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SUMMARY 

Nowadays, multistage manufacturing processes (MMPs) are usually equipped with 

complex sensing systems. They generate data with several unique characteristics: the 

output quality measurements from each stage are of different types, the comprehensive set 

of inputs (or process variables) have distinct degrees of influence over the process, and the 

relationship between the inputs and outputs is sometimes ambiguous, and multiple types 

of faults repetitively occur to the process during its operation. These characteristics of the 

data lead to new challenges in the data analytics of MMPs.  

In this thesis, we conduct three studies to tackle those new challenges from MMPs. 

In the first study, we propose a feature ranking scheme that ranks the process features based 

on their relationship with the final product quality. Our ranking scheme is called sparse 

distance correlation (SpaDC), and it satisfies the important diversity criteria from the 

engineering perspective and encourages the features that uniquely characterize the 

manufacturing process to be prioritized. The theoretical properties of SpaDC are studied. 

Simulations, as well as two real-case studies, are conducted to validate the method.  

In the second study, we propose a holistic modeling approach for the MMPs, aiming 

at understanding how intermediate quality measurements of mixed profile outputs relate to 

sparse effective inputs. This model can identify the effective inputs, output variation 

patterns, and establish connections between them. Specifically, the aforementioned 

objective is achieved by formulating and solving an optimization problem that involves the 

effects of process inputs on the outputs across the entire MMP. This ADMM algorithm that 



 xii 

solves this problem is highly parallelizable and thus can handle a large amount of data of 

mixed types obtained from MMPs.  

In the third study, a retrospective analysis method is proposed for multiple 

functional signals. This method simultaneously identifies when multiple events occur to 

the system and characterizes how they affect the multiple sensing signals. A problem is 

formulated using the dictionary learning method, and the solution is obtained by iteratively 

updating the event signatures and sequences using ADMM algorithms.  

In the end, the potential extensions to the general interconnect systems are 

discussed.  
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CHAPTER 1. INTRODUCTION 

Multistage manufacturing processes (MMPs) are complex manufacturing systems that 

involve multiple operations or stations to fabricate a product [1]. Typically, numerous 

sensing systems are installed in the MMPs to collect the data that relate to the 

manufacturing process, including the input variables from each stage, intermediate product 

quality measurements from each stage, and final quality of the product. An illustration of 

an MMP is shown in Figure 1.  

 

Figure 1 Schematic illustration of an MMP 

In literature, the data analytics of MMP has been conducted for decades [1-3], 

where state-space models were proposed to describe the stream of variation (SOV) in 

MMPs for assembly and machining processes. However, the massive data generated from 

the contemporary advanced MMPs have some unique characteristics. During the authors’ 

study, the author participated in multiple engineering projects in semiconductor 

manufacturing industry and metallurgical industry. Both projects involve MMPs where 

each manufacturing stage generates rich data of different types. Through the analysis of 

these data, we aim to discover the association between the process variables and quality 
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variables from different stages and to gain more understanding of the manufacturing 

system. Compared with the MMPs analyzed in existing literature, however, the MMPs in 

the semiconductor manufacturing processes and the steel rolling processes investigated in 

this thesis have several unique characteristics:  

1. These MMPs generate multiple types of data, as the measurements are typically 

collected by distinct types of sensors. In the semiconductor manufacturing 

processes, the intermediate quality measurements contain different types of data. 

From the CVD stages, the film thicknesses are measured at multiple locations on 

the wafer, generating a thin-film thickness map. From the lithography stages, the 

overlay error between two layers is measured at many different locations, 

generating 2D vector fields. In the steel manufacturing processes, the sensing 

signals of rolling speed, the temperature of the rolling bars, and the dimensional 

measurements along the rolling bars have distinct properties in smoothness and 

variation patterns.  

2. Many potential root causes may affect each stage of the manufacturing process, 

whereas a product quality defect (or fault) is only caused by very few root causes 

at a given time period of operations. For example, the position of the exposures in 

the lithography stage of the semiconductor manufacturing processes is influenced 

by tens of potential root causes associated with lens, reticle, and the wafer’s 

locations. Sometimes, these potential root causes are measured during the process, 

making it possible for us to identify the variables that are related to the product 

quality measures and establish their relationship. Other times, the faults on the 

process are not observable, while we need to estimate the duration and the strengths 
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of the events and identify the underlying root causes based on the latent recurring 

signatures from the multiple process signals.   

3. Unlike the multistage assembly and machining process, the semiconductor 

manufacturing processes typically do not have a well-defined low-dimensional 

state vector that determines the state of the manufacturing stages. The complex 

physical laws that govern the semiconductor manufacturing processes do not allow 

one stage of manufacturing described by a few numerical values. Meanwhile, the 

Markovian property in the state-space model does not hold: the quality output from 

a critical downstream manufacturing stage is possibly influenced by an early 

upstream stage that is related to it.  

4. The relationship among the measurements from the MMP is sometimes ambiguous. 

If we do not have prior knowledge about the model, directly modeling their 

dependency can be intractable or even infeasible, given the large amount of data 

we collect from the process.  

Studying the rich data collected from these MMPs provide unprecedented 

opportunities to understand the manufacturing process, which leads to quality 

improvement. In this thesis, three studies are conducted to tackle the analytical problems 

in MMPs.  

First, we propose an automatic tool for process diagnostics: an algorithm that ranks 

the process features from the intermediate quality measures according to the extent of their 

dependent relationship with the final product quality. This problem is rooted in the 

requirements of practitioners from the semiconductor manufacturing industry. The 

developed feature ranking scheme is based on sparse distance correlation (SpaDC). It 
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considers the arbitrary dependent relationship between the process features and the final 

quality of the product, and it satisfies the important diversity criteria from the engineering 

perspective and encourages the features that uniquely characterize the manufacturing 

process to be prioritized.  

The second study focuses on diagnosing and explores the linear relationship 

between multiple potential root causes from an MMP and mixed profile outputs. 

Specifically, a modeling framework is proposed to answer three interrelated questions: (i) 

which potential root causes from the stages are related to the variations of the outputs? (ii) 

what are the variation patterns of the outputs caused by these inputs? (iii) how each 

individual process input affects the manufacturing process? In the second study, a holistic 

modeling and analysis method is developed to address the above three questions 

simultaneously.  

In the third study, a retrospective analysis method is proposed for a historical multi-

functional data set, which simultaneously identifies when multiple events occur to these 

multi-functional data and characterizes how they affect the sensing signals. The problem 

formulation is motivated by the dictionary learning method, and the solution is obtained by 

iteratively updating the event signatures and sequences using ADMM algorithms. A 

simulation study and a case study of the steel rolling process validate our approach.  

Those three studies summarized above will be introduced in Chapter 2, Chapter 3, 

and Chapter 4, respectively. These studies provide some useful modeling approaches for a 

class of MMPs that appear in advanced manufacturing applications. Chapter 5 summarizes 

the thesis, and several future research areas are pointed out.  
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CHAPTER 2. RANKING FEATURES TO PROMOTE 

DIVERSITY: AN APPROACH BASED ON SPARSE DISTANCE 

CORRELATION  

2.1 Introduction 

A key task of quality engineering is to identify the root causes that drive the variation of 

the product quality. In traditional statistical quality control, the identification of the major 

and minor factors in personnel, machines, materials, methods, and environments is mainly 

based on experiential knowledge. Fishbone diagrams and Pareto charts [4, 5] have been 

widely used as standard methods to illustrate the leading root causes and thus focus limited 

quality improvement budgets on a few quality problems.  

Nowadays, advanced sensing technologies are widely utilized in manufacturing 

processes and generate a large amount of process data from system components. By 

retrospective analysis of the dependent relationship between the product quality variable 

and the process features obtained from the manufacturing processes, we are interested in 

automatically ranking and identifying the potential factors that affect the product quality.  

The automatic root cause analysis approach shall be stipulated by understanding 

inherent characteristics of the process features. First, as many sensors are installed in the 

entire production line, the number of total process features is usually large. However, there 

are typically limited root causes among all the potential root causes that lead to the process 

faults and disturbance in a period of time, and each affects multiple sensors measuring 

different physical variables at the same time, resulting in dependency and redundancy 
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among the process features [5]. Furthermore, a specific product quality issue only involves 

a few disturbances, and thus many process features may be weakly, or even not related to 

the quality variable. Finally, the dependency relationship between the quality variable and 

the process features, and the dependency relationship among the process features 

themselves, are complex and ambiguous: they may be nonlinearly related, and certain 

features may relate to the variance of the quality variable instead of its mean. In summary, 

many process features can be collected from a production process, but some of them are 

strongly dependent as they are driven by fewer root causes, and only a few features relate 

to the quality variable through complex relationships.  

To achieve root cause analysis, the above characteristics of the process data 

motivate the practitioners to rank the features based on the dependency relationship with 

the quality variable. Examples can be found in literature [6, 7]. Compared with the root 

cause analysis procedure based on building and analyzing predictive models [8], feature 

ranking can be used on processes with a larger size of features and complex dependency 

relationship between process features and quality variables. Although more advanced 

predictive methods, such as ensemble methods, can be applied, they are all based on 

predetermined algorithms, and thus requires reconfiguration once the process changes. 

Furthermore, predictive models cannot not capture certain relationship between process 

features and quality variables, for example, when the variance of the quality variable is 

dependent with the process features.  

The above characteristics of the data further stipulate two specific requirements for 

the feature ranking procedure. First, the ranking should be based on general dependency, 

given the complex and ambiguous relationship between process features and quality 
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variable. This general dependency measure shall take all potential dependency 

relationships between process features and quality variables into accounts – including the 

nonlinear relationships between process features and the quality variables, as well as the 

association between the process features and the variance of the quality variable. Second, 

since many process features are associated with few root causes, the ranking procedure 

shall satisfy the diversity rule – a process feature shall be prioritized if it is not correlated 

to other features already deemed to be strongly related to the quality variable. With the 

diversity rule, only one feature within a bunch of dependent features according to each root 

cause is selected, and thereby encourages a small number of leading features to cover all 

potential root causes that relate to the quality variable. If the diversity rule is not satisfied, 

the highly ranked features will all relate to the prime root cause; whereas other process 

features showing less dependency to the quality variable and related to other minor root 

causes are neglected. In this way, the highly ranked features cannot represent all the 

necessary information for root cause diagnosis. Thus, a ranking scheme without the 

consideration of the diversity rule may lead to misleading results of root cause diagnosis. 

As we will see from the literature review, few existing feature ranking methods consider 

diversity or discrepancy of features. However, this goal is usually achieved by traditional 

quality tools like fishbone charts, as they intrinsically consider the difference of items 

therein.  

In this chapter, we develop a feature ranking scheme that satisfies both 

requirements discussed above: it is based on a general dependency measure and satisfies 

the diversity rule. The ranking method is originated from the distance correlation, where 

we incorporated a new distance metric with the weights on features. To rank the features, 
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we formulate an optimization problem by maximizing the distance correlation while 

maintaining a certain degree of the sparsity of the weights. This optimization problem is 

essentially a conic quadratic programming problem [9], and thus can be solved effectively. 

This method is named as Sparse Distance Correlation method. As discussed above, it is 

suitable for retrospective analysis of the process data generated from manufacturing 

systems for identifying the leading features related to the variation of the quality variable.  

The remainder of this chapter is organized as follows. Section 2.2 reviews the related 

literature on feature ranking and general dependency measures. Section 2.3 introduces the 

proposed SpaDC method. Section 2.4 investigates the theoretical properties of SpaDC, and 

provides an intuitive explanation of how it works and discusses certain characteristics of 

the method. Section 2.5 validates the method using simulation studies, which illustrates 

how the SpaDC method prioritizes the features that are dependent with the quality variable, 

and simultaneously satisfy the diversity criterion. Section 2.6 presents two applications of 

SpaDC: one involves ranking twenty-four process features in the epitaxy process of a solar 

cell manufacturing process, and the other involves ranking over one thousand overlay 

measurements in a lithography process, to further test the performance of SpaDC in high-

dimensional settings. Section 2.7 concludes this chapter. Proofs are provided in the 

Appendix A.  

2.2 Literature review 

The problem of feature ranking and selection has been studied in the literature for a long 

time. Most feature selection methods are developed with a statistical model that associates 

the features and the responses. For linear models, methods such as stepwise regression [10] 
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and Lasso [11] can be used for feature ranking. Grömping [12] introduced the R package 

‘relaimpo’, which provides six different assessments for the relative importance of 

regressors in the linear model, either based on the regression coefficients and their standard 

error, or the decomposition of 𝑅2 statistics. Choi, et al. [13] discussed how ridge regression 

can also help to infer the importance of variables, and the ranking result is evaluated by 

concordance score, with the comparison with LASSO and the elastic net regression. They 

discovered that when the pairwise correlations among the features are heterogeneous, the 

ridge regression has improved ranking performance. However, these model-based ranking 

procedures are based on linear models between inputs and outputs and thus only aim for 

designated situations.  

Except for the model-based feature ranking procedure, there are also ranking 

methods based on general dependency indices. General dependency indices are the 

extensions of Pearson correlation coefficients that not only measure the correlation 

between variables, but also take the general dependency of random variables into account. 

Examples of general dependency indices include mutual information [14], distance 

correlation [15, 16], and Hilbert-Schmidt independence criterion (HSIC) [17, 18]. Among 

them, the mutual-information-based method requires the estimation of the marginal and 

joint densities of each variable, and thus is difficult to be calculated efficiently. Distance 

correlation received much attention in recent years. The distance correlation originates 

from energy distance [19], a technique that characterizes the difference between 

distributions using pairs of observations. It was used by [20] to balance the distributions of 

covariates for estimating causal effects based on observational data. The distance 

correlation and the HSIC were shown to be equivalent [21]. 
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General dependency indices can be used for feature ranking. In literature, Song, et 

al. [22] established an HSIC-based stepwise feature selection method, which can also be 

used for feature ranking. Li, et al. [23] and Kong, et al. [24] developed a simple feature 

screening method by selecting a bound to remove the features with a small distance 

correlation of the response variable. Yenigun and Rizzo [25] propose a stepwise variable 

selection method using distance correlation for regression modeling. However, these 

ranking procedures do not take diversity rule into consideration. 

Recently, the concept of diversity of the features has been proposed in [26]. They 

propose to aggregate multiple the estimators in linear regression to form an overall fit. To 

achieve high accuracy of the prediction, they suggest diversity among the groups of 

features used by these estimators. In essence, the diversity between groups of features are 

encouraged as they provide unique information for the predictor of interest, which 

coincides our proposed diversity rule of feature ranking. The diversity rule of feature 

ranking is also similar to the minimal-redundancy-maximal-relevance (mRMR) criterion 

[27], which adopts a step-wise procedure and selects the 𝑚-th feature as the one most 

relevant to the output and most irrelevant with the previous 𝑚 − 1 features. However, it is 

based on mutual information criterion, which relies on the density estimation for every pair 

of features and thus involves high computational complexity. Instead, the SpaDC method 

is based on the distance correlation from each pair of features, which can be calculated 

efficiently using the method proposed in Huo and Székely [28].   
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2.3 Sparse distance correlation (SpaDC) ranking procedure 

Let 𝑿 = (𝑋1 ,… ,𝑋𝑝) be the 𝑝-dimensional process features, and let 𝑌 be the associated 

quality variable. When 𝑛 products are fabricated from the manufacturing system, the 

features are formatted into a data matrix 𝐗 ∈ ℝ𝑛×𝑝. Let 𝐗 = [𝐱1,… , 𝐱𝑝] = [
𝐱(1)⊤

⋮

𝐱(𝑛)⊤

], where 

𝐱𝑖 represents the 𝑖-th process feature of all products and 𝐱(𝑗)⊤ represents all process features 

obtained from sample 𝑗. The quality indices of these 𝑛 products are denoted as 𝐲 =

(𝑦(1),… , 𝑦(𝑛)) ∈ ℝ𝑛×1. From the data 𝐗 and 𝐲, we aim to obtain the ranks of the features 

that satisfy the diversity requirements.  

2.3.1 Distance correlation  

Our feature ranking procedure is based on distance correlation [29]. It is an energy statistic 

[30], the function of distances between all pairs of samples. As introduced in the Literature 

Review, it is a general dependency measure and can identify general dependency 

relationships. 

 Let random vector (𝑿, 𝑌) follow an arbitrary joint distribution 𝐹𝑿,𝑌. The distance 

covariance and distance correlation between 𝑿 and 𝑌 are defined based on two prescribed 

distance metrics 𝑑𝑿(⋅,⋅) and 𝑑𝑌(⋅,⋅) of space ℝ𝑝 and ℝ respectively [15]. With these 

distance metrics, the population distance covariance for (𝑿, 𝑌) is defined as the square 

root of 

𝑉2(𝑿,𝑌) = 𝔼[(𝑑𝑿(𝑿(1),𝑿(2)) − 𝑑̅𝑿(𝑿(1)) − 𝑑̅𝑿(𝑿(2)) + 𝑑̅̅𝑿)

× (𝑑𝑌(𝑌(1), 𝑌(2)) − 𝑑̅𝑌(𝑌(1)) − 𝑑̅𝑌(𝑌(2)) + 𝑑̅̅𝑌)],
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where 𝑑̅𝑿(⋅) = 𝔼𝑿1
[𝑑𝑿(⋅,𝑿(1))], 𝑑̅̅𝑿 = 𝔼𝑿1,𝑿2

[𝑑𝑿(𝑿(1),𝑿(2))], and (𝑿(1), 𝑌(1)) and 

(𝑿(2), 𝑌(2)) are two independent samples from the distribution 𝐹𝑿,𝑌. The function 𝑑̅𝑌(⋅) 

and the quantity 𝑑̅̅𝑌 are defined similarly.  

 Based on 𝑉2(𝑿,𝑌), the squared-distance correlation between random vector 𝑿 and 

𝑌 is defined as  

𝑅2(𝑿,𝑌) =
𝑉2(𝑿,𝑌)

√𝑉2(𝑿,𝑿)𝑉2(𝑌, 𝑌)
 if 𝑉(𝑿, 𝑿)V(𝑌, 𝑌) > 0. 

Under certain conditions of 𝑑𝑿(⋅,⋅) and 𝑑𝑌(⋅,⋅) [15], the value of 𝑅2(𝑿,𝑌) can be regarded 

as a dependency measure between 𝑿 and 𝑌, as 0 ≤ 𝑅2(𝑿,𝑌) ≤ 1 and 𝑅2(𝑿,𝑌) = 0 if and 

only if 𝑿 and 𝑌 are independent.  

From the observed samples 𝐗 ∈ ℝ𝑛×𝑝 and 𝐲 ∈ ℝ𝑛×1, 𝑉(𝑿,𝑌) and 𝑅2(𝑿,𝑌) can be 

estimated with the following procedure. First, calculate the pairwise distance 𝑎𝑘𝑙 =

𝑑𝑋(𝐱(𝑘), 𝐱(𝑙)), and then obtain 𝐴𝑘𝑙 = 𝑎𝑘𝑙 − 𝑎𝑘⋅ − 𝑎̅⋅𝑙 + 𝑎̅⋅⋅ where 𝑎̅𝑘⋅ =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑙=1 , 𝑎̅⋅𝑙 =

1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑘=1 , and 𝑎̅⋅⋅ =

1

𝑛2
∑ 𝑎𝑘𝑙

𝑛
𝑘, 𝑙=1 . Similarly, calculate 𝐵𝑘𝑙  based on 𝑏𝑘𝑙 = 𝑑𝑌(𝑦(𝑘) , 𝑦(𝑙)). 

The sample distance covariance is defined as  

𝑉𝑛
2(𝐗,𝐲) =

1

𝑛2
∑ 𝐴𝑘𝑙𝐵𝑘𝑙

𝑛
𝑘,𝑙=1 . 

(1) 

The squared sample distance correlation 𝑅̂n
2(𝐗,𝐲) is defined analogously as  

𝑅𝑛
2(𝐗, 𝐲) =

𝑉𝑛
2(𝐗,𝐲)

√𝑉𝑛2(𝐗,𝐗)𝑉𝑛2(𝐲,𝐲)
, 
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when 𝑉𝑛(𝐗,𝐗), 𝑉𝑛(𝐲, 𝐲) > 0.  

Evidently, 𝑅𝑛
2(𝐗,𝐲) and 𝑉𝑛(𝐗,𝐲) are consistent estimators to their population 

counterparts. Through their sampling distributions, these statistics can be used to test the 

general independence between 𝑿 and 𝑌. The effectiveness of the distance-based method in 

detecting general relationships has been validated in the literature [31].  

2.3.2 Distance covariance based on the weighted 𝒍𝟏-distance metric 

SpaDC assigns a weight 𝛽𝑖 ≥ 0 to each process feature 𝑋𝑖 , and performs the ranking based 

on regularization path of 𝛃 = (𝛽1, … ,𝛽𝑝)
⊤

 when maximizing the sample distance 

correlation between 𝐗 and 𝐲. To calculate the sample distance correlation from the dataset, 

we define the following the 𝛃-weighted ℓ1-distance between features 

 𝑑𝛃(𝐱, 𝐱′) = ∑ 𝛽𝑖|𝑥𝑖 − 𝑥𝑖
′|𝑝

𝑖=1 . (2) 

The ℓ1-distance is used here because it leads to a convex formulation of an optimization 

problem, as we shall see later. It should be pointed that this distance metric cannot directly 

the dependence between 𝑌 and the interaction effects of 𝑋s. Here, we apply the Euclidean 

distance metric on the domain of 𝑦, and the weighted sample distance covariance and the 

weighted sample distance correlation can be directly derived from Equation (1). The 

detailed derivation is given in Appendix A.1.  

𝑉𝑛,𝛃
2 (𝐗, 𝐲) = 𝐝𝑛

⊤𝛃; 𝑅𝑛,𝛃
2 (𝐗, 𝐲) ∝

𝑉𝑛,𝛽
2 (𝐗,𝐲)

√𝑉𝑛,𝛽
2 (𝐗,𝐗)

=
𝐝𝑛

⊤𝜷

√𝜷⊤𝐅𝑛𝜷
. 
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Here, the 𝑗𝑡ℎ element of vector 𝐝𝑛 is 𝑑𝑛,𝑗 = 𝑉𝑛(𝐱𝑗, 𝐲), and the (𝑖, 𝑗)-element of 𝐅𝑛 is 

[𝐅𝑛]𝑖𝑗 = 𝑉n(𝐱𝑖, 𝐱𝑗). Notably, 𝐝𝑛 and 𝐅𝑛 are calculated from the sample distance covariance 

between the feature and the quality variable, and each pair of features, respectively, thereby 

the fast calculation procedure [28] can be employed. We note that 𝑉𝜷(𝑿,𝑌) = 0 if and only 

if each feature 𝑋𝑖  is independent of 𝑌 for every 𝑖 corresponding to 𝛽𝑖 > 0, as shown in 

Appendix A.2.  

2.3.3 Formulating the optimization problem 

We assume that the feature 𝐱1,… ,𝐱𝑝 are scaled to have 𝑉𝑛(𝐱𝑖 ,𝐱𝑖) = 1 for 𝑖 = 1, … , 𝑝. We 

formulate the following optimization problem to achieve feature ranking:  

max
𝛃

𝐝𝑛
⊤𝛃 

subject to  𝛃⊤𝐅𝑛𝛃 = 1, ∑ 𝛽𝑖
𝑝
𝑖=1 ≤ 𝑐; 𝛽𝑖 ≥ 0 for all 𝑖 = 1, … , 𝑝.  

(3) 

In this formulation, our aim is to find a sparse weight vector 𝛃 that leads to the maximum 

weighted sample distance correlation 𝑅𝑛,𝛃
2 (𝐗,𝐲) ∝

𝐝𝑛
⊤𝛃

√𝛃⊤𝐅𝑛𝛃
. The denominator of 𝑅𝑛,𝛃

2 (𝐗, 𝐲) 

is restricted to 1, and the constraint ∑ 𝛽𝑖
𝑝
𝑖=1 ≤ 𝑐 is applied to encourage sparsity of 𝛃 for 

key feature ranking. The parameter 𝑐 controls the level of regularization, and the positive 

elements of the solution specify a subset of features that relate to 𝑌. Considering that 

formulation (3) is not a convex optimization problem due to the constraint, it is further 

relaxed to the following convex optimization problem:  
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 min
𝜷

−𝛃⊤𝐝𝑛 

𝑠. 𝑡.  𝛃⊤𝐅𝑛𝛃 ≤ 1;∑ 𝛽𝑖
𝑝
𝑖=1 ≤ 𝑐;𝛽𝑖 ≥ 0 for all 𝑖 = 1, … , 𝑝.  

(4) 

Proposition 1 gives the result on the validity of the relaxation and the uniqueness of the 

solution.  

Proposition 1 With probability 1, all elements in vector 𝐝n have different values and 𝐅𝑛 is 

positive definite. As a result,  

(1) if formulation (3) is feasible, formulation (4) has a unique optimal solution; and 

(2) if formulation (3) is not feasible, then at most one element of 𝛃(𝑐) is nonzero, and 

the optimal solution of (4) is also unique.    

The proof is given in Appendix A.3.  

Problem (4) can be transformed to a standard form of a conic quadratic 

programming problem [9], as detailed in Appendix A.4. Therefore, it can be solved 

efficiently with the existing interior-point convex optimization solver. In Section 2.4, we 

shall see that this problem leads to diversity, the intriguing property which is critical for 

feature ranking.  

2.3.4 Feature ranking with distance correlation criteria 

The SpaDC method ranks the features by solving Problem (4) with different values of 

regularization parameter 𝑐. According to Proposition 1, the solution to Problem (4) is 

unique, and we denoted it by 𝛃(𝑐). Let ℐ(𝑐) = {𝑖: [𝛃(𝑐)]𝑖 > 0} be the set of nonzero 
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elements of 𝛃(𝑐). As 𝑐 increases from 0 to a larger number, some elements among 𝛃(𝑐) 

enters ℐ(𝑐) and the features are ranked based on the sequence of their first appearance in 

it. Specifically, each feature 𝑋𝑖  is associated with a threshold 

 𝑇𝑖 = inf{𝑐: 𝑖 ∈ ℐ(𝑐)}. (5) 

The features 𝑋1 , … , 𝑋𝑝 are then ranked by sorting 𝑇1 , … , 𝑇𝑝.  

To implement the above idea, we first need to calculate all possible sets ℐ(𝑐) for a 

series of values 𝑐 ≥ 0. A direct approach to achieve this goal is to construct a regularization 

path {𝛃(𝑐): 𝑐 ≥ 0}. However, there is no existing method to achieve this for formulation 

(4). The presence of quadratic constraints of 𝛃 makes this problem essentially different 

from the problems whose regularization paths are well-studied [32-35]. For this reason, we 

need to evaluate 𝛃(𝑐𝑗) for a series of values 𝑐𝑗 , 𝑗 = 1, … , 𝐽 and construct a dictionary 𝒟 =

{(𝑐𝑗 , 𝛃(𝑐𝑗)): 𝑗 = 1, … , 𝐽}. With such a dictionary 𝒟, we can obtain 𝑇̃𝑖 = min{𝑐𝑗 : 𝑖 ∈

ℐ(𝑐𝑗), 𝑗 = 1, … , 𝐽}, by which we rank feature 𝑋𝑖’s.  

There are two specific implementations to obtain 𝒟. One implementation is to adopt 

a bisection search algorithm. Using Proposition 2 below, we can effectively limit the values 

of 𝑐’s for which the problems need to be solved in the bisection search algorithm.  

Proposition 2: Let 𝐅𝑛 be positive definite and all elements of 𝐝𝑛 are different.  

(1) Formulation (3) is not feasible if 𝑐 < 1, and it is feasible when 𝑐 ≥ 1.  

(2) ℐ(𝑐) = ℐ(√𝑝) for 𝑐 > √𝑝.  
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(3) If 1 ≤ 𝑐1 < 𝑐̃ < 𝑐2 ≤ √𝑝 and ℐ(𝑐1) = ℐ(𝑐2), ℐ(𝑐̃) = ℐ(𝑐1) = ℐ(𝑐2).   

The proof of Proposition 2 is given in Appendix A.5. Statements (1) and (2) of 

Proposition 2 specify that Problem (4) only needs to be solved for 𝑐 ∈ [1,√𝑝], and 

statement (3) indicates that if the solution of formulation (4) at 𝑐1 , 𝑐2 shows that ℐ(𝑐1) =

ℐ(𝑐2), then solving (4) again for 𝑐 ∈ (𝑐1 , 𝑐2) is unnecessary. With Proposition 2, we 

implemented a bisection search algorithm (Algorithm 1) to determine the ranks of all 

features. According to Proposition 2, the exploration starts with 𝑐min = 1 and 𝑐max = √𝑝 

in Step 1. In Step 2, the subroutine Search_Interval to find all the possible ℐ(𝑐)’s 

according to 𝑐 ∈ (𝑐1 , 𝑐2), by evaluate if the middle point 𝑐̃ satisfy ℐ(𝑐̃) = ℐ(𝑐1) or ℐ(𝑐̃) =

ℐ(𝑐2), and explore the subintervals (𝑐1 , 𝑐̃) if ℐ(𝑐̃) ≠ ℐ(𝑐1) or the subinterval (𝑐̃, 𝑐2) if 

ℐ(𝑐̃) ≠ ℐ(𝑐2) recursively.  

Algorithm 1: Bisection search for ranking the features 

1. Initiate 𝑐min = 1, 𝑐max = 𝑝, and calculate ℐ(𝑐min) and ℐ(𝑐max). Initiate the 

dictionary 𝒟 = {(𝑐min, ℐ(𝑐min)), (𝑐max, ℐ(𝑐max))}; Set 𝐾max, the maximum 

levels of recursion.  
2. Call Search_Interval(𝑐min, 𝑐max , ℐ(𝑐min), ℐ(𝑐max), 0).  

3. Calculate 𝑘𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐{{𝑐; ℐ(𝑐)} ∈ 𝒟; 𝑖 ∈ ℐ(𝑐)}. Then the rank of the features 

is determined by the ascending order of 𝑘𝑖 , 𝑖 = 1,… ,𝑝.  

subroutine Search_Interval (𝑐1 , 𝑐2, ℐ(𝑐1), ℐ(𝑐2), 𝐾)   

1. Let 𝑐 = (𝑐1 + 𝑐2) ∕ 2, and calculate ℐ(𝑐). If ℐ(𝑐) ≠ ℐ(𝑐1) and ℐ(𝑐) ≠ ℐ(𝑐2), write 
{𝑐: ℐ(𝑐)} to the dictionary 𝒟;  

2. If 𝐾 ≥ 𝐾max return;  

3. If ℐ(𝑐) ≠ ℐ(𝑐1), call Search_Interval(𝑐1 , 𝑐, ℐ(𝑐1), ℐ(𝑐), 𝐾 + 1); 

4. If ℐ(𝑐) ≠ ℐ(𝑐2), call Search_Interval(𝑐, 𝑐2, ℐ(𝑐), ℐ(𝑐2), 𝐾 + 1); 

Besides the bisection method, the warm-start strategy, motivated by Friedman, et 

al. [36], is another implementation that is especially suitable when there are many process 

features while we are only interested in obtaining the ranks of the leading 𝑟 features. This 

algorithm is summarized in Algorithm 22222222. In this procedure, we start with 𝑐 = 1. 
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In every step, we solve the optimization problem (4) at 𝑐 = 𝑘𝛿 using the interior point 

method, by setting (𝑘 − 1)𝛿 as the initial point. If the nonzero elements of 𝛃(𝑘𝛿) and 

𝛃((𝑘 − 1)𝛿) are different, we add the solution (𝑘𝛿, ℐ(𝑘𝛿)) to the dictionary.  

Algorithm 2: Warm-start procedure for ranking the features 

Initiate 𝑘 = 1. and solve 𝛃(1). Initiate the output set 𝒟 = {(1, 𝛽(1))}.   

Loop:  

Solve 𝛃(𝑘𝛿) using an iterative algorithm, starting from 𝛃((𝑘 − 1)𝛿) if possible 

Add features (𝑘𝛿, ℐ(𝑘𝛿)) to 𝒟 if ℐ(𝑘𝛿) ≠ ℐ((𝑘 − 1)𝛿) 

𝑘 = 𝑘 + 1  
Until |𝒟| ≥ 𝑟.   

In practice, features 𝑖 and 𝑖′ may share the same rank when 𝑘𝑖 = 𝑘𝑖′ . We regard 

such tied features with the same priority. For some features, no matter how we increase 𝑐 

the solved weight will always be 0. These features are regarded as having the least 

importance with respect to 𝑌. The ties may be caused by small search depth, or some 

inherent reasons related to the ranking procedure which will be elaborated in Section 4.3.  

2.4 Theoretical properties and discussions 

In this section, we first investigate the theoretical properties of the SpaDC method. We 

show that under certain conditions, the features dependent with 𝑌 are ranked over the 

independent ones so that the diversity requirements can be achieved. The intuitive 

explanation how SpaDC satisfies the diversity requirement and how the ties are generated 

are illustrated using a three-feature demonstration. Finally, we discuss the applicable 

conditions of the algorithms.  
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2.4.1 Theoretical properties 

Let us assume that 𝑌 is dependent with some of the features 𝑋1 , … , 𝑋𝑚 and independent 

with the other features 𝑋𝑚+1, … , 𝑋𝑝.  Proposition 3 below states that the probability that 

ℐ(𝑐) = {1, … ,𝑚} for some 𝑐 > 0 will converge to 1 as the sample size 𝑛 → ∞, under the 

condition (A) below.  

