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SUMMARY

User demonstrations of robot tasks in everyday environments, such as households, can

be brittle due in part to the dynamic, diverse, and complex properties of those environ-

ments. Humans can find solutions in ambiguous or unfamiliar situations by using a wealth

of common-sense knowledge about their domains to make informed generalizations. For

example, likely locations for food in a novel household. Prior work has shown that robots

can benefit from reasoning about this type of semantic knowledge, which can be modeled

as a knowledge graph of interrelated facts that define whether a relationship exists between

two entities. Semantic reasoning about domain knowledge using knowledge graph repre-

sentations has improved the robustness and usability of end user robots by enabling more

fault tolerant task execution. Knowledge graph representations define the underlying repre-

sentation of facts, how facts are organized, and implement semantic reasoning by defining

the possible computations over facts (e.g. association, fact-prediction).

This thesis examines the use of multi-relational embeddings as knowledge graph

representations within the context of robust task execution and develops methods to

explain the inferences of and sequentially train multi-relational embeddings. To sup-

port this claim, this thesis contributes: (i) a survey of knowledge graph representations

that model semantic domain knowledge in robotics, (ii) the development and evaluation

of our knowledge graph representation based on multi-relational embeddings, (iii) the in-

tegration of our knowledge graph representation into a robot architecture to enable robust

task execution, (iv) the development and evaluation of methods to sequentially update

multi-relational embeddings, and (v) the development and evaluation of an inference rec-

onciliation framework for multi-relational embeddings.

xv



CHAPTER 1

INTRODUCTION

Everyday environments and users present a challenging problem domain for autonomous

robot operation. Users want robots to perform a wide variety of everyday and specialized

tasks, such as cleaning, organizing, and cooking [1]. However, it is challenging for users

(i.e. non-experts) to demonstrate robot tasks such that the tasks are executable in all future

environment instances a robot will encounter. User demonstrated tasks are brittle in part

because everyday environments, such as households, are dynamic, diverse, and complex.

Humans can find solutions in ambiguous or unfamiliar situations by using a wealth of facts

about their domains to make informed generalizations. For example, when making a bowl

of soup at a friend’s house one might consider that bowls are likely found in a kitchen

cabinet, a microwave can be used to cook, soup ingredients are likely to be found in a

fridge, a spoon can be used to stir, and so on. This dissertation considers common-sense

and situational facts pertaining to objects and their attributes that are structured as directed

semantic relationships between two symbolic entities. Examples include actions that can be

performed on and with objects, states objects can take, and locations objects can be found

in. Prior work has shown that computational systems, including robots, can benefit from

reasoning about these types of interrelated facts, which can be modeled as a Knowledge

Graph (KG) [2].

KG representations are class of data structure that enable semantic reasoning by mod-

eling KGs [3, 4, 5, 6, 7, 8]. KG representations define the underlying representation of

facts, how facts are organized, and the possible computations over facts. Together these

definitions result in a core set of reasoning abilities about facts a KG representation can

provide. Some examples include deciding the satisfiability of a set of logical statements

[9], conditioned fact prediction [10], estimating the prior probability of facts [11], approx-
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imating semantic similarity between fact constituents [12], and providing the confidence

for a set of facts [13]. Robots can be endowed with semantic knowledge about a domain by

interfacing with KG representations that computationally model the semantic knowledge

about the domain [14, 4, 9]. Additionally, robots can perform different forms of semantic

reasoning about domain knowledge by leveraging the core set of reasoning abilities a KG

representation provides.

Semantic reasoning about domain knowledge using KG representations has improved

the robustness and usability of end user robots. Prior works have enabled more fault tol-

erant autonomous execution in ambiguous or unfamiliar situations by leveraging semantic

reasoning abilities provided by KG representations. In [15, 4], a Bayesian logic network

is used to find objects in the most likely alternate locations during tasks. In [16] a directed

graph is used to select alternate tools for actions executed during tasks. In [13], a Markov

logic network is used to interpolate ambiguous end user commands into executable robot

plans. In [10], a deep transformer-based neural network is used to infer conditional object

properties during tasks, like object material given object class and color. In each refer-

enced work, the robustness of the robot’s autonomy is improved by informing the robot’s

decision-making of domain knowledge using a KG representation.

Several broad qualities of KG representations are worth consideration to support the

non-expert use of robot autonomy in everyday environments. First, to accurately inform

a robot’s decision making, KG representations should sufficiently account for the uncer-

tainty of semantic knowledge. Second, KG representations should be adaptable to incor-

porate new domain knowledge robots obtain from their dynamic environments. Third, ev-

eryday environments are rich with domain knowledge and require KG representations that

can scale reasoning to KGs about those domains. Fourth, KG representations should en-

able interpretable and explainable robot decision making to promote trust between robots

and their users. These often opposing objectives make designing a KG representation to

support autonomous robots in everyday environments challenging. Tradeoffs exist in the
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design of KG representations that support autonomous robots due to the opposing nature of

the above qualities. For example, accurate probabilistic modeling of the semantic knowl-

edge uncertainties is at odds with the desire to scale reasoning to large KGs about realistic

problem domains. As a result, no KG representation to date excels simultaneously in all

performance characteristics. Instead, a wide range of KG representations [14, 4, 5, 17, 18,

10] have been developed and evaluated to support different robot application scenarios that

each the have their own prioritization of the competing objectives.

This dissertation examines a novel KG representation to support autonomous task exe-

cution in everyday environments. KGs that contain semantic knowledge about real-world

domains tend to have the properties of being large, sparse, and incomplete. For example, a

KG representing semantic knowledge about households, while large, only contains a subset

of true facts, which are sparse with respect to the space of many potential facts. Our KG

representation uses a Multi-Relational Embedding (MRE), which is a distributed represen-

tation that models a KG in vector space [19]. We posit that MREs are well suited to model

semantic knowledge about real-world domains because MREs are designed for KGs that

are large and sparse [2]. Additionally, MREs excel at learning the underlying structure of

KGs to infer new facts beyond those present in a KG, which promotes generalization.

1.1 Dissertation Overview

Everyday environments and users present a challenging problem domain for autonomous

robot operation. Semantic reasoning about domain knowledge using KG representations

has improved the robustness and usability of end user robots by enabling more fault toler-

ant execution. This dissertation examines the use of MREs as a KG representation in the

context of autonomous task execution. In doing so, we develop a robot architecture that

is informed by a MRE during autonomous execution of household cleaning tasks provided

as prototypical task plans. Additionally, we introduce methods to explain the inferences

of and sequentially train multi-relational embeddings to provide natural language expla-
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nations of task plan generalizations and enable updates to represented domain knowledge,

respectively. We evaluate how each of these contributions affect MRE performance and

ultimately, autonomous task execution success rate.

1.2 Thesis Statement

This thesis examines the use of multi-relational embeddings as knowledge graph repre-

sentations within the context of robust task execution and develops methods to explain

the inferences of and sequentially train multi-relational embeddings.

1.3 Contributions

1. Survey of KG Representations in Robotics: (Chapter 3) We characterize prior KG

representations that model semantic domain knowledge in robotics. We first provide

a comprehensive survey of existing work in semantic reasoning for robotics cate-

gorizing and comparing prior KG representations. Each referenced work provides

examples where semantic reasoning about domain knowledge can improve robot be-

havior. Second, we extract a set of broad performance characteristics desired of

KG representations that support autonomous robots from the surveyed prior works.

Third, we compare existing KG representations using the defined performance char-

acteristics, which helps to situate the contributions of this dissertation.

2. Multi-Relational Embeddings as KG Representations for Robots: (Chapter 4)

We develop and evaluate our KG representation based on MREs. Using the insights

from the survey presented in Chapter 3, we develop a novel KG representation for

semantic reasoning about domain knowledge on robot systems using MREs. We

evaluate our representation, showing that it outperforms description logics and word

embeddings in terms of inference performance. Additionally, our experiments show

that the proposed KG representation predicts new KG facts beyond the provided KG
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facts. Lastly, we show that Bayesian logic networks require an intractable amount of

memory to represent the same KG used throughout our experiments.

3. Robust Task Execution using KG Representations: (Chapter 5) We integrate our

KG representation into the planning level of a robot architecture to improve robust

task execution. We define the problem of one-shot task execution wherein a robot

must generalize a single demonstrated task plan to a perturbed environment. We in-

tegrate the KG representation from Chapter 4 within a robot architecture to perform

one-shot task execution informed by our KG representation. Lastly we evaluate our

KG representation both in simulation and on a robot, showing the statistically signifi-

cant improvements in task execution success rate provided by our KG representation.

We also identified important avenues for improvement of the KG representation, like

making MREs more adaptable and making MRE inference explainable.

4. Continual Knowledge Graph Embedding: (Chapter 6) We develop methods to al-

low the sequential training of our KG representation, which enables robot execution

behaviors that adapt to changes in domain knowledge. We develop multiple Contin-

ual Knowledge Graph Embedding (CKGE) methods to enable the sequential training

of MREs. We provide several datasets for the CKGE problem using different strate-

gies that sample benchmark and household robot KG datasets. We evaluate each

CKGE method on multiple datasets with a variety of continual learning metrics to

track each method’s inference performance, memory usage, and learning speed. Ad-

ditionally, we provide guidence on which CKGE methods are best suited to different

robot applications depending on time or data constraints. Lastly, we analyze each

CKGE methods’ effects on robot behaviors for the problem of one-shot robust task

execution across multiple execution environments.

5. Explainable Knowledge Graph Embedding: (Chapter 7) We develop and evalu-

ate an inference reconciliation framework for MREs using Explainable Knowledge
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Graph Embedding (XKGE). We use a pedagogical approach to explain the infer-

ences of a learned, black-box KG representation, a MRE. Our student, a graph fea-

ture model, uses a decision tree classifier to locally approximate the predictions of

the black-box model, and provides natural language explanations interpretable by

non-experts. Our explanations can be provided to end users of the robot, enabling

a dialogue to reconcile the user’s qualms about the robot’s knowledge inferences.

Results from our algorithmic evaluation affirm our model design choices, and the re-

sults of our user studies with non-experts support the need for the proposed inference

reconciliation framework. Critically, results from our simulated robot evaluation in-

dicate that our explanations enable non-experts to correct erratic robot behaviors due

to nonsensical beliefs within the MRE.

1.4 Outline of Dissertation Document

This thesis is organized as follows. Chapter 2 provides background and related work on

KG representations within robotics, MREs, continual learning, and explainable AI. Chap-

ter 3 discusses KG representations for robot systems used in prior work. Chapters 4 and 5

discuss the design and application of the proposed KG representation using MREs. Specifi-

cally, Chapter 4 details the MRE domain knowledge representation, and Chapter 5 provides

the details of how the proposed KG representation is used to inform a robot’s decision

making when during robust task execution. Chapter 6 discusses several continual KG em-

bedding approaches that make the KG representation presented in Chapters 4 and 5 more

adaptable. Chapter 7 presents a contributed explainable KG embedding method to explain

MRE inferences in natural language. We provide concluding remarks and discuss open

questions in Chapter 8.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we organize related works and background as follows. We first discuss the

definitions of semantic common-sense knowledge and KGs we use in section 2.1. In sec-

tion 2.1 we also mention existing KG representations used in prior robotics works to situate

our proposed KG representation. In section 2.2 we provide definitions used in MRE liter-

ature. We follow these definitions with recent state-of-the-art methods for the task of link

prediction. We follow these definitions with background and related works from continual

learning literature in section 2.4 and explainable AI literature in section 2.5, which we use

as inspiration to improve the adaptability and explainability, respectively, of MRE. Lastly,

in section 2.6 we provide background about the task execution stack that we integrated with

our KG representation to inform a robot’s decision making.

2.1 Knowledge Graphs

Prior works represent semantic facts for use in robots as symbolic triples (h, r, t), which

indicate that the directed relationship r holds between head h and tail t of that triple (e.g.

(mug, HasState, empty), (knife, CanBe, pickUp)) [3, 4, 5, 6, 7, 8]. Together, these indi-

vidual facts form a graph G representing a KG that contains semantic knowledge about a

domain (e.g. indoor homes and offices [20], Wikipedia [21], English [22]). This disserta-

tion considers common-sense and situational facts pertaining to objects and their attributes

that are structured as directed semantic relationships between two symbolic entities. Ex-

amples include actions that can be performed on and with objects, states objects can take,

and locations objects can be found in.

KG representations computationally model KGs, providing semantic reasoning abilities

to robots. KG representations organize facts and define the possible mathematical compu-
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tations over facts that provide the core set of reasoning abilities available to a robot (e.g.

association, satisfiability, fact-prediction). A wide range of KG representations have been

proposed to support different robot application scenarios, prioritizing different qualities in

these representations [23]. For example, a KG representation used to support robots work-

ing with non-expert end users might require interpretable inferences [9, 24], while one used

as a shared cloud-based knowledge repository for fleets of robots must prioritize scalability

[5, 25]. These broad qualities of KG representations supporting robotics applications, such

as explainability and scalability, are defined and discussed further in chapter 3.

Prior works have leveraged KG representations to endow robots with complex knowl-

edge reasoning abilities that provide solutions in ambiguous or unfamiliar situations. In

[14], description logics are used to generate an ontology about the robot, such as what

actions it can perform, and the domain it operates in, such as what objects exist. In [15,

4], a Bayesian logic network is used to find objects in the most likely alternate locations

during tasks. In [16] a directed graph is used to select alternate tools for actions executed

during tasks. In [13], a Markov logic network is used to interpolate ambiguous end user

commands into executable robot plans. In [10], a deep transformer-based neural network

is used to infer conditional object properties during tasks, like object material given object

class and color. In each of these works, the robustness of the robot’s autonomy is improved

by informing the robot’s decision-making of domain knowledge using a KG representation.

In chapter 3 we discuss other KG representations used for robotics applications, in addition

to those mentioned, to highlight the trade-offs of each KG representation. This dissertation

proposes a new KG representation for use in robotics applications based on MREs.

2.2 Multi-Relational Embeddings

We adopt MREs for our KG representation. KGs that model semantic knowledge about

real-world domains tend to have the properties of being large, sparse, and incomplete.

For example, a KG representing knowledge about households, while large, only contains
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a subset of true facts, which are sparse with respect to the space of many potential facts.

We use MREs for our KG representation because MREs are designed for KGs that are

large-scale and sparse [26]. Additionally, MREs excel at learning the underlying structure

of graphs to infer new facts beyond known facts in a graph.

MREs are distributed representations that model a KG in vector space [27]. In the MRE

literature, a KG is modeled as a graph G composed of individual facts or triples (h, r, t); h

and t are the head and tail entities (respectively) for which the relation r holds, e.g., (cup,

canBe, fill). MREs learn a continuous vector representation of G from a dataset of triples

D=
{
(h, r, t)i, yi|hi, ti∈E , ri∈R, yi∈{0, 1}

}
, with i∈{1...|D|}. Here yi denotes whether

relation ri ∈ R holds between hi, ti ∈ E .

The learning objective of MRE is to find a set of embeddings Θ that minimizes the

loss LD over D, where Θ =
{
{ve| e ∈ E}, {Wr| r ∈ R}

}
. Each entity e ∈ E is encoded

as a vector ve ∈ RdE , and each relation r ∈ R is encoded as a mapping between vectors

Wr∈RdR , where dE and dR are the dimensions of vectors and mappings respectively [27,

28]. The embeddings for E and R are typically learned using a scoring function f(h, r, t)

that assigns higher (lower) values to positive (negative) triples [28]. Loss LD can take

many forms depending on the MRE representation used, e.g., Margin-Ranking Loss [29]

or Negative Log-Likelihood Loss [30].

Many MRE methods exist [26, 27, 31], and we use different MRE methods throughout

this dissertation because the current state of the art is rapidly advancing from the research

efforts of the Knowledge Base [Graph] Completion community. The next section of this

chapter discusses in more detail recent state of the art MRE methods. Due to the rapidly

developing formulation of the state of the art MRE, the main contributions of this thesis

are MRE agnostic by design. These contributions include applying MREs as KG repre-

sentations to robotics in the context of task plan execution, developing methods for the

sequential training of MREs under continual learning assumptions, and providing natu-

ral language explanations for inferences produced by these black-box models. We have
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considered three KG embedding representations to show the generality of our methods:

TransE, Analogy, and TuckER. We provide more details for each of the MREs used in the

paragraphs that follow. By making our KG representation framework embedding agnostic,

practitioners can use the latest state of the art MRE model.

TransE represents relationships as translations between entities, i.e., vh+Wr = vt [29].

It uses the scoring and margin ranking loss functions in Equation 2.1 and Equation 2.2,

where [x]+ = max(0, x), γ is the margin, and (h′, r, t′) are corrupted triples in a corrupted

KG G ′. Embeddings are subject to normalization constraints (i.e. ||ve||2 ≤ 1 ∀ e ∈ E and

||Wr||2 ≤ 1∀ r ∈ R) to prevent trivial minimization of L by increasing entity embedding

norms during training.

f(h, r, t) = ||vh + Wr − vt||1 (2.1)

L =
∑

(h,r,t)∈G,
(h′,r,t′)∈G′

[f(h, r, t) + γ − f(h′, r, t′)]+ (2.2)

Analogy represents relationships as (bi)linear mappings between entities, i.e., v⊤
h Wr =

v⊤
t [30]. It uses the scoring and negative log loss functions in Equation 2.3 and Equation 2.4

where σ is a sigmoid function, y is a label indicating whether the triple is corrupted, and

G ′ is the corrupted KG. Additionally, the linear mappings (i.e. relations) are constrained

to form a commuting family of normal mappings, i.e., WrW⊤
r = W⊤

r Wr ∀ r ∈ R and

WrWr′ = Wr′Wr ∀ r, r′ ∈ R, to promote analogical structure within the embedding space.

f(h, r, t) = ⟨v⊤h Wr, vt⟩ (2.3)

L =
∑

(h,r,t,y)∈G,G′

−logσ(y · f(h, r, t)) (2.4)

TuckER represents relationships using the Tucker decomposition, i.e., W ×1 vh ×2

Wr ×3 vt where W is the core tensor and ×n is a tensor product along the nth dimension
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[32]. It uses the 1-N scoring and Bernoulli negative log loss functions in Equation 2.5 and

Equation 2.6 where p(h, r, ti) is the predicted probability of tail entity i ∈ {1, ..., |E|} and

yi is a label indicating whether the relation r holds between h and ti. Note that p(h, r, ti) is

the predicted probability, not scoring function. The predicted probability p is a function of

scoring function f that includes batch norms and dropout before putting output activations

through a sigmoid function.

f(h, r, t) = W ×1 vh ×2 Wr ×3 vt (2.5)

L = − 1

|E|

|E|∑
i=1

(
yi · log

(
p(h, r, ti)

)
+ (1− yi) · log

(
1− p(h, r, ti)

))
(2.6)

In practice, KGs are often incomplete; e.g., missing relations between objects and ob-

ject attributes. Therefore, a common evaluation task is to predict complete triples from

incomplete ones by reasoning about a set of seed or training triples, i.e., predict h given

(r, t) or t given (h, r) from a split of test triples given a split of training triples. To perform

triple prediction, each test triple (h, r, t) is first corrupted by replacing the head (or tail)

entity with every other possible entity in the current session En. Then, to avoid underesti-

mating the tested method’s performance, all corrupted test triples that still represent a valid

relationship between the corresponding entities are removed, known as the “filtered” set-

ting in the literature [29]. Last, scores are computed for each test triple and its (remaining)

corrupted triples using the scoring function f(h, r, t), then ranked in descending order.

Link prediction in MRE is implemented by completing a transformation in the embed-

ding space using the scoring function. For example, to infer tails {tj| tj ∈E ∀j} that might

complete (h, r, ), the scores f(h, r, tj) of all j triples are computed, and triples with scores

meeting some classification threshold are classified true. Each score f(h, r, tj) is the resul-

tant of a sequence of high-dimensional geometric transformations between the head entity

vector {vh|h ∈ E}, relation mapping {Wr| r ∈ R}, and tail entity vectors {vtj | t ∈ E}.
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2.3 State of the art in Link Prediction

Since the seminal work of [33], many multi-relational embedding methods have been pro-

posed, some of which are presented in prior graph embedding surveys [26, 27, 31]. The

main research thrusts for link prediction using MREs has been on designing the represen-

tation of entities E , relations R, and scoring. A few recent examples include considering

different spaces to represent entities and relations [34, 35], developing more complex scor-

ing functions [32, 36], and incorporating regularization to promote generalization [37].

In addition to MRE, recent works have introduced architectures for link prediction that

instead leverage large language models [38, 39, 40]. Applying large language models to

the task of link prediction was introduced in COMET to predict missing commonsense

knowledge [38]. COMET treated triples as sequences and leveraged the widely applicable

transformer backbone [41]. The contributions of COMET allow link prediction to benefit

from pretrained architectures of large language models like GPT [42] or BERT [43]. Re-

cent examples after COMET [38] include KG-BERT [39] and LP-BERT [40]. KG-BERT

applied a similar methodology as COMET but used a pretrained BERT language model

instead of GPT. LP-BERT built on the contributions of COMET and KG-BERT by intro-

ducing pretraining tasks to benefit link prediction.

Which of these two approaches will remain as the state of the art representation to use

for link prediction is still an open question as results are mixed depending on the benchmark

dataset and metric used. For example, if we consider Mean Reciprocal Rank (MRR), which

tracks the mean reciprocal rank of the correct response to a query, the results of LP-BERT

[40] suggest that the RESCAL-DURA MRE [37] would be considered the state of the

art across both benchmark datasets. This result is significant as RESCAL-DURA uses

a simpler MRE formulation but includes regularization to promote generalization. The

state of the art performance that can be achieved with a relatively outdated MRE [44] by

incorporating improve regularization suggests that the higher parameter MREs and large
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language models may suffer from overfitting on the common benchmark datasets. When

considering the broader set of performance metrics besides MRR, both MRE methods and

large language models achieve the best reported performance depending on the metric and

benchmark dataset. More recently, another direction of research has considered ensemble

methods to combine the complementary nature of these two representations [45] in an ad-

hoc fashion. The initial results of a MRE and large language model ensemble suggest this

merge is a promising direction for future link prediction research [45].

2.4 Continual Learning

Continual learning has evolved as a subarea of life-long machine learning. It focuses on

neural networks and seeks to learn new domains, classes, or tasks over time without forget-

ting previously learned knowledge [46]. Continual learning within computational models

is challenging due to a problem known as catastrophic forgetting. Catastrophic forgetting

[46] occurs when a neural representation that was optimized for a prior dataset is trained

with a new dataset. The neural network’s weights are tuned to the new dataset, resulting

in a potential loss in performance for classes and tasks not included in the new dataset.

Therefore, methods of continual learning seek to sequentially train computational mod-

els with samples becoming progressivley available over time while mitigating catastrophic

forgetting.

We focus on an Incremental Class Learning continual learning scenario because it

matches the assumptions of robots systems representing semantic common-sense knowl-

edge. Different categories of continual learning scenarios exist in the literature depending

on whether there are shifts in the input or output distributions, and whether the inputs

and outputs share the same representation space, namely, incremental domain, incremen-

tal class, and incremental task learning [47]. In incremental domain learning the marginal

probability distribution of inputs across learning sessions changes. In incremental class

learning, in addition to the changes in the marginal probability distributions of inputs, in
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each learning session only an exclusive subset of classes is present. In incremental task

learning, in addition to the two types of previously mentioned changes, the output spaces

are disjoint between tasks, hence the output dimensions and their semantic meanings differ.

Our work models a scenario where a robot is observing disjoint subsets of a complete KG.

We consider incremental class learning because it best matches the assumptions of robot

systems representing semantic knowledge with the distribution of input data and target

labels changing across learning sessions as the robot incrementally obtains more domain

knowledge.

Several classes of continual learning methods have been developed for object recogni-

tion, but methods for KG embedding remain unexplored. Regularization methods, such as

[48, 49], use different regularization terms to control the changes to weights that were opti-

mized in prior learning sessions. Architecture modification methods, such as [50, 51], add

weights for new classes or tasks in future learning sessions by extend various dimensions

of neural network architectures and bootstrap the training of new weights using previously

learned weights. Generative replay methods, such as [52, 53], learn a generative model

each learning session that is trained on examples from the current learning session and ex-

amples generated by the generative model from the previous learning session if one exists.

Therefore, an ideal generative model supplies all training examples from previous learning

sessions so that a discriminative model can train on examples from all learning sessions

using batch learning. However, continual learning methods remain largely unexplored for

KG embedding.

This dissertation develops and evaluates a suite of continual learning techniques for

MREs. Of the range of classes of continual learning methods, only L2-regularization has

been applied to KG embeddings [54]; more sophisticated methods that have shown promise

in other domains, e.g., generative replay, remain unexplored. We explore and adapt five

representative methods for KG embeddings that include all of the previously mentioned

classes of methods [49, 50, 51, 52, 55]. Additionally, the implications of any related as-

14



sumptions for robotics is not well documented because existing evaluations focus on the

final inference performance and define different task specific measures [56]. Important

measures for robotics, such as learning efficiency and model complexity, are not well doc-

umented for representative techniques [57], making it difficult to evaluate the suitability of

these methods for modeling semantic knowledge in robotics. The methods and evaluations

we develop are designed to fill these gaps, making our proposed KG representation for use

on robot systems more adaptable to changes in domain knowledge.

2.5 Explainable AI Planning (XAIP)

Explainable AI Planning (XAIP) is a focus area of Explainable AI (XAI), with the goal

of explaining an AI’s reasoning to humans in complex decision-making procedures to fos-

ter trust, long-term interaction, and collaboration [58]. XAIP methods are designed with

a particular audience in mind to receive the explanations, end users that are non-experts

interacting with the system and algorithm designers that develop the system. Our research

efforts are focused on non-expert end users. Inference reconciliation through dialogue with

the AI is one method of explaining an AI’s reasoning to end users, motivated by the notion

that users have less computational power than sequential decision making systems (e.g.,

planners). In inference reconciliation through dialogue, user questions about the AI’s plan

are answered using explanations about the agent’s underlying reasoning [58]. These in-

terpretable explanations of the AI’s underlying reasoning supporting the inference serve to

reconcile the user’s qualms about the AI’s inference.

There are a growing variety of questions user’s might ask about an AI’s planning and

representations affecting an AI’s sequential decision making that need to be mapped into

explanations as question responses. Questions from prior work include ”Why is action a

in plan π?”, ”Why not this other plan π‘?”, ”Why is this policy (action) optimal?”, ”Why

is action a taken in world state s?”, ”Why is the sequential decision making problem Π

not solvable?”, ”Why did execution of plan π fail?”. Representations in prior work include
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plans, policies, rationales, and scene-graphs. In [59, 60, 61], causal link chains formed by

action pre- and post-conditions within plans are used to answer “Why is action a in plan

π?”. In [62, 63], unmet properties of alternative plans (e.g., constraints) are highlighted to

answer “Why not this other plan π‘?”. In [64, 65], the frequencies with which the current

action lead to high-value future states or actions are used to answer “Why is this policy

(action) optimal?”. In [66], a mapping between user ascribed rationales and world states

are used to answer “Why is action a taken in world state s?”. In [67], a transformation

(excuse) that makes the sequential decision making problem Π solvable is used to answer

“Why is the sequential decision making problem Π not solvable?”. In [68, 69], relevant

scene-graph semantic relationships causing plan failure are verbalized to answer “Why did

execution of plan π fail?”.

