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SUMMARY

Deep learning has revolutionised a breadth of industries by automating critical tasks
while achieving superhuman accuracy. However, many of these benefits are driven by huge
neural networks deployed on cloud servers that consume enormous energy. This thesis
contributes two classes of novel frameworks and algorithms that extend the deployment
frontier of deep learning models to tiny edge devices, which commonly operate in noisy
environments with limited compute footprints:

(1) New frameworks for efficient edge AI. We introduce methods that reduce infer-
ence cost through filter pruning and efficient network design. CUP presents a new method
for compressing and accelerating models, by clustering and pruning similar filters in each
layer. CMP-NAS presents a new visual search framework that optimises a small and ef-
ficient edge model to work in tandem with a large server model to achieve high accuracy,
achieving up to 80× compute cost reduction.

(2) New methods for robust edge AI. We Introduce new methods that enable robust-
ness to real-world noise while reducing inference cost. REST, extends the scope of pruning
to obtain networks that are 9× more efficient, run 6× faster and robust to adversarial and
gaussian noise. HAR generalises the idea of early exiting in multi-branch neural networks
to the training phase leading to networks that obtain state-of-the-art accuracy under class
imbalance while saving up to 20% inference compute. IMB-NAS optimises neural archi-
tectures on imbalanced datasets through super-network adaptation strategies that lead to
5× compute savings compared to searching from scratch.

Our work makes a significant impact to industry and society: CMP-NAS enables the
edge deployment use-case for fashion and face retrieval services, and was highlighted at
Amazon company-wide to thousands of researchers and developers. REST enables at-
home sleep monitoring through a mobile phone and was highlighted by several news media.

xxii



CHAPTER 1
INTRODUCTION

Deep learning has pervaded many aspects of our daily lives. Some applications include
home health monitoring [1], threat monitoring through video surveillance [2], and social
media content moderation [3]. The recent trend in deep learning suggests larger models
achieve higher accuracies. Consequently, the field is moving towards larger models that
require large amounts of compute resources [4, 5]. However, many of the next decade’s
research challenges such as in-home health monitoring, and augmented reality require low
latency, high throughput prediction on edge devices such as mobile phones. This dichotomy
naturally motivates the question: How to achieve superhuman accuracy with deep neural

networks deployed on edge devices?

One part of the answer lies in making the neural networks efficient and amenable to
deployment on low-power devices. The other part, making the networks robust, stems from
the observation that edge deployment often entails noisy data arising from measurement
errors (e.g., from low-power sensors), the environment itself (e.g., foggy weather), or class
imbalance in the data distribution (e.g., the long tail distribution of objects in the real-
world). This thesis presents new principles and frameworks for developing robust and
efficient neural networks for the edge.

1.1 Thesis Goal: Vision and Motivation

Through my research experience in problems ranging from healthcare, computer vision
and security over the past five years, I realize the next decades’ research challenge require
a fundamental shift from large, accurate neural networks deployed on the cloud to small,
efficient neural networks deployed on the edge. This realization stems from an extensive
investigation of existing state-of-the-art neural networks. I observe that many of these
networks are (1) prohibitively large for edge deployment and (2) susceptible to a large
degradation in accuracy in the presence of noise.

A lot of previous research focuses on addressing either of these aspects in isolation.
However, effective real-world deployment calls for a joint approach to address these chal-
lenges. Filling this research gap, my thesis investigates how to design efficient and robust
neural networks for effective deployment in the real world.
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1.2 Thesis Overview

Extending the deployment frontier of deep learning models to small edge devices poses two
challenges. First, the typical consumer edge devices—mobile phones, smart watches —are
resource limited towards compute (small/no GPUs) and energy (limited battery), which
calls for developing energy efficient DNNs with a small compute footprint. Second, the
edge devices often need to operate on noisy data such as that obtained from low-power
sensors (e.g., wearables), or operate on tasks that inherently suffer from class imbalance
(e.g., fall detection), which calls for making the DNN resilient to different kinds of real-
world noises while ensuring a low compute footprint. My thesis formulates the above
challenges into the following two research questions.

1. How to enable efficiency in DNNs? Modern DNNs are often too large to be deploy-
able on edge devices. This calls for developing efficient DNNs that are operable in
low resource environments. Towards this goal, we answer two questions: (1) Given
an accurate DNN, how can we reduce its compute footprint? (2) How to design more
efficient DNNs from scratch?

2. How to jointly enable efficiency and robustness in DNNs? In addition to effi-
ciency, edge deployment adds the additional challenge of noisy data. What are the
different forms of noises faced in the real world? How do we develop DNNs that are
resilient to these noise types, while keeping the compute footprint low?

My thesis answers the above two research questions through two corresponding re-
search thrusts. Specifically, I propose: New Frameworks for Efficient Edge AI as my
answer to enabling efficiency in DNNs; and New methods for robust edge AI as my an-
swer to jointly enabling efficiency and robustness in DNNs. Table 1.1 summarizes this
mapping and Table 1.2 summarizes the publications arising from this research.

Table 1.1: The two main research questions of this thesis.

Research Question Answer (Example Work)

1. How to tackle the efficiency of
DNNs? (Subsection 1.2.1)

New frameworks for efficient edge AI.
(CUP: Chapter 3, CMP-NAS: Chapter 4)

2. How to jointly tackle efficiency
and robustness in DNNs? (Subsec-
tion 1.2.2)

New methods for robust edge AI.
(REST: Chapter 5, HAR: Chapter 6),
IMB-NAS: Chapter 7)
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Table 1.2: Completed work mapped to chapters.

Part I: New frameworks for efficient edge AI
§ 3 CUP: Cluster Pruning for Compressing Deep Neural Networks.

Rahul Duggal, Cao Xiao, Richard Vuduc, Duen Horng Chau, Jimeng Sun.
IEEE International Conference on Big Data (Big Data), 2021.

§ 4 Compatibility Aware Heterogeneous Visual Search.
Rahul Duggal, Hao Zhou, Shuo Yang, Yuanjun Xiong, Wei Xia, Zhuowen Tu, Stefano Soatto.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Part II: New methods for robust edge AI
§ 5 REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild.

Rahul Duggal, Scott Freitas, Cao Xiao, Duen Horng Chau, Jimeng Sun.
In Proceedings of The Web Conference (WWW), 2020.

§ 6 HAR: Hardness Aware Reweighting for Imbalanced Datasets.
Rahul Duggal, Scott Freitas, Sunny Dhamnani, Duen Horng Chau, Jimeng Sun.
IEEE International Conference on Big Data (Big Data), 2021.

§ 7 IMB-NAS: Neural Architecture Search for Imbalanced Datasets.
Rahul Duggal, Sheng-Yun Peng, Hao Zhou, Duen Horng Chau.
In submission.

1.2.1 Part I: New Frameworks for Efficient Edge AI.

Deep Neural Networks are often over parameterized function approximators that contain
many more weight parameters than the dataset samples they are trained over [6]. This
causes the network to become prohibitively large for edge deployment. In this thrust we
answer: how to obtain compact neural networks that are amenable to deployment on edge
devices? There are two fundamental approaches: (1) top-down approach: pruning existing
state-of-the-art (and often large) models which we explore in CUP (Chapter 3) in the con-
text of image classification ; and (2) bottom-up approach: designing efficient light-weight
models from scratch using neural architecture search which we explore in CMP-NAS
(Chapter 4) for the task of visual search. Next, we summarize the key ideas and major
results of CUP and CMP-NAS.

CUP: Cluster Pruning for Compressing Deep Neural Networks (Chapter 3). In this
work, we propose a new method for compressing and accelerating state-of-the-art deep
neural networks. At its core, CUP achieves compression by clustering similar filters in each
layer. Post clustering, each cluster of filters is replaced by a single cluster representative.
The overall workflow of our approach is described in Figure. 1.1. On Imagenet, CUP
leads to a 2.47× FLOPS reduction on ResNet-50 with less than 1% drop in top-5 accuracy.
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Notably, in the retrain-free setting, CUP saves over 10 hours of training time on 3 GPUs,
in comparison to state-of-the-art methods. CUP, was the first to pose pruning as a filter
clustering operation that scales to pruning large models (e.g., ResNet-50) on large datasets.

Cluster filters in
each layer

Global threshold t

Compute per
filter features

Layer l Pruned layer l

STEP 1 STEP 2 STEP 3

Prune filters
from clusters

INPUT OUTPUT

Figure 1.1: An overview of the three step cluster pruning method developed in CUP.

Compatibility-aware Heterogeneous Visual Search (Chapter 4). We tackle the problem
of visual search under resource constraints. Existing systems use the same embedding
model to compute representations (embeddings) for the query and gallery images. Such
systems inherently face a hard accuracy-efficiency trade-off: the embedding model needs
to be large enough to ensure high accuracy, yet small enough to enable query-embedding
computation on resource-constrained platforms. This trade-off could be mitigated if gallery
embeddings are generated from a large model and query embeddings are extracted using
a compact model. The key to building such a system is to ensure representation com-
patibility between the query and gallery models. To this end, we address two forms of
compatibility: (1) that enforced by modifying the parameters of each model that computes
the embeddings; (2) that obtained by modifying the architectures that compute the embed-
dings, leading to compatibility-aware neural architecture search (CMP-NAS). Compared
to ordinary (homogeneous) visual search using the largest embedding model (paragon), the
edge models searched via CMP-NAS achieve 80-fold and 23-fold cost reduction while
maintaining accuracy within 0.3% and 1.6% of the paragon for Fashion and Face retrieval.

1.2.2 Part II: New methods for robust edge AI.

Efficiency is one part of the story for edge deployment; The other is robustness. Neural
networks deployed on the edge often operate in very noisy environments. How do we de-
velop small models that are robust to these forms of noise? What are the different kinds
of noise? We look at two kinds: that arising in the (1) test data distribution: due to inac-
curate data measurements from low power sensors (e.g., wearables), from the surrounding
environment itself (e.g., low lighting, fog, etc.). In REST, we tackle test time robustness
for the task of sleep staging from EEG data, or (2) training data distribution: e.g., class
imbalance in the training data. In HAR, we tackle training time robustness manifesting as
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Figure 1.2: An overview of Heterogeneous Visual Search (blue) which uses a large model to com-
pute embeddings for the gallery, and a small model for the query images. This allows high efficiency
without sacrificing accuracy, provided that the green and orange embeddings are compatible.

class imbalance during image classification on long-tail datasets. In IMB-NAS, we search
for efficient neural architectures on long tail datasets. Next, we summarize the key ideas
and major results of REST, HAR and IMB-NAS.
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Figure 1.3: Top: we generate hypnograms for a patient in the SHHS test set. In the presence
of Gaussian noise, our REST-generated hypnogram closely matches the contours of the expert-
scored hypnogram. Hypnogram generated by a state-of-the-art (SOTA) model by Sors et al. [7]
is considerably worse. Bottom: we measure energy consumed (in Joules) and inference time (in
seconds) on a smartphone to score one night of EEG recordings. REST is 9X more energy efficient
and 6X faster than the SOTA model.
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REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild (Chap-
ter 5). A central tool in diagnosing sleep disorders is the hypnogram—which documents
the progression of sleep stages (REM stage, Non- REM stages N1 to N3, and Wake stage)
over an entire night (see Figure. 1.3, top). The process of acquiring a hypnogram from
raw sensor data is called sleep staging, which is the focus of this work. Traditionally, to
reliably obtain a hypnogram the patient has to undergo an overnight sleep study—called
polysomnography (PSG)—at a sleep lab while wearing bio-sensors that measure physio-
logical signals. This is both a costly, and invasive process which discourages many people
from undergoing this exam. In REST, we develop tiny and robust deep neural networks
that can generate a hypnogram (at home) on a mobile phone using EEG signals captured
from a wearable sensor. With REST, we aim to overcome two challenges: (1) the model
needs to be small enough to be deployable on a mobile phone and (2) robust to diverse
forms of noise that arises due to low power EEG sensors and body movement. Indeed, as
shown in Figure. 1.3 top, in the presence of noise, the REST generated hypnogram mimics
the expert scored one while the sota accuracy degrades rapidly (in grey). Furthermore, as
shown in Figure. 1.3 bottom, the REST model is 9× more efficient and runs 6× faster on
a mobile.

HAR: Hardness Aware Reweighting for Imbalanced Datasets (Chapter 6). Class im-
balance is a significant issue that causes neural networks to underfit to the rare classes.
Traditional mitigation strategies include loss reshaping and data resampling which amount
to increasing the loss contribution of minority classes and decreasing the loss contributed
by the majority ones. However, by treating each example within a class equally, these
methods lead to undesirable scenarios where hard-to-classify examples from the majority
classes are down-weighted and easy-to-classify examples from the minority classes are up-
weighted.We propose the Hardness Aware Reweighting (HAR) framework,which circum-
vents this issue by increasing the loss contribution of hard examples from both the majority
and minority classes. This is achieved by augmenting a neural network with intermediate
classifier branches to enable early-exiting during training (see Figure. 1.4). Experimental
results on large-scale datasets demonstrate that HAR consistently improves state-of-the-art
accuracy while saving upto 20% of inference FLOPS.

IMB-NAS: Neural Architecture Search for Imbalanced Datasets (Chapter 7). Class
imbalance is a ubiquitous phenomenon occurring in real world data distributions. To over-
come its detrimental effect on training accurate classifiers, existing work follows three
major directions: class re-balancing, information transfer, and representation learning. In
this paper, we propose a new and complementary direction for improving performance
on long tailed datasets—optimizing the backbone architecture through neural architecture
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Figure 1.4: Hardness Aware Reweighting (HAR) framework augments a backbone network with
auxiliary classifier branches. During training, an example accumulates loss at each branch, until
either (a) it is confidently and correctly classified at a branch, or (b) it reaches the end. A harder
example exits later in the network and accumulate higher overall loss.

Table 1.3: Motivation. We sample four architectures A1-A4 from the DARTS search space and
train them on balanced (i.e. 1×) and imbalanced versions (i.e. 100×) of Cifar10 and Cifar100.
(Top) Two similarly sized architectures (A1,A2) achieve similar accuracy on balanced Cifar10, but
differ by 3% in presence of 100× imbalance. (Bottom) The larger architecture (A3) outperforms
the smaller on (A4) on balanced Cifar100, but under performs by 3.6% in the presence of 100×
imbalance. This suggests that an architecture’s performance on balanced datasets is not indicative
of its performance on imbalanced ones.

Dataset Model Flops Accuracy (%)
bal(1×) imbal(100×)

Cifar10
A1 410 94.6 77.3
A2 407 94.7 74.1

Cifar100
A3 400 76.1 39.4
A4 179 75.0 43.0

search (NAS). We find that an architecture’s accuracy obtained on a balanced dataset is
not indicative of good performance on imbalanced ones (see Table. 1.3). This poses the
need for a full NAS run on long tailed datasets which can quickly become prohibitively
compute intensive. To alleviate this compute burden, we aim to efficiently adapt a NAS
super-network from a balanced source dataset to an imbalanced target one. Among several
adaptation strategies, we find that the most effective one is to retrain the linear classifica-
tion head with reweighted loss, while freezing the backbone NAS super-network trained
on balanced source dataset. We perform extensive experiments on multiple datasets and
provide concrete insights to optimize architectures for long tailed datasets.
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1.3 Thesis Statement

Deep learning powered services can be deployed on small edge devices that operate in
noisy environments with limited compute footprints through:

1. new frameworks that improve efficiency via bottom-up design with neural architec-
ture search, and top-down design with pruning; and

2. new methods that improve test-time robustness with pruning, and training-time ro-
bustness with early exiting and neural architecture search.

1.4 Research Contributions & Impact

New algorithms to obtain efficient and robust models.

• Our CUP algorithm (Chapter 3) can prune large deep neural networks trained on
ImageNet to more that 2× while reducing training time by over 10 hours to obtain a
compact DNN with less than 1% drop in Top-5 accuracy.

• Our CMP-NAS algorithm (Chapter 4) can search for efficient query models, which
fitted into a heterogeneous visual search system leads to 80× and 23× compute cost
reduction while maintaining accuracy within 0.3% and 1.6% of the paragon for fash-
ion and face image retrieval respectively.

• Our REST algorithm (Chapter 5) produces highly-robust and efficient models that
substantially outperform the original full-sized models in the presence of noise. For
the sleep staging task over single-channel EEG, the REST model achieves a macro-
F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of
Gaussian noise while obtaining 19× parameter reduction and 15× MFLOPS reduc-
tion on two large, real-world EEG datasets.

• Our HAR algorithm (Chapter 6) endows hardness awareness during the learning pro-
cess thereby improving state-of-the-art accuracy of networks trained on large imabal-
anced datasets while saving upto 20% of inference FLOPS.

• Our IMB-NAS algorithm (Chapter 7) searches for efficient network architectures on
long tail datasets while saving 5× compute compared to searching from scratch. The
searched networks improve accuracy on imbalanced datasets compared to architec-
tures optimized on full balanced datasets.
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Usage guidelines for algorithms contained in this dissertation

To design efficient edge models for noise-free scenarios, use CUP. If robustness to input noise is also desired, use REST.

For heterogeneous cloud-edge systems, design edge models that are compatible with the server one via CMP-NAS.

Design efficient edge models that are robust to class imbalance via IMB-NAS. Use HAR to train/deploy these with dynamic control over compute.

Figure 1.5: Summarizing all algorithmic contributions of this thesis.

Fig. 1.5 summarizes all the algorithmic contributions of this dissertation. The con-
tributed algorithms span three research areas namely network pruning, network architecture
search and long-tail imbalance. Additionally, we provide usage guidelines for choosing the
appropriate algorithm to design edge models.

New insights and knowledge

• We are among the first to demonstrate the viability of a home based sleep apnea
monitoring and diagnosis system. Through robust experiments, we show that a
small neural network can be trained to be robust to real-world gaussian noise such
that it can maintain a reasonable accuracy of 67% whereby the sota accuracy falls to
39%.

• We are the first to develop a heterogeneous visual search system that extends real
world applications such as video based threat monitoring and image based product
search onto edge devices.

• We are the first to demonstrate that architectures optimized on fully class balanced
datasets are not the optimal ones for imbalanced datasets.

Industry & Media Coverage.

1. The CMP-NAS system, developed during my internship with Amazon was show-
cased to thousands of developers in the company-wide all-hands meeting. It was
also the subject of a patent application.
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2. CMP-NAS and its follow up work REG-NAS resulted in an Amazon post-internship
fellowship to fund my research until graduation.

3. Our work on REST was highlighted by several news media outlets for its ability
to accurately monitor sleep in the wild.

Open source software with ready implementations of baselines and proposed work.

• Our REST system was deployed to a Pixel 2 smartphone through an android appli-
cation to demonstrate 17× energy reduction and 9× faster inference compared to the
state of the art.

• The code packages for CUP and REST are publicly released through Github. Their
modular construction supports easy extension to the latest pruning methods.
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CHAPTER 2
RELATED WORK

This section briefly reviews related works. I focus on two areas relevant to this thesis: (1)
Enabling efficiency in Deep Neural Networks; and (2) Making DNNs resilient to noise.

2.1 Enabling Efficiency in Deep Neural Networks.

At a high level, there are two approaches—static and dynamic—for enabling efficiency in
neural networks. The latter differs from the former in that the compute footprint of the
DNN can be dynamically varied. Within static methods, prior art can be classified into
five directions: pruning [8], neural architecture search [9], quantization [10], low rank ap-
proximation [11] and knowledge distillation [12]. We cover the first two in the subsequent
sections. Among dynamic methods, we review literature on early exiting through multi-
branch neural networks.

2.1.1 Pruning Deep Neural Networks

At a high level, pruning methods can be categorized based on whether they lead to unstruc-

tured [13, 14, 15, 16] or structured [17, 18, 19, 20, 21] sparsity in the pruned network’s
weights. The latter reaps the benefits of pruning (e.g., lower flops, faster inference) through
a matrix reshaping operation completely avoiding the need of custom hardware as typically
required by the former. Within structured pruning, a promising research direction is chan-

nel pruning where the aim is to prune entire filters. Existing channel pruning algorithms
primarily differ in the criterion used for identifying pruneable filters. Examples of such
criterions include pruning filters; with smallest L1 norm of incoming weights [17]; with
largest average percentage of zeros in their activation maps [18]; using structured regular-
ization [22, 19]; or with least discriminative power [21]. A drawback of these methods [17,
20] is that the number of filters to prune in each layer is a hyper-parameter leading to a
combinatorial search space. We tackle this challenge in CUP.

2.1.2 Neural Architecture Search

Neural Architecture Search refers to the process of automatically searching for the network
topology that maximizes accuracy, typically under a constrained compute budget. Most
NAS strategies consist of three components: search space, search strategy and a search
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reward. A search space refers to the design space of all architectures including operations
(such as convolution, pooling, etc) and the network topoogy. Popular search spaces in-
clude the NasNet [23], DARTS [24], MobileNet [25], FBNet [26]. A recent comparison
of the different search spaces is by Radovich et al [27]. The search strategy defines how
to effectively explore the search space. This is important since most search space encode
trillions of architectures, making random search infeasible. Popular search strategies in-
clude reinforcement learning [23] and evolutionary search [28]. The search reward refers
to the optimization target e.g. accuracy of the neural network. Fast evaluation of the search
reward is very important for the search to be feasible. Recent work in this area include low
fidelity estimation [23, 28], extrapolation [29] and weight sharing [25, 26, 24].

2.1.3 Early Exiting with Multi-branch Neural Networks.

Research in this area aims to endow a neural network with auxiliary classifier branches
(or early-exits) that allow for obtaining predictions from intermediate locations along the
backbone DNN. This leads to advantages such as, saving inference time compute [30, 31,
32]; mitigating the vanishing gradient problem as in Inception networks [33]; while also
affording a natural application to computing paradigms such as fog computing and 5G [34,
35]. The important research challenges for multi-branch DNNs (see review paper [36])
stem from questions such as: where to place the early-exits, what criterion to use for early-
exiting and how to define the training objective. Many works place the early-exits after
each block of layers which enables large savings of inference FLOPS [30, 31, 32]. The exit
criteria range from early-exiting based on low entropy predictions as in BranchyNet [37]
to early exiting based on prediction confidence as in MSDNet [30]. Training objectives
include ones that distill knowledge from later exits to earlier ones [31, 38] or ensemble
predictions from multiple branches to improve adversarial robustness [32].

2.2 Making Neural Networks Resilient to Noise.

Noise can arise in many forms. For this thesis, we focus on two types (1) test time noise
that manifests as adversarial and gaussian noise; and (2) training time noise manifesting as
class imbalance. We cover previous work on enabling robustness against these noise types.

2.2.1 Enabling Robustness to Adversarial and Gaussian Noise

Adversarial robustness seeks to ensure that the output of a neural network remains un-
changed under a bounded perturbation of the input; or in other words, prevent an adveresary
from maliciously perturbing the data to fool a neural network. Adversarial deep learning
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was popularized by [39], where they showed it was possible to alter the class prediction of
deep neural network models by carefully crafting an adversarially perturbed input. Since
then, research suggests a strong link between adversarial robustness and noise robustness
[40, 41, 42]. In particular, [40] found that by performing adversarial training on a deep
neural network, it becomes robust to many forms of noise (e.g., Gaussian, blur, shot, etc.).
In contrast, they found that training a model on Gaussian augmented data led to models
that were less robust to adversarial perturbations. We build upon this finding of adversarial
robustness as a proxy for noise robustness and improve upon it through the use of spectral
regularization; while simultaneously compressing the model to a fraction of its original size
for mobile devices.

2.2.2 Overcoming Class Imbalance

The techniques for overcoming class imbalance techniques fall into the following three cat-
egories. (1) Loss rebalancing: These methods reweight the loss contribution of each exam-
ple such that the loss for minority classes is upweighted, while that of the majority classes
is downweighted. The weighting scheme itself can be uniform across all the examples
within a class [43, 44] or can be more fine-grained i.e., specific to each example in consid-
eration [45, 46, 47, 48]. The uniform reweighting techniques include reweighting based on
inverse class frequency [43, 44] or based on the effective number of samples in each class
[43]. On the other hand, fine-grained approaches include Focal loss [45], which reweights
based on sample hardness or recent studies [46, 47, 48] that employ meta-learning to per-
form sample reweighting. (2) Data resampling: These methods either repeatedly sample
examples from the minority class (over-sampling) [49, 50, 51, 52] or discard samples from
the majority class (under-sampling) [53, 54, 55, 56]. Popular strategies include SMOTE
that over-samples the minority class through linear interpolation [49]; or [53] that under-
samples the majority class by clustering and replacing the majority class examples by a few
anchor points. With neural networks, over-sampling generally creates redundancy and risks
over-fitting to the rare classes, while, under-sampling is susceptible to losing information
from the majority classes [57]. (3) Training strategies: These methods modify the training
procedure to mitigate the problem of class imbalance. For instance, LDAM [58], introduces
a delayed reweighting scheme wherein, class reweighting is applied after a few epochs of
training. Kang et al. [59] show improvement through a two-step training process which
decouples representation and classifier learning. Recently, BBN [60] show that gradually
shifting emphasis from class sampling to reverse sampling helps improve accuracy.
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Part I

New Frameworks for Efficient Edge AI
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Overview

My thesis begins by tackling the fundamental challenge for edge deployment: efficiency

of Deep Neural Networks. Our first scenario deals with the top-down approach, wherein
given a source model, we’d like to obtain a more efficient target model that achieves the
same accuracy as the source, but with lesser compute. In CUP, we develop a new approach
to prune or delete redundant filters from the source model to obtain the target.

Chapter 3. CUP: Cluster Pruning for Compressing Deep Neural Net-
works. Rahul Duggal, Cao Xiao, Richard Vuduc, Duen Horng Chau, Ji-
meng Sun. IEEE International Conference on Big Data (Big Data), 2021
https://ieeexplore.ieee.org/document/9671980

The techniques developed in CUP are applicable only when we have an accurate source
model, which may not always be the case. Such scenarios motivate the bottom-up design
of efficient architectures using neural architecture search. In CMP-NAS, we search for the
“most compatible” edge models for a heterogeneous visual search system. The resulting
system achieves upto 80× compute reduction with less than 0.3% accuracy drop.

Chapter 4. Compatibility-aware Heterogeneous Visual Search.
Rahul Duggal, Hao Zhou, Shuo Yang, Yuanjun Xiong, Wei Xia, Zhuowen Tu,
Stefano Soatto. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. https://openaccess.thecvf.com/content/CVPR2021/
papers/Duggal_Compatibility-Aware_Heterogeneous_Visual_Search_

CVPR_2021_paper.pdf
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CHAPTER 3
CUP: CLUSTER PRUNING FOR COMPRESSING DEEP NEURAL NETWORKS

We propose CUP, a new method for compressing and accelerating deep neural networks.
At its core, CUP achieves compression by clustering and pruning similar filters in each
layer. For clustering, CUP uses hierarchical clustering which allows for an elegant pa-
rameterization of model capacity through a single hyper-parameter t. We observe that by
increasing t, CUP can dynamically reduce model capacity through non-uniform layer-wise
pruning leading to two advantages. First, CUP can effectively compress a model to within
the desired compute budget through a simple line-search on t. On Imagenet, CUP leads to
a 2.47× FLOPS reduction on Resnet-50 with less than 1% drop in top-5 accuracy. Second,
through a simple extension, CUP can obtain the pruned model in a single training pass
leading to large savings in training time. We call the retrain free version as CUP-RF. No-
tably, in the retrain-free setting, CUP-RF saves over 10 hours of training time on 3 GPUs,
in comparison to state-of-the-art methods. The code for CUP is open sourced1.

