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SUMMARY

Matrix and tensor approximation methods are recognised as foundational tools for mod-

ern data analytics. Their strength lies in their long history of rigorous and principled theo-

retical foundations, judicious formulations via various constraints, along with the availabil-

ity of fast computer programs. Multiple Constrained Low Rank Approximation (CLRA)

formulations exist for various commonly encountered tasks like clustering, dimensionality

reduction, anomaly detection, amongst others. The primary challenge in modern data ana-

lytics is the sheer volume of data to be analysed, often requiring multiple machines to just

hold the dataset in memory. This dissertation presents CLRA as a key enabler of scalable

data mining in distributed-memory parallel machines.

Nonnegative Matrix Factorisation (NMF) is the primary CLRA method studied in this

dissertation. NMF imposes nonnegativity constraints on the factor matrices and is a well-

studied formulation known for its simplicity, interpretability, and clustering prowess. The

major bottleneck in most NMF algorithms is a distributed matrix-multiplication kernel. We

develop the Parallel Low rank Approximation with Nonnegativity Constraints (PLANC)

software package, building on the earlier MPI-FAUN library, which includes an efficient

matrix-multiplication kernel tailored to the CLRA case. It employs carefully designed

parallel algorithms and data distributions to avoid unnecessary computation and communi-

cation.

We extend PLANC to include several optimised Nonnegative Least-Squares (NLS)

solvers and symmetric constraints, effectively employing the optimised matrix-multiplication

kernel. We develop a parallel inexact Gauss-Newton algorithm for Symmetric Nonnegative

Matrix Factorisation (SymNMF). In particular PLANC is able to efficiently utilise second-

order information when imposing symmetry constraints without incurring the prohibitive

memory and computational costs associated with these methods. We are able to observe

70% efficiency while scaling up these methods.

xvii



We develop new parallel algorithms for fusing and analysing data with multiple modal-

ities in the Joint Nonnegative Matrix Factorisation (JointNMF) context. JointNMF is capa-

ble of knowledge discovery when both feature-data and data-data information is present in

a data source. We extend PLANC to handle this case of simultaneously approximating two

different large input matrices and study the various trade-offs encountered in the bottleneck

matrix-multiplication kernel.

We show that these ideas translate naturally to the multilinear setting when data is pre-

sented in the form of a tensor. A bottleneck computation analogous to the matrix-multiply,

the Matricised-Tensor Times Khatri-Rao Product (MTTKRP) kernel, is implemented. We

conclude by describing some avenues for future research which extend the work and ideas

in this dissertation. In particular, we consider the notion of structured sparsity, where the

user has some control over the nonzero pattern, which appears in computations for various

tasks like cross-validation, working with missing values, robust CLRA models, and in the

semi-supervised setting.
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This dissertation shows that Constrained Low Rank Approximation (CLRA) can be

used to efficiently extract information from massive and complex datasets. To achieve ef-

ficiency and scalability, parallel algorithms for traditional CLRA methods need to be re-

designed, and practical implementations need to be adapted to match the architecture of

modern computing platforms.

As a preview of what we will demonstrate, consider the problem of Nonnegative Matrix

Factorisation (NMF), an example of a CLRA (and the primary focus of this dissertation).

If we characterise NMF computations in a certain way, where a certain algorithmic tuning

parameter is allowed to vary, then we can obtain 40% speedup over prior state-of-the-art

methods by simply adjusting this parameter as illustrated in Fig. 1.1 (details in Section 2.3).

The focus of this dissertation is to systematically develop parallel versions of some popular
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Figure 1.1: Speedups observed when running NMF under different settings. Naı̈ve imple-
mentations usually reside in the ends of the parameter space and not near the middle.

CLRA methods. The techniques developed can be adopted to other CLRA methods like

the alternating-minimisation algorithms of Udell et al. [1].

We are motivated by CLRA because of its wide applicability in fundamental prob-

lems of data mining, which is the process of collecting, cleaning, analysing, and gain-

ing useful insights from large and complex datasets [2]. These insights take the form of

interesting patterns in the dataset including but not limited to grouping the various data

items (clustering), separating unusual records (anomaly detection), and summarising task-

specific structures present in the dataset (embedding). Manual extraction of these patterns

has been occurring for centuries (e.g., regression analysis to determine orbits from astro-

nomical observations). However, with the advent of the Internet and the cheap availability

of computers, the resulting deluge of data, often unstructured, makes it virtually impossible

to manually discover these patterns [3]. While there are many ideas for how to do pattern

discovery, CLRA is often the first and fastest way to start any exploratory analysis task.

Our focus on efficient parallelisation and practical implementation stems in part from

the dramatic increases in the pace of data generation, as recent reports from various do-

mains indicate [4–6]. The first is from the realm of scientific computing where break-

throughs are anticipated through the modelling and simulation of ever more complex phys-

ical phenomena and running massive experiments on larger user facilities like accelerators,
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colliders, light sources, and neutron sources [4]. ITER, the world’s largest fusion experi-

ment, is expected to produce two petabytes of data every day [7]. Many natural language

processing models are trained on the entire Wikipedia website which is growing steadily at

a rate of approximately 7% per year [5]. The English Wikipedia corpus is currently con-

sisting of 6.4 million articles containing more than 4.9 billion words. The next example is

from medical imaging where the average size of MRI, CT, or fMRI datasets have grown

3-10 times between 2011 to 2018 [6]. With advances in computer vision algorithms the

research community develops expectations regarding the data samples needed to train, test,

and validate these methods resulting in consistently growing benchmark datasets. Achiev-

ing work-efficiency and parallel scalability will be paramount to addressing the scale of

data.

However, algorithmic innovation is not enough to achieve practical speed and scale

on modern computing systems. There is a spike in the diversity of computing platforms

available to researchers. To overcome power, memory, and instruction-level-parallelism

limitations, hardware vendors embraced parallelism [8]. This takes the form of chips with

multiple cores, wider vector processing units, or massively parallel supercomputers with

tens of thousands of off-the-shelf processors. Many complications arose with this new

paradigm, chief among them being the non-negligible cost of accessing data from memory

or over the network. This communication cost is higher than that of performing a com-

putation (a flop) with the gap widening over time. A recent study has shown that peak

flops per socket has been improving at a rate of 50-60% per year, while memory bandwidth

increasing at 23% per year and memory latency increasing at 4% per year [9]. Intercon-

nect performance, both bandwidth and latency, are also only improving at 20% year on

year. Mitigating these rising communication costs is an important factor to consider while

designing algorithms in this computing landscape. Thus, adapting CLRA techniques to ad-

dress this increasing gap between computation and communication costs will be necessary

to be efficient in practice. We show how to do so.
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Figure 1.2: Pictorial representation of LRA. Input data items are arranged as columns of X
and their embeddings are columns of H .

1.1 Linear Dimensionality Reduction Methods

Low Rank Approximation (LRA) is one of the oldest approaches to extract the underlying

structure within a dataset [10]. Given a set of n data points, xi ∈ Rm, arranged as a matrix

X ∈ Rm×n, the goal of LRA is to find a pair of factor matrices, W ∈ Rm×k and H ∈ Rk×n,

that well-approximate the input:

X ≈WH . (1.1)

The k columns of W, denoted by wi ∈ Rm for 1 ≤ i ≤ k, serve as the “basis vectors”

used to linearly approximate the input data points. The ith column of H, which is hi,

contains the contribution of these basis vectors in representing xi. That is,

xi ≈
k∑

r=1

wrhri = Whi .

Thus, LRA provides a rank-k matrix approximation of X. Typically, the number of basis

vectors k is much smaller than the input dimension of the data points m and the number of

samples n. Since k ≪ min (m,n), LRA is able to compress mn entries of X to mk + nk

entries of W and H. Further, the column vector hi ∈ Rk can also be considered as the

lower dimensional representation or “embedding” of the input data point xi.

In order to compute an LRA we need to define an error measure between X and

WH. A commonly used measure is the square of the Frobenius norm of the residual,
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∥X−WH∥2F =
∑

ij (X−WH)2ij . The popular method, Principal Components Analy-

sis (PCA), uses this error measure on an appropriately centered and scaled X [11]. PCA

can be computed via the Singular Value Decomposition (SVD) and is closely related to

the eigenvalue decomposition and other factorisations like QR, LU, and Cholesky from

numerical linear algebra [12]. Using the squared Frobenius norm loss implicitly assumes

independently and identically distributed (i.i.d.) Gaussian noise [1]. However, other er-

ror measures exist for different noise statistics, for example ℓ1 loss in robust PCA [13],

Kullback-Leibler divergence for count data [14], and hinge loss [1], among others.

Apart from the choice of loss functions, various constraints can also be placed on the

factor matrices. These choices help in interpreting the factors found or restrict them to

be meaningful with respect to the input data. For example, in PCA, the orthogonal con-

straints on the basis matrix make the basis vectors represent the directions of maximum

variance [11]. Nonnegativity constraints on the factor matrices often generates a parts-

based approximation [14]. The CUR decomposition explicitly constrains the factor matri-

ces to be expressed in terms of a small number of actual columns and actual rows from the

input matrix [15]. Therefore, LRA can be used in a principled manner for data analysis by

selecting appropriate losses and constraints depending on the task at hand.

Another appealing aspect of LRA is the availability of high performance, scalable, and

wide variety of computer programs for numerical linear algebra [16–20]. Dense and sparse

linear algebra computations are two of the seven motifs that cover nearly all calculations

carried out in scientific computing [21]. The rich history of methods developed for numer-

ical linear algebra can be repurposed for data analysis [12]. The availability of performant

code is essential with the advent of the Internet age and large data collections [3].

1.1.1 Applications of LRA

LRA has been used in a variety of applications in data analysis [22]. A standard use-case

is to use LRA as a feature extraction method. PCA and NMF have been used on image
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data to extract features that can later be used for tasks like face recognition [14, 23]. The

basis vectors in W are linear combinations of the features from the input data which are

the representative features discovered. Looking at the columns of H, we get a compressed

representation, or embedding, of the input data in this new feature space. Clustering these

embeddings is computationally cheaper and often produces excellent results [24–27]. A

classic example of such a data analysis task is topic modeling, where the user aims to

discover the various topics that occur in a collection of documents [28]. Outlier detection

is another task that can be performed by LRA [29, 30]. It can be viewed as a complementary

concept to that of clustering where the user aims to determine individual data points that

are different from the rest. Fraud detection, network intrusion, and data preprocessing are

some common applications of outlier detection.

Taken together, these tasks reveal three different facets of the structure present in datasets.

Often, LRA is able to simultaneously model and discover these different aspects of the

structure. Performing these disparate tasks within a single framework can speed up the

analysis process. LRA methods typically utilise fewer hyperparameters and contain fewer

indeterministic components in contrast to other techniques like neural networks. Thus,

avoiding the need for expensive hyperparameter tuning and search [31]. In summary, LRA

with its desired properties of principled and flexible design, simplicity, and wide availabil-

ity of fast computer programs makes it the workhorse of data mining.

1.1.2 Some examples of LRA

Let us look at an example of LRA methods used to approximate an image dataset. We

use the Fashion-MNIST collection [32], which comprises 60,000 training and 10,000 test

examples of clothing articles classified into 10 categories (see Fig. 1.3a). We shall work

with the test subset for this illustration. Each grayscale image consists of 784 pixels which

are vectorised and placed as columns of a matrix X ∈ R784×10,000
+ .
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(a) Cluster examples. (b) SVD basis vectors. (c) NMF basis vectors. (d) ID basis vectors.

Figure 1.3: Difference in the basis found by various LRA methods. SVD produces or-
thonormal columns which represent the best rank-10 approximation of the data. They are
hard to interpret. The NMF and ID vectors are easier to understand. The ID bases are
explicit examples from the dataset whereas the NMF vectors are found by the algorithm
and may not correspond to an existing image.

We approximate X using three different CLRA techniques using the squared Frobenius

norm as the error measure and approximation rank of k = 10. We look at the different

basis vectors discovered, i.e., the columns of W. The formal optimisation problem is

min
W∈C1,H∈C2

∥X−WH∥2F . (1.2)

• SVD: Here C1 = Rm×k and C2 = Rk×n, that is, only the low-rank constraints are

imposed. This problem is already nonconvex due to the rank constraint but can be

solved to global optima via the SVD. In this example, given the rank-k approximation

of X̂k = UkΣkV
T
k we can set W = Uk and H = ΣkV

T
k .

• NMF: In addition to the low-rank constraints we also impose the elements of W and

H to be nonnegative. The constraints are therefore, C1 = Rm×k
+ and C2 = Rk×n

+ .
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• Interpolative Decomposition (ID): This model factors the input with W containing

only k selected columns from the original matrix X [33]. H contains an k×k identity

submatrix. The absolute value of entries of H are also constrained to be less than 2.

The different bases discovered by these models are shown in Figs. 1.3b to 1.3d. The

SVD bases seem to have mixtures of all the categories in the vectors. The SVD is the best

way to compress the information present in X in this low-rank representation. Unfortu-

nately, the vectors discovered are not that interpretable (see Fig. 1.3b). The NMF bases

look more like clothing articles than those of the SVD as seen in Fig. 1.3c. Different vec-

tors capture various parts of the clothes like the sleeves and front parts of shirts. All images

are formed as additive combinations of these basis vectors. The ID vectors are the clearest

images since they are selected directly from the input. However, it seems difficult to form

certain images, for example sandals, as combinations of the current basis.

1.2 Parallel Programming Model

In this dissertation, we are primarily concerned with distributed-memory parallel machines.

In this programming model, we are provided a machine with p ≥ 1 processors that do not

share a common main memory. In such a setting, sharing information between different

processors is not possible in constant time with respect to p. Thus, the cost of sending

information is a key component of analysing distributed parallel algorithms in addition to

the cost of computations.

1.2.1 Algorithmic Cost Model

We assume the α−β−γ model to analyse both the computation and communication costs

of parallel algorithms [19]. Since the primary concern of this study is matrix operations, we

consider only floating point operations (flops) as the primary computation cost. We assume

a fixed cost of γ per flop and do not differentiate between the scalar operations of additions,

subtractions, multiplications, divisions, and square roots. The cost of sending a message of
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n “words” between two processors is modelled as α+βn. Here α models the latency and β

the bandwidth costs of sending a message. Although α, β, and γ are modelled as constants,

they implicitly depend on the size of the system, p, as well as its topology. Words are

typically double precision floating point entries of matrices. Therefore, the running time T

of an algorithm performing F flops and transmitting W words in S messages is the sum of

these three terms.

T = α · S + β ·W + γ · F

1.2.2 Assumptions

We assume the following conditions in the simple model of parallel computation.

1. Homogeneous architecture: The cost parameters α, β are same for between every

pair of processors and γ is the same on all processors.

2. Bidirectional unicasting: Each processor can only send/receive one message to/from

one processor at a time. A processor can send and receive a message simultaneously.

Messages travelling on the same link in opposite directions do not conflict.

3. Fully connected networks: We assume that any processor can send a message to any

other processor directly through the communication network without any resource

contention.

The fully connected network topology might seem stringent at first and not represen-

tative of real-world parallel machines. However, this assumption is done to simplify the

algorithmic analysis of the various methods encountered in the dissertation. The lower

bounds derived on this network are valid for any other topology, but its attainability via an

algorithm depends on the details of the network. These bounds are commonly derived by

focusing on a single processor’s computations. Another reason for such an assumption is

that we are often only provided a random subset of a large parallel machine’s processors
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to perform our computations. These issues make designing topology aware algorithms a

daunting task taking into account for the inherent variability in the processor assignments.

1.2.3 Collective Communication

The parallel algorithms described in this dissertation use the Message Passing Interface

(MPI) library for sending and receiving messages on distributed systems [34]. MPI pro-

vides useful ways of organising point-to-point messages into collective communication

operations involving more than one processor. Commonly used primitives like broadcast,

reductions, gathers, and scatters, amongst others, are implemented in MPI and often opti-

mised for different network topologies [19]. For a concise description of common collec-

tives please refer to the article by Chan et al. [19, Figure 1.].

1.3 Contributions and Overview

In this dissertation, we present distributed-memory parallel algorithms for a certain class

of CLRA problems. We focus on NMF, which imposes nonnegativity constraints on factors

W and H. Our algorithms are designed to scale to large problem sizes arising from a vari-

ety of sources like satellite images, social networks, text corpora to name a few. While our

problems have nonnegativity constraints as the central theme, many parallelisation ideas

can be applied to other forms of CLRA.

In Chapter 2, we formally describe the NMF problem and discuss its properties. Distributed-

memory parallel algorithms for NMF are presented and studied. We also introduce the Par-

allel Low rank Approximation with Nonnegativity Constraints (PLANC) software pack-

age [35, 36], which is capable of computing NMF and its generalisation to higher order

tensors. The computational kernels in PLANC are carefully designed to avoid unnecessary

computation and communication enabling them to be scalable and efficient.

Next in Chapter 3, we extend PLANC to include symmetry constraints on the factor

matrices in an efficient manner [37]. We implement the first distributed-memory parallel
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algorithms for Symmetric Nonnegative Matrix Factorisation (SymNMF). We introduce a

new method for SymNMF based on the Gauss-Newton algorithm. We observe 70% effi-

ciency while scaling up these methods.

Chapter 4 considers the case when we are presented with multiple input matrices from

different modalities. In this setting, every data item is represented by a set of features along

with connections to other data items it is similar or “close” to. The Joint Nonnegative

Matrix Factorisation (JointNMF) algorithm is capable of handling datasets that contain

both feature and connection information. We develop JointNMF in PLANC and study the

various trade-offs encountered when approximating two large input matrices [38].

The ideas developed in the previous chapters extend naturally to the multilinear set-

ting in, as we show in Chapter 5. The bottleneck computation Matricised-Tensor Times

Khatri-Rao Product (MTTKRP), the higher dimensional analog to matrix multiplication,

is developed in PLANC [36]. This kernel allows us to extend most of the machinery de-

veloped for NMF to tensors. Finally, we describe some avenues for future research which

extend the work and ideas in this dissertation. In particular, we consider the notion of struc-

ture sparsity which appears in computations for various tasks like cross-validation, working

with missing values, robust CLRA models [39], and in the semi-supervised setting.

The citations refer to the original published versions of this material. This dissertation

provides additional details and updated results on new data and clusters.
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This chapter provides the reader with some background in NMF including some of its

theoretical aspects, geometric interpretation, variants, serial and parallel algorithms, and

complexity. In addition, we will introduce PLANC, an open source, scalable, and flexible

software package, for handling NMF and its popular variants. In particular it contains an

efficient matrix-multiplication kernel which is the primary bottleneck for NMF.
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2.1 Introduction

NMF has become a standard tool for analysing high-dimensional datasets. It is a CLRA

technique for nonnegative data where we require the factor matrices to be component-

wise nonnegative denoted by W ≥ 0 and H ≥ 0 (see Eq. (1.2)). These nonnegative

constraints play an instrumental role in extracting meaningful and interpretable results from

nonnegative datasets.

Let us formally define the NMF problem. Given a nonnegative matrix X ∈ Rm×n
+ and

an input rank k, we need to find factor matrices to solve the optimisation problem,

min
W≥0,H≥0

∥X−WH∥2F . (2.1)

Here W ∈ Rm×k
+ and H ∈ Rk×n

+ are the low-rank basis and embedding matrices, respec-

tively. Sometimes the objective in Eq. (2.1) is simply the Frobenius norm (i.e. ∥X−WH∥F ),

however optimising it is tantamount to solving the squared version.

Unlike other factorisations, NMF only approximates the input matrix and thus the term

“factorisation” in the acronym is a misnomer. However, this convention is the standard in

the community. Though Eq. (2.1) can be defined using any error measure between X and

WH, we choose the Frobenius norm for two primary reasons. It corresponds to addition

of i.i.d. Gaussian noise to the entries of X, which is a reasonable assumption for many

datasets. The second reason is that it leads to a smooth optimisation problem which makes

it easier to design algorithms to handle Eq. (2.1).

The first description of NMF in its modern form is by Paatero and Tapper [40]. They

termed the model “positive matrix factorisation” even though the factors were constrained

to be nonnegative rather than positive. The term NMF was popularised by the seminal

paper by Lee and Seung, where they demonstrated the model’s ability to produce physically

meaningful results for image and text data [14]. After this work, NMF became a standard

tool in the modern data analyst’s toolkit and has been used in a wide variety of applications,
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Table 2.1: Linear algebra notation.

Symbol Description

Rn
+ Nonnegative orthant.
X Input matrix (typically X ∈ Rm×n

+ ).
S Symmetric input matrix (typically S ∈ Rn×n

+ ).
W Basis matrix (typically W ∈ Rm×k

+ ).
H Embedding matrix (typically H ∈ Rk×n

+ ).
In n× n identity matrix.
1 Matrix or vector of all ones (of appropriate size).
0 Matrix or vector of all zeros (of appropriate size).

vec(·) Vectorises a matrix by stacking its columns on top of
each other.

[·]+ Projects negative entries of input to 0.

including feature extraction in images, topic modelling, hyperspectral unmixing, amongst

others [10]. For a more complete history of the origins of NMF and its earlier roots in

analytical chemistry, geosciences, and linear algebra, we refer the reader to the excellent

textbook by Gillis [10].

2.1.1 Notation

Table 2.1 summarises the notation used throughout the document. We use bold lowercase

fonts for representing vectors (e.g., x) and bold uppercase for matrices (e.g., A). For A,

its ith column is represented as ai. A (i, :) and A (:, j) are also used for denoting the

ith row and jth column of A, respectively. Elements of A is shown as aij and A (i, j)

interchangeably.

2.1.2 Geometrical Interpretation

The conical hull is the set of all conic combinations of a finite set of vectors S = {vi},

denoted by cone (S), where

cone (S) = {x : x = α1v1 + α2v2 + . . .+ αnvn, αi ≥ 0} .
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The set of vectors often comprise the columns of a matrix and we abuse notation to refer

to its conical hull as cone (S) = cone ({vi}) = cone ([v1 v2 . . . vn]) = cone (V). NMF

computes a conic combination of the nonnegative basis vectors. For NMF, every input

data item xi is approximated by the conical combination of the columns of W, i.e. xi ≈

Whi =
∑k

r=1wrhri. Equivalently, for the exact factorisation X = WH, we can see for

all i,

xi ∈ cone (W) ⊆ Rm
+ ,

and

cone (X) ⊆ cone (W) ⊆ Rm
+ .

The subset inequalities shown above is known as the nested cone problem, where we need

to find the cone, namely cone (W), nested between cone (X) and Rm
+ = cone (Im).

The NMF basis vectors tend to “wrap” the data from the “outside” because it tries to

nest the cone of the input inside the cone generated by the basis matrix like in the exact

factorisation. These vectors can be contrasted to the more “holistic” bases vectors gener-

ated by the SVD. We demonstrate this by constructing a synthetic dataset with two clusters

shown in Fig. 2.1. Each cluster is generated from a multivariate normal distribution with

µ1 =


0.3

0.2

0.3

 , µ2 =


0.5

0.7

0.9

 , σ2 = 0.001 ,

and identical covariance matrices σ2I3. They are depicted as red and green data clouds

in Fig. 2.1 with the means (µ1 and µ2) shown as blue lines. The SVD relative error,
∥X−WH∥F

∥X∥F
, is 0.031626 whereas NMF has one of 0.031644. SVD achieves the global min-

imum in terms of the objective. Its basis vectors, capture holistic information about the

data as seen by the first left singular vector being a combination of the data clouds in the

middle. The second vector is orthogonal to first and captures the next direction with most

15



0.0

0.2

0.4

0.6

0.8

0.4 0.2 0.0
0.2

0.4
0.6

0.2
0.0
0.2
0.4
0.6
0.8

SVD

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

NMF

Figure 2.1: Comparison between NMF and SVD bases. The two clusters, of 1,000 points
each, are shown as data clouds of red and green respectively. The blue lines correspond to
the means of the clusters. The SVD and NMF bases are shown as red lines. Notice that
the SVD bases capture more holistically information with regards to the data stored in X
whereas NMF tends to wrap the input data from the outside.

information. NMF on the other hand, tends to “wrap” around the data as stated earlier. Its

two bases correspond to each of two different clusters present in the data albeit, two of the

more outermost points in the clusters respective data clouds. As expected, its relative error

is also higher than that of the SVD.

The nonnegativity constraints typically produce “sparser” solutions than the input data.

This claim can be mathematically understood by the complementary slackness conditions

on smooth optimisations problem over x (see Eq. (2.16)). We must have xi = 0 whenever

(∇f (x))i > 0 which tends to produce solutions with many zeros in them. The sparser

solutions manifest as the parts-based approximations discovered by NMF. We revisit the

image collection from Fig. 1.3. We run NMF with varying embedding ranks and look at the

basis vectors found. Notice that the image vectors become sparser as the rank increases.

Unfortunately, these properties of NMF come at the price of computational tractability,

which we shall see in the next section.
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(a) k = 10. (b) k = 20. (c) k = 30.

(d) k = 40.

Figure 2.2: Parts-based representation by NMF on the Fashion-MNIST dataset. Notice
how the clusters break into smaller “parts” as we increase k. For example, the shoes from
(a) change into soles, heels, and different upper sections for sneakers and boots.
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2.1.3 Hardness of NMF

The NMF optimisation problem Eq. (2.1) is nonconvex. This fact can be seen via the

following counterexample to the convexity property, namely,

f (θa+ (1− θ)b) ≤ θf (a) + (1− θ) f (b) .

Here f (a) = f (W,H) = ∥X−WH∥2F is the function we are trying to minimise with

a =

vec (W)

vec (H)

 being the inputs to f reshaped as a long vector.

Consider the rank-3 input matrix1

X =


2 1 2

3 1 1

1 2 1

 ,

and the following two rank-2 candidate cases

W1 =


4 3

4 3

1 2

 H1 =

3 2 1

1 3 3

 and W2 =


1 3

1 2

2 4

 H2 =

4 4 4

4 4 3

 .

Computing the convexity condition, with θ = 0.8, we get

f (θa+ (1− θ)b) = f (θW1 + (1− θ)W2, θH1 + (1− θ)H2) = 1,384.1136

θf (a) + (1− θ) f (b) = θf (W1,H1) + (1− θ) f (W2,H2) = 1,382.2000

which violates the convexity condition and provides us our counterexample.

1These values were found by computer simulation.
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Figure 2.3: NMF computed with different starting points. The blue and red lines are the
cluster centroids and NMF bases respectively. Notice that we get different basis vectors
each time. The relative errors for the 3 cases are 0.031659, 0.031664, and 0.031626.

Vavasis showed that the exact NMF factorisation X = WH is NP-hard when k is part

of the input [41]. This result also applies to the standard NMF optimisation problem. Thus,

when using NMF, it is reasonable to expect a solution which is a stationary point or lo-

cal minimum rather than one which finds the global optimum of Eq. (2.1) . Most NMF

algorithms are iterative in nature, where we start from an initial “guess” solution and suc-

cessively find better approximations of X. We shall discuss these algorithms in more detail

in the next section. Fig. 2.3 shows the basis vectors discovered when we run NMF starting

from different initial guesses W0 and H0. Notice that bases for all starting points attempt

to wrap around the input data from the outside2.