This dissertation contributes a method to explain how knowledge inferences over a

KG modeled using MRE affect an AI’s sequential decision making. To the best of our

knowledge, no prior work in XAIP has leveraged KGs as part of the sequential decision

making representations that need to be mapped into explanations as question responses. A

variety of user questions about an AI’s believed facts and how those beliefs affect the AI’s

sequential decision making can be answered using a KG. We focus on questions of the form

”Why is knowledge inference i supporting action a true?”. The inference reconciliation

framework based on KGs we contribute improves the explainability of our proposed KG

representation by providing natural language explanations for knowledge inferences made

using MREs. Our approach is inspired by prior works on explainable knowledge base

completion.

2.5.1 Explainable Knowledge Base Completion

Knowledge Base [Graph] Completion (KBC) seeks to infer missing facts from a KG us-

ing existing facts [26]. In [26] two branches of KBC techniques that have received much

attention are surveyed: latent and graph feature models. Latent feature models infer miss-
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ing facts based on latent features of graph nodes (i.e., MREs) and graph feature models

infer missing facts based on features extracted from observed graph edges (e.g., paths).

Latent feature models tend to outperform graph feature models [70]. Inferences from latent

feature models are not interpretable because all embedding values are learned relative to

one another and, therefore, dimensions of latent features have no inherent meaning [70].

However, there exist applications where it is desirable to have accurate inferences that are

interpretable (e.g., product recommendation).

Prior works have focused on improving the interpretability of embeddings for latent

feature models and explainability of inferences. In [71, 72] embedding interpretability for

expert users is provided through attention or importance weights over node features with

respect to relation features, respectively. These weights indicate to expert users which

interacting dimensions most contributed to an inference. Such explanations are not inter-

pretable to non-experts as dimensions within MREs carry no semantic meaning. In [73,

74], the reasoning behind or reliability of inferences was explained to non-experts in terms

of the observed short alternative paths or “crossover interactions” between inferred and

given facts, respectively. These methods do not provide explanations for inferences de-

rived from negative correlations because they rely on heuristics, such as support, that only

consider positive correlations. In [70], the reasoning supporting inferences was explained

by learning an explainable model that provides most highly correlated alternative paths.

The explainable model proposed was linear logistic regression, which may not accurately

capture the joint contributions of sets of alternative paths. In [75], fully grounded explana-

tions about inferences were provided by using expert labels to learn in a semi-supervised

manner which “template” explanation (similar to alternative paths) is best suited to explain

an inference. The template selection module learns to select templates mimicking the ex-

pert’s labels but such labels could diverge from the underlying correlations a MRE, and

hence the robot, used to make an inference.

We contribute a novel graph feature model to support our inference reconciliation
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framework. We compare our graph feature model to each of the mentioned prior works.

The developed inference reconciliation framework is built around our graph feature model

to provide non-expert end users with natural explanations of inferences made using MREs.

Therefore, our methods make the proposed KG representation more explainable to non-

expert end users.

2.6 Robot Task Execution Stack

We integrated our KG representation with a mobile manipulator to inform the robot’s deci-

sion making using the KG representation. We used a Fetch [76] mobile manipulator robot

throughout our experiments. In the text that follows we provide some details to the sys-

tem that sequences primitive robot actions (skills) and monitors their execution, namely the

robot’s task execution stack [77]. Our planning level module that integrates the KG rep-

resentation with the task execution stack (see section 5.1) allows the robot to select which

sequence of primitive actions a robot should execute to accomplish a task, informed by

the semantic knowledge within a KG representation. Below we provide the details first of

the modules that implement primitive actions executable by the mobile manipulator, then

we briefly overview the task execution stack that sequences and monitors the execution of

primitive actions.

The task execution stack consists of a set of independent mobile manipulation modules,

implemented using the Robot Operating System (ROS) [78], shown in Figure 2.1. Object

perception modules are implemented as ROS service servers, and object manipulation and

base navigation modules are implemented as actionlib1 servers. Each independent

module can be called by the task executor, and provides feedback to the task executor and

task monitor2. The modules consist of the following capabilities:

Object Perception. Our perception modules implement a perception pipeline for image

1http://wiki.ros.org/actionlib
2Each module must necessarily provide feedback on its own faults so that the executive level can make

relevant recovery decisions.
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Figure 2.1: Mobile manipulation system overview. Arrows denote ROS information flow,
through publishers, subscribers, services, and actionlib.

and depth sensor data, using the Point Cloud Library (PCL) [79]. The object segmenta-

tion module uses the rail segmentation3 package to identify point cloud clusters-

of-interest through table surface detection and Euclidean distance clustering. We divide

our object recognition approaches between large and small objects. For large objects, we

perform model matching using the rail mesh icp4 package that uses an Iterative Clos-

est Point (ICP) PCL pipeline, which also provides object pose detection. For small object

recognition, we train an Support Vector Machine (SVM) classifier over Ensemble of Shape

Functions (ESF) descriptors [80]. We do not need to perform pose estimation for small

objects due to our object grasping approach, described below.

Object Manipulation. Most of our manipulation modules use MoveIt! to perform arm

planning to either joint goals or end-effector pose goals using the Open Motion Planning

Library’s RRTConnect motion planner [81]. This includes both general arm reposi-

tioning actions, which the task executor can call directly (e.g. to move the arm out of

the way of the camera), and execution actions, called by other object manipulation mod-

3http://wiki.ros.org/rail segmentation
4http://wiki.ros.org/rail mesh icp
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ules. Object grasping calculates antipodal grasps over an object point cloud using the

agile grasp package [82], which are then ordered and executed using pairwise rank-

ing through fetch grasp suggestion [83]. As objects can shift during the grasp-

ing process, we perform post-grasp pose detection using the in-hand localization module,

which identifies the object point cloud by performing background subtraction on the robot’s

gripper, and calculates the object’s pose based on its principal axes determined by Princi-

pal Component Analysis (PCA). Given a known object pose and a desired place location,

object placing calculates and executes a pose goal for placing an object that ensures the

gripper fingers and palm are out of the way of the object’s fall trajectory.

We also include some manipulation modules that do not use MoveIt!, due to the limi-

tations of sampling-based motion planning. For large object manipulation, such as lifting

and placing kits of objects, we include a kinesthetic teaching module [84]. The kinesthetic

teaching module allows system designers to record and play back arm trajectories, either in

full or as a set of waypoints. Additionally, we include task-specific manipulation actions to

implement specific manipulation skills such as raising and lowering objects, using a Carte-

sian end-effector controller5, and peg-in-hole insertion, using a controller with end-effector

pose and joint effort as feedback.

Base Navigation. LiDAR-based localization uses adaptive Monte Carlo localization

provided by ROS’s nav stack6 to localize the base with respect to a pre-collected 2D

occupancy grid of the environment. Navigation is primarily done using point-to-point nav-

igation between waypoints on the map, executed using a Proportional-Integral-Derivative

(PID) controller7. We also include local repositioning actions, which implement short

movement primitives such as backing up from a table. The repositioning actions are imple-

mented using a PID controller with gains tuned for shorter, more precise base goals.

With each module implemented, the navigation, perception, and manipulation actions

5Available at https://github.com/GT-RAIL/fetch simple linear controller
6http://wiki.ros.org/navigation
7In complex environments, nav stack’s global and local planners can be used instead.
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Figure 2.2: Overview of the two packages in our the executive level. Arrows denote ROS
information flow, through publishers, subscribers, services, and actionlib.

can be sequenced in a robust manner to complete mobile manipulation tasks by the task

execution system described in the next section.

In addition to the modules that implement primitive actions, we briefly describe the

modules that sequence and monitor the execution of primitive actions shown in Figure 2.2:

the task executor and the task monitor8. The task executor enables a developer to ac-

cess all implemented primitive actions using a consistent API and specify sequences of

actions to execute via manually defined YAML files or programmatically using ROS ser-

vices. Task relevant information used when executing primitive actions is contained in a

database within the task executor for use when calling primitive actions (e.g. locations,

gripper poses, arm poses). The task monitor checks the return values of primitive actions

to trigger errors when return values diverge from what is expected. In addition to the pre-

viously mentioned, the task executor and monitor together implement a recovery system to

decide how to resume a sequence of primitive actions when the robot encounters a prim-

itive action failure (e.g. arm motion planning error). These recoveries rely on a variables

or beliefs describing task relevant environment states. The details of the recovery modules

remain out of scope for the purposes of this dissertation but more details are in [77].

8Stand-alone packages at https://github.com/GT-RAIL/assistance arbitration
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CHAPTER 3

SURVEY OF KG REPRESENTATIONS IN ROBOTICS

In this chapter we survey prior KG representations used for robot applications to situate our

proposed KG representation. The text in this chapter is selected from a broader survey cov-

ering computational frameworks used for semantic reasoning in robot systems [23]. Here,

we focus on computational frameworks that are KG representations [23]. From the many

works surveyed, broad qualities of KG representations supporting robots become prevalent.

We define and discuss these qualities, which together with the referenced works, help to

situate our proposed KG representation within the space. Our proposed KG representation

is then presented in chapter 4.

3.1 Introduction

KG representations are the organizational structures that enable robots to reason about

semantic knowledge. Each KG representation offers different mathematical structures, as-

sumptions, and types of inference (i.e. reasoning). Each KG representation differs in the

extent to which it can model uncertainty, be adaptable, be explainable, and scale due to

each representation’s formulation. These broad qualities of KG representations, defined

below, are prioritized according to a given robotics application. For example, the scalabil-

ity requirements of a KG representation for a single robot reasoning about affordances [85]

are different from a framework designed as a shared cloud-based knowledge repository for

many robots across different environments [5]. A wide range of KG representations have

been applied to reason about semantic knowledge on robot systems and no single approach

is applicable across all scenarios.

1. Modeling uncertainty - extent to which likelihoods, rankings, confidences, or assign-
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Figure 3.1: An example directed graph that includes multimodal data, different types of relations,
and local confidence values defined for edges (shown as values in parentheses). The confidence
scale is not bounded.

ments of concepts modeled by a KG representation correspond with their ground

truth values;

2. Adaptability - extent to which the KG represented can be adapted without corruption

of existing KG;

3. Explainability - extent to which the KG representation and reasoning is interpretable;

4. Scalability - extent to which KG representation and reasoning can be scaled in terms

of number of edges and nodes in the KG before being computationally intractable

due to time or memory complexity;

Below we present a representative list of KG representations that have been used in

prior robotics works. Briefly, we describe the different data and mathematical structures

upon which these frameworks are built, how their assumptions lead to various tradeoffs

with respect to the mentioned above qualities, and use cases of each KG representation in

the context of semantic reasoning. More details about each KG representation and their use

in robot systems can be found in the works referenced. We conclude with some discussion

comparing KG representations in terms of the above qualities and situate our proposed

representation.
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3.2 Directed Graphs

A directed graph G = (V,E) is a set of vertices V connected by directed edges E, repre-

sented by triples {(vi, ej, vk)|vi, vk ∈ V ∧ ej ∈ E}. Vertices V store one or multiple types

of entity information (e.g., text, real-numbers, images, sounds, trajectories, and algorithm

parameters) and each edge e ∈ E has a predefined edge type that represents the relation

between the connected entities. For example, an edge with relation HasAppearance can

connect the abstract label Cup to vertices containing images of cups. Some prior work has

also included confidence values that can be associated with vertices V and edges E in or-

der to represent the certainty of the encoded knowledge [5]. Figure 3.1 shows an example

directed graph.

Tradeoffs in the Context of Robotics: A directed graph is highly adaptable and expand-

able. New robot observations or facts can be easily added to a directed graph in the form

of new vertices or edges. Additionally, confidence values associated with vertices or edges

can be updated to reflect new observations. Vertices can also be merged or split, as in [5],

when new knowledge is acquired. However, a significant limitation of the graph represen-

tation is that it does not support rigorous probabilistic inferences. Furthermore, the belief

of an edge or node is not well established, making it difficult to assess the relative certainty

of various types of information contained with the directed graph. One approach uses the

Katz centrality to assign an ‘importance’ score to nodes corresponding to particular objects

or motions [86], while another incorporates beliefs from disparate knowledge sources or

algorithms [5].

Uses and Applications: Reasoning over directed graphs can be performed at the node,

local subgraph, or global graph levels. At the node level, node similarity can be computed

by comparing the locations of nodes in the directed graph. For example, Wu-Palmer sim-

ilarity [87] is used on WordNet [22] data to generalize manipulation sequences [88] and

organizational preferences [89] between similar objects. At the subgraph level, informa-
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Figure 3.2: An example Markov network with undirected edges between random variables. The
joint distribution can be factorized into clique potentials, denoted by ϕ’s.

tion retrieval on large-scale directed graphs is performed by matching a query template

with the graph [5, 86, 90]. Queries typically take the form (u, e, v), in which the variables

u and v are nodes in the directed graph and the variable e is a directed edge from u to v. For

example, the query (u,HasAffordance, scoop) can be used to retrieve a list of objects that

provide the scooping affordance, and the query (spoon, e, kitchen) can be used to identify

the relationship between a spoon and a kitchen. More complex reasoning can be achieved

by chaining multiple queries together, such as the above examples that can be used to iden-

tify that going to the kitchen may allow the robot to find an object for scooping [5]. At the

global level, graph matching assesses similarity between different models. For example,

graph matching over topological models of human spaces and objects provides a solution

for place recognition and place classification [91], and graph matching over object models

of constituent parts enables object recognition [92]. A different approach is used in [93],

in which a score over an entire object graph is computed based on object properties and

neighboring objects. The importance of different features is learned from demonstrations

in order to encode trajectory preference.
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3.3 Markov Network

A Markov Network (MN), or Markov Random Field, is a probabilistic graphical model

represented by the pair (H,P). The joint probability distribution P factorizes over the

undirected graph H, whose nodes represent a set of propositional random variables and

edges represent the correlations between random variables, as illustrated in Figure 3.2. A

commonly used type of MN is a Conditional Random Field (CRF), in which random vari-

ables are divided into a set of target variables Y and a set of observed variables X . Rather

than encoding the joint distribution P (Y,X), a CRF represents the conditional distribution

P (Y |X).

Tradeoffs in the Context of Robotics: As a probabilistic model, a MN provides a KG

representation for representing a complete probability distribution - the probability of ev-

ery possible event as defined by the values of all the random variables. Additionally, the

independence assertions encoded in the graphical structure allow a distribution to be com-

pactly represented as products of factors, or clique potentials. Since the factorization is

over cliques, which are fully connected subsets of the random variables in the graph (e.g.,

pairs of variables), a Markov network is especially suitable for modeling symmetric or as-

sociative relations between variables. When relations between certain variables are hard to

elicit due to overlapping information or implicit correlations, a CRF can be used to avoid

representing a probabilistic model over these variables. However, the flexibility in defin-

ing MNs and CRFs results in a lack of clear semantics, which has several disadvantages.

First, each clique contributing to the overall inference result does not help to reveal which

random variables affect the result the most. Second, the use of cliques to define a joint

distribution makes parameterizing the model by hand more difficult. The second limitation

leads to the convention of learning clique potentials from training examples, which requires

apriori data to converge to reasonable parameters [94, 95, 96].

Uses and Applications: MNs have been used to model spatial and contextual relations
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Figure 3.3: An example Bayesian network with directed edges between random variables. The
joint distribution can be factorized into conditional probabilities, denoted by P ’s.

between objects. Jointly reasoning about these relations helps to improve the robustness

of object classification algorithms over those that are based solely on visual features. For

example, Relational Markov Networks, an extension of CRFs, have been used to represent

the spatial relations between walls and doors in 2D laser scans [95]. Modeling the spatial

relations allows the approach in [95] to infer labels for line segments that are not confidently

classified from the 2D map features alone. Similarly in [96], CRFs are used to exploit

contextual and spatial relations between objects in a scene to improve object classification.

3.4 Bayesian Networks

A Bayesian Network (BN) is a probabilistic graphical model represented by the pair (G,P),

where the probability distribution P factorizes over a directed acyclic graph G. The nodes

in G represent propositional random variables, and edges represent informational or casual

dependencies between the variables. A BN asserts that each variable is independent of

its nondescendants in G given its parents (see Figure Figure 3.3). The collection of inde-

pendence assertions allows a BN to compactly represent a joint probability distribution by

factoring it into local, conditional distributions for each variable.

Tradeoffs in Context of Robotics: The main advantages of a Bayesian network as a KG

representation are its precise probabilistic interpretation and its adaptability. The Markov

assumption and directed-acyclic constraints that define the scope of the network, allow for
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simple interpretations of conditionally independent variables and causal relations between

variables. The structure of BNs allows for direct inference over variables and learning of

parameters/structures via efficient approximations, such as importance sampling or Gibbs

sampling. Factorizing the full joint distribution over G via conditional probability tables

(or distributions) also makes determining the influences of inference results more acces-

sible than MNs. However, managing large-scale conditional probability tables leads to

drawbacks in terms of scalability. While the richness of the resulting probabilistic repre-

sentation is useful to robots reasoning about specific problems, inference and learning in

BNs is often intractable for real-world problem sizes involving many random variables and

edges in a densely connected network. Thus, due to limited scalability, BNs are rarely used

in complex robot environments, but instead are commonly utilized as a foundation for more

complex KG representations.

Uses and Applications: BNs have been used for semantic grasping by encoding rela-

tions between grasps, object features, and task constraints [97]. In [97], Gaussian Mixture

Models are used to discretize continuous data for BNs in order to learn the network struc-

tures for factors such as object convexity and grasp location. In [98], BNs are extended to

incorporate context and temporal relations into action selection using Dynamic Bayesian

Networks, a representation that presents a compromise between state and space complexity.

3.5 Partially Directed Acyclic Graphs

A Partially Directed Acyclic Graph (PDAG), or Chain Graph, is a graphical model repre-

sented by the pair (I,P), where the probability distribution P factorizes over the hybrid

graph I, which consists of both directed and undirected edges that represent influences be-

tween the propositional random variables encoded in the nodes of I [94]. Figure Figure 3.4

shows an example PDAG.

Tradeoffs in Context of Robotics: PDAGs, which can be thought of as a combination

of MNs and BNs, allow for modeling causal as well as associative relationships. However,
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Figure 3.4: An example partially directed acyclic graph with both directed and undirected edges
between random variables. The edge between the two nodes in the same chain component is undi-
rected, while the edges between two nodes in different chain components are directed. The joint
distribution can be factorized into conditional probabilities of chain components given their respec-
tive parents.

similar to MNs, the PDAG joint distributions are defined over chain components of cliques

in the moralized graph of I instead of individual conditional probabilities, as in BNs. Fac-

torization over cliques leads to confounding inference results for reasons similar to that of

MNs, namely it is difficult to distinguish the variables that contribute to an inference result.

Additionally, PDAGs lack clear semantics for model parameters, which makes model pa-

rameters difficult to elicit from experts. As a result, the convention, much like for MNs, is

to estimate model parameters from training data [17].

Uses and Applications: PDAGs have been used to perform causal and associative rea-

soning of spatial common-sense knowledge in order to build spatial models of indoor envi-

ronments. In [17, 24], each room instance is connected to one another by undirected edges

according to a topological map. The potentials on undirected edges are used to describe

typical connectivity between room categories. Within each room, the variable represent-

ing the room’s category is linked via directed edges to the room shape, size, appearance,

and objects in it, capturing the causal relations between these attributes and the room type.

Similarly in [99], undirected edges are used to model connectivity; however in [99], they

connect nodes representing waypoints in the map. For each waypoint, causal relations

between viewing angles, expected objects in a view, and observations from a robot are

modeled by directed edges.
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Figure 3.5: A graphical representation of an example description logic axioms. The T-Box contains
axioms defining relations between class-level concepts. The A-Box contains a single fact, which is
governed by the constraints defined in T-Box.

3.6 Logics

Logics are a family of programming languages used to describe the relations between prob-

lem domain objects, attributes, actions, and axioms through a series of true or false clauses

[100]. Examples include Description Logics (DL) [101], Prolog [102], and Answer Set

Programming (ASP) [103]. Figure Figure 3.5 shows an example of a description logic on-

tology. Description logics represent a domain knowledge using the pair (T ,A), where T ,

the T-Box, contains terminological axioms describing relationships between concepts, and

A, the A-Box, contains assertional axioms capturing knowledge about named individuals,

i.e., the concepts to which they belong and how they are related to each other [101]. Prolog

encodes domain knowledge as a set of clauses that include relations between concepts and

rules structured as “Rule Head true if Rule Body true” [102]. In addition to modeling re-

lations between concepts, ASP allows for reasoning with incomplete knowledge by using

default negation to denote the unknown value of concepts in addition to true or false values

[100].

Tradeoffs in Context of Robotics: The predefined structure of clauses in logics enable

transparent and interpretable reasoning. As rules in logics define a causal relationship

between the head and body of a rule, all inferred relations must be implied by provided rules
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and relations. Additionally, by only modeling true or false clauses, logics-based semantic

reasoning frameworks can scale to a greater number of instances, types, and relations than

frameworks that model full joint probability distributions [15]. Although logics typically

only contain true or false clauses, many extensions have been made to logics to reason about

the uncertainty of clauses by associating probabilities with them [104], such as Problog

[105], a probabilistic Prolog extension, and P-log [106], a probabilistic ASP extension.

Uses and Applications: Large-scale description logic ontologies have been used to en-

code contexts, spaces, objects, actions, and features, along with axioms that express inter-

and intra-group relations [107, 108, 109, 110, 111, 112]. The KnowRob ontology is con-

structed by combining a manually designed ontology with the public OpenCyc ontology,

therefore bootstrapping available declarative knowledge with general knowledge that could

be leveraged during tasks [113]. The ORO ontology is created in a similar fashion by in-

tegrating with the OpenCyc ontology [9]. However, the ORO ontology focuses on human-

robot interaction, therefore adding new concepts designed to facilitate interaction and mod-

eling of human agents. Problog, the probabilistic extension of Prolog, was used in [114]

to extend probabilistic programming techniques to deal with dynamic relational domains

involving both discrete and continuous random variables. Each state of the environment

is represented as a set of ground facts that define a possible world and a particle filter is

developed to allow one to recursively estimate the state over time given some observations.

ASP and P-log, a probabilistic extension of ASP, have been used in many robotics appli-

cations for planning in open and uncertain worlds [115]. ASP is used in [116] to enable

mobile robots to collaboratively tidy up a house by modeling commonsense knowledge

about households and using the ASP solver to guide motion planning by providing a dis-

crete task plan that satisfies complex temporal goals. The work of [117] introduced richer

representation in ASP with incomplete domain knowledge and the use of ASP-based infer-

ence to heuristically generate a multinomial prior for partially observable Markov decision

process state estimation.
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Figure 3.6: An example Markov logic network and its grounded Markov network. Each for-
mula defining the Markov logic network has an associated weight that reflects how strong
a constraint it is. The Markov network has 3 grounded atom: obj1, loc1, and loc2.

3.7 First-order Probabilistic Models

First-order Probabilistic Models are formalisms widely used in Statistical Relational Learn-

ing (SRL) that combine graphical models with first order relational representations [118],

such as Markov Logic Networks (MLN) [119] and Bayesian Logic Networks (BLN) [120].

A first-order probabilistic model is typically represented as a collection of first-order logic

formulas with confidence scores, as illustrated in Figure Figure 3.6. For example, a MLN

is formally defined as a set L of pairs (F,w), where F is a first-order logic formula and

w is a real number denoting the belief about F . More details about SRL can be found in

[121] and [122].

Tradeoffs in Context of Robotics: The most obvious benefit that results from combin-

ing probabilistic reasoning with first-order logic is that relational inferences can be used

to model uncertainty, becoming more flexible to noisy or contradictory evidence. Another

advantage of First-order probabilistic models is that its world definitions are more compact

because variables act as placeholders for entities, which allows them to make relational

rules interchangeable among entities. In contrast, languages based on propositional logic
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or propositional probabilistic graphical models (e.g.,MNs, BNs, and PDAGs) assume each

symbol represents a concrete fact or entity. However, while first-order probabilistic models

allow the compact writing of rules, their representation rapidly expands when performing

probabilistic inference or learning because first-order probabilistic models still need to be

grounded to their constituent probabilistic graphical models for computations. For exam-

ple, a MLN needs to be grounded to a MN, which contains every possible assignment to

the variables in the MLN, as illustrated in Figure Figure 3.6. The scalability of inference

and learning can be partially addressed by leveraging structures in the models or exploiting

the context of an inference. For example, in [13] the context from input language related

to the inference and the semantic description of the observed world state are used to re-

duce the large number of variables in a grounded knowledge state. Due to poor scalability,

applications of first-order probabilistic models for large-scale semantic reasoning remain

limited.

Uses and Applications: First-order probabilistic models have been used to construct

multi-relational probabilistic knowledge bases. In [6], a MLN is used to store knowl-

edge between object properties and affordances by using probabilistic relations such as isA,

hasAffordance, and hasVisualAttribute. The MLN allows for a variety of queries, for exam-

ple, predicting affordance based on properties extracted from object images and inferring

typical features of objects with a specific affordance. Similarly in [123], a MLN encoding

relations between object properties (e.g., shape, size, and logo) is used to fuse informa-

tion from different perception routines for collective classification. In [85], a probabilistic

programming language, ProbLog, is used to construct a multi-objects affordance model.

The probabilistic logical rules can deal with uncertainty in perception and action outcomes.

Through the use of placeholder variables in place of individual objects, the relational repre-

sentation is able to generalize the affordance model learned from 2 objects to any arbitrary

numbers of objects. In [4, 15], BLNs are used to generate situated probabilistic models

of environments. The BLNs model relationships between objects, object locations, rooms,
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and object affordances. The BLN can be used to make different queries, like enabling the

robot to provide likely locations of objects. In [124], Distributional Clauses, which is a

first-order probabilistic model that supports modeling continuous probability distributions,

enables occluded object search by encoding different spatial relations between objects such

as co-occurrence and stacking in addition to affordance related relations. A dynamic ver-

sion of Distributional Clauses is used for object tracking during human activities [125]. The

physics laws and common sense knowledge (e.g., if an object is on top of another object,

it cannot fall down) that are encoded in probabilistic and continuous first-order rules help

robots robustly track objects even with occlusion.