3.1 Introduction

Neural network compression is a critical enabler for the deployment of powerful deep neu-
ral networks (DNNs) on the edge. There are several ways to compress a DNN, including
pruning [8, 17, 21], low rank approximation [61, 62], knowledge distillation [12, 63] and
quantization [64, 65]. In this paper, we focus on the problem of channel pruning which, in
a nutshell, aims to delete the “unimportant” filters of a neural network.

A typical channel pruning pipeline consists of three steps [8]: (1) train the target DNN
for some task, e.g., image classification; (2) identify and delete unimportant filters based
on an importance criterion; (3) retrain the pruned network to recover accuracy lost due to
pruning. This pipeline presents two challenges: C1–non-uniform pruning: determining the
optimal layerwise pruning amount in step 2 is a combinatorial problem, and intractable for
modern DNNs with hundreds of layers; and C2–long runtime: the retraining performed in
step 3 slows down the pruning pipeline. To tackle C1, a line of work [17, 18, 19] prunes
the network uniformly across each layer (e.g., delete 50% filters in each layer), but this has
shown to be sub-optimal [66]. Other works use heuristics that are either computationally
expensive [67, 17] or involve many hyper-parameters, which are difficult to tune [66].
For tackling C2, recent methods [68, 69] modify the pruning pipeline by interleaving the

1https://github.com/duggalrahul/CUP_Public
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pruning and training steps (i.e., merging steps 1 and 2), thereby eliminating the need for
retraining—we refer to these as retrain-free methods.

With CUP, we enable layer-wise non-uniform pruning (addressing C1) whilst intro-
ducing only a single hyper-parameter t. At its core, CUP employs hierarchical clustering
to cluster similar filters in each layer. Pruning is then achieved by replacing each cluster
by a representative filter. A key advantage of our method is that the clustering strategy
used offers a principled way to determine the appropriate number of clusters in each layer.
Empirically, we find that t allows for a smooth parameterization of the pruning amount.
We leverage this observation to extend CUP to the retrain-free setting (addressing C2).
Essentially, by gradually increasing t during the initial training phase, CUP-RF (RF for
retrain-free) can incrementally prune a target model within one training pass. This leads
to large savings in training time, e.g., saving over 14 hours while training a ResNet-50 on
ImageNet.

To summarize, our contributions in this paper are 1) We propose CUP as a method
for compressing deep neural networks with the benefit of enabling non-uniform pruning
through a single hyper-parameter t. 2) We extend CUP to CUP-RF whereby filters are
pruned in the initial training pass itself resulting in large savings of time cost during prun-
ing. 3) We comprehensively compare our methods to the state-of-the-art methods on large
datasets (e.g., Imagenet).

3.2 Related Work

Neural Network Compression is an active area of research wherein the goal is to reduce the
memory, flops, or inference time of a neural network while retaining its performance. Prior
work in this area can be broadly classified into the following four categories:

(1) Low-Rank Approximation: where the idea is to replace weight matrices (for DNN)
or tensors (for CNNs) with their low-rank approximations obtained via matrix or tensor
factorization [61, 62]. (2) Quantization wherein compression is achieved by using lower
precision (and fewer bits) to store weights and activations of a neural network [64, 65].
(3) Knowledge Distillation wherein compression is achieved by training a small neural
network to mimic the output (and/or intermediate) activations of a large network [12, 63].
(4) Pruning wherein compression is achieved by eliminating unimportant weights [8, 17,
21]. Methods in these categories are considered orthogonal and are often combined to
achieve more compact models.

Within pruning, methods can either be structured or unstructured. Although the latter
type i.e. unstructured pruning usually achieves higher compression, it seldom results in
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flops and inference time reduction. Keeping this in mind, we adopt structured pruning

for CUP. Within structured pruning, a promising research direction is channel pruning

where the aim is to prune entire filters. Existing channel pruning algorithms primarily
differ in the criterion used for identifying pruneable filters. Examples of such criterion
include pruning filters, with smallest L1 norm of incoming weights [17], largest average
percentage of zeros in their activation maps [18], using structured regularization [22, 19]
or with least discriminative power [21]. A major drawback of these methods [17, 20] is
that the number of filters to prune in each layer is a hyper-parameter. Determining the
optimal hyper-parameters is an issue since modern neural networks can contain hundreds
of layers. Recent works [68, 69] avoid the issue of per layer hyper-parameters by doing
uniform pruning across layers e.g. Prune 50% neurons from each layer. This, however, can
be a restrictive setting since some layers are less sensitive to pruning than other layers and
can be pruned more aggressively [17]. CUP differs from prior work in that it enables non

uniform pruning while introducing a single hyper-parameter.
Another distinguishing factor of CUP is that it can speed up training. Traditionally,

channel pruning has employed a three-step regime involving (1) training the full model
(2) pruning the full model to desired sparsity and (3) retraining the pruned model. Due to
phases (1) and (3), the total time for obtaining a pruned model increases 1.5 − 2×. For
example, the time to obtain a compressed Resnet-50 on Imagenet increases from 3 days
to 5 days on 3 GPU’s. Some recent works [68, 69, 70, 71] address the issue of increased
training time by doing away with the retraining phase altogether. In this paper, we refer
this as the retrain-free setting. In practice, the retrain-free setting significantly reduces
the total time for obtaining a compressed model. With CUP-RF (for CUP retrain free),
we are able to further reduce the training time by iteratively pruning the model during the
training phase itself. The gradual reduction of model capacity during the initial training
phase directly manifests in decreased training time. In particular, we demonstrate savings
of up to 14 hours while training a Resnet-50 on Imagenet. In the next section, we introduce
the notation we use in the rest of the paper.

3.3 Problem Setup

3.3.1 Notation

To maintain symbolic consistency, we use a capital symbol with a tilde, like W̃ , to represent
tensors of rank 2 or higher (i.e. matrices and beyond). A capital symbol with a bar, like
F , represents a vector while a plain and small symbol like b represents a scalar. A lower
subscript indexes a tensor, so, F̃i,j indicates the element at position (i, j) while a superscript
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with parenthesis like W̃ (l) maps the quantity W̃ to layer l of the neural network.

3.3.2 Intuition

In this section we build the intuition behind clustering filters based on features derived from
both incoming and outgoing weights. Consider one simple case of a fully connected neural
network with n,m filters in layers l−1 and l, respectively. Here layer l is parameterized by
weights W̃ (l) ∈ Rm×n and bias b(l) ∈ Rm. Within this layer, filter i performs the following
nonlinear transformation.

O
(l)

i = σ(W̃
(l)
i,: O

(l−1)
+ b

(l)
i ) (3.1)

Where O
(l−1)

is the output from layer l − 1, W̃ (l)
i,: , b

(l)
i are the ith row and element of

the weight matrix and bias vector respectively. These also constitute the set of incoming
weights to filter i. Finally σ is a non linear function such as RELU.

Given this notation, a filter k in layer l + 1 receives the combined contribution from
filters i and j equal to W̃ (l+1)

ki O
(l)

i + W̃
(l+1)
kj O

(l)

j where W̃ (l+1)
ki and W̃ (l+1)

kj are the weights
from filter i to filter k and from j to k, respectively. This is illustrated in the top of figure
3.1.
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Figure 3.1: Intuition for using input and output weight connections. The top diagram illustrates
original neural net structure. The bottom left diagram illustrates the case with same input weights.
The bottom right diagram illustrates the case with same output weights

Inspired from these idealized scenarios, we propose to identify and prune similar filters
based on features derived from both incoming and outgoing weights.

Depending on the input and output weight values, the following two cases can arise

• If the input weights of filter i and j are same [72] (i.e., W̃ (l)
i,: = W̃

(l)
j,: and b(l)

i = b
(l)
j

) or equivalently O
(l)

i = O
(l)

j . Then the combined contribution can be provided by a
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single filter with output connection weight W̃ (l+1)
ki +W̃

(l+1)
kj and the other filter can be

pruned. This case corresponds to clustering and pruning similar filters i and j based
on input weights and is illustrated in figure 3.1 bottom left.

• If the output weights of filters i and j are same (i.e. W̃
(l+1)
ki = W̃

(l+1)
kj ) Then

combined contribution can be provided by an equivalent filter computing O
(l)

i +O
(l)

j

and the other filter can be pruned. This case corresponds to clustering and pruning
similar filters i and j based on output weights and is illustrated in figure 3.1 bottom
right.

3.4 The CUP framework

The CUP pruning algorithm is a three-step process and is outlined in Fig. 3.2. The first
step computes features that characterize each filter. These features are specific to the layer
type (fully connected or convolutional) and are computed from the incoming and outgoing
weight connections. The second step clusters similar filters based on the features computed
previously. The third and last step chooses a single representative filter from each cluster
and prunes all others.

Cluster filters in
each layer

Global threshold t

Compute per
filter features

Layer l Pruned layer l

STEP 1 STEP 2 STEP 3

Prune filters
from clusters

INPUT OUTPUT

Figure 3.2: Three steps of the Cluster Pruning (CUP) algorithm.

3.4.1 Compute per-filter features (step 1)

The first step of CUP computes features that characterize each filter. These features are
computed using both the incoming and outgoing connections of a filter. For further discus-
sion, we assume layers l − 1, l and l + 1 of the neural network contain n,m and p filters
respectively.
Fully Connected Layers (Fig. 3.3a). The lth fully connected layer is parameterized by
weights W̃ (l) ∈ Rm×n and bias B

(l) ∈ Rm. For neuron i within this layer, we define it’s
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Figure 3.3: Computing features from the incoming and outgoing weights of (a) fully-connected
layer, (b) convolution layer.

feature set F̃ (l)
i,: ∈ Rn+p+1 as

F̃
(l)
i,: = concat( W̃

(l)
i,: , B

(l)

i︸ ︷︷ ︸
Incoming features

, W̃
(l+1)
:,i︸ ︷︷ ︸

Outgoing features

), (3.2)

where concat concatenates two vectors into one.
Convolutional Layers (ref. Fig. 3.3b). The lth convolutional layer is completely parame-
terized by the 4-D weight tensor W̃ (l) ∈ Rn×m×kh×kw and the bias vector B

(l) ∈ Rm. The
four dimensions of W̃ (l) correspond to - number of input channels (n), number of filters in
layer l (m), height of filter (kh) and width of filter (kw). For filter i within this layer, we
define its feature set F̃ (l)

i,: ∈ Rn+p+1, as

F̃
(l)
i,: = concat(g(W̃

(l)
:,i,:,:), b

(l)
i︸ ︷︷ ︸

Incoming features

, W̃
(l+1)
i,:,:,:︸ ︷︷ ︸

Outgoing features

), (3.3)

where g(X̃:,:,:) = [‖X̃1,:,:‖F , . . . , ‖X̃C,:,:‖F ]. (3.4)

Here g : Rc × Rd × Re → Rc computes the channel-wise frobenius norm of any arbitrary
3D tensor X̃ .
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3.4.2 Cluster filters in each layer (step 2)

Given feature vectors F̃ (l)
i,: for each filter i in layer l, step 2 clusters filters within a layer

using agglomerative hierarchical clustering[73, Chapter 15]. This specific choice of clus-
tering affords a key benefit: The number of clusters in each layer can be jointly controlled
using a single hyper-parameter t. In contrast some recent works use other clustering tech-
niques such as K-means++ [74] or spectral clustering [75]. These works face the combina-
torial challenge of deciding the appropriate number of clusters in each layer and are limited
to uniform pruning.

With hierarchical clustering, the clustering operation for layer l begins by building a
weighted binary tree representation (dendrogram) for that layer. Assume that layer l con-
tains m filters. The algorithm starts off with m clusters C(l)

i ∀i ∈ [1,m] i.e. each filter is
a separate cluster. Then it iteratively builds the tree by merging two closest clusters as per
the Wards variance minimization criterion. The criterion specifies to merge two clusters
C(l)
p ,C(l)

q that lead to the least decrease in intra-cluster variance over all possible pairings of
clusters in C(l). The output of this phase is a weighted binary tree, or dendrogram, whose
each non-leaf node specifies a cluster of filters while the edge weights encode the distance
or dissimilarity between its children.
Determining the number of clusters: After constructing the dendrograms for each layer,
we use edge weights to jointly determine the number of clusters in that layer. Specifically,
the dendrograms for all layers are chopped at the same height t which is a hyper-parameter.
The higher the value of t, fewer the number of clusters. Since CUP replaces each cluster
with a filter (presented in the next section), increasing t ultimately leads to fewer remaining
filters, or higher compression. To summarize, the output of step 2 is a set of n(l) clusters
C(l) for each layer l, such that |C(l)| = n(l).

3.4.3 Prune filters from each cluster (step 3)

The third and last step chooses the representative filter from each cluster and prunes all
others. Given the set of filter clusters C(l) for layer l, we formulate pruning as a subset
selection problem. The idea is to select the most representative subset of filters S(l)

r from
each filter cluster C(l)

r ∈ C(l). Pruning then corresponds to replacing all filters in C(l)
r by

S(l)
r . Motivated by prior work, several subset selection criterion can be formulated as below.

• Norm based : [17] prune filters based on the l1 norm of incoming weights. This
criterion amounts to selecting the top k% filters having the highest feature norm as
the cluster representative.
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• Zero activation based : [18] prune filters based on the average percentage of zeros
(ApoZ) in their activation map when evaluated over a held-out set. This criterion
amounts to choosing the top k% filters having least ApoZ as the cluster representa-
tive.

• Activation reconstruction based : [20] prunes filters based on its contribution to-
wards the next layer’s activation. This criterion amounts to choosing the top k%

filters having maximum contribution.

In our work, we use a norm based criterion to select a subset S(l)
r from a cluster of filters

C(l)
r with filter i having features F̃ (l)

i,: . This criterion is described through the equation

S(l)
r = argmax

i∈C(l)
r

‖F̃ (l)
i,: ‖2, (3.5)

where argmax implies that we select a single representative neuron from each cluster. Thus,
post pruning, the number of clusters in layer l equals the number of remaining filters.

3.4.4 Extension to retrain free setting (CUP-RF)

Similar to previous methods, CUP achieves compression through a three step pipeline
involving training, pruning and retraining. However, with a slight modification, CUP can
completely avoid any fine-tuning whatsoever. The modified algorithm is termed CUP-RF
for CUP “Retrain-Free”. The idea is to gradually reduce the model capacity during the
initial training phase. This is achieved by calling CUP at the beginning of each epoch,
with a monotonically increasing schedule for t. We find that the following linear schedule
for t(e) (value of t at epoch e) suffices for good performance.

t(e) = k.e+ b (3.6)

Here k, b are hyper-parameters controlling the slope and offset of the linear pruning
schedule and are determined through a linesearch.

3.5 Experiments

In this section, we evaluate the proposed method CUP and it retraining free variation CUP-
RF on three datasets of increasing complexity - MNIST, CIFAR and ImageNet. We com-
pare our methods against recent work on several efficiency metrics. Then we perform abla-
tion studies to demonstrate the robustness of CUP-RF to hyper-parameter choices. Finally,
we present qualitative insights into why and how CUP generalizes prior work.
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3.5.1 Datasets

We evaluate our methods against prior art on three datasets.

• MNIST [76] : This dataset consists of 60,000 training and 10,000 validation images
of handwritten digits between 0-9. The images are greyscale and of spatial size
28× 28.

• CIFAR-10 [77] : These datasets consist of 50,000 training and 10,000 validation
images from 10 classes. The images are 3 channel RGB, of spatial size 32× 32.

• Imagenet 2012 [78] : This dataset consists of 1.28 million images from 1000 classes
in the training set and 50,000 validation images. The images are 3 channel RGB and
are re-scaled to spatial size 224× 224.

3.5.2 Training details, base models & evaluation metrics

For MNIST and CIFAR datasets, we reuse the training hyper-parameter settings from [19].
All networks are trained using SGD with batch size - 64, weight decay - 10−4, initial
learning rate - 0.1 which is decreased by a tenth at 1/2 and 3/4 the number of total epochs.
On MNIST, we train for 30 epochs while on CIFAR 10 the networks are trained for 160
epochs. On Imagenet, we train with a batch size of 256 for 90 epochs. The initial learning
is set to 0.1. This is reduced by a tenth at epochs 30 and 60. We use a weight decay of
10−4. After compression, the model is retrained with a tenth of the initial learning rate
while other hyper-parameters remain the same. The baseline models are described next.

• ANN: We use the multiple layer perceptron with 784-500-300-10 filter architecture
in [19, 22]. This is trained upto 98.63% accuracy.

• VGG-16 [79]: This the standard VGG architecture with batchnorm layers after each
convolution layer. It is trained up to 93.64% on CIFAR-10.

• Resnet-56 [80]: We use the standard Resnet model which is trained up to 93.67% on
CIFAR-10.

• Resnet-{18,34,50} [80]: We use the official pytorch implementations for the three
models. The baselines models have 69.87%, 73.59% and 75.86% Top-1 accuracies
on Imagenet respectively. For Resnets, we only prune the first layer within each
bottleneck.
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We benchmark CUP against several recent state of the art compression methods. When-
ever possible, relevant results are quoted directly from the referenced paper. For [22] we
use our implementation. The compression metrics are reported as M = Pbase

Pcompressed
where

P can be one of the following measured attributes (MA).

• Parameter reduction (PR) : The MA is number of weights.

• Flops reduction (FR) : The MA is number of multiply and add operations to score
one input.

• Speedup: The MA is time to score one input on the CPU.

Original VGG-16

CUP(t=0.9)
Li et al. [2]400

500

300
200
100

0

# Filters post pruning (Lower is better)

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer Index

Figure 3.4: The number of filters remaining in each layer post pruning a VGG-16 on CIFAR-10.

3.5.3 Verifying two key benefits of pruning with CUP

Single hyper-parameter control. In Figure 3.4, we plot the number of remaining filters in
each layer after pruning a VGG-16 on Cifar-10 with CUP (t = 0.9). Using a single hyper-
parameter t, CUP accomplishes non-uniform pruning across the layers (see green bars).
As t increases, CUP offers a desirable, largely monotonic effect on: (1) test accuracy
reduction; (2) parameter reduction; (3) flops reduction; and (4) CPU wall-clock speedup,
as show in Figures 3.5a–d.
Training time speedup. Table 3.1 shows our approach (bold font) achieves the shortest
training time, best top-1 accuracy, and the most flop reduction, in both the retrain-allowed

(marked with 3) and the retrain-free settings (7), for a ResNet-50 trained on ImageNet. In
the retrain-free setting (Table 3.1, bottom row), CUP-RF saves 14 hours when compared to
that of the uncompressed model (51.6 v.s. 66 hours). All the retrain-free methods generally
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Figure 3.5: Compressing a VGG-16 on CIFAR-10 using CUP. We show the effect of pruning with
a larger t on (a) test accuracy, (b) parameters, (c) flops, and (d) inference wall-clock speedup.

save over 60 GPU hours compared to their traditional 3-step retrain-allowed counterparts.
However, retrain-allowed models are generally more compact and also achieve a better
Top-1 accuracy.

Table 3.1: For a ResNet-50 trained on ImageNet, our approach (bolded) achieves the shortest train-
ing time, best top-1 accuracy, and most flop reduction, in both the retrain-allowed (3) and the
retrain-free settings (7). FR means flops reduction.

Method Retrain? Top-1 (%) FR (×)
Training Time
(GPU Hours)

Resnet-50 - 75.86 1.00 66.0
SFP [68] 3 62.14 2.39 122.4
GM [69] 3 74.83 3.81 122.7
CUP (ours) 3 75.07 3.86 116.8
SFP [68] 7 74.01 1.73 61.8
GM [69] 7 74.13 2.15 62.2
CUP-RF (ours) 7 74.34 2.21 51.6
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Method Model Accuracy change (%)

Without retraining With retraining
Base B 0 0
random M2 -57.04% -0.18%
L2 M2 -19.04% -0.16%
L1 [17] M2 -18.48% -0.25%
SSL [22] M1 - -0.10%
Slimming [19] M2 - -0.06%
CUP M2 -13.26% 0.00%

Table 3.2: Accuracy change while compressing base model B (784 − 500 − 300 − 10) to the
compressed model M1 (434− 174− 78− 10) and M2 (784− 100− 60− 10). CUP achieves the
best accuracy with and without retraining.

Table 3.3: For ResNet-56 and VGG-16 models trained on CIFAR-10, our approach (bolded) leads
to highest flops reduction (FR), in both the retrain-allowed (3) and the retrain-free settings (7). FR
means flops reduction.

Method Retrain? ResNet-56 VGG-16
FR (×) Acc (∆%) FR (×) Acc (∆%)

L1 [17] 3 1.37 -0.02 1.51 -0.15
CP [20] 3 2.00 -1.00 2.00 -0.32
GM [69] 3 2.10 -0.33 - -
GAL [70] 3 2.45 -1.68 1.82 -0.54
NS [19] 3 - - 2.04 -0.32
CUP (ours) 3 2.77 -0.40 3.70 -0.70
SFP [68] 7 2.10 -1.33 - -
GM [69] 7 2.10 -0.70 - -
VCNP [71] 7 1.25 -0.78 1.64 -0.07
GAL [70] 7 1.59 -0.28 1.82 -3.18
CUP-RF (ours) 7 2.12 -0.31 3.15 -0.40

3.5.4 Comparison via accuracy change on MNIST

Our goal in this subsection is to observe the change in accuracy while compressing baseline
model B to compressed model M2 on the MNIST dataset. Here, model B is a four layer
fully connected network consisting of 784-500-300-10 filters [22, 19]. In [22] model B is
compressed to model M1: 434-174-78-10 which corresponds to 83.5% parameter reduc-
tion. In [19] it is compressed to model M2: 784 − 100 − 60 − 10 which corresponds to
84.4% sparsity. In table 3.2 we compress baseline B to model M2 using CUP.

Notice that in the without retraining setting, CUP leads to minimum drop in accuracy.
This signifies that our similarity based pruning criterion can better identify redundant fil-
ters compared to any of the magnitude based pruning criterion. Further, when we allow
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Table 3.4: For ResNet-18/34/50 models trained on ImageNet, our approach (bolded) leads to high-
est flops reduction (FR) with minimal accuracy drop, in both the retrain-allowed (3) and the retrain-
free settings (7). FR means flops reduction.

Model Method Retrain? FR (×) Acc. (∆%)

Top-1 Top-5

R
es

N
et

-1
8 GM [69] 3 1.71 -1.87 -1.15

COP [81] 3 1.75 -2.48 -
CUP (Our) 3 1.75 -1.00 -0.79
SFP [68] 7 1.71 -3.18 -1.85
GM [69] 7 1.71 -2.47 -1.52
CUP-RF (ours) 7 1.75 -2.37 -1.40

R
es

N
et

-3
4 L1 [17] 3 1.31 -1.06 -

GM [69] 3 1.69 -1.29 -0.54
CUP (ours) 3 1.78 -0.86 -0.53
SFP [68] 7 1.69 -2.09 -1.29
GM [69] 7 1.69 -2.13 -0.92
CUP-RF (ours) 7 1.71 -1.61 -0.89

R
es

N
et

-5
0 SFP [68] 3 2.15 -14.0 -8.20

MP [82] 3 2.05 -1.20 -
CUP (ours) 3 2.47 -1.17 -0.81
SFP [68] 7 1.71 -1.54 -0.81
GM [69] 7 2.15 -2.02 -0.93
CUP-RF (ours) 7 2.20 -1.47 -0.88

retraining, CUP can fully recover the original model’s accuracy.

3.5.5 Comparison via flops and parameter reduction on CIFAR-10 and ImageNet

Tables 3.3 and 3.4 present the results for compressing ResNet-56, VGG-16 models on
CIFAR-10 and ResNet-{18,34,50} models on ImageNet, under the retrain-allowed and
retrain-free settings.
Retraining-allowed (rows with 3). Under this traditional three-stage pipeline, our ap-
proach consistently leads to highest flops reduction with a lower drop in accuracy.
Retrain-free (rows with 7). Even when retraining is not allowed, our approach leads to
highest flops reduction with a comparable, or in many cases, lower drop in accuracy.

3.6 Ablation studies and hyper-parameter search

In this section, we perform ablation studies on the hyper-parameters introduced in CUP.
Recall that CUP uses t to control the compression ratio while CUP-RF uses k and b. In
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the following subsections, we present results on both CIFAR-10 and Imagenet.

3.6.1 Searching for t on CIFAR-10

The only hyper-parameter for compression using the CUP framework is the global thresh-
old t. As a model designer, our goal is to identify the optimal t that yields a model that
satisfies the flops budget of the deployment device. To study the effect of varying t in
CUP, in figure 3.5, we apply CUP to 9 VGG-16 models on CIFAR-10 corresponding to
t ∼ Uniform(0.7, 1.1). The final accuracy, parameters reduction, flops reduction and
inference time speedup are plotted in fig 3.5a-d. Like previous studies, we see from fig
3.5a that mild compression first leads to an increase (94.17% from 93.61%, for t = 0.75)
in validation accuracy. However, further compression (t = [0.8 − 1.1] leads to a drop in
accuracy.

(a) (b)

Figure 3.6: Validation accuracy on CIFAR-10 versus k for compressing (a) VGG-16 and (b) Resnet-
56 using CUP-RF. As intuition suggests, A very fast pruning schedule (high k) damages the neural
network whereas a very slow pruning rate leads to incomplete pruning.

3.6.2 Searching for k,b on CIFAR-10

The only hyper-parameters for compression using the CUP-RF framework are k, b. To
study the effect of varying k, b in CUP-RF, in fig 3.6, we plot the final accuracy for VGG-
16 and Resnet-56 trained on CIFAR-10 versus k. Recall that k controls the slope of the
single-shot pruning schedule introduced in (3.6) while b is the offset. We constrain b = 0.
From the figure, we see that for both VGG-16 (fig 3.6a) and Resnet-56 (fig 3.6b) the ideal
value of k lies somewhere in the middle of the interval [0.01, 0.05].
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Key Takeaway: A very fast pruning schedule (high k) can damage the neural network
whereas a very slow pruning rate may lead to incomplete pruning.

3.6.3 Searching for t on Imagenet

In table 3.5 we demonstrate the final accuracy achieved by various Resnet variants (trained
on Imagenet) for increasing values of t. notice how the flops reduction metric (FR) grace-
fully increases with increasing t. This is similar to the observation for compressing VGG-
16 on CIFAR-10 as noted in section 3.6 and fig 3.5c.

Table 3.5: Line search on t for compressing Resnet variants on Imagenet using CUP. Notice that
increasing t leads to a graceful increase in flops reduction (FR).

t FR Accuracy Change (%)
(×) Top-1 / Top-5

Resnet-18 on Imagenet

Base 1× 69.88 / 89.26
0.8 1.75× 68.88 / 88.47
0.825 1.97 × 68.29 / 88.15

Resnet-34 on Imagenet

Base 1× 73.59 / 91.44
0.60 1.78× 72.73 / 90.91
0.65 2.08× 71.99 / 90.47
0.675 2.29× 71.65 / 90.21
0.70 2.55× 71.15 / 90.08

Resnet 50 on Imagenet

Base 1× 75.86 / 92.87
0.65 2.18× 75.07 / 92.30
0.675 2.32× 74.73 / 92.14
0.70 2.47× 74.60 / 92.06
0.725 2.64× 74.42 / 91.74

3.6.4 Searching for k,b On Imagenet

From our experience on CIFAR-10, we realize that k needs to be neither too small nor too
large. Consequently, we found k = 0.03 worked well and fixed it for all experiments. For
our linesearch presented in table 3.6, we vary b over steps of 0.1. Notice that the reduction
in training time for Resnet-50 is much larger than that for other models. This is due to the
fact that the original model itself is much larger than its 18 and 34 layer variants. Thus
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compressing it 2× results in a much larger reduction in flops and training time. As a model
designer, our goal is to identify a good k, b that leads to large training time reduction.
Having set these values, the designer needs to specify the tgt flops that satisfies the flops
budget of the deployment device.