2.1.4 Clustering via NMF

NMF has seen great success as a clustering tool in many different domains, like images,

text corpora, and audio signals, to name a few [10, 14]. This section offers some intuition

for this behaviour. Typically NMF is run with the low-rank parameter k chosen to be the

desired number of clusters. The hope is that each basis vector discovered corresponds to

one of the data clusters, i.e., the basis vectors behave as cluster representatives. The ten-

2The error for the final case, with seed 83, seems to match the SVD error from the previous section but
they differ in the last few significant digits. SVD relative error: 0.03162598913926414 and NMF relative
error: 0.031625989139264725.
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(a) Test image along with its corresponding h. (b) NMF bases with k = 10.

Figure 2.4: The Fashion-MNIST dataset contains 10 categories of clothing. Running NMF
with k = 10 allows us to cluster these images. The query image and its corresponding
column in H is shown in (a) along with the bases in (b). We see a high activation value
corresponding to the basis vector that looks a like boot.

dency of the columns of W to wrap the input data from outside, rather than take a holistic

view of the entire input like in SVD, helps in this aspect. We can intuitively attribute this

tendency to the nested cone property and sparse solutions obtained in the NMF optimisa-

tion (see Section 2.1.2). This property is seen in all the synthetic cases in Fig. 2.3 as well

in the image dataset (Figs. 2.4b and 2.5b).

With this wrapping assumption, we can assign an input data point xi to its correspond-

ing cluster by examining its lower-dimensional representation hi. This column vector

contains the contributions from each of the cluster representatives. Taking the index of

the maximum entry allows us to cluster xi. An example of such a clustering is shown

in Fig. 2.4. Another popular way to cluster the input data is to run a secondary method, like

K-Means, on the columns of H [25, 42]. Since k ≪ min (m,n), this procedure would run

much faster than running the same method directly on the input.

This two-step procedure allows us to cluster even when the selected k is different from

the number of clusters present. Choosing k larger than the number of clusters is often de-

sirable to get the parts-based decompositions on the input. The nonnegative constraints on

H force the approximation of xi to be done only via additive, not subtractive, combinations
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(a) Test image along with its corresponding h. (b) NMF bases with k = 20.

Figure 2.5: Parts-based representation of an image via NMF. The query image of the boot
is recreated combining the different parts of a shoe (sole, heel, middle, and upper sections).
Running a different clustering method, like K-Means, on the columns of H is another way
to cluster the input.

of the basis vectors. hi is the “embedding” of xi computed via NMF. This property often

simplifies interpreting the result of the approximation, as seen in Fig. 2.5.

2.2 Serial Algorithms

We now provide an overview of algorithms to solve Eq. (2.1) from the perspective of Block

Coordinate Descent (BCD) methods. BCD methods are a popular tool in nonlinear opti-

misation and are the basis of some of the most successful NMF algorithms. This section

borrows heavily from other sources [10, 27].

2.2.1 BCD framework for NMF

The BCD framework is an iterative process to solve an optimisation problem. It groups the

variables in the problem into several disjoint subgroups and iteratively solves the variable

in a subgroup keeping the others fixed. It is particularly useful when these groupings allow

the subproblems to solved quickly or exactly.
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Consider the general optimisation problem for x ∈ Rn,

min
x∈C

f (x) . (2.2)

We assume that C ⊆ Rn is closed and convex and can be represented as the Cartesian

product,

C = C1 × C2 × . . . Cm , (2.3)

where Ci ⊆ Rni is closed and convex with
∑m

i=1 ni = n. The input vector is similarly

partitioned as x =



x1

x2

...

xm


. The BCD method, also known as the nonlinear Gauss-Seidel

method, generates the next iterate x(t+1) given the current iterate x(t) according to the

update rule

x
(t+1)
i = min

z∈Ci
f
(
x
(t+1)
1 ,x

(t+1)
2 , . . . ,x

(t+1)
i−1 , z,x

(t)
i+1, . . . ,x

(t)
m

)
. (2.4)

Notice that it uses the most recently updated values of all the fixed blocks. This approach

ensures that the objective value never increases after every update.

Convergence guarantees for BCD

There are two main convergence guarantees for BCD methods which we state here without

proof. We direct readers to the appropriate source materials for more information [10,

43–45]. The original sources for the theorems are cited in the statements below but the

corresponding text is from Gillis [10]. The order in which blocks are updated in the BCD

algorithm are arbitrary as long as every block is updated once every fixed constant number

of iterations. This updating order is known as essentially cyclic block updates.
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Theorem 2.2.1 ([43, 44, Proposition 2.7.1]). The limit points of the iterates of an ex-

act BCD algorithm are stationary points provided that the following conditions hold.

1. The objective function is continuously differentiable.

2. Each block is required to belong to a closed convex set.

3. The minimum computed at each iteration for a given block of variables is uniquely

attained.

4. The objective function values in the interval between all iterates and the next (which

is obtained by updating a single block of variables) is monotonically nonincreasing.

In the context of NMF, the objective function of Eq. (2.1) is continuously differentiable.

The nonnegative orthant, and its subsets, are closed convex sets. The final two conditions

hold true if the subproblems are strongly convex per block variable [10].

Theorem 2.2.2 ([45, Corollary 2]). The limit points of the iterates of an exact two-block BCD

algorithm are stationary points provided that the following two conditions hold.

1. The objective function is continuously differentiable.

2. Each block of variables is required to belong to a closed convex set.

This special case for two blocks gets rid of the last two constraints from Theorem 2.2.1.

It is particularly useful for NMF as it corresponds to the natural partitioning of the variables

into the factor matrices, W and H.

Blocking strategies for NMF

For NMF, the most common blocking strategies are shown in Fig. 2.6. We can either update

entire factor matrices at a time in the two-block approach (Fig. 2.6a), or update columns of

W and rows of H (Fig. 2.6b), or individual entries of both factor matrices (Fig. 2.6c).
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(b) 2k blocks.
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(c) (m+ n) k blocks.

Figure 2.6: Different BCD blocking options for NMF. The block being updated are shown
in red with the blue blocks remaining fixed. We go from the largest blocks where the entire
factor matrices are updated in the two-block’s case to when only single scalars are updated
in the (m+ n) k-block’s case.

The two-block BCD is the most popular strategy amongst iterative NMF algorithms.

This approach of updating H while keeping W fixed and vice versa is also known as alter-

nating optimisation. The subproblems formed in this natural partitioning of the variables

are Nonnegative Least-Squares (NLS) ones. Therefore, this approach is also known as Al-

ternating Nonnegative Least-Squares (ANLS). There are a few primary advantages to this

partitioning.

1. The relation, ∥X−WH∥2F =
∥∥XT −HTWT

∥∥2
F

, is symmetric. Therefore, if an

efficient algorithm is available for updating H we can reuse it for updating W.

2. The problem of minimising min
H≥0
∥X−WH∥2F can be broken down into independent

subproblems across the columns of X. That is, we get n different NLS minimisations,

min
hi≥0
∥Whi − xi∥22 .

An added benefit is that we can reuse certain computations, like WTW for the gra-

dient with respect to H during the update of all columns hi.

3. The two-block case has less restrictive conditions for convergence than the general

many-block BCD case (see Theorem 2.2.2).
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Algorithm 1 Two-block coordinate descent for NMF

Require: Input matrix X ∈ Rm×n
+ and low rank parameter k.

Ensure: W ≥ 0,H ≥ 0, is a rank-k approximation X ≈WH.
1: Initialise W(0) and H(0).
2: while t = 1, 2, . . . do ▷ Till some stopping criteria is met.

3: W(t) ← argmin
W≥0

∥∥∥XT −H(t−1)TWT
∥∥∥2
F

4: H(t) ← argmin
H≥0

∥∥∥X−W(t)H
∥∥∥2
F

5: end while

2.2.2 Algorithms

We can now describe the standard two-block BCD algorithm for NMF in Algorithm 1.

The key computation kernel in this algorithm is the NLS solves in Lines 3 and 4. We can

solve this subproblem in a variety of different ways to get different NMF algorithms. If

the BCD employs a blocking scheme other than the two-block one described above we

can simply arrange the blocks in alternating optimising manner. That is, we update an

entire factor matrix before moving to the next one. This block ordering is no longer a two-

block BCD method, and Lines 3 and 4 will be replaced by W(t) ← update
(
X,H(t−1)

)
and

H(t) ← update
(
X,W(t)

)
respectively. The update (·, ·) function updates a factor given

the most recent iterate of the other factor matrix. Some popular NLS solvers are described

later in Section 2.2.2.

We shall briefly comment on the stopping criteria for NMF. The gradient of the objec-

tive Eq. (2.1) with respect to the two factor matrices are

∇Wf = 2
(
WHHT −XHT

)
, (2.5)

∇Hf = 2
(
WTWH−WTX

)
. (2.6)
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We define the projected gradient with respect to W as

∇p
Wf =


∇Wfij if ∇Wfij < 0 or Wij > 0

0 otherwise
. (2.7)

Similarly, we can define the projected gradient for H. Next, we define δ (t) for iteration t

of Algorithm 1 as

δ (t) =

√∥∥∥∇p

W(t)f
∥∥∥2
F
+
∥∥∥∇p

H(t)f
∥∥∥2
F
. (2.8)

Then a stopping criteria of δ(t)
δ(0)
≤ ϵ guarantees the stationarity of the final solutions [27].

However, one must be careful when implementing such a solution since they are quite sen-

sitive to scaling degeneracy, which refers to the fact that if (W,H) is a solution to Eq. (2.1)

then so is
(
αW, H

α

)
[10]. In practice, putting limits on the number of iterations, time,

change in objective value, and change in iterate norms are simple but effective stopping

criteria.

Update Algorithms

In this subsection, we consider updating algorithms for the NLS updates of the factor at

each inner iteration of the algorithm (Lines 3 and 4 of Algorithm 1). The general problem

to be solved in each inner iteration is a constrained least-squares problem of the form

C← argmin
C≥0

∥AC−B∥2F . (2.9)

We shall list popular updating methods that (approximately) solve Eq. (2.9) by first forming

ATA and ATB These matrix terms appear in the gradient of the objective function. In the

case of updating the factor matrix H we need to solve Eq. (2.9) with C = H, A = W,

and B = X. Computing WTW and WTX takes mk2 and 2mnk flops, respectively

(assuming we use standard matrix multiplication and accounting for symmetry). There
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is an analogous computation for updating W taking (nk2 + 2mnk) flops. These matrix

multiplications,WTW,HHT,WTX, and HXT, are often the main bottleneck for NMF,

costing

Fmatmuls =
(
(m+ n) k2 + 4mnk

)
flops . (2.10)

When X is sparse, the flop count changes to

Fmatmuls =
(
(m+ n) k2 + 4nnz(X)

)
. (2.11)

We briefly describe the different solvers and update algorithms along with their com-

putational complexity below.

Multiplicative Updating (MU): The MU solve is an elementwise operation [14]. The

update rule for element (i, j) of C is

C(i, j)← C(i, j)
ATB(i, j)(

ATAC
)
(i, j)

. (2.12)

While this rule does not solve Eq. (2.9) to optimality it ensures a reduction in the objective

value from the initial value of C. Note that Eq. (2.12) breaks down if the denominator be-

comes zero. In practice, a small value is added to the denominator to prevent this situation.

The costs of computing ATAC, namely HHTW and WTWH, adds 2 (m+ n) k2 flops

to the runtime of a single iteration of Algorithm 1.

Hierarchical Alternating Least-Squares (HALS): HALS updates are performed on in-

dividual rows of C [46, 47]. The update rule for row i can be written in closed form as

C(i, :)←
[
C(i, :) +

(ATB)(i, :)−
(
ATA

)
(i, :)C

(ATA)(i, i)

]
+

, (2.13)

where [·]+ is the projection operator onto R+.
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The rows of C are updated in order so that the latest values are used in every update

step. HALS has been observed to produce unbalanced results with either very large or very

small values appearing in the factor matrices [27, 46]. Normalising the rows of C after

every update via Eq. (2.13) has been proposed to alleviate this problem [27, 46]. The cost

for updating via HALS is 2 (m+ n) k2 after forming the different matrix products.

Projected Gradient Descent (PGD): Another method to tackle Eq. (2.9) is via PGD,

first described for NMF by Lin [48]. The gradient for Eq. (2.9) is given by

f(C) := ∥AC−B∥2F ,

∇f(C) = 2
(
ATAC−ATB

)
.

The Hessian for f is ATA and therefore its gradient is Lipschitz continuous with constant

L = λ1
(
ATA

)
= σi (A)2 = ∥A∥22 [10]. The PGD update is given by,

C =

[
C− 2

L

(
ATAC−ATB

)]
+

(2.14)

where [·]+ is the projection operator onto R+. Computing L takes O (k3) flops for the

Gram matrices WTW and HHT and computing and applying the gradient step takes

O ((m+ n) (k2 + k)) flops. Quite often, a fixed stepsize is used instead of computing

L every iteration to avoid computing eigenvalues.

PGD can also be accelerated if H is updated several times before W and can improve

from a linear to a quadratic convergence rate [10]. However, acceleration often loses the

property of monotonically decreasing the objective.
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Block Principal Pivoting (BPP): BPP is an active-set like method for solving NLS prob-

lems. The main subroutine of BPP is the single right-hand side version of Eq. (2.9),

c← argmin
c≥0

∥Ac− b∥22 . (2.15)

The Karush-Kuhn-Tucker (KKT) optimality conditions for Eq. (2.15) are specified by c

and the gradient y = ATAc − ATb. c ≥ 0, y ≥ 0, and x ∗ y = 0, where ∗ is the

Hadamard or elementwise product.

y ≥ 0 (2.16a)

c ≥ 0 (2.16b)

ciyi = 0 ∀i (2.16c)

The complementary slackness criteria from the KKT conditions forces the support sets,

i.e., the nonzero elements, of c and y to be disjoint. This disjoint property makes Eq. (2.16)

an instance of the Linear Complementarity Problem which arises frequently in quadratic

programming. When k ≪ min(m.n), active-set methods are preferred since they deal with

small matrices of size m × k, n × k and k × k. In the optimal solution, the active set is

the set of indices where ci = 0, and the remaining indices are referred to as the passive

set. Once the active set is found, we can find the optimal solution to Eq. (2.15) by solving

an unconstrained least-squares problem on the passive set of indices. The BPP algorithm

attempts to find the active set by greedily swapping indices between the intermediate active

and passive sets until it finds a solution that satisfies the KKT conditions. Unconstrained

least-squares is solved using the normal equations. Kim and Park discuss the method in

greater detail [49].

Solving nNLS problems in k variables with the BPP algorithm takes aboutO (nk3s (k))

flops, where s(k) ≤ 2k is the number of active sets explored. In practice, s(k) is typically

much smaller than 2k. Overall, using BPP to update both W and H takesO ((m+ n) k3s(k))

29



flops [10]. If k is small, BPP should be the method of choice since it solves the subprob-

lems exactly. However, as k becomes large BPP tends to become slow when compared to

other optimisation methods.

Alternating Direction Method of Multipliers (ADMM): In the ADMM solver the op-

timisation problem Eq. (2.9) is reformulated by introducing an auxiliary variable Ĉ,

min
C,Ĉ

1

2

∥∥∥AĈ−B
∥∥∥2
F
+ r(C)

subject to C = Ĉ ,

(2.17)

where r(·) is the penalty function for nonnegativity [50]. It is 0 if C ≥ 0 and∞ otherwise.

The updates for the ADMM algorithm are given by

Ĉ←
(
ATA+ ρI

)−1
(
ATB+ ρ (C+U)T

)
C← argmin

C
r(C) +

ρ

2

∥∥∥C− Ĉ+U
∥∥∥2
F

U← U+C− Ĉ ,

(2.18)

where U is the scaled version of the dual variables corresponding to the equality con-

straints, C = Ĉ, and ρ is a step size specified by the user. U is initialised as a matrix

of all zeros. The advantage of using ADMM is the clever splitting of the nonnegativity

constraints into updates of two blocks of variables C and Ĉ. This splitting allows for an

unconstrained least-squares solve for Ĉ and element-wise projections onto R+ for C. One

set of Eq. (2.18) takes about O (k3 + (m+ n) k) flops to update both W and H.

We can accelerate this solve by repeating the updates given by Eq. (2.18) more than

once. One important fact to notice is that the same matrix ATB and matrix inverse
(
ATA+ ρI

)−1

are used for all the updates. We can therefore cache ATB and the Cholesky decomposition

of
(
ATA+ ρI

)
to save some computations during subsequent updates. The stopping crite-

ria described by Huang et al., is based on ∥C∥F ,
∥∥∥Ĉ∥∥∥

F
, and ∥U∥F [50] . By default, a good
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choice for ρ is ∥A∥2F/k, where k is the number of columns of A (rank of the NMF decom-

position) [50]. For a comprehensive guide to the ADMM method, including convergence

properties and selection of optimal ρ, please refer to article by Boyd et al. [51].

Nesterov-type algorithm: There are many different Nesterov-type algorithms for NMF [10]

but we outline the one by Liavas et al. [52]. Their method solves a modified version of NLS,

Eq. (2.9), with the introduction of a proximal term with an auxiliary matrix C∗. The prox-

imal term is useful to handle ill-conditioned instances and guarantee strong convexity. The

objective function tackled is

min
C≥0

fp(C) :=
1

2
∥B−AC∥2F +

λ

2
∥C−C∗∥2F , (2.19)

where C is constrained to be nonnegative. The gradient of fp is given by the expression

∇fp(C) = (ATAC−ATB) + λ(C−C∗) .

Updates to C are performed using the gradient of fp,

∇fp(Dk) = −
(
ATB+ λC∗

)
+
(
ATA+ λI

)
Dk

Ck+1 ← [Dk − α∇fp(Dk)]+

Dk+1 ← Ck+1 + βk+1 (Ck+1 −Ck) ,

(2.20)

where [·]+ is the projection operator onto R+. Notice that we can update C multiple times

reusing ATA and ATB. They are repeated until a termination criteria is triggered; different

criteria are discussed in the original paper [52]. The termination criteria are bounds checks

on the minimum and absolute maximum values of C.

The selection of hyperparameters λ, α, and β depends on the singular values of A and

is necessary for developing a Nesterov-like method for solving Eq. (2.19). The matrix C∗

is generally C from the previous outer iteration (Line 2 of Algorithm 1). Details of the
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selection procedure and different cases can be found in the original paper [52]. The cost to

take one step for both factor matrices take at most O (k2 + (m+ n) k2 + (m+ n) k) flops.

In addition to the acceleration performed during each NLS solve, Eq. (2.20), we can

also perform an acceleration step for every outer iteration in the while loop (Line 2 of Al-

gorithm 1). In this step, all factor matrices are updated using the previous outer iteration

values until the objective stops decreasing. The outer acceleration step for iteration t will

be

Wnew ←W(t) + st

(
W(t) −W(t−1)

)
Hnew ← H(t) + st

(
H(t) −H(t−1)

) (2.21)

The results of Eq. (2.21) will be accepted as the next iterate only if the overall objective

error with the new factor matrices, (Wnew,Hnew), is lower than that of
(
W(t),H(t)

)
. In

order to compute the relative error, we need an extra function objective computation per

outer acceleration. Typically, st =
√
t but its value can change as the overall algorithm

progresses [52].

BPP and HALS are exact BCD methods with two and 2k blocks, respectively. All other

algorithms only approximately solve Eq. (2.9) or approach the solution in the limit. MU,

while appearing like a scalar (m+ n) k block BCD, does not quite solve the objective [27].

In general, most of the update algorithms are sufficient for exploratory data analysis. Pro-

viding conclusive rankings is not possible since the performance of each method is depen-

dent on tuning various hyperparameters. This dissertation is primarily concerned with scal-

ing NMF up to large input sizes, and we point the interested reader to other sources to learn

more about the convergence and relative performance of different update algorithms [10,

27, 53].

32



Regularisation on C

Often, we would like to incorporate prior information about the factors into the optimisation

problem, Eq. (2.1), resulting in the new regularised formulation,

min
W≥0,H≥0

∥X−WH∥2F + ϕ (W) + ψ (H) . (2.22)

Frobenius-norm regularisation is a popular way to prevent the elements of the factor matri-

ces from growing large in their absolute values. This corresponds, for H say, to ψ (H) =

α ∥H∥2F . Another regularisation is to promote column-wise (or row-wise) sparsity in H

(or W). This regularisation results in ψ (H) = β
∑n

j=1 ∥hj∥21 which, is also known as the

squared ℓ12- norm. Other regularisations exist [27], but we focus on these two as they can

easily be incorporated into the NLS framework described in Section 2.2.2.

Frobenius-norm regularisation: In this case we modify Eq. (2.9) to be

C← argmin
C≥0

∥AC−B∥2F + α ∥C∥2F , (2.23)

which can be recast as

C← argmin
C≥0

∥∥∥∥∥∥∥
 A

√
αIk

C−

B
0


∥∥∥∥∥∥∥
2

F

. (2.24)

Forming the matrix products for the gradient, ATA + αIk and ATB, we see that only the

Gram matrix has to be modified. Thus, by simply adding α along the diagonals of the

unmodified Gram matrix we can reuse any of the methods developed in Section 2.2.2.
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ℓ12-norm regularisation: Similarly, we can modify the Eq. (2.9) for this case.

C← argmin
C≥0

∥AC−B∥2F + β ∥C∥21,2 (2.25)

C← argmin
C≥0

∥∥∥∥∥∥∥
 A
√
β11×k

C−

B
0


∥∥∥∥∥∥∥
2

F

(2.26)

This reformulation too results in only modifying the Gram computation to ATA+ β1k×k,

which is equivalent to adding β to all entries of unmodified Gram matrix.

2.3 Parallel Algorithms

We switch tack now to deal with parallelising and scaling up the algorithms for NMF. Early

versions of parallel NMF relied on the MapReduce framework [54–58]. These frameworks

require data to be written to disk at every iteration and suffer from expensive communica-

tion intensive global data shuffles [59]. The first “communication-avoiding” algorithm and

library for NMF was proposed by Kannan et al. [35, 59], which later became the PLANC

library [36]. The implementations, with a careful choice of data distribution, ensure that

once the input matrix is read into memory it is never communicated. Only the smaller

factor matrices and other temporaries are exchanged between the processors.

2.3.1 Notation

Throughout the dissertation, we shall be assuming that there are p processors arranged in

logical grids of 1, 2, 3, or > 3 dimensions. Subscripts are used to indicate a particular

processor in the 1D, 2D, or 3D case, e.g., pi, pij and pijk. For higher dimensions we

represent a particular processor by a tuple p = (p1, p2, . . . , pN). We assume data items are

distributed in a load-balanced across the processors. If there are n items to be distributed,

each processor has either ⌊n
p
⌋ or ⌈n

p
⌉ items. Let r = n mod p, then the first r processors

get ⌈n
p
⌉ items and the remaining have ⌊n

p
⌋ items. However, for a simpler presentation
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Table 2.2: Costs of certain MPI collectives.

Operation Cost

All-Gather α · log p+ β · p−1
p
n

Reduce-Scatter α · log p+ (β + γ) · p−1
p
n

All-Reduce 2α · log p+ (2β + γ) · p−1
p
n

we assume p divides n and each processor contains exactly n/p items unless explicitly

specified.

MPI collectives cost

The distributed-memory algorithms we consider here utilise the All-Gather, Reduce-Scatter,

and All-Reduce MPI Collectives [19], which we briefly describe here using the α− β − γ

model (see Section 1.2). Our analysis assumes that optimal collective algorithms are used,

but our algorithms rely on the underlying MPI implementation [19]. At the start of an

All-Gather collective, each of p processors owns data of size n/p. After the All-Gather,

each processor owns a copy of the entire data of size n. The cost of an All-Gather is

α · log p + β · p−1
p
n. At the start of a Reduce-Scatter collective, each processor owns data

of size n. After the Reduce-Scatter, each processor owns a subset of the sum over all data,

which is of size n/p. This single collective is a more efficient way of implementing a

reduce followed by a scatter. (The reduction can be computed with other associative oper-

ators besides addition.) The cost of Reduce-Scatter is α · log p + (β + γ) · p−1
p
n. At the

start of an All-Reduce collective, each processor owns data of size n. After the All-Reduce,

each processor owns a copy of the sum over all data, which is also of size n. The cost of

an All-Reduce is 2α · log p+ (2β + γ) · p−1
p
n. The costs of each of the collectives are zero

when p = 1. These costs are summarised in Table 2.2.
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Notions of scalability

We use the metrics of speedup and efficiency to evaluate parallel algorithms. Let T (n, p)

denote the runtime of a parallel algorithm on an input of size n on p processors. The

speedup is defined as

Speedup(n, p) =
Tseq(n)

T (n, p)

where Tseq(n) is the best sequential algorithm or implementation. This is sometimes re-

ferred to as absolute speedup due to the requirement of using the best sequential algorithm.

Relative speedup is the comparison of the runtimes against using the same algorithm on a

single processor, i.e.,

Relative-Speedup(n, p) =
T (n, 1)

T (n, p)
.

Another measure of parallel efficiency is

Efficiency(n, p) =
Tseq(n)

pT (n, p)
=

Speedup(n, p)
p

.

This measure quantifies how well the processors are utilised by the parallel algorithm. If

relative speedup is used instead of absolute speedup in the formula, we term this measure

relative efficiency. We analyse our algorithms in two ways:

1. Strong scaling: Here the input problem size n is held fixed and we vary the number

of processors p.

2. Weak scaling: The per-processor problem size n
p

is held fixed while varying p.
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2.3.2 Parallel Matrix Multiplication

From Section 2.2, we can see that the computational complexity of a single outer iteration

of NMF (i.e. Line 2 of Algorithm 1) can be split into two blocks.

TNMF = Tmatmuls + Tnls (2.27)

TNMF ∈


O (mnk + (m+ n) k2) + Tnls (k,m+ n) X is dense

O (nnz(X)k + (m+ n) k2) + Tnls (k,m+ n) X is sparse
(2.28)

Here, Tnls(a, b) denotes the time taken to update an a × b matrix. In general, we have

Tnls (k,m+ n) ∈ O (k3 + (m+ n) k2 + (m+ n) k), for all the NLS updates discussed

in Section 2.2.2. We assume that BPP is in the average case scenario and does not take 2k

flops. Since we are in the CLRA setting, we can assume k ≪ min (m,n). We can see that

the O (mnk) cost is the bottleneck computation for the dense case. The O (nnz(X)k) term

also dominates for the sparse case if nnz(X) > (m+ n) k. This cost is associated with the

large matrix multiplies involving the input matrix X, namely WTX and HXT. Employing

a state-of-the-art parallel matrix multiplication algorithm would significantly improve the

running time of NMF.

