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SUMMARY

Nowadays, multistage manufacturing processes (MMPs) are usually equipped with
complex sensing systems. They generate data with several unique characteristics: the
output quality measurements from each stage are of different types, the comprehensive set
of inputs (or process variables) have distinct degrees of influence over the process, and the
relationship between the inputs and outputs is sometimes ambiguous, and multiple types
of faults repetitively occur to the process during its operation. These characteristics of the

data lead to new challenges in the data analytics of MMPs.

In this thesis, we conduct three studies to tackle those new challenges from MMPs.
In the first study, we propose a feature ranking scheme that ranks the process features based
on their relationship with the final product quality. Our ranking scheme is called sparse
distance correlation (SpaDC), and it satisfies the important diversity criteria from the
engineering perspective and encourages the features that uniquely characterize the
manufacturing process to be prioritized. The theoretical properties of SpaDC are studied.

Simulations, as well as two real-case studies, are conducted to validate the method.

In the second study, we propose a holistic modeling approach for the MMPs, aiming
at understanding how intermediate quality measurements of mixed profile outputs relate to
sparse effective inputs. This model can identify the effective inputs, output variation
patterns, and establish connections between them. Specifically, the aforementioned
objective is achieved by formulating and solving an optimization problem that involves the

effects of process inputs on the outputs across the entire MMP. This ADMM algorithm that

Xi



solves this problem is highly parallelizable and thus can handle a large amount of data of

mixed types obtained from MMPs.

In the third study, a retrospective analysis method is proposed for multiple
functional signals. This method simultaneously identifies when multiple events occur to
the system and characterizes how they affect the multiple sensing signals. A problem is
formulated using the dictionary learning method, and the solution is obtained by iteratively

updating the event signatures and sequences using ADMM algorithms.

In the end, the potential extensions to the general interconnect systems are

discussed.

xii



CHAPTER 1. INTRODUCTION

Multistage manufacturing processes (MMPs) are complex manufacturing systems that
involve multiple operations or stations to fabricate a product [1]. Typically, numerous
sensing systems are installed in the MMPs to collect the data that relate to the
manufacturing process, including the input variables from each stage, intermediate product
quality measurements from each stage, and final quality of the product. An illustration of

an MMP is shown in Figure 1.

Input 1 Input 2 Input K

Stage 1 Stage 2 > stage K Inspection

Quality Quality Quality Final
Measure 1 Measure 2 Measure K Quality Measure

Figure 1 Schematic illustration of an MMP

In literature, the data analytics of MMP has been conducted for decades [1-3],
where state-space models were proposed to describe the stream of variation (SOV) in
MMPs for assembly and machining processes. However, the massive data generated from
the contemporary advanced MMPs have some unique characteristics. During the authors’
study, the author participated in multiple engineering projects in semiconductor
manufacturing industry and metallurgical industry. Both projects involve MMPs where
each manufacturing stage generates rich data of different types. Through the analysis of

these data, we aim to discover the association between the process variables and quality



variables from different stages and to gain more understanding of the manufacturing

system. Compared with the MMPs analyzed in existing literature, however, the MMPs in

the semiconductor manufacturing processes and the steel rolling processes investigated in

this thesis have several unique characteristics:

1.

These MMPs generate multiple types of data, as the measurements are typically
collected by distinct types of sensors. In the semiconductor manufacturing
processes, the intermediate quality measurements contain different types of data.
From the CVD stages, the film thicknesses are measured at multiple locations on
the wafer, generating a thin-film thickness map. From the lithography stages, the
overlay error between two layers is measured at many different locations,
generating 2D vector fields. In the steel manufacturing processes, the sensing
signals of rolling speed, the temperature of the rolling bars, and the dimensional
measurements along the rolling bars have distinct properties in smoothness and
variation patterns.

Many potential root causes may affect each stage of the manufacturing process,
whereas a product quality defect (or fault) is only caused by very few root causes
at a given time period of operations. For example, the position of the exposures in
the lithography stage of the semiconductor manufacturing processes is influenced
by tens of potential root causes associated with lens, reticle, and the wafer’s
locations. Sometimes, these potential root causes are measured during the process,
making it possible for us to identify the variables that are related to the product
quality measures and establish their relationship. Other times, the faults on the

process are not observable, while we need to estimate the duration and the strengths



of the events and identify the underlying root causes based on the latent recurring
signatures from the multiple process signals.

Unlike the multistage assembly and machining process, the semiconductor
manufacturing processes typically do not have a well-defined low-dimensional
state vector that determines the state of the manufacturing stages. The complex
physical laws that govern the semiconductor manufacturing processes do not allow
one stage of manufacturing described by a few numerical values. Meanwhile, the
Markovian property in the state-space model does not hold: the quality output from
a critical downstream manufacturing stage is possibly influenced by an early
upstream stage that is related to it.

The relationship among the measurements from the MMP is sometimes ambiguous.
If we do not have prior knowledge about the model, directly modeling their
dependency can be intractable or even infeasible, given the large amount of data

we collect from the process.

Studying the rich data collected from these MMPs provide unprecedented

opportunities to understand the manufacturing process, which leads to quality

improvement. In this thesis, three studies are conducted to tackle the analytical problems

in MMPs.

First, we propose an automatic tool for process diagnostics: an algorithm that ranks

the process features from the intermediate quality measures according to the extent of their

dependent relationship with the final product quality. This problem is rooted in the

requirements of practitioners from the semiconductor manufacturing industry. The

developed feature ranking scheme is based on sparse distance correlation (SpaDC). It
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considers the arbitrary dependent relationship between the process features and the final
quality of the product, and it satisfies the important diversity criteria from the engineering
perspective and encourages the features that uniquely characterize the manufacturing

process to be prioritized.

