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SUMMARY

Motivated by Tutte’s result and Lovász’s conjecture, there is a series of work on non-

separating paths in graphs and their applications. Let G be a graph and a1, a2, b1, b2 be

distinct vertices of G, we give a structural characterization for G not containing a path A

from a1 to a2 and avoiding b1 and b2 such that removing A from G results in a 2-connected

graph. Using this structure theorem, we construct a 7-connected such graph. We will also

discuss potential applications to other problems, including the 3-linkage conjecture made

by Thomassen in 1980. This is based on joint work with Shijie Xie and Xingxing Yu.

x



CHAPTER 1

INTRODUCTION

1.1 Notation and terminology

In this section, we give notation and terminology. For some (well-known) graph con-

cepts that are omitted, we refer the readers to Graph Theory textbook by Bondy and

Murty [2] and Diestel [5].

1.1.1 Graph operations

Let G = (V (G), E(G)) be a graph where V (G) is its vertex set and E(G) is its edge

set. For all x ∈ V (G), dG(x) (or d(x) if G is understood) denotes the degree of x in G, i.e.,

dG(x) = |{y ∈ V (G) : xy ∈ E(G)}|. For any S ⊆ V (G), NG(S) is the neighborhood of

S in G, i.e., NG(S) = {v ∈ V (G) \ S : ∃u ∈ S such that uv ∈ E(G)}. We use G[S] to

denote the subgraph of G induced by S, i.e., V (G[S]) = S and E(G[S]) = {uv ∈ E(G) :

∀u, v ∈ S}. We also use G − S to denote G[V (G) \ S]. When S = {s}, we write G − s

for G− {s}.

For two graphs G and H , let G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H)), G ∩ H =

(V (G) ∩ V (H), E(G) ∩ E(H)), and G − H be the graph obtained from G by deleting

vertices of H and all edges of G incident with H . We call H a subgraph of G, denoted as

H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Let G be a graph. For any subgraph H ⊆ G, and for any S1 ⊆ V (G) and S2 ∈(
V (H)∪S1

2

)
(i.e., S2 is a set of 2-element subsets of V (H) ∪ S1), define H + S1 + S2 =

(V (H) ∪ S1, E(H) ∪ S2). For subgraphs G1, G2 ⊆ G, we say (G1, G2) is a separation

of G if E(G1) ∩ E(G2) = ∅, G = G1 ∪ G2, and for i = 1, 2, E(Gi) \ E(G3−i) 6= ∅ or

V (Gi) \ V (G3−i) 6= ∅.
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1.1.2 Paths

We call a path P with ends a, b an a-b path. For v1, v2 ∈ V (P ), we define P [v1, v2] to be

the subpath of P with ends v1, v2. Let P (v1, v2] = P [v1, v2]−v1, P [v1, v2) = P [v1, v2]−v2

and P (v1, v2) = P [v1, v2]− {v1, v2}.

We call two paths P1, P2 disjoint if V (P1)∩V (P2) = ∅. A collection of paths P1, . . . , Pk

are independent if no vertex of any path is an internal vertex of any other path in the

collection. For any a-b path P in a graph G and for any subgraph H of G, P is internally

disjoint from H if (V (P ) \ {a, b}) ∩ V (H) = ∅. For A,B ⊆ V (G), A-B paths in G are

paths in G from A to B and internally disjoint from A ∪B.

1.1.3 Connectivity

A graph is connected if there is a path from any vertex to any other vertex in the graph,

and a graph that is not connected is disconnected.

We call a set T ⊆ V (G) a cut of a graph G if G − T is disconnected; and if |T | = k,

we call T a k-cut. Note that for any separation (G1, G2) of G, V (G1 ∩G2) is a cut of G if

V (Gi −G3−i) 6= ∅ for both i ∈ [2].

For graph G and its subgraph H , we call C a component of G −H if C is a subgraph

of G−H , C is connected, and for any C ′ ⊆ G−H such that C ′ is connected and C ⊆ C ′,

C = C ′.

Let k be a positive integer. We call a graph G k-connected if |V (G)| ≥ k + 1 and for

any S ⊆ V (G) with |S| < k, G − S is connected. For any set A ⊆ V (G), we say G is

(k,A)-connected if for any cut S ⊆ V (G) with |S| < k and for every component C of

G− S, |V (C) ∩ A| ≥ k − |S|.

