˇ

ζ 1pσ ´ i
?
T q

ζpσ ´ i
?
T q

ˇ

ˇ

ˇ

ˇ

e
σp 1?

1`π2
`ϵq

?
x
dσ

À
log2pT q

4
?
T

e
p1`ϵq

?
x

1`π2 .

The third integral can be similarly bounded. This, (3.62), and (3.63) give the result.

Proof of Theorem 3.8. We compute (3.58) another way. We have

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

ζ 1psq

ζpsq

es
b

x´ ℓ2

T

s
ds “

ÿ

ℓ2ăTx

p´1q
ℓ

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

8
ÿ

n“1

Λpnq

ns

es
b

x´ ℓ2

T

s
ds

“
ÿ

ℓ2ăTx

p´1q
ℓ

¨

˚

˝

ÿ

1ďnďe

?
x´ ℓ2

T

`
ÿ

e

?
x´ ℓ2

T ďn

ż 1`ϵ`i
?
T

1`ϵ´i
?
T

Λpnq

ns

es
b

x´ ℓ2

T

s
ds

˛

‹

‚

:“ A1 ` A2

(3.64)

First we compute A1. Again, we use the contour γ in figure 3.3 to compute the integral.

Knowing
ˇ

ˇ

ˇ

ˇ

e

?
x´ l2

T

n

ˇ

ˇ

ˇ

ˇ

ą 1, we conclude that the integrand is tending to zero as Repsq Ñ ´8.
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Considering sufficiently large U and Using the Residue Theorem give

A1 »
ÿ

ℓ2ăTx

p´1q
ℓ

ÿ

1ďnďe

?
x´ ℓ2

T

Λpnq

ż

γ

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

`
ÿ

ℓ2ăTx

p´1q
ℓ

ÿ

1ďnďe

?
x´ ℓ2

T

Λpnq

ż 1`ϵ`i
?
T

´U`i
?
T

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

´
ÿ

ℓ2ăTx

p´1q
ℓ

ÿ

1ďnďe

?
x´ ℓ2

T

Λpnq

ż 1`ϵ´i
?
T

´U´i
?
T

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

“2πi
ÿ

ℓ2ăTx

p´1q
ℓΨ

ˆ

e

b

x´ l2

T

˙

`
ÿ

ℓ2ăTx

p´1q
ℓ

ÿ

nďe

?
x´ ℓ2

T

Λpnq

ż 1`ϵ`i
?
T

´U`i
?
T

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

´
ÿ

ℓ2ăTx

p´1q
ℓ

ÿ

nďe

?
x´ ℓ2

T

Λpnq

ż 1`ϵ´i
?
T

´U´i
?
T

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s
. (3.65)

We bound the integrals in RHS. Define

ynpV q :“ Λpnq

ż 1`ϵ˘iV

´U˘iV

ÿ

ℓ2ăTx´T log2pnq

p´1q
ℓ

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

Inspired by a mean value method by Montgomery in [39] there exists
?
T ă V ă 2

?
T
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such that

ÿ

nďe
?
x

|ynpV q| “
ÿ

nďe
?
x

´

ynpV qynpV q

¯1{2

“
ÿ

nďe
?
x

¨

˝Λpnq
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1`ϵ˘iV

´U˘iV

ÿ

ℓ2ăTx´T log2pnq

p´1q
ℓ

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2˛

‚

1{2

À
ÿ

nďe
?
x

Λpnq

¨

˚

˝

1
?
T

ż 2
?
T

?
T

ż 1`ϵ

´U

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx´T log2pnq

p´1q
ℓ

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

σ`itˇ
ˇ

ˇ

ˇ

ˇ

ˇ

2

dσ

σ2 ` t2
dt

˛

‹

‚

1{2

À
ÿ

nďe
?
x

Λpnq
4

?
T

¨

˚

˝

ż 1`ϵ

´U

ÿ

ℓ21ăℓ22ăT px´log2pnqq

e
σp

c

x´
ℓ21
T

`

c

x´
ℓ22
T

q

n2σ

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2
?
T

?
T

e
itp

c

x´
ℓ21
T

´

c

x´
ℓ22
T

q dt

σ2 ` t2

ˇ

ˇ

ˇ

ˇ

ˇ

dσ

˛

‹

‚

1
2

`
ÿ

nďe
?
x

Λpnq
4

?
T

¨

˝

ÿ

ℓ2ăT px´log2pnqq

ż 1`ϵ

´U

e2σ
b

x´ ℓ2

T

n2σ

ż 2
?
T

?
T

dt

σ2 ` t2
dσ

˛

‚

1
2

. (3.66)

We use Lemma 3.42 for Gptq :“ 1
σ2`t2

and F ptq :“ tp

b

x ´
ℓ21
T

´

b

x ´
ℓ22
T

q (i.e. F 1ptq ě

ℓ22´ℓ21
2T

?
x
) for the off-diagonal terms in the last expression of RHS in (3.66). Note that we could

get the same result without using the lemma, but this way is more straightforward. Then

ÿ

nďe
?
x

|ynpV q| À
4

?
x

4
?
T

ÿ

nďe
?
x

Λpnq

¨

˚

˝

ÿ

ℓ21ăℓ22ăT px´log2pnqq

ż 1`ϵ

´U

e
σp

c

x´
ℓ21
T

`

c

x´
ℓ22
T

q

n2σpℓ22 ´ ℓ21q
dσ

˛

‹

‚

1
2

`
1

?
T

ÿ

nďe
?
x

Λpnq

¨

˝

ÿ

ℓ2ăT px´log2pnqq

e2p1`ϵq

b

x´ ℓ2

T

n2p1`ϵq

˛

‚

1
2

À

¨

˝

ÿ

mă
?
Tx

τpmq

m

˛

‚

1
2

4
?
xep1`ϵq

?
x

4
?
T

ÿ

nďe
?
x

Λpnq

n1`ϵ
`

4
?
xep1`ϵq

?
x

4
?
T

ÿ

nďe
?
x

Λpnq

n1`ϵ
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where τpmq is the number of divisors of m. So there exists
?
T ă V ă 2

?
T we have

ÿ

nďe
?
x

Λpnq

ż 1`ϵ˘iV

´U˘iV

ÿ

ℓ2ăT px´log2pnqq

p´1q
ℓ

¨

˝

e

b

x´ ℓ2

T

n

˛

‚

s

ds

s
À

ÿ

nďe
?
x

|ynpV q| À
x

1
4 ep1`ϵq

?
x log T

4
?
T

.

