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SUMMARY

The main objective of this thesis is to provide a framework for, and proof of concept of,

collaborative online active learning in vehicular networks. Another objective is to advance

the state of the art in simulation-based evaluation and validation of connected intelligent

vehicle applications.

With advancements in machine learning and artificial intelligence, connected autonomous

vehicles (CAVs) have begun to migrate from laboratory development and testing conditions

to driving on public roads. Their deployment in our environmental landscape offers poten-

tial for decreases in road accidents and traffic congestion, as well as improved mobility in

overcrowded cities. Although common driving scenarios can be relatively easily solved

with classic perception, path planning, and motion control methods, the remaining un-

solved scenarios are corner cases in which traditional methods fail. These unsolved cases

are the keys to deploying CAVs safely on the road, but they require an enormous amount of

data collection and high-quality human annotation, which are very cost-ineffective consid-

ering the ever-changing real-world scenarios and highly diverse road/weather conditions.

Additionally, evaluating and testing applications for CAVs in real testbeds are extremely ex-

pensive, as obvious failures like crashes tend to be rare events and can hardly be captured

through predefined test scenarios. Therefore, realistic simulation tools with the benefit of

lower cost as well as generating reproducible experiment results are needed to complement

the real testbeds in validating applications for CAVs.

To address the above challenges, we propose a new collaborative distributed online ac-

tive learning framework in vehicular networks supporting future CAVs. Four main works

are summarized as follows. First, as the success of collaboration among vehicles heav-

ily relies on the information exchange among vehicles, a novel byzantine fault-tolerant

distributed consensus framework is proposed to secure critical information that is dissem-

inated among nearby vehicles. Second, we present a novel framework for task-oriented

xvi



group formation, which allows computation tasks to be computed distributedly through

collaboration among nearby vehicles to release the burden of offloading all data and com-

putation tasks to remote clouds. Third, a new online active learning method is proposed to

improve model accuracy without the support of human labelers as well as a remote central-

ized cloud, which allows groups of vehicles to cooperatively and actively learn with local

data. Fourth, to enable the simulation study of our proposed collaborative distributed online

active learning framework in vehicular networks and other CAVs algorithms/applications,

we propose and build an integrated simulation environment, which integrates 3D scenar-

ios, traffic/mobility, and inter-vehicle communication by synthesizing three existing open-

sourced simulation tools.
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CHAPTER 1

INTRODUCTION

With the rapid development of hardware devices such as LiDARs, depth-cameras and re-

lated technologies such as artificial intelligence (AI) as well as machine Learning (ML),

it is now feasible for connected and autonomous vehicles (CAVs) to move to the next-

level of achieving accurate localization, high-level path planning, behavior arbitration, and

potentially supporting emerging applications such as real-time video streaming, virtual re-

ality, and augmented reality in future CAVs models. However, current learning methods

are mainly based on supervised and centralized training paradigms. Though such learning

style has demonstrated its great potentials, its accuracy heavily relies on the quantity and

quality of data sets and data annotation. Obviously, collecting such large data sets includ-

ing all possible scenarios as well as corner cases along with high-quality human labels has

many challenges. Therefore, new paradigms of learning styles such as online learning,

active learning, etc., which can reduce the need of data collection/human annotation and

improving learning efficiency are becoming a necessity [1, 2, 3].

1.1 Motivation and Research Objectives

The first priority of designing a vehicle must be safety, and there are no exceptions for

CAVs. Therefore, as machine/deep learning become the backbone of CAVs system, higher

detection and prediction accuracy are required than in other machine/deep learning inten-

sive industries, e.g. internet service recommendation, advertisement, translator, etc. These

systems are expected to operate flawlessly irrespective of different visibility, weather con-

ditions, road surface quality, and even in the face of emergencies. In order to achieve the

goal, large amount of data needs to be captured, transported from the vehicles to the re-

mote data clouds, stored, analyzed, and properly processed then be able to used for training

1



models. As mentioned previously that supervised learning algorithms remain the dominant

learning paradigm in the automotive industry, thus high-quality data annotation are also

needed. Moreover, if a segmentation training task, unlike classification tasks, is needed,

then segmenting (labeling an image pixel by pixel) pedestrians, cars, lanes, and other en-

tities will become a significant bottleneck if the data annotation team is not adequately

sized.

Therefore, it is clear that the effectiveness of current machine learning systems is di-

rectly tied to the availability and quality of training data. Having a large quantity of high-

quality data will be necessary for algorithms to achieve a high accuracy. Nonetheless, the

daily data recorded by an autonomous vehicle (typically equipped with 10 sensors/per ve-

hicle as in KITTI standard [4]) can go up to the order of petabytes, posing challenges on

the parallelization of the training procedure, as well as on the storage infrastructure, and

not to say the annotation generation. As a matter of fact, vehicles can never encounter all

complex traffic scenarios, where there are too many factors to enumerate and local storage

is limited. More importantly, an autonomous vehicle should be able to adapt to different en-

vironments like leaving from suburban to urban area, change from sunny to rainy weather,

etc. Thus, fast model updates and adaptability to new environments are also required. In

other words, though, in general, more data is needed, it is of great significance to obtain a

fuller coverage of different complex scenarios, instead of simple repetitive cases.

Considering the above limitations, an online active learning system is required before

CAVs’ great potentials can be realized. First, to release the burden of heavy data collection,

learning should shift from offline to online. With high volume data, it is often infeasible

to read-in/transfer all data at once. Since online learning can update its model using only

the newest data points, the system does not need to store a large amount of data, which is

ideal for vehicles with limited memory. Second, by processing only a small chunk of data

at a time, such learning method keeps the computational complexity of each update small.

It makes it feasible for a vehicle to update its model distributedly without a remote server,

2



thus saving the channel bandwidth for other needed applications. Third, as active learning

allows a vehicle to choose the data from which it learns, a vehicle will only need to learn a

piece of data which it is not capable of doing, and saving both computational and storage

resources. Moreover, online active learning can gradually discount the importance of past

data without a supervisor, where the model automatically adapts to changes in the dataset,

which is especially useful for dealing with changes to the environment encountered by a

vehicle.

However, despite the conceptual appeal, several challenges are posed in the vehicular

network environment. First, there are not labelers in a vehicular network that can generate

valid labels for data captured at run time, where collaboration among vehicles becomes in-

evitable, as a single vehicle with limited view and information can hardly obtain qualified

labels. Second, vehicles are moving fast, where the network topology is transient and un-

reliable, making the cooperation among vehicles very challenging. Though online learning

is designed for fast convergence, compared with the ever-changing vehicular topology, it is

not guaranteed that neighboring vehicles can stay together long enough before their coop-

erative tasks are completed. Third, as information and data sharing are unavoidable, critical

data reliability and verification of actual proximity to target event is extremely important

to training quality as online models can become unstable or corrupted due to contaminated

data.

Therefore, a collaborative online active learning framework is needed. Our focus of

this work is on the framework design and proof-of-concept analysis of the realization of

this learning paradigm in the vehicular network environment. The objective of this thesis

is to address the challenges therein and establish the fundamentals of the collaborative on-

line active learning framework in vehicular network for future connected and autonomous

vehicles.

3



1.2 Contributions

The primary contributions of this thesis are summarized as follows:

• The first contribution (Chapter 3) is that we propose the concept of Proof-of-Eligibility

Challenge, which proves vehicles’ actual presence to a claimed event such as an

accident at an intersection, and we designed a Byzantine-fault-tolerant consensus

algorithm for connected vehicles (BFCV) to ensure validity of event reports dissem-

inated in the network, without requiring privileged members, leader election, nor

trusted shared key distribution. Consider an example scenario where a vehicle is try-

ing to improve its accident detection through captured images and is collecting data

to improve its model accuracy. In a vehicular network without critical information

validation scheme like BFCV, a vehicle might believe another vehicle’s false warning

about an occurrence of an accident, falsely consider that its captured data has indica-

tors of an accident, and update its accident model accordingly. This will not only add

fluctuations to existing model, but also affect model accuracy negatively. To verify

the effectiveness of this approach, we implemented a BFCV prototype and simulated

it in a realistic environment built on top of Veins, SUMO and OMNet++. Evaluation

results show that BFCV provides fast and secure consensus satisfying both safety

and liveness requirements.

• The second contribution (Chapter 4) is a framework to address task-oriented group

formation, based on the probability of successful task completion. Once the reliabil-

ity of disseminated information can be verified, a good task-oriented group formation

scheme among nearby vehicles is critical for enabling vehicles’ capability for online

active learning. It not only eliminates the high latency caused by communicating

with remote servers, but also improves quality of service as aggregating nearby ve-

hicles’ diverse views can actually improve the results of the learning tasks. We first

discovered that the probability of cooperative task completion is primarily dependent
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on two random variables: 1) stay time – the length of time that a group of vehi-

cles that are cooperating stay in communication range of each other; and 2) task

completion time – the length of time required for the task to be completed by the

group of vehicles. In order for a task to be successfully completed by a group, the

task completion time should be shorter than the stay time. However, in practice, it

is not possible to know the exact probability distributions of the stay time and task

completion time of a group. Thus, we proposed and evaluated a heuristic two-stage

algorithm that performs task-oriented group formation for cooperative computations.

The algorithm maximizes the size of groups in order to produce the best cooperative

result while ensuring a specified probability of task completion. Extensive evaluation

results show that our algorithm achieves high task completion rates and good group

sizes across a wide range of traffic scenarios.

• The third contribution (Chapter 5) is that we propose a collaborative online active

framework realizing the benefits discussed above. To replace human labelers, we

present a collaborative online annotation algorithm, which replaces human annota-

tion by synthesizing the predictions generated by neighboring vehicles’ local models

and correlated multi-views. As a result, data annotation and model updates can be

completed locally without support of a centralized server. To facilitate label genera-

tion and improve label accuracy, a multi-view prediction transfer scheme is designed

to align different views from multiple vehicles via leveraging sensor data fusion.

Besides, a data selection scheme that accounts for data informativeness, cross-view

diversity, and the accuracy of the current model to save local computational resources

by selecting the specific instances that have the best chance to improve model perfor-

mance is proposed. An implementation of the framework is provided and extensive

evaluation are conducted to demonstrate the effectiveness of the approach.

• The fourth contribution (Chapter 6) is that we present a co-simulation framework
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(Sim2Scale) to develop, simulate, and evaluate algorithms and methodologies for

collaborative computation tasks, which enables simulation of traffic, communication

and 3D environment in connected and autonomous vehicles. Both Python script and

QT GUI interfaces are provided for users with less familiarity with existing simula-

tors to quickly and easily build and validate their ideas. Moreover, a collaborative

active learning example application is presented, which can be extended to other

cooperative or non-cooperative tasks with modest effort. 1

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief introduc-

tion on the connected and autonomous vehicle environment, the information security in the

vehicular network, review of the state of the art machine learning as well as AI technol-

ogy, and corresponding test and validation tools. Then, in Chapter 3, a novel byzantine

fault-tolerant distributed consensus framework is proposed to secure critical information

exchanged among vehicles. In Chapter 4, the problem of forming a task-oriented group

which can achieve both quality and quantity of task completion is addressed. A new online

active learning method is presented in Chapter 5 to ease the burden of human labeler and

reliance of remote data centers. Moreover, in Chapter 6, we propose and build an integrated

simulation tool, which integrates 3D scenarios, traffic/mobility, and inter-vehicle commu-

nication by synthesizing three existing open-sourced simulators. Finally, in Chapter 7, our

conclusion and future works are discussed.

1This work, Sim2Scale: A Co-Simulation Framework for Developing and Evaluating Algorithms for Con-
nected and Autonomous Vehicles, Georgia Tech Technical Report (to be submitted as a conference publica-
tion. The entire Sim2Scale framework and the collaborative active learning example application will be
open-source and freely available to the research community after paper submission.).
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CHAPTER 2

BACKGROUND AND PRELIMINARIES

Connected and autonomous vehicles (CAVs), namely, are the combination of connectivity

and automated technologies to assist or replace humans in the task of driving. This can be

realized through a combination of advanced sensor technology, on-board or remote com-

puting capabilities, GPS and telecommunications systems, etc.. Therefore, in this chapter,

we will introduce the preliminary knowledge of the connectivity of vehicles – vehicular

network, review the current status of the automated technologies, especially in artificial

intelligence and machine learning, and the test as well as validation of the CAVs system.

2.1 Overview of Vehicular Networks

The concept of “Connected Vehicle (CV)”, was first brought up in 1996 by GM work-

ing with Motorola to initiate voice calls to emergency responders in the case of accidents

when airbags were deployed. Though without a formal definition, “Connected Vehicle

System” (as shown in Figure 2.1) nowadays is a network of smart vehicles and infrastruc-

ture/edge devices (for example RSUs), which are equipped with powerful multi-functional

sensor sets, processors, memory and wireless communication devices, communicating with

each other to warn of safety alerts, provide smarter navigation, improve transportation effi-

ciency, etc. To date, various communication technologies and smart applications have been

studied to realize the “fantasy” on roads. However, as the benefits grow, new challenges,

e.g., information security, also emerge. Therefore, in this section, we will go through the

preliminaries and some research results to provide an overview of the vehicular network

environment.
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Figure 2.1: Connected vehicle system and emerging vehicular applications [5]

2.1.1 The Connectivity of Vehicles

One possible way of achieving inter-vehicle communication is through Dedicated Short-

Range Communications (DSRC), for which The Department of Transportation (DOT) is

paving its way to deployment [6, 7]. DSRC is designed for Vehicle to Vehicle (V2V)

and Vehicle to Infrastructure (V2I) communication, which allows a vehicle to broadcast

its position, speed, acceleration, moving direction, etc. in Basic Safety Message (BSM).

It also supports emergency messages like collision or congestion report through multi-hop

broadcast. Besides the V2V/V2I communication, DSRC can also be applied to road-side

units (RSUs), pedestrians, bicycles, and other devices with a wireless capability. Inter-

changeably, the combination of V2V and V2I is referred to as vehicle-to-everything (V2X)

or wireless access in vehicular environments (WAVE) for the IEEE portion. The connec-

tivity provides appealing advantages to various applications such as emergency warning,

cooperative adaptive cruise control, and intersection management without traffic lights.

This technology has been standardized and field-tested by major car companies [6, 7].

Announcements [8] have been made about deploying DSRC in US market from 2021 by

Toyota and in Europe starting from 2019 by Volkswagen. General Motor [9] has already

introduced DSRC in Cadillac back in 2017, which can handle 1000 messages per second
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from vehicles up to nearly 1000 feet away.

Cellular Vehicle to Everything (C-V2X) [10], developed in the 3rd Generation Partner-

ship Project (3GPP), is another connected vehicle technology considered as an alternative

to DSRC. Though no C-V2X products are available today and are far from reaching the ma-

turity and security levels needed for critical safety systems, Ford announced plans to adopt

C-V2X early this year. C-V2X appears to be more ambitious and have bigger potentials

that supports not only direct communications (V2V, V2I, V2P, etc.) that DSRC adopts, but

also supports network communications, in which C-V2X employs the conventional mobile

network to enable the vehicle to receive information about road conditions and traffic in the

area, but it is far more costly and complex, which rooted from base-station implementation.

Besides, as the emerging 5G millimeter-wave (mmWave) technology can provide rich

spectrum resources to support the timely transmission of large amounts of data, it at-

tracts recent research attentions in vehicular networks. Consider current smart vehicles are

equipped with large number of sensors generating huge data set in fly, expanding the bene-

fit of mmWave to vehicle-to-vehicle propagation channels is of great importance. Though

discussion and research works as in [11, 12] are appearing, it is still at a very early stage of

exploration.

In summary, it is still at an early stage of deciding DSRC and C-V2X, or even other new

technologies, connected Vehicles is an unavoidable trend attracting significant attention and

can drastically reduce road fatalities, improve traffic efficiency, and enable vehicle automa-

tion. It is important for related research work to not limit with only one communication

technology.

2.1.2 The Need for Group Formation in Vehicular Networks

Thanks to the advancing communication technology in the vehicular network, immersive

emerging applications such as advanced driver assistants, safety improvement, intelligent

traffic lights, and autonomous driving that are promising to improve the road safety and
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enhance the traffic efficiency. However, these applications have heavy computational re-

quirements [13] and cannot be offloaded to remote clouds due to delay and bandwidth

constraints [14]. The computational requirements of many potentially useful applications

of this type also exceed the capacity of individual vehicles [15]. Thus, computational task

offloading at the edge is essential for intelligent networked vehicles to reach their full poten-

tial. The literature in mobile edge computing (MEC) [16, 17, 18], vehicular fog computing

(VFC) [13, 19, 20, 21], and vehicular cloud computing (VCC) [14, 22] has widely stud-

ied the problem of task offloading including aspects such as task scheduling [23], resource

allocation [24], and computation complexity [25]. However, this prior work focuses pri-

marily on one-to-one task offloading and also relies on infrastructure support in the form

of edge servers and/or roadside units. One-to-many task assignment without infrastructure

support is neglected.

Clustering algorithms provide one possible approach to forming vehicular groups for

one-to-many task offloading. Clustering work in dynamic networks began with studies on

MANETs [26, 27]. Various clustering design goals, e.g. load balancing, cost of clustering,

speed of cluster formation, and real-time requirement [26] were achieved through single

or combined metrics of connectivity, mobility, power, maintenance cost, etc. [27]. As dis-

cussed in [28], MANETs and VANETs are different in many ways, especially in mobility

patterns, network topology, and communication link lifetime. With a goal of maximiz-

ing stability, clustering studies in VANET have considered mobility more thoroughly [29,

30]. However, these works do not factor in the characteristics of the tasks to be processed

when determining a good group of vehicles to cluster. Specifically, the goal of forming a

group is to complete certain tasks. Even if a formed group has the best stability, but not

able to complete the task well, then the formed group becomes useless and a waste of re-

source. However, if other types of groups are formed, though in a less stable way, and it

can complete the task well, then it still fulfill the goal of forming the group. Therefore, it

is important to design group formation schemes based on the task goal.
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Besides, in addressing task offloading for many cooperative computation applications

in vehicles, where the quality of the results increases with the number of participating

vehicles [31, 2], there is an interesting interplay between result quality and successful task

completion. This is because larger groups improve result quality but also reduce the group

stay time, which makes it less likely that the cooperative computation will complete while

the task group remains together. Therefore, neglecting the important relationship between

group stay time and task completion time could result in low task completion rate.

In summary, it is important for future clustering or group formation works to take task

characteristics, task completion quality and task completion rate into consideration and

make proper trade offs based on the design goals.

2.1.3 Information Security in Vehicular Networks

Each coin has two sides. As we are benefited by the smarter and more connected vehicular

network, the security of the flowing information and who to trust in the network becomes a

new challenge. Thus, in this section, we first review the existing approaches proposed for

information security in connected vehicles, then followed by a short discussion.

Node centric methods such as reputation systems [32, 33, 34, 35] are popular and have

been widely studied in the past. Such system inspect the past and present behavior of nodes

and use this to predict the future misbehavior. All methods falls into this category hold a

same assumption, such that the nodes who behave well in the past are more likely to behave

well in the future. However, smart adversaries may only initiate attacks at critical times,

which is a fundamental problem that reputation systems cannot handle.

As discussed in [36], data centric methods focus on analyzing transmitted data among

nodes and information verification. Vehicles that use local methods, e.g. [35, 37, 38],

verify information locally without relying on other vehicles’ cooperation. Though these

methods are light-weight, easy to scale and can tolerate intermittent communication, they

heavily rely on location information and have a limited view of what is happening on the
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road, which reduces their accuracy.

Other cooperative schemes, as surveyed in [36], are more accurate than local methods

with lower false positive and false negative rates. Nevertheless, they are more vulnerable

to packet loss/delay and the ratio of compromised to honest vehicles. Threshold-based vot-

ing has been adopted in PoR [39], DC [40] to filter false data that honest vehicles only

accept a report when they receive more than X signatures attesting to it. PoR improves the

efficiency of communication by using growth codes, but the performance is sensitive to a

preset threshold, while the DC method in [40] dynamically sets the threshold based on the

criticality and the density of the network. However, [40] assumes 1-D communication, de-

tection, and reaction, primarily limiting its use to highway scenarios. Moreover, threshold

voting does not provide true consensus, because each vehicle decides independently and,

therefore, different honest vehicles can reach different decisions.

Consensus can be another alternative path to secure information security in the vehic-

ular network. Broadly speaking, consensus is a process to reach agreement on data values

or decisions among a group of participants. Achieving consensus in a distributed system

is essential but challenging as a consensus algorithm should be resilient to node failures,

network disconnections, communication delays, and even malicious attacks. In general,

consensus algorithms leverage building blocks such as atomic commitment, group mem-

bership, and total order broadcast. Any node in the network can propose a value or an

opinion to the members of the consensus group. After some rounds of communication, all

non-faulty and non-compromised group members agree on a single consensus value.

True consensus algorithms satisfying termination, agreement, and validity properties

have been well studied in other contexts. Paxos[41] and Raft [42] are well known algo-

rithms to achieve consensus among unreliable nodes, but they do not address Byzantine

faults [43]. Moreover, they either require fixed network or are computationally expensive,

which make them impossible to be applied to connected vehicle system. Similarly, other

traditional byzantine agreement protocols, e.g. [44, 45, 46] , though address byzantine
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faults well, do not handle highly dynamic network connectivity such as occurs in vehicular

networks. In general, traditional consensus algorithms require heavy computation, frequent

message exchanges, and/or a fixed wired network, making them hard to be adapted to ve-

hicular networks. While efforts have been made to adapt traditional consensus algorithms

for dynamic and intermittent topologies in MANETs, e.g. [47, 48, 49, 50], none of these

efforts address both unreliable links and Byzantine faults.

The heated Blockchain (BC) technology, evolving to be widely used in Peer-to-Peer

(P2P) network which are similar to connected vehicles’ topology to provide security and

privacy, leverages a wide range of consensus models, such as Proof of Work (PoW) [51]

used in Bitcoin/Homestead Ethereum or Proof of Stake (PoS) [52] in Ethereum (Serenity).