The second study focuses on diagnosing and explores the linear relationship
between multiple potential root causes from an MMP and mixed profile outputs.
Specifically, a modeling framework is proposed to answer three interrelated questions: (i)
which potential root causes from the stages are related to the variations of the outputs? (ii)
what are the variation patterns of the outputs caused by these inputs? (iii) how each
individual process input affects the manufacturing process? In the second study, a holistic
modeling and analysis method is developed to address the above three questions

simultaneously.

In the third study, a retrospective analysis method is proposed for a historical multi-
functional data set, which simultaneously identifies when multiple events occur to these
multi-functional data and characterizes how they affect the sensing signals. The problem
formulation is motivated by the dictionary learning method, and the solution is obtained by
iteratively updating the event signatures and sequences using ADMM algorithms. A

simulation study and a case study of the steel rolling process validate our approach.

Those three studies summarized above will be introduced in Chapter 2, Chapter 3,
and Chapter 4, respectively. These studies provide some useful modeling approaches for a
class of MMPs that appear in advanced manufacturing applications. Chapter 5 summarizes

the thesis, and several future research areas are pointed out.



CHAPTER 2. RANKING FEATURES TO PROMOTE
DIVERSITY: AN APPROACH BASED ON SPARSE DISTANCE

CORRELATION

2.1 Introduction

A key task of quality engineering is to identify the root causes that drive the variation of
the product quality. In traditional statistical quality control, the identification of the major
and minor factors in personnel, machines, materials, methods, and environments is mainly
based on experiential knowledge. Fishbone diagrams and Pareto charts [4, 5] have been
widely used as standard methods to illustrate the leading root causes and thus focus limited

quality improvement budgets on a few quality problems.

Nowadays, advanced sensing technologies are widely utilized in manufacturing
processes and generate a large amount of process data from system components. By
retrospective analysis of the dependent relationship between the product quality variable
and the process features obtained from the manufacturing processes, we are interested in

automatically ranking and identifying the potential factors that affect the product quality.

The automatic root cause analysis approach shall be stipulated by understanding
inherent characteristics of the process features. First, as many sensors are installed in the
entire production line, the number of total process features is usually large. However, there
are typically limited root causes among all the potential root causes that lead to the process
faults and disturbance in a period of time, and each affects multiple sensors measuring

different physical variables at the same time, resulting in dependency and redundancy
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among the process features [5]. Furthermore, a specific product quality issue only involves
a few disturbances, and thus many process features may be weakly, or even not related to
the quality variable. Finally, the dependency relationship between the quality variable and
the process features, and the dependency relationship among the process features
themselves, are complex and ambiguous: they may be nonlinearly related, and certain
features may relate to the variance of the quality variable instead of its mean. In summary,
many process features can be collected from a production process, but some of them are
strongly dependent as they are driven by fewer root causes, and only a few features relate

to the quality variable through complex relationships.

To achieve root cause analysis, the above characteristics of the process data
motivate the practitioners to rank the features based on the dependency relationship with
the quality variable. Examples can be found in literature [6, 7]. Compared with the root
cause analysis procedure based on building and analyzing predictive models [8], feature
ranking can be used on processes with a larger size of features and complex dependency
relationship between process features and quality variables. Although more advanced
predictive methods, such as ensemble methods, can be applied, they are all based on
predetermined algorithms, and thus requires reconfiguration once the process changes.
Furthermore, predictive models cannot not capture certain relationship between process
features and quality variables, for example, when the variance of the quality variable is

dependent with the process features.

The above characteristics of the data further stipulate two specific requirements for
the feature ranking procedure. First, the ranking should be based on general dependency,

given the complex and ambiguous relationship between process features and quality
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variable. This general dependency measure shall take all potential dependency
relationships between process features and quality variables into accounts — including the
nonlinear relationships between process features and the quality variables, as well as the
association between the process features and the variance of the quality variable. Second,
since many process features are associated with few root causes, the ranking procedure
shall satisfy the diversity rule —a process feature shall be prioritized if it is not correlated
to other features already deemed to be strongly related to the quality variable. With the
diversity rule, only one feature within a bunch of dependent features according to each root
cause is selected, and thereby encourages a small number of leading features to cover all
potential root causes that relate to the quality variable. If the diversity rule is not satisfied,
the highly ranked features will all relate to the prime root cause; whereas other process
features showing less dependency to the quality variable and related to other minor root
causes are neglected. In this way, the highly ranked features cannot represent all the
necessary information for root cause diagnosis. Thus, a ranking scheme without the
consideration of the diversity rule may lead to misleading results of root cause diagnosis.
As we will see from the literature review, few existing feature ranking methods consider
diversity or discrepancy of features. However, this goal is usually achieved by traditional
quality tools like fishbone charts, as they intrinsically consider the difference of items

therein.

In this chapter, we develop a feature ranking scheme that satisfies both
requirements discussed above: it is based on a general dependency measure and satisfies
the diversity rule. The ranking method is originated from the distance correlation, where

we incorporated a new distance metric with the weights on features. To rank the features,



we formulate an optimization problem by maximizing the distance correlation while
maintaining a certain degree of the sparsity of the weights. This optimization problem is
essentially a conic quadratic programming problem [9], and thus can be solved effectively.
This method is named as Sparse Distance Correlation method. As discussed above, it is
suitable for retrospective analysis of the process data generated from manufacturing

systems for identifying the leading features related to the variation of the quality variable.

The remainder of this chapter is organized as follows. Section 2.2 reviews the related
literature on feature ranking and general dependency measures. Section 2.3 introduces the
proposed SpaDC method. Section 2.4 investigates the theoretical properties of SpaDC, and
provides an intuitive explanation of how it works and discusses certain characteristics of
the method. Section 2.5 validates the method using simulation studies, which illustrates
how the SpaDC method prioritizes the features that are dependent with the quality variable,
and simultaneously satisfy the diversity criterion. Section 2.6 presents two applications of
SpaDC: one involves ranking twenty-four process features in the epitaxy process of a solar
cell manufacturing process, and the other involves ranking over one thousand overlay
measurements in a lithography process, to further test the performance of SpaDC in high-
dimensional settings. Section 2.7 concludes this chapter. Proofs are provided in the

Appendix A.

