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SUMMARY 

Inverse estimation of spatially distributed parameter fields plays an important role 

in many scientific disciplines including hydrogeology, geophysics, earth science, 

environmental engineering, etc. Classic stochastic sampling approaches such as Markov 

Chain Monte Carlo (MCMC) and optimization approaches such as geostatistical approach 

(GA) can solve inverse problems with a modest number of unknowns. However, we may 

face challenges when it comes to large-scale, highly heterogeneous fields or fields with 

special characteristics, such as connected preferential paths.  

In this thesis, firstly, we develop a new data augmentation approach, i.e., fast 

conditional image quilting to synthesize realizations based on limited measurements; and 

this approach is later used to generate channelized training images to support the inverse 

modeling research study.  

Secondly, unlike MCMC and optimization approaches that require many forward 

model evaluations in each iteration, we develop two neural network inverse models on full 

dimensions (NNI) and principal components (NNPCI) to directly explore the inverse 

relationships between indirect measurements such as hydraulic heads and the underlying 

parameter fields such as hydraulic conductivity. We successfully apply our neural network 

models to large-scale hydraulic tomography experiments to estimate spatially distributed 

hydraulic conductivity. In particular, with the help of principal component analysis (PCA), 

the number of neurons in the last layer of NNPCI is the same as that of retained principal 

components, thus further accelerating the algorithm and making the system scalable 

regardless of large-scale unknown field parameters. NNI also demonstrates satisfactory 
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inverse results on full dimensions for both Gaussian and non-Gaussian fields with 

channelized patterns. The major computational advantage for NNI and NNPCI is that the 

training data can be generated by independent forward model simulations that can be done 

efficiently using parallel computing. 

Finally, to account for errors from different sources, including input errors, model 

structure errors, model parameters errors, etc., we incorporate Bayesian theorem to the 

neural network models for uncertainty analysis. The system behaves more stably and 

consistently on varying spatial and temporal scales. The developed approaches are 

successfully validated with synthetic and field cases.  
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CHAPTER 1.  INTRODUCTION 

In groundwater hydrology, aquifer simulation is necessary to better understand 

groundwater flow and transport behavior, and can be used to guide effective in-situ 

remediation and groundwater resources management. Aquifer simulation requires the 

characterization of hydrogeologic properties, such as hydraulic conductivity and specific 

storage coefficient, which are inherently heterogeneous in space. In hydrogeology, local-

scale estimates of hydraulic conductivities can be obtained by laboratory measurements of 

core samples (A. Klute & R. C. Dinauer, 1986). However, high costs of drilling wells on 

highly discretized grids hinder the broader application of this approach in field practice. 

Therefore, characterization of such spatially distributed parameters is usually achieved by 

inference from indirect measurements such as hydraulic heads from slug tests and pumping 

tests, and concentrations from tracer tests, etc. (Cardiff et al., 2009; Cirpka et al., 2007; 

Fienen et al., 2006). The inference approach is also called as the inverse modeling approach 

because it derives input parameters from indirect measurable outputs. This thesis mainly 

investigates inverse modeling of large-dimensional hydrogeologic parameter fields such as 

hydraulic conductivity, which is usually considered as the major uncertainty source in 

aquifer simulations. The proposed research approaches and computational algorithms can 

be readily extended to invert random fields of other physical properties in a variety of 

scientific disciplines, including hydrology, geology, geophysics, earth science and 

environmental engineering, etc.  

  In order to handle large-scale and highly heterogeneous hydrogeological inverse 

problems, we usually apply stochastic sampling methods such as Markov Chain Monte 
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Carlo (MCMC) and gradient-based optimization methods such as geostatistical approach 

(GA). Both these methods are capable of inverting unknown parameter fields replying on 

repeated forward model evaluations. Thus, the computational cost often becomes 

unaffordable for large-dimensional inverse problems when a large number of conditional 

realizations need to be generated or large-dimensional Jacobian matrices need to 

determined iteratively. Moreover, spatial covariance based on two-point geostatistics is 

typically used to regularize the random fields that are the potential solutions. Such 

geostatistical regularizations may not be applicable for random fields with special features 

such as connected paths. 

The main goals of this thesis include: 

• Goal 1: Development of efficient data augmentation algorithms that could 

characterize specific properties such as better connectivity of the field;  

• Goal 2: Development of efficient and accurate algorithms by combining state-

of-the-art neural network machine learning with inverse modeling for inverse 

estimation of large-dimensional hydrogeological parameter fields. 

To achieve Goal 1, the method of fast conditional image quilting (FCIQ) is 

developed to help substantiate the research of inverse modeling. For Goal 2, the neural 

network machine learning methods consider cases with and without geostatistical 

regularizations. In the absence of spatial covariance, neural network is designed to learn 

the entire image, i.e., full dimensional machine learning. For given spatial covariance, a 

neural network principal component inverse framework is developed based on reduced 

dimensions, named as NNPCI framework. Moreover, to address the errors from various 
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sources, variational Bayesian neural principal component inverse (VBNPCI) is developed 

to conduct uncertainty analysis by adding Bayesian distribution for the neurons of each 

hidden layer in the NN architecture on top of NNPCI. The proposed algorithms are 

validated by various numerical experiments on both synthetic data and field data. 

1.1 Fast Conditional Image Quilting (FCIQ) 

FCIQ were based on multiple point statistics (MPS) and texture synthesis (TS) 

methods to generate spatially distribution parameter fields. Due to their limitations, neither 

of these two methods can be generalized to all random fields. Specifically, MPS was 

proposed to address the incapability of two-point geostatistical characterization using 

training images (TIs), from which more explicit representation of higher order statistics of 

measured field data can be extracted. TS was further developed from expert understanding 

and geologist sketching. However, both methods are computational expensive, particularly 

for large-scale fields with special distribution features. For example, TS uses pixel as the 

unit of synthesis and exhaustive search across the entire image is required for conditional 

distribution computing. In this thesis research, to further increase the computational 

efficiency, two approaches are incorporated in the FCIQ algorithm: 

(1) Use of the extended patch approach and multiple path variations to help FCIQ in 

searching a good patch for its neighboring block and increasing the availabilities 

of pattern selections. 

(2) Development of a multiple resolution approach with Fast Fourier Transform 

(FFT) to accelerate the search process. 
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1.2 Neural Network Inverse (NNI) on Full Dimensions and Neural Network 

Principal Components Inversion (NNPCI) 

The classic geostatistical approach is a gradient-based optimization approach for 

Bayesian inverse problems. Instead of characterizing the entire posterior distribution, the 

geostatistical approach only finds the maximum a posteriori (MAP) estimate, usually 

denoted as “the best estimates, and provides the associated uncertainty by its posterior 

covariance matrix (Kitanidis, 1996). The geostatistical approach may require a large 

number of forward model runs in each iteration to determine Jacobian matrix for nonlinear 

inverse problems, which is a large obstacle to solve large-dimensional inverse problems 

such as hydraulic tomography and generate conditional realizations or posterior 

realizations. In contrast, the use of neural networks to simulate the inverse modeling (NNI) 

of hydraulic tomography can be much more efficient by avoiding the determination of the 

Jacobian matrix and generating conditional realization upon well-trained framework. 

However, for an inverse problem with highly parameterized conductivity fields, the 

computational overhead of full-dimensional NNI is still a practical issue. NNPCI mainly 

makes three contributions to the geostatistical approach: 

(1) Using neural networks to bridge the inverse connection between measurements 

and the underlying parameter field.  

(2) Providing a more intuitive method, without computing Jacobian matrices, and 

quickly generating conditional realizations. 

(3) Incorporating PCA to make the framework scalable, because the dimensionality 

of the last neural layer is independent of the number of unknown parameters. 
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This approach is more advantageous to the inversion of large-scale and highly 

heterogeneous fields. 

1.3 Variational Bayesian Neural Inverse (VBNI) on Full Dimensions and 

Variational Bayesian Neural Principal Components Inversion (VBNPCI) 

VBNI and VBNPCI are built on top of NNI and NNPCI respectively by adding 

uncertainty to all neurons in hidden layers of the framework. Uncertainty is created on top 

of the weights instead of roughly adding variations to the last layer of the neural network. 

This method can create reasonable conditional realizations while preserving the dominant 

field patterns. 

1.4 Organization of Thesis 

This thesis is composed of seven chapters. In CHAPTER 2, a literature review 

regarding Bayesian inverse modeling, geostatistical approach and machine learning 

methods in Hydrology is provided. In CHAPTER 3, we propose a new data augmentation 

approach for random field characterization and validate it by several experiments. In 

CHAPTER 4, we develop the method of full-dimensional neural network and neural 

network principal component inverse approach. In CHAPTER 5, uncertainty analysis is 

introduced to the neural network methods and validated by three numerical experiments 

with different synthetic data. In CHAPTER 6, the performance of NNPCI is applied to 

inverting real world data. In CHAPTER 7, we conclude the discussion by summarizing 

current work and providing potential future research directions. Figure 1 visualizes the 

flowchart for the thesis structure. 
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Figure 1. Thesis Structure Flowchart. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Bayesian Inverse Problems 

A measurement equation is fundamental to understand the concept of inverse 

problem, which can be generally described as: 

𝐲 = 𝐟(𝐬) + 𝛜 (1) 

where 𝐲 ∈ ℝn×1 represents the available data; 𝐟 represents the forward model, which is 

mainly a physical process described by a group of governing equations and solved by 

numerical solvers; 𝐬 ∈ ℝm×1 represents the interested variables to be estimated by the 

inverse approach and 𝛜  represents errors involved in the forward process, which can 

include the errors from oversimplification of physical models, random measurement errors, 

and numerical solver errors, etc. In hydrogeological applications, variable 𝐬, with hydraulic 

conductivity as the most representative member, is often recognized as the main source of 

uncertainty (Carrera & Neuman, 1986; Kitanidis, 1996, 1997), whose characterization is 

required for a trustworthy model simulation. In practice, one way to estimate hydraulic 

conductivity in a local scale is by core samples (A. Klute & R. C. J. P. Dinauer, 1986). 

However, the high expenses of well drilling prevent this method from broader applications. 

On the other hand, the acquisition of 𝐲 data, which could be head data, tracer concentration 

data, or temperature data, is more convenient compared with that of 𝐬. Therefore, in a real-

world application, the problem is usually processed in an ‘inverse’ way: the estimate and 

the uncertainty of 𝐬 are usually inferred by the available measurements 𝐲. The inverse 

problem can be viewed as an optimization problem as 
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�̂� = argmin
𝐬

1

2
‖𝐲 − f(𝐬)‖

2

 (2) 

where  �̂� ∈ ℝm×1 represents the best estimate of 𝐬 given the available data 𝐲. However, in 

real world applications, the high-dimensional unknown 𝐬 and the sparse observational 

measurements 𝐲  incurs extraordinary high parameter-to-data sensitivity and ill-posed 

properties to this optimization problem. To mitigate the inherent instability and non-

uniqueness of inverse problems, regularizations are required.  

The form of the regularization term ℛ(𝐬)  is problem dependent. Tikhonov 

regularization is one of the most popular ones in inverse problems. A Tikhonov 

regularization term can be formulated as: 

ℛ(𝐬) = ‖𝐓𝐬‖2 (3) 

where 𝐓 is called Tikhonov matrix. The Tikhonov regularization term imposes smoothness 

onto the solution of the optimization problem in Equation (4) and thus compensate its non-

uniqueness. As a smoothing operator, matrix 𝐓 has various forms in different applications. 

After adding regularization, the inverse problem can be formulated as 

�̂� = argmin
𝐬

1

2
‖𝐲 − f(𝐬)‖2 + υ‖𝐓𝐬‖2 (4) 

whose loss function is  

ℓ(𝐬) =
1

2
‖𝐲 − f(𝐬)‖2 + υ‖𝐓𝐬‖2 (5) 
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where υ is usually a tuning parameter that controls the relative weights between the fitting 

to the observational data and the smoothness of the solution 𝐬.  

The formulation of the inverse problem can also be interpreted from a Bayesian view. 

According to Bayes’ rule, the posterior distribution p(𝐬|𝐲) of the unknown parameter 𝐬 is 

proportional to the product of its prior distribution p(𝐬)  and the likelihood of the 

observational data p(𝐲|𝐬) 

p(𝐬|𝐲) ∝ p(𝐲|𝐬)p(𝐬) (6) 

The likelihood encodes information from observational data and the prior provides the 

former beliefs about 𝐬, both of which constrain the posterior distribution. For a zero-mean 

Gaussian error term, the likelihood function is  

p(𝐲|𝐬) ∝ exp (−
1

2
(𝐲 − f(𝐬))

T
𝐑−1(𝐲 − f(𝐬))) (7) 

where 𝐑 represents the covariance matrix of the error 𝛜. A zero-mean Gaussian prior can 

be described as 

p(𝐬) ∝ exp (−
1

2
𝐬T(𝐓T𝐓)𝐬) (8) 

where (𝐓T𝐓) acts as the inverse of the covariance matrix. Following this equation, the 

posterior distribution is  
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p(𝐬|𝐲) ∝ exp (−
1

2
(𝐲 − f(𝐬))

T
𝐑−1(𝐲 − f(𝐬)) −

1

2
𝐬T(𝐓T𝐓)𝐬) (9) 

For 𝐑 = σ2𝐈, it can be simplified as 

p(𝐬|𝐲) ∝ exp (− (
1

2σ2
‖𝐲 − f(𝐬)‖2 + ‖𝐓𝐬‖2)) (10) 

If σ2 = υ, the posterior distribution is proportional to the exponential of a negative loss 

function 

p(𝐬|𝐲) ∝ exp(−ℓ(𝐬)) (11) 

Therefore, to find the parameter 𝐬 that minimizes the loss function in Equation (5) equals 

to find the 𝐬 that maximizes the posterior in Equation (10), and the inverse problem given 

an explicit loss function is formulated as a Bayesian inverse problem. 

The regularization terms in inverse problems, or the prior distribution in Bayesian 

inverse problems have various forms. Chen et al. (2008) solved an inverse problem by an 

optimization method, where the regularization term is selected as the second norm of the 

interested variable. In this case, the Tikhonov matrix is a scaled identity matrix 𝐓 = λ𝐈, 

and the regularization term is ℛ(𝐬) = λ2‖𝐬‖2. From a Bayesian perspective, it equals to 

applying a zero-mean multi-Gaussian prior onto the variable 𝐬 with covariance 𝐂𝐬 =
1

λ
𝐈. 