Nonetheless, PoW achieves security in an untrusted environment but causes huge computa-

tion overhead. Though studies [53, 54, 55, 56, 57] has been made to adapt BC technology

to Internet of Things (IoT) system, yet the assumed model still partially relies on central-

ized cloud server and assumes no mobility of the nodes, thus making it not suitable for

vehicular network.

In short, although information security in vehicular networks has been previously stud-

ied, efficient collaborative methods that guarantee all healthy nodes make the same decision

have not been developed to date. Moreover, how to make sure that vehicles in the network

will believe opinions from only safely selected honest vehicles with enough knowledge of

the event is significant to filter out false information. To be specific, most prior approaches

allow each individual vehicle to make its own decision without achieving true consensus

among vehicles and cannot guarantee that vehicles in the network only accept evaluation

decisions from honest vehicle. It is important for future works to design consensus-based

measures that can achieve timely and efficient true consensus while supporting vehicles’

high mobility as well as intermittent connections.
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Figure 2.2: Level of driving automation [58]

2.2 Overview of Autonomous Vehicles

An autonomous vehicle, or self-driving car, is a vehicle which utilises a fully automated

driving system in order to allow the vehicle to respond to external conditions that a human

driver would manage. There are several types of autonomous vehicles, depending on their

level of automation. The Society of Automotive Engineers (SAE) defines 6 levels of driving

automation ranging from 0 (fully manual) to 5 (fully autonomous). These levels have been

adopted by the U.S. Department of Transportation, as illustrated in Figure 2.2.

Most vehicles on the road today are from Level 0: manually controlled to Level 3:

conditional automation, depends on the make and price. They still relies on human driver to

provide the ”dynamic driving” decision making, although there may be smart systems like

advanced driver assistance system (ADAS) and autopilot system in place to help the driver.

Such systems are only for assistance, and, technically, they ”do not drive”. However, in

the research works or media, when we say autonomous vehicles, we are referring to Level

5: full automation vehicles, which do not require human attention, where the “dynamic

14



driving task” is eliminated from human driver. Level 5 cars will be the true self-driving

car, which will be free from geo-fencing and able to go anywhere and do anything like

experienced human drivers. Though such fully automated cars are undergoing testing in

several test beds around the world, but none are yet available to the general public. We are

still at a very early research stage to level 5 cars.

Autonomous vehicles relies on two key components: 1) powerful sensor set, which

enables the vehicle to sense and perceive the world like a human driver; and 2) advanced

artificial intelligence (AI) and machine learning (ML) systems, which serve as the brain

enabling vehicles’ capability to understand what the sensor data means and how to react

like a human driver. Therefore, in this section, we first provide an overview about complex

sensors that a typical autonomous vehicle employs, then follow by a thorough literature

survey of machine/deep learning algorithms for autonomous vehicles. Note that we use

the terms artificial intelligence, machine learning, and deep learning interchangeably in

the following discussion. We consider that artificial intelligence applies machine learning,

deep learning and other techniques to solve actual problems.

2.2.1 How Autonomous Vehicles Sense the World

Autonomous vehicles would not live without sensors. They relies on complex sensor sets

to “see” and sense what is on the road, as well as to collect needed information needed

in order to make steering/driving decisions. The majority of today’s automotive manufac-

turers most commonly use the following three types of sensors in autonomous vehicles:

cameras, radars, and lidars, where

• Camera: as the mostly commonly seen device in daily life, various types of cameras,

e.g., video cameras, depth cameras, are install on autonomous vehicles in order to

see and interpret the objects just like human drivers do with their eyes. By equip-

ping cars with cameras at every angle, the vehicles are capable of maintaining a 360

degree view of the external environment, thus obtaining a holistic picture of the sur-
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rounding traffic conditions. By embedding advanced machine learning algorithms,

cameras is capable of not only capturing highly detailed and realistic images, but

also automatically detecting and recognizing objects. For example, these cameras

can capture/identify pedestrians, neighboring vehicles, buildings, traffic signs, lane

markings, etc. as they move. Nonetheless, these camera are still far from being suf-

ficient. Poor weather conditions such as fog, rain or snow can prevent cameras from

clearly capturing the obstacles on the road surface, which increases the likelihood of

accidents. Besides, there are often situations where the image resolution from the

equipped cameras simply aren’t good enough for a algorithms to make a good de-

cision about what the car should do. For instance, in situations where the colors of

objects are very similar to the background, a suspected pedestrian is only captured

by limited amount of pixels, or the contrast between them is low, the machine learn-

ing algorithms can fail. Currently, Tesla’s autopilot system is build based on camera

systems.

• Radar: with the full name as radio detection and ranging sensors, which sends out

radio waves that detect objects and gauge their distance as well as velocity in rela-

tion to the vehicle in real time. Typically, both short- (24 GHz) and long-range (77

GHz) radars are installed on the an autonomous vehicle and each of them has their

own functions. In general, short range radar is used to conduct blind spot monitoring,

provide the ideal lane-keeping assistance and parking aids, while the long range radar

sensors are used more for brake assistance and distance control. Unlike cameras, as

discussed above, radar is not affected by light and darkness and with the ability to

detect obstructions like glass. However, by using radars, today’s autonomous ve-

hicles can only correctly identify between 90% and 95% of pedestrians, which is

hardly enough to ensure safety on the road [59]. Moreover, radars cannot size an

object’s height information, since they can only scan horizontally. This will become

a problem when driving under bridges or road signs.
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• Lidar: with the full name as light detection and ranging sensor, works similar to

radar sensors. The only difference is that instead of using radio waves, lidars use

lasers . Apart from measuring the distances to various objects on the road, lidar al-

lows capturing 3D point cloud of the detected objects and mapping the surroundings.

Moreover, lidar can provide a much broader view of the surrounding environment,

for example, a full 360 degree map. In light of the advantages, various autonomous

vehicle provider, e.g., Toyota, Google, Uber, chose to apply lidar system in their

design. However, lidars are much more expensive than radars and cameras. It has

been estimated that the a lidar system required for an autonomous car can cost well

beyond $10,000, while the top sensor being used by Google and Uber costs up to

$80,000 [59], which is almost impossible for general use. Additionally, even with

the best lidar system, poor weather like snow and fog may still negatively affect the

system’s ability to correctly detect objects on road.

Therefore, as there are no one-fits-all sensors, there haven’t been a standard established

of what sensors to use and how many sensors should be used. Nevertheless, KITTI sensor

setup is a commonly used plan in research works. As proposed in KITTI standard [4],

a combination of different sensors are used. 10 sensors are installed on top of a vehicle,

including 1 inertial navigation system (GPS/IMU), 1 lidar, 2 gray-scale cameras, 2 color

cameras, and 4 vari-focal lenses. The setup is shown in Figure 2.3, and a real life example

setup on a Volkswagen Passat B6 is shown in Figure 2.4.

Moreover, such sensor set is only build for a vehicle to sense the world. Other sen-

sors/equipment are needed for an autonomous car to communicate with the world, e.g.,

nearby vehicles, road-side units, smart traffic light, remote data centers, and so on. By

collecting information with a vehicle’s own sensor set and exchanging the collected infor-

mation through V2V, V2I, V2X communication (refer to Section 2.1.1 for details) with the

world, the vehicle is able to sense the actual path ahead, traffic jams, obstacles on the road

surface, pedestrians, etc..
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Figure 2.3: KITTI sensors setup of an autonomous vehicles [4]

2.2.2 Machine Learning: the Backbone of Autonomous Vehicles

Once an autonomous car can correctly sense the world, how to process the collected infor-

mation and make proper decision based on it becomes a challenge. In the past 10 years, the

advancement of machine learning has truly stimulated the development and deployment of

autonomous vehicles in the transportation industry. Fueled by big data from various sens-

ing devices and advanced computing resources, machine learning has become the backbone

of AVs for perceiving the surrounding environment and making appropriate decision. To

achieve goal of full automation (i.e., level 5 self-driving), extensive research efforts have

been made in the field of machine learning and deep learning algorithms to making the

vehicle smarter.

This section surveys the research works on advanced learning techniques to optimize

learning based applications in autonomous vehicles, which directly affects the topic of this

thesis work. We first give a short overview of machine learning technologies in vehicular

network, and summarize the standardized works in related advanced learning methodolo-

gies. Then we review the research on general vehicular network utilizing online and active
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Figure 2.4: Connected vehicle system and emerging vehicular applications [4]
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learning technologies.

The Advances of Machine Learning

Machine learning, which optimize performance by directly learning on the samples from

the targeted environment, has been widely used to solve conventionally challenging prob-

lems in automotive industry such as [60, 61, 62, 63, 64, 65], showing its strong potentials

in precision and adaptation. More recently, deep learning, as a sub-set of machine learning,

has dominated the model design in many engineering applications. In light of its appeal-

ing capability of self-picking features and supreme accuracy achieved when trained with

large amount of data, recent vehicular applications are taking advantages of deep learning

to boost the performance as well [66, 67, 68, 63, 64].

Machine learning techniques, in general, is applied to vehicular applications in two

major ways: 1) for vehicle purpose - applications includes scene perception, localization,

path planning, behavior arbitration, etc. are all used to improve the driving capability of an

ego vehicle [3]; 2) for infrastructure purpose - applications such as traffic flow prediction,

network congestion control, load balancing, etc. are investigated to provide better vehicular

network connectivity and efficiency as surveyed in [1].

Nevertheless, it is not a panacea to all challenges. Naively applying existing machine-

learning methods to vehicles is expected to be insufficient due to their distinguishing char-

acteristics. First, conventional machine learning are done in batch mode, where a model is

trained with the entire data set at once then sent out to user for inference; however, many

real-wold scenarios are not like so. For instances, a vehicle’s trip time is measured when it

departs from source and until arrives at destination. The duration can affected by weather,

traffic condition, driving habits, etc. [69]. It is impractical to obtain a full data collection

and a one-fit-all super model.

Second, as most existing vehicular applications are supervised-based machine learning,

large data collection and high quality human annotations are taken as standard procedures.
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Nonetheless, as reported by [3], daily data recorded by an autonomous car can reach the

order of petabytes, not to mention the effort required for data labeling, storing and cleaning.

Accordingly, the real challenge hindering the development of machine learning in vehicular

network lies in the availability of training data and real-time computing constraints.

Thus, to meet the ever-increasing training data demand of various AV applications,

both academia and industry are pursuing new learning technologies beyond conventional

paradigms. Online learning [70] and active learning [71] have attracted big attention due

to its capability of training with sequential data and reduced label requirement, which is

considered as key enabling technologies in various fields such as speech recognition [72],

security [73], and we believe it will also bring significant benefits to AVs. In what follows,

the related works on advanced learning techniques are discussed, which involves online

learning and active learning.

Online Learning

As opposed to batch (offline) learning, online learning allows incremental model updates

with streaming data, which largely reduces re-training cost and adapts to new data-points

quickly as well as efficiently. Besides, online learning trains as data comes, which allevi-

ates the tension for data storage. Given these appealing nature, it has been widely deployed

on various machine learning based applications such as spam filtering [73], travel time pre-

diction [69], personalized recommendation systems [74], and etc.. As summarized in [75],

online learning techniques are often used for two purposes: 1) handle learning from large-

scale streaming data, where it is infeasible to train over the entire dataset, and, situations

where it is necessary for the model to dynamically adapt to new patterns in the dataset,

like travel time prediction of vehicles where data arrives periodically and the learner has

to adapt to new datapoints immediately before getting the next round [69]; 2) improve

efficiency and scalability of existing machine learning methodologies for existing batch

machine learning tasks where a whole dataset must be made available before the learning
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tasks, such as SVM algorithms [70].

However, though data in vehicular network usually comes sequentially and in large-

scale, where online learning appears to be a magic cure, yet, it remains a non-trivial task

due to the high volume and high velocity of vehicular network. Considering the data need

to be collected and processed scales from a single vehicle to vehicles moving on a highway

such as I-75 N in Atlanta, the order of the daily data may grow from 1015 bytes to 1021

bytes1. In this way, even newest 5G technology may not be able to support all vehicles

offloading learning tasks to servers, and local data processing cannot be avoided. Therefore,

local collaborative online training and high performance computing should be investigated

to tackle these challenges [75].

Active Learning

With the growing demand of learning with less labels, active learning, which can achieve

greater accuracy with fewer labeled training data is drawing attention in various fields such

as speech recognition [76], image processing [68], vehicle detection [77], malware detec-

tion [78], etc.. In active learning, the algorithm can interact with an oracle (e.g., a human

annotator, super-accurate existing models) by querying the label of a selected datapoint.

The labeled selected data are then treated as a ”representative”, where the model will con-

verge much faster on it, requiring less efforts of annotation. For instance, high quality

labels of speech utterances is extremely time consuming and hard to obtain, which requires

trained linguists to spend, e.g., about 400 times longer than the actual audio length to label

phonemes [79]. With an active learning approach, [76] reduce the requiring labels by 6

times while maintaining similar accuracy.

The main process of active learning is called query, where an representative data in-

stance is selected and asked for label. As surveyed by [80], active learning can be divided

into three settings, based on the query strategies: 1) membership-based, where a learner can

1The estimated count of vehicle pass through I75N stations is inferred based on annual average daily
traffic (AADT) recorded in 2019 (https://gdottrafficdata.drakewell.com/publicmultinodemap.asp)
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ask labels for any data instances; 2) stream-based, where data instances are sequentially

sampled and the learner decides whether to query the sampled instance based on certain

measures such as thresholding; and, 3) pool-based, which is similar to stream-based ap-

proach but it evaluates and decides query items once based on the entire collection instead

of one by one. Pool-based setting is widely used as in [76, 77, 68, 78], because it allows

learners to select the best suited queries given the knowledge of all samples. However,

stream based approach is more appropriate for distributed learners with limited memory

and computing capability like vehicles.

Given active learning aims at finding the minimum amount of labeled data to achieve a

certain performance, it has been considered as a promising approach to address the data and

efficiency challenges in vehicular network. However, sitting a human oracle to label sam-

pled data largely hinders practical deployment. Replacing oracle-based labeling with other

noisy label generation methods are anticipated to thrive for future autonomous vehicles.

Most existing noisy label generation methods have heavy memory and compute require-

ments, which is a problem for deployment in decentralized vehicular networks. Consider-

ing the unique environment that vehicles operate in, a light-weight and resource efficient

AL framework is necessary. To address this challenge for the classification task, Abdel-

latif, et al. proposed a cooperative pseudo label generation scheme and a data selection

scheme based on data quality as well as diversity [2]. However, their model accuracy met-

ric applied to label generation may be biased by the selected test set. Performing well on

one data set does not guarantee good performance on new data sets, especially for vehic-

ular applications, where different road scenarios are virtually unlimited. Moreover, data

freshness shows weaker indicator for image-based tasks. Other unique metrics in vehicular

networks should be considered. Li, et al. take advantage of the multi-view effect to address

the partial occlusion issue in vehicle detection [77]. Nevertheless, their set up is specific to

the detection problem and is not easily adapted for other tasks like the segmentation task,

and their approach also assumed human annotators for label generation.
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Online Active Learning for Vehicular Networks

As introduced in Section 2.2.1, autonomous vehicles are equipping with powerful sensors,

e.g. LiDARs, radars with different ranges, camera, ultrasonic sensors, speed sensors, etc.

Although, these provides wealthy, real-time, and easily attainable data sources for machine

learning, generating valid labels for such large scale data is very expensive. As high per-

formance embedded processors are landing in modern vehicles [81], active learning can

be leveraged to learn from these data with much reduced labeling effort. Previous works

in vehicular network, e.g. [77, 82, 83, 84, 85] uses active learning to train models with

less labeling costs. For example, [83] show that human oracle with selective sampling

can improve vehicle recognition accuracy with reduced labels, and with manually selected

query [85] is able to identify vehicles from images in the face of partial occlusions. How-

ever, human oracle is required for above works, which is rather unrealistic in real vehicular

network. Furthermore, as summarized in Section 2.2.2, re-training is very expensive and

unrealistic when data comes in sequence.

Other works, e.g. [86, 87, 2] is able to actively learn with sequential data by combining

online learning and active learning techniques. For instance, [86] proposed an online ac-

tive learning algorithm for frame-subset selection problem in driving videos to increase the

processing efficiency. By using a combination of multiple similarity criteria, the algorithm

actively maintain a set of key frames from either streaming or batch data and observe 100:4

video compression rate while not affecting the performance of downstream tasks. Gaussian

process regression approach is used in [87] to actively learn the vehicular communication

network dynamics (i.e. wireless channels and interference) in real-time, which signifi-

cantly improved the transmission reliability and minimized the age of information violation

probability—a key metric in ultra-reliable low-latency vehicle-to-vehicle communication.

Besides, this is a decentralized method, which adapts to the changing environment very

fast. Abdellatif et al. in [2] also proposed an online active learning framework to improve

the accuracy of vehicle classification, where no human oracle is used. It takes advantages
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of the V2V communication by asking neighboring vehicles to cooperatively decide pseudo

labels for captured data. Nonetheless, naive majority voting is used for deciding pseudo

labels, without considering other factors – initial model accuracy, view angle to the tar-

get, etc. Besides, it ignores the importance of communication stability with neighboring

vehicles, where participating vehicles may lose connections before the learning process

completes.

2.3 Evaluation and Validation of Applications for Connected and Autonomous Ve-

hicles

As mentioned at the beginning of this chapter, CAVs are indeed the combination connec-

tivity and automation. Without either component, the CAVs will not be powerful enough

to realize the level 5 fully automated goal. Despite the research advanced as discussed

in Section 2.1 and Section 2.2, how to properly evaluated the two main components of

CAVs is of the same importance as algorithm development. Considering both the module

development demand by car makers and safety requirement established by policymakers,

the CAVs’ communication module as well as automation functions must be extensively

evaluated both individually and synthetically prior to deployment. However, the evaluation

process for CAVs is challenging because obvious failures like crashes tend to be rare events

and CAVs with problems can slip through by passing predefined test scenarios. Thus, how

to identify problems and failures that will manifest in the real world becomes the main goal

for evaluation and validation approaches.

2.3.1 Test on Roads

One evaluation approach is based on naturalistic field operational tests, where prototype

CAVs are driven on roads by volunteers or test engineers [88]. Common driving scenarios

can be reproduced with thousands of miles driving on typical roads or real world test beds

such as Metropolitan Transportation Commission (MTC) [89] and Ann Arbor Connected
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Vehicle Test Environment (AACVTE) [90]. However, uncommon scenarios, e.g., weather

quickly changing from sunny to heavy rain or a sudden car collision 30 meters ahead, are

corner cases in which prototype CAVs may fail. These corner cases are the keys to safely

deploying CAVs in the real world but, unfortunately, cannot be easily reproduced through

the naturalistic field operational test approach.

2.3.2 Test through Simulators

To complement the naturalistic field test approach and reduce cost, realistic simulations are

essential. Existing simulators can be divided into three main categories based on the evalua-

tion purpose: 1) traffic and vehicle mobility, where either or both microscopic/macroscopic

vehicle mobility models are adopted to simulate different traffic scenarios in a given area

map [91, 92, 93, 94]; 2) vehicular network communication, in which V2X communi-

cation is simulated in detail accounting for aspects such as multi-channel operation and

noise/interference effects [95, 93, 96, 94, 97]; and 3) 3D environment with sensors, where

realistic landscape (including buildings, pedestrians, roads, etc.) is modeled to support the

holistic simulation of sensors used by CAVs, e.g. lidar, camera, and radar [98].

Nonetheless, though the existing simulators demonstrate superior performance in ful-

filling their individual design goals, no open-source simulation platform exists that com-

bines all three categories at the same time, which is required for many of the CAV ap-

plications discussed in at the beginning of Section 2.3. While InfoRich [99] presents a

co-simulation platform targeting vehicle energy consumption and includes simulation of

vehicle dynamics, sensors, and V2X communications, it is not based on fully open-source

libraries and is not well suited for adaptation to non-energy-related algorithm evaluations.

2.4 Chapter Summary

In this chapter, the basic background and preliminary knowledge related to connected and

autonomous vehicles are provided. The first section focuses on the overview of vehicular
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network, including the communication technologies and some of the important research

aspects of the connected environment. Second, we provide a general background about au-

tonomous vehicles, especially for its sensor sets, then survey the important related research

works of machine learning, which drives the thrive of vehicle automation. Last but not least

important, a short discussion of test and validation of applications for CAVs is provided to

complete the general background of connected and autonomous vehicles.
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CHAPTER 3

BFCV: BYZANTINE-TOLERANT DISTRIBUTED CONSENSUS FOR

CONNECTED VEHICLES

The growing connectivity and emerging applications in connected vehicles have tremen-

dous potential for advances in safety, navigation, traffic management and fuel efficiency,

while also posing new security challenges such as false information attacks. Without se-

curing the information exchanged in the network, applications relies on messages sharing

such as Advanced Driving Assistance System (ADAS), Cooperative Intelligent Transport

Systems (C-ITS) may not be able to work, or even cause accidents. As a result, this chap-

ter targets the problem of securing critical information that is disseminated among nearby

vehicles for safety and traffic efficiency purposes through distributed consensus.

3.1 Introduction

While a connected vehicle can be informed if an emergency vehicle is approaching far

away or a smart intersection can consider the estimated arrival times of connected vehicles

to schedule those vehicles and increase the intersection throughput, information security

becomes a paramount concern. Such vehicle inevitably make control decisions based on in-

formation from other vehicles and external sources. In this scenario, the vehicular network

is especially vulnerable to false information attacks. Fake messages can create problems

like longer time required to reach destination, more gas consumption than needed, traffic

jams, and even collisions. For instance, taking advantage of the connectivity, an attacker

may compromise vehicles to lie about its own vehicle’s position and speed, to make false

warnings about a non-existent accident thus leaving an empty street for itself to freely pass

through, or to report fake arriving time to a traffic signal control system causing conges-

tion/traffic jams or even to ease criminals’ getaways from crime scenes [100].
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To date, research in automotive security has addressed many different perspectives.

The goals include secure communication protocols integrated with existing standards and

protocols at the external network layer, Intrusion Detection Systems (IDSs) and firewalls

at the gateway layer, lightweight message authentication and encryption at the in-vehicular

network layer, and Hardware Security Modules (HSMs), secure boot, and secret key control

at the component layer.