2.2 Literature review

The problem of feature ranking and selection has been studied in the literature for a long
time. Most feature selection methods are developed with a statistical model that associates

the features and the responses. For linear models, methods such as stepwise regression [10]



and Lasso [11] can be used for feature ranking. Grémping [12] introduced the R package
‘relaimpo’, which provides six different assessments for the relative importance of
regressors in the linear model, either based on the regression coefficients and their standard
error, or the decomposition of R? statistics. Choi, et al. [13] discussed how ridge regression
can also help to infer the importance of variables, and the ranking result is evaluated by
concordance score, with the comparison with LASSO and the elastic net regression. They
discovered that when the pairwise correlations among the features are heterogeneous, the
ridge regression has improved ranking performance. However, these model-based ranking
procedures are based on linear models between inputs and outputs and thus only aim for

designated situations.

Except for the model-based feature ranking procedure, there are also ranking
methods based on general dependency indices. General dependency indices are the
extensions of Pearson correlation coefficients that not only measure the correlation
between variables, but also take the general dependency of random variables into account.
Examples of general dependency indices include mutual information [14], distance
correlation [15, 16], and Hilbert-Schmidt independence criterion (HSIC) [17, 18]. Among
them, the mutual-information-based method requires the estimation of the marginal and
joint densities of each variable, and thus is difficult to be calculated efficiently. Distance
correlation received much attention in recent years. The distance correlation originates
from energy distance [19], a technique that characterizes the difference between
distributions using pairs of observations. It was used by [20] to balance the distributions of
covariates for estimating causal effects based on observational data. The distance

correlation and the HSIC were shown to be equivalent [21].



General dependency indices can be used for feature ranking. In literature, Song, et
al. [22] established an HSIC-based stepwise feature selection method, which can also be
used for feature ranking. Li, et al. [23] and Kong, et al. [24] developed a simple feature
screening method by selecting a bound to remove the features with a small distance
correlation of the response variable. Yenigun and Rizzo [25] propose a stepwise variable
selection method using distance correlation for regression modeling. However, these

ranking procedures do not take diversity rule into consideration.

Recently, the concept of diversity of the features has been proposed in [26]. They
propose to aggregate multiple the estimators in linear regression to form an overall fit. To
achieve high accuracy of the prediction, they suggest diversity among the groups of
features used by these estimators. In essence, the diversity between groups of features are
encouraged as they provide unique information for the predictor of interest, which
coincides our proposed diversity rule of feature ranking. The diversity rule of feature
ranking is also similar to the minimal-redundancy-maximal-relevance (MRMR) criterion
[27], which adopts a step-wise procedure and selects the m-th feature as the one most
relevant to the output and most irrelevant with the previous m — 1 features. However, it is
based on mutual information criterion, which relies on the density estimation for every pair
of features and thus involves high computational complexity. Instead, the SpaDC method
is based on the distance correlation from each pair of features, which can be calculated

efficiently using the method proposed in Huo and Székely [28].
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2.3 Sparse distance correlation (SpaDC) ranking procedure

Let X = (Xq,...,X,) be the p-dimensional process features, and let Y be the associated

quality variable. When n products are fabricated from the manufacturing system, the

< @OT

features are formatted into a data matrix X € R™?. Let X = [xy, ..., X, | = [ , Where

x(MT

x; represents the i-th process feature of all products and x /)T represents all process features
obtained from sample j. The quality indices of these n products are denoted as y =

(YD, ...,y™) € R™. From the data X and y, we aim to obtain the ranks of the features

that satisfy the diversity requirements.
2.3.1 Distance correlation

Our feature ranking procedure is based on distance correlation [29]. It is an energy statistic
[30], the function of distances between all pairs of samples. As introduced in the Literature
Review, it is a general dependency measure and can identify general dependency

relationships.

Let random vector (X,Y) follow an arbitrary joint distribution Fy y. The distance
covariance and distance correlation between X and Y are defined based on two prescribed
distance metrics dy(-,-) and dy(:,-) of space RP and R respectively [15]. With these
distance metrics, the population distance covariance for (X,Y) is defined as the square

root of

VZ(X,Y) = E[(dy(XD,X@) — dy(XD) — dy(X@) + jx)
x (dy (YD, Y @) = d, (YD) = d, (v @) + dy)],

11



where dy(-) = Ey [dx(,XD)], dy = Ex, x,[dx(X©,X®)], and (X©,y®) and
(X@,y®) are two independent samples from the distribution Fy,. The function dy ()

and the quantity EY are defined similarly.

Based on V2(X,Y), the squared-distance correlation between random vector X and

Y is defined as

2
R%(X,Y) = \/VZ(I}/(,;);V YZ)(Y’ > it V(X,X)V(Y,Y) > 0.

Under certain conditions of dy(-,-) and dy (-,-) [15], the value of R?(X,Y) can be regarded
as a dependency measure between X and Y, as 0 < R?(X,Y) < 1 and R?(X,Y) = 0 if and

only if X and Y are independent.

From the observed samples X € R™? andy € R™, V(X,Y) and R?(X,Y) can be

estimated with the following procedure. First, calculate the pairwise distance ay; =
dy(x®,x®), and then obtain Ay, = aj; — @. — @, + a. where @,. = %Z{;lakl, a, =
% nag,anda. = %Z}(‘, 1=1 Q- Similarly, calculate By, based on by, = dy(y®,y®).

The sample distance covariance is defined as

) 1)
Xy = — 2k =14 Br-

The squared sample distance correlation R2 (X, y) is defined analogously as

V2(X,y)
JVEXX)VE(Y,y)

Ri(Xy) =

12



when V,(X,X), V;, (y,y) > 0.