Liu and Kitanidis (2011) leverage the connection between optimization and Bayesian 

inverse problems to employ a sparse Tikhonov matrix to enforce the smoothness of the 

inversion result.  
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Another widely accepted form of the covariance matrix, especially in ground water 

research area, the one defined by geostatistical covariance function (Matheron, 1963). This 

form has been applied to plenty research in hydrogeological applications (Kitanidis, 1995, 

1996; Jonghyun Lee et al., 2018; S. Liu et al., 2002; Liu et al., 2007; Nowak & Cirpka, 

2006).  

By adding regularization terms or priors, a well-posed Bayesian inverse problem is 

formulated and has a unique solution. The extra advantage of using prior in Bayesian 

approach is to provide uncertainty quantifications for the best estimate. Various 

computational approaches have been developed to seek for solutions of Bayesian inverse 

problems, which can be divided into two categories: the ensemble-based approach and the 

non-ensemble-based approach. 

2.2 Connectivity Measures in Hydrogeology 

In the past decades, many geologists have demonstrated that flow and transport 

behaviors are significantly different in disconnected heterogenous fields and connected 

heterogenous fields, i.e. fields with preferential flow paths of connected high hydraulic 

conductivities (Fogg, 1986; Gong, 2013; Luo & Cirpka, 2011; Silliman & Wright, 1988). 

A good example is that connected high-conductivity paths might lead to early breakthrough 

of contaminant plumes and enhance tailing behavior due to kinetic mass transfer between 

fast and slow flow zones, which cannot be quantified by classical advection-dispersion 

models and macro dispersion theory (Zinn & Harvey, 2003). Geologists use the degree to 

which they are interconnected instead of the sizes or directions to represent a major feature 

of connected paths. 



 12 

Quantification of connectivity properties in hydrogeology utilizes two-point cluster 

functions and two-cut indicators, as shown in Equation (12), which has been successfully 

applied to many implications such as soil moisture patterns and hydraulic conductivity in 

aquifer formations (Gong, 2013; Neuweiler & Cirpka, 2005; Torquato et al., 1988; Western 

et al., 2001). 

𝐶(ℎ) =  
< 𝐼(𝑥)𝑃(𝑥, 𝑥′) >|𝑥−𝑥′|=ℎ

< 𝐼(𝑥) >
 (12) 

 

𝑃(𝑥, 𝑥′) = {
1, 𝐶𝑙(𝑥) = 𝐶𝑙(𝑥′)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

where 𝐶(ℎ)  represents the probability that two points 𝑥  and 𝑥′ with distance ℎ =

|𝑥 − 𝑥′| belongs to the same cluster. The two-cut indicator field 𝐼(𝑥) is equal to 1 if the 

original value at location 𝑥 is between two thresholds defined by users and taking 𝐼(𝑥)  as 

0 otherwise. 𝐶𝑙(𝑥) denotes the indexed cluster at location 𝑥.  

Figure 2 shows an example of heterogeneous fields with different connectivity. The 

first row represents a regular random field with the spatial correlation described by a 

Gaussian model. The cluster analysis indicates that the values near the mean are connected. 

The second and third rows represent fields with high-value and low-value connected paths, 

respectively. The cluster analysis indicates that the probabilities of elements with 

connected high values and low values are higher than other types of patterns, respectively. 

We also need to notice that all fields shown in Figure 2 have the same two-point spatial 

correlations. The right column represents the two-point cluster function for each field: the 

red line, the blue line and the green line indicate low permeability, intermediate 
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permeability, and high permeability respectively. Taking the normal random field as an 

example, the red line and the green line tend to be zero when the distance between two 

points increases, which means two points with very low or high conductivity values are not 

likely to be connected. In contrast, the blue line is stabilized at 0.5 when the distance is 

very large, this means most intermediate-valued points are connected, no matter how far 

away they are. Clearly, the connected fields cannot be sufficiently characterized by such 

two-point spatial correlations. 

Traditional inverse modeling in Hydrogeology typically applies two-point spatial 

correlations to regulate the smoothness of underlying parameter fields. Two-point based 

approaches work well for random fields that can be sufficiently characterized by spatial 

covariance models as a function of distance or oriented spacing (anisotropic fields). 

However, such approaches may fail for spatial fields with special characteristics, such as 

highly connected preferential paths, because two-point spatial correlations cannot 

sufficiently describe those properties.  

In recent decades, many state-of-the-art training-image based multiple points 

statistics (MPS) methods emerge to formalize spatial patterns of specific phenomena in 

geological area, for example, SNESIM (Strebelle, 2002), FILTERSIM (Wu et al., 2008) 

and Direct Sampling (Rezaee et al., 2013). Among these approaches, they were developed 

aiming to generate non-Gaussian random fields or reflect higher-order statistics that cannot 

be extracted by two-point statistics. However, they suffer from huge computational and 

storage cost when it comes to deal with large-scale inverse problem in real-world 

applications. It is therefore worth putting more efforts into advancing MPS research study 

and developing more efficient inverse algorithms to handle spatially-correlated fields and 
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complex random fields well and better understand flow and transport behavior in 

heterogeneous fields. 
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Figure 2. Spatially-Correlated Random Fields and Cluster Analysis. 
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2.3 Geostatistical Inverse Modeling 

Geostatistical inverse as an optimization method directly searches for the MAP 

estimate of the posterior distribution without simulating any conditional realizations. The 

associated uncertainty of the MAP estimate is mostly computed by its local covariance 

matrix. It typically requires a large number of forward model runs in each iteration to 

correct the values of unknown parameters until convergence. 

Researchers have made continued dedications to improve the efficiency of these 

optimizations algorithms. Hu et al. (2011) proposes an approximated Hessian 

preconditioned conjugate gradient approach to solve seismic wave inversion problems. 

Bui-Thanh et al. (2012) proposes a conjugate gradient approach that combined with a 

randomized approximating algorithm for Hessian. This approach is also validated in a 

seismic wave Bayesian inverse problem. 

In hydrogeology, by embracing a geostatistical description of the prior covariance 

matrix (Matheron, 1963), the geostatistical approach was proposed to solve Bayesian 

inverse problems. Two representative geostatistical approaches are the quasi-linear 

geostatistical approach and the Successive Linear Estimator (SLE). SLE is a cokriging-like 

geostatistical approach that produces a linear estimator with successive assimilation of 

nonlinear relationship in the forward model (Yeh et al., 1995; Yeh et al., 1996). Its 

effectiveness and efficiency have been validated in various applications, especially in 

hydraulic tomography problems (S. Liu et al., 2002; Yeh & Liu, 2000; Zhu & Yeh, 2005; 

Zhu & Yeh, 2006). Recently, to expand the application realm of SLE, Karhunen-Loeve 
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expansion is incorporated into it to construct a reduced-order SLE for large-scale hydraulic 

tomography problems (Zha et al., 2018). 

Geostatistical Approach (GA) proposed by Hoeksema and Kitanidis (1984); 

Kitanidis and Vomvoris (1983); Kitanidis (1995) is an iterative quasi-linear approach. The 

quasi-linear geostatistical approach also has a close relation to Gauss-Newton optimization 

and cokriging (Nowak & Cirpka, 2004), and thus has high efficiencies in solving Bayesian 

inverse problems. However, for highly-parameterized Bayesian inverse problems that 

admit high-resolution hydraulic conductivity fields, the geostatistical approach still calls 

for special implementations to abate the computation overhead (Lee & Kitanidis, 2014; Liu 

& Kitanidis, 2011). The reasons lie in two aspects: firstly, numerical simulation of forward 

models needs to be performed on a high-resolution grid for multiple times; and secondly, 

the large number of unknowns increases the cost of matrix computation during the 

inversion.  

In the past decades, many researchers have devoted to reducing the computational 

cost of the quasi-linear approach. Nowak et al. (2003) employed an FFT algorithm for 

efficient computations of the cross-covariance matrix, which was applied to a sandbox 

inverse problem (Nowak & Cirpka, 2006). Liu and Kitanidis (2011) proposed a sparse prior 

covariance matrix that can be recognized as a general smoothing operator, which facilitates 

the storage and the computation of the covariance matrix. This sparsely formulated 

approach was validated in a sandbox hydraulic tomography problem. For large-scale linear 

geostatistical inverse problems, Ambikasaran et al. (2013) and Saibaba et al. (2012) 

proposed hierarchical matrices to accelerate the solving process. For Bayesian inverse 

problems with large volume of observational data, Klein et al. (2017) proposed a 
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preconditioned conjugate gradient algorithm, and Lin et al. (2017) proposed a randomized 

data reduction algorithm to condition the quasi-linear approach. For inversion of time series 

data, such as pumping and tracer tests, the concept of temporal moments was applied. 

Instead of running the transient forward model hundreds or even thousands of times, the 

temporal moment approach transforms them to be steady-state for faster forward model 

evaluations (Li et al., 2005; Zhu & Yeh, 2006; Nowak & Cirpka, 2006; Pollock & Cirpka, 

2008; Yin & Illman, 2009).  

Recently, Kitanidis and Lee (2014) introduced the principal component analysis 

(PCA) in the quasi-linear geostatistical approach to ease the computation of Bayesian 

inverse problems, named as principal component geostatistical approach (PCGA), and 

demonstrated its effectiveness and efficiency in several hydrogeological applications (Lee 

& Kitanidis, 2014; Lee et al., 2016; Kang et al., 2017). PCGA substantially reduces the 

computational cost associated with the covariance matrix and the computation of the 

Jacobian matrices. Besides, unlike other optimization approaches that rely on adjoint-

solvers, PCGA only requires forward model itself to compute the Jacobian matrix. Later 

Zhao and Luo (2020) proposed the reformulated geostatistical approach (RGA) which 

possessed a more intuitive way of computing Jacobian matrices, and yielded a scalable 

normal equation system that particularly benefits inverse problems with a large volume of 

measurements. On top of RGA, upscaling principal component geostatistical approach 

(UPCGA) further takes advantage of RGA and recognized the principal component 

coefficients as latent variable to connect the coarse grid and the fine grid solution. 

2.4 Application of Machine Learning to Hydrogeology 
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Recent years have witnessed the fast development of machine learning, deep learning 

and artificial intelligence across many different scientific disciplines including computer 

science, mathematics, biology, physics, etc. In hydrogeology area, many physical models 

and theories have been developed rapidly for years. There could be significantly more 

information in large-scale hydrological data sets than hydrologists have been able to 

translate into theory or physical model. Thus, more and more geologists have dived into 

the data-driven algorithms, i.e., machine learning, to facilitate maximal extraction of 

information from spatial data, temporal data, or any other type of source. For example, the 

use of long short-term memory (LSTM) by Fang et al. (2017) has ignited a surge in 

machine learning applications across all domains of hydrology. A variety of machine 

learning techniques have been adopted to address challenges in hydrogeology area (Shen 

et al., 2021). 

Precipitation and snow are important components on earth and also major sources of 

uncertainty. Sun and Tang (2021) employed an attention-based, deep convolutional neural 

network to downscale coarse-resolution satellite-based precipitation data including 

elevation and air temperature. To handle the missing data in gauged precipitation data due 

to instrumentation and data quality issues, Mital et al. (2020) developed a new sequential 

imputation algorithm based on a random forest technique for interpolating the missing 

values on time and space scale for daily precipitation records. The simulation of snow water 

equivalent was implement using LSTM to leverage the climate and snow water equivalent 

data from five observation stations (Meyal et al., 2021). They have validated the 

plausibility of using LSTM for large-scale operational snow water equivalent modeling 

and built automated prediction online system. 
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As for groundwater, a multilayer perceptron layer (MLP) is trained to predict three-

point observations of groundwater levels using temperature, precipitation, river discharge 

and past groundwater data, and proves that all the time fed into the MLP system as a whole 

does not necessarily produce the optimal choice (Sahu et al., 2020). They also found that 

MLPs trained solely on temperature and historical groundwater level measurements as 

features were unreliable at all locations, which alluded dynamical linkage between surface 

and groundwater. Future sensitivity analysis well likely be accompanied by uncertainty 

estimates to ensure the robustness of the analysis. 

In the subsurface environment, due to the extreme data scarcity, geologists usually 

generate synthetic data with all kinds of special characteristics for further research study. 

One of popular artificial techniques Generative Adversarial Networks (GAN) are 

becoming an alternative to Two-Point Statistics and Multiple-Point Statistics (MPS) to 

generate stochastic subsurface fields from training images, the main pattern or data trend 

can be self-learnt and captured by using optimization approach. What’s more, this 

technique could be extended to 3D application of reconstructing subsurface architecture 

when it is not possible to collect exhaustive and accurate data about 3D subsurface 

distribution of rock types. Coiffier and Renard (2019) proposed Dimension Augmenter 

GAN (DiAGAN) that enables GANs to generate 3D fields from 2D training samples and 

this approach works well for generating complex binary subsurface media. Mital et al. 

(2020) use a deep neural network of the variational autoencoder to construct a parametric 

low-dimensional base model parameterization of complex binary geological media which 

was a largely unsolved challenge. This approach it more suited for probabilistic inversion 
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than for unconditional geostatistical simulation; and the performance is more promising 

than Multiple-Point Statistics (MPS) by Sequential Geostatistical Resampling (SGR). 

Inspired by the rapid development of machine learning, deep learning, computer 

vision, etc. across many scientific disciplines, we are thinking if it is a good point to apply 

neural network to simulate the black box problem of inverse computation. You can think 

of a scenario in biology that many impulses are carried toward a body cell, transported 

along the axon, and finally arrive at the terminal axon. As a result, the information is carried 

successfully from the origin to a selected destination; the logic is repeatedly all the time in 

our body. Though biologists have explored the information sharing and the underlying 

chemical reactions for many decades, we can still employ this idea to our research. 

Therefore, it is likely not to rely on stochastic sampling methods such as MCMC and 

gradient based optimization methods such GA to address the inverse calculation at the high 

expensive cost of computational budget; instead, we switch to a data-driven approach to 

replace the inversion of a forward model and learn the relationship between indirect 

measurements and the large-scale parameterized random fields directly. Another 

significant reason is that we do not care if the forward model is linear or non-linear because 

many more advanced machine learning techniques such as neural network will handle the 

forward model in the same way. That’s why in this thesis we switch from traditional 

geostatistical perspective to machine learning and explore its implication in hydrogeology 

area. 