Matrix multiplication is one of the most fundamental computational kernels, and its

communication complexity has been studied extensively in both the sequential and par-

allel settings [60–62]. These results establish asymptotic lower bounds for matrix multi-

plication, which were realised to be tight with the development of algorithms achieving

them [63, 64]. We provide a quick overview of this area and highlight the cases that apply

to matrix multiplications in NMF. These results are shown for dense classic matrix multi-

plication; similar bounds are known for “fast” algorithms (e.g., Strassen’s method), but we

assume standard or classic matrix multiplications [8]. For sparse computations these lower

bounds do not apply.
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Figure 2.7: Visualisation of the iteration space of classical matrix multiplication for com-
puting C = AB with C ∈ Rm×k,A ∈ Rm×n, and B ∈ Rn×k. The prism of mnk scalar
multiplications is arranged in a 4× 3× 2 processor grid.

Lower Bounds

There are two types of lower bounds studied for matrix multiplication. The first is the

“memory-dependent” kind where we assume that each of the processors have a cache of

size M . Consider the case of multiplying two square n×n matrices. Irony et al. reproduce

an earlier result that Ω
(

n3
√
M

)
transfers occur between disk and cache [62]. They extended

this result to p processors as requiring Ω
(

n3

p
√
M

)
transfers between the processors and to

rectangular matrix multiplications (replacing n3 by mnk for a m× n by n× k multiply).

The second kind of lower bounds, also shown by Irony et al., are known as “memory-

independent” bounds. In this case the factor M does not appear in the bounds. They show

that a parallel algorithm for matrix multiplications must communicate Ω
(

n2

p2/3

)
words un-

der the reasonable assumption of computational load balance. Interestingly, when p ≫
n3

M3/2 the memory-dependent bounds no longer apply since the memory-independent ones

are larger. Demmel et al. extend these results to general rectangular case and describe the
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different regimes of computation [63]. Daas et al. tightened these lower bounds and pro-

vide explicit constants for the leading terms and unify the different results under a single

optimisation framework [64, 65].

The lower bounds were developed using geometric arguments on the “prism” of mnk

scalar multiplications needed by a classic matrix multiplication algorithm (see Fig. 2.7). To

perform a multiplication, a processor must have access to the corresponding entries on the

m × n, n × k, and m × k faces of the prism. Otherwise, it needs to communicate data to

perform the multiply. Relating the volume of this iteration space “cuboid” with respect to

the areas of its faces allow us to develop lower bounds for the computation [62–65].

Theorem 2.3.1 ([65, Theorem 1]). Consider a classical matrix multiplication involving

matrices of size n1 × n2 and n2 × n3. Let m = max (n1, n2, n3) , n = median (n1, n2, n3),

and k = min (n1, n2, n3), so that m ≥ n ≥ k. Any parallel algorithm using p processors

that starts with one copy of the two input matrices and ends with one copy of the output

matrix and load balances either the computation or the data must communicate at least

D − mn+ nk +mk

p

words of data, where

D =



mn+mk
p

+ nk if 1 ≤ p ≤ m
n

2
(

mnk2

p

)1/2
+ mn

p
if m

n
≤ p ≤ mn

k2

3
(

mnk
p

)2/3
if mn

k2
≤ p

.

Optimal Algorithms

3D matrix multiplication algorithms assign the computation space (Fig. 2.7) to processors

according to their location in the grid [63, 66]. Visualising the algorithm as this iteration
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(c) One large dimension.

Figure 2.8: Examples of the three different aspect ratios of a processor grid with p = 8.
In (a) all the dimensions are split, only m and n are split in (b), and finally in (c) only n
is divided. In the last two cases, only one processor needs access to the largest matrix’s
entries. Therefore, with the correct data layout the matrix multiplication algorithm will
only need to transfer the smaller matrices.

space prism also allows us to realise that there are three different regimes depending on the

aspect ratios, i.e., the ratio of number of rows to columns, of the matrices involved. Demmel

et al. classify these as the one-large, two-large, and three-large dimension cases [63]. By

large dimension, they mean that it benefits the algorithm to split up that dimension. They

are also known as 3D, 2D, and 1D algorithms based on the dimension of the processor

grid involved. They show that optimal algorithms, which attain the lower bound, can be

realised by carefully partitioning the data layouts to make each sub-prism as cubical as

possible (see Fig. 2.8).

The optimal parallel algorithm (Algorithm 2) and its visualisation (Fig. 2.9) are shown

below [64]. The algorithm is written in the style of MPI programs, which is used throughout

the dissertation. The pseudocode in Algorithm 2 is the set of instructions executed in

parallel by every processor p in the grid. Synchronisations are handled either by the MPI

collective calls or by the user explicitly. The notation (p1, :, p3) is used to refer to the slice

of the processor grid keeping p1 and p3 constant. For a comprehensive review of this topic,

we direct the reader to following sources [62–64].
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Figure 2.9: Visualisation of Matrix multiply (Algorithm 2) with a 3× 3× 3 processor grid.
The 3D iteration space is mapped onto the processor grid, and the matrices are mapped to
the faces of the grid. The dark highlighting corresponds to the input data initially owned
and the output data finally owned by processor (1, 3, 1), and the light highlighting signifies
the data of other processors it uses to perform the local computation. The arrows show the
sets of processors involved in the three collective operations involving processor (1, 3, 1).

Algorithm 2 Communication-optimal parallel matrix multiplication

Require: A ∈ Rn1×n2 and B ∈ Rn2×n3 .
Ensure: C = AB ∈ Rn1×n3

1: p = (p1, p2, p3) ▷ Processor rank
2: ▷ Gather input matrices needed for multiply
3: Ap1,p2 = All-Gather (Ap1,p2,p3, (p1, p2, :))
4: Bp2,p3 = All-Gather (Bp1,p2,p3, (:, p2, p3))
5: ▷ Perform the local matrix multiply
6: Ĉp1,p2,p3 = Ap1,p2Bp2,p3

7: ▷ Sum the rest of the parts of C
8: Cp2,p3 = Reduce-Scatter

(
Ĉp1,p2,p3, (p1, :, p3)

)
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Now let us categorise the different matrix multiplications arising in NMF: WTW,

HHT, WTX, and HXT (see Eqs. (2.10) and (2.11)). Note that for NMF, and for CLRA in

general, we have k ≪ min (m,n). From these discussions, it is clear that the Gram matrix

computations (WTW and HHT) fall under the one-large dimension category. The other

multiplies, WTX and HXT, are in the two-large dimensions case. Notice that both these

cases be designed in a manner such that the largest matrices participating in the multipli-

cations are never communicated (see Fig. 2.8). In the next section we go into the details of

designing such an algorithm for NMF.

2.3.3 2D NMF Algorithms

The PLANC software package is designed to utilise the communication-optimal matrix

multiplication algorithm for each of the four different multiplies encountered in NMF. Fur-

thermore, it is also able to exploit the parallelism afforded by the NLS subproblems by

separating out the independent right-hand sides across the processors.

Data Distributions

Let us first look at the how the three different matrices involved in NMF are distributed.

Since we are working in the one-large dimension and two-large dimensions regime we need

a logical 2D grid of processors. Let us assume we have p = pr × pc grid of processors to

work with. The larger dimensions m and n are split between the processors whereas the

low-rank dimension k is kept intact. Thus, the input matrix X is 2D distributed across

the processors, whereas W is distributed in a block-row manner and H in a block column

(since their other dimension is of size k). The choice for pr and pc is to make the input

X as square as possible to be as communication efficient as possible. Therefore, we pick

pr
pc
≈ m

n
. We analytically justify this choice when we calculate the computational and

communication costs of this distributed matrix multiplication.
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Figure 2.10: PLANC data distribution of the NMF matrices on a 4× 3 processor grid. The
large m×n input matrix X is 2D partitioned across the grid, whereas as the factor matrices
are 1D partitioned. The rows of W are placed in row-major order and the columns of H in
column-major order across the grid. The smallest dimension k is never split.

Fig. 2.10 shows the data distribution for NMF in PLANC. Every processor possesses

an m
pr
× n

pc
block of the input matrix X. Since the column dimension of W is k and

considered to be small, we block-distribute the rows of W across the entire grid in a row-

major order. Each processor has a m
p

contiguous block of rows from W. The columns of

H are distributed analogously in a column-major order across the grid. Each processor has

a k× n
p

column-block of H. The reason for the two different orderings is because we apply

WT to X whereas H is applied on the transpose of input matrix, i.e., XT.

Parallel matrix multiplications in PLANC

Let us describe the two different types of matrix multiplications in detail.

Gram calculations: The Gram matrix calculations of WTW and HHT are used to form

the LHS of the normal equations, ATA, of the NLS update algorithms (see Section 2.2.2).

The sizes of the matrices involved in the computation are k ×m, and m × k, resulting in
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(b) All-Reduce to compute the full WTW.

Figure 2.11: Parallel Gram computation for computing WTW. All processors redundantly
store the k × k Gram matrix WTW in the end. Computing HHT is the exact same algo-
rithm, and it is redundantly stored as well.

a k × k matrix. This is a one-large dimension category problem under Demmel’s taxon-

omy [63]. Therefore, we should be able to compute it without communicating any of the

larger matrices. The pictorial description of the multiplication is shown in Fig. 2.11. Each

processor computes its local Gram matrix, either WT
i Wi or HjH

T
j , to form a k× k partial

Gram matrix (see Fig. 2.11a). This computation is followed by an All-Reduce of the partial

Gram matrix to compute and redundantly store the k × k Gram matrix on all the proces-

sors. Redundant storage is required for each of the processors to have access to the LHS

of the independent NLS subproblems. Once each processor’s RHS portion is computed,

they can update their portions of the factor matrices in parallel. For handling regularisation

as described in Section 2.2.2, each processor can simply add αIk or β1k×k locally to the

Gram matrices once they are computed.

Multiplication with X: We use the 2D algorithm to compute WTX and HXT. This

product corresponds to computing ATB in the updating algorithms for the NLS subprob-
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T

2X22 Ŵ
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Figure 2.12: Parallel multiplication involving X. We show the case for WTX.
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lems Eq. (2.9). To compute WTX, we first gather all the parts of W needed for the local

matrix multiply. This All-Gather operation across the processor rows (Fig. 2.12a) combines

the rows of W as follows

Ŵi =



W(i−1)pc+1

W(i−1)pc+2

...

W(i−1)pc+pc


.

Then each processor computes its local product, shown as Ŵ
T

i Xij in Fig. 2.12b. Next

to compute the full WTX we Reduce-Scatter the partial products across the processor

columns (Fig. 2.12c). The distribution of
(
WTX

)
i
, which are block rows of the product,

is in column-major order across the grid. This ordering matches the distribution of H, and

we can now update its block columns as we have the RHS needed to update Hj block each

processor owns. The operation for HXT is analogous on the transposed grid. The gathers

happen across the processor columns and the scatters across the rows.

Parallel NMF

Now we are able to describe the parallel algorithm for two-block NMF. We denote the NLS

update algorithm to update C given ATA and ATB by update
(
ATA,ATB

)
(see Sec-

tion 2.2.2 for more details). Algorithm 3 shows the NMF algorithm employing the communication-

avoiding matrix multiplications described in the previous section, along with parallelising

over the independent RHS in the NLS subproblems.

Computational Cost: We can now analyse the cost of a single outer iteration Line 5

of Algorithm 3 for a single processor. Let us use Tnls (a, b) to denote the time taken to

update a matrix of size a× b using one of the NLS update algorithms. The Gram computa-

tions, Lines 6 and 12 of Algorithm 3, take (m+n)k2

p
flops. The RHS computations, Lines 9

and 15, take 4mn
prpc

k = 4mnk
p

flops. This cost changes to 4nnz(X)
p

k flops in the sparse case.
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Algorithm 3 Communication-avoiding parallel NMF [59]

Require: X ∈ Rm×n
+ 2D distributed across a pr × pc processor grid.

Require: Low-rank parameter k.
Ensure: W,H ≈ argmin

W≥0,H≥0
∥X−WH∥2F .

Ensure: W ∈ Rm×k
+ is row-wise distributed across the grid.

Ensure: H ∈ Rk×n
+ is column-wise distributed across the grid.

1: p = (i, j) ▷ Processor rank
2: r = (i− 1) pc + j ▷ Row-major rank
3: c = (j − 1) pr + i ▷ Column-major rank
4: Initialise W(0)

r and H(0)
c

5: while t = 1, 2, . . . do ▷ Till some stopping condition is met.
% Compute W given H

6: ĜHc = H(t)
c

(
H(t)

c

)T
▷ Gram computation.

7: GH = All-Reduce(ĜHc)
8: Ĥ

(t)

j = All-Gather(H(t)
c ,(:, j)) ▷ RHS computation.

9: R̂Hc = Ĥ
(t)

j XT
ij

10: RHc = Reduce-Scatter(R̂Hc , (i, :))
11: W(t)

r = update(GH,RHc) ▷ NLS update.
% Compute H given W

12: ĜWr =
(
W(t)

r

)T
W(t)

r ▷ Gram computation.

13: GW = All-Reduce(ĜWr)
14: Ŵ

(t)

i = All-Gather(W(t)
r ,(i, :)) ▷ RHS computation.

15: R̂Wr =
(
Ŵ

(t)

i

)T
Xij

16: RWr = Reduce-Scatter(R̂Wr , (:, j))
17: W(t)

r = update(GW,RWr) ▷ NLS update.
18: end while
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There an additional
(

m
pr

+ n
p c

)
k flops arising from the Reduce-Scatters (Lines 10 and 16).

There are two NLS updates of k×m
p

and k×n
p

matrices, which combined take Tnls

(
k, m+n

p

)
times (Lines 11 and 17).

Thus, the per iteration flop counts are

Tcomp (NMF) ∈


O
(

mnk+(m+n)k2+(pcm+prn)k
p

)
+ Tnls

(
k, m+n

p

)
X is dense

O
(

nnz(X)k+(m+n)k2+(pcm+prn)k
p

)
+ Tnls

(
k, m+n

p

)
X is sparse

(2.29)

Comparing to Eq. (2.28), we can see a reduction of costs by a factor of p.

Communication cost: There are six collective calls in Algorithm 3. We use the costs

associated with them from Table 2.2 to calculate the per iteration communication costs. The

costs of the All-Reduce operations (Lines 7 and 13) are 4α log p + 2βk2. The All-Gathers

of Lines 8 and 14 cost 2α log p+β
(

mk
p
(pc − 1) + nk

p
(pr − 1)

)
. The Reduce-Scatters cost

2α log p+ β
(

mk
p
(pc − 1) + nk

p
(pr − 1)

)
.

We can assume without loss of generalitym ≥ n. These costs can be classified into two

cases. Ifm/p < nwe can choose m
pr
≈ n

pc
≈
√
mn/p, which simplifies the communication

cost to α·O(log p)+β ·O(k2+mk
pr
+ nk

pc
) = α·O(log p)+β ·O

(
k2 +

√
mnk2/p

)
. In the tall-

skinny case, m/p > n, we can set pc = 1, and the costs simplify to α ·O(log p)+β ·O(nk).

This choice of grid gives a total communication cost of

Tcomm (NMF) =


α ·O(log p) + β ·O

(√
mnk2/p

)
m/p < n

α ·O(log p) + β ·O (nk) m/p > n

. (2.30)

Note that we assume the NLS update algorithm does not communicate here. This assump-

tion is not true for some algorithms like, for example HALS.

Comparing Eq. (2.30) with Theorem 2.3.1 we can see that that Algorithm 3 achieves

the lower bounds for both the cases (1D or 2D distribution of X). Notice also that unlike
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computation, communication scales only as a factor
√
p when X is 2D distributed and is

not affected by p in the 1D case.

Memory requirements: The local memory requirements for each processor is mn/p

entries of X (or nnz(X)/p in the sparse case), mk/p entries of W and nk/p entries of H.

The temporary matrices for computing the RHS products consume 2
(

mk
pr

+ nk
pc

)
words. In

the dense case, if we assume k < min (m/pr, n/pc) then the local memory requirements is

just a constant times the size of the input matrix. For optimal choices of pr and pc we can

simplify this assumption to k < max
(√

mn/p,m/p
)

.

2.3.4 Experiments

We present a few experiments to demonstrate the parallel performance of Algorithm 3.

These are shown to give a basic idea of how the different components of the algorithm

behave. We defer more thorough studies with respect to different updating algorithms and

other configurations to later chapters.

Experimental Setup

All of our experiments at scale were carried out on Phoenix, a supercomputer hosted at

Georgia Tech [67]. Each of the 852 compute nodes of Phoenix, in the basic node class,

contains two 2.7 GHz Intel® Xeon® 6226 12-core processors, one per socket. Every node

has a main memory of 192 GB (DDR4-2,933 MHz) and are interconnected via a HDR100

Infiniband interconnect.

PLANC uses Armadillo for matrix operations [68]. Armadillo stores dense matrices in

column-major order and sparse matrices in the Compressed Sparse Column (CSC) format.

We link Armadillo (version 11.2.3) with OpenBLAS (0.3.13) for dense BLAS and LA-

PACK operations and compile using GNU C++ version 8.3.0. All our scaling operations

are conducted in the flat MPI setting. By “flat” we mean that each core is assigned to a
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different MPI process as opposed to assigning a single MPI process to a socket or node

and enabling multithreading within the socket or node. This sample experiment was run on

two synthetic inputs. Dense matrices are generated as nonnegative low-rank matrices by

multiplying a randomly generated W and H. Sparse matrices are generated in a uniform

random manner with a density of 0.05.

We capture different stages of the algorithm in our experiments. We divide the time

into computation and communication sections with three different parts in each. The local

matrix multiplications with X are grouped together as the category Matmul. The Gram

computations and NLS updates, for both W and H, are called Gram and NLS respec-

tively. These three form the computation section. The three collective communications,

All-Reduce, All-Gather, and Reduce-Scatter, are individually timed. For this sample ex-

periment we only run the BPP update algorithm, therefore, there isn’t any communication

involved in the NLS updates.

We vary the number of processors from 12 to 720 which is from 1 node to 30 nodes of

Phoenix. We use a single socket of a node as the starting pointing of scaling. The different

grid configurations used for the scaling studies are 4× 3, 4× 4, 6× 4, 9× 4, 8× 6, 16× 6,

16 × 12, 30 × 12, 30 × 16, 30 × 20, and 30 × 24. The NMF algorithm is run 5 times for

10 outer iterations in the dense case (5 for sparse) and we average the different categories

to get the per-iteration timings.

Strong Scaling

The strong-scaling results are presented in Figs. 2.13 to 2.15. We use synthetic matrices of

dimensions 140,000×70,000 for the dense case and 440,000×220,000 for sparse. We use

a low rank parameter of 50, which is a typical size for CLRA.

Fig. 2.13 show the runtime (Fig. 2.13a) and relative efficiency (Fig. 2.13b) for both the

sparsity types. The dense case runs an order of magnitude faster than the sparse case. We

can see the timing reduce as we increase p but not gracefully. Efficiency shoots up for both
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Figure 2.13: Strong scaling for both the dense (140,000 × 70,000) and sparse (440,000 ×
220,000) cases with k = 50. Erratic but high efficiency observed.
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Figure 2.14: Strong-scaling timing breakdown for the dense case with m = 140,000, n =
70,000, and k = 50. Multiplication with X is the dominating cost but NLS also appears.
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Figure 2.15: Strong-scaling timing breakdown for sparse case with m = 440,000, n =
220,000, and k = 50. Multiplication with X is the dominating cost.

cases when we scale from 36 to 48 processes. Efficiency remains high as we scale to 960

processes with 60% efficiency for the dense case and 75% for sparse. However, we are

using relative speedup and efficiency in this setting. Therefore, it is not guaranteed that we

have the best sequential algorithm.

Figures 2.14 and 2.15 show the breakdown of the running times in the strong-scaling ex-

periments. The algorithm is heavily dominated by the computation component. The major-

ity of the runtime is spent on the matrix multiplication with X as expected (see Figs. 2.14b

and 2.15b). The computation dominates more in the sparse case with communication barely

registering in the breakdown (see Fig. 2.15a). The computational parts of the algorithm

scale with p whereas the communication parts scale less well (Figs. 2.14c and 2.15c). An

anomaly is the 4×4 grid in the dense case (Fig. 2.14). It has an unusually large All-Reduce

component (10× the norm) but doesn’t affect the overall timings due to the dominance of

matrix multiplication costs.

Weak Scaling

The weak-scaling experiments in Figs. 2.16 and 2.17 were conducted by keeping the mem-

ory per processor constant. For the dense case, we start with m = 96,000 and n = 45,000

for 12 processors and scale to m = 720,000 and n = 360,000 for 720 processors. For the

sparse case, these sizes vary from 304,000× 142,500 to 2,280,000× 1,140,000. Since the

ratios of m
pr

and n
pc

are kept constant, the local matrix dimension sizes the same. Thus the
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Figure 2.16: Weak-scaling timing breakdowns for the dense case. Here m/pr = 24,000
and n/pc = 15,000 and k = 50. Notice that the NLS times drop dramatically to a constant
time per iteration as it scales as 1/p.

√
p scaling in communication times is seen.
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Figure 2.17: Weak-scaling timing breakdowns for the sparse case with m/pr = 76,000 and
n/pc = 47,500 and k = 50. NLS times drop quickly like in the dense case.

√
p scaling in

communication times is seen.
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Figure 2.18: Choice of grids for the dense case. Optimal grid selection can lead to up to
1.4× speedup.

Matmul times shouldn’t change when we scale as seen in Figs. 2.15b and 2.16b. However,

since the NLS time scales as m+n
p

it should scale much faster than the matrix multiplica-

tion and reach a constant time per iteration. This rapid decrease can clearly be seen in

the dense case (Fig. 2.16b). Scaling the matrix dimensions in this manner also increases

communication times as we scale up, Figs. 2.16c and 2.17c.

Grid Selection

The final experiment looks at the choice of different grid shapes, pr × pc, on Algorithm 3.

The theoretically optimal choice, to minimise communication, is to select it based on the

aspect ratio of the input matrix (see Section 2.3.3). In our case, we have m
n

= 2, so we

expect the grids with this aspect ratio to have the best performance. Grids with this shape

also have the added advantage of having square local portions of the input Xij , which could

help in the local multiplication as well. From Fig. 2.19, it is clear that naı̈vely partitioning

X either block row-wise or column-wise is inferior to the 2D splitting scheme (1.94×

improvement). Looking at the breakdown charts of Fig. 2.18 we see that the computation

54



(1x512) (2x256) (4x128) (8x64) (16x32) (32x16) (64x8) (128x4) (256x2) (512x1)

Grid shape

0

1

2

3

4

T
im

e
p

er
it

er
at

io
n

(s
)

Matmul

NLS

Gram

(a) Grid choice on computation.

(1x512) (2x256) (4x128) (8x64) (16x32) (32x16) (64x8) (128x4) (256x2) (512x1)

Grid shape

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
p

er
it

er
at

io
n

(s
)

AllReduce

AllGather

ReduceScatter

(b) Grid choice on communication.

Figure 2.19: Finer details of grid selection. Majority of the improvement arises from gains
in communication costs with computation costs showing little variations across the different
grids.

aspects are roughly similar across the grids (Fig. 2.19a), with only a 5% difference between

the best (2 × 256) and worst performing grids (512 × 1). However, the communication

breakdowns tell a completely different story (Fig. 2.19b). The best grid (32 × 16) is 10×

better than the worst grid (1× 512). Therefore, all the gains in this experiment come from

the communication improvements, highlighting the importance of the choice of grids.

2.4 Summary

This chapter provides an overview of the NMF problem, including its history, geometri-

cal interpretation, and hardness in Section 2.1. Due to NMF’s nonconvex nature, the best

approximation one can hope to obtain is a local minimum. In Section 2.2, we introduce

the popular BCD framework for NMF. In particular, we go over several update algorithms

and their common computations. The primary bottleneck for a certain class of NMF al-

gorithms (see Section 2.2.2) is the normal equations formation or gradient computation.

These involve computing the matrix products WTW,HHT,WTX, and HXT.

The key to parallelising NMF is a carefully designed matrix multiplication kernel. We

give a brief overview of the new communication-optimal class of parallel matrix multi-
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plicaiton algorithms in Section 2.3.2. We introduce PLANC, a software library for NMF,

which employs such a communication-avoiding matrix multiplication algorithm (Section 2.3.3).

It is also able to exploit the independent nature of the NLS subproblems to solve them in

parallel. Finally, we demonstrate these bottlenecks and solutions via a small suite of ex-

periments in Section 2.3.4. In particular, multiplication with X is shown to be the major

bottleneck which is improved by using our communication-avoiding algorithm. Designing

this kernel opens up the possibilities of improving other similar CLRA problems which we

tackle in the subsequent chapters.
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One natural variation on the NMF theme is the switch from the usual feature-data

representation of a data item to a data-data relationship. These inputs are represented

either as symmetric similarity matrices or adjacency matrices of undirected graphs. This

approach forces symmetric constraints on the factor matrices which we explore in this

chapter.

We develop the first distributed-memory parallel implementation of SymNMF, a key

data analytics kernel for clustering and dimensionality reduction. Our implementation in-

cludes two different algorithms for SymNMF, which give comparable results in terms of

time and accuracy. The first algorithm is a parallelisation of an existing sequential approach

that uses solvers for nonsymmetric NMF. The second algorithm is a novel approach based

on the Gauss-Newton method. It exploits second-order information without incurring large

computational and memory costs.

We evaluate the scalability of our algorithms on the Summit system at Oak Ridge Na-

tional Laboratory, scaling up to 128 nodes (4,096 cores) with 70% efficiency. Additionally,

we demonstrate our software on an image segmentation task.
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3.1 Introduction

The symmetric nonnegative matrix factorisation (SymNMF) problem arises in unsuper-

vised learning and data mining applications [42, 69–72]. In this problem, the input data is

naturally represented by a symmetric, nonnegative data matrix S ∈ Rn×n
+ where S = ST

and S ≥ 0. For instance, in graph clustering S might be an unweighted adjacency matrix;

in image segmentation S represents pixel-to-pixel positive similarity scores [73]; and in

topic modeling S stores normalised co-occurrence counts [74]. Data analysis tasks such

as dimension reduction, clustering, embedding, or imputation of missing values, may be

formulated as a CLRA problem on S ≈ HTH. Preserving nonnegativity in H helps the

end-user analyst interpret the results more readily.

Sequential algorithms to compute SymNMF are summarised by Kuang et al. [42]. Fol-

lowing methods for the standard nonsymmetric NMF case [27, 75], it formulates SymNMF

as the optimisation problem,

min
H≥0

∥∥S−HTH
∥∥2
F
. (3.1)

Like NMF (see Section 2.1.3), Eq. (3.1) is nonlinear and nonconvex, which makes it hard

to solve to optimality.

Solution algorithms may be broadly classified into two groups: BCD and direct optimi-

sation. BCD algorithms, ANLS [42] and Cyclic Coordinate Descent (CCD) [69], partition

the solution variables into blocks and alternate among solving subproblems with all but

one block of a variables fixed, each of which can be solved exactly. ANLS duplicates

the solution matrix H, solves the problem as a nonsymmetric problem, and uses regu-

larisation to converge to a unified symmetric solution (discussion in Section 3.3). Direct

optimisation techniques such as PGD and Newton-like algorithms [42] iteratively update

all the variables at once. First-order direct optimisation uses only gradient information

(PGD) and can suffer slow convergence, while second-order methods incorporate Hessian

information to improve convergence at the price of higher per-iteration costs. Previously
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developed second-order methods suffer from a particularly high computational complexity

of O(n3k3) per iteration, making them infeasible for even moderate data sizes. Regard-

ing solution quality, neither method is clearly superior to the other and both are expensive

to compute sequentially even at moderate input sizes [42]. As such, we are motivated to

consider both classes of methods and to improve both scalability via parallelism and work-

efficiency via algorithmic techniques.