Evidently, RZ2(X,y) and V,(X,y) are consistent estimators to their population
counterparts. Through their sampling distributions, these statistics can be used to test the
general independence between X and Y. The effectiveness of the distance-based method in

detecting general relationships has been validated in the literature [31].
2.3.2 Distance covariance based on the weighted I, -distance metric

SpaDC assigns a weight 8; = 0 to each process feature X;, and performs the ranking based

. . T ... .
on regularization path of g = (ﬁl, ...,,BP) when maximizing the sample distance
correlation between X and y. To calculate the sample distance correlation from the dataset,

we define the following the B-weighted ¢, -distance between features

dg(x,x") = X0 Bilx; — x{|. )

The ¢, -distance is used here because it leads to a convex formulation of an optimization
problem, as we shall see later. It should be pointed that this distance metric cannot directly
the dependence between Y and the interaction effects of Xs. Here, we apply the Euclidean
distance metric on the domain of y, and the weighted sample distance covariance and the
weighted sample distance correlation can be directly derived from Equation (1). The

detailed derivation is given in Appendix A.1.

\/ Vi (X,X) VBTF.B

V2a(X,y) = dip; R2g(X,y)

13



Here, the j™ element of vector d,, is d,,; = V,(x;,y), and the (i,j)-element of F, is
[F.lij = Vn(xi,xj). Notably, d,, and F,, are calculated from the sample distance covariance
between the feature and the quality variable, and each pair of features, respectively, thereby
the fast calculation procedure [28] can be employed. We note that Vg (X,Y) = 0 if and only

if each feature X; is independent of Y for every i corresponding to 8; > 0, as shown in

Appendix A.2.
2.3.3 Formulating the optimization problem

We assume that the feature x;, ..., x,, are scaled to have 1, (x;,x;) = 1 fori =1, ..,p. We

formulate the following optimization problem to achieve feature ranking:

max d’p
©)
subject to BTF,B = 1,Zf=1 Bi<cpf;=0forali=1,..,p.

In this formulation, our aim is to find a sparse weight vector @ that leads to the maximum

diB

VBTFnB

weighted sample distance correlation R7. 5(X,y) o« . The denominator of R 5 (X, y)

is restricted to 1, and the constraint Y.7_ B; < c is applied to encourage sparsity of B for
key feature ranking. The parameter ¢ controls the level of regularization, and the positive
elements of the solution specify a subset of features that relate to Y. Considering that
formulation (3) is not a convex optimization problem due to the constraint, it is further

relaxed to the following convex optimization problem:

14



Inﬂin _BTdn
(4)
s.t. BTE,B<S LYY Bi<c; B =0foralli=1,..,p.

Proposition 1 gives the result on the validity of the relaxation and the uniqueness of the

solution.

Proposition 1 With probability 1, all elements in vector d,, have different values and F,, is

positive definite. As a result,
(@8] if formulation (3) is feasible, formulation (4) has a unique optimal solution; and

(2 if formulation (3) is not feasible, then at most one element of B(c) is nonzero, and

the optimal solution of (4) is also unique. W
The proof is given in Appendix A.3.

Problem (4) can be transformed to a standard form of a conic quadratic
programming problem [9], as detailed in Appendix A.4. Therefore, it can be solved
efficiently with the existing interior-point convex optimization solver. In Section 2.4, we
shall see that this problem leads to diversity, the intriguing property which is critical for

feature ranking.
2.3.4 Feature ranking with distance correlation criteria

The SpaDC method ranks the features by solving Problem (4) with different values of
regularization parameter c¢. According to Proposition 1, the solution to Problem (4) is
unique, and we denoted it by B(c). Let 7(c) = {i:[B(c)]; > 0} be the set of nonzero
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elements of B(c). As c increases from 0 to a larger number, some elements among B(c)
enters 7(c¢) and the features are ranked based on the sequence of their first appearance in

it. Specifically, each feature X; is associated with a threshold

T, = inf{c: i € 7(c)}. ®)

The features X, ..., X, are then ranked by sorting Ty, ..., Tj,.

To implement the above idea, we first need to calculate all possible sets 7(c) for a
series of values ¢ > 0. A direct approach to achieve this goal is to construct a regularization
path {B(c): c = 0}. However, there is no existing method to achieve this for formulation
(4). The presence of quadratic constraints of $ makes this problem essentially different
from the problems whose regularization paths are well-studied [32-35]. For this reason, we

need to evaluate B(c; ) for a series of values ¢;, j = 1, ..., J and construct a dictionary D =
] j Ji
{(¢/,B(cp)):j=1,..,]}. With such a dictionary D, we can obtain T; = min{c;:i €

9(¢;),j = 1,...,J}, by which we rank feature X;s.

There are two specific implementations to obtain D. One implementation is to adopt
a bisection search algorithm. Using Proposition 2 below, we can effectively limit the values

of ¢’s for which the problems need to be solved in the bisection search algorithm.

Proposition 2: Let F,, be positive definite and all elements of d,, are different.

(1) Formulation (3) is not feasible if ¢ < 1, and it is feasible when ¢ > 1.

(2) 7(c) = 1(,/p) for ¢ > |/p.
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BIf1l<g<é<c, < pandI(¢) =7(c),7(€)=73(c;) =9(c,). N

The proof of Proposition 2 is given in Appendix A.5. Statements (1) and (2) of
Proposition 2 specify that Problem (4) only needs to be solved for c € [1\/5] and
statement (3) indicates that if the solution of formulation (4) at ¢, ¢, shows that 7(c;) =
J(c,), then solving (4) again for ¢ € (¢, c,) is unnecessary. With Proposition 2, we
implemented a bisection search algorithm (Algorithm 1) to determine the ranks of all
features. According to Proposition 2, the exploration starts with c.,;, = 1 and ¢ = \/5
in Step 1. In Step 2, the subroutine Search_Interval to find all the possible 7(c)’s
according to ¢ € (¢, ¢;), by evaluate if the middle point ¢ satisfy 7(¢) = I(c;) or I(¢) =
J(c,), and explore the subintervals (c;,¢) if 7(¢) # J(c,) or the subinterval (¢,c,) if

J(¢) # I(c,) recursively.