Proposition 3 Let 𝑿 = (𝑿1
⊤,𝑿2

⊤)⊤, where 𝑿1 = (𝑋1, … , 𝑋𝑚)⊤ ∈ ℝ𝑚  and 𝑿2 =

(𝑋𝑚+1, … ,𝑋𝑝)
⊤

∈ ℝ𝑝−𝑚. 𝑋𝑖  is independent with 𝑌 if and only if 𝑖 > 𝑚. Assume that 

𝐸|𝑋𝑖|
2𝑣 < ∞ for all 𝑖 = 1,… ,𝑝 and 𝐸|𝑌|2𝑣 < ∞ for some even number 𝑣 ≥ 2. Let 

𝐴(𝐗𝑛 , 𝐘𝑛) indicate the event that some 𝑐 exists such that ℐ(𝑐) = {1, … ,𝑚}. Let 

[𝑉(𝑋𝑖 , 𝑋𝑗)]𝑝×𝑝
≔ 𝐅 = [

𝐅11 𝐅12

𝐅21 𝐅22
], the population counterpart of 𝐅𝑛, and let 𝐝 = [

𝐝1

𝐝2
] be 

the population counterpart of 𝐝𝑛. If the vector 𝐝1 belongs to the interior of the cone spanned 

by vectors 𝐅11
(1)

, 𝐅11
(2)

,… , 𝐅11
(𝑚)

, 𝟏𝑚, where 𝐅11
(1)

,… , 𝐅11
(𝑚)

 are the columns of 𝐅11, 𝟏𝑚 =

(1,… ,1)⊤ ∈ ℝ𝑚, we have 𝑃(𝐴(𝐗𝑛, 𝐘𝑛)) = 1 − 𝑂(𝑛1−𝑣).  

The proof of Proposition 3 is given in Appendix A.6. Proposition 3 points out that 

the probability that there exists a 𝑐 such that ℐ(𝑐) contains exactly the dependent features 

goes to 1 when 𝑛 → ∞.  

The statement in Proposition 33333 relies on the condition that vector 𝐝1 belongs 

to the interior of the cone spanned by vectors 𝐅11
(1)

, 𝐅11
(2)

,… , 𝐅11
(𝑚)

, 𝟏𝑚. In general, it holds 

when the dependency among 𝑿1 is weak, because the cone spanned by [𝐅11
(1)

,… , 𝐅11
(𝑚)

, 𝟏] 
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has a large range in this scenario. Especially, if all features 𝑿1 are independent, the cone is 

simply ℝ+
𝑚 and any 𝐝1 > 0 must lay in this cone and the statement of Proposition 3 holds.  

Despite the implication of Proposition 3, the SpaDC method does not simply select 

the features with the largest sample distance correlation with 𝑌 like Li, et al. [23]. The 

following proposition illustrates how SpaDC method achieves the diversity requirement, 

and it will be illustrated intuitively in Section 4.2.  

Proposition 4 Let 𝐅 = [𝑉(𝑋𝑖 , 𝑋𝑗)]𝑝×𝑝
 and 𝐝 = [𝑉(𝑋𝑖 , 𝑌)]𝑝×1, where 𝑉(⋅,⋅) is the distance 

covariance based on univariate Euclidean metrics. Write 𝐅 and 𝐝 in the following block-

wise form: 

𝐅 = (

𝐅11 𝐟1 𝐅12 

𝐟1
⊤ 𝑓11 𝐟2

⊤

𝐅12
⊤ 𝐟2 𝐅22

) ;𝐝 = (
𝐝1

𝑑∗

𝐝2

), 

where  

𝐅11 ∈ ℝ𝑚×𝑚, 𝐟1 ∈ ℝ𝑚×1, 𝐅12 ∈ ℝ𝑚×(𝑝−𝑚−1), 

𝐟2 ∈ ℝ(𝑝−𝑚−1)×1, and 𝐅22 ∈ ℝ(𝑝−𝑚−1)×(𝑝−𝑚−1). 

(1) If the probability that “there exists value 𝑐 with 𝑐 > 1, formulation (4) has a solution 

(𝛃1,𝑛
⊤  0)

⊤
 with 𝛃1,𝑛 > 0” goes to 1 when 𝑛 → ∞, 𝐝1 = 𝐅11𝛄1 + 𝜇𝟏 for some 𝛄1 ≥ 0 and 

𝜇 ≥ 0. 

(2) Assume the condition in (1) holds. Under additional assumptions 𝐟1 = 𝟎, 𝐅12
⊤ 𝛄1 +

𝑑∗𝐟2 > 𝐝2, and 𝑑∗ > 𝜇, the probability that some 𝑐′ exists such that 𝑚 + 1 ∈ ℐ(𝑐′) and 
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𝑚 + 2,… , 𝑝 ∉ ℐ(𝑐′) goes to 1 when 𝑛 → ∞. It indicates that the probability that 𝐽(𝑐𝑖) is an 

increasing set sequence as 𝑐𝑖  increases, whereas 𝑋𝑚+1 is not ranked before the features 

𝑋𝑚+2, … , 𝑋𝑝 that goes to zero.    

The proof of this proposition is given in Appendix A.7. In Proposition 4, part (1) 

guarantees that the probability that features 𝑋1 ,…, 𝑋𝑚  are selected goes to 1 when 𝑛 → ∞. 

Part (2) gives the critical condition that with a high probability, ℐ(𝑐′) = {1, … ,𝑚 + 1} for 

some 𝑐′. Except that the feature 𝑚 + 1 is independent with the features 𝑚 + 2,… ,𝑝, the 

following situations help to satisfy the assumptions in Part (2):  

• 𝑋𝑚+1 is strongly dependent with 𝑌 (i.e., large 𝑑∗) as well as the rest of the features 

𝑋𝑚+2, … , 𝑋𝑝 (i.e., the large elements in 𝐟2).  

• The dependency between each of 𝑋𝑚+2, … , 𝑋𝑝 and 𝑌 is small (i.e., the small elements 

in 𝒅2). 

• The dependency between 𝑋𝑚+2, … , 𝑋𝑝 and certain members in 𝑋1 , … , 𝑋𝑚 is strong (i.e., 

𝐅12
⊤ 𝛄1 is large).  

The last situation indicates the diversity requirement.  

2.4.2 A three-feature illustration 

To acquire an in-depth understanding of the SpaDC method, we consider two simple 

situations of ranking three features 𝑋1 , … , 𝑋3 and attempt to illustrate the diversity 

requirement and the ties in the features, respectively. Specifically, each subplot of Figure 

2 illustrates the feasible set of the optimization problem (4) and the objective values. Three 
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axes denote the decision variables 𝛽1, 𝛽2 and 𝛽3. The 3D shape with colors represents the 

feasible region of the problem (4) when the sample size is large: the intersection of the 

ellipsoid 𝛃⊤𝐅𝛃 ≤ 1, the half-space 𝛃⊤𝟏 ≤ 𝑐, and the octant {𝛃: 𝛽1, 𝛽2, 𝛽3 ≥ 0}. Note that 

the dashed green curve represents the intersection between the ellosoild 𝛃⊤𝐅𝛃 ≤ 1 and the 

plane 𝛃⊤𝟏 = 𝑐. The color of this 3D shapes’ surface illustrates the negative objective value, 

𝐝⊤𝛃, where a large value is indicated by yellow color, and a small value is indicated by red 

color. Since the consistency result that the sample distance covariance 𝐝𝑛 and 𝐅𝑛 converges 

to 𝐝 and 𝐅 respectively, the solid region and the color of the 3D shape in each diagram 

illustrate the limit of the feasible region and the objective function when the sample size 

𝑛 → ∞. In each diagram, the thick black line illustrate the path of 𝛃(𝑐) when 𝑐 changes 

from 𝑐 = 1 to the current value.  

The first row of figures illustrates how the diversity requirement is satisfied. Here 

𝑋1  and 𝑋3 are strongly dependent with 𝐹13 = 0.5, 𝐹12 = 0 and 𝐹23 = 0. The feature 𝑋3 is 

strongly related to 𝑌 with 𝑑1 = 0.6, whereas 𝑑2 = 𝑑3 = 0.4. We can see how the diversity 

requirement works by observing that when 𝑐 = 1, only 𝛽1 > 0, and 𝛃 = (𝛽1, 0,0), as 

illustrated in the left figure. When 𝑐 increases, 𝛽1 and 𝛽2 become non-zero, and 𝛃 =

(𝛽1, 𝛽2, 0), as illustrated in the figure in the middle. When 𝑐 becomes even larger, all 

𝛽1, … 𝛽3 are positive, and 𝛃 = (𝛽1, 𝛽2, 𝛽3). Therefore, 𝑋1  ranks first, 𝑋2 ranks second, and 

𝑋3 ranks third although 𝑑2 = 𝑑3, due to the curvature of the ellipsoid surface driven by 𝐅, 

the dependency relationship among features. From this illustration, we can see that SpaDC 

achieves the diversity requirement through the interaction between the surface constraint 

𝛃⊤𝐅𝑛𝛃 = 1 and the objective function 𝛃⊤𝐝𝑛 in the optimization problem. 



23 

 

The three figures in the second row illustrate the tie of the features. The features 𝑋1  

and 𝑋2 here are weakly dependent on 𝑌, whereas an independent feature 𝑋3 is strongly 

dependent with 𝑌. In these figures, the description of the colored 3D shape, the dashed 

green curve, and the thick black curve have the same meaning as the figures in the first 

row. We can see from the left figure that when 𝑐 = 1, 𝛃(1) = (0,0,1)⊤. However, as shown 

in the figure in the middle, all elements of 𝛃(𝑐) become positive simultaneously when 𝑐 

increases, as all points except for (0,0,1) on the thick black line have three positive 

coordinates. Therefore, 𝑋3 ranks first, and 𝑋1, 𝑋2  tie at the second place. From this example, 

we can see that the ties are inherent to the optimization problem, and it typically happens 

to highly dependent features that are less related to the quality variable. As a result, the 

SpaDC procedure may cluster the features into ordered groups with tying features. 

However, the authors do not regard it as a disadvantage for the proposed method in 

engineering practice, as the groups indicate different degrees of importance of features. As 

the features in the early groups tend to be more related to the quality variable and not 

dependent on each other, these tying features also provide useful information for root cause 

diagnosis and process monitoring.  
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Figure 2 Illustration of the optimization problem (4).  

2.4.3 Discussion 

In this section, we discuss the computational complexity of the SpaDC procedure and 

discuss one limitation of the SpaDC algorithm on identifying the interaction effect of the 

features.  

Computational Complexity. The overall computational time for the SpaDC involves two 

parts: (1) the calculation time of 𝐝𝑛 and 𝐅𝑛 and (2) the computational time for solving 

Problem (4) with a series of 𝑐’s. The vector 𝐝𝑛 and matrix 𝐅𝑛 involve 𝑝(𝑝 + 1) 2⁄  values 

of sample distance covariances. Using the method of Huo and Székely [28], each of these 

elements can be calculated with 𝑂(𝑛 log𝑛) floating point operations, and the computation 

of different elements can be performed in parallel. For the second-order cone 

programming, the computation time for each 𝛃(𝑐) is 𝑂(𝑝3 log(1 𝜖⁄ )) for calculating a 

solution 𝛃(𝑐) with 𝜖-accuracy [9].  

Interaction Effects: The SpaDC method is essentially based on the statistics of 𝐝𝑛 and 𝐅𝑛, 

the pairwise sample distance covariance between features and the sample distance 

covariance between 𝐱𝑖 and 𝐲. For this reason, it cannot identify the dependency between 𝑌 

and the interaction effects of two or more feature 𝑋𝑖’s. A deeper reason is that the weighted 
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ℓ1-distance is not a strong negative type [15] and cannot account for all dependency 

relationships between 𝑿 and 𝑌, though it facilitates a convex formulation of the 

optimization problem. As a remedy, we can add low-order interactions of multiple process 

features like 𝑋𝑖𝑋𝑗  to the inputs=. However, in the chapter we focus on root-cause trace and 

diagnosis, where the main effects of process features are more important.  

2.5 Simulation studies 

In this section, we compare the SpaDC method with other existing feature selection and 

ranking methods in the literature. We aim to validate that our scheme ranks the dependent 

features prior to the independent ones, and meanwhile, it satisfies the diversity requirement.  

2.5.1 Existing benchmarks and general settings 

Six existing feature selection and ranking methods are used in the simulation study for 

benchmarking purposes. Yenigun and Rizzo [25] propose a stepwise variable selection 

method for a regression model based on the distance correlation of the residuals. This 

method, which is called YR method in short, derives a variable ranking method directly 

because a forward-selection procedure naturally gives an order of the variables. Li, et al. 

[23] propose a feature screening method through ranking the features 𝑋1 , … , 𝑋𝑝 according 

to the individual relationship with 𝑌, and the ranking scheme is called as LZZ in our 

simulation study. We also included the LMG method [37] implemented with the R package 

‘relaimpo’ [12] in our comparison study, which ranks features based on the 𝑅2 statistics of 

linear models. Three feature ranking methods in our comparison are based on predictive 

models. Two of them are based on linear models, i.e., the Lasso and adaptive Lasso 

methods [38, 39]. We used the MATLAB package penalized for computing the 
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regularization paths [40] for them, from which we rank the process features. The last 

method is based on feature importance indices of the random forest model [41], and we 

abbreviate it as RF method.  

In the next two subsections, we will consider five settings where the features are 

independent and dependent. Under each setting, we generally follow Yenigun and Rizzo 

[25] and generate the datasets (𝐗, 𝐲) for 1000 times. Six competing methods are applied to 

these 1000 datasets, generating 1000 sequences of the corresponding features. For 𝑖 =

1, …𝑝, we count the number of times that each feature is ranked as the 𝑖th one. When a tie 

of 𝑟 features appears in a ranked feature sequence, each feature in this tie is then counted 

as 1 𝑟⁄  replication on every tied rank. For example, assume that feature 𝑋1  is ranked as the 

first feature; 𝑋2 and 𝑋3 are tied at the second feature in one replication. For 𝑋1 , this 

replication is counted as one replication ranked as the first feature. For 𝑋2 and 𝑋3, half 

replication is counted as the second feature, and half is counted as the third feature. Finally, 

the ranking distribution for each feature is calculated. 

2.5.2 Simulation with independent features 

In the first three settings, the number of features to be ranked is 𝑝 = 8, and they are 

independent of each other.  

• Setting 1: Let 𝑋1, … , 𝑋8~𝑁(0,1), and 𝑌 = |𝑋1| + 𝑋2
2 + 𝑋3 + 𝜀, where 𝜀~𝑁(0,1). A 

total of 100 samples are generated from (𝑿, 𝑌).  

• Setting 2: Let 𝑋1, … , 𝑋8~𝑁(0,1) and 𝑌 = log(4 + sin(2𝑋1) + sin(𝑋2) + 𝑋3
2 + 𝑋4 +

0.1) + 𝜀, where 𝜀~𝑁(0,0.12). The sample size is 500.  
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• Setting 3: Let 𝑌 be dependent on three variables 𝑋1, … , 𝑋3  with 𝑌 = 𝑍(4 − 𝑋1
2 − 𝑋2

2 −

𝑋3
2 + 𝜀, where 𝑋1 , 𝑋2, 𝑋3~Unif(−1,1), 𝜀~𝑁(0,0.12) and 𝑍 = ±1 with equal 

probability. Here 𝑍 is independent with 𝑋1, …𝑋8 . Here 𝑌 has the equal probability of 

being positive or negative. A total of 500 samples are generated from (𝑿, 𝑌).  

The ranking result of setting 1 is illustrated in Figure 3. In each diagram 

corresponding to 𝑋𝑗 , each line illustrates the frequency that 𝑋𝑗  is ranked from the 1st to the 

8th place using a specific method, where the horizontal axis indicates the rank of the 

corresponding variable, and the vertical axis is the frequency value. We find that all 

methods rank 𝑋3 at the first place most of the time. SpaDC (blue), LZZ (green) and YR 

(cyan) methods usually rank 𝑋1  and 𝑋2 at the second place and the third place. However, 

Lasso (orange), Adaptive Lasso (yellow) and LMG method (purple) tend to rank 𝑋1  and 

𝑋2 to the first three places less often, and RF (red) ranks 𝑋2 even fewer to the top-three. 

This is because Lasso and AdpLasso only capture the linear relationship, and random forest 

is not as sensitive to nonlinear dependency relationships as distance correlation-based 

methods.  
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Figure 3 The comparison results in setting 1.  

For the nonlinear relationship specified in setting 2, SpaDC, LZZ, and YR rank 

𝑋1 ,…,𝑋4 ahead of 𝑋5, … , 𝑋8 in most replications, as shown in Figure 4, whose 

interpretation is the same as that in Figure 1. However, the Lasso, AdpLasso, LMG, and 

RF methods rank features in 𝑋3 to the 5th to 8th places most of the time. Hence, the schemes 

of the SpaDC, LZZ, and YR methods are more likely to rank the dependent features before 

the irrelevant ones when nonlinear dependency exists.  

The results of setting 3 are illustrated in Figure 5, which shows that the methods 

based on general dependency measures tend to rank dependent features before the 

independent ones. However, the ranking methods based on predictive models (Lasso, 

adaptive Lasso, LMG, and RF) cannot deliver such performance because the features 

𝑋1 , … , 𝑋3 influence the variance of 𝑌 instead of its mean.  
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Figure 4 The comparison results in setting 2.  

 

Figure 5 The comparison results in setting 3.  

2.5.3 Simulation with dependent features 
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In the next two settings, we investigate the situation where the features are dependent. We 

focus on testing if the diversity requirement is satisfied.  

• Setting 4: Three features, 𝑿 = (𝑋1 , 𝑋2, 𝑋3)
⊤  are generated, and 𝑌 represents the quality 

variable. (𝑋1 , 𝑋2, 𝑋3, 𝑌)⊤ jointly follows a multivariate normal distribution with zero 

mean and the following covariance structure:  

Σ𝑿,𝑌 = (

1 0 𝜌13 𝑀
0 1 0 𝑐

𝜌13 0 1 𝑐
𝑀 𝑐 𝑐 1

). 

The feature 𝑋1  and 𝑌 are strongly correlated (corr(𝑋1, 𝑌) = 𝑀 = 0.6), while (𝑋2 , 𝑋3) and 

𝑌 are weakly correlated (𝑐 = corr(𝑋2, 𝑌) = corr(𝑋3, 𝑌) = 0.2 < 𝑀). Among the three 

features, 𝑋2 is independent with 𝑋1 , while 𝑋3 is correlated with 𝑋1  with a correlation 

coefficient of 𝜌 = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. A total of 1000 samples are generated in 

this setting.  

• Setting 5: A total of six features 𝑋1 , … , 𝑋6 are generated, and 𝑌 represents the quality 

variable. (𝑋1 , … , 𝑋6, 𝑌)⊤ jointly follows a multivariate normal distribution with zero 

mean and the following covariance structure 

Σ𝑿,𝑌 =

(

 
 
 
 

1 𝜌12 0 0 0 0 𝑀
𝜌12 1 0 0 0 0 𝑐
0 0 1 𝜌34 0 0 𝑀
0 0 𝜌34 1 0 0 𝑐
0 0 0 0 1 𝜌56 𝑐
0 0 0 0 𝜌56 1 𝑐
𝑀 𝑐 𝑀 𝑐 𝑐 𝑐 1)

 
 
 
 

. 
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With this structure, the features 𝑋1 , … , 𝑋6 can be divided into three correlated groups: 

[𝑋1 , 𝑋2], [𝑋3, 𝑋4] and [𝑋5, 𝑋6]. 𝑌 is strongly correlated with 𝑋1  and 𝑋3, with 𝑀 = 0.6. 

Meanwhile, 𝑌 is weakly correlated with the rest, that is, 𝑐 = 0.2. The parameters 𝜌12, 𝜌34 

and 𝜌56 are equal, and they are selected from four values, i.e., 0.4, 0.5, 0.6 and 0.7. A total 

of 1000 samples are generated from (𝑿,𝑌).  

Figure 6 (a) illustrates the distribution of the ranks for 𝑋1 , 𝑋2 and 𝑋3 in setting 4 

through line charts. Here, the row indicates the method, and the column indicates the 

variable 𝑋1 , … , 𝑋3. Each diagram describes the proportion of runs (y-axis) that this feature 

is ranked as the first (black line), the second (red line) and the third (blue line) place using 

this method, when 𝜌 (x-axis) varies from 0.1 to 0.6. According to the results of setting 4, 

feature 𝑋1  is always ranked as the first one. When 𝜌 is 0.1, the frequencies that the ranks 

of 𝑋2 and 𝑋3 in SpaDC are distributed at the second and the third places are very close, as 

can be observed from the panel corresponding to 𝑋2 and 𝑋3 for the SpaDC method. 

However, when 𝜌 increases from 0.1 to 0.6, 𝑋2 and 𝑋3 are more inclined to be ranked in 

the second and third places by the SpaDC method, respectively. This situation is not 

observed in the other four methods. Recall that 𝑋2 is independent with 𝑋1 , and thus 

prioritized to the second place. Therefore, SpaDC tends to prioritize the features that are 

independent of others with lower ranks to meet the diversity requirement, whereas other 

methods do not.  

Recall that in setting 5, 𝑌 is strongly correlated with 𝑋1  and 𝑋3, with 𝑀 = 0.6. As 

expected, the results show that 𝑋1  and 𝑋3 are ranked in the first two places in most of the 

1000 replications for methods in comparison. Figure 6 (b) shows how each method ranks 
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other features to the third place among these replications: the y-axis of each diagram 

represents the proportion one method rank 𝑋𝑗  to the third place, 𝑗 = 2, 4, 5, 6, and the x-

axis illustrates 𝜌 = 𝜌12 = 𝜌34 = 𝜌56. For 𝜌 = 0.4, … , 0.7, the SpaDC method ranks 𝑋5 or 

𝑋6 in the third place with more replications than 𝑋2 or 𝑋4. As 𝜌 increases, the gap becomes 

much larger, and when 𝜌 = 0.7, 𝑋5 or 𝑋6 is always ranked to the third place following 𝑋1  

and 𝑋3. This trend is not observed in the LZZ or YR method. Recall that 𝑋5 and 𝑋6 are the 

features that are not dependent with 𝑋1  and 𝑋3, the result of this example demonstrates that 

SpaDC meets the diversity requirement when the relationship between 𝑿 and 𝑌 becomes 

more complex. However, the other four methods do not have such properties.  

 

(a) 
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(b) 

Figure 6 The comparison results in  (a) setting 4 and (b) setting 5.  

In conclusion, according to the results of the first three simulation settings, the 

SpaDC method is similar to the YR or LZZ method when the process features are 

independent of each other. Compared with the schemes based on linear models (i.e., Lasso 

and Adaptive Lasso) and random forest, the ranking schemes based on general dependency 

can capture the nonlinear dependency between the features 𝑿 and the quality variable 𝑌 as 

well as the case where features 𝑿 affect the variance of 𝑌. The simulations under settings 

4 and 5 further illustrate that the SpaDC method is superior to the YR and LZZ methods in 

satisfying the diversity requirement. 
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2.6 Case Studies 

In this Section, we validate the SpaDC method using two real examples. One is the data 

analysis of a solar cell manufacturing process. Another one is the analysis of overlay data 

from a lithography process.  

2.6.1 Epitaxy process in solar cell manufacturing  

A solar cell manufacturing process has multiple stages, including epitaxy and evaporation. 

McEvoy, et al. [42] provided a detailed introduction of the fabrication process. In the 

epitaxy stage, semiconductor materials are deposited layer by layer on top of a substrate 

through a chemical vapor decomposition process. During this process, critical in situ 

process variables are measured, including temperature and reflectance. They are 

transformed to process features. The most important product quality variable, solar 

conversion efficiency (SCE), is generally tested offline after the manufacturing stages are 

completed. Practitioners are interested in ranking the process features based on their 

relationship with the SCE, so that they can monitor a small number of leading features 

observed during the manufacturing process and react as soon as the process changes 

without waiting for the SCE measurements from the final product.  

The solar cell manufacturing process being investigated generates multiple 

functional signals that represent the reflectance of the wafer layer growth and the 

temperature within the chamber during the epitaxy process that generates three layers of 

thin films. Twenty-four features 𝑿 = (𝑋1, … , 𝑋24) are extracted [43]. Among the 24 

features, eighteen of them are obtained from the in-situ reflectance signals during this 

epitaxy process, and six of them are obtained from the feature extraction of the in-situ 
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temperature signals. The corresponding SCE, denoted as 𝑌, is measured for the finished 

products. 50 samples of (𝑿,𝑌) are collected and the features are ranked using SpaDC.  

The ranking results show that 24 features are ranked as 

𝑋1 , 𝑋8, 𝑋23, 𝑋22, 𝑋24, 𝑋20, 𝑋11, 𝑋10 , followed by all the rest of the features tied together. The 

values of 𝑐 corresponding to the leading eight features are 1.0, 1.6177, 1.7188, 2.0781, 

2.2466, 2.2578, and 2.3926.  

The strongest dependency between 𝑋1  and 𝑌 is validated by the seven known 

follow-up samples acquired after these 50 samples. Figure 7 (a) shows that the final quality 

of the first two follow-up samples is in control and the last five follow-up samples are with 

a shifted mean. We check the individual control charts that monitor each feature and find 

that only 𝑋1  exhibits an abrupt change during the last five samples, as shown in Figure 7 

(b). This result shows the SpaDC method ranks 𝑋1  correctly as the first feature.  

 

 (a) (b) 

Figure 7 (a) The control chart for 𝑋1  and (b) the control chart for SCE.  
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 (a) (b) 

Figure 8 (a) Distance correlations between the two features and (b) the distance correlation 

between each feature and its quality variable.  

We may interpret the results of the other features through Figure 8, which illustrates 

the sample distance correlation between each pair of features (𝐅𝑛) and the sample distance 

correlation between each feature and the SCE (𝐝𝑛). In this figure, the rows and the columns 

of the matrix of the left diagram and the element of the vector in the right diagram 

correspond to the feature 1, 2, …, 24. The numbers marked at the left side and the bottom 

of the matrix and at the left side of the vector indicate the features’ ranks. We can first 

observe that the features 𝑋1 , 𝑋8, 𝑋23, 𝑋22, 𝑋24, 𝑋20, 𝑋11, 𝑋10  (whose ranks are marked as 

numbers at the sides of the matrix 𝐅𝑛 or vector 𝐝𝑛 in the figure) are all moderately 

dependent on 𝑌, and we can observe that their sequence confirms with the magnitude of 
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𝐝𝑛. From 𝐅𝑛, we identify further that the remaining 16 tied features (marked with numbers) 

relate to the former features or barely dependent on 𝑌. Although the pairwise distance 

correlation values shown in Figure 8 facilitate interpretation of the results, the ranks of the 

features cannot be obtained directly. The ranks of the features must be obtained based on 

the procedure in this chapter.  

2.6.2 Lithography process in semiconductor manufacturing 

In a lithography process, the geometric pattern of one layer of microstructures is printed 

from a reticle onto the wafer surface through an exposure system. The overlay 

measurements of a wafer refer to the displacement error of the pattern at selected locations 

on the wafer, and they are regarded as the most important process data from the lithography 

process. The overlay measurements of an entire wafer are in the format of 2D overlay error 

map, as illustrated in Figure 9 (a). In this figure, the 𝑥-𝑦 plane represents the surface of the 

wafer, and each arrow at a point represents the displacement error of the printed geometric 

pattern at this location. Therefore, the desired appearance of an overlay error map is that 

all vectors are short and random.  

The root causes in the lithography lead to specific patterns of the overlay error map. 

In this case study, we use a simulation testbed to generate the overlay errors for 1000 

wafers. For the purpose of illustrating diversity requirements, we only generate the types 

of root causes that lead all vectors within a region to shift simultaneously with a random 

direction in our experiment, like local bumps of chucking and local lens distortion. A 

simulation testbed generates the overlay error for 1000 wafers, on which four root causes 

of this type affect the overlay error in four fixed regions, as illustrated in the shaded region 
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in Figure 9 (b). The measurements of overlay vectors are taken on a 21 × 21 grid. As each 

overlay vector is described by two real values, the entire overlay vector field contains over 

842 features of the overlay vectors. For each wafer, the quality variable is the sum of the 

magnitudes of the underlying shifts in four regions, which is obtained from the testbed. We 

thereby obtained data matrix 𝐗 ∈ ℝ1000×842 and 𝐲 ∈ ℝ1000.  

 

 (a) (b) 

Figure 9 (a) The overlay error on one sample wafer and (b) the locations of the defects.   

To automatically reveal the root causes of the overlay process, we rank all overlay 

features based on their relationship with this quality variable. As we will see later, the 

quality variable is nonlinearly related to the individual overlay measurement, and 

meanwhile, the overlay vectors corresponding to each root cause are significantly 

correlated. Despite these challenges, the leading features obtained from SpaDC can 

indicate the root causes happen at multiple locations on the wafer: they are all in regions 

affected by the root cause, and they include features from all four regions.  
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Figure 10 The ranking result of six methods.  

We applied the six methods in ranking the overlay features, and the results are 

illustrated in Figure 10. In each subfigure, the numbers indicate the rank of the leading six 

features using a given method, and the locations of these numbers indicate the location of 

the error vector with that rank number. For the SpaDC method, the first six features are 

obtained with the warm start strategy, with the values 𝑐 =1.00, 1.05, 1.15, 1.20, 1.55, 1.65. 

We can see that the features with rank 1-4 correspond to the four root causes or regions of 

defects. This goal is also achieved by YR method, although in settings 4 and 5 of the 

simulation studies, YR method does not satisfy the diversity requirement. Actually, YR 

method does not take the diversity requirement into consideration intentionally. Compared 

with them, RZZ and RF methods both miss one root cause (the region at the upper-right 

part of the wafer) within the six leading features. We found that the feature of this missing 

root cause is ranked as number 7 and 9, respectively. The underlying reason is that RF and 

RZZ do not take the diversity requirement into consideration, and thus several leading 

features are dependent and correspond to the same root cause. Finally, Lasso and Adaptive 

Lasso are based on the linear model. As the magnitude of the disturbance linearly relates 
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to the lengths of the overlay error instead of its coordinates, there is a nonlinear relationship 

between the overlay features and quality variable. As a result, the leading features do not 

correspond to the regions affected by the root causes. This case study shows that the SpaDC 

method prioritizes the dependent features and simultaneously satisfies the diversity 

requirement.  

2.7 Summary 

This chapter considers an automatic root cause analysis method based on process data 

generated from manufacturing systems. Specifically, we aim to rank the process features 

based on their relationship with the quality variable. Based on the characteristics of the 

process data, we proposed two ranking rules to guarantee that the leading features provide 

useful information for process improvement: 1. the ranking method should be based on 

general-dependency measure, and 2. the ranking scheme considers diversity requirement. 

We further proposed SpaDC ranking scheme that satisfies both rules.  

Our theoretical investigation and an illustration of the SpaDC indicate that it indeed 

satisfies the ranking rules we proposed. It is further validated through the simulation and 

real case studies of semiconductor manufacturing processes.  

The SpaDC method may be improved and extended in two aspects. One potential 

direction is to find distance metrics that both enable feature ranking and take the interaction 

effect among features into consideration. Second, it is desirable to extend the formulation 

of SpaDC to further accommodate scalable computation with a large number of features.  
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CHAPTER 3. HOLISTIC MODELING AND ANALYSIS OF 

MULTISTAGE MANUFACTURING PROCESSES WITH SPARSE 

EFFECTIVE INPUTS AND MIXED PROFILE OUTPUTS 

3.1 Introduction 

Contemporary multistage manufacturing processes (MMPs) are usually equipped with 

advanced sensing systems that collect both massive process input variables and 

intermediate product quality measurements from each stage of an MMP. Examples of 

inputs include the process parameters set by the engineers, the environmental variables, 

and the external events that occurred to the process.  The variation of the process output, 

the intermediate product quality measurements in every stage, is potentially caused by the 

variation of certain inputs of the processes. This article performs a root cause analysis of 

the variability in the outputs of MMPs by associating them with specific process inputs in 

all stages. Specifically, we aim at answering three inter-related questions: (i) which 

effective inputs relate to the variations of the outputs? (ii) what are the variation patterns 

of the outputs caused by these inputs? (iii) how each individual process input affects the 

manufacturing process? Answering these questions leads to a better understanding of the 

process variabilities.  

The statistical analysis of MMPs has been conducted for decades [1-3]. However, 

there are two major limitations of the existing analytical methods. First, they are unable to 

be applied to intermediate product quality measurements of mixed types of data in an 

MMP, which are increasingly common in data-rich manufacturing environments. Here, 
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“mixed types of data” means that the data collected from different stages have different 

dimensions and distinct characteristics. As an example, a semiconductor manufacturing 

process consists of hundreds of stages, including deposition, lithography, plasma etching, 

ion-implantations, chemical-mechanical polishing, etc. [44]. In different stages, the 

corresponding outputs can be image types of data (e.g. spatial data like film thickness of 

each layer at multiple locations on the wafer [45], multivariate random field like alignment 

error at hundreds of positions on wafer surface [46], and the image of the etched trenches 

captured by the scanning electron microscope [47]), and/or assorted functional curves (e.g. 

the temperature, pressure, and radiofrequency curves during the reaction processes). As 

will be discussed in the next Section 3.2, Stream of Variation (SOV) modeling approaches 

[1] based on state space model is generally not suitable. There is a lack of appropriate 

analytical methods for MMPs where output sensing data is mixed types of data, such as 

images or functional curves. 

Second, existing analytical methods for MMPs cannot handle a large number of 

inputs associated with each stage of an MMP. In the example of semiconductor 

manufacturing, tens of control variables adjust the exposure system in a lithography step. 

For one thing, a large amount of the inputs calls for efficient and parallel implementation 

of the model estimation algorithm. For another, we need to identify the inputs that are truly 

related to the outputs and establish the connections between them.  

To perform root cause diagnostics for MMPs with mixed profile outputs and a large 

number of inputs, one may model the relationship between each pair of process input and 

output individually. However, the underlying relationships among mixed profile outputs 

and a large number of inputs cannot be effectively revealed due to the potentially complex 
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interactions among those variables, which may lead to the failure of identifying the 

effective inputs and output variation patterns. Another common practice for process 

engineers nowadays is to extract features from the outputs in every stage and model the 

relationship among the extracted features and the process inputs [48]. However, the 

selection of features tends to be subjective, and missing important features is always a risk.  