This and (3.65) imply that

A1 “ 2πi
ÿ

l2ăTx

p´1q
lΨ

ˆ

e

b

x´ l2

T

˙

` O

˜

x
1
4 ep1`ϵq

?
x

4
?
T

¸

. (3.67)

γ1

U

´
?
T

?
T

1+ϵ
0.5

Critical line

Figure 3.4: The contour γ1

Next we compute A2. We consider contour γ1 in Figure 3.4. As e
s

?
x´ l2

T

sns does not have

poles inside γ1, choosing large enough U and using the Cauchy’s integral theorem give

A2 »
ÿ

ℓ2ăTx

p´1q
l

¨

˚

˝

ÿ

e

?
x´ ℓ2

T ďn

ż U`i
?
T

1`ϵ`i
?
T

Λpnq

ns

es
b

x´ ℓ2

T

s
ds ´

ÿ

e

?
x´ ℓ2

T ďn

ż U´i
?
T

1`ϵ´i
?
T

Λpnq

ns

es
b

x´ ℓ2

T

s
ds

˛

‹

‚

.
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Similar to yn, we define zn as follows:

znpV q :“ Λpnq
ÿ

T px´log2pnqqăℓ2ăTx

p´1q
ℓ

ż U˘iV

1`ϵ˘iV

es
b

x´ ℓ2

T

sns
ds

In this case, we will have

ÿ

n

|znpV q| “
ÿ

năe
?
x

Λpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

T px´log2pnqqăℓ2ăTx

p´1q
ℓ

ż U˘iV

1`ϵ˘iV

es
b

x´ ℓ2

T

sns
ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

e
?
xăn

Λpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓ

ż U˘iV

1`ϵ˘iV

es
b

x´ ℓ2

T

sns
ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.68)

As these cases are similar, we only compute the bound for the case e
?
x ă n. There exists

?
T ă V ă 2

?
T such that

ÿ

e
?
xăn

|znpV q| À
1

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˝

ż 2
?
T

?
T

ż U

1`ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓes

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

2
dσ

n2σpσ2 ` t2q
dt

˛

‚

1
2

À
1

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˚

˝

ż U

1`ϵ

1

n2σ

ÿ

ℓ21ăℓ22ăTx

e
σp

c

x´
ℓ21
T

`

c

x´
ℓ22
T

q

ż 2
?
T

?
T

e
itp

c

x´
ℓ21
T

´

c

x´
ℓ22
T

q

pσ2 ` t2q
dtdσ

˛

‹

‚

1
2

`
1

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˝

ż 2
?
T

?
T

ż U

1`ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ℓ2ăTx

p´1q
ℓes

b

x´ ℓ2

T

ˇ

ˇ

ˇ

ˇ

ˇ

2
dσ

n2σpσ2 ` t2q
dt

˛

‚

1
2

À
1

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˚

˝

ż U

1`ϵ

1

n2σ

ÿ

ℓ21ăℓ22ăTx

e
σp

c

x´
ℓ21
T

`

c

x´
ℓ22
T

q

ż 2
?
T

?
T

e
itp

c

x´
ℓ21
T

´

c

x´
ℓ22
T

q

pσ2 ` t2q
dtdσ

˛

‹

‚

1
2

`
1

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˝

ż 2
?
T

?
T

ÿ

ℓ2ăTx

ż U

1`ϵ

e2σ
b

x´ ℓ2

T

n2σ

dσ

pσ2 ` t2q
dt

˛

‚

1
2

.

(3.69)

Let F ptq “ tp

b

x ´
ℓ21
T

´

b

x ´
ℓ22
T

q and Gptq “ 1
pσ2`t2q

. Then we conclude that |F 1ptq| "
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ℓ22´ℓ21
T

?
x

and |Gptq| À 1
pσ2`T q

. Using lemma 3.42

ÿ

e
?
xăn

|znpV q| À
4

?
x

4
?
T

ÿ

e
?
xăn

Λpnq

¨

˚

˝

ÿ

ℓ21ăℓ22ăTx

1

ℓ22 ´ ℓ21

ż U

1`ϵ

e
σp

c

x´
ℓ21
T

`

c

x´
ℓ22
T

q

n2σ
dσ

˛

‹

‚

1
2

`
4

?
x

4
?
T

ÿ

e
?
xăn

Λpnq
ep1`ϵq

?
x

n1`ϵ

À
4

?
x

4
?
T

ÿ

e
?
xăn

Λpnq
ep1`ϵq

?
x

n1`ϵ

˜

ÿ

măTx

τpmq

m

¸
1
2

`
4

?
x

4
?
T

ÿ

e
?
xăn

Λpnq
ep1`ϵq

?
x

n1`ϵ
À

4
?
x logpT qep1`ϵq

?
x

4
?
T

.

So there exists
?
T ă V ă 2

?
T such that

A2 À
ÿ

e
?
xďn

|znpV q| À
4

?
x logpT qep1`ϵq

?
x

4
?
T

. (3.70)

Putting (3.67) and (3.70) into (3.64) and comparing it with (3.60) gives

ÿ

ℓ2ăTx

p´1q
lΨ

ˆ

e

b

x´ ℓ2

T

˙

À
?
Txe

p1`ϵq
?

x
1`π2 `

x
3
4

4
?
T
ep1`ϵq

?
x.

Taking T “ e
4p1`ϵq

3

?
xp1´

b

1
1`π2 q gives the desired result.

3.4 Proof related to the pentagonal number theorem.

We start this section by proving the weak pentagonal number theorem for truncation of the

usual partition function.

We start with the proof of proposition 3.15.

Proof. For (3.16) we only need to put c “ π
b

2
3
, a “ 3

2
, b “ ´1

2
, d “ 0 in theorem 3.4; for

equation (3.18), pick c “ π?
6
, a “ 3

2
, b “ ´1

2
, d “ 0 and use Theorem 3.4; and for equation
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(3.19) we need to pick c “ π?
6

and a “ 1, and b “ d “ 0.

We prove equation (3.17). Let fpzq “ π

b

24px´
zp3z´1q

2
q´1

36
and b2 “ 1

12
. We choose the

branch cut p´8, α1s Y rα2,8q. Then let G be the interior of the square with vertices (see

figure 3.1)

˘

c

2x

3
¯ 1 ˘ ib

?
x, (3.71)

Define

hpzq :“
efpzq

sin3pπzq
“
eπ

c

24px´
zp3z´1q

2 q´1

36

sin3pπzq
. (3.72)

Using the residue theorem

ż

γ

hpzqdz “ 2πi ¨
ÿ

zi: poles

Resphpziqq (3.73)

We compute the residues of hpzq. We know that for z near to ℓ P Z we have

1

psinpπzqq3
“

p´1qℓ

π3pz ´ ℓq3
`

p´1qℓ

2πpz ´ ℓq
` ¨ ¨ ¨

efpzq
“ efpℓq

` f 1
pℓqefpℓq

pz ´ ℓq `
pf 1pℓqq2 ` f2pℓq

2
efpℓq

pz ´ ℓq2 ` ¨ ¨ ¨

Also

pfpzqq
1

“ πp1 ´ 6zq

ˆ

24px ´
zp3z ´ 1q

2
q ´ 1

˙´1{2

pfpzqq
2

“ ´144πx

ˆ

24px ´
zp3z ´ 1q

2
q ´ 1

˙´3{2

(3.74)
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So we have

Res hpzq|z“ℓ “ p´1q
ℓefpℓq

ˆ

1

2π
`

pf 1pℓqq2 ` f2pℓq

2π3

˙

“
p´1qℓefpℓq

2πp24px ´ Gℓq ´ 1q

˜

24px ´ Gℓq ´ 1 ` p1 ´ 6ℓq2 ´
144x

π
a

24px ´ Gℓq ´ 1

¸

“
p´1qℓefpℓq

2πp24px ´ Gℓq ´ 1q

˜

24x ´
144x

π
a

24px ´ Gℓq ´ 1

¸

It implies that

ż

γ

hpzqdz “ 24ix
ÿ

Glăx

p´1q
l e

π
6

?
24px´Glq´1

p24px ´ Glq ´ 1q

˜

1 ´
6

π
a

24px ´ Glq ´ 1

¸

“
24ix
?
12

ÿ

Glăx

p´1q
lp2px ´ Glq. (3.75)

We bound the integral. First assume that we choose z P γ1 Y γ3. So z “ t ˘ ib
?
x for

´

b

2x
3

` 1 ă t ă

b

2x
3

´ 1. For large enough x we have

24px ´
zp3z´1q

2
q ´ 1

36
„

2

3
x ´ t2 ` b2x ¯ 2ibt

?
x.