Table 3.6: Line search for k, b in compressing Resnet variants using CUP-RF. We desire a higher
FR for an acceptable drop in accuracy. The key observation here is the increasingly larger savings
in training time for Resnet 18/34/50.

k/b FR Accuracy Change (%) Training
(×) Top-1 / Top-5 Time (hrs)

Resnet-18 on Imagenet
Base 1× 69.88 / 89.26 38.75
0.03/0.3 1.74× 67.38 / 87.86 38.6
0.03/0.4 1.90× 66.86 / 87.37 38.8
0.03/0.5 1.83× 67.24 / 87.59 38.4

Resnet-34 on Imagenet
Base 1× 73.59 / 91.44 44.91
0.03/0.3 1.71× 71.98 / 90.42 39.7
0.03/0.4 2.08× 71.69 / 90.28 39.4

Resnet 50 on Imagenet
Base 1× 75.86 / 92.87 66.00
0.03/0.3 2.20× 74.40 / 91.99 54.48
0.03/0.4 2.16× 74.31 / 92.10 52.45
0.03/0.5 2.21× 74.39 / 91.94 51.58

3.7 Discussion

We have seen thus far that CUP outperforms prior work quantitatively on several datasets
and models. In this section, we draw connections with prior work and provide insights into
how CUP generalizes some of these methods.

3.7.1 Filter Saliency & connection to magnitude pruning

An effective strategy for pruning entire filters is to prune based on the magnitude of filter
weights. One of the earliest works along this direction, [8] proposed to prune individual
weight connections based on magnitude thresholding. Later, [17] generalized this idea to
prune entire filters having a low L1 norm of incoming weights. We observe that CUP
generalizes magnitude based pruning further by using feature similarity as the pruning
metric. This metric captures the notion of pruning based on weight magnitude as noted
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in figure 3.7a where we plot the average L1 norm of features for filters in a cluster versus
the cluster size. Magnitude pruning operates only at the right end of that figure wherein
majority filters have small weights. However, CUP operates along the entire axes which
means it additionally prunes similar filters that have high weight magnitudes. Hence CUP
is able to prune a higher number of filters and thus encumbers a lower drop in accuracy
for a sufficiently pruned network. This is observed in table 3.2 where L1 and L2 based
magnitude pruning lead to 13.48% and 19.04% accuracy drop (without retraining) versus
8.26% for CUP.

(a) (b)

Figure 3.7: (a) shows the average L1 norm of cluster with size (b) shows the accuracy of the
compressed model versus compression.

Figure 3.7b presents the accuracy for CUP using features computed from ”incoming”,
”outgoing” and ”both” type of weight connections. Each point along the x-axis notes the
percentage of filters dropped from all layers of model B. This is varied from [0.6, 0.9] in
steps of 1. The y-axis notes the validation accuracy of the resulting model. It is observed
that the combination of input/output features works best.

3.7.2 Comparison with training from scratch

Recently, [66] performed an empirical study showing that compression could be achieved
by training a pre-determined (small) model from scratch. They argued against methods
which prune a fixed number of filters from each layer. In the same spirit, in this subsec-
tion we replicate their main experiment—We compare the performance of the compressed
VGG-16 model obtained through CUP (t = 0.9) versus training the same model from
scratch in table 3.7. The scratch-160 model is obtained by training the compressed model
from scratch for 160 epochs while the scratch-480 model is trained from scratch for 3×

32



epochs to compensate for the 3× flop reduction in the compressed model. It is seen that the
CUP compressed model outperforms both the scratch trained models. The margin may not
seem large, however it must be noted the compressed model was itself discovered through
CUP. Thus, the value of pruning lies also lies in discovering the compressed model [66].

Table 3.7: Benchmarking the VGG-16 compressed model discovered by CUP (T=0.9) when trained
from scratch.

Model Accuracy change

CUP (t=0.9) -0.09%
scratch-160 epochs −0.75%
scratch-480 epochs −0.41%

Figure 3.8: Comparison of test accuracy for the model obtained via CUP (T=0.9) versus the same
model trained from scratch.

3.8 Conclusion

We proposed a new channel pruning based method for model compression that prunes en-
tire filters based on similarity. We showed how hierarchical clustering can be used to enable
layer-wise non-uniform pruning whilst introducing only a single hyper-parameter. Using
multiple models and datasets, we demonstrated that CUP achieves the highest flops reduc-
tion with the least drop in accuracy. Further, CUP-RF leads to large savings in training
time with only a small drop in performance. A limitation of the current work is that we
used simple yet effective linear trajectory for setting t in CUP-RF.
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CHAPTER 4
COMPATIBILITY-AWARE HETEROGENEOUS VISUAL SEARCH

We tackle the problem of visual search under resource constraints. Existing systems use the
same embedding model to compute representations (embeddings) for the query and gallery
images. Such systems inherently face a hard accuracy-efficiency trade-off: the embed-
ding model needs to be large enough to ensure high accuracy, yet small enough to enable
query-embedding computation on resource-constrained platforms. This trade-off could be
mitigated if gallery embeddings are generated from a large model and query embeddings
are extracted using a compact model. The key to building such a system is to ensure rep-
resentation compatibility between the query and gallery models. In this paper, we address
two forms of compatibility: One enforced by modifying the parameters of each model that
computes the embeddings. The other by modifying the architectures that compute the em-
beddings, leading to compatibility-aware neural architecture search (CMP-NAS). We test
CMP-NAS on challenging retrieval tasks for fashion images (DeepFashion2), and face
images (IJB-C). Compared to ordinary (homogeneous) visual search using the largest em-
bedding model (paragon), CMP-NAS achieves 80-fold and 23-fold cost reduction while
maintaining accuracy within 0.3% and 1.6% of the paragon on DeepFashion2 and IJB-C
respectively.

4.1 Introduction

A visual search system in an “open universe” setting is often composed of a gallery model
φg and a query model φq, both mapping an input image to a vector representation known
as embedding. The gallery model φg is typically used to map a set of gallery images onto
their embedding vectors, a process known as indexing, while the query model extracts em-
beddings from query images to perform search against the indexed gallery. Most existing
visual search approaches [83, 84, 85, 86, 87] use the same model architecture for both
φq and φg. We refer to this setup as homogeneous visual search. An approach that uses
different model architectures for φq and φg is referred to as heterogeneous visual search

(HVS).
The use of the same φg = φq trivially ensures that gallery and query images are mapped

to the same vector space where the search is conducted. However, this engenders a hard
accuracy-efficiency trade-off (Fig. 4.1)— choosing a large architecture φg for both query
and gallery achieves high-accuracy at a loss of efficiency; choosing a small architecture φq
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Figure 4.1: Homogeneous visual search uses the same embedding model, either large (orange)
to meet performance specifications, or small (green) to meet cost constraints, forcing a dichotomy.
Heterogeneous Visual Search (blue) uses a large model to compute embeddings for the gallery,
and a small model for the query images. This allows high efficiency without sacrificing accuracy,
provided that the green and orange embedding models are designed and trained to be compatible.

improves efficiency to the detriment of accuracy, which is compounded since in practice,
indexing only happens sporadically while querying is performed continuously. This leads
to efficiency being driven mainly by the query model. HVS allows the use of a small
model φq for querying, and a large model φg for indexing, partly mitigating the accuracy-
complexity trade-off by enlarging the trade space. The challenge in HVS is to ensure that
φg and φq live in the same metric (vector) space. This can be done for given architectures
φg, φq, by training the weights so the resulting embeddings are metrically compatible [88].
However, one can also enlarge the trade space by including the architecture in the design
of metrically compatible models. Typically, φg is chosen to match the best current state-of-
the-art (paragon) while the designer can search among query architectures φq to maximize
efficiency while ensuring that performance remains close to the paragon.

In this work, we pursue compatibility by optimizing both the model parameters (weights)
as well as the model architecture. We show that (1) weight inheritance [89] and (2)
backward-compatible training (BCT) [88] can achieve compatibility through weight opti-
mization. Among these, the latter is more general in that it works with arbitrary embedding
functions φg and φq. We expand beyond BCT to neural architecture search (NAS) [9, 90,
91, 92] with our proposed compatibility-aware NAS (CMP-NAS) strategy that searches
for a query model φq that is maximally efficient while being compatible with φg. We hy-
pothesize that CMP-NAS can simultaneously find the architecture of query model and
its weights that achieve efficiency similar to that of the smallest (query) model, and ac-
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Figure 4.2: The trade-off between accuracy and efficiency for a heterogeneous system performing
1:N Face retrieval on DeepFashion2. We use a ResNet-101 as the gallery model and compare
different architectures as query models. For MobileNetV1 and V2, we provide results with width
0.5× and 1×.

curacy close to that of the paragon (gallery model). Indeed the results in Fig. 4.2 shows
that CMP-NAS outperforms all of the state-of-the-art off-the-shelf architectures designed
for mobile platforms with resource constraints. Compared with paragon (state-of-the-art
high-compute homogeneous visual search) methods, HVS reduce query model flops by
23× with only 1.6% in loss of search accuracy for the task of face retrieval.

Our contributions can be summarized as follows: 1) we demonstrate that an HVS sys-
tem allows to better trade off accuracy and complexity, by optimizing over both model
parameters and architecture. 2) We propose a novel CMP-NAS method combining weight-
based compatibility with a novel reward function to achieve compatibility-aware architec-
ture search for HVS. 3) We show that our CMP-NAS can reduce model complexity many-
fold with only a marginal drop in accuracy. For instance, we achieve 23× reduction in flops
with only 1.6% drop in retrieval accuracy on face retrieval using standard benchmarks.

4.2 Related Work

Visual search: Most prior visual search systems construct embedding vectors either by
aggregating hand-crafted features [93, 94, 95, 96, 97, 98], or through feature maps extracted
from a convolutional neural network [84, 99, 85, 100, 84, 86, 101, 87, 102]. The latter,
being more prevalent in recent times, differ from us in that they follow the homogeneous
visual search setting and suffer from a hard accuracy and efficiency trade-off. Recently,
[103] discusses the asymmetric testing task which is similar to our heterogeneous setting.
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However, their method is unable to ensure that the heterogeneous accuracy supersedes the
homogeneous one (compatibility rule in Sec. 4.3.1). Such a system is not practically useful
since the homogeneous deployment achieves both a higher accuracy and a higher efficiency.

Cross-model compatibility: The broad goal of this area is to ensure embeddings gen-
erated by different models are compatible. Some recent works ensure cross-model compat-
ibility by learning transformation functions from the query embedding space to the gallery
one [104, 105, 106]. Different from these works, our approach directly optimizes the query
model such that its metric space aligns with that of the gallery. This leads to more flexibility
in designing the query model and allows us to introduce architecture search in the metric
space alignment process. Our idea of model compatibility, as metric space alignment, is
similar to the one in backward-compatible training (BCT) [88]. However, [88] only consid-
ers compatibility through model weights, whereas, we generalize this concept to the model
architecture. Additionally, [88] targets for compatibility between an updated model and its
previous (less powerful) version, the application scenarios of which are different from this
work.

Architecture Optimization: Recent progress demonstrates the advantages of auto-
mated architecture design over manual design through techniques such as neural archi-
tecture search (NAS) [9, 92, 91, 90]. Most existing NAS algorithms however, search for
architectures that achieve the best accuracy when used independently. In contrast, our task
necessitates a deployment scenario with two models: one for processing the query images
and another for processing the gallery. Recently, [107, 108] propose to use a large teacher
model to guide the architecture search process for a smaller student which is essentially
knowledge distillation in architecture space. However, our experiments show that knowl-
edge distillation cannot guarantee compatibility and thus these methods may not succeed
in optimizing the architecture in that aspect. To the best of our knowledge, CMP-NAS is
the first to consider the notion of compatibility during architecture optimization.

4.3 Methodology

We use φ to denote an embedding model in a visual search system and κ to denote the
classifier that is used to train φ. We further assume φ is determined by its architecture a
and weights w. For our visual search system, a gallery model is first trained on a training
set T and then used to map each image x in the gallery set G onto an embedding vector
φg(x) ∈ RK . Note this mapping process only uses the embedding portion φg. During test
time, we use the query model (trained previously on T ) to map the query image x′ onto
an embedding vector φq(x′) ∈ RK . The closest match is then obtained through a nearest
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neighbor search in the embedding space. Typically, visual search accuracy is measured
through some metric, such as top-10 accuracy, which we denote by M(φq, φg;Q,G). This
is calculated by processing query image setQ with φq and processing the gallery set G with
φg. For simplification, we omit the image sets and adopt the notation M(φq, φg) to denote
our accuracy metric.

4.3.1 Homogeneous vs heterogeneous visual search

Assuming φq and φg are different models and φq is smaller than φg, we define two kinds of
visual search:

• Homogeneous visual search uses the same embedding model to process the gallery
and query images, and is denoted by (φq, φq) or (φg, φg).

• Heterogeneous visual search uses different embedding models to process the query
and gallery images, respectively, and is denoted by (φq, φg).

We illustrate the accuracy-efficiency trade-off faced by visual search systems in Fig. 4.3.
A homogeneous system with a larger embedding model (e.g., ResNet-101 [80], denoted as
paragon) achieves a higher accuracy due to better embeddings (orange bar in Fig. 4.3(a))
but also consumes more flops during query time (orange line in Fig. 4.3(b)). On the other
hand, a smaller embedding model (e.g., MobileNetV2 [109], denoted as baseline) in the
homogeneous setting achieves the opposite end of the trade-off (green bar and line in
Fig. 4.3(a),(b)). Our heterogeneous system (blue bar and line in Fig. 4.3(a),(b)) achieves
accuracy within 1.6% of the paragon and efficiency of the baseline.

When computing the cost of a visual search method, one has to take into account both
the cost of indexing, which happens sporadically, and the cost of querying, which occurs
continuously. While large, the indexing cost is amortized through the lifetime of the system.
To capture both, in Fig. 4.3(b) we report the amortized cost of embedding the query and
gallery images, as a function of the ratio of queries to gallery images processed. In most
practical systems, the number of queries exceeds the number of indexed images by orders
of magnitude, so the relevant cost is the asymptote, but we report the entire curve for
completeness. The initial condition for that curve is the cost of the paragon. Our goal
is to design a system that has a cost approaching the asymptote (b), with performance
approaching the paragon (a).
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Figure 4.3: Accuracy-efficiency trade-off for visual search. In (a) we compare the 1:N face retrieval
accuracy (TPIR@FPIR=10−1) on IJB-C. We denote the homogeneous system with ResNet-101 and
MobileNetV2 as the paragon and baseline respectively. In (b) we observe that, as the size of the
query set increases, the complexity of our heterogeneous system converges to that of the baseline.

Notion of Compatibility

A key requirement of a heterogeneous system is that the query and gallery models should
be compatible. We define this notion through the compatibility rule which states that:

A smaller model φq is compatible with a larger model φg if it satisfies the inequality
M(φq, φg) > M(φq, φq).

We note that satisfying this rule is a necessary condition for heterogeneous search. A
heterogeneous system violating this condition, i.e., M(φq, φg) < M(φq, φq), is not prac-
tically useful since the homogeneous system M(φq, φq) achieves both higher efficiency
and accuracy. Additionally, a practically useful heterogeneous system should also satisfy
M(φq, φg) ≈M(φg, φg). In subsequent sections, we study how to achieve both these goals
through weight and architecture compatibility.

4.3.2 Compatibility for Heterogeneous Models

In this section, we discuss different ways to obtain compatible query and gallery models
φq, φg that satisfy the compatibility rule. While a general treatment may optimize φq and
φg jointly, in this paper, we consider the simpler case when φg is fixed to a standard large
model (ResNet-101) while we optimize the query model φq. For the subsequent discussion,
we assume the gallery model φg has an architecture ag and is parameterized by weights wg.
Corresponding quantities for the query model are φq with architecture aq and parameterized
by weights wq. To train the query and gallery models φq, φg we use the classification-based
training [88, 110] with the query and gallery classifiers denoted by κq and κg respectively.
In what follows, we discuss two levels of compatibility—weight level and architecture
level.
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Figure 4.4: NAS Motivation. We randomly sample 40 architectures from the ShuffleNet search
space of [91] and train them from scratch. Observe that (a) Architectures with same flops (shown
with red circles) can have different heterogeneous accuracies proving that architecture has a mea-
surable impact on compatibility. (b) Architectures (shown in red) achieving the highest heteroge-
neous accuracy with BCT training are not the ones achieving the highest homogeneous accuracy
with vanilla training. This means that traditional NAS (which optimizes for homogeneous accuracy
while using vanilla training) may fail to find the most compatible models. (c) When trained with
BCT, the architectures achieving the highest heterogeneous accuracy also achieve the highest ho-
mogeneous accuracy. This means simply equipping traditional NAS with BCT will aid the search
for compatible architectures.

Weight-level compatibility

Given the gallery model φg and its classifier κg, weight-level compatibility aims to learn the
weights wq of query model φq such that the compatibility rule is satisfied. To this end, the
optimal query weights w∗q , and its corresponding classifier κ∗q can be learned by minimizing
a composite loss over the training set T .

w∗q , κ
∗
q = argmin

wq ,κq

{λ1L1(wq, κq; T ) + λ2L2(wq, κq, wg, κg; T )}, (4.1)

where L1 is a classification loss such as the Cosine margin [111], Norm-Softmax [112] and
L2 is the additional term which promotes compatibility. We consider four training methods
which can be described using Eq.4.1 as follows:

1. Vanilla training: Considers λ2 = 0.

2. Knowledge Distillation [12]: L2 is the temperature smoothed cross-entropy loss be-
tween the logits of query and gallery model.

3. Fine-tuning: Initializes wq using wg and κq using κg and considers λ2 = 0.

4. Backward-compatible training (BCT) [88]: Uses L2 = L1(wq, κg; T ). This ensures
that the query embedding model learns a representation that is compatible with the
gallery classifier.
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We compare these methods in Tab. 4.4, and find that only the last two succeed in en-
suring compatibility. Among these two, fine-tuning is more restrictive since it makes a
stronger assumption about the query architecture—it requires the query model to have a
similar network structure, kernel size, layer configuration as the gallery model. In contrast,
BCT poses no such restriction and can be used to train any query architecture. Thus we use
[88] as our default method to ensure weight-level compatibility. Recently [103] proposed
to learn the weights of a query model by minimizing the L2 distance between query and
gallery embeddings, however, both [103] and [88] observe that the resulting query model
does not satisfy the compatibility rule.

Architecture-level compatibility

Given the gallery model φg and classifier κg, the problem of architecture-level compatibility
aims to search for an architecture aq for the query model φq that is most compatible with
a fixed gallery model. The need of architecture level compatibility is motivated by two
questions:

Q1 How much does architecture impact compatibility?

Q2 Can traditional NAS find compatible architectures?

To answer these questions, we randomly sample 40 architectures from the ShuffleNet
search space [91], with each having roughly 300 Million flops.

A1 We train these architectures with BCT (λ1 = 1, λ2 = 1 in Eq. 4.1) and plot the
heterogeneous accuracy vs. flops in Fig. 4.4(a). There are two observations: (1) het-
erogeneous accuracy is not correlated with flops and (2) architectures with similar
flops can achieve different accuracy, which indicates architecture indeed has a mea-
surable impact on accuracy.

A2 We plot the homogeneous accuracy of models with vanilla training (target of tradi-
tional NAS) vs. heterogeneous accuracy of the same models trained with BCT (our
target) in Fig. 4.4(b). We observe that: (1) The correlation between the two accu-
racy is low and (2) The architectures with the highest heterogeneous accuracy are not
those with highest homogeneous accuracy. This indicates traditional NAS may not
be successful in searching for compatible architectures.

We further investigate the correlation between homogeneous (with BCT) and heteroge-
neous accuracy (with BCT) in Fig. 4.4(c) and discover that the correlation of these two
accuracies is much higher than that in Fig. 4.4(b). This offers a key insight that equipping
traditional NAS with BCT may help in searching compatible architectures.
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Architecture optimization with CMP-NAS Based on the intuition developed previously,
we develop CMP-NAS using the following notation. Denote by φq(aq, wq) a candidate
query embedding model with architecture aq and weights wq. We further denote κq as
its corresponding classifier. With CMP-NAS, we solve a two-step optimization problem
where the first step amounts to learning the best set of weights— w∗q (for the embedding
model φq) and κ∗q (for the common classifier)–by minimizing a classification loss L over
the training set T as below

w∗q , κ
∗
q = argmin

wq ,κq

{λ1L(φq(aq, wq), κq; T ) + λ2L(φq(aq, wq), κg; T )}, (4.2)

where L can be any classification loss such as Cosine margin [111], Norm-Softmax [112].
Similar to BCT, the second term L(φq(aq, wq), κg; T ) ensures that the candidate query
embedding model φq(aq, w∗q) learns a representation that is compatible with the gallery
classifier.

Using weights w∗q and κ∗q from above, the second step amounts to finding the best query
architecture a∗q in a search space Ω, by maximizing a rewardR evaluated on the validation
set as below

a∗q = argmax
aq∈Ω

R
(
φq(aq, w

∗
q), κ

∗
q

)
. (4.3)

We consider three candidate rewards presented in Tab 4.1. Similar to traditional NAS,
homogeneous accuracy M(φq(aq, wq), φq(aq, wq)) is our baseline reward R1. Recall that
however, we are interested in searching for the architecture which achieves the best het-
erogeneous accuracy. With this aim, we design rewards R2 and R3 which include the
heterogeneous accuracy in their formulation.

Table 4.1: Different rewards considered with CMP-NAS. The rewards R1, R2 prioritize either
the symmetric or asymmetric accuracy while ignoring the other. R3 prioritizes both accuracies and
consistently outperforms other rewards.

Reward Formulation

R1 M(φq(aq, wq), φq(aq, wq)
R2 M(φq(aq, wq), φg)
R3 M(φq(aq, wq), φq(aq, wq))×M(φq(aq, wq), φg)

Our CMP-NAS formulation in Eq. 4.2 and rewards in Tab. 4.1 is general and can work
with any NAS method. For demonstration, we test our idea with the single path one shot
NAS [91] and consists of the following two components:
Search Space: Similar to popular weight sharing methods [90, 91, 24], the search space
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of our query model consists of a shufflenet-based super-network. The super-network con-
sists of 20 sequentially stacked choice blocks. Each choice block can select one of four
operations: k × k convolutional blocks (k ∈ 3, 5, 7) inspired by ShuffleNetV2 [113] and
a 3 × 3 Xception [114] inspired convolutional block. Additionally, each choice block can
also select from 10 different channel choices 0.2 − 2.0×. During training we use the loss
formulation in Eq. 4.2 to train this super-network whereby, in each batch a new architecture
is sampled uniformly [91] and only the weights corresponding to it are updated.
Search Strategy: To search for the most compatible architecture, CMP-NAS uses evo-
lutionary search [91] fitted with the different rewards outlined in Tab. 4.1. The search is
fast because each architecture inherits the weights from the super-network. In the end, we
obtain the five best architectures and re-train them from scratch with BCT.

4.4 Experiments

We evaluate the efficacy of our heterogeneous system on two tasks: face retrieval, as it
is one of the “open-universe” problems with the largest publicly available datasets; and
fashion retrieval which necessitates an open-set treatment due to the constant evolution of
fashion items. We use face retrieval as the main benchmark for our ablation studies.

4.4.1 Datasets, Metrics and Gallery Model

Face Retrieval: We use the IMDB-Face dataset [115] to train the embedding model for
the face retrieval task. The IMDB-Face dataset contains over 1.7M images of about 59k
celebrities. If not otherwise specified, we use 95% of the data as training set to train our em-
bedding model and use the remaining 5% as a validation dataset to compute the rewards for
architecture search. For testing, we use the widely used IJB-C face recognition benchmark
dataset [116]. The performance is evaluated using the true positive identification rate at a
false positive identification rate of 10−1 (TPIR@FPIR=10−1). Throughout the evaluation,
we use a ResNet-101 as the fixed gallery model φg.

Fashion Retrieval: We evaluate the proposed method on Commercial-Consumer Clothes
Retrieval task on DeepFashion2 dataset [117]. It contains 337K commercial-consumer
clothes pairs in the training set, from which 90% of the data is used for training the embed-
ding and the rest 10% is used for computing the rewards in architecture search. We report
the test accuracy using Top-10 retrieval accuracy on the original validation set, which con-
tains 10,844 consumer images with 12,377 query items, and 21,309 commercial images
with 36,961 items in the gallery. ResNet-101 is used as the fixed gallery model φg.
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4.4.2 Implementation Details

Our query and gallery models take a 112 × 112 image as input and output an embedding
vector of 128 dimensions.
Face retrieval: We use mis-alignment and color distortion for data augmentation [88].
Following recent state-of-the-art [111], we train our gallery ResNet-101 model using the
cosine margin loss [111] with margin set to 0.4. We use the SGD optimizer with weight
decay 5 × 10−4. The initial learning rate is set to 0.1 which decreases to 0.01, 0.001 and
0.0001 after 8, 12 and 14 epochs. Our gallery model is trained for 16 epochs with a batch
size 320. We train the query models for 32 epochs with a cosine learning rate decay sched-
ule [118]. The initial learning rate is set to 1.3 all query models except MobileNetV1(1×)
which uses 0.1.
Fashion retrieval: The original fashion retrieval task with DeepFashion2 [117] requires
to first detect and then retrieve fashion items. Since we only tackle the retrieval task,
we construct our retrieval-only dataset by using ground truth bounding box annotations to
extract the fashion items. To train the gallery model, we follow [110] in using normalized
cross entropy loss with temperature 0.5. The gallery model is trained for 40 epochs using
an initial learning rate of 3.0 with cosine decay. The weight decay is set to 10−4. Our query
models are trained with BCT for 80 epochs using an initial learning rate of 10 with cosine
decay.
Runtime: On a system containing 8 Tesla V100 GPUs, the entire pipeline for the face
(and fashion) retrieval takes roughly 100 (45) hours. This includes roughly 8 (8) hours to
train the gallery model, 32 (14) hours to train the query super-network, 48 (20) hours for
evolutionary search and 2 (2) hours to train the final query architecture.

For additional implementation details specific to CMP-NAS, please refer to the sup-
plementary material.

Table 4.2: Comparison with baseline and paragon for 1:N face retrieval on IJB-C. Accuracy is
reported as TPIR(%)@FPIR=10−1. All the models except the paragon are trained with BCT loss
using ResNet-101 as the “teacher”.

Gallery Query Acc. Query
Model Model (%) Flops (M)

Paragon ResNet-101 ResNet-101 86.7 7597
Proposed ResNet-101 CMP-NAS 85.1 327
Baseline MobileNetV2 MobileNetV2 77.1 329
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Table 4.3: Comparison with baseline and paragon for fashion retrieval on DeepFashion2. Accuracy
is reported as Top-10 retrieval accuracy. All the models except the paragon are trained with BCT
loss using ResNet-101 as the “teacher”.

Gallery Query Acc. Query
Model Model (%) Flops (M)

Paragon ResNet-101 ResNet-101 65.2 7597
Proposed ResNet-101 CMP-NAS 64.9 211
Baseline MobileNetV3 MobileNetV3 62.7 226

4.4.3 Baseline and paragon for visual search

Since gallery features can be pre-computed and there is no computational constraint on
the gallery side, we fix the gallery model to a ResNet-101. In terms of visual search ac-
curacy, the paragon is achieved by the (ResNet-101, ResNet-101) system on both the face
and fashion retrieval tasks. On the other hand, we use (MobileNetV2, MobileNetV2) and
(MobileNetV3, MobileNetV3) as the baseline for face and fashion retrieval respectively,
since they achieve the highest accuracy among the MobileNet family.