A critical advantage of parallelising the ANLS variant of SymNMF is that one can reuse

existing algorithms and software developed for the nonsymmetric NMF case in the previous

chapter (Chapter 2). We present our algorithm in Section 3.3. It enjoys the same advantages

as the nonsymmetric method, and is the first distributed-memory parallel algorithm for

SymNMF.

Our second algorithm is a novel Newton-like algorithm for SymNMF based on the

Gauss-Newton method (Section 3.4). It efficiently uses second-order information implic-

itly without incurring prohibitive memory or computational costs. The proposed Gauss-

Newton method for SymNMF finds low-rank approximations that are competitive with

existing algorithms in quality (see Section 3.5.4). Surprisingly, our parallel Gauss-Newton

method using Conjugate Gradients (GNCG) can even be twice as fast as the ANLS variant

in practice.

We evaluate these methods on the Summit supercomputer1 using a variety of datasets (Sec-

tion 3.5). We are able to scale GNCG up to 128 nodes (4,096 cores) with 70% efficiency.

In general, GNCG runs 2× faster than ANLS for most problems where gradient compu-

tation is the major bottleneck (see Section 3.5.5). In cases with extremely large k, ANLS

becomes competitive again (Section 3.5.6).

Overall, the end results constitute the first distributed-memory parallel methods for the

SymNMF problem. The significance is to enable practical use of SymNMF on real-world

problems. As an example, we present a case study in which we apply SymNMF to the

1The system hosted at Oak Ridge National Laboratory.
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segmentation of large satellite images [76]. The pixel embeddings produced by SymNMF

are used to detect boundaries and partition images into regions [42, 73].

3.2 Preliminaries

3.2.1 Notation

The matrix S will refer to a square, nonnegative n × n data matrix, and we reserve H

to represent the factor matrix of the symmetric approximation. We use [X]+ to denote

projection to the nonnegative orthant. The vec(X) operator vectorises a matrix by stacking

its columns on top of each other. The Kronecker product between two matrices A ∈ Rm×n

and B ∈ Rp×q is defined as

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
... . . . ...

am1B am2B . . . amnB


∈ Rmp×nq .

Pp,q is used to denote the commutation matrix which converts the column-major vectorisa-

tion of A ∈ Rp×q to its row-major one, that is

Pp,qvec(A) = vec
(
AT
)
.

As with all permutation matrices Pn,k is orthogonal which means that

Pp,qP
T
p,q = In = PT

p,qPp,q .

This leads to the following useful property PT
p,q = Pq,p, since

PT
p,qPp,qvec(A) = vec(A) = Pq,pvec

(
AT
)
.
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The main use of the commutation matrix is to commute the Kronecker product. The fol-

lowing result holds for every A ∈ Rm×n and B ∈ Rr×q,

Pr,m (A⊗B)Pn,q = B⊗A .

3.2.2 Parallel Nonsymmetric NMF

We build our implementations on top of PLANC [36] which is an extension of MPI-

FAUN [35] designed for nonsymmetric NMF. PLANC is written in C++, uses MPI for

the interprocessor communication, and uses Armadillo for local matrix operations (inter-

facing to a BLAS implementation for dense matrix operations). It is designed to solve the

problem

min
W≥0,H≥0

∥X−WH∥2F (3.2)

for dense or sparse, rectangular, nonnegative matrices X using algorithms that alternate

between updating W for fixed H and updating H for fixed W. Section 2.3.3 gives an

overview of the different parallel kernels present in PLANC.

3.2.3 Gauss-Newton Method using Conjugate Gradient

The Gauss-Newton (GN) method is a technique for minimising a sum of squares of residual

functions. That is, it can be used to solve optimisation problems involving multivariate

functions of the form f(x) = 1
2

∑
l rl(x)

2. Here the functions rl(x) are called the residual

functions and are generally nonlinear. GN proceeds to minimise f(x) by starting with an

initial guess x(0) and following the iteration:

x(t+1) = x(t) − argmin
p

∥∥∥J(t)p− r(t)
∥∥∥2
2
. (3.3)

Here J(t) is the Jacobian matrix defined as J
(t)
lq = ∂rl

∂xq
(x(t)) and r(t) is a vector of the

residual function values rl(x(t)). This iteration is performed until some stopping criteria is
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met. We solve the linear least-squares problem via the normal equations. The GN method is

a second-order optimisation method where the matrix JTJ acts as an approximate Hessian

matrix for f [43].

Thus, the main task at each iteration is to find a solution to the linear system:

(
J(t)TJ(t)

)
p = J(t)Tr(t). (3.4)

For this solve, one can use an iterative method for symmetric positive semi-definite matrices

such as the Conjugate Gradient method (CG) [77]. The right-hand-side vector J(t)Tr(t) =

g(t) is the gradient evaluated at x(t). The CG algorithm maintains for each iteration an

approximate solution vector, a search or update direction vector, and a residual vector, and

it requires the multiplication of the coefficient matrix with an approximate solution vector

as well as several vector operations. While the size of the Gramian of the Jacobian is

large, CG iterations can be performed efficiently if the matrix-vector multiplication can

exploit structure in the Jacobian and avoid the explicit formation of the Gramian. If the

system Eq. (3.4) is only solved approximately, this method is known as an inexact Gauss-

Newton algorithm [78].

For constrained optimisation problems, the Gauss-Newton step is not guaranteed to

maintain the constraint satisfaction. The updated solution can be projected back onto the

feasible set. We apply the projected version of this method and show how to implement

it efficiently for SymNMF in Section 3.4.1. These methods are known as two-metric pro-

jection methods because they embody two different scaling matrices; one is
(
JTJ

)−1
used

to scale the gradient and the other is the identity matrix used in the Euclidean projection

norm [43]. In general, there is no certainty that p forms a descent direction and thereby

guarantee convergence. However as seen in Section 3.5.4, empirically this method behaves

reasonably well and reduces the objective similarly to other algorithms.
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S

(a) Input with block diagonal
structure.

HT

H

(b) SymNMF solution.

HT

H

(c) Spectral Clustering solution.

Figure 3.1: An illustrative example for SymNMF with an input consisting of three diagonal
blocks. The red entries indicate larger positive values than the white ones. The blue entries
are negative. The SymNMF solution approximates the input additively. Spectral Cluster-
ing, on the other hand, performs this task by subtracting the off-diagonal blocks.

3.2.4 Clustering via SymNMF

We provide an intuitive explanation of why SymNMF is expected to extract cluster struc-

tures from symmetric nonnegative matrices representing graphs and similarity scores. Just

like in NMF (see Section 2.1.4), the nonnegativity constraint H ≥ 0 plays an important role

in extracting cluster structure. In the simplest case, when S is a binary matrix with block

diagonal structure corresponding to an undirected graph, the key task is to find the nodes

which are highly connected. This is the clique finding problem for the block diagonal S.

In general, we aim to find subsets or communities of nodes that are densely connected with

various definitions of densities like cut, ratio cut, normalised cut, amongst others [25].

SymNMF decomposes S as

S ≈ HTH =
k∑

r=1

H (r, :)TH (r, :) =
k∑

r=1

ĥrĥ
T

r , (3.5)

where ĥr is the rth row from H reshaped as a column vector. We can see that S is ap-

proximated as the sum of k symmetric and nonnegative rank-one matrices ĥrĥ
T

r . A simple

example of an input with three diagonal blocks is shown in Fig. 3.1. The additive nature

of SymNMF allows its H to behave as a cluster membership indicator (see Fig. 3.1b). Each
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node’s group can be found by looking for the maximum entry along its reduced representa-

tion (column hi for node i). Approximation methods which do not enforce nonnegativity,

like Spectral Clustering shown in Fig. 3.1c, do not share this property in general. In this

case, each diagonal block need not be approximately separately by an outer product ĥrĥ
T

r

but rather can be combined with multiple other outer products to do so.

SymNMF is closely related to a class of graph clustering methods known as Spectral

Clustering [24, 25, 79]. These algorithms rely on the eigendecomposition and are often

characterised by the following optimisation problem,

max
H≥0,HHT=Ik

Tr
(
HSHT

)
, (3.6)

where H ∈ Rk×n and Tr(·) is the trace of a matrix. The rather restrictive constraints ensure

that each column of H contains only a single positive entry and make the problem NP-

hard [25]. The objective function in Eq. (3.6) is known to be same as in Eq. (3.1) and we

show it here for completeness [80]. Under the constraints of H ≥ 0,HHT = Ik we have,

maxTr
(
HSHT

)
⇐⇒ minTr

(
STS

)
− 2Tr

(
HSHT

)
+ Tr (Ik)

⇐⇒ minTr
((

S−HTH
)T (

S−HTH
))

⇐⇒ min
∥∥S−HTH

∥∥2
F
.

Relaxing the constraints for Eq. (3.6) is a practical way to make this problem tractable.

Spectral clustering methods relax the nonnegativity constraints whereas SymNMF relaxes

the orthogonality constraint. Zass and Shashua argue that the nonnegativity constraints are

more important than orthogonality for two reasons [81]. The first is that H ≥ 0 confers

physical meaning to clusters as illustrated in Fig. 3.1. Spectral Clustering also produces

physically meaningful ĥ for the case k = 2, we can detect cluster membership by checking
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if column vectors of H contain a negative entry, but becomes heuristic in nature for k > 2.

The second is that HHT = Ik only serves the role to enforce hard clustering of the data

items in S, that is each item belongs to only one cluster. Removing them is equivalent to

taking a probabilistic or “soft” clustering approach.

A final note on utilising SymNMF for clustering is on the effect of the eigenvalues of

S. SymNMF tries to approximate the symmetric and nonnegative S by HTH which is a

rank-k symmetric positive semi-definite matrix. If S contains fewer than k nonnegative

eigenvalues, then SymNMF might not give a good approximation. This condition can be

expensive to check but Kuang et al. describe why it is reasonable to assume this is satisfied

when we expect S to contain k clusters [42].

3.2.5 Related Work

SymNMF has been extensively studied and a number of effective sequential algorithms

have been proposed for solving Eq. (3.1). Vandaele et al. propose an algorithm using a k

block BCD approach in which elements of the matrix H are iteratively updated row-by-

row in a cyclic fashion [69]. This cyclic coordinate descent (CCD) algorithm is not readily

parallelisable because of its dependencies among elements. Kuang et al. present three al-

gorithms for computing SymNMF: 1) a method based on PGD, 2) a Newton-type method

which utilises second-order information, and 3) a regularised two-block BCD method based

on ANLS [42, 80]. The authors focus on the Newton-type and ANLS algorithms as they

both tend to outperform the PGD algorithm [42]. They conclude that the ANLS algo-

rithm performs most effectively in terms of quality of solution and run time. We parallelise

the ANLS algorithm in this work, as described in Section 3.3. Though we do not de-

velop distributed-memory parallel algorithms for the PGD algorithm [42] or the CCD algo-

rithm [69], we provide convergence experiments from sequential implementations in Sec-

tion 3.5.4 to compare these algorithms.
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The Gauss-Newton method has been used before in the context of low-rank approxima-

tion. For example, Gauss-Newton methods are effective for the computation of the CAN-

DECOMP/PARAFAC (CP) tensor decomposition. Vervliet and de Lathauwer detail how

GN with CG can be used to efficiently compute the CP decomposition [82]. In the context

of high-performance computing, Singh et al. compare the scalability of the Alternating

Least Squares (ALS) and GN algorithms for computing a CP decomposition [83]. The

authors demonstrate efficient weak-scaling results for both algorithms but less compelling

strong-scaling results, particularly for the GN algorithm. The authors attribute this to the

fact that the ALS algorithm contains more easily parallelisable computations and is more

dominated by computation.

3.3 Nonsymmetric Alternating-Updating NMF with Symmetric Regularisation

3.3.1 SymNMF via Alternating Nonnegative Least Squares

One approach we consider for solving Eq. (3.1) is to compute a nonsymmetric NMF with a

regularisation term that drives the two nonsymmetric factors towards each other to encour-

age convergence to a symmetric solution. As proposed by Kuang et al. [42], we can use the

following surrogate optimisation problem:

min
W≥0,H≥0

∥S−WH∥2F + γ
∥∥W −HT

∥∥2
F
. (3.7)

The symmetry constraint is dropped and in its place we add the regulariser γ
∥∥W −HT

∥∥2
F

,

where γ ≥ 0. Note that if γ = 0 Eq. (3.2) is recovered. This encourages the algorithm to

find a solution such that W ≈ HT. Zhu et al. show that algorithms dropping the symmetry

constraint in this manner with a sufficiently large γ return a solution to Eq. (3.1) [84].

In this approach, we can use existing solvers for nonsymmetric NMF, including those

available in PLANC. For alternating-updating algorithms, the subproblem for updating H
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is a NLS of the form

min
H≥0

∥∥∥∥∥∥∥
 W

√
γ Ik

H−

 S

√
γ WT


∥∥∥∥∥∥∥
2

F

,

and the subproblem for updating W is similar. Following Kuang et al., we will refer to this

approach as ANLS [42].

The bulk of the computation for any alternating-updating algorithm is the computation

of the matrices involved in the gradients: WTW + γIk and WTS + γWT (for updating

H) and HHT + γIk and HS+ γH (for updating W), assuming S is symmetric, which are

the matrices appearing in the gradients of the subproblems. More detailed analysis is given

in Section 3.3.4.

3.3.2 Parallel Nonsymmetric ANLS Algorithm

We parallelise the ANLS method using the PLANC software framework [35, 36]. For a

complete description of the parallel matrix multiplication algorithms used for the nonsym-

metric case please refer to Section 2.3.3. Fig. 3.2 illustrates the data distribution of the

data and factor matrices for a square matrix and a 3 × 3 processor grid. The matrices

are oriented to emphasise the conformal distributions of W to processor rows and H to

processor columns, which is designed to support a particular parallel algorithm for matrix

multiplication.

3.3.3 Parallel ANLS

We now describe how to adapt the nonsymmetric parallel ANLS algorithm to the symmetric

case. We use the same 2D distribution of the data matrix, always with a square
√
p × √p

processor grid, storing both upper and lower triangles of the matrix explicitly. We also use

the same 1D distribution of the factor matrices, so the parallel algorithm for computing

Gram matrices does not change.
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Figure 3.2: Nonsymmetric data distribution for a 3× 3 processor grid.

The difference arises in the computation of WTS+ γWT and HS+ γH. In particular,

we note that the distributions of W and H are not identical. As shown in Fig. 3.2, the

second block of W is owned by processor (1, 2), while the second block of H is owned

by processor (2, 1). The nonsymmetric matrix multiplication algorithm is designed so that

WTS has the same distribution of H. In the symmetric case, to incorporate the regularisa-

tion, we must add WTS to γWT, but these matrices are not identically distributed and so

their addition requires communication. Because the result will be used to update H, and

the distribution of WTS matches H, we communicate the necessary block of W to com-

plete the addition. This communication can be performed via pairwise exchanges between

symmetric partners (processors (i, j) and (j, i) for i ̸= j), as depicted in Fig. 3.3. A similar

technique is used to communicate H for the matrix addition with HS when updating W.

The rest of the nonsymmetric NMF algorithm can be applied directly: multiple algo-

rithms can be used to solve the local nonnegative least squares problem. After convergence,

either factor or their average may be used as the symmetric result; to average W and H

requires using a temporary local copy of the matrix that was communicated for the final

update step. We present the ANLS algorithm with symmetric regularisation in Algorithm 4.
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Algorithm 4 [W,H] = SymANLS(A, k, γ)

Require: S ∈ Rn×n
+ is distributed across a

√
p×√p grid of processors, k > 0 is rank of approxi-

mation, p divides n
Require: Local matrices: Sij is n/

√
p × n/

√
p, Ŵi ∈ n/

√
p × k and Ĥj ∈ k × n/

√
p, Wr is

n/p× k and Hc is k × n/p

Ensure: W,H ≈ argminW̃,H̃≥0

∥∥∥S− W̃H̃
∥∥∥2
F
+ γ

∥∥∥W̃ − H̃
T
∥∥∥2
F

Ensure: W,H are n× k row-wise and k × n column-wise distributed across processors
1: p = (i, j) = pij ▷ Processor rank
2: r = (i− 1) pc + j ▷ Row-major rank
3: c = (j − 1) pr + i ▷ Column-major rank
4: Initialise H

(0)
c

5: while t = 1, 2, . . . do ▷ Till some stopping condition is met.
% Compute W given H

6: Uc = HcH
T
c

7: HHT = All-Reduce(Uc)
8: Ĥ

(t)
j = All-Gather(H(t)

c ,(:, j))

9: Vij = Ĥ
(t)
j Sij

10: (HS)r = Reduce-Scatter(Vij , (i, :))
11: pij sends Hc to pji and receives Hr from pji

12: W
(t)
r = update(HHT + γIk, (HS)r + γHr)

% Compute H given W
13: Xr = WT

r Wr

14: WTW = All-Reduce(Xr)
15: Ŵ

(t)
i = All-Gather(W(t)

r ,(i, :))

16: Yij =
(
Ŵ

(t)
i

)T
Sij

17:
(
WTS

)
c

= Reduce-Scatter(Yij , (:, j))
18: pij sends Wr to pji and receives Wc from pji

19: H
(t)
c = update(WTW + γIk,

(
WTS

)
c
+ γWT

c )
20: end while

70



S11 S12 S13

S21 S22 S23

S31 S32 S33

W1

W2

W3

W1

W2

W3

W1

W2

W3

W4

W5

W6

W4

W5

W6

W4

W5

W6

W7

W8

W9

W7

W8

W9

W7

W8

W9

H1

H2

H3

H4

H5

H6

H7

H8

H9

(
WTS

)
1

(
WTS

)
2

(
WTS

)
3

(
WTS

)
4

(
WTS

)
5

(
WTS

)
6

(
WTS

)
7

(
WTS

)
8

(
WTS

)
9

Figure 3.3: Data distribution of symmetric ANLS and communication pattern of W to
compute WTS + γWT for a 3 × 3 processor grid. W needs to be All-Gathered across
processor rows. WTS is Reduce-Scattered across processor columns. The yellow arrows
indicate the communication needed to add WT to WTS. The opposite communication
patter (swap rows and columns) occurs to compute HS.

3.3.4 Analysis

The computation and communication costs of ANLS for SymNMF are nearly identical

to the nonsymmetric case (Section 2.3.3). The dominant computation costs are due to

multiplications between the data matrix and each factor matrix, computing Gram matrices

of the factor matrices, and evaluating the local update function. Computing the products

involving the matrix S costs 4n2k/pwhen S is dense and 4knnz(S)/pwhen S is sparse, the

Gram matrix computations cost O(nk2/p) arithmetic operations, and the matrix additions

are O(nk/p). We use the BPP method for the local update, which can cost O(nk3s(k)/p)

operations but in practice takes much fewer.

The size of the data involved in the All-Gather and Reduce-Scatters is O(nk/
√
p), so

the costs are O(nk/
√
p) words and O(log p) messages. The extra cost of the pairwise

exchange does not affect the leading order communication costs of the overall algorithm,

because the size of the messages is O(nk/p). The communication cost of the Gram all-

reduces is O(log p) messages of size O(k2). Additionally, the algorithm never communi-
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cates the data matrix so these communication costs are the same for both the dense and

sparse cases. We compare the costs of GNCG with ANLS (for the dense case) in Table 3.1.

3.4 Gauss-Newton based Distributed Symmetric Nonnegative Matrix Factorisation

3.4.1 Gauss-Newton for SymNMF

Here we derive the Gauss-Newton method for solving the SymNMF objective function

in Eq. (3.1) and show how to employ CG efficiently for each GN step. Since we are using

the Frobenius norm, our SymNMF objective function is a sum of squares. The GN method

is described for general objective functions in Section 3.2.3. In this case, the residual

functions are of the form

rij(H) = sij −
k∑

ℓ=1

hℓihℓj.

Note that we use two indices for the residual functions because they correspond to matrix

entries, though they must be vectorised, as r = vec(R), before corresponding to rows of

the Jacobian. The Jacobian is a n2 × nk matrix of partial derivatives of the vectorised

residual with respect to the vectorised factor matrix h = vec(H) with the following entry

wise form.

jpq(H) =
∂rp
∂hq

.

Compactly the residual and Jacobian are defined below.

r = vec
(
S−HTH

)
(3.8)

J =
∂r

∂vec(H)
=
∂vec

(
S−HTH

)
∂vec(H)

(3.9)
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We make use of the following identities and the properties of commutation matrices (see Sec-

tion 3.2) to derive a structured representation of the Jacobian [82].

∂vec(WH)

∂vec(W)
= HT ⊗ Im

∂vec(WH)

∂vec(H)
= In ⊗W

∂vec(WH)

∂vec
(
WT

) =
(
HT ⊗ Im

)
Pk,m

(3.10)

We can now obtain J as follow,

J =
∂vec

(
S−HTH

)
∂vec(H)

= −∂vec
(
HTH

)
∂vec(H)

= −
(
∂vec(AH)

∂vec(H)
+
∂vec

(
HTB

)
∂vec(H)

)
(product rule for derivatives.)

J = −
(
In ⊗HT

)
−
(
HT ⊗ In

)
Pk,n

For the product rule step, we fix one of H factors in the matrix product HTH as AH and

HTB for the first and second term respectively.

Gradient computation

In order to take a GN step, we must solve a linear system with coefficient matrix JTJ and

right-hand-side JTr. The vectorised residual of our problem is r = vec
(
S−HTH

)
. The

right-hand-side vector g = 2JTr (gradient, see Section 3.2.3) can be efficiently formed via

g = −2((In ⊗HT) + (HT ⊗ In)Pk,n)
Tvec

(
S−HTH

)
= −2(In ⊗H)vec

(
S−HTH

)
−Pn,k (H⊗ In) vec

(
S−HTH

)
= −2vec

(
HS−HHTH

)
−Pn,kvec

((
HS−HHTH

)T)
= 4vec

(
HHTH−HS

)
.
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The second last equality is due to the identity (BT ⊗A)vec(X) = vec(AXB). An extra

two appears in our g calculation, since our objective function is,
∥∥S−HTH

∥∥2
F
= rTr ,

and not 1
2
rTr as in Section 3.2.3. The approximate Hessian becomes 2JTJ in this case as

well. Since the constants cancel out when we solve for JTJp = JTr, we can drop the extra

factor of two and work with only JTr and JTJ from here on.

Applying Gramian of Jacobian

In order to solve the linear system for the GN step using CG, we need to apply the coeffi-

cient matrix JTJ to a vector.

JTJ =
((
In ⊗HT

)
+
(
HT ⊗ In

)
Pk,n

)T (
In ⊗HT

)
+
(
HT ⊗ In

)
Pk,n (3.11)

= ((In ⊗H) +Pn,k (H⊗ In))
((
In ⊗HT

)
+
(
HT ⊗ In

)
Pk,n

)
(3.12)

=
(
In ⊗HHT

)
+Pn,k

(
H⊗HT

)
+
(
HT ⊗H

)
Pk,n +Pn,k

(
HHT ⊗ In

)
Pk,n

(3.13)

= 2
((
In ⊗HHT

)
+
(
HT ⊗H

)
Pk,n

)
(3.14)

Thus, to apply the Gramian to a vector x, which we will consider to be a vectorisation of

an k × n matrix X, we use

JTJx = 2
((
In ⊗HHT

)
+
(
HT ⊗H

)
Pk,n

)
x

= 2
(
In ⊗HHT

)
vec(X) + 2

(
HT ⊗H

)
Pk,nvec(X)

= 2vec
(
HHTX

)
+ 2

(
HT ⊗H

)
vec
(
XT
)

= 2
(
vec
(
HHTX

)
+ vec

(
HXTH

))
,

which can be computed using four dense matrix multiplications.
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3.4.2 Parallel GNCG

We present the parallel algorithm for GNCG in Algorithm 5. Nearly all of the pseudocode

is devoted to the “vector” operations of CG, which in our case corresponds to matrix addi-

tions and matrix inner products because we maintain all of the CG vectors as matrices with

the same distribution as the factor matrix H. The comments in the pseudocode show the

standard vector notation of CG. We encapsulate the expensive operations that are unique to

GN for SymNMF in function calls to Compute-Gradient (Algorithm 6, described in Sec-

tion 3.4.2) and Apply-Gramian (Algorithm 7, described in Section 3.4.2).

Because of the nesting of iterative algorithms, there is overloaded terminology and a

clash of standard notation. We use the matrix H to represent the factor matrix, which is

the solution vector of the Gauss-Newton iteration. We use the matrix X to represent the

step direction for the Gauss-Newton iteration, which is also the solution vector of the linear

system solved approximately by CG. The matrices P and R follow the standard notation

of CG and correspond to the step direction and residual of the linear system. Matrix Y

is a temporary variable needed within CG, the output of the single matrix-vector product

(computed by Apply-Gramian in our case).

The right-hand-side of the linear system, b in standard notation, is the gradient of the

GN step, which is computed and stored in the residual matrix R in Line 7. The GN step is

taken in Line 22, initially in the direction of X and then projected onto the set of nonnega-

tive matrices.

Gradient computation

For each GN step, we compute the gradient, which is the right-hand-side vector of the

linear system solved approximately by CG. Algorithm 6 shows the parallel algorithm for

evaluating the gradient expression derived in Section 3.4.1. The algorithm consists of three

matrix multiplications: HS, HHT, and (HHT)H. The first two multiplications appear

in the ANLS algorithm (Algorithm 4). To compute HHT, with H column-distributed,
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Algorithm 5 [W,H] = SymGNCG(S, k, smax)

Require: S ∈ Rn×n
+ is distributed across a

√
p×√p grid of processors, k > 0 is rank of approxi-

mation, p divides n
Require: Local matrices: Hc,Xc,Pc,RC ,Yc are k × n/p

Ensure: H ≈ argminH̃≥0

∥∥∥S− H̃
T
H̃
∥∥∥2
F

Ensure: H is k × n columnwise distributed across processors
1: p = (i, j) = pij ▷ Processor rank
2: r = (i− 1) pc + j ▷ Row-major rank
3: c = (j − 1) pr + i ▷ Column-major rank
4: Initialise H

(0)
c

5: while t = 1, 2, . . . do ▷ Till some stopping condition is met.
6: Xc = 0 ▷ Initialise x0 = 0
7: Rc = Compute-Gradient(S,H(t)) ▷ r = b− JTJx0

8: Pc = Rc ▷ p = r
9: ϵold

c = ⟨Rc,Rc⟩
10: ϵold = All-Reduce(ϵold

c )
11: for s = 1 to smax do
12: Yc = Apply-Gramian(H(t),P) ▷ y = JTJp
13: αc = ϵold/⟨Pc,Yc⟩
14: α = All-Reduce(αc)
15: Xc = Xc + αPc ▷ x = x+ αp
16: Rc = Rc − αYc ▷ r = r− αy
17: ϵc = ⟨Rc,Rc⟩
18: ϵ = All-Reduce(ϵc)
19: Pc = Rc + (ϵ/ϵold)Pc ▷ p = r+ βp
20: ϵold = ϵ
21: end for
22: Hij = [Hc −Xc]+ ▷ projected GN step
23: end while

76



each processor performs a local (symmetric) multiplication followed by an All-Reduce

collective. Afterwards, the third multiplication between H and HHT can be performed

locally. Because the 1D distribution of H conforms to the 2D distribution of S, the first

multiplication involves an All-Gather collective, local multiplication, and a Reduce-Scatter

collective. We note that the output matrix HS is 1D distributed, but in a different order than

H, as shown in Fig. 3.4. In order to perform the matrix subtraction, we must redistribute

HS to match H, which can be done via pairwise exchanges between symmetric partners

(Line 7).