3.8 Neural Networks

A Neural Network (NN) is a parameterized function approximator F that defines a mapping

from input data X to output results Y (i.e. Y = F(X ,Θ), where Θ represents parameters

of F) [126]. The NNs used in semantic reasoning usually have two distinctive features.

First, these NNs often make use of data containing semantic features, such as natural lan-

guage descriptions of manipulation actions [127], or subgraphs from a KG [128]. Second,

the objective of these NNs is to learn not only the mapping from input to output, but also

the structure and semantic relations that underlie the data. Embedding methods [31], in

particular, represent a family of NNs that focus on encoding the structure of data by pro-

jecting input data into vector spaces in which spatial relations reflect the semantic relations

of the input data.

Tradeoffs in Context of Robotics: NNs are a flexible computational framework capable

of learning highly complex relations from data that are often difficult to encode manually.

NNs can also take data of almost any form (e.g., task label, natural language instruction,

image, point cloud, grasp pose, and trajectory), thereby allowing multimodal data to be

combined and reasoned about collectively in a principled way. However, the adaptability

of NNs comes at a cost to semantic reasoning for robotic applications. First, training NNs
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Figure 3.7: An example neural network word embedding where proximity of semantic
meaning can be determined by vector space computations. Entities are vectors and relations
can be embedded as vector offsets.

requires large amounts of data, which is often challenging to obtain, particularly in physical

environments. Second, NNs are not as transparent as logic or probabilistic models, there-

fore reducing the explainability of the decision-making process. Additionally because the

learned semantics within the NNs are challenging to extract, a NN trained in one domain

may not transfer well to another (e.g., simulation vs real-world). While progress continues

to be made on each of these fronts, these are considerable limitations for practical applica-

tions involving physical robots operating autonomously in real-world environments.

Uses and Applications: NNs have been used in a number of semantic reasoning frame-

works to learn mappings from semantic features to desired robot behaviors. In [127, 129],

NNs are used to learn a multi-modal embedding that fused trajectory, language instruc-

tion, and object point cloud data. The NNs are used transfer manipulation trajectories to

previously unseen objects or provide a semantic label for a manipulation being performed

on an object. In [130], contextual information, such as object affordances, materials, and

intended manipulation tasks, represented in the form of text labels, are used as inputs to a

NN to predict the compatibility of grasps with given tasks.

As noted above, embedding methods also have been widely used in semantic reasoning

to capture proximity of meaning within the data. Word embeddings capturing similar word

meanings [131] are used in [12] and [18] to perform multi-modal language grounding and
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learn common sense navigational knowledge, respectively. Graph NNs learn graph em-

beddings and have been applied to the problems of recognition of novel objects [132] and

visual semantic navigation in novel environments [133].

3.9 Summary of KG Representations

A wide range of KG representations have been used for semantic reasoning in robotics,

and no single representation is applicable across all scenarios. We can compare KG repre-

sentations by the previously defined broad qualities that result from each representation’s

underlying assumptions and formulation. These qualities include modeling uncertainty,

adaptability, explainability, and scalability. Similarly, one can prioritize these qualities for

an application by considering the reasoning problem domain, available data, end user of the

robot, and other considerations. Therefore, the selection or design of a KG representation

for an application can be informed by matching the qualities between the representation and

application. Trade-offs exist between each of these qualities due to their opposing nature,

and existing KG representations have succeeded in excelling at subsets of these qualities.

Below we summarize how the KG representations in the previous sections of this chapter

excel in subsets of these qualities.

Modeling uncertainty: Probabilistic models, including MNs, BNs, PDAGs, and first-

order probabilistic models, are inherently effective at modeling uncertainty. When using

other frameworks in situations with nondeterministic information, probabilistic variants of

these frameworks, such as Bayesian Neural Networks [134] and Probabilistic Description

Logics [135], can be selected.

Adaptability: Incorporating new information into probabilistic models is hard as it often

entails learning new parameters or structures. In contrast, new knowledge can be more

easily added as new assertions in logics-based frameworks and as new nodes or edges

in directed graphs. Since NNs are typically capable of generalizing learned models to

new data, new information can also be reasoned without retraining. However, in cases
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where retraining is necessary, NNs can be challenging to update without corrupting learned

semantic knowledge due to the previously mentioned problem of catastrophic forgetting

(see section 2.4).

Explainability: Symbolic KG representations, including all approaches previously in-

troduced except NNs, are typically more transparent than non-symbolic approaches. The

opaqueness of NNs is due to the unclear semantics within the learned weights of NNs.

Therefore, it can be more difficult to incorporate methods that provide explanations to end

users non-symbolic KG representations than symbolic ones.

Scalability: NNs, directed graphs, and logics have all been used with large-scale datasets

modeling large problem domains [132, 5, 3]. In contrast, probabilistic models are less effi-

cient at handling a large problem domains. As for first-order probabilistic models specifi-

cally, scalable inference and learning are still open research problems.

3.10 Discussion & Conclusion

We covered seven different classes of KG representations and referenced prior work lever-

aging each in robot systems: (1) Directed Graph, (2) Markov Network, (3) Bayesian Net-

work, (4) Partially Directed Acyclic Graph, (5) Logics, (6) First-order Probabilistic Mod-

els, and (7) Neural Networks. For each of these KG representations we discussed tradeoffs

in terms of broad features desired of robot systems operating with non-expert end users.

From the many works surveyed, we identified four broad qualities of KG representations

prevalent in prior work: (1) Modeling uncertainty, (2) Adaptability, (3) Explainability, and

(4) Scalability. Last we highlighted the KG representations that excel in each of these cat-

egories and discussed how to inform the selection of a KG representation for a robotics

application.
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3.11 Findings & Contributions

This work comprises our contributions to a survey of KG representations that model

semantic domain knowledge in robotics. We did this by surveying robotics works that

used KG representations to perform semantic reasoning. Additionally, we identified four

broad qualities of KG representations. Our discussion of these qualities served to compare

KG representations inform the matching of a representation to a robot application. The next

two chapters of this thesis formulate and evaluate the use of MRE as a KG representation to

inform a robot’s decision making during autonomous task execution. Later chapters of this

thesis serve to improve upon the inherent limitations of using MRE as a KG representation

within the context of robot autonomy.
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CHAPTER 4

MULTI-RELATIONAL EMBEDDINGS AS KG REPRESENTATIONS FOR

ROBOTS

In this chapter we present our proposed KG representation based on MREs. The work in

this chapter presents the foundation of our KG representation. As discussed in chapter 3,

the term computational frameworks is used interchangeably here with KG representations,

which are a subclass of computational frameworks. Contributions of later chapters build

upon our framework to demonstrate its use in robot systems and improve its limitations

with respect to adaptability and explainability.

4.1 Introduction

Robots operating in human environments benefit from encoding world information in a

semantically-meaningful representation in order to facilitate generalization and domain

transfer. Our work focuses on the problem of semantically representing a robot’s world

in a robust, generalizable, and scalable fashion. Semantic knowledge is typically modeled

by a set of entities E representing concepts known to the robot (e.g. apple, fabric, kitchen),

and a set of possible relations R (e.g. atLocation, hasMaterial, hasAffordance) between

them [3, 4, 5, 6, 7, 8].

While some semantic information can be hard-coded, large-scale and long-term de-

ployments of autonomous systems require the development of computational frameworks

that i) enable abstract concepts to be learned and generalized from observations, ii) effec-

tively model the uncertain nature of complex real-world environment, and iii) are scalable,

incorporating data from a wide range of environments (e.g., hundreds of households). Pre-

vious work in semantic reasoning for robot systems has addressed subsets of the above

challenges. Directed graphs [94] used in [5] allowed individual observations to adapt gen-
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Figure 4.1: RoboCSE can be queried by a robot to infer knowledge and make decisions.

eralized concepts at large scale, integrating multiple projects. BLN [120] in [4] allowed

for precise probabilistic inference and learning assuming KGs have manageable sizes. DL

[101] used in [15] allowed for large-scale deterministic reasoning about many concepts. In

summary, each of these representations have limitations with respect to at least one of the

three characteristics above.

We contribute Robot Common Sense Embedding (RoboCSE), a novel KG representa-

tion for semantic reasoning that is highly scalable, robust to uncertainty, and generalizes

learned semantics. Given a KG G, formalized in section 4.2, RoboCSE encodes semantic

knowledge using MREs [28], embedding G into a high-dimensional vector space that pre-

serves graphical structure between nodes and edges, while also facilitating generalization

(see Figure 4.2a and Figure 4.2e). We show that RoboCSE can be trained on simulated

environments (AI2Thor [136]), and that the resulting learned model effectively transfers

to data from real-world domains, including both pre-recorded household scenes (Matter-

Port3D [137]) and real-time execution on a robot1 (Figure 4.1).

We compare our work to three baselines: BLNs, Google’s pre-trained Word2Vec em-

beddings [138], and a theoretical upper bound on the performance of logic-based meth-

ods [101]. Our results show that RoboCSE uses orders of magnitude less memory than

BLNs2 and outperforms the Word2Vec and logic-based baselines across all accuracy met-

rics. RoboCSE also successfully generalizes beyond the training data, inferring triples

1https://youtu.be/ynHwNotCkDA
2implemented using ProbCog [139]
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(a)

(b) (c) (d) (e) (f)

Figure 4.2: From a directed graph (Figure 4.2a) we can learn a vector embedding containing the
same nodes and edges. MREs begin randomly initialized (Figure 4.2b) and are updated by calculat-
ing the losses between target transformations and actual transformations (Figure 4.2c-Figure 4.2d)
until they converge on a semantically meaningful structure (Figure 4.2e-Figure 4.2f).

held-out from the training set, by leveraging latent interactions between multiple relations

for a given entity. Furthermore, results returned by RoboCSE are ranked by confidence

score, enabling robot behavior architectures to be constructed that effectively reason about

the level of uncertainty in the robot’s knowledge. Combined, the memory efficiency and

learned generalizations of RoboCSE allow a robot to semantically model a larger world

while accounting for uncertainty.

4.2 Background: Multi-Relational Embeddings

The objective of the multi-relational (i.e. KG) embedding problem is to learn a continu-

ous vector representation of a KG G, encoding vertices that represent entities E as a set of

vectors vE ∈ R|E|×dE and edges that represent relations R as mappings between vectors

WR ∈ R|R|×dR , where dE and dR are the dimensions of E vectors and R mappings, respec-

tively [28, 27]. The KG G is composed from individual knowledge triples (h, r, t) such

that h, t ∈ E are identified as head and tail entities of the triple, respectively, for which the

relation r ∈ R holds (e.g. (cup, hasAffordance, fill)). Collectively, the set of all triples

from a dataset D form a directed graph G expressing the knowledge for that domain (note
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G is considered incomplete because some set of triples may be missing).

Generically, a MRE is learned by minimizing the loss L using a scoring function

f(h, r, t) over the set of knowledge triples from G. In addition to knowledge triples from G,

embedding performance substantially improves when negative triples are sampled from a

negative triple KG Ĝ [28]. Therefore, L is defined as L
(
f(h, r, t), y

)
where y is the positive

or negative label for the triple.

4.3 RoboCSE

RoboCSE is a KG representation for semantic reasoning that uses MREs to encode ab-

stract knowledge obtained by the robot from its sensors, simulation, or even external KGs

(Figure 4.3). The robot can use the resulting KG representation as a queriable database to

obtain information about its environment, such as likely object locations, material proper-

ties of objects, object affordances, and any other relation-based semantic information the

robot is able to mine.

Figure 4.2 simplifies and summarizes the embedding process, conceptually. Training

instances are provided in the form of knowledge triples (h, r, t, y) (Figure 4.2a). The em-

bedding space containing all entity vectors has no structure before training (Figure 4.2b)

because the relational embeddings must be learned. Therefore, all entities E and relations

R are initialized as random vectors and mappings, respectively.

Each (h, r, t) training instance provided is used to perform stochastic-gradient-descent.

Given a particular MRE, its loss function is used to compute a loss between a current

vector and a target vector (Figure 4.2d). The current vector is calculated using a subset of

the knowledge triple (e.g. pick up in Figure 4.2c) and the target vector is calculated using

the remaining subset (e.g. mug hasAffordance in Figure 4.2c). The loss is used to update

the appropriate E vectors and R mappings to better approximate the correct representation

(Figure 4.2e).

The vectors and mappings of E and R, respectively, converge to semantically meaning-
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ful values after repeating the training process with different subsets of knowledge instances

(Figure 4.2e), which can be used to perform inference (see [28] for a survey on MREs). In

Figure 4.2f we see that similar entities are grouped horizontally, cabinets are more likely to

be filled than picked up, and mugs are equally likely to have either affordance.

We use the Analogy [30] MRE. Analogy represents relationships as (bi)linear mappings

between entities, i.e., v⊤
h Wr = v⊤

t [30]. It uses the scoring and negative log loss functions in

Equation 4.1 and Equation 4.2 where σ is a sigmoid function, y is a label indicating whether

the triple is corrupted, and G ′ is the corrupted KG. Additionally, the linear mappings (i.e.

relations) are constrained to form a commuting family of normal mappings, i.e., WrW⊤
r =

W⊤
r Wr ∀ r ∈ R and WrWr′ = Wr′Wr ∀ r, r′ ∈ R, to promote analogical structure within

the embedding space.

f(h, r, t) = ⟨v⊤h Wr, vt⟩ (4.1)

L =
∑

(h,r,t,y)∈G,G′

−logσ(y · f(h, r, t)) (4.2)

Inference in RoboCSE is done by completing a knowledge triple given only partial in-

formation. For example given (h, r ), RoboCSE returns a list of the most likely tails ti

to complete the knowledge instance. Mathematically, given (h, r, ), r maps an h by a

high-dimensional geometric transformation, then the vectors with the highest f scores to

the resultant are selected as results, which represent the most likely tails ti. In the case

of RoboCSE, which uses [30], r maps an h via vT
hWr. Result tails ti are ordered using

the bilinear scoring function f , in which higher scores be more likely (i.e. more closely

aligned vectors). RoboCSE can make inferences about knowledge triples it has never seen

before because these transformations can be done over any entities in the embedding space,

allowing for generalization.

An assumption made widely across prior MRE work [33, 30, 27] is that query responses

are deterministic (i.e. either always true with rank 1 or false with lower ranks), and only

factual relations are provided in the training data. However, the semantic data we are
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Figure 4.3: Overview of RoboCSE framework integrated with mobile robot.

modeling is highly stochastic; for example, multiple potential locations are likely for a

given object. As a result, the ground truth rank of responses is often not 1. Instead, ground

truth ranks reflect the number of observations in the data. To support ranks higher than 1

in our evaluation, we extend the standard performance metrics of MRR and Hits at top K

(Hits@K), which assume a ground truth rank of 1, and for the experiments in section 4.5,

we instead report:

Hits@5* =
1

N

N∑
n=1

Hits5
(
| Gr − Ir |

)

s.t. Hits5 =

{
1 if | Gr − Ir |< 5

0 otherwise

(4.3)

MRR* =
1

N

N∑
n=1

1

| Gr − Ir | +1
(4.4)

where N is the number of triples tested, GR is the ground truth rank, and Ir is the inferred

rank. For both these metrics, scores range from 0 to 1 with 1 being the best performance.

MRR* is a more complete ranking metric for which the inferred and ground truth ranks

must match exactly to get a MRR* of 1. Hits@K* gives a more granular look at rankings

and is informative of how often the correct response is ranked within the top K results. We

discuss how the ground truth set and ranks are generated for each experiment in section 4.4.
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Table 4.1: RoboCSE Knowledge Source

AI2Thor: 3 Relation Types, 117 Entities

Median Count per Environment

Env.
Type

Loc.
Rel.

Mat.
Rel.

Aff.
Rel. Entities

Num.
Rooms

Bathroom 28 21 46 18 30
Bedroom 28.5 16 54.5 20 30
Kitchen 59.5 51 109 27 30
Livingroom 22.5 8 37 20 30
All 29.5 18.5 50 20 120

4.4 Experimental Procedure

We evaluated RoboCSE’s generalization capability on two scenarios: inferring the ranks of

unseen triples (triple generalization) and accurately predicting the properties and locations

of objects in previously unseen environments (environment generalization).

4.4.1 RoboCSE Knowledge Source: AI2Thor

Our semantic reasoning framework targets common sense knowledge for residential service

robots. Knowledge embedded in RoboCSE was mined from a highly realistic simulation

environment of household domains, AI2Thor [136]. AI2Thor offers realistic environments

from which instances of semantic triples about affordances and locations of objects can be

mined (see Table 4.1). Entities include 83 household items (e.g. microwave, toilet, kitchen)

and 17 affordances (e.g. pick up, open, turn on). Additionally, we manually extended ob-

jects within AI2Thor to model 17 material properties (e.g. wood, fabric, glass), which were

assigned probabilistically based on materials encountered in the SUNCG dataset [140].

The addition of material properties brought the total number of triples available for train-

ing, validation, and testing to over 15K. Note that while only the default environments (and

therefore, true triples) were mined from AI2Thor, because object position and properties in

the open-source simulator can be manipulated, many more environments and unique triples
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Figure 4.4: Diagram of triples contained in train, validation, and test sets for each fold (not to
scale) during triple generalization (above) and environment generalization (below).

can be artificially generated for representations requiring more training data.

Prior work on MRE has shown that inclusion of negative examples in the training data,

defined as triples known to be false, leads to improved training performance [28]. There-

fore, we additionally trained on (9 × number of true triples) negative examples for our

domain to improve training performance. Similar to prior work, we used the closed world

assumption to sample negative triples. However, we did not find that using the perturbing

method suggested in [30] gave the best results. Instead, we observed empirically that better

results were achieved after filtering perturbed triples to verify the sample was not in the

training set.

4.4.2 Inferring Unseen Triples: Triple Generalization

Inevitably, an autonomous robot operating in a real-world environment will encounter prob-

lems that require answers to queries it was not trained on (e.g. can mugs be filled?). To

probe how well RoboCSE can correctly generalize to do triple prediction, triple general-
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ization performance was tested for each algorithm as follows.

Five-fold cross-validation was performed to estimate each evaluated algorithm’s per-

formance. To generate each fold, the set of all unique triples U was generated from the set

of all triples in our test case dataset D where U ⊂ D by filtering out repeated triples (i.e.

each triple t ∈ U has the property ti ̸= tj∀ti, tj ∈ U : i ̸= j) (see Figure 4.4). U was split

into five equally sized sets of triples for folds U f where f ∈ {1, 2, 3, 4, 5}. U f was divided

in half to create a validation portion U f
V a and test portion U f

Te. The training set for each

fold Df
Tr was generated from D by ensuring Df

Tr ⊂ D such that Df
Tr ∩ (U f

V a ∪ U f
Te) = ∅.

For each fold, Df
Tr was trained on while validating on U f

V a, and the learned embedding was

then tested on U f
Te.

The training process follows the same procedure as in [30]. Testing was done by gen-

erating three ranks with each triple (i.e. rank h given (h, r, ), rank r given (h, , t), and

rank t given (h, r, )) then comparing them to their respective ground truth ranks. Each

triple in the test set was a held-out triple ranked using the full-distribution of triples D.

Ground truth ranking was calculated according to the number of observations (i.e. more

observations give higher rank). Error metrics similar to those from the relational embed-

ding community (MRR* and Hits@K*) were calculated using the ground truth rank for

comparison3.

4.4.3 Applying Common Sense: Environment Generalization

Our second test targets the scenario of deploying a robot equipped with a semantic knowl-

edge base in a new environment, with the goal of evaluating how well the embedded knowl-

edge generalizes to new rooms and the degree to which a robot can use its knowledge to

predict object properties or locations in the new setting (e.g. in a new house, where would

I likely find a towel?). Environment generalization was tested as follows.

Five-fold cross-validation was performed to estimate each algorithm’s performance

3Note that the * over both of our error metrics are to distinguish them from the standard error metrics used
in relational embeddings which assume 1 as the reference rank.
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over a test case dataset balanced across environment types (i.e. bathroom, bedroom, kitchen,

livingroom). To generate each fold, D was separated into four sets for each environment

type maintaining resolution at environment level (i.e. a single environment with all triples

contained is an atomic unit for splitting purposes), DBa for bathrooms, DBe for bedrooms,

DK for kitchens, and DL for living rooms (see Figure 4.4). Then each environment type

set DE for E ∈ {Ba,Be,K,L} was split at environment resolution into five equally sized

sets of environments for folds Df
E where f ∈ {1, 2, 3, 4, 5}. The smaller fraction of each

fold of Df
E was then divided in half to create a validation portion Df

EV a
and test portion

Df
ETe

, while the larger fraction served as a training set Df
ETr

. Finally, the balanced train

Bf
Tr, validation Bf

V a, and test Bf
Te sets were generated according to:

Bf
Tr=

⋃
e∈E

Df
eTr

Bf
V a=

⋃
e∈E

Df
eV a

Bf
Te=

⋃
e∈E

Df
eTe

(4.5)

The training process followed the same procedure as in [30]. Testing was done by

querying the tested algorithm for triples that come from new environments, which have

not been trained on found in each Bf
Te for folds f ∈ {1, 2, 3, 4, 5}. The standard MRR

and Hits@K were used to measure the algorithm’s performance, allowing us to assess how

frequently the robot was correct on the first attempt.

4.5 Experimental Results

In this section, we report results characterizing the performance of various models trained

on AI2Thor data to understand the advantages and limitations of RoboCSE. Pre-trained

Word2Vec embeddings were used in Triple Generalization as a comparable baseline not

within the class of MREs. An upper-bound on the performance of logic-based systems was

also included in the Triple Generalization experiment to compare with more historically

prevalent approaches [15, 9, 108]. For Environment Generalization and Domain Transfer,

the KG G formed from the training set was used as a baseline baseline that memorizes
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the frequencies of triples in the training set. The KG is a controlled baseline that gives a

clear indicator of how well RoboCSE generalized knowledge beyond what was available

in the training set. Lastly, the memory requirements of RoboCSE were compared to a

BLN because both account for uncertainty while modeling a graph of knowledge triples

unlike Word2Vec or logic-based approaches. BLNs and MLNs were widely used in pre-

vious works but suffer from similar intractability problems [4, 15, 6]. Due to memory

requirements, the BLN baseline could not be included in all experiments.

4.5.1 Testing Triple Generalization

Triple Generalization was tested to quantify how well RoboCSE could infer missing triples

using the learned KG representation (i.e. infer rank for fork atLocaion kitchen, not in the

train set).

Two baselines were used to compare with RoboCSE, Word2Vec and DL performance

upper-bound. The Word2Vec baseline first forms a ‘comparison’ group C of responses

from all triples in the training set matching a test query (i.e. group heads from all training

triples matching the query ( ,atLocation,cabinet)). With the Word2Vec embeddings of

C, the Word2Vec embedding of all candidate responses (i.e. all entities /∈ C) are ranked

using the cosine distance. We estimated the upper-bound of a DL based system at best

be able to perform at type-specific chance (e.g. for a total of 17 affordances, guessing the

correct affordance to (mug,hasAffordance, ) in the top five hits has a chance 5
17

). Upper-

bounds of DL performance can be estimated because DL can determine the type of result

that should be returned by a query but cannot infer which entity within a type would be

most likely. Therefore the performance could be estimated for each query assuming type-

specific chance (see Figure 4.5a). The bar graphs in Figure 4.5 show the performance of

each algorithm w.r.t. Hits@5* and MRR* metrics for each relation and query type on the

x-axis.

RoboCSE outperformed all baselines across all metrics at predicting unseen triples,
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(a)

(b)

Figure 4.5: Performance w.r.t. Hits@5* and MRR* metrics for Triple Generalization in AI2Thor

which were statistically significant improvements on (h, , t) and (h, r, ) queries compared

using non-parametric 2 group Mann-Whitney U tests. The DL bound performs well for

(h, , t) queries because DL has explicitly defined types for all entities in a T-Box [101],

allowing the framework to select the correct relation given a head and tail. The overall

implication of these performance improvements is that a robot using RoboCSE to reason

about a task could not only infer new knowledge it might not have been trained on to

complete a task, but also reason about the confidence in the inferences to return the best

result.

All algorithms performed worse at ( , r, t) queries than other queries, which is prevalent

across our experiments. The drop in performance for ( , r, t) queries is because selecting

the right entity as a head to complete a triple is a more difficult learning problem (a chance

of 1
74

) versus selecting the correct affordance, material, or location, which are much fewer

in number.
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(a) (b)

Figure 4.6: Performance Trends w.r.t. Hits@5* and MRR* Metrics for Environment Generaliza-
tion in AI2Thor

4.5.2 Testing Environment Generalization

Environment Generalization was tested to measure how well RoboCSE could accurately

complete triples in new rooms, motivated by real-world application of RoboCSE and the

way training/deployment would proceed when a service robot encounters a new environ-

ment.

We compared RoboCSE to an instance-based learning baseline that memorizes the

training set (i.e. frequency count) and the initial results showed these two methods were

comparable. The baseline completed triples by selecting the most observed matching can-

didate (i.e. given query ( , r, t) it returned the head most often observed with the matching

relation r and tail t). We trained each algorithm on 24 rooms of each type available and

the results showed the baseline and RoboCSE had closely matching strong performances

(whereby performance of each was within 1% of each other, >90% for (h, , t) and (h, r, )

queries and >40% for ( , r, t)). The similarity in performance between our approach and

the baseline was because the default rooms of AI2Thor do not have enough variety between

rooms (i.e. algorithms rarely have to generalize to unseen triples).

However, reducing the number of rooms reveals RoboCSE’s ability to learn from the

interactions of triples and generalize to the best performance faster than the baseline (see
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(a)

(b)

Figure 4.7: Performance w.r.t. Hits@5 and MRR metrics for Domain Transfer to MatterPort3D

Figure 4.6). Lines in Figure 4.6 were generated by averaging across relations for each query

type at varying numbers of rooms in the training set. The trend of RoboCSE generalizing to

new rooms faster than the baseline was most pronounced with the fewest number of rooms

in the training set (i.e. 1) but continued up to about 9 rooms as shown in the line plots.

RoboCSE’s generalization across rooms was most pronounced for the (h, , t) and (h, r, )

queries on both metrics. Therefore, a robot bootstrapped with RoboCSE can learn general

structures from individual instances to perform better in new environments and require less

training data.

4.5.3 Domain Transfer: Testing on MatterPort3D

The learned embeddings from AI2Thor were tested on MatterPort3D (MP3D) to measure

how well RoboCSE transfers to envrionments from real-world domains. While MP3D does

not contain all the object properties we included in AI2Thor (no affordances or materials),

it does contain triples about object locations for over 500 real-world environments.