Tab. 4.2 shows almost a 10% gap in accuracy between the paragon and baseline for face
retrieval. On the other end, the baseline consumes 23× fewer query flops than the paragon.
This establishes the goal of our heterogeneous system: To achieve accuracy similar to the
paragon while consuming query flops similar to the baseline. Indeed, the middle rows of
Tab. 4.2 shows this goal is achieved by our proposed heterogeneous system (ResNet-101,
CMP-NAS) which consumes similar query flops as the baseline with only 1.6% accuracy
drop compared to the paragon. Tab. 4.3 reveals a similar observation on DeepFashion2.

4.4.4 Dissecting the performance of CMP-NAS

In this subsection, we break down the accuracy achieved by our heterogeneous system in
terms of the improvement due to (1) weights and (2) architecture compatibility.
Improvement due to weight-compatibility: To observe the improvement due to weight
compatibility, Fig. 4.5 (a),(b) shows the homogeneous and heterogeneous accuracy ob-
tained by three state-of-the-art query models with static architectures in the 300 Million
flops range trained with BCT (Eq. 4.1). We observe that heterogeneous system outper-
forms homogeneous system on average by 3.95% and 1.45% for face and fashion retrieval
respectively. This indicates that considering weight-compatibility alone is beneficial.
Improvement due to architecture compatibility: To see the additional benefits due to
architecture compatibility, in Fig. 4.5 we compare the heterogeneous accuracy achieved
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by the query models obtained via CMP-NAS and trained with BCT. On IJB-C and Deep-
Fashion2 datasets, CMP-NAS outperforms the second-best model ProxyLess(Mobile) by
3.3%, 3.6% in terms of heterogeneous accuracy. This shows architecture compatibility can
improve accuracy by a large margin. Additionally, we also observe gains of 5.8% and 4.8%

in terms of homogeneous accuracy.
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Figure 4.5: Evaluating the heterogeneous and homogeneous search accuracy for face and fashion
retrieval tasks using different query models. CMP-NAS outperforms other baselines and achieves
accuracy close to the paragon.

Comparing different methods for weight-compatibility: In Sec. 4.3.2, we discussed four
ways to achieve weight-compatibility; (1) vanilla training, (2) knowledge distillation [12],
(3) fine-tuning, and (4) BCT [88]. To quantitatively compare these methods, we obtain the
query network by pruning the gallery ResNet-101 model using magnitude pruning [17] and
channel pruning [20]. To obtain the (pruned) query model, we prune 90% of filters from
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the first two layers in each residual block of the gallery network. The query model ob-
tained is trained with each of the four methods and Tab. 4.4 shows both the homogeneous
and heterogeneous search accuracy. We observe only fine-tuning and BCT can achieve
weight-compatibility wherein accuracy of the heterogeneous system supersedes that of the
homogeneous system. Training from scratch and knowledge distillation on the other hand,
cannot ensure compatibility and obtain 0.0% accuracy for heterogeneous search. Among
fine-tuning and BCT, we prefer BCT to ensure weight compatibility for two reasons: (1)
fine-tuning is restrictive: it poses a strong requirement on the query architecture e.g., query
model is obtained by pruning the gallery model and (2) the model trained with BCT per-
forms better.

Table 4.4: Comparing techniques for achieving weight-level compatibility on the 1:N face retrieval
task. The query model φq is obtain by pruning 90% of filters in the first two layers of each residual
block of the gallery model. We see that for both pruning methods, training the query model with
BCT loss leads to the highest heterogeneous accuracy.

Gallery Query Train Finetune BCT KD
model model Scratch

Magnitude prune Magnitude prune 84.4 84.9 86.4 86.8
ResNet-101 Magnitude prune 0.0 86.5 87.2 0.0
Channel prune Channel prune 84.2 85.2 86.5 87.0
ResNet-101 Channel prune 0.0 86.3 87.4 0.0

Vanilla training
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Figure 4.6: Ablating on training strategies (vanilla, BCT) and rewards (R1 −R3) for CMP-NAS
These plots show the heterogeneous accuracy of the best 5 models (under 100 Mflops) discovered
by each method and trained from scratch with BCT. Observe that the ingredients of CMP-NAS i.e.,
BCT training + rewardR3 perform the best.

Comparing CMP-NAS with baseline NAS[91]: To measure the gains relative to baseline
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NAS, in Fig. 4.6, we present a barplot of the heterogeneous accuracy achieved by the best
5 architectures obtained by vanilla NAS (yellow bar) and CMP-NAS (blue bars) when
trained from scratch using BCT. The baseline considers the vanilla loss (λ2 = 0 in Eq. 4.1)
to train the super-network and searches using reward R1 while CMP-NAS uses BCT to
train the super-network and can search using rewardsR1,R2,R3. On both datasets, CMP-
NAS outperforms the baseline by 2− 2.5%.
Comparing reward choices for CMP-NAS: In Fig. 4.6, the performance of different re-
ward choices (of Tab. 4.1) are shown by blue plots. As expected, the baseline reward (R1)
performs worst since its target (homogeneous accuracy) is misaligned with our target (het-
erogeneous accuracy). The second reward (R2) is much better since it directly optimizes
the target while the composite reward (R3) works best with especially large gains observed
on DeepFashion2.

Table 4.5: Evaluating architectures searched with CMP-NAS for fashion retrieval (denoted as
fashion) and face retrieval (denoted as face) tasks. We search models for three different complexity
tiers: 100, 230 and 330 Mflops and use the best architecture to report the results. The searched
models outperform other architectures by 3 ∼ 5% on both the tasks.

Gallery Query Query Fashion retrieval Face retrieval
model model MFlops top-10 search 1:N search
ResNet-101 ResNet-101 7597 65.1 86.7

ResNet-101

MobileNetV1(1x) 579 62.3 73.0
MobileNetV2(1x) 329 60.4 77.0
ProxyLess(mobile) 332 62.1 81.8
CMP-NAS-a(Face) 327 65.4 85.1
CMP-NAS-a(Fashion) 314 65.7 84.2

ResNet-101
MobileNetV3 226 63.0 80.4
CMP-NAS-b(Face) 216 64.4 84.1
CMP-NAS-b(Fashion) 211 64.9 81.5

ResNet-101

MobileNetV1(0.5x) 155 60.3 62.7
ShuffleNetV2(1x) 149 63.3 75.8
ShuffleNetV1(1x,g=1) 148 62.6 76.0
MobileNetV2(0.5x) 100 62.0 73.1
CMP-NAS-c(Face) 94 62.4 78.8
CMP-NAS-c(Fashion) 93 64.8 77.8

4.4.5 Generalization performance of CMP-NAS

In this section, we investigate the performance of CMP-NAS under different compute
constraints, application scenarios and tasks. Inspired by state-of-the-art architectures for
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mobile deployment we select three computational tiers: 330 million flops (similar to Mo-
bileNetV2), 230 Mflops (similar to MobileNetV3), and 100 Mflops (similar to ShuffleNetV2).
For each computational tier, we implement a heterogeneous system using the models searched
by CMP-NAS. These models are denoted by CMP-NAS-a (330 Mflops), CMP-NAS-b
(230 Mflops), and CMP-NAS-c (100 Mflops). Additionally, we append “(Face)”/“(Fashion)”
to the model name, e.g., “CMP-NAS-a(Face)”/“CMP-NAS-a(Fashion)”, to denote the ar-
chitecture searched on the face or fashion datasets respectively.
CMP-NAS for different resource constraints: We compare the performance of archi-
tectures searched by CMP-NAS for each computational tier in Tab. 4.5. For each task,
we look at the model searched on the same task e.g., for face retrieval we look at CMP-
NAS-a(Face) etc. On both datasets the models searched by CMP-NAS consistently out-
perform other state-of-the-art baselines. For 330 Mflops tier, CMP-NAS-a outperforms
the second best (ProxyLess(Mobile) [90]) by 3.6% and by 3.1% on the fashion and face
retrieval tasks respectively. Similarly, CMP-NAS-b outperforms the second best network
MobileNetV3 [119] by 1.9% and 3.7% on the corresponding tasks. Finally, for the 100M
tier, CMP-NAS-c achieves 1.5% and 3.0% improvement over the second best network
ShuffleNetV2(1×) while consuming 33% fewer flops. These results establish the general-
ization ability of the CMP-NAS for different computation constraints.
CMP-NAS across different applications: For this experiment, we evaluate the architec-
tures searched on the face dataset for the fashion retrieval task and vice versa. The results
are shown in the Tab. 4.5. We observe that the architectures optimized for the face tasks
CMP-NAS-a/b/c(Face) also outperform the baselines for the fashion retrieval task. More-
over, these models only lose 1− 2% accuracy compared to the best model searched on the
fashion dataset. We make similar observations for CMP-NAS-a/b/c/(Fashion) evaluated

Table 4.6: Evaluating the models CMP-NAS-a,b,c(Face) on the 1:1 face verification task using
IJB-C. Accuracy metric is TAR@FAR=10−4. The searched models outperform the baselines indicat-
ing they can generalize across tasks.

Gallery Query Query Homogeneous Heterogeneous
model model MFlops accuracy accuracy

ResNet-101 ResNet-101 7597 85.4 -

ResNet-101 ProxyLess(mobile) 332 75.5 80.3
CMP-NAS-a(Face) 327 81.6 84.5

ResNet-101 MobileNetV3 226 74.3 79.9
CMP-NAS-b(Face) 216 79.0 82.8

ResNet-101 ShuffleNetV2(1x) 149 66.8 74.8
CMP-NAS-c(Face) 94 71.5 78.3
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on the face retrieval task. This shows that the architectures searched by CMP-NAS can
generalize across application scenarios.
CMP-NAS for face verification: In table Tab. 4.6, we use the CMP-NAS-a/b/c(Face)
models for another “open universe” problem: 1:1 face verification. The results show that
the models searched by CMP-NAS outperform state-of-the art architectures by 3− 5% in
the homogeneous and heterogeneous settings. Importantly, the compatibility rule is also
achieved. This indicates the searched models can generalize across different tasks.

4.5 Discussion and Conclusion

We have presented a heterogeneous visual search system that achieves high accuracy with
low computational cost. Key to building this system is ensuring the query and gallery
models are compatible. We achieve this through joint weight and architecture compatibility
optimization with CMP-NAS. There are, however, some limitations of our method: (1)
Our method is limited to classification-based embedding training and does not directly
work with metric learning based approaches; (2) We consider the simplified use-case for
architecture optimization wherein the gallery model is fixed. A more general treatment of
model compatibility may optimize both the gallery and query models. These limitations
show that there is scope for improving our HVS system which can be tackled by future
work.
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Part II

New methods for robust edge AI
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Overview

In the previous part, we focused on efficiency of Deep Neural Networks. While efficiency
necessary for edge deployment, it is not sufficient. Since edge scenarios often entail noisy
environments, it is critical to ensure the neural networks are also resilient to noise. In
REST, we jointly tackle the challenges of efficiency and robustness to adversarial and
gaussian noise for the task of home based sleep monitoring.

Chapter 5: REST:Robust and Efficient Neural Networks for Sleep Mon-
itoring in the Wild. Rahul Duggal, Scott Freitas, Cao Xiao, Duen Horng
Chau, Jimeng Sun. In Proceedings of The Web Conference (WWW), 2020.
https://dl.acm.org/doi/10.1145/3366423.3380241

Noise can be of many types. In REST we tackle test time noise, while in HAR we
tackle training time noise that manifests as class imbalance in the data distribution. We
develop a hardness aware re-weighting strategy that works with existing loss functions to
improve accuracy while leading to upto 20% inference flops savings.

Chapter 6: HAR:Hardness Aware Reweighting for Imbalanced Datasets.
Rahul Duggal, Scott Freitas, Sunny Dhamnani, Duen Horng Chau, Jimeng
Sun. IEEE International Conference on Big Data (Big Data)., 2021. https:
//ieeexplore.ieee.org/document/9671807

In IMB-NAS, we jointly tackle class imbalance and efficiency by searching for optimal
backbone architectures via neural architecture search on imbalanced datasets.

Chapter 7: IMB-NAS:Neural Architecture Search for Imbalanced Datasets.
Rahul Duggal, Sheng-Yun Peng, Hao Zhou, Duen Horng Chau. In submission.,
2022. N/A
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CHAPTER 5
REST:ROBUST AND EFFICIENT NEURAL NETWORKS FOR SLEEP

MONITORING IN THE WILD

In recent years, significant attention has been devoted towards integrating deep learning
technologies in the healthcare domain. However, to safely and practically deploy deep
learning models for home health monitoring, two significant challenges must be addressed:
the models should be (1) robust against noise; and (2) compact and energy-efficient. We
propose REST, a new method that simultaneously tackles both issues via 1) adversarial

training and controlling the Lipschitz constant of the neural network through spectral reg-

ularization while 2) enabling neural network compression through sparsity regularization.
We demonstrate that REST produces highly-robust and efficient models that substantially
outperform the original full-sized models in the presence of noise. For the sleep staging
task over single-channel electroencephalogram (EEG), the REST model achieves a macro-
F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of Gaussian
noise while obtaining 19× parameter reduction and 15×MFLOPS reduction on two large,
real-world EEG datasets. By deploying these models to an Android application on a smart-
phone, we quantitatively observe that REST allows models to achieve up to 17× energy
reduction and 9× faster inference. We open source the code repository with this paper:
https://github.com/duggalrahul/REST.

5.1 Introduction

As many as 70 million Americans suffer from sleep disorders that affects their daily func-
tioning, long-term health and longevity. The long-term effects of sleep deprivation and
sleep disorders include an increased risk of hypertension, diabetes, obesity, depression,
heart attack, and stroke [120]. The cost of undiagnosed sleep apnea alone is estimated to
exceed 100 billion in the US [121].

A central tool in identifying sleep disorders is the hypnogram—which documents the
progression of sleep stages (REM stage, Non-REM stages N1 to N3, and Wake stage) over
an entire night (see Fig. 5.1, top). The process of acquiring a hypnogram from raw sensor
data is called sleep staging, which is the focus of this work. Traditionally, to reliably obtain
a hypnogram the patient has to undergo an overnight sleep study—called polysomnography

(PSG)—at a sleep lab while wearing bio-sensors that measure physiological signals, which
include electroencephalogram (EEG), eye movements (EOG), muscle activity or skeletal
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Figure 5.1: Top: we generate hypnograms for a patient in the SHHS test set. In the presence
of Gaussian noise, our REST-generated hypnogram closely matches the contours of the expert-
scored hypnogram. Hypnogram generated by a state-of-the-art (SOTA) model by Sors et al. [7]
is considerably worse. Bottom: we measure energy consumed (in Joules) and inference time (in
seconds) on a smartphone to score one night of EEG recordings. REST is 9X more energy efficient
and 6X faster than the SOTA model.

muscle activation (EMG), and heart rhythm (ECG). The PSG data is then analyzed by a
trained sleep technician and a certified sleep doctor to produce a PSG report. The hypno-
gram plays an essential role in the PSG report, where it is used to derive many important
metrics such as sleep efficiency and apnea index. Unfortunately, manually annotating this
PSG is both costly and time consuming for the doctors. Recent research has proposed to
alleviate these issues by automatically generating the hypnogram directly from the PSG
using deep neural networks [122, 123]. However, the process of obtaining a PSG report is
still costly and invasive to patients, reducing their participation, which ultimately leads to
undiagnosed sleep disorders [124].

One promising direction to reduce undiagnosed sleep disorders is to enable sleep mon-
itoring at the home using commercial wearables (e.g., Fitbit, Apple Watch, Emotiv) [125].
However, despite significant research advances, a recent study shows that wearables using
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Figure 5.2: REST Overview: (from left) When a noisy EEG signal belonging to the REM (rapid
eye movement) sleep stage enters a traditional neural network which is vulnerable to noise, it gets
wrongly classified as a Wake sleep stage. On the other hand, the same signal is correctly classified as
the REM sleep stage by the REST model which is both robust and sparse. (From right) REST is a
three step process involving (1) training the model with adversarial training, spectral regularization
and sparsity regularization (2) pruning the model and (3) re-training the compact model.

a single sensor (e.g., single lead EEG) often have lower performance for sleep staging,
indicating a large room for improvement [126].

5.1.1 Contributions

Our contributions are two-fold—(i) we identify emerging research challenges for the task of
sleep monitoring in the wild; and (ii) we propose REST, a novel framework that addresses
these issues.

I. New Research Challenges for Sleep Monitoring.

• C1. Robustness to Noise. We observe that state-of-the-art deep neural networks (DNN)
are highly susceptible to environmental noise (Fig. 5.1, top). In the case of wearables,
noise is a serious consideration since bioelectrical signal sensors (e.g., electroencephalo-
gram “EEG”, electrocardiogram “ECG”) are commonly susceptible to Gaussian and shot

noise, which can be introduced by electrical interferences (e.g., power-line) and user mo-
tions (e.g., muscle contraction, respiration) [127, 128, 129, 130]. This poses a need
for noise-tolerant models. In this paper, we show that adversarial training and spectral
regularization can impart significant noise robustness to sleep staging DNNs (see top of
Fig 5.1).

• C2. Energy and Computational Efficiency. Mobile deep learning systems have tra-
ditionally offloaded compute intensive inference to cloud servers, requiring transfer of
sensitive data and assumption of available Internet. However, this data uploading pro-
cess is difficult for many healthcare scenarios because of—(1) privacy: individuals are
often reluctant to share health information as they consider it highly sensitive; and (2)
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accessibility: real-time home monitoring is most needed in resource-poor environments
where high-speed Internet may not be reliably available. Directly deploying a neural
network to a mobile phone bypasses these issues. However, due to the constrained com-
putation and energy budget of mobile devices, these models need to be fast in speed and
parsimonious with their energy consumption.

II. Noise-robust and Efficient Sleep Monitoring. Having identified these two new re-
search challenges, we propose REST, the first framework for developing noise-robust and
efficient neural networks for home sleep monitoring (Fig. 5.2). Through REST, our major
contributions include:

• “Robust and Efficient Neural Networks for Sleep Monitoring” By integrating a novel
combination of three training objectives, REST endows a model with noise robustness
through (1) adversarial training and (2) spectral regularization; and promotes energy and
computational efficiency by enabling compression through (3) sparsity regularization.

• Extensive evaluation We benchmark the performance of REST against competitive
baselines, on two real-world sleep staging EEG datasets—Sleep-EDF from Physionet
and Sleep Heart Health Study (SHHS). We demonstrate that REST produces highly com-
pact models that substantially outperform the original full-sized models in the presence
of noise. REST models achieves a macro-F1 score of 0.67 vs. 0.39 for the state-of-
the-art model in the presence of Gaussian noise, with 19× parameter and 15×MFLOPS
reduction.

• Real-world deployment. We deploy a REST model onto a Pixel 2 smartphone through
an Android application performing sleep staging. Our experiments reveal REST achieves
17× energy reduction and 9× faster inference on a smartphone, compared to uncom-
pressed models.

5.2 Related Work

In this section we discuss related work from three areas—(1) the task of sleep stage predic-
tion, (2) robustness of deep neural networks and (3) compression of deep learning models.

5.2.1 Sleep-Stage Prediction

Sleep staging is the task of annotating a polysomnography (PSG) report into a hypnogram,
where 30 second sleep intervals are annotated into one of five sleep stages (W, N1, N2, N3,
REM). Recently, significant effort has been devoted towards automating this annotation
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process using deep learning [7, 122, 131, 132, 133, 134], to name a few. While there exists
a large body of research in this area—two works in particular look at both single channel
[122] and multi-channel [131] deep learning architectures for sleep stage prediction on
EEG. In [122], the authors develop a deep learning architecture (SLEEPNET) for sleep
stage prediction that achieves expert-level accuracy on EEG data. In [131], the authors
develop a multi-modal deep learning architecture for sleep stage prediction that achieves
state-of-the-art accuracy. As we demonstrate later in this paper (Section 5.4.5), these sleep
staging models are frequently susceptible to noise and suffer a large performance drop
in its presence (see Figure 5.1). In addition, these DNNs are often overparameterized
(Section 5.4.6), making deployment to mobile devices and wearables difficult. Through
REST, we address these limitations and develop noise robust and efficient neural networks
for edge computing.

5.2.2 Noise & Adversarial Robustness

Adversarial robustness seeks to ensure that the output of a neural network remains un-
changed under a bounded perturbation of the input; or in other words, prevent an adveresary
from maliciously perturbing the data to fool a neural network. Adversarial deep learning
was popularized by [39], where they showed it was possible to alter the class prediction of
deep neural network models by carefully crafting an adversarially perturbed input. Since
then, research suggests a strong link between adversarial robustness and noise robustness
[40, 41, 42]. In particular, [40] found that by performing adversarial training on a deep
neural network, it becomes robust to many forms of noise (e.g., Gaussian, blur, shot, etc.).
In contrast, they found that training a model on Gaussian augmented data led to models
that were less robust to adversarial perturbations. We build upon this finding of adversarial
robustness as a proxy for noise robustness and improve upon it through the use of spectral
regularization; while simultaneously compressing the model to a fraction of its original size
for mobile devices.

5.2.3 Model Compression

Model compression aims to learn a reduced representation of the weights that parameterize
a neural network; shrinking the computational requirements for memory, floating point op-
erations (FLOPS), inference time and energy. Broadly, prior art can be classified into four
directions—pruning [8], quantization [10], low rank approximation [11] and knowledge
distillation [12]. For REST, we focus on structured (channel) pruning thanks to its perfor-
mance benefits (speedup, FLOP reduction) and ease of deployment with regular hardware.
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In structured channel pruning, the idea is to assign a measure of importance to each fil-
ter of a convolutional neural network (CNN) and achieve desired sparsity by pruning the
least important ones. Prior work demonstrates several ways to estimate filter importance—
magnitude of weights [17], structured sparsity regularization [22], regularization on acti-
vation scaling factors [19], filter similarity [135] and discriminative power of filters [21].
Recently there has been an attempt to bridge the area of model compression with adver-
sarial robustness through connection pruning [136] and quantization [137]. Different from
previous work, REST aims to compress a model by pruning whole filters while impart-
ing noise tolerance through adversarial training and spectral regularization. REST can be
further compressed through quantization [137].

5.3 REST: Noise-Robust & Efficient Models

REST is a new method that simultaneously compresses a neural network while developing
both noise and adversarial robustness.

5.3.1 Overview

Our main idea is to enable REST to endow models with these properties by integrating
three careful modifications of the traditional training loss function. (1) The adversarial

training term, which builds noise robustness by training on adversarial examples (Section
5.3.2); (2) the spectral regularization term, which adds to the noise robustness by con-
straining the Lipschitz constant of the neural network (Section 5.3.3); and (3) the sparsity
regularization term that helps to identify important neurons and enables compression (Sec-
tion 5.3.4). Throughout the paper, we follow standard notation and use capital bold letters
for matrices (e.g., Ã), lower-case bold letters for vectors (e.g., Ã).

5.3.2 Adversarial Training

The goal of adversarial training is to generate noise robustness by exposing the neural net-
work to adversarially perturbed inputs during the training process. Given a neural network
f(X̃; W̃ ) with input X̃ , weights W̃ and corresponding loss function L(f(X̃; W̃ ), y), ad-
versarial training aims at solving the following min-max problem:

min
W̃

[
E

X̃,y∼D

(
max
δ∈S

L(f(X̃ + δ; W̃ ), y)

)]
(5.1)

Here D is the unperturbed dataset consisting of the clean EEG signals X̃ ∈ RKin×KL

(Kin is the number of channels and KL is the length of the signal) along with their cor-
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responding label y. The inner maximization problem in (5.1) embodies the goal of the
adversary—that is, produce adversarially perturbed inputs (i.e., X̃ + δ) that maximize the
loss function L. On the other hand, the outer minimization term aims to build robustness
by countering the adversary through minimizing the expected loss on perturbed inputs.

Maximizing the inner loss term in (5.1) is equivalent to finding the adversarial signal
X̃p = X̃ + δ that maximally alters the loss function L within some bounded perturbation
δ ∈ S. Here S is the set of allowable perturbations. Several choices exist for such an
adversary. For REST, we use the iterative Projected Gradient Descent (PGD) adversary
since it’s one of the strongest first order attacks [138]. Its operation is described below in
Equation 5.2.

X̃(t+1)
p = X̃(t)

p + Πτ

[
ε · sign

{
∇
X̃

(t)
p
L
(
f(X̃(t)

p ; W̃ ), y
)}]

(5.2)

Here X̃(0)
p = X̃ and at every step t, the previous perturbed input X̃(t−1)

p is modified
with the sign of the gradient of the loss, multiplied by ε (controls attack strength). Πτ is
a function that clips the input at the positions where it exceeds the predefined L∞ bound
τ . Finally, after niter iterations we have the REST adversarial training term Ladv in Equa-
tion 5.3.

Ladv = L(f(X̃(niter)
p ; W̃ ), y) (5.3)

5.3.3 Spectral Regularizer

The second term in the objective function is the spectral regularization term, which aims to
constrain the change in output of a neural network for some change in input. The intuition
is to suppress the amplification of noise as it passes through the successive layers of a neural
network. In this section we show that an effective way to achieve this is via constraining
the Lipschitz constant of each layer’s weights.

For a real valued function f : R → R the Lipschitz constant is a positive real value C
such that |f(x1) − f(x2)| ≤ C|x1 − x2|. If C > 1 then the change in input is magnified
through the function f . For a neural net, this can lead to input noise amplification. On the
other hand, if C < 1 then the noise amplification effect is diminished. This can have the
unintended consequence of reducing the discriminative capability of a neural net. Therefore
our goal is to set the Lipschitz constant C = 1. The Lipschitz constant for the lth fully
connected layer parameterized by the weight matrix W̃ (l) ∈ RKin×Kout is equivalent to
its spectral norm ρ(W̃ (l)) [139]. Here the spectral norm of a matrix W̃ is the square root
of the largest singular value of W̃ T W̃ . The spectral norm of a 1-D convolutional layer
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Algorithm 1: Noise Robust & Efficient Neural Network Training (REST)

Input: Model weights W̃ , EEG signal X̃ and label y from dataset D̃, spectral
regularization λo, sparsity regularization λg, learning rate α, perturbation
strength ε, maximum PGD iterations niter and model sparsity s

Output: Noise robust, compressed neural network

(1) Train the full model with REST loss LR:

for epoch = 1 to N do
for minibatch B ⊂ D do

for X̃ ∈ B do
X̃

(1)
p = X̃

for k=1 to niter do
X̃

(k+1)
p = X̃

(k)
p + Πτ (ε · sign(∇

X̃
(k)
p
L(f(X̃

(k)
p ; W̃ ), y)))

W̃grad ← E
X̃,y∼D

|OW̃LR(X̃p, y; W̃ )|

where LR =

L(f(X̃p; W̃ ), y)︸ ︷︷ ︸
adversarial training

+λo

N∑
layer l=1

‖(W̃ (l))T W̃ (l) − Ĩ‖2︸ ︷︷ ︸
spectral regularization

+λg

N∑
layer l=1

‖γ(l)‖1︸ ︷︷ ︸
sparsity regularization

W̃ ← W̃ − α · W̃grad

(2) Prune the trained model:
Globally prune filters from W̃ having smallest γ values until nf (W̃ ′)

nf (W̃ )
≤ s.

Constrain layerwise sparsity so nf (W̃ ′(l))

nf (W̃ (l))
≥ 0.1.

(3) Re-train the pruned model:
Retrain compressed network f(X̃; W̃ ′) using adversarial training and spectral
regularization (no sparsity regularization).

parameterized by the tensor W̃ (l) ∈ RKout×Kin×Kl can be realized by reshaping it to a
matrix W̃ (l) = RKout×(KinKl) and then computing the largest singular value.

A neural network of N layers can be viewed as a function f(·) composed of N sub-
functions f(x) = f1(·) ◦ f2(·) ◦ ...fN(x). A loose upper bound for the Lipschitz constant
of f is the product of Lipschitz constants of individual layers or ρ(f) ≤

∏N
i=1 ρ(fi) [139].