To sum up, there are multiple ways for machine learning to make advances in 

hydrogeology application. We can incorporate physics in ML models to improve the 

system interpretability, develop physics-informed neural network and provide uncertainty 
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analysis to model results. In this thesis, I will develop a data augmentation algorithm to 

create complex domains with special characteristics which will be reused in the following 

inverse modeling research. Neural networks will be incorporated into hydraulic physics 

forward models followed by uncertainty estimation with the help of Bayesian theorem. As 

a result, the robustness of the entire system will be enhanced on spatial and temporal scales. 
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CHAPTER 3.  FAST CONDITIONAL IMAGE QUILTING (FCIQ) 

3.1 Introduction 

Subsurface heterogeneity, varying spatially and temporally, has always been a very 

important and challenging factor associated with most subsurface flow and transport 

processes and extensively considered in the management and uncertainty prediction in 

hydrogeological systems. Due to limited and costly field data, one urgent need is to 

generate realistic realizations of graphical textures with natural stochasticity and variability 

to represent the unknown hydrogeological system. Many geostatistical approaches have 

been developed to address the significant uncertainty issue in numerical modeling by 

characterizing the spatial structures (i.e. pores, grains, channels and fractures, etc.) to 

investigate important variables such as hydraulic conductivity, hydraulic head, porosity 

and electrical resistivity. Traditional geostatistical tools mainly rely on spatial variogram 

and covariance analysis, which are then used in classic kriging and indicator simulations 

in hydrogeological applications. However, variograms can only provide the correlation 

information between two points in space with strong assumptions of specific patterns such 

as Gaussian Random fields, and lack the flexibility to represent realistically complex 

textures such as channeling, which are very important in natural system, thus limiting its 

applicability in physical realism (Gómez-Hernández & Wen, 1998; Journel & Zhang, 2006; 

Mahmud et al., 2014; Sánchez-Vila et al., 1996; Schlüter et al., 2011; Western et al., 2001). 

Alternatively, state-of-the-art Multiple Points Statistics (MPS) was proposed to 

address the incapability of two-point geostatistics based on machine learning of Training 

Images (TIs), from which more explicit representation of higher order statistics of 
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measured field data can be extracted to better formalize the spatial patterns of specific 

phenomena and allow the model to condition on field data (Mahmud et al., 2014; Mustapha 

& Dimitrakopoulos, 2010). TIs might come from real data representative of hydrology or 

geology under consideration, unconditional realizations from other reasonable stochastic 

simulation techniques, outcrops data and synthetic TIs developed from expert 

understanding and geologist sketching (Mahmud et al., 2014; Strebelle, 2002). 

Applications of MPS algorithms include reservoir modeling (Caers et al., 2003; Falivene 

et al., 2006; Ronayne et al., 2008), water resources modeling such as remote sensing 

(Boucher et al., 2008; G Mariethoz et al., 2012), fluids physics in porous media (Okabe & 

Blunt, 2007; Tahmasebi & Sahimi, 2013), climate modeling (Jha et al., 2013) and even 

medical imaging (Pham, 2012). MPS algorithms developed include SNESIM (Strebelle, 

2002), SIMPAT (Arpat & Caers, 2007), FILTERSIM (Wu et al., 2008), MPPCA 

(Abdollahifard & Faez, 2013) and Direct Sampling (Rezaee et al., 2013). However, since 

large-scale spatial or temporal data of 2-D or 3-D models may contain millions of nodes, 

the computation of one single realization using current methods costs too much memory 

and time, which may become unaffordable if inverse modeling is involved. Thus, there is 

an urgent need of developing new methods to radically accelerate the current MPS 

algorithms. We should be aware that we cannot rely on the computer hardware 

development such as GPU graphics replacing CPU because algorithms have always been 

weighing more balance than hardware developments in the past decades. 

In computer graphics, texture synthesis methods pursue the similar goals to MPS, i.e. 

generating new realistic or unrealistic graphical images with similar pattern to sample 

training images, as well as stochasticity and variability. Texture synthesis has been widely 
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used to generate large amount of images for the application of video games and animated 

movies(Gregoire Mariethoz & Lefebvre, 2014). An early method was proposed by (Efros 

& Leung, 1999), but inefficient because the simulation used pixel as the unit of synthesis, 

which was proceeded by exhaustive search of the entire image every time to locate all 

likely neighborhoods for computing the conditional distribution. Later, one patch based 

texture synthesis method named Image Quilting (IQ) was proposed in computer graphics 

literature (Efros & Freeman, 2001) to speed up the computation.  

Efros and Freeman (2001) proposed a 2D unconditional IQ algorithm to synthesize 

new textures based on given sample training images. IQ can be compared to jigsaw puzzle 

since the key idea is to take all possible textures from a given TI and sew them together in 

a coherent manner. IQ starts from any corner of the simulation grid and assemble the 

patches one by one along the unilateral raster path or random raster path. In every step the 

algorithm selects a random patch from several best candidates which have the minimum 

squared Euclidean distance with the neighborhood over the overlapping area and put the 

corresponding patch onto the simulation grid (SG). The main parameters of this algorithm 

are the patch size, overlapping area size and the number of candidates for selection. 

Generated realizations will be different from each other by varying the parameters while 

maintaining the important property of stochasticity and variability in physical realism. At 

the same time, the patch selection will speed up significantly than traditional pixel-based 

algorithm and improve the performance. Mahmud et al. (2014) successfully adopted image 

quilting for hydrogeological applications and extended from originally unconditional 

simulations to conditional simulations in subsurface hydrogeology. Further improvements 

were made for the pattern-based simulation by using multi-scale (MS) representation of 
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the training image instead of traditional multi-grid strategy and accelerating the search 

computation in Fourier space (Tahmasebi et al., 2014). 

In this chapter, we employed the pattern-based simulation approaches (Boykov & 

Jolly, 2001; Efros & Freeman, 2001; Kwatra et al., 2003; Mahmud et al., 2014; Tahmasebi 

et al., 2014) to generate conditional realizations with natural stochasticity and variability 

that represent the hydrogeology tomography. Specifically, multiple optimization 

techniques associated with IQ such as cross correlation, multiple-resolution, extended-

patch for data conditioning and Fast Fourier Transform (FFT) were incorporated. As a 

result, conditional or unconditional realizations for fields with special characteristics are 

augmented that will be reused to support inverse modeling in CHAPTER 4 and CHAPTER 

5. 

3.2 Methodology 

3.2.1 Cross Correlation 

Cross Correlation (Lewis, 1995) is a measure of similarity of two series as a 

function the displacement of one relative to the other, which is known as a sliding dot 

product or sliding inner-product. It has been extensively used in applications like image-

processing, signal processing, pattern recognition, single particle analysis, electron 

tomography, averaging, and neurophysiology. Prior to cross correlation, Euclidean 

distance, widely used in many areas with its simplicity and easy operation, is defined 

through the normal equation, which and the further expansion are given by: 
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𝑑𝑓,𝑡
2(𝑢, 𝑣) =  ∑[𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑡(𝑥, 𝑦)]2

𝑥,𝑦

= ∑[𝑓2(𝑥 + 𝑢, 𝑦 + 𝑣) − 2𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) ∗ 𝑡(𝑥, 𝑦) + 𝑡2(𝑥, 𝑦)]

𝑥,𝑦

 

(14) 

where 𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)  represents TI and the sum is over 𝑥, 𝑦  under the window 𝑡 

positioned at (𝑢, 𝑣) with the window size of 𝑝1, 𝑝2 

The term ∑ [𝑓2(𝑥 + 𝑢, 𝑦 + 𝑣)]𝑥,𝑦  represents the energy of an image and is roughly constant, 

and the term ∑ 𝑡2(𝑥, 𝑦)𝑥,𝑦  from specific target patch is constant. We can approximate our 

original Euclidean distance equation to the term of cross correlation to simplify the 

similarity measurement between TI and specific feature. 

𝐶(𝑢, 𝑣) =  ∑ 𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) ∗ 𝑡(𝑥, 𝑦)

𝑥,𝑦

 (15) 

In addition to simplicity, cross correlation can capture the heterogeneity information for 

complex image patterns and generate realizations matching with TI better. In contrast, the 

selection of Euclidean distance could often tend to generate realizations quite different 

from TI and even diverge from physical realism. 

3.2.2 Extended-path 

We develop the conditional image quilting by considering the hard data (i.e. the 

values at the randomly sampled pixel locations on the training image, which are provided 

as the prior information) within the target patch window. It is not only a cross correlation 

to determining best candidate, but also a hard data constraint within each target patch 

should be honored sufficiently. Limited by the patch window size, it is challenging to 
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consider the hard data beyond the patch window, missing the best candidate patch 

sometimes. Thus, extended-patch windows are adopted to better address the conditioning 

issue. The corresponding visualization and comparison from previous traditional method 

is shown in Figure 3. Also, we designed new criterion integrating the factor of cross 

correlation, inside hard data mismatch (red window) and outer hard data mismatch (green 

window – red window) as below, 

𝐸𝑡 = 𝑤1 ∗ 𝐶(𝑢, 𝑣) + 𝑤2 ∗
𝐸𝑖𝑛𝑛𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝑖𝑛𝑛𝑒𝑟 𝑠𝑖𝑧𝑒
𝑖𝑛𝑛𝑒𝑟ℎ𝑑 + 𝑤3

∗
𝐸𝑜𝑢𝑡𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝑜𝑢𝑡𝑒𝑟 𝑠𝑖𝑧𝑒
𝑜𝑢𝑡𝑒𝑟ℎ𝑑 

(16) 

where 𝑤1 + 𝑤2 + 𝑤3 = 1, 𝐸𝑖𝑛𝑛𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ is the error between target patch (red window) 

and any other patch at the hard data position, 𝑖𝑛𝑛𝑒𝑟ℎ𝑑 the number of hard data inside red 

window. Similarly 𝐸𝑜𝑢𝑡𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ represents the error from the outer window (green - red) 

and 𝑜𝑢𝑡𝑒𝑟ℎ𝑑 is the number of outside hard data. 

As we consider more constraint factors in determining the best patch candidate to 

match with its neighborhood, it’s more reasonable and supportive for CIQ. This results in 

more parameters tuning of 𝑤1, 𝑤2 and 𝑤3, which can be optimized in the future, although 

most of time we can get good realizations with the same pattern as TI. 
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Figure 3. (a) Unilateral-path and overlapping area; (b) Extended-path for 

conditioning. 
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3.2.3 Multiple-resolution 

We use a multi-resolution approach (Strebelle, 2002; Tran, 1994) to speed up the 

algorithm. As shown in Figure 4, given the original TI with finest resolution 

(1000 × 1000), the coarse grid with resolution of (500 × 500) and (250 × 250) can 

be upscaled from its upper-level finer grid by the bi-cubic interpolation method for 2-D TI. 

We choose three-level or two-level implementation in our test cases. The multiple-

resolution algorithm starts from the lowest resolution training image 𝑡𝑖𝑔−1 and find the best 

solutions/patches and positions under 𝑡𝑖𝑔−1. The appropriate positions in the next level 

𝑡𝑖𝑔−2  can be easily located, then search of best solutions under 𝑡𝑖𝑔−2 can be done just 

around the corresponding positions by setting one searching radius. The patch size doubles 

from one level resolution grid to the next level and the search radius is usually as double 

as the patch size under the corresponding training image. This procedure can be repeated 

from the coarser grid to finer grid successively until the finest simulation grid is finished. 

Since the coarsest resolution grid is much lower compared with the finest grid, the memory 

cost of cross correlation is lowered, and beyond this step the cross correlation is only 

computed within the searching radius because we have found good solutions from the 

previous step. The overall computing time or the memory cost decreases significantly in 

this way. 

In the meanwhile, we should conduct similar upscaling operations for hard data 

image in CIQ. For simplicity the original finest hard data in our experiments is taken 

randomly or uniformly from the original finest TI because our goal is to approve the 

feasibility and efficiency of our approach. For TI with categorical data, we do bi-cubic 

interpolation followed by the threshold method to turn it back to categorical values from 
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the interpolated continuous values. For TI with continuous data, the mean implementation 

is made by bi-cubic interpolation.  We also design the categorical hard data resizing method 

from finer resolution image to its next coarser resolution image, four configurations are 

shown in Figure 4: (1) If there is only one hard data within the cell of coarser gird, denote 

the cell within the hard data; (2) When two hard data with same type are located in the cell, 

the cell remains the same with those hard data; (3) More than one type of hard data is found, 

denote the cell with the hard data whichever has higher frequency; (4) Randomly assign 

one type of hard value from those sharing the same frequency. 
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Figure 4. (a) Pyramid of multiple-resolution method; (b) Four resize configurations 

of categorical hard data. 
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3.2.4 Multiple-path 

Strebelle and Zhang (2005) present another way of constraining MPS to the 

orientation of geological features that are different from the original TIs. They propose a 

series of rotation/affinity transforms to stationary training image and build a search tree to 

store the multiple points statistics inferred from each rotated/rescaled training image. This 

technique can be easily generalized to create non-stationary models using stationary 

training images thought to be representative of geological heterogeneity in different areas. 

It has been proved that the reproduction of the training patterns in non-stationary MPS 

models is similar to that observed in the stationary models.  

The reservoir field can be divided into small regions with different orientations and 

size of geological features, then one can rotate or rescale the template for each region, thus 

this transform can be done regionally or globally. I adopt this approach to CIQ to increase 

the texture variabilities available for pattern reproduction as you can see in Figure 5. Given 

one TI, we can make horizontal flip and vertical flip separately or together getting four 

configurations shown in below, then by transposing each of them we can get another four 

configurations. Finally, all different TIs can be prepared for selection as the input of CIQ. 

 

 

 

 

 

 



 34 

 

 

 

 

 

Figure 5. TI on the top left and others flip along x-axis and y-axis. 
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3.2.5 Fast Fourier Transform 

Fast Fourier transform (FFT) was first discussed by (Cooley & Tukey, 1965), the 

key idea is to turn the computation from temporal or spatial domain to frequency domain. 

Some of significant applications of FFT includes signal processing and image processing 

such as filtering algorithms, solving difference equations (recurrence relations), efficient 

matrix-vector multiplication, fast large integer and polynomial multiplication, etc. Its 

acceleration comes from reducing the number of computations needed from 𝑂(𝑁2) to  

𝑂(𝑁𝑙𝑜𝑔𝑁), where N is the number of points. 