The results from domain transfer showed that RoboCSE generalized to MP3D better
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than our instance-based learning baseline that memorizes the training set (i.e. frequency

count), effectively inferring new triples not present in the training data. Training and vali-

dation for domain transfer closely followed the Environment Generalization procedure (see

subsection 4.5.2) but only for atLocation relations. During testing, the models learned from

all rooms in AI2Thor were used to answer queries about all rooms in MP3D. The bar graphs

in Figure 4.7 show that the semantics learned in AI2Thor can be directly applied to MP3D,

evident in the high performance of both algorithms. Furthermore, inference in RoboCSE

successfully generalized beyond training data to accurately infer more queries indicated

by the statistically significant higher scores RoboCSE gets on (h, , t) and (h, r, ) queries

compared using non-parametric 2 group Mann-Whitney U tests. In short, bootstrapping a

robot with semantics learned in simulation using RoboCSE can be applied to data from real

world environments.

4.5.4 Analyzing Memory Requirements

We analyzed the memory requirements of RoboCSE and BLNs [120] to compare the scal-

ability of each.

To analyze memory requirements, all unique triples from AI2Thor were extracted (352)

and modeled in a BLN using a standard package (ProbCog [139]). The resulting BLN re-

quired 9 orders of magnitude more memory than RoboCSE (i.e. 100 TB vs. 96 KB).

Although BLNs have been used to model semantic knowledge within robot systems to

do accurate probabilistic reasoning [15, 4], maintaining conditional-probability tables in

BLNs can be intractable due to the rapid increase of node in-degree (i.e. number of par-

ents) and therefore table size, for densely connected networks. For example, let the network

structure G of a BLN be G = (V,E) where V represents all the nodes of the network, E

are all edges between nodes, and vi is any node in the network such that vi ∈ V . Noting

the in-degree of vi as deg−(vi) and nV as the number of nodes in V , then the number of

entries in all conditional-probability tables within a network G will be
∑nV

i=1 2
deg−(vi)+1.
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In-degree of nodes in BLNs increases rapidly because edges between nodes are often con-

nected with specific relation types atLocation(apple, fridge) but BLNs cannot store relation

type information on edges. Therefore, all relations need to be modeled as predicates such

as atLocation(x, fridge), which are stored in nodes. As a result, there are nodes with very

large in-degree counts even for simple directed graphs. The issue holds for Markov Logic

Networks [119], which have also been leveraged to model KGs [6].

RoboCSE’s drastic memory reduction was possible because its space complexity scales

linearly with the number of entity or relation types and RoboCSE’s space complexity does

not directly depend on node in-degree. RoboCSE requires (|E| + |R|) × d × 8 bytes of

memory, where d is the vector space dimensionality. Although RoboCSE provides a con-

siderable improvement in space complexity, RoboCSE cannot represent the joint distribu-

tion or true probabilities as a BLN can. Instead, the distances measured using a scoring

function between the queried transformation and results are interpreted as confidence (see

section 4.3). Furthermore, only the subset of the triple in the query can be used as ‘evi-

dence’ to condition on (e.g. the best hi are selected conditioned on an ( , r, t) query).

4.5.5 Implementation on a Mobile Manipulator

As a final demonstration, we deployed our KG representation to a mobile manipulator,

shown in Figure 4.1. We used an object detector [141] to get the semantic names of objects

in the mobile manipulator’s camera view. The semantic names were then used to query

RoboCSE for all likely relationships about the detected objects witin some belief threshold

(e.g. affordances, likely locations). The ranked responses to each query were then uttered

by the robot through speakers. Our robot implementation4 demonstrates a simple proof of

concept on how the KG representation could be deployed to a robot.

4https://youtu.be/ynHwNotCkDA

54



4.6 Discussion & Conclusion

We approached the problem of semantically representing a robot’s world via (h, r, t) triples

in a manner that supports generalization, accounts for uncertainty, and is memory-efficient.

We presented RoboCSE, a novel framework for robot semantic knowledge that leverages

mutli-relatonal embeddings.

From our experiments two benefits have emerged from the use of MREs in RoboCSE:

(1) the generalizations learned outperformed Word2Vec at prediction, being robust to sig-

nificant reductions in training data and domain transfer and (2) RoboCSE used orders of

magnitude less memory to represent projections of graphs than representations of the same

graph with BLNs. The collectively distinct set of benefits MREs have to offer could be

taken advantage of to further progress for robots performing semantic reasoning robustly

in semantically rich environments.

However, leveraging MRE has its limitations. As previously mentioned, answering

( , r, t) queries is particularly difficult. Answering ( , r, t) queries is useful for robots

reasoning to plan tasks (i.e. which head satisfies ( ,hasAffordance,fill)). Secondly, con-

ditioning is very limited compared to a BLN. The limited conditioning of MREs leads to

the same responses in different environments. Third, realistic systems in long-term de-

ployments need the ability of incremental learning, enabling online adaptations as new

knowledge arrives, which is not possible in our formulation. Last, robots working with end

users should have explainable inferences that support its decision-making, yet the inference

mechanism of MRE is not interpretable to end users.

4.7 Findings & Contributions

This work comprises our contributions to the development and evaluation our KG rep-

resentation based on multi-relational embeddings. We did this by taking individual se-

mantic common-sense knowledge facts from simulation forming a KG about the household
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environments. The gathered facts were used to train a continuous vector representation of

the KG that could be queried to infer new facts not present in the given KG. Our exper-

iments showed that our KG representation outperformed word embeddings while being

robust to large reductions in training data and domain transfer. Additionally, our KG rep-

resentation used orders of magnitude less memory than BLNs to represent the same KG.

While MREs do have limitations detailed in section 4.6, we believe the collectively dis-

tinct set of advantages of MREs from prior KG representations could further progress of

semantic reasoning on robot systems. Although our robot implementation provided a proof

of concept, a more complete set of modules is needed to allow the robot to perform task

planning and execution informed by our KG representation, as this thesis details in the next

chapter.
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CHAPTER 5

ROBUST TASK EXECUTION USING KG REPRESENTATIONS

In this chapter we present a method to integrate our KG representation with a robot to en-

able task planning and execution informed by the representation. We build upon the KG

framework in chapter 4 to integrate our KG representation with a task execution stack from

section 2.6. Our simulation and robot experiments in this chapter highlight the advantages

of informing the planning level of a robot architecture with domain knowledge. Addition-

ally, these grounded experiments make clear some limitations of applying MRE to robotics.

These limitations are addressed in later chapters of this thesis, namely whether MREs can

be sequentially trained to update the represented KG and whether MRE inference can be

explainable to end users.

5.1 Introduction

Robust one-shot task execution is an ongoing challenge in robotics. Learning from Demon-

stration (LfD) provides the means for end users to program new task plans (structured se-

quences of abstract primitive actions [142]). Typically, multiple varying demonstrations are

required in order to learn task plans that are resilient to failures in execution of primitive ac-

tions. Requiring multiple demonstrations can present an additional burden to the end user.

However, task plans that are learned in domains rich with semantic knowledge can benefit

from incorporating such domain knowledge into the task plan. Task plan constituents from

a prototypical or demonstrated task plan can be effectively generalized to new execution

environments by leveraging statistical correlations or heuristic features learned from the

task domain [16, 13].

We address the problem of one-shot task execution, in which a robot must generalize

a single demonstration or prototypical example of a task plan to a new execution environ-
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Figure 5.1: The task generalization module incrementally generalizes failed task plans by leverag-
ing the learned KG to infer plan constituents (see section 5.3). The task execution module sequen-
tially executes primitive actions to complete the task plan.

ment. For example, the robot could be shown a demonstration of cleaning a kitchen counter

using a napkin found in the kitchen cabinet. The robot may have to repeat the task plan

in a new environment where napkins may be kept in another location, or are unavailable

altogether. Such differences between environments typically halt execution of the task plan

due to unsatisfied preconditions when searching for the missing object, causing a primitive

action failure.

Semantic knowledge about real-world domains tends to have the properties of being

large, sparse, and incomplete. For example, a KG representing semantic knowledge about

households, while large, only contains a subset of true facts, which are sparse with respect

to the space of many potential facts. For this reason, our KG representation uses a MRE,

which is a distributed representation that models a KG in vector space [19]. We posit that

MREs are well suited to model semantic knowledge about real-world domains because

MREs are designed for KGs that are large and sparse [2]. Additionally, MREs excel at

learning the underlying structure of KGs to infer new facts beyond those present in a KG.

We integrate MREs as a KG representation along with the task plan, in a task generalization

module. Our developed task generalization module infers appropriate task plan constituents

by reasoning about the learned domain knowledge. Task plan generalizations are then used
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by a task execution module when the demonstrated task plan fails. The task execution

module sequentially executes primitive actions on an environment to complete the task

plan. Our implemented architecture (Figure 5.1), enables one-shot task execution both in

simulation and on a physical robot.

We compare our domain knowledge representation against four representative base-

lines in the context of robust one-shot task execution, including prior MREs [143], Markov

Logic Networks [144, 3], Plan Networks [145], and word embeddings [18]. In simula-

tion, we evaluate each method’s ability to generalize an initial demonstrated task plan to

300 execution environments, averaged across 40 different initial demonstrations for a total

of 12,000 executions. Our experiments in simulation indicate that our knowledge repre-

sentation provides improvements in success rate over the baselines with strong statistical

significance. We follow these experiments with an ablation study that characterizes the

variances of our performance metrics with respect to components of the task generalization

module. Lastly, we validate the implemented architecture on a physical robot that must

autonomously execute an initial demonstrated task plan in 10 new execution environments,

for 5 different initial demonstrations. Our system successfully generalizes the initial task

plans to 38 of 50 sampled execution environments, where failures stem solely from robot

errors, such as precarious object grasps. Ignoring these robot errors, our system success-

fully generalized the initial task plan in every execution environment. Our contributions

are summarized as follows.

• We design a new robot KG that adds entity and relation types not present in prior work

[143];

• We design a task generalization approach that integrates the MRE KG representation with

multiple task reasoning levels to generalize task plans;

• We demonstrate our approach’s advantages against representative baselines in 12,000 sim-

ulations and validate the implemented architecture on a physical robot performing one-

shot task execution in 50 execution environments.
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5.2 Problem Definition

Our work is motivated by applications in which a robot operates in dynamic environments,

such as households, with naive users who provide a demonstration of a task plan Td. The

task plan is defined as a sequence of primitive actions {a1d, a2d, ..., akd}, where each primitive

action may or may not be parameterized by objects. The execution environment can be

different from the demonstration environment in terms of the environment state, such as

differing object types available for the task. As a result, the demonstrated task plan fails

due to unsatisfied pre-conditions of primitive actions. Therefore, the robot must generalize

the demonstrated task plan to formulate an executable task plan Tx. We then formulate our

problem as:

Given an execution environment Ex and a task plan Td recorded from a demonstration

in a demonstration environment Ed, can a modified task plan Tx be formulated for Ex such

that the robot is able to accomplish the task?

We assume that unsatisfied pre-conditions stem solely from environment state changes

(perturbations) that prevent the completion of a primitive action. Perturbations are limited

to varying the type or location of the object available to perform the task. We note that

this assumption commonly applies to household settings where objects do not have static

locations or objects available for tasks vary between households. We consider other sources

of primitive action failures, such as hardware failure or manipulation errors, out of scope.

5.3 Approach

Our approach generalizes a failed demonstrated task plan by reasoning about the primitive

actions and the learned domain knowledge, as shown in Figure 5.1. When the execution

of a demonstrated task plan Td is halted due to a failed primitive action, the task gener-

alization module is called to infer a task plan Tx for the execution environment Ex. The

task generalization module generalizes the demonstrated task plan by iteratively querying
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the learned domain knowledge representation and making incremental updates to the task

plan. The updated task plan is then sent back to the task execution module to resume the

task from the failure point. In particular, we integrate our approach with a task execution

module developed in prior work for mobile manipulator robots [77]. We provide further

details on the components of the task generalization module below.

5.3.1 Knowledge Representation

Our domain knowledge representation uses an explicit model of world semantics in the

form of a KG G composed of individual facts or triples (h, r, t) with h and t being the head

and tail entities (respectively) for which the relation r holds, e.g. (cup, hasAction, fill) [8, 4,

5, 6]. We model G using graph embeddings because of their ability to learn the underlying

structure of graphs and infer new facts beyond known facts in a graph [18, 12, 143, 146,

147, 11]. We build upon the framework in RoboCSE [143], which uses a MRE to represent

G.

MREs model G in vector space [27], learning a continuous vector representation from

a dataset of triples D=
{
(h, r, t)i, yi|hi, ti∈E , ri∈R, yi∈{0, 1}

}
, with i∈{1...|D|}. Here

yi denotes whether relation ri ∈ R holds between hi, ti ∈ E . Each entity e∈E is encoded

as a vector ve ∈ RdE , and each relation r ∈ R is encoded as a mapping between vectors

Wr∈RdR , where dE and dR are the dimensions of vectors and mappings respectively [27,

28]. The embeddings for E and R are typically learned using a scoring function f(h, r, t)

that assigns higher (lower) values to positive (negative) triples [28]. The learning objective

is thus to find a set of embeddings Θ =
{
{ve| e ∈ E}, {Wr| r ∈ R}

}
that minimize the loss

L over the training split DTr of the dataset D. Loss LD can take many forms depending on

the KGE representation used, e.g., Margin-Ranking Loss [29] or Negative Log-Likelihood

Loss [30]. The learned embeddings Θ are used to infer the likelihoods of facts in the held

out splits of the dataset (i.e. DV a and DTr), which are not present in the training split.

We use the Analogy embedding representation as in [143]. Analogy represents rela-
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tionships as (bi)linear mappings between entities, i.e., v⊤
h Wr = v⊤

t [30]. It uses the scoring

and negative log loss functions in Equation 5.1 and Equation 5.2 where σ is a sigmoid

function, y is a label indicating whether the triple is corrupted, and G ′ is the corrupted KG

containing only false triples. Additionally, the linear mappings (i.e. relations) are con-

strained to form a commuting family of normal mappings, i.e., WrW⊤
r = W⊤

r Wr ∀ r ∈ R

and WrWr′ = Wr′Wr ∀ r, r′ ∈ R, to promote analogical structure within the embedding

space.

f(h, r, t) = ⟨v⊤h Wr, vt⟩ (5.1)

L =
∑

(h,r,t,y)∈G,G′

−logσ(y · f(h, r, t)) (5.2)

We extend the original KG presented in [143] by adding new relation types and entity

types. We added 9 new relation types and a new entity type that represents action effects.

Triples were extracted from VirtualHome simulations as in [143], using the expanded set of

relations and entities. Table 5.1 presents examples and statistics about the newly extracted

KG from VirtualHome. Our experimental evaluations show that these additions to the

KG significantly improve the generalization capabilities of the task generalization module

against the prior KG.

5.3.2 Task Generalizations

We focus on generalizing object-oriented primitive actions, and denote an action aid ∈ Td

associated with an object od present at a location ld, as aid(od, ld). In our notation, any

action aid(od, ld), e.g., “Scrub(scrubber, shelf)”, is not the parameterization of the action

itself. Instead, it indicates that the action “scrub” uses the object “scrubber”, which is found

on the “shelf”. We assume object oriented primitive actions fail for 3 types of reasons, od

not being found in the demonstrated location ld, od not being present in the environment to

perform aid, or the environment lacking any object that can be used to perform aid. These

three failure types lead to three levels of reasoning about the task plan constituents, that
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Table 5.1: Dataset extracted from VirtualHome to learn G

Relation |Ehead|† |Etail|† |DTr|‡ |DV a|/|DTe|† |D|†
HasEffect 28 10 39,263 (24) 2 28
InverseActionOf 10 10 29,956 (10) 1 12
InverseStateOf 15 15 23,763 (13) 1 15
LocInRoom 41 4 3,972 (78) 9 96
ObjCanBe 159 33 45,075 (886) 110 1106
ObjInLoc 164 28 9,461 (409) 51 511
ObjInRoom 164 4 8,276 (289) 36 361
ObjOnLoc 149 32 2,346 (269) 33 335
ObjUsedTo 71 21 6,224 (76) 9 94
ObjHasState 153 15 28,306 (431) 53 537
OperatesOn 68 125 84,286 (1124) 140 1404

Example entities (281 total entities)
Rooms (4) kitchen, bedroom, bathroom, livingroom
Locations (45) fridge, table, sink, garbage, bed, desk, cabinet, drawer
Objects (182) chair, towel, bleach, tomato, rug, plant, fork, laptop
Actions (34) wipe, open, pick up, turn off, bake, unplug, disinfect
States (16) dirty, clean, on, off, cooked, broken, open, plugged in

†|unique instances|,‡ |instances|(|unique instances|)

can be combined and used to generalize the demonstrated task plan. We categorize these

generalizations based on the specific variable that each is associated with, namely, ld, od

and/or ad. With each reasoning level, the robot generalizes up to 1, 2 or 3 types of variables:

1. Spatial Reasoning: This reasoning level only requires spatial generalizations to generate

an executable plan.

• Location (L): These generalizations arise when od is in a different location than ld in

the execution environment. Other likely locations for od are inferred.

2. Object Reasoning: This reasoning level requires object reasoning and potentially, spatial

generalizations.

• Object (O): These generalizations arise when od is not available in the execution

environment, but an appropriate substitute object that can be used to perform ad is

available at the location ld. Other appropriate objects to perform ad are inferred.

• Object-Location (OL): These generalizations like O lack the demonstrated object od,
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but the appropriate substitute is not in the demonstrated location ld. Other appropriate

objects to perform ad are inferred as well as their corresponding likely locations.

3. Action Reasoning: This reasoning level requires both action and object generalizations,

and potentially, spatial generalizations as well.

• Action-Object (AO): These generalizations arise when all objects associated with ad

are unavailable in the execution environment. An appropriate action that achieves the

same effect as ad, and a corresponding object that is a valid parameterization of the

action must be inferred.

• Action-Object-Location (AOL): These generalizations are similar to AO, but addi-

tionally, the substitute object is not available at the demonstrated location. Therefore,

an appropriate action, object, and location must be inferred to generalize the task plan.

We make a simplifying assumption that actions with the same effects have the same

preconditions. The implications of our assumption are lessened by using auxiliary queries

to the KG G that infer which demonstrated objects are applicable to the task. Our future

work will relax this assumption to learn and infer the full parameterizations of actions. In

the following section, we describe the task generalization module’s implementation of the

three generalizations above that integrates the knowledge representation in subsection 5.3.1

with the task plan.

5.3.3 Task Generalization Module

In algorithm 1 we provide our approach to one-shot task execution. The task generaliza-

tions in subsection 5.3.2 are implemented in algorithm 1 using the computational frame-

work in subsection 5.3.1. The pseudocode for algorithm 1 is written as a callable Python

object with three queues as class members that maintain state across function calls. In al-

gorithm 1 we incrementally update the failed task plan passed as the input parameter T ,

which is initially the demonstrated task plan Td. The incremental task plan updates and ex-
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Algorithm 1: Task Generalization Algorithm

1 Function generalize task(T):
2 lf , of , af = extract failure(T)
3 if lsubs is ∅ then
4 lsubs = infer lsubs for of from G
5 l = next(lsubs)
6 if l ̸= None then // Spatial Gen.
7 if ∃l then
8 Tx = replace(lf , l, T )
9 return Tx

10 else
11 goto line 5
12 if osubs is ∅ then
13 osubs = infer osubs used to af from G
14 o = next(osubs)
15 lsubs = ∅
16 if o ̸= None then // Object Gen.
17 T = replace(of , o, T )
18 of = o
19 goto line 3
20 if asubs is ∅ then
21 asubs = infer asubs with effect(af ) from G
22 a = next(asubs)
23 osubs = ∅
24 if a ̸= None then // Action Gen.
25 T = replace(af , a, T )
26 af = a
27 goto line 12
28 return Task Failure

ecutions continue until an executable task plan Tx is found or the algorithm cannot find an

executable task generalization for the environment (i.e. returns Task Failure). Each incre-

mental update to the task plan T is achieved by replacing all mentions of the variable that

is being generalized in the task plan T , denoted by the replace function. We implemented

algorithm 1 to prioritize generalizations involving fewer variables (i.e. generalizing one

type of variable is preferable to two). Our approach leads to simpler generalizations that

more closely match the demonstrated task plan.

Our approach in algorithm 1 uses the three levels of generalization discussed in subsec-

tion 5.3.2 depending on the variable being reasoned about (location, object, or action).

Each level of reasoning uses different sets of queries to infer generalizations from the
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knowledge representation. The MRE infers location generalizations by completing the

triples (of ,ObjAtLoc, ) and (of ,ObjInRoom, ). The inference results of these incom-

plete triples are combined to produce a prioritized queue of each likely location instance

in the environment for of . Similarly, the MRE infers object generalizations by completing

the triples (of ,ObjUsedTo, ) and (of ,OperatesOn, ). The inference results of these

incomplete triples are combined to produce a prioritized queue of each viable object class

that can perform the desired action on the target object. Lastly, when inferring action gener-

alizations, the MRE completes the triple ( ,ActionHasEffect, effect(af )). The inference

results of this incomplete triple produce a prioritized queue of each viable action class that

achieves the desired effect. The queue for each reasoning level has a fixed size, which is

tuned and discussed further in subsection 5.4.2.

5.4 Experimental Evaluation

Our experimental evaluations model the task domain of cleaning since it is a commonly

desired task [1] and involves a variety of objects and actions. We perform evaluations both

in simulation using VirtualHome [148], and on a physical robot (Fetch [76]). Our simu-

lation experiments included 7 cleaning actions (“wipe”, “dust”, “sweep”, “wash”, “rinse”,

“disinfect”, and “scrub”), 28 cleaning objects, and 45 possible object locations leading to

8,820 possible generalizations for a primitive action aid(od, ld). Our robot experiments in-

cluded 4 cleaning actions (“wipe”, “dust”, “sweep”, and “scrub”), 5 cleaning objects, and

12 possible object locations leading to 240 possible generalizations for a primitive action

aid(od, ld). The large number of possible task generalizations in both cases highlights the

potential of incorporating learned domain knowledge into the task demonstration, as well

as the challenge when reasoning about the most likely generalizations given the scale and

complexity of probabilistic distributions within the domain.

We performed 3 evaluations; first, to broadly compare existing knowledge representa-

tions against ours, second to further analyze components of algorithm 1 in ablation studies,
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and last to validate our approach on a physical robot. We tested the statistical significance

of results using repeated-measures ANOVA and a post-hoc Tukey’s test.

5.4.1 Comparison of Knowledge Representations

We focus on comparing our knowledge representation to baselines representative of prior

work in this experiment, in the context of robust task execution. The baselines were:

1. Single Demo (SD) serves as a reference for how often the original demonstration is ran-

domly spawned.

2. Plan Network (PN) answers queries by building a repository of valid location, object,

and action substitutes observed across consecutive executions, similar to [145]. The

repository is built from demonstrations obtained from an oracle (i.e. solutions of test

execution environments).

3. Word Embedding (WE) answers queries using cosine similarity over ConceptNet Num-

berbatch v19.08 embeddings [149]. Word embeddings have been used in robotics works

as semantic representations [18, 12, 146].

4. Markov Logic Network (MLN) answers queries by learning statistical correlations relat-

ing objects and object attributes as in [13, 6] trained on the dataset in Table 5.1.

5. Original RoboCSE (RCSE) answers queries using the MRE framework in [143] that

lacks the entity and relation types added in this work. Trained on the dataset in Table 5.1.

6. Training Set Memorization (TM) answers queries using the KG G formed from training

triples in Table 5.1 without an MRE (i.e. lacks inference of valid/test triples).

Each simulation experiment in VirtualHome begins by spawning an agent in an initial

environment Ed. A hierarchical task network provides the agent with a task plan Td in the

initial environment Ed that serves as the single task demonstration. The demonstrated task
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Table 5.2: Metrics for 12,000 Environment Executions

Metric SD PN WE RCSE TM Ours
Success Rate (%) 1.2±1.3 54.6±2.6 9.8±7.8 19.9±6.1 68.8±3.3 73.7±2.6
Num. Attempts 1±0 17±14 30±33 62±34 32±14 67±28

plan Td defines an initial cleaning task by performing a cleaning action ad using a demon-

stration object od found in a demonstrated location ld. Then, the agent must execute the

task plan Td in an execution environment Ex, which is a perturbation of the demonstration

environment Ed. If a primitive action fails when executing Td, the agent iteratively invokes

the task generalization module until it finds an executable task plan Tx or fails.

We track the number of attempts the agent makes at completing the task plan as well

as whether it succeeds. The agent must attempt to generalize the demonstrated task plan to

300 other randomly generated execution environments. Execution environments are gener-

ated by perturbing the object used to demonstrate the task; changing the object’s location,

type, or both. The perturbations are made in accordance with the action-object-location

distributions present in VirtualHome, ensuring that objects are not placed at implausible

locations (e.g., broom inside the toilet) and that the intended generalization is not unrea-

sonable (e.g. cleaning a table with a washing-machine). Each execution environment has

exactly one valid solution.

We repeat the experiment 40 times with different initial demonstrations to avoid over-

fitting reported results to an initial demonstration that is an outlier, totalling 12,000 sam-

pled execution environments. Note that the domain knowledge representation was the only

variable across the experiments, while other components of the system architecture in Fig-

ure 5.1, initial demonstrations, and perturbations were controlled. For all methods, we

tuned the sizes of prioritized queues in algorithm 1 to 12 for locations, 8 for objects, and 4

for actions using an analysis described in subsection 5.4.2.

Our major results are summarized by Table 5.2 and Figure 5.2. In Table 5.2 we show the

success rate and number of attempts for each approach averaged across the 40 experiment

trials. As shown in Table 5.2, Ours provides improvements in success rate compared against
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Figure 5.2: Moving average success rate of 60 executions for all tested task generalization ap-
proaches.

all the baselines with strong statistical significance (i.e. p < 0.001). Without the capacity to

directly model relations, WE produces less relevant generalizations using word similarities

to the initial demonstration. RCSE’s disadvantage compared with Ours stems from the

lack of modeling action effects as well as other relationships that can help to rank more

relevant generalizations higher. Crucially, Ours also outperforms TM, signaling that the

embedding is inferring generalizations not possible with the training set alone. Lastly, we

can consider the PN baseline; however, analyzing Table 5.2 hides the transient behavior of

PN as it accumulates demonstrations. We provide the moving average over a window of 60

executions in Figure 5.2 to show how PN eventually approaches the performance of Ours,

but only after PN accumulates on average 243 additional demonstrations from the oracle.

PN highlights a limitation of Ours, the lack of adaptation to execution outcomes leading to

a flat success rate. However, despite PN having the additional 243 demonstrations, Ours

outperforms PN on average with a single demonstration because Ours learns priors over

69



Table 5.3: Ablation Success Rates in 6 Ex Types

Ex Type Abl. L Abl. O Abl. OL Abl. AO Abl. AOL
L Gen. Only 86.4% 0.0% 86.4% 0.0% 86.4%
O Gen. Only 0.0% 71.6% 71.6% 82.2% 82.2%
OL Gen. Only 0.0% 0.0% 68.2% 0.0% 74.6%
AO Gen. Only 0.0% 0.0% 0.0% 80.2% 80.2%
AOL Gen. Only 0.0% 0.0% 0.0% 0.0% 67.4%
Random Gen. 6.2% 4.6% 24.4% 14.8% 71.8%

the semantic domain knowledge in VirtualHome.