A subgraph B of a graph G is called a block if it is isomorphic to K2 or 2-connected,

and for any B′ ⊆ G such that B′ is isomorphic to K2 or 2-connected, B ⊆ B′ implies

B = B′. A block is non-trivial if |V (B)| ≥ 3.
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1.1.4 Bridges

Let G be a graph and H ⊆ G, we call X ⊆ G an H-bridge of G, if either

(1) X is induced by some edge e = uv ∈ E(G) \ E(H) with u, v ⊆ V (H), or

(2) X = C +S where C is a component of G−H and S = {e, v : e = uv ∈ E(G), u ∈

V (C), v ∈ V (H)}.

When (1) holds, X is said to be trivial, and when (2) holds, X is non-trivial. The

vertices in V (X ∩H) are called attachments of X on H .

1.1.5 Plane graphs

A graph G is planar if it can be drawn in the plane with no edge crossing. Such a

drawing is called a plane graph. Let G be a plane graph. The faces of G are the connected

open regions of the complement of G in the plane. The boundary of a face F consists of

vertices and edges incident with F . The boundary of the unbounded (or infinite) face is

called the outerwalk of G. Two vertices of G are cofacial if they belong to the boundary of

a common face. Note that if G is 2-connected, then all its faces are bounded by cycles. A

triangular face in G is a face of G bounded by a triangle.

1.1.6 Lexicographic ordering

For any positive integer k, we denote [k] = {1, 2, . . . , k}.

Let α1, . . . , αn, β1, . . . , βm be real numbers. We say that the sequence (α1, · · · , αn) is

larger than the sequence (β1, · · · , βm) with respect to the lexicographic ordering, denoted

by (α1, . . . , αn) > (β1, . . . , βm), if either

(i) n > m and αi = βi for i = 1, · · · ,m, or

(ii) there exists j ∈ [min(m,n)] with αj > βj and αi = βi for all i < j.

3



1.2 Background on non-separating paths

When developing a theory of 3-connected graphs, Tutte [25] showed that

Theorem 1.2.1 ([25]). For any 3-connected graph G and any distinct vertices a1, a2, b of

G, G− b has an a1-a2 path P such that G− P is connected.

We call such a path non-separating. The “3-connectedness” condition cannot be re-

laxed; for instance, when {a1, a2} is a 2-cut if G is allowed to be 2-connected. Lovász [15]

made a conjecture which would generalize Tutte’s result.

Conjecture 1.2.2 (Lovász, 1975). For each natural number k, there exists a least natural

number β(k) such that, for any two vertices a, b in any β(k)-connected graph G, there

exists a path P between a and b such that G− P is k-connected.

Thus, Tutte’s result showed that β(1) = 3. Chen, Gould and Yu [3], and, independently,

Kriesell [13] showed β(2) = 5. Moreover, Kawarabayashi, Lee and Yu [11] showed that

β(2) = 4 except for double wheels. Conjecture 1.2.2 for k ≥ 3 is still open.

For m ≥ 0 and k ≥ 1, let α(m, k) be the minimum connectivity such that for any

α(m, k)-connected graph G and distinct a1, a2, b1, . . . , bm ∈ V (G), there exists an a1-a2

path P , such that b1, . . . , bm 6∈ V (P ) and G− P is k-connected.

Note that α(0, k) = β(k). See the first column of Table 1.1 for the discussion above on

α(0, k) = β(k) for k ∈ [2].

Now, let us look at the first row of Table 1.1. Theorem 1.2.1 also proved α(1, 1) = 3.

One can also deduce Theorem 1.2.1 from the following result of Tutte.

Theorem 1.2.3 ([25]). For any 3-connected graph G and any distinct vertices a1, a2 of G,

G has independent a1-a2 paths P1, P2 such that G− Pi is connected for i ∈ [2].

Similarly, one can deduce from the following result of Chen, Gould and Yu [3] that

finds a non-separating path avoiding arbitrarily m vertices in any (22m + 24)-connected

graph, and thus, α(m, 1) ≤ 22m+ 24.