The overall Lipschitz constant can grow exponentially if the spectral norm of each layer
is greater than 1. On the contrary, it could go to 0 if spectral norm of each layer is be-
tween 0 and 1. Thus the ideal case arises when the spectral norm for each layer equals 1.
This can be achieved in several ways [140, 139, 141], however, one effective way is to en-
courage orthonormality in the columns of the weight matrix W̃ through the minimization
of ‖W̃ T W̃ − Ĩ‖ where Ĩ is the identity matrix. This additional loss term helps regulate
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the singular values and bring them close to 1. Thus we incorporate the following spectral
regularization term into our loss objective, where λo is a hyperparameter controlling the
strength of the spectral regularization.

LSpectral = λo

N∑
i=1

‖(W̃ (i))T W̃ (i) − Ĩ‖2 (5.4)

5.3.4 Sparsity Regularizer & REST Loss Function

The third term of the REST objective function consists of the sparsity regularizer. With this
term, we aim to learn the important filters in the neural network. Once these are determined,
the original neural network can be pruned to the desired level of sparsity.

The incoming weights for filter i in the lth fully connected (or 1-D convolutional) layer
can be specified as W

(l)

i,: ∈ RKin (or W
(l)

i,:,: ∈ RKin×KL). We introduce a per filter multi-
plicand γ(l)

i that scales the output activation of the ith neuron in layer l. By controlling the
value of this multiplicand, we realize the importance of the neuron. In particular, zeroing
it amounts to dropping the entire filter. Note that the L0 norm on the multiplicand vector
‖γ(l)‖0, where γ(l) ∈ RKout , can naturally satisfy the sparsity objective since it counts the
number of non zero entries in a vector. However since the L0 norm is a nondifferentiable
function, we use the L1 norm as a surrogate [142, 22, 19] which is amenable to backprop-
agation through its subgradient.

To realize the per filter multiplicand γ(l)
i , we leverage the per filter multiplier within the

batch normalization layer [19]. In most modern networks, a batchnorm layer immediately
follows the convolutional/linear layers and implements the following operation.

B
(l)
i =

(
Ã(l) − µ(l)

i

σ
(l)
i

)
γ

(l)
i + β

(l)
i (5.5)

Here Ã(l)
i denotes output activation of filter i in layer l while B̃(l)

i denotes its transfor-
mation through batchnorm layer l; µ(l) ∈ RKout , σ(l) ∈ RKout denote the mini-batch mean
and standard deviation for layer l’s activations; and γ(l) ∈ RKout and β(l) ∈ RKout are
learnable parameters. Our sparsity regularization is defined on γ(l) as below, where λg is a
hyperparameter controlling the strength of sparsity regularization.

LSparsity = λg

N∑
i=1

‖γ(l)‖1 (5.6)

The sparsity regularization term (5.6) promotes learning a subset of important filters
while training the model. Compression then amounts to globally pruning filters with the
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smallest value of multiplicands in (5.5) to achieve the desired model compression. Pruning
typically causes a large drop in accuracy. Once the pruned model is identified, we fine-tune
it via retraining.

Now that we have discussed each component of REST, we present the full loss function
in (5.7) and the training process in Algorithm 1. A pictorial overview of the process can be
seen in Figure 5.2.

LR = L(f(X̃p; W̃ ), y)︸ ︷︷ ︸
adversarial training

+ λo

N∑
i=1

‖(W̃ (i))T W̃ (i) − Ĩ‖2︸ ︷︷ ︸
spectral regularization

+ λg

N∑
i=1

‖γ(l)‖1︸ ︷︷ ︸
sparsity regularization

(5.7)

5.4 Experiments

We compare the efficacy of REST neural networks to four baseline models (Section 5.4.2)
on two publicly available EEG datasets—Sleep-EDF from Physionet [143] and Sleep Heart
Health Study (SHHS) [144]. Our evaluation focuses on two broad directions—noise ro-
bustness and model efficiency. Noise robustness compares the efficacy of each model
when EEG data is corrupted with three types of noise: adversarial, Gaussian and shot.
Model efficiency compares both static (e.g., model size, floating point operations) and dy-
namic measurements (e.g., inference time, energy consumption). For dynamic measure-
ments which depend on device hardware, we deploy each model to a Pixel 2 smartphone.

5.4.1 Datasets

Our evaluation uses two real-world sleep staging EEG datasets.

• Sleep-EDF: This dataset consists of data from two studies—age effect in healthy sub-
jects (SC) and Temazepam effects on sleep (ST). Following [123], we use whole-night

Table 5.1: Dataset summary outlining the number of 30 second EEG recordings belonging to each
sleep stage class.

Dataset W N1 N2 N3(N4) REM Total

Sleep-EDF 8,168 2,804 17,799 5,703 7,717 42,191
SHHS 28,854 3,377 41,246 13,409 13,179 100,065
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polysomnographic sleep recordings on 40 healthy subjects (one night per patient) from
SC. It is important to note that the SC study is conducted in the subject’s homes, not a
sleep center and hence this dataset is inherently noisy. However, the sensing environ-
ment is still relatively controlled since sleep doctors visited the patient’s home to setup
the wearable EEG sensors. After obtaining the data, the recordings are manually classi-
fied into one of eight classes (W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN);
we follow the steps in [123] and merge stages N3 and N4 into a single N3 stage and
exclude MOVEMENT and UNKNOWN stages to match the five stages of sleep accord-
ing to the American Academy of Sleep Medicine (AASM) [145]. Each single channel
EEG recording of 30 seconds corresponds to a vector of dimension 1× 3000. Similar to
[7], while scoring at time i, we include EEG recordings from times i− 3, i− 2, i− 1, i.
Thus we expand the EEG vector by concatenating the previous three time steps to create
a vector of size 1 × 12000. After pre-processing the data, our dataset consists of 42,191
EEG recordings, each described by a 12,000 length vector and assigned a sleep stage
label from Wake, N1, N2, N3 and REM using the Fpz-Cz EEG sensor (see Table 5.1
for sleep stage breakdown). Following standard practice [123], we divide the dataset on
a per-patient, whole-night basis, using 80% for training, 10% for validation, and 10%
for testing. That is, a single patient is recorded for one night and can only be in one of
the three sets (training, validation, testing). The final number of EEG recordings in their
respective splits are 34,820, 5,345 and 3,908. While the number of recordings appear to
differ from the 80-10-10 ratio, this is because the data is split over the total number of
patients, where each patient is monitored for a time period of variable length (9 hours ±
few minutes.)

• Sleep Heart Health Study (SHHS): The Sleep Heart Health Study consists of two
rounds of polysomnographic recordings (SHHS-1 and SHHS-2) sampled at 125 Hz in a
sleep center environment. Following [7], we use only the first round (SHHS-1) contain-
ing 5,793 polysomnographic records over two channels (C4-A1 and C3-A2). Recordings
are manually classified into one of six classes (W, N1, N2, N3, N4 and REM). As sug-
gested in [145], we merge N3 and N4 stages into a single N3 stage (see Table 5.1 for
sleep stage breakdown). We use 100 distinct patients randomly sampled from the origi-
nal dataset (one night per patient). Similar to [7], we look at three previous time steps in
order to score the EEG recording at the current time step. This amounts to concatenat-
ing the current EEG recording of size 1 × 3750 (equal to 125 Hz × 30 Hz) to generate
an EEG recording of size 1 × 15000. After this pre-processing, our dataset consists of
100,065 EEG recordings, each described by a 15,000 length vector and assigned a sleep
stage label from the same 5 classes using the Fpz-Cz EEG sensor. We use the same 80-
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10-10 data split as in Sleep-EDF, resulting in 79,940 EEG recordings for training, 9,999
for validation, and 10,126 for testing.

5.4.2 Model Architecture and Configurations

We use the sleep staging CNN architecture proposed by [7], since it achieves state-of-
the-art accuracy for sleep stage classification using single channel EEG. We implement
all models in PyTorch 0.4. For training and evaluation, we use a server equipped with
an Intel Xeon E5-2690 CPU, 250GB RAM and 8 Nvidia Titan Xp GPUs. Mobile device
measurements use a Pixel 2 smartphone with an Android application running Tensorflow
Lite1. With [7] as the architecture for all baselines below, we compare the following 6
configurations:

1. Sors [7]: Baseline neural network model trained on unperturbed data. This model con-
tains 12 1-D convolutional layers followed by 2 fully connected layers and achieves
state-of-the-art performance on sleep staging using single channel EEG.

2. Liu [19]: We train on unperturbed data and compress the Sors model using sparsity
regularization as proposed in [19].

3. Blanco [146]: We use same setup from Liu above. During test time, the noisy test input
is filtered using a bandpass filter with cutoff 0.5Hz-40Hz This technique is commonly
used for removing noise in EEG analysis [146].

4. Ford [40]: We train and compress the Sors model with sparsity regularization on input
data perturbed by Gaussian noise. Gaussian training parameter cg = 0.2 controls the
perturbation strength during training; identified through a line search in Section 5.4.4.

5. REST (A): Our compressed Sors model obtained through adversarial training and spar-
sity regularization. We use the hyperparameters: ε = 10, niter= 5/10 (SHHS/Sleep-EDF),
where ε is a key variable controlling the strength of adversarial perturbation during train-
ing. The optimal ε value is determined through a line search described in Section 5.4.4.

6. REST (A+S): Our compressed Sors model obtained through adversarial training, spec-
tral and sparsity regularization. We set the spectral regularization parameter λo = 3 ×
10−3 and sparsity regularization parameter λg = 10−5 based on a grid search in Sec-
tion 5.4.4.
1TensorFlow Lite: https://www.tensorflow.org/lite
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All models are trained for 30 epochs using SGD. The initial learning rate is set to 0.1
and multiplied by 0.1 at epochs 10 and 20; the weight decay is set to 0.0002. All com-
pressed models use the same compression method, consisting of weight pruning followed
by model re-training. The sparsity regularization parameter λg = 10−5 is identified through
a grid search with λo (after determining ε through a line search). Detailed analysis of the
hyperparameter selection for ε, λo and λg can be found in Section 5.4.4. Finally, we set
a high sparsity level s = 0.8 (80% neurons from the original networks were pruned) after
observation that the models are overparametrized for the task of sleep stage classification.

5.4.3 Evaluation Metrics

Noise robustness metrics To study the noise robustness of each model configuration, we
evaluate macro-F1 score in the presence of three types of noise: adversarial, Gaussian and
shot. We select macro-F1 since it is a standard metric for evaluating classification perfor-
mance in imbalanced datasets. Adversarial noise is defined at three strength levels through
ε = 2/6/12 in Equation 5.2; Gaussian noise at three levels through cg = 0.1/0.2/0.3 in
Equation 5.8; and shot noise at three levels through cs = 5000/2500/1000 in Equation 5.9.
These parameter values are chosen based on prior work [138, 41] and empirical observa-
tion. For evaluating robustness to adversarial noise, we assume the white box setting where
the attacker has access to model weights. The formulation for Gaussian and shot noise is
in Equation 5.8 and 5.9, respectively.

X̃gauss = X̃ +N(0, cg · σtrain) (5.8)

In Equation 5.8, σtrain is the standard deviation of the training data and N is the
normal distribution. The noise strength—low, medium and high—corresponds to cg =

0.1/0.2/0.3.

X̃norm =
X̃ − xmin
xmax − xmin

X̃ ′ = clip0,1

(
Poisson(X̃norm.cs)

cs

)
X̃shot = X̃ ′.(xmax − xmin) + xmin

(5.9)

In Equation 5.9, xmin, xmax denote the minimum and maximum values in the training
data; and clip0,1 is a function that projects the input to the range [0,1].

Model efficiency metrics To evaluate the efficiency of each model configuration, we use
the following measures:
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• Parameter Reduction: Memory consumed (in KB) for storing the weights of a model.

• Floating point operations (FLOPS): Number of multiply and add operations performed
by the model in one forward pass. Measurement units are Mega (106).

• Inference Time: Average time taken (in seconds) to score one night of EEG data. We
assume a night consists of 9 hours and amounts to 1,080 EEG recordings (each of 30
seconds). This is measured on a Pixel 2 smartphone.

• Energy Consumption: Average energy consumed by a model (in Joules) to score one
night of EEG data on a Pixel 2 smartphone. To measure consumed energy, we implement
an infinite inference loop over EEG recordings until the battery level drops from 100%

down to 85%. For each unit percent drop (i.e., 15 levels), we log the number of iterations
Ni performed by the model. Given that a standard Pixel 2 battery can deliver 2700 mAh
at 3.85 Volts, we use the following conversion to estimate energy consumedE (in Joules)
for a unit percent drop in battery level E = 2700

1000
× 3600 × 3.85. The total energy for

inferencing over an entire night of EEG recordings is then calculated as E
Ni
×1080 where

Ni is the number of inferences made in the unit battery drop interval. We average this for
every unit battery percentage drop from 100% to 85% (i.e., 15 intervals) to calculate the
average energy consumption

5.4.4 Hyperparameter Selection

Optimal hyper-parameter selection is crucial for obtaining good performance with both
baseline and REST models. We systematically conduct a series of line and grid searches
to determine ideal values of ε, cg, λo and λg using the validation sets.

Selecting ε This parameter controls the perturbation strength of adversarial training in
Equation 5.2. Correctly setting this parameter is critical since a small ε value will have no
effect on noise robustness, while too high a value will lead to poor benign accuracy. We
follow standard procedure and determine the optimal ε on a per-dataset basis [138], con-
ducting a line search across ε ∈ [0,30] in steps of 2. For each value of ε we measure benign
and adversarial validation macro-F1 score, where adversarial macro-F1 is an average of
three strength levels: low (ε=2), medium (ε=6) and high (ε=12). We then select the ε with
highest macro-F1 score averaged across the benign and adversarial macro-F1. Line search
results are shown in Figure 5.3; we select ε = 10 for both dataset since it’s the value with
highest average macro-F1.

Selecting cg This parameter controls the noise perturbation strength of Gaussian training
in Equation 5.8. Similar to ε, we determine cg on a per-dataset basis, conducting a line
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Figure 5.3: Line search results for ε on Sleep-EDF and SHHS datasets. We select ε=10, since it
provides the best average macro-F1 score on both datasets.

Table 5.2: Line search results for identifying optimal cg on Sleep-EDF and SHHS datasets. Macro-
F1 is abbreviated F1 in table; average macro-F1 is the mean of all macro-F1 scores. We select
cg=0.2 for both datasets as it represents a good trade-off between benign and Gaussian macro-F1.

Guassian F1

cg Benign F1 Low Med High Average F1

E
D

F 0.1 0.75 0.76 0.7 0.5 0.68
0.2 0.7 0.72 0.75 0.64 0.70
0.3 0.67 0.68 0.71 0.75 0.7025

SH
H

S 0.1 0.69 0.74 0.45 0.21 0.52
0.2 0.68 0.69 0.68 0.43 0.62
0.3 0.55 0.57 0.65 0.74 0.63

search across cg values: 0.1 (low), 0.2 (medium) and 0.3 (high). Based on results from
Table 5.2, we select cg=0.2 for both datasets since it provides the best average macro-F1
score while minimizing the drop in benign accuracy.

Selecting λo and λg These parameters determine the strength of spectral and sparsity
regularization in Equation 5.7. We determine the best value for λo and λg through a grid
search across the following parameter values λo = [0.001, 0.003, 0.005] and λg = [1E −
04, 1E − 05]. Based on results from Table 5.3, we select λo = 0.003 and λg = 1E − 05.
Since these are model dependent parameters, we calculate them once on the Sleep-EDF
dataset and re-use them for SHHS.
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Table 5.3: Grid search results for λo and λg on Sleep-EDF dataset. Macro-F1 is abbreviated as F1
in table; average macro-F1 is the mean of all macro-F1 scores. We select λo and λg with highest
average macro-F1 score.

Adversarial F1

λo λg Benign F1 Low Med High Avg. F1

0.001 1E-04 0.73 0.66 0.65 0.61 0.66
0.003 1E-04 0.72 0.64 0.63 0.59 0.65
0.005 1E-04 0.72 0.65 0.64 0.62 0.66
0.001 1E-05 0.73 0.66 0.65 0.62 0.67
0.003 1E-05 0.73 0.67 0.66 0.62 0.67
0.005 1E-05 0.73 0.64 0.64 0.62 0.66

Table 5.4: Meta Analysis: Comparison of macro-F1 scores achieved by each model. The models
are evaluated on Sleep-EDF and SHHS datasets with three types and strengths of noise corruption.
We bold the compressed model with the best performance (averaged over 3 runs) and report the
standard deviation of each model next to the macro-F1 score. REST performs better in all noise
test measurements.

Adversarial Gaussian Shot

Data Method Compress No noise Low Med High Low Med High Low Med High

Sl
ee

p-
E

D
F

Sors [7] 7 0.67 ± 0.02 0.57 ± 0.02 0.51 ± 0.04 0.19 ± 0.06 0.66 ± 0.03 0.60 ± 0.03 0.39 ± 0.08 0.58 ± 0.04 0.42 ± 0.08 0.11 ± 0.03

Liu [19] 3 0.69 ± 0.02 0.52 ± 0.07 0.41 ± 0.07 0.09 ± 0.02 0.67 ± 0.02 0.53 ± 0.02 0.28 ± 0.04 0.52 ± 0.03 0.31 ± 0.04 0.06 ± 0.01

Blanco [146] 3 0.68 ± 0.01 0.51 ± 0.06 0.40 ± 0.06 0.09 ± 0.02 0.65 ± 0.02 0.54 ± 0.04 0.31 ± 0.10 0.53 ± 0.04 0.34 ± 0.09 0.08 ± 0.02

Ford [40] 3 0.64 ± 0.01 0.59 ± 0.01 0.60 ± 0.02 0.31 ± 0.08 0.65 ± 0.01 0.67 ± 0.02 0.57 ± 0.03 0.67 ± 0.02 0.60 ± 0.02 0.10 ± 0.01

REST (A) 3 0.66 ± 0.02 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.02 0.66 ± 0.02 0.67 ± 0.01 0.66 ± 0.01 0.67 ± 0.01 0.66 ± 0.01 0.42 ± 0.06

REST (A+S) 3 0.69 ± 0.01 0.67 ± 0.02 0.66 ± 0.01 0.61 ± 0.03 0.69 ± 0.01 0.68 ± 0.01 0.67 ± 0.02 0.68 ± 0.01 0.67 ± 0.02 0.42 ± 0.08

SH
H

S

Sors [7] 7 0.78 ± 0.01 0.62 ± 0.03 0.46 ± 0.03 0.33 ± 0.00 0.64 ± 0.03 0.43 ± 0.02 0.35 ± 0.04 0.69 ± 0.02 0.59 ± 0.03 0.45 ± 0.01

Liu [19] 3 0.77 ± 0.01 0.61 ± 0.02 0.49 ± 0.04 0.34 ± 0.03 0.66 ± 0.05 0.45 ± 0.05 0.34 ± 0.04 0.70 ± 0.04 0.62 ± 0.04 0.47 ± 0.05

Blanco [146] 3 0.77 ± 0.01 0.60 ± 0.03 0.47 ± 0.04 0.33 ± 0.02 0.64 ± 0.07 0.43 ± 0.05 0.34 ± 0.04 0.67 ± 0.06 0.59 ± 0.05 0.46 ± 0.04

Ford [40] 3 0.62 ± 0.02 0.59 ± 0.01 0.62 ± 0.00 0.59 ± 0.05 0.66 ± 0.00 0.75 ± 0.04 0.47 ± 0.10 0.65 ± 0.00 0.68 ± 0.01 0.74 ± 0.04

REST (A) 3 0.70 ± 0.01 0.68 ± 0.00 0.70 ± 0.01 0.67 ± 0.01 0.72 ± 0.01 0.76 ± 0.01 0.58 ± 0.03 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01

REST (A+S) 3 0.72 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.69 ± 0.02 0.74 ± 0.01 0.77 ± 0.01 0.62 ± 0.03 0.73 ± 0.01 0.75 ± 0.01 0.78 ± 0.00

5.4.5 Noise Robustness

To evaluate noise robustness, we ask the following questions—(1) what is the impact of
REST on model accuracy with and without noise in the data? and (2) how does REST
training compare to baseline methods of benign training, Gaussian training and noise fil-
tering? In answering these questions, we analyze noise robustness of models at three
scales: (i) meta-level macro-F1 scores; (ii) meso-level confusion matrix heatmaps; and
(iii) granular-level single-patient hypnograms.

I. Meta analysis: Macro-F1 Scores In Table 5.4, we present a high-level overview of
model performance through macro-F1 scores on three types and strength levels of noise
corruption. The Macro-F1 scores and standard deviation are reported by averaging over
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three runs for each model and noise level. We identify multiple key insights as described
below:

1. REST Outperforms Across All Types of Noise As demonstrated by the higher macro-
F1 scores, REST outperforms all baseline methods in the presence of noise. In addition,
REST has a low standard deviation, indicating model performance is not dependent on
weight initialization.

2. Spectral Regularization Improves Performance REST (A+S) consistently improves
upon REST (A), indicating the usefulness of spectral regularization towards enhancing
noise robustness by constraining the Lipschitz constant.

3. SHHS Performance Better Than Sleep-EDF Performance is generally better on the
SHHS dataset compared to Sleep-EDF. One possible explanation is due to the SHHS
dataset being less noisy in comparison to the Sleep-EDF dataset. This stems from the
fact that the SHHS study was performed in the hospital setting while Sleep-EDF was
undertaken in the home setting.

4. Benign & Adversarial Accuracy Trade-off Contrary to the traditional trade-off be-
tween benign and adversarial accuracy, REST performance matches Liu in the no noise
setting on sleep-EDF. This is likely attributable to the noise in the Sleep-EDF dataset,
which was collected in the home setting. On the SHHS dataset, the Liu model out-
performs REST in the no noise setting, where data is captured in the less noise prone
hospital setting. Due to this, REST models are best positioned for use in noisy en-
vironments (e.g., at home); while traditional models are more effective in controlled
environments (e.g., sleep labs).

II. Meso Analysis: Per-class Performance We visualize and identify class-wise trends
using confusion matrix heatmaps (Fig. 5.4). Each confusion matrix describes a model’s
performance for a given level of noise (or no noise). A model that is performing well should
have a dark diagonal and light off-diagonal. We normalize the rows of each confusion
matrix to accurately represent class predictions in an imbalanced dataset. When a matrix
diagonal has a value of 1 (dark blue, or dark green) the model predicts every example
correctly; the opposite occurs at 0 (white). Analyzing Figure 5.4, we identify the following
key insights:

1. REST Performs Well Across All Classes REST accurately predicts each sleep stage
(W, N1, N2, N3, REM) across multiple types of noise (Fig. 5.4, bottom 3 rows), as
evidenced by the dark diagonal. In comparison, each baseline method has considerable
performance degradation (light diagonal) in the presence of noise. This is particularly
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Figure 5.4: Meso Analysis: Class-wise comparison of model predictions. The models are evaluated
over the SHHS test set perturbed with different noise types. In each confusion matrix, rows are
ground-truth classes while columns are predicted classes. The intensity of a cell is obtained by
normalizing the score with respect to the class membership. When a cell has a value of 1 (dark
blue, or dark green) the model predicts every example correctly, the opposite occurs at 0 (white).
A model that is performing well would have a dark diagonal and light off-diagonal. REST has the
darkest cells along the diagonal on both datasets.

evident on the Sleep-EDF dataset (left half) where data is collected in the noisier home
environment.

2. N1 Class Difficult to Predict When no noise is present (Fig. 5.4, top row), each method
performs well as evidenced by the dark diagonal, except on the N1 sleep stage class.
This performance drop is likely due to the limited number of N1 examples in the datasets
(see Table 5.1).

3. Increased Misclassification Towards “Wake” Class On the Sleep-EDF dataset, shot
and adversarial noise cause the baseline models to mispredict classes as Wake. One
possible explanation is that the models misinterpret the additive noise as evidence for
the wake class which has characteristically large fluctuations.

III. Granular Analysis: Single-patient Hypnograms We want to more deeply understand
how our REST models counteract noise at the hypnogram level. Therefore, we select a
test set patient from the SHHS dataset, and generate and visualize the patient’s overnight
hypnograms using the Sors and REST models on three levels of Gaussian noise corruption
(Figure 5.5). Each of these hypnograms is compared to a trained technicians hypnogram
(expert scored in Fig. 5.5), representing the ground-truth. We inspect a few more test set
patients using the above approach, and identify multiple key representative insights:
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1. Noisy Environments Require Robust Models As data noise increases, Sors perfor-
mance degrades. This begins at the low noise level, further accelerates in the medium
level and reaches nearly zero at the high level. In contrast, REST effectively handles all
levels of noise, generating an accurate hypnogram at even the highest level.

2. Low Noise Environments Give Good Performance In the no noise setting (top row)
both the Sors and REST models generate accurate hypnograms, closely matching the
contours of expert scoring (bottom).

5.4.6 Model Efficiency

We measure model efficiency along two dimensions—(1) static metrics: amount of mem-
ory required to store weights in memory and FLOPS; and (2) dynamic metrics: inference
time and energy consumption. For dynamic measurements that depend on device hardware,
we deploy each model to a Pixel 2 smartphone.

Analyzing Static Metrics: Memory & Flops Table 5.5 describes the size (in KB) and
computational requirements (in MFlops) of each model. We identify the following key
insights:

1. REST Models Require Fewest FLOPS On both datasets, REST requires the least
number of FLOPS.

2. REST Models are Small REST models are also smaller (or comparable) to baseline

Expert
Scored

No Noise

Low Noise
(Gaussian)

(Gaussian)
Med Noise

(Gaussian)
High Noise

Rest(A+S) ModelState-of-the-Art Model

W
N1
N2
N3

REM

0 200 400 600 800 1000

Our approach is accurate across
all levels of environmental noise

Performance degrades with
increasing environmental noise

Time

Figure 5.5: Granular Analysis: Comparison of the overnight hypnograms obtained for a patient in
the SHHS test set. The hypnograms are generated using the Sors (left) and REST (right) models
in the presence of increasing strengths of Gaussian noise. When no noise is present (top row), both
models perform well, closely matching the ground truth (bottom row). However, with increasing
noise, Sors performance rapidly degrades, while REST continues to generate accurate hypnograms.
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Figure 5.6: Time and energy consumption for scoring a single night of EEG recordings.
REST(A+S) is significantly faster and more energy efficient than the state-of-the-art Sors model.
Evaluations were done on a Pixel 2 smartphone.

Table 5.5: Comparison on model size and the FLOPS required to score a single night of EEG
recordings. REST models are significantly smaller and comparable in size/compute to baselines.

Data Model Size (KB) MFlops

Sl
ee

p-
E

D
F

Sors [7] 8,896 1451
Liu [19] 440 127
Blanco [146] 440 127
Ford [40] 448 144
REST (A) 464 98
REST (A+S) 449 94

SH
H

S

Sors [7] 8,996 1815
Liu [19] 464 211
Blanco [146] 464 211
Ford [40] 478 170
REST (A) 476 160
REST (A+S) 496 142

compressed models while achieving significantly better noise robustness.

3. Model Efficiency and Noise Robustness Combining the insights from Section 5.4.5
and the above, we observe that REST models have significantly better noise robustness
while maintaining a competitive memory footprint. This suggests that robustness is
more dependent on the the training process, rather than model capacity.

Analyzing Dynamic Metrics: Inference Time & Energy In Figure 5.6, we benchmark
the inference time and energy consumption of a Sors and REST model deployed on a Pixel
2 smartphone using Tensorflow Lite. We identify the following insights:

72



1. REST Models Run Faster When deployed, REST runs 9× and 6× faster than the
uncompressed model on the two datasets.

2. REST Models are Energy Efficient REST models also consume 17× and 9× less
energy than an uncompressed model on the Sleep-EDF and SHHS datasets, respectively.