Nevertheless, even with good security mechanisms at each of those layers, it is nec-

essary to address security at the application layer, especially for application information.

In this section, we address this issue through Byzantine-tolerant distributed consensus on

application information. Several example use cases include:

Dynamic maps: weather condition, parking availability, EV charging station availabil-

ity, etc. are all important information comprising a powerful dynamic map. Information

reported by a single device/vehicle is not complete and reliable.

Traffic alerts: to provide trust in traffic condition warnings such as collision, con-

gestion, and emergency vehicle(s) approaching, and to avoid inappropriate reactions, dis-

tributed consensus can be used to provide trusted alert dissemination.

Intersection management: the next-generation transportation system such as Intelli-

gent Traffic Signal System (I-SIG) relies on vehicles’ reported speed and location infor-

mation to estimate the queuing line, and assigns green/red light time as needed. However,

attacks [101] have been found to potentially cause serious problems.

Despite the conceptual appeal of this approach, realizing distributed consensus poses

many challenges in connected vehicle systems. One challenge is safety-critical operation

in the face of real-time constraint. For example, if an emergency vehicle needs to take

priority at an intersection, this information is only important when it is approaching the in-

tersection. After the vehicle passes, the information is no longer useful. However, forcing

consensus within a short period of time could lead to incorrect decisions that may make

the situation worse than without connected vehicle system. The second challenge is the
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high mobility and communication loss/delay, which could significantly affect the ability to

reach consensus among devices. The third major challenge is the lack of trust in connected

vehicle systems. Compromised vehicles with valid credentials will appear as trusted enti-

ties [102], which is a difficult situation to handle. Moreover, it is not necessary for com-

promised vehicles to always behave incorrectly. They may behave as healthy devices at

one time and act incorrectly at another time, thus making it hard to rely on reputational

trust. To address these challenges, we introduce a distributed consensus algorithm based

on Proof-of-Eligibility (PoE). To the best of our knowledge, this is the first work addressing

distributed consensus in the face of the challenges listed above.

3.2 A Motivating Example

In this section, we use dissemination of an accident alert as an example to illustrate how

our proposed PoE-based consensus algorithm tackles the information security problem in

connected vehicle systems. Figure 3.1 demonstrates a fake warning reported by compro-

mised vehicle K. Each vehicle is labeled with letters as its name. Vehicles in green and

yellow, representing different brands of vehicles, are honest nodes following the protocol

and vehicles in red representing compromised nodes are trying to attack. Without a cooper-

ative evaluation approach, a vehicle can only rely on its received data and local plausibility

check as discussed in [35, 103, 104, 105] to make local decisions. Vehicles that are not able

to ”see” the crossing, may believe the false alert and could potentially reroute and transmit

false information to further vehicles, if K is a compromised vehicle with valid credentials.

Our algorithm approaches this problem by using the concept of event reports, whose

content could be an unconditional lane shift, slowing speed/congestion, observation of

emergency vehicles, crashed vehicles, abnormal behaviors of neighboring vehicles, etc. In

order for a created event report to be accepted by other vehicles in the network, a consen-

sus group is formed with a group of eligible vehicles, who can solve a Proof-of-Eligibility

(PoE) puzzle, to cooperatively evaluate the report content and reach consensus on whether
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Figure 3.1: Example Scenario of a Fake Report

or not the report is true. Only after that, the true report will be broadcast with group mem-

bers’ signatures. Upon receiving the signed report, other vehicles will react accordingly

after verifying the attached signatures.

As depicted in Figure 3.2, after vehicle K broadcasts an event report about an accident

at crossing x, all vehicles within communication range (A-L) are able to receive the report.

They try to solve a PoE puzzle attached in the event report to obtain a shared secret key.

PoE is a set of consistency checks, which aims to prove that a vehicle is authentically rel-

evant and eligible to participate in the cooperative evaluation of a reported event. The PoE

puzzle is based on the local environment and can, therefore, only be solved by vehicles

that are within close range of the event. PoE lessens the difficulties and shortens the delay

of distributing shared keys among a temporarily formed group of moving vehicles. Let us

consider a worst case scenario that both compromised vehicles B and G are able to solve

the PoE puzzle and join the consensus group. During the consensus stage, compromised

vehicles send false opinions agreeing with the fake report that there is an accident at cross-

ing x while the honest vehicles dispute the report. Compromised vehicles B and G may
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Figure 3.2: Example Scenario of a Fake Report with BFCV (where vehicles B, G, and K
are compromised)

also drop the consensus message received from other members to affect the group evalua-

tion. However, as we will see later, with a minority of compromised vehicles participating,

false consensus can never be reached with the BFCV Algorithm. In most cases, the group

of honest vehicles will reach agreement that the report is false and disseminate a signed

message repudiating the report.

In the above, the BFCV Algorithm description has been simplified to briefly introduce

the general concept. A detailed algorithm description is provided in Section 3.4.

3.3 Problem Formulation

3.3.1 Assumptions

We assume active (engine-on) vehicles communicating with each other wirelessly. Vehi-

cles routinely exchange information and monitor the environment, following these four

steps: Detection – a vehicle detects new events (traffic condition, abnormal behavior, etc.)

by receiving data from on-board sensors and surrounding vehicles. Dissemination – if a

detected event is critical, a vehicle creates and broadcasts an event report to other nearby
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vehicles. Decision – upon receiving an event report, a vehicle evaluates the content of the

report and makes a decision to accept it or not. Reaction – if an event report is accepted, a

vehicle takes the corresponding action(s) such as to brake, accelerate, switch lanes, change

routes, disseminate the event report, etc.

We mainly focus on dissemination and decision stages, which are the cornerstones of

achieving reliable final reactions. Our goal is to identify potential security violations when

attackers have the ability to tamper with information in messages and to mitigate the impact

in a timely way. Before describing the threat and system models, we first state some as-

sumptions: (1) The distributed system is asynchronous (unbounded communication delays)

and we ensure the safety of our consensus protocol. However, liveness is not guaranteed

unless enough messages are received within a time upper bound. (2) An attacker may ex-

hibit compromised behavior at any point in time and remain benign at another time i.e.,

any vehicle in the network at time period [ti, ti+1] can be compromised, even if it is behav-

ing normally at time period [0, ti]. (3) We assume that adversaries have limited computing

power so that they cannot break the encryption and digital signatures. In other words, the

cryptographic algorithms adopted are computationally secure. (4) Vehicles have public key

certificates signed by trusted entities such as NHTSA [106] and/or vehicle manufacturers.

(5) Private keys cannot be obtained by an attacker without a physical attack. However, by

compromising a vehicle through software, an attacker can use an API to sign fake mes-

sages but does not know the actual key. This prevents remote attackers from stealing a

valid private key from one vehicle and using it within a different vehicle or device.

3.3.2 System Model

We consider a set of vehicles that communicate by sending messages. We assume an un-

reliable communication medium where messages can be lost or delayed. A vehicle cannot

receive other vehicles’ messages if they are outside of the communication range (e.g., 200–

300 meters for DSRC). Each vehicle can identify the sender of every message it receives
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by the sender’s unique public key.

We assume that consensus begins with a vehicle generating an event report about con-

ditions it observes on the road. The challenge, as expressed earlier, is for a set of vehicles

nearby the event, that were previously unknown to each other, to form a group and reach

consensus on whether the event report is accurate in a timely fashion despite the presence

of compromised vehicles in the event area. Each vehicle that is nearby the reported event

can form an opinion about whether the event report is accurate. We assume that non-

compromised vehicles can correctly determine the accuracy of a report most of the time

but occasionally a non-compromised vehicle might produce a wrong evaluation due to in-

accurate or ambiguous sensing. We refer to vehicles that are not compromised but produce

a wrong evaluation of an event report as incorrect. In this situation, it is useful for vehicles

to learn a group opinion of the report accuracy to verify that their local sensor values are

correct.

3.3.3 Threat and Fault Models

We are primarily concerned with attackers who compromise vehicles with valid credentials,

and exploit improper/incomplete authorization checks. We adopt a very general threat

model, where a compromised vehicle behaves arbitrarily (known as the Byzantine fault

model), i.e. it may arbitrarily deviate from the protocol execution and can influence the

data sent to communication channel. Through compromised software running on a vehicle,

an attacker can broadcast any random or customized false data to the network, but cannot

modify others’ signed messages or otherwise interfere with others’ message creation. In

the most basic form, after successfully compromising a vehicle, typical exploits include

withholding messages and sending out false data or irregular messages to others. Such

attacks are successful when attackers can obtain compromised vehicles’ valid certificates

and credentials. Otherwise, the sent information cannot pass the authentication checks.

We assume that the number of compromised or incorrect vehicles within a small area is
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limited. To be specific, we assume that f < umin/3, where f is the number of vehicles in

an area that are compromised or incorrect and umin is a configurable parameter. Later, we

will discuss how PoE puzzles can be used to limit participation in the consensus procedure

to only those vehicles that are within the vicinity of the reported event area. This helps to

limit the number of compromised vehicles that can influence the consensus, allowing f and

umin to remain fairly small. This, in turn, improves the overall efficiency of the consensus

operation and allows consensus to be completed faster, as compared to larger consensus

groups that would be required for higher values of f . This also allows the total number of

compromised vehicles in the network, beyond the vicinity of the reported event area, to be

much larger than f .

Sybil attacks, first introduced in [107], are also a critical problem. An attacker launches

a Sybil attack by creating multiple non-existent vehicles with valid identities spreading

false information in the network. Various Sybil detection methods have been studied in the

past, for example based on: directional antennas [108], received signal strength indicator

(RSSI), fingerprinting [109], and interference-aware RSSI-based localization [110]. We

assume that Sybil attacks are prevented by existing methods and so we do not consider

them herein.

We also assume that there is no large-scale prearranged collusion between compro-

mised vehicles to share answers to PoE puzzles. So, for example, a compromised vehicle

does not predetermine PoE puzzles and distribute the answers to large numbers of other

compromised vehicles. However, within a consensus group, compromised vehicles can

collude arbitrarily (the Byzantine fault model, including collusion, applies within a con-

sensus group).

3.3.4 Consensus Properties

Let Π represent a set of vehicles running a consensus algorithm on some event report R and

let vi be some vehicle in Π. Let x denote the correct evaluation result of R and x̄ denote
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the opposite (incorrect) evaluation result. Finally, let Six = {vj : vi has heardx from vj},

let Six̄ = {vj : vi has heard x̄ from vj}, and let Si = Six ∪ Six̄. Six contains the vehicles

from which vi has an evaluation result of x, Six̄ contains the vehicles from which vi has an

evaluation result of x̄, and Si contains the vehicles that vi knows about.

1. False Consensus occurs when the following condition holds:

FC: ∃Q ⊆ Π such that |Q| > 2umin

3
and ∀vi ∈ Q, |Six̄| > 2|Si|

3
and |Si| ≥ umin and

∀vi, vj ∈ Q, i ̸= j, Si = Sj .

Condition FC occurs when there is a group of vehicles of size greater than 2umin

3
that

all have heard the wrong evaluation result from more than 2/3 of the vehicles they

have heard from and that also agree on the group membership at the end of algorithm

execution. If this situation occurs with our BFCV algorithm presented later, a false

event report will be disseminated. It is important to prevent this outcome.

2. Correct Consensus occurs when Condition FC does not hold and the following con-

dition holds:

CC: ∃Q ⊆ Π such that |Q| > 2umin

3
and ∀vi ∈ Q, |Six| > 2|Si|

3
and |Si| ≥ umin and

∀vi, vj ∈ Q, i ̸= j, Si = Sj .

Condition CC occurs when Condition FC does not occur and there is a group of

vehicles of size greater than 2umin

3
that all have heard the wrong evaluation result

from more than 2/3 of the vehicles they have heard from and that also agree on the

group membership at the end of algorithm execution. Note that if there are two

large enough groups formed where one group agrees on the incorrect result and the

other group agrees on the correct result, we still consider this to be false consensus.

So, correct consensus is a large enough group agreeing on the correct result and the
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membership while no other large enough group agrees on the incorrect result. This

is the ideal outcome for a protocol.

3. No Consensus occurs when Q ⊆ Π, satisfying Condition CC or Condition FC.

This describes the situation where there is no consensus reached on either the evalu-

ation result or the group membership or both at the end of algorithm execution. This

situation would apply to algorithms that need a result within a certain time bound

and terminate algorithm execution if it takes too long without reaching consensus.

No consensus is preferable to false consensus but is still an outcome we would like

to minimize. If the rate of no consensus is too high, valid event reports will not reach

vehicles in a timely way, and this could potentially cause systemic problems.

3.4 BFCV Algorithm

3.4.1 Design Overview

BFCV has three features that differ from existing consensus algorithms that are targeted at

connected vehicle systems.

First, it provides fast, reliable consensus group formation and shared key distribution

without privileged members. The algorithm does not require trusted set up or leader elec-

tion and only relies on very basic cryptographic assumptions. Each vehicle running on

streets is considered as an untrusted entity equipped with valid credentials and some shares

of knowledge describing the environment (traffic, weather, pedestrian, road-signs, etc.).

Based on the assumption that at run time, the system does not know which entity is trust-

worthy and which is not, we do not follow the leader-election paradigm to construct eval-

uation groups. Instead, we use a set of challenge problems to perform plausibility checks,

only allowing entities with sufficient proof of related knowledge and presence nearby the

event location to join the cooperative evaluation.

Second, in most cases, BFCV guarantees all participating healthy vehicles reach agree-
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ment on the information being disseminated. In cases where the number of healthy vehicles

is small or there is a very high rate of message loss, no consensus will be reached but false

consensus will not occur (see Section 3.4.6 for a proof sketch).

Third, BFCV is agnostic to wireless communication technology as long as it supports

inter-vehicle communication and underlying applications. No additional functionality such

as remote cloud for computing, secure channel for message exchange, or trusted entities is

required – it is fully distributed and self-maintained.

We next present the BFCV algorithm, which is divided into four phases: Report Gener-

ation, Proof-of-Eligibility, Evaluation Group Consensus and Report Verification. Notations

used in the following sections are defined in Table 3.1.

3.4.2 Event Report Generation

An event report denoted as RE , where

RE = (RID,E,EType, Certi, Q,H(A), tR, Tq) (3.1)

is generated and broadcast when a vehicle detects an unreported new event, where RID is

the report ID, E is the event content, including location and estimated event life time based

on criticalness, EType is the event type, Certi is the vehicle’s certificate, Q is the PoE

challenge problem,H(A) is the hash of computed answers to Q generated by the reporting

vehicle, tR is the event report time, and Tq is the time bound allowed for solving puzzle Q.

In real life scenarios, it is rare that within 200-300 meters, multiple critical events of

the same type (such as rear-end collision, vehicle roll-over, etc.) exist. To improve the sys-

tem efficiency and discourage compromised vehicles from flooding the network with fake

reports, we allow only one event report for one EType of event to be created and broadcast

at a time. Once a report is broadcast, the reporter can neither join a different consensus

group of the same event type, nor create another event report of the same type until the
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Table 3.1: Notation Table

vi Vehicle i
K+

i , K−
i Public and private key of vi

Certi Certificate of vi
Di Perception data of vi

Si
Hash table that records consensus status
of vi for different types of event reports

Pi Event look-up table of vi
Fi Set of PoE challenge problem functions of vi
E An event

EID An event’s ID
EType An event’s type (collision, congestion, etc.)

R An event report
RID An event report’s ID
Q PoE challenge problems
A Event Reporters’ Answers to Q
H(A) Hash of A
tR Time stamp of report creation time
X Signature
Tc Time bound for reaching consensus
Tq Time bound for solving Q, Tq < Tc

umin Minimum consensus group size
ui Membership list of vi
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time bound of the consensus protocol for its current report is reached. If a vehicle does

not follow the protocol and broadcasts a new event report before finishing the consensus

time period, the inconsistency can be easily caught by other honest vehicles when they are

solving the PoE challenge.

3.4.3 The Concept of Proof-of-Eligibility

Before an event report can be accepted by other vehicles, it needs a valid group of vehicles

to approve it. How vehicles are selected to form a valid evaluation group is the key to our

proposed algorithm. We introduce the the concept of Proof-of-Eligibility to address this.

PoE challenge is powerful, but very application specific. In general, there is a large

challenge problem pool pre-installed in vehicles. Let Φ denote the pool stored in vehicles,

Q denote a selected challenge problem set from Φ, and function f denote a single problem

in Q. Every time an event report is created, a Q will be automatically selected from Φ

based on the event type, the event reporter’s sensor data, the event time, and a randomly

generated nonce. Each set Q must consist of problems of the following types:

View - this type of problem proves the vehicle’s proximity to the target position and

whether it has a potential view of the event. For instance, even if two vehicles are geo-

graphically close in distance, the two vehicles might be on two sides of a big building.

Then if an accident happens on one side A, the vehicle on the other side is very unlikely to

detect it. Thus, we consider that the vehicle on the other side has a close enough position

but does not have a qualified view. Problems in this category use features such as position,

speed, acceleration, speed limit, moving direction, colors of a nearby building, number of

stop signs, etc.

Knowledge - this type of problem proves whether the vehicle has a certain amount of

knowledge about the event of interest. For example, if the vehicle itself is at street Sa and

the event is about whether the green vehicle moving on street Sa is compromised. If the

vehicle does not even observe a green vehicle on Sa, it definitely has no knowledge of the

40



event. Problems in this category include true or false questions such as whether the vehicle

received a BSM (basic safety message) from location A or whether the vehicle’s current

speed is below 60 mph.

Consistency - this proves the consistency of a vehicle. Even if a vehicle gets all prob-

lems from category 1 and category 2 correct, its answers could have been lucky guesses.

This type of problem aims to ask a sequence of true or false questions to further check

whether the answers have inconsistencies. For example, questions in category 1 may ask

the color of a building and a moving direction. Then question in this category may ask

whether the vehicle can see another building of another color. However, the vehicle cannot

see this color unless it moves in the opposite direction. If the vehicle’s answer is true, then

it fails the consistency test.

Algorithm 1: Proof-of-Eligibility Challenge

1 vehicle vj receives RE = (RID,E,Certi, Q,H(A), tR, X) from vi;
2 while (vj is operating) ∧ (sj[EType] = idle) do
3 if (t− tR) < Tq and X is correct then
4 A′ = RID;
5 for f ∈ Q do A′ = concatenateBits(A′, f(Dj)) ;
6 if (H(A′) = H(A)) ∧ (t < Tq) then
7 obtain shared key K−R = KeyGen(A′);
8 set Sj[EType] to busy until (t− tR) > Tc or consensus is

reached;

9 else drop RE;

In the proposed algorithm, once an event report is received by a vehicle, it tries to solve

the puzzle Q within time bound Tq; in the end, qualified vehicles are able to obtain a seed

to feed into their local key generation function thus obtaining a shared secret key K−
R . Ve-

hicles then use the obtained K−
R to initiate a Hello message to other group members. By

using the PoE puzzle, evaluation groups are able to form at run time without a selected

leader, which saves the time spent on leader election and avoids the risk of granting privi-
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leges to a compromised leader. In our proposed model, all group members have the same

privilege. The procedure of proof-of-eligibility is presented in Algorithm 9.

In practice, not all of the above problem types can be easily implemented, due to limi-

tations of current vehicles. In our prototype, we only implemented category 1 and 2 prob-

lems, excluding problems that require a camera and image processing. In our prototype,

only problems that can be answered from existing sensors such as speed, acceleration,

GPS location, etc., are implemented. Better PoE challenge design is the subject of fu-

ture research. Emerging technologies will likely help with this. For example some newly

emerged light flashing techniques [111] produce light not visible to drivers but allow vehi-

cles equipped with cameras to capture it, and these techniques will work very well for PoE

applications.

3.4.4 Evaluation Group Consensus

Reaching consensus in dynamic vehicular networks in a timely fashion is the key feature

of our proposed algorithm. As described in the last subsection, a vehicle that successfully

solves the PoE challenge broadcasts an encrypted hello message, MH , with below format,

to establish connections with other members:

MH = Enc(K−
R , Certi, RE, xi, Sign(K

−
i , RE, xi), (3.2)

where xi is vi’s local opinion of the event report value.

Once some connections among group members are established, encrypted consensus

messages, MC , with below format are sent to initiate voting consensus among members:

MC = Enc(K−
R , Certi, RE,ui, xi,

Sign(K−
i , RE, xi), Sign(K

−
i , ui), (3.3)

where ui is the known-member list by vi. Each member in ui is represented by its
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public key. The signature of Sign(K−
i , xi) denotes attesting of the opinion by the sender,

and Sign(K−
i , ui) denotes attesting of the sender’s recognized group member list.

Traditional consensus algorithms require fixed and known membership. However this

is extremely hard to obtain in a highly dynamic vehicular network. We perform consensus

on the group membership list G and the opinion list O simultaneously, instead of first

agreeing on group membership and then initiating opinion consensus among agreed-upon

members. Each element in G and O is uniquely linked to a group member which had its

hello message received. For example, if a vehicle vk receives a hello message from vehicle

vj , vj is added to vk’s membership list, then Gk[j] is initialized to 0 indicating that vj is now

a known member of vk. Ok gets updated with Ok[j] = 1 if vj agrees with vk, otherwise,

Ok[j] = 0. Moreover, Gk[j] is set to 1 if the membership list of vj is the same as that

of vk. This is realized by comparing the membership list obtained from MH with vk’s

local membership list. A consensus is reached when more than 2/3 of the vehicles in one

vehicle’s membership list agree both on the membership and the report value (opinion).

The more than 2/3 requirement satisfies the well-known bound for Byzantine agreement.

At this point, if the group membership size is at least as large as the minimum group size,

then a decision message is broadcast to the network.

A time bound for consensus Tc is set to ensure the effectiveness of the algorithm in ve-

hicular networks. If consensus is reached before Tc, the consensus process terminates with

a decision message being broadcast. If consensus is not reached before Tc, the consensus

process terminates and the related event report is dropped.