Since digital image is not a continuous function but a matrix of sampled data, taking 

a 3-D image as an example, the FFT form 𝐹(𝑢, 𝑣, 𝑤)  of an image 𝑓(𝑥, 𝑦, 𝑧)  with 

dimensions 𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧 is defined by  

𝐹(𝑢, 𝑣, 𝑤) = ∑ ∑ ∑ 𝑓(𝑥, 𝑦, 𝑧)

𝑑𝑧−1

𝑧=0

𝑑𝑦−1

𝑦=0

𝑒
−𝑖2𝜋(

𝑢𝑥
𝑑𝑥

+
𝑢𝑦
𝑑𝑦

+
𝑢𝑧
𝑑𝑧

)

𝑑𝑥−1

𝑥=0

 (17) 

where (𝑢, 𝑣, 𝑤) is the principal axes in frequency domain, 𝑢 ∈ 0,1, … , 𝑑𝑥 − 1 , 𝑣 ∈

0,1, … , 𝑑𝑦 − 1 and 𝑤 ∈ 0,1, … , 𝑑𝑧 − 1.  

The inverse Fourier transform is defined by 

𝑓(𝑥, 𝑦, 𝑧) =
1

𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧
∑ ∑ ∑ 𝐹(𝑢, 𝑣, 𝑤)

𝑑𝑧−1

𝑤=0

𝑑𝑦−1

𝑣=0

𝑒
𝑖2𝜋(

𝑢𝑥
𝑑𝑥

+
𝑢𝑦
𝑑𝑦

+
𝑢𝑧
𝑑𝑧

)

𝑑𝑥−1

𝑢=0

 (18) 

According to the above FFT and related shift theorem of Fourier transforms, we can 

convert the cross correlation calculation between the overlapping area and search domain 

within TI or the whole TI to frequency domain and inverse it back to spatial domain, finally 
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we can get the appropriate pattern matching its neighborhoods with the advantage of 

reducing algorithm complexity. FFT will be implemented in large scale of 2-D and 3-D 

TIs computation for the sake of speeding up and evident performance comparison. 

3.2.6 Optimal Cut Boundary Adjustment 

This algorithm especially suits well for MPS methods where complex structures are 

considered because the cumulative minimum error is calculated along the vertical or 

horizontal cut direction as described in Figure 6 instead of simply cut right along the 

middle-line of the overlapping area, we calculate the real cut boundary in order to make 

the transition between patches smoother by means of a cut that maximized continuity 

(Boykov & Jolly, 2001; Kwatra et al., 2003).  
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Figure 6. Left: search for best neighbor path; Right: calculate the best cut to make 

boundary smoother. 
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3.3 Experiments 

We experimented the proposed algorithm on 2D Training Images (TIs) with different 

characteristics including binary TI shown in Figure 7, continuous TI shown in Figure 9 and 

extended it to complex satellite images shown in Figure 10 (Tahmasebi et al., 2014). Many 

experiments were conducted to determine the parameters including patch size, overlapping 

length that can generate high quality realizations. Here are the useful parameters in the 

experiment that are effective to reproduce high quality realizations: patch size accounts for 

1

10
 ~ 

1

6
 of original TI; overlapping length is tuned to be 

1

4
 ~ 

1

3
  of patch size. 

As shown in Figure 7, we take an original TI with a resolution of 1000 × 1000 that 

represents connected channels along the EW direction. 1000 hard data (0.1%) is randomly 

sampled from TI as a prior information, patch size is set as 100 × 100 and overlapping 

area as 100 × 16, we conduct 50 times of conditional realizations and calculate the 

average to compare the performance of results over different strategies with or without 

extended-path and multiple-path. According to the performance we can conclude that 

extended-path and multiple-path are helpful to improve the conditional realization quality, 

adding them will help produce smoother images than others (bottom right in Figure 7). 

From quantitative perspective, we draw two different figures that represent widely used 

geostatistical characteristics including variogram and connectivity probability with respect 

to distance in Figure 8, it also indicates the result that all the simulated conditional 

realizations are very close to real TI (red line in each figure). The results are in line with 

our initial expectations that the proposed algorithm could successfully generate high 

quality conditional realizations with small variance. 
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To further testify our developed algorithm, we applied FCIQ to 2D TIs with 

continuous properties in Figure 9 and more complex characteristics in Figure 10 and come 

to the same conclusion as that of binary TI. The random selected information as a 

percentage of image pixels is approximately equal to 0.25% to 0.5%, which is higher than 

that value used in the study of binary TIs, this is because more prior information needs to 

be provided to overcome the difficulty of implementing the complex features existing in 

conditional realizations. Though in real world applications, the data collection job of 

getting the prior is expensive, especially if more wells need to be dug as a prerequisite, the 

method we developed still has great potential to generate more TIs with special 

characteristics. By changing the prior information, we created more conditional 

realizations that maintain the dominant patterns such as the channels; with the help of 

geologist, we can filter out noisy output, making data augmentation real. These generated 

conditional realizations after filtering, as well as unconditional realizations with special 

characteristics, will be used to in our inverse modeling study in CHAPTER 4 and 

CHAPTER 5. 
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Figure 7. Performance of reconstructed channel patterns on binary TIs over 

different strategies with or without extended-patch and multiple-path strategy. Top 

right: 1000 hard data (0.1%) randomly sampled from initial TI. 2nd/3rd row: 

Average of 50 realizations per strategy. Parameters used in the experiments: patch 

size: 𝟏𝟎𝟎 × 𝟏𝟎𝟎, overlapping area: 𝟏𝟎𝟎 × 𝟏𝟔, resolution level: 2, search radius: 

100. 
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Figure 8. Variogram plot on the left; Connectivity probability distribution on the 

right. 
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Figure 9. Conditional realizations for continuous image. Resolution: 𝟐𝟎𝟎 × 𝟐𝟎𝟎 , 

Patch size: 𝟑𝟔 × 𝟑𝟔, Overlapping  area: 𝟑𝟔 × 𝟏𝟐, Resolution level: 3, 100 hard 

data is used as a prior. 
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Figure 10. Conditional realization for satellite image of the Sundarbans region, 

Bengladesh. Resolution: 1𝟐𝟎𝟎 × 𝟏𝟕𝟓𝟎 , Patch size: 𝟐𝟒𝟎 × 𝟑𝟐𝟎, Overlapping  area: 

𝟖𝟎 × 𝟐𝟒𝟎 vertically and 𝟖𝟎 × 𝟑𝟐𝟎 horizontally, Resolution level: 2.  
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3.4 Conclusion 

We have successfully testified our data augmentation method on binary TIs, 

continuous TIs, and more complex images with special characteristics. The generated 

conditional realizations indicate that the proposed algorithm performs well in reproducing 

special structures including connectivity, variability and stochasticity that could not be 

easily reflected in traditional geostatistical methods. The strategy of using extended-patch 

and multiple-path proves to be useful because the former improves the algorithm for 

searching for good patches for its neighbors, while the later provides more usability for 

pattern selection. In addition, the use of multiple-resolution and Fast Fourier Transform 

(FFT) improves the algorithm’s computational performance. 

The developed method can successfully generate TIs with special characteristics 

such as channels, thus it could serve as an aid to the reservoir characterization application. 

By changing the prior information that is known as a prerequisite for the experiment, we 

will create more conditional realizations that maintain significant patterns of initial image; 

with the help of geologists, we can perform post-inspection on the output to make the data 

augmentation function better for our research. This checked conditional and unconditional 

data with special characteristics will be used to support the inverse modeling studies in 

CHAPTER 4 and CHAPTER 5.  
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CHAPTER 4. NEURAL NETWORK INVERSE (NNI) ON FULL DIMENSIONS 

AND NEURAL NETWORK PRINCIPAL COMPONENTS INVERSION 

(NNPCI) 

4.1 Introduction 

Inverse problems arise whenever spatially distributed parameters such as 

heterogeneous hydraulic conductivity are needed as inputs for simulating groundwater 

flow and transport. Direct measurements of hydraulic conductivity based on local-scale 

core samples are simply cost prohibitive for field practice. Thus, such spatially distributed 

parameter fields are usually estimated based on indirect measurements from field tests, 

such as hydraulic heads in pumping tests and concentrations in tracer tests. Hydraulic 

tomography is known as sequential pumping tests, which has proved to be effective to 

provide a large number of measurements with a high information density and relatively 

low costs and simple sampling techniques. However, inverse modeling of large-scale 

hydraulic tomography requires efficient numerical methods. So far, geostatistical approach 

has been the most successful for inverse modeling of hydraulic tomography.  

Generally, hydrogeologic inverse problems can be formulized within a Bayesian 

framework. Kitanidis (1986) showed that traditional cokriging is equivalent to the 

estimation of the conditional mean of Gaussian processes in a Bayesian analysis. Kitanidis 

(1995) generalized the geostatistical approach in a rigorous Bayesian framework for 

solving quasilinear inverse problems to estimate spatially distributed parameters such as 

hydraulic conductivity. Major computational costs lie in handling auto-covariance matrices 

and cross-covariance matrices, including the storage and multiplication of matrices, and 
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iterative implementation of forward models to determine the Jacobian matrix for nonlinear 

problems.  

Many efforts have been devoted to reduce the computational costs of the 

geostatistical approach. Nowak et al. (2003) proposed an efficient approach of computing 

the covariance matrix based on circulant embedding and the fast Fourier transform (FFT). 

Liu and Kitanidis (2011) proposed a sparse representation of the prior covariance matrix, 

which facilitates the storage of large matrices and the associated computation. 

Ambikasaran et al. (2013) and Saibaba et al. (2012) proposed hierarchical matrices for 

large-scale linear geostatistical inverse problems. For geostatistical inverse problems with 

massive observational data, Klein et al. (2017) proposed a preconditioned conjugate 

gradient algorithm, and Lin et al. (2017) proposed a randomized data reduction algorithm.  

Recently, Kitanidis and Lee (2014) introduced the principal component analysis (PCA) 

into the quasi-linear geostatistical approach and named the approach as principal 

component geostatistical approach (PCGA). PCGA employs a low-rank approximation of 

the covariance matrix, and by a so-called ‘matrix-free’ approach, the number of forward 

model runs for an explicit construction of the Jacobian matrix is reduced to almost the 

number of truncated principal components. We shall notice that so far all the efforts have 

been devoted to advance the computational implementation of the geostatistical approach 

so that large-dimensional inverse problems can be solved within the classical framework 

of the quasi-linear geostatistical approach or cokriging. Zhao and Luo (2020) proposed a 

Reformulated Geostatistical Approach (RGA) framework to directly estimate the principal 

component coefficients, which integrates the computational techniques and methodology 

framework. 
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With the rapid development of machine learning and artificial intelligence and its 

implication to many different areas, an increasing number of tricky questions can be 

resolved through neural network architecture. Today, we apply neural network for time-

series predictions, anomaly detection in data, and natural language understanding, etc. 

More researchers are likely to investigate the so-called ‘black box’ problem with the help 

of machine learning or deep learning techniques. There has been considerable progress in 

developing machine learning based methodologies for many geological or geophysical 

applications. Baykasoglu et al. (2008) applied neural network (NN)-based approach to the 

strength prediction of limestone. Forghani (2020) used machine learning techniques to 

obtain a fast solver of shallow water equations, provided with the distribution of 

bathymetry derived from PCGA and achieved improved accuracy for the velocity 

prediction. Hojat Ghorbanidehno et al (2021) used deep learning technique for fast 

inference of large-scale riverine bathymetry and applied his algorithm to large dimensional 

riverine bathymetry problems with limited available data and computational resources. 

In this chapter, this issue is approached from a different perspective. We replace 

traditional geostatistical methods with neural network architecture to simulate the inverse 

problem of hydraulic tomography, and reformulate the last layer of neural work based on 

the principal component analysis of the unknown parameter field, which yields new 

unknown parameters of principal component coefficients instead of the original parameter 

field. This new approach is named as neural network principal component inverse 

(NNPCI). Three independent numerical experiments of hydraulic tomography are 

presented to demonstrate the validity of the proposed approach. 

4.2 Methodology 
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4.2.1 Inverse Problem Reformulation 

The general relationship between the measurement data and unknown data is 

described as: 

𝐲 = 𝐟(𝐬) + 𝛜 (19) 

where 𝐲 ∈ ℝ𝑛×1  means the measurement vector, 𝐬 ∈ ℝ𝑚×1  represents the unknown 

vector, 𝐟 indicates the forward model that is sophisticated in most cases, and 𝛜 ∈ ℝ𝑛×1 is 

Gaussian with mean 0 and covariance 𝐑 ∈ ℝ𝑛×𝑛. For the prior information, the random 

field 𝐬 is Gaussian with an unknown mean and a generalized covariance function: 

𝐸[𝐬] =  𝐗𝛃 

𝐸[(𝐬 − 𝐗𝛃)(𝐬 − 𝐗𝛃)T] = 𝐂 

(20) 

where 𝐗 ∈ ℝ𝑚×𝑝 represents the drift of mean, 𝛃 ∈ ℝ𝑝×1 represents the coefficient vector 

of the drift function; typically 𝑝 is a small number: 𝑝 = 1 indicates a constant mean, and  

𝑝 = 2  represents a linear drift. 𝐂 ∈ ℝ𝑚×𝑚  is the covariance matrix, that is typically 

evaluated by a two-point geostatistical function in geophysical and hydrologic 

applications.  

 In typical geophysical and hydrologic application, we usually use geostatistical 

approaches to find the maximum a posteriori (MAP) of 𝐬 by minimizing the negative 

logarithm of the posterior distribution through Bayes theorem.  
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min
𝐬

𝑓(𝐬) = min
𝐬

{
1

2
(𝐲 − 𝐟(𝐬, 𝛃))

T
𝐑−1(𝐲 − 𝐟(𝐬, 𝛃)) +

1

2
𝐬T𝐂𝐬} (21) 

For nonlinear inverse problems, the computation cost for gradient-based optimization 

methods is expensive due to repeated evaluations of physical model 𝐟(𝐬) for determining 

Jacobian matrices in each iteration. In most cases, 𝐟 is a numerical solver or represents a 

series of numerical solvers to simulate the results corresponding to the measurements, 

which may become problematic when the resolution of 𝐬 goes up to high dimensions up to 

thousands or even millions in real world applications.  