Algorithm 6 G = Compute-Gradient(A,H)

Require: S ∈ Rn×n is distributed across a
√
p × √p grid of processors, H ∈ Rk×n is

column-wise distributed
Ensure: G = −2(HS−HHTH) distributed row-wise

1: p = (i, j) = pij ▷ Processor rank
2: r = (i− 1) pc + j ▷ Row-major rank
3: c = (j − 1) pr + i ▷ Column-major rank

% Compute HS
4: Hj = All-Gather(Hc,(:, j))
5: Vij = HjSij

6: (HS)c = Reduce-Scatter(Vij, (i, :))
7: pij sends (HS)c to pji and receives (HS)r from pji

% Compute HHT

8: Uc = HcH
T
c

9: HHT = All-Reduce(Uc)
/* Compute −2(HS− (HHT)H) */

10: Gc = −2((HS)c − (HHT)Hc)

Applying Gramian of Jacobian

Algorithm 7 shows the parallel algorithm for applying the Gramian of the Jacobian to

a vector (reshaped into a matrix for our case), which is required of every CG iteration.

Using identical column-wise distributions of H, the linear-system solution vector X, and

the output vector Y, we can perform the four matrix multiplications derived in Section 3.4.1

efficiently in parallel, using only two collective communication operations. Computing the

k × k matrices HHT and HXT requires reducing results across all processors. By using

77



S11 S12 S13

S21 S22 S23

S31 S32 S33

H1 H2 H3

H1 H2 H3

H1 H2 H3

H4 H5 H6

H4 H5 H6

H4 H5 H6

H7 H8 H9

H7 H8 H9

H7 H8 H9

(HS)1

(HS)4

(HS)7

(HS)2

(HS)5

(HS)8

(HS)3

(HS)6

(HS)9

Figure 3.4: Data distribution of GNCG and communication pattern of H to compute HS−
(HHT)H for a 3 × 3 processor grid. HS involves the usual All-Gather across processor
columns followed by Reduce-Scatter across the rows. Symmetric swaps, shown by yellow
arrows, are needed to match the distributions of H and HS.

All-Reduce, we can obtain those matrices on all processors in order to multiply the local

blocks of X and H with those k × k matrices and perform the addition with no further

communication.

Because the Gramian of H does not change over CG iterations (and it’s also used in

the computation of the gradient), it does not need to be recomputed for each CG iteration.

We employ this optimisation in our implementation but leave it out of the pseudocode for

simpilicity. This avoids a computation step (Line 4) and a communication step (Line 5).

Algorithm 7 Y = Apply-Gramian(H,X)

Require: H,X ∈ Rk×n are distributed column-wise (identically) across processors
Ensure: Y = 2(HHTX+HXTH) distributed column-wise

1: p = (i, j) = pij ▷ Processor rank
2: r = (i− 1) pc + j ▷ Row-major rank
3: c = (j − 1) pr + i ▷ Column-major rank
4: Uc = HcH

T
c

5: U = All-Reduce(Uc)
6: Vc = HcX

T
c

7: V = All-Reduce(Vc)
8: Yc = 2UXc + 2VHc
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Table 3.1: Per-iteration per-processor costs for dense case.

Algorithm flops words messages

ANLS 4n2k
p

+O
(

nk2

p

)
O
(

nk√
p
+ k2

)
O (log p)

GNCG 2n2k
p

+O
(

smaxnk2

p

)
O
(

nk√
p
+ smaxk

2
)

O (smax log p)

3.4.3 Analysis

We now analyse the cost of single GN iteration, which involves smax CG iterations. Aside

from the CG iterations, the most expensive operation is the call to Compute-Gradient

(Line 7), shown in Algorithm 6. As analysed in the case of ANLS (Section 3.3.4), the

cost of computing HS is 2n2k/p flops (if the matrix is dense), O(nk/
√
p) words, and

O(log p) messages. If the matrix is sparse, the flop cost is 2nnz(S)k/p, assuming perfect

load balance of the nonzeros. The cost of the extra step of redistribution of HS is dom-

inated by the costs of the multiplication. As before, computing HHT requires O(nk2/p)

flops, O(k2) words, and O(log p) messages, and the final multiplication requires another

O(nk2) flops but no more communication.

The cost of each CG iteration is dominated by the call to Apply-Gramian (Line 12),

shown in Algorithm 7. All four local matrix multiplications involve O(nk2/p) flops, and

the two collectives cost O(k2) words and O(log p) messages.

Thus, the cost of each GN iteration, assuming a fixed number smax of CG iterations

and a dense matrix, is 2n2k/p + O (smaxnk
2/p) flops, O

(
nk/
√
p+ smaxk

2
)

words, and

O (smax log p) messages. We compare the costs of GNCG with ANLS (for the dense case)

in Table 3.1.

79



3.5 Experiments

3.5.1 Experimental Setup

All our experiments were conducted on Summit, a supercomputer at the Oak Ridge Lead-

ership Computing Facility [85]. It is an IBM system comprising 4,600 compute nodes.

Each Summit node contains 2 IBM® POWER9® processors on separate sockets. Sockets

are connected via dual NVLINK® capable of transferring at 25 GB/s between each other.

Nodes are connected to an InfiniBand network providing a node injection bandwidth of

23 GB/s. Each node contains 512 GB of DDR4 memory. Additionally, Summit nodes have

6 NVIDIA® Volta™ V100 accelerators but they are not used by our implementation 2.

PLANC uses the Armadillo library [68] for matrix operations. Armadillo stores dense

matrices in column major order and sparse matrices in the Compressed Sparse Column

(CSC) format. We link Armadillo (version 9.900) with OpenBLAS (version 0.3.9) and

IBM Spectrum MPI (version 10.3.1.2-20200121) for dense BLAS and LAPACK operations

and compile using the GNU C++ compiler version 6.4.0.

All the scaling experiments are conducted with flat MPI scaling, that is each core is

assigned to a different MPI process. We found the flat setting to run faster and use it as the

basis for our scaling experiments.

Beyond reported speedups, we also examined the absolute performance of our imple-

mentation by assessing the performance of Armadillo on a single Summit node. In particu-

lar, we ran matrix multiply kernels in a manner similar to the flat MPI setting by launching

multiple matrix multiply kernels, each bound to a core, on one node. For dense GEMM

on large square matrices, Armadillo achieved 63% of the peak flops. However, if one the

matrices has a small dimension, as in our experiments, Armadillo instead achieved 43%

of peak. This is a reasonable fraction of the peak performance and is close to the 75%

achieved in most systems [86].

2https://github.com/ramkikannan/planc
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In the sparse setting, we compared Armadillo with Eigen [87] for a dense-matrix-times-

sparse-matrix kernel. Both libraries performed similarly and we use Armadillo in our ex-

periments. This kernel is expected to be bound by memory bandwidth, especially if the

dense matrix is of low rank as in SymNMF. We computed a conservative lower bound on

the bandwidth achieved by this kernel and compared that to the sustainable bandwidth re-

ported by the Stream triad benchmark [88]. By “conservative” we mean that we consider

only compulsory load traffic, which is the sum of the bytes need to store the input and

output matrices, and divide this value by the kernel runtime [89, 90]. This value was found

to be 24% of the peak Stream triad bandwidth which is comparable to 10-35% of peak

performance cited in earlier studies [91, 92] 3.

Our implementation is constrained to run on square processor grids. Summit nodes

have sockets with 21 cores on each socket and the scheduler requires tasks to be di-

vided uniformly across sockets. This forces us to limit the number of processor grid

configurations to either use 16 or 18 processors per socket as we scale across nodes.

Our experiments scale up to 128 nodes (256 sockets) with MPI processor grid sizes of

1× 1, 2× 2, 3× 3, 4× 4, 6× 6, 8× 8, 12× 12, 24× 24, 32× 32, 48× 48 and 64× 64. Here,

16 processors is the largest configuration that can fit in a single socket and 36 processors is

the largest that can fit in a node.

3.5.2 Datasets

Pixel Similarity Data [93]

The Pixel Similarity matrix is generated using the Berkeley Segmentation Engine [73].

Each image is flattened to a vector of pixels and a similarity matrix is generated between

pixels. The similarity value can be computed based on various factors including brightness,

colour and textural cues. We compute similarities only between spatially near-by pixels.

This neighborhood is defined by a disk of radius 20 pixels around every pixel [42]. We used

3Hong et al. studied this kernel in the context of GPUs [91].
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Table 3.2: Pixel Similarity Data.

Image Image Size Matrix Size (n) nonzeros

lighthouse 61 9 1,525×1,419 2,163,975 32,406,651
amusement park 186 6 2,865×2,535 7,262,775 108,844,443
shipyard 11 1 5,584×4,304 24,033,536 360,325,074

three satellite images from the Functional Map of the World (fMoW) dataset to generate

these matrices [76]. We randomly permute the matrices for load balancing. Some salient

features of the images are described in Table 3.2.

Synthetic

Our synthetic datasets are constructed in two ways depending on whether the input is dense

or sparse. For the dense case we generate S = HTH where H is a random low-rank and

nonnegative matrix. This is an exact SymNMF model, and we can confirm that the residual

error of our algorithm with a random start converges to zero. For benchmarking we run

a fixed number of iterations of the SymNMF algorithms rather than till convergence. For

sparse inputs, we specify a fixed density of 0.005.

3.5.3 Performance Breakdown

We breakdown the running time of our algorithms into the following categories.

Matrix Multiply: This is the application of the data matrix to the factor matrices for

computing HS (or WTS). These products are needed for the RHS in the nonnegative least

squares subproblems in the ANLS version and the gradient in the GNCG. This is further

broken into the computation and communication phases. The communication phases are

the All-Gather, Reduce-Scatter, and the Sendrecv of the factor matrices. Only the local

matrix multiplication call is considered for the computation phase and the Reduce-Scatter

computation is counted towards the communication phase. There is only a single Matrix
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(a) Random symmetric matrix
with n = 1,000.
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(b) SPSD matrix with n = 1,000
and k = 50.
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(c) Soybean dataset with n =
200 and k = 6.

Figure 3.5: Convergence comparison of the sequential SymNMF algorithms.The GNCG
relative error is comparable to other SymNMF variants.

Multiply phase per outer iteration in GNCG versus two per outer iteration for the ANLS

version.

Solve: This is the rest of the work needed to complete an inner iteration. Primarily, this is

constructing the Gramian matrices WTW and HHT and performing the nonnegative least

squares solves in the ANLS variant. For GNCG we include the calculations involved in the

CG section of the algorithm which include the matrix multiplies involved in Apply-Gram.

There are All-Reduce communications involved in this phase but only involve smaller k×k

matrices.

Other: This includes smaller computations like norm checks and applying regularisa-

tions which are not explicitly timed in the above phases.

3.5.4 Convergence

We first test the sequential performance of our proposed Gauss-Newton algorithm against

other SymNMF variants in Fig. 3.5. We run SymNMF (ANLS) [42], PGD [42] and Cyclic

Coordinate Descent (CCD) [69] on three different inputs: random symmetric matrices,

low-rank symmetric positive semi-definite (SPSD) matrices, and the Soybean dataset [94].

The SPSD case is an exact low-rank input and all algorithms converge quickly. For the

other inputs, which need not have exact low rank, all algorithms perform similarly. Fig. 3.5
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similarly in terms of final relative error.
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shows that the Gauss-Newton method is competitive with the other algorithms. The Soy-

bean dataset is taken from the UC Irvine Machine Learning Repository4. We apply various

standard preprocessing steps, e.g., removing small clusters, resulting in a 200 × 200 simi-

larity matrix.

Figure 3.6 and Fig. 3.7 shows the convergence of the parallel SymNMF algorithms on

large dense synthetic low-rank matrices and the Pixel Similarity data. Since the synthetic

matrices are exactly low rank, we expect to see good convergence and small relative errors∥∥S−HTH
∥∥2
F
/ ∥S∥2F . We test GNCG with different number of inner CG iterations al-

lowed per outer iteration. We specify three different settings where we allow 5, k, or 1,000

inner CG iterations per outer iteration.

Fig. 3.6 shows good convergence across all the algorithm settings on synthetic matrices

with n = 442,368 and k = 100. The relative error is calculated as the average of five

different initialisations. The different algorithms solve the same problem from the same

starting point. The number of CG iterations does not significantly affect the final relative

error. The difference between 100 and 1,000 CG iterations is imperceptible in the figure.

However, it does affect the execution time: the 5 CG iteration is the fastest of the different

settings, though the difference is slight when running time is dominated by Matrix Multiply

(performed once per GN iteration). Since this does not greatly affect the relative error, we

set smax = 5 for the rest of the experiments.

Fig. 3.7 shows the convergence for 30 iterations on the Pixel Similarity matrices with

k = 16. This is the rank used to generate embeddings from images in prior work [42, 73].

The relative error is large but decreasing over time. In this case, we seek only to discover

embeddings in this task rather than to factor the matrix exactly. Once again, we can see

similar performance with both the ANLS and GNCG variants.

4https://archive.ics.uci.edu/ml/index.php
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Figure 3.8: Strong scaling efficiency upto 128 nodes of Summit. Initial efficiency drop is
noticed once we scale out a socket (16 processes) and cache effects are observed for the
sparse case after 576 processes.

3.5.5 Scaling Studies

Strong Scaling

We present the strong-scaling performance for both dense and sparse inputs in Figs. 3.9

and 3.10. Our matrix sizes are chosen to fill up a single socket’s memory on Summit. We
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Figure 3.9: Dense strong scaling with n = 156,401 and k = 48.
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Figure 3.10: Sparse strong scaling with n = 884,736, density = 0.005 and k = 48.

use n = 156,401 for the dense case and n = 884,736 for the sparse case with density 0.005.

We use a low rank of 48 which is a reasonable size for embeddings.

Figures 3.9a and 3.10a shows the average time per outer iteration of the algorithms as

the number of processors is scaled up. In general, the performance scales gracefully up to

4,096 cores, but we can see a noticeable bump when we first span a node (i.e. 36 processes).

Figures 3.9b and 3.10b clearly show that the Matrix Multiply time is the dominant cost for

both cases. GNCG takes advantage of this fact and is approximately 2× faster than the

ANLS variant.

Figure 3.8 shows the scaling efficiency of both cases. The dense case is able to scale

gracefully up to 4,096 processes with 55% efficiency for ANLS and 70% efficiency for

GNCG. The sparse case behaves more erratically and is able to scale at roughly 70% effi-

ciency till 576 processes. It displays slight superlinear tendency at the larger grid dimen-

sions which we attribute to caching effects as the problem size decays. The problem size

of the input matrix is 27,648× 27,648 for 1,024 processors and is only expected to occupy

about 58 MB in memory per process. The SymNMF problem is bandwidth bound for these

input dimensions. This is seen clearly in the sparse case as efficiency drops within a socket

but stabilises as more sockets are added. This is because bandwidth doesn’t increase when

we scale within a socket as more cores are used.
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Figure 3.11: Weak scaling with k = 48. Efficient configurations for the dense and sparse
are different.

Weak Scaling

Figure 3.11 demonstrates the weak-scaling performance of our algorithms up to 4,096 pro-

cesses. The memory per node is kept constant and scales from an initial size of n0 =

156,401 for dense inputs and n0 = 625,603 for sparse inputs. Matrix dimensions are in-

creased proportionally to the square root of the number of nodes as we scale up. This keeps

the local S matrix dimensions constant per processor. Since we expect the computation to

be bottlenecked by the matrix multiplication call, we expect to observe flat runtimes. Fig-

ure 3.11 confirms this prediction and we see roughly the same performance on all processor

grids. We can see two distinct sets of bars in the graphs with one set running slightly faster

than the other. In the dense case the faster runs correspond to MPI grids of size 16, 64,

1,024, and 4,096. All these configurations have 16 MPI processes per socket whereas the

others have 18 per socket. Interestingly, the opposite effect is seen in the sparse case with

the 18 core per socket configurations running slightly faster.

Scaling on Pixel Similarity Matrices

Next, we consider scaling performance on the Pixel Similarity matrices in Fig. 3.12. All the

experiments were run with k = 16. Fig. 3.12a shows that all the matrices scale similarly.
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Figure 3.12: Strong scaling on the Pixel Similarity matrices with k = 16.

The algorithms steadily lose efficiency till they scale out of a socket and then stabilise

at 50% efficiency. This is because bandwidth does not scale with cores within a socket

and our algorithm is bandwidth bound. Bandwidth is only increased when scaling out to

multiple sockets. Since the algorithm seems to perform similarly on all three inputs, we

only show the breakdown for the shipyard image. Unlike the previous scaling runs we can

see other components of the algorithm apart from just the matrix multiply. One can see that

the matrix multiply is scaling in O(p), but it is not as clear for the solver times. GNCG is

still the faster algorithm due to performing fewer matrix multiplies.

3.5.6 Low-rank Sweep

The k-sweep experiment describes the variation in running time when larger low-rank pa-

rameters are chosen. For larger matrix dimensions we are completely dominated by the

matrix multiply time and these variations do not affect the overall run time. Therefore, we

choose a relatively small matrix to conduct this experiment. Fig. 3.13a shows how Sym-

NMF runtimes vary for a dense synthetic matrix of size 14,000 × 14,000. We see a linear

increase in runtime as k increases. Fig. 3.13b shows the breakdown of this linear increase.

The proportion of solver time increases more rapidly for GNCG than ANLS. This indi-

cates that for cases with extremely large k, it might be better to use ANLS than GNCG.

The runtimes for a sparse input with the same memory footprint is similar.
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Figure 3.13: K-Sweep with a dense synthetic matrix with n = 14,000 on a single node with
a 4× 4 processor grid.

(a) Original Image (b) Boundary Map (c) Segmented Image

Figure 3.14: Boundary detection and image segmentation using features generated by Sym-
NMF.

3.5.7 Image Segmentation

We recreate the image segmentation experiments described in earlier works [42, 73] albeit

on much larger images. The task is to cluster the pixels of an image into a nonoverlapping

set of closed regions. Once these regions are discovered we can determine “boundary”

pixels which segment the image. The Berkeley Segmentation Engine (BSE) [73] is one

of the classical segmentation algorithms used for this task. It represents the pixels in the

image as nodes in a graph and defines the segmentation task as a graph partitioning prob-

lem. We refer the reader to earlier works for the details on generating such a graph [42,

73]. Spectral clustering [73] is used as the graph partitioning algorithm. In this method,

an eigendecomposition is used to generate embeddings for each pixel. We replace those
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embeddings with the ones produced by the SymNMF algorithm and leave the rest of the

pipeline intact. Fig. 3.14 displays the boundary and regions discovered for the lighthouse

image.

3.6 Summary

The experiments in the preceding sections show that the proposed SymNMF algorithms

perform well both in terms of scaling and low-rank approximations. In comparing ANLS

and GNCG, our results show both a BCD and a second-order method can be parallelised ef-

ficiently. We did not observe large deviations in convergence between the two methods, so

the relative efficiency depends mostly on the per-iteration costs. As seen from our scaling

experiments, GNCG runs about twice as fast when the matrix multiply time is dominant,

which we expect for large n and small k. However, when the other parts of the algorithm

come into play (small n and relatively large k), as is the case for the pixel similarity matri-

ces, ANLS is more competitive, depending on the number of CG iterations used by GNCG.

We also mention some of the limitations of the current work which we hope to address

in the future. The first limitation is the use of square processor grids of the form
√
p×√p,

ignoring the symmetry in the input data. Generalising the approach to triangular grids could

avoid the redundant storage of S and possibly enable better load balancing and finding

effective communication patterns [95]. Another approach to reducing the constraints on

mapping a square grid to the architecture is to develop a hybrid implementation, assigning

only one MPI process to each node (or socket) and employing shared-memory parallel

subroutines locally.

Though outside the scope of this work, we see many opportunities for further perfor-

mance optimisation for different classes of sparse matrices from applications outside image

segmentation, such as text data and other undirected relationship graphs. For example, in

the extremely sparse case we should switch from collective communication to a point-to-

point communication scheme [96]. Because the algorithms iteratively apply the matrix, it
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may also be worth partitioning the matrix data more carefully using graph or hypergraph

partitioners to achieve both load balance and low communication costs. As discussed ear-

lier and shown in Fig. 3.12, for large sparse matrices, the matrix multiply times decrease

in proportion to the solver times. In light of this, optimisations in the nonnegative least

squares solver such as those discussed in prior work could become important to the run-

time of the ANLS method [97].
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We consider the case of clustering when there are multiple sources of input for a data

item. In particular, we are working with JointNMF, a hybrid method for mining information

from data that contains both feature-data relations and data-data connection structure [72].

JointNMF optimises an integrated objective function that is able to handle these complex

datasets without the need for any additional clustering or complicated preprocessing.

We develop the first distributed-memory parallel algorithms for JointNMF. Apart from

parallelising the original JointNMF method, we introduce two new methods based on gra-

dient descent and the Gauss-Newton method. As in the SymNMF case, the Gauss-Newton

algorithm is a second-order method which is carefully designed to have reasonable compu-

tational and memory costs.

We evaluate the scalability of our algorithms on the Phoenix system at Georgia Tech,

scaling up to 40 nodes (960 cores) with 40% efficiency.

4.1 Introduction

Numerous datasets, like social networks, document corpora, gene regulatory networks,

image datasets, amongst others, can be represented naturally in the form of “attributed

graphs” [39, 72]. For example, consider a corpus of documents represented as an attributed

graph. Each document forms a node of the graph with citations between patents forming

the edges of the graph. The goal is to cluster them using both information sources simul-

taneously. The text within each document can be used to form the features for each node.

JointNMF is a CLRA method and a natural extension of NMF and SymNMF to handle this

type of data [72].

JointNMF formulates the optimisation problem as follows,

min
W≥0,H≥0

∥X−WH∥2F + α
∥∥S−HTH

∥∥2
F
, (4.1)
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where W ∈ Rm×k
+ and H ∈ Rk×n

+ are low-rank matrices. The hyperparameter α can

be adjusted to emphasise which objective, either the NMF or SymNMF one, is of more

importance to the analyst. Fusing the two information sources at the objective level allows

us to utilise the CLRA machinery developed for NMF and SymNMF as well as make the

results interpretable without any additional preprocessing or clustering steps. Sequential

algorithms for Eq. (4.1) are discussed by Du et al. [72]. In particular, they develop an ANLS

type algorithm for Eq. (4.1) similar to the one developed for SymNMF (see Section 3.3).

As with SymNMF, we develop both BCD and direct methods for parallel JointNMF.

We first parallelise the three-block BCD method developed by Du et al. based on ANLS.

This exercise is used to highlight the different computational challenges that arise when

there are two large input matrices involved in the matrix multiplications. We explore the

different processor grid layouts, optimised for multiplication with X, with S, or both,

needed to handle this case. We next develop two direct methods, a PGD algorithm and

an inexact Gauss-Newton method. Unlike the Gauss-Newton method developed for Sym-

NMF, (see Section 3.4) this algorithm has stronger guarantees for convergence while still

enjoying the low computational and memory requirements as the previous algorithm.

Our serial experiments highlight the superior performance of the ANLS and Gauss-

Newton methods when compared to PGD. Finally, we evaluate these algorithms on the

Phoenix supercomputer [67], and scale to 40 nodes (960 cores) at 40% efficiency.

4.2 Preliminaries

4.2.1 Notation

The only new notation used in this chapter is the logical indexing used for accessing ele-

ments of matrices and vectors. For example, let A ∈ Rm×n and I = {(i, j) : 0 ≤ A (i, j) ≤ 1}.

Then A (I) or AI will return all the elements of A which are between 0 and 1.
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4.2.2 Extending to Multiple Inputs

The most common form of JointNMF is the optimisation problem involving a single feature

and connection matrix, X and S, as shown in Eq. (4.1). This formulation can be extended

to more than two inputs in a natural way.

min
W1≥0,...,Wp≥0,H≥0

p∑
i=1

γi ∥X−WiH∥2F +

q∑
j=1

αj

∥∥Sj −HTH
∥∥2
F

(4.2)

Note that the H is common to all terms in the objective. Using this joint formula, we are

able to incorporate all the input sources at the objective level and obtain a single embedding

matrix. Clustering and other data mining tasks can now work off this single embedding.

We shall now show the equivalence between Eq. (4.2) and Eq. (4.1). Looking at the

features term, we can combine the p different terms as follows.

p∑
i=1

γi ∥X−WiH∥2F =

∥∥∥∥∥∥∥∥∥∥


√
γ1X1 −√γ1W1H

...
√
γpXp −√γpWpH


∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥


√
γ1X1

...
√
γpXp

−

√
γ1W1

...
√
γpWp

H

∥∥∥∥∥∥∥∥∥∥

2

F

=
∥∥∥X̂− ŴH

∥∥∥2
F

Thus, replacing X with the block matrix X̂ leaves the optimisation problem unchanged.

Utilising the same trick for the connection matrices is not as straightforward since the

term HTH cannot be blocked in a similar manner. We shall show this by induction by work-

ing with two matrices, S1 and S2 first. Let Y = HTH, α̂ = α1 + α2, and Ŝ = α1S1+α2S2

α1+α2
.

Now let us look at the difference α̂
∥∥∥Ŝ−Y

∥∥∥2
F
−∑2

j=1 αj ∥Sj −Y∥2F . Expanding out the
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(i, j) entry we have,

rij = (α1 + α2)
(
Ŝ (i, j)−Y (i, j)

)2
− α1 (S1 (i, j)−Y (i, j))2 − α2 (S2 (i, j)−Y (i, j))2

= (α1 + α2) Ŝ (i, j)2 − α1S1 (i, j)
2 − α2S2 (i, j)

2 + (α1 + α2 − α1 − α2)Y (i, j)2

− 2
(
(α1 + α2) Ŝ (i, j)− α1S1 (i, j)− α2S2 (i, j)

)
Y (i, j)

=
α2
1S1 (i, j)

2 + α2
2S2 (i, j)

2 + 2α1α2S1 (i, j)S2 (i, j)

α1 + α2

− α1S1 (i, j)
2 − α2S2 (i, j)

2

= −α1α2 (S1 (i, j)− S2 (i, j))
2 .