Additionally, we introduce a time variable tstep such that for every tstep, the vehicle

broadcasts a message MC even when there are no consensus messages or hello messages

received. This is important when the vehicle’s previously sent messages suffer from packet

loss and the vehicle becomes disconnected from the other members. The detailed procedure

is presented in Algorithm 29.

Finally, in order to tolerate packet loss, delay, and Byzantine behavior, we allow a
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vehicle to add another vehicle to its group list when it observes the vehicle in enough

other vehicles’ group lists even if it did not receive a hello message from the vehicle. The

threshold we set for this is more than 1
3

of the minimum group size to ensure that at least

one healthy vehicle has heard a hello message from the new vehicle. In order to keep the

code description fairly simple, we do not show this aspect in the pseudocode.

Algorithm 2: Evaluation Group Consensus

10 vk obtained K−R by solving PoE challenges;
11 vk receives a message M from vj (j ̸= k), set t′ = t;
12 while (t− tR) < Tc∧ (consensus is not reached) do
13 if t ≥ (t′ + tstep) then set t′ = t, create and broadcast MC ;
14 if M can be decoded using K−R and verified then
15 if M is a hello message ∧ vj /∈ uk∧ !Πsync then
16 add vj to uk;
17 if xj ̸= xk, then Ok[j] = 0, otherwise Ok[j] = 1;
18 t′ = t, create and broadcast MC ;
19 else if M is a consensus message ∧ vj ∈ uk then
20 if ! Πsync then
21 if vk /∈ uj then send hello message MH ;
22 if xj ̸= xk then Ok[j] = 0;
23 else Ok[j] = 1;
24 if uj ̸= uk then Gk[j] = 0;
25 else Gk[j] = 1;
26 if |{l | Gk[l] = 1, Ok[l] = 1, l ∈ uk}| > 2|uk|

3

∧ |uk| ≥ umin ∧ (t− tR) > Tq then
27 Πsync = true and set consensus flag to true;
28 create and broadcast decision message;

29 else Πsync = false;
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3.4.5 Event Report Verification

A decision message is created if more than 2/3 of the vehicles agree on the same value and

on the group membership. A decision message is denoted by:

MD = (RE, α, CERTs, SIGs), (3.4)

where α is the decision result, CERTs is a set of certificates of the group members,

and SIGs is a set of signed opinions of the members in u such that for each vi, Sigi =

Sign(Ki, xi).

When a vehicle receives a decision message and either it is not part of the consensus

group or it is part of the consensus group but has not yet reached a decision, it examines

the attached signatures. If the group size is at least umin, all signatures are valid, and more

than 2/3 of the signed values agree with the decision value, the vehicle accepts the decision.

In this way, vehicles that are not compromised but have the incorrect value will accept the

group decision about the event’s status. Any message with one or more invalid signatures

or a group size less than umin will be discarded. If multiple different decision messages

regarding the same event report are received by a vehicle, it accepts the valid decision

message with the longest signature chain and rejects the others.

3.4.6 Proof Sketch of Protocol Correctness

As is typical for distributed consensus protocols in challenging environments, the PoE pro-

tocol guarantees safety but not liveness. However, liveness is demonstrated through our

simulation experiments described in Section 3.5.

Our main safety property is that false consensus does not occur as long as less than 1/3

of the vehicles in the vicinity of the event are compromised or incorrect. Thus, the only

possible outcomes of the protocol are correct consensus and no consensus. This is detailed

in the following claim and proof sketch.
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Claim: Let the minimum consensus group size be umin. As long as the number of compro-

mised vehicles and incorrect vehicles in the area of an event report RE(t) between the time

of the report t and the time t+ Tc is less than umin/3, then false consensus cannot occur.

Proof Sketch:

The proof of eligibility challenge plays a fundamental role in ensuring safety. Only

vehicles that can observe the area of the event report are capable of passing the challenge.

This prevents compromised vehicles from outside of the event area from participating in

the consensus. Thus, only compromised vehicles within the area of the report during the

time that the consensus protocol is executed need be considered.

Additionally, we assume that the number of healthy vehicles in the event area that do not

correctly verify the status of an event report is very small so that the total of compromised

and incorrect vehicles in the vicinity of the report is less than umin/3.

False consensus requires agreement on the wrong value of an event report (e.g. ”no

accident” when an accident has actually occurred) and agreement on group membership.

This could possibly occur in two situations: 1) when a vehicle correctly reports an event but

enough compromised and incorrect vehicles within the formed consensus group conclude

the event did not occur, or 2) when a compromised or incorrect vehicle falsely reports an

event and enough other vehicles support the false report during the consensus procedure.

In either situation, there are two possibilities; either a consensus group of size at least

umin is formed for the event report or no large enough group is formed. If no large enough

group is formed before time t + TC , then no healthy node can broadcast a decision (see

Lines 29–32 of Alg. 2 pseudocode) and the event report is dropped (this is a no consensus

outcome).

If a large enough consensus group is formed, this means there are fewer than umin/3

compromised or incorrect nodes within the group that support the wrong event status. Thus,

there are simply not enough nodes to broadcast the false evaluation value for any healthy

node to accept it, since that would require more than 2umin/3 false evaluations to be broad-
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cast by distinct nodes. In this situation. If enough nodes that receive more than 2umin/3

correct evaluation results also agree on membership of the consensus group, the result is

correct consensus but if there are not enough nodes that agree on the membership, the result

is no consensus. However, in neither case, can false consensus occur.

3.5 Evaluation

3.5.1 Implementation

We implemented a prototype of BFCV in C++, which can simulate different scenarios by

changing the map and system parameters. It is build on top of Veins [95] which provides a

comprehensive suite of models of IEEE 802.11p, IEEE 1609.4 DSRC/WAVE and obstacle

shadowing. We add additional layers to simulate packet loss/delay, cypto schemes support-

ing 128, 192, and 256 bit ECDSA keys for encryption, signing and verification, SHA-256

as the hash function. Our prototype consists of approximately 3500 lines of written code.

Experimental maps are obtained from OpenStreetMap (OSM) [112]) with manual correc-

tions of speed limit, traffic lights, number of lanes on the road, etc. to improve the accuracy.

Vehicle mobility and routes are computed based on demand definition and shortest path al-

gorithm using SUMO [113].

Different from previous works, the prototype includes realistic aspects of the vehicle

dynamics (safe distance, mass, dimensions, vehicle types, braking distance, traffic lights,

etc.), detailed modeling of the communication network, and real-life street maps with vary-

ing scales.

3.5.2 Simulation Results

Experiment Scenario

Our evaluation is conducted in a simulated midtown area of a major city in the U.S. with

a capacity of around 700 moving vehicles (see Figure 3.3). We simulate a worst-case sce-
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Figure 3.3: Evaluation Scenario - Urban

nario where compromised vehicles behave honestly when there is no event to be reported.

Thus, it is very hard for honest vehicles to catch bad behaviors prior to an event report.

In the simulation scenario, a collision happens at a random time, and honest vehicles that

detect the event create and broadcast ”collision occurred” event reports leaving others to

evaluate them. We also have compromised vehicles broadcast conflicting event reports say-

ing ”collision cleared” at the same time. Thus, there can be several consensus executions

happening at the same time among different groups of vehicles to try to reach agreement to

accept one of these conflicting reports. We also have compromised vehicles drop, delay or

not send messages, and submit wrong opinions for evaluation.

BFCV Evaluation Results

Unless otherwise noted, the following parameters were used in all experiments: Tq = 5s,

Tc = 14s, umin = 7, vehicle density = 250 and beacon message frequency = 10Hz. Nat-

ural packet loss and delay (not including compromised vehicles’ behavior) were simulated

such that messages were randomly dropped at receiving vehicles with a drop rate of 15%

and packets were randomly delayed within a range of 100ms - 1500ms. The communica-

tion range among vehicles was set to 300m based on NHTSA’s proposed rule [114]. We
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use the following two metrics to evaluate the latency of BFCV:

• Consensus Time: the time spent on reaching consensus on a single event report. This

starts from the event report creation time and ends when there is a decision message

received by every member of the group contained in the message.

• Decision Time: the time spent on ultimately reaching consensus. This starts from the first

event report creation time and ends when there is a decision message received by every

member of the group contained in the consensus message. Note that this could involve

multiple consensus attempts if the first attempt does not produce a consensus.

We first evaluated how BFCV’s performance varies with minimum group size and vehi-

cle density. We ran simulations with 10% of vehicles compromised, varied umin from 4 to

10 with an increment of 1, and varied vehicle density from 50 to 450 vehicles with an incre-

ment of 100. 50 simulation runs were done for each parameter combination, where a single

consensus period was simulated in each run. The possible results of each run are: Correct

Consensus (CC), False Consensus (FC) and No Consensus (NC). Note that, as described

above, there can be multiple consensus executions happening concurrently for ”collision

occurred” and ”collision cleared” event reports. In case multiple large enough consensus

groups succeed in reaching consensus, we record the result as FC as long as at least one of

the groups agreed on ”collision cleared”. The results are shown in Figure 3.4.

Figure 3.4(a) shows the average consensus time in seconds vs. minimum group size

and vehicle density. Note that NC outcomes are not included in the average, because there

is no definite termination of the consensus in those cases. Not surprisingly, consensus time

increases with both minimum group size and vehicle density since an increase in either

parameter will cause the number of messages exchanged by the algorithm to increase.

Figure 3.4(b)(c)(d) shows the different consensus outcomes vs. the two parameters. Note

that, if the minimum group size is too small, compromised vehicles can form a group and

reach false consensus. Also, if the vehicle density is too low, there are not enough vehicles
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Table 3.2: Performance vs % of Compromised Vehicles

Mal V CC FC NC AvgConsensusTime
5% 100% 0% 0% 5.228s

10% 99% 0% 1% 5.701s
15% 99% 0% 1% 6.206s
20% 99% 0% 1% 6.718s
25% 97% 0% 3% 8.542s
30% 93% 0% 7% 9.325s
35% 88% 0% 12% 10.446s
40% 79% 0% 21% 13.118s

in the event area to form a consensus group, and this leads to a high rate of NC outcomes.

However, for a fairly wide range of group sizes and vehicle densities, there are zero FC

results and a very low rate of NC outcomes. These results demonstrate that the choice of

umin should be based on both adversarial assumptions and expected vehicle density.

We also evaluated BFCV’s performance versus the percentage of compromised vehi-

cles with umin = 7 and a vehicle density of 250. For percentages from 5% to 40% with

5% increments, we repeated the simulation 50 times. The results are shown in Table 3.2.

From the table, we can see that as the percentage of compromised vehicles increases, the

percentage of CC decreases from 100% to 79%. However, even with 40% of the vehicles

in the network being compromised, the BFCV Algorithm did not experience a single false

consensus outcome.

We also evaluated how well BFCV handles failure to reach consensus (NC outcomes).

Instead of stopping the simulation immediately after the single-round consensus timeout,

Tc, occurred, we extended the simulation if consensus was not reached the first time. If

a report evaluation fails to reach consensus within time Tc, then our algorithm drops the

report. However, if this occurs in the simulation, another honest vehicle nearby will submit

a new event report for consensus. By extending the simulation time, we examined whether

the BFCV algorithm can recover from NC outcomes. In this case, we recorded the final de-
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Figure 3.5: Decision Time vs % Compromised Vehicles

cisions, i.e. whether there was ultimately a correct decision made after an event happened,

possibly after more than one consensus attempt.

Figure 3.5 shows the average decision time for different compromised vehicle percent-

ages and different vehicle densities with umin = 7. When the percentage of compromised

vehicles was low, the decision was made very quickly with an average that is well below

the single-round consensus time bound Tc. However, as the percentage of compromised

vehicles was increased, the time spent on evaluation rose. Note that, in some cases, the

average decision time was close to or exceeded Tc = 14s, implying that more than one

round of consensus was some times needed for those cases.

Comparison Results

We also simulated two related protocols, DC [40] and PoR [39], and evaluated them under

the same experiment conditions. These protocols both use threshold-based voting, which
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is the most widely-used prior approach. Two metrics are introduced to compare the results:

• Percentage of Vehicles Taking Action: the percentage of vehicles in the network that

reach a correct decision about the event report and take action to avoid the accident

location

• Average Commute Time: the average simulation time that vehicles take to reach their

destinations (vehicles not taking action to avoid the accident location experience a

longer commute time due to backups around the accident site)

There was no explicit method described in [39] to set the threshold for the PoR algorithm.

However, it should be based on the report criticality and the network status, which is similar

to the minimum group size in our proposed algorithm. Therefore, we set both of these

parameters to 7 in these simulations. The DC algorithm provides an explicit method for

dynamically adjusting its threshold value, which we adhered to in our DC implementation.

Other parameters of BFCV were the same as in the previous experiments.

Figure 3.6 depicts the percentage of vehicles taking action as the simulations progressed

when 5% and 15% of vehicles were compromised, respectively. There are two main rea-

sons why BFCV performed better than DC and PoR. First, with BFCV, vehicles make a

group decision and act accordingly. For DC and PoR, each vehicle makes its own decision

when enough endorsements from other vehicles are collected and, thus, not all vehicles

make the same decision. In particular, since there are both ”collision occurred” and ”colli-

sion cleared” reports being circulated at the same time, some vehicles collect enough votes

for ”collision cleared” and reach the wrong decision even though most vehicles reach the

correct decision. Second, BFCV uses PoE, which prevents compromised vehicles from

outside the event area from participating. Since DC and PoR cannot verify location infor-

mation of vehicles, they cannot filter out fake reports from compromised vehicles anywhere

in the network that falsely report their location as being near the event, which increases the

chances that enough votes can be collected to accept a fake report.
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Figure 3.6: Vehicles Taking Action (%) vs Simulation Time

Table 3.3: Avg. Commute Time vs. % of Compromised Vehicles

Mal V DC(s) PoR(s) BFCV(s)
5% 171 179 155

10% 194 197 162
15% 244 223 183
20% 286 248 203

Table 3.3 depicts average commute time versus percentage of compromised vehicles

ranging from 5% to 20%. For vehicles that were stuck in the simulation area at the end

of the simulation, for the purposes of computing an average, we assigned them a commute

time of 300 sec. From the table, we see that BFCV produced 15-22% lower commute times

than PoR and 10-40% lower times than DC. As the percentage of compromised vehicles

increased, most of the vehicles actually ended up being stuck for the DC Algorithm (avg.

commute time approached 300 sec.), and a significant number were also stuck with PoR,

while most of the vehicles actually reached their destinations during the simulated interval

with BFCV.
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3.6 Chapter Summary

We presented BFCV, a distributed consensus algorithm based on ”proof-of-eligibility”,

which achieves Byzantine agreement with unknown group membership and unreliable

communication channels and is targeted at vehicular network environments. BFCV lever-

ages the unique characteristics of moving vehicles and cryptographic primitives to pre-

vent a large number of compromised and unrelated vehicles from joining the consensus

group. This significantly speeds up the consensus procedure, providing a new paradigm of

Byzantine-tolerant fast consensus for connected vehicles.
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CHAPTER 4

COOPERATIVE TASK-ORIENTED GROUP FORMATION FOR VEHICULAR

NETWORKS

As the methodology proposed in chapter 3 is able to defend a vehicle from making deci-

sions based on unproven information, in this chapter, we move a step further and focus on

how to leverage the power of cooperation as well as enriched information sharing for better

task completion in the vehicular networks.

4.1 Introduction

With advancements in information and communication technologies in modern vehicles,

the amount of data they generate and the computation capability they possess are both

growing rapidly. For example, autonomous vehicles (AVs) can generate between 1.4 and

19 terabytes (TB) of data per hour [115]. Such a large amount of data brings not only

opportunities but also challenges in various distributed computation tasks requiring co-

operation [116], e.g. reinforcement learning based cooperative driving [117], distributed

consensus based false information filtering [118], collaborative active learning [119], etc.,

since if conducted appropriately, the performance of the applications should increase with

the number of participants [3]. For instance, a single vehicle may not be able to capture

accurate and full perception data from its own sensors due to imprecision and limited view.

Aggregating the diverse views from multiple vehicles can improve the results of many

computational tasks by creating larger and richer data sets. Moreover, though on-board

computing devices are becoming increasingly powerful [120], computing locally with a

very large data set often requires enormous computation and memory resources, which

hinders these applications on resource-constrained edge devices such as vehicles [115]. As

a result, most proposed solutions have assumed that data is sent to a powerful central server
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for computation [1].

Nonetheless, the application requirements discussed above pose challenges for the con-

ventional cloud computing paradigm. It is difficult to guarantee the stringent quality/experience

requirements due to a large on-board memory requirement, high latency, and limited back-

haul bandwidth [121]. To tackle these challenges, recent research has considered mobile

edge computing (MEC) [16, 17, 18], vehicular fog computing (VFC) [13, 19, 20] and ve-

hicular cloud computing (VCC) [22], where computation tasks are offloaded to surrounding

vehicles with surplus resources, to address certain aspects of the problem.

There are three critical challenges that are not well addressed in this prior work.

1. Whether tasks being assigned to vehicles can be successfully completed is ignored

and, instead, focused on internal dependencies between tasks and which tasks should

be assigned to which vehicles. Tasks that are not successfully completed serve no

useful purpose but waste valuable computational resources.

2. Cooperative task execution was not considered, i.e. they only considered the of-

floading of a task from one vehicle to another. As discussed earlier, cooperative task

execution is required to not only deal with the very large storage and computational

resources required to process the large amount of data generated by modern vehi-

cles, but also to break the barrier of limited local views/perceptions by aggregating

information from multiple vehicles.

3. Prior works ignored the trade-off between successful task completion and quality

of the cooperative computation results. In general, the result quality of such tasks

increases with the size of the cooperating group, however, the larger the group be-

comes, the less stable is the group’s connection, which results in a lower probability

of task completion.

Thus, in this chapter, we propose a task-oriented group formation method addressing

the above challenges. To our best of knowledge, this is the first work addressing com-
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putation task oriented group formation in vehicular networks. Details are provided in the

following sections.

4.2 System Model Overview

Our system model is based on a bidirectional multi-lane road scenario. We assume basic

communication among vehicles is supported, where each vehicle discovers their neighbor-

ing vehicles through periodic beacon messages. As is common in vehicular networks’ re-

search, e.g. [122, 25], we assume the beacon messages exchanged among vehicles contain

the vehicles’ basic information, including location, velocity, and moving direction, so that

each vehicle can estimate speed difference, relative distance, and traffic condition/density

around it as introduced in [123]. We assume that all vehicles use the same physical mode

for transmitting or receiving data, and the precise time is known and traceable. In addi-

tion to periodic beacon messages, event/application driven messages are also supported.

Finally, we assume there are no malicious vehicles, in that all vehicles follow the protocol.

However, abnormal behavior such as packet loss or abnormally long packet delay can still

occur. Note that we use node and vehicle interchangeably in the rest of this chapter.

4.3 Problem Formulation

The problem that we consider herein is how to construct a task group that is well suited to

carrying out a specific task. We call the vehicles that have computation task requests Task

Vehicles (TVs), whereas the vehicles that can provide their data and surplus computational

resources to the TVs are referred to as Service Vehicles (SVs). Note that a single vehicle

can serve as a TV at one time and as a SV at a different time but cannot serve in both roles

simultaneously. Given a group G that is a candidate to perform a cooperative task, there are

two important quantities, which are both random variables: 1) stay time, denoted by T stay
G ,

and 2) task completion time, denoted by T task
G . T stay

G is the length of time that all members

of G remain in communication range of each other, and T task
G is the length of time that the
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vehicles of G need to complete the assigned task (assuming that the vehicles stay together

for at least that amount of time).

As shown in 4.1(a)-(c), how likely it is that the task will be completed successfully by

a given group depends on the means of the T stay
G and T task

G distributions (as well as their

shapes). If the mean stay time is much greater than the mean task completion time, e.g.

4.1(a), the task is very likely to be successfully completed. As the two distributions get

closer together, e.g. 4.1(b), the probability of successful completion begins to decrease.

Obviously, if the mean stay time becomes less than the mean task completion time, then it

is very unlikely that the task will be successfully completed, e.g. 4.1(c). We consider a

group viable if:

P (T stay
G − T task

G ≥ 0) ≥ 1− ϵ , (4.1)

where ϵ → 0. While formally calculating this probability requires knowledge of the joint

distribution of the two random variables, in practice any dependence between them is quite

weak and they can be treated as independent random variables.

The size of a group is an important factor in the stay time and task completion time

distributions and it can also impact the quality of the computational result. Larger groups

tend to have a larger task completion time variance and higher communication cost, which

for cooperative (non-parallel) computations, can also increase the expected task completion

time. However, larger groups also tend to break apart more quickly. From these trends, we

see that increasing the size of the group tends to drive the distributions from the 4.1(a) case

(very small groups) to the 4.1(c) case (very large groups). Finally, we note that for many

applications, e.g. the distributed learning example discussed in 4.5, larger task groups will

produce higher quality results.1

Summarizing the above discussion, we tend to prefer larger task groups in order to im-

1For distributed learning, increasing the number of nodes creates a larger overall dataset and higher com-
putational capability.
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prove the quality of the computational result. However, larger groups tend to be less likely

to complete the task before they break apart. Thus, the goal of our task group formation

algorithm, presented in the next section, is: form as large a group as possible while en-

suring that the group is very likely to successfully complete the task, where “very likely

to successfully complete the task” means that the group satisfies Inequality (4.1).

In practice, it is not possible to know the exact probability distributions of the stay

time and task completion time of a group. Therefore, in our group formation algorithm

presented in the next section, we introduce the notion of a safety margin, which is a safe

separation between the estimated stay time and estimated task completion time for a group

(see Figure 4.1). With an appropriate choice of safety margin, this can be considered as

an approximation of the formal group viability condition specified by Inequality (Equa-

tion 4.1).