4.2.2 Artificial Neural Network Surrogate Model on Full Dimensions 

Neural network machine learning is essential data-driven. That is, the development 

of a neural network requires a large amount of data, which are typically unavailable in 

hydrogeologic applications. For example, we cannot obtain different scenarios of hydraulic 

conductivity and indirect measurements including hydraulic heads and concentrations. A 

simple method is to develop a neural network surrogate model to replace the forward model 

𝐟 so that the optimization function becomes: 

min
𝐬

𝑓(𝐬) = min
𝐬

{
1

2
(𝐲 − 𝑁𝑁(𝐬|𝛉))

T
𝐑−1(𝐲 − 𝑁𝑁(𝐬|𝛉)) +

1

2
𝐬T𝐂𝐬} (22) 

 

where 𝑁𝑁 is the neural network surrogate model and 𝛉 is the hyperparameter vector in 

𝑁𝑁. The optimization procedures and techniques to estimate 𝐬 can be exactly the same as 

GA and other methods by replacing 𝐟 with 𝑁𝑁. Since the computation cost for a trained 
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𝑁𝑁 is very low, the optimization problem can be solved efficiently. The main computation 

cost now becomes the training of the 𝑁𝑁. The training data can be obtained by generating 

random field realizations based on the geostatistics shown in Eq. (20) and conducting 

forward model simulations of 𝐟. For example, we may generate 1,000 realizations for the 

spatially distributed hydraulic conductivity fields, 𝐬, for the given spatial moments, and 

then simulate sequential pumping tests on each realization, 𝐬(𝒊), to generate the hydraulic 

head measurements, 𝐲𝒊. Thus, 𝑁𝑁 can be determined by optimizing: 

min
𝛉

𝑓(𝛉) = min
𝛉

{∑ (𝐲𝒊 − 𝑁𝑁(𝛉|𝐬(𝒊)))
T

(𝐲𝒊 − 𝑁𝑁(𝛉|𝐬(𝒊)))

𝑁

𝑖=1

} (23) 

In the present research, we further simply this procedure by directly constructing the 

inverse problem using neural network, named as 𝑁𝑁𝐼 . That is, the inverse problem is 

described as: 

𝐬 = 𝐟−𝟏(𝐲) + 𝛜′ (24) 

where 𝐟−𝟏 is the inverse model and 𝛜′ is the error vector. 𝐟−𝟏 is typically unavailable for 

nonlinear problems and cannot be solved by a physics-based mechanistic model. However, 

it is very convenient for neural network. We only need to construct the artificial neural 

network that is fed with input 𝐲 and predicts the output 𝐬 to simulate the inverse of 𝐟, thus 

reducing the computational budget of optimization while still preserving the quality of 

inversion results. The neural network inverse model is obtained by optimizing: 
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min
𝛉

𝑓(𝛉) = min
𝛉

{∑ (𝐬(𝒊) − 𝑁𝑁𝐼(𝛉|𝐲(𝒊)))
T

(𝐬(𝒊) − 𝑁𝑁𝐼(𝛉|𝐲(𝒊)))

𝑁

𝑖=1

} (25) 

A set of measurements {𝐲(𝒊)}, 𝑖 = 1, … , 𝑁 are fed into the artificial neural network. 

Each input 𝐲(𝒊) is paired with a targeted random field 𝐬(𝒊). The goal is to learn parameters 

in each layer of the neural network architecture that connect the preceding layer and the 

following layer for each single neuron. Each input is a vector of hydraulic heads in 

sequential pumping tests, while the target output is a representation given by all unknown 

parameters of the hydraulic conductivity field. Mathematically, the objective of the system 

is to minimize the value of loss function, i.e. mean square error between target 𝐬(𝒊) and the 

predicted estimate 𝑁𝑁𝐼(𝛉|𝐲(𝒊)). The representation of input and output could be extended 

to other physical properties such as storage coefficient or tracer concentrations in different 

inversion applications. After 𝑁𝑁𝐼  is determined, the best estimate of the underlying 

parameter field is simply given by: 

�̂� = 𝑁𝑁𝐼(𝐲) (26) 

The 𝑁𝑁𝐼  framework is shown on the right hand side of Figure 11. Many 

experiments have been conducted to determine the number of hidden layers and the number 

of neurons in each layer and other hyperparameters such as learning rates and momentum 

rates for the optimization. To better handle the large computational volume, a batch 

normalization layer is added followed by each hidden layer to accelerate convergence of 

the optimization. The reason of adding batch normalization layer was in the early research 

study, I found the weights preceding or following hidden layers tended to explode in neural 
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network training because of the increasing number of neurons for NNI framework on full 

dimensions, so I added batch normalization after each hidden layer (i.e. 2~3 batch 

normalization layers were added in total). As a result, the optimization process turned out 

to speed up much faster than before. Adaptive moment estimation (Adam) was used as the 

optimization method; other machine learning tracks, such as cross validation and early 

stop, were applied to deal with potential overfitting issues. 

4.2.3 Artificial Neural Network Surrogate Model on Principal Components 

𝑁𝑁𝐼 is on the full dimensions because it directly focuses on the spatially distributed 

field, 𝐬. Thus, we may still face the challenge of the increasing computational workload in 

real world applications, particularly when the number of unknown parameters reaches 

millions. The computation overhead is also expensive for the artificial neural network like 

other traditional geostatistical methods. We take advantage of principal component 

analysis (PCA) to further reduce the computational cost of NNI. The low-rank 

approximation of the symmetric covariance matrix, 𝐂, can be written as the truncated 

eigen-decomposition (Lee and Kitanidis, 2014): 

𝐂 = 𝐕𝐃𝐕𝑇 ≈ 𝐕𝑘𝐕𝑘
T (27) 

The summation of all eigenvalues in the diagonal matrix 𝐃 describes the total 

variance at all principal components. To achieve a modest truncation number 𝑘, we simply 

choose a 𝑘 to ensure the ratio of the selected variance to the total variance is greater than a 

predefined criterion, such as 0.95, which means 95 percent of variance can be described by 

the truncated principal components. The value of  𝑘 value is selected making a trade-off 
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between speeding up calculation and losing how much less-importantly information in the 

projection. Therefore, 𝐬 can then be approximated as: 

𝐬 ≈ 𝐗𝛃 + 𝐕k𝐚 (28) 

In this simplified equation of 𝐬, 𝐚 ∈ ℝ𝑘×1 is the unknown principal component 

coefficient vector, quantifying that the fluctuations of 𝐬 with respect to the mean is a linear 

combination of principal components. Thus, any inversion of 𝐬 can be reduced to the 

inversion of 𝐚. As 𝑘 is independent of the number of observations, the inversion of 𝐚 is 

more efficient for cases with massive observations. Moreover, the prior probability 

distribution of 𝐚 is an i.i.d. standard multi-Gaussian distribution, 𝐚~N(𝟎, 𝐈). Thus, we 

project the original parameter space of 𝐬  onto the principal component space, which 

reduces the output size tremendously. For example, for a domain with 16,348 cells 

(128 × 128), we may only need 50 retained principal components to account for 95% of 

total variance produced by a Gaussian covariance function or 80% of variance produced 

by an exponential covariance function. We name the new approach as neural network 

principal component inverse (NNPCI), which is obtained by optimizing: 

min
𝛉

𝑓(𝛉) = min
𝛉

{∑ (𝐚(𝒊) − 𝑁𝑁𝑃𝐶𝐼(𝛉|𝐲(𝒊)))
T

(𝐚(𝒊) − 𝑁𝑁𝑃𝐶𝐼(𝛉|𝐲(𝒊)))

𝑁

𝑖=1

} (29) 

The left panel in Figure 11 shows the NNPCI structure. The output is the retained 

principal component coefficients, 𝐚. The number of 𝐚 is not a function of the size of the 

underlying random field, thus making the approach more scalable. Also, the NNPCI 

structure is simpler than the NNI structure on full dimensions of the unknown parameter 
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field. To generate the training data, the random realizations are generated based on Eq. (28) 

with random samples from 𝐚~N(𝟎, 𝐈). After 𝑁𝑁𝑃𝐶𝐼 is determined, the best estimate of the 

underlying parameter field is simply given by: 

�̂� = 𝑁𝑁𝑃𝐶𝐼(𝐲) (30) 

�̂� = 𝐗𝛃 + 𝐕k�̂� (31) 
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Figure 11. Neural Network Principal Components Inverse (NNPCI) and Neural 

Network Inverse (NNI) framework. 
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4.3 Numerical Experiments 

4.3.1 Inverse Experiment Settings 

Multiple numerical experiments of two-dimensional steady-state hydraulic 

tomography are presented to prove the effectiveness of the proposed NNI and NNPCI 

framework. Three heterogeneous fields of logarithmic hydraulic conductivity having 

different parameters are used in the experiments. Table 1 summarizes the geostatistical 

properties, hydraulic parameters, the governing equation, and associated boundary 

conditions. As shown in Figure 12, a random field with Gaussian covariance matrix and 

another random field with exponential covariance matrix are generated as the true fields of 

logarithmic hydraulic conductivity. There are 35 wells uniformly installed in the field, 

among which the black dots represent 25 dual-function (pumping and monitoring) wells, 

and the white dots represent 10 additional pumping wells. At every stage of hydraulic 

tomography, when one of dual-function wells (black dots) is used as pumping well, another 

24 wells are used as monitoring wells to record the steady-state hydraulic head; when one 

pumping well (while dots) pumps water, the other 25 dual-function wells (black dots) 

record the steady-state water head. Therefore, the number of available measurement data 

for each experiment is 850. The observed data is also polluted by 1.5%~3%, which 

approximates the situation in actual application. 

To generate the training data, random Gaussian field realizations with the Gaussian 

covariance or exponential covariance model were generated using Fast Fourier Transform. 

For NNPCI applications, the realizations are generated based on the retained principal 

components. Channelized fields were created using the data augmentation algorithm 
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proposed in CHAPTER 3. The purpose is to provide a direction for our algorithm to better 

handle inverse problem on channels or even more complex domains. The geostatistical 

characteristics and hydraulic parameters are summarized in Table 2; the pumping and 

monitoring settings shown in Figure 13 are the same as the above Gaussian field 

experiment. 

For each of the three numerical experiments, 1000 implementations were generated 

and divided into 70% training, 15% validation and the remaining 15% for testing. All 

numerical experiments were implemented on a MacBook Pro equipped with Intel® Core 

i7 UHD Graphics 630 2.20 GHz processor and 16.00 GB RAM.  
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Table 1. Numerical experiment setup for hydraulic tomography in two 

heterogeneous hydraulic conductivity fields with Gaussian and exponential 

covariance function. 

Geostatistical Properties  

Domain Scale 100m × 100m 100m × 100m 

Field Type Logarithmic Field Logarithmic Field 

Resolution 128 × 128 128 × 128 

Covariance Model Gaussian exponential 

Mean 𝜇 = −5m/s 𝜇 = −5m/s 

Variance σ2 = 4m2/s2 σ2 = 4m2/s2 

Correlation length lx = 20m,  ly = 20m lx = 20m,  ly = 20m 

Hydraulic Parameters  

Pumping Rate Q = 0.0075m3/s Q = 0.0075m3/s 

Governing Equation  

(
𝛛

𝛛𝐱
+

𝛛

𝛛𝐲
) (𝐊 (

𝛛𝐡

𝛛𝐱
+

𝛛𝐡

𝛛𝐲
)) = 0 

Top  Impermeable Impermeable 

Bottom  Impermeable Impermeable 

Left  h = 0m h = 0m 

Right h = 0m h = 0m 
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Figure 12. True random field with Gaussian (left) and exponential (right) 

covariance function and the well setup. 
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Table 2. Numerical experiment setup for hydraulic tomography in channelized 

fields. 

Geostatistical Properties 
Domain Scale 100m × 100m  
Field Type Logarithmic Field 
Resolution 128 × 128 
Mean 𝜇1 = −3m/s 

𝜇2 = −5.5m/s 

Variance σ2 = 0.5m2/s2  
Hydraulic Parameters 
Pumping Rate Q = 0.0075m3/s 
Top  Impermeable  
Bottom  Impermeable  
Left  h = 0m 
Right h = 0m 
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Figure 13. True channelized field and well setup.  
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4.3.2 Neural Network Inverse (NNI) 

The results of NNI framework on the random fields with Gaussian covariance 

function and exponential covariance function are shown in Figure 16 and Figure 17. Three 

randomly sampled data were selected as comparisons listed vertically in each figure. By 

comparing the estimated results on the second row with the real field data on the first row, 

we can conclude the NNI framework produces satisfactory inversion results because the 

dominant patterns are well captured by the inversion and the Gaussian features are clearly 

reproduced in the estimation.  

From a quantitative point of view, the Mapping Accuracy (MA) is used as a criterion 

for analyzing the inversion performance, which represents the percentage of estimated 

points whose absolute error is less than the threshold (Kang et al., 2017). In this section, 

we define 15% deviation of the absolute difference between the maximum value and 

minimum value of the random field as the threshold, as shown by the vertical red lines in 

the error histograms in Figure 16 and Figure 17. The achieved mapping accuracy is around 

83%~89% for the domain with Gaussian covariance function and 70%~87% for the domain 

with exponential covariance function. The scatter plot density maps in the fourth row of 

Figure 16 and Figure 17 consolidate the good matching. It can be clearly seen that the main 

density points fall at 45 degrees on the coordinate, indicating a good fit between the neural 

network surrogate model predictions and numerical generated results. However, the 

correlation value of the fitting plot in Figure 16 ranging from 87% to 89%, which is higher 

than the range from 81% to 85% in Figure 17, because the domain with the exponential 

covariance function contains more details, which are typically more difficult to invert.  
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To further verify the effectiveness of the NNI framework, we extend the test domain 

from the domain with the Gaussian covariance function and exponential function to a 

channelized, non-Gaussian field. The result is shown in Figure 18. The mapping accuracy 

is 56%. The dominant channel pattern is captured in two ways: (1) The NNI framework 

successfully learns the main channel patch along the north-south direction; (2) Since the 

training image is composed of two media, i.e. channel and non-channel, the authenticity of 

the bimodal field characteristics is confirmed by the two-Gaussian distribution reflected in 

the scatter plot density map in the fourth row of Figure 18. Although the estimated 

performance is not as good as the above two experiments for Gaussian fields, the results 

are still encouraging because the NNI framework outperforms traditional stochastic 

sampling methods such MCMC and optimization approaches like Geostatistical Approach 

(GA) that cannot handle inverse problem without a spatially covariance function.   
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Figure 14. Inversion results with the NNPCI framework for Gaussian fields with 

Gaussian covariance function on retained principal components. 