Unlike our MRE, the MLN baseline implemented with pracmln [144] is not included in

the above results because the scale of the learned KG (see Table 5.1) caused intractability

issues. The complexity for the number of ground variables for an MLN is O(|L| ∗ |C|N)

where |L| is the number of predicates (relations - 11), |L| is the number of constants (en-

tities - 281), and N is the maximum arity of a predicate in symbol space (2) [13]. Despite

simplifying the problem from 868,571 ground variables to 67,656, MC-SAT required ∼10

minutes to perform full-posterior inference for a single ground atom. These inferences

occur many times during a single sample of the 12,000 sampled execution environments

making the MLN baseline impractical for our use case.

5.4.2 Ablation Studies of Task Generalization Algorithm

We now provide multiple ablation studies of algorithm 1.

Characterizing algorithm 1 reasoning levels: We implemented 5 ablations that al-

lowed combinations of generalizations at the spatial, object, or action reasoning levels.

These 5 ablations implement at least one of the 5 types of generalizations presented in

subsection 5.3.2 by toggling portions of algorithm 1 (i.e. O, L, OL, AO, AOL). In ad-

dition, we perturbed environments in a controlled manner to observe which components

of our algorithm were suited to which environment perturbation types. The environment

perturbation types corresponded to one of the 5 generalization cases in subsection 5.3.2

(e.g. for L, only perturb location of od) or random perturbations as in the prior evaluation

of subsection 5.4.1. We reduced the number of initial demonstrations to 10 and execution
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Figure 5.3: Ablation queue size tuning heatmap showing success rate vs number of attempts.

environments to 50 due to the large number of cases for each ablation and test environ-

ment combination. Our results, shown in Table 5.3, highlight the importance of combined

reasoning at multiple levels to generalize the demonstrated task plan to larger number of

execution environments.

Characterizing algorithm 1 queue sizes: We defined ablations by varying the queue

sizes for each reasoning level in proportion to the total number of valid generalizations

(i.e. |lsubs| = {1, 12, 24}, |osubs| = {1, 8, 16}, |asubs| = {1, 4, 8}), leading to a total of

27 different ablations. Random environment perturbations were used for testing, as in

the prior evaluation of subsection 5.4.1. Due to the large number of ablations, we again

reduced the number of initial demonstrations to 10 and execution environments to 50. We

selected {|lsubs|, |osubs|, |asubs|} = {12, 8, 4} from the results of our grid search to have

moderate success rates while keeping the number of generalization attempts below 1%

of the total possible (8,820). The results of our ablation study are shown in Figure 5.3.

Each cell in Figure 5.3 has a unique combination of (l, o, a) values corresponding to values

of (|lsubs|, |osubs|, |asubs|), respectively. For example, the top left cell corresponds to the

ablation where (|lsubs|, |osubs|, |asubs|) = (1, 1, 1). Overall, the different ablations indicated
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a trade-off for priority queue size; larger queue sizes lead to higher success rates but also

higher numbers of generalization attempts.

5.4.3 Validation on a Robot Platform

Our last experiment was to validate our approach on a physical robot platform, Fetch [76],

using a task execution stack that facilitates execution of primitive actions [77]. The task ex-

ecution stack was used to make the Fetch execute task plans, receive environment percepts

indicating failed primitive actions, and accept generalizations from the task generalization

module. Some errors outside the scope of our work are handled by the task execution stack

(e.g. base path-planning obstacles, precarious grasps); however, any errors not handled by

the task execution stack or our approach are considered failures in our test cases, as all

executions are autonomous without human intervention1.

In our robot experiments, we used five different objects, namely “towel rolled”, “wash-

ing sponge”, “scrubber”, “feather duster” and “duster” (Shown in Figure 5.4), with four

different actions “wipe”, “scrub”, “dust” and “sweep”. Possible locations for objects in-

clude, kitchen counters, coffee tables, sofa, desk, sink, drawers, shelf and kitchen table.

The testing environment that emulates a small studio apartment is shown in Figure 5.4.

As shown in the figure, the robot has to find an appropriate object in the environment to

clean the designated location. We evaluated our approach on the robot by generating 10

random perturbations of one cleaning task demonstrated for each object, as described in

subsection 5.4.1.

In our robot evaluations, the robot successfully generalized demonstrated tasks to 38 of

50 total execution environments (76% success rate). We note that none of the failures were

due to our approach. The failure cases were due to manipulation (2), object detection (7),

plane-segmentation (1), and grasping (2) robot errors. It is worth noting the MRE inferred

three key triples not within the training set used to learn the embedding (i.e. (featherduster,

1Example executions: https://youtu.be/epRjleYDTCw
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Figure 5.4: Sample test environment set up similar to a household setting. Test objects shown in
top right, from left to right: feather duster, towel rolled, scrubber, duster, and washing sponge.

ObjOnLoc, shelf), (duster, ObjUsedTo, dust), (towelrolled, ObjUsedTo, wipe)) to generate

26.3% of the successful generalizations (10 of the 38). The robot’s successful executions

from inferred triples highlights the benefit of using a KG representation that can infer un-

seen facts given existing facts.

5.5 Discussion & Conclusion

Robust one-shot task execution continues to be a challenging problem for learning from

demonstration. We introduced the task generalization module for generalization of task

plans to new execution environments by integrating task plans with domain knowledge

modeled by a MRE. We showed how the MRE can be learned from individual observations

in simulation. We compared our approach to representative baselines in the context of

one-shot task execution in simulation. Our experiments demonstrated that our knowledge

representation infers more relevant generalizations on average, leading to higher success

rates than the baselines. Lastly, we validated our work on a physical platform, showing

generalization of the demonstrated tasks to 38/50 execution environments, including tech-

nical failures.

Our future work will explore how the domain knowledge can adapt to outcomes ob-
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served during execution, instead of solely relying on the prior distributions as is common

in existing work. The lack of adaptability results in default robot behaviors that do not

adapt despite receiving many new observations during execution failures. Incorporating

adaptability into a MRE is challenging due catastrophic forgetting, as discussed in sec-

tion 2.4. Therefore, an approach that seeks to make MREs more adaptable must include

mechanisms to mitigate catastrophic forgetting.

In addition, our task generalization module presented allows a non-expert end user to

program a robot task that generalizes to many execution environments but does not explain

the reasoning behind the robot’s decision making. We designed the robot’s decision mak-

ing to be informed by the MRE. The inferences provided by the MRE enable the robot to

infer facts not present within the observed knowledge, enabling robust execution in more

execution environments. However, the MRE has no mechanism to explain the reasoning

that led to an erroneous inference causing strange robot generalization behavior. For exam-

ple, wiping with a vacuum. The opaque nature of MREs limits transparency of the robot’s

decision making which can reduce the end users trust in the system’s autonomous execu-

tion. Our future work will seek to address the lack of explainability of MREs by using XAI

techniques discussed in section 2.5.

5.6 Findings & Contributions

This work comprises our contributions to the integration of our KG representation into

a robot architecture to improve robust task execution. We did this by generalizing task

plan constituents from a demonstrated task plan using domain knowledge modeled in our

proposed KG representation. Our experiments showed that our KG representation gener-

alized learned domain knowledge beyond the set of observed facts and outperformed word

embedding and plan network baselines. Additionally, our experiments showed that MLNs

had intractable inference time when representing the same domain knowledge used in our

experiments. Our task generalization module demonstrates one way in which our KG rep-
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resentation can be used on a robot to inform task planning and execution. Our experiments

highlighted two branches of future work to improve the proposed KG representation de-

tailed in section 5.5. The next two chapters of this thesis will address whether MREs can

be sequentially trained to update the represented KG and whether MRE inference can be

explainable to end users.
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CHAPTER 6

CONTINUAL KNOWLEDGE GRAPH EMBEDDING

In this chapter we present several methods to sequentially train a MRE under continual

learning assumptions. We relax the assumptions from the KG representation presented

in chapter 4 to enable the sequential training of the MRE on disjoint subsets of a KG. We

posit that a robot using a MRE to represent domain knowledge can incrementally update the

representation with new domain knowledge the robot obtains while not forgetting previous

concepts. We validate our assumption by incorporating our contributed methods into the

system from chapter 5 and evaluate the robot’s task execution success rate in continual

learning scenarios.

6.1 Introduction

Representing and reasoning about semantic knowledge is a key task in robotics. In recent

years, there has been a resurgence in methods that use distributed (neural) representations,

e.g., word and KG embeddings, for reason about semantic knowledge in the context of

navigation [18], grounding [12], affordance modeling [143], success detection [146], ma-

nipulation [147], and instruction following [11]. While robots frequently observe previ-

ously unknown concepts, these embedding algorithms typically assume that all embedding

concepts are known a priori, and incorporating new information requires all concepts to

be learned afresh. In addition, in robotics applications, the limited availability of compu-

tational resources and storage, and concerns regarding storing sensitive information, can

make batch learning with all observed data infeasible. We seek to relax this static as-

sumption in KG embedding and enable adaptive revision of distributed representation of

semantic knowledge for robots.

Towards achieving our objective, we draw on Continual Learning, the research area
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which focuses on the challenging problem of incrementally revising learned neural repre-

sentations [46]. Existing continual learning methods have predominantly been applied to

object recognition and include regularization [48, 49], architecture modification [50, 51],

generative replay [52, 53], and a reformulation of regularization for KG embedding [54].

However, continual learning methods remain largely unexplored for KG embedding. Fur-

thermore, the implications of any related assumptions for robotics is not well documented

because existing methods focus on the final inference performance and define different task

specific measures [56].

Our work makes three contributions. First, we reformulate and extend the underly-

ing principles of five representative continual learning methods: (i) Progressive Neural

Networks [50]; (ii) Copy Weight Re-Init [51]; (iii) L2 regularization [49]; (iv) Synaptic

Intelligence [55]; and (v) Deep Generative Replay [52], and apply them to the continual

KG embedding (CKGE) problem. Second, we introduce an empirically evaluated heuristic

sampling strategy to generate CKGE datasets from KGs, since benchmark datasets do not

exist for the CKGE problem. Third, we build on existing continual learning measures [57]

to characterize the use of each reformulated method for robot tasks that leverage semantic

knowledge.

We performed two sets of evaluations to characterize the effect of each CKGE method

on MRE link-prediction and robust task execution success rate in different continual learn-

ing scenarios. For the MRE link-prediction evaluations, we consider two KG embedding

representations with different assumptions and loss functions: TransE [29] and Analogy

[30]; and three benchmark KGs (WN18RR, FB15K237 [150], and AI2Thor [143]). We

evaluated each adapted method under unconstrained, data-constrained, and time-constrained

settings by sampling disjoint subsets of a KG used in prior robotics work [143], containing

actions, locations, objects, and other concepts. For the robot task execution evaluations,

we use the TuckER embedding [32] and perform task execution in a household simulator

[148]. We evaluated each adapted method under unconstrained, data-constrained, and time-
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constrained settings by sampling disjoints subsets of the unique environments available in

the household simulator. Experimental results indicate that: (i) our generative replay ap-

proach outperforms other methods; (ii) there are interesting trade-offs between inference

capability, learning speed, and memory usage that should be considered when choosing a

CKGE method; and (iii) insights gained from exploring these trade-offs enable us to se-

lect a CKGE method that best matches the constraints of a given robotics application that

models semantic knowledge.

6.2 Background

We begin by detailing background information about MRE and continual KG embedding.

Modeling semantic knowledge in robotics is often achieved using an explicit model of

world semantics in the form of a KG G composed of individual facts or triples (h, r, t); h

and t are the head and tail entities (respectively) for which the relation r holds, e.g., (cup,

hasAction, fill) [8, 4, 5, 6]. Recent work has modeled G using distributed representations

because of their ability to approximate proximity of meaning from vector computations [18,

12, 143, 146, 147, 11].

Multi-relational (KG) embeddings are distributed representations that model G in vec-

tor space [27], learning a continuous vector representation from a dataset of triples D ={
(h, r, t)i, yi|hi, ti ∈ E , ri ∈ R, yi ∈ {0, 1}

}
, with i ∈ {1...|D|}. Here yi denotes whether

relation ri ∈ R holds between hi, ti ∈ E . Each entity e∈E is encoded as a vector ve∈RdE ,

and each relation r ∈ R is encoded as a mapping between vectors Wr ∈ RdR , where dE

and dR are the dimensions of vectors and mappings respectively [27, 28]. The embeddings

for E and R are typically learned using a scoring function f(h, r, t) that assigns higher

(lower) values to positive (negative) triples [28]. The learning objective is thus to find a set

of embeddings Θ =
{
{ve| e ∈ E}, {Wr| r ∈ R}

}
that minimizes the loss LD over D. Loss

LD can take many forms depending on the MRE representation used, e.g., Margin-Ranking

Loss [29] or Negative Log-Likelihood Loss [30]. However, all entities and relations are as-
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sumed to be known before training [27, 28], which may be infeasible for robots observing

new concepts or new facts about existing concepts.

Of the continual learning scenarios that exist, we chose Incremental Class Learn-

ing (ICL) because it best matches the assumptions of robot systems representing semantic

knowledge, with the distribution of input data and target labels changing across learning

sessions as the robot incrementally observes disjoint sets of new facts about new and exist-

ing concepts. In CKGE, the dataset D of a KG G is split into multiple datasets Dn where n

indicates the learning session [54]. Each Dn contains a disjoint set of all triples of a subset

of entities and relations. For a robot observing new facts, the size of the set of observed en-

tities, relations, and triples grows, (e.g., |En| ≤ |En+1|), and the embedding must consider

new facts and concepts in each learning session. In such a learning scenario, the objective

is to find a set of embeddings Θn =
{
{vn

e | e ∈ En}, {Wn
r | r ∈ Rn}

}
that minimize the loss

LDn over the dataset for all time steps. Of the range of continual learning methods, only

L2-regularization has been applied to CKGE [54]; more sophisticated methods that have

shown promise in other domains, e.g., generative replay, remain unexplored. Also, impor-

tant measures for robotics, such as learning efficiency and model complexity, are not well

documented for representative techniques [57], making it difficult to evaluate the suitability

of these methods for modeling semantic knowledge in robotics. Our work is designed to

fill these gaps.

6.3 Approaches to Continual Knowledge Graph Embedding

We seek to characterize the use of continual learning methods for KG embedding in robotics

by exploring the associated assumptions and trade-offs. In this section, we describe how

we reformulate and extend the principles of five carefully selected representative continual

learning techniques to develop continual KG embedding (CKGE) methods. These meth-

ods were designed for traditional neural networks and required varying levels of innovation

to support KG embeddings. In each case, we carefully considered the suitability of its
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principles to support the desired capabilities and assumptions of KG embeddings.

6.3.1 Architectural Modification Methods

Among the methods that modify the architecture of a neural network to accommodate new

training data while minimizing performance losses over older data, we adapted two meth-

ods for KG embeddings.

Progressive Neural Networks (PNN) [50] add copies of existing layers of a multi-

layered neural network for each new learning session. When a new learning session begins,

existing weights are frozen so that back-propagated gradients do not affect the performance

over data from previous sessions. Also, lateral connections are made between successive

layer copies to enable the forward transfer of previously learned weights. To make PNNs

applicable to KG embedding, we first expand the embedding matrices vn ∈ R|En|×dE and

Wn∈R|Rn|×dR to include new entities and relations in the learning session n. Second, we

freeze embeddings for entities and relations encountered in prior learning sessions to pre-

vent their corruption in the current learning session. Instead of creating separate copies of

these embedding matrices for each learning session, we only expand the existing matrices

to promote forward transfer of prior embeddings in new learning sessions.

Copy Weight with ReInit (CWR) [51] maintains the weights of the final layer of the

network during a new learning session (i.e. temporary weights, TW), separate from the

corresponding weights trained in prior learning sessions (i.e. consolidated weights, CW)

to avoid corruption. Other than the two sets of final layer weights considered during (con-

tinual) learning, the weights of other layers are frozen and shared across learning sessions.

TW are re-sized and re-initialized in each learning session according to the number of

classes being trained. After each learning session, the TW for new classes are copied over

to CW, which acts as a memory buffer separate from the network. If a previously trained

class is encountered, relevant entries in TW are averaged with those in CW. Training for

the subsequent session begins by re-sizing and re-initializing TW.
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To apply the principles of CWR to KG embedding, we first introduce two sets of

embeddings: consolidated embeddings (CE) {vn
ce,W

n
ce} and temporary embeddings (TE)

{vn
te,W

n
te}. Second, for each learning session, we resize and re-initialize the TE for entities

vn
te and relations Wn

te based on the number of entities and relations (respectively) in the

session. After the session, we move TE into CE by copying new embeddings or averag-

ing existing ones. As a result, the number of CE increases monotonically in each learning

session with the number of observed entities En and relations Rn so that vn
ce ∈ R|En|×dE

and Wn
ce ∈ R|Rn|×dR) (respectively); the number of TE changes in each learning session

according to the number of entities and relations in that learning session’s dataset Dn.

6.3.2 Regularization Methods

Freezing previously learned weights prevents their corruption in subsequent sessions, but

also prevents shared weights from being revised to better accommodate new concepts.

Some continual learning methods allow adjustments to shared weights that perform well for

prior and new sessions; they do so by enforcing some regularization terms in new learning

sessions. We reformulate two such approaches for KG embeddings.

L2 Regularization (L2R) [49, 54, 47] is adapted in our approach by adding a regular-

ization term to the learning session loss LDn , encouraging the trained weights to not deviate

from their previous values:

LDn + λ ·
(
||vne − vn−1||22 + ||Wn

r − Wn−1||22
)

(6.1)

where e∈En−1, r∈Rn−1, and λ is a regularization scaling term tuned as a hyper-parameter.

L2R can be rather strict because it penalizes all dimensions of an embedding equally,

whereas a subset of the embedding dimensions often contribute more to loss or predictive

abilities than others.

Synaptic Intelligence (SI) [55] extends L2R by considering the weight-specific contri-

butions to the reduction in loss over a learning session. These contributions are quantified

by summing the gradients that each weight adjustment contributes to the loss and using
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the total loss reduction as a normalizer. SI is generic enough to apply to KG embeddings

with minimal changes because it is formulated in terms of the weight and loss trajecto-

ries. Equation 6.2 defines our implementation of SI for KG embedding, re-using terms

from [55]:

LDn + λ ·
(
||Ωe(vne − vn−1)||22 + ||Ωr(Wn

r − Wn−1)||22
)

(6.2)

where e ∈ En−1, r ∈ Rn−1, Ω is the parameter regularization strength [55], and λ is a

regularization scaling term tuned as a hyper-parameter for a particular representation.

We also considered but did not adapt Elastic Weight Consolidation (EWC) [49] for KG

embedding. EWC performs regularization using the Fisher Information matrix to estimate

how predictive particular weights are. However, an assumption of the Fisher Information

matrix is that the scoring function which describes the relationship between weights and

the data they are being trained on has a probabilistic interpretation. The assumption of a

probability density function for the Fisher Information matrix does not allow EWC to be

directly applied to MRE representations as they often use loss functions that do not have

probabilistic interpretations, e.g., those using Margin-Ranking Loss.

6.3.3 Generative Replay Methods

Instead of maintaining model weights across learning sessions, generative replay methods

learn generative models of the distribution of training data from previous learning sessions.

Then, batch learning is approximated by sampling from the learned distribution and the

training data from the current learning session. We reformulate one such method for KG

embeddings.

Deep Generative Replay (DGR) [52, 53] is a continual learning method that uses a

generative model G to approximate the distribution of all observed training examples (i.e.

D), and trains a discriminative model (i.e., solver) to perform a task. In the initial learning

session, generator G0 and solver are trained using examples in D0. In any subsequent

learning session i, a new generator Gi and solver are trained using examples in Di and
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Figure 6.1: DGR architecture. Layers with white outline are linear.

samples from Gi−1 that approximate Di−1, thus approximating training with Di−1 ∪ Di.

The challenge in applying the principles of DGR to KG embeddings is designing an ef-

fective generator, as the solver is determined by the representation used, i.e., Θ =
{
{ve| e ∈

E}, {Wr| r ∈ R}
}

). Sampling training examples is a known problem in KG embedding.

Prior work has used Generative Adversarial Neural Networks to generate negative exam-

ples [151, 152, 153], but we cannot use these methods because their generators require

positive examples as input. Prior work has shown that a Variational Auto-Encoder (VAE)

can be used to sample sequences of discrete tokens [154]. We treat each triple as a sequence

of discrete tokens to design our VAE-based generator.

Figure 6.1 shows our VAE architecture that uses Gated-Recurrent Units to encode and

decode the triples to and from the latent space z. Input triples (h, r, t) to the encoder are

first transformed into token embedding sequences x = (νh, νr, νt), where ν∈R|En|+|Rn|×dV
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is a token embedding learned by the encoder with dimensionality dV . The encoder, shown

in blue in Figure 6.1, is a learned posterior recognition model q(z|x) that approximates the

posterior distribution over z, conditioned on the input triple sequences x. Unlike a standard

auto-encoder, the encoder is encouraged to keep the learned posterior q(z|x) close to the

prior over the latent space p(z), which is a standard Gaussian. A similarity constraint based

on the KL divergence measure in the objective function allows samples to be generated

from the latent space. These samples are decoded using the decoder, shown in green in

Figure 6.1, to maximize p(x|z), the likelihood of a triple sequence x conditioned on its

encoded latent space vector z, as in a standard auto-encoder. The output sequences of the

VAE are transformed back into a triples using a Softmax function over all tokens (i.e.,

e∈En and r∈Rn). The objective function for the VAE architecture is:

−KL
(
q(z|x)||p(z)

)
· α(epoch) + Eq(z|x)

[
log p(x|z)

]
(6.3)

where an additional term α(·) is included to anneal the Kullback–Leibler divergence loss,

preventing issues such as vanishing gradients caused by posterior sampling and Kull-

back–Leibler divergence loss terms being driven to zero [154]. α(·) is a function of the

number of epochs trained for the learning session:

α(epoch) =
λam

1 + e−λas

(
epoch−λap

) (6.4)

where λam, λas, and λap are hyper-parameters tuned during training to control the maxi-

mum value, slope, and position of the annealing function, respectively.

6.4 Experimental Setup for Link-Prediction Evaluations

We evaluate our CKGE methods in regards to link-prediction on two MRE representations:

TransE [29] and Analogy [30]; and three benchmark KGs: AI2Thor [143], FB15K237

[150], and WN18RR [150]. The last two KGs are challenging and have been widely used

in the graph embedding literature [150, 152, 155]. AI2Thor contains relations and entities
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related to service robotics, e.g., locations of objects, actions that can be performed on ob-

jects, and the outcomes that result from these actions [143]. We report the accuracy and

complexity of each method based on seven performance measures chosen from prior con-

tinual learning work in robotics [57]. In each trial, the evaluation task is triplet prediction,

a fundamental KG embedding task [18, 143] with a well-defined experimental setup [29,

27] as described later in this section.

CKGE datasets: Since there is no established benchmark dataset for CKGE, we intro-

duce three standard evaluation datasets that we obtain by sampling. Our heuristic sampling

strategy emulates the New Instances and Concepts scenario presented in [57] under the

categorization of the nature of data samples within training sets. Therefore, our sampling

strategy models the scenario where a robot explores a world and discovers new triple in-

stances that contain new concepts (i.e. entities or relations), new triple instances that con-

tain previously observed concepts, and triple instances that have been previously observed.

Consider a KG G whose triples D have been split into a training set DTr, validation set

DV a, and test set DTe. Our approach for generating datasets for n = {1, ..., N} learning

sessions is:

1. Sample training triples: uniformly sample without replacement |DTr|
N

triples from

training set DTr of G. These triples form training dataset Dn
Tr.

2. Extract entities and relations: create a set of entities En and a set of relations Rn for

this session from the triples in Dn
Tr. The set of all observed entities (relations), i.e.,

En (Rn) is the union of current and prior En (Rn).

3. Construct nth validation and test sets: extract from DV a and DTe the triples whose

head, relation, and tail belong to En and Rn (respectively). These triples form vali-

dation set Dn
V a and test set Dn

Te of the nth session.

4. Remove sampled training triples: remove Dn
Tr from DTr of G.
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Table 6.1: CKGE Datasets; Benchmarks

WN18RR-5-LS
LS-1 LS-2 LS-3 LS-4 LS-5

|En| 20,368/(50%) 20,389/(73%) 20,249/(87%) 20,463/(95%) 20,437/(99%)
|Rn| 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%)
|Dn

Tr| 17,367/(20%) 17,367/(40%) 17,367/(60%) 17,367/(80%) 17,367/(100%)
|Dn

V a| 1,117/(37%) 1,141/(57%) 1,187/(71%) 1,190/(80%) 1,184/(86%)
|Dn

Te| 1,168/(37%) 1,159/(57%) 1,218/(72%) 1,173/(81%) 1,175/(87%)
FB15K237-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5
|En| 13,143/(90%) 13,106/(96%) 13,115/(98%) 13,089/(99%) 13,163/(100%)
|Rn| 237/(100%) 237/(100%) 237/(100%) 237/(100%) 237/(100%)
|Dn

Tr| 54,423/(20%) 54,423/(40%) 54,423/(60%) 54,423/(80%) 54,423/(100%)
|Dn

V a| 17,013/(97%) 16,929/(99%) 16,917/(100%) 16,882/(100%) 16,905/(100%)
|Dn

Te| 19,776/(97%) 19,727/(99%) 19,734/(99%) 19,758/(100%) 19,801/(100%)

Table 6.2: CKGE Datasets; Robotics
LS-1 LS-2 LS-3 LS-4 LS-5

|En| 199/(87%) 202/(96%) 191/(97%) 193/(98%) 198/(100%)
|Rn| 15/(100%) 14/(100%) 15/(100%) 15/(100%) 15/(100%)
|Dn

Tr| 405/(20%) 405/(40%) 405/(60%) 405/(80%) 405/(100%)
|Dn

V a| 224/(91%) 231/(98%) 229/(99%) 223/(99%) 231/(100%)
|Dn

Te| 224/(91%) 225/(98%) 214/(99%) 213/(99%) 226/(100%)

5. Repeat steps 1-4 until no training triples exist in G or a predefined number of itera-

tions are completed.

We generated three CKGE datasets with n = 5 sessions using our approach on two es-

tablished benchmark KGs in the graph embedding community (WN18RR and FB15K237 [150])

and a KG used in robotics (AI2Thor [143]). Table 6.1 and Table 6.2 report statistics of each

dataset. The columns of the tables denote the learning session (LS-X, X∈ [1, 5]), while

rows correspond to the statistics, e.g., |En| is the size of the entity set. Individual cells

indicate the value, with coverage with respect to the original KG shown in parentheses.