3. Enabling Sleep Staging for Edge Computing The above benefits demonstrate that
model compression effectively translates into faster inference and a reduction in energy
consumption. These benefits are crucial for deploying on the edge.

5.5 Conclusion

We identified two key challenges in developing deep neural networks for sleep monitoring
in the home environment—robustness to noise and efficiency. We proposed to solve these
challenges through REST—a new method that simultaneously tackles both issues. For the
sleep staging task over electroencephalogram (EEG), REST trains models that achieve up
to 19× parameter reduction and 15×MFLOPS reduction with an increase of up to 0.36 in
macro-F-1 score in the presence of noise. By deploying these models to a smartphone, we
demonstrate that REST achieves up to 17× energy reduction and 9× faster inference.
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CHAPTER 6
HAR:HARDNESS AWARE REWEIGHTING FOR IMBALANCED DATASETS

Class imbalance is a significant issue that causes neural networks to underfit to the rare
classes. Traditional mitigation strategies include loss reshaping and data resampling which
amount to increasing the loss contribution of minority classes and decreasing the loss con-
tributed by the majority ones. However, by treating each example within a class equally,
these methods lead to undesirable scenarios where hard-to-classify examples from the ma-
jority classes are down-weighted and easy-to-classify examples from the minority classes
are up-weighted. We propose the Hardness Aware Reweighting (HAR) framework, which
circumvents this issue by increasing the loss contribution of hard examples from both the
majority and minority classes. This is achieved by augmenting a neural network with inter-
mediate classifier branches to enable early-exiting during training. Experimental results on
large-scale datasets demonstrate that HAR consistently improves state-of-the-art accuracy
while saving up to 20% of inference FLOPS.

6.1 Introduction

Class imbalance is a ubiquitous phenomenon commonly observed in naturally occurring
data distributions [147, 148, 1]. However, despite it’s ubiquity, popular datasets (e.g.,
CIFAR-10/100 [77], ImageNet [149]) are often artificially balanced leading to a mismatch
between reality and practice. Realizing this mismatch, recent research aims to account
for class imbalance by evolving the traditional datasets to their long-tailed (LT) versions,
e.g., CIFAR LT [43], ImageNet LT [59]. Here, a long tail signifies that the majority of the
classes constitute only a minority of the overall data and vice versa. Our work focuses on
training accurate neural networks on datasets exhibiting a long-tail class imbalance.

Overcoming a long tail imbalance is hard, since most classifiers tend to favor the
majority classes that constitute the bulk of the training set [147, 150]. This is espe-
cially true for convolutional neural networks (CNNs), which are known to suffer under
class imbalance [57]. An effective mitigating strategy is loss reweighting, which fol-
lows the simple rule: increase the loss contributed by the minority classes, and decrease

the loss contributed by the majority ones. This idea is realized in popular reweighting
methods, such as class reweighting based on inverse frequency [151, 152], inverse-square-
root frequency [153] and the effective number of samples [43]. These methods, however,
uniformly reweight all examples within each class, leading to the undesirable scenario
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Figure 6.1: Hardness Aware Reweighting (HAR) framework augments a backbone network with
auxiliary classifier branches. During training, an example accumulates loss at each branch, until
either (a) it is confidently and correctly classified at a branch, or (b) it reaches the end. A harder
example exits later in the network and accumulate higher overall loss.

wherein hard-to-classify examples from the majority classes are downweighted, and easy-
to-classify examples from the minority classes are upweighted. This is undesirable because
hard examples are known to provide stronger learning signals [154, 155] and should avoid
being downweighted.

One way to avoid the above scenario is to develop a more fine-grained, instance-
specific reweighting strategy. This is the motivation behind recent methods that use meta-
learning [46, 47] and domain-adaptation [48]. However, these methods do not encode the
key notion of example hardness, which means that hard examples are still susceptible to be-
ing downweighted, causing their learning signals to be diminished [154, 155]. On the other
end, classical hardness-aware methods such as ADASYN [51] and SMOTEBoost [156] do
not scale to modern CNNs [57]. This presents a need for developing a hardness-aware,
instance-specific reweighting strategy suitable for training deep neural networks.

We propose the Hardness Aware Reweighting (HAR) framework that incorporates the
notion of example hardness during training. HAR is premised around the idea of increasing
the loss contribution of hard examples in both the majority and minority classes. It aug-
ments a backbone neural network with auxiliary classifier branches (illustrated in Fig. 6.1)
which enable the backbone to learn a notion of hardness by conditionally exiting easy-to-
classify examples during training. Once an example exits, it no longer incurs additional
loss. A natural outcome of this process is that harder examples exit towards the end and
accumulate a higher overall loss, thus realizing HAR’s goal.

75



6.1.1 Our Contributions

1. Example Hardness as Key to Unlock Generalization. We contribute the key idea that
accounting for example hardness during class reweighting can improve accuracy of modern
CNNs trained under long-tail class imbalance. (Sec. 6.3.1)

2. HAR: General Framework to Endow Hardness Awareness. Our proposed HAR
framework is a general approach to endow any loss function with hardness awareness and
offers three benefits:

1. State-of-the-art Accuracy. By increasing the loss contribution of hard examples, HAR
shifts the focus of learning to harder examples, leading to state-of-the-art accuracies on
standard, large-scale imbalanced benchmark datasets, such as ImageNet LT [59] and
iNaturalist ’18 [157]. (Sec. 6.4.4)

2. Compute Savings. HAR enables dynamic inference wherein the inference cost of a
model can be varied in realtime. The blue dots (•) in the Fig. 6.2 plots a HAR model’s
accuracies at eight different compute budgets. The curve formed envelopes all other
approaches, showing that HAR enables inference FLOPS savings while still achieving
state-of-the-art accuracy. (Sec. 6.3.3)

3. Plug-and-play Support for Existing Loss functions. HAR can endow any loss func-
tions with hardness awareness by using it at the auxiliary branches. We observe large
accuracy improvements when using the weighted cross-entropy [43] or the weighted
LDAM loss [58] at the exits. (Sec. 6.3.2)

3. Extensive Evaluation on Large-scale Datasets. We comprehensively evaluate HAR
using modern CNNs by training them on four standard imbalanced benchmarks, including
the large-scale ImageNet LT [59] and iNaturalist ’18 [157] datasets. Additionally, we ablate
on the different modelling choices of HAR to uncover why and how it leads to a higher
accuracy with compute savings. (Sec. 6.4.6)

Conceptually, HAR shares its motivation with the seminal work of focal loss [45] which
is the first to demonstrate the benefit of enabling hardness awareness in the class imbalance
setting. There are however two major differences: (1) focal loss uses prediction confidence
as a measure of hardness, while HAR uses the idea of early exiting. This couples focal loss
to cross entropy, whereas HAR can work with many loss types; (2) unlike HAR, focal loss
cannot save compute on easy examples, as early-exiting is not an option. Our experiments
in Sec. 6.4 show that a model trained with HAR significantly outperforms a model trained
with focal loss.
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Figure 6.2: The HAR framework leads to higher top-1 accuracies while saving compute, for a
ResNet-50 model trained on the ImageNet LT dataset. Additionally, HAR supports dynamic infer-
ence that offers a favorable top-1 accuracy vs. efficiency trade-off under different compute budgets
(shown as blue dots •). In contrast, traditional methods lead to static models with fixed compute
costs during inference.

6.2 Related Research

We summarize related works from three relevant areas: class imbalance, hardness aware
learning, and multi-branch neural networks.

6.2.1 Overcoming class imbalance

The techniques for overcoming class imbalance techniques fall into the following three
categories.

Loss rebalancing: These methods reweight the loss contribution of each example such
that the loss for minority classes is upweighted, while that of the majority classes is down-
weighted. The weighting scheme itself can be uniform across all the examples within a
class [43, 44] or can be more fine-grained i.e., specific to each example in consideration
[45, 46, 47, 48]. The uniform reweighting techniques include reweighting based on inverse
class frequency [43, 44] or based on the effective number of samples in each class [43].
On the other hand, fine-grained approaches include Focal loss [45], which reweights based
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on sample hardness or recent studies [46, 47, 48] that employ meta-learning to perform
sample reweighting.

Data resampling: These methods either repeatedly sample examples from the minority
class (over-sampling) [49, 50, 51, 52] or discard samples from the majority class (under-
sampling) [53, 54, 55, 56]. Popular strategies include SMOTE that over-samples the mi-
nority class through linear interpolation [49]; or [53] that under-samples the majority class
by clustering and replacing the majority class examples by a few anchor points. With
neural networks, over-sampling generally creates redundancy and risks over-fitting to the
rare classes, while, under-sampling is susceptible to losing information from the majority
classes [57].

Training strategies: These methods modify the training procedure to mitigate the problem
of class imbalance. For instance, LDAM [58], introduces a delayed reweighting scheme
wherein, class reweighting is applied after a few epochs of training. Kang et al. [59] show
improvement through a two-step training process which decouples representation and clas-
sifier learning. Recently, BBN [60] show that gradually shifting emphasis from class sam-
pling to reverse sampling helps improve accuracy.

HAR is complementary to the above three directions in that it introduces a hardness aware
learning framework that readily works with many existing loss reweighting and training
strategies to further improve accuracy on imbalanced datasets.

6.2.2 Hardness aware learning methods

The concept of example hardness is central to a variety of successful learning techniques
including those from curriculum learning [158, 159] (which deals with ordering the training
set in increasing order of hardness), hard negative mining [160, 154, 45] (which deals
with identifying false positive samples in order to improve classification performance) and
reinforcement learning [161, 162] (which deals with ordering tasks from easy to hard in
order to aid an agent’s learning). The underlying assumption in these methods is that
“harder examples” contribute a stronger learning signal and are more informative than their
“easier” counterparts [154, 155]. To this end, example hardness can be defined in multiple
ways. For example, OHEM [160] uses absolute loss as an indicator of hardness; focal
loss [45] uses the prediction-confidence of true class probability as a measure of hardness;
Hacohen et. al.[159] use the prediction-confidence of a pre-trained teacher model as the
measure of hardness. Differing from these, HAR uses a more general hardness measure
which embodies the intuition that easy examples are those which can be confidently and
correctly predicted using coarse-features from earlier layers of a neural network. This
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enables HAR to impart hardness awareness to many existing loss functions.

6.2.3 Multi-branch neural networks

Research in this area aims to endow a neural network with auxiliary classifier branches
(or early-exits) that allow for obtaining predictions from intermediate locations along the
backbone DNN. This leads to advantages such as, saving inference time compute [30, 31,
32]; mitigating the vanishing gradient problem as in Inception networks [33]; while also
affording a natural application to computing paradigms such as fog computing and 5G [34,
35]. The important research challenges for multi-branch DNNs (see review paper [36])
stem from questions such as: where to place the early-exits, what criterion to use for early-
exiting and how to define the training objective. Many works place the early-exits after
each block of layers which enables large savings of inference FLOPS [30, 31, 32]. The exit
criteria range from early-exiting based on low entropy predictions as in BranchyNet [37]
to early exiting based on prediction confidence as in MSDNet [30]. Training objectives
include ones that distill knowledge from later exits to earlier ones [31, 38] or ensemble
predictions from multiple branches to improve adversarial robustness [32]. To the best of
our knowledge, HAR is the first to use multi-branch DNNs to enable hardness-aware loss
reweighting for long-tailed imbalance. Our experiments show this leads to large accuracy
improvement in the presence of class imbalance.

6.3 Methodology

6.3.1 Why care about hardness?

We hypothesize that within both the majority and minority classes some examples are easier
to classify than others. Consequently, not every example in the minority class needs to
be equally upweighted; and not every example in the majority class needs to be equally
downweighted. In order to verify this hypothesis, we train a ResNet-32 model on CIFAR-
10 LT (using vanilla cross entropy) and determine: What proportion of the rarest class
examples obtain a high confidence prediction (≥ 0.9) and what proportion of the majority
class examples obtain a low confidence prediction (≤0.1). Fig. 6.3 plots outcome of this
experiment.

As expected, many examples from the minority class are classified with low confidence
while many examples from the majority class are predicted with near certainty. However,
confirming our hypothesis, a considerable proportion of the majority class examples obtain
a low confidence prediction and vice versa. It is precisely this subset of examples—low
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Figure 6.3: Observe that a considerable proportion of the majority class examples predicted by a
ResNet-32 trained on CIFAR-10 LT using cross entropy, obtain a low confidence prediction and
vice versa. It is precisely this subset of examples—low confidence majority and high confidence
minority—that HAR impacts the most. Particularly, HAR increases the loss contribution of low
confidence majority examples while retaining the original loss contribution for high confidence
minority.

confidence majority and high confidence minority—that HAR impacts the most. In par-
ticular, HAR increases the loss contribution of low confidence majority examples while
retaining the original loss contribution for high confidence minority examples thereby en-
abling a fine-grained, hardness aware approach to loss reweighting.

Problem Setup. Denote a multi-exit neural network by f : XXX → zzz that maps an input
example XXX ∈ Rh×w×3 to a list of prediction vectors zzz = [zzz(1), ..., zzz(k)] where the vector
zzz(k) ∈ Rc specifies the prediction confidence over c classes at the kth exit. Assuming the
weights θθθ(k) parameterize f up to exit k, then we have zzz(k) = f(XXX;θθθ(k)) as the output at
the kth exit. The supervised learning task specifies training f on a training dataset D =

{(XXX1, y1), ..., (XXXn, yn)} containing c classes. If nj denotes the number of training examples
in class j, then a long tail dataset satisfies ni > nj,∀i < j and n1 >> nc. Typically, post
training, f is evaluated on a balanced test set D′ which satisfies n′i = n′j,∀i, j. The goal of
imbalanced classification is to maximize an evaluation metric such as top-1 accuracy onD′

while learning a classifier on D.

6.3.2 Training a multi-branch DNN with HAR

Preliminaries

Training algorithms for multi-branch neural networks come in many shapes and forms. The
most popular ones [163, 164, 37, 30, 32] train all branches simultaneously by defining a
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single training objective that incorporates the predictions from all intermediate branches.
One way to accomplish this [163, 37, 30] is to define the aggregated loss as a weighted sum
of the loss computed at each exit

Lmulti−exit(zzzi, yi) =
K∑
k=1

αkL(zzz
(k)
i , yi), (6.1)

where zzzi = [zzz
(1)
i ; ..., zzz

(K)
i ] is the list of predictions from K branches, αkare positive con-

stants, and L is a classification loss such as the cross-entropy. Another strategy [164] is to
first combine the prediction vectors at each branch

ẑzzi =
K∑
k=1

αkzzz
(k)
i , (6.2)

and then obtain the training loss as Lmulti−exit(zzzi, yi) = L(ẑzz, yi). Among these two ap-
proaches, HAR’s training objective is inspired from the former (i.e., Eq. 6.1).

General HAR loss

The goal of the HAR training objective is to up weight the loss contribution of hard exam-
ples. To this end, we modify Eq. (6.1) in two ways. First, we simplify the hyperparameter
design space by setting αk = 1 (thus weighing all branches equally). Second, we introduce
conditional aggregation into the summation term on the right hand side with the general
idea: to aggregate the loss up until the first exit where the neural network correctly and
confidently predicts the class of an input example. This objective is defined as

LHAR(zzzi, yi) =
∑

k∈[1,...,ki]

L
(
zzz

(k)
i , yi

)
,

where ki = argmin
j∈{1,2,...,K}

(
g

(j)
i > 0

)
.

(6.3)

Here g(j)
i defines the early exiting criterion for example i at exit j and is defined as below

g
(j)
i =

{
1, if argmax(zzz

(j)
i ) = yi and zzz(j)

i [yi] > t

0, otherwise
(6.4)

The sum in Eq.(6.3) means that an exampleXXX i accumulates an exit loss L
(
zzz

(k)
i , yi

)
up to

the first exit ki where it exits by satisfying the exit criterion of Eq. (6.4). Further, the exit
criterion of Eq. (6.4) is satisfied (i.e., outputs a 1) only when the prediction at exit k is both:
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correct (i.e., argmax(zzz
(j)
i ) = yi) and confident (i.e., zzz(j)

i [yi] > t). Thus viewed together,
Eqs. (6.3) and (6.4) ensure that hard examples exit later by virtue of which, encumber a
larger loss.

Instantiating the HAR loss

The HAR training objective of Eq.(6.3) is agnostic to the exact instantiation of L at branch
k. In particular, L can be any loss function useful for class imbalance, including: weighted
cross-entropy [43], Focal loss [45], LDAM loss [58] or any combination thereof. We con-
duct experiments with both weighted cross entropy and the recently proposed LDAM loss
as the exit loss type.

When using the class weighted cross-entropy at each exit, the HAR training objective
is described as follows

LCEHAR(zzzi, yi) =
∑

k∈[1,...,ki]

wwwyilog

(
exp(zzz

(k)
i [yi])∑C

j=1 exp(zzz
(k)
i [j])

)
, (6.5)

where wwwyi refers to the class specific weight, which according to prior work, can be set
based on the inverse class frequency [151, 152], inverse square root frequency [165, 153]
or the effective weighting [43] strategies. This work leverages the weighting strategy from
[43] which sets wwwc = 1−β

1−βnc , where nc is the number of samples in class c and β is a
hyperparameter with typical values in {0.999, 0.9999}.

When using LDAM [58] at each exit, the HAR loss is described as

LLDAMHAR (zzzi, yi) =
∑

k∈[1,...,ki]

wwwyilog
(
ppp

(k)
i

)
where, ppp(k)

i =
exp(zzz

(k)
i [yi]−4yi)

exp(zzz
(k)
i [yi]−4yi) +

∑
j 6=yi exp(zzz

(k)
i [j])

and4yi =
C

nyi

(6.6)

The quantity4yi defines a per-class margin that ensures rare classes get a larger margin. It
is determined by a hyperparameter C and the number of examples nyi in class yi. Follow-
ing [58], we select C such that the largest margin for any class is 0.5.

Outcome of training with the HAR loss

The intended goal of HAR loss is to increase the loss contribution of hard examples. This
is formally stated in the following property.
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Figure 6.4: On multiple models (ResNet-32/50) and datasets (CIFAR LT/ImageNet LT) we ob-
serve that examples exiting later indeed contribute a higher average loss per sample. This figure
empirically validates Property 1.

Property 1 (Increasing Loss Property) For a multi-exit neural network f , ifDk denotes the

set of examples exiting at exit k then, ∀i < j, E(zzzm,ym)∈Di
[LHAR(zzzm, ym)]<E(zzzm,ym)∈Dj

[LHAR(zzzm, ym)].

The above property simply states that the average training loss for examples exiting at exit
i, monotonically increases across exits. This enables the neural network to focus on harder
examples (which contribute a higher expected loss) from both the minority and majority
classes. To empirically validate this property, in Fig. 6.4, we plot the average training loss
contributed by examples exiting at each auxiliary branch for ResNet-32 and ResNet-50
models trained with LCEHAR in Eq. 6.5, on the CIFAR-10/100 and ImageNet LT datasets.
The increasing trend of average loss across exits indeed validates that examples exiting
later do contribute a higher loss.

6.3.3 Inference in multi-branch neural networks

Preliminaries

During inference, the outputs of a multi-branch DNN can be aggregated into a single pre-
diction vector in several ways. The popular choices include (1) Inception networks [33]
which discard the branch predictions and use only the backbone output as the overall pre-
diction, (2) Hu et al. [32] which uses the mean of all branch outputs as the overall prediction
or (3) MSDNet [30] which selects a branch based on prediction confidence, whose output is
chosen as the overall prediction. With HAR, a model can support two modes of inference
corresponding to choices (1) and (3) above. We term (1) as the static mode and (3) as the
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dynamic mode. The next subsection dives deeper into the dynamic mode.

Dynamic inference with HAR

Similar to MSDNet [30], HAR selects a branch (based on prediction confidence), who’s
output is designated as the network prediction. More formally, given the multi-branch
prediction zzzi = [zzz

(1)
i , ..., zzz

(K)
i ] for an inputXXX i, the overall prediction ẑzzi of the network is

ẑzzi = zzz
(ki)
i , where ki = argmin

j∈{1,...,K}

(
h

(j)
i > 0

)
, (6.7)

where h(j)
i is the prediction confidence for example i at exit j

h
(j)
i =

{
1, if argmax(zzz

(j)
i ) > s

0, otherwise
(6.8)

Intuitively, Eq. 6.7 specifies the overall network prediction as the output of the earliest
exit where the exit-criterion of Eq. 6.8 is satisfied. Further, the exit criterion of Eq. 6.8
is satisfied when the prediction confidence (returned by the argmax) exceeds a predefined
threshold s. Thus, the dynamicity during inference arises out of varying the value of s
which affects the exit criterion in the following way: a lower value of s leads to a relaxed
version of hardness, and thus more early exiting. Or in other words, s is a control knob for
dynamically controlling the inference FLOPS of a network.

6.4 Experiments

In this section, we begin by discussing the experimental setup including: (i) datasets, (ii)
evaluation metrics (iii) backbone models and training hyperparameters, (iv) training con-
figurations, and (v) hyperparameter search. Following this, we answer the following three
questions:

1. Does HAR benefit in both modes of inference? (Sec. 6.4.3)

2. How does HAR compare to the state of the art? (Sec. 6.4.4)

3. What is the class-composition of early exiting examples in the dynamic mode? (Sec. 6.4.5)

Finally, we end the section with an ablation study on different modelling choices of HAR
(Sec. 6.4.6).

84



6.4.1 Experimental Setup

Datasets. We conduct our evaluation on four long-tailed datasets: CIFAR-10 LT, CIFAR-
100 LT [43], ImageNet LT [148] and iNaturalist’18 [157]. For the first three datasets
(CIFAR LT & ImageNet LT), the training split is obtained by sub-sampling from their
balanced versions. In case of the CIFAR LT datasets, we consider three levels of imbal-
ance, 10×, 50× and 100×, which is defined as the ratio between the number of samples
in the largest and the smallest classes. The ImageNet LT training split consists of 115.8k
images from 1,000 classes with largest and smallest classes containing 1,280 and 5 im-
ages respectively. The iNaturalist’18 dataset is a naturally imbalanced dataset containing
437,513 training images from 8,142 species of plants and animals. For the ImageNet LT
and iNaturalist datasets, similar to [59] we present results on the many-shot (classes con-
taining ¿100 examples), medium-shot (classes containing 20-100 examples), and few-shot

(classes containing ¡20 examples) splits. Please refer to Appendix A for additional details
on the dataset construction.

Evaluation Metrics. We follow the same evaluation setting as recent methods [43, 58,
59, 60]. For all datasets, the training split is imbalanced (See appendex B.1) while the
validation and test splits are balanced. The top1 accuracy on the test split serves as the
common metric of comparison across all datasets.

Backbone models & training configurations. We consider several models from the
ResNet and DenseNet families. To obtain an augmented HAR model, we attach auxil-
iary classifier branches before each residual/dense block (see Appendix B for details). On
CIFAR datasets, we train the augmented ResNet-32 models for 200 epochs using SGD with
an initial learning rate of 0.1 decreased by 0.01 at epochs 160 and 180 [58, 43]. The weight
decay is 2× 10−4. On ImageNet LT and iNaturalist’18 we train the augmented ResNet-50
and DenseNet-169 models for 100 epochs using SGD with an initial learning rate of 0.1
decreased by 0.1 at epochs 60 and 80. The weight decay is 2 × 10−4. Similar to [43, 58],
all models use a linear warm-up schedule for the first 5 epochs to avoid initial over-fitting.

Implementation. HAR is constructed from three key components—(1) an exit loss func-
tion, (2) a class reweighting strategy, and (3) a reweighting schedule. For the exit loss,
we consider two variations with HAR—at each exit we use either cross entropy loss (CE)
or label distribution aware margin loss (LDAM) [58]. These are referred to as HAR(CE)

and HAR(LDAM). For class reweighting, we weight each example of class c according to
it’s effective number 1−β

1−βnc , where nc is the number of images in class c [43]. Finally, for
the reweighting schedule we use the per-dataset delayed reweighting (DRW) scheme in-
troduced in [58]. All experiments are conducted on a system with four V100 GPUs and
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512GB of RAM.

Baselines. To measure the performance of HAR, we compare against three strong base-
lines: CE [43], Focal [45] and LDAM [58], each reusing the same class reweighting and
delayed reweighting schedule discussed above. For Focal loss we set γ = 0.5 [45], and for
LDAM we set C such that the maximum margin is 0.5 [58].

6.4.2 Hyperparameter Search for HAR

HAR introduces two hyperparameters—training and inference exit thresholds t, s in Eq. (6.4),(6.8)
respectively. Parameter t controls the number of early exiting examples during training.
Smaller values result in many examples exiting early leading to a more relaxed definition of
example hardness. Parameter s, is a control knob for varying the computational cost during
inference. We determine s directly on the test split depending on the desired FLOPS sav-
ing, while the optimal value of t is determined through a line search on the validation split.
Tab. 6.1 presents the top-1 accuracy on the three (many/med/few shot) splits of ImageNet
LT, reached by a ResNet-50 model trained using different values of t.

Selecting t for HAR(CE) For exit loss type cross entropy, we consider a line search in
[0.75,0.95] in steps of 0.05. Tab. 6.1a shows the top-1 accuracy peaks when t = 0.9.

Selecting t for HAR(LDAM) For exit loss type LDAM [58], we consider a line search in
[1.7/—c—, 2.1/—c—] in steps of 0.1/—c— where —c— is the number of classes in the
dataset. Tab. 6.1b shows the top-1 accuracy peaks when t = 2.0/1k.

We reuse the above hyperparameters: t=0.9 for HAR(CE), and t = 2.0/|c| for HAR(LDAM);
on all datasets.

Table 6.1: Line search for inference threshold t in HAR. We observe a clear trend wherein the
top-1 validation accuracy (of a ResNet-50 trained on ImageNet LT) increases with larger t until a
certain point after which it falls. The column with the optimal value of t is highlighted in gray.

t 0.75 0.8 0.85 0.9 0.95

Many 60.2 60.8 61.1 62.4 62.6
Med 44.6 45.0 45.6 47.3 46.1
Few 25.3 26.0 26.4 28.5 28.1
All 48.0 48.5 48.9 50.5 50.0

(a) Identifying t for HAR(CE)

t 1.7/1k 1.8/1k 1.9/1k 2.0/1k 2.1/1k

Many 59.7 63.2 65.0 65.7 65.5
Med 47.9 48.5 48.4 48.2 47.8
Few 31.2 30.1 30.1 29.9 28.8
All 50.2 51.7 52.3 52.5 52.0

(b) Identifying t for HAR(LDAM)
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Figure 6.5: The static DenseNet-169 (red squares) and ResNet-50 (blue triangle) trained on Ima-
geNet LT lie along a vertical line and correspond to a fixed FLOPS budget. In contrast, the dynamic
models trained with HAR lie along an accuracy vs. efficiency trade-off curve. Observe that HAR
leads to higher accuracy for both static and dynamic modes while additionally leading to FLOPS
savings in the dynamic mode.

6.4.3 Two inference modes of HAR

I. Static mode of inference refers to the state when the bare backbone model, without any
early exits, is used for inference. Such a model engenders a fixed compute capacity (or
FLOPS) during inference. Fig. 6.5 plots the top-1 accuracy vs. the inference FLOPS for
ResNet-50/DenseNet-169 models trained on ImageNet LT. The solid red squares and solid
blue triangles depict the static DenseNet-169 and ResNet-50 models trained with different
loss functions. Observe that the static models trained with HAR outperform other loss
functions indicating the merits of enabling hardness-awareness during training.