Similar to the proof of theorem 3.4 for z P γ1, γ3

eπ

c

24px´
zp3z´1q

2 q´1

36 ď eπ
?

2x
3

`b2x.

Also | sin3pπzq| „ 1
8
e3πb

?
x, and considering b2 “ 1

12
we get that

πp

c

2

3
` b2 ´ 3bq “ 0. (3.76)

So the contribution of the horizontal legs is at most opxq. Now we compute the case z P

88



γ2, γ4. We have z “ ˘

b

2
3
x ¯ 1 ` it and ´b

?
x ă t ă b

?
x. We have

24px ´
zp3z´1q

2
q ´ 1

36
“

2

3
x ´

2

3
ˆ

2x ¯ 2it
?
6x ´ 3t2 ¯ 7it ´ p2

?
6 `

b

2
3
q
?
x ` 4

2
´

2

3

If t “ op
?
xq, then 24px´

zp3z´1q

2
q´1

36
“ opxq. Otherwise, since

?
x, t are negligible in com-

parison to x, t2

24px ´
zp3z´1q

2
q ´ 1

36
„ t2 ¯ it

c

8x

3
.

Using lemma 3.34 we have

Re

¨

˝

d

24px ´
zp3z´1q

2
q ´ 1

36

˛

‚ď

c

t

2
?
3

´?
3t2 ` 8x ` t

?
3
¯

(3.77)

Hence in any case we get

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

eπ
c

24px´
zp3z´1q

2 q´1

36

psinpπzqq3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À e
π
b

t
2

?
3
p

?
3t2`8`t

?
3q´3πt

. (3.78)

Maximizing for t in the RHS of (3.78), we get that the integral in the LHS of (3.73) can be

at most e0.21
?
x. It completes the proof.

89



Proof of Proposition 3.20. We have

ÿ

ℓ2ăx

p´1q
ℓp3px ´ ℓ2q “

?
6eπix

ÿ

ℓ2ăx

p
1

24px ´ ℓ2q ´ 1
´

12

πp24px ´ ℓ2q ´ 1q
3
2

qe
π
12

?
24px´ℓ2q´1

“
?
6e

π
12

?
24x´1`πix

ÿ

ℓ2ăx
4

e

´2πℓ2

?
24x´1p

c

1´ 24ℓ2
24x´1 `1q

p
1

24px ´ ℓ2q ´ 1
` Op

1
?
x3

qq

„
e

π
12

?
24x´1`πix

4x
?
6

ÿ

ℓ2ă
?
x lnx

e´ℓ2{2σ2

,

where

σ2
“

?
6x

π
.

The last expression in the above can be approximated as follows

1

4x
?
6
e

π
12

?
24x´1`πix

ÿ

ℓ2ă
?
x lnx

e´ ℓ2

2σ2 „
1

4x
?
6
e

π
12

?
24x´1`πix

ż 8

´8

e´t2{2σ2

dt

“
σ

?
2π

4x
?
6
e

π
12

?
24x´1`πix

„
eπix

23{4x1{4

a

ppxq.

We need the next lemma.

Lemma 3.79. With the same notation as theorem 3.4

ÿ

n:an2`bn`dăx

p´1q
nIα

´

c
?
x ´ an2 ` bn ` d

¯

hpnq “ O
´

ecw
?
x
¯

. (3.80)

where Iα is the Bessel function.

Before we mention the proof note that for fixed α and large enough x

Iαpxq „
ex

?
2πx

ˆ

1 ` O

ˆ

1

x

˙˙

.
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Proof. Since the proof is very similar to proof of 3.4, we skip the details. Let Hpzq “

hpzqIαp
?
x´z2q

sinpπzq
and qpnq “ an2 ` bn ` d and assume the contour γ in 3.1. Then

ÿ

ℓ:qpℓqăx

p´1q
ℓIα

´

c
a

x ´ qpℓq
¯

hpℓq “

ż

γ

Hpzqdz

For z P γ1, γ3

|Hpzq| À

Iα

´

c
a

xp1 ` au2q
¯

eπu
?
x

À ec
?

xp1`au2q´πu
?
x.

Also for z P γ2, γ4

|Hpzq| À Iα

ˆ

c

c

ux

2

´?
au2 ` 4 ` u

?
a
¯

˙

À
?
xe

c

c

x
?
aα

?
aα2`4`α

?
a

2
´πα

?
x
.

with the same notation as in proof of theorem 3.4. As the bound of argument of Bessel

function is the same as exponents in the proof of theorem 3.4 we get the same bound.

Proof of corollaries 3.22 and 3.23. For corollary 3.22 pick a “ 1, and c “

b

2π2

3
in

the Lemma 3.79. For corollary 3.23 pick c “ 2π?
15

and a “ 1 in Lemma 3.79.

3.5 Proof related to the Prouhet-Tarry-Escott problem

It is worth establishing a “baseline result” related to problem 3.24 for N large, relative to

k, n, that we get easily from a Pigeonhole Argument: consider all vectors px, x2, ¨ ¨ ¨ , xkq

with 1 ď x ď N . The sum of n of these lie in a box of volume nkNkpk`1q{2; and if two

such sums belong to the same box with dimensions N c ˆN2c ˆ ¨ ¨ ¨ ˆNkc, then they give a

solution to (3.24) for all 1 ď i ď k. The number of non over-lapping N c ˆ ¨ ¨ ¨ ˆNkc boxes

that fit inside our volume nkNkpk`1q{2 is at most nkN p1´cqkpk`1q{2; and with a little work

one can see that the large box can be covered with approximately (up to a constant factor)
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this many smaller boxes. If this (the number of smaller boxes in a covering) is smaller than

the number of sets of n vectors px, x2, ¨ ¨ ¨ , xkq that produce our vector sum (this count is

at least Nn

n!
for N large enough relative to n) then we get a “collision”, that is a pair of

sequences a1, ¨ ¨ ¨ , an and b1, ¨ ¨ ¨ , bn leading to a solution to 3.24 for all 1 ď i ď k. In

other words, we get such a solution when

nkN
p1´cqkpk`1q

2 ă
Nn

n!
.

For N large, then, we get that there is a solution so long as

c ą 1 ´
2n

kpk ` 1q
. (3.81)

When k is a little smaller than
?
2n, note that the RHS is negative, implying that we can

take c “ 0 (since it must be non-negative).

Curiously, when k is only a little bigger than
?
n (say,

?
n logpnq), then this pigeonhole

argument only gives us pairs of sequences with c near to 1. Basically, then, we don’t get

a much better result for the weakening than we do for the original Prouhet-Tarry-Escott

Problem, if we insist on finding solutions with c ă 1
2
, say.

We prove a lemma before introducing a set of solutions for the weak Prouhet-Terry-

Escott problem (problem 3.24).

Lemma 3.82. For large x, let k À
?
x

logpxT q
and T :“ T pxq “ opxq. Then for every 1 ď r ď

k there exists c ą 0 such that

ÿ

ℓ2ăxT

p´1q
ℓ
`

xT ´ ℓ2
˘

r
2 À

?
xpTxq

r
4 pArqr{2 (3.83)

Remark 3.84. Note that the proof becomes easier if we just choose r to be even. But we

propose a more general case here.
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Proof. Let u “ op
?
xq, to be determined later. Define

frpzq “
pxT ´ z2q

r
2

sinpπzq
.

Let γ be the contour in Figure 3.5. Using the residue Theorem

ż

γ

frpzqdz “ 2πi
ÿ

ℓ2ăxT

p´1q
ℓ
`

Tx ´ ℓ2
˘

r
2 .