For instance, in LS-2 of WN18RR-5-LS, there are 20, 389 entities and 73% of all entities

in WN18RR have been observed. Note that our sampling strategy empirically produces

datasets with better coverage and higher percentages of new training triples each learning

session, i.e., more challenging datasets for CKGE, than previous methods such as entity
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sampling [54]. Furthermore, our sampling strategy makes the distribution of the n training

sets more closely match the original DTr than entity sampling by ensuring sampling with-

out replacement
(
Dn

Tr

⋂
Dn+1

Tr = ∅ ∀n
)
. In addition to our chosen sampling strategy, we

repeated all experiments with two other sampling strategies, entity and relation sampling,

detailed in Appendix A.

Evaluation procedure: The evaluation task is to predict complete triplets from incom-

plete ones in test splits Dn
Te, i.e., predict h given (r, t) or t given (h, r). To perform triplet

prediction, each test triplet (h, r, t) is first corrupted by replacing the head (or tail) entity

with every other possible entity in the current session En. Then, to avoid underestimating

the embedding performance, we remove all corrupted test triplets that still represent a valid

relationship between the corresponding entities, known as the “filtered” setting in the lit-

erature [29]. Last, scores are computed for each test triplet and its (remaining) corrupted

triplets using the scoring function f(h, r, t) (defined below), then ranked in descending

order.

Recall that we consider two KG embedding representations to show the generality of

our methods: TransE and Analogy. TransE represents relationships as translations between

entities, i.e., vh + Wr = vt [29]. It uses the scoring and margin ranking loss functions in

Equation 6.5 and Equation 6.6, where [x]+ = max(0, x), γ is the margin, and (h′, r, t′) are

corrupted triples in a corrupted KG G ′. Embeddings are subject to normalization constraints

(i.e. ||ve||2 ≤ 1∀ e ∈ E and ||Wr||2 ≤ 1 ∀ r ∈ R) to prevent trivial minimization of L by

increasing entity embedding norms during training.

f(h, r, t) = ||vh + Wr − vt||1 (6.5)

L =
∑

(h,r,t)∈G,
(h′,r,t′)∈G′

[f(h, r, t) + γ − f(h′, r, t′)]+ (6.6)

Analogy, on the other hand, represents relationships as (bi)linear mappings between enti-

ties, i.e., v⊤
h Wr = v⊤

t [30]. It uses the scoring and negative log loss functions in Equa-
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tion 6.7 and Equation 6.8 where σ is a sigmoid function, y is a label indicating whether

the triple is corrupted, and G ′ is the corrupted KG. Additionally, the linear mappings

(i.e. relations) are constrained to form a commuting family of normal mappings, i.e.,

WrW⊤
r = W⊤

r Wr ∀ r ∈ R and WrWr′ = Wr′Wr ∀ r, r′ ∈ R, to promote analogical

structure within the embedding space.

f(h, r, t) = ⟨v⊤h Wr, vt⟩ (6.7)

L =
∑

(h,r,t,y)∈G,G′

−logσ(y · f(h, r, t)) (6.8)

Evaluation measures: We build on existing measures to characterize each of our

CKGE methods. We consider different factors important for robotics applications modeling

semantic knowledge, e.g., inference, memory usage, and learning efficiency. In addition to

the only measure provided in prior CKGE work [54] (i.e. inference performance), we report

seven other robotics-oriented metrics cataloged in [57] that measure unique aspects of con-

tinual learning algorithms. Specifically, for inference performance, we consider the mean

reciprocal rank of correct triplets (MRR) and the proportion of the correct triplets ranked

in the top 10 (Hits@10). During each learning session, we compute the evaluation mea-

sures for the test sets of all learning sessions to characterize the effect of learning on prior,

current, and future learning sessions. During the nth learning session of N total sessions,

the two training-test inference performance matrices M ∈ RN×N (for MRR and Hits@10)

are used to compute four measures that summarize accuracy and forgetting across learning

sessions: (i) Average accuracy (ACC)Average accuracy (ACC) measures the average accu-

racy across learning sessions—Equation 6.9; (ii) Forward Transfer (FWT)Forward Trans-

fer (FWT) measures zero-shot learning in future sessions by transferring weights learned

in prior session(s)—Equation 6.10; (iii) Backwards Transfer (BWT)Backwards Transfer

(+BWT) measures the improvement over expected performance of a prior learning session

as a result of learning in future sessions—Equation 6.12; and (iv) Remembering (REM)
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measures how performance in a learning session degrades as a result of learning in subse-

quent sessions—Equation 6.13.

ACC =

∑N
i≥j Mi,j

N(N+1)
2

(6.9) FWT =

∑N
i<j Mi,j

N(N−1)
2

(6.10)

BWT =

∑N
i=2

∑i−1
j=1(Mi,j − Mj,j)

N(N−1)
2

(6.11)

+BWT=max(0,BWT) (6.12) REM=1−|min(0,BWT)| (6.13)

Other measures important for robotics applications that leverage semantics are space

complexity and learning speed [57]. We capture space complexity for each CKGE method

using Model Size (MS) and Samples Storage Size (SSS) measures [57]. MS measures the

growth in memory usage U for model parameters θ across learning sessions for a particular

method—Equation 6.14. SSS measures the growth in memory usage U for stored samples

SS across learning sessions as a proportion of the total number of training samples for

the task, i.e., DTr, in Equation 6.15. For learning speed, we use the Learning Curve Area

(LCA) measure [57], which we modify to range between zero and one (like other mea-

sures). For a performance measure m, it computes the area covered by the learning curve

of the learning method up to the best measured performance m∗ at time t as a proportion

of the area achieved by perfect zero-shot learning (Equation 6.16).

MS=min(1,

∑N
i=1

U(θ1)
U(θi)

N
) (6.14)

SSS=1−min(1,

∑N
i=1

U(SSi)
U(DTr)

N
) (6.15)

LCA=

∫ t
0 mdm

m∗ × t
(6.16)
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(a)

(b) (c)

Figure 6.2: Measures averaged for all datasets in Table 6.1 and graph embedding representations
in section 6.4. Hits@10 used for ACC, FWT, +BWT, and REM. Best viewed in color.

Software implementation: Please see supplementary material1 for details about the

tuning of hyper-parameters of CKGE methods, each KG embedding representation used

for evaluation, and evaluation datasets, experiments, and results that are omitted here for

brevity.

6.5 Experimental Results for Link-Prediction Evaluations

Results reported in this section are the average of five test runs in each experimental sce-

nario; statistical significance is tested using repeated-measures ANOVA and a post-hoc

Tukey’s test. Any mention of ‘significance’ implies statistical significance at 95% signifi-

cance level (i.e. p < 0.05).
1https://github.com/adaruna3/continual-kge
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Figure 6.3: Hits@10 from initial (bright) to final (transparent) epoch. Black errors bars indicate
standard deviation. L2R and SI perform better than DGR in the initial epoch, but DGR outperforms
in the final epoch after the first learning session. Best viewed in color.

In addition to the CKGE methods, we considered two additional methods that served

as upper and lower bounds (i.e., baselines) for the expected inference performance of the

CKGE methods. Batch represents the inference upper bound because it can store all prior

examples to train a new embedding in each learning session. Finetune represents the lower

bound because it fine-tunes the embedding with examples only from the current learning

session and has no means to prevent catastrophic forgetting.

6.5.1 Benchmark Datasets:

Figure 6.2a summarizes the results of experiments using benchmark KG datasets of Ta-

ble 6.1 (WN18RR, FB15K237), where the range of each measure is [0, 1] and larger values

are better. Although DGR significantly outperforms other methods in terms of inference

(i.e., using ACC and FWT), there are insights and trade-offs to consider based on other

factors.
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(a) (b)

(c)

Figure 6.4: Semantics-driven robotics application scenarios: (a) Unconstrained; (b) Data Con-
strained; and (c) Time and Data Constrained. Best viewed in color.

• Figure 6.2b shows that DGR has a significantly lower learning speed (based on LCA)

than the other methods since a new generative model must be trained in each learning

session. If the number of epochs to train the generative model are ignored, DGR’s LCA

is comparable to Batch (DGR′ in Figure 6.2b) but still significantly lower than the regu-

larization techniques (L2R and SI).

• Figure 6.2c indicates that methods with good inference performance also tend to have

higher model memory growth (i.e., MS measure); among the methods with significantly

better inference performance than Finetune, L2R has the smallest MS followed by SI

and DGR.

• Since they regularize prior embeddings, L2R and SI initially perform better than DGR,

as does the Finetune baseline, as seen in the Hits@10 plots for each method at the start
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(a) (b)

(c)

Figure 6.5: Semantics-driven robotics application scenarios: (a) Unconstrained; (b) Data Con-
strained; and (c) Time and Data Constrained. In each line plot, shading indicates standard deviation.
Best viewed in color.

and end of each learning session (Figure 6.3).

• Figure 6.2 and Figure 6.3 indicate that the CKGE methods based on architecture mod-

ification (i.e., PNN and CWR) have significantly lower inference performance than Fine-

tune in all experiments. The difference in performance between PNN and the regularization-

based methods shows the importance of flexibility over prior concepts for CKGE. Also,

CWR’s poor inference performance highlights the challenges of directly manipulating

the embedding space because, although CWR can learn TE well in isolation, CE is

quickly corrupted by the averaging performed to merge embeddings.

93



6.5.2 Robotics Datasets:

We constructed three evaluation scenarios using the AI2Thor KG dataset in Table 6.2.

Each scenario corresponds to a different class of semantics-driven robotics applications.

The first scenario, Unconstrained in Figure 6.4a and Figure 6.5a, corresponds to a robot

that has access to all prior training examples at training time. More generally, the un-

constrained scenario could represent robots with ready access to cloud services for data

storage and processing. However, such a scenario may be unfeasible in some applications

due to hardware constraints or security concerns. Our second scenario, Data Constrained

in Figure 6.4b and Figure 6.5b, represents robots with access to limited training examples,

e.g., only from the current learning session (Dn
Tr); data constraints could be due to storage

constraints or dynamic domain changes. The final scenario, Time and Data Constrained

in Figure 6.4c and Figure 6.5c, mimics a mobile robot (or drone) operating under resource

constraints; the robot only has access to training examples for the current learning session

and has limited time to update the KG embedding. For simplicity, we limited the number

of training epochs in each learning session to 100. The ranges of each measure are in [0, 1]

and larger values are better. The results from each scenario provide key insights about the

choice of the CKGE method:

• In an unconstrained scenario (Figure 6.4a and Figure 6.5a), such as one in which a

robot might have access to a cloud compute service, Batch learning is the best choice

despite its significantly lower sample efficiency (SSS) and learning speed (LCA) because

it provides significantly higher ACC and FWT compared with other methods.

• In a data constrained scenario (Figure 6.4b and Figure 6.5b), e.g., the robot can only up-

date its semantic representation intermittently using limited on-board hardware. Batch’s

inference performance collapses because prior observations are unavailable. Given these

constraints, DGR is the best choice, with much better ACC and FWT than other methods

because it approximates Batch in the unconstrained scenario. However, DGR incurs a

significant computational cost to train the generative model, resulting in a significantly
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lower LCA value.

• In a data and time constrained scenario (Figure 6.4c and Figure 6.5c), e.g., the robot is

updating its own semantic model on-board during a task, DGR is a poor choice because

there is not enough time to sufficiently train the generative model. L2R and SI are better

choices; SI with Analogy and L2R with either graph embedding offer significantly better

inference performance than Finetune and significantly better LCA than Batch. Compared

with SI, L2R’s memory growth (MS) is significantly lower.

6.6 Experimental Setup for Robust Task Execution

For task execution, we evaluate our CKGE methods with the TuckER embedding [32] in

the VirtualHome simulator using the robust task execution approach presented in chapter 5.

The VirtualHome simulator offers multiple home simulation environments in which we

can simulate task execution under continual learning assumptions with a virtual agent as in

chapter 5. In these evaluations, we simulate a continual learning scenario in which a robot

is operating in different environments (i.e. homes). We model a continual learning scenario

by sequentially training the robot on datasets extracted from each unique environment in

the simulator and evaluating the robot’s task execution success rate on all previously en-

countered environments. We report the accuracy and complexity of our best performing

classes of CKGE methods from the prior experiments (i.e. architecture modification meth-

ods are not considered). As in the previous experiments, our seven performance measures

were chosen from prior continual learning work in robotics [57]. In each trial, the evalua-

tion task is one-shot task execution, a real world robot task defined previously in chapter 5

and briefly summarized in this section for convenience.

VirtualHome environments: VirtualHome contains six household environments, each

containing a kitchen, bedroom, bathroom, and livingroom. We extracted a KG from each

unique environment that is used to train the robot’s MRE before it performs task execution

in the environment. Table 6.3 reports statistics of the KG extracted from each household in
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Table 6.3: VirtualHome Dataset; 6 Households

VirtualHome-6-H
H-1 H-2 H-3 H-4 H-5 H-6

|En| 209/(80%) 210/(88%) 194/(91%) 189/(92%) 206/(95%) 191/(97%)
|Rn| 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%)
|Dn

Tr| 1,112/(40%) 1,077/(60%) 1,003/(78%) 929/(82%) 1,053/(93%) 974/(100%)
|Dn

V a| 25/(21%) 22/(38%) 26/(59%) 23/(73%) 22/(90%) 19/(100%)
|Dn

Te| 25/(20%) 22/(57%) 26/(56%) 23/(71%) 22/(87%) 19/(100%)

Table 6.4: VirtualHome Household Triple Overlap
% of column household in row household
H-1 H-2 H-3 H-4 H-5 H-6

H-1 100% 48% 34% 49% 50% 37%
H-2 49% 100% 34% 46% 35% 35%
H-3 38% 36% 100% 39% 31% 27%
H-4 59% 54% 43% 100% 33% 33%
H-5 53% 36% 29% 29% 100% 40%
H-6 42% 39% 28% 32% 43% 100%

VirtualHome. The columns of the table denote the household (H-X, X∈ [1, 6]), while rows

correspond to the statistics as in Table 6.1, e.g., |En| is the size of the entity set. Individual

cells indicate the value, with coverage over the global KG that is extracted from all house-

holds combined shown in parentheses. In addition to Table 6.3, we provide Table 6.4 which

shows the overlap in triples between each environment in virtual home. Sequentially eval-

uating the robot in each unique environment presents a continual learning scenario where

the robot trains sequentially on subsets of a KG because the overlap of observed triples be-

tween environments is ≤ 60% and the coverage of training triples increases between each

household.

Evaluation procedure: In these experiments we measured how the robot’s task ex-

ecution success rate in each household was affected by the CKGE method used. In our

experiments we sequentially trained the robot on datasets extracted from each unique en-

vironment in the simulator and evaluated the robot’s task execution success rate on all

previously encountered environments. In these experiments the robot performs robust exe-

cution of household cleaning tasks, using the system and definitions in chapter 5. In robust

task execution, the robot is provided an execution environment Ex and a demonstrated task
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plan Td that is recorded in a demonstration environment Ed, and asked to find a modified

task plan Tx, executable in Ex, that accomplishes the goal(s) of Td. Task plans are defined

as a sequence of primitive actions, where each primitive action may or may not be parame-

terized by objects. Task plans are incrementally modified using knowledge inferences from

a MRE with the system defined in chapter 5 to find an executable task plan. When the robot

begins task execution in each household, it has the opportunity to update its MRE with the

triples extracted from that household. Execution environments are sampled by perturbing

the object used to demonstrate the task; changing the object’s location, type, or both. The

perturbations are made in accordance with the action-object-location distributions present

in each VirtualHome environment (H-X, X∈ [1, 6]), ensuring that objects are not placed at

implausible locations (e.g., broom inside the toilet) and that the intended generalization is

not unreasonable (e.g. cleaning a table with a washing-machine). As a result, the demon-

strated task plan often fails due to unsatisfied pre-conditions of primitive actions, and the

robot must generalize the demonstrated task plan to formulate the executable task plan.

Additionally, the prior distributions for which objects are likely to be spawned and their

likely locations is unique to each household.

As our CKGE methods are all embedding agnostic, we used recent a state of the art

MRE for this experiment, TuckER [32]. TuckER represents relationships using the Tucker

decomposition, i.e., W ×1 vh ×2 Wr ×3 vt where W is the core tensor and ×n is a tensor

product along the nth dimension [32]. It uses the 1-N scoring and Bernoulli negative log

loss functions in Equation 6.17 and Equation 6.18 where p(h, r, ti) is the predicted proba-

bility of tail entity i ∈ {1, ..., |E|} and yi is a label indicating whether the relation r holds

between h and ti. Note that p(h, r, ti) is the predicted probability, not scoring function. The

predicted probability p is a function of scoring function f that includes batch norms and

dropout before putting output activations through a sigmoid function.

f(h, r, t) = W ×1 vh ×2 Wr ×3 vt (6.17)
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L = − 1

|E|

|E|∑
i=1

(
yi · log

(
p(h, r, ti)

)
+ (1− yi) · log

(
1− p(h, r, ti)

))
(6.18)

Evaluation measures: We used the same measures from the link-prediction experi-

ments that summarize accuracy and forgetting across learning sessions: ACC, FWT, BWT,

and REM. During each learning session, we compute the evaluation measures for the test

sets of all learning sessions to characterize the effect of learning on prior, current, and fu-

ture learning sessions. However, in these experiments only a single performance matrix

M ∈ RN×N is used to compute these measures with a different underlying performance

metric. Specifically, for robust task execution performance, we consider the success rate

of the robot to execute the demonstrated task Td in the execution environment Ex. We

capture space complexity for each CKGE method using MS and SSS measures as in the

previous experiments [57]. For learning speed, we use the LCA measure as in the previous

experiments [57].

6.7 Experimental Results for Robust Task Execution

Results reported in this section are the average of five test runs in each experimental sce-

nario; statistical significance is tested using repeated-measures ANOVA and a post-hoc

Tukey’s test. Any mention of ‘significance’ implies statistical significance at 95% signifi-

cance level (i.e. p < 0.05).

As in the link-prediction experiments, we included Batch and Finetune methods as

upper and lower bounds, respectively, for the expected task execution performance when

using CKGE methods. In addition, to highlight the importance of adapting the robot’s

MRE as the robot encounters new environments, we also include results for a static MRE

baseline. Static represents performance that can be achieved by learning a MRE in the

initial environment that remains the same in each future environment encountered. The

Static baseline represents the common approach of many prior KG representation works

that assume static prior distribution across environments [13, 16, 6, 4].
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(a) (b)

Figure 6.6: Robot Task Execution Performance in (a) Unconstrained and (b) Data Constrained
scenarios. Best viewed in color.

We sampled 40 initial demonstrations with 10 executions environments for a total of

400 robot executions per household, test run, and evaluated method combination. Before

evaluating the robot’s task execution performance in each household, we updated the MRE

used by the robot according to the method being evaluated. We constructed three evalu-

ation scenarios by subjecting the MRE update procedure to different constraints as in the

link-prediction experiments. Unconstrained corresponds to a robot that has access to all

prior training examples at training time. Data Constrained represents robots with access

to limited training examples, e.g., only from the current learning session (Dn
Tr). Last, in

Time and Data Constrained the robot only has access to training examples for the current

learning session and has limited time to update the MRE. We varied the number of training

epochs in each learning session from 15 to 480 to characterize how each method is affected

by the varying time constraint. Here the ranges of each measure are in [0, 1] and larger

values are better. Overall, the results from each scenario further substantiate our results

from the link-prediction experiments.

• In an unconstrained scenario (Figure 6.6a), such as one in which a robot might have ac-

cess to a cloud compute service where it uploads all previously observed household data,

Batch learning provides significantly higher ACC and FWT compared with other meth-
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ods. It is also worth noting the REM and LCA performance of the Static baseline. The

Static baseline has perfect REM performance because the task execution performance

remains the same throughout all learning sessions due to the static MRE supporting the

robot’s inferences (i.e. the initial performance on a household never changes). Addi-

tionally, LCA is close to 1.0 because the MRE is static and does not update between

households after training on the dataset extracted from the first household (i.e. initial

performance in each household after the first is the best performance for the household).

• In a data constrained scenario (Figure 6.6b), the robot might be subject to data-privacy

restrictions and only have access to training examples for the current household to up-

date the MRE. Batch’s inference performance collapses because prior observations are

unavailable. Under these constraints, DGR is the best choice, with significantly better

ACC than other methods because it approximates Batch in the unconstrained scenario.

The other methods besides DGR have similar ACC performance because a baseline level

of performance can be achieved after training on the first household due to similarities

between households (evident from the Static baseline in Figure 6.6 and household over-

lap in Table 6.4).

• In a data and time constrained scenario (Figure 6.7), a robot might have varying uti-

lization rates in addition to the data privacy restrictions. Therefore, as robot utilization

increases, the time available (in number of training epochs) to update the robot’s se-

mantic representation when transitioning between households decreases. As training

time becomes more constrained, DGR is a poor choice because there is not enough time

to sufficiently train the generative model. Batch learning too degrades in performance

with tighter time constraints because there is not ample time to train a fresh MRE from

scratch. L2R, SI, and Finetune are better choices in more time constrained scenarios as

they incrementally update the MRE, requiring less training epochs to update the MRE.

Static is not included in Figure 6.7 as its performance does not depend on the training

time available, and therefore, did not differ from the prior two scenarios.
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Figure 6.7: SR ACC for a range of 15 to 480 of training time to update the robot’s semantic
representation. Black errors bars indicate standard deviation. Best viewed in color.

6.8 Discussion & Conclusion

KG embeddings are increasingly being used as semantic representations in robotics appli-

cations, but it is difficult to update these representations incrementally. Our work intro-

duced five representative continual learning-inspired methods for continual KG embedding

(CKGE). We also introduced a heuristic sampling strategy and generated CKGE datasets

based on benchmark KGs and a KG for the service robotics domain. Furthermore, we iden-

tified and built on measures for evaluating continual learning in robotics. We evaluated our

embedding-generic methods on two KG embedding representations.

Experimental evaluation using the benchmark KGs provided key insights characteriz-

ing the use of our CKGE methods in terms of factors such as inference, learning speed, and

memory requirements. Our evaluation using the service robotics domain knowledge char-

acterized the use of CKGE methods in three different classes of semantics-driven robotics

applications. In unconstrained scenarios, iterative batch learning provides the best perfor-
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mance because training data from prior learning sessions are available and training time in

each learning session is unlimited. In data constrained scenarios, deep generative replay

methods are the best choice as they approximate batch learning without having access to

data from prior learning sessions. In data and time constrained scenarios, regularization

methods are the best choice as they incrementally update embeddings leveraging weights

optimized in prior learning sessions and mitigating catastrophic forgetting. Both itera-

tive batch learning and deep generative replay methods perform worse than regularization

methods in data and time constrained scenarios because there is not enough training time

to learn an accurate generative model or new discriminative model.

One avenue for future work is to consider how to combine different classes of continual

learning techniques to produce a method that is robust across multiple robot application

scenarios (e.g., data constrained, data and time constrained). Additionally, our robot ap-

plication scenarios present a broad set of categories for two types of constraints robots

might encounter (e.g., time constraints due to high robot utilization). Further consideration

is needed to explore the space of foreseeable robot constraints and application scenarios.

Finally, our adaptations of existing architecture modification techniques (CWR) did not

perform well across our experiments. We believe poor architecture modification technique

performance is due to large differences between neural representations for object recog-

nition and KG embedding. We consider the development of architecture modifications

techniques for MREs another open question for future research.

6.9 Findings & Contributions

This work comprises our contributions to the development and evaluation of methods to

sequentially update multi-relational embeddings. We did this by relaxing the assump-

tions of the KG representation formulated in chapter 4, namely, that all training facts are

available for training in the first learning session. We developed and evaluated five contin-

ual KG embedding methods and provided guidance on which to select given the constraints

102



of a robotics application. Additionally, by using our CKGE methods in the task general-

ization module from chapter 5, we showed how our KG representation can be made more

adaptable to sequentially train the MRE on disjoint subsets of a KG. Therefore, our CKGE

methods enable a robot operating in multiple environments with varying prior distributions

(e.g., different houses, kitchen to bathroom) to incrementally include new facts observed

without corrupting previous semantic knowledge about a domain.
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CHAPTER 7

EXPLAINABLE KNOWLEDGE GRAPH EMBEDDING

In this chapter we present a method to provide natural-language explanations of inferences

made by MREs. Interpretable and explainable decision making is critical to establish trust

between autonomous robots and their end users, promoting long-term interaction and col-

laboration. Explainable decision making is particularly important to establish trust for

robots interacting with non-expert users, like the system we developed using our proposed

KG representation in chapter 5. The explainability method developed in this chapter is

also incorporated into the system from chapter 5 to evaluate how the robot’s decision mak-

ing about generalizations of prototypical task plans can be improved using feedback from

non-experts elicited by the robot’s explanations.

7.1 Introduction

Prior work has shown that learned, potentially latent, KG representations can be used to

support robots operating in challenging environments with non-expert users. The complex

knowledge inferences afforded by learned KG representations can be used to improve a

robot’s robustness in ambiguous or unforeseen scenarios. Some examples include tool

substitution [16] and interpolating ambiguous end user commands [13]. However, these

learned KG representations are usually black-boxes that are not interpretable to a non-

expert user, who would require an explanation when the robot has erratic behavior due to

an incorrect knowledge inference.

XAIP seeks to explain an AI’s reasoning to humans in sequential decision-making pro-

cedures to promote collaboration. In XAIP, inference reconciliation through dialogue with

the AI is one method of explaining an AI’s reasoning to a user [58]. The growing variety

of questions users may ask an AI addressed by prior work include “Why is action a in plan
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π?”, “Why not this other plan π′?”, “Why is this policy (action) optimal?”, and others. Ad-

ditionally, prior work has proposed inference reconciliation frameworks that explain how

plans, policies, rationales, and scene-graphs can be leveraged to explain an AI’s decision

making. However, to the best of our knowledge, no existing inference reconciliation frame-

work explains how a KG representation affects a robot’s decision making.

In its interactions with a user, a robot might need to justify its action based on semantic

knowledge inferences independent of the robot’s plan, policy, or the scene. For example, af-

ter asking the robot to fetch their coffee, the user might ask the robot “Why are you looking

in the refrigerator?”, to which the robot might reply “Food is stored in the refrigerator, and

coffee is a food”. Such an explanation not only elucidates the robot’s reasoning, but also

provides a valuable opportunity for the user to correct the robot’s knowledge (e.g., “coffee

is stored in the pantry”). Questions and explanations of that form differ qualitatively from

why questions addressed in prior work and require reasoning about the semantic relation-

ships between coffee, refrigerators, and other world entities to provide an explanation. The

aim of our work is to develop such explanation capabilities, and ultimately improve the

robot’s reasoning capabilities, by introducing a novel type of inference reconciliation of

the form, “Why is knowledge inference i, supporting action a, true?”.