II. Dynamic mode of inference refers to the state when the intermediate branches are
preserved (during inference) and used to early-exit easier examples. In this mode, the
compute capacity (or FLOPS) can be varied by changing the inference threshold parameter
s in Eq. 6.8. Each value of s leads to a new point on the accuracy vs. efficiency trade-
off curve. The hollow red squares and blue triangles in Fig. 6.5 plot this trade-off for a
DesneNet-169 and ResNet-50 model trained with HAR. The three points are obtained by
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setting s ∈ {1.7, 1.75, 1.8}×10−3. We observe that the accuracy-efficiency curve envelopes
the other baselines indicating that HAR leads to a favorable trade-off even in the dynamic
mode.

CIFAR-10 LT CIFAR-100 LT

100× 50× 10× 100× 50× 10×

CE† 70.4 74.8 83.6 28.3 43.9 55.7
Focal [45]†† 70.4 76.7 86.7 28.4 44.3 55.8
Mixup [166]†† 73.1 77.8 87.1 39.5 45.0 58.0
Manifold Mixup [167]†† 73.0 78.0 87.0 38.3 43.1 56.5

CE+DRW [43]† 76.3 80.0 87.6 41.4 46.0 58.3
HAR(CE)+DRW (Our) 76.8 80.8 87.6 42.5 47.1 58.7
Flops saving 32% 29% 26% 11% 11% 10%

LDAM+DRW [58]† 77.0 81.4 87.6 42.0 46.6 58.7
HAR(LDAM)+DRW (Our) 78.1 82.4 88.0 43.1 47.5 58.9
Flops Saving 15% 21% 20% 0% 2% 3%

Table 6.2: HAR leads to highest top-1 accuracies while saving inference FLOPS, for ResNet-
32 models trained on long tailed CIFAR-10 and CIFAR-100 datasets. We consider three levels
of imbalance (100×, 50×, 10×). Top rows are recent methods; middle and bottom rows compare
HAR fitted with two different exit-loss types (CE/LDAM). Our re-implementation marked by †;
results from [60] marked by ††.

Table 6.3: HAR leads to highest top-1 accuracies with compute savings, for ResNet-50 trained on
Imagenet LT and iNaturalist’18 datasets. We consider the many-, medium-, and few-shot splits. Top
rows are recent methods; middle and bottom rows compare HAR fitted with two different exit-loss
types (CE/LDAM). Our re-implementation marked by †; results from [59] marked by ††.

ImageNet LT iNaturalist’18
Mny Med Few All Mny Med Few All

CE† 63.8 38.5 13.6 44.6 72.7 63.8 58.7 62.7
CRT [59]†† 58.8 44.0 26.1 47.3 69.0 66.0 63.2 65.2
LWS [59]†† 57.1 45.2 29.3 47.7 65.0 66.3 65.5 65.9
τ -norm [59]†† 56.6 44.2 27.4 46.7 65.6 65.3 65.9 65.6
Focal+DRW [45]† 59.5 44.6 27.0 47.9 66.1 66.0 64.3 65.4
CE+DRW [43]† 60.3 45.2 27.0 48.5 67.1 66.2 65.4 65.9
HAR (CE)+DRW (Our) 60.7 45.5 27.7 48.9 67.4 66.3 65.1 66.0
Flops Saving 21% 13%

LDAM + DRW [58]† 61.1 44.7 28.0 48.8 70.0 67.4 66.1 67.1
HAR (LDAM)+DRW (Our) 63.8 47.2 28.1 51.0 72.2 69.0 65.7 68.0
Flops Saving 5% 2%

6.4.4 Comparison to the state-of-the-art

We compare against the s.o.t.a, assuming the dynamic mode of inference for HAR, since it
leads to practical compute savings. We observe that HAR is able to improve the accuracy
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of s.o.t.a methods (CE+DRW & LDAM+DRW) by incorporating the notion of hardness
during training. Further discussion is driven by three broad questions.

I. How does HAR perform under different levels of imbalance? To answer this ques-
tion, we follow prior work [60, 58] and train a ResNet-32 model on CIFAR-10 LT and
CIFAR-100 LT with three imbalance levels (100×, 50×, 10×). The results in Tab. 6.2
present two key observations.

1. HAR improves accuracy under all imbalance levels (100×, 50×, 10×) for both
exit-loss types (HAR(CE) and HAR(LDAM)) while consuming 15− 30% fewer FLOPS
on CIFAR-10 and 2− 10% fewer FLOPS on CIFAR-100.

2. Accuracy gap increases with imbalance. The accuracy improvement is higher for
greater levels of imbalance (e.g., 1.1%, 1%, 0.4% improvement over LDAM for
100×, 50×, 10× on CIFAR-10)

Predicted

Predictions at earlier exits predominantly belong to many- and medium-shot classes, and are more accurate.
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Figure 6.6: For a ResNet-50 trained on ImageNet LT with HAR (LDAM)+DRW, we show at each
exit: (top row) The confusion matrix of predictions, (bottom row) The percentage of total
examples for each split (many-, medium-, few-shot) that exit and the accuracy of these
predictions. We note that (1) the early exiting examples are predominantly from the many-
and medium-shot classes (2) the predictions at early exits, exhibit a high accuracy.

II. Which classes drive the overall improvement in accuracy? To answer this question,
we follow prior work [59] to train a ResNet-50 model on ImageNet LT and iNaturalist-18
datasets. In Tab. 6.3, for each method, we dissect its overall top-1 accuracy into accuracies
on three class splits: many-shot classes (¿100 examples/class), medium-shot classes (20-
100 examples/class), and few-shot classes (¡20 examples/class). Following are the key
observations:

1. Many-shot split drives accuracy improvement. On both datasets, we observe
that the greatest accuracy improvements are observed on the many-shot splits (e.g.,
+2.7% relative to LDAM on ImageNet LT, and +2.2% on iNaturalist’18).
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2. Baseline methods lose significant accuracy on many- and medium-shot classes.
Relative to the CE baseline, we observe SOTA methods lose significant accuracy
on the many- and medium-shot classes. This explains how HAR improves overall
accuracy: It mitigates the accuracy decline on majority and medium shot classes
while leading to comparable accuracy gain on the few-shot classes.

6.4.5 Analyzing the dynamic inference mode

I. Which classes tend to exit earlier? To answer this question, in Fig. 6.6, we present
the confusion matrix and the class-composition for each exit of a ResNet-50 trained on
ImageNet LT with HAR. Following are some key observations.

1. Early-exiting examples are predominantly from the majority classes. The confu-
sion matrices in the top row show a distribution shift from a top-left bright diagonal
in part a (exit-1) to a middle heavy diagonal in part d (exit 4). Since the 1000 classes
are sorted according to size such that top and left contain the majority classes while
bottom and right contain the rare classes, this observation indicates that the initial ex-
its prefer the many-shot classes while the later exits prefer the medium-shot classes.
The red bar plots of Fig. 6.6a-e reinforce this observation by showing the percentage
of each split that has exited by each exit. Notice that before last exit, 38% of the
many-shot, 21% of the medium-shot and 11% of the few-shot split have already been
classified.

2. Early exiting examples are more trustworthy due to higher accuracy. The purple
bar plots of Fig. 6.6a-e present the accuracy for examples exiting at each exit. Notice
that for all three splits (many, med, few shots), the accuracy for exits 1-4 is nearly
double than that of exit-5. This indicates that an early prediction is much more
trustworthy (due to higher accuracy) than that a late prediction.

6.4.6 Ablation studies

How does HAR perform without class reweighting? Tab. 6.4 presents the accuracy of a
ResNet-50 model trained on ImageNet LT with three different loss functions—focal, cross
entropy and LDAM—and without any class reweighting at the early-exits. We observe that
the (static) models trained with HAR outperform the vanilla loss functions (CE, LDAM)
on all the three splits.

What is the impact of the location of early exits? To measure this, in Tab. 6.5, we ablate
on the location of a single early exit attached to a ResNet-50 model trained on ImageNet LT
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Table 6.4: HAR leads to the highest top-1 accuracy for a ResNet-50 model trained on ImageNet
LT, and, without any class re-weighting. We consider the static inference mode.

Loss Many Med Few All

Focal (γ = 0.5) 63.5 38.5 13.6 44.7
Focal (γ = 1.0) 62.8 37.1 12.7 43.7
Focal (γ = 2.0) 62.1 36.6 11.9 43.1
CE 63.8 38.5 13.6 44.9
HAR (CE) 63.9 39.9 16.0 45.9
LDAM 64.9 39.1 12.6 45.5
HAR (LDAM) 66.3 42.4 14.2 47.8

Table 6.5: Ablating on the location of a single early exit (indicated by a E) using a static ResNet-50
trained with HAR (LDAM)+ DRW on ImageNet LT. The naming convention specifies C for a
convolution layer, B for a residual block and E for an early exit. Configuration CBBEBBE
outperforms others, suggesting the value of an early exit peaks between blocks 2,3.

Model Many Med Few All

CBBBBE 61.1 44.7 28.0 48.8
CEBBBBE 62.3 44.9 25.9 49.0
CBEBBBE 63.0 45.9 26.7 49.9
CBBEBBE 63.3 46.6 27.8 50.5
CBBBEBE 62.5 46.0 27.6 49.8

using the HAR (LDAM)+DRW loss. For comparison, we use the static mode, which means
the exits are only used during training and are discarded for inference. Among the several
configurations (with naming convention: C=conv layer, B=block, E=exit), the one with an
exit after block 2—CBBEBBE—outperforms all others. This suggests a diminishing value
of placing an exit too early/late in the backbone.

Can we visualize the learned notion of example hardness? Fig. 6.7 presents a ran-
domly selected subset of test split images exiting through the auxiliary branches of a HAR
ResNet-50 model trained on ImageNet LT. Among each class, we observe that the object
of interest is easier to distinguish in images exiting from earlier branches which indicates
that HAR enables a model to learn an intuitive notion of image hardness.

6.5 Conclusion

We identified the notion of sample-hardness as a key concept to improve generalization
under a long-tailed class distribution. To incorporate this notion of hardness in the learning
process, we proposed the HAR framework. HAR is complementary to existing work in
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Figure 6.7: Images exiting from the first, third and the final exit of a HAR model indicate that as
the exits increase, so does the visual hardness.

long-tailed classification and can readily integrate with existing approaches to improve
classification accuracy. Extensive evaluations demonstrate that HAR outperforms existing
state-of-the-art techniques while saving inference FLOPS.

92



CHAPTER 7
IMB-NAS:NEURAL ARCHITECTURE SEARCH FOR IMBALANCED

DATASETS

Class imbalance is a ubiquitous phenomenon occurring in real world data distributions. To
overcome its detrimental effect on training accurate classifiers, existing work follows three
major directions: class re-balancing, information transfer, and representation learning. In
this paper, we propose a new and complementary direction for improving performance
on long tailed datasets—optimizing the backbone architecture through neural architecture
search (NAS). We find that an architecture’s accuracy obtained on a balanced dataset is not
indicative of good performance on imbalanced ones. This poses the need for a full NAS
run on long tailed datasets which can quickly become prohibitively compute intensive. To
alleviate this compute burden, we aim to efficiently adapt a NAS super-network from a
balanced source dataset to an imbalanced target one. Among several adaptation strategies,
we find that the most effective one is to retrain the linear classification head with reweighted
loss, while freezing the backbone NAS super-network trained on balanced source dataset.
We perform extensive experiments on multiple datasets and provide concrete insights to
optimize architectures for long tailed datasets.

7.1 Introduction

The natural world follows a long tail data distribution wherein a small percentage of classes
constitute the bulk of data samples, while a small percentage of data is distributed across
numerous minority classes. Training accurate classifiers on imbalanced datasets has been
an active research direction since the early 90s. Much of prior work [59, 168, 169] centers
on improving the performance (measured via accuracy) of a fixed backbone architecture
such as ResNet-32. In this work, we take a complementary direction and aim to optimize
the backbone architecture via neural architecture search. Indeed this is an important di-
rection since prevalent practices demand that neural architectures be optimized to fit the
size/latency constraints of tiny edge devices.

To optimize the backbone architecture, we rely on the recent work from Neural Ar-
chitecture Search (NAS) [170] that optimizes a neural network’s architecture primarily on
datasets that are balanced across classes. This workflow naturally prompts the question:
is the architecture optimized on a class balanced dataset also the optimal one for imbal-
anced datasets? Table 7.1 provides evidence to the contrary. The first row shows two
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Table 7.1: Motivation. We sample four architectures A1-A4 from the DARTS search space and
train them on balanced (i.e. 1×) and imbalanced versions (i.e. 100×) of Cifar10 and Cifar100.
(Top) Two similarly sized architectures (A1,A2) achieve similar accuracy on balanced Cifar10, but
differ by 3% in presence of 100× imbalance. (Bottom) The larger architecture (A3) outperforms
the smaller on (A4) on balanced Cifar100, but under performs by 3.6% in the presence of 100×
imbalance. This suggests that an architecture’s performance on balanced datasets is not indicative
of it’s performance on imbalanced ones.

Dataset Model Flops Accuracy (%)
bal(1×) imbal(100×)

Cifar10
A1 410 94.6 77.3
A2 407 94.7 74.1

Cifar100
A3 400 76.1 39.4
A4 179 75.0 43.0

architectures–A1,A2–sampled from the DARTS search space [171] having similar size and
accuracy on balanced Cifar10, but an accuracy gap of 3% in the presence of 100× imbal-
ance. The second row compares a larger architecture A3 outperforms a smaller one A4 on
balanced Cifar100. However, in the presence of 100× imbalance, the smaller architecture
outperforms the larger one by more than 3%. These results and more in Sec 7.3.2, indicate
that the optimal architecture on a balanced dataset may not be the optimal one for imbal-
anced datasets. This means each target imbalanced dataset requires its own NAS procedure
to obtain the optimal architecture.

Running a NAS procedure for each target dataset is computationally expensive and
quickly becomes intractable in the presence of multiple target datasets. To overcome the
compute burden of running NAS from scratch, we formalize the task of architectural rank
adaptation from balanced to imbalanced datasets. Towards this task, Section 7.3.4 de-
scribes two intuitive rank adaptation procedures that either fine-tune the classifier only, or
together with the backbone. Our comprehensive experiments reveal the key insight that the
adaptation procedure is most affected by the linear classification head trained on top of the
backbone. Armed with this insight, we propose to re-use a NAS super-net backbone trained
on balanced data and re-train only the classification head to efficiently adapt a pre-trained
NAS super-net for imbalanced data. This is extremely efficient since it involves training
only a linear layer on top of the pre-trained super-network.

Overall, our contributions in this work are:

1. New insight. We show that architectural rankings transfers poorly from balanced to
imbalanced datasets.

2. Novel task. We construct the novel task to efficient adapt a NAS super-network from
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balanced to imbalanced datasets.

3. Novel solution. We propose a simple and efficient solution–retraining the classifier
head while freezing the backbone–to efficiently adapt a NAS super-network from
balanced to imbalanced datasets.

7.2 Related Works

We cover relevant work from three related areas.

7.2.1 Overcoming long tail class imbalance

Prior work on tackling long tail imbalance can divided into three broad areas (see sur-
vey [172]): class-rebalancing that includes data re-sampling (SMOTE [49], ADASYN [51]),
loss re-weighting [59, 43, 173, 169], logit adjustment [174, 175, 176]; Information aug-
mentation that includes transfer learning [152, 177], data augmentation [178]; and mod-
ule improvement that encompasses methods in representation learning [148], classifier
design [179], decoupled training [59] and ensembling [168]. Different from all of the
existing works, our work explores a new direction of performance improvement on long
tail datasets–that via optimizing the backbone architecture. This complements existing ap-
proaches and can work in tandem to further boost accuracy and efficiency on imbalanced
datasets.

7.2.2 Neural architecture search

Prior work on architecture search can be categorized in improving its three main pillars
(see survey [180])—Search space design with the idea of incorporating a large diversity
of architectures. Popular spaces include cell based spaces such as NASNets [23], and
recent spaces from the ShuffleNet [181] and MobileNet [182] model families. The sec-
ond pillar constitutes search strategy design to efficiently locate performant architectures
from the search space. Popular strategies involve reinforcement learning [183, 23], evolu-
tionary algorithms [184, 185] or gradient descent on continuous relaxations of the search
space [171]. The third pillar constitutes performance estimation strategies [186, 187] with
the goal of cheaply estimating the goodness (in terms of accuracy or efficiency) of an ar-
chitecture. All of the above works search optimal architectures on datasets that are fully
balanced across all classes. Our experiments however show that the set of optimal architec-
tures differ significantly from balanced to imbalanced datasets. This calls for developing
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new NAS methods or efficient adaptation strategies (e.g. this work) to search for optimal
architectures on real world, imbalanced datasets.

7.2.3 Architecture transfer

We summarize prior work on evaluating robustness of architectures to distributional shifts
in the training dataset. Neural Architecture Transfer [188] explore architectural trans-
ferability from large-scale to small-scale fine grained datasets. However, there are two
limitations–the source and target datasets considered in this work are balanced across all
classes and additionally this work assumes all target datasets are known apriori which is
infeasible in many industry use-cases. NASTransfer [189] consider transferability between
large-scale imbalanced datasets including ImageNet-22k which is a highly imbalanced
dataset. Their approach is practically useful for very large datasets (e.g. ImageNet-22k) for
whom direct search is prohibitive, however when it is feasible (e.g. on ImageNet) direct
search typically leads to better architectures than proxy search. Differing from these, our
work advocates to directly adapt a super-network pre-trained on fully balanced datasets (in-
stead of proxies) to imbalanced ones. A key feature of such adaptation is efficiency—the
compute required for such an adaptation needs to be much lesser than that for repeating the
search on the target dataset.

7.3 Methodology

7.3.1 Notation

AssumeD = {x1, yi} denotes the training dataset of images where yi is the label for image
xi. Let nj specify the number of training images in class j. After sorting the classes by
cardinality in decreasing order, the long tail assumption specifies that if i < j, then ni ≥ nj

and n1 >> nC . We use φ to denote a deep neural network that is composed of a backbone
φ(a, wa) with architecture a, weights wa and a linear classifier φ(wc). The model φ is
trained using a training loss and loss re-weighting strategy. On balanced datasets, we use
the cross entropy loss (denoted as CE) to train a neural network. For imbalanced datasetsm
we additionally incorporate the effective re-weighting strategy [43] that reweights samples
from class j with 1−β

1−βnj where β is a hyperparameter. Following previous works [58, 173],
the re-weighting strategy is applied after a delay of few training epochs which is denoted
using the shorthand DRW.
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(a) Ds: Cifar10, Dt: Cifar100 (b) Ds: Cifar100, Dt: Cifar10

Figure 7.1: Evaluating architectural transferability. We train all 149 Mflop architectures from
NATS-Bench on Cifar10, Cifar100 with 1×, 50×, 100× imbalance and compute kendall tau corre-
lation between the rank orderings on all datasets. We observe high correlation (bottom left cells)
when both Ds,Dt are balanced, and low correlation otherwise. This means that architectural rank-
ings transfer poorly across data imbalance.

7.3.2 Architecture ranking transfer: A motivating experiment

We study the impact of backbone architecture on imbalanced datasets using the following
experiment. We construct an architecture search space A by sampling all 149 Mega Flops
architectures from the NATS-bench search space [190]. Overall A contains 135 architec-
tures with exactly the same learning capacity (or Flops), but different architectural patterns
(e.g. kernel sizes, layer connectivity). The architectures in A are trained on the source and
target datasetsDs, Dt using loss function CE on balanced datasets, and the re-weighted loss
function CE+DRW on imbalanced ones. Following this, the architectures are ranked based
on validation accuracy and the kendall Tau metric is computed between the rank orderings
obtained on Ds and Dt. A high correlation means similar architectural rankings on both
datasets, while a low correlation implies widely different rankings.

Figure 7.1 presents the outcomes on two scenarios: (1) Ds is Cifar10 at three levels
of imbalance (1×, 50×, 100×) and Dt is Cifar100 at the same imbalance levels; and (2)
the opposite direction. There are two major observations—First, the high correlation in the
bottom left square indicates that the architectural rankings transfer quite well across bal-
anced datasets. Second, the low correlation for all other cells indicates low transferability
across imbalanced datasets. This means the rank orderings on imbalanced datasets widely
differs from that on balanced ones.

To avoid the compute burden of performing a NAS run on every target imbalanced
dataset, we develop efficient “adaptation” procedures to adapt a NAS super-net from bal-
anced to imabalanced datsets. Before going into the details, in the next section we provide
a brief overview of exisiting NAS methods.
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7.3.3 Revisiting neural architecture search

We look at sampling based NAS methods that involve two steps. The first step involves
training a super-network with backbone φ(a, wa) and classifier φ(wc) on a training dataset
D via the following minimization

w∗a,D, w
∗
c,D = min

wa,wc
E
a∼A

(L(φ(wc), φ(a, wa);D)) . (7.1)

Here the inner expectation is performed by sampling architectures a from a search spaceA
via uniform, or attentive sampling.

The second step involves searching the optimal architecture that maximizes validation
accuracy via the following optimization

a∗D = max
a∈A

Acc (φ(wc), φ(a, wa);D)) . (7.2)

This maximization is typically implemented via evolutionary search or reinforcement learn-
ing. Next, we discuss efficient adaptation procedures to adapt a NAS super-net trained on
a balanced dataset onto an imbalanced one.

7.3.4 Rank adaptation procedures

Given source and target datasets Ds,Dt, we first train a super-network on Ds by solving
the following optimization

w∗a,Ds
, w∗c,Ds

= min
wa,wc

E
a∼A

(L(φ(wc), φ(a, wa);Ds)) . (7.3)

Our goal then is to adapt the optimal super-net weights w∗a,Ds
, w∗c,Ds

found on Ds to the
target dataset Dt which suffers from class imbalance. The most efficient adaptation pro-
cedure involves freezing the backbone, while adapting only the linear classifier on Dt by
minimizing the re-weighted loss LRW

w∗c,Dt
= min

wc
E
a∼A

(
LRW (φ(wc), φ(a, w∗a,Ds

);Dt)
)
. (7.4)

The resulting super-network contains backbone weights w∗a,Ds
trained on Ds and classifier

weights w∗c,Ds
trained on Dt. Solving the above optimization is extremely efficient since

most of the network is frozen while only the classifier is trained. On the other hand, one
could also adapt the backbone by fine-tuning on the target dataset. This is achieved by
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minimizing the delayed re-weighted loss LDRW

w∗∗a,Dt
, w∗c,Dt

= min
wa,wc

E
a∼A

(
LDRW (φ(wc), φ(a, w∗a,Ds

);Dt)
)
. (7.5)

Here, the double star on w∗∗a,Dt
indicates the weights were obtained via fine-tuning w∗a,Ds

using one tenth of the original learning rate and one third the number of original training
epochs. Also, recall that the delayed re-weighted loss LDRW is nothing but the unweighted
loss L in the first few epochs and the re-weighted loss LRW subsequently. Note that our
second adaptation procedure is more compute intensive since the backbone is also adapted,
but still much less intensive than running the full search on the target dataset.

Our final and most compute intensive procedure involves directly searching on the tar-
get dataset via LDRW . This is achieved via the following minimization

w∗a,Dt
, w∗c,Dt

= min
wa,wc

E
a∼A

(LDRW (φ(wc), φ(a, wa);Dt)) . (7.6)

Table 7.2: Summarizing rank adaptation procedures.

Adj Eqn Description

P0 (7.3) No adaptation.
P1 (7.4) Freeze backbone, retrain classifier on Dt.
P2 (7.5) Finetune backbone and retrain classifier on Dt
P3 (7.6) Re-train backbone and classifier on Dt.

The three adaptation procedures and their associated compute costs are summarized in
Table 7.2.

7.4 Experiments

We begin this section by answering which rank adaptation procedure works best, both in
terms of efficiency of the procedure and the accuracy of the resulting networks. We then
perform an extensive ablation study to uncover the effect of different design choices.

7.4.1 Implementation details

We implement our methods using Pytorch on a system containing 8 V100 GPUs. Other
details are as follows:

Datasets. We construct imbalanced versions of Cifar-10 and Cifar-100 by sub-sampling
from their original training splits [43]. The cth class in the resulting datasets contains

99



Table 7.3: Comparing rank adaptation strategies. Given a NAS super-net trained on Ds, we
adapt it to Dt and search the optimal sub-nets. These are retrained from scratch on Dt and the
average validation accuracy is presented. Note that sub-nets obtained via P1/P2 outperform P0
for high imbalance ratios (shaded yellow) and typically P1 outperforms P2 (the winner is bolded).
Results averaged over three seeds.

Adp Imbalance Ratio

50× 100× 200× 400×

baseline P0 45.80 40.83 36.30 32.80
P1 45.06 41.93 36.76 33.70
P2 44.86 41.86 36.70 33.46

paragon P3 45.93 41.53 37.03 33.40

(a) Cifar10-1× → Cifar100-{50, 100, 200, 400}×

Adp Imbalance Ratio

100× 200× 400× 800×

baseline P0 75.96 68.96 63.26 56.90
P1 75.93 69.70 63.80 58.23
P2 75.86 69.26 63.70 58.03

paragon P3 76.03 70.23 63.96 57.70

(b) Cifar100-1× → Cifar10-{100, 200, 400, 800}×

nc = nµc examples where n is the original cardinality of class c, and µ ∈ [0, 1]. We
select µ such that the imbalance ratio—which is defined as the ratio between the number
of examples in the largest and smallest class—is 50× to 1000×.

Sub-network training strategies. We train a network on balanced Cifar-10/100 for 200
epochs with an initial learning rate of 0.1 decayed by 0.01 at epochs 160 and 180 using the
cross entropy loss. On imbalanced versions, we introduce effective re-weighting [43] at
epoch 160 and refer to this strategy as delayed re-weighting or DRW-160 [58].

Neural Architecture Search We train a super-network for 600 epochs with an initial
learning rate of 0.1, decayed by 0.01 at epochs 400 and 500. On imbalanced datasets,
re-weighting is applied at epoch 400. For searching the best subnet, we follow [170] and
use an evolutionary search with 20 generations, population of 50, crossover number 25,
mutation number 25, mutate probability 0.1 and top-k of 10.

Adaptation Strategies To adapt a super-network, we fine-tune it for 200 epochs with an
initial LR of 0.01, decayed by 0.01 at epoch 100. In case of procedure P1, we introduce re-
weighting at epoch 1. For P2, we delay the re-weighting to epoch 100. For P3, we follow
the NAS strategy detailed above.

7.4.2 Baseline and Paragon for IMB-NAS

Given a NAS super-network trained on a source dataset Ds, our goal is to efficiently adapt
it to the target datasetDt following which, the best sub-net is searched in the adapted super-
net. Table 7.3a illustrates the results for the case when Ds is Cifar10, and Dt is Cifar100
with varying levels of imbalance. The first row (i.e. P0) refers to the case when the best
sub-nets obtained on Ds are re-trained on Dt. This serves as our lower bound or baseline.
The last row (i.e. P3) refers to the case when the NAS super-net is trained on Dt. This
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Figure 7.2: Comparing the compute cost of adapting a NAS super-net trained on Cifar10-1× onto
Cifar100-100×. The y-axis plots the wall clock time spent on a single V100 GPU. Observe that P2
and P3 consume 2× and 5× the cost of P1. Results averaged over three seeds.

serves as the upper bound or the paragon of accuracy. Our two adaptation procedures (P1,
P2) in the middle rows are highlighted yellow when they outperform the baseline, and the
better among the two is bolded.

Observe from Tables 7.3a,7.3b that both adaptation procedures comprehensively out-
perform the baseline at higher levels of imbalance. This means that the architectures
searched onDs can no longer be assumed as the optimal ones on imbalanced target datasets.
Interestingly, between P1 and P2, we find that P1 consistently outperforms P2. This is sur-
prising since P2 also adapts the NAS backbone on the target data whereas P1 re-uses the
backbone from the source dataset. We hypothesize this occurs because, class imbalance is
much larger an issue for searching the NAS backbone than the domain difference between
Cifar10 and Cifar100.