-
?
Tx

?
Tx

´u
?
x

u
?
x

γ4

γ3

γ2

γ1

Figure 3.5: The contour γ

Let z P γ1, γ3. So z “ t ˘ iu
?
x and ´

?
xT ă t ă

?
xT . Then

ˇ

ˇxT ´ z2
ˇ

ˇ

2
“

`

xT ` u2x ´ t2
˘2

` 4t2u2x.

Note that u is a constant as x tends to infinity and T “ opxq. With simple computation we

can conclude that the RHS is maximaized at t “ 0, so on γ1, γ3 we have

|frpzq| À
ˇ

ˇxT ` u2x
ˇ

ˇ

r
4 e´πu

?
x

„ pxT q
r
4 e´πu

?
x. (3.85)

By assumption r ď k À
?
x{ logpxT q, so we can pick u to be large enough so as the

contribution of horizental legs become small. For γ2, γ4 we have z “ ˘
?
xT ` it and
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´u
?
x ă t ă u

?
x. We can show that

ˇ

ˇxT ´ z2
ˇ

ˇ

2
“ t4 ` 4t2xT.

So we need to maximize the RHS of the following expression for t ď u
?
x

|frpzq| À pt4 ` 4t2xT q
r
4 e´πt

Simple computation shows that it happens when t „ Cr for some C ą 0. Hence, there

exist A ą 0 such that

|frpzq| À Ar
pxT q

r
4

ˆ

r2 `
r4

xT

˙
r
4

À pArqr{2
pxT q

r
4 .

This completes the proof.

Remark 3.86. We could increase the height of vertical lines of figure 3.5 to xα, α ą 1
2
,

to make it possible for k to become bigger - say k " xα. This in turn results in larger

k “ Mpnq and larger error term.

Proof of Theorem 3.26. Let M be a large number.

xi “ M2m`b
´ p2i ´ 2q

2 yi “ M2m`b
´ p2i ´ 1q

2

Then maxpxri , y
r
i q „ M2m`b. Lemma 3.82 concludes that for x “ M2m and T “ M b and

1 ď r ď k

ÿ

i

xri ´
ÿ

i

yri À prq
r
2

`ϵM p2m`bq r
4

`m.

If we pick k ď uπMm

12m2 logpMq
and b “ 1, then the result follows.
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Proof of Theorem 3.33. We first show that frpMq is a polynomial in M – that is,

frpMq “ c0prq ` c1prqM ` ¨ ¨ ¨ ` cdprqMd,

where d is yet to be determined. This follows upon applying the binomial theorem to the

terms in the definition of frpMq, together with the fact that
ř

|ℓ|ă2Mp´1qℓℓk is a polynomial

inM . The coefficients are obviously integers and we also can show the coefficients as sums

involving Bernouli numbers. Note that the degree d of that polynomial doesn’t depend on

M .

Let’s assume that r is even. We now leverage this fact to prove that d “ r ´ 1. To do

this, note that it suffices to prove that |frpMq| “ orpM
rq, and |frpMq| "r M

r´1. To put

that another way: fix r, and then we show that

lim
MÑ8

logp|frpMq|q

logpMq
“ r ´ 1.

Write frpMq as the contour integral

1

2πi

ż

γ

fpzqdz :“
1

2πi

ż

γ

p4M2 ´ z2qr

sinpπzq
dz,

where γ is in figure ??. Note that because f has a removable singularity at z “ ˘2M , it is

possible to compute the contribution of the integral in these vertical legs.

Now, one easily sees that the contribution of γ1, γ3 is negligible, and at least forM large

relative to r the main contribution will come from the part of the contour near the real axis.

These two parts of the contour can be parametrized as z “ 2M ` it and z “ ´2M ` it,

|t| ď 2M . So, for M large relative to r we will have that the integral is

„
1

π

ż 2M

´2M

p´4Mit ` t2qr

sinpπitq
dt “

1

π

ż 2M

´2M

p´4Mitqr

sinpπitq
dt `

1

π

ż 2M

´2M

rp´4Mitqr´1t2

sinpπitq
dt ` OpM r´2

q

„ 0 `
r

π
p´4Miqr´1

ż 8

´8

tr`1

sinpπitq
dt „ cM r´1,
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-2M 2M

-M

M
γ4

γ3

γ2

γ1

Figure 3.6: The contour γ

for a constant c that depends only on r. Note that the first term of RHS is zero by symmetry.

This means that frpMq is of degree r ´ 1. Also we bound the size of frpMq from above in

the range r À M
logpMq

.

ż

γ

fpzqdz „ cM r´1
À erplogprq`log logprqqM r´1.
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CHAPTER 4

ENDPOINT ℓR IMPROVING ESTIMATES FOR PRIME AVERAGES

4.1 Introduction

We consider discrete averages over the prime integers. The averages are weighted by the

von Mangoldt function.

ANfpxq “
1

N

ÿ

1ďnďN

fpx ´ nqΛpnq (4.1)

Our interest is in scale free ℓr improving estimates for these averages. The question presents

itself in different forms.

For an interval I in the integers and function f : I Ñ C, set

xfyI,r “

”

|I|´1
ÿ

xPI

|fpxq|r
ı1{r

. (4.2)

If r “ 1, we will suppress the index in the notation. And, set Log x “ 1 ` |log x|, for

x ą 0.

The kind of estimate we are interested in takes the the following form, in the simplest

instance. What is the ‘smallest’ function ψ : r0, 1s Ñ r1,8q so that for all integers N and

indicator functions f, g : I Ñ t0, 1u, there holds

N´1
xANf, gy ď xfyIxgyIψpxfyIxgyIq.

That is, the right hand side is independent of N , making it scale-free. We specified that

f, g be indicator functions as that is sometimes the sharp form of the inequality. Of course

it is interesting for arbitrary functions, but the bound above is not homogeneous, so not the

97



most natural estimate in that case.

The points of interest in these two results arises from, on the one hand, the distinguished

role of the prime integers. And, on the other, endpoint results are significant interest in Har-

monic Analysis, as the techniques which apply are the sharpest possible. In this instance,

the sharp methods depend very much on the prime numbers.

For the primes, we expect that the Riemann Hypothesis to be relevant. We state uncon-

ditional results, and those that depend upon the Generalized Riemann Hypothesis (GRH).

Remember that according to GRH all zeroes in the critical strip 0 ă Repsq ă 1 of an

arbitrary L´function Lpf, sq are on the critical line Repsq “ 1
2
. Under GRH, the primes

are equitably distributed mod q, with very good error bounds. Namely,

ψpx, q, aq “
ÿ

năx
n”a pmod qq

Λpnq “
x

ϕpqq
` Opx

1
2 log2pqqq. (4.3)

Theorem 4.4. There is a constant C so that this holds. For integers N ą 30, and interval

I of length N , the following inequality holds for all functions f “ 1F and g “ 1G with

F,G Ă I

N´1
xANf, gy ď CxfyIxgyI ˆ

$

’

’

&

’

’

%

LogpxfyIxgyIq assuming GRH

pLogpxfyIxgyIqq2

(4.5)

The inequality assuming GRH is sharp, as can be seen by taking f to be the indicator

of the primes, and g “ 10. It is also desirable to have a form of the inequality above that

holds for the maximal function

A˚f “ sup
N

|ANf |.

Our second main theorem is sparse bound for A˚. The definition of a sparse bound is

postponed to Definition 4.52. Remarkably, the inequality takes the same general form,
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although we consider a substantially larger operator.