  



 65 

 

Figure 15. Inversion results with the NNPCI framework for Gaussian fields with 

exponential covariance function on retained principal components. 
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Figure 16. Inversion results with the NNI framework for Gaussian fields with 

Gaussian covariance function on full dimensions. 
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Figure 17. Inversion results with the NNI framework for Gaussian fields with 

exponential covariance function on full dimensions. 
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Figure 18. Inversion results of channelized random fields obtained using the NNI 

framework. 
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4.3.3 Neural Network Principal Component Inversion (NNPCI) 

In hydrogeological inverse problems, the spatial range of the random fields of 

interest ranges from hundreds to millions, thus slowing down the inversion process. The 

inverse problems can be solved in the reduced space rather than in the initial space and 

converted back into the original space. Inspired by Reformulated Geostatistical Approach 

(RGA) proposed by Zhao and Luo (2020), we replaced the number of neurons in the last 

layer of the NNI framework with the retained principal components, and converted back 

to the real estimated image after inversion was completed, which greatly speeds up the 

algorithm and makes the framework better handle larger inverse problems in 

hydrogeological application. 

We verified the effectiveness of NNPCI on the domains with the Gaussian 

covariance function and exponential covariance function, and the results are shown in 

Figure 14 and Figure 15. The NNPCI framework also produces satisfactory inversion 

results with the dominant patterns being well captured and the features being clearly 

reproduced in the estimation. The achieved mapping accuracy is improved to 85%~95% 

for the domain with Gaussian covariance function and the domain reflected by exponential 

covariance function; the correlation coefficient of the two domains is about 85%. Therefore, 

we can conclude the NNPCI framework can produce convincing inversion results. In the 

next section we will discuss that NNPCI outperforms NNI in terms of computational 

budget. 

4.3.4 Effect of Training Data 
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Since preparing the training dataset for the NNI and NNPCI models requires multiple 

forward model runs, we test the effect of the amount of training data on the performance 

of the inverse modelling. We conducted a set of parallel experiments on Gaussian random 

fields with a Gaussian covariance matrix by varying the training data size from 200 to 800 

realizations. We use the mapping accuracy and correlation coefficient as the metrics and 

take the average value on 100 testing dataset, which is consistent in all the parallel 

experiments. 

Figure 19 summarizes the comparisons between a random Gaussian field with a 

Gaussian covariance matrix and the corresponding inversion results. The inversion results 

achieve good performance with a mapping accuracy of 82% and a correlation coefficient 

of 0.83 when the neural network is trained with only 200 datasets; and the scatter plot 

density map indicates a good fit between the estimated results and the true field. By feeding 

more datasets into the neural network surrogate model such as 800, the model only has  

slight improvement. This conclusion is further validated by the mapping accuracy average 

value and correlation coefficient average value of 100 testing data sets, as shown in Table 

3. Thus, we can conclude that our neural network surrogate model can be further 

accelerated to outperform traditional geostatistical methods.  
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Figure 19. Inversion results of random Gaussian fields with Gaussian covariance 

matrix obtained using different sizes of training data. 
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Table 3. Averages of mapping accuracy and correlation coefficient on 100 testing 

Gaussian fields with Gaussian covariance function. 200, 400, 600 and 800 training 

dataset are used in each experiment. 

Training Dataset Average MA Average Correlation 

200 
 

0.721 0.768 

400 
 

0.739 0.798 

600 
 

0.725 0.783 

800  0.77 0.81 
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4.3.5 Time Analysis 

At the training stage, it is worthwhile to mention that for the NNPCI framework, the 

inverse problems are solved in the reduced space, and converted back into the original 

space. The scalability of the system is enhanced to handle high-dimensional inverse 

problems, regardless of the unknown parameters in the initial parameter field. Figure 20 

illustrates the trend of computational cost relative to the unknowns in the field. When the 

number of unknowns increases from 256 to 262144, the training time almost remains 

unchanged. Therefore, the NNPCI framework has better scalability than NNI framework 

when the computational demand is very large. Figure 21 summarizes the time comparison  

between NNPCI (including the time of generating training data) and RGA with respect to 

the number of unknowns of the parameter field, the running time of the two algorithms is 

similar when there are not many unknowns; however, NNPCI is much more efficient with 

around 3800s total time compared with 6000s for RGA algorithm. In addition, running 

time and mapping accuracy performance is further tested using a specific case on 

128 × 128 resolution. It is clear to see NNPCI is more computationally efficient while 

achieving competitive mapping accuracy compared with BSGN (MCMC) and PCGA. 

Thus, we can conclude our proposed NNPCI can save more computational budget than 

many traditional MCMC algorithms and geostatistical approaches in tackling large scaled 

inverse problem in hydrogeological area. 

At the testing stage, both frameworks could generate estimates faster than traditional 

geostatistical methods. Specifically, taking the Reformulated Geostatistical Approach 

(RGA) as an example, this method needs to solve multiple equations, and each iteration 

requires running multiple forward models to determine the Jacobian matrix. In contrast, 
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when the input is fed into the well-trained NNI or NNPCI framework, the conditional 

realization will be generated quickly, completely dependent on the trained neuron weights, 

and multiple realizations can be completed in parallel in a short time. Therefore, in 

scenarios where multiple estimates are to be generated, the NNI and NNPCI framework 

are much more efficient than RGA by taking advantage of offline training. 

The calculations of forward model are time-consuming in traditionally geostatistical 

approach. We include this part and compare the computational budget of NNPCI with that 

of RGA. Assume a scenario where we retain the first 𝑘 principal components, and it takes 

i iterations for RGA to converge to the best estimate. The total number of forward model 

runs is computed as 𝑖 × 𝑘, and total computational time is 𝑖 × 𝑘 × 𝑓, where 𝑓 is the defined 

as the time consumed in each forward model. Assume there are 𝑝 available processors, 

ideally, the time complexity is Ο(
𝑖×𝑘×𝑓

𝑝
). For the NNI or NNPCI framework, assume 𝑁 

training data is generated, the total computational time is 𝑁 × 𝑓. By leveraging parallel 

computing of 𝑝 processors, the time complexity reduces to Ο(
𝑁×𝑓

𝑝
). To obtain a more 

concrete understanding of the computational time comparison, a few numbers are plunged 

into the equation. The results are shown in Table 4. In a scenario where the number of 

retained principal components is 50, for example, the iteration number for RGA is 20, each 

forward model consumes 1s, and assume 300 training data is generated. Initially the two 

algorithms consume similar time, with the increase of processors used in parallel 

computing, NNPCI will be more efficient in producing the training data. 
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Table 4. RGA and NNPCI speed comparison in parallel computing. In scenario 

where the number of retained principal components is 50, iteration number for 

RGA is 10, each forward model consumes 1, 300 training data is generated. 

 
RGA NNPCI 

Given 𝑝 = 1 
 

500 300 

Given 𝑝 = 2 
 

250 150 

Given 𝑝 = 5 
 

100 60 

Given 𝑝 = 20 
 

25 15 

Given 𝑝 = 50  10 6 

Given 𝑝 = 100  10 3 

Given 𝑝 = 200  10 2 
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Figure 20. NNPCI time performance on the number of unknowns.  
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Figure 21. Time comparison of RGA and NNPCI. 
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Table 5. Performance comparison between NNPCI, BSGN and PCGA on a field 

case with  
𝟏𝟐𝟖 × 𝟏𝟐𝟖 resolution. 

 NNPCI BSGN PCGA 

Field Type Gaussian field with 

exponential covariance 

matrix 

Gaussian field with 

exponential covariance 

matrix 

Gaussian field with 

Gaussian covariance 

matrix 

Field Size 128 × 128 128 × 128 128 × 128 

Total time(s) 246 1353 845 

Mapping Accuracy 86.76% 83.37% 88% 
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4.4 Conclusion 

In this chapter, we proposed Neural Network Inverse (NNI) framework on full 

dimensions and Neural Network Principal Component Inverse (NNPCI) framework on 

reduced dimensions by PCA to handle the inverse problems of hydraulic tomography in 

heterogeneous hydraulic conductivity fields. Our neural network surrogate models directly 

describe the inverse relationship between the indirect measurements, i.e. hydraulic heads 

and the underlying parameter fields, hydraulic conductivity, or the retained principal 

component coefficients. Thus, the inverse estimates can be directly obtained through the 

trained NNI and NNPCI, and there is no need to use the trained model for another 

optimization. 

Numerical experiments show that both neural network architectures result in 

satisfactory performance of inversion results. In particular, NNPCI is more efficient for 

Gaussian random fields by reducing the size of unknown parameters to that of retained 

principal components without jeopardizing the quality of inversion results. Moreover, for 

non-Gaussian random fields, such as the channelized heterogeneous fields, NNI also 

provides good inverse results. Because such fields cannot be described by the two-point 

spatial covariance, geostatistical approach is not applicable.  

In terms of computational complexity and efficiency, both frameworks could provide 

the estimates faster than traditional geostatistical results when the models are trained. The 

major computational cost is the generation of the training data and model training. In the 

present study, we generated 1,000 random realizations for each field, and correspondingly 

implemented 1,000 times of forward model simulations. The number of the forward model 
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run is comparable to the traditional geostatistical approach. The recent RGA framework 

may reduce the number of the forward model runs by incorporating the quasi-Newton 

algorithms. However, the geostatistical approach needs to implement the forward model 

simulations iteratively during the optimization for determining the Jacobian matrix. In 

contrast, all the forward model simulations in our neural network models can be generated 

independently offline. That is, NNI and NNPCI do not rely on any iteration and gradient 

evaluation, and the forward model runs are completely independent to each other. Thus, 

generating the training data can be done in advance and independently by taking the 

advantage of parallel computing.  Moreover, for established NNI and NNPCI, when an 

input is fed into well-trained NNI or NNPCI framework, an estimate can be fast generated 

purely replying on the weights of neurons.   
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CHAPTER 5. VARIATIONAL BAYESIAN NEURAL INVERSE (VBNI) ON FULL 

DIMENSIONS AND VARIATIONAL BAYESIAN NEURAL PRINCIPAL 

COMPONENTS INVERSION (VBNPCI) 

5.1 Introduction 

Comprehension and modeling of flow and transport behavior in groundwater systems 

require accurate and efficient characterization of the underlying spatially distributed 

hydraulic conductivity field. Local-scale estimates of hydraulic conductivities can be 

obtained by conducting laboratory experiments on collected core samples from drilled 

boreholes (A. Klute & R. C. Dinauer, 1986; Zha et al., 2018). However, high costs of well 

drilling hinder this approach from mapping field-scale hydraulic conductivity distributions 

onto a fine resolution. Therefore, field-scale characterization is usually achieved by inverse 

approaches to infer hydraulic conductivities from measurements of aquifer tests, such as 

pumping tests, slug tests, constant-head tests, and tracer tests etc. (Cardiff et al., 2009; 

Cirpka et al., 2007; Fienen et al., 2006; Liao & Cirpka, 2011; Yeh & Liu, 2000; Z. Zhang 

et al., 2014; Zhao et al., 2018).  

Various numerical approaches have been developed to solve Bayesian inverse 

problems. Ensemble-based approaches include Markov chain Monte Carlo (MCMC) that 

simulates a large number of the posterior samples by running a Markov chain (Cui et al., 

2014; Geman & Geman, 1984; Hastings, 1970; Martin et al., 2012; Vrugt et al., 2009), 

ensemble Kalman filter and ensemble smoother approaches that simulates samples from a 

Gaussian approximation of the posterior distribution (Jiangjiang Zhang et al., 2018; Zhou 

et al., 2012). However, for highly-parameterized Bayesian inverse problems that admit 
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high-resolution hydraulic conductivity fields, the geostatistical approach still requires 

efficient implementations to facilitate the computation (Lee & Kitanidis, 2014; Liu & 

Kitanidis, 2011). The reasons lie in two aspects: numerical solver needs to be performed 

on a high-resolution grid for multiple times in nonlinear problems (Kitanidis, 1995); and 

the large number of unknowns increases the cost of matrix computation during the 

inversion.  

Many efforts have been dedicated to reduce the computational cost of the 

geostatistical approach. Nowak et al. (2003) proposed an efficient approach of computing 

the cross-covariance matrix based on circulant embedding and the fast Fourier transform, 

which was successfully applied to a sandbox inverse problem (Nowak & Cirpka, 2006). 

Liu and Kitanidis (2011) proposed a sparse representation of the prior covariance matrix 

that facilitates the storage and the associated computation, and proved its effectiveness in 

an inverse problem of sandbox hydraulic tomography. For large-scale linear geostatistical 

inverse problems, Ambikasaran et al. (2013) and Saibaba et al. (2012) proposed 

hierarchical matrices to speed up the solving process. For geostatistical inverse problems 

with huge volume of observational data, Klein et al. (2017) proposed a preconditioned 

conjugate gradient algorithm, and Lin et al. (2017) proposed a randomized data reduction 

algorithm. For inversion of pumping and tracer tests, temporal moments was applied to 

transform transient forward models to steady-state models for faster model evaluations (Li 

et al., 2005; Nowak & Cirpka, 2006; Pollock & Cirpka, 2008; Yin & Illman, 2009; Zhu & 

Yeh, 2006).  

Recently, Kitanidis and Lee (2014) introduced the Principal Component Analysis 

(PCA) in the quasi-linear geostatistical approach to cut down the computational cost of 
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Bayesian inverse problems, named as principal component geostatistical approach 

(PCGA), and demonstrated its effectiveness and efficiency in several applications (Kang 

et al., 2017; Lee & Kitanidis, 2014; Lee et al., 2016). PCGA decreases the computational 

overhead associated with the covariance matrix and improves the computational efficiency 

for the Jacobian matrices by a ‘matrix-free’ approach. A similar idea was also incorporated 

into the successive co-kriging estimator for hydraulic tomography applications (Zha et al., 

2018).  

Under such a background of inversing modeling, in CHAPTER 4, we have developed 

NNPCI from the machine learning perspective and generate a new system that simulates 

the relationship between hydraulic conductivity and hydraulic head. The proposed 

framework could easily extend to other disciplines like earth sciences, environmental 

science and engineering, etc. However, we cannot guarantee the predicted conditional 

realization output from this system is always reliable because of different sources of errors 

such as error in input data, model structure, model parameters. These errors will 

consistently cause uncertainty issues to the system, making the predicted result not that 

accurate as we always expect. It is therefore worthwhile to put more efforts into uncertainty 

analysis when the outcome of the model is significant for research work or industrial 

financial purposes. We always expect the system to perform stably and be consistent at 

varying spatial and timing scales though sometimes input data is contaminated and further 

generalize the system or model well to other implications. 