The difference only depends on S1 and S2 and not Y = HTH. Therefore, solving with Ŝ

in Eq. (4.1) will result in the same solution as using S1 and S2 in Eq. (4.2). The objective

values will differ by a constant, which does not affect the solution H. By induction, we can

replace the q inputs (αi,Si) with a single input
(∑q

j=1 αj,
∑q

j=1 αjSj∑q
j=1 αj

)
.

Therefore, the original formulation, Eq. (4.1), is versatile enough to handle multiple

information sources via some simple preprocessing. We concentrate only on this case for

parallelisation.

4.2.3 Convergent Two-Metric Projection Methods

In Section 3.2.3, we described a two-metric projection method for a generic problem and

mentioned its lack of convergence guarantees. However, when the constraints are relatively

simple box-constraints of the form l ≤ x ≤ u, there exists a class of scaling matrices that

achieve convergence [43]. Nonnegativity constraints fall under this category, and we briefly

describe how to modify the scaling matrix D = JTJ to achieve convergence.

Recall that the setup to our problem is exactly like Section 3.2.3. We wish to minimise

multivariate functions of the form f(x) = 1
2

∑
i ri (x)

2 subject to x ≥ 0. We update an

initial guess x(0) along the step direction p, as x(t+1) =
[
x(t) − λp

]
+

, such that

(
J(t)TJ(t)

)
p = J(t)r(t),
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where J(t) and r(t) are the Jacobian and residual at iteration t and λ > 0 is the step size. In

the unconstrained case, p takes the form of a scaling of the gradient at iteration t,

(
J(t)TJ(t)

)−1

J(t)r(t) = D(t)g(t) .

To make this procedure converge, we need to make D(t) diagonal with respect to vari-

ables whose constraints are active [98]. Let us identify these active variables as A ={
i : 0 ≤ xi ≤ ϵ, ∂f

∂xi
> 0
}

where ϵ is a small constant. The complement of A is the set of

free variables F = {1, . . . , n} \A. Without loss of generality, let us assume x is permuted

like

xF

xA

. Then the step direction can be found by solving

(
J(t)TJ(t)

)pF

0

 =

g(t)
F

0

 (4.3)

pA = gA . (4.4)

The gradient scaling matrix D(t) takes the following form

D(t) =

DF 0

0 IA

 .

Second-order information is captured for the free variables whereas the active variables are

kept fixed at the constraints. Bertsekas shows that this class of scaling matrices result in p

being a descent direction, and with an appropriately chosen step size λ, such an iterative

procedure converges to a stationary point [98].
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4.2.4 Related Work

The fusion of multiple information sources is a common topic in CLRA literature. Various

formulations of fusing multiple feature and connection matrices with different constraints

have been proposed in the clustering [72, 99–101] and anomaly detection [39, 102, 103]

contexts. In both settings the fusion of information sources has been shown to be more

effective than working on individual portions of the data. Most of the clustering methods

are for unsupervised graph mining, and Whang et al. [101] have extended this approach

to hypergraphs and to the semi-supervised case. For more information on the different

formulations, we refer the reader elsewhere [104].

The PGD and projected Gauss-Newton methods are staples of modern optimisation [43,

78] and have been used for CLRA [48, 82, 105]. In this chapter, we are primarily focused

on the momentum variant of PGD [106, 107] and the box-constrained version of Gauss-

Newton [98]. While these methods have been developed for general optimisation, to the

best of our knowledge our approach is the first known treatment of these methods for Joint-

NMF in the distributed-memory setting.

4.3 Parallel JointNMF

We give a brief description of the different methods implemented in PLANC for JointNMF.

They have a similar vein to the algorithms described in Sections 2.3.3, 3.3 and 3.4 and so,

we highlight only the major differences here.

4.3.1 JointNMF via ANLS

Du et al. proposed a way to solve Eq. (4.1) by dropping the symmetric constraint and using

a penalty term [72]. They propose the surrogate optimisation,

min
W≥0,H≥0,Ĥ≥0

∥X−WH∥2F + α
∥∥∥S− Ĥ

T
H
∥∥∥2
F
+ β

∥∥∥Ĥ−H
∥∥∥2
F
, (4.5)
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where Ĥ ∈ Rk×n
+ and β ≥ 0 is the regularisation parameter. This formulation is motivated

by a similar construction for the SymNMF problem (see Section 3.3). This reformulation

can be solved using a three-block BCD scheme, updating W, Ĥ, and H in turn. The

following NLS subproblems are iteratively solved.

min
W≥0

∥∥HTWT −XT
∥∥2
F

(4.6)

min
Ĥ≥0

∥∥∥∥∥∥∥
√αHT

√
βIk

 Ĥ−

√αS√
βH


∥∥∥∥∥∥∥
2

F

(4.7)

min
H≥0

∥∥∥∥∥∥∥∥∥∥


W

√
αĤ

T

√
βIk

H−


X

√
αS
√
βĤ


∥∥∥∥∥∥∥∥∥∥

2

F

(4.8)

The major computations for this ANLS version of JointNMF are the matrix calculations

needed for computing the gradients. These are the Gram calculations (HHT, αHHT+βIk,

and WTW+αĤĤ
T
+βIk) and the large ones involving the input matrices (HXT, αHS+

βH,WTX+ αĤS+ βĤ). Parallelising these kernels is the major focus of this chapter.

4.3.2 JointNMF via PGD

PGD is a straightforward way to tackle Eq. (4.1). The gradients with respect to the factor

matrices (see Section 4.3.3) are

∇Wf = 2
(
WHHT −XHT

)
(4.9)

∇Hf = 2
(
WTWH−WTX

)
+ 4α

(
HHTH−HS

)
. (4.10)

Let P(t)
W and P

(t)
H be the steps taken by the algorithm at iteration t for the factors W and

H, respectively. Then the updates via PGD take the following form.
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P
(t)
W = γP

(t−1)
W +

∇Wf

∥∇Wf∥F
(4.11)

W(t) = W(t−1) − λP(t)
W (4.12)

P
(t)
H = γP

(t−1)
H +

∇Hf

∥∇Hf∥F
(4.13)

H(t) = H(t−1) − λP(t)
H (4.14)

Here, γ ≥ 0 is the momentum parameter, which helps accelerate gradient descent in

the relevant direction and dampens oscillations [106, 107]. The parameter λ ≥ 0 is the step

size, which is found via experiment. We use a variant of backtracking line search to step in a

direction which reduces the objective [43, 105]. Notice that computational bottlenecks are a

subset of matrix multiplications as in the ANLS case, namely, WTW,HHT,WTX,XHT,

and HS.

4.3.3 JointNMF via PGNCG

We describe the Projected Gauss-Newton method using Conjugate Gradients (PGNCG)

method for the JointNMF objective function in Eq. (4.1). This section follows closely that

of Section 3.4, so we sketch the various derivations. Let us define the vectorised residuals

of the different parts of the objective as

r =

rX
rS

 =

 vec(X−WH)

√
αvec

(
S−HTH

)
 ∈ Rmn+n2

. (4.15)

The Jacobian for Eq. (4.1) is a 2× 2 block matrix of the form

J =

 ∂rX
∂vec(W)

∂rX
∂vec(H)

∂rS
∂vec(W)

∂rS
∂vec(H)

 = −

HT ⊗ Im In ⊗W

0
√
α
((
In ⊗HT

)
+
(
HT ⊗ In

)
Pk,n

)
 .
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We use the identities, Eq. (3.10), to derive an expression for J ∈ R(mn+n2)×(mk+nk). First,

let us verify that 2JTr gives the gradient (see Section 3.4.1).

2JTr = −2

HT ⊗ Im In ⊗W

0
√
α
((
In ⊗HT

)
+
(
HT ⊗ In

)
Pk,n

)


T  vec(X−WH)

√
αvec

(
S−HTH

)


= −2

 H⊗ Im 0

In ⊗WT √
α (Pn,k (In ⊗H) + (H⊗ In))


 vec(X−WH)

√
αvec

(
S−HTH

)


= −2

 (H⊗ Im) vec(X−WH)(
In ⊗WT

)
vec(X−WH) + α

(
(Pn,k (In ⊗H) + (H⊗ In)) vec

(
S−HTH

))


= 2

 vec
(
WHHT −XHT

)
vec
(
WTWH−WTX

)
+ 2αvec

(
HHTH−HS

)


=

vec(∇Wf)

vec(∇Hf)

 = g

Similarly, applying JTJ to a vector x =

vec(XW)

vec(XW)

 results in

y =

vec(YW)

vec(YH)

 (4.16)

= JTJx (4.17)

= JTJ

vec(XW)

vec(XH)

 (4.18)

=

 vec
(
XWHHT +WXHH

T
)

vec
(
WTXWH+WTWH

)
+ 2αvec

(
HHTXH +HTXHH

)
.

 (4.19)
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Computing the gradient requires multiplication with X and S whereas applying the Gramian

of the Jacobian involves only m× k, n× k, and k × k matrices.

Now we need to perform the PGNCG step, which is different from the algorithm used

in SymNMF. Just like the SymNMF case, we drop the extra constant and work with JTr

and JTJ for the PGNCG step (see Section 3.4.1). First, identifying the active-set can

be done independently at every processor via checking their local portions of the factor

matrices and gradients, as follows.

AW = {(i, j) : 0 ≤W (i, j) ≤ ϵ,∇Wf (i, j) > 0} (4.20)

AH = {(i, j) : 0 ≤ H (i, j) ≤ ϵ,∇Hf (i, j) > 0} (4.21)

The complements of the active-sets are the free variables FW and FH. Instead of using the

exact active-set with H (i, j) = 0, we use a small fixed scalar ϵ to prevent zigzagging of the

solution [43]. To compute the correct step direction, before starting the CG iterations we

mask the gradients as∇Wf (AW) = 0 and∇Hf (AH) = 0. Every time we apply JTJ, we

similarly mask the outputs YW (AW) = 0 and YH (AH) = 0. Finally, the step directions

of the free variables are set to the gradient [82, 98, 105].

4.3.4 Parallel Matrix Multiplication Options

While the individual algorithms might seem complicated, the bottleneck computations are

still the matrix multiplications with the input matrices X and S. The different products

to be calculated are WTX, HXT, HS, and in case of the ANLS variant Ĥ
T
S. From our

discussion in Section 2.3.2, we know that for a 2D communication-optimal algorithm we

need the processor grid to have the same aspect ratio as the input matrix, i.e, pr
pc
≈ m

n
when

multiplying with X ∈ Rm×n
+ . However, to be communication-optimal with respect to S

we need pr
pc
≈ 1. To understand these trade-offs, we shall systematically evaluate the grid
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and data layout choices. Throughout this section we shall work with the ANLS variant, but

these arguments can easily be modified for the PGD and PGNCG case.

4.3.5 Grid Choices

The communication costs for the four multiplications are given by Eq. (4.25) assuming we

are working with a pr × pc grid of p processors1.

Tcomm
(
WTX

)
= 2α log p+ β

(
mk

p
(pc − 1) +

nk

p
(pr − 1)

)
(4.22)

Tcomm
(
HXT

)
= 2α log p+ β

(
mk

p
(pc − 1) +

nk

p
(pr − 1)

)
(4.23)

Tcomm

(
Ĥ

T
S
)
= 2α log p+ β

(
nk

p
(pc − 1) +

nk

p
(pr − 1)

)
(4.24)

Tcomm (HS) = 2α log p+ β

(
nk

p
(pc − 1) +

nk

p
(pr − 1)

)
(4.25)

The total words communicated is (2m+2n)k
p

(pc − 1)+ 4nk
p

(pr − 1), which is the same as

a 2D multiplication with a large matrix of size (2m+ 2n)×4n. Thus, a processor grid with

aspect ratio pr
pc
≈ 2m+2n

4n
= m+n

2n
will be communication efficient. Similarly, for the PGD

and PGNCG algorithms we get pr
pc
≈ 2m+n

3n
. This data distribution is shown in Fig. 4.1.

An alternate technique would be to logically partition the p processors into two grids:

p = pr × pc = qr × qc. The aspect ratio of one grid could approximate that of X whereas

the other would be closer to that of S, as shown in Fig. 4.2. Thus, we could be theoretically

communication-optimal for all matrix multiplications. However, the factor H must be

duplicated on both grids since it needs to be multiplied by both X and S. Care must be

taken to ensure that these copies of H are kept in sync as the algorithms progress.

1We can eliminate an extra All-Gather term from either HS or HXT by carefully selecting the update
order to ensure that H is updated last in every inner iteration. We ignore this optimisation in our analysis but
it is straightforward to include. The optimal aspect ratio changes to 2m+n

4n in this case.
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Figure 4.1: PLANC data distribution of the JointNMF matrices on a single 8× 2 processor
grid. The two large input matrices X ∈ Rm×n

+ and S ∈ Rn×n
+ are 2D partitioned across the

processor grid whereas as the factor matrices are 1D partitioned.
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Ĥ5

Ĥ9
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Ĥ2

Ĥ6
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Ĥ12
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Figure 4.2: PLANC data distribution of the JointNMF matrices with 16 processors arranged
in two logical grids. The 8×2 processor grid is used for multiplying with X and the square
4 × 4 grid for S. H̃ is the replicated factor matrix on the second. Care must be taken to
synchronise the factor matrices, H and H̃ , between the two grids.
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4.3.6 Swap Communication

Both grid choices introduce extra communication in the algorithms enumerated below.

1. The distribution of a symmetric matrix S in a rectangular processor grid causes the

one-to-one property of pairwise swaps (see Section 3.3) to no longer hold when need-

ing symmetric regularisation.

2. Computing the gradient of H requires additions with column-order 1D distributed

WTX and row-order 1D distributed HS.

3. Synchronising H between the grids in the double grid case needs extra communica-

tion. Since the H resides on two different logical grids with differing layouts, swap

communications are needed to keep them in sync after the update steps.

We shall prove that these “swap” communications are minimal and involve at most three

different processors. That is, a single processor will need to send information to at most two

other processors and similarly receive messages from at most two others. The sending and

receiving processors could be different from each other. We assume that communicating

matrices are 1D distributed across the grids in a contiguous load-balanced way, as shown

in Figs. 4.1 and 4.2.

Let us work with the case of synchronising H between two grids of p processors. In

this case, we are communicating a n × k matrix between a pr × pc grid (X grid) and a

qr×qc one (S grid). In the general case when p ∤ n, each processor in the X grid could have⌊
⌊ n

pc
⌋

pr

⌋
,

⌊
⌈ n

pc
⌉

pr

⌋
,

⌈
⌊ n

pc
⌋

pr

⌉
, or

⌈
⌈ n

pc
⌉

pr

⌉
columns of H as its local copy. We make use of the

following nested division property of floor and ceiling functions for a > 0 and arbitrary x

and b: ⌊⌊
x
b

⌋
a

⌋
=
⌊ x
ab

⌋
and

⌈⌈
x
b

⌉
a

⌉
=
⌈ x
ab

⌉
.

Since pr, pc > 0 and prpc = p we have that the minimum number of columns of H

owned by a processor is
⌊

n
prpc

⌋
=
⌊
n
p

⌋
and the maximum is

⌈
n
p

⌉
. These two values can
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differ at most by 1. The same argument can be used to show that in the S grid, each

processor owns
⌈
n
p

⌉
or
⌊
n
p

⌋
columns of the replicated factor. Now let us assume that a

processor has to send its factor matrix to three processors in the second grid. In the minimal

case, the sending processor sends one column to the first receiving,
⌊
n
p

⌋
to the middle

processor, and one column to the last. Therefore, the number of columns it possesses is

⌊
n

p

⌋
+ 2 ≥ 1 +

⌈
n

p

⌉
,

which is a contradiction. Therefore, a processor needs to send only to two other proces-

sors. Similar arguments can be derived for the receiving case and for redistributing a row-

major distributed matrix to a column-major one. Thus, the extra communication introduced

by JointNMF can be limited to just a couple of swap messages.

4.4 Experiments

4.4.1 Experimental Setup

The serial convergence experiments were carried out on a server with two Intel® Xeon® E5-

2680 v3 CPUs and 377 GB memory. All of our experiments at scale were carried out on

Phoenix, a supercomputer hosted at Georgia Tech [67]. Each of the 852 compute nodes of

Phoenix, in the basic node class, contains two 2.7 GHz Intel® Xeon® 6226 12-core proces-

sors, one per socket. Every node has a main memory of 192 GB (DDR4-2,933 MHz) and

are interconnected via HDR100 Infiniband interconnect.

PLANC uses Armadillo for matrix operations [68]. Armadillo stores dense matrices in

column-major order and sparse matrices in the Compressed Sparse Column (CSC) format.

We link Armadillo (version 11.2.3) with OpenBLAS (0.3.13) for dense BLAS and LA-

PACK operations and compile using GNU C++ version 8.3.0. All our scaling operations

are conducted in the flat MPI setting.
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Table 4.1: Convergence studies on the different JointNMF algorithms. The relative objec-
tive, time taken, number of function evaluations, and number of knee points are shown.
The best performing method is highlighted in bold.

Input Algorithm Relative Objective Time Function Calls Knee Point

Dense
ANLS 0.0002 35.25 s 1,000.0 9.0
PGD 0.5117 59.90 s 28,659.0 115.8
PGNCG 0.0009 23.66 s 2,004.8 2.0

Sparse
ANLS 0.8589 55.11 s 1,000.0 33.6
PGD 0.9587 50.74 s 11,947.6 78.0
PGNCG 0.8597 35.06 s 1,895.2 11.2

Y04
ANLS 0.9028 135.23 s 100.0 5.0
PGD 0.9948 727.35 s 1,716.0 278.2
PGNCG 0.8869 108.3 s 198.2 18.6

The scaling experiments for this study were conducted on dense synthetic inputs. These

matrices are created as nonnegative low-rank matrices by multiplying a randomly generated

W and H. All our timings are averaged over 5 different runs of 10 iterations each. We use

γ = 0.9 for PGD as suggested by Ruder [107]. We use the default ANLS hyperparameters

of α = ∥X∥2F / ∥S∥
2
F and β = αmax (S) as mentioned by Du et al [72]. For PGNCG

we found that setting the inner CG iterations to 20 gave us the best results in terms of

minimising the residual.

4.4.2 Convergence

We test the serial performance of our proposed JointNMF algorithms, PGD and PGNCG,

on three different datasets and compare against the ANLS version of Du et al. [72]. The

dense synthetic input consists of true low rank inputs X = WH and S = HTH which are

perturbed slightly by 1% Gaussian random noise. The dimensions for the dense case were

m = 1,000, n = 600, and k = 30. The sparse synthetic case is a uniform random matrix for

X and normal random matrix for S using Matlab’s sprandsym function. The negative

values in S have their signs flipped to become nonnegative. Here the dimensions were

m = 1,000, n = 600, and we choose k = 30. Both matrices have approximate densities
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(b) Convergence versus function evaluations.

Figure 4.3: JointNMF convergence shown for the first 3 seconds and 100 function evalu-
ations of the dense synthetic run. PGNCG displays the fastest drop in objective. ANLS
steadily decreases, eventually catching up and surpassing PGNCG around 25 seconds (out
of the graph). PGD while initially decreasing the objective reasonably well gets stuck at a
poor local minimum. The knee points for ANLS and PGNCG are seen at points 9 and 2
respectively. PGD gets the knee point only at function call 115.

of 0.1. Finally, we test convergence of a real-world patent dataset [72]. Each patent is a

document encoded via tf-idf and the citations between the patents are used to generate the

connection matrices. We use the Y04 collection of patents which has X ∈ R8,142×3,242
+

and S ∈ R3,242×3,242
+ with k = 76. The densities for X and S are 0.0141 and 0.0041,

respectively.

We run each algorithm five times with different random seeds. All the methods are

initialised with the same starting guesses W(0) and H(0). The average results over the runs

are shown in Table 4.1. Apart from relative objective and running time, we also capture

the number of times the objective is evaluated as well as the “knee” or “elbow” point

of the objective versus number of function evaluations curve. Since PGD and PGNCG

employ a line search, they can perform more function evaluations than the ANLS method

for the same number of outer iterations. ANLS performs one function evaluation per outer

iteration. We define the knee as the point where the function is best approximated by a pair

of lines2.
2https://www.mathworks.com/matlabcentral/fileexchange/35094-knee-point

110

https://www.mathworks.com/matlabcentral/fileexchange/35094-knee-point


Table 4.1 shows the final relative objective achieved by the three different algorithms.

It is evident that PGD converges a lot slower than the other two methods. Taking a look

at the rate of convergence for the dense case in Fig. 4.3, we can see that while PGD is

able to perform each update quickly it’s not able to decrease the objective sufficiently. This

slow rate of convergence results in a large number of function calls and later knee points

for PGD than ANLS and PGNCG. Perhaps a more aggressive line search method might

alleviate this slow convergence of PGD. This observation adds more weight to the claim of

using more accurate update methods than simple gradient descent.

It is more difficult to distinguish between the PGNCG and ANLS methods. They show

similar performance in terms of relative objective and location of the knee point. A sur-

prising finding is that PGNCG runs approximately 24-57% faster in spite of performing

roughly twice as many function evaluations as ANLS. There are two possible explanations

for this behaviour. ANLS performs an extra large matrix multiplication per function eval-

uation (ĤS) when compared to PGNCG, which could be expensive. The second is that

the inexact CG iterations of PGNCG might be running faster than the exact NLS solve em-

ployed by the ANLS method. We shall benchmark these regions in the scaling studies since

time per function evaluation is the key performance characteristic in the parallel setting.

4.4.3 Grid Choice for Parallel Matrix Multiplication

As we have seen in the previous chapters (Sections 2.3.4 and 3.5), matrix multiplication

consumes the majority of the time for these methods. Therefore, the choice of grid layout

is a crucial one for JointNMF. First, we sweep all possible combinations of grids for a

1,024 MPI processes and benchmark the different matrix multiplication times for the ANLS

method with a single grid configuration (Fig. 4.4). The matrix multiplication times are

normalised by the number of function evaluations.

We used a dense synthetic input with m = 1,228,800, n = 307,200, and k = 50. Since

the aspect ratio for X is 4 we expect the 64× 16 grid to be optimal for multiplications with
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Figure 4.4: Matrix multiplication times (in seconds) for different grid combinations for
JointNMF with m = 1,228,800,n = 307,200, and k = 50. The experiment was run on 43
nodes (1,024 cores) and the y-axis shows the pr value for the grid chosen (with pc = 1024

pr
).

128× 8 is the best overall grid and the fastest for X whereas, 32× 32 is best for S.
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Table 4.2: Running JointNMF with either single or double grid configurations. The best
performance is highlighted in bold.

Label X grid S grid Time Speedup

Empirical best single grid and best X 128× 8 128× 8 3.2772 s 1.0769
Theoretical best X 64× 16 64× 16 3.4684 s 1.0176
Empirical and theoretical best S 32× 32 32× 32 3.5293 s 1.0000
Empirical best double 128× 8 32× 32 3.3612 s 1.0500
Theoretical best double 64× 16 32× 32 3.5145 s 1.0042

X and a 32× 32 for S. From Fig. 4.4b, we can see the computation times for the different

configurations do not vary a lot — 33% for X and 22% for S — but the communication

times can fluctuate by up to 30× for X and 12× for S. This is expected since the grid

choices primarily affect the communication costs of the matrix multiplications. The best

single grid for X was the 128 × 8 setting and for S it was 32 × 32, coinciding well with

theory. The theoretical optimal grid for X also performs reasonably, being only 3% off the

best grid. The single-best grid for both matrix multiplication, by adding the X and S times,

is the 128× 8 case.

In theory, by adding the best possible times from Fig. 4.4a, we should be able to beat

the single-grid performance by utilising the double-grid approach. For our experiments,

the times from the best possible configurations for X and S adds up to 3.061 s. This time

is only a paltry 1% improvement from the best single grid (3.092 s). We run the same

experiments with following grid settings:

1. The empirically found best single grid overall (128× 8).

2. The theoretically best single grid for X (64× 16).

3. The theoretically and empirically found best single grid for S (32× 32).

4. The empirically found best double grid. A 128×8 grid for the X multiplications and

a 32× 32 grid for the ones with S.

5. The theoretical best double grid with shape 64× 16 for X and 32× 32 grid for S.
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The matrix multiplication times per function evaluation for these grids are shown in Ta-

ble 4.2. The two empirically chosen grids (best single and best double) are the best per-

forming settings. The double-grid configuration is not able to beat the best single-grid

setting. However, the times are very similar (all within 8% of each other). It might be

simpler to use the settings that are easier to calculate beforehand than performing empirical

evaluations.

4.4.4 Strong Scaling

We close out our experiments with some strong-scaling studies as shown in Figs. 4.5

and 4.6. We run on dense synthetic matrices with dimensions m = 184,320, n = 46,080,

and k = 50 from 1 node (12 cores) to 40 nodes (960 cores) of the Phoenix cluster. We use

three different grid settings:

1. Best empirical single-grid (ES): We mimic the best single-grid from the preceding

section. We approximate the grid aspect ratio of 8 as we scale up. The different grid

shapes in this setting are 12×1, 12×2, 18×1, 16×3, 24×4, 32×6, 40×6, 60×6,

60× 8, 60× 10, 72× 10, 84× 10, 80× 12.

2. Best empirical double-grid (ED): We follow the best double-grid from the preceding

case. We approximate the grid aspect ratio of 8 for the X grid and use as close to

square grids for S. The grid shapes for X grids are the same as the ES setting. The S

grids have the following shapes: 4× 3, 6× 4, 6× 6, 8× 6, 12× 8, 16× 12, 16× 15,

20× 18, 24× 20, 25× 24, 30× 24, 30× 28, 32× 30.

3. Best theoretical double-grid (TD): This grid is the theoretically best setting, in which

each grid attempts to be as close to the input matrices aspect ratios. The X grids try

to obtain the ratio 4 and are 6 × 2, 8 × 3, 12 × 3, 12 × 4, 16 × 6, 24 × 8, 30 × 8,

36× 10, 40× 12, 50× 12, 48× 15, 60× 14, 60× 16. The S grids are chosen to be

as square as possible and have the same shapes as the S grids for ED.
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Figure 4.5: Time per function evaluation for the PGNCG algorithm under all three grid
settings. The input is a dense synthetic matrix with m = 184,320, n = 46,080, and k = 50.

Fig. 4.5 shows the effect of the different grid settings on the PGNCG method. They all

scale elegantly till 10 nodes (240 cores) before losing efficiency. The ES settings has the

best time per function evaluation overall, but the difference is small between the grids at

960 processes: 0.1597 s for ES, 0.1774 s for ED, and 0.2050 s for TD.

The comparison between the different algorithms for the ES grid is shown in Fig. 4.6.