Algorithm 1: Bisection search for ranking the features
1. Initiate cppip = 1, Cmax = P, and calculate (cpin) and J (¢ ax)- Initiate the
dictionary D = {(cmin, 7 (cmin))» (cmax I (€max) ) }; Set Kyay» the maximum
levels of recursion.
2. Call Search_Interval(c¢min Cmaxs 7 (Cmin)» I (Cmax), 0).
3. Calculate k; = argmin {{c;7(c)} € D; i € 3(c)}. Then the rank of the features
is determined by the ascending order of k;, i =1, ..., p.
subroutine Search_Interval (¢, c,, I(c;),7(c,), K)
1. Letc = (¢ + ;) /2, and calculate 7(c). If 7(c) # I(c;) and I(c) # I(c,), write
{c:7(c)} to the dictionary D;
If K > K. return;
If 7(c) # 7(c,), call Search_Interval(c,c,9(c;),7(c), K + 1);
4. IfJ(c) # I3(c,), call Search_Interval(c,c,,7(c),I(c,), K + 1);

whmn

Besides the bisection method, the warm-start strategy, motivated by Friedman, et
al. [36], is another implementation that is especially suitable when there are many process
features while we are only interested in obtaining the ranks of the leading r features. This

algorithm is summarized in Algorithm 22222222. In this procedure, we start with ¢ = 1.
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In every step, we solve the optimization problem (4) at ¢ = k& using the interior point
method, by setting (k — 1)§ as the initial point. If the nonzero elements of B(ké) and

B((k — 1)8) are different, we add the solution (k§,7(k&)) to the dictionary.

Algorithm 2: Warm-start procedure for ranking the features
Initiate k = 1. and solve B(1). Initiate the output set D = {(1, 8(1))}.
Loop:

Solve B(k&) using an iterative algorithm, starting from B((k - 1)5) if possible
Add features (k&,7(kd)) to D if 3(k8) # I((k — 1)6)
k=k+1

Until |D| > r.

In practice, features i and i’ may share the same rank when k; = k;. We regard
such tied features with the same priority. For some features, no matter how we increase c
the solved weight will always be 0. These features are regarded as having the least
importance with respect to Y. The ties may be caused by small search depth, or some

inherent reasons related to the ranking procedure which will be elaborated in Section 4.3.

2.4 Theoretical properties and discussions

In this section, we first investigate the theoretical properties of the SpaDC method. We
show that under certain conditions, the features dependent with Y are ranked over the
independent ones so that the diversity requirements can be achieved. The intuitive
explanation how SpaDC satisfies the diversity requirement and how the ties are generated
are illustrated using a three-feature demonstration. Finally, we discuss the applicable

conditions of the algorithms.
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2.4.1 Theoretical properties

Let us assume that Y is dependent with some of the features X, ..., X,,, and independent
with the other features X, .4, ..., X,. Proposition 3 below states that the probability that

J(c) = {1, ..., m} for some ¢ > 0 will converge to 1 as the sample size n — oo, under the

condition (A) below.

Proposition 3 Let X = (X{,X;)", where X; =Xy, ... X)) €ER™ and X, =
(Xms1, ...,Xp)T € RP™™. X, is independent with Y if and only if i > m. Assume that

E|X;|?? <oo for all i =1,..,p and E|Y|?” < oo for some even number v > 2. Let
A(X,,Y,) indicate the event that some c exists such that 7(c) = {1,...,m}. Let

. _ F11 F12 . _ d1
[V(Xi,X.)]po =F = F,. Fzz]’ the population counterpart of F,,, and let d = [dz] be

the population counterpart of d,,. If the vector d, belongs to the interior of the cone spanned

FO @

11 08915 ..,Fl(;”) are the columns of F4, 1,, =

. ET 1 where

by vectors 11 s 117

(1,..,1D)T € R™, we have P(A(X,,, Y,)) = 1 — 0(n'*™).

The proof of Proposition 3 is given in Appendix A.6. Proposition 3 points out that
the probability that there exists a ¢ such that 7(c) contains exactly the dependent features

goesto 1 when n — co.

The statement in Proposition 33333 relies on the condition that vector d, belongs
. . D @ (m) i
to the interior of the cone spanned by vectors F;;”, F;1",...,F;;~, 1,,. In general, it holds

when the dependency among X, is weak, because the cone spanned by [Fl(i), Fl(’ln), 1]
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has a large range in this scenario. Especially, if all features X, are independent, the cone is

simply R7* and any d, > 0 must lay in this cone and the statement of Proposition 3 holds.

Despite the implication of Proposition 3, the SpaDC method does not simply select
the features with the largest sample distance correlation with Y like Li, et al. [23]. The
following proposition illustrates how SpaDC method achieves the diversity requirement,

and it will be illustrated intuitively in Section 4.2.

Proposition 4 Let F = [V(Xl-,Xj)]po and d = [V (X;, Y)]px1, where V(-,-) is the distance

covariance based on univariate Euclidean metrics. Write F and d in the following block-

wise form:

where
F11 = Rmxm' fl € ]RmX1,F12 € Rmx(p—m—l)'
f, € RP~m=Dx1 and F,, € RP-m-Dx(p-m=1),

(1) If the probability that “there exists value ¢ with ¢ > 1, formulation (4) has a solution

(B, O)T with B;, > 0” goes to 1 when n - oo, d; = F;;y; + p1 for some y, > 0 and

u=0.