4.4 Task-Oriented Group Formation Algorithm

From the high-level perspective, we solve the problem formulated in the last section by a

two-stage task-oriented group formation algorithm (ToG). As for the first stage, neighbor-

ing vehicles are clustered together based on relative mobility, connectivity and estimated

stay time. The goal is to obtain stable clusters, in which the cluster members can not only

stay together longer but also share good connectivity. In this work, we refer to this first

stage as the parent clustering stage, where vehicles are clustered together and one parent

cluster head (PCH) is selected for each parent cluster. The PCH is responsible for collecting

and recording parent cluster members’ (PCMs) statuses, position changes, and available re-

sources. When a PCM is assigned a computation task, it becomes a TV and sends a task

group formation request to its PCH. This triggers the second-stage – task group formation,

where the PCH will select the best suited vehicles to form a task group based on certain

criteria.

There are two main benefits of the proposed two-stage approach: a) parent clustering
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filters out the neighboring vehicles who have close geo-location but are less likely to stay

together, thereby providing good candidates for task group formation; b) allowing a PCH

to coordinate different task requests and select the qualified task group members for each

of the requests increases efficiency and throughput. The details of the two-stage approach

are presented next.

Parent Clustering

It is evident that a stable parent cluster scheme provides a strong basis for efficient task

group formation, as the cluster members would stay together longer. Thus, for our par-

ent clustering framework, we adopt the high-level clustering approach from [124], which

achieves good cluster stability while maintaining relatively low communication overhead.

Specifically, two main techniques are borrowed: 1) capability metrics, which are used to

select the cluster head, and 2) substitute heads pre-selection before membership changes,

so that both nodes that stay in the original cluster and nodes that are very likely to leave

in a short period of time can smoothly settle down with limited effort, which increases the

stability of clusters. The capability metrics of [124] that are used to select the cluster head

are mainly focused on crossroads; therefore, we add another capability metric, which we

refer to as relative distance metric (RDM), which is targeted at broader road types such as

highways.

Next, we first define the capability metrics from [124], namely relative velocity metric

(RVM) and power loss metric (PLM) and then we define our RDM metric. For vehicle vi,

RVM(i) =
1

N

N∑
j=1

log

(
vmax

vmax −∆vi,j

)
(4.2)

and

PLM(i) =
1

N

N∑
j=1

log

(
P t

P r
i,j

)
(4.3)

where, vmax is an upper bound on velocity, N denotes the number of direct neighbors of vi,
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∆vi,j is the velocity difference between vehicles vi and vj , P t is the unified transmission

power of all nodes and P r
i,j denotes the received power of vi from vj . A smaller value of

RVM indicates that the vehicle’s velocity is similar to that of its direct neighbors. A smaller

value of PLM means that the vehicle is more likely to have shorter communication distance

and better channel quality with its direct neighbors.

Vehicles on a highway can have much higher speeds than in crossroads, and the dis-

tances between vehicles can be much longer, making the relative distance an important

metric. While PLM is also related to distance, it is affected by other factors such as obsta-

cles. Therefore, we add the relative distance metric, defined as:

RDM(i) =
1

N

N∑
j=1

log

(
R

R−∆di,j

)
(4.4)

where R is the communication range and ∆di,j represents the relative distance between

node vi and vj . A smaller value of RDM indicates that a node is closer to the middle of its

neighbors.

The combined capability metric we use is:

M(i) = RVM(i) + PLM(i) +RDM(i) (4.5)

and the node with the smallest M(i) among the cluster head candidates is selected as cluster

head.

As parent cluster stability is the key to forming good task computation groups, we

incorporate the neighbor sampling (NS) scheme from [125] to enhance the stability of

parent clusters.2 Additionally, we use a safe leaving distance σ to ensure that a PCH can

plan in advance when a node is about to leave. A vehicle whose distance from its PCH

is increasing must notify the PCH when it is within a distance σ of moving out of the

2Only vehicles within one hop vicinity moving in the same direction as well as a speed difference less
than a threshold are considered as neighbor candidates. Refer to Algorithm 1 from [125] for details.
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PCH’s transmission range. This safe leaving distance guarantees that the PCH can receive

a notification about a leave before the connection is lost. Although we added a few other

minor enhancements, the parent clustering procedure and maintenance strategy follow the

general approach in [124].

Task Group Formation

Our task group formation scheme makes use of estimated stay time and estimated task

completion time to choose groups that are well suited for the particular task to be executed.

Good stay time and task completion time prediction schemes are the keys to efficient task

group formation. We define T stay
i,j as the estimated stay time between parent cluster member

vi and vj such that:

T stay
i,j =

|∆vi,j|(min{R,Di,head, Dj,head})−∆vi,j∆Di,j

(∆vi,j)2
(4.6)

where R denotes the communication range of a vehicle, Di,head (Dj,head) denotes the dis-

tance between vi (vj) and the parent cluster head, and ∆Di,j and ∆vi,j represent the relative

distance and velocity between vehicles vi and vj , respectively. In a task group, each vehi-

cle is required to exchange data and computation results with each of the participants in a

distributed fashion. Accordingly, a group G can be considered non-functional once the first

pair of vehicles loses communication and we therefore estimate the stay time as:

T̂ stay
G = min

i,j∈G
(T stay

i,j ) . (4.7)

Different from stay time prediction, task completion time estimation is application specific.

Instead of discussing the specific estimation scheme in this section, a distributed learning

based application example is provided in Section 4.5.1. We will use the general notation

T̂ task
G to represent estimated task completion time for a group G in this section. As different

vehicles may be equipped with different computing capability, we use κ to represent the
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task computation rate of a vehicle. The larger the κ is, the faster a vehicle can compute its

task. Let H denote the difference between estimated group stay time and task completion

time. We only consider task groups with H larger than the safety margin Tth, i.e.

H = T̂ stay
G − T̂ task

G > Tth (4.8)

Setting Tth > 0 accounts for the fact that T̂ stay
G and T̂ task

G are only estimates and we want

to ensure that the task can be completed with high probability in its assigned group.

Vehicles in a parent cluster can be in one of three states: available, TV, or SV. PCHs can

neither submit any computation request like a TV nor participate in any task computation

as a SV. When a PCM has a request for computation assistance, it enters state TV and sends

a request to its PCH. As discussed in Section 4.2, a vehicle cannot act as a TV and a SV

at the same time. Thus, once a vehicle changes its state from available to TV, it cannot

service other tasks’ computations until its current request is fulfilled or dropped. A vehicle

that is currently serving a request cannot submit a computation request until it is done with

its current request, i.e. a vehicle cannot change state directly from SV to TV. Rather, when

the vehicle is done servicing a request, it changes its state to available and, only then, can

it submit a computation request.

The Algorithm 5 provides the details of the proposed task group formation algorithm.

Each PCH maintains a member information table (MI) to keep track of PCMs’ mobility and

status information, periodically updated by intra-cluster messages. Upon receiving a task

request, a PCH will check if there are available PCMs that can service tasks and attempts

to form a task group. Initially, PCH starts from the assumption that all available PCMs

within communication range R to the requester (TV) and R − σ to the PCH are able to

service the task, thus adding them to an empty group list G. Then, estimated stay time

T̂ stay
G and estimated task completion time T̂ task

G are computed based on the information in

MI. If H , as defined in Equation 4.8, is larger than the safety margin Tth, the PCH will
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Algorithm 3: Task Group Formation

30 PCM info table: MI, available PCM vi ∈MI, task vehicle: vt;
31 while PCH receives a task request ∧ available PCMs do
32 initialize an empty group list G = [ ];
33 for all available vi do
34 if Di,t < R and Di,head < R− σ then add vi to G;

35 if |G| < C then
36 send task drop notification to vt;
37 go back to the start of WHILE loop;
38 else calculate H;
39 while H < Tth do
40 G = G− argmax

vj∈G
H , recalculate H;

41 if |G| ≥ C then
42 PCH send group assignment notification;
43 else
44 send task drop notification to vt;
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send out a notification to TV and the selected SVs in G, notifying them of the formation

of the group. However, if H ≤ Tth, then the PCH removes the node with the largest MG

(metric calculated based on Equation 4.5 with respect to G) or slowest task computation

time, whichever can increase T̂ stay
G or decrease T̂ task

G the most. Lines 13-14 are repeated

until a G with H ≥ Tth and size larger than the minimum allowed group size C is obtained.

If no valid group can be found, the task is dropped and a notification is sent to the requester.

4.5 Application Example and Evaluations

4.5.1 Application Example

As mentioned in the previous section, task completion time prediction is application spe-

cific. We consider a general distributed computation task [116] that requires multiple ve-

hicles to cooperate by contributing combined resources of sensor data/local information,

computing power, local decisions, etc, where examples are safety related applications [118]

and on-board intelligence [119, 116]. In this section, we describe and evaluate an example

on-board intelligence application - distributed learning across a vehicular group.

We assume a generalized distributed learning model, similar to the Federated Learning

(FL) framework introduced in [126], but we do not address privacy concerns as FL does.

In our application example, every car manufacturer has a own centralized server (CS) that

can communicate to its manufactured vehicles through a Vehicle to Infrastructure (V2I)

protocol. At each round of training, a CS selects a vehicle to initiate the process by sending

it a task assignment. Following our proposed ToG algorithm, the selected vehicle will then

submit the task request to its PCH and wait for a task group assignment. When the task is

successfully completed, the task vehicle will send a task completion notification to its PCH

and send model updates to its CS.

The task computation procedure for a given distributed learning task can be decom-

posed into four major stages:
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• 1) Data Sharing: for each task, a task group member shares its local data to other

members, which are selected based on the task requirement with a fixed required

length.

• 2) Task Computation: each task group member collects other members’ shared data,

which totals to |G| pieces of data (including its own piece). Once |G| pieces of data

are obtained, each member calculates and make predictions for the collected data set.

• 3) Results Sharing: Once computation is done, each task group member multicasts

its results with fixed required length to other group members.

• 4) Local Training: Upon receiving computation results from other group members, a

vehicle updates its local model by adding the unlabeled data points to its training set

if the majority of the task group agree on the label3.

After this process is completed, the TV syncs its update with the CS.

Let LData denote the fixed length of data needed to be exchanged by one task group

member for a given task. Similarly, LResult denotes the fixed length of result needed to be

send out by one task group member after computing the task. As different models of vehi-

cles may have different computing capability, we use operations per second κ to represent

the computation rate of a given vehicle, and OData to represent total operations needed for

given length of data LData. As the fourth stage – Local Training can be completed by a

vehicle itself, it does not require stable connections among task group members. Hence,

the task completion time as:

T̂ task
G =

|G| × LData

rGmin

+
|G| ×OData

κG
min

+
|G| × LResult

rGmin

(4.9)

where |G| represents the size of group G, rGmin represents the minimum transmission rate

3Averaging local models may balance their contributions to produce an accurate joint model, though this is
not guaranteed. Instead, we use tri-training [127], a classic method that reduces prediction bias on unlabeled
data by using the agreement of multiple independently trained models.
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(a) Highway

(b) Vehicle Number = 3400

(c) Vehicle Number = 600

Figure 4.2: (a) 3.5 mile highway section. (b), (c) are captured traffic images on the same
120m highway section. Each small yellow triangle represents a vehicle.

among vehicles in G, and κG
min represents the minimum computation rate of the vehicles

in G. By using the minimum transmission rate to estimate the data and result transmission

times, we obtain an upper bound, which can be considered to compensate for additional

time needed because of packet delays and losses.

By applying the above task completion time estimation scheme, we are able to follow

Algorithm 5 to form groups tailored for distributed learning. An extensive simulation study

based on this type of application and making use of real world maps is provided in the

following subsections.

4.5.2 Simulation Set-Up

We implemented a prototype of ToG using C++ and Python, which can simulate not only

different real maps but also different traffic scenarios by updating a small set of system

parameters. It is built on top of Veins [95] which provides a comprehensive suite of models

of IEEE 802.11p, DSRC/WAVE and obstacle shadowing. We add additional layers to sim-

ulate the communication between remote servers and TVs. TraCI from SUMO [91] is used
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to control the mobility of vehicles. About 4000 lines of code are written for the prototype.

Real highway, branches and intersections are obtained from OpenStreetMap (OSM) [112])

with manual corrections referenced from Google Satellite.

Vehicles can communicate with the centralized servers and nearby vehicles through V2I

and V2V, respectively. Figure 4.2(a) depicts a major highway section in Atlanta. Its main

road is ∼3.5 miles long with 6 traffic lights controlling the connections to the branches,

and 5 lanes in each major road of each direction. We simulate the example application

as described in Section 4.5.1, where available vehicles are selected as TVs and receive a

computation task assignment at random times. Upon receiving a task assignment, a vehicle

submits a task request to its PCH asking for a task group formation.

The actual T̂ Task
G of a task consists of the actual communication cost and the actual

task computation time. Communication cost can be well simulated in the current environ-

ment, but the task computation time is quite application specific and it can be affected by

various factors, e.g., concurrent background processes, RAM size, etc. Therefore, to bet-

ter evaluate the effectiveness of our proposed approach, we use two normal distributions

K ∼ N(µκ, σ
2
κ) and T ∼ N(µτ , σ

2
τ ) with adjustable mean and variance to cover a wide

range of possible task computation times. As different vehicles may be equipped with dif-

ferent rated chips, at the initial stage, each vehicle entering the simulated area is assigned

a computation capability rate κ (FLOPs), which follows the K ∼ N(µκ, σ
2
κ) distribution.

However, even if every vehicle has the same hardware, the actual task computation time is

determined by various factors, and cannot be predicted precisely based on the rated compu-

tation capability. Thus, we use another normal distribution T ∼ N(µτ , σ
2
τ ) to model these

variations in computation time. Therefore, the actual task computation time is the sum

of the rated computation time chosen from the K distribution and the computation time

variation chosen from the T distribution. To simulate different stay times, we included 6

categories of vehicles and varied the network flow as well as vehicle density by controlling

the area throughput. For example, both Figure 4.2(b) and Figure 4.2(c) depict the same
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120m segment in the simulated highway with different average numbers of vehicles, where

the stay-time would be very different.

4.5.3 Evaluation of ToG Algorithm

For each assigned task, we defined three possible end states: completed, failed, and dropped.

A task was counted as completed if the TV received computation results from all group

members; alternatively, a task was considered as failed if the TV did not receive compu-

tation results from all group members before the assigned group broke apart; finally, if a

PCH tried to form a task group but could not find any suitable combination (Equation 4.8),

the task was counted as dropped. Note that there were situations that a PCH or TV exited

the simulated area while executing their task. As this was caused by the limited simulation

area instead of failure of the algorithm, we ignored these cases in the evaluation results.

The following metrics are used in our evaluation:

• Task Execution Rate (TER): The percentage of completed tasks over the number of

completed, failed and dropped tasks. The higher the TER is, the higher the ratio of

completed tasks versus task group formation attempts can be obtained, which is one

of the ultimate goals of ToC.

• Average Group Size (AGS): The average group size of completed tasks. Since larger

groups typically produce higher quality results for the cooperative tasks we are inter-

ested in, one of our goals is to maximize group size. Since task group size of failed

tasks and dropped tasks give no indication on the quality of the formed groups, only

completed tasks were counted in this metric.

Unless otherwise noted, the following parameters were used as default setting in all exper-

iments: number of vehicles = 1800, µκ = 1.3 TFLOPs4, σκ = 0.1 TFLOPs, µτ = 0.3

4We set the mean computation rate as 1.3 TFLOPs based on the recently released Nvidia Drive AGX
chip [120] designed for Level 2 as well as Level 3 autonomous vehicles. This is just for an example demon-
stration, the proposed algorithm does not rely on any specific hardware.
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min, στ = 0.2 min, OData = 135T operations, and beacon message frequency = 10Hz.

The communication range among vehicles was set to 300m based on NHTSA’s proposed

rule [114]. Natural packet loss and delay were simulated such that messages were ran-

domly dropped at receiving vehicles with a drop rate of 10% and packets were randomly

delayed within the range of 50ms - 500ms. The minimum size of a task group is 2.

Choosing safety margin

We first evaluated how the safety margin Tth affects ToG’s performance, to determine a

suitable way to configure Tth. Recall that H is the difference between estimated group stay

time and task completion time. Intuitively, a safety margin tolerates the gap between H

and the actual difference of these quantities. Thus, one possibility is to make Tth a certain

percentage of T̂ Task
G (Scenario A). However, a good Tth should also create a good separation

between the distributions of task completion time and vehicle stay time. Then, the variance

of task completion time should play an important role in choosing a proper safety margin.

Thus, a second possibility is to make Tth proportional to στ , the major variance factor in

the actual T Task
G (Scenario B).

Based on this, we did a comparison experiment where we varied Tth as both a percent-

age of the predicted task completion time with 5% increments from 5% to 35%, and as

multiples of στ with 0.25 factor increments from 0.75στ to 2.25στ . We ran simulations

with the default setting for both scenarios, and varied the στ from 0.2 to 0.8 with 0.2 incre-

ments for simulating different task computation time distributions. Thirty simulation runs

were done for each parameter combination, where 200 computation tasks in total were

distributed and tracked in each run. Every simulation run ends when all distributed compu-

tation tasks end in one of the three states (completed, failed, dropped) or the corresponding

TV exits the map. Since TER may be heavily affected by large number of dropped tasks

if there are no suitable members to form the group, we introduce a new metric to help

choose Tth: Task Completion Rate (TCR). TCR is the percentage of completed tasks over
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the number of completed and failed tasks, where dropped tasks are not counted.

The results are reported in Table 4.1. Table 4.1(a) shows the Scenario A result for

each combination of Tth and στ in the format of (TER, TCR, AGS). Not surprisingly, for

the same type of task computation time distribution (same στ ), TCR increases and AGS

decreases as Tth grows. This is because a longer Tth increases the deviation that can be

tolerated from the predicted H value. Thus, intuitively, the larger the Tth, the higher the

TCR should be obtained. Note that different from TCR, TER drops as Tth becomes too

high, because as Tth grows, PCHs may not be able to find enough suitable PCMs to form

groups, thereby causing the drop in TER. Also, as στ increases, the overall performance

drops. This is due to the fact that, the distribution variance of the task computation time

is not considered in this way of choosing Tth. The predicted T̂ Task
G is solely based on

estimated communication cost among task group members and rated task computation time

(see Equation 4.9). Therefore, for larger στ , higher Tth performs better, while for smaller

στ , lower Tth leads to better performance.

Table 4.1(b) shows the result of Scenario B, in the same format as in Table 4.1(a). As

opposed to Scenario A, we see that making the safety margin proportional to στ makes the

results fairly consistent as στ is varied. For any given Tth value, both TER and TCR are

fairly stable for στ in the range [0.2, 0.6]. It is only when στ becomes 0.8 and the safety

margin is large, that we see a significant drop-off in TER, which is the ultimate metric of

interest. We note that, when στ = 0.8, the variance becomes unreasonably large for this

simulation scenario and the poor performance is largely due to failed tasks arising from

group members exiting the map before task completion.

This comparison shows that, if the value of στ is known, Tth in the range of [1.0στ , 2.0στ ]

give consistently good results on the ultimate metric, task execution rate, while also achiev-

ing good group sizes. Obviously, knowing στ means that the task completion time distribu-

tions must be characterized for the tasks being executed. We briefly discuss ways in which

this could be done in Conclusion. The Scenario A results show that, without knowledge of
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Figure 4.3: ToG Performance vs. Number of Vehicles

στ , a larger safety margin might be needed to tolerate the possible range of στ values and

both TER and average group size will be somewhat lower than for Scenario B but good

performance is still achieved.

Based on this discussion, in the remainder of the simulations, we assume στ is known

and we set Tth = 1.25στ and στ = 2 as a representative scenario for further evaluations.

Impact of the number of vehicles

We also evaluated ToG’s performance versus the number of vehicles, as this parameter has a

large impact on the vehicle stay time distribution. For the number of vehicles ranging from

600 to 3400 in increments of 400, we repeated the simulation 30 times for each case. The

results are reported in Figure 4.3. From the figure, we can see that as the number of vehicles

increases, TER becomes closer to TCR and AGS increases from 2.6 to 14.9. Though when

the number of vehicles is very small and vehicles move very freely, ToG is still able to

achieve a TER above 87%, which shows the strong potential of ToG’s estimation of stay

time, making it robust to various traffic scenarios that produce widely different stay time

distributions.
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Figure 4.4: Performance of 3 Approaches vs. Number of Vehicles

Table 4.2: ToG Performance vs. Packet Delay

Delay (ms) [50,250) [50,450) [50,650) [50,850) [50,1050)

TER 92.5 92.1 91.4 90.2 87.3
TCR 92.8 92.6 92.0 90.9 88.5
AGS 6.7 6.6 6.3 6.1 5.4

Impact of communication delay

As the communication environment plays an important role in affecting group stability, we

also evaluated performance over a wide range of packet delays5, which was varied from

[50,250) ms to [50, 1050) ms with 200 ms increments on the maximum delay. Thirty

simulation runs were conducted for each case and the results are reported in Table 4.2.

From the table, we can see that as the packet delay range expands, TER, TCT and AGS

show only small decreases until the packet delay reaches 1050 ms. Even in the range

of [50,1050) ms, our proposed method is still able to achieve 87.3% TER with 5.4 AGS,

which is still good performance. Thanks to the safety margin design and loosely bounded

task completion time estimation, ToG shows good tolerance to communication delays while

maintaining high TER, TCR and AGS.

5Very long packet delay emulates the impact of packet loss.
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4.5.4 Comparison of ToG Algorithm with Other Approaches

To better illustrate the benefits of the ToG Algorithm and how each stage affects the final

performance, we compared its performance against two baseline approaches:

• 1) PC1Base: an approach that adopts the same first-stage parent clustering scheme

as our proposed ToG scheme but uses a baseline second-stage task group forma-

tion methodology, which selects task group members that are within communication

range of the TV and from which the PCH has received at least one beacon message

update in the most recent 5 cycles.

• 2) PC2ToG: an approach that uses a well cited clustering scheme [128] in the first

stage and adopts the same task group formation method as the ToG Algorithm in the

second stage.

By choosing these alternative approaches, we hope to, in part, determine the relative

impacts of the first stage (parent clustering) and second stage (task group formation) of our

ToG approach. Figure 4.4 depicts the performance of the three algorithms versus different

numbers of vehicles (from 600 to 3400 with increments of 400).

We first compare the performance of ToG to that of PC1Base. It is observed that the

TER of PC1Base drops quickly (from 84.4% to 56.8%) as the number of vehicles increases.