So far, much research work on algorithm investigations simulating the uncertainty 

and metrics to quantify uncertainty analysis have been evolved fast in hydrogeological 

areas in recent decades. Rafiei Emam et al. (2018) conducted uncertainty analysis for a 
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semi-distributed hydrological model based on four algorithms including Generalized 

Likelihood Uncertainty Estimation (GLUE), Parameter Solution Method (ParaSol), 

Sequential Uncertainty Fitting (SUFI) and Particle Swarm Optimization (PSO); and 

compared the performance of the algorithms using P-factor and R-factor and coefficient 

determination. JL Zhang et al. (2016) proposed a Bayesian framework for investigating 

uncertainties in input data such as temperature and precipitation and model parameters as 

well as their effects on the runoff response, which successfully enhances the capacity of 

the hydrologic system for predicting water resources during different seasons. Bayesian 

model averaging (BMA) method was employed on different hydrologic models and proved 

that BMA can provide a statistical distribution of the quantity to be forecasted (Dong et al., 

2013). 

Unlike the BMA method that requires multiple hydrological models in forecasting, 

we want to simplify the system and inject the so-called “uncertainty” to the weights of 

neural network architecture. In this chapter, we employed the idea of Bayes by backprop 

(Blundell et al., 2015a) to learn a probability distribution on the weights of a neural 

network. As a result, Bayesian theorem was incorporated into the NNPCI framework to 

add uncertainty for the whole system. The new inverse framework is named as Variational 

Bayesian Neural Principal Component Inversion (VBNPCI). Three numerical experiments 

with Gaussian and non-Gaussian dataset were tested on the model to validate the stableness 

of the system. 

5.2 Variational Bayesian Neural Principal Component Inverse (VBNPCI) 
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In this chapter we introduced NNPCI in which the weights connecting the preceding 

layer and the next layer are constants. To increase uncertainty for the generations we need 

to add “variations” into the architecture, so Bayesian theorem was employed to NNPCI 

and the modified framework become really variational. In VBNPCI, every weight follows 

a distribution with a prior added. The weights 𝑤𝑀𝐴𝑃 could be expressed as: 

𝑤𝑀𝐴𝑃 = arg max
w

log 𝑃(𝑤|𝑥, 𝑦) = arg max
w

log 𝑃(𝑥, 𝑦|𝑤) + log 𝑃 (𝑤) =

= arg max
w

∑ log 𝑃(𝑦(𝑖)|𝑥(𝑖), 𝑤)

𝑖

+ log 𝑃 (𝑤) 
(32) 

In this way, the learnt distribution could answer predictive queries upon independent 

testing unknown data �̂� with the help of one possible configuration of the weights sampled 

from the posterior distribution and make an appropriate decision, which could be expressed 

as: 

𝑃(�̂�|�̂�) =  𝔼𝑝(𝑤|𝒟)𝑃(�̂�|�̂�, 𝑤) 

 

(33) 

We assume each weight in the variational neural network follows a Gaussian 

distribution and apply Kullback-Leibler (Van Erven & Harremos, 2014) between the 

variational distribution 𝑞(𝑤|𝜃) and the true posterior 𝑃(𝑤|𝒟). By Bayesian theorem we 

can easily derive:  
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𝐾𝐿(𝑞(𝑤|𝜃) ∥  𝑃(𝑤|𝒟))

=  𝔼𝑞(𝑤|𝜃) log
𝑞(𝑤|𝜃)

𝑃(𝑥, 𝑦|𝑤)𝑃(𝑤)
𝑃(𝑥, 𝑦)

= 𝔼𝑞(𝑤|𝜃)[log 𝑞(𝑤|𝜃) − log 𝑃(𝑥, 𝑦|𝑤)

− log 𝑃(𝑤) + log 𝑃(𝑥, 𝑦)]

= 𝐾𝐿(𝑞(𝑤|𝜃)  ∥ 𝑃(𝑤)) − 𝔼𝑞(𝑤|𝜃) log 𝑃(𝑥, 𝑦|𝑤) + log 𝑃(𝑥, 𝑦) 

(34) 

The first two items together are also known as variational free energy ℱ(𝑥, 𝑦, θ) and the 

last term log 𝑃(𝑥, 𝑦) is log marginal likelihood which have no relationship with 𝑤, so we 

can simplify our learning objective function as: 

ℱ(𝑥, 𝑦, θ) =  𝐾𝐿(𝑞(𝑤|𝜃)  ∥ 𝑃(𝑤)) − 𝔼𝑞(𝑤|𝜃) log 𝑃(𝑥, 𝑦|𝑤) 

 

(35) 

By using Monto Carlo sampling (Blundell et al., 2015b), we can further approximate the 

learning objective as: 

ℱ(𝑥, 𝑦, θ) ≈  
1

𝑁
∑[𝑙𝑜𝑔 𝑞(𝑤(𝑖)|𝜃) − 𝑝(𝑤(𝑖)) − 𝑙𝑜𝑔 𝑝(𝑥(𝑖), 𝑦(𝑖)|𝑤(𝑖))]

𝑁

𝑖=1

 

 

(36) 

Where 𝑤(𝑖)  represents one single Monte Carlo weight configuration sampled from the 

variational posterior 𝑞(𝑤(𝑖)|𝜃), which also correspond to each input that is fed into the 

model. The first term on the right hand side is called the KL-divergence between variational 

distribution 𝑞(𝑤|𝜃) and the prior 𝑝(𝑤), and the second term is the expectation of the 

likelihood 𝑃(𝑥, 𝑦|𝑤) with respect to the variational distribution 𝑞(𝑤|𝜃) therefore is also 

called the likelihood cost. 
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In this way, we sample the variational distribution using a Gaussian distribution 

which consists of parameters (𝜇, 𝜎) where 𝜇 is the mean vector of the distribution and 𝜎 

represents the standard deviation vector and the uncertainty of this framework could be 

parameterized by 𝜇 and 𝜎. A training iteration consists of a forward pass and backward 

pass. During a forward pass, a single sample is drawn from the variational posterior 

distribution, which is used to evaluate the approximated loss function. During the backward 

pass, the gradients of 𝜇 and 𝜎 are calculated via backpropagation so that their values can 

be updated by an optimizer. It’s worthwhile to mention that for numeric stability we 

parameterize the network with 𝜌 instead of 𝜎 directly and transform 𝜌 with the softplus 

function to obtain 𝜎 = 𝑙𝑜𝑔 (1 + exp ( 𝜌)), which can ensure 𝜎 is always positive thus 

improving training process. 

As denoted in Figure 22, the input size of VBNPCI is proportional to the size of 

measurements and output size is determined by the number of principal components. Each 

weight is sampled following a Gaussian distribution, which finally results in the reasonable 

uncertainty for the result. We use mean square error as the loss function to tune the format 

of output and maintain the dominant patterns not to be jeopardized by the added variations. 
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Figure 22. Variational Bayesian Neural Principal Component Inverse (VBNPCI) 

Architecture. 
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5.3 Numerical Experiments 

5.3.1 Inverse Experiment Settings 

Multiple numerical experiments of two-dimensional steady-state hydraulic 

tomography are presented to testify the uncertainty performance of the added Bayesian 

theorem on top of the proposed NNI and NNPCI framework in CHAPTER 4. For the 

consistency of the experiment, we use the same experimental parameters and well setups 

as in CHAPTER 4. Specifically, three heterogeneous fields of logarithmic hydraulic 

conductivity with different parameters are used in the experiments. Table 1 summarizes 

the geostatistical properties, hydraulic parameters, the governing equation, and associated 

boundary conditions. Figure 12 depicts a random field with Gaussian covariance matrix 

and another random field with exponential covariance matrix as the true fields of 

logarithmic hydraulic conductivity. There are 35 wells uniformly installed in the field, 

among which the black dots represent 25 dual-function (pumping and monitoring) wells, 

and the white dots represent 10 additional pumping wells. At every stage of hydraulic 

tomography, when one of dual-function wells (black dots) is used as pumping well, another 

24 wells are used as monitoring wells to record the steady-state hydraulic heads; when one 

pumping well (white dots) pumps water, the other 25 dual-function wells (black dots) 

record the steady-state water head. Therefore, the number of available measurement data 

for each experiment is 850 in total. The observed data is also polluted by 1.5%~3%, which 

approximates the situation in actual application. 

To generate the training data, random Gaussian field realizations with the Gaussian 

covariance or exponential covariance model were generated using Fast Fourier Transform. 
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For VBNPCI applications, the realizations are generated based on the retained principal 

components. Channelized fields were created using the data augmentation algorithm 

proposed in CHAPTER 3 in order to further substantiate the inverse modeling research. 

The aim is to prove the effectiveness of the proposed algorithm for generalization and 

uncertainty analysis in channels or even more complex fields. The geostatistical 

characteristics and hydraulic parameters are summarized in Table 2; the well setup shown 

in Figure 13 is the same as the above Gaussian random field experiment. 

For the consistency of the experiment, in each of the three numerical experiments, 

we used the same input data as that in CHAPTER 4, and divided it into 70% training, 15% 

validation and the remaining 15% for testing. All numerical experiments were 

implemented on a MacBook Pro equipped with Intel® Core i7 UHD Graphics 630 2.20 

GHz processor and 16.00 GB RAM. 

5.3.2 Results and Discussion 

In CHAPTER 4, we have proved the effectiveness and efficiency of the NNI and 

NNPCI framework on the random fields with Gaussian covariance function or exponential 

covariance function and even more complex fields with special characteristics (such as 

channels). Mapping accuracy and correlation coefficient were used to quantitatively 

confirm our observations. However, in practical applications, models or systems are often 

affected by errors from various sources, including input errors, model structure errors, 

model parameter errors, and so on. In other words, we cannot guarantee our predictions 

from the NNI or NNPCI framework to be always reliable. That is why we need to consider 

these errors and perform the following research study with the help of VBNI and VBNPCI. 
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 Taking the VBNPCI framework as an example, the field experiments of Gaussian 

covariance and exponential covariance matrix are shown in Figure 23 and Figure 24 

respectively, and similar results have been obtained. In the second row of each figure, the 

three predictions show promising results and provide detailed difference, especially around 

areas with very high or very low hydraulic conductivity values. We take the average of 100 

predictions in each experiment, and the results show that the main patterns are well 

captured. According to the variance map, even in the boundary area where we did not 

collect enough measurements, the variance is very low. This means that how to install wells 

has little effect on the inverse estimation by using our proposed algorithm, and it is 

worthwhile to conduct more experiments in the future. As more conditional realizations 

emerge, more possibilities in each specific field would provide more guidance for 

researchers or field workers. What’s more, taking the average of all realizations will 

increase the reliability of the output, so that the entire system or model becomes more stable 

and consistent on varying spatial and temporal scales. 

In terms of pattern capture performance, the mapping accuracy and correlation 

coefficient were quantitatively analyzed according to same standards in CHAPTER 4, and 

the results are promising. The principal components fitting graph is unique for VBNPCI, 

as illustrated in the bottom sub-figures of Figure 23 and Figure 24. Comparing the true 

principal component coefficients with the estimated coefficients, we will see that for both 

cases, the true component coefficients are well contained in the domain formed by the 

averaged principal coefficients.  

 In addition, experiments of the VBNI framework were conducted on random with 

Gaussian covariance function in Figure 25, field with exponential covariance function in 
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Figure 26, and channelized field shown in Figure 27, and results were similar to the above-

mentioned analysis with the VBNPCI framework. Therefore, we can conclude that VBNI 

and VBNPCI can provide a new perspective for uncertainty study to better understand the 

aquifer characterizations in hydrogeology area, and also could be extended to other 

scientific disciplines, i.e. environmental engineering, geophysics, earth science, and so on. 
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Figure 23. Inversion results with the VBNPCI framework for Gaussian random 

fields with Gaussian covariance function on retained principal components. The 

first row: true field (left), average estimate of 100 predictions (middle), and variance 

map (right); the second row: three predictions; the third row: scatter plot density 

map for each prediction; the fourth row: principal component fitting. 
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Figure 24. Inversion results with the VBNPCI framework for Gaussian random 

fields with exponential covariance function on retained principal components. The 

first row: true field (left), average estimate of 100 predictions (middle), and variance 

map (right); the second row: three predictions; the third row: absolute error 

histogram; the fourth row: scatter plot density map for each prediction; the fifth 

row: principal component fitting. 
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Figure 25. Inversion results with the VBNI framework for Gaussian random fields 

with Gaussian covariance function on full dimensions. The first row: true field (left), 

average estimate of 100 predictions (middle), and variance map (right); the second 

row: three predictions; the third row: absolute error histogram; the fourth row: 

scatter plot density map for each prediction. 
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Figure 26. Inversion results with the VBNI framework for Gaussian random fields 

with exponential covariance function on full dimensions. The first row: True field, 

average estimate of 100 predictions, variance map; the second row: three 

predictions; the third row: absolute error histogram; the fourth row: scatter plot 

density map for each prediction. 
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Figure 27. Inversion results with the VBNI framework for channelized random 

fields on full dimensions. The first row: True field, average estimate of 100 

predictions, variance map; the second row: three predictions; the third row: 

absolute error histogram; the fourth row: scatter plot density map for each 

prediction. 
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5.4 Conclusion 

In this chapter, we develop a Variational Bayesian Neural Inverse (VBNI) on full 

dimensions and Variational Bayesian Neural Principal Component Inverse (VBNPCI) 

framework on retained principal components to handle the uncertainty estimates of 

hydraulic tomography in heterogeneous hydraulic conductivity fields. This proposed 

approach is composed of NNI or NNPCI developed in CHAPTER 4 and Bayesian theorem, 

and provide uncertainty analysis without jeopardizing the entire trend of the field. Three 

sets of numerical experiments were conducted on fields with different patterns and 

hydraulic characteristics and a satisfactory performance was achieved in capturing the main 

characteristics for each field.  

As more conditional realizations emerge, uncertainties in each specific field would 

provide more guidance for researchers or field workers. At the same time, the average value 

of all realizations will increase the reliability of the output, so that the entire system or 

model behaves more stable and consistent on varying spatial and temporal scales. 