In this chapter, we propose a system-level modeling framework to solve the 

diagnostic problem for MMPs that generate intermediate product quality measurements of 

mixed types and different dimensions and sparse effective inputs.  Based on the 

characteristics of a MMP, we propose the following assumptions that facilitate our 

modeling approach:  

(1) Cascading assumption: An input in one stage only affects the outputs generated from 

this stage and the downstream stages. Cascading assumption is rooted from the 

directional error propagation among stages: the input variation from one stage not only 

affects the quality measurement of the current stage, but its effect can propagate to the 

next stage, and further downstream stages. However, the input from one downstream 

stage cannot affect the quality measurement of an upstream stage.  

(2) Mixed data types: The outputs generated from different stages of a process may be 

collected through different metrology systems, have different dimensions, and thus 

have different characteristics. We illustrate our modeling approach by assuming that 

each stage generates one of two types of outputs: smooth functional curves and smooth 

images as outputs. Our idea has the potential to be applied to measurements with 

different structural assumptions (see the discussion in Section 3.3.5). 
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(3) Sparsity assumption: The potential root causes of the outputs variability shall be 

driven by a small number of effective inputs. We assume that the effective inputs are 

sparse: they compose a very small portion of all inputs from an MMP. 

(4) Low-rank assumption: In reality, the measurements from each stage of an MMS may 

have multiple sources of variations. Within a short period of time, the potential root 

causes shall be limited, and thus only a small number of dominant variation patterns 

significantly impact quality and system performance.    

Leveraging these assumptions, we propose a holistic modeling framework for 

MMPs. The word “holistic” means that the model describes the entire manufacturing 

system composed of all stages, and we estimate the process parameters that represent the 

relationships between all process inputs and outputs simultaneously. An optimization 

problem is formulated for the estimation process, and its objective function contains the 

magnitude of the predictive error of each stage, the smoothness of the functional curves or 

image outputs, the sparsity of the effective inputs, and the number of the variability patterns 

caused by the inputs. From the estimation procedure, we can solve the three diagnostic 

problems for MMPs: identify the effective inputs, identify the variation patterns of the 

outputs, and describe how each input affects the output of each stage.  In Section 3.4, an 

illustrative example is provided via simulation studies on how the proposed method 

effectively solves the above three problems.  

To our knowledge, this study is the first one that proposes a holistic modeling and 

analysis framework for an MMP that generates assorted types of data. It simultaneously 

answers all questions involving the effective inputs, the variation patterns in the outputs, 
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and their connections. The idea behind the proposed method is extendable to a wide range 

of MMPs that involve (1) a comprehensive set of inputs, and (2) process outputs of mixed 

types of data with limited variation patterns from each stage. Also, our model estimation 

method based on an alternating direction method of multipliers (ADMM) is highly 

parallelizable and thus guarantees high computational efficiency for an MMP with more 

stages.  

The remaining part of the chapter is organized as follows. In Section 3.2, we review 

related literature to highlight the necessity of this research. In Section 3.3, we present the 

mathematical description of our problem, formulate the optimization problem, and propose 

the algorithm for solving this problem. In Section 3.4, the methods proposed in Section 3 

are validated through simulation experiments. Section 3.5 concludes the chapter.  

3.2 Literature review 

The modeling and statistical analysis of an MMP have been investigated for decades. Since 

the mid-1990s, state-space models were proposed to describe the stream of variation (SOV) 

in MMPs for assembly and machining processes [1]. Based on the state-space model, the 

estimation-based diagnostics methods have been proposed to find the connection between 

the product quality measurements from each stage and the sources of errors [49]. In most 

of the literature, the product quality measurements are 3D coordinates of a set of critical 

points on a fabricated part. Based on the engineering design and physics principles [50], 

the proposed state-space model can accurately describe the error propagation between 

stages in an MMP. For modeling complex MMPs with mixed profile outputs, two issues 

make the state-space modeling approach infeasible. First, the state-space model describes 
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the status of the manufacturing process by using a state vector. The state vector cannot be 

not defined when the product quality measures are represented by functional curves or 

images. Second, the state-space model assumes that the state at stage 𝑘 is solely determined 

by the state at stage 𝑘 − 1, and not related to previous stages 𝑘 − 2, 𝑘 − 3,… However, in 

MMPs like semiconductor manufacturing processes, the output from one stage may relate 

to the inputs from more than one previous stage. Therefore, we did not adopt the state-

space modeling approach but instead proposed a regressive approach that directly 

represents the relationship between the output of each stage and the inputs from all previous 

stages.  

In order to model the MMPs that generate profile data like functional curves or 

images in each stage, we extends the literature on modeling the relationships between 

profile inputs and outputs. Regression between smooth profile data and scalars is part of 

functional data analysis [51], and studies like  Li, et al. [52] tailor this technique for 

engineering applications. Recently, some studies [53-55] use tensors to describe the profile 

of the same size and use tensor regression techniques to model the relationship between 

profile inputs and outputs. Many studies that apply functional and tensor regression 

penalize the parametric vectors and matrices for promoting certain characteristics of the 

input and output profiles, including sparsity [11], continuity and smoothness [56], low-

rank [57], and the flatness among neighboring elements [58]. They are used collectively 

for anomaly detection [59], multiple change point detections based on sparse signal 

dependency [60],  and so forth, to improve the estimation accuracy and identify the 

effective inputs and the variation patterns caused by them. This chapter also applies 

penalizations to represent the characteristics of the mixed profile.  
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To solve the diagnostic problems of the MMPs that generate mixed profile outputs, 

the above profile data modeling techniques need to be integrated into a model that specifies 

how the inputs from one stage propagate to the follow-up stages. Currently, there is no 

well-established theory for modeling and analysis of MMPs with mixed profile outputs. A 

common practice of analyzing these MMP nowadays is to adopt a two-step procedure: we 

first extract a set of features from the process output profiles in every stage and then 

perform the analysis of the process based on these selected features. For example, Zhang, 

et al. [48] followed this procedure to perform anomaly detection from data from a single 

stage. However, the second step is usually sensitive to the set of features selected.  

Our model estimation process involves solving an optimization problem with 

multiple penalization terms. We use an alternating direction method of multipliers 

(ADMM) consensus algorithm for this purpose. Its general framework is introduced in 

Parikh and Boyd [61] and Boyd, et al. [62]. We cast our problem into the appropriate form 

and adopt the ADMM consensus method to solve it.  

3.3 Holistic Analysis Framework for MMP generating profiles and images 

In this section, we first describe the data generated from an MMP, then propose a holistic 

analysis framework for the MMP. We present how to solve the modeling and estimation 

problem using an ADMM consensus algorithm.  We also discuss the selection of the tuning 

parameters and the possible variation of the problem formulation.  
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3.3.1 Data scenario and problem description 

We assume that the process outputs from each stage either includes multiple functional 

curves of the same length or an image. The process output of stage 𝑘 can be written as 𝐘𝑘 ∈

ℝ𝑚𝑘×𝑛𝑘. If the output from stage 𝑘 is an image, 𝐘𝑘 represents an image of size 𝑚𝑘 × 𝑛𝑘. 

If stage 𝑘 generates functional curves, 𝐘𝑘 represents 𝑚𝑘 curves of length 𝑛𝑘. The set ℐ 

includes the indices of stages that generate image data, and 𝒮 = {1, … , 𝐾} − ℐ represent 

the stages that generate functional curves. All outputs for product 𝑛 are thus described by 

𝒴{𝑛} = (𝐘1
{𝑛}

,… , 𝐘𝐾
{𝑛}

). Throughout the chapter, we use curly brackets {⋅} to identify the 

product number.  

Note that the structure of 𝒴{𝑛} describes the general data structure for the 

intermediate product quality data generated from an MMP of multiple types and 

dimensions. This structure is similar to a C struct or MATLAB® cell: the data generated 

from all stages are of different dimensions. If the size of matrices 𝐘1 , … , 𝐘𝐾 are the same, 

𝒴{𝑛} can be seen as tensor data [54]. We assume that the data generated from all stages 

have different structures, in the sense that they may represent either images or functional 

curves, so that special considerations in data analytics are required. Finally, we note that in 

other applications, the process outputs can be even more complicated. For example, the 

data from each stage may include multiple images of different sizes, groups of functional 

curves of different sizes, or other structured data types such as spatial measurements or 

point clouds. It will be clear in Section 3.3.5 that the methodology proposed in this chapter 

can be extended to such scenarios potentially.  
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We further assume that there are 𝑞𝑘 inputs from stage 𝑘 that may affect the process, 

represented by 𝐮𝑘 = (𝑢𝑘1, … , 𝑢𝑘𝑞𝑘
), 𝑘 = 1,… ,𝐾.  

For simplicity, we assume that the effect of the inputs on the outputs is always linear. The 

treatment of nonlinear effects is briefly discussed in Section 3.3.5.2. Based on a linear 

model, the effect of the process inputs on the process outputs can be described by equation 

(6):  

 𝐘𝑘 = 𝐁𝑘0 + ∑∑ 𝑢𝑖𝑗𝐁𝑖𝑗,𝑘

𝑞𝑖

𝑗=1

𝑘

𝑖=1

+ 𝐄𝑘 (6) 

In model (6), the parametric matrix 𝐁𝑖𝑗,𝑘 is of size ℝ𝑚𝑘×𝑛𝑘. It is referred to as an 

effect matrix as it describes the effect of the input 𝑢𝑖𝑗 on the process outputs measured from 

stage 𝑘. The collection of effect matrices is denoted as ℬ = {𝐁𝑖𝑗,𝑘: 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑗 ≤

𝑞𝑖}. The matrix 𝐁𝑘0’s are called offset matrices, and the set of all offset matrices is denoted 

by ℬ0 = {𝐁𝑘0: 1 ≤ 𝑘 ≤ 𝐾}. Here 𝐄𝑘 is a matrix representing the modeling error of the 

stage 𝑘, and we assume that every entry of 𝐄𝑘 is with mean 0, and variance 𝜎𝐸,𝑘
2 . The 

cascading effect of the process inputs is inherently reflected from this model as the input 

variable 𝑢𝑖𝑗 from stage 𝑖 affects the output from stage 𝑘, 𝐘𝑘 only if 𝑖 ≤ 𝑘. Other 

assumptions discussed above can be cast into specifications on the model parameter ℬ0  

and ℬ.  

(1) The process outputs generated from stage 𝑘 either represent smooth functional curves 

or images. As 𝐁𝑖𝑗,𝑘 and 𝐁𝑘0 represent the effect of parameter 𝑢𝑖𝑗 on such process 

outputs, they shall share the same characteristic as the curve or image data in stage 𝑘. 
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Specifically, if the process outputs from stage 𝑘 are multiple smooth curves, every row 

in 𝐁𝑖𝑗,𝑘 and 𝐁𝑘0 corresponds to a curve, and thus two elements whose indices are close 

in each row should have similar values. If the stage 𝑘 generates smooth images, any 

two elements whose indices are close in 𝐁𝑖𝑗,𝑘 or 𝐁𝑘0 should have similar values.  

(2) Only sparse effective inputs affect outputs. It means that most 𝑢𝑖𝑗’s (1 ≤ 𝑖 ≤ 𝐾 and 

1 ≤ 𝑗 ≤ 𝑞𝑖) are associated with effect matrices 𝐁𝑖𝑗,𝑘 = 𝐎 for all 𝑘 = 1,… , 𝐾.  

(3) The major variability of the stage 𝑘 output, caused by all process inputs up to this stage, 

is of low dimension. In other words, the major variation patterns caused by effective 

𝑢𝑖𝑗′s lie in a low dimensional subspace. Therefore, the matrix 𝐁⋅⋅,𝑘 is of low rank, 

where  

𝐁⋅⋅,𝑘 = [vec(𝐁11,𝑘) , vec(𝐁12,𝑘) , … , vec(𝐁1𝑞1,𝑘) , … , vec(𝐁𝑘𝑞𝑘,𝑘)] ∈ ℝ
(𝑚𝑘𝑛𝑘)×(∑ 𝑞𝑖

𝑘
𝑖=1 )

. 

Here, 𝐁⋅⋅,𝑘 constitutes the effects of  ∑ 𝑞𝑖
𝑘
𝑖=1  inputs from the first 𝑘 manufacturing stages. 

The vectorization operator vec(⋅) transforms the 𝑚𝑘 × 𝑛𝑘 matrix to vectors of size 

𝑚𝑘𝑛𝑘 × 1.  

3.3.1.1 Interpretation of the model and the usage for root cause diagnostics 

The model (6) we proposed above can be illustrated by using Figure 11. In this figure, we 

can see that every input 𝑢𝑖𝑗 from stage 𝑖 only affects the output in stage 𝑖 and the following 

stages 𝑖 + 1, … , 𝐾, indicated by the green arrows and the effect matrices 𝐁𝑖𝑗,𝑘’s. Although 

we do not explicitly model how the output from stage 𝑘 affects the output of stage 𝑘 + 1 

like the SOV modeling approach (shown as dashed blue arrows in Figure 11), we 
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acknowledge that the error propagation between the output stages exists, and embed this 

consideration into the cascading assumption: the effective input from stage 𝑖 may not only 

affect stage 𝑖 itself, but it may further influence the following stages 𝑖 + 1, 𝑖 + 2, etc. The 

proposed regressive approach has several benefits. First, it enables existing multilinear 

regression and functional regression techniques applied to the MMP. Second, it also 

enables an explicit description of how the input from one stage influences the output of a 

much later stage.  Third, the regressive approach can be easily extended for other types of 

process outputs with different characteristics, as specified in Section 3.3.5.2.  

 

Figure 11 The illustration of the model (6) 

 We can use the proposed model (6) to solve the diagnostic problem of the MMP. 

After we obtain the inputs 𝐮1
{𝑛}

,… , 𝐮𝐾
{𝑛}

 and the outputs 𝒴{𝑛} for samples 𝑛 = 1,… , 𝑁, we 

can estimate the effect matrices in ℬ in the model (6), such that the cascading assumption, 

mixed data type assumption, sparsity assumption and low-rank assumption are satisfied. 

After the estimation is obtained, three questions of the diagnostics can be readily answered. 

Specifically, we can  
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(i) identify the effective inputs (e.g. root causes): The input 𝑢𝑖𝑗 is identified as an 

effective input, if 𝐁𝑖𝑗,𝑘 ≠ 𝐎 for some 𝑘 ∈ {𝑖, 𝑖 + 1, … , 𝐾};  

(ii) identify the output variation patterns: The variation driven by all inputs in stage 

1, … , 𝑘 for the output of stage 𝑘 is described by the linear subspace spanned by 

all 𝐁𝑖𝑗,𝑘: 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑞𝑖, whose dimension is given as the rank of 𝐁⋅⋅,𝑘; 

and finally,  

(iii) determne the specific inputs on the outpurs: How each input 𝑢𝑖𝑗 affects 𝐘𝑘 the 

output of stage 𝑘 is described by 𝐁𝑖𝑗,𝑘.  

Therefore, with the estimation of all effect matrices, the diagnostics problems in the 

introduction can be answered.  

From the model, we can see that there are many parameters to be estimated in the 

modeling efforts. However, the overfitting problem can be avoided by the penalties applied 

to these parameters based on our model assumptions, as detailed in the Section 3.3.2. If we 

know that the possible causal structures between input variables and quality measurements 

in advance from domain knowledge, we may further limit the number of parameters to be 

estimated. For example, if we know that the inputs 𝑢𝑖𝑗 may only affect stage 𝐘𝑖 , 

𝐘𝑖+1, … , 𝐘𝑘𝑖𝑗
, we can add another constraint 𝐁𝑖𝑗,𝑘 = 𝐎 for all 𝑘 > 𝑘𝑖𝑗.  

In the following sections, we describe how to formulate an optimization problem 

to solve the parameters in ℬ0  and ℬ, and how to solve them numerically.  
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3.3.2 Problem formulation 

The objective of this study is to describe how the inputs 𝑢11, … , 𝑢𝐾𝑞𝐾
 affect the outputs 

(𝐘1
{𝑛}

,… , 𝐘𝐾
{𝑛}

) in all stages. It is achieved by obtaining an estimation of ℬ and ℬ0  with the 

characteristics described in the previous subsection. To obtain the estimation, we solve an 

optimization problem that minimizes the sum of the prediction error of the process outputs 

and the penalties specified by each assumption. These terms are detailed as follows.  

Prediction error of the process outputs.  From the model  (6), the prediction error for the 

process outputs of product 𝑛 from stage 𝑘 can be represented as  

𝐄𝑘
{𝑛}

= 𝐘𝑘
{𝑛}

− 𝐁𝑘0 − ∑∑ 𝑢𝑖𝑗
{𝑛}

𝐁𝑖𝑗,𝑘

𝑞𝑖

𝑗=1

𝑘

𝑖=1

,  

and the prediction accuracy can be represented as ‖𝐄𝑘
{𝑛}

‖
𝐹

2
, where ‖⋅‖𝐹 is the Frobenius 

norm. The prediction accuracy across all 𝐾 stages is then represented as  

 ℒ(ℬ, ℬ0) = ∑∑ ‖𝐄𝑘
{𝑛}

‖
𝐹

2
𝐾

𝑘=1

𝑁

𝑛=1

= ∑∑ ‖𝐘𝑘
{𝑛}

− 𝐁𝑘0 − ∑ ∑𝑢𝑖𝑗
{𝑛}

𝐁𝑖𝑗,𝑘

𝑞𝑖

𝑗=1

𝑘

𝑖=1

‖

𝐹

2
𝐾

𝑘=1

𝑁

𝑛=1

 (7) 

In this expression, we sum up the loss ‖𝐄𝑘
{𝑛}

‖
𝐹

2
 corresponding to all stages 1, … , 𝐾, to 

determine the effective inputs and estimating their effects using the information from all 

stages. Note that every effective input affects the outputs in all later stages. Thus, we need 

to incorporate the information from all stages to identify them. Taking different magnitudes 

of the error and different numbers of elements of all stages into consideration, one may 
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incorporate a weight 1 (𝜎̂𝐸,𝑘
2 𝑚𝑘𝑛𝑘)⁄  to the term corresponding to stage 𝑘, where the 

parameter 𝜎̂𝐸,𝑘
2  is a rough estimation obtained through smoothing the outputs of a subset of 

samples from every stage 𝑘 and calculate the mean-squared error. Under this setting, the 

formulation is only slightly modified, and the solution framework remains the same.  

The effects of each input are smooth. Assume that stage 𝑘 ∈ 𝒮 generates functional 

curves. According to Section 3.3.1, the elements on every row of 𝐁𝑖𝑗,𝑘 should form a 

smooth function. To enhance the smooth property of the curves and thus increase the 

estimation accuracy, we propose the following penalization for these stages, similar to the 

smooth component in [59].  

 𝑝1(ℬ, ℬ0) = ∑𝜆1,𝑘 [∑‖𝐃𝑆𝐁𝑘0(𝑚, : )‖2
2

𝑚𝑘

𝑚=0

+ ∑∑ ∑‖𝐃𝑆𝐁𝑖𝑗,𝑘(𝑚, : )‖
2

2

𝑚𝑘

𝑚=1

𝑞𝑖

𝑗=1

𝑘

𝑖=1

]

𝑘∈𝒮

 (8) 

In this term, 𝐁𝑖𝑗,𝑘(𝑚, : ) describes the effect of 𝑢𝑖𝑗 on the 𝑚th functional curve generated 

from stage 𝑘. 𝐃𝑆 is a modified 1D second-order difference matrix for smoothing curves, 

with modified Neumann boundary condition [63],  

𝐃𝑆 =

[
 
 
 
 
 
−1  1   𝐎
1 −2 1   
 1 −2 1  
  ⋱ ⋱  
  1 −2 1
𝐎    1 −1]

 
 
 
 
 

. 

The expression 𝐃𝑆𝐁𝑖𝑗,𝑘(𝑚, : ) gives a discretized approximation of function norm 

‖𝑓′′(𝑥)‖2
2 [56], where 𝑓(𝑥) = 𝐁𝑖𝑗,𝑘(𝑚, 𝑥). As we will see in Algorithm 4 and Algorithm 

5, the choice of the boundary condition (the first and latest row of 𝐃𝑆) enables efficient 
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computation. Here 𝜆1,𝑘 is selected to control the degree of smoothing for the signals in 

stage 𝑘. Motivated by thin-plate splines [64], similar penalization term is defined for the 

stages that generate a smooth image,  

 

𝑝2(ℬ, ℬ0) = ∑ 𝜆2,𝑘 [vec(𝐁𝑘0)
⊤ 𝐑𝐼 vec(𝐁𝑘0)

𝑘∈ℐ

+ ∑ ∑vec(𝐁𝑖𝑗,𝑘)
⊤
𝐑𝐼 vec(𝐁𝑖𝑗,𝑘)

𝑞𝑖

𝑗=1

𝑘

𝑖=1

]. 

(9) 

Here vec(⋅) transforms the image to a 𝑚𝑖 × 𝑛𝑖  vector, and 𝐑𝐼 is a discretized version of 

the operator  

ℛ(𝑔) = ∫ [(
𝜕2𝑔

𝜕𝑥2
)

2

+ 2(
𝜕2𝑔

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑔

𝜕𝑦2
)

2

] 𝑑𝑥𝑑𝑦
ℝ2

 

that defines the “roughness” of bivariate function 𝑔 [65]. The closed-form expression of 

the roughness matrix 𝐑𝐼 for an 𝑚 × 𝑛 matrix is derived and represented in Section 3 of 

Buckley [65]:  

𝐑𝐼 = (𝐂𝑚
⊤ ⊗ 𝐂𝑛

⊤)(𝐌𝑚
2 ⊗ 𝐈𝑛 + 2𝐌𝑚 ⊗ 𝐌𝑛 + 𝐈𝑚 ⊗ 𝐌𝑛

2)(𝐂𝑚 ⊗ 𝐂𝑛) 

where 𝐂𝑛 is discrete cosine transforms of order 𝑛, 𝐈𝑛 is an identity matrix of order 𝑛, 𝐌𝑛 

is a diagonal matrix whose diagonal elements are 𝜇𝑖,𝑛 = 2[1 − cos{𝜋(𝑖 − 1) 𝑛⁄ }], 𝑖 =

1, … , 𝑛 , and “⊗” represents the Kronecker product. However, we will see later that the 

matrix 𝐑𝐼 does not need to be constructed explicitly.  
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The effects of the inputs are sparse. In model (6), “𝐁𝑖𝑗,𝑘 = 𝐎 for all 𝑘” is satisfied for 

most (𝑖, 𝑗) pairs with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑞𝑖. Motivated by the Group lasso algorithm 

[66], an ℓ2 penalty is applied to all elements in ℬ that involve the input 𝑢𝑖𝑗. Specifically, 

for 𝑢𝑖𝑗 we define a long vector  

𝐁𝑖𝑗,⋅ = (
1

√𝐶𝑖

vec(𝐁𝑖𝑗,𝑖) ,
1

√𝐶𝑖+1

vec(𝐁𝑖𝑗,𝑖+1) , … ,
1

√𝐶𝑘

vec(𝐁𝑖𝑗,𝑘))

⊤

 

that constitutes all elements in ℬ, characterizing how 𝑢𝑖𝑗 affects the outputs. Here, the 

parameter 𝐶𝑖 = 𝑚𝑖𝑛𝑖 ,… ,𝐶𝑘 = 𝑚𝑘𝑛𝑘 are the number of elements in 𝐁𝑖𝑗,𝑖 ,𝐁𝑖𝑗,𝑖+1, … , 𝐁𝑖𝑗,𝑘 

that adjusts the weights of the components to make the effects of each stage have 

comparable norms. The penalization term is then defined based on the ‖𝐁𝑖𝑗,⋅‖2
, given as  

 𝑝3(ℬ) = ∑ [𝜆3,𝑖 ∑‖𝐁𝑖𝑗,⋅‖2

𝑞𝑖

𝑗=1

]

𝐾

𝑖=1

. (10) 

Here 𝜆3,𝑖  controls the level of the sparsity of effective inputs from stage 𝑖. With more 

effective inputs from stage 𝑖, 𝜆3,𝑖 should be selected smaller.  

Variation caused by inputs is of low rank. As presented in Section 3.3.1, the matrix 𝐁⋅⋅,𝑘 

should be of low rank. A popular heuristic for solving rank minimization problems is by 

minimizing the nuclear norm of a matrix [67], and the nuclear norm penalization was 

proposed for reduced-rank regression [57]. We borrow this idea and apply the following 

penalization term to limit the number of variation patterns of each stage, resulted from all 

inputs that affect it.   
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 𝑝4(ℬ) = ∑ 𝜆4,𝑘‖𝐁⋅⋅,𝑘‖
∗

𝐾

𝑘=1

 (11) 

 

The overall objective function is given as the sum of the prediction error of the process 

outputs and four regularization terms 𝑝1(ℬ), 𝑝2(ℬ), 𝑝3(ℬ) and 𝑝4(ℬ) listed in (8)–(11). 

Therefore, our objective is to solve the following optimization problem:  

 minimize
ℬ,ℬ0

ℒ(ℬ, ℬ0) + 𝑝1(ℬ, ℬ0) + 𝑝2(ℬ, ℬ0) + 𝑝3(ℬ) + 𝑝4(ℬ). (12) 

3.3.3 Problem solution 

Note that formulation (12) is a convex problem, lower bounded by zero. Therefore, it has 

an optimal solution. This problem has two characteristics. First, the problem has many 

decision variables, and thus a highly parallel algorithm is desired. Second, its objective 

function contains multiple non-differentiable additive components. For this reason, we 

apply an alternating direction method of multiplier (ADMM) consensus algorithm to solve 

this problem [61].  

To cast the formulation (12) into the ADMM consensus framework, we introduce 

four copies of parameter ℬ, namely ℬ(1), ℬ(2), ℬ(3) and ℬ(4), and two copies of parameters 

ℬ0 : ℬ0
(1)

 and ℬ0
(2)

. Then the  formulation (12) is equivalent to the formulation (13) below:   

 min𝑓(ℬ̃) + 𝑔(ℬ̃). (13) 
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In formulation (13),  ℬ̃ = (ℬ0
(1)

,ℬ0
(2)

, ℬ(1), ℬ(2), ℬ(3), ℬ(4)) represents the collection of 

augmented parameters, the function 𝑓(ℬ̃) = ℒ(ℬ0
(1)

,ℬ(1)) + 𝑝1(ℬ0
(2)

, ℬ(2)) +

𝑝2(ℬ0
(2)

, ℬ(2)) + 𝑝3(ℬ(3)) + 𝑝4(ℬ
(4)). The function 𝑔(ℬ̃) = 𝐼ℬ(1)=ℬ(2)=ℬ(3)=ℬ(4)(ℬ̃) ⋅

𝐼
ℬ0

(1)
=ℬ0

(2)(ℬ̃) specifies that the copies are of the same values, where 𝐼𝐴(𝑥) =

{
0 𝑥 ∈ 𝐴

+∞ if 𝑥 ∉ 𝐴
  is the indicator function. The formulation (13) is solved with a general 

framework of ADMM listed in Algorithm 3.  

Algorithm 3: general framework of ADMM  

Initialize 𝒵 and 𝒰̃ as structs with the same shape as ℬ̃. Set all elements to 0.  

Do:  

Set ℬ̃prev ← ℬ̃, 𝒵prev ← 𝒵 and 𝒰̃prev ← 𝒰̃ 

ℬ̃ ← prox
𝜂𝑓

[𝒵 − 𝒰̃] (Step 1) 

𝒵 ← prox
𝜂𝑔

[ℬ̃ + 𝒰̃] (Step 2) 

 𝒰̃ ← 𝒰̃ + ℬ̃ − 𝒵 (Step 3) 

Until ‖𝒰̃ − 𝒰̃prev‖ < 𝜖 and ‖𝒵 − 𝒵prev‖ < 𝜖. 

In this algorithm, the summation and subtraction of two structs are naturally defined 

as adding and subtracting each corresponding element. The parameter 𝜂 specifies the step 

size, and prox
ℎ
(𝐱) is the proximal operator, defined as  

prox
ℎ
(𝐱) = argmin

𝐲
{ℎ(𝐲) +

1

2
‖vec(𝐱 − 𝐲)‖2

2}. 

where the operator vec(⋅) in the second term transforms the struct to a long vector.  

To perform this optimization algorithm, the proximal operator in Step 1 and Step 

2 will be evaluated in the following two subsections.  
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3.3.3.1 Evaluating the proximal operator in Step 1 

Recall that  

𝑓(ℬ̃) = ℒ(ℬ0
(1)

, ℬ(1)) + [𝑝1(ℬ0
(2)

, ℬ(2)) + 𝑝2(ℬ0
(2)

, ℬ(2))] + 𝑝3(ℬ(3)) + 𝑝4(ℬ
(4)). 

It is the summation of four components involving non-overlapping elements. The separable 

property of the proximal operator [61] states that  

 prox
ℎ
(𝐱1, 𝐱2) = (prox

ℎ1
(𝐱1),prox

ℎ2
(𝐱2)) (14) 

if ℎ(𝐱1, 𝐱2) = ℎ1(𝐱1) + ℎ2(𝐱2). Therefore, the proximal operator of prox
𝜂𝑓

[ℬ̃] is 

determined by that of the following components: ℒ(ℬ0
(1)

, ℬ(1)),𝑝1(ℬ0
(2)

, ℬ(2)) +

𝑝2(ℬ0
(2)

, ℬ(2)), 𝑝3(ℬ
(3)) and 𝑝4(ℬ(4)). The procedure of calculating these proximal 

operators is detailed as follows.   

Evaluating the proximal operator of ℒ(ℬ0
(1)

, ℬ(1)).  The first term 

ℒ(ℬ0
(1)

, ℬ(1)) = ∑ ∑ ‖𝐘𝑘
{𝑛}

− 𝐁𝑘0
(1)

− ∑ ∑ 𝑢𝑖𝑗
{𝑛}

𝐁𝑖𝑗,𝑘
(1)𝑞𝑖

𝑗=1
𝑘
𝑖=1 ‖

𝐹

2
𝐾
𝑘=1

𝑁
𝑛=1  can be decomposed 

into the summation of least square components that involve disjoint sets of elements 

ℬ𝑘,𝑣,𝑤
(1)

= {𝐁𝑘0
(1)(𝑣, 𝑤)} ∪ {𝐁𝑖𝑗,𝑘

(1) (𝑣, 𝑤): 𝑖 = 1, … , 𝑘; 𝑗 = 1, … , 𝑞𝑖}, corresponding to 𝑘 =

1,… , 𝐾;  𝑣 = 1,… ,𝑚𝑘 , and 𝑤 = 1,… , 𝑛𝑘:  

ℒ(ℬ0
(1)

,ℬ(1)) = ∑ ∑ ∑ 𝑆𝑘,𝑢,𝑣(ℬ𝑘,𝑣,𝑤
(1)

)

𝑛𝑘

𝑤=1

𝑚𝑘

𝑣=1

𝐾

𝑘=1
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where  

 𝑆𝑘,𝑣,𝑤(ℬ𝑘,𝑣,𝑤
(1)

) = ∑ (𝐘𝑘
{𝑛}(𝑣, 𝑤) − 𝐁𝑘0

(1)(𝑣,𝑤) − ∑ ∑𝑢𝑖𝑗
{𝑛}

𝐁𝑖𝑗,𝑘
(1) (𝑣, 𝑤)

𝑞𝑖

𝑗=1

𝑘

𝑖=1

)

2
𝑁

𝑛=1

 (15) 

Therefore, evaluating the proximal operator of ℒ(ℬ0
(1)

, ℬ(1)) reduces to evaluating the 

proximal operator of each component 𝑆𝑘,𝑣,𝑤(⋅) by using the identity (14) again. Each 

additive component 𝑆𝑘,𝑣,𝑤(⋅) is a quadratic function of the elements in ℬ𝑘,𝑣,𝑤
(1)

, whose 

proximal operator can be calculated using Proposition 5 given in [61]. 

Proposition 5 If 𝑞(𝐱) =
1

2
𝐱⊤𝐀𝐱 + 𝐛⊤𝐱 + 𝑐, with 𝐀 being a positive semidefinite matrix,  

 prox
𝜂𝑞(⋅)

(𝐯) = (𝐈 + 𝜂𝐀)−1(𝐯 − 𝜂𝐛) (16) 

where 𝐈 is an identity matrix with the same size as 𝐀.  

Note that each set ℬ𝑘,𝑢,𝑣
(1)

 contains no more than ∑ 𝑞𝑖
𝐾
𝑖=1 + 1 parameters. Therefore, 

the inversion of the matrix therein is performed rapidly with little difficulty.  

Evaluating the proximal operator of 𝑝1(ℬ0
(2)

, ℬ(2)) + 𝑝2(ℬ0
(2)

, ℬ(2)). Note that 

𝑝1(ℬ0
(2)

, ℬ(2)) = ∑(𝜆1,𝑘 ∑‖𝐃𝑆𝐁𝑘0
(2)(𝑣, : )‖

2

2
𝑚𝑘

𝑣=0

)

𝑘∈𝒮

+ ∑∑ ∑(𝜆1,𝑘 ∑‖𝐃𝑆𝐁𝑖𝑗,𝑘
(2)

(𝑣, : )‖
2

2
𝑚𝑘

𝑣=1

)

𝑞𝑖

𝑗=1

𝑘

𝑖=1𝑘∈𝒮

, 
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𝑝2(ℬ0
(2)

, ℬ(2)) = ∑ (𝜆2,𝑘 vec(𝐁𝑘0
(2)

)
⊤

𝐑𝐼 vec(𝐁𝑘0
(2)

))

𝑘∈ℐ

+ ∑ ∑ ∑(𝜆2,𝑘 vec(𝐁𝑖𝑗,𝑘
(2)

)
⊤

𝐑𝐼 vec(𝐁𝑖𝑗,𝑘
(2)

))

𝑞𝑖

𝑗=1

𝑘

𝑖=1𝑘∈ℐ

. 

They are both the summation of multiple components involving disjoint sets of parameters. 