Though PC1Base and ToG adopt the same parent clustering scheme, in the task group for-

mation stage, ToG considers the distribution relationship between T̂ Stay
G and T̂ Task

G , and

selects PCMs with a better T̂ Stay
G , T̂ Task

G distribution separation (through Tth) to form a task

group, while PC1Base only considers distance and signal metrics and ignores the factors

of different vehicles’ computing capabilities as well as stay times of different groups. With

PC1Base, as the number of vehicles increases, more PCMs within communication range

and with good connection are not able to finish task computation before separation, caus-

ing the large decrease in TER. Nevertheless, as is expected, the AGS achieved by ToG is

slightly smaller than that achieved by PC1Base, because ToG has more constraints in se-
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lecting task group members as a trade-off for better TER. Overall, this comparison shows

the clear benefits of our task-oriented group formation in successfully completing a much

higher percentage of tasks while achieving close to the same average group size as an ap-

proach that does not factor in the task requirements when choosing a computation group.

Next, we compare the performances of PC1Base and PC2ToG. Similar to PC1Base,

PC2ToG’s TER decreases as the number of vehicles increases, but not by as much (only

from 85.2% to 79.3%). Recall that PC2ToG adopts the same task group formation scheme

as ToG, but uses a different parent clustering scheme. This shows that, while both ToG’s

clustering scheme and its task group formation scheme improve the task execution rate, the

task group formation scheme is the more important factor and using it with other parent

clustering schemes still provides substantial benefits.

In the end, if we put an eye on performance among all three algorithms, we observe

that only ToG’s TER increases as the number of vehicles increases. This is because our

parent clustering scheme both clusters vehicles that tend to stay longer together, which

provides good candidates for second stage task group formation, and is robust across dif-

ferent vehicle densities. Then, in the second stage, only PCMs with higher potential of

completing tasks together before losing connection are selected as task group members.

Besides, it always tries to find the largest possible group to achieve better model training

results. Therefore, we see that AGS grows as the number of vehicles increases. More-

over, although PC2ToG results in lower TER than ToG, it has better TER performance than

PC1Base, and this shows that our second-stage task-oriented group formation algorithm

can be combined with different parent clustering schemes to improve the success rate of

tasks completing.

4.6 Chapter Summary

We have demonstrated that our ToG approach has great potential in achieving high TER

while maximizing AGS, though it requires some prior knowledge of application-specific
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task completion time distributions. The estimation and statistical modeling of task com-

pletion time is an interesting area. Due to time limits, we were not able to address that

aspect in this thesis. However, we will definitely include that part in our future work (refer

to Section 7.2 for further details).
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CHAPTER 5

MULTIVTRAIN: COLLABORATIVE MULTI-VIEW ACTIVE LEARNING FOR

SEGMENTATION IN CONNECTED VEHICLES

Since the information security problem and task-oriented group formation challenge are

addressed in the previous two chapters, in this chapter, we move to the next step of con-

necting online learning and active learning to design an online active learning system for

connected vehicles, where vehicles jointly increase training data availability while requir-

ing much smaller data storage as well as improve model accuracy with faster model updates

without the support of human annotation and remote data centers. Because semantic seg-

mentation is a harder task than classification, and has more use-cases for vehicles, in this

chapter, we use semantic segmentation task as an example to design the framework, but the

framework we proposed is not limited to semantic segmentation only.

To overcome the barrier of insufficient high quality training data covering a complex

range of vehicular scenarios, we propose a multi-view-based active learning framework

(MultiVTrain), which enables the vehicles to collaboratively generate training data and ac-

curate labels without querying remote human annotators. As images captured by RGB

cameras are vulnerable to occlusion and limited field-of-view, a novel multi-view predic-

tion transfer scheme is introduced to leverage sensor data fusion and transfer predictions of

one view to another. This allows information from different views to be aggregated, which

improves the quality of the generated annotations. Extensive evaluation results demon-

strate that our proposed MultiVTrain framework outperforms other active learning base-

lines by ∼ 9%, and passive supervised learning baselines trained with ground truth labels

by ∼ 2.5%, for the same training set size.
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5.1 Introduction

Semantic segmentation is of great significance for autonomous vehicles to understand the

environment [3], where each pixel in an image is marked with categorical labels, represent-

ing drivable area, pedestrians, traffic participants, buildings, etc. Recent advances in deep

learning have led to the development of semantic segmentation using convolutional neural

networks [129, 130, 65]. However, these methods are focused on centralized supervised

learning and, hence, their performance hinges on acquiring a huge amount of well-labeled

data for training. Creating large labeled datasets is prohibitively expensive as it requires

human annotators to accurately trace segment boundaries and produce pixel-level labels.

Moreover, it requires not only collecting traffic scene images with sufficient variations in

terms of lighting conditions, weather, terrain, environment, etc., but also incurs very high

overheads due to the tremendous amount of data that needs to be stored and transferred.

Active learning (AL) has proven to be a powerful technique to improve data efficiency

for supervised learning methods, where the key idea is that a machine learning algorithm

can achieve better performance with fewer training labels if it is allowed to choose the data

from which it learns [80]. Prior works have demonstrated the great potential active learning

can add to the training performance as well as efficiency [84, 83, 131, 77]. However,

most of this work assumes an oracle labels the query data samples, which is impractical

in vehicular networks. In addition, as vehicles capture data in a streaming style, pool-

based re-training is very expensive and can hardly be accomplished by vehicles locally.

Offloading all data and training tasks to a centralized server introduces other challenges

such as scalability and bandwidth [121]. Therefore, a scalable and decentralized active

learning framework without an oracle is needed, so that the vehicles can select data and

train locally in an online fashion.

Advances in connected and autonomous vehicles allow vehicles to exchange informa-

tion through various communication protocols (V2V, V2I, V2X) and be equipped with
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powerful sensors (lidar, camera, etc.) and processing units. This makes it possible to

leverage sensor data fusion and data aggregation from nearby vehicles with multiple view-

ing angles, and potentially address the challenges of occlusion, low resolution due to long

distance, and non-line-of-sight effects. In this work, we propose a multi-view based collab-

orative active learning framework (MultiVTrain) addressing the above challenges, where

a group of vehicles can perform online learning by cooperating to choose informative in-

stances and automatically annotate them without human help, thereby enabling the creation

of accurate models locally without support of a centralized cloud.

5.2 System Model and Preliminaries

In this section, we first present our system model in Section 5.2.1. As depth-fused images

play an important role in our proposed approach, the pre-processing and fusion procedures

we adopt are introduced in Section 5.2.2.

5.2.1 System Model

As shown in Figure 5.1, our proposed system model considers a group of vehicles, where

each is equipped with an RGB camera, a depth sensor (e.g. lidar, depth camera), a pre-

trained machine learning model, and local processing units capable of performing sensor

data fusion and local machine learning model updates. We refer to the vehicles that find

interesting images to learn and initiate a round of collaborative active learning as TaskVe-

hicles (TVs). A TV is shown in orange in Figure 5.1. We refer to the vehicles that are

within communication range of a task vehicle and are capable of serving a collaborative

learning task as ServiceVehicles (SVs). SVs are shown in grey in Figure 5.1. We assume

basic communication among vehicles is supported to allow system-level beacon messages

as well as application messages. The periodic beacon messages allow vehicles to discover

neighboring vehicles. The application messages allow vehicles to exchange sensor data,

calibrated sensor parameter, vehicle location, velocity and moving direction.
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Figure 5.2: Depth-Fused Image

5.2.2 Depth-Fused Images

Sensor fusion is used to aggregate correlated multi-view images from nearby vehicles for

pseudo labeling. As shown in Figure ??, we obtain depth-fused images by fusing informa-

tion from depth sensors with 2D RGB images in an early fusion style. Since our proposed

approach does not have limitation on the choices of depth sensors, we use point clouds,

which can be easily obtained, to illustrate the process of depth-fused image generation.

Following the standardized formulation in [132], let each point in a 3D point cloud be rep-

resented by [x, y, z, 1]T , where x, y, and z are the coordinates of the point. Note that, given

the coordinates of the depth sensor, xs, ys, and zs, the depth information d for the point

[x, y, z, 1]T can be easily calculated. For simplicity, we assume that the d value is stored

as part of the data record of each point. Let a pixel in an image plane be represented by

[u, v, 1]T , where u and v denote the row and column position of the pixel, respectively.

As the relative position between depth sensor and camera can be acquired through cal-
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ibration, the point cloud can be projected to the image pixel array according to:


u

v

1

 = K

R t

0 1




x

y

z

1


(5.1)

where K, R, and t denote the intrinsic matrix, rotation matrix, and translation vector of

the RGB camera, respectively [132]. By applying Equation 5.1 to every point in the point

cloud, point cloud points, along with their depth values, are mapped to corresponding pixels

in the 2D image.1 In this way, a depth map D of the same dimension as an image I captured

by the RGB camera is obtained. Through matrix concatenation, D and I are combined to

become the depth-fused image D = I|D, where the value in each cell of D contains

red, green, blue, and depth values. During the concatenation, pixels without projected

depth info will be automatically assigned∞ as a depth value. To simplify the discussion,

everywhere we use the term “image” in the following sections, we refer to a 2D RGB

image.

5.3 Multi-View Prediction Transfer

As obtaining human annotation is impractical as well as expensive in vehicular networks,

the multi-view prediction transfer (MPT) scheme is proposed to improve the quality of

generated pseudo labels. Inspired by the image-based shape-from-silhouette [133] and

3D shape belief transfer proposed in [134], we use depth-fused images to fuse multi-view

information for better pseudo label generation. For ease of presentation, we simplify the

terminology so that wherever we refer to the “label of an image”, we are referring to the

label matrix that has a label for each pixel of the image.

1All resulting points [u, v] that fall outside the boundary of the image plane are discarded.
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How does MPT work

Consider a scenario that vi and vj are moving on the same road but in different lanes. As

depicted in Figure 5.3 (a) and Figure 5.3 (c), we can see that vi is in front of vj and the black

vehicle shown in vj’s view is indeed vi. Though the locations of vi and vj are different, they

share some common objects in their views. The MPT task goal here is to let vj produce

pseudo labels for vi’s image, denoted by Iti , captured at time step t. Assume vj is equipped

with a local model that can generate per-pixel prediction ϕj,n for every pixel n on its input

image. Thus, two predictions can be made by vj:

1. ϕj,n(Iti ), prediction of vi’s image at time step t;

2. ϕj,n(Itj), prediction of vj’s corresponding image captured at time step t.

As the second prediction is made on a different view (image), we need to transfer the

second one to the first one’s image plane, so that we can aggregate the predictions from

these two different views. Following the procedure introduced in Section 5.2.2, both vi

and vj are able to obtain the depth-fused image Dt
i , Dt

j based on their local sensor data.

As stated in Section 5.2.1, we assume that Dt
i , Ki, and location of vi is known to vj upon

receiving vi’s application message. Then, vj can easily reconstructs the rotation matrix Ri

and translation matrix ti of vi. Therefore, given the depth information incorporated in the

depth-fused image, vj is able to transfer the per-pixel prediction ϕj,n(Itj) to the view of vi

(the plane of Iti ). by:

[ϕj,n(Iti ← Itj)|ϵ] = [ϕj,n(Itj)|Dt
j]K

−1
j

Rj tj

0 1


−1 Ri ti

0 1

Ki (5.2)

where ϵ represents the redundant numbers generated by matrix transformation. Hence by

dropping the ϵ term, the transferred prediction ϕj,n(Iti ← Itj) is obtained as shown in

Figure 5.3 (e). vj now obtains two sets of predictions toward the same input image Iti ,
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incorporating information from two different views. By extending this procedure to a group

of neighboring vehicles with diverse views, a fuller understanding of the common objects

can be obtained.

MPT results improvement

As we can see from the figure that the depth information is missing at certain pixel loca-

tions (black in Figure 5.3 (e)), this is due to either out of range objects or the sparsity of

captured point clouds. If the point clouds are too sparse, the benefit of this scheme will be

deteriorated, because there would be little information to correctly correlate pixel locations

in diverse views. We follow the interpolation method introduced in [135] to up-sample

the depth-fused images, so that the depth-fused images with denser depth information are

obtained. For the pixel location whose depth value is still missing after the cure, we treat

the pixel as out of scope pixel and fill the depth value with +∞.

Adaptation to other image-based machine learning tasks

Moreover, this multi-view shape transfer scheme can be easily adapted to bounding box

object detection, by replacing the per-pixel segmentation prediction to the bounding box

prediction or sample points with depth information inside the bounding box.

5.4 Online Active Learning Framework

In this section, we provide the details of the online active learning framework in our pro-

posed MultiVTrain methodology for the application of semantic segmentation. While we

believe the approach can be extended fairly easily to other tasks such as object detection,

we leave extensions as future work and focus on semantic segmentation from here on. From

the high-level perspective, we address the challenge of expensive data labeling for machine

learning in vehicular networks by online active learning, where no human labelers and cen-

tralized servers are required. The five-stage loop of our online active learning framework
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Figure 5.4: Online Active Learning Framework Loop

is illustrated in Figure 5.4.

We assume an initial segmentation model is pre-trained and installed in each vehicle

before leaving the factory. This model is then updated by each round of active learning.

During the online sample query stage, a vehicle will estimate the informativeness of the

newly captured images. Whenever there is an informative image found, the vehicle will

interact with its neighboring vehicles to collaboratively annotate the image based on group

members’ own images and local model predictions. After group decision of the image

labeling, each vehicle in the group will decide based on their own situation whether this

labeled image should be added to its training dataset. Each vehicle will update its local

model after the updates of its training dataset. However, to reduce computational overhead,

we let each vehicle aggregate multiple new annotated images in their training dataset before

performing a model update. Details of each stage are provided next.

5.4.1 Initialization

In the initialization stage, passive learning consisting of the conventional supervised learn-

ing of a multi-class segmentation based on human annotation (“ground-truth” labeling) is
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performed. The pre-trained base model is produced from M well-labeled data samples.

The base model takes an input image I and outputs a per-pixel object confidence, i.e.,

ϕ(I, ω) ∈ [0, 1]N×C , where N is dimension of the output distribution, and C is the number

of object classes. This is equivalent to a multi-class segmentation task [136]. We use the

standardized sum of pixel-wise cross entropy to measure the segmentation loss:

Lce = −
1

N

N∑
n=1

C∑
c=1

yn,c log(ϕn,c) (5.3)

where y ∈ {0, 1} is the ground truth label, N denotes the number of pixels in an image, and

yn,c and ϕn,c represent the ground truth label and probability prediction for the nth pixel of

class c, respectively.

We assume that different brands of vehicles hold different initial models as, in reality,

they usually do not share labeled datasets. Moreover, as different vehicles hold different

trip histories, even if the initial model is the same at the beginning, the model will be

different after certain times of local model updates. Therefore, we assume that the initial

models for all vehicles are different in some way.

5.4.2 Sample Query

The key reason why active learning can efficiently improve a model with less training data

is that it allows the machine learning algorithm to choose the data from which it learns, e.g.

by selecting images that the current model does not predict well. Such data is said to be

informative [80]. Scoring the informativeness of an unlabeled image is, therefore, an im-

portant component of selecting new input data to learn from. In our proposed MultiVTrain

method, we use the uncertainty concept to evaluate the informativeness of an image [137].

Thus, the informativeness scoring S of an image I with N pixels is calculated by cross-

entropy as:

S(I) = 1

N

N∑
n=1

H(ϕn) = −
1

N

N∑
n=1

C∑
c=1

ϕn,c log(ϕn,c) (5.4)
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H(ϕn) represents the entropy of prediction for one pixel in N , calculated by
∑C

c=1 ϕn,c log(ϕn,c),

where ϕn,c denotes the confidence that pixel n should be predicted as class c.

Though the common approaches use the computed informativeness score to decide

which images should be sampled for annotation, yet in vehicular networks, images arrive

in a streaming way, where consecutive images in a certain range could score similarly due

to the similar view. For instance, if a vehicle stops at a crossing due to red light, the images

captured during the wait will be very similar, which need not be learned multiple times,

as it wastes the annotation as well as training resources. Therefore we introduce another

metric - cross-image diversity, where pixel-wise prediction histogram plus vehicle location

difference are counted, to avoid choosing consecutive images with a similar view. An

image is selected as a query sample if and only if both informativeness score and cross-

image diversity are larger than certain threshold.

Note that different from other active learning frameworks, we will not train on every

queried samples. Considering the relatively limited local resources, we allow the vehicle to

decide whether to learn from a sample in the Training Dataset Update stage. More details

are provided in Section 5.4.4

5.4.3 Online Collaborative Annotation

Though offloading all sampled data to remote cloud and relying on human labeling is con-

sidered accurate and reliable, the delay and labor cost is non-negligible. Besides, neigh-

boring vehicles usually hold overlapping objects in their views, where the views usually

capture the same object with different angles, distances, and occlusion conditions. Hence,

by combining these multiple views together, a fuller observation of these objects can be

obtained and better segmentation results can be achieved than using images from one sin-

gle view. Therefore, instead of resorting to human labeling, MultiVTrain achieves data

annotation in a distributed fashion without human intervention by leveraging neighboring

vehicles’ different local models along with their multi-view depth-fused images.
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As described in Section 5.2.1, we assume that each vehicle is equipped with a depth

sensor and an RGB camera facing the front and that a 3D point cloud obtained from the

depth sensor is fused with a 2D color image captured by the RGB camera to produce a

depth-fused image. Once a sample image Iti is successfully selected during the sample

query stage, its corresponding depth-fused image will be generated. Following the notation

used in Section 5.3, let Dt
i = (Iti , dti) denote a depth-fused image generated by vehicle

vi in time step t, and ϕi(Iti ) denote the segmentation prediction generated by vi’s local

model towards Iti . As illustrated in Figure 5.1, the TV (vi ∈ G) will form a group G with

Algorithm 4: Depth-Based Weighted Voting Scheme for Pseudo Label Integra-
tion

45 task vehicle: vi ∈ G, service vehicle: vj ∈ G;
46 while vi selects a valid sample image Iti do
47 vi broadcast the corresponding depth-fused image Dt

i and
prediction ϕi(Iti );

48 for all available vj receives Dt
i, ϕi(Iti ) do

49 computes prediction ϕj(Iti ) using vj’s local model;
50 apply MPT scheme (Equation 5.2) and obtain ϕj(Iti ← Itj);
51 for each pixel n in Iti do
52 if (n : Iti ← Itj) exist in Iti then
53 obtain Lj,n(Iti ) based on Equation 5.5
54 else
55 Lj,n(Iti ) = ϕj,n(Iti )

56 broadcast Lj,n(Iti ) to other group members;

57 for all members in G do
58 take vi’s ϕi(Iti ) as Li,n(Iti );
59 for each pixel n in Iti do

60 LG,n(Iti ) = 1
|G|

|G|∑
vk∈G
Lk,n(Iti )

61 go back to the start of WHILE loop;

its neighboring vehicles (vj ∈ G), and broadcast its depth-fused image Dt
i and prediction
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ϕi(Iti ) to the group members (Lines 2-3 of Algorithm 1). Upon receiving TV’s data, a

SV will need to produce a pseudo label towards Iti . Since different vehicles hold differ-

ent pre-trained local models and each vehicle’s travel history is unique, their capability of

prediction for different types of objects, lighting condition, traffic scenario, etc. will be

different. It is important to aggregate the strength of prediction of diverse models. There-

fore, a SV vj will first compute a prediction directly based on its local model to obtain

ϕj(Iti ) (Line 5). However, as a vehicle’s local model is not perfectly accurate and could

potentially be affected by the view and distance to the components, we use MPT scheme

(see Section 5.3) to obtain a transferred prediction ϕj(Iti ← Itj) based on SV’s own view.

A pseudo label would be generated by synthesizing the local model prediction and MPT

generated prediction. (Lines 7-11).

Intuitively, if an object is closer to the vehicle (depth d) or is more centered to the

camera (angle α), the object is less likely to be occluded and is more likely to show bet-

ter resolution in the captured image. Hence, a novel depth-boosted prediction integration

scheme is proposed as:

Lj,n(Iti ) = γj,nϕj,n(Iti ← Itj) + (1− γj,n)ϕj,n(Iti )),

γj,n =
1
2 −

1
2 sin(

|αt
j,n|−|αt

i,n|
ᾱ )

1 + e
dt
j,n

−dt
i,n

d̄

(5.5)

where Lj,n denotes the pseudo label generated by vj for pixel n. γ ∈ [0, 1] is a weighting

coefficient defined to combine the two predictions, which is based on depth (d) as well as

angle (α2) to the center of the camera. Angle αt
j,n, αt

i,n, emulate the pixel n’s centerness to

the camera of vj and vi respectively, such that the more center position the pixel locates,

the larger the angle becomes. Similarly, dtj,n, dti,n represent the depth value at pixel n in

Dt
j and Dt

i respectively. The smaller the depth is, the content captured by pixel n is closer

2The angle can be reconstructed from depth-fused image through arccos xn−xo√
(xn−xo)2+(yn−yo)2

, where xn,

xo denotes the x axis coordinate of pixel n and camera center o, same as yn, yo.
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to the camera (vehicle). ᾱ and d̄ are two hyper-parameters that control the sensitivity to

the angle and depth value, where the larger the hyper-parameter is, Lj,n is less sensitive

to the corresponding value. In summary, the larger the γ becomes at pixel n, the higher

weight will be given to the transferred prediction ϕj,n(Iti ← Itj), because we believe that

at pixel n, vj’s view provides better information than vi’s view, and vice versa. Note there

is a special case that when γj,n is as close as to 0.25, the view is as close as to the view

of the TV. When γ = 0.25, the two views are considered the same. When the transferred

prediction ϕj,n(Iti ← Itj) is missing at pixel n, dnj =∞ and γ becomes zero, in which only

the local model prediction ϕj,n(Iti ) will be factored in.

Once a SV obtains per-pixel level pseudo label Lj,n(Iti ), it sends its vote to other group

members (Line 12). Each group member integrates the pseudo label vote produced by other

group members through average voting and obtains the group decision of final label for the

sample image Itj . As TV is the initiator and does not have another view, its prediction

ϕi(Iti ) will be taken as its vote of pseudo label directly. (Lines 13-16).