Theorem 4.6. For functions f “ 1F and g “ 1G, for finite sets F,G Ă Z, there is a sparse

collection of intervals S so that we have

xA˚f, gy À
ÿ

IPS
xfyIxgyIpLogxfyIxgyIq

t|I|, (4.7)

where we can take t “ 1 under GRH, and otherwise we take t “ 2.

The sparse bound is very strong, implying weighted inequalities for the maximal oper-

ator A˚. These inequalities could be further quantified, but we do not detail those conse-

quences, as they are essentially known. See [40].

This subject is an outgrowth of Bourgain’s fundamental work on arithmetic ergodic the-

orems [41, 42]. These inequalities proved therein focused on the diagonal case, principally

ℓp to ℓp estimates for maximal functions. Bourgain’s work has been very influential, with

a very rich and sophisticated theory devoted to the diagonal estimates. We point to [43,

44], and very recently [45, 46]. The subject is very rich, and the reader should consult the

references in these papers.

Shortly after Bourgain’s first results, Wierdl [47] studied the primes, and the simpler

form of the Circle method in that case allowed him to prove diagonal inequalities for all

p ą 1, which was a novel result at that time. The result was revisited by Mirek and

Trojan [48]. The approach of this paper differs in some important aspects from the one in

[49]. (The low/high decomposition is dramatically different, to point to the single largest

difference.)

The subject of sparse bounds originated in harmonic analysis, with a detailed set of ap-

plications in the survey [50], with a wide set of references therein. The paper [51] initiated

the study of sparse bounds in the discrete setting. While the result in that paper of an ‘ϵ

improvement’ nature, for averages it turns out there are very good results available, as was

first established for the discrete sphere in [52, 53]. There is a rich theory here, with a range
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of inequalities for the Magyar-Stein-Wainger [54] maximal function in [55]. Nearly sharp

results for certain polynomial averages are established in [56, 57], and a surprisingly good

estimate for arbitrary polynomials is in [58]. The latter result plays an interesting role in

the innovative result of Krause, Mirek and Tao [59].

The ℓp improving property for the primes was investigated in [60], but not at the end-

point. That paper result established the first weighted estimates for the averages for the

prime numbers. This paper establishes the sharp results, under GRH. Mirek [61] addresses

the diagonal case for Piatetski-Shapiro primes. It would be interesting to obtain ℓp improv-

ing estimates in this case.

Our proof uses the Circle Method to approximate the Fourier multiplier, following

Bourgain [41]. In the unconditional case, we use Page’s Theorem, which leads to the

appearance of exceptional characters in the Circle method. Under GRH, there are no ex-

ceptional characters, and one can identify, as is well known, a very good approximation to

the multiplier.

The Fourier multiplier is decomposed at the end of §4.3 in such a way to fit an inter-

polation argument of Bourgain [62], also see [63]. We call it the High/Low Frequency

method. To acheive the endpoint results, this decomposition has to be carefully phrased.

There are two additional features of this decomposition we found necessary to add in. First,

certain difficulties associated with Ramanujan sums are addressed by making a significant

change to a Low Frequency term. The sum defining the Low Frequency term (4.28) is over

all Q-smooth square free denominators. Here, the integer Q can vary widely, as small as 1

and as large as N1{10, say. (The largest Q-smooth square denominator will be of the order

of eQ.) Second, in the unconditional case, the exceptional characters are grouped into their

own term. As it turns out, they can be viewed as part of the Low Frequency term. The

properties we need for the High/Low method are detailed in §4.4. The following sections

are applications of those properties.
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4.2 Notation

We write A À B if there is a constant C so that A ď CB. In such instances, the exact

nature of the constant is not important.

Let F denote the Fourier transform on R, defined for by

Ffpξq “

ż

R
fpxqe´2πixξ dx, f P L1

pRq.

The Fourier transform on Z is denoted by pf , defined by

pfpξq “
ÿ

nPZ

fpnqe´2πinξ, f P ℓ1pZq.

Throughout this chapter, we denote Aq “ ta P Z{qZ : pa, qq “ 1u, so that |Aq| “

ϕpqq, the totient function. We have

q

Log Log q
À ϕpqq ď q ´ 1. (4.8)

It is known that for non-principal characters χ, we have |Gpχ, aq| ă q´ 1
2 , see [64, Chapter

3]. As for the principal character, if χ is identity, then we get Ramanujan’s sum

cqpnq :“ ϕpqqGp1Aq , aq “
ÿ

rPAq

e
`ra

q

˘

. (4.9)

Let χq denote the exceptional character. It is a non-trivial quadratic Dirichlet character

modulo q, that is χq takes values ´1, 0, 1, and takes the value ´1 at least once. We also

know that χq is primitive, namely that its period is q. As a matter of convenience, if q does

not have an exceptional character, we will set χq ” 0, and βq “ 1. These properties are

important to Lemma 4.45.

Page’s Theorem uses the exceptional characters to give an approximation to the prime

101



counting function. Counting primes in an arithmetic progression of modulus q, we have

ψpN ; q, rq ´
N

ϕpqq
`
χqpxq

ϕpqq
β´1
q xβq À Nec

?
logN . (4.10)

4.3 Approximations of the Kernel

Denote the kernel of AN with the same symbol, so that ANpxq “ N´1
ř

nďN Λpnqδnpxq.

It follows that

xANpξq “
1

N

ÿ

nďN

Λpnqe´2πnξ.

The core of the paper is the approximation to xANpξq, and its further properties, detailed in

the next section.

Set

Mβ
N “

1

Nβ

ÿ

nďN

rnβ
´ pn ´ 1q

β
sδn,

1
2

ă β ď 1. (4.11)

We write MN “ M1
N when β “ 1, which is the standard average. For β ă 1, these are not

averaging operators. They are the operators associated to the exceptional characters. The

Fourier transforms are straight forward to estimate.

Proposition 4.12. We have the estimates

|yMNpξq| À mint1, pN |ξ|q´1
u, (4.13)

|yMβ
Npξq| À pN |ξ|q´1, (4.14)

|yMβ
Npξq ´ β´1Nβ´1| À Nβ|ξ|. (4.15)

For integers q and a P Aq,

yLa,q
N pξq “ Gp1Aq , aqyMNpξq ´ Gpχq, aq

y

M
βq

N pξq (4.16)

We state the approximation to the kernel at rational point, with small denominator.
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Lemma 4.17. Assume that |ξ ´ a
q
| ď N´1Q for some 1 ď a ď q ď Q and gcdpa, qq “ 1.

Then

xANpξq “ yLa,q
N pξ ´ a

q
q `

"

OpQN´ 1
2

`ϵq, Assuming GRH

OpQe´c
?
nq, Otherwise

(4.18)

Proof. We proceed under GRH, and return to the unconditional case at the end of the

argument. The key point is that we have the approximation (4.3) for ψpN ; q, rq. Set α :“

ξ ´ a
q
. Using Abel summation, we can write

NyMNpαq “ NepαNq ´
?
Nepα

?
Nq ´ 2πiα

ż N

?
N

etα dt ` Op
?
Nq.

Turning to the primes, we separate out the sum below according to residue classes mod q.

Since ξ “ a
q

` α,

ÿ

ℓďN

epξℓqΛpℓq “
ÿ

0ďrďq
gcdpr,qq“1

ÿ

ℓďN
ℓ”r mod q

epξℓqΛpℓq

“
ÿ

rPAq

e
`

ra
q

˘

ÿ

ℓďN
ℓ”r mod q

epαℓqΛpℓq.

Examine the inner sum. Using Abel’s summation formula, and the notation ψ for prime

counting function, we have

ÿ

ℓďN
ℓ”r mod q

epαℓqΛpℓq “ ψpN ; q, rqepαNq ´ ψp
?
N ; q, rqepα

?
Nq

´ 2πiα

ż N

?
N

ψpt; q, rqepαtqdt ` Op
?
Nq.