(2) Assume the condition in (1) holds. Under additional assumptions f; = 0, F,y; +

d.f, > d,, and d, > u, the probability that some ¢’ exists such that m + 1 € 7(c¢") and
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m+2,..,p € J(c")goesto 1 when n — oo. It indicates that the probability that /(c;) is an
increasing set sequence as c; increases, whereas X,,,,; is not ranked before the features

Xim+2, -+, Xp that goes to zero. |

The proof of this proposition is given in Appendix A.7. In Proposition 4, part (1)
guarantees that the probability that features X ,..., X,,, are selected goesto 1 when n — <o,
Part (2) gives the critical condition that with a high probability, 7(c') = {1, ..., m + 1} for
some c'. Except that the feature m + 1 is independent with the features m + 2, ..., p, the

following situations help to satisfy the assumptions in Part (2):

e X1 IS strongly dependent with Y (i.e., large d,) as well as the rest of the features

Xin+2, -, Xy (i.€., the large elements in f;).

e The dependency between each of X,,,.,, ..., X, and Y is small (i.e., the small elements

ind,).

e The dependency between X,,,,,, ..., X, and certain membersin Xy, ..., X, is strong (i.e.,

FLy, is large).
The last situation indicates the diversity requirement.
2.4.2 A three-feature illustration

To acquire an in-depth understanding of the SpaDC method, we consider two simple
situations of ranking three features X;,..,X5; and attempt to illustrate the diversity
requirement and the ties in the features, respectively. Specifically, each subplot of Figure

2 illustrates the feasible set of the optimization problem (4) and the objective values. Three
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axes denote the decision variables g,, 8, and 5. The 3D shape with colors represents the
feasible region of the problem (4) when the sample size is large: the intersection of the
ellipsoid BTFB < 1, the half-space B1 < c, and the octant {B: 8;, B, 5 = 0}. Note that
the dashed green curve represents the intersection between the ellosoild B"F@ < 1 and the
plane BT1 = c. The color of this 3D shapes’ surface illustrates the negative objective value,
dT B, where a large value is indicated by yellow color, and a small value is indicated by red
color. Since the consistency result that the sample distance covariance d,, and F,, converges
to d and F respectively, the solid region and the color of the 3D shape in each diagram
illustrate the limit of the feasible region and the objective function when the sample size
n — <o, In each diagram, the thick black line illustrate the path of B(c) when c changes

from ¢ = 1 to the current value.

The first row of figures illustrates how the diversity requirement is satisfied. Here
X; and X5 are strongly dependent with F;; = 0.5, F;, = 0 and F,5 = 0. The feature X; is
strongly related to Y with d; = 0.6, whereas d, = d; = 0.4. We can see how the diversity
requirement works by observing that when ¢ =1, only g, > 0, and B = ($,,0,0), as
illustrated in the left figure. When ¢ increases, g, and 8, become non-zero, and g =
(B1, B2, 0), as illustrated in the figure in the middle. When ¢ becomes even larger, all
B1, ... B3 are positive, and B = (B;, B2, B3). Therefore, X; ranks first, X, ranks second, and
X5 ranks third although d, = d5, due to the curvature of the ellipsoid surface driven by F,
the dependency relationship among features. From this illustration, we can see that SpaDC
achieves the diversity requirement through the interaction between the surface constraint

BTF,B = 1 and the objective function B7d,, in the optimization problem.
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The three figures in the second row illustrate the tie of the features. The features X;
and X, here are weakly dependent on Y, whereas an independent feature X5 is strongly
dependent with Y. In these figures, the description of the colored 3D shape, the dashed
green curve, and the thick black curve have the same meaning as the figures in the first
row. We can see from the left figure that whenc = 1, (1) = (0,0,1) ". However, as shown
in the figure in the middle, all elements of B(c) become positive simultaneously when ¢
increases, as all points except for (0,0,1) on the thick black line have three positive
coordinates. Therefore, X5 ranks first,and X;, X, tie at the second place. From this example,
we can see that the ties are inherent to the optimization problem, and it typically happens
to highly dependent features that are less related to the quality variable. As a result, the
SpaDC procedure may cluster the features into ordered groups with tying features.
However, the authors do not regard it as a disadvantage for the proposed method in
engineering practice, as the groups indicate different degrees of importance of features. As
the features in the early groups tend to be more related to the quality variable and not
dependent on each other, these tying features also provide useful information for root cause

diagnosis and process monitoring.
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Figure 2 Illustration of the optimization problem (4).

2.4.3 Discussion

In this section, we discuss the computational complexity of the SpaDC procedure and
discuss one limitation of the SpaDC algorithm on identifying the interaction effect of the

features.

Computational Complexity. The overall computational time for the SpaDC involves two

parts: (1) the calculation time of d,, and F,, and (2) the computational time for solving
Problem (4) with a series of ¢’s. The vector d,, and matrix F,, involve p(p + 1)/2 values
of sample distance covariances. Using the method of Huo and Székely [28], each of these
elements can be calculated with O (nlogn) floating point operations, and the computation
of different elements can be performed in parallel. For the second-order cone
programming, the computation time for each B(c) is 0(p3log(1/¢€)) for calculating a

solution B(c) with e-accuracy [9].

Interaction Effects: The SpaDC method is essentially based on the statistics of d,, and F,,,

the pairwise sample distance covariance between features and the sample distance
covariance between x; and y. For this reason, it cannot identify the dependency between Y

and the interaction effects of two or more feature X;’s. A deeper reason is that the weighted
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¢, -distance is not a strong negative type [15] and cannot account for all dependency
relationships between X and Y, though it facilitates a convex formulation of the
optimization problem. As a remedy, we can add low-order interactions of multiple process
features like X; X; to the inputs=. However, in the chapter we focus on root-cause trace and

diagnosis, where the main effects of process features are more important.
2.5 Simulation studies

In this section, we compare the SpaDC method with other existing feature selection and
ranking methods in the literature. We aim to validate that our scheme ranks the dependent

features prior to the independent ones, and meanwhile, it satisfies the diversity requirement.
2.5.1 Existing benchmarks and general settings

Six existing feature selection and ranking methods are used in the simulation study for
benchmarking purposes. Yenigun and Rizzo [25] propose a stepwise variable selection
method for a regression model based on the distance correlation of the residuals. This
method, which is called YR method in short, derives a variable ranking method directly
because a forward-selection procedure naturally gives an order of the variables. Li, et al.