5.4.4 Training Dataset and Local Model Update

Although the image sample is selected by task vehicles instead of service vehicles, the

sample might also be informative to learn for the service vehicles or uninformative to learn

even for the task vehicle, as the informativeness is decided by estimation. Therefore, we

let each vehicle participating in the collaborative annotation stage compare the group an-

notation results with its own local prediction results. If the prediction difference between

local prediction and the group annotation is larger than certain threshold Tth, this sample

is considered as valuable to learn. In that case, this would also add the data sample into its

training dataset.

To avoid catastrophic forgetting, i.e., forgetting old tasks in the presence of more recent

tasks and to save computation resources, we update the local model once 64 new infor-

mative data samples are captured. We follow the online continual learning paradigm as
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discussed in [138]. To be more specific, we adopt the naive rehearsal method [139], where

a small replay buffer is built to store a fraction of previous data randomly. While conduct-

ing a new round of model update, each mini-batch is constructed by an equal amount (8/8)

of new data and the rehearsal data. Due to GPU limit, we use (8, 8) split instead. Though

the (64/64) setup listed in the original paper is more ideal, the 1 : 1 ratio between new data

and the rehearsal data in each batch size is more important.

5.5 Simulation Setup and Data Collection

5.5.1 Experiment Setup

The evaluation is performed using the Carla simulator [98], which supports a variety of

towns, driving scenarios, types of sensors, and ground-truth label generation. Unlike other

data sources, Carla allows us to generate images of the same objects from multiple vehicles

at different locations at the same time, which is necessary for evaluating our proposed

approach. Details of the experimental setup are provided below.

Simulation Scenario

A group of five vehicles was simulated in Carla environment. In order to let them stay

within communication range so that groups can be formed, the built-in PDE control is

leveraged to limit the maximum pair-wise distance among the vehicles to be 250m. Since

we do want to simulate different aspects of multi-view effects, nothing else was controlled

other than the pair-wise distance. Thus, the relative position, direction, speed, etc. between

the vehicles were dynamic. An initial model, a depth camera3, and an RGB camera were

attached to each vehicle and calibrated in the same way, so that with the application mes-

sages as described in Section 5.2.1, a vehicle was able to calculate neighboring vehicles’

3As discussed earlier, either depth camera or lidar can be used to provide depth info and evaluate our
proposed approach. The raw data captured by lidar is 3D point cloud while the raw data captured by depth
camera is encoded in 2D matrix format, which can be reconstructed to 3D point cloud if needed. Thus, depth
camera is used to save I/O delay and computer storage. However, which sensor is used should not impact the
performance of the approach.
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Table 5.1: Model Training Settings Overview (gt represents “groundtruth”,
pl represents “pseudo label”)

Models Training Method Training Set

PSP-pagt Passive, Offline 1148 (TS 1, GT)
Deepv3-pagt Passive, Offline 1148 (TS 1, GT)
PSP-acgt Active, Offline 700 (TS 1, GT) + 448 (TS 2, GT)
Deepv3-acgt Active, Offline 700 (TS 1, GT) + 448 (TS 2, GT)
PSP-acpl Active, Offline 700 (TS 1, GT) + 448 (TS 2, PL)
Deepv3-acpl Active, Offline 700 (TS 1, GT) + 448 (TS 2, PL)
ACMV-acpl Active, Online 700 (TS 1, GT) + 448 (TS 3, PL)
ACWA-acpl Active, Online 700 (TS 1, GT) + 448 (TS 4, PL)
MultiV-acpl Active, Online 700 (TS 1, GT) + 448 (TS 2, PL)
MultiV-acgt Active, Online 700 (TS 1, GT) + 448 (TS 2, GT)

rotation and translation matrices easily. At run time, each vehicle captures an image ev-

ery 100 ms and tries to find a sample image to learn. Once a sample is found, the group

of vehicles will cooperatively annotate the sample and update their training sets and local

models as needed.

Dataset Collection

Four training sets, one validation set, and one test set were collected using Carla. Training

set 1 (TS 1: 1400 images) and the validation set (200 images) for building the passive learn-

ing models was generated by a single vehicle traveling in the built-in town maps (Town01

and Town07), where groundtruth labels “-pagt”) are auto-generated by Carla. The test set,

which consists of 400 images, was collected through the same procedure but from Town05

instead, so that we can make sure that no vehicles have seen similar scenes before to avoid

unfair comparisons. Training set 2 (TS 2: 448 images) is collected through simulation of

active learning (AL), where two sets of labels are obtained: auto-generated groundtruth

labels “-acgt”) and pseudo labels (“-acpl”) generated by a module implementing our pro-
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posed MultiVTrain procedure. Training sets 3 and 4 (TS 3: 448 images and TS 4: 448

images) of the same size as TS 2 are generated under the exact same simulation set up

but are used to run different AL frameworks for comparison. Implementation details are

provided in Section 5.5.2. Finally, all images are collected in the form of RGB images

with the resolution of 680x420 pixels, while other information such as depth-fused images

and vehicle transformations are also recorded for TS 2, in order to be able to repeat the

experiments.

5.5.2 Training Details

Two MultiVTrain models and eight baseline models are trained with different settings to

provide a thorough evaluation. All models are built using the PyTorch framework and

trained using a single NVIDIA-RTX2080Ti GPU. The Adam optimizer was adopted and

all models were trained for 40 epochs and a batch size of 16. The learning rate was set to

1e-4. Details of each training method are provided below.

Training for MultiVTrain

PSPNet was selected as our segmentation network and the two hyper-parameters ᾱ and d̄

were set to 1.5 and 500 empirically. Each initial model was trained with 700 randomly

sampled images from TS 1 and data augmentation including horizontal flip, random rota-

tion, random crop, Gaussian noises were used. The same validation set was used for all

initial models. During the AL stages, no data augmentation was done and the batch size

of 16 was split to (8/8) as described in Section 5.4.4. Simulation ended after 448 samples

were added to a training set, where 228 samples were each collected from Town01 and

Town07. To simplify the evaluation process and fairly compare performance with baseline

approaches, we recorded all sampled data and its corresponding parameters, so that other

approaches could be trained on the exact same dataset. The MultiVTrain model trained

with pseudo labels is denoted by “MultiV-acpl”, while the model trained with ground truth
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labels is denoted by “MultiV-acgt”.

Training for Baselines

We compare our approach with different baseline algorithms by adapting two existing

supervised learning methods, PSP [140] and DeepLabv3 [141], and the active learning

schemes in [142, 2].

• Supervised Learning Baselines: To evaluate how each stage of our active learning

framework performs, we trained the two supervised learning methods in offline style,

which generates the best predictor by learning on the entire training data set at once.

With the PSP method, we randomly selected 1148 images from TS 1 with ground

truth labels to produce the PSP-pagt model.Then, 700 images randomly sampled

from TS 1 plus 448 random images from TS 2 with pseudo labels generated with

our AL approach were used to produce PSP-acpl. Finally, the same set of 700 TS 1

images and 448 TS 2 images but with ground truth labels were used to obtain PSP-

acgt. In the exact same way as just described for PSP, we generated three models

using the DeepLabv3 method, which are denoted by Deepv3-pagt, Deepv3-acpl and

Deepv3-acgt.

• Active Learning Baselines: To compare MultiVTrain with other AL approaches,

two AL baselines were implemented and trained in an online style as in our approach,

where selected data is used to update the best predictor for future data at each step,

instead of retraining on the entire new dataset. We used the uncertainty based data

selection and majority voting (MV) pseudo label generation method, as proposed

in [142], and trained in the exact same manner as in MultiV-acpl to produce the

ACMV-acpl model. Similarly, we replaced our proposed data selection and collab-

orative annotation methods with the quality-diversity selection (QDS) and weighted

average (WA) integration method, as proposed in [2], to obtain ACWA-acpl.
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A summary of the training methods and applied training sets for all models is provided

in Table 5.1.

5.6 Evaluation

As different image segmentation tasks serve different application goals, we use the stan-

dardized Intersection-Over-Union (IoU), also referred to as Jaccard Score, to evaluate the

per-class prediction performance. The IoU is calculated as:

IoU =
ncc

ncc +
∑C

η ̸=c(nηc + ncη)
(5.6)

where ncc presents the number of pixels which are labeled as class c and predicted as class

c (True Positives), nηc is the number of pixels which are not labeled as class c but predicted

as class c (False Positives); similarly, ncη is the number of pixels which are labeled as class

c but are not predicted as class c (False Negatives). The mean over the per-class IoUs,

denoted by mIoU, is used to quantify the overall segmentation performance. A quantitative

comparison is shown in Table 5.2. Ten models with different configurations are tested with

the same unseen test set (collected from Town05 as described in Section 5.5.1). Per-class

IoUs are shown in the first 13 data columns and the mIoU is provided in the last column.

5.6.1 Performance of Different Aspects of MultiVTrain

We begin by evaluating three important aspects of our proposed MultiVTrain framework:

1. whether it is effectively selecting data samples that improve the model;

2. how its generated annotations (pseudo labels) compare to ground truth;

3. whether it is vulnerable/sensitive to the common forgetting issue that affects some

AL approaches.
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Effectiveness of Sample Data Selection

PSP-pagt and Deepv3-pagt are both popular supervised learning models trained in pas-

sive style where training samples are not selected as in AL (see Table 5.1). In order to

determine how well our data selection method works, we compare these approaches to

PSP-acgt and Deepv3-acgt, which are trained using the data selected by our method. From

Table 5.2, we see that the mIoU of PSP-acgt is 6.8% higher than that of PSP-pagt and the

mIoU of Deepv3-acgt is 6.2% higher than that of Deepv3-pagt. For classes that are not

predicted well by the passive methods, e.g. traffic light, pedestrian, and car, PSP-acgt and

Deepv3-acgt outperform PSP-pagt and Deepv3-pagt by a larger margin, up to 14.8%. This

demonstrates that our approach to identifying informative data to learn from, rather than

simply learning more data, is effective at improving model accuracy.

Effectiveness of Collaborative Annotation

MultiV-acgt is trained like MultiV-acpl except for using ground truth labels instead of our

collaborative annotation procedure that produces pseudo labels. From Table 5.2, we see

that the mIoU of MultiV-acgt is only 1.5% higher than MultiV-acpl, which shows that our

proposed collaborative annotation achieves excellent performance with the pseudo labels it

produces. Performance across the individual classes is fairly even, with differences in the

range of 0.1% to 4.3% between ground truth labels and pseudo labels. However, even for

the worst case with our pseudo labeling (“car (all types)”), ground truth labels produce only

4.3% better accuracy than our pseudo labels, which is not a huge margin. Overall, these

results show that the pseudo labels produced by our MPT and depth-boosted integration

scheme perform well in that they produce close to ground truth performance.

Impact of Online Model Updates

With online learning, models are updated in a faster and more resource-efficient manner,

which is particularly important for vehicular networks. However, the “forgetting” problem
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can occur with online learning, which happens when the model learns new unseen data

and gradually forgets about important information learned in the past. By integrating the

rehearsal-C approach [139] of training with both new and old data into our AL framework,

the negative impacts caused by online learning can be minimized. By comparing results of

PSP-acpl and Deepv3-acpl with MultiV-acpl (or PSP-acgt and Deepv3-acgt with MultiV-

acgt), however, we do see that offline model training does perform slightly better than with

online training, albeit at a very high cost in terms of speed and efficiency.

5.6.2 Comparison of MultiVTrain and AL Baselines

As mentioned earlier, we adapted two active learning baseline approaches to our problem

setting and compared them to MultiVTrain. As shown in Table 5.2, MultiV-acpl achieves

8.1% to 10.8% higher mIoU than ACMV-acpl and ACWA-acpl, with large margins (above

5%) in each per-class improvement, except for pole. This is mainly because both ACMV-

acpl and ACWA-acpl neglect the importance of distance to the objects when determining

the best pseudo labels. Also, though ACWA-acpl factors in the rated accuracy of the initial

model, this approach does not adapt well to new never-before-seen data. Performing well

on a limited test set does not mean it will achieve comparable performance on other test sets.

As described earlier, we used Town01 and Town07 to generate training data, while leaving

the unseen dataset collected from Town05 for testing, which we believe is representative of

how active learning in vehicles will occur in practice.

5.6.3 MultiVTrain Performance with Varying Parameters

In order to study MultiVTrain performance and conduct fair comparisons with multiple

baselines, we fixed several parameters in the prior results. Here, we study the approach’s

performance as some of those parameters are varied.
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Figure 5.5: Model Accuracy (mIoU, IoU) vs. Group Size

Model Accuracy vs. Group Size

As we replace the human annotator with a group of vehicles with multiviews, the group

size affects MultiVTrain’s performance. We varied the group size from 2 to 8 with the

remaining parameters unchanged. Selected classes are shown in Figure 5.5. We see that as

the number of group participants grows, the performance increases. However, the model

accuracy improves fastest when going from 3 up to 6 vehicles, while improvement from 2 to

3 and beyond 6 is much smaller. Moreover, the smaller size objects such as pedestrian/rider,

traffic sign, and car (all type) show close to linear growth as the group size increases, while

larger objects like road and building show more IoU improvement when the group size is

increased from 2 to 4 and 2 to 3. These results show that it is important to have around 4

vehicles within a group to provide sufficient view diversity and that gains are smaller with

only 2–3 vehicles.

Model Accuracy vs. Initial Training Set Size

Intuitively, better accuracy of the initial model could lead to generated annotations with

higher quality. As the accuracy of the initial model is mainly decided by the size of the
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Figure 5.6: Model Accuracy (mIoU) vs. Initial Training Set Size

training set, we evaluate how the initial model affects the training results by varying the

initial training set size from 500 to 900, leaving the other portion of 448 images with -acpl

labels from TS 2 unchanged. Four other models are tested along with MultiVTrain and

the results are shown in Figure 5.6. We observe from the figure that as the size of training

set grows, the performance for all models grows. Note that ACMV-acpl and ACWA-acpl

are more sensitive to the size of initial model, which implies that both majority voting and

weighted average integration method mainly account for the initial model performance.

This is also why our approach does not show a big performance drop when size = 600,

contrary to the other AL approaches. Other than only considering the initial model pre-

diction (heavily relies on initial model accuracy), our proposed method accounts for the

multi-view benefits by leveraging the depth information, which enables the vehicle to still

improve model performance when the initial model is not at a high quality. This aligns

with the current real world application requirement in vehicular networks, where existing

dataset is limited and cannot well account for all complex scenarios.
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Other Interesting Parameters

Other than group size and initial model training size, we believe the group members’ view

diversity and the AL stage training set size are also interesting to study for future work.

Due to time limit, we cannot evaluate these parameters in detail but a short discussion is

provided.

• Diversity of Views: as demonstrated in prior computer vision works [134] the more

views of the same object that can be obtained, the higher chance the object can be

better detected by aggregating the information, which agrees with our evaluation

results in Section 5.6.1 and Section 5.6.3. However, given the same group size, we

were not able to evaluate how the diversity of views affects the results.

• AL Training Set Size: Though AL is known for its efficiency, how would the per-

formance of MultiVTrain grow as the AL training set grows. Will the current perfor-

mance trend still hold or will the improvement be even larger if the AL training set

grows from 448 to 448M, for example? Since our proposed method allows vehicles

to collect data and update the model at run time, it is reasonable to let the vehicles

continue learning until the model cannot be further improved. The improvement cap

in terms of AL training size is, therefore, another interesting topic for future research.

5.7 Chapter Summary

In this chapter, we presented MultiVTrain, an online AL framework, which allows the

vehicles to cooperatively generate training data and corresponding labels without querying

remote human annotators. In addition, a novel multiview prediction transfer scheme is

proposed to enhance label quality via sensor data fusion and multiview alignment.
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CHAPTER 6

SIM2SCALE: A CO-SIMULATION FRAMEWORK FOR DEVELOPING AND

EVALUATING ALGORITHMS FOR CONNECTED AND AUTONOMOUS

VEHICLES

As discussed in previous chapters, CAVs have the potential to reduce accidents, enhance

the quality of life, and improve traffic/energy efficiency. Despite their conceptual appeal,

developing as well as evaluating algorithms/applications in CAVs is a challenge, where

the 3D scenario, traffic/mobility, and inter-vehicle communication are all important as-

pects that should be incorporated. Running experiments in a testbed is costly and cannot

reproduce many conditions that a vehicle encounters in the real world. Besides, existing

simulators can hardly support co-simulation of all three of the aforementioned aspects.

In this thesis, we describe Sim2Scale, a co-simulation framework we developed for CAV

algorithms/applications, which integrates 3D scenarios, traffic/mobility, and inter-vehicle

communication. Sim2Scale is built on top of the open-sourced libraries of SUMO, Veins,

and CARLA, and provides both Python script and GUI interfaces for ease of use. The the-

sis also describes a collaborative active learning application example and presents a basic

evaluation of it using the Sim2Scale framework in order to illustrate the effectiveness and

customizability of the framework.

6.1 Introduction

The development as well as deployment of CAVs requires extensive evaluations of devel-

oped control, perception, localization, and more advanced algorithms. Directly testing on

real road may not only lead to tremendous cost, hardly reproducible testing results, but also

serious injuries [143]. Thus, extensive simulations and verification in a realistic simulation

environment before proving ground and public road testing is of crucial importance.
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Nonetheless, there is a gap between the growing demands and currently available sim-

ulation platforms. First, the level of detail in the simulation environment helps ensure the

safety of a real-world implementation and reduces algorithm development cost by allow-

ing developers to complete most of the validation in the simulation environment before

testing on real roads. Considering sensor sets like camera, LiDAR, and communication

protocols like V2V, V2X used in CAVs, it is of significant importance to create a simula-

tion platform that support sensor simulations as realistically as possible, where a realistic

3D scene becomes an underlying requirement. Second, while sensor and 3D scene sim-

ulation are essential for perception algorithm development, such simulation platform will

be incomplete for the simulation of holistic CAVs operation without being complemented

by a realistic mobility model and various traffic scenarios. Third, as mentioned in [144],

various distributed computation tasks require not only data sharing but also cooperative

computation among vehicles [116], e.g. reinforcement learning based cooperative driv-

ing [117], distributed consensus based false information filtering [118], collaborative active

learning [145], etc.. Therefore, providing realistic simulation of different communication

protocols in vehicular networks such as V2V, V2I, and V2X is also a necessity. Though

various simulation platforms like VISSIM [93], Carla [98], SUMO [91], AutoSim [92],

Veins [95] exist, they are either not fully open-sourced or cannot simulate different aspects

of sensors, mobility/traffic and communication along with each other, showing limitations

on evaluating applications affects by all three aspects.

To address the above challenges, in this chapter, we present a co-simulation platform

framework to develop, evaluate and validate connected autonomous vehicles technologies,

which requires realistic simulation of 3D scene/sensors, mobility as well as traffic, and

communication in run time.
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6.2 Architecture

In this section, we first present an overview of our Sim2Scale co-simulation framework, as

illustrated in Figure 6.1, and then describe each of its building blocks and their realization

details.

6.2.1 Framework Overview

As discussed in Section 2.3 Section 6.1, there are various commercial and open-sourced

vehicular simulators that support a part of our simulation goal. In this proposed work,

three widely used open-sourced simulation platform are adopted and integrated into one

combined platform:

• SUMO [91], a highly portable, microscopic and continuous traffic simulation pack-

age designed to handle large networks, is selected to model the scalable mobility of

vehicles and different traffic scenarios in a given map;

• Veins [95], which provides comprehensive models of IEEE 802.11p and IEEE 1609.4

DSRC/WAVE network layers, including multi-channel operation, QoS channel ac-

cess, noise and interference effects, etc., is selected to serve the simulation purpose

of connectivity among vehicles;

• CARLA [98], which provides open digital assets (urban/suburban layouts, buildings,

vehicles, etc.) that were created to support development, training, and validation of

autonomous driving systems, is selected to simulate the 3D environment and interac-

tions with various sensor sets such as lidar, camera, radar, etc..

Besides, as CARLA itself is designed for simulating and validating autonomous vehicle

applications, and provides flexible architecture, Python APIs, as well as co-simulation ca-

pabilities with SUMO, our proposed work follows the architecture of the CARLA suite,

and integrates the communication simulation features of Veins into CARLA/SUMO.
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As shown in Figure 6.1, Sim2Scale is a co-simulation framework build on top of

SUMO, Veins, and CARLA. SUMO itself serves a central TraCI server (TCP connec-

tion), simulating vehicle mobility and traffic. Veins and CARLA, both serve as standalone

SUMO TraCI clients, simulating the inter-vehicle communication and 3D environment,

respectively. At each time step, Veins and CARLA send communication state and environ-

ment state to the SUMO server and wait for the server to reply with the next mobility state.

Other application level algorithms such as group formation, sensor data fusion, and deep

learning algorithms can be implemented as submodules to the Veins or CARLA clients (re-

fer to Section 6.3 for an illustrative example). For ease of use, two interfaces (Python script

and QT GUI) and a data output handler are provided. These allow users to run, customize,

record, and access needed data seamlessly.

6.2.2 Interfaces

Sim2Scale provides both Python script and QT GUI interfaces. The Python interface ex-

tends from the Python API of CARLA and is fully customizable, whereas the QT GUI

interface provides a quicker and easier configuration as well as visualization of certain pre-

loaded parameters, but is less customizable. Details of both interfaces are provided next.