Similar to the previous case, we see good scaling till 240 MPI processes (10 nodes) be-

fore performance degrades. Interestingly, PGNCG is roughly 2.9× faster than ANLS at

the single-socket level and maintains that advantage till 960 processes at 2.2×. We also

break down the computation for both of these methods in Fig. 4.7. Both the NLS and ma-

trix multiplication components are larger for ANLS, due to extra multiplication performed

by the ANLS method and the relatively cheaper update algorithm in PGNCG. Both these

components scale linearly with p and we should expect the difference to become smaller at

larger scales. Similar results are seen for the ED and TD grid settings.
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Figure 4.6: Strong scaling for dense synthetic matrices with m = 184,320, n = 46,080,
and k = 50 run in the single grid setting (ES). The grids are selected with pr/pc ≈ 8.
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Figure 4.7: Strong scaling computation breakdown for dense synthetic matrices with m =
184,320, n = 46,080, and k = 50 run in the single grid setting (ES). The grids are selected
with pr/pc ≈ 8. The extra matrix multiplication and NLS times account for the extra time
per function evaluation taken by ANLS.
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4.5 Summary

We extend our CLRA toolkit to handle multimodal inputs by including JointNMF in the

suite of tools available in PLANC. With this inclusion, we are able to tackle two of the most

common forms of data encountered: feature-data relationships and data-data relationships.

We show that our current formulation with two inputs can easily be modified to handle

arbitrary inputs in either mode.

Two primary challenges were tackled during the development of parallel algorithms

for JointNMF: handling matrices with different aspect ratios and extending SymNMF to

general rectangular grids in a communication-efficient manner. We resolved both these is-

sues in the same manner by incurring only a limited number of point-to-point messages. We

demonstrated the different grid choices theoretically and conducted experiments to verify

them. We developed new second-order algorithms for JointNMF using a similar strategy

as in the SymNMF case. In contrast to the earlier GNCG algorithm our current PGNCG

version comes with guarantees of convergence. Both PGD and PGNCG run faster than

ANLS with respect to the number of function evaluations. However, as seen in the preced-

ing sections PGNCG does not have as stark an advantage over ANLS as in the SymNMF

case since it performs more function evaluations. All three methods perform similarly in

terms of scaling.
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The PLANC software package is also capable of handling tensors, which are higher

order extensions of matrices. Tensors have recently become popular in data mining com-

munity due to their natural ability to capture multi-way data dependencies. These datasets

are naturally indexed by three or more indices. An example from the previous chapters

would be an attributed graph varying over time. Every edge in this object is indexed by a

source, destination, and time stamp. Tensors have many applications in clustering, dimen-

sionality reduction, latent factor models, and many others.

The Matricised-Tensor Times Khatri-Rao Product (MTTKRP) kernel is the key compu-

tation for tensor CLRA algorithms similar to the matrix multiplication in the matrix case.

PLANC implements a distributed-memory parallel MTTKRP which allows us to scale to

massive datasets. In this chapter we describe our parallel algorithms, software package,

and report efficiency and scalability results for both synthetic and real-world data.

5.1 Introduction

The focus of this chapter is the approximation of nonnegative matrices, and its generaliza-

tion nonnegative tensors, into nonnegative factors. We are already familiar with NMF from

previous chapters but we restate it here for completeness.

min
W≥0,H≥0

∥∥∥∥∥X−
k∑

r=1

W(:, r)H(:, r)T

∥∥∥∥∥
2

F

(5.1)

Here X ∈ Rm×n
+ is a nonnegative input matrix and k is a fixed constant, which is the rank of

the approximation desired. This definition can be generalised to multidimensional arrays,

also known as tensors, and the related problem known as Nonnegative Tensor Factorisation
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(NTF) or Nonnegative CANDECOMP/PARAFAC (NCP)1. Formally, NCP can be defined

as

min
H(i)≥0

∥∥∥∥∥X−
k∑

r=1

H(1)(:, r) ◦ · · · ◦H(N)(:, r)

∥∥∥∥∥
2

F

(5.2)

for a fixed rank k, where H(1)(:, i)◦· · ·◦H(N)(:, i) is the outer product of the ith vector from

all the N factors. This outer product yields a rank-one tensor and
∑k

r=1 H
(1)(:, r) ◦ · · · ◦

H(N)(:, r) results in a sum of k rank-one tensors that approximate theN th order nonnegative

input tensor X.

In developing an efficient parallel algorithm for computing NCP of a dense tensor, the

key is to parallelise the bottleneck computation known as MTTKRP [108]. A different

result is needed for each mode of the tensor, and the MTTKRP for mode n for 1 ≤ n ≤ N ,

is defined as

M(n) = X(n)

(
H(N) ⊙ · · · ⊙H(n+1) ⊙H(n−1) ⊙ · · · ⊙H(1)

)
(5.3)

where X(n) is a matricisation or flattening of the tensor with respect to mode n and ⊙ is

the Khatri-Rao product or columnwise-wise Kronecker product [108, 109]. For the matrix

case this corresponds to the computations XTW and XH, which have highly optimised

single node implementations [16, 18] and can be parallelised efficiently [17, 110]. The

kernels for NCP can be cast as matrix computations, but the complicated layout of tensors

in memory prevents the straightforward use of BLAS and LAPACK and parallel matrix

algorithms.

PLANC2 has been developed in stages with the initial dense NMF algorithm [35], fol-

lowed by sparse NMF [96], extension to tensors [111, 112], addition of GPU acceleration

and new NLS solvers [36, 37], to hierarchical decompositions [113], and finally to multi-

1We use the terms NCP and NTF interchangeably in this chapter.
2The software is available at https://github.com/ramkikannan/planc
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modal inputs [38]. For the rest of this chapter, we shall present the parallelisation strategies

and experimental results for the more general NCP algorithms.

5.2 Preliminaries

5.2.1 Notation

Tensors will be denoted using Euler script (e.g., T), matrices will be denoted with upper-

case boldface (e.g., M), vectors will be denoted with lowercase boldface (e.g., v), and

scalars will not be boldface (e.g., s). We use Matlab style notation to index into tensors,

matrices, and vectors, and we use 1-indexing. For example, M(:, c) gives the cth column of

the matrix M.

We use ◦ to denote the outer product of two or more vectors. The Hadamard product

is the element-wise matrix product and will be denoted using ∗. The Khatri-Rao Product

(KRP) will be denoted with ⊙. Given matrices A and B that are IA × R and IB × R, the

KRP K = A ⊙ B is IAIB × R. It can be thought of as a row-wise Hadamard product,

where K(i + IA(j−1), :) = A(i, :) ∗B(j, :), or a column-wise Kronecker product, where

K(:, c) = A(:, c)⊗B(:, c).

The CP decomposition of a tensor is a LRA of a tensor, where the approximation is a

sum of rank-one tensors and each rank-one tensor is the outer product of vectors. We use

the notation,

X ≈ JH(1), . . . ,H(N)K =
k∑

r=1

H(1)(:, r) ◦ · · · ◦H(N)(:, r) ,

to represent a rank-k LRA model, where H(n) is called a factor matrix and collects the

mode-n vectors of the rank-one tensors as columns. The columns of the factor matrices are

often normalised, with weights collected into a vector λ of length k; in this case we use the

notation Jλ;H(1), . . . ,H(N)K. Unlike the matrix case, all factor matrices have low-rank (k)
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number of columns. This convention is a change from the NMF case, where H ∈ Rk×n
+ , as

we seek to find embeddings for all modes and not just for the data item mode.

An NCP constrains the factor matrices to have nonnegative values. In this work, we

are interested in NCP models that are good approximations to X in the least-squares sense.

That is, we seek

min
H(i)≥0

∥∥∥X− Jλ;H(1), . . . ,H(N)K
∥∥∥ , (5.4)

where the tensor norm is a generalisation of the matrix Frobenius or vector 2-norm, the

square root of the sum of squares of the entries. Here X is a tensor with dimensions

I1 × ...× IN . We denote the product of its dimensions by I , that is I =
∏
In.

The nth mode matricised tensor denoted by X(n) is a In×I/In matrix formed by organ-

ising the nth mode fibers of X into the columns of a matrix. The MTTKRP will be central

to this work and takes the form M(n) = X(n)K
(n), where K(n) = H(N) ⊙ · · · ⊙H(n+1) ⊙

H(n−1) ⊙ · · · ⊙H(1).

5.2.2 Nonnegative CP and Alternating-Updating Methods

The CP decomposition is a low-rank approximation of a multi-dimensional array, or tensor,

which generalises matrix approximations like the truncated singular value decomposition.

As in Fig. 5.1, CP decomposition approximates the given input matrix as sum of k rank-one

tensors.

Algorithm 8 shows the pseudocode for an alternating-updating algorithm applied to

NCP [27]. Line 11, Line 12, and Line 14 compute matrices involved in the gradients of

the subproblem objective functions, and Line 13 uses those matrices to update the current

factor matrix. The NLS-Update in Line 13 can be implemented in different ways (see Sec-

tion 2.2.2). In a faithful BCD algorithm, the subproblems are solved exactly; in this case,

the subproblem is a nonnegative linear least-squares problem, which is convex.

However, as discussed in Section 2.2.2 for the matrix case, there are other reasonable

alternatives to updating the factor matrix without solving the N -block coordinate descent

122



H(1)I1

k

H(2)

I2

k

I3
k

H(3)

= + · · ·+

I1

I2

I3
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Figure 5.1: Visualisation of the CP decomposition of the input tensor X. The input is
approximated as a sum of k rank-one tensors

∑k
r=1 Tr. Each rank-one tensor is an outer

product of vectors which are gathered into the columns of the factor matrices H(1),H(2),
and H(3).

Algorithm 8 JH(1), . . . ,H(N)K = NCP(X, k)

Require: X is I1 × · · · × IN tensor, k is approximation rank
1: % Initialise data
2: for n = 2 to N do
3: Initialise H(n)

4: G(n) = H(n)TH(n)

5: end for
6: % Compute NCP approximation
7: while stopping criteria not satisfied do
8: % Perform outer iteration
9: for n = 1 to N do

10: % Compute new factor matrix in nth mode
11: M(n) = MTTKRP(X, {H(1), . . . ,H(n−1),H(n+1), . . . ,H(N)}, n)
12: S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

13: H(n) = NLS-Update(S(n),M(n))
14: G(n) = H(n)TH(n)

15: end for
16: end while
Ensure: X ≈ JH(1), . . . ,H(N)K
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subproblem exactly. The parallel algorithm presented in this chapter is generally agnostic to

the approach used to solve the nonnegative least-squares subproblems, as all these methods

are bottlenecked by the subroutine they have in common, the MTTKRP.

5.3 Related Work

The formulation of NCP with least-squares error and algorithms for computing it go back

as far as the 1990s [114, 115], developed in part as a generalisation of nonnegative ma-

trix factorisation algorithms [14] to tensors. Sidiropoulos et al. provide a more detailed

and complete survey that includes basic tensor factorisation models with and without con-

straints, broad coverage of algorithms, and recent driving applications [116]. The mathe-

matical tensor operations discussed and the notation used in this chapter follow Kolda and

Bader’s survey [109].

Recently, there has been growing interest in scaling tensor operations to bigger data

and more processors in both the data mining/machine learning and the high-performance

computing communities. For sparse tensors, there have been parallelisation efforts to com-

pute CP decompositions on shared-memory platforms [117, 118], distributed-memory plat-

forms [119–121], and GPUs [122–124], and these approaches can be generalised to con-

strained problems [125].

Liavas et al. [126] extend a parallel algorithm designed for sparse tensors [120] to the

3D dense case. They use the “medium-grained” dense tensor distribution and row-wise

factor matrix distribution, which is exactly the same as our distribution strategy (see Sec-

tion 5.4.1), and they use a Nesterov-based algorithm to enforce the nonnegativity con-

straints. A similar data distribution and parallel algorithm for computing a single dense MT-

TKRP computation is proposed by Ballard, Knight, and Rouse [127]. Another approach

to parallelising NCP decomposition of dense tensors is presented by Phan and Cichocki,

but they use a dynamic tensor factorisation, which performs different, more independent

computations across processors [128]. Moon et al. address the data locality optimisa-
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tions needed during the NLS phase of the algorithm for both shared memory and GPU

systems [123]. Ma and Solomonik [129] and Singh et al. [83] compute unconstrained CP

decompositions using the Cyclops Tensor Framework [130] as a backend for parallel dense

tensor contractions. The former uses a pairwise perturbation technique to approximate MT-

TKRP computations within Alternating Least-Squares, and the latter applies a direct opti-

misation technique based on Gauss-Newton.

The idea of using dimension trees (discussed in Section 5.4.2) to avoid recomputation

within MTTKRPs across modes is introduced by Phan et al. for computing the CP decom-

position of dense tensors [131]. General reuse patterns and mode splitting were present in

earlier works on variants of the Tucker Decomposition [132, 133]. It has also been used for

sparse CP [118, 121] and sparse Tucker [119].

An alternate approach to speeding up CP computations is by reducing the tensor size

either via sampling or compression. A large body of work exists for randomised tensor

methods [134–137] which are recently being extended to the constrained problem [138,

139]. The approach to reduce the tensor size is to first compress the tensor using a different

decomposition, like Tucker, and then compute CP on this reduced array. This method has

been discussed in further detail by Bro and De Jong [140] and Thomasi and Bro [141], but it

becomes more difficult to impose nonnegative constraints on the overall model. A separate

approach is to compute the (constrained) CP decomposition of the entire approximation,

rather than only the core tensor, exploiting the structure of the Tucker model to perform the

optimisation algorithm more efficiently [142].

PLANC presents the first distributed-memory implementation of NCP for dense tensors

of arbitrary orders. It utilises the data layouts of Ballard et al., which is shown to be

communication-optimal for MTTKRP [127, 143]. Dimension trees are also employed to

reuse computations across multiple MTTKRPs [131].
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5.4 Algorithms

5.4.1 Parallel NCP Algorithm

Algorithm Overview

The basic sequential algorithm is given in Algorithm 8, and the parallel version is given

in Algorithm 9. In Algorithm 9, we will refer to both the inner iteration, in which one factor

matrix is updated (Line 10 to Line 20), and the outer iteration, in which all factor matrices

are updated (Line 8 to Line 21). In the parallel algorithm, the processors are organised

into a logical multidimensional grid (tensor) with as many modes as the data tensor. The

communication patterns used in the algorithm are MPI collectives: All-Reduce, Reduce-

Scatter, and All-Gather. The processor communicators (across which the collectives are

performed) include the set of all processors and the sets of processors within the same

processor slice. Processors within a mode-n slice all have the same nth coordinate. Each

processor is part of N different PROC-SLICE communicators, which we denote by PROC-

SLICE(n, pn), where n refers to the mode and pn refers to the nth processor coordinate (i.e.,

the pn-th processor slice in mode n).

The method of enforcing the nonnegativity constraints of the linear least-squares solve

or update generally affects only local computation because each row of a factor matrix can

be updated independently. In our algorithm, each processor solves the linear problem or

computes the update for its subset of rows (see Line 15). The most expensive (and most

complicated) part of the parallel algorithm is the computation of the MTTKRP, which

corresponds to Line 12, Line 13, and Line 19.

The details that are omitted from this presentation of the algorithm include the normal-

isation of each factor matrix after it is computed and the computation of the residual error

at the end of an outer iteration. These two computations do involve both local computation

and communication, but their costs are negligible.
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Algorithm 9 JH(1), . . . ,H(N)K = Par-NCP(X, R)

Require: X is an I1×· · ·×IN tensor distributed across a P1×· · ·×PN grid of P processors,
so that Xp is (I1/P1) × · · · × (IN/PN) and is owned by processor p = (p1, . . . , pN),
k is rank of approximation

1: for n = 2 to N do
2: Initialise H(n)

p of dimensions (In/P )× k
3: G = Local-SYRK(H(n)

p )

4: G(n) = All-Reduce(G,ALL-PROCS)
5: H(n)

pn = All-Gather(H(n)
p , PROC-SLICE(n, pn))

6: end for
7: % Compute NCP approximation
8: while not converged do
9: % Perform outer iteration

10: for n = 1 to N do
11: % Compute new factor matrix in nth mode
12: M = Local-MTTKRP(Xp, {H(1)

p1
, . . . ,H(n−1)

pn−1
,H(n+1)

pn+1
, . . . ,H(N)

pN
}, n)

13: M(n)
p = Reduce-Scatter(M, PROC-SLICE(n, pn))

14: S(n) = G(1) ∗ · · · ∗G(n−1) ∗G(n+1) ∗ · · · ∗G(N)

15: H(n)
p = NLS-Update(S(n),M(n)

p )
16: ▷ Organise data for later modes
17: G = H(n)

p

T
H(n)

p

18: G(n) = All-Reduce(G,ALL-PROCS)
19: H(n)

pn = All-Gather(H(n)
p , PROC-SLICE(n, pn))

20: end for
21: end while
Ensure: X ≈ JH(1), . . . ,H(N)K
Ensure: Local matrices: H(n)

p is (In/P ) × k and owned by processor p = (p1, . . . , pN),
for 1 ≤ n ≤ N , λ stored redundantly on every processor
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Figure 5.2: PLANC data distribution for an I1×I2×I3 tensor X on 24 processors arranged
as a 4×3×2 grid. The local tensor X131 for processor (1, 3, 1) with dimensions I1

4
× I2

3
× I3

2

is highlighted. H(1) is distributed as block rows with each block being replicated along
each mode-1 slice. The local parts of H(1)

1 is shown as dark blue rectangles along PROC-
SLICE(1, 1) with labels 1, . . . , 6 in the natural mode-descending order.

Data Distribution

Given a logical processor grid of processors P1×· · ·×PN , we distribute the size I1×· · ·×IN
tensor X in a block or Cartesian partition. Each processor owns a local tensor of dimensions

(I1/P1) × · · · × (IN/PN), and only one copy of the tensor is stored. Locally, the tensor

is stored linearly, with entries ordered in a natural mode-descending way that generalises

column-major layout of matrices. Given a processor p = (p1, . . . , pN), we denote its local

tensor Xp.

Each factor matrix is distributed across processors in a block row partition, so that each

processor owns a subset of the rows. We use the notation H(n)
p , which has dimensions

In/P × k, to denote the local part of the nth factor matrix stored on processor p. However,

we also make use of a redundant distribution of the factor matrices across processors, be-

cause all processors in a mode-n processor slice need access to the same entries of H(n) to

perform their computations. The notation H(n)
pn denotes the In/Pn × k submatrix of H(n)
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Figure 5.3: Illustration of 2nd inner iteration of Par-NCP algorithm for 3-way tensor on
a 3 × 3 × 3 processor grid, showing data distribution, communication, and computation
across steps. Highlighted areas correspond to processor (1, 3, 1) and its processor slice
with which it communicates. The column normalisation and computation of G(2), which
involve communication across all processors, is not shown here.

that is redundantly stored on all processors whose nth coordinate is pn (there are P/Pn such

processors). Figure 5.2 shows a 3-dimensional example.

Other matrices involved in the algorithm include M(n)
p , which is the result of the MT-

TKRP computation and has the same distribution scheme as H(n)
p , and G(n), which is the

k × k Gram matrix of the factor matrix H(n) and is stored redundantly on all processors.

Inner Iteration

The inner iteration is displayed graphically in Fig. 5.3 for a 3-way example and an update of

the 2nd factor matrix. The main idea is that at the start of the nth inner iteration (Fig. 5.3a),

all of the data is in place for each processor to perform a local MTTKRP computation,

which can be computed using a dimension tree as described in Section 5.4.2. This means
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that all processors in a slice redundantly own the same rows of the corresponding factor

matrix (for all modes except n). After the local MTTKRP is computed (Fig. 5.3b), each

processor has computed a contribution to a subset of the rows of the global MTTKRP M(n),

but its contribution must be summed up with the contributions of all other processors in its

mode-n slice (denoted PROC-SLICE(n, pn) in Line 13 of Algorithm 9). This summation is

performed with a Reduce-Scatter collective across the mode-n processor slice that achieves

a row-wise partition of the result (in Fig. 5.3c, the light gray shading corresponds to the

rows of M(2) to which processor (1, 3, 1) contributes and the dark gray shading corresponds

to the rows it receives as output). The output distribution of the Reduce-Scatter is designed

so that afterwards, the update of the factor matrix in that mode can be performed row-

wise in parallel. S(n) can be computed locally since the Gram matrices, G(n), are stored

redundantly on all processors. Along with S(n) each processor updates its own rows of the

factor matrix given its rows of the MTTKRP result (Fig. 5.3d). The remainder of the inner

iteration is preparing and distributing the new factor matrix data for future inner iterations,

which includes an All-Gather of the newly computed factor matrix H(n) across mode-n

processor slices (Fig. 5.3e) and recomputing G(n) = H(n)TH(n).

Analysis

We will analyse the cost of a single outer iteration. While the number of outer iterations

is sensitive to the NLS method used, the outer-iteration time is generally the same across

methods. We summarise the analysis in Table 5.1, which provides the dominant compu-

tation, communication, and memory costs of a single outer-iteration: computing S(n) and

M(n) for each n that is common to all NLS algorithms.

Computation: The local computation occurs at Lines 12, 14, 15 and 17. The cost

of Line 14 is O(Nk2), the cost of Line 15 is O(k3In/P ), which is a loose upper bound

for most methods (see Section 2.2.2), and the cost of Line 17 is O(k(In/P )2). The sum
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Table 5.1: Costs per outer iteration (while loop of Algorithm 9) and per processor in
terms of computation (flops), communication (words moved), and memory (words) re-
quired to compute S(n) and M(n) for each n, assuming the local MTTKRP uses a dimen-
sion tree [127]. These costs do not include the computation (and possibly communication)
costs of the particular NLS algorithm.

Computation Communication Temporary Memory

O
(

k
P

∏
n In + k2

P

∑
n In

)
O

(
k
∑
n

In
Pn

)
O

k(∏
n

In
Pn

)1/2

+ k
∑
n

In
Pn



of these three costs across all inner iterations is O (k2N2 + (k3/P )
∑
In + (k/P 2)

∑
I2n),

which is dominated by the cost of the MTTKRP. We compute the cost to perform the

MTTKRPs using dimension trees amortised over all inner iterations. The dimension tree

optimization is explained in detail in Section 5.4.2. The outer iteration cost is dominated

by the two partial MTTKRP computations (from the root of the tree), which together are

O((k/P )
∏
In) = O(Ik/P ) and dominate the costs of the multi-TTVs. This cost involves

the product of all the tensor dimensions, which is why it dominates, and scales linearly

with P .

Communication: The communication within the inner iteration occurs at Lines 13, 18

and 19. Line 18 involves O(k2) data and a collective across all processors. Lines 13

and 19 involve O(Ink/Pn) data across a subset of P/Pn processors. Thus, the All-Reduce

dominates the latency cost and the Reduce-Scatter/All-Gather dominate the bandwidth cost.

Using efficient algorithms for the collectives, the total outer-iteration communication cost

is O(k
∑
In/Pn) words and O(N logP ) messages.

If P is large enough, then the bandwidth cost can achieve a value of O(NkI1/N/P 1/N)

by making the local tensors as cubical (all local tensor dimensions are roughly the same),

which is communication-optimal [127]. If P is not large enough (or if the tensor dimen-

sions are too skewed) to obtain perfectly cubical tensors, then choosing the processor grid

so that local tensors are as cubical as possible is also communication-optimal [143] (in this
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case some of the processor grid dimensions will be 1). We note that the cost in the case

of large P scales with P 1/N , which is far from linear scaling. However, it is proportional

to the geometric mean of the tensor dimensions (on the order of one tensor dimension),

which is much less than the computation cost dependence on the product of all dimensions.

We report the cost for an arbitrary processor grid in Table 5.1, because the simplified cost

expression is not always achievable. In any case of input tensor and number of processors,

optimising the processor grid within our framework is sufficient to obtain the communica-

tion lower bounds for MTTKRP to within a constant factor [127, 143].

Memory: The algorithm requires extra local memory to run. Aside from the memory

required to store the local tensor of O(I/P ) words and factor matrices of cumulative size

O((k/P )
∑
In), each processor must be able to store a redundant subset of the rows of the

factor matrices it needs to perform MTTKRP computations. This corresponds to storing

P/Pn redundant copies of every factor matrix, which results in a local memory requirement

of O(k
∑
In/Pn) for a general processor grid. The processor grid that minimises commu-

nication also minimises local memory, and the extra memory requirement can be as low as

O(NkI1/N/P 1/N), which is typically dominated by O(I/P ).

The dimension-tree algorithm also requires extra temporary memory space, but the

space required tends to be much smaller than what is required to store the local tensor.

If the tensor dimensions can be partitioned into two parts with approximately equal geo-

metric means, the extra memory requirement for running a dimension tree is as small as

O(k
√
I/P ), which is also typically dominated by O(I/P ).

5.4.2 Dimension Trees

An important optimisation of the alternating-updating algorithm for NCP (and uncon-

strained CP) is to reuse temporary values across inner iterations [118, 121, 131, 144].

To illustrate the idea, consider a 3-way tensor X approximated by JU,V,WK and the two
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MTTKRP computations M(1) = X(1)(W⊙V) and M(2) = X(2)(W⊙U) used to update

factor matrices U and V, respectively. The underlined parts of the expressions correspond

to the computations which are shared between M(1) and M(2) and depend only on fixed

quantities X and the third factor matrix W.

Indeed, a temporary quantity, which we refer to as a partial MTTKRP, can be com-

puted and reused across the two MTTKRP expressions. We refer to the computation that

combines the temporary quantity with the other factor matrix to complete the MTTKRP

computation as a multi-tensor-times-vector or multi-TTV, as it consists of multiple opera-

tions that multiply a tensor times a set of vectors, each corresponding to a different mode.

To understand the steps of the partial MTTKRP and multi-TTV operations in more

detail, we consider X to be I × J ×K and U, V, and W to have R columns. Then

m
(1)
ir =

∑
j,k

xijkvjrwkr =
∑
j

vjr
∑
k

xijkwkr =
∑
j

vjrtijr,

where T is an I × J × R tensor that is the result of a partial MTTKRP between tensor X

and the single factor matrix W. Likewise,

m
(2)
jr =

∑
i,k

xijkuirwkr =
∑
i

uir
∑
k

xijkwkr =
∑
i

uirtijr,

and we see that the temporary tensor T can be reused and is the underlined part of M(1) =

X(1)(W ⊙ V) and M(2) = X(2)(W ⊙ U). From these expressions, we can also see

that computing T (a partial MTTKRP) corresponds to a matrix-matrix multiplication, and

computing each of M(1) and M(2) from T (a multi-TTV) corresponds to R independent

matrix-vector multiplications. In this case, we compute M(3) using a full MTTKRP.

For a larger number of modes, a more general approach can organise the temporary

quantities to be used over a maximal number of MTTKRPs. The general approach can

yield significant benefit, decreasing the computation by a factor of approximately N/2
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Figure 5.4: Dimension tree example for N = 5. The data associated with the root node
is the original tensor, the data associated with the leaf nodes are MTTKRP results, and
the data associated with internal nodes are temporary tensors. Edges labeled with PM
correspond to partial MTTKRP computations, and edges labeled with mTTV correspond
to multi-TTV computations.

for dense N -way tensors. The idea is introduced in Phan et al. [131], but we adopt the

terminology and notation of dimension trees used by Kaya et al. [121, 144, 145]. In this

notation, the root node is labeled {1, . . . , N} (we also use the notation [N ] for this set) and

corresponds to the original tensor, a leaf is labeled {n} and corresponds to the nth MTTKRP

result M(n), and an internal node is labeled by a set of modes {i, . . . , j} and corresponds

to a temporary tensor whose values contribute to the MTTKRP results of modes i, . . . , j.