Each component corresponds to one parametric matrix, either an offset matrix 𝐁𝑘0
(2)

 or an 

effect matrix 𝐁𝑖𝑗,𝑘
(2)

. In the summations involving “𝑘 ∈ 𝒮”, every term is represented as 

𝜆1,𝑘 ∑ ‖𝐃𝑆𝐓(𝑣, : )‖2
2𝑚𝑘

𝑣=0 ≔ ∑ 𝑝𝑆(𝐓(𝑣, : ))
𝑚𝑘
𝑣=1  where 𝑝𝑆(𝐱) = 𝜆1,𝑘‖𝐃𝑆𝐱‖2

2. In the 

summation involving “𝑘 ∈ ℐ", every term is then represented as 𝑝𝐼(𝐓) =

𝜆2,𝑘 vec(𝐓)⊤ 𝐑𝐼 vec(𝐓). Therefore, it is sufficient to evaluate the proximal operator of 

𝑝𝑆(𝐱) and 𝑝𝐼(𝐓) due to the separable property of the proximal operator (14). We derive the 

efficient evaluation of these proximal operators in Proposition 6 and 7. The proofs are given 

in Appendix 0.   

Proposition 6 Given a 𝑑-dimensional signal 𝐱 ∈ ℝ𝑑, Algorithm 4 evaluates 𝐱̃ =

prox
𝜂𝑝𝑆

(𝐱), where 𝑝𝑆(𝐱) = 𝜆1‖𝐃𝑆𝐱‖2
2.  

Algorithm 4: calculate 𝐱̃ = prox
𝜼𝒑𝑺

(𝐱) 

1: Calculate 𝐱∗ = DCT(𝐱), where DCT represents the 1D discrete cosine transform [68].  

2: Set 𝑥𝑖
∗ ← 𝑥𝑖

∗ [1 + 4𝜆1𝜂 (1 − cos(
𝑖−1

𝑑
𝜋))

2

]⁄  for 𝑖 = 1,2, … , 𝑑, where 𝑥𝑖
∗ is the i-th 

element of 𝐱∗.   

3: Calculate 𝐱̃ = IDCT(𝐱̃∗), where 𝐱̃∗ = (𝑥1
∗,… , 𝑥𝑑

∗)⊤ and IDCT represents the inverse 

discrete cosine transform. 

Proposition 7 Given an 𝑚 × 𝑛 signal 𝐓 = (𝑡𝑖𝑗)𝑚×𝑛
∈ ℝ𝑚×𝑛 , Algorithm 5 evaluates 𝐓̃ =

prox
𝜂𝑝𝐼

(𝐓), where 𝑝𝐼(𝐓) = 𝜆2 vec(𝐓)⊤ 𝐑𝐼 vec(𝐓). 
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Algorithm 5: calculate 𝐓̃ = prox
𝜼𝒑𝑰

(𝐓)  

1: Calculate 𝐓∗ ← DCT2(𝐓), where DCT2 represents the 2D discrete cosine transform.  

2: Set 𝑡̃𝑖𝑗
∗ ← 𝑡𝑖𝑗

∗ [1 + 4𝜆2𝜂 (2 − cos(
𝑖−1

𝑚
𝜋) − cos (

𝑗−1

𝑛
𝜋))

2

]⁄  for 𝑖 = 1, … ,𝑚 and 𝑗 =

1, … , 𝑛, where 𝑡𝑖𝑗
∗  is the (𝑖, 𝑗) element of 𝐓∗.   

3: Calculate 𝐓̃ ← IDCT2(𝐓̃∗), where 𝐓̃∗ = (𝑡̃𝑖𝑗
∗ )

𝑚×𝑛
 and IDCT2 represents the inverse 

2D discrete cosine transform. 

Evaluating the proximal operator of p3(ℬ
(3)).   The penalty 

𝑝3(ℬ
(3)) = ∑ [𝜆3,𝑖 ∑ ‖𝐁𝑖𝑗,⋅

(3)
‖

2

𝑞𝑖
𝑗=1 ]𝐾

𝑖=1  is also the summation of multiple components, each 

involving 𝐁𝑖𝑗,⋅
(3)

. By the separable property of the proximal operator (14), the proximal 

operator of 𝑝3(⋅) can be evaluated by the proximal operators of each term 𝜆3,𝑖‖𝐁𝑖𝑗,⋅
(3)

‖
2
. Its 

closed-form expression is given in Chapter 6.5.1, Parikh and Boyd [61].  

Proposition 8 prox
𝜆‖⋅‖2

(𝐱) = {
(1 −

𝜆

‖𝐱‖2
)𝐱, if ‖𝐱‖2 ≥ 𝜆

𝟎, if ‖𝐱‖2 < 𝜆
. 

Evaluating the proximal operator of p4(ℬ
(4)). The separable property of the 

proximal operator (14) can be invoked again to calculate the proximal operator of 

𝑝4(ℬ
(4)) = ∑ 𝜆4,𝑘‖𝐁⋅⋅,𝑘

(4)
‖

∗

𝐾
𝑘=1 . The following closed-form expression for the proximal 

operator of 𝜆4,𝑘‖⋅‖∗ is also from Chapter 6.7.3, Parikh and Boyd [61]. With this expression, 

the proximal operator of 𝑝4(ℬ
(4)) can be evaluated.  

Proposition 9 Let 𝐴 be an 𝑚 × 𝑛 matrix with singular value decomposition 𝐴 =

∑ 𝜎𝑖𝐮𝑖𝐯𝑖
⊤min{𝑚.𝑛}

𝑖=1 . Then prox
𝜆4,𝑘‖⋅‖

∗
(𝐀) = ∑ (𝜎𝑖 − 𝜆4,𝑘)

+
𝐮𝑖𝐯𝑖

⊤min{𝑚,𝑛}
𝑖=1 , where 𝑥+ =

{
𝑥, 𝑥 ≥ 0
0,𝑥 < 0

.  
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3.3.3.2 Evaluating the proximal operator in Step 2 

According to Parikh and Boyd [61], the proximal operator prox
𝜆𝑔

[⋅] involved in Step 2 is 

a projection onto the subspace {ℬ̃: ℬ(1) = ℬ(2) = ℬ(3) = ℬ(4), ℬ0
(1)

= ℬ0
(2)

}. Thus, the 

update of 𝒵 = (𝒵 (1),𝒵 (2), 𝒵 (3),𝒵 (4),𝒵0
(1)

,𝒵0
(2)

) is given by 

𝒵 (𝑖) ← ℬ̅ + 𝒰̅, 𝑖 = 1,2,3, and 4; 𝒵0
(𝑖) ← ℬ̅0 + 𝒰̅0, 𝑖 = 1 and 2. 

where ℬ̅ ≔
1

4
(ℬ(1) + ℬ(2) + ℬ(3) + ℬ(4)), ℬ̅0 ≔

1

2
(ℬ0

(1)
+ ℬ0

(2)
), and 𝒰̅, 𝒰̅0 are defined 

accordingly. With the above specification of Step 2, 𝒰̅, 𝒰̅0 will remain constant during 

iterations of the algorithm (though 𝒰(1),… , 𝒰(4) and 𝒰0
(1)

, 𝒰0
(2)

 change during iterations), 

according to Step 3 of Algorithm 1. If 𝒰̅, 𝒰̅0 are initialized at zeros, the step (2) of 

Algorithm 3 further reduces to 𝒵 (𝑖) ← ℬ̅,𝒵0
(𝑖)

← ℬ̅0.  

3.3.3.3 Summary of the proposed ADMM consensus algorithm 

Now we put together the components listed in the above subsections and give a 

comprehensive optimization procedure in Algorithm 6. The notations 

ℬ̅𝑘,𝑣,𝑤
 , 𝐁̅𝑘0, 𝐁̅𝑖𝑗,𝑘 , ℬ̅𝑖,𝑗

 , and 𝐁̅⋅⋅,𝑘 are vectors or matrices, composed of elements in (ℬ̅, ℬ̅0), 

according to how ℬ𝑘,𝑣,𝑤
(1)

 selects a subset of elements in (ℬ(1), ℬ0
(1)

), how 𝐁𝑘0
(2)

 and 𝐁𝑖𝑗,𝑘
(2)

  

select subsets of elements in (ℬ(2), ℬ0
(2)

), how ℬ𝑖,𝑗
(3)

 selects a subset of elements in 

(ℬ(3), ℬ0
(3)

) , and how 𝐁⋅⋅,𝑘
(4)

 selects a subset of elements in (ℬ(4),ℬ0
(4)

), respectively. All 

notations involving the letter “U” corresponds to their counterparts involving the letter “B”. 
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For example, notation 𝒰𝑘,𝑣,𝑤
(1)

 in line (1a) refers to the subset of elements in 𝒰(1), according 

to how ℬ𝑘,𝑣,𝑤
(1)

 selects a subset of elements in ℬ(1). 

Algorithm 6: The complete optimization procedure 

Initiate ℬ̅ = ℬ(1) = ℬ(2) = ℬ(3) = ℬ(4) = 𝒰(1) = 𝒰(2) = 𝒰(3) = 𝒰(4) = 𝒪 of the 

same shape as ℬ. Initiate ℬ̅0 = ℬ0
(1)

= ℬ0
(2)

= 𝒰0
(1)

= 𝒰0
(2)

= 𝒪 of the same shape as 

ℬ0 .  

Do:  

(1) Save ℬ̅0, prev ← ℬ̅0  and ℬ̅prev ← ℬ̅.  

(2a) For 𝑘 = 1,… , 𝐾, 𝑣 = 1,… ,𝑚𝑘 , 𝑤 = 1, … , 𝑛𝑘 do:  

Update ℬ𝑘,𝑣,𝑤
(1)

 by ℬ𝑘,𝑣,𝑤
(1)

← prox
𝜂𝑆𝑘,𝑣,𝑤(⋅)

(ℬ̅𝑘,𝑣,𝑤
 − 𝒰𝑘,𝑣,𝑤

(1)
) according to Proposition 5.  

(2b) For 𝑘 = 1,… , 𝐾, 𝑖 = 1, … , 𝑘, 𝑗 = 1, … , 𝑞𝑖 do:  

If 𝑘 ∈ ℐ: update 𝐁𝑘0
(2)

← prox
𝜂𝑝𝐼

(𝐁̅𝑘0 − 𝐔𝑘0
(2)

), 𝐁𝑖𝑗,𝑘
(2)

← prox
𝜂𝑝𝐼

(𝐁̅𝑖𝑗,𝑘 − 𝐔𝑖𝑗,𝑘
(2)

) based 

on Proposition 7. 

If 𝑘 ∈ 𝒮: update 𝐁𝑘0
(2)(𝑣, : ) ← prox

𝜂𝑝𝑆
(𝐁̅𝑘0(𝑣, : ) − 𝐔𝑘0

(2)(𝑣, : )) and 𝐁𝑖𝑗,𝑘
(2) (𝑣, : ) ←

prox
𝜂𝑝𝑆

(𝐁̅𝑖𝑗,𝑘(𝑣, : ) − 𝐔𝑖𝑗,𝑘
(2) (𝑣, : )) for all 𝑣 = 1,… ,𝑚𝑘 based on Proposition 6.  

(2c) For 𝑖 = 1, … , 𝐾 and 𝑗 = 1, … , 𝑞𝑖 do:  

Update 𝐁𝑖𝑗,⋅
(3)

← prox
𝜂𝜆3,𝑖‖⋅‖

2
(𝐁̅𝑖𝑗,⋅ − 𝐔𝑖𝑗,⋅

(3)
) based on Proposition 8.  

(2d) For 𝑘 = 1,… , 𝐾 do: 

Update 𝐁⋅⋅,𝑘
(4)

← prox
𝜂𝜆4,𝑘‖⋅‖

∗
(𝐁̅⋅⋅,𝑘 − 𝐔⋅⋅,𝑘

(4)
) based on Proposition 9.  

(3) Update ℬ̅ and ℬ̅0  via ℬ̅ ←
1

4
(ℬ(1) + ℬ(2) + ℬ(3) + ℬ(4)) and ℬ̅0 ←

1

2
(ℬ0

(1)
+ ℬ0

(2)
).  

(4) Update 𝒰(𝑡) ← 𝒰(𝑡) + ℬ(𝑡) − ℬ̅ for 𝑡 = 1,…,4 and 𝒰0
(𝑡)

← 𝒰0
(𝑡)

+ ℬ0
(𝑡)

− ℬ̅0 for 𝑡 =
1, 2.  

Until max
𝑖=1,…,4

‖ℬ̅ − ℬ(𝑖)‖, max
𝑖=1,2

‖ℬ̅0 − ℬ0
(𝑖)

‖, max
𝑖=1,…,4

‖ℬ̅ − ℬ̅prev‖ and max
𝑖=1,2

‖ℬ̅0 − ℬ̅0,prev‖ 

are below 𝜖.  

In Algorithm 6, all updating operations within the four “for loops” in step (2a)-(2d) 

can be performed in parallel, as they involve distinct groups of elements in ℬ̃. This notable 

feature significantly improves the computational efficiency. The variables in the 

optimization problem include the offset matrices ℬ0  and the effect matrices ℬ listed in the 

cells of Table 1, which contains ∑ 𝑞𝑘
𝐾
𝑘=1  columns and 𝐾 rows. In essence, the step (2a)-
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(2d) of the algorithms updates (ℬ0
(1)

, ℬ(1)), (ℬ0
(2)

,ℬ(2)), ℬ(3) and ℬ(4) through operating 

on multiple groups of elements in parallel. In step (2a), (ℬ0
(1)

,ℬ(1)) is divided into 

∑ 𝑚𝑘𝑛𝑘
𝐾
𝑘=1  groups. Each group corresponds to a triple (𝑘,𝑣, 𝑤) where 𝑘 ∈ {1, … , 𝐾}, 𝑣 ∈

{1, … ,𝑚𝑘} and 𝑤 ∈ {1, … , 𝑛𝑘}, and it consists of the (𝑣, 𝑤)-element of 𝐁𝑘0 and all (𝑣, 𝑤)-

element of matrices listed in the 𝑘-th row of Table 1. In step (2b), (ℬ0
(2)

, ℬ(2)) is updated 

by breaking them into ∑ (𝑘 + 1 − 𝑖)𝑞𝑖
𝐾
𝑖=1 + 𝐾 groups according to the cells of Table 1 and 

the matrices in ℬ0
(2)

. In step (2c), ℬ(3) is divided according to ∑ 𝑞𝑖
𝐾
𝑖=1  columns of Table 1. 

In step (2d), 𝐵(4) is divided according to 𝐾 rows of Table 1.  

Table 1 Effect matrices estimated in formulation (6) 

𝐁11,1 ⋯ 𝐁1𝑞1,1        

𝐁11,2 ⋯ 𝐁1𝑞1,2 𝐁21,2 ⋯ 𝐁2𝑞2,2     

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱    

𝐁11,𝐾 ⋯ 𝐁1𝑞1,𝐾  𝐁21,𝐾 … 𝐁2q2,𝐾  …… 𝐁𝐾1,𝐾 … 𝐁𝐾𝑞𝑘,𝐾 

As mentioned in previous sections, the major objective of this study is to identify 

the inputs 𝑢𝑖𝑗’s affects the process outputs, the number of variation patterns caused by these 

inputs, and to understand how an effective 𝑢𝑖𝑗 affects the output of stage 𝑘. Whether the 

input 𝑢𝑖𝑗 affects the process can be identified through whether the parameter in 𝐁𝑖𝑗,⋅ are all 

zero and the number of variation patterns in stage 𝑘 can be observed from the rank of 𝐁⋅⋅,𝑘. 

When the algorithm terminates, however, such sparsity and low-rank property cannot be 
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observed from ℬ̅ due to the numerical error. However, 𝐁𝑖𝑗,⋅
(3)

s can be all zeros for many pairs 

of (𝑖, 𝑗) given appropriate values of tuning parameters, as it is obtained from the proximal 

operator for an ℓ2-norm. Therefore, we may identify whether each 𝑢𝑖𝑗 affects the output 

quality measurements by observing whether 𝐁𝑖𝑗,⋅
(3)

= 𝐎. Similarly, the 𝐁⋅⋅,𝑘
(4)

 is of low-rank, 

and its rank specifies the number of variation patterns on stage 𝑘 that all inputs cause. 

Finally, 𝐁𝑖𝑗,𝑘, the effect of the input 𝑢𝑖𝑗 on stage 𝑘 can be visualized through heat maps or 

multiple curves corresponding to ℬ(2), to give a visualization of smooth curves or images.  

As the algorithm converges, note that the difference between ℬ(1), … , ℬ(4) is very small, 

and all of them are close to ℬ̅.  

3.3.4 Convergent rate and complexity analysis 

The convergence of the ADMM algorithm is guaranteed in the literature [62]. However, 

the existing theory on the convergence rate of consensus ADMM algorithm relies on the 

strong convexity assumption of component functions, which does not hold for 

𝑝2(ℬ0 , ℬ), 𝑝3(ℬ) and 𝑝4(ℬ). Now we only analyze the computation complexity for every 

iteration and leave the illustration of the empirical convergence behavior of the algorithm 

in the simulation study.   

 The computational complexity of the parallel operations in (2a)-(2d) are 

summarized as follows:  

• Step (2a) solves ∑ 𝑚𝑘𝑛𝑘
𝐾
𝑘=1  linear systems in parallel. Among them, 𝑚𝑘𝑛𝑘 linear 

systems are of order ∑ 𝑞𝑗
𝑘
𝑗=1 , 𝑘 = 1,… ,𝐾, and each of them involves a 

computational complexity of 𝑂((∑ 𝑞𝑗
𝑘
𝑗=1 )

3
+ (∑ 𝑞𝑗

𝑘
𝑗=1 )

2
𝑁). 
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• Step (2b) involves smoothing images or curves in 𝐁𝑘0
(2)

 and 𝐁𝑖𝑗,𝑘
(2)

, 1 ≤ 𝑖 ≤ 𝑘 ≤

𝐾, 1 ≤ 𝑗 ≤ 𝑞𝑖. If stage 𝑘 generates curves, smoothing 𝐁𝑘0
(2)

 or 𝐁𝑖𝑗,𝑘
(2)

 involves 𝑚𝑘 

parallelable operations of complexity 𝑂(𝑛𝑘 log𝑛𝑘), incurred by the discrete cosine 

transformation. If stage 𝑘 generates an image, smoothing 𝐁𝑘0
(2)

 or 𝐁𝑖𝑗,𝑘
(2)

 involves a 

complexity of 𝑂(𝑚𝑘 log𝑚𝑘 + 𝑛𝑘 log𝑛𝑘).  

• Step (2c) shrinks 𝐁𝑖𝑗,⋅
(3)

 for all 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑞𝑖 in parallel. The operation 

on each 𝐁𝑖𝑗,⋅
(3)

 involves a computational complexity of 𝑂(∑ 𝑚𝑘𝑛𝑘
𝐾
𝑘=𝑖 ).  

• Step (2d) updates 𝐁⋅⋅,𝑘
(3)

 for all 𝑘 = 1,… , 𝐾 in parallel, and each step involves an 

SVD of a matrix of size (∑ 𝑞𝑖
𝑘
𝑖=1 ) × 𝑚𝑘𝑛𝑘. If we use the R-SVD procedure 

detailed in Section 8.6.3 of Golub and Van Loan [69], the computational 

complexity is of order 𝑂 ((∑ 𝑞𝑖
𝑘
𝑖=1 )

3
+ (∑ 𝑞𝑖

𝑘
𝑖=1 )(𝑚𝑘𝑛𝑘)

2) , assuming ∑ 𝑞𝑖
𝑘
𝑖=1 <

𝑚𝑘𝑛𝑘..  

We can see that Step (2a) and Step (2d) involves the highest total computational burden. 

Among them, Step (2d) cannot be parallelized sufficiently as well, as no more than 𝐾 

processes can be utilized. Compared with Steps (2a) and (2d), the computational efforts in 

Step 3 and Step 4 are negligible.   

3.3.5 Discussion 

In this section, we discuss various issues on the problem formulation: how to select the 

tuning parameters and possible variations of the problem formulations.  
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3.3.5.1 Selection of tuning parameters 

In our formulation (12), the values of tuning parameters {𝜆1,𝑘 , … , 𝜆4,𝑘} need to be specified. 

Literature often suggests setting the tuning parameters through a cross-validation (CV) 

procedure, though our simulation study shows that it under-smooth the signals and the 

images, and lead to a larger number of effective parameters and variation patterns. The 

same finding was pointed out by [59]_ENREF_48, and they adopted the Otsu’s method 

based on maximizing inter-class variance. However, this method cannot be extended in our 

application because classes are not well-defined.  

In general, a large value of 𝜆1,𝑘 leads to smoother response signals of stage 𝑘, and 

a large value 𝜆2,𝑘  leads to smoother image responses of stage 𝑘. A larger value of 𝜆3,𝑖 leads 

to a fewer number of effective inputs from stage 𝑖, and larger value of 𝜆4,𝑘 leads to a fewer 

number of variation patterns in stage 𝑘. According to the algorithm in Section 3.3.3, 𝜆4,𝑘 

aims to threshold the singular values of the matrix 𝐁⋅⋅,𝑘
(4)

 of size 𝑚𝑘𝑛𝑘 × ∑ 𝑞𝑖
𝑘
𝑖=1 , and the 

variance of the error of every entry of 𝐁⋅⋅,𝑘
(4)

 is proportional to 𝜎𝐸,𝑘
2 . According to [57], if an 

𝑝 × 𝑞 matrix is the summation of a rank-𝑟 matrix and a matrix of 𝑁(0, 𝜎2) error, its the 

(𝑟 + 1)-th singular value is of magnitude 𝜎(√𝑝 + √𝑞). It motivates us to take 𝜆4,𝑘 =

𝑐4,𝑘𝜎𝐸,𝑘 (√𝑚𝑘𝑛𝑘 + √∑ 𝑞𝑖
𝑘
𝑖=1 ), where 𝑐4,𝑘  is a prescribed constant, to make the 

magnitudes of shrinkage applied on the matrices 𝐁⋅⋅,𝑘
(4)

’s comparable, even if their shapes 

differ.  
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The selection of 𝜆3,𝑖’s and 𝑐4,𝑘’s should be regarded as a decision driven by the 

engineering need. For example, if the practitioners solve the model for identifying a wide 

range of inputs and output variations for root cause diagnosis, 𝜆3,𝑖’s and 𝑐4,𝑘’s should be 

set to smaller values, which will lead to identifying more effective inputs and variation 

patterns. If the practitioners are only interested in the inputs that have major effects on the 

output variation patterns, larger values of  𝜆3,𝑖’s and 𝑐4,𝑘’s are preferable. 

Finally, we note that depending on an actual physical system, the tuning parameters 

{𝜆1,𝑘 , 𝜆2,𝑘 , 𝜆3,𝑘 , 𝑐4,𝑘: 𝑘 = 1,… , 𝐾} corresponding to similar stages may be divided into 

multiple groups. Each group of parameters can take the same values, or selected using the 

same policy to reduce the complexity, as illustrated in the simulation study. 

3.3.5.2 Variation of problem formulations according to process specifications 

We finally note that the analytical framework presented in this section can be extended and 

configured based on the specific layout of the MMP and sensing system. First, some 

processes generate both functional curves and images in certain stages or generate curves 

and images of different sizes. The problem formulation and optimization algorithm can be 

applied with some minor modifications. Second, if the curves and images have various 

smoothness properties, different roughness penalties may be applied by discretizing the 

roughness penalties for functional data (Section 5.3.3 of Ramsay [51]). Third, certain 

manufacturing stages generate other forms of data, such as the spatial measurements seen 

in lithography processes, point cloud data in machining processes, as well as electrical 

signals that jump at discrete time points. Associated penalties based on spatial coordinates 

and point distance shall be applied based on the structure of such data, instead of using 
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smoothness penalties presented above. The ADMM consensus algorithm can be adjusted 

accordingly with minor modifications.  

As a limitation of the proposed model, we assumed a linear relationship between 

the process inputs and the process outputs. If their relationship is not linear, we may include 

quadratic terms of the input variables into the model. Also, we can usually transform the 

process outputs from one stage into a set of meaningful features that are linearly related to 

the inputs. Furthermore, the interaction effect of two or more process inputs can be studied 

in our analytical framework as well, by including 𝑢𝑖𝑢𝑗 terms in the inputs.  

Finally, we note that the least square loss function can be replaced with other types 

of loss functions, such as Huber or Tukey loss, to yield more robust solutions when the 

error follows heavy-tail distributions or when outliers exist. If the loss function is convex, 

and its proximal operator can be evaluated effectively, the ADMM consensus framework 

can still be applied.   

3.4 Simulation studies for performance evaluation 

In this section, we set up a simulation platform to validate the methodology proposed in 

Section 3.3. We will demonstrate how to use the proposed framework to specify the 

number of variation patterns and effective inputs from the process inputs and intermediate 

product quality measurements.  

3.4.1 Engineering background 

A semiconductor manufacturing process involves tens of stages, including multiple 

chemical-vapor deposition steps, etching steps, lithography steps, and chemical mechanical 
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polishing. From each stage, multiple control variables, observable environmental variables, 

and in-situ process features are measured as inputs. For example, in lithography steps, the 

inputs include the control variables that adjust the alignment between layers. The in-line 

measurements of the wafer products after every stage include image data like film thickness 

measurements of the wafer maps from CVD steps and curves such as the profile of the 

etched trenches in plasma etching steps [44]. After all stages of processing, multiple chips 

are fabricated on a wafer, and they are tested, cut off from the wafer and packaged. The 

structure of this manufacturing process motivates our simulation setup.  

The semiconductor manufacturers are interested in discovering how the inputs 

relate to the intermediate product quality measurements. However, there is no effective 

methods to identify those relationships between them. In practice, only a small number of 

variation patterns in outputs present in a given time period. This is because each variation 

pattern of quality data is typically driven by one root cause associated with process inputs. 

A well-maintained process should have limited variation sources in a short period. As we 

introduced in Section 3.3.1, the number of variation patterns for the outputs from stage 𝑘 

is represented by the rank of the parametric matrix 𝐁⋅⋅,𝑘. Because only a small portion of 

the inputs affect the quality data, estimation of the effect matrices can be cast as a low rank, 

sparse estimation problem.  

There are three objectives in our simulation study: (i) to evaluate whether the offset 

matrices {𝐁𝑘0: 𝑘 = 1,… , 𝐾} and the effect matrices {𝐁𝑖𝑗,𝑘} can be estimated accurately; (ii) 

to identify the inputs related to the outputs; and (iii) to find the number of input-driven 

variation patterns presented in the outputs. Note that no existing method achieves all three 
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objectives of the analysis in this chapter. Specifically, if we build a separate model to model 

the relationship between the output of every stage 𝑘 and the inputs from stage 1, … , 𝑘, these 

models may result in different sets of effective inputs, and thus they may result in different 

effective inputs. The detailed set up of the simulation study is described in Section 3.4.2, 

and the results are discussed in section 3.4.3. 

3.4.2 Specifications of simulation settings 

Our simulation testbed has a total of 𝐾 = 4 stages, and there are 𝑞𝑖 = 20 input variables 

in stage 𝑖, 𝑖 = 1, … ,4. The type and dimension of data generated from each stage are 

summarized in Table 2. Our simulation is performed under a relatively low dimensional 

setting compared with real applications because it enables us to conduct the simulation 

thoroughly with more replications and under a wider variety of problem settings.  

Table 2 The type and dimension of data from each stage 

Stage 1 2 3 4 

Data type multiple functional 
signals 

multiple functional 
signals 

images images 

Output 

Dimension 
3 signals of length 10 4 signals of length 20 10×10 20×20 

Input 

Dimension 
𝑞1 = 20 𝑞2 = 20 𝑞3 = 20 𝑞4 = 20 

We aim at simulating the system that satisfies the following conditions: (1) 𝑟𝑘  

variation patterns present in the outputs of stage 𝑘, (2) only the 𝑞𝑘 effective inputs from 

stage 1 to 𝑘 relates to the quality measurements of stage 𝑘, and (3) the image or multiple 

functional quality measurements are smooth. We first generate the true values of ℬ0  and 

ℬ, so that (i) the matrix of 𝐁⋅⋅,𝑘 has a rank of 𝑟𝑘  (unless the number of rows or columns of 

𝐁⋅⋅,𝑘 is smaller than 𝑟𝑘 ), (ii) 𝐁𝑖𝑗,𝑘 ≠ 𝐎 if and only if 𝑢𝑖𝑗 is an effective parameter, and (iii) 
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the rows of 𝐁𝑘0 and 𝐁𝑖𝑗,𝑘 form smooth curves if 𝑘 ∈ 𝒮, and the matrices 𝐁𝑘0 and 𝐁𝑖𝑗,𝑘 

form smooth images if 𝑘 ∈ ℐ. For every stage 𝑘 = 1,… , 𝐾, we first generate 𝐁𝑘0 using 

multiple univariate Gaussian processes (if 𝑘 ∈ 𝒮) or a bivariate Gaussian Process (if 𝑘 ∈

ℐ). Then we generate 𝑟𝑘  basis, using the same procedure of generating 𝐁𝑘0. We finally 

generate 𝐁𝑖𝑗,𝑘 corresponding to all effective input 𝑢𝑖𝑗 using a random linear combination 

of these 𝑟𝑘  basis, such that the rank of 𝐁⋅⋅,𝑘 is 𝑟𝑘 . The detailed procedure of generating ℬ0  

and ℬ is given in Appendix B. Given ℬ and ℬ0 , we generate the data corresponding to 𝑁 =

500 products. The process inputs 𝑢𝑖𝑗’s for each product are independent standard normal 

random variables, and the process outputs of each product are generated according to 

model  based on the process inputs, where 𝐄𝑘
{𝑛}

 are independent standard normal random 

variables with variance 𝜎𝐸
2 = 0.2. Figure 12 illustrates the data collected from one sample, 

where the four subfigures are the multiple functional signals and image data collected from 

each manufacturing stage.  

 

  (a)  (b) (c) (d) 

Figure 12 The outputs of curves and images from four stages. 

 In our simulation studies, we consider the four process setups in which the number 

of potential root causes from each stage (reflected by 𝑟𝑘 , the rank of 𝐁⋅⋅,𝑘, 𝑘 = 1,…𝐾) and 
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the number of effective process inputs from each stage (𝑞𝑒,𝑘 , 𝑘 = 1,… , 𝐾) are varied: (1) 

𝑟𝑘 = 2; 𝑞𝑒,𝑘 = 3; (2) 𝑟𝑘 = 5; 𝑞𝑒,𝑘 = 3; (3) 𝑟𝑘 = 2; 𝑞𝑒,𝑘 = 6 and (4) 𝑟𝑘 = 5; 𝑞𝑒,𝑘 = 6 for 

all 𝑘 = 1,… , 𝐾. For each simulation setting, we perform the estimation for 300 times, 

according to 30 different collections of offset matrices ℬ0  and effect matrices ℬ whose 

detailed generation procedure is reported in Appendix B. Each collection of offset and 

effect matrices define a specific manufacturing process. For each process, we generated 10 

datasets corresponding to different inputs 𝐮1, … , 𝐮𝐾 and random errors 𝐄1 … , 𝐄𝐾, 

representing 10 datasets collected from the same process. The simulation settings are 

summarized in Table 3. 

3.4.3 Optimization procedure and results of simulation studies 

Based on each generated dataset with sample size 𝑁 = 500, we perform the modeling and 

estimation procedure described in Section 3.3. Although the number of effective inputs 

𝑞𝑒,𝑘 and the number of variation patterns 𝑟𝑘  differs, we select the same set of tuning 

parameters: 𝜆1 = 1, 𝜆2 = 1, 𝜆3 = 0.25 and 𝜆4
𝑘 = 0.2(√𝑘𝐽 + √𝑚𝑘𝑛𝑘),𝑘 = 1,… , 𝐾 

according to the discussion in Section 3.3.5.1. We fix the step size 𝜂 = 5 under all 

simulation settings.  

Our algorithm is implemented in MATLAB, and the simulation study is conducted 

on a computing cluster. We did not implement the parallel for-loops in the algorithm in a 

parallel computing framework. To illustrate the speed and convergence property of the 

algorithm, we perform the estimation for one dataset, generated with 𝑟𝑘 = 2 and 𝑞𝑒,𝑘 = 3, 

on a standalone mobile workstation with Intel Xeon E-2176M 2.7GHz CPU and 16GB 
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memory. The stopping criterion is that both the primal residual 𝜖prim = max { max
𝑖=1,…,4

‖ℬ̅ −

ℬ(𝑖)‖ ,max
𝑖=1,2

‖ℬ̅0 − ℬ0
(𝑖)

‖} and the dual residual 𝜖dual = max { max
𝑖=1,…,4

‖ℬ̅ −

ℬ̅prev‖ ,max
𝑖=1,2

‖ℬ̅0 − ℬ̅0,prev‖}  are below 10−5, where ‖⋅‖ is the max norm. The algorithm 

converges in 2133 iterations. On average, each iteration takes 0.61s. We observed that the 

major computational burden is in Step (2a), where each iteration takes an average of 0.51s. 

In step (2a) we need to construct and solve 𝑚1𝑛1 = 30 linear systems of order 20, 80 linear 

systems of order 40, 100 linear systems of order 60, and 400 linear systems of order 80. 

However, these linear systems can be solved in parallel. As for the convergence speed, the 

change of log𝜖prim and log𝜖dual in all iterations are illustrated in Figure 13. From this 

figure, we can see that the primal and dual residual are consistently dropping. However, 

the algorithm has a sublinear convergence rate.  

 

Figure 13 The convergence of 𝜖prim and 𝜖dual in all iterations. 

 After the estimation of ℬ0 ,ℬ are obtained, we observe that the estimation of 𝐁̂𝑖𝑗,𝑘 

and 𝐁̂𝑘0 are either multiple smooth curves when 𝑘 = 1, 2 or smooth images when 𝑘 = 3, 4, 

which are consistent with the true system parameters (see Figure 14 for the illustration of 

the estimation of 𝐁̂10, … , 𝐁̂40, for example). The estimation of these matrices for one run 
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is shown in Appendix C. It confirms with our structural assumption, i.e., the estimated 

parametric matrices satisfy the corresponding smoothness property.  