Overall, we find that P1 and P2 achieve very close accuracy to the paragon (P3) while
avoiding much of the compute burden of P3 as illustrated in the next section.

7.4.3 Dissecting the performance adaptation

In this section, we analyze different aspects of procedures P1-P3 by applying them to adapt
a NAS super-net pre-trained on Cifar10-1x onto Cifar100-100x.

Comparison on training cost. We measure the wall-clock training time on a single V100
GPU as a proxy for training cost. The amortized training cost over three runs is presented
in Fig 7.2. It takes P1 2000 seconds to adapt a NAS super-network from cifar10-1× to
cifar100-100×. In comparison P2 consumes 2×, and P3 consumes 5× more time. These

101



Table 7.4: Ablating on the number of backbone fine-tuning epochs with P2 while adapting from
Cifar10-1× to Cifar100-{100, 200, 400}×. Coinciding the freezing of the backbone with the loss
re-weighting at epoch 100 typically outperforms the baseline. Generally more fine-tuning epochs
are better. Results averaged over three seeds.

Proc Epochs Imbalance Ratio

- 100× 200× 400×

P0 - 40.83 36.3 32.80
P1 - 41.93 36.76 33.70

P2

50 40.06 35.46 32.56
100 41.43 37.26 33.00
150 41.40 36.63 32.86
200 41.86 36.70 33.46

P3 - 41.53 37.03 33.4

Table 7.5: Ablating on the loss used to train the NAS super-net on Cifar100-100×. Results pre-
sented are the validation accuracy of optimal sub-networks searched from corresponding super-
networks. It is inconclusive if training the NAS super-net with re-weighted loss (CE-DRW) induces
better sub-networks. Results averaged over three seeds.

Train Loss Imbalance Ratio

100× 200× 400×

CE 41.36 37.5 33.9
CE-DRW 41.53 37.0 33.4

results demonstrate that not only P1 can successfully adapt a super-net to improve accuracy,
it is also very efficient.

Impact of fine-tuning the backbone with P2. In procedure P2, we adapt the NAS back-
bone via fine-tuning on the target datasetDt. One may wonder, can the backbone be frozen
after the loss re-weighting is applied? The intuition being that re-weighting mainly helps
adapt the classification boundary while negatively affecting the representation learned by
the backbone [59]. To answer this, Table 7.4 presents an ablation on the number of epochs
spent on fine-tuning the NAS backbone with P2. Observe that too few fine-tuning epochs
(e.g. 50) leads to low sub-net accuracy. At the other end, fine-tuning for 100 epochs is suf-
ficient to improve the sub-net accuracy beyond the paragon (P3). This means that one could
further lower the compute burden of P2 by freezing the backbone once loss re-weighting is
applied at epoch 100.

Training the NAS super-net with loss re-weighting. We observe that loss re-weighting
generally results in improved super-net accuracy on imbalanced datasets. Does this mean
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Table 7.6: Dissecting the overall accuracy on Cifar100-{100, 400}× into the accuracy on classes
containing many (i.e. > 100), medium (i.e. between 20-100) and few (i.e. < 20) examples per
class. Sub-networks obtained via P1 and P2 outperform the baseline (P0) for all class categories
(shaded yellow). Results averaged over three seeds.

Adj Imbalance Ratio
100× 400×

High Med Low All High Med Low All

P0 64.1 40.4 14.1 40.8 65.0 39.1 10.1 32.8
P1 65.2 41.6 15.0 41.9 66.3 41.0 10.2 33.7
P2 65.2 40.9 15.7 41.8 66.2 40.3 10.2 33.4
P3 65.0 41.5 14.1 41.5 66.2 39.5 10.5 33.4

the resulting sub-nets are better than the ones obtained from a super-net trained without
loss re-weighting? We answer this question we train super-nets on Cifar100-100x with and
without re-weighting. Then we search and train the best sub-nets which are presented in
Table. 7.5. We find that there is no clear winner among the two NAS training approaches.

Dissecting the overall accuracy improvement. To analyze which classes contribute to
an increase accuracy, Table. 7.6 dissects the overall accuracy (denoted by column “All”)
into the accuracy obtained on classes containing Many (i.e. > 100), Medium (i.e. between
20-100) and Few (i.e. < 20) examples per class. For both 100× and 400× levels of
imbalance, the architectures obtained via P1 and P2 outperform those obtained by P0 for
all class categories. This means that indeed the architectures obtained via P1,P2 are able to
learn better representations.

7.5 Conclusion

This work aims to improve performance on class imbalanced datasets by optimizing the
backbone architecture. Towards this goal, we discover that an architecture’s performance
on balanced datasets is not indicative if its performance on imbalanced ones. This ob-
servation suggests re-running NAS on each target dataset. To overcome the prohibitive
compute burden or re-running NAS, we propose to adapt a NAS super-net trained on bal-
anced datasets onto imbalanced ones. We develop multiple adaptation procedures and find
that re-training the linear classification head while freezing the NAS super-net backbone
outperforms other adaptation strategies both in terms of efficiency of the adaptation and the
accuracy of the resulting sub-networks.
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CHAPTER 8
CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation addresses the fundamental and practical challenges for empowering artifi-
cial intelligence on edge devices. This entails developing (1) New frameworks for efficient
edge AI; and (2) New methods for robust edge AI. Towards this goal, this thesis makes the
following contributions.

New algorithms to obtain efficient and robust models.

• Our CUP algorithm (Chapter 3) can prune large deep neural networks trained on
ImageNet to more that 2× while reducing training time by over 10 hours to obtain a
compact DNN with less than 1% drop in Top-5 accuracy.

• Our CMP-NAS algorithm (Chapter 4) can search for efficient query models, which
fitted into a heterogeneous visual search system leads to 80× and 23× compute cost
reduction while maintaining accuracy within 0.3% and 1.6% of the paragon for fash-
ion and face image retrieval respectively.

• Our REST algorithm (Chapter 5) produces highly-robust and efficient models that
substantially outperform the original full-sized models in the presence of noise. For
the sleep staging task over single-channel EEG, the REST model achieves a macro-
F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of
Gaussian noise while obtaining 19× parameter reduction and 15× MFLOPS reduc-
tion on two large, real-world EEG datasets.

• Our HAR algorithm (Chapter 6) endows hardness awareness during the learning pro-
cess thereby improving state-of-the-art accuracy of networks trained on large imabal-
anced datasets while saving up to 20% of inference FLOPS.

• Our IMB-NAS algorithm (Chapter 7) searches for efficient network architectures on
long tail datasets while saving 5× compute compared to searching from scratch. The
searched networks improve accuracy on imbalanced datasets compared to architec-
tures optimized on full balanced datasets.

New insights and knowledge
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• We are among the first to demonstrate the viability of a home based sleep apnea
monitoring and diagnosis system. Through robust experiments, we show that a
small neural network can be trained to be robust to real-world gaussian noise such
that it can maintain a reasonable accuracy of 67% whereby the state-of-the-art accu-
racy falls to 39%.

• We are the first to develop a heterogeneous visual search system that extends real
world applications such as video based threat monitoring and image based product
search onto edge devices.

• We are the first to demonstrate that architectures optimized on fully class balanced
datasets are not the optimal ones for imbalanced datasets.

8.1 Impact

Beyond the contributions to the research community, my work has also benefited society
and industry.

• The CMP-NAS system, developed during my internship with Amazon was show-
cased to thousands of developers in the company-wide all-hands meeting. It was
also the subject of a patent application.

• CMP-NAS and its follow up work REG-NAS resulted in an Amazon post-internship
fellowship to fund my research until graduation.

• Our work on REST was highlighted by several news media outlets for its ability
to accurately monitor sleep in the wild.

8.2 Future Directions

While this dissertation expands the understanding around deploying machine learning mod-
els in the wild, it also unlocks new research directions along model compression, neural
architecture search and mitigating the effects of long tail class imbalance.

Model compression and specialization

In chapter 3, we propose the CUP algorithm as a means of compressing neural networks
for deployment to resource constrained devices. The training time version of CUP can also
be extended to the problem of model specialization. This problem of model specialization
can support scenarios requiring models trained only on a few classes. One could start off
with a huge model trained on ImageNet that contains 1000 classes. Then this model can be
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pruned / specialized during further fine-tuning on a subset of classes (e.g., Indoor objects
such as tables and chairs). The idea of model specialization assumes more importance in
the regime of self supervised learning which typically trains a huge central model in an
unsupervised way. Then this model is fine-tuned for a downstream task. One can imagine
also pruning / specializing the central model on the downstream task.

Searching for compatible gallery and query models

In CMP-NAS, we build a heterogeneous visual search system by searching for a compati-
ble query model against the fixed gallery one. One can further improve compatibility (and
retrieval accuracy) by also optimizing the gallery model against the query one. Going a
step further, jointly designing the query and gallery models together could lead to highly
efficient heterogeneous systems. Orthogonally, the effect of weight and activation quan-
tization remains to be seen with respect to compatibility. This is an important direction
to explore since prevalent model deployment practices typically reduce quantize to 8 bits
without loss of accuracy.

Beyond sleep monitoring

In REST, we design highly efficient and robust deep neural networks for the task of sleep
staging on EEG signals. However, the techniques developed are not limited to the particular
application or sensing modality. Indeed, modern fitness trackers operate on multi-modal
data (e.g., using accelerometers, gyroscopes, ECG) for activity monitoring, detecting heart
rate variability, and estimating calories consumed. These tasks can benefit through robust
and efficient deep neural networks.

Dynamic inference for hardness awareness and beyond

In HAR, we employ dynamic inference to impart hardness awareness to a loss function.
This improves performance on imbalanced datasets by focusing a model’s attention on
harder examples. A core element in this work was a multi-branch neural network that
can save compute by early exiting easier examples. Future directions can employ multi-
branch networks to learn diverse tasks e.g. each branch focuses on a specific task while the
trunk benefits from multi-task learning. This idea is already gaining traction in the natural
language community with the PaLM model [191]. Another promising direction involves
on-the-fly compute adjustment of neural networks, e.g. as the battery drains, sacrificing
accuracy for compute savings by increasing the number of early exiting examples.

Efficient supernetwork adaptation for neural architecture search

In IMB-NAS, we adapt a NAS super-net trained on balanced dataset onto an imbalanced
one. The main reason being that the performance on a balanced dataset is not indicative of
that on an imbalanced dataset. Future directions may involve developing efficient super-
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net adaptation procedures for target dataset with domain shift beyond class imbalance, e.g.,
weather conditions in case of image datasets, writing styles in case of NLP, accented speech
in case of speech processing.

Regression constrained architecture design

Current state-of-the-art architecture design strategies develop models for diverse platforms
independant of each other. This leads to considerable negative flips: samples that are pre-
dicted correctly by a small model, but incorrectly by a larger and more accurate one. Our
work (REG-NAS) mitigates this issue by sampling sub-networks suited to different plat-
forms from the same super-network. An important future extension involves developing
super-net training strategies that explicitly incorporate the notion of negative flips between
sub-networks.

8.3 Conclusion

My work contributes novel frameworks and methods that jointly tackle the challenges of
efficiency and robustness of deep neural networks. This advances the deployment frontier
of deep learning models to resource constrained edge platforms that are truly deployed in
the wild, where they are susceptible to many kinds of real-world noise.
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APPENDIX A
COMPATIBILITY AWARE HETEROGENEOUS VISUAL SEARCH

A.1 Implementation Details

A.1.1 Training, Validation and Testing Dataset

For searching the best query architecture, we carve out a small validation split from the
original training set. For the face tasks, we set aside 5% from the training set of IMDB
[115] while for the fashion tasks, we set aside 10% from the training set of DeepFashion2
[117]. The remaining portions of the training sets are actually used to train all our embed-
ding models (query supernet, gallery model, final query models). After a super-network
is trained, we evaluate the performance of each candidate architecture (we refer to it as a
sub-network) on the held out validation split. The final results presented in this paper are
reported on the original validation portions of IMDB and DeepFashion2.

A.1.2 Designing and Training the Super-network

For each computational tier (330, 230, 100 Mflops), we train a different super-network.
For the 300 Mflops tier, our super-network is the same as that in [91]. For the 230 and 100
Mflops tiers, we reduce the channel widths by 0.75× and 0.5× in each layer. The super-
network is trained through a sampling process: In each batch, a new architecture (we call
this a sub-network) is sampled and only the weights corresponding to it are updated. For
sampling a sub-network, we use the parameter free uniform sampling method. This means
that, for each layer, the chosen block (includes four choices from 0-3) and channels width
(includes ten choices from 0-9) are sampled uniformly. We notice that the super-network
fails to converge if the sampling process is started from the first epoch. To solve this, we use
a warm-up phase of 10 epochs wherein the the super-network is trained without sampling.
During the warm-up phase, the output of all four blocks in each layer are combined through
averaging and the largest channel width is used.

A.1.3 Details of the evolutionary search

We reuse the same hyper-parameters from [91] for the evolutionary search step. Specif-
ically, we search for 20 generations, each with a population size of 50, crossover size of
40, mutate chance of 0.1 and random select chance of 0.1. To guide the evolutionary
search for finding the most compatible architectures, we use reward R3 from Tab. 4.1.
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For the face tasks, we compute this reward on the IMDB “validation” split using the 1:1
verification metric of TAR@FAR=10−3. For the fashion tasks, we compute this reward
on the DeepFashion2 validation split using the top-50 metric. Note that our rewards met-
rics (TAR@FAR=10−3 for face, top-50 for fashion) are different from the target metrics
(TAR@FAR=10−4/TNIR@FPIR=10−1 for face, top-10 for fashion). This is mainly be-
cause the validation split is smaller (than the test split), and thus target metric (e.g., top-10
accuracy) is noisy compared to the validation metric (e.g., top-50 accuracy).

A.2 Additional Results under Different Evaluation Metrics

Due to space limits, previously we present one evaluation metric per task. In this section,
we present the full metric results according to IJB-series and DeepFashion2 benchmark
standard for reference. More specifically, in Sec. A.2.1 we show top-k search accuracy on
face retrieval task. In Sec A.2.2, we evaluate our CMP-NAS on face verification task at
additional operating points; In Sec A.2.3, we show the results of the proposed method using
top-1, top-10 and top-20 retrieval accuracy on fashion retrieval task. All these additional
results further demonstrate that (1) With CMP-NAS, the compatibility rule holds; (2) The
architectures searched with CMP-NAS outperform other baselines for both homogeneous
and heterogeneous search accuracy.

A.2.1 Additional Results on Face Retrieval

Tab. A.1 extends Tab. 4.5 by including other popular metrics (top-1, top-5 and top-10) for
the face retrieval task. Additionally, we include the homogeneous accuracy achieved by the
models.

A.2.2 Additional Results on Face Verification

Besides face retrieval, face verification is another popular task in the “open-universal” prob-
lem of face recognition. in Tab. A.2, we extend Tab. 4.6 by showing the results on additional
operating points (FAR=10−2, 10−3, 10−4).

A.2.3 Additional Results on Fashion Retrieval

Tab. A.3 extends Tab. 4.5 by showing the homogeneous and heterogeneous accuracy through
the top-1, top-10 and top-20 metrics.
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Table A.1: Extending Tab. 4.5. Evaluating CMP-NAS on the IJB-C 1:N face retrieval benchmark
using two additional metrics: top-1, top-5 top-10 accuracy. Observe that the models discovered with
CMP-NAS comprehensively outperform the baselines on both, homogeneous and heterogeneous
accuracy.

Query Model MFlops Homogeneous Acc. Heterogeneous Acc
Top-k with k= Top-k with k=

1 5 10 1 5 10

ResNet-101 7597 91.1 95.0 96.1 - - -
MobileNetV1 579 80.0 88.9 91.5 83.5 91.4 93.7
MobileNetV2 329 85.8 92.2 94.2 88.1 93.8 95.2
ProxylessNAS 332 86.3 92.5 94.4 88.5 93.9 95.4
CMP-NAS-a(Face) 327 89.7 94.2 95.5 90.7 94.7 96.1
MobileNetV3 226 85.6 92.1 94.0 88.0 93.5 95.2
CMP-NAS-b(Face) 216 88.2 93.5 95.2 89.8 94.5 95.9
MobileNetV1(0.5x) 155 74.1 77.5 85.3 77.5 88.3 91.3
ShuffleNetV2 149 81.6 89.8 92.2 85.0 92.0 94.1
ShuffleNetV1(g=1) 148 81.3 89.7 92.1 85.1 92.1 94.0
MobileNetV2(0.5x) 100 80.0 88.5 91.3 83.6 90.9 93.3
CMP-NAS-c(Face) 94 84.3 91.4 93.4 86.9 93.1 94.9

Table A.2: Extending Tab. 4.6. Evaluating the models CMP-NAS-a,b,c(Face) on the 1:1 face
verification task using IJB-C using additional operating points. The searched models outperform
the baselines indicating they can generalize across tasks.

Query Model MFlops Homogeneous Acc. Heterogeneous Acc.
TAR@FAR= TAR@FAR=

10−2 10−3 10−4 10−2 10−3 10−4

Resnet-101(gallery) 7597 96.9 92.8 85.4 - - -
MobileNetV1(1x) 579 93.2 82.6 66.7 95.0 86.6 73.0
MobileNetV2(1x) 329 95.6 88.1 75.4 96.5 91.0 80.8
ProxyLess(mobile) 332 95.7 88.2 75.5 96.5 90.7 80.3
CMP-NAS-a(Face) 327 96.7 91.5 81.6 97.1 92.7 84.5
MobileNetV3 226 95.5 88.0 74.3 96.5 90.9 79.9
CMP-NAS-b(Face) 216 96.3 90.2 79.0 96.9 92.2 82.8
MobileNetV1(0.5x) 155 90.8 76.9 58.0 93.4 82.1 64.3
ShuffleNetV2(1x) 149 93.7 83.8 66.8 95.4 88.7 74.8
MobileNetV2(0.5x) 100 93.3 82.0 64.8 94.9 86.8 72.8
CMP-NAS-c(Face) 94 95.1 86.6 71.5 96.1 90.2 78.3
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Table A.3: Extending Tab. 4.5. Evaluating CMP-NAS on the Deepfashion2 fashion retrieval
benchmark using additional metrics: top-1 and top-20 accuracy. We observe that the models dis-
covered with CMP-NAS comprehensively outperform the baselines on both, homogeneous and
heterogeneous accuracies.

Query Model MFlops Homogeneous Acc. Heterogeneous Acc
Top-k with k as Top-k with k as

1 10 20 1 10 20
ResNet-101 39.4 65.1 72.0 - - -
MobileNetV1 579 34.7 60.5 67.8 36.3 62.3 69.1
MobileNetV2 329 32.4 58.0 65.9 33.9 60.4 67.9
ProxylessNAS 332 35.1 60.8 68.5 36.6 62.1 69.4
CMP-NAS-a(Fashion) 314 39.0 65.4 72.4 39.3 65.6 72.5
MobileNetV3 226 37.1 62.7 69.9 37.5 63.0 70.2
CMP-NAS-b(Fashion) 211 38.2 64.0 71.2 38.4 64.9 72.2
MobileNetV1(0.5x) 155 32.8 57.7 65.6 34.0 60.2 67.5
ShuffleNetV2 149 35.4 60.7 68.1 35.7 62.1 69.7
ShuffleNetV1(g=1) 148 34.4 60.5 68.1 35.3 62.6 69.8
CMP-NAS-c(Fashion) 93 37.6 63.5 71.0 38.4 64.8 72.1
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Figure A.1: Extending Fig. 4.6. The figures are generated by averaging the best five architectures
discovered by CMP-NAS (under 100 Mflops) when using different training strategies (Vanilla,
BCT) and rewards (R1 −R3). In (a),(b) we plot the homogeneous and heterogeneous accuracy for
the 1:N face retrieval task using the metric TNIR@FPIR=10−1. In (c),(d) we plot the homogeneous
and heterogeneous accuracy for the fashion retrieval task using the metric top-10. Observe that in
all cases, BCT training works best among the training strategies while R3 outperforms all other
rewards.

A.3 Additional results for weight-level compatibility

Due to space limit, Tab. 4.4 compares different training methods for weight-level compati-
bility using query model achieved by pruning 90% of filters. Tab. A.4 extends Tab. 4.4 by
showing heterogeneous accuracy of query models achieved by pruning the gallery model
to different levels.
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Table A.4: Extending Tab. 4.4. Comparing training methods for heterogeneous accuracy achieved
on the 1:N face retrieval task. The query model φq is obtained via pruning filters from the first
two layers of each residual block of the gallery model. We compare two different pruning methods
[20, 17] at several pruning amounts. Observe that for all pruning methods and amounts, training
the query model with BCT loss leads to (1) non-zero heterogeneous accuracy and (2) the highest
heterogeneous accuracy.

Gallery Query Prune Prune Train Fine-tune BCT KD
model method Amt. Scratch

ResNet-101 - 0% 87.9 - - -
ResNet-101 Magnitude [17] 30% 0.0 87.9 88.5 0.0
ResNet-101 Magnitude [17] 50% 0.0 87.3 88.2 0.0
ResNet-101 Magnitude [17] 70% 0.0 87.2 87.9 0.0
ResNet-101 Magnitude [17] 90% 0.0 86.5 87.2 0.0
ResNet-101 Channel [20] 30% 0.0 87.6 88.4 0.0
ResNet-101 Channel [20] 50% 0.0 87.5 87.8 0.0
ResNet-101 Channel [20] 70% 0.0 87.3 87.9 0.0
ResNet-101 Channel [20] 90% 0.0 86.3 87.4 0.0

A.4 Comparing different rewards

Fig. A.1 is an extension of Fig. 4.6. We present the homogeneous and heterogeneous ac-
curacy achieved by the best five query models searched using different rewards and train-
ing schemes on the face and fashion retrieval tasks. These complementary results further
reinforce our conclusions: R3 generally works better than R1 and R2; Training the super-
network with BCT outperforms vanilla training by a large margin.
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APPENDIX B
HARDNESS AWARE REWEIGHTING FOR IMBALANCED DATASETS

B.1 Dataset Construction

We follow prior work [43, 58, 59, 60] for constructing the datasets. Specifically, the train
split is subsampled as follows, while the val/test split is left class-balanced.
CIFAR LT datasets. Following [43], the train sets for CIFAR-10 LT, CIFAR-100 LT
are sampled from the original training sets of CIFAR-10 and CIFAR-100 according to the
exponential distribution nc = nµc. Here nc refers to the remaining number of examples
in class c, n is the original number of examples per class (5000 for CIFAR-10 and 500
for CIFAR-100) and µ ∈ [0, 1]. We select µ such that the imbalance ratio—which is
defined as the ratio between the number of examples in the largest and smallest class—is
10×, 50×, 100×.
ImageNet LT dataset. Following [148], the training set is subsampled from the original
ImageNet training set by following the pareto distribution with α = 6. The val split is the
same as the original ImageNet dataset.
iNaturalist’18 dataset [157]. This is a naturally imbalanced dataset consisting of images
from 8,142 species. The validation and test splits are balanced across classes.

B.2 Architecture of HAR models

HAR attaches an auxiliary exit before each residual/dense block. The augmented models
are shown in Fig. B.1, with the auxiliary exit design considerations discussed below.
ResNet-32: This backbone model contains three residual block groups (see Fig. B.1a),
with each group containing five standard “basic blocks”. Each auxiliary exit consists of
two convolution layers with sixty-four kernels of size 3×3, followed by an average pooling
and dense layer.
ResNet-50: This backbone model contains four residual block groups (see Fig. B.1b),
with the groups containing 3, 4, 6 and 3 “bottleneck” blocks respectively. Since the filter
channels increase rapidly in this architecture (e.g. group three has 1024 channels), we
use depth-wise separable convolution layers at each exit which helps reduce the additional
FLOPS introduced by the auxiliary exits.
DenseNet-169 This backbone model contains four dense block groups (see Fig. B.1c),
with the groups containing 6, 12, 32 and 32 “dense” blocks respectively. Each auxiliary
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Figure B.1: HAR augments a backbone model with auxilliary exits. This figure describes the
configuration of the early exits for the three models considered in this work. The notation 3×3@16
indicates that the block / layer contains 16 kernels of size 3× 3.

exit consists of two convolution layers with 3 × 3 kernels followed by an average pooling
and dense layer.

B.3 Additional Results on DenseNet-169

In Tab. B.1, we present the top-1 accuracy acheived by a DenseNet-169 model trained on
ImageNet LT with various loss functions. Similar to our findings with ResNet-50 (see
Tab. 6.3 in the main paper), we observe that models trained with HAR(LDAM) improve more
than 2.5% on top-1 accuracy while consuming fewer FLOPS. Moreover, the accuracy im-
provement is acheived on the three class splits corresponding to the Many, Med and Few

shot settings.
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Table B.1: HAR leads to the highest top-1 accuracy (with compute savings) for DenseNet-169
trained on Imagenet-LT and iNaturalist’18 datasets. We consider the many-, medium-, and few-shot
splits. The top panel documents recent SOTA approaches. The middle and bottom panels compare
the HAR method fitted with two different exit-loss types (CE/LDAM).

Imagenet LT iNaturalist ’18
Many Med Few All Many Med Few All

CE 63.5 38.1 14.4 44.6 73.9 64.6 58.1 63.0
CE+DRW [43] 60.3 44.2 25.8 47.9 68.9 67.3 65.6 66.8
Focal+DRW [45] 59.8 44.1 26.0 47.7 68.3 66.4 63.6 65.5
LDAM+DRW [58] 62.2 44.1 27.6 48.8 68.7 67.9 66.5 67.5
HAR(LDAM) + DRW (Our) 63.8 46.5 29.0 50.8 71.5 68.5 66.2 67.9
Flops saving 1.7% 1.4%

Table B.2: Ablating on the number of early-exits for a ResNet-50 model trained on ImageNet-LT
with HAR(LDAM)+DRW. The configuration containing four exits—CEBEBEBEBE—outperforms
all others.

# early-exits Config Many Med Few All

0 CBBBBE 61.1 44.7 28.0 48.8
1 CEBBBBE 62.3 44.9 25.9 49.0

CBEBBBE 63.0 45.9 26.7 49.9
CBBEBBE 63.3 46.6 27.8 50.5
CBBBEBE 62.5 46.0 27.6 49.8
Average 62.8 46.9 27.0 49.8

2 CEBEBBBE 63.0 46.0 27.6 50.0
CEBBEBBE 63.4 46.6 27.4 50.5
CEBBBEBE 62.2 45.6 26.8 49.4
CBEBEBBE 63.4 46.3 27.5 50.3
CBEBBEBE 63.1 46.9 27.9 50.6
Average 62.9 46.2 27.4 50.0

3 CEBEBEBBE 63.5 46.7 27.8 50.6
CEBEBBEBE 62.6 45.7 27.7 49.8
CEBBEBEBE 63.5 47.0 28.1 50.8
CBEBEBEBE 63.2 46.9 28.0 50.7
Average 63.2 46.6 28.0 50.5

4 CEBEBEBEBE 63.6 47.4 28.4 51.1

B.4 Additional ablation study

Q. How does the number of exits impact accuracy? To measure this, in Tab. B.2, we
ablate on the number of early-exits attached to a ResNet-50 model trained on ImageNet LT
using the HAR (LDAM)+DRW loss. For comparison, we use the static mode which means
that the exits are only used during training and are discarded for inference. Among the
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different configurations (with the naming convention: C=conv layer, B=block, E=exit),
the one containing four exits—CEBEBEBEBE—outperforms all others. This validates
our choice of using four branches for all HAR models. Additionally, we observe that the
accuracy improves with the number of exits.
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