[23] propose a feature screening method through ranking the features Xj, ..., X;, according

to the individual relationship with Y, and the ranking scheme is called as LZZ in our
simulation study. We also included the LMG method [37] implemented with the R package
‘relaimpo’ [12] in our comparison study, which ranks features based on the R? statistics of
linear models. Three feature ranking methods in our comparison are based on predictive
models. Two of them are based on linear models, i.e., the Lasso and adaptive Lasso

methods [38, 39]. We used the MATLAB package penalized for computing the
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regularization paths [40] for them, from which we rank the process features. The last
method is based on feature importance indices of the random forest model [41], and we

abbreviate it as RF method.

In the next two subsections, we will consider five settings where the features are
independent and dependent. Under each setting, we generally follow Yenigun and Rizzo
[25] and generate the datasets (X, y) for 1000 times. Six competing methods are applied to
these 1000 datasets, generating 1000 sequences of the corresponding features. For i =
1, ...p, We count the number of times that each feature is ranked as the i*" one. When a tie
of r features appears in a ranked feature sequence, each feature in this tie is then counted
as 1/r replication on every tied rank. For example, assume that feature X; is ranked as the
first feature; X, and X5 are tied at the second feature in one replication. For X;, this
replication is counted as one replication ranked as the first feature. For X, and X, half
replication is counted as the second feature, and half is counted as the third feature. Finally,

the ranking distribution for each feature is calculated.
2.5.2 Simulation with independent features

In the first three settings, the number of features to be ranked is p = 8, and they are

independent of each other.

e Setting 1: Let X;,...,Xg~N(0,1), and Y = |X;| + X? + X5 + &, where e~N(0,1). A

total of 100 samples are generated from (X, Y).

e Setting 2: Let Xy, ..., Xg~N(0,1) and Y = log(4 + sin(2X;) + sin(X,) + X7 + X, +

0.1) + &, where e~N(0,0.12). The sample size is 500.
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e Setting 3: Let Y be dependent on three variables X, ..., X; withY = Z(4 — X2 — X7 —
XZ+ ¢, where X, X, X;~Unif(—1,1), e~N(0,0.1?) and Z = +1 with equal
probability. Here Z is independent with X;, ... Xg. Here Y has the equal probability of

being positive or negative. A total of 500 samples are generated from (X,Y).

The ranking result of setting 1 is illustrated in Figure 3. In each diagram
corresponding to X;, each line illustrates the frequency that X; is ranked from the 1% to the
8 place using a specific method, where the horizontal axis indicates the rank of the
corresponding variable, and the vertical axis is the frequency value. We find that all
methods rank X5 at the first place most of the time. SpaDC (blue), LZZ (green) and YR
(cyan) methods usually rank X; and X, at the second place and the third place. However,
Lasso (orange), Adaptive Lasso (yellow) and LMG method (purple) tend to rank X; and
X, to the first three places less often, and RF (red) ranks X, even fewer to the top-three.
This is because Lasso and AdpLasso only capture the linear relationship, and random forest
IS not as sensitive to nonlinear dependency relationships as distance correlation-based

methods.
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Figure 3 The comparison results in setting 1.

For the nonlinear relationship specified in setting 2, SpaDC, LZZ, and YR rank
X;,....X, ahead of X, ..,Xg in most replications, as shown in Figure 4, whose
interpretation is the same as that in Figure 1. However, the Lasso, AdpLasso, LMG, and
RF methods rank features in X5 to the 51 to 8" places most of the time. Hence, the schemes
of the SpaDC, LZZ, and YR methods are more likely to rank the dependent features before

the irrelevant ones when nonlinear dependency exists.

The results of setting 3 are illustrated in Figure 5, which shows that the methods
based on general dependency measures tend to rank dependent features before the
independent ones. However, the ranking methods based on predictive models (Lasso,
adaptive Lasso, LMG, and RF) cannot deliver such performance because the features

X, ..., X5 influence the variance of Y instead of its mean.
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Figure 4 The comparison results in setting 2.
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Figure 5 The comparison results in setting 3.

2.5.3 Simulation with dependent features
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In the next two settings, we investigate the situation where the features are dependent. We

focus on testing if the diversity requirement is satisfied.

e Setting 4: Three features, X = (X, X,, X3) T are generated, and Y represents the quality
variable. (X;, X5, X5,Y)T jointly follows a multivariate normal distribution with zero

mean and the following covariance structure:

1 0 p3 M
s 0 1 0 ¢
xr pz 0 1 «¢f

M ¢ ¢ 1

The feature X; and Y are strongly correlated (corr(X;,Y) = M = 0.6), while (X,,X5) and
Y are weakly correlated (¢ = corr(X,,Y) = corr(X5,Y) = 0.2 < M). Among the three
features, X, is independent with X, while X5 is correlated with X; with a correlation
coefficient of p = 0.1,0.2,0.3,0.4,0.5 and 0.6. A total of 1000 samples are generated in

this setting.

e Setting 5: A total of six features X, ..., X, are generated, and Y represents the quality
variable. (X;, ..., Xq,Y)T jointly follows a multivariate normal distribution with zero

mean and the following covariance structure

1 pi O 0 0 0 M

P12 1 0 0 0 0 ¢

0 0 1 p3 O 0 M

Iyy=| 0 0 p3 1 0 0 ¢
0 0 0 0 1 psg ¢

0 0 0 0 psg 1 ¢

M c M c c c 1
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With this structure, the features X;, ..., X, can be divided into three correlated groups:
(X1, X5], [X5,X,] and [Xs, X,]. Y is strongly correlated with X; and X5, with M = 0.6.
Meanwhile, Y is weakly correlated with the rest, that is, ¢ = 0.2. The parameters p;,, P34
and ps, are equal, and they are selected from four values, i.e., 0.4, 0.5, 0.6 and 0.7. A total

of 1000 samples are generated from (X,Y).