At this point we can use the Generalized Riemann Hypothesis. From (4.3), it follows
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that

ÿ

ℓďN
ℓ”r mod q

epαℓqΛpℓq ´
N

ϕpqq
yMNpαq “ pψpN ; q, rq ´

N

ϕpqq
epαNqqepαNq

´ 2πiα

ż N

?
N

eptαqpψpt; q, rq ´ tq dt ` Op
?
Nq

À N
1
2

`ϵ
`
Q

N

ż N

?
N

t
1
2

`ϵdt ` OpN
1
2

`ϵ
q

À QN
1
2

`ϵ.

The proof without GRH uses Page’s Theorem (4.10) in place of (4.3). We omit the

details.

The previous Lemma approximates xANpξq near a rational point. We extend this ap-

proximation to the entire circle. This is done with these definitions.

yVs,npξq “
ÿ

a{qPRs

Gp1Aq , aqyMNpξ ´ a{qqηspξ ´ a{qq, (4.19)

zWs,npξq “
ÿ

a{qPRs

Gpχq, aq
y

M
βq

N pξ ´ a{qqηspξ ´ a{qq, (4.20)

Rs “ ta{q : a P Aq, 2
s

ď q ă 2s`1
u, (4.21)

and R0 “ t0u. Further 1r´1{4,1{4s ď η ď 1r´1{2,1{2s, and ηspξq “ ηp4sξq. In (4.27), recall

that if q is not exceptional, we have χq “ 0. Otherwise, χq is the associated exceptional

Dirichlet character. Given an integer N “ 2n, set

Ñ “

$

’

’

&

’

’

%

ec
?
n{4 where c is as in (4.18)

N1{5 under GRH
(4.22)
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Lemma 4.23. Let N “ 2n. Write AN “ BN ` ErrN , where

BN “
ÿ

s : 2săpÑq1{400

Vs,n ´ Ws,n. (4.24)

Then, we have ∥ErrNf∥ℓ2 À pÑq´1{1000∥f∥ℓ2 .

Proof. We estimate the ℓ2 norm by Plancherel’s Theorem. That is, we bound

∥xAN ´ xBN∥L8pTq À pÑq
´1{1000.

Fix ξ P T, where we will estimate the L8 norm above. By Dirichlet’s Theorem, there

are relatively prime integers a, q with 0 ď a ă q ď pÑq1{5 with

|ξ ´ a{q| ă
1

q2
.

The argument now splits into cases, depending upon the size of q.

Assume that pÑq1{400 ă q ď pÑq1{5. This is a situation for which the classical Vino-

gradov inequality [65]*Chapter 9 was designed. That estimate is however is not enough

for our purposes. Instead we use [64, Chapter 9] for the estimate below.

|xANpξq| À pq´1{2
` pq{Nq

1{2
` N´1{5

q log3N À pÑq
´1{1000.

So, in this case we should also see that xBNpξq satisfies the same bound. The function xBN

is a sum over yVs,n and zWs,n. The argument for both is the same. Suppose that yVs,npξq ‰ 0.

The supporting intervals for ηspξ ´ a{qq for a{q P Rs are pairwise disjoint. We must have

|ξ ´ a0{q0| ă 2´2s for some a0{q0 P Rs, where 2s ă pÑq1{400. Then,

|ξ ´ a0{q0| ě |a0{q0 ´ a{q| ´ |ξ ´ a{q| ě pqq0q
´1

´ q´2
ě q´4

0 .
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But then by the decay estimate (4.13), we have

|Gp1Aq , a0qyMNpξ ´ a0{q0q| À pNq´4
0 q

´1
À N´1

pÑq
1{100

This estimate is summed over s ď pÑq1{400 to conclude this case.

Proceed under the assumption that q ď N0 “ pÑq1{400. From Lemma 4.17, the inequal-

ity (4.18) holds.

xANpξq “ yLa,q
N pξ ´ a

q
q ` OpN

´1{2
0 q

The Big O term is as is claimed, so we verify that xBNpξq ´ yLa,q
N pξ ´ a

q
q À N

´1{2
0 .

The analysis depends upon how close ξ is to a{q. Suppose that |ξ´a{q| ă 1
4
N´2

0 . Then

a{q is the unique rational b{r with pb, rq “ 1 and 0 ď b ă r ď N0 that meets this criteria.

That means that

xBNpξq “ yLa,q
N pξ ´ a{qqηspξ ´ a{qq

where in the last term on the right, 2s ď q ă 2s`1. By definition ηspξ ´ a{qq “ ηp4spξ ´

a{qqq, which equals one by assumption on ξ. That completes this case.

Continuing, suppose that there is no a{q with |ξ ´ a{q| ă N´2
0 . The point is that we

have the decay estimates (4.13) and (4.14) which imply

|yMNpξ ´ a{qq| ` |yMβ
Npξ ´ a{qq| À rNpξ ´ a{qqs

´1
À
N2

0

N
À N´3{5.

But then, from the definition (4.16), we have

|yLa,q
N pξ ´ a

q
q| À N´1{5.
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And as well, trivially bounding Gauss sums by 1, we have

|xBNpξq| À
n3{5

N
À N´1{5,

by just summing over all a{q P Rs, with s ă pÑq1{400. That completes the proof.

The discussion to this point is of a standard nature. We state here a decomposition of

the operator BN defined in (4.24). It encodes our High/Low/Exceptional decomposition,

and requires some care to phrase, in order to prove our endpoint type results for the prime

averages. It depends upon a supplementary parameter Q. This parameter Q will play two

roles, controlling the size and smoothness of denominators. Recall that an integer q is Q-

smooth if all of its prime factors are less than Q. Let SQ be the collection of square-free

Q-smooth integers.

zV Q,lo
s,n pξq “

ÿ

a{qPRs

qPSQ

Gp1Aq , aqyMNpξ ´ a{qqηspξ ´ a{qq, (4.25)

zV Q,hi
s,n pξq “

ÿ

a{qPRs

qRSQ

Gp1Aq , aqyMNpξ ´ a{qqηspξ ´ a{qq, (4.26)

zWs,npξq “
ÿ

a{qPRs

Gpχq, aq
y

M
βq

N pξ ´ a{qqηspξ ´ a{qq, (4.27)

Define

LoQ,N “
ÿ

s

V Q,lo
s,n , (4.28)

HiQ,N “
ÿ

s : Qď2sďpÑq1{400

V Q,hi
s,n ´ Ws,n (4.29)

ExQ,N “
ÿ

s : 2sďQ

Ws,n (4.30)

Concerning these definitions, in the Low term (4.28), there is no restriction on s, but the
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sum only depends upon the finite number of square-free Q-smooth numbers in SQ. (Due to

(4.42), the non-square free integers will not contribute to the sum.) The largest integer in

SQ will be about eQ, and the value of Q can be as big as Ñ . In the High term (4.29), there

are two parts associated with the principal and exceptional characters. For the principal

characters, we exclude the square free Q-smooth denominators which are both larger than

Q and less than pÑq1{400. These are included in the Low term. We include all the denom-

inators for the exceptional characters. In the Exceptional term (4.30), we just impose the

restriction on the size of the denominator to be not more than Q. This will be part of the

Low term.

The sum of these three terms well approximates BN .