4



Table 1.1: Connectivity for non-separating paths avoiding m vertices

G− P
is k-connected

α(m, k)-
connected
G

Avoiding
m

vertices
m = 0 1 2 3 · · ·m · · ·

k = 1 3 3 6 6 ≤ 22m+ 24
2 5 5 ≥ 8 α(m, 2)
3 Lovász’s
... Conjecture α(m, k)
... open for k ≥ 3

Theorem 1.2.4 ([3]). For any (22m + 24)-connected graph G and any distinct vertices

a1, a2 of G, G has m+ 1 independent a1-a2 paths Pi such that G− Pi is connected for all

i ∈ [m+ 1] .

It is worth mentioning that with higher connectivity, Wollan [26] showed that one can

remove a subset of paths without disconnecting the graph.

Theorem 1.2.5 ([26]). For any 83(m + 1)-connected graph G and any distinct a1, a2 of

G, there exist independent a1-a2 paths P1, . . . , Pm such that for any subset I ⊆ [m], G −

(
⋃

i∈I V (Pi)) is connected.

Note that the above results (other than Theorem 1.2.1) involve graphs with high con-

nectivity. In applications, one often needs to find a non-separating path that avoids spe-

cific vertices in graphs. For example, when proving the Kelmans-Seymour conjecture, He,

Wang and Yu [6, 7, 8, 9] needed non-separating paths in 4-connected graphs that avoids

two vertices.

The result on 2-linked (defined later) graphs by Jung [10], Seymour [19], Shiloach [20],

Thomassen [24], and Chakravarti and Robertson [17] showed that α(2, 1) = 6. Thomas,

Xie, and Yu [23] showed that α(3, 1) = 6. One can easily deduce α(1, 2) = 5 from a result

5



of Chen, Gould and Yu [3] and Kriesell [13], and we will present it as Corollary 2.1.4.

We are primarily interested in a structural characterization of graphs not containing non-

separating paths between two given vertices and avoiding two other given vertices. Such a

characterization should help determine α(2, 2), and we believe α(2, 2) = 8.

1.3 Structure theorem

Given a graph G and distinct vertices a1, a2, b1, b2 of G. We say that (G, a1, a2, b1, b2)

is feasible if G−{b1, b2} contains an a1-a2 path A such that G−A is 2-connected. We say

(G, a1, a2, b1, b2) is infeasible if G is not feasible.

Our aim is to provide structural information about (G, a1, a2, b1, b2) when it is not fea-

sible. We show that if (G, a1, a2, b1, b2) is infeasible then G is the edge disjoint union of

three graphs A1, A2 and H , where ai ∈ V (Ai) \ V (A3−i ∪H), Ai is planar, and H can be

further decomposed into graphs of simple structures. See Figure 1.1 for an illustration.

Figure 1.1: Decomposition into edge disjoint subgraphs A1, A2 and H .

Theorem 1.3.1. Let G be an 8-connected graph and let a1, a2, b1, b2 ∈ V (G) be distinct.

Suppose (G, a1, a2, b1, b2) is infeasible. Then, the following statements hold:

(i) G−{a1, a2} contains three independent induced b1-b2 pathsB1, B2, B3 such that, for

i ∈ [2], the (B1 ∪B2 ∪B3)-bridge of G containing ai, denoted as Ai(B1 ∪B2 ∪B3),

satisfy the following properties (up to relabeling):

6



– A1(B1 ∪B2 ∪B3) has all its attachments on B3,

– A1(B1 ∪ B2 ∪ B3) ∪ B3 has a plane representation in which B3 and a1 are on

the boundary of the infinite face,

– A2(B1 ∪B2 ∪B3) has attachments on both B1 and B2.

(ii) There exists w ∈ V (A1(B1∪B2∪B3))∩V (B3) such that G− (A1(B1∪B2∪B3)−

B3)− w − a2 has three independent b1-b2 paths P1, P2, P3, and the (P1 ∪ P2 ∪ P3)-

bridge of G containing a2, denoted as A2(P1 ∪ P2 ∪ P3), satisfies the following

properties:

– A2(P1, P2, P3) has all its attachments on P3,

– A2(P1, P2, P3) ∪ P3 has a plane representation in which P3 and a2 are on the

boundary of its infinite face.