Table 3 Summary of the simulation settings 

• Specifies 𝑟𝑘  and 𝑞𝑒,𝑘 according to Setting (1)-(4).  

o Given each specification of {𝑟𝑘 , 𝑞𝑒,𝑘: 𝑘 = 1,… , 𝐾} , generate 30 sets of {ℬ0, ℬ} 

according to the procedure detailed in Appendix B.  

▪ Generate 10 sets of inputs {𝐮1,… ,𝐮𝐾} whose elements are all independent 

and follow standard normal distributions, and generate the error {𝐄1, … , 𝐄𝐾} 

whose elements are all independent and follow 𝑁(0, 𝜎𝐸,𝑘
2 ), 𝑘 = 1,… , 𝐾.  

▪ Given each specification of {ℬ0, ℬ}, the set of {𝐮1, … ,𝐮𝐾} and the error 

{𝐄1 , … , 𝐄𝐾},  simulate 10 datasets, each contains 𝒴{𝑛} = (𝐘1
{𝑛}

,… , 𝐘𝐾
{𝑛}

) , 𝑛 =

1,… , 𝑁, based on Equation (1). The sample size 𝑁 = 500.  

o From each dataset, estimate ℬ̂0  and ℬ̂.  

  We then evaluate the effectiveness of the root cause analysis based on the 

estimations. Specifically, we (1) evaluate their estimation accuracies based on the 

difference between each estimated parametric matrix 𝐁̂𝑖𝑗,𝑘 or 𝐁̂𝑘0 and their corresponding 

true value, 𝐁𝑖𝑗,𝑘 or 𝐁𝑘0; (2) identify the effective inputs from each stage by checking 

whether the entries associated with each 𝑢𝑖𝑗 of parameter set 𝐁𝑖𝑗,⋅
(3)

 is non-zero; (3) identify 

the number of variation patterns of each stage through the number of positive singular 

values of the estimated 𝐁̂⋅⋅,𝑘
(4)

 [61].  
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Figure 14. An illustration of an estimation of 𝐁̂10, 𝐁̂20, 𝐁̂10  and 𝐁̂40 from one dataset. 

3.4.3.1 The estimation accuracy 

From the estimation 𝐁̂𝑖𝑗,𝑘 obtained from each dataset, we calculate 𝑑𝑖,𝑘 =

√
1

𝑞𝑖𝑚𝑘𝑛𝑘
∑ ‖𝐁𝑖𝑗,𝑘 − 𝐁̂𝑖𝑗,𝑘‖

𝐹

2𝑞𝑖

𝑗=1
 and 𝑑𝑘0 = √

1

𝑚𝑘𝑛𝑘
‖𝐁𝑘0 − 𝐁̂𝑘0‖𝐹

2
 to evaluate the estimation 

error. These quantities correspond to the rooted mean square error associated with every 

element of the estimated matrices. Under settings (1) to (4), let 𝑑𝑖,𝑘(𝑛par, 𝑛rep) and 

𝑑𝑘0(𝑛par, 𝑛rep) be the values of 𝑑𝑖,𝑘 and 𝑑𝑘0 calculated from the dataset according to the 

𝑛par-th generation of {ℬ0 , ℬ} and 𝑛rep-th generation of inputs and random errors (𝑛par ∈

{1, … ,30}, 𝑛rep ∈ {1, … ,10}). To understand the average estimation accuracy within each 

setting and the uncertainty of the estimation error, we further calculate the following 

summary statistics:  

(1) The average error of the setting 𝜇̂ = Ê𝑛par
Ê𝑛rep

[𝑑𝑖,𝑘(𝑛par, 𝑛rep)];  

(2) The variability of the error caused by inputs and random error uncertainty in 

replications 𝜎̂rep = √Ê𝑛par
var̂𝑛rep

[𝑑𝑖,𝑘(𝑛par, 𝑛rep)]; 
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(3) The variability of the error caused by different generations of parameters {ℬ0 , ℬ} 

𝜎̂par = √var̂𝑛par
Ê𝑛rep

[𝑑𝑖,𝑘(𝑛par, 𝑛rep)], 

where Ê𝑛rep
, Ê𝑛par

 denotes the average of the following expression for 𝑛rep = 1,… ,10 or 

𝑛par = 1,… ,30 respectively, and  var̂𝑛rep
, var̂𝑛par

 denotes the sample variance of the 

following expression for 𝑛rep = 1,… ,10 or 𝑛par = 1,… ,30 respectively. The 

summarizing statistics of 𝜇̂, 𝜎̂rep and 𝜎̂par of all 𝑑𝑖,𝑘’s and 𝑑𝑘0
2 ’s in four system settings are 

reported in Table 4 and Table 5. In each cell of this table, the number outside the bracket 

is the value of 𝜇̂ corresponding to setup 1, … ,4, and the two numbers separated by the slash 

in each bracket are 𝜎̂rep and 𝜎̂par that respectively quantifies the uncertainty caused by the 

inputs and error, and the uncertainty caused by different generations of {ℬ, ℬ0}.  
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Table 4 The estimation error 𝑑𝑖,𝑘
2 (1 ≤ 𝑖 ≤ 𝑘 ≤ 4) and  

the associated 𝜎rep and 𝜎par in brackets 

Setup 1: 𝑟𝑘 = 2, 𝑞𝑒,𝑘 = 3 

 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 

𝑖 = 1 
1.36e-04  

(2.03e-10 / 2.63e-10) 

1.37e-04  

(8.39e-09 / 4.57e-09) 

1.41e-04  

(2.87e-08 / 6.98e-08) 

2.78e-04  

(5.42e-06 / 2.71e-06) 

𝑖 = 2  1.37e-04  

(1.10e-08 / 7.70e-09) 

1.45e-04  

(1.74e-07 / 1.40e-07) 

6.18e-04  

(1.81e-05 / 1.12e-05) 

𝑖 = 3   1.54e-04  

(7.16e-07 / 3.33e-07) 

3.39e-03  

(1.95e-04 / 8.61e-05) 

𝑖 = 4    1.14e-01  

(2.57e-03 / 6.59e-03) 

Setup 2: 𝑟𝑘 = 5, 𝑞𝑒,𝑘 = 3 

𝑖 = 1 
1.36e-04  

(2.77e-10 / 1.73e-10) 

1.37e-04  

(3.67e-09 / 2.83e-09) 

1.41e-04  

(2.43e-07 / 4.81e-08) 

2.83e-04  

(5.06e-06 / 1.84e-06) 

𝑖 = 2  1.37e-04  

(1.15e-08 / 6.93e-09) 

1.45e-04  

(1.75e-07 / 1.31e-07) 

6.67e-04  

(2.00e-05 / 9.90e-06) 

𝑖 = 3   1.56e-04  

(4.27e-07 / 2.01e-07) 

3.46e-03  

(2.64e-04 / 7.32e-05) 

𝑖 = 4    1.16e-01  

(8.28e-03 / 5.54e-03) 

Setup 3: 𝑟𝑘 = 2, 𝑞𝑒,𝑘 = 6 

𝑖 = 1 
1.36e-04  

(2.23e-10 / 2.84e-10) 

 1.37e-04  

(3.67e-09 / 2.91e-09) 

 1.41e-04  

(1.09e-07 / 9.50e-08) 

 2.89e-04  

(3.49e-06 / 2.35e-06) 

𝑖 = 2                                
 1.37e-04  

(7.48e-09 / 6.30e-09) 

 1.45e-04  

(2.31e-07 / 1.78e-07) 

 6.59e-04  

(3.27e-05 / 1.26e-05) 

𝑖 = 3                                                                
 1.56e-04  

(5.69e-07 / 2.77e-07) 

 3.74e-03  

(1.81e-04 / 1.10e-04) 

𝑖 = 4                                                                                                
 1.46e-01  

(7.72e-03 / 8.26e-03) 

Setup 4: 𝑟𝑘 = 5, 𝑞𝑒,𝑘 = 6 

𝑖 = 1 
1.36e-04  

(1.88e-10 / 1.65e-10) 

1.37e-04  

(2.56e-09 / 2.92e-09) 

1.41e-04  

(1.90e-07 / 4.65e-08) 

2.93e-04  

(1.45e-06 / 1.43e-06) 

𝑖 = 2  1.37e-04  

(8.59e-09 / 5.00e-09) 

1.46e-04  

(2.46e-07 / 9.88e-08) 

6.76e-04  

(2.53e-05 / 8.24e-06) 

𝑖 = 3   1.57e-04  

(5.00e-07 / 2.29e-07) 

3.92e-03  

(2.74e-04 / 7.30e-05) 

𝑖 = 4    1.52e-01  

(5.43e-03 / 6.03e-03) 
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Table 5 The estimation error of 𝑑𝑘0
2 (1 ≤ 𝑘 ≤ 4) and  

the associated 𝜎rep and 𝜎par in brackets 

Setup 1: 𝑟 = 2, 𝑞𝑒 = 3 
5.82e-03  

(2.38e-04 / 1.12e-03) 

6.11e-03  

(7.79e-04 / 1.87e-03) 

9.58e-03  

(1.48e-03 / 4.56e-03) 

3.17e-02  

(2.74e-03 / 1.58e-02) 

Setup 2: 𝑟 = 5, 𝑞𝑒 = 3 
5.94e-03  

(4.40e-04 / 1.06e-03) 

8.12e-03  

(8.31e-04 / 2.93e-03) 

1.02e-02  

(1.02e-03 / 3.48e-03) 

3.49e-02  

(2.98e-03 / 1.32e-02) 

Setup 3: 𝑟 = 2, 𝑞𝑒 = 6 
6.11e-03  

(4.75e-04 / 9.40e-04) 

7.57e-03  

(8.80e-04 / 2.60e-03) 

8.88e-03  

(1.34e-03 / 4.35e-03) 

3.57e-02  

(3.46e-03 / 1.92e-02) 

Setup 4: 𝑟 = 5, 𝑞𝑒 = 6 
6.05e-03  

(2.18e-04 / 9.78e-04) 

8.70e-03  

(6.42e-04 / 2.13e-03) 

1.31e-02  

(1.02e-03 / 5.18e-03) 

4.36e-02  

(6.24e-03 / 1.92e-02) 

From the results in the table, we can observe that the errors are small in general. 

We summarize the following findings:  

• Among all parametric matrices, the effects of the inputs from stage 1 on the output of 

stage 1 is estimated most accurately. The magnitude of the error is in the order of 10−4. 

The reason is that the outputs from stage 1 are only related to the inputs from stage 1, 

and therefore the relationship between them is clear. Also, the smoothness penalty 

regularized the matrices of estimation, and thus increase the estimation accuracy.  

• As 𝑘 increases from 1 to 4, the error associated with the estimation 𝐁̂𝑖𝑗,𝑘 generally 

increases. One of the reasons is that the total number of elements in 𝐁𝑖𝑗,𝑘 increases. 

(Note that when 𝑘 = 1, 2, 3 and 4, the number of elements in 𝐁𝑖𝑗,𝑘 is respectively 30, 

80, 100, 400). Apart from this, outputs from later stages are associated with more input 

variables, and thus the estimation accuracy decreases. Finally, later stages involve 

larger penalization due to the ranks, as 𝜆4,4 > 𝜆4,3 > 𝜆4,2 > 𝜆4,1 in our setup. Although 

such selection of the hyper-parameters is necessary to reduce the ranks of 𝐁⋅⋅,𝑘 
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involving later stages 𝑘 containing more elements and associated inputs, it also 

introduces larger biases for the estimations in later stages.  

• When 𝑘 is fixed, the estimation of 𝐁𝑖𝑗,𝑘 become less accurate when 𝑖 increases.  

• Among the four settings, the estimation is more accurate when 𝑟 = 2 and less accurate 

when 𝑟 = 5. The estimation is also more accurate when 𝑞𝑒 = 3 and less accurate when 

𝑞𝑒 = 6. This is because our penalization works best when the number of variation 

patterns of each stage and the number of effective inputs from each stage is not high.  

Except for the observations above, we can also see that 𝜎̂rep , 𝜎̂par are typically 

much smaller than the error 𝜇̂, which indicates that the uncertainty of the estimation error 

is not high and that the discoveries above are conclusive instead of merely out of chance.   

3.4.3.2 Effective inputs 

Among simulation setups (1) to (4), the number of effective inputs from each stage is either 

3 or 6. Of 30 × 10 = 300 replicates corresponding to four setups, all inputs are correctly 

identified as effective or ineffective ones from stages 1, 2 and 3. In stage 4, on average 0.28 

ineffective inputs are falsely selected as effective one under setup 2, 0.18 ineffective inputs 

are falsely selected as effective one under setup 3 and 0.28 ineffective inputs are falsely 

selected as effective one under setup 4. This result indicates that the proposed framework 

generally identifies the significant variables in early stages if the sample size is large 

enough, the error is not so big, and the hyperparameters are appropriately chosen. However, 

in later stages like stage 4, the proposed framework is likely to select extra ineffective 

inputs, because the total number of inputs that may affect this stage is too big (including 
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all input from the current stage and the previous stages). Consequently, the algorithm is 

more prone to selecting ineffective variables.  

3.4.3.3 Number of variation patterns 

Within four simulation setups, the number of variation patterns from each stage is either 2 

or 5. Within each simulation setup, we calculate 𝑟(𝑛par, 𝑛rep), the rank of 𝐁̂⋅⋅,𝑘
(4)

 

corresponding to the 𝑛parth generation of {ℬ, ℬ0} and the 𝑛repth generation of inputs and 

errors (𝑛par ∈ {1, … ,30}, 𝑛rep ∈ {1, … ,10}). Similar to the report of estimation accuracy, the 

average rank among 300 simulation cases (𝜇̂𝑟) and their uncertainties 𝜎̂par,r, 𝜎̂rep,r are 

reported in Table 6.  

From the result, we observe that when the true number of variation patterns for the 

output in each stage is 𝑟 = 2, the algorithm can always correctly identify two variation 

patterns (because 𝜎̂par = 𝜎̂rep = 0 indicates that 𝑟(𝑛par, 𝑛rep) are the same for all 

𝑛par, 𝑛rep = 1,… ,10). However, in setup 2 where 𝑞𝑒,𝑘 = 3,𝑟𝑘 = 5, the average rank of 

𝐁⋅⋅,𝑘
(4)

 is 3, 4.60, 4.38 and 4.42 for stages 1, 2, 3 and 4, according to Table 6. The number of 

the variation patterns for the output from stage 1 is correctly given, as this stage is only 

affected by 3 inputs from itself and the number of variation patterns cannot exceed 3. The 

later stages 2, 3 and 4 are influenced by 6, 9 and 12 inputs respectively, but the effects of 

them are restricted in a 5-dimensional subspace. However, the algorithm does not always 

identify the rank as 5. We guess that the reason is two-fold: (1) collinearity may exist 

among the randomly generated 5 variation patterns, and (2) the number of inputs is small 

to reveal all variation patterns. Under setup 4, 𝑞𝑒,𝑘 = 6 and thus the number of inputs is 
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larger. As a result, all replications in setup 4 identify that rank of 𝐁⋅⋅,𝑘
(4)

 is 5 and thus the 

number of the variation patterns is correctly estimated in stages 2 and 4. In stages 1 and 3, 

the average rank of 𝐁⋅⋅,𝑘
(4)

 are 4.60 and 4.80 across all replications. Although error exists, the 

estimation is closer to the correct value 5 than the results in setup (2).  

Table 6 Number of variation patterns and the associated 𝜎rep and 𝜎par in brackets 

Setup 1: 𝑟𝑘 = 2, 𝑞𝑒,𝑘 = 3 

2 (0 / 0) 2 (0 / 0) 2 (0 / 0) 2 (0 / 0) 

Setup 2: 𝑟𝑘 = 5, 𝑞𝑒,𝑘 = 3 

3 (0 / 0) 4.60 (0.548 / 0) 4.38 (0.522 / 0.141) 4.42 (0.814 / 0.287) 

Setup 3: 𝑟𝑘 = 2, 𝑞𝑒,𝑘 = 6 

2 (0 / 0) 2 (0 / 0) 2 (0 / 0) 2 (0 / 0) 

Setup 4: 𝑟𝑘 = 5, 𝑞𝑒,𝑘 = 6 

4.60 (0.548 / 0) 5 (0 / 0) 4.80 (0.447 / 0) 5 (0 / 0) 

 

3.5 Summary 

In a data-rich manufacturing environment, an MMP generates various types of data from 

different manufacturing stages, which poses a great challenge for data analytics. In this 

chapter, we propose a novel root cause diagnostic framework for an MMP that satisfies 

four assumptions: (1) the input from one stage only affect the down-stream stages (e.g., no 

re-work), (2) the process outputs satisfies smoothness properties, (3) only a small number 

of inputs affect the process outputs, and (4) the variation patterns caused by the inputs are 

limited. Based on these assumptions, our approach identifies the effective inputs that relate 

to the perturbation of the outputs, identifies the variation patterns of the outputs caused by 
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these inputs, and determines how each individual process input affects the manufacturing 

process.  

The root cause diagnostic framework is based on a model for MMPs that generates 

mixed profile data, such as functional signals or images. For estimating the model 

parameters, we proposed a distributed computational scheme. The framework proposed in 

this chapter is highly extendable: the practitioners may customize it based on the special 

characteristics of the process, by using appropriate loss functions and structural 

assumptions on various types of data generated from different stages.  

We developed the simulation study based on the scenario of a real semiconductor 

manufacturing process. In general, with correctly specified tuning parameters, the 

proposed method can perform well for three tasks of root cause diagnosis: it achieves 

satisfactory estimation accuracy, can correctly identify the inputs that affect the outputs, 

and provide a good estimation of the number of variation patterns for the output from each 

stage.  

In this study, our modeling of the MMP focus on the application of root cause 

diagnosis.  How to extend this modeling technique to process control, optimization, and 

sensor allocation are follow-up questions that need to be studied in the future. We will also 

extend our current framework to tensor inputs and outputs generated from each stage and 

modeling the inter-relationship between heterogenous intermediate quality measurement.  
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CHAPTER 4. MULTIPLE EVENT IDENTIFICATION AND 

CHARACTERIZATION BY RETROSPECTIVE ANALYSIS OF 

STRUCTURED DATA STREAMS 

4.1 Introduction 

In various industries, practitioners increasingly install multiple sensors in complex systems 

to understand their process conditions. These sensors generate sequences of profile sensing 

signals data in the form of structured data streams [70, 71]. They contain rich information 

about the system components and record the system status during its operation. Before 

using these sensor measurements for real-time monitoring and control of the process, the 

practitioners need to collect and review the historical data obtained from a period of time. 

Through the retrospective analysis of the process data, the engineers can gain insight into 

the process variation in a longer time scale for discovering new root causes.  

 For a given system, the sensing signals are subject to the impact of multiple system 

operation conditions. When the system is operating under normal operation conditions, 

there is a baseline predictable pattern of the sensing signals. However, various faults may 

occur in the system at particular intervals during the system operation and lead to the 

changes of associated sensing signals in specific patterns. We refer to those changes related 

to the same fault as one event. When an event occurs in the system, several associated 

sensing signals will change according to a specific variation pattern. We refer to the 

variation pattern associated with each event as event signatures. In the following examples 
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of systems, we further illustrate the concepts of events and the corresponding event 

signatures.  

(a) In the stamping process considered in Jin and Shi [70], the tonnage signals are 

composed of multiple segments, corresponding to phases of operations or mechanical 

interactions within one stamping cycle. In this system, each event relates to a specific 

fault in the stamping process, such as material thickness error, loose tie rods, and worn 

bushings [72].  Those events lead to respective changes in corresponding segments of 

tonnage signals, and these changes are event signatures.  

(b) Phasor measurement units, such as frequency disturbance recorders (FDR), are 

deployed in power grids to achieve situation awareness [73]. There are multiple events 

that may occur to the grid and affect the associated PMU measurements. For example, 

the event of generator tripping (or load shedding) may cause a decrease (or an increase) 

of the FDR signal. The event of line tripping may lead to the damping waveform signal. 

These effects on the sensor measurements are event signatures.  

(c) In a node of an interconnected cyber system, the usage of CPU, memory, disk, network 

bandwidth, and power usage are recorded as they reflect the node’s working conditions. 

Examples of events on this node include regular operations (like processing, uploading, 

and downloading) and abnormal situations (like virus infection or port-scan attacks). 

According to their event signatures, they cause different behavior on all cyber signals 

[74].  

The systems discussed above have three common characteristics: First, each system 

generates one or more events that may occur during the system operations. Second, during 

the time of operations, each event appears sporadically, and each occurrence of the event 
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tends to last a period of time after it begins. Third, each event is associated with a small 

and limited number of sensing signals. In practice, there is a large class of systems holding 

these characteristics in terms of associated events and their event signatures.  

 This study aims at developing automatic retrospective analysis methods for the 

signals generated from the systems with those three characteristics. Our objectives are two-

fold: First, we aim at characterizing the event signatures that specify how each event affects 

the signals. This information enables us to extract useful features from the process and 

perform online monitoring. Second, we aim to identify the periods in which an event occurs 

and estimate the event’s strengths. Both information shed light on the root cause diagnosis 

of those events.  

In literature, some studies tackled similar data analysis problems. However, as 

discussed in the next literature review section, the existing methods have some limitations 

in addressing the above two questions simultaneously. For example, some algorithms 

require pre-defined prototype signals containing individual events apart from the historical 

data, which involves extra data preprocessing and human labeling efforts [73]. Other 

methods consider the signal partition problem, while they cannot associate segments with 

events or generate useful event signatures [75, 76]. Various Phase-I retrospective analysis 

of the sensing data does not apply to structured data streams. They identify the out-of-

control samples without considering either multiple event sequences or their signatures.  

This chapter proposes an algorithm that simultaneously identifies the events’ 

periods of occurrence and characterizes each event with its signature, including the signals 

associated with each event. This algorithm is called the Multiple Event Identification and 
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Characterization (MEIC) algorithm. In practice, an event captured by the MEIC algorithm 

is typically related to some faults that occurred in the process. The identified event 

signatures will be helpful in finding the root causes of the faults. Therefore, the algorithm 

serves as an automatic tool that gives practitioners hints to discovering new root causes of 

the processes.  

The MEIC algorithm works by solving an optimization problem that integrates 

dictionary learning technique [5] with regularization terms specifying the sparsity of the 

related signals and the temporal smoothness of event strengths. By solving this 

optimization problem, we can extract useful representation from sensing signals and 

identify the occurrence of each event. As will be seen from the simulation study and the 

real case study, the MEIC algorithm performs well if we start it with multiple initial points 

to avoid suboptimal solutions.  

 The remaining part of the chapter is organized as follows. In Section 4.2, we review 

the related literature in greater detail. Section 4.3 proposes the system model, introduces 

the formulation of the optimization problem, and gives the solution algorithms. After that, 

we present our simulation study and real case study based on a steel rolling process in 

Section 4.4 and Section 4.5. The conclusion is given in Section 4.6.  

4.2 Literature Review 

Identifying underlying events from sensing data has been reported in the literature for 

decades. For example, Jin and Shi [70] proposed wavelet-based criteria to extract the 

events-related information from tonnage signals and identify the events through monitoring 

the compressed coefficients. However, this method focuses on wavelet analysis of tonnage 
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signals in each stamping cycle. Although they can identify whether an event happens in a 

stamping cycle, additional efforts are required to associating multiple stamping cycles to a 

set of events and identify the periods of those events that affect multiple consecutive 

products.  Wang, et al. [73] developed a situation awareness system that recognizes the 

events from the data generated from phasor measurement units. They proposed a two-step 

analysis method: first use the 𝑘-means clustering approach to form a dictionary of the event 

signatures, and then formulate an ℓ1-penalization approach to identify the offset of the 

event within the signal. The main drawback of this approach is that it requires to have a 

dataset of observations corresponding to each single event. Another related method of 

identifying the events from the structured data streams is using phase partition algorithms. 

These partition algorithms transform the data within each time window into low-

dimensional features. For example, Zhao [76] proposed to calculate the residual of the 

partial least square (PLS) regression as features for phase partition, and Guo, et al. [75] 

extracted the covariance matrices of sensor measurements within the window. They then 

used ad-hoc heuristics or greedy algorithms to find the partition points using these low-

dimensional features. Note that these algorithms do not associate each interval with a small 

set of events and do not consider the possibility of overlapping events during the system 

operations or the variability of the events’ strength.  

We also note that the event detection and characterization problem has a close 

relationship with the Phase-I control chart and root cause diagnosis. One can view the 

events during the operation of the system as assignable causes that lead to extra variability 

of the system and regard the samples affected by these events as being out of control. In 

this sense, identifying the occurrence of events can be achieved by a Phase-I control chart. 
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Characterizing the event signatures is then a follow-up diagnostic procedure that associates 

the out-of-control samples with a small set of root causes. Phase-I monitoring for multiple 

signal data has been identified as an emerging area of statistical process control [77]. 

Among the few studies in literature, Wang, et al. [78] monitors the principal component 

scores under a change-point framework. Although they noted the importance of taking the 

out-of-control information into account when designing control schemes, they did not 

assume multiple root causes leading to different out-of-control scenarios. Ebrahimi, et al. 

[79] pointed out that there is a lack of literature on scalable and integrated monitoring and 

diagnosis approach in the current Phase-I charting schemes. Although they proposed a 

seamless monitoring and diagnosis framework, they performed the event identification 

(monitoring) step and the event signature characterization (diagnosis) step sequentially, 

which hinders the utilization of out-of-control information in the control chart design. In 

the next section, we will see that the approach proposed in this chapter solves the 

monitoring and diagnostic problem simultaneously and interactively from one formulation. 

Finally, we note that control charts usually assume a simple probabilistic description of the 

system. The out-of-control situations are generally simple, which enable probabilistic 

quantifications of charts’ performance. However, they cannot describe systems with 

complex event signatures and strength profiles.  

The MEIC algorithm we proposed identifies the events associated with each sample 

and estimates all event signatures. In literature, prototype methods such as 𝑘-means 

clustering and Gaussian Mixture Models [80] achieve a similar goal. However, the 

difference is that prototype methods do not consider the temporal sequence of the samples 

when assigning them to different events. As an alternative, we will use the dictionary 
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learning technique [81] to develop the MEIC algorithm. Unlike the 𝑘-means or Gaussian 

Mixture Model, the dictionary learning method identifies events and describes their effect 

by directly formulating an optimization criterion. It enables us to incorporate the 

characteristics of the event signatures and event strength sequences through multiple 

penalization terms on the associated parameters [59, 82, 83].  

4.3 The Method of Multiple Event Identification and Characterization 

In this section, we first present the assumptions on the system and the collected data. In 

each time point 𝑡 from 1 to 𝑇, we obtain a sample containing 𝐼 signals, and the 𝑖-th signal 

is of length 𝑆𝑖. The s-th measurement obtained from signal 𝑖 at time 𝑡 is denoted as 

𝑥𝑡,𝑖(𝑠), 𝑠 = 1,… , 𝑆𝑖 ; 𝑖 = 1, … , 𝐼; 𝑡 = 1, … , 𝑇. During this period of time, 𝐾 events may 

occur with possible overlaps among them, and let 𝑦𝑘,𝑡 ≥ 0 represents the strength of the 

event 𝑘 at time 𝑡. With the assumption that the events appear, stay, and fade off gradually, 

𝑦𝑘,𝑡 is smooth with the change of time 𝑡 from 1 to 𝑇. The collected data 𝑥𝑡,𝑖(𝑠)’s and the 

unknown strengths of underlying events 𝑦𝑘,𝑡’s are illustrated in Figure 15. In this figure, 

the background’s gray level of each 𝑦𝑘,𝑡 indicates the magnitude of this value. When no 

events occur at time 𝑡, we assume that the signals 𝑥𝑡,1(𝑠),… ,𝑥𝑡,𝐼(𝑠) are independent and 

identically distributed. This assumption typically holds if the preprocessing step transforms 

the sensor signals to residuals from each raw signal by subtracting the fixed or predicted 

trends.  
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Figure 15 The collected data 𝑥𝑡,𝑖(𝑠)’s and the strengths of the unknown underlying events 

𝑦𝑘,𝑡’s.  

We say that the event 𝑘 occurs at a time 𝑡 when 𝑦𝑘,𝑡 > 0. In Figure 15, the 

background of 𝑦𝑘,𝑡 is not white. When event 𝑘 occurs, each signal 𝑖 contains a smooth 

variation pattern 𝜉𝑘,𝑖(𝑠), 𝑖 = 1, … , 𝐼, and the collection of {𝜉𝑘,𝑖(𝑠): 𝑖 = 1, … , 𝐼} is the 

signature of event 𝑘. Recall that each event is associated with few sensing signals, we have 

𝜉𝑘,𝑖(𝑠) ≡ 0 for most 𝑖’s. Under the assumption that all events have additive effects on the 

signals, we thus represent the signal obtained at time 𝑡 as 𝑥𝑡,𝑖(𝑠) = ∑ 𝜉𝑘,𝑖(𝑠)𝑦𝑘,𝑡
𝐾
𝑘=1 +

𝜖𝑡,𝑖(𝑠). 

The measurements from sensor 𝑖 can be aggregated in a matrix 𝐗𝑖 ∈ ℝ𝑆𝑖×𝑇, with 

(𝐗𝑖)𝑠,𝑡 = 𝑥𝑡,𝑖(𝑠). All sensor measurements then constitute a data matrix 𝐗 = [
𝐗1

⋮
𝐗𝐼

] ∈ ℝ𝑆×𝑇, 

where 𝑆 = 𝑆1 + ⋯+ 𝑆𝐼  is the total number of measurements from 𝐼 sensor signals. We 

have two goals from the inference from 𝐗:  
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1. Identify the periods that each event 𝑘 occurs, and estimate the strength profiles. We 

achieve this by estimating 𝑦𝑘,𝑡 for all events 𝑘 = 1,… , 𝐾 at all time points 𝑡 = 1,… , 𝑇.  

2. Characterize each event by its event signature 𝜉𝑘,𝑖(𝑠) for  𝑘 = 1,… , 𝐾 on all signals 

𝑖 = 1, … , 𝐼. We achieve this by estimating 𝜉𝑘,𝑖(𝑠), 𝑘 = 1,… , 𝐾;  𝑖 = 1, … 𝐼, and 𝑠 =

1,… , 𝑆𝑖.  

4.3.1 Problem formulation 

To facilitate the estimation procedure, we represent each event signature 𝜉𝑘,𝑖(𝑠) with the 

wavelet basis {ℎ𝑗(𝑠): 𝑗 = 1, … , 𝐽𝑖},  

𝜉𝑘,𝑖(𝑠) = ∑ 𝑏𝑘,𝑖,𝑗ℎ𝑗(𝑠)

𝐽𝑖

𝑗=1

. 

In this representation, the effect of event 𝑘 on signal 𝑖 is a vector of length 𝐽𝑖 , 𝐛𝑘,𝑖 =

(𝑏𝑘,𝑖,1, … , 𝑏𝑘,𝑖,𝐽𝑖
)
⊤
. The event signatures are 𝛏𝑘,𝑖 = [𝜉𝑘,𝑖(1),… , 𝜉𝑘,𝑖(𝑆𝑖)]

⊤
 and we have 

𝛏𝑘,𝑖 = 𝐇𝑖𝐛𝑘,𝑖 with 𝐇𝑖 = [ℎ𝑗(𝑠)]𝑠=1,…,𝑆𝑖
𝑗=1,…,𝐽𝑖

. The overall effect on signal 𝑖 at time 𝑡 is then  

𝑥̂𝑡,𝑖(𝑠) = ∑ 𝜉𝑘,𝑖(𝑠)𝑦𝑘(𝑡)

𝐾

𝑘=1

, 𝑠 = 1, … , 𝑆𝑖 . 

Represent it in the matrix form, we have 𝐗 = 𝐇𝐁𝐘, where 𝐇 = [
𝐇1   
 ⋱  
  𝐇𝐼

] ∈ ℝ𝑆×𝐽  is 

the collection of all basis, 𝐁 = [

𝐛1,1 ⋯ 𝐛𝐾,1

⋮ ⋱ ⋮
𝐛1,𝐼 ⋯ 𝐛𝐾,𝐼

] ∈ ℝ𝐽×𝐾 contains all coefficients that 
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determine the event signatures, and 𝐘 = (𝑦𝑘,𝑡)𝐾×𝑇
 contains the strengths of all events at 

all time points, 𝐽 = ∑ 𝐽𝑖
𝐼
𝑖=1 . The matrix 𝐗 = [

𝐗1

⋮
𝐗𝐼

] ∈ ℝ𝑆×𝑇 with 𝐗𝑖 = (𝑥̂𝑡,𝑖(𝑠))
𝑆𝑖×𝑇

.  

Now, we aim at formulating an optimization problem to solve the values of 𝐁 and 

𝐘, which respectively characterize the event signatures and the strength of the events during 

the 𝑇 time points. First, the matrix 𝐗 provides an approximation to the data matrix 𝐗, and 

we define the loss as ‖𝐗− 𝐗‖
𝐹

2
. Besides, we add the following penalization terms to 

represent the event signatures and the sequence of event strengths.  

The event signatures. The wavelet basis usually gives an overcomplete representation of 

the signals. Motivated by the wavelet shrinkage method [84], we first apply an ℓ1  

regularization 𝜆1‖𝐁‖1,1 to improve the estimation of the event signature 𝜉𝑘,𝑖(𝑠)’s through 

overcoming the curse of dimensionality.  Recall that the 𝛏𝑘,𝑖 = 𝟎 for most event 𝑘 and 

signal 𝑖, because each event is associated with few signals. Therefore, we have 𝐛𝑘,𝑖 = 𝟎 

for most event 𝑘 and signal 𝑖. We thus add another group lasso penalty 

𝜆2 ∑ ∑ ‖𝐛𝑘,𝑖‖2
𝐾
𝑘=1

𝐼
𝑖=1 .  