We introduce an inference reconciliation framework that answers a user’s questions

about the knowledge inference that supports a robot’s action, based on KGs, XAI, and

natural language (Figure Figure 7.1). Our framework uses a pedagogical XAI approach

to provide explanations to non-experts about the inferences made by a learned KG repre-

sentation. We develop an interpretable graph feature model as the student, using subgraph

feature extraction and decision trees. We train the graph feature model to locally approx-

imate the predictions of the learned KG representation and provide a grounded, natural

language explanation for each prediction.

We evaluate our framework across three dimensions: algorithmic performance, user

preference of explanations, and robot task performance. In our algorithmic evaluation, we
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Figure 7.1: Overview of our inference reconciliation framework which introduces a novel explain-
able KG embedding method (graph feature model), leveraging decision trees, to provide natural
language explanations to users.

observe statistically significant improvements in classification fidelity over baseline inter-

pretable graph feature models, substantiating our design choices. We further analyzed our

design choices through an ablation study. In our user preference evaluation, we observe

that users prefer our explanations as robot responses with statistically significant differ-

ences in 73.3% of analyzed interactions. These differences in preferences validate the need

for our inference reconciliation framework as it answers “why questions” that are qualita-

tively different from prior work. Most importantly, in our robot task evaluation, we observe

that non-expert feedback prompted by our explanations can effectively improve robot task

performance (117% and 33.7% relative improvement in link-prediction and task execution

success rate, respectively). The novelties of our work include the inference reconciliation

framework as a system, our interpretable graph feature model, and our framework’s ability

to generate explanations that help non-experts improve robot task performance. Specifi-

cally:

1. We introduce an inference reconciliation framework that answers a novel type of user
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questions of the form “Why is knowledge inference i, supporting action a, true?” using

KGs;

2. We develop and evaluate a novel graph feature model that outperforms prior work by

statistically significant margins on a household knowledge dataset;

3. We showcase a novel application of explanations within XAIP: improving downstream

task performance, namely, robot behavior.

7.2 Methodology

The problem of inference reconciliation is grounded in the notion that users typically have

less computational ability compared to AI systems, making it difficult for users to under-

stand an AI’s solution. One solution entails providing explanations that aid in the user’s

inferential capabilities [58]. In our work, we consider robotic frameworks in which robot

behavior is driven by knowledge inference. In particular, we assume the robot is making

decisions based at least in part on a learned KG representation. To aid user understanding

of robot behavior, we introduce an inference reconciliation framework 1 that answers user

questions of the form: “Why is knowledge inference i, supporting action a, true?” (e.g.

user asks a robot commanded to find a sponge, “Why do you think you will find a sponge

in the sink?”). We leverage both KGs and interpretability techniques from XAI to provide

non-expert users with natural langauage explanations about a robot’s knowledge inference

supporting an action. As shown in Figure 7.1, we first gather facts about a robot’s task

domain, forming a KG, G. We use the KG G to learn a multi-relational (KG) embedding

(MRE), Θ, that enables the robot to make complex knowledge inferences. However MREs

are black-box, and lack a mechanism to explain inferences to non-expert users (subsec-

tion 7.2.1). To make MREs more interpretable to non-experts, we follow a pedagogical

XAI approach [156] to provide explanations about Θ’s inferences, using an interpretable

1Supplementary materials: https://github.com/adaruna3/explainable-kge

107



graph feature model as the student, Φ. Both G and Θ serve as inputs to Φ, which performs

subgraph feature extraction (SFE) and trains a decision tree classifier to locally approxi-

mate the predictions of Θ (subsection 7.2.2). Given a prediction from Θ, we then use Φ

and Θ to extract and ground the explanation in natural language (subsection 7.2.3).

7.2.1 Knowledge Graph Representation

KGs are modeled as a graph G composed of individual facts or triples (h, r, t); h and t are

the head and tail entities (respectively) for which the relation r holds, e.g., (cup, hasAction,

fill) [4, 6, 143]. KGs that model real-world domains tend to have the properties of being

large, sparse, and incomplete. For example, a KG representing a household, while large,

only represents a subset of true facts, which are sparse in a space of many potential facts.

We adopt multi-relational (KG) embeddings (MRE) for our KG representation because

MREs are designed for KGs that are large-scale and sparse [26]. Additionally, MREs excel

at learning the underlying structure of graphs to infer new facts beyond known facts in a

graph (i.e. latent feature models in section 2.5). We build upon the framework in [143],

which uses a MRE to represent G.

MREs are distributed representations that model G in vector space [26], learning a

continuous vector representation from a dataset of triples D=
{
(h, r, t)i, yi|hi, ti ∈E , ri ∈

R, yi∈{0, 1}
}

, with i∈{1...|D|}. Here yi denotes whether relation ri ∈ R holds between

hi, ti ∈ E . Each entity e ∈ E is encoded as a vector ve ∈ RdE , and each relation r ∈R is

encoded as a mapping between vectors Wr∈RdR , where dE and dR are the dimensions of

vectors and mappings respectively [26]. The embeddings for E and R are typically learned

using a scoring function f(h, r, t) that assigns higher (lower) values to positive (negative)

triples [26]. The learning objective is thus to find a set of embeddings Θ =
{
{ve| e ∈

E}, {Wr| r ∈ R}
}

that minimizes the loss LD over D. Loss LD can take many forms

depending on the KGE representation used, e.g., Negative Log-Likelihood Loss [32].

We make inferences (i.e. fact predictions) in MREs by completing a transformation
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in the embedding space. For example, to infer tails {tj| tj ∈ E ∀j} that might complete

(h, r, ), the scores f(h, r, tj) of all j triples are computed, and triples with scores meeting

some classification threshold are classified true. Each score f(h, r, tj) is the resultant of

a sequence of high-dimensional geometric transformations between the head entity vector

{vh|h ∈ E}, relation mapping {Wr| r ∈ R}, and tail entity vectors {vtj | t ∈ E}. Given

the complex and relative nature of MREs, inferences are not inherently interpretable, as

discussed in section 2.5 under explainable knowledge base completion. With the ulti-

mate objective of providing transparent explanations of MRE inferences to non-experts,

we leverage explainability techniques from XAI to explain each MRE inference.

7.2.2 Interpretable Model

Our student model Φ locally approximates the inferences (i.e. fact predictions) of the MRE,

denoted as Θ such that Φ can provide explanations of predictions made by Θ. As discussed

in section 2.5, graph feature models use graph features to infer missing facts. We develop

a novel interpretable graph feature model Φ that consists of two components: interpretable

graph features δ derived from G and Θ, and an interpretable classifier λ trained on δ to

approximate the predictions of Θ. We begin by extracting the features δ derived from a KG

G as in [157], which is formed from a dataset of triples D =
{
(h, r, t)i, yi|hi, ti ∈ E , ri ∈

R, yi∈{0, 1}
}

, with i∈{1...|D|}. Here, yi denotes whether relation ri ∈ R holds between

hi, ti ∈ E . We then train the interpretable classifier λ over the most relevant subsets of

these features to infer a triple (i.e. fact) missing from G.

Interpretable Knowledge Graph Features

We use Subgraph Feature Extraction (SFE) from [157] to extract interpretable graph fea-

tures, δ, from a graph G ′, which represents a set facts believed true the the MRE Θ. We

begin by forming G ′ using the facts in G classified as true by Θ. We also add to G ′ other

facts classified as true by Θ, which we form by switching the head h or tail t for a fact
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(h, r, t) in G with the top K nearest neighbor entities. We used K = 3, but this parameter

can be tuned to include or exclude more graph features for explanations. Neighbors are

determined by cosine similarity in the embedding space. We then used SFE to extract our

interpretable features, δ, from G ′ instead of G to get a larger set of features classified as true

by Θ. SFE uses bi-directional breadth-first search to find all unique relation paths connect-

ing a pair of entities in G ′. Relation paths are formed from the sequence of relations that are

traversed when following a path in G ′ from a head entity h to a tail entity t, where h, t ∈ E .

Therefore, for a relation path P̂ composed of L relations, P̂ℓ represents each relation on a

path where ℓ∈{1...L}. We encode the unique relation paths connecting entities h, t paired

by a relation r as features using one-hot encoding.

Explainable Model Training

We train a separate interpretable model λ, a decision tree, for each knowledge inference

on a subset of available features that maximize λ’s classification fidelity to Θ. The joint

contributions of relation path combinations extracted from G ′ may not be modeled as linear

combinations of individual paths. For example, two features together exhibiting an XOR

relationship. Therefore, we use a decision tree for our interpretable model, λ, given that de-

cision trees are able to model nonlinear decision boundaries, while remaining interpretable.

Additionally, decision trees have more explicit semantics about which relation paths (i.e.

features) contribute to a classification (i.e. features along the decision path), excluding ex-

traneous relation paths that may be correlated with a class but are unnecessary to make the

classification.

We sampled training examples based on their semantic similarity to the fact to be ex-

plained instead of using all available examples to train the decision tree for each fact (h, r, t)

to be explained. By only training over a set of the most semantically similar examples, the

decision tree λ is trained to locally approximate the decision boundary of the embedding

Θ. This locality is tuned as a hyper-parameter to maximize the classification fidelity be-
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tween the decision tree λ and embedding Θ. Given a fact (h, r, t) to be inferred, in which

h, t∈E and r∈R, we implemented the locality by selecting the K nearest neighbor facts

(hk, r, tk), where k ∈ {1...K}, sharing a common relation r such that the classification fi-

delity between Φ and Θ is maximized. Neighbors are determined by cosine similarity in

the embedding space (e.g., cosine(vh, vhk
)). Here K serves as a relation specific hyper-

parameter to control the locality of sampled training examples.

7.2.3 Extracting and Grounding Explanations

Given a knowledge inference extracted from a user’s “why question” during inference rec-

onciliation, we use the classifier λ in Φ to extract the relevant relation paths, the embedding

Θ to ground these relation paths to paths in G ′, and templates to convert the grounded

paths into natural language explanations. The knowledge inference takes the form (h, r, t),

where h, t∈E and r∈R. Assuming Θ and Φ are in agreement about the classification of the

query knowledge inference, we extract N relevant relation paths P̂n, where n ∈ {1...N},

between h and t that were present on the decision path when the decision tree (i.e. λ)

performed classification. For each path P̂n, we perform bi-directional breadth first search

over grounded paths between h and t using relations from P̂n in order to ground the rela-

tion paths using Θ. Therefore, for a relation path P̂n composed of L relations P̂ℓ
n, where

ℓ ∈ {1...L}, the breadth first search at h begins with the relation P̂0
n while the backward

breath first search at t begins with the relation P̂L−1
n . Both recursive searches repeatedly

perform inference using Θ by classifying the tails (heads) that complete the previous head

(tail) and relation in P̂n for the current search step, forming a grounded relation path. When

there is overlap between the two searches, an inference is performed that simultaneously

classifies the connecting entity serving as a head and tail using Θ to ensure the connecting

entity exists for the path. After completing the search, all grounded paths Pn made up of

relationships classified as true by the Θ have been found and ranked in order of belief ac-

cording to Θ, which can be accumulated during the search. These grounded paths can then
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be post-processed using templates for each relation type r∈R and automatically corrected

for grammar to produce natural-language explanations to users [158].

7.3 Experimental Evaluations

We evaluated our inference reconciliation framework with respect to algorithmic perfor-

mance, user preference, and robot task performance. In our algorithmic evaluation, we

used a household robot dataset to compare our interpretable graph feature model Φ with

prior work. We followed with an ablation study on the crucial components of our algorithm

design to substantiate each design choice. In our user preference evaluation, we measured

whether there were significant differences in user’s preferences towards our explanations

when a robot is asked “why questions” during task execution. In our robot task evaluation,

we measured how non-expert feedback to the robot elicited by our explanations affected

robot task performance.

7.3.1 Evaluation of Interpretable Graph Feature Model

Our first evaluation qualitatively and quantitatively compared our graph feature model with

baseline graph feature models. Qualitatively, we considered the different features nec-

essary for our use case and how each baseline compared with our approach in terms of

these features. Quantitatively, we measured the extent to which the classifications of each

considered graph feature model Φ (i.e. ours and baselines) approximates Θ’s classifica-

tions (i.e. classification fidelity). Classification fidelity is a proxy measure of whether

explanations produced by Φ explain Θ’s reasoning [156, 70]. For quantitative compar-

isons we used an evaluation procedure proposed in [70] for the test split of a dataset

D=
{
(h, r, t)i, yi|hi, ti∈E , ri∈R, yi∈{0, 1}

}
, with i∈{1...|D|} (see Quantitative Com-

parison below). Each yi denotes whether relation ri ∈ R holds between entities hi, ti ∈ E .

We checked for significant differences in mean classification fidelity using five-fold cross-

validation over D.
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Table 7.1: Comparison of Explainable KBC Methods

Method User?
MRE

Agnostic?
Negative

Correlations?
Stand-
alone?

F1 Fidelity
(µ, σ)

SimplE [72] Expert ✗ ✓ ✓ N/A
ITransF [71] Expert ✗ ✓ ✓ N/A
CrossE [74] Non-Expert ✗ ✓ ✓ N/A
DistMult [73] Non-Expert ✓ ✗ ✓ N/A
OxKBC [75] Non-Expert ✓ ✓ ✗ N/A
XKE [70] Non-Expert ✓ ✓ ✓ (87.9, 3.4)
Ours Non-Expert ✓ ✓ ✓ (98.9, 0.1)
Ours (∀, DT) Non-Expert ✓ ✓ ✓ (95.2, 3.0)
Ours (∀, LR) Non-Expert ✓ ✓ ✓ (87.9, 3.4))

Qualitative Comparison

We performed a qualitative comparison between graph feature models Φ from section 2.5

to select appropriate baselines for quantitative evaluation. The summary of our qualitative

comparisons between all graph feature models Φ is shown in Table 7.1. We did not include

SimpleE and ITransF in the quantitative comparison because relative attention weights be-

tween relations and entities are not interpretable to non-experts. Additionally, our graph

feature model was designed to be embedding agnostic, allowing robotics practitioners to

use the current state of the art MRE, eliminating CrossE as a baseline. Rule-Mining (Dist-

Mult) was not considered because rule-support cannot provide explanations in cases with

no positively correlated relation paths because support does not reason about negative cor-

relations between relation paths. We excluded OxKBC because instead of KG correlations,

it uses expert annotations to determine which explanation is best suited for a classification,

which may not provide interpretability into the MRE’s (i.e. robot’s) beliefs. Thus, the prior

method we quantitatively compared against is XKE, as it met all previously mentioned

considerations critical to our application.

Quantitative Comparison

We compared our approach with XKE [70] quantitatively using an evaluation procedure

from [70]. We first generated the inputs held constant during evaluation, the dataset D
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Table 7.2: Dataset gathered from VirtualHome to learn Θ

Relation |Ehead|† |Etail|† |DTr|† |DV a|†/|DTe|† |D|
HasEffect 31 16 25 3 31
InverseActionOf 12 12 12 1 14
InverseStateOf 16 16 14 1 16
LocInRoom 43 4 86 10 106
ObjCanBe 183 35 1,369 171 1,171
ObjInLoc 97 24 120 15 150
ObjInRoom 183 4 334 41 416
ObjOnLoc 170 33 292 36 364
ObjUsedTo 52 22 61 7 75
ObjHasState 183 20 1,065 133 1,331
OperatesOn 52 188 1,939 242 2,423

Example entities (291 total entities)
Rooms (4) kitchen, bedroom, bathroom, livingroom
Locations (43) fridge, table, sink, garbage, bed, desk, cabinet, drawer
Objects (189) chair, towel, bleach, tomato, rug, plant, fork, laptop
Actions (35) wipe, open, pick up, turn off, bake, unplug, disinfect
States (20) dirty, clean, on, off, cooked, broken, open, plugged in

†Values for an example fold of D
and MRE Θ. We gathered a household robot dataset D of unique triples from a household

simulator, VirtualHome [148], containing train DTr, valid DV a, and test DTe splits (Ta-

ble 7.2). We used the TuckER [32] MRE, to represent MRE Θ learned from D. TuckER

represents relationships using the Tucker decomposition, i.e., W ×1 vh ×2 Wr ×3 vt where

W is the core tensor and ×n is a tensor product along the nth dimension [32]. It uses the

1-N scoring and Bernoulli negative log loss functions in Equation 7.1 and Equation 7.2

where p(h, r, ti) is the predicted probability of tail entity i ∈ {1, ..., |E|} and yi is a label

indicating whether the relation r holds between h and ti. Note that p(h, r, ti) is the pre-

dicted probability, not scoring function. The predicted probability p is a function of scoring

function f that includes batch norms and dropout before putting output activations through

a sigmoid function.

f(h, r, t) = W ×1 vh ×2 Wr ×3 vt (7.1)
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L = − 1

|E|

|E|∑
i=1

(
yi · log

(
p(h, r, ti)

)
+ (1− yi) · log

(
1− p(h, r, ti)

))
(7.2)

We then generated a graph feature model Φ for our approach and XKE using the same

inputs, the MRE Θ and dataset D. We measured the classification fidelity of each Φ to

Θ. We measured classification fidelity as F1-Fidelity between Φ and Θ classifications,

in which the MRE’s classifications served as labels [70]. We checked for significant dif-

ferences in mean F1-Fidelity across a five-fold cross-validation over D using repeated-

measures ANOVA and a post-hoc Tukey’s test. Please visit the footnote in section 7.2 for

supplementary materials detailing the implementation of Θ and each Φ, the tuning of hyper-

parameters, the evaluation dataset, results, and statistical analyses that are omitted here for

brevity. Our results in Table 7.1 show that there is a statistically significant (p=0.001)

improvement in the mean F1-Fidelity between our graph feature model and XKE’s.

Ablation Study

We further analyzed our approach by performing an ablation study to understand how each

component of our graph feature model contributed to the overall improvement in perfor-

mance. We toggled two novel parts of our graph feature model not present in XKE: the

use of decision trees as Φ and the locality of examples to train Φ. We followed the same

procedure as in the previous experiment, the results of which are in Table 7.1. The first

ablation, (∀, DT) in Table 7.1, shows a significant (p=0.02) drop in performance due to

including all available relation paths to train Φ, which is still a decision tree. The fidelity of

Φ drops here due to the challenge of making an interpretable model approximate the global

decision boundary of a black box model [156]. The second ablation, (∀, LR) in Table 7.1,

shows a significant (p=0.001) drop in performance due to modeling Φ using using logistic

regression instead of a decision tree, in addition to including all available relation paths

to train Φ. Here, the fidelity of Φ drops due to inaccurately modeling the non-linear joint

contributions of relation paths, discussed in subsubsection 7.2.2.
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Figure 7.2: Preferences User Study GUI.

7.3.2 Evaluation of Explanation Preferences

Next, we evaluated our inference reconciliation framework from a non-expert’s perspective.

We performed a user study to characterize the relationship between different types of “why

questions” asked to a robot and a non-expert’s preferred types of explanations as responses

from the robot. The study evaluated two types of “why questions” asked to discern a robot’s

actions during cleaning tasks: causal and knowledge inference. Our causal questions were

those that inquired about the causal need for an action and had the form ”Why is action a

in plan π? (e.g. “Why will you move to the sink?”). Our knowledge inference questions

were those that inquired about the underlying inferences supporting an action and had the

form ”Why is knowledge inference i, supporting action a, true?” (e.g. “Why do you think
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Table 7.3: Preferences User Study Example Questions and Responses

Knowledge Inference Why Question Causal Why Question
Why do you think you will find a washing
sponge in a sink?

Why will you move to the sink?

Why do you think a scrubber is used to scrub? Why will you grab the scrubber?
Why do you think the act of scrubbing an
object will make it clean?

Why will you scrub the kitchen
table with the scrubber?

Knowledge-graph-based Robot Responses
I know that dusting can be done using a wash cloth, a wash cloth is usually used on
a stall, a stall can be mopped, and the act of mopping an object will make it clean.
Therefore, it is possible that the act of dusting an object will make it clean.
I know that a cleaning rag is often in a cabinet, a cabinet often can contain a towel,
and a towel is used to wipe. Therefore, it is possible that a cleaning rag is used to
wipe.

Causal-link-based Robot Responses
I will sponge the table to fulfill the goal of the table being clean.

I will move from the table to the sink to later grab the scrubber from the sink.
I will take the scrubber to later be able to scrub the table with the scrubber.

I will wipe the table to fulfill the goal of the table being clean.

you will find a sponge in the sink?) (see Table 7.3). Prompted by the “why question”,

users selected their preferred explanation from a list provided as possible robot responses.

Our null hypothesis was that the type of “why question” asked to a robot would not have a

significant affect on the type of explanation from the robot preferred by a non-expert.

Study Design

We recruited 50 users from Amazon’s Mechanical Turk (AMT) to perform the study, all

whom were 18 years or older (M=40.7, SD=10.3). The study was between-subjects, given

that each participant was randomly assigned to evaluate only one of two types of “why

questions” for each interaction. We counterbalanced for ordering effects by randomizing

the question order and robot response type order. Of the 50 participants, 17 participants

were filtered out for incorrectly answering any of four filtering questions (not included in

results) scattered throughout the study, each of which had one sensical and nonsensical

response (i.e.“..take the scrubber to later slay a fire breathing dragon..”). The remaining 33

participants were used to evaluate 15 robot interactions.
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In the study, users completed an online assessment that simulated situating users in mul-

tiple robot interactions and prompted users with a question about the interaction. For each

interaction, participants were shown a short video of the robot executing unique actions

towards a cleaning task before being interrupted to answer a designated “why question”.

Figure Figure 7.2 provides an example of the user’s interface. The “why question” in each

interaction was specific to each unique action being interrupted but was either causal or

knowledge inference type, as defined above.

Users were then tasked with selecting the “best robot response” to the “why question”.

Users were provided with two different explanation types as robot responses: causal-link-

based and knowledge-graph-based. The causal-link-based explanations were generated

from a recent state-of-the-art plan verbalization and explanation method based on causal-

link-chaining [61]. The knowledge-graph-based explanations were generated by our infer-

ence reconciliation framework in section 7.2 using the dataset D from Table 7.2 and MRE

Θ from subsubsection 7.3.1. Example questions and responses in the assessment are shown

in Table 7.3. Note, we do not evaluate explanations using scene-graphs, policies, or ratio-

nales (section 2.5), given that their assumptions do not align with our robot cleaning task

(i.e. objects relevant to answering the “why question” were never in scene, the robot had no

prior observed states relevant to the “why question”, and rationales ascribe a non-expert’s

reasoning to world and agent states instead of exposing the robot’s reasoning).

Study Results

We performed a Chi-square test of independence followed by repeated Fisher’s exact method

measures to analyze user responses aggregated in an individual contingency table for each

robot interaction in the assessment. We accounted for Type I error due to Fisher’s repeated

measures using Simes’ alpha correction [159]. In Table 7.4, we summarize the statistical

analyses for each of the 15 robot interactions analyzed, excluding the filtering question in-

stances. We observed that when asked a knowledge inference “why question”, participants
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Table 7.4: Results of Preferences User Study

#
Chi

P-val
Fisher
P-val

Interrupted Robot Task

1 0.01 0.006 Find disinfectant brush on kitchen table
2 0.01 0.006 Grab disinfectant brush to disinfect
3 0.02 0.01 Grab scrubber to scrub
4 0.00001 0.00001 Find washing sponge in sink
5 0.58 0.44 Grab cleaning rag to wipe
6 0.23 0.19 Find scrubber in sink
7 0.001 0.0005 Disinfect table with disinfectant brush
8 0.004 0.002 Grab washing sponge to sponge
9 0.13 0.12 Find cleaning rag on kitchen counter

10 0.02 0.01 Grab feather duster to dust
11 0.0001 0.00001 Find feather duster in cabinet
12 0.15 0.15 Sponge table with washing sponge
13 0.002 0.001 Wipe table with cleaning rag
14 0.009 0.007 Scrub table with scrubber
15 0.003 0.001 Dust table with feather duster

select a knowledge-graph-based robot response more often than not in all questions except

5, and that 73.3% of these differences in selections were significant (in bold). Similarly,

when asked causal “why questions”, participants select a causal-link-based robot response

more often than not in all questions, and 73.3% of these differences are significant. Overall,

our results indicate that non-experts recognize the qualitative differences in the two types of

“why questions”, which tend to significantly effect their preferred type of robot response.

In other words, there is a need for knowledge-based robot responses given they are bet-

ter suited for knowledge inference “why questions” whereas the existing causal-link-based

responses are better suited for causal “why questions”.

7.3.3 Validation of Explanations for Downstream Tasks

In our final experiment we evaluated whether non-experts could use our inference recon-

ciliation framework to improve robot task performance. The robot’s task was robust task

execution, wherein the robot is provided a demonstrated task-plan recorded in a demon-

stration environment, and asked to generalize the task-plan to new execution environments.

Given that robots cannot be assumed to be error-free, we relaxed the assumption from
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prior experiments that the robot had gathered a high-quality dataset by including robot

perception noise (i.e. the robot had a faulty object and affordance detector). We incorpo-

rated robot perception noise into a new dataset D̂ by randomly corrupting 30% of facts for

each relation in the dataset D from prior experiments (Table 7.2). As a consequence, the

MRE Θ̂ learned from the D̂ dataset often makes nonsensical knowledge inferences (e.g.,

(sponge,ObjUsedTo,microwave)) that lead to erratic robot behavior when executing tasks.

We validated whether nonsensical facts supporting inferences made by Θ̂ can be revealed to

non-experts using explanations generated by our inference reconciliation framework. We

hypothesized that if non-experts can accurately recognize and correct nonsensical facts in

explanations, then that feedback can be used to improve the MRE Θ̂, and in turn, improve

robot generalization behaviors.

We performed a user study to measure how well non-experts can correct nonsensical

facts within natural language explanations (i.e. correction accuracy). The explanations

were generated by our inference reconciliation framework. Specifically, the student model

Φ was trained on D̂ for false positive and false negative classifications of facts in DTe where

the embedding Θ̂ and student model Φ provided the same classification (see section 7.2).

The results of the user study informed a confidence interval for the expected non-expert

correction accuracy.

Study Design

We recruited 19 participants from AMT, all of whom were 18 years or older (M=33.4,

SD=5.9). Of the 19 participants, 1 was filtered out for performing below chance on the

practice portion of the study. In the study, users were tasked with identifying and correct-

ing nonsensical facts for a series of knowledge inferences and accompanied explanations.