(iii) H := G−(A1(B1∪B2∪B3)−(B3−w))−(A2(P1∪P2∪P3)−P3) is the edge disjoint

union of subgraphs H1, . . . , Hm+1, such that V (Hi ∩Hi+1) = {ui, vi, wi} is a 3-cut

of H separating b1 from b2, b1, u1, . . . , um, b2 occur on P3 in order, b1, v1, . . . , vm, b2

occur on P2 in order, and b1, w1, . . . , wm, b2 occur on P1 in order.

(iv) For each vertex u ∈ V (A2(P1 ∪ P2 ∪ P3)) ∩ V (P3), u = ui for some i.

(v) For each i ∈ [m] \ {1}, Hi = (Ji, Li), where Ji is a plane graph and Li is a ladder

consisting of rungs of simple structure.

See Figure 1.2 for an illustration of H in the above theorem. The concept of ladders

and rungs will be described in Chapter 2.

Note that “8-connected” cannot be replaced by “7-connected”, as we have an example

(see Chapter 6) on 7-connected infeasible graph.

We believe Theorem 1.3.1 will be enough to show that 8-connected graphs are feasible,

i.e., α(2, 2) = 8, which is work in progress.

7



Figure 1.2: H is a union of subgraphs H1, . . . , Hm+1.

1.4 Related problems

1.4.1 Linkage problem

Theorem 1.3.1 should serve as a step towards the following conjecture of

Thomassen [24].

Conjecture 1.4.1 (Thomassen, 1980). Let G be an 8-connected graph and let

a1, a2, b1, b2, c1, c2 ∈ V (G) be distinct. Then, G contains disjoint paths from a1, b1, c1

to a2, b2, c2, respectively.

More generally, a graph G is k-linked if, for any k disjoint pairs of vertices {si, ti}, i ∈

[k], inG,G has pairwise disjoint paths from si to ti for i ∈ [k]. Note that if (G, a1, a2, b1, b2)

is infeasible then G is not 3-linked as can be seen by taking ci ∈ NG(bi) \ {a1, a2, b1, b2)

for both i ∈ [2].

Thomassen [24] initially conjectured that every (2k + 2)-connected graph is k-linked,

but this is false for k ≥ 4: the graph obtained from the complete graph K3k−1 minus a

matching of size k is a counterexample. Robertson and Seymour [18] showed that there

is a polynomial time algorithm for deciding whether a graph is k-linked (when k is fixed).

Bollobás and Thomason [1] showed that every (22k)-connected graph is k-linked. Thomas

and Wollan [21] improved this further to that every (2k)-connected graph with average

degree at least 10k is k-linked.

8



Conjecture 1.4.1 states that 8-connected graphs are 3-linked, which is still open. The

best result on this conjecture is due to Thomas and Wollan [22].

Theorem 1.4.2 ([22]). Every 6-connected graph on n vertices with 5n − 14 edges is 3-

linked.

As a consequence, every 10-connected graph is 3-linked. Theorem 1.4.2 combined with

a result of Chen, Gould and Yu [3] (see Lemma 2.1.2) gives the following.

Corollary 1.4.3. For every 6-connected graph G on n vertices with 5n − 14 edges and

distinct a1, a2, b1, b2 ∈ V (G), (G, a1, a2, b1, b2) is feasible.

Corollary 1.4.4. For every 10-connected graph G and a1, a2, b1, b2 ∈ V (G),

(G, a1, a2, b1, b2) is feasible.

Note that the k-linked notion was further extended by Kostochka and G.Yu [12] to

H-linked graphs for any fixed graph H . Recent work of Liu, Rolek, Stephens, Ye and

G.Yu [14] shows that every 7-connected graph is kite-linked, where a kite is a graph ob-

tained from K4 by deleting two adjacent edges.

1.4.2 Signed graphs

A signed graph is a triple (V (G), E(G), f) where f : E(G)→ {1,−1}. The sign of a

cycle is the product of the signs of its edges. We call a signed graph G balanced if every

cycle is positive and imbalanced if G is not balanced.

Theorem 1.2.1 has a signed graph version by Tutte in [25], and we state it here.