Figure 6 (a) illustrates the distribution of the ranks for X;, X, and X; in setting 4
through line charts. Here, the row indicates the method, and the column indicates the
variable X, ..., X5. Each diagram describes the proportion of runs (y-axis) that this feature
is ranked as the first (black line), the second (red line) and the third (blue line) place using
this method, when p (x-axis) varies from 0.1 to 0.6. According to the results of setting 4,
feature X; is always ranked as the first one. When p is 0.1, the frequencies that the ranks
of X, and X5 in SpaDC are distributed at the second and the third places are very close, as
can be observed from the panel corresponding to X, and X5 for the SpaDC method.
However, when p increases from 0.1 to 0.6, X, and X5 are more inclined to be ranked in
the second and third places by the SpaDC method, respectively. This situation is not
observed in the other four methods. Recall that X, is independent with X;, and thus
prioritized to the second place. Therefore, SpaDC tends to prioritize the features that are
independent of others with lower ranks to meet the diversity requirement, whereas other

methods do not.

Recall that in setting 5, Y is strongly correlated with X; and X5, with M = 0.6. As
expected, the results show that X; and X5 are ranked in the first two places in most of the

1000 replications for methods in comparison. Figure 6 (b) shows how each method ranks
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other features to the third place among these replications: the y-axis of each diagram
represents the proportion one method rank X; to the third place, j = 2,4, 5, 6, and the x-
axis illustrates p = p;, = p34 = pge. FOr p = 0.4, ..., 0.7, the SpaDC method ranks Xz or
X, in the third place with more replications than X, or X,. As p increases, the gap becomes
much larger, and when p = 0.7, X or X, is always ranked to the third place following X;
and X5. This trend is not observed in the LZZ or YR method. Recall that Xs and X, are the
features that are not dependent with X; and X5, the result of this example demonstrates that
SpaDC meets the diversity requirement when the relationship between X and Y becomes

more complex. However, the other four methods do not have such properties.
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Figure 6 The comparison results in (a) setting 4 and (b) setting 5.

In conclusion, according to the results of the first three simulation settings, the
SpaDC method is similar to the YR or LZZ method when the process features are
independent of each other. Compared with the schemes based on linear models (i.e., Lasso
and Adaptive Lasso) and random forest, the ranking schemes based on general dependency
can capture the nonlinear dependency between the features X and the quality variable Y as
well as the case where features X affect the variance of Y. The simulations under settings
4 and 5 further illustrate that the SpaDC method is superior to the YR and LZZ methods in

satisfying the diversity requirement.
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2.6 Case Studies

In this Section, we validate the SpaDC method using two real examples. One is the data
analysis of a solar cell manufacturing process. Another one is the analysis of overlay data

from a lithography process.

2.6.1 Epitaxy process in solar cell manufacturing

A solar cell manufacturing process has multiple stages, including epitaxy and evaporation.
McEvoy, et al. [42] provided a detailed introduction of the fabrication process. In the
epitaxy stage, semiconductor materials are deposited layer by layer on top of a substrate
through a chemical vapor decomposition process. During this process, critical in situ
process variables are measured, including temperature and reflectance. They are
transformed to process features. The most important product quality variable, solar
conversion efficiency (SCE), is generally tested offline after the manufacturing stages are
completed. Practitioners are interested in ranking the process features based on their
relationship with the SCE, so that they can monitor a small number of leading features
observed during the manufacturing process and react as soon as the process changes

without waiting for the SCE measurements from the final product.

The solar cell manufacturing process being investigated generates multiple
functional signals that represent the reflectance of the wafer layer growth and the
temperature within the chamber during the epitaxy process that generates three layers of
thin films. Twenty-four features X = (X, ..., X,,4) are extracted [43]. Among the 24
features, eighteen of them are obtained from the in-situ reflectance signals during this
epitaxy process, and six of them are obtained from the feature extraction of the in-situ
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temperature signals. The corresponding SCE, denoted as Y, is measured for the finished

products. 50 samples of (X,Y) are collected and the features are ranked using SpaDC.

The ranking results show that 24 features are ranked as
X1, Xg, X553, X202, Xou, X500, X11, X1, TOllowed by all the rest of the features tied together. The
values of ¢ corresponding to the leading eight features are 1.0, 1.6177, 1.7188, 2.0781,

2.2466, 2.2578, and 2.3926.

The strongest dependency between X; and Y is validated by the seven known
follow-up samples acquired after these 50 samples. Figure 7 (a) shows that the final quality
of the first two follow-up samples is in control and the last five follow-up samples are with
a shifted mean. We check the individual control charts that monitor each feature and find
that only X; exhibits an abrupt change during the last five samples, as shown in Figure 7

(b). This result shows the SpaDC method ranks X; correctly as the first feature.

Test data Test data

Individual x chart [ i} [

‘;T?i s jjh/\,‘/k e
o A R

(a) (b)
Figure 7 (a) The control chart for X; and (b) the control chart for SCE.
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Figure 8 (a) Distance correlations between the two features and (b) the distance correlation
between each feature and its quality variable.

We may interpret the results of the other features through Figure 8, which illustrates
the sample distance correlation between each pair of features (F,,) and the sample distance
correlation between each feature and the SCE (d,,). In this figure, the rows and the columns
of the matrix of the left diagram and the element of the vector in the right diagram
correspond to the feature 1, 2, ..., 24. The numbers marked at the left side and the bottom
of the matrix and at the left side of the vector indicate the features’ ranks. We can first
observe that the features X, Xg, X53, X252, X24, X250, X11, X10 (Whose ranks are marked as
numbers at the sides of the matrix F, or vector d,, in the figure) are all moderately

depende