The sequence of event strengths. We assume that events have continuity property, 

meaning that they appear, vary, and disappear gradually from time 1 to time 𝑇. Therefore, 

we apply the smoothness penalty 𝜆3‖𝒟𝐘⊤‖𝐹
2, where 𝒟 =

[
 
 
 
 

1 −1    
−1 2 −1   
 ⋱ ⋱ ⋱  
  −1 2 −1
   −1 1 ]

 
 
 
 

 is 
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the second-order smoother that applies to the temporal mode of 𝐘. Furthermore, every 

event only occurs sporadically in time, and therefore we add the ℓ1-penalty 𝜆4‖𝐘‖1,1.  

Integrating the loss function and all penalties mentioned above, we derive the 

following optimization problem 

min𝐁,𝐘‖𝐗 − 𝐇𝐁𝐘‖𝐹
2 + 𝜆1‖𝐁‖1,1 + 𝜆2 ∑∑‖𝐛𝑘,𝑖‖2

𝐾

𝑘=1

𝐼

𝑖=1

+ 𝜆3‖𝒟𝐘⊤‖𝐹
2 + 𝜆4‖𝐘‖1,1 (17) 

subject to ‖𝐛𝑘,⋅‖2
= 1, 𝑦𝑘,𝑡 ≥ 0, 𝑘 = 1,… , 𝐾; 𝑡 = 1,… , 𝑇, 

where 𝐘 = [𝐲⋅,1,… , 𝐲⋅,𝑇]. Note that we added another constraint ‖𝐛𝑘,⋅‖2
= 1 in this 

formulation, where 𝐛𝑘,⋅ = [

𝐛𝑘,1

⋮
𝐛𝑘,𝐼

] is the coefficient vector of event 𝑘 corresponding to all 

signals 1, … , 𝐼. Due to the orthogonality of 𝐇, this condition indicates that ‖𝛏𝑘,⋅‖𝐹

2
=

∑ ‖𝛏𝑘,𝑖‖𝐹

2𝐼
𝑖=1 = 1. Essentially, it keeps the scales of all event signatures the same and 

specifies the unit for measuring the strengths of each event.  

 Problem (17) is motivated by the dictionary learning problem [81], where 𝐁 and 𝐘 

simultaneously give a 𝐾-dimensional representation of the historical data 𝐗. In our problem 

setting, the matrix 𝐁 represents the wavelet coefficients that defines the events, and 𝐘 

represents the sequences of the events’ strengths.  

Based on the solution of 𝐁 and 𝐘, we can answer the two questions discussed at the 

beginning of this section. For every event 𝑘 = 1,… , 𝐾, we can obtain 𝐛𝑘,⋅, which shows 
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the effect of this event on the signal 𝑖 as 𝜉𝑘,𝑖(𝑠) = ∑ 𝑏𝑘,𝑖,𝑗ℎ𝑗(𝑠)
𝐽𝑖
𝑗=1 . Also, from 𝐲𝑘,⋅ ∈ ℝ𝑇, 

the 𝑘th row of 𝐘, we can identify the time that the event 𝑘 occurs with considerable 

strengths and the time at which event 𝑘 does not occur. From this perspective, this 

framework performs events characterization (diagnostics) and event identification (off-line 

detection) simultaneously. The readers should note that the penalizations may perform two 

functions here. First, the minimization of the loss involves many coefficients in the matrix 

𝐁 and 𝐘. Regularizations make it possible to obtain a solution that satisfies the sparsity and 

smoothness conditions and improves the estimation accuracy. The term 𝜆4‖𝐘‖1,1 enables 

us to identify the time points that each event occurs by observing if 𝑦𝑘,𝑡 = 0. In this sense, 

choosing 𝜆2 and 𝜆4 enables the practitioners to adjust the number of sensors associated 

with each event and the number of time points at which the event occurs to facilitate the 

root cause diagnosis of the system.  

Algorithm 7: Multiple Events Identification and Characterization (MEIC) algorithm 

Initiate 𝐘 = 𝐘0.  

Loop until converge: 

Update 𝐁 given 𝐘, as detailed in Section 4.3.2.1.  

Update 𝐘 given 𝐁, as detailed in Section 4.3.2.2 

4.3.2 Solution algorithms 

Problem (17) can be solved through a blockwise coordinate descent (BCD) algorithm, 

where we iteratively update the matrix 𝐁 and the matrix 𝐘, as shown in Algorithm 7. The 

steps of updating 𝐁 and updating 𝐘 are performed with two ADMM algorithms, detailed 

in the following two subsections. In Section 4.3.2.3, we discuss how to select the initial 

value of 𝐘0.  
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4.3.2.1 Updating 𝑩 

To update 𝐁, we need to solve Problem (18).   

min𝐁‖𝐗− 𝐇𝐁𝐘‖𝐹
2 + 𝜆1‖𝐁‖1,1 + 𝜆2 ∑ ∑‖𝐛𝑘,𝑖‖2

𝐾

𝑘=1

𝐼

𝑖=1

(18) 

subject to ‖𝐛𝑘,⋅‖2
= 1. 

This problem can be reformulated as  

min𝐙 ∑ 𝑓𝑚(𝐙)

𝑀

𝑚=1

(19) 

where 𝑀 = 4, 𝑓1(𝐁) = ‖𝐗 − 𝐇𝐁𝐘‖𝐹
2, 𝑓2(𝐁) = 𝜆1‖𝐁‖1,1, 𝑓3(𝐁) = 𝜆2 ∑ ∑ ‖𝐛𝑘,𝑖‖2

𝐾
𝑘=1

𝐼
𝑖=1 , 

and 𝑓4(𝐁) = ∑ 𝐼‖𝐛𝑘,⋅‖2
=1

𝐾
𝑘=1 . Problem (19) can be solved with the ADMM consensus 

algorithm [61], summarized in Algorithm 8 below.  

Algorithm 8 ADMM consensus Algorithm 

Initiate replicates 𝐙(𝑚), 𝐔(𝑚) = 𝐎 for 𝑚 = 1,… ,𝑀, of the same shape as 𝐙. Set step size 

𝜂.  

Iterate until convergence:  

Update 𝐙(𝑚) = prox
𝜂𝑓𝑚

[𝐙̅ − 𝐔(𝑚)], for 𝑚 = 1,… ,𝑀 in parallel.  

𝐙̅ = ∑ 𝐙𝑚
𝑀
𝑚=1 𝑀⁄   

𝐔(𝑚) = 𝐔(𝑚) + 𝐙(𝑚) − 𝐙̅.  

To implement Algorithm 8 in solving Problem (18), we need to evaluate the 

proximal operators of 𝜂𝑓1 , … , 𝜂𝑓4 . The results are in Proposition 10, and the derivation is 

in Appendix 0.  

Proposition 10. Let 𝑓1(𝐁) = ‖𝐗− 𝐇𝐁𝐘‖𝐹
2 , 𝑓2(𝐁) = 𝜆1‖𝐁‖1,1, 𝑓3(𝐁) =

𝜆2 ∑ ∑ ‖𝐛𝑘,𝑖‖2
𝐾
𝑘=1

𝐼
𝑖=1  and 𝑓4(𝐁) = ∑ 𝐼‖𝐛𝑘,⋅‖2

=1
𝐾
𝑘=1 . The proximal operators of 𝜂𝑓1 , … , 𝜂𝑓4  

are given as follows: Let 𝐀 and 𝐙 have the same size as B, and partition them into 𝐀 =
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[

𝐚1,1 ⋯ 𝐚𝐾,1

⋮ ⋱ ⋮
𝐚1,𝐼 ⋯ 𝐚𝐾,𝐼

] and 𝐙 = [

𝐳1,1 ⋯ 𝐳𝐾,1

⋮ ⋱ ⋮
𝐳1,𝐼 ⋯ 𝐳𝐾,𝐼

] according to 𝐁 = [

𝐛1,1 ⋯ 𝐛𝐾,1

⋮ ⋱ ⋮
𝐛1,𝐼 ⋯ 𝐛𝐾,𝐼

]. Similarly, 

we let 𝐁⋅,𝑖 = [𝐛1,𝑖 …𝐛𝐾,𝑖], 𝐙⋅,𝑖 = [𝐳1,𝑖 …𝐳𝐾,𝑖], and 𝐀⋅,𝑖 = [𝐚1,𝑖 …𝐚𝐾,𝑖].  

1. If 𝐙 = prox
𝜂𝑓1

[𝐀], we have  

vec(Z⋅,𝑖) = (𝐄𝐾𝐽𝑖×𝐾𝐽𝑖
+ 𝜂(𝐘𝐘⊤) ⊗ 𝐄𝐽𝑖×𝐽𝑖

)
−1

[vec(𝐀⋅,𝑖) + 𝜂 vec(𝐇𝑖
⊤𝐗𝑖𝐘

⊤)], 

where ⊗ is the Kronecker product, and 𝐄𝑟×𝑟 is the identity matrix of order 𝑟.  

2. If 𝐙 = prox
𝜂𝑓2

[𝐀], 𝑍𝑙,𝑖 = 𝑆𝜆1𝜂(𝐴𝑙,𝑖), where 𝑍𝑙,𝑖 , 𝐴𝑙,𝑖 are the (𝑙, 𝑖) element of 𝐙 and 𝐀 

respectively, and 𝑆𝜆𝜂(𝑥) = {

𝑥 + 𝜆1𝜂,  𝑥 ≤ −𝜆1𝜂
0, −𝜆1𝜂 ≤ 𝑥 ≤ 𝜆1𝜂

𝑥 − 𝜆1𝜂, 𝑥 > 𝜆1𝜂
.  

3. If 𝐙 = prox
𝜂𝑓3

[𝐀], 𝐳𝑘,𝑖 = (1 −
𝜂𝜆2

‖𝐚𝑘,𝑖‖
) 𝐚𝑘,𝑖 .  

4. If 𝐙 = prox
𝜂𝑓4

[𝐀], 𝐳𝑘,⋅ =
𝐚𝑘,⋅

‖𝐚𝑘,⋅‖
. Here 𝐚𝑘,⋅ and 𝐳𝑘,⋅ are the 𝑘th column of 𝐀 and 𝐙, 

respectively.  

4.3.2.2 Updating 𝒀 

In 𝐘-update, we need to solve Problem (20)  

min𝐁,𝐘‖𝐗 − 𝐇𝐁𝐘‖𝐹
2 + 𝜆3 ∑‖𝒟𝐘⊤‖𝐹

2

𝑇

𝑡=1

+ 𝜆4‖𝐘‖1,1 (20) 

subject to 𝑦𝑘,𝑡 ≥ 0, 𝑘 = 1,… , 𝐾; 𝑡 = 1,… , 𝑇.  
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Problem (20) is also in the form of Problem (19), with 𝑀 = 3 and 𝑓1(𝐘) =

‖𝐗 − 𝐇𝐁𝐘‖𝐹
2 , 𝑓2(𝐘) = 𝜆3 ∑ ‖𝒟𝐘⊤‖𝐹

2𝑇
𝑡=1  and 𝑓3(𝐘) = 𝜆4‖𝐘‖1,1 + ∑ ∑ 𝐼𝑦𝑘,𝑡≥0

𝐾
𝑘=1

𝑇
𝑡=1 . We 

use Algorithm 8 again to solve the problem, while the proximal operators of the functions 

are given in Proposition 11. The derivation is given in Appendix 0.  

Proposition 11. Let 𝑓1(𝐘) = ‖𝐗 − 𝐇𝐁𝐘‖𝐹
2, 𝑓2(𝐘) = 𝜆3 ∑ ‖𝒟𝐘⊤‖𝐹

2𝑇
𝑡=1  and 𝑓3(𝐘) =

𝜆4‖𝐘‖1,1 + ∑ ∑ 𝐼𝑦𝑘,𝑡≥0
𝐾
𝑘=1

𝑇
𝑡=1 . The proximal operators of 𝜂𝑓1 , … , 𝜂𝑓3 are given as follows:  

1. If 𝐙 = prox
𝜂𝑓1

[𝐀], 𝐳⋅,𝑡 = (𝐄𝐾×𝐾 + 𝜂𝐁⊤𝐁)−1[𝐚⋅,𝑡 + 𝜂𝐁⊤𝐇⊤𝐱⋅,𝑡], for 𝑡 = 1,… , 𝑇.  

2. If 𝐙 = prox𝜂𝑓2
[𝐀], 𝐳𝑘,⋅ = ℱ−1 [𝐜 ⊙ ℱ[𝐚𝑘,⋅]] where ℱ and ℱ−1 denotes the 

Discrete Fourier Transform and Inverse Discrete Fourier Transform, respectively. 

“⊙” represents the elementwise product and 𝐜 ∈ ℝ𝑇 with 𝑐𝑡 =
1

1+4𝜆3𝜂(1−cos
(𝑡−1)

𝑇
𝜋)

2, 

𝑡 = 1,… ,𝑇.  

3. If 𝐙 = prox
𝜂𝑓3

[𝐀], 𝑍𝑘,𝑡 = max(𝐴𝑘,𝑡 − 𝜆4𝜂, 0) for all 𝑘 = 1,… , 𝐾 and 𝑡 = 1,… , 𝑇.  

Here 𝐳𝑘,⋅, 𝐳⋅,𝑡 , and 𝑍𝑘,𝑡 denotes the row 𝑘, column 𝑡, and element (𝑘, 𝑡) of matrix 𝐙. The 

notations  𝐚𝑘,⋅, 𝐚⋅,𝑡 , and 𝐴𝑘,𝑡 are similarly defined. 𝐱⋅,𝑡 represents the 𝑡-th column of 𝐗.  

4.3.2.3 Initialization  

Problem (17) is not convex. Moreover, the problem of 𝐁-update is not convex due to the 

constraint ‖𝐛𝑘,⋅‖𝐹
= 1, and thus we can only obtain a local optimum. The 𝐘-update is a 

convex problem. In general, the MEIC algorithm converges to a local optimum, and 

therefore a good initialization of 𝐘 is important.  
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In the MEIC algorithm, there are two intuitive considerations about the initial value  

𝐘0. First, we hope that in the first step of 𝐁-update, the columns of the solution 𝐁 are 

significantly different from each other, to capture the information regarding multiple 

events. Therefore, we want the collection of time points with large 𝑌𝑡,𝑘
0  to be different for 

different 𝑘’s. To achieve this, we assign only one event at each time 𝑡 in the initial event 

sequences 𝐘0, so that for different 𝑘, the collections of time points with large 𝑌𝑡,𝑘
0  are 

disjoint. Furthermore, it is good to assign small consecutive time points in 𝐘0 to the same 

event 𝑘, because the true values of 𝐘⋅,𝑡 and 𝐘⋅,𝑡′  are similar when time 𝑡 and 𝑡′ are close 

given the continuity of the events in the temporal domain. Second, an event may occur at 

any time. Therefore, the sequence corresponding to every event should cover the entire 

sequence because.  

Based on the above considerations, we propose the following scheme of initializing 

𝐘0. We generate 𝐘0 randomly based on a Markovian chain with 𝐾 states. Specifically, let 

𝐲0 be a Markov chain on state {1,… ,𝐾} with the following transition probability: 𝑝𝑘,𝑘 =

1 − 𝛼, and 𝑝𝑘,𝑘′ =
𝛼

𝐾−1
. Here, 𝛼 is a tuning parameter that adjusts the frequency of jumps 

between states. After simulating 𝐲0 as a path of 𝑇 time points, we set 𝑌𝑘,𝑡
0 = 1 if 𝑦𝑡

0 = 𝑘, 

and 𝑌𝑘,𝑡
0 = 0 otherwise. Three sample paths of 𝐲0 corresponding to three values of 𝛼 =

1 5⁄ , 𝛼 = 1 10,⁄  and 𝛼 = 1 15⁄  are illustrated in Figure 16 with 𝐾 = 3 and 𝑇 = 80. In 

practice, 𝛼 can be selected as the inverse of the expected length of the event periods.  

Note that the initialization procedure of 𝐘0 is random. It enables us to run 

Algorithm 7 multiple times with different realizations of 𝐘0, and select the local optimum 

with the minimal objective value.  
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Figure 16 The sample paths of 𝐲0 in initialization, corresponding to 𝛼 =1/5, 1/10, and 1/15. 

The circles, crosses, and dots indicate three events.  

4.4 Simulation Studies 

In this section, we present the following simulation study to investigate the MEIC 

algorithm. As discussed in the literature review, there is no method that simultaneously 

characterizes the event signatures and identifies the event sequences based on historical 

data. Therefore, the simulation study proposed here only aims to evaluate the performance 

of our method and test if the MEIC algorithm is stable under multiple settings.  

4.4.1 Simulation setup 

We consider a simulation testbed of 𝐼 =10 signals, each with length 𝐽𝑖 =128, 𝑖 =

1, … ,10. In general, we generate the data 𝐗 by simulating the coefficients of the event 

signatures 𝐁 and the event sequences 𝐘, and then calculating 𝐗 = 𝐇𝐁𝐘 + 𝐄, where 

𝐸𝑖𝑗~𝑁(0,0.12). We select the Haar basis as the wavelet basis 𝐇.  

In practice, there is a wide variety of possible scenarios in terms of the number of 

events, the length of the historical data, as well as the periods in which events happen. In 

our simulation study, we thereby consider evaluating the algorithm under different 

scenarios by varying the lengths of the historical data 𝑇, the total number of events 𝐾, the 

lengths of time duration covered with at least one event, and the lengths of time duration 

with overlapping events. Specifically, we selected nine represented scenarios upon which 
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the MEIC algorithms are tested. Their number of events, length of the historical data, 

associated characteristics, and the event sequences 𝐘 are shown in Table 7, where the letters 

H, M, and L represent High, Medium, and Low. In the subsection below, we detail the 

algorithm of generating 𝐘.  

4.4.1.1 Generating the event sequences 𝒀  

The matrices 𝐘 corresponding to the nine setups are generated from the same 

general randomized procedure. Our strategy is to first use this procedure to generated 𝑅 =

1000 realizations of 𝐘, and then we select typical realizations 𝐘 for each of the nine setups. 

In what follows, we first describe the general randomized procedure and then demonstrate 

how the matrices 𝐘 corresponding to the nine setups are selected.  

The general randomized procedure of generating a matrix 𝐘 is as follows. We 

independently generate the strength sequence 𝐘𝑘,⋅ for every event 𝑘 = 1,… , 𝐾. For each 

sequence 𝐘𝑘,⋅, we generate it from an alternating renewal process [85], of which the 

occurrences of event 𝑘 and the interims appear iteratively. Their lengths are exponentially 

distribution with Exp(100−1) and Exp(500−1) respectively. In each occurrence of an 

event, the event strength increases from 0 to a random level following 𝑈(2,4) and then 

decreases gradually to 0. In each interim, 𝑌𝑘,𝑡 = 0.  
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Table 7 Simulation setups 

Index Event Sequence 𝑇 𝐾 Overlap Frequency 

 Basic Setup     

1 

 

5000 3 M M 

 Varying 𝑇     

2 

 

2500 3 M M 

3 

 

7500 3 M M 

 Varying 𝐾     

4 

 

5000 2 M M 

5 

 

5000 4 M M 

 
Varying the Number of Overlapping Events 

 
    

6 

 

5000 3 H M 

7 

 

5000 3 L M 

 Varying Event Frequencies     

8 

 

5000 3 M H 

9 

 

5000 3 M L 

For each randomly generated matrix of 𝐘, we define two indices. The frequency 

index 𝑟𝑓 reflects the frequency of time points at which more than zero events occur, and 

the overlap index 𝑟𝑜  reflects the proportion of time points with more than one overlapping 
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event to all time points with at least one event occurs. Here #{𝐴} means the number of 

elements in set 𝐴. 

𝑟𝑓 = # {𝑡: ∑ 1{𝑌𝑘,𝑡>0} > 0𝐾
𝑘=1 , 𝑡 = 1, … , 𝑇} 𝑇⁄   

𝑟𝑜 = # {𝑡:∑ 1{𝑌𝑘,𝑡>0}
𝐾
𝑘=1 > 1, 𝑡 = 1,… , 𝑇} # {𝑡: ∑ 1{𝑌𝑘,𝑡>0} > 0𝐾

𝑘=1 , 𝑡 = 1, … , 𝑇}⁄   

In Setups 1, 6, 7, 8, and 9, the numbers of events are all 𝐾 = 3, and the length of 

the historical data are all 𝑇 =5000. We generate 𝑅 = 1000 candidate matrices of 𝐘 with 

the prescribed values of 𝐾 and 𝑇 through the procedure described above. Then, we draw 

the scatter plot of (𝑟𝑓 , 𝑟𝑜) for these replicates, as shown in Figure 17. We select five points 

from the scatter plot, corresponding to medium 𝑟𝑜  and medium 𝑟𝑓, with high/low 𝑟𝑜  and 

medium 𝑟𝑓, and with medium 𝑟𝑜  and high/low 𝑟𝑓, as illustrated by the star points in Figure 

17. These points correspond to the matrices 𝐘’s for Setups 1, 6, 7, 8 and 9.  

In Setups 2, 3, 4, and 5, we obtain the 𝐘 in a similar procedure. For each setup, we 

generate 𝑅 = 1000 candidate matrices of 𝐘 corresponding to the corresponding values of 

𝐾 and 𝑇. Among these candidate matrices, we pick the 𝐘 whose 𝑟𝑓 and 𝑟𝑜  indices are close 

to their respective average among all 1000 replicates.  
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Figure 17 The scatter plot of 𝑟𝑓  and 𝑟𝑜  and selected event sequences 𝐘’s. 

4.4.1.2 Generate the event signature coefficient 𝑩  

In the simulation platform, we assume each event affects three sensing signals. Therefore, 

there are three signal 𝑖’s such that 𝐛𝑘,𝑖 ≠ 𝟎 for every 𝑘 = 1,… , 𝐾. In the nine setups above, 

there are at most 𝐾 = 4 events involved in each simulation setup. We let event 𝑘 = 1 affect 

signal 𝑖 =1, 2, 3, event 2 affect signals 2, 4, 5, event 3 affect signals 3,6,7, and event 4 

affect signals 5, 7, 8. For each event 𝑘 and one affected signal 𝑖, we generate 𝐛𝑘,𝑖 by 

randomly choosing five non-zero elements and sample their values from 𝑈(1,3). Finally, 

each vector  𝐛𝑘,⋅ is scaled to the unit length.  

4.4.2 Estimation results and evaluations 

For each simulation setup, we obtain the estimated event signature {𝛏̂𝑘,𝑖 : 𝑘 = 1,… , 𝐾; 𝑖 =

1, … , 𝐼} and event sequences {𝑦̂𝑘,𝑡: 𝑘 = 1,… , 𝐾; 𝑡 = 1,… ,𝑇}. In the estimation, we run the 

BCD algorithms based on ten initial 𝐘0’s and the same tuning parameters 𝜆1 = 7, 𝜆2 =

0.3,𝜆3 = 10 and 𝜆4 = 0.3. The BCD algorithm terminates when the objective value 
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decreases less than 0.01% in one iteration, and the threshold to primal and dual residual in 

D-step and Y-step are both set to be 10−4.  

 We now investigate the convergence behavior of the basic setup. In Setup 1, Figure 

18 (a) illustrates the decrease of objective values of the optimization problem after every 

𝐁-update and 𝐘-update in the BCD iterations. This figure shows that the objective value 

decreases monotonically, and the algorithm converges with few BCD iterations. Each line 

in Figure 18 (b) illustrates the change of primal and dual residual errors in the logarithm 

scale in each individual 𝐁-update and 𝐘-update process. We can see that the ADMM 

consensus algorithm converges rapidly in each B-update and Y-update step. The 

convergence behavior of the Setup 2-9 is similar.  

    

      

Figure 18 (a) The convergence of the BCD algorithm. (b) The convergence of each B-

update and Y-update.  

Identification of event sequences We match the estimated event 𝑘 = 1,… , 𝐾 with a 

true event 𝑘′ by finding argmin
𝑘′

{∑ ‖𝐘𝑘′,⋅ − 𝐘𝑘,⋅‖2

2𝐼
𝑖=1 }. Figure 19 shows the estimation of 
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the event sequences for Setup 1. We can see that the sequences of the estimated event 

strengths are very similar to their true values, although the magnitudes are slightly lower 

due to the smoothing effect.  

To give a numerical performance measure of the error identification, we find all 

time points that are identified as associated with event 𝑘, i.e. 𝐸̂𝑘 = {𝑡: 𝑌̂𝑘,𝑡 > 0}. Then, we 

compare the set 𝐸̂𝑘 with 𝐸𝑘, the set of time points where event 𝑘 indeed occurs, 𝐸𝑘 =

{𝑡: 𝑌𝑘,𝑡 > 0}. The time points misidentified as not event 𝑘 is subject to the type I error, and 

the time point misclassified as event 𝑘 is subject to the type II error. They can be 

represented as 𝐸𝑘 − 𝐸̂𝑘 and 𝐸̂𝑘 − 𝐸𝑘 respectively, and thus the type I and type II error rates 

are  

𝑉𝑌,1 = ∑ #{𝐸𝑘 − 𝐸̂𝑘}
𝐾
𝑘=1 𝑇𝐾⁄  and 𝑉𝑌,2 = ∑ #{𝐸̂𝑘 − 𝐸𝑘}

𝐾
𝑘=1 𝑇𝐾⁄ .  

We list both values and their sum in Table 8.  

 

Figure 19 The true event sequence and the estimated event sequence according to Setup 1.  
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Table 8 The error rate of event sequence identification 

Setup 1 2 3 4 5 6 7 8 9 

Type I 

error 
0.0076 0.0071 0.0076 0.0089 0.0069 0.0092 0.0062 0.0136 0.0033 

Type II 

error 
0.0023 0.0039 0.0023 0.0018 0.0011 0.0019 0.0024 0.0020 0.0040 

Total Error 0.0099 0.0109 0.0098 0.0107 0.0080 0.0111 0.0086 0.0156 0.0073 

 Note that the tuning parameters determine the trade-off between type I and type II 

error rates. For the fairness of comparison, we select the same parameter 𝜆4 in all setups, 

and thus we mainly compare the total error. We can see that the error rate does not exceed 

2% for all setups from the result. Setup 8, corresponding to the highest frequency of 

occurrence, has the largest error rate of 1.56%. In all setups, we found that misidentification 

occurs when an event appears or disappears.  Therefore, a possible reason for the large 

misidentification rate of Setup 8 is that high frequency of event periods associates with 

multiple events occurrence and disappearance.  

 

Figure 20 The estimated event signatures on ten sensors of the three events, according to 

Setup 1. The horizontal axis in each figure represents the measurement points in each 

signal.  
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Table 9 The values of 𝑉𝜉 for nine setups 

Setup 1 2 3 4 5 6 7 8 9 

𝑉𝜉 0.0010 0.0036 0.0040 0.0010 0.0089 0.0013 0.0012 0.0030 0.0010 

Characterization of event signatures  

Figure 20 shows the reconstructed event signatures corresponding to events 𝑘 = 1, 2, 3 on 

curve 𝑖 = 1, … ,10 for Setup 1. Plots in each row correspond to an event. The first three 

subfigures in each row illustrate the estimation of the event signature on three signals that 

are affected by this event. These signals are marked by S1-S7 in the respective plot titles. 

We can see that the red lines (representing the estimated event signature on these signals) 

are very close to the black lines (representing the true event signature on these signals). 

The fourth subfigure in each row illustrates the estimation of the event signature on signals 

not affected by an event. The red lines, representing the estimated event signature on 

irrelevant signals, are all close to zero. This result shows that the event signatures are 

estimated accurately and that signals that are truly associated with an event can be 

identified correctly.  

After estimating the event signatures, we evaluate the estimation accuracy of those 

event signatures by the mean squared error  𝑉𝜉 =
1

𝐾𝐼
∑ ‖𝛏𝑘,𝑖 − 𝛏̂𝑘,𝑖‖2

2

𝑘,𝑖 , as shown in Table 

9. For Setup 1, the value of 𝑉𝜉 is 0.0010. We calculated the value 𝑉𝜉 for all nine setups, 

and find that Setup 5 (the case corresponding to 𝐾 = 4) has the largest 𝑉𝜉 = 0.0089, 

whereas in all other cases, the values of 𝑉𝜉 do not exceed 0.0040. It shows that the MEIC 

algorithm characterizes the event signatures accurately.  
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Importance of multiple starting points In our simulation study, we discover that the 

result of the algorithm is sensitive to the initial 𝐘0. Occasionally, the algorithm may 

converge to a local minimum, in which two identified events correspond to one real event 

and have similar event signatures. Similar behavior also occurs to prototype methods like 

Gaussian Mixture Model and 𝑘-means clustering. Therefore, we perform the optimization 

algorithm starting from multiple initial values of 𝐘0 and pick the solution with minimal 

objective values. In this way, we find that the MEIC algorithm is able to get excellent 

identification results in every experiment we performed.   

4.5 Case Study 

In steel rolling processes, the shape uniformity of the rolling bars is an important quality 

characteristic [86]. In a rolling production line, a laser gauge is installed for in-situ 

measurement of the cross-sectional shapes of a rolling bar, which generates six profiles 

𝑥𝑡,1(𝑠), … , 𝑥𝑡,6(𝑠) to represent the diameter measurements along six axes of every rolling 

bar 𝑡. Each 𝑥𝑡,𝑖(𝑠) (𝑖 = 1, … ,6) is a functional curve that reflects the dimension from the 

beginning to the end of each rolling bar.  The rolling process and the laser gauge 

measurements are illustrated in Figure 21.  

 
Figure 21 The illustration of a rolling process, where the blue square represents the 

measurement plane of the laser gauge. The shape at the right side illustrates the cross-

sectional shape of a rolling bar and its diameter measurements along six axes.  
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Figure 22 The illustration of the raw data for the case study.  

In this case study, the dimensional profile measurements are obtained from a 

continuous production of 𝑛 = 500 rolling bars.  By analyzing those data, we like to find 

out if there are any special events that occurred during the production and further identify 

the specific events and their signatures. To serve this purpose, we apply the MEIC 

algorithm to this dataset.  

 The data sequence corresponding to each rolling bar has the length 𝑑 = 128. After 

certain preprocessing steps, we obtain the tensor data 𝒳 ∈ ℝ128×6×500, illustrated in Figure 

22, where at each time 𝑡 = 1,… ,500 we obtain six curves of length 128, denoting the 

diameter measurements of the rolling bar along Axes 1-6. The data is then reshaped into 

the matrix 𝐗 ∈ ℝ(128×6)×500.  

 We set 𝐾 = 2, apply the Haar wavelet as the basis 𝐇, and specify the tuning 

parameters as 𝜆1 = 0,𝜆2 = 0.04, 𝜆3 = 500, and 𝜆4 = 0.15. Here 𝜆1  is set to 0 because 

there is no need to specify that an event affects only a subset of sensing signals: the 

abnormal condition in the rolling process will affect the entire cross-section of a rolling 

bar, and thus the diameter measurements of all Axes 1-6 will be impacted simultaneously. 

After using the MEIC algorithm to analyze the data set, we obtain the estimated matrix 𝐁 
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and 𝐘. From the matrix 𝐁, we recover the event signatures on six signals, as illustrated in 

Figure 23, and identify the event sequences as in Figure 24. From Figure 23, we can 

conclude that two abnormal events have occurred in the rolling process. The first event 

associates with an increased diameter along Axis 1 near the first quarter of the billet and 

an increasing diameter along Axis 4. The second event relates to a sharp drop in the 

diameter value along Axes 1, 3, 4, and 5. In Figure 24, the solid line represents the first 

event, and the dashed line represents the second event. It tells us that event 1 occurs during 

the fabrication of the first 150 billets, and event 2 occurs between the 240th to 290th rolling 

bars.   

 

Figure 23 The event signatures on six signals for event 1 (first row) and event 2 (second 

row).  

 

Figure 24 The sequence of event 1 (solid line) and event 2 (dashed line). 

 
 (a)  (b) 

Figure 25 The sample signals that are associated with (a) event 1 and (b) event 2.  
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To validate the existence of those two events and their characteristics, we draw the 

preprocessed signals obtained when each event occurs in Figure 25 (a) and (b). Those two 

figures correspond to event 1 and event 2, respectively. In each plot, a curve represents the 

measurements along one sample rolling bar. The gray level indicates the estimated strength 

of events 1 or 2 for this bar. Comparing Figure 25 with Figure 23, we can observe that 

those two events are indeed associated with the event signatures we estimated because the 

patterns of the dark curves are very similar to the event signatures.  

4.6 Summary 

It is common to have multiple sensors installed in a system to faithfully record its operation 

status and generate structured data streaming. Retrospective analysis of those sensing data 

enables a better understanding of the system status during its operation and gain insights 

on new events that affect the system performance. A common question in this retrospective 

data analysis is to ask if there are some special events (e.g., machine failure, material 

change, process perturbation, etc.) that occurred during the production time period.  If so, 

what is the event that has occurred? When it occurred? What is the duration of the event? 

Which sensing signals the event affects? And what are the event signatures shown on the 

related sensing signals?  Answering those questions will enable the development of more 

effective monitoring and diagnosis tools for process control and quality improvements.  

These questions motivate us to define events and associated event signatures in a system 

and to develop an automatic tool for identifying and characterizing those events from the 

system operational data.  
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The multiple event identification and characterization (MEIC) algorithm 

simultaneously identifies the occurrence of each event during the system operation and 

characterizes how each event impacts sensing signals by estimating the event signatures. 

Our approach has two major advantages: First, it does not require labeled observations 

corresponding to every single event, which typically involves practitioners going through 

the data stream and label the abnormal segment in sensing data. Second, it allows the 

anomaly identification and characterization in a single step to streamline the analysis 

procedure and focus on vital quality issues. Therefore, this approach leads to a deep 

understanding of the system and its operations based on the sensing signals. 

In our simulation study, we verify the validity of the MEIC method in identifying 

event sequences and characterizing event signatures. The algorithm effectively avoids 

suboptimal points with our scheme of generating random initial values from the 

computational aspect. Both the BCD algorithm and the inner loops of the ADMM 

algorithms converge rapidly. The case study successfully identified two events from a set 

of dimensional sensing data of rolling bars and simultaneously characterized how each 

event affects the dimension of the rolling bar.  