Theorem 1.4.5 ([25]). LetG be a 3-connected signed graph and b ∈ V (G). SupposeG−b

is imbalanced, then G has a negative cycle C such that b 6∈ V (C) and G−C is connected.

Note that Theorem 1.4.5 implies Theorem 1.2.1: For any 3-connected graph G and

distinct a1, a2, b ∈ V (G), let G′ = G + a1a2. We assign f : E(G′) → {1,−1} such that

9



f(a1a2) = −1 and f(e) = 1 for all e ∈ E(G′)\{a1a2}. Then, Theorem 1.2.1 follows from

Theorem 1.4.5.

Similarly, the following signed graph version of Corollary 2.1.4, by Devos, Nurse, Qian

and Wollan [4], also implies Corollary 2.1.4.

Theorem 1.4.6 ([4]). LetG be a 5-connected signed graph and b ∈ V (G). SupposeG−b is

imbalanced, then G has a negative cycle C such that b 6∈ V (C) and G−C is 2-connected.

It is natural to ask the following:

Question 1.4.7. Can we extend other results in Table 1.1 to signed graphs?

The above known signed graph results, Theorem 1.4.5 and Theorem 1.4.6, imply The-

orem 1.2.1 and Corollary 2.1.4.

Question 1.4.8. Can we find an example on other results in Table 1.1 whose signed graph

version does not hold? A positive answer would imply that signed graph version could be

strictly stronger than the graph version.

1.4.3 A general conjecture

Recall Table 1.1 and definition of α(m, k). When m = 0, it centers around Lovász’s

conjecture which is open for k ≥ 3. For k = 1, α(m, k) exists by Chen, Gould and Yu [3],

and we have exact values when m ≤ 3. Wollan 1 conjectured that α(m, 2) = 2m + C for

some constant C.

It is also natural to formulate a more general conjecture on non-separating paths avoid-

ing more vertices.

Conjecture 1.4.9 (Qian, Xie, Yu). For each natural number k and m, there exists a least

natural number α(m, k) such that, for any two vertices a1, a2 in any α(m, k)-connected

graph G, there exists an a1-a2 path P avoiding a given set of m vertices such that G − P

is k-connected.
1Paul Wollan: Private communication
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The rest of the thesis is organized as follows:

In Chapter 2, we state previous results on disjoint paths that we will use in the thesis.

We first state and prove feasibility for 5-connected graphs with given conditions. The result

also provides us with an equivalent condition for feasibility that is convenient to use. Then,

we introduce Seymour’s characterization of 2-linked graphs and Yu’s characterization of

graphs with special three paths.

In Chapter 3, for an infeasible 8-connected graph G, we use three special paths

B1, B2, B3 to give a decomposition of G into three edge disjoint subgraphs A1, A2 and

H . We will show Ai is planar for both i ∈ [2] and H can be further decomposed into

graphs with simple structures, called rungs.

Structure of H is further explored in Chapter 4 and Chapter 5. In Chapter 4, we show

that most rungs will avoid at least one of the special paths Bi for all i ∈ [3]. In Chapter 5,

we consider those rungs intersecting at most two Bi’s.

In Chapter 6, using the structure theorem we proved, we construct examples of A1 and

H , and we use them to form a 7-connected graph with special vertices a1, a2, b1, b2 such

that (G, a1, a2, b1, b2) is infeasible. Thus, α(2, 2) ≥ 8.
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CHAPTER 2

PREVIOUS RESULTS ON DISJOINT PATHS

In this chapter, we state and prove some known results on disjoint paths that we will

use in the thesis.

First in section 2.1, we state and prove a result on feasibility for 5-connected graphs.

That result gives Corollary 2.1.3, providing us with a convenient working condition on

disjoint paths which is equivalent to feasibility. One other consequence is Corollary 2.1.4,

which reproves α(1, 2) = α(0, 2) = 5.

In section 2.2, we introduce the concept of “3-planar” graphs and state Seymour’s char-

acterization of 2-linked graphs.

In section 2.3, we introduce definitions of “rungs” and “ladders”, and state Yu’s char-

acterization of graphs containing certain types of three disjoint paths.

2.1 Feasibility for 5-connected graphs

The following well-known result of Menger [16] is often used to find independent paths

in graphs.