Proposition 4.31. Let 1 ď Q ď Ñ . We have the estimate

∥Err1
Q,Nf∥ℓ2 À pÑq

´1{2∥f∥ℓ2 , (4.32)

We have the estimate

∥Err1
Q,Nf∥ℓ2 À pÑq

´1{2∥f∥ℓ2 , (4.33)

where

Err1
N “ LoQ,N ` HiQ,N ` ExN `ErrN ´ BN . (4.34)

Proof. From (4.24), we see that

zErr1
Npξq “

ÿ

s : 2sąpÑq1{400

zV Q,lo
s,n pξq

Recalling the definition of V Q,lo
s,n from (4.25), it is straight forward to estimate this last sum

in L8pTq, using the Gauss sum estimate Gp1Aq , aq À
Log Log q

q
.
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4.4 Properties of the High, Low and Exceptional Terms

The further properties of the High, Low and Exceptional terms are given here, in that order.

4.4.1 The High Terms

We have the ℓ2 estimates for the fixed scale, and for the supremum over large scales, for

the High term defined in (4.29). Note that the supremum is larger by a logarithmic factor.

Lemma 4.35. We have the inequalities

∥HiQ,N∥ℓ2Ñℓ2 À
log logQ

Q
, (4.36)

∥ sup
NąQ2

|HiQ,N f |∥2 À
log logQ ¨ logQ

Q
∥f∥ℓ2 . (4.37)

We comment that the insertion of the Q smooth property into the definition of V Q,hi
s,n in

(4.26) is immaterial to this argument.

Proof. Below, we assume that there are no exceptional characters, as a matter of con-

venience as the exceptional characters are treated in exactly the same manner. For the

inequality (4.36), we have from the definition of the High term in (4.29), and (4.26),

∥HiQ,N∥ℓ2Ñℓ2 “ ∥{HiQ,N∥L8pTq

“

∥∥∥ ÿ

s : Qď2sďÑ

zV Q,hi
s,n

∥∥∥
L8pTq

ď
ÿ

s : Qď2sďÑ

∥zV Q,hi
s,n ∥L8pTq

ď
ÿ

s : Qď2sďÑ

max
2sďqă2s`1

max
aPAq

|Gp1Aq , aq|

À
ÿ

s : Qď2sďÑ

max
2sďqă2s`1

1

ϕpqq

À
ÿ

s : Qď2s

log s ¨ 2´s
À

log logQ

Q
.
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The first line is Plancherel, and the subsequent lines depend upon definitions, and the fact

that the functions below are disjointly supported.

tηsp¨ ´ a{qq : 2s ď q ă 2s`1, a P Aqu.

Last of all, we use a well known lower bound ϕpqq " q{ log log q.

For the maximal inequality (4.37), we have an additional logarithmic term. This is

direct consequence of the Bourgain multi-frequency inequality, stated in Lemma 4.38. We

then have

∥ sup
NąQ2

|HiQ,N f |∥ℓ2 ď
ÿ

s : Qď2s

∥∥ sup
NąQ2

|V Q,hi
s,n f |

∥∥
ℓ2

À
ÿ

s : Qď2s

s ¨ max
2sďqă2s`1

1

ϕpqq
¨ ∥f∥ℓ2 À

logQ ¨ log logQ

Q
∥f∥ℓ2 .

Lemma 4.38. Let θ1, . . . , θJ be points in T with minj‰k|θj ´ θk| ą 2´2s0`2. We have the

inequality

∥∥∥ sup
Ną4s0

∣∣∣ J
ÿ

j“1

F´1
´

pf
J
ÿ

j“1

M̃Np¨ ´ θjqηs0p¨ ´ a{qq
¯
∣∣∣∥∥∥

ℓ2
À log J ¨ ∥f∥ℓ2 .

This is one of the main results of [42]. It is stated therein with a higher power of log J .

But it is well known that the inequality holds with a single power of log J . This is discussed

in detail in [60].

4.4.2 The Low Terms

From the Low terms defined in (4.28), the property is
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Lemma 4.39. For a functions f, g supported on interval I of length N “ 2n, we have

N´1
xLoQ,N ˚f, gy À logQ ¨ xfyIxgyI . (4.40)

The following Möbius Lemma is well known.

Lemma 4.41. For each q, we have

ÿ

aPAq

Gp1Aq , aqF´1
pxMN ¨ ηsp¨ ´ a{qqqpxq “

µpqq

ϕpqq
cqp´xq. (4.42)

Proof. Compute

ÿ

aPAq

Gp1Aq , aqF´1
pxMN ¨ ηsp¨ ´ a{qqqpxq “ MN ˚ F´1ηspxq

ÿ

aPAq

Gp1Aq , aqepax{qq.

We focus on the last sum above, namely

Sqpxq “
ÿ

aPAq

Gp1q, aqepxa{qq

“
1

ϕpqq

ÿ

rPAq

ÿ

aPAq

epapr ` xq{qq

“
1

ϕpqq

ÿ

rPAq

cqpr ` xq “
µpqq

ϕpqq
cqp´xq. (4.43)

The last line uses Cohen’s identity.

The two steps of inserting of the property of being Q smooth in (4.25), as well as

dropping an restriction on s in (4.28), were made for this proof.

Proof of Lemma 4.39. By (4.42), the kernel of the operator LoQ,N is

LoQ,Npxq “ MN ˚ F´1ηspxq ¨ Sp´xq,

where Spxq “
ÿ

qPSQ

µpqq

ϕpqq
cqpxq. (4.44)
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We establish a pointwise bound ∥S∥ℓ8 À logQ, which proves the Lemma.

Assume x ‰ 0. We exploit the multiplicative properties of the summands, as well as

the fact that if prime p divides x, we have µppxq

ϕppq
cqpxq “ µppxq. Let Q1 be the primes p ă Q

such that pp, xq “ 1, and set Q2 to be the primes less than Q which are not in Q1.

The multiplicative aspect of the sums allows us to write

µpqq

ϕpqq
cqp´xq “

µpq1q

ϕpq1q
cq1p´xq ¨ µpq2q

where q “ q1q2, and all prime factors of qj are in Qj . If Qj is empty, set qj “ 1. Thus,

Spxq “ S1pxqS2pxq, where the two terms are associated with Q1 and Q2 respectively. We

have

S1pxq “
ÿ

q is Q1 smooth

µpqq

ϕpqq
cqp´xq

“
ź

pPQ1

1 `
µppqcpp´xq

ϕppq

“
ź

pPQ1

1 `
1

p ´ 1
“ Ax.

This is so, since µppqcppxq “ 1. It is a straight forward consequence of the Prime Number

Theorem that Ax À logQ. Here, and below, we say that q is Q smooth if all the prime

factors of q are in the set of primes Q.

The second term is as below, where d “ |Q2|. Here, in the definition (4.28), there is no

restriction on s, hence all the smooth square free numbers are included. If Q2 “ H, then
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S2pxq “ 1, otherwise

S2pxq “
ÿ

q is Q2 smooth

µpqq

“

d
ÿ

j“1

ˆ

d

j

˙

p´1q
j

“ ´1 `

d
ÿ

j“0

ˆ

d

j

˙

p´1q
j

“ ´1.

If x “ 0, then Sp0q “ S2pxq “ ´1. That completes the proof.

4.4.3 The Exceptional Term

The Exceptional terms are always of a smaller order than the Low terms.

Lemma 4.45. Let χ be an exceptional character modulo q. For x P Z,

∣∣∣ ÿ
aPAq

Gpχ, aqepxa{qq
∣∣∣ “

q

ϕpqq
(4.46)

provided px, qq “ 1, otherwise the sum is zero.

Proof. It is also known that exceptional characters are primitive - see [64, Theorem 5.27].