Specifically users traversed through each supporting fact of the explanation and selected

the “most correct” fact from a list of options, which included the supporting fact from the

explanation, three other facts classified as most true by the MRE that could replace the
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Figure 7.3: Non-expert Feedback User Study GUI.

supporting fact from the explanation, and “None of the above”. An example question is

presented in Figure 7.3.

We formed a confidence interval for the expected non-expert correction accuracy be-

cause exhaustively recruiting users to evaluate all grounded explanations generated for

misclassified examples in D̂Te was impractical due to the large number of grounded ex-

planations (10,000+). Instead, we randomly assigned each user 16 questions sampled from

the large set of grounded explanations. In total, 18 users answered 96 sampled questions.

We ensured that each sampled question received three responses (randomly sampled), and

combined these responses using majority voting to create 6 meta-users. We determined the

necessary population size of meta-users to be 6, by forming a 95% confidence interval with

a 5% error margin using the sample standard-deviation of meta-user correction accuracy.

Study Results

The mean non-expert correction accuracy was 86.6% with an error margin of 4.1%. We

confirmed non-expert correction accuracy samples were normally distributed using Shapiro-
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Figure 7.4: Effect of Non-expert Correction Accuracy on MRR%.

Wilk’s Test (p=0.83). Additionally, to ensure no grouping bias, we performed a one-way

ANOVA to test that there were no significant differences in the mean performances of users

whose combined responses formed each meta-user (p=0.72). We used the mean non-expert

correction accuracy to estimate the improvements in performance of downstream tasks like

MRE link-prediction and robot task execution success rate.

Improvement of MRE

We characterized the effect of non-expert correction accuracy on improving the MRE by

measuring inference performance. Our initial MRE was Θ̂ learned from D̂. We corrected

86.6% of the corrupted facts in D̂ to form an improved dataset D̄. We learned a new MRE,

Θ̄, from D̄. Finally, we measured the difference in inference performance between Θ̂ and

Θ̄ on our original dataset D (from Table 7.2) for the common MRE task, link-prediction

[26].

In short, the link-prediction evaluation task is to rank complete triples from incom-

plete ones in test splits, i.e., rank heads h given (r, t) or tails t given (h, r). To perform
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link-prediction, each test triple (h, r, t) is first corrupted by replacing the head (or tail) en-

tity with every other possible entity E . Then all corrupted triples that represent a valid

relationship between the corresponding entities are removed to avoid underestimating the

embedding performance, known as “filtered setting” [26]. Last, scores are computed for

each test triplet and its (remaining) corrupted triplets using the scoring function f(h, r, t),

then ranked in order of belief. For each test triple (h, r, t), the mean reciprocal rank of the

test triple is calculated as a measure of inference performance.

We observed that the mean non-expert correction accuracy provided a 117% relative

improvement in MRR between Θ̂ and Θ̄ for the link-prediction task. Shown in Figure 7.4

is the MRR of Θ̂ as a red dot (32.1%) and Θ̄ as a green dot (69.9%). Figure 7.4 also

includes interpolated results for the range of possible non-expert correction accuracies.

We believe the increasing slope as non-expert correction accuracy improves is due to the

improvements in MRE generalization. Specifically, as the number of accurate facts the

MRE trains on increases, the more rapidly its learned relationships generalize to unseen

facts resulting in larger improvements in MRR%.

Improvement of Robot Behavior

As a final result, we characterized the effect of non-expert correction accuracy on improv-

ing the robot’s behavior by measuring robot success rate. We considered a real-world sce-

nario in which a household robot performs robust execution of household cleaning tasks,

using the system and definitions in [160]. In robust task execution, the robot is provided

an execution environment Ex and a demonstrated task plan Td that is recorded in a demon-

stration environment Ed, and asked to find a modified task plan Tx, executable in Ex, that

accomplishes the goal(s) of Td. Task plans are defined as a sequence of primitive actions,

where each primitive action may or may not be parameterized by objects. Task plans are

incrementally modified using knowledge inferences from a MRE with the system defined

in [160] to find an executable task plan. Execution environments are sampled by perturbing
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Table 7.5: Incorrect Robot Generalization Behaviors Corrected by Non-experts

Action Objects robot attempted to use to perform action
dust computer, radio
wipe crayon

disinfect toaster, television, candle, pillow

the object used to demonstrate the task; changing the object’s location, type, or both. The

perturbations are made in accordance with the action-object-location distributions present

in D, ensuring that objects are not placed at implausible locations (e.g., broom inside the

toilet) and that the intended generalization is not unreasonable (e.g. cleaning a table with

a washing-machine). As a result, the demonstrated task plan often fails due to unsatisfied

pre-conditions of primitive actions, and the robot must generalize the demonstrated task

plan to formulate the executable task plan.

We measured the improvement in robot success rate provided by the mean non-expert

correction accuracy by deploying Θ̂ and Θ̄ on a simulated robot in a simulation household

environment performing robust execution of cleaning tasks. We sampled 50 initial demon-

strations with 10 executions environments in each, for a total of 500 robot executions and

measured the robot’s execution success rate when using Θ̂ and Θ̄. Our experiment showed

a 33.7% relative improvement in the robot’s success rate due to the non-expert feedback

(i.e. the robot succeeded in 187 sampled environments using Θ̂ and 250 using Θ̄). We

measured the success rate of a robot that only repeats the default demonstration and a robot

selecting random generalizations of the task plan as reference points for the difficulty of

the task, which were 9 and 22 successes, respectively.

In addition to the quantitative improvement in success rate, we observed qualitative

changes in the robot’s generalization behaviors when performing robust task execution. We

provide several examples from the 500 sampled executions in Table 7.5. Each combination

of action and object in Table 7.5 is an instance of a generalization behavior the robot used to

attempt when using Θ̂ but was corrected and no longer occurs when using Θ̄. For example,

when using the initial MRE Θ̂, the robot attempted to dust using a radio and a computer.

However, by using improved MRE Θ̄, which incorporates the non-expert feedback, those
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nonsensical task generalizations no longer are attempted.

7.4 Discussion & Conclusion

In summary, we introduce an inference reconciliation framework that answers a user’s

questions about knowledge inferences supporting robot actions using KGs, XAI, and natu-

ral language. Our framework follows a pedagogical XAI approach, by using an interpetable

graph feature model to locally approximate the classifications of a black-box model, a

MRE. Through a three-fold evaluation, we demonstrate the importance of our framework

both with respect to interpretability as well as improved task performance. Specifically,

we show via an algorithmic evaluation that leveraging a decision tree classifier as an in-

terpretable graph feature model in our framework leads to higher F1-Fidelity compared to

prior use of linear regression models for explainable MREs. Additionally, through user

evaluations, we demonstrate that our explanations are preferred and accessible. Through

a user preference evaluation, we demonstrate a significant preference towards our frame-

work’s explanations for knowledge inference “why questions.” Additionally, when relaxing

the assumption that robots are error-free, we showcase the effectiveness of our explanations

in helping users identify and correct nonsensical beliefs in robots’ knowledge representa-

tions, consequently improving robot task performance.

Active learning over the set of explanations to confirm with non-experts is a likely can-

didate for future work to reduce the amount of non-expert feedback needed. Additionally,

within the broader area of XAIP, most works develop a single explanation method to an-

swer a subset of possible end user questions. A system that understands end user questions

and arbitrates between different explanation types accounting for dialogue context between

the end user and robot remains an open, non-trivial problem. As the number of answerable

end user questions types and robot explanation types presented in prior work reaches criti-

cal mass, such a system would seem more necessary as no single explanation type will best

answer all possible end user question types.
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7.5 Findings & Contributions

This work comprises our contributions to the the development and evaluation of an in-

ference reconciliation framework for MREs. Our contributions in this chapter provide

natural language explanations for MRE inferences, and therefore, improve the explainabil-

ity of the autonomous system presented in chapter 5. We did this by leveraging interpretable

graph feature models and using a pedagogical approach to explain facts inferred by a MRE.

We showed the our graph feature model outperformed prior work by statistically significant

margins, substantiating our design choices. Additionally, our explanations are preferred by

non-expert end users for the question types we targeted. Finally, by providing interpretable

explanations of MRE inferences, we enable non-experts to improve a robot’s task gener-

alization behaviors. Our novel inference reconciliation framework highlights the mutual

benefits from promoting a symbiotic relationship between an autonomous robot and non-

expert end user.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Semantic reasoning about domain knowledge has enabled robots to be robust in novel or

ambiguous situations. KG representations are a critical data structure enabling semantic

reasoning on robot systems. Each KG representation makes assumptions and defines math-

ematical structures that provide a robot with a core set of reasoning abilities. Throughout

this dissertation, we have examined a new class of KG representations for semantic rea-

soning on robot systems based on MREs. Specifically, this thesis examines the use of

multi-relational embeddings as knowledge graph representations within the context

of robust task execution and develops methods to explain the inferences of and se-

quentially train multi-relational embeddings.

8.1 Summary of Contributions

This dissertation has made the following contributions to validate this claim:

8.1.1 Survey of KG Representations in Robotics

We contributed a survey of prior KG representations used to perform semantic reasoning

in robot systems. In addition to a comprehensive list of prior work, we provide broad

performance characteristics of KG representations that directly affect common features

desired of robots evident across the referenced works. These performance characteristics

help to compare all surveyed KG representations with widely varying assumptions and

mathematical structures.
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8.1.2 Multi-Relational Embeddings as KG Representations for Robots

We contributed a novel KG representation for semantic reasoning in robot systems based

on MREs. Our experiments showed that our KG representation significantly outperformed

word embeddings at fact-prediction while being robust to large reductions in training data

and domain transfer. Additionally, our KG representation used orders of magnitude less

memory than BLNs to represent the same KG. While MREs do have limitations detailed

in section 4.6, we believe the collectively distinct set of advantages of MREs from prior

KG representations shows the potential to further progress of semantic reasoning on robot

systems modeling large problem domains.

8.1.3 Robust Task Execution using KG Representations

We contributed a complete robot architecture that enabled robot task execution and plan-

ning to be informed by our KG representation. In simulation, we demonstrated that our

KG representation significantly outperformed several baselines at robot one-shot task ex-

ecution. Our experiments showed that our KG representation generalized learned domain

knowledge beyond the set of observed facts and outperformed word embedding and plan

network baselines. Additionally, our experiments showed that MLNs had intractable in-

ference time when representing the same domain knowledge used in our experiments. We

followed these experiments in simulation by validating the robot architecture on a mobile

manipulator. Of the 50 trails, the robot generalized 38 task plans (including robot failures

at the executive and behavioral levels), 10 (26.8%) of which were enabled by inferring

unknown facts using the MRE.

8.1.4 Continual Knowledge Graph Embedding

We contributed five continual KG embedding methods that enable our KG representa-

tion to be sequentially trained with new domain knowledge. We evaluated each method

across several datasets using a variety of continual learning metrics and provided guid-
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ance on which to select given the constraints of a robotics application. Specfically, in

unconstrained scenarios, iterative batch learning performed best; in data constrained sce-

narios, our deep generative replay approach performed best; in data and progressively more

time constrained scenarios, our regularization approaches performed best. Additionally, by

using these methods in the task generalization module from chapter 5, we showed how

our KG representation can be made more adaptable to sequentially train the MRE. Our

simulations experiments demonstrated that our CKGE methods enable a robot operating

in multiple environments with varying prior distributions (e.g., different houses, kitchen

to bathroom) to incrementally include new facts observed without corrupting previously

learned domain knowledge.

8.1.5 Explainable Knowledge Graph Embedding

We contributed a novel inference reconciliation framework and showcased a novel applica-

tion of explanations within XAIP. Our inference reconciliation framework provides natural

language explanations to non-experts about why inferences within our KG representation

are classified as true, improving the interpretability of a robot’s decision-making informed

by a KG representation. We developed a novel graph feature model to extract explana-

tions about knowledge inferences made by MREs. Our experiments showed that our graph

feature model outperformed prior work by statistically significant margins at an evaluation

task proposed in prior work, substantiating our design choices. Additionally, our users

studies showed that our explanations are preferred by non-expert end users for the question

types we targeted. Finally, by providing interpretable explanations of MRE inferences,

our last experiments showed that we could enable non-experts to improve a robot’s task

generalization behaviors.
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8.2 Open Questions

While the contributions of this dissertation have explored the use of MREs as KG represen-

tations from multiple angles, there remain many open questions at various levels of scope

for the problem considered during this dissertation: semantic reasoning using MREs as

KG representations supporting robots. The following subsections provide open questions

at varying levels of scope for this problem.

8.2.1 Semantic Reasoning using MREs as KG Representations Supporting Robots

We begin with open questions at the same problem scope of this dissertation, pointing out

limitations and future work for methods presented throughout this thesis.

Modeling uncertain KGs with MREs: Our proposed KG representation leveraged a

variety of MREs that modeled KGs with binary labels for individual triples. We showed

empirically that we could rank facts with binary labels by training over datasets with re-

peated triples and interpreting output scores as measures of confidence. However, the KGs

modeled in robotics are often non-binary (e.g., cups have different locations with varying

confidences). Recent research in MREs has begun developing methods for “uncertain KGs”

where each fact is accompanied with a confidence score [161, 162]. Incorporating these

methods and assumptions into the proposed KG representation is one avenue for future

research.

Extending link-prediction conditioning in MREs: Our proposed KG representa-

tion is also limited in the variables that can be provided as evidence to condition a fact-

prediction (see section 4.6). For example, assuming a set of possible locations for cups, the

ranks of dirty cup locations should differ from the ranks of clean cup locations. How to

make such conditioning possible in MREs remains an open question, although some recent

research has proposed initial methods that combine multiple queries [10].

Reasoning about which explanation to provide: Our explanation mechanism pro-
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duces all possible grounded explanations of a knowledge inference made using a MRE.

Reasoning about which explanation to confirm with a non-expert user was out of scope for

the project. However, such reasoning is necessary for practical application of our method

due to the large number of grounded explanations. Additionally, within the broader area

of XAIP, most works develop a single explanation method to answer a subset of possible

end user questions. A system that understands end user questions and arbitrates between

different explanation types accounting for dialogue context between the end user and robot

remains an open, non-trivial problem. As the number of answerable end user questions

types and robot explanation types presented in prior work reaches critical mass, that open

question will gain priority as no single explanation type will best answer all possible end

user question types.

8.2.2 Semantic Reasoning using KG Representations Supporting Robots

Other open questions at a broader problem scope are related to improving KG representa-

tions for robot systems.

Improving KG representation integration in a robot architecture: Our task gener-

alization module in chapter 5 presents one method of integrating the KG representation to

inform robot task planning and execution. The integration primarily informs the selection

of which primitive actions to sequence (i.e. where to look for objects, which objects can

be used for a task). However, there may be other opportunities at different levels of the

robot architecture that could improve in performance if informed by the KG representa-

tion. Additionally, there may be better methods of integrating the KG representation with

the robot’s planning layer.

Novel KG representations: As discussed in section 3.10, although many KG repre-

sentations have been used for robot systems, none excel in all the mentioned properties

that affect the performance characteristics desired of robots. An open question for future

research is what novel KG representations can be developed for use on robot systems that
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would offer a collective set of advantages that improve over prior KG representations.

Combining KG representations: With a similar goal to the previous open ques-

tion, one might also consider how to combine existing complimentary KG representations.

Therefore, another open question for future research is what complementary KG repre-

sentations can be combined for use on robot systems that would offer a collective set of

advantages that improve over prior KG representations. One such example that exists is

First-order probabilistic models, but there may exist better combinations of existing KG

representations.

8.2.3 Semantic Reasoning Supporting Robots

At the broadest problem scope, we consider open research areas with potentially many

research questions related to improving semantic reasoning for robotics.

Multi-modal semantic reasoning for sensing and acting: An area of emerging inter-

est in robotics is finding a bridge spanning the low-level, high dimensional data associated

with robot actuation and sensing and the high-level symbols describing actions and world

state at various levels of abstraction. By learning semantic representations that capture the

essence and function of actions with respect to the world state, such an interface could

enable non-expert general purpose use of robot systems through dialogue and natural lan-

guage.

Transparent semantic reasoning for interaction: As the former research area devel-

ops, providing non-expert interpretable explanations of robot behaviors will grow in im-

portance. Such capabilities will be needed to confirm interpretations of end user requests,

justify generalizations of learned behaviors in new scenarios, and communicate represented

knowledge driving decision making.
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APPENDIX A

EXTENDED CKGE EXPERIMENTS WITH ALTERNATE SAMPLING

STRATEGIES

In addition to our sampling strategy in section 6.4, referred to here as triple sampling, we

also experimented with entity and relation sampling. We experimented with triple, relation,

and entity sampling strategies to get a breadth of sampling strategies one could use to gen-

erate a CKGE dataset from an established benchmark KG. For our main results, we chose

triple sampling because it had the most fidelity to the original benchmark KGs, while still

modeling a challenging sampling scenario a robot might encounter. By providing results

from experiments with all sampling strategies, we show that the insights for our main re-

sults hold for different sampling strategies and that our main narrative avoids highlighting

outlier results. Below we detail how the entity and relation sampling strategies were im-

plemented, the CKGE datasets generated by each, and results obtained for these datasets

using experimental settings similar to section 6.4.

CKGE sampling strategies: Our entity sampling strategy closely follows the sampling

strategy proposed in [54]. As in section 6.4, consider a knowledge graph G whose triples D

have been split into a training set DTr, validation set DV a, and test set DTe. Our approach

for generating entity sampling datasets for n = {1, ..., N} learning sessions is:

1. Initialize entity sampling distribution: initialize the entity sampling distribution to uniform

likelihood for any entity to be sampled.

2. Sample entities: sample without replacement 50% of entities in E of G.

3. Extract relations: create a set of entities En and a set of relations Rn for this session from

the sampled entities and the relations of triples in G that connect any two entities in En,

respectively. The set of all observed entities (relations), i.e., En (Rn) is the union of
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current and prior En (Rn).

4. Construct nth train, validation, and test sets: extract from DTr, DV a, and DTe the triples

whose head, relation, and tail belong to En and Rn (respectively). These triples form

train set Dn
Tr, validation set Dn

V a and test set Dn
Te of the nth session.

5. Update entity distribution and repeat: to bias towards sampling new triples, decrease

the likelihoods of sampled entities in En to be sampled in future learning sessions in

proportion to the number of times an entity has been sampled.

6. Repeat steps 2-5 until a predefined number of iterations are completed.

We generated two CKGE datasets with n = 5 sessions using the entity sampling ap-

proach on two established benchmark knowledge graphs in the graph embedding commu-

nity (WN18RR and FB15K237 [150]). Table A.1 reports statistics of each dataset as in

section 6.4. Note that even after 5 learning sessions, not all training, validation, nor test

triples have been sampled from the benchmark datasets. Additionally, the number of triples

in each learning session exceeds that of triple sampling, proving how this method often re-

peats sampled triples across learning sessions.

Due to the large number of triples or entities sampled in the first learning session by

both triple and entity sampling strategies, fewer than 5% of all future relations sampled will

be new, as shown across Table 6.1 and Table A.1. Therefore, the third and final sampling

strategy we experimented with was relation sampling to encourage sampling new relations

in later learning sessions. Again, consider a knowledge graph G whose triples D have

been split into a training set DTr, validation set DV a, and test set DTe. Our approach for

generating relation sampling datasets for n = {1, ..., N} learning sessions is:

1. Initialize relation sampling distribution: initialize the relation sampling distribution to

uniform likelihood for any relation to be sampled.

2. Sample relations: sample without replacement 50% of relations in R of G.
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Table A.1: CKGE Datasets; Entity Sampling Benchmarks

WN18RR-5-LS
LS-1 LS-2 LS-3 LS-4 LS-5

|En| 20,471/(50%) 20,471/(81%) 20,471/(95%) 20,471/(99%) 20,471/(100%)
|Rn| 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%)
|Dn

Tr| 21,729/(25%) 21,937/(47%) 21,888/(63%) 20,870/(74%) 21,852/(83%)
|Dn

V a| 773/(25%) 774/(48%) 796/(64%) 727/(75%) 801/(84%)
|Dn

Te| 821/(26%) 800/(48%) 798/(64%) 729/(75%) 797/(83%)
FB15K237-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5
|En| 7,270/(50%) 7,270/(81%) 7,270/(95%) 7,270/(99%) 7,270/(100%)
|Rn| 230/(97%) 231/(99%) 226/(100%) 231/(100%) 230/(100%)
|Dn

Tr| 73,846/(27%) 69,288/(48%) 66,326/(64%) 70,519/(75%) 73,565/(84%)
|Dn

V a| 4,683/(27%) 4,616/(49%) 4,365/(65%) 4,411/(76%) 4,932/(84%)

Table A.2: CKGE Datasets; Relation Sampling Benchmarks
WN18RR-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5
|En| 16,564/(40%) 12,447/(47%) 35,670/(96%) 37,548/(99%) 14,062/(99%)
|Rn| 5/(45%) 5/(82%) 5/(91%) 5/(100%) 5/(100%)
|Dn

Tr| 16,886/(19%) 12,840/(26%) 37,566/(66%) 69,555/(100%) 14,442/(100%)
|Dn

V a| 216/(7%) 201/(11%) 490/(25%) 1,979/(75%) 184/(76%)
|Dn

Te| 205/(7%) 228/(11%) 511/(26%) 2053/(75%) 185/(76%)
FB15K237-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5
|En| 13,666/(94%) 13,522/(98%) 13,704/(100%) 13,023/(100%) 13,989/(100%)
|Rn| 118/(50%) 118/(80%) 118/(95%) 118/(99%) 118/(100%)
|Dn

Tr| 128,045/(47%) 148,446/(78%) 154,624/(98%) 113,904/(100%) 155,556/(100%)
|Dn

V a| 7,546/(43%) 9,814/(78%) 9,474/(98%) 6,394/(99%) 11,184/(99%)
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3. Extract entities: create a set of relations Rn and a set of entities En for this session from

the sampled relations and the entities of triples in G that are connected any relation in

Rn, respectively. The set of all observed entities (relations), i.e., En (Rn) is the union of

current and prior En (Rn).

4. Construct nth train, validation, and test sets: extract from DTr, DV a, and DTe the triples

whose head, relation, and tail belong to En and Rn (respectively). These triples form

train set Dn
Tr, validation set Dn

V a and test set Dn
Te of the nth session.

5. Update relation distribution and repeat: to bias towards sampling new triples, decrease

the likelihoods of sampled relations in Rn to be sampled in future learning sessions in

proportion to the number of times an relation has been sampled.

6. Repeat steps 2-5 until a predefined number of iterations are completed.

We generated two CKGE datasets with n = 5 sessions using the relation sampling

approach on two established benchmark knowledge graphs in the graph embedding com-

munity (WN18RR and FB15K237 [150]). Table A.2 reports statistics of each dataset as

in section 6.4. While relation sampling uniquely has more new relations in later learning

sessions, the strategy does not model a realistic world scenario a robot might face when

exploring an environment.

Our results obtained for these datasets support the results presented in section 6.5 and

section 6.7, with some minor differences depending on the dataset or embedding method

being used. Similar to section 6.5, results reported below are the average of five test runs

in each experimental scenario; statistical significance is tested using repeated-measures

ANOVA and a post-hoc Tukey’s test. Any mention of ‘significance’ implies statistical

significance at 95% significance level (i.e. p < 0.05). As in section 6.5, Batch and Finetune

baselines are reported as upper and lower bounds for the expected inference performance

of the CKGE methods.
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(a)

(b) (c)

Figure A.1: Measures averaged for all datasets in Table A.1 and graph embedding representations
in section 6.4. Hits@10 used for ACC, FWT, +BWT, and REM. Best viewed in color.

Entity sampling evaluations: Figure A.1a summarizes the results of experiments us-

ing entity sampling knowledge graph datasets of Table A.1 (WN18RR, FB15K237), where

the range of each measure is [0, 1] and larger values are better. Although DGR significantly

outperforms other methods in terms of inference (i.e., using ACC), there are insights and

trade-offs to consider based on other factors.

• Figure A.1b shows that DGR has a significantly lower learning speed (based on LCA)

than the other methods since a new generative model must be trained in each learning

session. PNN had the best learning speed, having significantly better learning speeds

than Batch across all datasets and embedding methods. Following close behind were the

regularization techniques (L2R and SI), which had significantly better learning speeds

than Batch in all cases except when using the Analogy embedding method for WN18RR.
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(a)

(b) (c)

Figure A.2: Measures averaged for all datasets in Table A.2 and graph embedding representations
in section 6.4. Hits@10 used for ACC, FWT, +BWT, and REM. Best viewed in color.

• Figure A.1c indicates that methods with good inference performance also tend to have

higher model memory growth (i.e., MS measure); among the methods with significantly

better inference performance than Finetune, PNN had the smallest MS followed by L2R,

SI and DGR.

• PNN outperforms Finetune in this dataset shown in Figure A.1. The difference in PNN

performance from triple to entity sampling is likely because more entities are frozen

sooner in the triple sampling datasets with fewer observed training triples than in the

entity sampling datasets, as evident in the entity coverage statistics for each dataset.

• Figure A.1 indicates that the CWR has significantly lower inference performance than

Finetune in all experiments. CWR’s poor inference performance is again attributable to

the challenges of directly manipulating representations in the embedding space.
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Relation sampling evaluations: Figure A.2a summarizes the results of experiments

using relation sampling knowledge graph datasets of Table A.2 (WN18RR, FB15K237),

where the range of each measure is [0, 1] and larger values are better. Although DGR

significantly outperforms other methods in terms of inference (i.e., using ACC and FWT)

except for SI in the FB15K237 datasets, there are insights and trade-offs to consider based

on other factors.

• Figure A.2b shows that DGR has a significantly lower learning speed (based on LCA)

than the other methods since a new generative model must be trained in each learning

session. PNN had the best learning speed, having significantly better learning speeds

than Batch across all datasets and embedding methods. Following close behind were

the regularization techniques (L2R and SI), which varied in significant improvements in

LCA compared to Batch.

• Figure A.2c indicates that methods with good inference performance also tend to have

higher model memory growth (i.e., MS measure); among the methods with significantly

better inference performance than Finetune, L2R had the smallest MS followed by SI

and DGR.

• Figure A.2 indicates that the CKGE methods based on architecture modification (i.e.,

PNN and CWR) have significantly lower inference performance than Finetune in all

experiments. The difference in performance between PNN and the regularization-based

methods shows the importance of flexibility over prior concepts for CKGE. Also, CWR’s

poor inference performance highlights the challenges of directly manipulating represen-

tatins in the embedding space because, although CWR can learn TE well in isolation,

CE is quickly corrupted by the averaging performed to merge embeddings.

Conclusions: We detailed results obtained with all sampling strategies used for the

benchmark knowledge graphs WN18RR and FB15K237. Our results from these extended

experiments support the main results presented in chapter 6. Namely that, while DGR

outperforms the other CKGE methods in general, there are trade-offs to consider in terms
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of learning speed and memory requirements depending on the robotics application.
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