Python Interface

By using the original Python API provided by CARLA, users are able to select maps,

change weather, spawn/control vehicles, pedestrians, and other types of moving/static ac-

tors. We extend the script interface on top of the existing CARLA APIs by adding config-

uration support to parameters of SUMO and Veins Suite, e.g., different mobility patterns,

traffic densities, sensor usage/installation, sensor data fusion, communication models, etc.
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Figure 6.2: Sim2Scale QT GUI Interface

GUI Interface

Though the Python script interface provides better customization support, a GUI interface

with visualization is easier and faster for repetitive evaluations. A GUI interface is shown

in Figure 6.2, where two sets of configuration parameters are allowed: Framework Setting

and Scenario Setting. In Framework Setting, users can quickly configure the environmental

path for SUMO server, Veins/Carla clients, and maps/networks with which the simulation

is going to run. Any valid map/network obtained from OpenStreetMap [112] with CARLA

usable 3D scene is loadable. In Scenario Setting, users can easily obtain reasonable mo-

bility and traffic according to the given map by configuring the total number of vehicles,

mobility model, and driver behavior. Moreover, commonly used communication param-

eters such as packet drop rate and vehicle communication range are configurable through

the GUI. For users’ convenience, certain commonly used sensors can be selected in the

GUI, which causes them to be installed on vehicles based on the KITTI standard [4] and
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automatically collect data during the simulation run. Note that in our provided simulation

example, a simple task group formation algorithm is included, which serves as a good im-

plementation example for those who want to study applications that require collaboration

or clustering among vehicles. Users who do not need this feature can simply untick the

”Enable” button to disable this feature.

6.2.3 Traffic & Mobility Simulation

Although CARLA can create traffic around the target area by randomly spawning vehi-

cles and setting them to run in autopilot mode, its built-in vehicle dynamics are modeled

based on NVIDIA PhysX Vehicle, which cannot represent vehicle dynamics accurately. To

obtain more realistic traffic simulations, SUMO are used to generate traffic in the given

map. SUMO adopts the microscopic traffic model, where each vehicle and its dynamics

are simulated individually with various extended configurations like driver behavior (impa-

tience), vehicle substructure, etc. Therefore, by generating vehicle dynamics with SUMO’s

car following model, lane-change model, and junction behavior model, more realistic and

reasonable vehicle dynamics are obtained.

6.2.4 Inter-Vehicle Communication Simulation

Advances in communication technologies for CAVs allow vehicles to exchange informa-

tion through various communication protocols (V2V, V2I, V2X). This makes it possible to

leverage sensor data fusion and data aggregation from nearby vehicles with multiple view-

ing angles, and potentially address the challenges of occlusion, low resolution due to long

distance, and non-line-of-sight effects.

Nevertheless, extending Veins suite to Carla in a decoupled way is not an easy task.

Although both Veins and Carla support co-simulation with SUMO, Veins is mainly writ-

ten with C++ with development of Python APIs in a very early stage. Moreover, Veins is

built on top of open-source OMNeT++ [146] and SUMO, where road traffic simulation is
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performed by SUMO and network simulation is performed by OMNeT++ along with the

physical layer modelling toolkit MiXiM. The way Veins and CARLA incorporate SUMO

makes it difficult to extend Veins to CARLA. As a result, we abandoned the built-in SUMO

launcher from Veins, and developed a new launcher script and clock master to control as

well as synchronize the inter-module communication among Veins, SUMO and CARLA.

However, all network communication models are directly adopted from Veins. Full capa-

bility of the original Veins suite is maintained.

Additionally, a Python-based communication data output wrapper is provided to ease

integration with the C++ code. Other modules can access all collected communication data

up to time step t − 1 through the wrapper during run time when the simulator is in time

step t.

6.2.5 3D Environment & Sensor Simulation

With the synthetic driving scenarios, we can conduct multiple simulation runs in a de-

terministic and reproducible fashion. As CARLA has already embedded both urban and

suburban synthetic 3D scenes, with realistic variations, we put our focus on the sensor

simulation side. First, we standardized the sensor installation position based on the KITTI

standard [4]. Then we developed a sensor data collection API to support the different

sensor data collection and operation requirements. For example, a camera can be easily

configured to collect RGB data/single-color-channel data, with/without segmentation label,

with/without coordinate projection, with/without data fusion with other sensors like lidar,

save-to-drive or stream to application, etc.. With these sensor APIs, a user can quickly

configure sensor settings and get ready to run based on their use case with just a few lines

of Python code.
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6.2.6 Application Simulation

As shown in Figure 6.1, a decoupled application module is included along with the SUMO,

Veins, and Carla modules. During run time, it can access both environment/sensor data and

communication data through the data output wrapper and current state variables directly

from Veins and CARLA. An example collaborative active learning use case (refer to Sec-

tion 6.3) has been implemented to demonstrate how to access data from other modules,

however, code in this module can be fully replaced by customized scripts.

6.3 Example Scenario

We implemented an example scenario in a synthetic town provided by CARLA, where a

baseline collaborative active learning algorithm for image segmentation is simulated fol-

lowing a similar approach to [145, 2]. CARLA’s built-in map Town05 is used as our simu-

lation scene. Each vehicle is equipped with a local model, which is a pre-trained segmen-

tation model that is capable of producing coarse segmentation labels in a captured image1.

A vehicle that is designated as a task vehicle selects a sample image to learn in each round

of active learning. Then, it tries to form a task group with neighboring vehicles within

its communication range through a simple task group formation scheme described in Al-

gorithm 5 (refer to Section 6.3.2 for details) to collaboratively compute annotation labels

in the selected sample image. Lastly, the task vehicle adds the selected sample image to

its training data set and updates its local model accordingly (refer to Section 6.3.1 for fur-

ther details). As the co-simulation including mobility/traffic, network communication, 3D

sensor data processing, and application is run on a desktop with a single GPU, we simpli-

fied the simulation to include only one task vehicle and evaluated the performance of our

proposed Sim2Scale platform by monitoring the events related to the designated task ve-

hicle. However, the framework supports larger scale simulations and more complex tasks,

1The labels are from the Cityscapes dataset categories, available at https://www.cityscapes-
dataset.com/dataset-overview/class-definitions.
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especially with stronger hardware and/or more time for simulation.

6.3.1 Collaborative Active Learning Algorithm

Figure 6.3 provides an overview of the example collaborative active learning algorithm,

which is adapted based on a framework used in [145] and [2]. We first run a single vehicle

in Town01 and Town07 to collect an image data set to obtain pre-trained models. These

towns are different from Town05, which is used for simulation, to ensure the run time data is

unseen. A total of 2400 images were collected (we refer to this dataset as TS0), with 1200

images from Town01 and 1200 images from Town07. Each vehicle in the simulation is

then equipped with a pre-trained segmentation model, which is trained with 800 randomly

selected images from TS0 (a different set of random images for each simulated vehicle).

Each pre-trained model is tested on the same test set and obtained a rated model accuracy.

Let Avi denote the rated model accuracy of the local model on vehicle vi. The model

accuracy is calculated by the mean Intersection-over-Union (mIoU), which is a commonly

used metric for evaluating the performance of a segmentation model.

During run time, the task vehicle samples an image every 100ms (in simulation time). If

the sampled image is considered informative based on cross entropy2, it selects the image

as the sample image and starts a round of active learning. Each service vehicle in the

task group G will use their own local model to produce an annotation label based on their

segmentation prediction of the sampled image. Then for each pixel n in the sampled image

with total pixel number of N , the task vehicle conducts a label integration based weighted

2Cross entropy is defined as:

S(I) = 1

N

N∑
n=1

H(ϕn) = −
1

N

N∑
n=1

C∑
c=1

ϕn,c log(ϕn,c) (6.1)

H(ϕn) represents the entropy of prediction for one pixel in N , calculated by
∑C

c=1 ϕn,c log(ϕn,c), where
ϕn,c denotes the confidence that pixel n should be predicted as class c.
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average as the following:

Ln =
1

|G|

|G|∑
vk∈G

AvkLk,n (6.2)

where Ln denotes the final annotation of pixel n decided by the task group G, Lk,n denotes

the annotation of pixel n produced by vehicle k. If more than a specified threshold Tth of

the pixels are labeled differently between the task vehicle’s own prediction and the group

annotation, the task vehicle will consider it as informative and add the sampled image to

its training set. As discussed in [145], we update the task vehicle’s local model once every

64 new sampled informative images to save resources and avoid the so-called “catastrophic

forgetting” problem.

6.3.2 Task Group Formation

Let M denote the required number of service vehicles to form a task group G. A task group

is formed when the task vehicle receives at least M feedback annotations from neighboring

vehicles. If more than M feedback are received, the task vehicle sorts the feedback based

on the rated accuracy of each service vehicle’s local model and uses the M best feedback

annotations for label integration. Note that every service vehicle that receives M feedback

annotations from other group members could also add the sample to their training set if

they find it informative. However, for evaluation purposes, we only study the behavior and

results of the designated task vehicle. The detailed group formation procedure is provided

in Algorithm 5.

6.4 Evaluation

To demonstrate how our proposed Sim2Scale co-simulation framework can benefit the eval-

uation and validation of CAV applications, the simulation results are evaluated by the fol-

lowing metrics:

• Model Prediction mIoU (mIoU): mean Intersection-Over-Union (IoU) of the per-
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Algorithm 5: Task Group Formation

62 vi denotes the task vehicle;
63 while vi has an informative image I as sample do
64 broadcast I, local model’s rated accuracy Avi, and vi’s annotation

Li of I;
65 initialize an empty group list G = [ ];
66 for each vehicle vj that received vi’s data do
67 compute annotation labels based on vj’s local model;
68 broadcast local model’s rated accuracy Avj , and vj’s

annotation Lj of I;

69 for each vj that vi receives feedback from do
70 add vj to G;

71 if |G| ≥M then
72 select the M − 1 received annotations with the highest Avj and

compute the group annotation results based on Equation 6.2;
73 if |G| < M and timeout then
74 send task drop notification to vj in G;
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class prediction performance, where the higher the mIoU achieves, the better the

model performance is.

• Task Completion Rate (TCR): the percentage of completed tasks over the number of

completed and failed tasks. A task is considered completed if the task vehicle suc-

cessfully obtained integrated annotation from M service vehicles’ feedback, while

a task is considered failed if the task vehicle cannot aggregate enough feedback to

annotate the sample image.

• Average Task Completion Time (aTCT): the average task completion time of all

completed tasks of the task vehicle, where the task completion time for each task is

calculated by the total simulation time duration between the task vehicle finding an

informative sample and it deciding whether to add the sample to training set. Note

that the model update (training) time is not counted in this metric.

Unless otherwise noted, following parameters were used as default setting in all exper-

iments: number of vehicles = 200, message exchange frequency = 50HZ, the communica-

tion range between vehicles was set to 300m. Natural packet loss and delay were simulated

such that messages were randomly dropped at receiving vehicles with a drop rate of 10%.

The required number of service vehicles for a task group was set to M = 3. Data trans-

mission rate in Veins follows the default 6 Mbps. A simulation run stops when the task

vehicle successfully learned 512 informative image samples (512 rounds of successfully

completed active learning).

6.4.1 Impact of the number of vehicles

We first evaluated how the number of vehicles affects the active learning results, as this

parameter has a large impact on the traffic thus affecting whether the task vehicle can get

enough required feedback labels to conduct label integration before it loses connection with

the service vehicles. The number of vehicles was varied from 100 to 300 with an increment
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Figure 6.4: Performance vs. Number of Vehicles

of 50. As reported in Figure 6.4, as the number of vehicles increases, TCR increases from

62% - 89%, while the mIoU stays almost the same. As we stopped the simulation run after

512 informative samples were learned, the model performance, as indicated by mIoU, was

not affected. However, the total number of attempted tasks was large when there were not

enough vehicles, as indicated by the lower TCR. Moreover, aTCT increased slightly from

7.68s - 9.13s as the number of vehicles increased, which is likely due to a corresponding

increase in the number of beacon messages sent. Without a co-simulation platform that

includes simulation of a 3D scene, realistic traffic, and network communication together, it

would not have been possible to carry out this level of detail in evaluation.

6.4.2 Impact of the task group size

Next, we varied the number of service vehicles M required to form a task group from 1 - 5

to study whether the size of the group affects the collaborative active learning performance.

The results are reported in Figure 6.5. As the number of service vehicles increased, TCR
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Figure 6.5: Performance vs. Number of Service vehicles

dropped from 98% to 61%, which indicates that the larger the task group required, the

harder it becomes to complete the collaborative annotation task before the group breaks up.

However, we also see that the mIoU increases from 62% - 68% as the number of service

vehicles goes from 1 to 5. This aligns with results seen in related works [147] that the more

participants, the better the training results become. Moreover, since more service vehicles

in a group results in more data being exchanged, the aTCT increases as the number of

service vehicles increases due to the increased communication time.

6.4.3 The impact of rounds of active learning

Typically, as the number of training images grows, better machine learning model is ob-

tained. In addition, adding more rounds of active learning to obtain more informative

training images should not largely affect the TCT and aTCT since workload for each round

of active learning remains similar. To validate the assumptions, we varied the rounds of

active learning from 128 to 896 with an increment of 128. As reported in Figure 6.6,
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Figure 6.6: Performance vs. Rounds of Active Learning

when the rounds of active learning were below 384, there were too few data to improve the

model performance. Once the training dataset grew large enough, the mIoU increased as

the rounds of active learning increases. Moreover, TCR and aTCT varied in an ignorable

range as the rounds of active learning changes, which verifies our assumption.

6.4.4 Discussion

The results presented in this section are not intended to provide a comprehensive evaluation

of the performance of the example collaborative learning application. Rather, they are

designed to provide a few examples of the types of evaluations that can be carried out with

the Sim2Scale co-simulation framework. In particular, without integrating the realistic

packet drop and delay models in Veins with CARLA and SUMO, it would not have been

possible to accurately evaluate task completion rate and task completion time.
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6.5 Chapter Summary

This chapter described Sim2Scale, a co-simulation framework built on top of open-sourced

packages, which supports the evaluation and validation of CAV applications. It fills existing

gaps between mobility/traffic, network communication, and 3D environment simulation. In

addition, both GUI and Python script interfaces are provided for easy access. Evaluations

of an example collaborative active learning algorithm demonstrated how Sim2Scale can be

used to evaluate important performance metrics for CAV applications.
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CHAPTER 7

CONCLUSIONS

7.1 Thesis Conclusions

As the irreversible trend of connected and autonomous vehicles, artificial intelligence and

machine learning will continue to thrive and serve as the backbone of many CAVs applica-

tions, including perception, state estimation, probabilistic modeling, time series forecast-

ing, gesture recognition, robustness guarantees, real-time constraints, user-machine com-

munication, multi-agent planning, and intelligent infrastructure. However, the growth is

hindered by the speed and cost of training data collection, as the better the coverage of

high-quality data set of different scenarios, the better the model performance will be. Ex-

isting data collection process mainly relies on test vehicles driving on road and then offload-

ing the recorded data to remote data centers for processing and labeling. Considering the

variances on different road surfaces under different weather conditions, along with other

vehicles’ different reactions, the current method of data collection becomes the bottleneck

for model accuracy. Besides, as the continual change of the external environment, relying

on fixed pre-equipped machine learning models to make decisions will be far from suffi-

cient. The model should be able to adapt to changes of external environment as the vehicle

moves.

Therefore, in this thesis, we aimed to establish the framework foundation for the realiza-

tion of a new learning framework – collaborative online active learning, where the vehicles

can learn as they go, alleviating the stress of data collection and human annotation. The

contribution of each chapter is summarized as follow,

• In Chapter 3, we investigate the problem of how to protect benign vehicles from

making decisions based on received false information, as this is the ground of our
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thesis objective – applying collaborative online active learning in vehicular network.

Without information security, collaboration among vehicles will not be able to work.

Thus, we introduce the concept of Proof-of-Eligibility Challenge, which limits the

impact of compromised vehicles from outside of an event area by preventing them

from participating in the consensus process. The Byzantine-fault-tolerant consensus

algorithm for connected vehicles (BFCV) is presented to ensure information security

among vehicles, without requiring privileged members, leader election, nor trusted

shared key distribution. The algorithm also provides dynamic consensus group for-

mation in an environment without a known pre-defined set of consensus participants.

We report on the implementation of a BFCV prototype and simulation of it in a re-

alistic environment built on top of Veins, SUMO and OMNet++. Evaluation results

show that BFCV provides fast consensus satisfying both safety and liveness require-

ments.

• In Chapter 4, as completing computation-intensive tasks cooperatively among nearby

vehicles in face of the highly mobile and transient vehicular network can hardly be

achieved, a task-oriented group formation framework, based on the probability of

successful task completion, is proposed. We show that task completion probabil-

ity is primarily dependent on two random variables – the stay time of the vehicular

task group and its task completion time. We use this framework and a notion of

result quality to formulate the problem of selecting the best task group for a particu-

lar computation. We present a two-stage algorithm that performs task-oriented group

formation for cooperative computations. The algorithm maximizes the size of groups

in order to produce the best cooperative result while targeting a specified probability

of task completion. We report on a prototype implementation of our group formation

algorithm, which is based on distributed learning applications for autonomous vehi-

cles. The prototype runs in a realistic environment built on top of Veins and SUMO.

Evaluation results show that our algorithm achieves high task completion rates and
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good group sizes across a wide range of traffic scenarios.

• In Chapter 5, to realize our thesis goal of learning without human annotator, a collab-

orative online annotation algorithm, which replaces human annotation by synthesiz-

ing the predictions generated by neighboring vehicles’ local models and correlated

multi-views is presented. As a result, data annotation and model updates can be

completed locally without support of a centralized server. To facilitate the coopera-

tive pseudo label generation process and improve pseudo label accuracy, a multi-view

prediction transfer scheme is proposed to align different views from multiple vehi-

cles via leveraging sensor data fusion. Besides, as no human labeler is needed, model

updates can be completed locally without querying the centralized server, which can

largely save communication resources. Additionally, a data selection scheme that

accounts for data informativeness, cross-view diversity, and the accuracy of the cur-

rent model to save local computational resources by selecting the specific instances

that have the best chance to improve model performance. An implementation and

of our MultiVTrain framework for multi-class semantic segmentation is built on top

of Carla. Extensive evaluation are conducted to demonstrate the effectiveness of the

approach.

• In Chapter 6, despite the appeal of the presented works in Chapter 3-5 and many

other research works, testing and validations of these conceptual ideas and proto-

types are of the same importance. Therefore, a co-simulation framework to develop,

simulate, and evaluate algorithms and methodologies for collaborative computation

tasks, which enables simulation of traffic, communication and 3D environment in

connected and autonomous vehicles, is presented. Both Python script and QT GUI

interfaces are provided for users with less familiarity with existing simulators to

quickly and easily build and validate their ideas. An example application – a col-

laborative active learning is presented, which can be extended to other cooperative or

126



non-cooperative tasks with modest effort. The entire Sim2Scale framework and the

collaborative active learning example application are open-source and freely avail-

able to the research community.1

7.2 Future Work

In this thesis, we focus on addressing the design and attest the effectiveness applying col-

laborative online active learning in the highly mobile vehicular network. Although best

effort has been made to cover as many aspects of the topics as we can, there are still some

remaining work for us to complete in the near future.

In Chapter 3, we have shown that the proposed “proof-of-eligibility” based byzantine-

fault-tolerant consensus algorithm can achieve byzantine agreement with unknown group

membership and unreliable communication channels and is targeted at vehicular network

environments. However, two limitation shows in two aspects:

• 1) the complete “proof-of-eligibility” puzzle design is very challenging. However to

pre-invent enough puzzle problems which can provide sufficient proof of vicinity of

in all situations remains a big challenge. However, enumerating all possible scenar-

ios of the real world traffic can hardly happen, then, other advanced machine learning

based methodologies may be studied to generate puzzles as the vehicle moves. More-

over, the effectiveness and efficiency of the “proof-of-eligibility” concept is heavily

based on the accuracy of vehicles’ equipped sensor sets. If the sensors fail, then a

benign vehicle may not be able to successfully attest itself as being close-by, which

limits its participation.

• 2) to speed up the process of reaching consensus, we made a trade-off, where we par-

allel the process of reaching agreement of group membership and consensus decision

– a decision is made if more than 2/3 of the vehicles agree on the same decision and

1A demo is presented: https://github.com/Jacquelinehy520/Sim2Scale and code will be released once the
paper submission notification come out.
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on the group membership. This cannot guarantee that every member in the consen-

sus group reach consensus on both group membership in the same time. Though this

method does not let false information go through, it may also block certain correct

information, which limits the efficiency.

In Chapter 4, we have demonstrated that our proposed task-oriented group formation al-

gorithm has great potential in achieving high task completion while maximizing the group

size. Nevertheless, it requires some prior knowledge of application-specific task comple-

tion time distributions. How to estimate and model the task completion time remains an

interesting and important area to study. We will consider the following high-level ideas to

approach this problem:

• 1) identify the important variables of a task affecting the task completion time, such

as rated computation speed, operations required for the task, communication cost,

etc.;

• 2) collect data through simulations under different traffic settings, and build a base-

line statistical model for a specific algorithm (techniques such as survival analy-

sis [148] may be applied);

• 3) starting with the baseline model, apply online learning techniques [121] to tune

the model during deployment.

In Chapter 5, as brought up in Section 5.6.3, we believe the group members’ view

diversity and the AL stage training set size are also interesting to study for future work. Due

to time limitation, we cannot evaluate these parameters in detail. Future work will study the

parameters discussed in and extend the robustness of the framework to meet other practical

challenges in vehicular networks, e.g. tolerating connection loss and achieving higher task

completion rate.
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7.3 Publications

As part of the research concluded in this dissertation, we have written several documents

that are either published, submitted, or in progress as follow:

• H. Liu, C.-W. Lin, E. Kang, S. Shiraishi, and D. M.Blough, “A byzantine-tolerant

distributed consensus algorithm for connected vehicles using proof-of-eligibility,” in

Proceedings of the 22nd International ACM Conference on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (MSWIM), 2019.

• H. Liu and D. M. Blough, “Cooperative task-oriented group formation for vehicu-

lar networks,” in 2022 IEEE 19th Annual Consumer Communications Networking

Conference (CCNC), IEEE, 2022.

• H. Liu and D. M. Blough, “MultiVTrain: Collaborative multi-view active learning

for segmentation in connected vehicles,” in 2021 IEEE 18th International Conference

on Mobile Ad Hoc and Smart Systems (MASS), 2021.

• H. Liu and D. M. Blough, “Sim2Scale: A Co-Simulation Framework for Developing

and Evaluating Algorithms for Connected and Autonomous Vehicles,” to be submit-

ted, 2022.
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