So the sum is zero if px, qq ą 1. We use the common notation

τpχ, xq “
ÿ

aPAq

χpaqepax{qq

which is ϕpqqGpχ, xq. Assuming px, qq “ 1,

τpχ, aq “ τpχ, 1q.
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This leads immediately to

ÿ

aPAq

τpχ, aqep
ax

q
q “ τpχ, 1q

ÿ

aPAq

χpaqep´
ax

q
q

“
τpχqτpχ, xq

ϕpqq
“

|τpχq|2χpxq

ϕpqq
.

It is known that |τpχq|2 “ q for primitive characters. And the exceptional character is

quadratic, so this completes the proof.

Lemma 4.47. For a function f supported on interval I of length N “ 2n, we have

xExQ,N ˚fy8 À plog logQq
2

¨ xfyI . (4.48)

The term on the left is defined in (4.30).

Proof. Following the argument from Lemma 4.39, we have

ExQ,Npxq “
ÿ

qăQ

ÿ

aPAq

Gpχq, aqepxa{qq ¨ Mβv

N ˚ F´1ηsqpxq.

Above, 2sq ď q ă 2sq`1. The interior sum above is estimated in (4.46). Using the lower

bound on the totient function in (4.8), we have

ExQ,Npxqf À log logQ ¨ xfyI

ÿ

qăQ
q exceptional

1.

We know that the exceptional q grow at the rate of a double exponential, that is for qv being

the vth exceptional q, we have qv " CCv , for some C ą 1. It follows that the sum above is

at most log logQ.
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4.5 Proofs of the Fixed Scale and Sparse Bounds

Proof of Theorem 4.4. Let N “ 2n, and recall that f “ 1F and g “ 1G where F,G Ă I ,

and interval of length N .

Let us address the case in which we do not assume GRH. We always have the estimate

N´1
xANf, gy À n ¨ xfyIxgyI . (4.49)

Hence, if we have xfyIxgyI À e´c
?
n{100, the inequality with a squared log follows.

We assume that e´c
?
n À xfyIxgyI , and then prove a better estimate. We turn to the

Low/High/Exceptional decomposition in (4.28)—(4.30), for a choice of integer Q that we

will specify. We have

AN “ LoQ,N ` HiQ,N ´ ExQ,N `ErrN ` Err1
N (4.50)

These terms are defined (4.28), (4.29), (4.30), (4.24) and (4.34) df respectively.

For the ‘High’ term we have by (4.36),

N´1|xHiQ,N f, gy| À
log logQ

Q
xfyI,2xgyI,2

The same inequality holds for both ErrQ,N f and Err1
Q,N f by Lemma 4.23 and Proposi-

tion 4.31.

Concering the Low term, by (4.40), we have

N´1|xLoQ,N f, gy| À logQxfyIxgyI

The Exceptional term satisfies the same estimate by (4.48).
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Combining estimates, choose Q to minimize the right hand side, namely

N´1
xANf, gy À

log logQ

Q

“

xfyIxgyI
‰1{2

` logQ ¨ xfyIxgyI . (4.51)

This value of Q is

Q
logQ

log logQ
»
“

xfyIxgyI
‰´1{2

.

Since e´c
?
n À xfyIxgyI , this is an allowed choice of Q. And, then, we prove the desired

inequality, but only need a single power of logarithm.

Assuming GRH, from (4.49), we see that the inequality to prove is always true provided

xfyIxgyI ă cN´1{4. Assuming this inequality fails, we follow the same line of reasoning

above that leads to (4.51). That value of Q will be at most N1{4, so the proof will complete,

to show the bound with a single power of the logarithmic term.

Turning to the sparse bounds, let us begin with the definitions.

Definition 4.52. A collection of intervals S is called sparse if to each interval I P S, there

is a set EI Ă I so that 4|EI | ě |I| and the collection tEI : I P Su are pairwise disjoint.

All intervals will be finite sets of consecutive integers in Z.

The form of the sparse bound in Theorem 4.6 strongly suggests that one use a recursive

method of proof. (Which is indeed the common method.) To formalize it, we start with the

notion of a linearized maximal function. Namely, to bound the maximal function A˚f , it

suffices to bound Aτpxqfpxq, where τ : Z Ñ t2n : n P Nu is a function, taken to realize

the supremum. The supremum in the definition of A˚f is always attained if f is finitely

supported.

Definition 4.53. Let I0 an interval, and let f be supported on 3I0. A map τ : I0 Ñ
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t1, 2, 4, . . . , |I0|u is said to be admissible if

sup
Něτpxq

MNfpxq ď 10xfy3I0,1.

That is, τ is admissible if at all locations x, the averages of f over scales larger than τpxq

are controlled by the global average of f .

Lemma 4.54. Let f and τ be as in Definition 4.53. Further assume that f and g are

indicator functions, with g supported on I0. Then, we have

|I0|´1
xAτf, gy À xfyI0,1xgyI0,1 ¨ pLogxfy3I0,1xgyI0,1q

t, (4.55)

where t “ 1 assuming RH, and t “ 2 otherwise.

Proof. We restrict τ to take values 1, 2, 4, . . . , 2t, . . . ,. Let |I0| “ N0 “ 2n0 . We always

have the inequalities

|I0|´1
xAτf, gy À n0xfyI0,1xgyI0,1

|I0|´1
x1τăTAτf, gy À plog T qxfyI0,1xgyI0,1.

The top line follows from admissibility.

We begin by not assuming GRH. Then, the conclusion of the Lemma is immediate if

we have pLogxfyI0,1xgyI0,1q2 " n0. It is also immediate if log τ À pLogxfyI0,1xgyI0,1q
2.

We proceed assuming

p20 “ CpLogxfyI0,1xgyI0,1q
2

ď c0mintn0, log τu, (4.56)

where 0 ă c0 ă 1 is sufficiently small.

We use the definitions in (4.28)—(4.30) for a value of Q ă ec
?
n0 that we will specify.

We address the High, Low, Exceptional and both Error terms, as in (4.50). First, the Error
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terms. The error terms come in the form of ErrN from Lemma 4.23 and Err1
N from (4.33).

Both are similar. Concerning the second error term, from the estimate (4.34) and (4.56),

we have by a straight forward square function argument,

∥ErrQ,τ f∥22 ď
ÿ

n : p20ďnďn0

∥ErrQ,2n f∥2ℓ2

À ∥f∥2ℓ2
ÿ

n : p20ďnďn0

e´c
?
n

À ∥f∥2ℓ2 ¨ p20e
´cp0 À ∥f∥2ℓ2 ¨ xfy3I0,1xgyI0,1.

This provided C in (4.56) is large enough. This is a much smaller estimate than we need.

The second error term in Proposition 4.31 is addressed by the same square function argu-

ment.

For the High term, apply (4.37) to see that

∥ sup
NąQ2

|HiQ,N f |∥2 À
logQ ¨ log logQ

Q
∥f∥ℓ2 . (4.57)

For the Low term the definition of admissibility and (4.40) that

|I0|´1|xLoQ,τpxq fpxq, gy À plogQqxfyIxgyI .

The Exceptional term also satisfies this bound.

We conclude that

|I0|´1
xAτf, gy À

logQ ¨ log logQ

Q
xfyI,2xgyI,2 ` logQ ¨ xfyIxgyI .

This is optimized by taking Q so that

Q

log logQ
»
“

xfyIxgyI
‰´1{2

.
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And this will be an allowed value of Q since (4.56) holds. Again, the resulting estimate is

better by power of the logarithmic term than what is claimed.

Under RH, the proof is very similar, but a wider range of Q’s are allowed. In particular,

only a single power of logarithm is needed.
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