Figure 5.4 illustrates a dimension tree for the case N = 5. Various shapes of binary

trees are possible [131, 144]. For dense tensors, the computational cost is dominated by

the root’s branches, which correspond to partial MTTKRP computations. We perform the

splitting of modes at the root so that modes are chosen contiguously with the respect to the

layout of the tensor entries in memory. In this way, each partial MTTKRP can be performed

via BLAS’s GEMM interface without reordering tensor entries in memory. All other edges

in a tree correspond to multi-TTVs and are typically much cheaper. By organising the

memory layout of temporary quantities, the multi-TTV operations can be performed via a

sequence of calls using BLAS’s GEMV interface. By using BLAS in our implementation,

we are able to obtain high performance and on-node parallelism. For further reading, we

direct the reader to the articles by Hayashi et al. [112, 146].
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5.5 Software

In this section, we give a brief overview of the PLANC software package structure and

ways we expect users to interact with it. PLANC consists of the following modules:

shared-memory NMF, shared-memory NTF, distributed-memory NMF, and distributed-

memory NTF. A detailed description of the NTF module is presented with the NMF mod-

ules following a similar hierarchy. We expect users of PLANC to add new NLS solvers and

use PLANC to quickly prototype their efficacy on large problems (see [37, 113], for ex-

ample). A case study of this interaction is shown. Another possible extension would be to

improve the MTTKRP and matrix multiplication operations, as done by Moon et al. [123].

These routines are implemented in the abstract class, so any performance improvement

immediately benefits all NLS solvers. Another possible interaction with the code would

be to utilise the optimised MTTKRP and matrix multiplication operations. While they

are not explicitly exposed by PLANC, extending these classes has been demonstrated by

others [147].

5.5.1 Class Organisation

We briefly describe the overall class hierarchy of the PLANC package as illustrated in

Fig. 5.5. PLANC offers both shared and distributed-memory implementations of NTF and

the classes used in each type are distinguished by the prefix Dist in their names (e.g.,

DistAUNTF versus AUNTF). We shall cover the distributed implementation of NTF in

this section. Most of the descriptions can be directly applied to the shared memory case as

well.

There are broadly two types of classes present. Utility classes are primarily for man-

aging data, setting up the processor grid, and interacting with the user. Algorithm classes

perform all the computations needed for NTF and implement the different NLS solvers.
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Figure 5.5: PLANC UML class diagram. Solid lines with arrow heads represent is-a rela-
tionships (inheritance): the six algorithm classes near the bottom of the diagram all derive
from the abstract class DistAUNTF at the top. Solid lines with diamond heads represent
has-a relationships (composition): NES and AOADMM classes have extra NCPFactors
objects compared to the abstract DistAUNTF class, for example. Dotted lines represent
dependencies.
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Utility Classes

Data: The Tensor and NCPFactors classes contain the input tensor X and the factor

matrices Jλ;H(1), . . . ,H(N)K. The Tensor class stores the input tensor as a standard

data array. The tensor X is stored as its mode-1 unfolding X(1) in column major order.

Each processor contains its local part of the tensor (see Section 5.4.1). The NCPFactors

class contains all the factor matrices. Each factor matrix is an Armadillo matrix [68]. The

matrices are usually column normalised and the column norms are stored in the vector λ,

which is present as a member of this class (see Section 5.2.1). The vector λ is replicated in

all processors whereas the rows of the factor matrices are distributed across the processor

grid (see Section 5.4.1). There is no global view of the entire input tensor or factor matrices

and care must be taken to communicate parts of either among the processor grid.

Communication: The NTFMPICommunicator class creates the MPI processor grid

for Algorithm 9. In addition to the communicator for the entire grid, it contains a slice

communicator for each mode of the processor grid. The slice communicators are used in

the Reduce-Scatter of Line 13 and All-Gather of Line 19 in Algorithm 9.

I/O: The DistNTFIO utility class is used to read in the input tensor from user-specified

files. DistNTFIO also contains methods to generate random tensors and to write out the

factor matrices to disk. The ParseCommandLine class contains all the command line

options available in PLANC. As the name suggests it parses the different combinations of

user inputs to instantiate the driver class and run the NCP algorithm. Some example user

inputs are the target rank of the decomposition, number of outer iterations, NLS solver, and

regularisation parameters.
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Algorithm Classes

DistAUNTF: This is the major workhorse class of the package. It is used to imple-

ment Algorithm 9. Some of the important member functions are:

• computeNTF: This is the outer iteration (Line 8 in Algorithm 9).

• distmttkrp: Computes the distributed MTTKRP in Line 12 and Line 13 in Algo-

rithm 9.

• gram hadamard,update global gram: These functions are used to compute

the Gram matrix used in the NLS solvers.

• computeError: This function calculates the relative objective error of the factori-

sation. This can be computed efficiently by reusing the MTTKRP computation from

the previous iteration (see [36, 52, 109]).

Derived classes: There exist derived classes, such as DistNTFANLSBPP, DistNTFMU,

etc., for each of the NLS solvers described in Section 2.2.2. There are two main functions

which are present in the derived classes which are described below. Auxiliary variables

needed to implement certain NLS solvers like ADMM and Nesterov-type algorithm are

also maintained in this class.

• update: This function is the NLS solve function. It returns the updated factor

matrix using the current local MTTKRP result and global Gram matrix (see Sec-

tion 2.2.2).

• accelerate: This implements the outer iteration acceleration (Line 8 in Algo-

rithm 9). Currently only the Nesterov-type algorithm has an outer acceleration step.

5.5.2 Algorithm Extension

Extending PLANC to include different solvers involves the following steps.
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1. Create a derived class with the newly implemented update function. This is the new

NLS method needed to update the factor matrices.

2. The constructor for the new class should contain information on whether the algo-

rithm requires an outer acceleration step. If the method requires an outer acceleration

step it needs to be implemented in the derived class.

3. Update the command line parsing class ParseCommandLine to include additional

configuration options for the algorithm.

4. Include the new algorithm as an option in the utilities and the driver files.

Case Study: We describe the different steps needed to extend PLANC to include the

Nesterov-type algorithm.

1. We first create the DistNTFNES class which is derived from DistAUNTF.

2. We implement the update and accelerate functions in the derived class.

• The Nesterov NLS updates require the previous iterate values (for the auxiliary

term as described in Section 2.2.2) which may be thought of as a persistent

“state” of the algorithm. We utilise an extra NCPFactors object to hold these

variables.

• The Nesterov update function needs synchronisation in order to terminate its lo-

cal (iterative) NLS solve. This synchronisation step involves accessing the com-

municators found in DistNTFMPICommunicator class for the distributed

algorithm.

• Finally, Nesterov-type algorithms generally involve an outer acceleration step

which is also implemented in the derived class DistNTFNES.

3. We then update the ParseCommandLine class to include Nesterov as an algo-

rithm.
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4. We update the driver file distntf.cpp to include the Nesterov algorithm.

5.6 Experiments

5.6.1 Experimental Setup

The entire study was performed on Titan, a supercomputer at the Oak Ridge Leadership

Computing Facility. Titan is a hybrid-architecture Cray® XK7™ system that contains both

advanced 16-core AMD® Opteron™ central processing units (CPUs) and NVIDIA® Ke-

pler graphics processing units (GPUs). It features 299,008 CPU cores on 18,688 compute

nodes, a total system memory of 710 terabytes with 32 GB on each node, and Cray’s high-

performance Gemini™ network.

We use Armadillo for matrix representations and operations [68]. In Armadillo, the ele-

ments of the dense matrix are stored in column-major order. For dense BLAS and LAPACK

operations, we linked Armadillo with the default LAPACK/BLAS wrappers from Cray. We

use the GNU C++ Compiler (g++ (GCC) 6.3.0) and Cray’s MPI library. The code can also

compile and run on other commodity clusters with entirely open source libraries such as

OpenBLAS and OpenMPI.

5.6.2 Datasets

Mouse Data

The “Mouse” data is a 3D dataset that images a mouse’s brain over time and over a se-

quence of identical trials [148]. Each entry of the tensor represents a measure of calcium

fluorescence in a particular pixel during a time step of a single trial3. Each image has di-

mension 1,040 × 1,392, and the minimum number of time steps across 25 trials is 69. By

flattening the pixel dimensions and discarding time steps after 69 for each trial, we obtain

a tensor of size 1,446,680 × 69 × 25. Every trial is performed with the same mouse and

3The calcium imaging is performed using an epi-fluorescence macroscope viewing the brain through an
artificial crystal skull
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tracks the same task. The mouse is presented with visual simulation (starting at frame 3),

and after a delay is rewarded with water (starting at frame 25). The CP decomposition can

be used as an unsupervised learning technique to discover underlying patterns within the

data. Because the data is nonnegative, an NCP can be more easily interpreted. We show an

example interpretation of a component in Fig. 5.14.

Synthetic

Our synthetic datasets are constructed from a CP model with an exact low rank with no

additional noise. In this case we can confirm that the residual error of our algorithm with a

random start converges to zero. For the purposes of benchmarking, we run a fixed number

of iterations of the NCP algorithms rather than using a convergence check.

5.6.3 Performance Breakdown Categories

The list below gives a brief description of all the categories shown in the breakdown plots

and their role in the overall algorithm.

1. Gram: The Gram matrix computation includes both the Gram computation of the

local factor matrices and the Hadamard product of global Gram matrices for each

factor matrix. This computation is performed on each inner iteration but is cheap

under the assumption that k is small relative to the tensor dimensions.

2. NLS: The cost of a nonnegative least-squares update can vary drastically with the

algorithm used. The various characteristics that may affect run time for each NLS

algorithm are discussed in Section 5.6.4.

3. MTTKRP: The (partial) MTTKRP is a purely local computation performed on each

node and can be offloaded to the GPU. Using the dimension-tree optimisation (Sec-

tion 5.4.2), we perform two partial MTTKRPs for each outer iteration, regardless of
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the number of modes N . Both operations are cast as GEMM calls, where the dimen-

sions are given by the product of the first S mode dimensions (S is the split mode),

the product of the last N − S mode dimensions, and the rank k.

4. MultiTTV: The MultiTTVs are purely local computations performed on each node.

Each MultiTTV is cast as a set of k GEMV calls which are typically memory band-

width bound.

5. ReduceScatter: the ReduceScatter collective is used to sum MTTKRP results and

distribute portions of the sum appropriately across processors. It is called for each

inner iteration.

6. AllGather: The AllGather collective is used to collect the updated factor matrices to

each processor in the slice corresponding to the mode being updated. It is called after

each inner iteration.

7. AllReduce: The AllReduce is used to compute the Gram matrices and for computing

norms and other quantities required for stopping criteria of some algorithms.

5.6.4 Updating Algorithm Distinctions

Table 5.2 highlights the distinct aspects of each updating algorithm that can affect perfor-

mance. The rows of Table 5.2 denote the different local update algorithms implemented

in PLANC. The algorithms names and acronyms in order from top to bottom in Table 5.2

are as follows: Unconstrained CP (UCP), Multiplicative Update (MU), Hierarchical Least

Squares (HALS), Block Principal Pivoting (BPP), Alternating Direction Method of Mul-

tipliers (ADMM), and Nesterov-type algorithm (NES). The aspects of each algorithm that

are displayed in Table 5.2 are as follows:

• Communication: A check mark and description in this column indicates that the lo-

cal update algorithm requires some amount of communication. For example, the
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Table 5.2: Characteristics of the various update algorithms that can potentially affect per-
formance. The columns are as follows: 1) if the local update requires communication, 2) if
the update requires additional MTTKRP computations, 3) if the local update itself is itera-
tive, 4) if the algorithm’s performance is significantly impacted by parameter tuning. A ✓
corresponds to the algorithm having the characteristic, and a × means it does not.

Alg Communication Extra MTTKRPs Iterative Tuning

UCP × × × ×
MU × × × ×

HALS ✓ Column Norms × × ×
BPP × × ✓ ×

ADMM ✓ Stopping Criteria × ✓ ✓ Step Size
NES ✓ Stopping Criteria ✓ ✓ ✓ See Section 2.2.2

HALS algorithm requires the communication of the updated column norms. Addi-

tional communication requirements can affect performance by incurring additional

latency and bandwidth costs. These penalties become significant when the number

of processors is high.

• Extra MTTKRPs: the NES algorithm has an acceleration step which requires an ad-

ditional MTTKRP to be performed. This extra computation can potentially increase

the run time if the acceleration step does not decrease the objective function. Ex-

perimentally, on both real and synthetic datasets, we observe that NES run time is

significantly increased by the additional MTTKRP computations.

• Iteration: This column indicates the iterative nature of the local update algorithm.

Note that all of the algorithms we present here are iterative in terms of the outer it-

eration. UCP, MU, and HALS all have closed-form formulas for the inner iteration,

meaning the number of flops can be explicitly computed as a function of the problem

size. The rest of the algorithms have flop and communication requirements depen-

dent on the number of iterations it takes the algorithm to converge for a particular

local update.
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• Tuning: Many optimisation algorithms require some tunable input parameters which

can impact performance. For example, setting a step size is a frequent requirement

for gradient based optimisation algorithms when an exact line search is too compu-

tationally expensive.

5.6.5 Microbenchmarks

Per-Iteration Timing Comparison across Algorithms

Fig. 5.6 shows the “local update computation” time taken by the different updating al-

gorithms for various low-rank values on a synthetic dataset and the Mouse dataset. The

synthetic tensor (Fig. 5.6a) involves about 20 LUCs per processor per iteration whereas

the Mouse data (Fig. 5.6b) has about 20,000 updates per processor per iteration, which

accounts for the difference in the scales of the time seen in the figures. MU and UCP are

the cheapest algorithms with NES being the most expensive. HALS, ADMM and NES al-

gorithms all communicate in their update steps and this significantly affects their runtimes,

see Fig. 5.12b. NES has the most expensive inner iteration, as it involves an eigendecom-

position of the Gram matrix and up to 20 iterations of the NLS updater. ADMM has the

second most expensive inner iteration with up to 5 iterations of the acceleration step. HALS

on the other hand, doesn’t have a very expensive inner iteration but needs a synchroniza-

tion to normalise every updated column of the factor matrix before proceeding to the next

column, causing a slowdown.

Comparison across Processor Grids

Figure 5.7 gives a processor grid comparison for a 3D cubical tensor of size 512. The

distributed MTTKRP time dominates the overall run time and we observe that an even

processor distribution results in the best achieved performance for all update algorithms.

This difference in run times is partially accounted for by GEMM performance due to the

different shapes of the matrices involved. Besides choosing an even processor grid we see
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(b) Mouse data: 1,447,680 × 69 × 25 tensor
on 64 nodes arranged in 64× 1× 1 grid

Figure 5.6: Per Iteration Local Update Computation (LUC) comparison of NLS algorithms
on 4D synthetic and and 3D Mouse tensors

that configurations 1 through 6 have quite stable run times with the exception of the NES

algorithm, which is due to variable number of MTTKRPs needed for acceleration.

Comparison between CPU and GPU Matrix Multiplication Offloading

Figure 5.8 shows comparison in run times between performing partial MTTKRPs on the

CPU versus offloading to the GPU as rank increases. We only plot NES and UCP algo-

rithms as they capture all the behaviours exhibited in offloading the matrix multiplication.

All the other NLS algorithms perform similarly to UCP. As expected, the CPU run times

increase linearly with k as the operation count for UCP is dominated by the MTTKRP

which is linear in k. In the case of the GPU execution, the tested sizes of k are never large

enough to saturate the GPU, yielding flat run times even as the rank increases. The NES

algorithm takes additional time for both the CPU and GPU executions due to the addi-

tional MTTKRPs. In this case, for the chosen tensor size and rank, it is always beneficial

to offload the GEMM calls to the GPU, and the maximum achieved speedup with GPU

offloading is about 7×. However, we have observed in other experiments that NVBLAS

can make the incorrect decision to offload the computation to the GPU when it is faster to

perform it on the CPU.
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Figure 5.7: Processor grid sweep of a 512 × 512 × 512 synthetic 3D low-rank tensor on
512 nodes with low rank 96.
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Figure 5.9: Relative error over time comparison of updating algorithms on 4D synthetic
low-rank tensor of size 384×384×384×384 on 3×3×3×3 processor grid. Each data point
corresponds to an outer iteration.

0 2 4 6 8 10

Total Time (s)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
el

at
iv

e
E

rr
or

MU

HALS

BPP

ADMM

NES

UCP

(a) Low rank k = 16

0 2 4 6 8 10

Total Time (s)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
el

at
iv

e
E

rr
or

MU

HALS

BPP

ADMM

NES

UCP

(b) Low rank k = 48

Figure 5.10: Relative error comparison of updating algorithms on 3D real-world low-rank
tensor of size 1447680× 69× 25 on a 64 Titan nodes as a 64× 1× 1 processor grid for 10
seconds. Each data point corresponds to an outer iteration.

5.6.6 Convergence comparison across Algorithms

Figures 5.9 and 5.10 show convergence comparisons (error versus time) for each of the

updating algorithms on synthetic low-rank and Mouse datasets, using two different target

ranks each. Every algorithm is run for a fixed number (30) of outer iterations for fair com-

parison. For the Mouse data in Fig. 5.10, we show only the first 10 seconds because nearly

all algorithms are converging within 30 iterations. The initialised random factors are the

same for all algorithms in both tests, and the synthetic tensor is the same for all algorithms.
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In both the synthetic and real-world cases BPP achieves the lowest approximation error in

the shortest amount of time. Overall results are as expected, such as MU achieving the

worst error and ADMM achieving the second best in all cases. On the real-world dataset

the best algorithms, ADMM and BPP, achieve relative errors of 2-3%.

5.6.7 Scaling Studies

Weak Scaling (Synthetic Data)

We performed weak-scaling analysis on two different cubical tensors with 3 and 4 modes

(by cubical, we mean all modes have the same dimension). Fig. 5.11 shows the time break-

down for scaling up to 64 nodes of Titan for the 3D case and 16,384 nodes for the 4D

tensor. In each experiment the size of the local tensor is kept constant at dimension 128 in

each mode for all the runs. As expected, the run time is dominated by the cost to compute

the MTTKRP, and the domination is more extreme for higher mode tensors. Moreover, we

see reasonable weak scaling as the figures remain relatively flat over all processor sizes.

The variations occur mainly due to the NLS and communication portions of the algo-

rithm. These do matter in general and especially for the 3D case where the MTTKRP cost

is often comparable to NLS times, especially for smaller number of processors. However

NLS times scale well since they split along processor slices rather than fibers and soon

become negligible for large processor grids. The amount of communication per processor

remains constant but latency costs increase slowly as we scale up.

Strong Scaling (Synthetic Data)

We run strong-scaling experiments on two synthetic cubical tensors, one 3D and one 4D.

Figure 5.12 contains these results for each of the local update algorithms ranging from 1

to 16,384 processors. Since the tensors are cubical, we try to maintain the processor grids

to be as close to cubical as well. For the 3D case the grids used are 2 × 2 × 2, 4 × 2 × 2,
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Figure 5.11: Weak scaling on synthetic 3D and 4D low-rank tensors. For the 3D case, the
input tensors are of size 128×128×128, 256×256×256, 378×378×378 and 512×512×512
on 1, 8, 27 and 64 Titan Nodes. The 4D input tensors are 128×128×128×128,
256×256×256×256, 512×512×512×512, 1024×512×512×512, 1024×512×1024×512,
1024×1024×1024×512, 1024×1024×1024×1024, 2048×1024×1024×1024,
2048×1024×2048×1024 on 1, 16, 256, 512, 1024, 2048, 4096, 8192, and 16384
Titan nodes. For all experiments, the low rank is 96.
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4×4×2, 4×4×4 and 8×4×4. Similarly, the grids used for the 4D case are 4×4×4×4,

8×4×4×4, 8×4×8×4, 8×8×8×4, 8×8×8×8, 16×8×8×8 and 16×8×16×8.

We see similar behaviour for the 3D and 4D case. For the 3D tensor (Fig. 5.12a), we

observe good strong scaling up to about 32 nodes and continue to see speed up through 128

nodes. Similarly for the 4D case (Fig. 5.12b), the algorithms scale well up to about 1024

nodes and continue to reduce time until 8,192 nodes; we observe a slowdown when scaling

to 16,384 nodes.

One reason for the limit of strong scaling is the communication overheads of AllGather,

AllReduce, and ReduceScatter, which become more significant for more processors. The

stronger effect is the performance of the local matrix multiplications within MTTKRP’s

dimension tree. The smallest dimension in the matrix multiplication is typically the low-

rank k, which is 96 in these experiments. For a cubical tensor of odd dimension, in our

case three, the dimension tree optimisation is often forced to cast partial MTTKRP into a

very rectangular matrix multiplication, depending on the processor grid. Two of the local

dimensions must be grouped together while the other is left alone. This means that the

largest dimension would need to be close to the product of the other two in order for there

to be an approximately square matrix (multiplying a tall-skinny matrix with k columns, for

example). The shape and size of these local multiplications hurts the efficiency of the local

computation cost and is the biggest hindrance to strong scalability for these examples.

Strong Scaling (Real World)

Figure 5.13 show strong-scaling results on the Mouse dataset. We use a 1D P × 1 × 1

processor grid throughout the experiment. The results are in line with the synthetic results.

We achieve near-perfect scaling up to around 32 nodes and still improve runtimes through

to 512 nodes. At 1,024 nodes the NLS algorithms, which communicate during the solve

steps, perform far worse and show up to 2× slowdown. The non-communicating solvers

also degrade in performance but more gracefully.
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(b) Synthetic 4D low rank - 512× 512× 512× 512 tensor

Figure 5.12: Strong scaling on synthetic 3D and 4D low rank tensors with low rank 96.
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Figure 5.13: Strong scaling on Mouse dataset.
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Figure 5.14: Visualisation of component 22 of rank-32 NCP decomposition of Mouse data.
The time factor visualisation has been annotated with key time points, showing when the
light stimulus was applied and when the water reward was given. The y-axes of the time
and trial factors are unitless loading weights. The brain image factor has been reshaped
back into original dimensions to visualise pixels with large weights in the component.

5.6.8 Mouse Data Results

The NCP decomposition of the Mouse data can be used to interpret brain patterns in re-

sponse to the light stimulus and water reward given to the mouse. For example, Fig. 5.14

shows a visualisation of the factors of the 22nd component of the rank-32 NCP decomposi-

tion. From the time factor, we see a marked increase in the importance of the component

after the reward time frame, which suggests the activity is a response to the reward. Be-

cause the same mouse undergoes 25 identical trials, we expect to see no pattern in the time

factor of each component. The factors have been normalised, and the absolute magnitude

of the y-axis reflects this. The pixel factor has been reshaped to an image of the same

dimensions of the original data. We observe higher intensity values in the somatosensory

cortex (middle, left), which is associated with bodily sensation. This component, possibly

representing a sensory response to the water reward, aligns well with the findings of cell-

based analysis, which also identified neurons in the somatosensory cortex with intensities

that peaked quickly after the reward time frame [148, Figure 3].
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5.7 Summary

We present PLANC, a software library for nonnegative low rank approximations that works

for tensors of any number of modes and scales to large datasets and high processor counts.

The software framework can be adapted to use any NLS algorithm within the context of

alternating-updating algorithms. We use an efficient parallel algorithm that minimises com-

munication cost of the bottleneck MTTKRP computation. Dimension trees are also utilised

to avoid unnecessary recomputation of the local MTTKRP.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation advocates CLRA as the framework of choice for mining large and com-

plex datasets on massively parallel computing systems. This work builds on the rich his-

tory of methods developed by the numerical linear algebra community which can be re-

purposed for data analytics. In particular, it focuses on the recent paradigm of designing

algorithms to counter the growing gap between computation and communication costs on

modern computing hardware. By identifying and casting the bottleneck computations in a

communication-avoiding manner we are able to scale up our algorithms efficiently.

We focus on NMF, the popular CLRA technique for clustering, as our candidate algo-

rithm and identify its bottlenecks (Section 2.3.2). We then design a communication-optimal

distributed matrix-multiplication to overcome this bottleneck. With the addition of this ker-

nel, we are able to implement multiple different solvers for NMF (Section 2.2.2), introduce

symmetry constraints (Chapter 3), and extend our algorithms to handle multimodal in-

puts (Chapter 4). We also create SymNMF and JointNMF algorithms which effectively

utilise second-order information without incurring prohibitive computational and memory

overheads (Sections 3.4 and 4.3.3). We then develop a communication-optimal MTTKRP

kernel used in the computation of the NCP approximation of tensors, a natural extension of

NMF (Chapter 5).

All the methods mentioned above are present in the open-source software package

PLANC. It is efficient and has been scaled to 16,384 nodes on the Titan supercomputer

(Section 5.6.7). This efficiency has enabled the processing of large datasets from var-

ious domains including graphs with over a billion edges [35], satellite images with 24

million pixels [37], and text corpora with over 37 million documents and 483 million cita-

tions [149], amongst others.
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Some avenues for future directions are listed below in addition to those mentioned in

the end of chapter summaries.

Variants of NCP. With the addition of the MTTKRP kernel in PLANC, we expect the

standard NCP formulation to be extended to multiple different cases in the same manner as

the matrix-multiplication kernel. Second-order algorithms in the style of Vervliet et al. are

good starting points for developing PLANC further [82, 142]. Coupled matrix and tensor

factorisations would benefit with the availability of both distributed kernels [150].

GPU support for solvers. The different NLS solvers described in this dissertation have

all been implemented in the CPU. GPUs account for most of the flops in modern comput-

ing systems and are already used to compute some of the more structured computations

like matrix-multiplications in PLANC. Extending GPU support to all the NLS solvers or

designing methods which effectively overlap the CPU and GPU phases of these algorithms

is a promising avenue to explore [123].

Structured sparsity. Many CLRA models are formulated with a notion of sparsity baked

into the algorithm. By sparsity, we mean that either implicitly or explicitly a sparse matrix

is introduced into the objective formulation. Some examples are:

1. One such scenario is when we are faced with missing or incomplete data in the input

matrix to be approximated [151]. Typically, we would not want to fit our models to

the missing entries. The modified objective for the case of NMF with missing values

is shown here.

min
W≥H≥0

∥M ∗ (X−WH)∥2F

M is a boolean masking matrix which has zeros in the positions of the missing en-

tries.
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2. Cross-validation is a popular technique for hyperparamter selection in CLRA [152–

154]. The entries being “held-out” are masked out in a similar manner to the missing

entries case.

3. In the semi-supervised setting when a certain number of entries have a fixed value,

masking matrices are used to ensure that those particular entries are not modified [101].

4. In the “robust” LRA case, we often model the input as a low-rank signal matrix

plus an additive corruptions matrix [13, 39, 155]. Masking matrices appear again as

thresholding operations in this case.

Designing efficient algorithms for masked computations, especially when the masks can be

controlled like in the semi-supervised and cross-validation settings, would aid in making

CLRA more practical for the analyst.
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