  



115 

 

CHAPTER 5. CONCLUSION 

This thesis investigates three problems in the data analytics of a multistage manufacturing 

system, motivated by the characteristics of the systems and the data characteristics. This 

chapter first summarizes the unique contributions of the thesis. Then, several future 

research areas are listed.   

5.1 Summary of the contributions 

Chapter 2 in this thesis investigates the feature ranking problem for data-driven system 

diagnostics. One original contribution is that two requirements for a feature ranking 

procedure are summarized from the semiconductor manufacturing application: (1) the 

ranking should be based on general dependency, and (2) a process feature shall be 

prioritized if it is not dependent with other features strongly related to the quality variable. 

Furthermore, a new feature ranking approach is proposed based on distance correlation 

that satisfies these requirements. The theoretical study and intuitive illustrations are given 

to show how this method works, and the effectiveness of the method has been demonstrated 

in simulation studies and a real case study.  

Chapter 3 proposes an analytical framework for multistage manufacturing 

processes. It is the first analytical framework for multistage manufacturing processes that 

enables parallel computation, and it simultaneously identifies the actual root causes on 

every stage of the system, the variation patterns of the outputs in every stage, and the 

relationship between them. This framework is also highly customizable for a wide variety 

of multistage processes generating multiple kinds of data.  
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The multiple event identification and characterization (MEIC) method in Chapter 

4 has the original feature of performing identification and root cause diagnostics 

simultaneously. It is enabled by using the dictionary learning method, which has not been 

introduced to the process data analytics for modeling and diagnosis in MMPs. The MEIC 

has been proved as a useful automatic tool in retrospective analysis of sensing signals that 

gives practitioners hints to discovering new root causes of the processes and leads deep 

understanding of the system and its operations.  

5.2 Future Works 

The multistage process can be regarded as a particular type of interconnected 

system, which includes, but beyond, manufacturing systems.  The introduction of this 

thesis lists four major characteristics of the data generated from multistage processes: 

heterogeneous data types, multiple root causes of variations, error propagation between 

stages, and confounding relationship between multiple data sources. Typically, these are 

also the characteristics of the data generated from general interconnected systems such as 

the internet-of-things, and therefore the problem formulation and modeling approach used 

in this thesis can be extended to these systems.  

In Section 3.3.1, it has been mentioned that the structure of the data generated from 

each sample of a multistage manufacturing process is in the form of a C struct or 

MATLAB® cell, which contains multiple components representing the data generated from 

sensors. It is also the data type generated from the general interconnected Internet-of-

Things (IoT), and special statistical modeling and analysis tools are desired for this 
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structured data type.  Two potential research directions on the analysis of this kind of data 

type for systems improvements are listed as follows.  

The first potential research direction is to model the multimodal data generated 

from interconnected systems. On the one hand, the data from each sensor should be 

described based on its own characteristics, such as signals, point clouds, multiple 

categorical data, etc. On the other hand, the interconnections between data from different 

sensors need to be characterized using graphical models and transfer learning methods. The 

estimation of the parameters in the model can be achieved by a federated optimization 

approach. This research will enable and streamline the decision-making process within the 

engineering processes. 

The second potential research direction is the modularized deep learning 

architectures for the data generated by interconnected systems. Specifically, the system 

layout of the interconnected system can be used for specifying the deep learning 

architectures of the heterogeneous data sources in modeling the relationship between the 

process data from multiple system components and the quality variable. Furthermore, the 

deep learning modules for similar system components can be applied with the same deep 

learning architecture. These measures reduce the number of parameters and increase the 

model’s interpretability to engineers.  
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APPENDIX A.  

SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

A.1  The derivation of 𝐕𝒏,𝜷(𝐗,𝐘) and 𝐑𝐧
𝟐(𝐗, 𝐘) in Section 2.3 

Based on the notations from Section 2.3,  

V𝒏,𝜷(𝐗,𝐘) =
1

𝑛2
∑ ∑ 𝐴𝑘𝑙𝐵𝑘𝑙

𝑛

𝑙=1

𝑛

𝑘=1

 

=
1

𝑛2
∑ ∑[𝑎𝑘𝑙 − 𝑎̅𝑘⋅ − 𝑎̅⋅𝑙 + 𝑎̅̅⋅⋅][𝑏𝑘𝑙 − 𝑏̅𝑘⋅ − 𝑏̅⋅𝑙 + 𝑏̅̅⋅⋅]

𝑛

𝑙=1

𝑛

𝑘=1

. 

Here 𝑎𝑘𝑙 = 𝑑𝜷(𝐗𝑘, 𝐗𝑙) = ∑ 𝛽𝑖|X𝑘
(𝑖)

− X𝑙
(𝑖)

|
𝑝
𝑖=1 ; 𝑏𝑘𝑙 = |Y𝑘 − Y𝑙|, and  

𝑎̅𝑘⋅ =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑙=1 , 𝑎̅⋅𝑙 =

1

𝑛
∑ 𝑎𝑘𝑙

𝑛
𝑘=1 , 𝑎̅̅⋅⋅ =

1

𝑛2
∑ 𝑎𝑘𝑙

𝑛
𝑘, 𝑙=1 ; 

𝑏̅𝑘⋅ =
1

𝑛
∑ 𝑏𝑘𝑙

𝑛
𝑙=1 , 𝑏̅⋅𝑙 =

1

𝑛
∑ 𝑏𝑘𝑙

𝑛
𝑘=1 , 𝑏̅̅⋅⋅ =

1

𝑛2
∑ 𝑏𝑘𝑙

𝑛
𝑘, 𝑙=1 . 

Let 𝑎𝑘𝑙
(𝑖) = |X𝑘

(𝑖) − X𝑙
(𝑖)

|, we have 

V𝑛,𝜷(𝐗,𝐘) =
1

𝑛2
∑ ∑ ∑ 𝛽𝑖[𝑎𝑘𝑙

(𝑖)
− 𝑎̅𝑘⋅

(𝑖)
− 𝑎̅⋅𝑙

(𝑖)
+ 𝑎̅̅⋅⋅

(𝑖)][𝑏𝑘𝑙 − 𝑏̅𝑘⋅ − 𝑏̅⋅𝑙 + 𝑏̅̅⋅⋅]

𝑛

𝑙=1

𝑛

𝑘=1

𝑛

𝑖=1

= ∑ 𝛽𝑖𝑑𝑛,𝑖

𝑑

𝑖=1

, 
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where 𝑑𝑛,𝑖 =
1

𝑛2
∑ ∑ [𝑎𝑘𝑙

(𝑖) − 𝑎̅𝑘⋅
(𝑖) − 𝑎̅⋅𝑙

(𝑖) + 𝑎̅̅⋅⋅
(𝑖)][𝑏𝑘𝑙 − 𝑏̅𝑘⋅ − 𝑏̅⋅𝑙 + 𝑏̅̅⋅⋅]

𝑛
𝑙=1

𝑛
𝑘=1 = V𝑛(𝐗(𝑖), 𝐘), 

the sample distance covariance between two univariate random variables 𝑋𝑖  and 𝑌 based 

on the Euclidian distance.  Therefore, V𝑛,β(𝐗,𝐘) can be represented as 𝐝𝑛
⊤𝜷.  

Similarly,  

V𝑛,𝜷(𝐗,𝐗) =
1

𝑛2
∑ ∑[𝑎𝑘𝑙 − 𝑎̅𝑘⋅ − 𝑎̅⋅𝑙 + 𝑎̅̅⋅⋅][𝑎𝑘𝑙 − 𝑎̅𝑘⋅ − 𝑎̅⋅𝑙 + 𝑎̅̅⋅⋅]

𝑛

𝑙=1

𝑛

𝑘=1

=
1

𝑛2
∑ ∑∑ ∑𝛽𝑖𝛽𝑗[𝑎𝑘𝑙

(𝑖) − 𝑎̅𝑘⋅
(𝑖) − 𝑎̅⋅𝑙

(𝑖) + 𝑎̅̅⋅⋅
(𝑖)] [𝑎𝑘𝑙

(𝑗)
− 𝑎̅𝑘⋅

(𝑗)
− 𝑎⋅𝑙

(𝑗)

𝑑

𝑗=1

𝑑

𝑖=1

𝑛

𝑙=1

𝑛

𝑘=1

+ 𝑎̅̅⋅⋅
(𝑗)] = ∑∑ 𝛽𝑖𝛽𝑗[𝐅𝑛]𝑖𝑗

𝑑

𝑗=1

𝑑

𝑖=1

= 𝜷⊤𝐅𝑛𝜷, 

and thus we can derive  

R𝑛,𝜷
2 (𝐗,𝐘) =

V𝑛,𝜷(𝐗,𝐘)

√V𝑛,𝜷(𝐗,𝐗)√V𝑛(𝐘,𝐘)
=

𝐝𝑛
⊤𝜷

√V𝑛(𝐘,𝐘)√𝜷⊤𝐅𝑛𝜷
. 

Therefore, R𝑛,𝜷
2 (𝐗,𝐘) can be represented as 𝐾 ⋅

𝐝𝐧
⊤𝜷

√𝜷⊤𝐅𝐧𝜷
.  

A.2  Proof of the claim on zero weighed population distance correlation 

We show that 𝑉𝜷(𝑿,𝑌) = 0 if and only if 𝑋(𝑖) is independent of 𝑌 for every 𝑖 corresponding 

to 𝛽𝑖 > 0. 

Proof: Similar to the derivation in Appendix A, we can show that  
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𝑉𝜷(𝑿,𝑌) = ∑𝛽𝑖𝑉(𝑋(𝑖), 𝑌)

𝑛

𝑖=1

, 

using the expression of population distance covariance in Section 2.3.1. We can see that 

𝑉𝜷(𝑿,𝑌) = 0 if and only if 𝑉(𝑋(𝑖), 𝑌) = 0 for all 𝑖 ∈ {𝑖|𝛽𝑖 > 0}. By Theorem 3.11 in 

Lyons [15], 𝑉(𝑋(𝑖), 𝑌) = 0 if and only if 𝑋𝑖  and 𝑌 is independent. Therefore, the 

conclusion in the property holds.  

A.3  Proof of Proposition 1 

(1) The “if” part is straightforward. We only prove the “only if” part. Suppose that 𝜷, one 

of the optimal solution of problem (4), satisfies 𝜷⊤𝐅𝑛𝜷 < 1. We show that problem (3) is 

infeasible. The Lagrange function of the optimization problem (4) is 

𝐿(𝛽; 𝜉, 𝜇,𝛌) = −𝜷⊤𝐝𝑛 + 𝜉(𝜷⊤𝐅𝑛𝜷 − 1) + 𝜇(𝟏⊤𝜷 − 𝑐) − 𝛌⊤𝜷. 

Therefore, the KKT condition is 𝜷 ≥ 0; 𝜉 ≥ 0; 𝝀 ≥ 0; 𝜇 ≥ 0, and  

2𝜉𝐅𝑛𝜷 = 𝝀 + 𝐝𝑛 − 𝜇𝟏, 

𝜇(𝜷⊤𝟏 − 𝑐) = 0; 

𝝀⊤𝜷 = 0; 

𝜉(𝜷⊤𝐅𝑛𝜷 − 1) = 0. 

If 𝜷⊤𝐅𝑛𝜷 < 1, then 𝜉 = 0, and we have 𝝀 = 𝜇𝟏 − 𝐝𝑛. To make 𝝀 ≥ 0, we need 𝜇 ≥

max
1≤𝑖≤p

{d𝑛
(𝑖)

} > 0. With probability 1, d𝑛
(1)

, … , d𝑛
(𝑝)

 are 𝑝 different values, 𝝀 has one zero 
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entry if we take 𝜇 = max
1≤𝑖≤𝑝

{d𝑛
(𝑖)

} and has no zero entry if 𝜇 > max
1≤𝑖≤𝑝

{d𝑛
(𝑖)

}. Due to 

complementary slackness, 𝜷 has at most one non-zero entry. Without loss of generality, 

we assume that 𝜷 = (𝛽1, 𝟎𝑝−1)
⊤

. In such case, 𝛽1
2 = 𝛽1

2V𝑛(𝐗
(1), 𝐗(1)) = 𝜷⊤𝐅𝑛𝜷 < 1 so 

𝛽1 < 1. Because 𝜇 > 0, we have 𝑐 = 𝜷⊤𝟏 = 𝛽1 < 1 due to complementary slackness. For 

every 𝜷̃ ≥ 0, if 𝜷̃⊤𝟏 ≤ 𝑐, from the definition of distance correlation we have 

V𝑛(𝐗(𝑖), 𝐗(𝑗)) ≤ √V𝑛(𝐗(𝑖), 𝐗(𝑖))V𝑛(𝐗(𝑗), 𝐗(𝑗)) = 1, so 𝜷̃⊤𝐅𝑛𝜷̃ ≤ 𝜷̃⊤[𝟏𝟏⊤]𝜷̃ < 𝑐2 < 1. 

Therefore, problem (3) is not feasible.  

(2) Suppose that 𝜷′ and 𝜷′′ both achieve the optimal value of problem (4). Because 

𝐝n
⊤𝜷′ = 𝐝𝑛

⊤𝜷′′, and the feasible region of problem (4) is convex, we can check that 𝜷̃ =

1

2
(𝜷′ + 𝜷′′) also achieves the optimal value of problem (4). By Proposition 1 we have 

𝜷′⊤𝐅𝑛𝜷′ = 𝜷′′⊤𝐅𝑛𝜷′′ = 𝜷̃⊤𝐅𝑛𝜷̃ = 1, which derives (𝜷′ − 𝜷′′)⊤𝐅𝑛(𝜷′ − 𝜷′′) = 0. We 

conclude 𝜷′ = 𝜷′′  from the fact that 𝐅n is positive definite with probability 1.  

Without loss of generality, we assume that  d𝑛
(1)

 is the maximal number among 

d𝑛
(1)

, d𝑛
(2)

, … , d𝑛
(𝑝)

. From the proof of (1) above, we see that the optimal solution to 

formulation (4) is in the form of 𝜷 = (𝛽1 , 𝟎𝑝−1)
⊤

. Because 𝜷⊤𝟏 = 𝑐, 𝜷 = (𝑐, 𝟎𝑝−1)
⊤
 is 

the only optimal solution of formulation  (4).   

A.4  Problem (4) is conic quadratic programming problem 

Proof: We can directly check that problem (4) can be rearranged in the standard form of 

conic quadratic form in Lobo, et al. [87], equation (1). In fact, formulation (4) is 

transformed to the following standard form:  
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min
𝜷

𝒌⊤𝜷 

subject to ‖𝐀𝑖𝜷+ 𝒃𝑖‖ ≤ 𝒄𝑖
⊤𝜷 + 𝑎𝑖 , 𝑖 = 1,… , 𝑝 + 2, 

where  

• 𝒌 = −𝐝𝑛;  

• 𝐀𝑖 = 𝟎𝑝×𝑝 for 𝑖 = 1, … , 𝑝 + 1 and 𝐀𝑝+2 = 𝐅
1

2;  

• 𝒃𝑖 = 𝟎 for 𝑖 = 1, … , 𝑝 + 2;  

• 𝒄𝑖 = 𝐞𝑖  for 𝑖 = 1, … , 𝑝, where 𝐞𝑖  denotes the 𝑖𝑡ℎ unit vector; 𝒄𝑝+1 = 𝟏 and 𝒄𝑝+2 = 𝟎;  

• 𝑎𝑖 = 0 for 𝑖 = 1, … , 𝑝, 𝑎𝑝+1 = −𝑐 and 𝑎𝑝+2 = 1. 

A.5  Proof of Proposition 2 

Proof: (1) The feasible region of formulation (3) is 

𝑆𝑐 = {𝜷:𝜷⊤𝐅𝑛𝜷 = 1;𝛽𝑖 ≥ 0 for all 𝑖 = 1, … , 𝑝; 𝜷⊤𝟏 ≤ 𝑐}. 

Let 𝐴𝑐 = {𝜷:𝜷⊤𝟏 ≤ 𝑐;𝛽𝑖 ≥ 0} = conv{𝟎, 𝑐𝐞1 , … , 𝑐𝐞𝑝}, and let 𝐵 =

{𝜷:𝜷⊤𝐅𝑛𝜷 < 1}. Here 𝐞1, … , 𝐞𝑝 are 𝑝 standard unit vectors.  

a. If 𝑐 < 1, we have 𝟎 ∈ 𝐵 and 𝑐𝐞𝑖 ∈ 𝐵 for 𝑖 = 1, … , 𝑝. Because 𝐵 is convex, 

𝐴𝑐 ⊂ 𝐵. So 𝑆𝑐 ⊂ 𝐴𝑐 − 𝐵 = ∅.  

b. If 𝑐 ≥ 1, {𝐞1, … , 𝐞𝑝} ⊂ 𝑆𝑐 ≠ ∅.  
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(2) Because all diagonal elements of 𝐅𝑛 are 1 and all off-diagonal elements of 𝐅𝑛 are 

non-negative, ‖𝜷‖2
2 ≤ 𝜷⊤𝐅𝑛𝜷 ≤ 1. Then ‖𝜷‖1 ≤ √𝑝‖𝜷‖2 ≤ √𝑝, which means 

that the constraint 𝜷⊤𝟏 ≤ 𝑐 is inactive as 𝑐 > √𝑝. Therefore, the solution of 

formulation (4) with 𝑐 > √𝑝 is the same with that of 𝑐 = √𝑝.  

(3) Let 𝐼 = {𝑐 ≥ 1:𝜷(𝑐)⊤𝟏 = 𝑐} be the set of 𝑐 that makes 𝜷⊤𝟏 ≤ 𝑐  an active 

constraint in formulation (4).   

Lemma: With probability 1, there is some 𝑐0 ≤ √𝑝 such that 𝐼 = [1, 𝑐0].   

Proof of the Lemma: The maximum value of 𝐼 is bounded by max{∑ 𝛽𝑖
𝑛
𝑖=1 : 𝛽⊤𝐅𝑛𝛽 ≤

1; 𝛽𝑖 ≥ 0, 𝑖 = 1, … , 𝑛}. To show that 𝐼 = [1, 𝑐0] for some 𝑐0 ≥ 0, we only need that 𝑐′ ∈ 𝐼 

indicates 𝑐′′ ∈ 𝐼 for all 𝑐′′ < 𝑐′ . Suppose that this statement is not true. That is, 𝜷(𝑐′)⊤𝟏 =

𝑐′ and 𝜷(𝑐′′)⊤𝟏 < 𝑐′′. Then we can select 𝜂 ∈ [0,1] such that 𝜷̃ = 𝜂𝜷(𝑐′) +

(1 − 𝜂)𝜷(𝑐′′) satisfies 𝜷̃⊤𝟏 = 𝑐′′. 𝛽 is a feasible solution for problem (3) with parameter 

𝑐′′. Also, the feasible region for the problem (4) with parameter 𝑐′ contains the feasible 

region for the problem (4) with 𝑐′′, so the objective function −𝜷(𝑐′)⊤𝐝𝑛 ≤ −𝜷(𝑐′′)⊤𝐝𝑛, 

and thus we have  

−𝜷(𝑐′)⊤𝐝𝑛 ≤ −𝜷̃⊤𝐝𝑛 ≤ −𝜷(𝑐′′)⊤𝐝𝑛. 

The second inequality above indicates that 𝜷̃ also achieves the optimal value of the problem 

(4) with parameter 𝑐′′, which contradicts with the uniqueness of 𝜷(𝑐′′) indicated by the 

corollary of Proposition 1.  

Proof of (3) in Proposition 2:  
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Case 1: 𝑐1 , 𝑐2 ∈ 𝐼.  

Let 𝜷(𝑐1) = (𝛃1, 𝟎)⊤, and 𝜷(c2) = (𝛃2, 𝟎)⊤ , where 𝛃1 > 0, 𝛃2 > 0 are of the same 

dimension. From the KKT condition, there exists 𝜉1 > 0, 𝝀1 ≥ 𝟎, 𝜇1 ≥ 0 and 𝜉2 > 0, 𝝀2 ≥

0, 𝜇2 > 0 such that 

2𝜉1𝐅𝑛 [
𝛃1

𝟎
] + 𝜇1𝟏 = 𝐝𝑛 + [

𝟎
𝝀1

], 

2𝜉2𝐅𝑛 [
𝛃2

𝟎
] + 𝜇2𝟏 = 𝐝𝑛 + [

𝟎
𝝀2

]. 

(Note that from (1), formulation (3) is feasible when 𝑐 ≥ 1. From proposition 1, 

formulation (4) satisfies 𝜷⊤𝐅𝑛𝜷 = 1. So 𝜉1, 𝜉2 ≠ 0.) 

We can see that for any 𝜷̌(t) = 𝑡𝛃1 + (1 − 𝑡)𝛃2, 𝑡 ∈ [0,1], 𝜷̌(𝑡) > 0 and  

𝐅𝑛 [𝜷̌(𝑡)
𝟎

] + (
𝜇1

2𝜉1
𝑡 +

𝜇2

2𝜉2
(1 − 𝑡)) 𝟏 = (

1

2𝜉1
𝑡 +

1

2𝜉2
(1 − 𝑡)) 𝐝𝑛 + [

0
1

2𝜉1
𝝀1 +

1

2𝜉2
𝝀2

]. 

By taking 

𝜷̃(𝑡) =
𝜷̌(𝑡)

√𝜷̌(𝑡)⊤𝐅11,𝑛𝜷̌(t)
; 𝜉(𝑡) = √𝜷̌(𝑡)⊤𝐅11,𝑛𝜷̌(𝑡) (

1

2𝜉1
𝑡 +

1

2𝜉2
(1 − 𝑡))⁄ ; 

𝜇(𝑡) = (
𝜇1

2𝜉1
𝑡 +

𝜇2

2𝜉2
(1 − 𝑡)) (

1

2𝜉1
𝑡 +

1

2𝜉2
(1 − 𝑡))⁄ > 0 and 𝝀̃(𝑡) = [

0
1

2𝜉1
𝝀1+

1

2𝜉2
𝝀2

1

2𝜉1
𝑡+

1

2𝜉2
(1−𝑡)

], 

we can see that [𝜷̃
(𝑡)

𝟎
] satisfies the KKT condition, and thus it is a solution to formulation  

(4). Here 𝐅11,𝑛  is the upper-left block of 𝐅𝑛. Let 𝑐(𝑡) = 𝜷̃(𝑡)⊤𝟏.  
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Because 𝜷̃(𝑡) is a continuous function with 𝜷̃(0) = 𝜷1 and 𝜷̃(1) = 𝜷2 , and 𝑐(𝑡) is a 

continuous function on [0,1] with 𝑐(0) = 𝑐1 and 𝑐(1) = 𝑐2 . For all 𝑐̃ ∈ (𝑐1 , 𝑐2), there 

exists 𝑡′ ∈ [0,1] such that 𝑐(𝑡′) = 𝑐̃, and the corresponding [𝜷̃(𝑡′)
0

] is the solution of 

formulation (4).  

Case 2: 𝑐1 , 𝑐2 ∉ 𝐼.  

In formulation (4), the constraint 𝜷⊤𝟏 < 𝑐 is inactive for 𝑐 = 𝑐𝑖 , 𝑖 = 1, 2. Therefore,  

𝜷(𝑐1) = 𝜷(𝑐2) = 𝜷(𝑐̃) when 𝑐̃ ∈ (𝑐1 , 𝑐2).  

Case 3: 𝑐1 ∈ 𝐼 and 𝑐2 ∉ 𝐼. 

Let 𝑐0 = 𝜷(𝑐2)
⊤𝟏, then 𝜷(𝑐2) = 𝜷(𝑐0). If 𝑐̃ ∈ [𝑐0 , 𝑐2], then the solution 𝜷(𝑐2) = 𝜷(𝑐̃) 

and thus ℐ(𝑐̃) = ℐ(𝑐2). If 𝑐̃ ∈ [𝑐1, 𝑐0], we know ℐ(𝑐1) = ℐ(𝑐2) = ℐ(𝑐0). Then ℐ(𝑐0) =

ℐ(𝑐2) = ℐ(𝑐̃) is derived from Case 1.  

A.6  Proof of Proposition 3 

Proof: Let 𝐝𝑛 = (𝐝1,𝑛 , 𝐝2,𝑛)
⊤

 where 𝐝1,𝑛 ∈ ℝ𝑚×1 and 𝐝2,𝑛 = ℝ(𝑝−𝑚)×1. Also, partition 

𝐅𝑛 as 𝐅𝑛 = [
𝐅11,𝑛 𝐅12,𝑛

𝐅21,𝑛 𝐅22,𝑛
], where 𝐅11,𝑛 ∈ ℝ𝑚×𝑚, and partition 𝑭 similarly as 𝑭 =

[
𝑭11 𝑭12

𝑭21 𝑭22
].   

If 𝐴(𝐗𝑛, 𝐘𝑛) is true, formulation (4) has a unique optimal solution 𝜷 = [𝜷1, 0] where 𝜷1 >

0 from Proposition 1. By the KKT condition, 𝐴(𝐗𝑛, 𝐘𝑛) is equivalent with the following 

statement: there exists 𝜇, 𝜉 ≥ 0, 𝜷1 > 0 and 𝝀2 > 0, such that 
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{
2𝜉𝐅11,𝑛𝜷1 + 𝜇𝟏𝑚 = 𝐝1,𝑛

2𝜉𝐅21,𝑛𝜷1 + 𝜇𝟏𝑝−𝑚 = 𝐝2,𝑛 + 𝝀2
. 

From condition (A), we have 𝛾0 > 0 and 𝜇0 > 0 such that  

𝑭11𝜸𝟎 + 𝜇0𝟏𝑚 = 𝒅1 . 

By the proof of Proposition 2.6 in Lyons [15], a sample distance covariance for 

one-dimensional random variables 𝑋(𝑖), 𝑌 is a U-statistic. From 𝐸|𝑋(𝑖)|
2𝑣

< ∞ and 

𝐸|𝑌|2𝑣 < ∞, we know that the 𝑣𝑡ℎ moment of the kernel of this U-statistic is finite. By 

Theorem B in chapter 5.4 in Serfling [88], we have the following result on the deviation 

between 𝐝𝑛 and 𝒅: for any 𝛿 > 0, 

𝑃(|(𝒅)𝑖 − (𝐝𝑛)𝑖| > 𝛿) ≤ 𝑂(𝑛1−𝑣). 

Similarly, we have  

𝑃(|(𝑭)𝑖𝑗 − (𝐅𝑛)𝑖𝑗| > 𝛿) ≤ 𝑂(𝑛1−𝑣). 

Therefore,  

𝑃(‖𝒅1 − 𝐝1,𝑛‖ > 𝛿) ≤ 𝑂(𝑛1−𝑣), 

𝑃(‖𝐝2,𝑛‖ > 𝛿) ≤ 𝑂(𝑛1−𝑣), and 

𝑃(‖𝑭11 − 𝐅11,𝑛‖ > 𝛿) ≤ 𝑂(𝑛1−𝑣). 

Here and thereafter all norms are denoted as the ℓ∞ norm. Let 𝛾0 be the solution of 𝑭11𝛾0 =

𝒅1 − 𝜇0𝟏𝑚 . When ‖𝑭11 − 𝐅11,𝑛‖ ≤ 𝛿 and ‖𝒅1 − 𝐝1,𝑛‖ ≤ 𝛿, consider the linear system 

𝐅11,𝑛𝛾𝑛 = 𝐝1,𝑛 − 𝜇0𝟏𝑚. From Franklin [89], Section 6.10, equation (16), the solution to 
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the linear system 𝜸𝑛  satisfies ‖𝜸𝑛 − 𝜸0‖ ≤ 𝐾𝛿, where 𝐾 is a constant independent with 𝑛. 

Therefore, for any 𝛿 > 0 we have 𝑃(‖𝜸𝑛 − 𝜸0‖ > 𝛿) = 𝑂(𝑛1−𝑣). 

Now let 𝐷1 = {𝜸𝑛: ‖𝜸𝑛 − 𝛄0‖ ≥
‖𝛄0‖

2
}, and we have  𝑃(𝐷1) = 𝑂(𝑛1−𝑣). Also let 

𝐷2 = {𝐅21,𝑛𝜸𝑛 + 𝜇0𝟏𝑝−𝑚 ≯ 𝐝2,𝑛}, we have 𝑃(𝐷2) ≤ 𝑃(𝜇0𝟏𝑝−𝑚 ≯ 𝐝2,𝑛) ≤

∑ 𝑃(𝑑𝑖,𝑛 > 𝜇0)
𝑝
𝑖=𝑚+1 = 𝑂(𝑛1−𝑣) . In summary, 𝑃(𝐷1 ∪ 𝐷2) = 𝑂(𝑛1−𝑣).  

If event 𝐷1 is false, we have 𝐅11,𝑛𝜸𝑛 + 𝜇0𝟏𝑚 = 𝐝1,𝑛  with 𝜸𝑛 > 0; 𝜇0 > 0; if 𝐷2 is 

false, we have 𝐅21,𝑛𝛄𝑛 + 𝜇0𝟏𝑝−𝑚 > 𝐝2,𝑛  By letting 𝝀̂2 = 𝐅21,𝑛𝜸𝑛 + 𝜇0𝟏𝑝−𝑚 − 𝐝2,𝑛 > 0, 

𝜷̂𝑛 =
𝜸𝑛

√𝜸𝑛𝑭𝑛𝜸𝑛
, and 𝜉𝑛 =

1

2
√𝜸𝑛

⊤𝐹𝑛𝜸𝑛 , we find that 𝛽̂𝑛 , 𝜉𝑛, 𝜇0 and 𝜆̂2 satisfy the KKT 

condition. In such case, 𝜷̂𝑛  is the solution of the optimization problem with 𝑐 = 𝜷̂𝑛
⊤𝟏. 

Therefore, the probability that there exist a 𝑐 such that the optimization solution is 

consistent is 1 − 𝑂(𝑛1−𝑣).  

A.7  Proof of Proposition 4 

Proof: First, we claim that if there exists a value 𝑐 > 1 such that formulation (4) has a 

solution 𝜷𝑛 = (𝜷1,𝑛
⊤  0)

⊤
 with 𝜷1,𝑛 > 0 then there exists 𝜸1,𝑛 ≥ 0 and 𝜇𝑛 ≥ 0 such that 

𝐝1,𝑛 = 𝐅11,𝑛𝜸1,𝑛 + 𝜇𝑛𝟏𝑚 . 

By the KKT condition, formulation (4) has a solution 𝜷𝑛 = (𝜷1,𝑛
⊤  0)

⊤
 with 𝜷1,𝑛 >

0 if and only if the following equations hold:  

{

2𝜉𝑛𝐅11,𝑛𝜷1,𝑛 = 𝐝1,𝑛 − 𝜇𝑛𝟏𝑚

2𝜉𝑛𝐟1,𝑛
⊤ 𝜷1,𝑛 = d∗,𝑛 − 𝜇𝑛 + 𝜆∗,𝑛

2𝜉𝑛𝐅12,𝑛𝜷1,𝑛 = 𝐝2,𝑛 − 𝜇𝑛𝟏𝑝−𝑚−1 + 𝝀2,𝑛

, 
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with 𝜉𝑛 ≥ 0; 𝜇𝑛 ≥ 0; 𝜆∗,𝑛 ≥ 0 and 𝝀2,𝑛 ≥ 0. Here 𝜆∗,𝑛 is the dual variable to constraint 

𝛽𝑚+1 ≥ 0. As 𝑐 > 1, we know 𝜉𝑛 > 0 from the proof of Propositions 1and Proposition 2.  

The conclusion of (1) is equivalent to that 𝐝1 is within the cone spanned by the 

columns of 𝐅11 and 𝟏𝑚 . Suppose that this is not true, then by separation theorem, there 

exists some 𝐮 ∈ ℝ𝑚 such that 𝐝1
⊤𝐮 > 0 and 𝐅11(: , 𝑚)⊤𝐮 < 0, which means that there 

exists some 𝑁, so that 𝐝1,𝑛
⊤ 𝐮 > 0 and 𝐅11,𝑛(: , 𝑚)⊤𝐮 < 0 after 𝑛 > 𝑁 with probability 1, 

which further indicates that for some 𝑁, 𝐝1,𝑛  is not within the cone spanned the columns 

of 𝐅11,𝑛  when 𝑛 > 𝑁 with probability 1. This contradicts the first equation. Now we are 

clear that lim
𝑛→∞

𝑃(∃𝜸1,𝑛 > 0, 𝜇𝑛 ≥ 0 s. t. 𝐝1,𝑛 = 𝐅11,𝑛𝜸1,𝑛 + 𝜇𝑛𝟏𝑚) = 1. We further show 

that ∃ 𝜸1 > 0, 𝜇 ≥ 0, such that 𝒅1 = 𝑭11𝜸1 + 𝜇𝟏𝑚.  

Let G1 = {(𝒙1 , … ,𝒙𝑚, 𝒚): ∃𝜆1 , … , 𝜆𝑚 > 0, 𝜇 ≥ 0, s.t. 𝒚 = ∑λi𝒙𝑖 + 𝜇𝟏}. From that 

𝑃 {(𝐅11,𝑛
(1)

, … , 𝐅11,𝑛
(𝑚)

, 𝐝1,𝑛) ∈ 𝐺1} → 1, and that 𝐝1,𝑛 → 𝒅1 , 𝐅11,𝑛 → 𝑭11  with probability 1, 

we know that (𝑭11
(1)

, … , 𝑭11
(𝑚)

, 𝒅1) lies in G1, i.e., there exist 𝜸1 ≥ 0 and 𝜇 ≥ 0 such that 

𝒅1 = 𝑭11𝜸1 + 𝜇𝟏.  