Therefore, we can conclude that VBNI and VBNPCI can provide a new uncertainty 

research perspective for better characterization of underground aquifers in the field of 

hydrogeology, and may also be extended to other scientific disciplines, namely 

environmental engineering, geophysics, earth science, and so on. 
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CHAPTER 6.  APPLICATION OF NNI AND NNPCI TO REAL WORLD DATA 

6.1 Introduction 

In this chapter, the proposed neural network principal component inverse (NNPCI) 

is applied to investigate the hydraulic conductivity field and storage coefficient field of a 

deep lime stone aquifer in Xingdong coalmine site located in China. The inversion results 

provide more quantitative geological information of the coalmine site and have the 

potential to provide guidance for coalmine operations in the future to evade incidents.  

There are seven observation wells installed around the coalmine boundary to monitor 

the water level changes, which functions to provide early warning when incidents such as 

water inrush happen. These wells are shown in Figure 28 with names of D1, D3, D4, D5, 

D6, D9 and D11. Out of safety considerations, no monitoring well is installed in the mining 

area.  

To characterize hydraulic conductivity and storage coefficient of the coalmine area, 

a pumping test was conducted. As shown in Figure 29, during this pumping test, in which 

D5 acts as the pumping well while the rest six wells act as monitoring wells, there are 14 

water level readings recorded for each monitoring well. The 14 readings of each well record 

water heads in 7 days for every half a day. In addition to the pumping test, Figure 29 also 

records the drawdown curves for a water inrush incident happened in W1, which can be 

regarded as another pumping test and complete the sequential pumping test. The data of 

the water inrush incident is also recorded on the same time resolution. It worth noting that 

during the water inrush, drawdown in D9 is much larger than those in the other wells. 
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Therefore, another separated axis is adopted on the left of the figure to illustrate the range 

of the drawdown curve in D9, relevant experiment results regarding D9 will also be 

discussed in later section of this chapter. 

To estimate the hydraulic conductivity and the storage coefficient, we treat these two 

unknown fields independently and separately, and apply a joint neural network inversion 

approach to the sequential pumping test data. In this implication, storage coefficient is also 

unknown like hydraulic conductivity. We build two relationships between hydraulic 

conductivity (or storage coefficient) with drawdown respectively to invert the two 

unknown fields on full dimensions or retained principal components. Thus, a premium 

advantage of the joint neural network inverse model is that we treat the two inverse models 

not dependent with each other, making the training process simpler than traditional 

geostatistical methods which requires computing Jacobian matrix iteratively. Taking the 

NNI framework as an example, the relationship between the hydraulic conductivity 𝒌 or 

the storage coefficient 𝒔 and the drawdown values 𝒚 can be expressed in Equation. (37): 

𝒔 = 𝑁𝑁𝐼(𝒚) 

𝒌 = 𝑁𝑁𝐼_𝑗𝑜𝑖𝑛𝑡(𝒚) 

(37) 

Therefore, the reformulated forward model is shown in Equation. (38): 

𝒚 = 𝒇(𝒔,  𝒌) + 𝝐 (38) 
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Figure 28. Setup of installed wells in the coalmine area. 
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Figure 29. Draw down curves for the water inrush test and the pumping test in the 

coalmine area. 
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6.2 Real World Data Inversion 

6.2.1  Training Data 

The inversion of real-world data is always based on a prior guess of the field 

characteristics governed by structural parameters of the field in hydrogeology and 

geostatistical area  (Zhao, 2020). The initialization of the geostatistical parameters is shown 

in Table 6, which reflects our prior belief in the hydraulic conductivity field and the storage 

coefficient field. Other values of the parameters are also explored in data inversion; 

however, the inversion of the data does not produce significant differences for different 

prior setups. This is because a similar set of geostatistical parameters can provide almost 

the same inversion results. 

The studied domain stretches 15000 𝑚 × 20000 𝑚  with a discretized resolution 

120 × 160. 1000 synthetic realizations were generated for fields of hydraulic conductivity 

and storage coefficient respectively; each realization contains two parameterized fields that 

share the same drawdown value. Thus, we divided the whole dataset into 70% training, 

15% validation and the remaining 15% for testing. 

All numerical experiments are implemented on a MacBook Pro equipped with Intel® 

Core i7 UHD Graphics 630 2.20 GHz processor and 16.00 GB RAM.  
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Table 6. Geostatistical and hydraulic parameters in real-world data inverse 

modeling. 

Geostatistical Properties  

Domain Scale 15000m × 20000m 

Field Type Logarithmic Field 

Resolution 750 × 1000 

Covariance Model exponential model 

Mean 𝜇 = 1.2m/s 𝜇 = −9.0 

Variance σ2 = 1.5m2/s2 σ2 = 1.5 

Correlation length 1000m × 1000m 

Governing Equation  

(
𝛛

𝛛𝐱
+

𝛛

𝛛𝐲
) (𝐊 (

𝛛𝐡

𝛛𝐱
+

𝛛𝐡

𝛛𝐲
)) = 𝐐 + 𝐒

𝛛𝐡

𝛛𝐭
 

North  h = 950m 

South  h = 950m 
West  h = 950m 

East  Impermeable 
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6.2.2 Inversion of Real Data and Cross Validation 

The inversion is solved by NNI and NNPCI for the two fields of hydraulic 

conductivity and storage coefficient respectively. The reversion results from these two 

frameworks are similar, which validate our research in Chapter 4. For illustration purpose, 

we displayed the estimates of the logarithmic hydraulic conductivity and the logarithmic 

storage coefficient obtained using the NNI framework. In order to better take advantage of 

the limited and precious real world data, we applied cross validation strategy to verify if 

the frameworks perform well in the specific implication. Specifically, we conducted two 

parallel experiments as follows. 

Cross Validation 1: Since part of water inrush observations are not accurate, e.g. 

outliers might be existing in the observations at D1 shown in Figure 29. The measurements 

at D9 are much larger than other monitoring wells, which means some unexpected 

phenomena might occur during the observation period. Thus, we decide to treat them 

independently and use pumping test realizations only in the training of first inverse model 

and invert the predicted fields of hydraulic conductivity and storage coefficient, which is 

followed by cross validation using the remaining six wells in the water inrush test. The 

inverse estimations of hydraulic conductivity and storage coefficient are shown in Figure 

30. Clearly, the result indicates that the studied area possesses highly heterogeneous 

behaviors in both fields. The magnitude of the hydraulic conductivity 𝐊 ranges from 10−3 

to 105, while the storage coefficient 𝐒 ranges from 10−18 to 10−2. The result also reveals 

the spatial patterns of conductivity and storage coefficient in the studied area. However, 

we cannot fully guarantee these two approximate the situation in actual application because 

it is impossible to get the real data in hand for this domain. Thus, we investigate the 
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performance of NNI from the perspective of reproducing the measurements as well as cross 

validation on the remaining data. For example, in experiment 1, the pumping test data is 

used for reproducing measurements and water inrush data is used for cross validation. 
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Figure 30. Estimates of logarithmic hydraulic conductivity field and logarithmic 

storage field. 
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The results indicate that the proposed approach successfully reproduces the 

drawdown curves of the pumping test as shown in Figure 31, which is conducted under a 

normal pumping rate. This matches with our initial expectation because we applied 

realizations from the pumping test wells to train the NNI framework. However, the cross 

validation on the water inrush incident (the remaining 6 wells) does not perform as well as 

the reproduced measurements in the pumping test, especially in D3, D4 and D9 shown in 

Figure 32. There might be multiple reasons for this. Firstly, unlike a pumping test that is 

conducted by researchers and engineers with deliberately designed setup, an extreme flow 

rate might occur in the water inrush incident, which potentially leads to unexpected 

hydraulic behaviors during the incident (Mao et al., 2018; Zhao, 2020). Secondly, the 

pumping of water from the coalmine is not simultaneous when the water inrush happens. 

Lastly, the provided data may be badly contaminated for some reasons, especially the 

measurements from water inrush test. 

Cross Validation 2: In the second validation, we use D11 well as the testing well 

and the data from all other wells except D9 to train the NNI framework because based on 

experiment 1 we guess data from D9 in water inrush test was contaminated for unknown 

reasons. The performance of NNI in inverting field data is also investigated from the 

perspective of reproducing the measurement as shown in Figure 33, which demonstrates 

the NNI framework works well overall, particularly D3 and D4 data from the water inrush 

wells fit better than that in the first experiment. In addition, Figure 34 shows the cross 

validation performance of this experiment; the good fitting between real data in water 

inrush well D11 and the predicted value using the inverted hydraulic conductivity and 

storage coefficient is encouraging for us. Thus, we can conclude that our model perform 
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well overall and cross validation works well in the real-world application. For future study, 

if there are more data trunks collected, the NNI framework will assimilate the new data 

and further calibrate the inverse model that will provide more guidance for this coalmine 

field. 
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Figure 31. Experiment 1: fitting of measurements in five pumping wells. 
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Figure 32. Experiment 1: cross validation of estimated parameter fields by 

measurements in the remaining six water inrush wells. 
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Figure 33. Experiment 2: fitting of measurements in all pumping wells and five 

water inrush wells. 
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Figure 34. Experiment 2: cross validation of estimated parameter fields by 

measurements in D11 (water inrush well).  
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6.3 Conclusion 

In this chapter, we investigate the performance of the proposed NNI inverse 

algorithm with a real-world application, i.e., a large-scale inverse problem with transient 

pumping data in Xingdong coalmine site located in China. The inversion result reveals 

heterogeneous fields of high or low hydraulic conductivity and storage coefficients. Our 

NNI framework performs well overall; the fitting of measurements is aligned with that in 

the cross validation of estimated parameter field by measurements in the testing well; this 

will continue to contribute to the future study of this coalmine field. For future study, if 

there are more trunk data collected, the NNI framework will assimilate the new data and 

better calibrate the inverse model and provide more guidance for this coalmine field. 
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CHAPTER 7.  CONCLUSION AND RECOMMENDATION 

7.1 Summary and Conclusions 

In this thesis, we improve the hydrogeological inverse modeling with modern 

machine learning algorithms and demonstrate their applications in estimating large-

dimensional, highly-heterogeneous hydrogeological parameter fields. Specifically, we 

develop a channelized field generation approach and bridge the connection between 

hydraulic tomography inverse modeling and the state-of-the-art algorithm neural network, 

providing new methods for better aquifer characterization. 

In CHAPTER 3, based on the texture synthesis and the image quilting approach, a 

Fast Conditional Image Quilting (FCIQ) method was proposed. The efficiency and 

effectiveness have been successfully verified on binary TIs, continuous TIs, and more 

complex images with special characteristics. This algorithm was used to generate 

channelized random fields to support the inverse modeling research study in CHAPTER 4 

and CHAPTER 5. 

In CHAPTER 4, we proposed Neural Network Inverse (NNI) framework on full 

dimensions and Neural Network Principal Component Inverse (NNPCI) framework on 

reduced dimensions by PCA to handle the inverse problems of hydraulic tomography in 

heterogeneous hydraulic conductivity fields. Our neural network surrogate models directly 

describe the inverse relationship between the indirect measurements, i.e. hydraulic heads 

and the underlying parameter fields, hydraulic conductivity, or the retained principal 

component coefficients. The efficiency of the NNPCI is higher than NNI because the 
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retained principal components coefficients improve the scalability for the entire system. In 

contrast, the NNI framework could be generalized well to handle channelized random 

fields, which cannot be reflected by a covariance function and thus cannot be solved by 

traditional geostatistical approaches. In addition, one of the major computational 

advantages for NNI and NNPCI is that the training data can be generated by independent 

forward model simulations that can be done efficiently using parallel computing. 

In CHAPTER 5, we develop a Variational Bayesian Neural Inverse (VBNI) on full 

dimensions and Variational Bayesian Neural Principal Component Inverse (VBNPCI) 

framework on retained principal components to handle the uncertainty estimates of 

hydraulic tomography in heterogeneous hydraulic conductivity fields. This proposed 

approach is composed of NNI or NNPCI developed in CHAPTER 4 and Bayesian theorem, 

and provide uncertainty analysis without jeopardizing the entire trend of the field. The 

system behaves more stably and consistently on varying spatial and temporal scales. 

Multiple numerical experiments were conducted on fields with different patterns and 

heterogeneous hydraulic characteristics. The main characteristics for each field was well 

captured with minor difference in details. 

In CHAPTER 6, the performance of NNPCI is investigated by a field data case. The 

dataset is collected by conducting a pumping test and a water inrush incident in a coalmine 

site. The proposed approach inverts the field with alleviated computational cost, while 

simultaneously identifies the dominant patterns of hydraulic conductivity and storage 

coefficient in the studied area. The uncovered spatial patterns are aligned with what has 

been found by other researchers (Mao et al., 2018), and contribute to future exploration 

operation of this coalmine field. 
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7.2 Future Research Recommendations 

(1) Uncertainty of mean and spatial covariance for NNPCI and DNN 

Our NNPCI assumes that the mean and spatial covariance are known. Research is 

needed to account for the uncertainties from these parameters. For example, GA and RGA 

methods can use iterative procedures to gradually correct the spatial covariance. For neural 

network models, one possible solution is to include these parameters as the inputs, i.e., part 

of the training data, to the neural network models and develop new structures that can 

reflect their impacts. We have conducted some preliminary work in this area, and will 

continue to work on it. With uncertainties of mean and spatial covariance included in the 

machine learning, a new advanced model, DNN, is a worthwhile strategy to explore in the 

future. 

(2) New applications of developed models 

Most of our applications are hydraulic tomography because of its effectiveness in 

aquifer characterization. Our proposed approaches have the potential to be extended to 

other inversion applications such as seismic wave inversion for earthquake researcher and 

tracer data inversion.  

(3) New machine learning algorithms 

With the fast development of machine learning algorithms, we will continue to 

develop inverse modeling by incorporating the state-of-art machine learning algorithms. 

For example, we can develop Generative Adversarial Networks (GAN)-based algorithm to 
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create high quality complex field, generalize to 3D reproduction, and finally support the 

inverse modeling development in hydrogeology area. 

(4) Physics-informed neural network (PINN) 

In recent years, PINN has been proposed for inverse modeling. PINN includes the 

governing equations, boundary conditions, and others in the objective function to optimize. 

Thus, PINN can learn the actual spatially distributed solutions, while we only establish the 

relationships between the measurements and the underlying parameter field. It is worth 

exploring the potential to integrate our models with PINN.  
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