(2) With assumption 2, the result from (1) indicates 

[𝑭11
(1)

0
] 𝛾1

(1)
+ [𝑭11

(2)

0
] 𝛾1

(2)
+ ⋯ + [𝑭11

(𝑚)

0
] 𝛾1

(𝑚)
+ [

0
1
]𝛾∗ + 𝟏𝑚+1𝜇 = [

𝒅1

𝑑∗
]. 

with 𝛄1 = [𝛾1
(1)

,… , 𝛾1
(𝑚)

]
⊤

≥ 0, 𝜇 ≥ 0. and 𝛾∗ = 𝑑∗ − 𝜇 > 0 from assumption 3.  
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From assumption 3, we also have that 𝑭21𝜸1 + 𝑑∗𝒇2 > 𝐝2. By letting 𝝀 = 𝑭12
⊤ 𝜸1 +

𝛾∗𝒇2 − 𝒅2 + 𝜇𝟏 = 𝑭12
⊤ 𝜸1 + 𝑑∗𝒇2 − 𝒅2 + 𝜇(𝟏 − 𝒇𝟐) > 0, we have 𝜸1 ≥ 0, 𝜇 ≥ 0, 𝝀 > 0, 

such that 

[
𝑭11

(1)

0

𝑭12
⊤(1)

] 𝛾1
(1)

+ ⋯ + [
𝑭11

(𝑚)

0

𝑭12
⊤(𝑚)

]𝛾1
(𝑚)

+ [
0
1
𝒇2

] 𝛾∗ = [
𝒅1

𝑑∗

𝒅2

] − 𝜇𝟏 + [
𝟎
0
𝝀
]. 

With probability one, we have 𝐅𝑛
(𝑘)

→ 𝑭(𝑘)  for all 𝑘 = 1,2, … ,𝑚, and 𝐝𝑛 → 𝒅 as 

𝑛 → ∞. The probability that there exists 𝜸1,𝑛 = (𝛾𝑛
(1)

,… , 𝛾𝑛
(𝑚)

) ≥ 0 and 𝛾∗,𝑛 > 0, 𝜇 ≥ 0 

and 𝝀 > 0 such that  

[

𝐅11,𝑛
(1)

0

𝐅21,𝑛
(1)

] 𝛾𝑛
(1)

+ ⋯ + [

𝐅11,𝑛
(𝑚)

0

𝐅21,𝑛
(𝑚)

] 𝛾𝑛
(𝑚)

+ [
0
1

𝐟2,𝑛

] 𝛾∗,𝑛 = [

𝐝1,𝑛

d∗,𝑛

𝐝2,𝑛

] − 𝜇𝟏 + [
𝟎
0
𝝀
] 

goes to 1.  

From 𝜸𝑛 = (𝜸1,𝑛, 𝛾∗,𝑛 , 𝟎𝑝−𝑚−1), we can calculate 𝜷𝑛 =
𝜸𝑛

√𝜸𝑛
⊤𝐅𝑛𝜸𝑛

, and 𝜉𝑛 =

1

2
√𝜸𝑛

⊤𝐅𝑛𝜸𝑛 . Because (𝜷𝑛, 𝜉𝑛, 𝜇, 𝜆) satisfies the KKT condition of problem (4), 𝜷𝑛  is a 

solution to formulation (4).  
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APPENDIX B. 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3B.1  Proofs for 

Proposition 6 and Proposition 7 

Proof for Proposition 6  

The proof follows a similar procedure in [63]. The matrix 𝐃𝑆 can be represented by 𝐂𝑑
⊤𝚲𝐂𝑑, 

where Λ is a diagonal matrix with  

𝚲𝑖,𝑖 = 𝑠𝑖,𝑑 ≔ 2(1 − cos[(𝑖 − 1)𝜋 𝑑⁄ ]); [𝐂𝑑]𝑖,𝑗 = {
√

2

𝑑
cos((𝑖 − 0.5)(𝑗 − 1)𝜋) , 𝑗 > 1

1 √𝑑⁄ , 𝑗 = 1

. 

Note that 𝐂𝑑  is the type-2 Discrete Cosine Transformation matrix according to [90], and it 

is an orthogonal matrix. Therefore, we have 𝐃𝑆
−1 = 𝐂𝑑

⊤𝚲−1𝐂𝑑. Note that  𝑝𝑆(𝐱) =

𝜆1𝐱⊤𝐃𝑆
⊤𝐃𝑆𝐱 is a quadratic function, and thus prox

𝜂𝑝𝑆
[𝐱] = (𝐈 + 𝜆1𝐃𝑆

⊤𝐃𝑆)
−1𝐱 =

𝐂𝑑
⊤(𝐈 + 𝜆1𝚲2)−1𝐂𝑑𝐱. Therefore, the proximal operator can be calculated by first applying 

the type-2 discrete cosine transform on 𝐱, then shrink the 𝑖-th element of the resulted vector 

by a factor  

(𝐈 + 𝜆1𝚲2)𝑖,𝑖
−1 = [1 + 𝜆1𝑠𝑖 ,𝑑

2 ]
−1

, 

and finally apply inverse cosine transform on the signal.  

Proof for Proposition 7 

The proof of Proposition 7 follows a similar idea of the proof in Proposition 6. According 

to [65], the discretized matrix 𝐑𝐼 has the following form of eigen value decomposition  

𝐑𝐼 = 𝐂𝑚𝑛
⊤ 𝚲𝑚𝑛𝐂𝑚𝑛 , 
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where 𝚲𝑚𝑛
2  is a 𝑚𝑛 × 𝑚𝑛 diagonal matrix whose diagonal element corresponding to the 

(𝑖, 𝑗) pixel on the image is given as (𝑠𝑖,𝑚 + 𝑠𝑗,𝑛)
2
, and 𝐂𝑚𝑛 = 𝐂𝑚 ⊗ 𝐂𝑛  is the matrix that 

performs 2D type-2 discrete cosine transform over the image signal. Therefore,  

prox
𝜂𝑝𝑆

[vec(𝐓)] = (𝐈 + 𝜆1𝐑𝐼)
−1𝐱 = 𝐂𝑚𝑛

⊤ (𝐈 + 𝜆1𝚲𝑚𝑛
2 )−1𝐂𝑚𝑛 vec(𝐓) 

where the [(𝐈 + 𝜆1𝚲𝑚𝑛
2 )−1]𝑖,𝑗 = (1 + 𝜆1(𝑠𝑖,𝑚 + 𝑠𝑗,𝑛)

2
)

−1

. Proposition 7 immediately 

follows.  

B.2  The specifications of simulating images and curves in Section 3.4.2 

The detailed procedure for generating 𝐁𝑖𝑗,𝑘 and 𝐁𝑘0 that corresponding to multiple curve 

or image quality measurements in stage 𝑘 = 1,… ,4 are detailed as follows.  

Step 1: generate offset matrices 𝐁10 and 𝐁20  

o First, generate a 𝑚𝑘 × 𝑚𝑘 positive definite matrix 𝚺 = 𝚪⊤𝐒𝚪, denoting the 

cross-covariance between curves generated from stage 𝑘. 

▪ 𝐒 is a diagonal matrix, whose 𝑚𝑘 diagonal entries are generated from 

𝑈(0,1).  

▪ 𝚪 is a random orthogonal matrix of order 𝑚𝑘.  

o Then, we generate 𝐁𝑘0 from 𝑚𝑘-channel multivariate Gaussian processes (GP) 

of length 𝑛𝑘, with (1) mean zero; (2) Matérn correlation function with parameter 

𝜈 = 10, ℓ = 20 [91]; and (3) cross-covariance 𝚺.  

Step 2: generate offset matrices 𝐁30 and 𝐁40 
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o 𝐁𝑘0 is generated from a two-dimensional Gaussian process on a grid 

{(𝑖, 𝑗) ∈ ℤ2, 1 ≤ 𝑖 ≤ 𝑚𝑘 , 1 ≤ 𝑗 ≤ 𝑛𝑘}, with (1) mean 0 and (2) Gaussian 

covariance function with parameter 𝜃𝑘, 𝜎
2. We selected 𝜃3 = 0.01, 𝜃4 = 0.02.  

Step 3: generate effect matrices 𝐁𝑖𝑗,𝑘 ’s  

o First, we generate 𝑟𝑘  variation patterns on stage 𝑘. Each variation pattern 𝑣 =

1,… , 𝑟𝑘  is represented as a matrix 𝐀𝑘,𝑣 ∈ ℝ𝑚𝑘×𝑛𝑘 , with the same size of 𝐘𝑘. 

𝐀𝑘,𝑣 is generated with the same procedure as is done for 𝐁𝑘0 in the previous 

two steps corresponding to 𝑘 = 1,2 or 𝑘 = 3,4.  

o The effect matrix 𝐁𝑖𝑗,𝑘 corresponding to every non-effective input 𝑢𝑖𝑗 is 

specified as O.  

o The effect matrix 𝐁𝑖𝑗,𝑘 corresponding to every non-effective input 𝑢𝑖𝑗 is 

specified as a fixed linear combination of latent variation patterns 𝐀𝑘,𝑣. 

Therefore, for all effective 𝑢𝑖𝑗s, 𝐁𝑖𝑗,𝑘 is generated by 𝐁𝑖𝑗,𝑘 = ∑ 𝜉𝑖,𝑗,𝑘,𝑣𝐀𝑘,𝑣
𝑟𝑘
𝑣=1 , 

where the coefficients 𝜉𝑖,𝑗,𝑘,𝑣 are randomly selected from 𝑈(0,1) random 

variables.  

B.3  Illustrations of the estimated parameters in Section 3.4.3 

The Figure 0.1 (a)-(d) illustrates the estimated 𝐁̂𝑖𝑗,𝑘 , 1 ≤ 𝑖 ≤ 𝑘 ≤ 4, 𝑗 = 1,2,3 for the 

parameter ℬ = {𝐁𝑖𝑗,𝑘: 1 ≤ 𝑖 ≤ 𝑘 ≤ 4; 𝑗 = 1,… ,10} in model (1),  

𝐘𝑘 = 𝐁𝑘0 + ∑∑ 𝑢𝑖𝑗𝐁𝑖𝑗,𝑘

𝑞𝑖

𝑗=1

𝑘

𝑖=1

+ 𝐄𝑘 (1) 
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for one run of the simulation Setting (1). Here, every matrix 𝐁𝑖𝑗,𝑘 represents how the 𝑗th 

process inputs from stage 𝑖 relate to the process output at stage 𝑘. In this run of the 

simulation, 𝐁̂𝑖𝑗,𝑘 = 𝐎 for all 𝑗 = 4, … ,10, and thus all corresponding 𝑢𝑖𝑗’s are correctly 

identified as ineffective inputs. Above each subfigure in Figure 0.1 (a)-(d) is the parametric 

matrix that it illustrates. Specifically, Figure 0.1 (a) illustrates 𝐁1𝑗,𝑘 for 𝑗 = 1,2,3 and 𝑘 =

1,… ,4, representing how the first three inputs in stage 1 affect stages 1,… ,4. The 

subfigures in the first two columns in Figure 0.1 (a) correspond to the effect matrices for 

outputs from stages 1 and 2, and thus they are in the form of smooth curves. The last two 

columns in Figure 0.1 (a) correspond to the effect matrices for the output from stages 3 and 

4, and they are in the form of smooth images. These forms are consistent with the true 

system parameter in ℬ.  

 The interpretation of Figure 0.1 (b)-(d) are similar. For example, Figure 0.1 (b) 

illustrates the effect of the process inputs from stage 2 on the process output for other 

stages. Due to the cascading assumption, the process inputs from stage 2 have no effect on 

the process outputs for stage 1, and thus the subfigures in the first column of Figure 0.1 (b) 

are blank. The effect of process inputs from stage 2 on process outputs of stage 2 is in the 

form of multiple smooth curves, and the effect of process inputs from stage 2 on process 

outputs of stages 3 and 4 are in the form of smooth images, as shown in the second, third 

and fourth columns of Figure 0.1 (b). Figures 0.1 (c) and (d) have two and three columns, 

respectively, that are blank. The reason is that the process inputs from stage 3 only affect 

the outputs for stage 3 and 4, and process inputs from stage 4 only affect the outputs for 

stage 4.  
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(a) The matrices 𝐁̂1𝑗,𝑘 for 𝑗 = 1,2,3 and 𝑘 = 1,2,3 and 4, representing the effects of 

effective inputs from stage 1 to the outputs in all stages.  
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(b) The matrices 𝐁̂2𝑗,𝑘  for 𝑗 = 1, 2, 3 and 𝑘 = 2, 3 and 4, representing the effects of 

effective inputs from stage 2 to the outputs in the last three stages.  
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(c) The matrices 𝐁̂3𝑗,𝑘  for 𝑗 = 1,2,3 and 𝑘 = 3,4, representing the effects of effective 

inputs from stage 3 to the outputs in the last two stages.  
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(d) The matrices 𝐁̂4𝑗,𝑘  for 𝑗 = 1,2,3 and 𝑘 = 4, representing the effects of the inputs 

from the last stage to the outputs in the last stage.  

Figure 0.1 The estimated matrices 𝐁̂𝑖𝑗,𝑘, for 𝑖 =1, 2, 3 and 4 respectively. 
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APPENDIX C.  

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

C.1  Derivation of Proposition 10 

The proximal operator of 𝜂𝑓1  The 𝑓1(𝐁) can be written as a least-square form using   

𝑓1(𝐁) = ‖𝐗 − 𝐇𝐁𝐘‖𝐹
2 = ∑‖𝐗𝑖 − 𝐇𝑖𝐁⋅,𝑖𝐘‖

𝐹

2
𝐼

𝑖=1

= ∑‖vec(𝐗𝑖)− (𝐘⊤ ⊗ 𝐇𝑖)vec(𝐁⋅,𝑖)‖2

2
𝐼

𝑖=1

 

According to Parikh and Boyd [61], the proximal operator for 𝑞(𝐱)  = ‖𝐜 − 𝐏𝐱‖2
2 is 

prox
𝜂𝑞

[𝐱] ≔ argmin
𝐭

{𝜂𝑞(𝐭) +
1

2
‖𝐭 − 𝐱‖2

2} = (𝐄 + 𝜂𝐏⊤𝐏)−1(𝐱 + 𝜂𝐏⊤𝐜). (1) 

In our setting, we let 𝐏𝑖 = 𝐘⊤ ⊗ 𝐇𝑖 , 𝐜 = vec(𝐗𝑖), and thus  

𝐏𝑖
⊤𝐏𝑖 = (𝐘𝐘⊤)⊗ 𝐄𝐽𝑖×𝐽𝑖

; 𝐏𝑖
⊤𝐜 = (𝐘 ⊗ 𝐇𝑖

⊤) vec(𝐗𝑖) = vec(𝐇𝑖
⊤𝐗𝑖𝐘

⊤) 

Due to the separable property of the proximal operator, we know if 𝐙 = prox
𝜂𝑓1

[𝐀], we 

have  

vec(𝐙⋅,𝑖) = (𝐄𝐾𝐽𝑖×𝐾𝐽𝑖
+ 𝜂𝐏𝑖

⊤𝐏𝑖)
−1

[vec(𝐀⋅,𝑖) + 𝜂𝐏𝑖
⊤𝐜] 

Thus, the result follows.  

The proximal operator of 𝜂𝑓2  This term can be obtained from the proximal operator of ℓ1  

norm, and it is given in Parikh and Boyd [61].  
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The proximal operator of 𝜂𝑓3  This term is the sum of ℓ2 norms. By the separable property 

of the proximal operator, the result follows from the proximal operator of ℓ2 norms given 

in Parikh and Boyd [61]: prox𝜂‖⋅‖2
[𝐱] = [1 −

𝜆

‖𝐱‖2
]
+

𝐱. 

The proximal operator of 𝜂𝑓4  The term 𝑓4(𝐁) = ∑ 𝐼‖𝐛𝑘,⋅‖2
=1

𝐾
𝑘=1  is separable for all 

𝐛1,⋅, … , 𝐛𝐾,⋅. The result follows from prox𝐼‖⋅ ‖2=1
[𝐱] = proj{𝐳:‖𝐳‖2=1}[𝐱] =

𝐱

‖𝐱‖2
.  

C.2  Proof of Proposition 11 

The proximal operator of 𝜂𝑓1  Let𝐲⋅,𝑡 be the t-th column of 𝐘, and we have 𝑓1(𝐘) =

∑ ‖𝐱 ⋅,𝑡 − 𝐇𝐁𝐲⋅,𝑡‖2

2𝑇
𝑡=1 . By the separable property of the proximal operator, we take 𝐏𝑡 =

𝐇𝐁, 𝐜 = 𝐱⋅,𝑡. Using Equation (1), we derive that if 𝐙 = prox
𝜂𝑓1

[𝐀],  

𝐙⋅,𝑡 = (𝐄𝐾×𝐾 + 𝜂𝐁⊤𝐁)−1[𝐀⋅,𝑡 + 𝜂𝐁⊤𝐇⊤𝐱⋅,𝑡], for 𝑡 = 1,… ,𝑇. 

The proximal operator of 𝜂𝑓2   See the proof of Proposition 2 in Wang and Shi [8].  

The proximal operator of 𝜂𝑓3  Note that 𝑓3(𝐘) = 𝜆4‖𝐘‖1,1 + ∑ ∑ 𝐼𝑦𝑘,𝑡≥0
𝐾
𝑘=1

𝑇
𝑡=1 =

∑ [|𝑦𝑘,𝑡| + 𝐼𝑦𝑘,𝑡≥0]𝑘,𝑡 . For 𝑞(𝑦) = |𝑦| + 𝐼𝑦≥0, we have  

prox𝜂𝑞[𝑦] = argmin
𝑡

{𝜂|𝑡| + 𝜂𝐼𝑡≥0 +
1

2
|𝑡 − 𝑦|2}

= argmin
𝑡≥0

{𝜂𝑡 + (𝑡 − 𝑦)2} = max(𝑦 − 𝜂,0).  

Due to the separable property of 𝑓3, we know that if 𝐙 = prox
𝜂𝑓3

[𝐀], 𝑍𝑘,𝑡 =

max(𝐴𝑘,𝑡 − 𝜆4𝜂, 0) for all 𝑘 = 1,… , 𝐾 and 𝑡 = 1,… , 𝑇.  



141 

 

REFERENCES 

[1] J. Shi, Stream of variation modeling and analysis for multistage manufacturing 

processes. CRC Press, 2006. 

[2] R. Jin and J. Shi, "Reconfigured piecewise linear regression tree for multistage 

manufacturing process control," IIE Trans, vol. 44, no. 4, pp. 249-261, 2012. 

[3] J. Li and J. Shi, "Knowledge discovery from observational data for process control 

using causal Bayesian networks," IIE Trans, vol. 39, no. 6, pp. 681-690, 2007. 

[4] D. C. Montgomery, Introduction to statistical quality control. John Wiley & Sons, 

2007. 

[5] K. Abidin, K. Lee, I. Ibrahim, and A. Zainudin, "Problem Analysis at a 
Semiconductor Company: A Case Study on IC Packages," Journal of Applied 

Sciences, pp. 1-8, 2011. 

[6] V. Vakharia, V. Gupta, and P. Kankar, "A comparison of feature ranking techniques 
for fault diagnosis of ball bearing," Soft Computing, vol. 20, no. 4, pp. 1601-1619, 

2016. 

[7] C. Shao et al., "Feature selection for manufacturing process monitoring using cross-

validation," Journal of Manufacturing Systems, vol. 32, no. 4, pp. 550-555, 2013. 

[8] A. Wang and J. Shi, "Holistic modeling and analysis of multistage manufacturing 
processes with sparse effective inputs and mixed profile outputs," IISE 

Transactions, pp. 1-15, 2020, doi: 10.1080/24725854.2020.1786197. 

[9] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, 

algorithms, and engineering applications. Siam, 2001. 

[10] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005. 

[11] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the 

Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996. 



142 

 

[12] U. Grömping, "Relative importance for linear regression in R: the package 

relaimpo," Journal of statistical software, vol. 17, no. 1, pp. 1-27, 2006. 

[13] N.-H. Choi, K. Shedden, G. Xu, X. Zhang, and J. Zhu, "Comment: Ridge 
Regression, Ranking Variables and Improved Principal Component Regression," 

Technometrics, vol. 62, no. 4, pp. 451-455, 2020. 

[14] R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, "The mutual information: 
detecting and evaluating dependencies between variables," Bioinformatics, vol. 18, 

no. Suppl. 2, pp. S231-S240, 2002. 

[15] R. Lyons, "Distance Covariance in Metric Spaces," (in English), Ann Probab, vol. 

41, no. 5, pp. 3284-3305, Sep 2013. 

[16] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, "Measuring and testing dependence 
by correlation of distances," The annals of statistics, vol. 35, no. 6, pp. 2769-2794, 

2007. 

[17] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf, "Kernel 

methods for measuring independence," J Mach Learn Res, vol. 6, no. Dec, pp. 

2075-2129, 2005. 

[18]  A. Gretton et al., "Kernel Constrained Covariance for Dependence Measurement," 

in AISTATS, 2005, vol. 10, pp. 112-119.  

[19] G. J. Székely and M. L. Rizzo, "Energy statistics: A class of statistics based on 

distances," Journal of statistical planning and inference, vol. 143, no. 8, pp. 1249-

1272, 2013. 

[20] J. D. Huling and S. Mak, "Energy Balancing of Covariate Distributions," arXiv 

preprint arXiv:2004.13962, 2020. 

[21] D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu, "Equivalence of 

Distance-Based and Rkhs-Based Statistics in Hypothesis Testing," (in English), 

Ann Stat, vol. 41, no. 5, pp. 2263-2291, Oct 2013, doi: 10.1214/13-Aos1140. 

[22] L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature Selection via 

Dependence Maximization," (in English), J Mach Learn Res, vol. 13, pp. 1393-

1434, May 2012. [Online]. Available: <Go to ISI>://WOS:000305456600005. 



143 

 

[23] R. Z. Li, W. Zhong, and L. P. Zhu, "Feature Screening via Distance Correlation 

Learning," J Am Stat Assoc, vol. 107, no. 499, pp. 1129-1139, Sep 2012. 

[24] J. Kong, S. J. Wang, and G. Wahba, "Using distance covariance for improved 
variable selection with application to learning genetic risk models," (in English), 

Stat Med, vol. 34, no. 10, pp. 1708-1720, May 10 2015, doi: 10.1002/sim.6441. 

[25] C. D. Yenigun and M. L. Rizzo, "Variable selection in regression using maximal 
correlation and distance correlation," (in English), J Stat Comput Sim, vol. 85, no. 

8, pp. 1692-1705, May 24 2015, doi: 10.1080/00949655.2014.895354. 

[26] A.-A. Christidis, L. Lakshmanan, E. Smucler, and R. Zamar, "Split Regularized 

Regression," Technometrics, vol. 62, no. 3, pp. 330-338, 2020. 

[27] H. C. Peng, F. H. Long, and C. Ding, "Feature selection based on mutual 
information: Criteria of max-dependency, max-relevance, and min-redundancy," 

(in English), Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 

27, no. 8, pp. 1226-1238, Aug 2005, doi: Doi 10.1109/Tpami.2005.159. 

[28] X. Huo and G. J. Székely, "Fast computing for distance covariance," 

Technometrics, vol. 58, no. 4, pp. 435-447, 2016. 

[29] G. J. Székely and M. L. Rizzo, "Testing for equal distributions in high dimension," 

InterStat, vol. 5, no. 16.10, pp. 1249-1272, 2004. 

[30] G. J. Székely and M. L. Rizzo, "The energy of data," Annual Review of Statistics 

and Its Application, vol. 4, pp. 447-479, 2017. 

[31] N. Simon and R. Tibshirani, "Comment on" Detecting Novel Associations In Large 
Data Sets" by Reshef Et Al, Science Dec 16, 2011," arXiv preprint 

arXiv:1401.7645, 2014. 

[32] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," The 

Annals of statistics, vol. 32, no. 2, pp. 407-499, 2004. 

[33] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for 
the support vector machine," J Mach Learn Res, vol. 5, no. Oct, pp. 1391-1415, 

2004. 



144 

 

[34] S. Rosset and J. Zhu, "Piecewise linear regularized solution paths," The Annals of 

Statistics, vol. 35, no. 3, pp. 1012-1030, 2007. 

[35] R. J. Tibshirani and J. Taylor, "The Solution Path of the Generalized Lasso," (in 

English), Ann Stat, vol. 39, no. 3, pp. 1335-1371, Jun 2011. 

[36] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, "Pathwise coordinate 

optimization," The annals of applied statistics, vol. 1, no. 2, pp. 302-332, 2007. 

[37] R. H. Lindeman, "Introduction to bivariate and multivariate analysis," 1980.  

[38] H. Zou, "The adaptive lasso and its oracle properties," (in English), J Am Stat Assoc, 

vol. 101, no. 476, pp. 1418-1429, 2006. 

[39] J. Huang, S. Ma, and C.-H. Zhang, "Adaptive Lasso for sparse high-dimensional 

regression models," Stat Sinica, pp. 1603-1618, 2008. 

[40] W. H. McIlhagga, "penalized: A MATLAB toolbox for fitting generalized linear 

models with penalties," 2016. 

[41] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, "Permutation importance: a 

corrected feature importance measure," Bioinformatics, vol. 26, no. 10, pp. 1340-

1347, 2010. 

[42] A. J. McEvoy, L. Castaner, and T. Markvart, Solar cells: materials, manufacture 

and operation. Academic Press, 2012. 

[43] J. Du and X. Zhang, "Online Multichannel Sensing Data Monitoring for Solar Cell 

Manufacturing Process," Chinese Patent ZL 201710580158.4, 2019.  

[44] Y. Nishi and R. Doering, Handbook of semiconductor manufacturing technology. 

CRC Press, 2000. 

[45] H. De Witte et al., "In-line electrical metrology for high-K gate dielectrics 
deposited by atomic layer CVD," Journal of The Electrochemical Society, vol. 150, 

no. 9, pp. F169-F172, 2003. 



145 

 

[46] C.-C. K. Huang and D. Tien, "Overlay goes high order," Microlithography World, 

2008. 

[47]  T. Y. Lee et al., "Study of critical dimension and overlay measurement 
methodology using SEM image analysis for process control," in Metrology, 

Inspection, and Process Control for Microlithography XX, 2006, vol. 6152: 

International Society for Optics and Photonics, p. 61522E.  

[48] C. Zhang, H. Yan, S. Lee, and J. Shi, "Multiple profiles sensor-based monitoring 

and anomaly detection," Journal of Quality Technology, vol. 50, no. 4, pp. 344-

362, 2018. 

[49] D. W. Apley and J. Shi, "Diagnosis of multiple fixture faults in panel assembly," 

Journal of manufacturing science and engineering, vol. 120, no. 4, pp. 793-801, 

1998. 

[50]  Y. Ding, D. Ceglarek, and J. Shi, "Modeling and diagnosis of multistage 
manufacturing processes: part I: state space model," in Proceedings of the 2000 

Japan/USA symposium on flexible automation, 2000, pp. 23-26.  

[51] J. O. Ramsay, "Functional data analysis," Encyclopedia of Statistical Sciences, vol. 

4, 2004. 

[52] Y. Li, H. Sun, X. Deng, C. Zhang, H.-P. Wang, and R. Jin, "Manufacturing quality 
prediction using smooth spatial variable selection estimator with applications in 

aerosol jet® printed electronics manufacturing," IISE Transactions, vol. 52, no. 3, 

pp. 321-333, 2020. 

[53] H. Yan, K. Paynabar, and J. Shi, "Image-based process monitoring using low-rank 

tensor decomposition," IEEE Transactions on Automation Science and 

Engineering, vol. 12, no. 1, pp. 216-227, 2014. 

[54] X. Yue, J. G. Park, Z. Liang, and J. Shi, "Tensor Mixed Effects Model with 

Application to Nanomanufacturing Inspection," Technometrics, pp. 1-14, 2019. 

[55] M. R. Gahrooei, H. Yan, K. Paynabar, and J. Shi, "Multiple Tensor-on-Tensor 

Regression: An Approach for Modeling Processes With Heterogeneous Sources of 

Data," Technometrics, pp. 1-23, 2019, doi: 10.1080/00401706.2019.1708463. 



146 

 

[56] J. O. Ramsay, "Monotone regression splines in action," Statistical science, vol. 3, 

no. 4, pp. 425-441, 1988. 

[57] M. Yuan, A. Ekici, Z. Lu, and R. Monteiro, "Dimension reduction and coefficient 
estimation in multivariate linear regression," Journal of the Royal Statistical 

Society: Series B (Statistical Methodology), vol. 69, no. 3, pp. 329-346, 2007. 

[58] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, "Sparsity and 
smoothness via the fused lasso," Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), vol. 67, no. 1, pp. 91-108, 2005. 

[59] H. Yan, K. Paynabar, and J. Shi, "Anomaly detection in images with smooth 

background via smooth-sparse decomposition," Technometrics, vol. 59, no. 1, pp. 

102-114, 2017. 

[60] C. Zhang, H. Yan, S. Lee, and J. Shi, "Dynamic Multivariate Functional Data 

Modeling via Sparse Subspace Learning," Technometrics, pp. 1-14, 2020. 

[61] N. Parikh and S. Boyd, "Proximal algorithms," Foundations and Trends® in 

Optimization, vol. 1, no. 3, pp. 127-239, 2014. 

[62] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization 
and statistical learning via the alternating direction method of multipliers," 

Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1-122, 2011. 

[63] F. O'Sullivan, "Discretized Laplacian smoothing by Fourier methods," J Am Stat 

Assoc, vol. 86, no. 415, pp. 634-642, 1991. 

[64] G. Wahba, Spline models for observational data. SIAM, 1990. 

[65] M. Buckley, "Fast computation of a discretized thin-plate smoothing spline for 

image data," Biometrika, vol. 81, no. 2, pp. 247-258, 1994. 

[66] M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped 

variables," (in English), J Roy Stat Soc B, vol. 68, pp. 49-67, 2006. 



147 

 

[67]  M. Fazel, H. Hindi, and S. P. Boyd, "A rank minimization heuristic with 
application to minimum order system approximation," in Proceedings of the 

American control conference, 2001, vol. 6: Citeseer, pp. 4734-4739.  

[68] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete cosine transform," IEEE 

transactions on Computers, vol. 100, no. 1, pp. 90-93, 1974. 

[69] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2012. 

[70] J. Jin and J. Shi, "Feature-preserving data compression of stamping tonnage 

information using wavelets," Technometrics, vol. 41, no. 4, pp. 327-339, 1999. 

[71] C. Zhang, H. Yan, S. Lee, and J. Shi, "Weakly correlated profile monitoring based 

on sparse multi-channel functional principal component analysis," IISE 

Transactions, vol. 50, no. 10, pp. 878-891, 2018. 

[72] C. K. Koh, J. Shi, W. Williams, and J. Ni, "Multiple Fault Detection and Isolation 

Using the Haar Transform, Part 2: Application to the Stamping Process," AMSE 
Transactions, Journal of Manufacturing Science and Engineering-transactions, 

vol. 121, pp. 295-299, 1999. 

[73] W. Wang et al., "Multiple event detection and recognition through sparse unmixing 
for high-resolution situational awareness in power grid," IEEE Transactions on 

Smart Grid, vol. 5, no. 4, pp. 1654-1664, 2014. 

[74] F. Li, Y. Shi, A. Shinde, J. Ye, and W. Song, "Enhanced cyber-physical security in 

internet of things through energy auditing," IEEE Internet of Things Journal, vol. 

6, no. 3, pp. 5224-5231, 2019. 

[75] R. Guo, K. Guo, and J. Dong, "Phase partition and online monitoring for batch 

process based on multiway BEAM," IEEE Transactions on Automation Science 

and Engineering, vol. 14, no. 4, pp. 1582-1589, 2016. 

[76] C. Zhao, "A quality-relevant sequential phase partition approach for regression 

modeling and quality prediction analysis in manufacturing processes," IEEE 
Transactions on Automation Science and Engineering, vol. 11, no. 4, pp. 983-991, 

2013. 



148 

 

[77] W. H. Woodall and D. C. Montgomery, "Some current directions in the theory and 
application of statistical process monitoring," Journal of Quality Technology, vol. 

46, no. 1, pp. 78-94, 2014. 

[78] Y. Wang, Y. Mei, and K. Paynabar, "Thresholded multivariate principal component 

analysis for phase I multichannel profile monitoring," Technometrics, vol. 60, no. 

3, pp. 360-372, 2018. 

[79] S. Ebrahimi, C. Ranjan, and K. Paynabar, "Monitoring and root-cause diagnostics 

of high-dimensional data streams," Journal of Quality Technology, pp. 1-24, 2020. 

[80] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning (no. 

10). Springer series in statistics New York, 2001. 

[81]  H. Lee, A. Battle, R. Raina, and A. Y. Ng, "Efficient sparse coding algorithms," in 

Advances in neural information processing systems, 2007, pp. 801-808.  

[82] H. Yan, K. Paynabar, and J. Shi, "Real-time monitoring of high-dimensional 
functional data streams via spatio-temporal smooth sparse decomposition," 

Technometrics, vol. 60, no. 2, pp. 181-197, 2018. 

[83] S. Mou, A. Wang, C. Zhang, and J. Shi, "Additive Tensor Decomposition 

Considering Structural Data Information," arXiv preprint arXiv:2007.13860, 2020. 

[84] D. L. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via wavelet 

shrinkage," J Am Stat Assoc, vol. 90, no. 432, pp. 1200-1224, 1995. 

[85] S. M. Ross, Stochastic processes, 2nd ed. New York: John Wiley, 1996. 

[86] W. L. Roberts, Hot rolling of steel. CRC Press, 1983. 

[87] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, "Applications of second-

order cone programming," Linear algebra and its applications, vol. 284, no. 1-3, 

pp. 193-228, 1998. 

[88] R. J. Serfling, Approximation theorems of mathematical statistics. John Wiley & 

Sons, 1980. 



149 

 

[89] J. N. Franklin, Matrix theory. Courier Corporation, 2012. 

[90] G. Strang, "The discrete cosine transform," Siam Rev, vol. 41, no. 1, pp. 135-147, 

1999. 

[91]  C. E. Rasmussen, "Gaussian processes in machine learning," in Summer School on 

Machine Learning, 2003: Springer, pp. 63-71.  

 