Theorem 2.1.1 ([16]). For any positive integer k and any k-connected graph G, and for

any A,B ⊆ V (G) with |A| ≥ k and |B| ≥ k, there are at least k disjoint A-B paths.

Chen, Gould and Yu [3] proved a result that implies the following result. We give a

proof for the sake of completeness.

Lemma 2.1.2 ([3]). For any 5-connected graph G and any distinct vertices a1, a2, b1, b2 of

G, if there exist three independent paths A,B1, B2 such that A is from a1 to a2 and Bi is

from b1 to b2 for both i ∈ [2], then (G, a1, a2, b1, b2) is feasible.
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Proof. We may assume A is induced. Let C1 be the component of G − A containing

{b1, b2} and B be the block in C1 containing B1 ∪ B2. Let B1, B2, . . . , Bn denote the

B-bridges of C1, and let C2, . . . , Cm be the other components of G − A. We may assume

|V (Bi−1)| ≥ |V (Bi)| for 2 ≤ i ≤ n and |V (Ci−1)| ≥ |V (Ci)| for 2 ≤ i ≤ m. Now, we

further choose A,B1, B2 such that (|V (B)|, |V (B1)|, . . . , |V (Bn)|, |V (C1)|, . . . , |V (Cm)|)

is maximal with respect to the lexicographic ordering.

Suppose m ≥ 2. Since G is 5-connected, by Theorem 2.1.1, there exist 5 disjoint

paths from V (Cm) to V (G − Cm). Since V (Ci) ∩ NG(Cm) = ∅ for all i < m, |V (A) ∩

NG(Cm)| ≥ 5. Let x, y ∈ V (A)∩NG(Cm) such thatA[a1, x)∩NG(Cm) = ∅ andA(y, a2]∩

NG(Cm) = ∅. Since {x, y} is not a cut in G separating A(x, y) from G− Cm, there exists

z ∈ V (A(x, y)) such that NG(z) ∩ V (Cj) 6= ∅ for some j < m. Choose minimum such j.

Let P be an induced x-y path in G[V (Cm) ∪ {x, y}]. Take A′ = A[a1, x] ∪ P ∪ A[y, a2].

Note that C1, C2, . . . , Cj−1 are components of G − A′, and if j = 1, the block in G − A′

containing {b1, b2} still contains B. However, |V (C ′j)| > |V (Cj)|, contradicting the choice

of A that (|V (B)|, |V (B1)|, . . . , |V (Bn)|, |V (C1)|, . . . , |V (Cm)|) is maximal with respect

to the lexicographic ordering.

So m = 1. If n = 0, we are done. So assume n ≥ 1. Let {z} = V (B) ∩ V (Bn). Since

G is 5-connected, |NG(B
n − z) ∩ V (A)| ≥ 2. Let x, y ∈ V (A) ∩ NG(B

n − z) such that

A[a1, x) ∩NG(B
n − z) = ∅ and A(y, a2] ∩NG(B

n − z) = ∅, and let P be an induced x-y

path in G[V (Bn − z) ∪ {x, y}]. Take A′ = A[a1, x] ∪ P ∪ A[y, a2] and B′ be the block of

G− A′ containing {b1, b2}.

Suppose G has edges from distinct vertices of B to A(x, y). Then, G − A′ has block

containing B and a subpath of A(x, y). So A′ contradicts the choice of A.

Hence, since G is 5-connected, G has an edge from A(x, y) to Bi for some i ∈ [n− 1].

We choose minimum such i. Then, either (1) G− A′ has a block containing B and part of

Bi ∪A(x, y), or (2) B is a block of G−A′, B1, . . . , Bi−1 are B-bridges of G−A′, and Bi

is properly contained in a B-bridge of G− A′. Thus, A′ contradicts the choice of A.
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On the other hand, it is straightforward to see that feasibility implies the existence of

such three paths in 5-connected graphs.

Corollary 2.1.3. For any 5-connected graph G and any distinct vertices a1, a2, b1, b2 of G,

the following statements are equivalent:

(i) There exist three pairwise independent paths A,B1, B2 such that A is from a1 to a2

and Bi is from b1 to b2 for both i ∈ [2].

(ii) (G, a1, a2, b1, b2) is feasible.

Hence, for the rest of the thesis, we also call (G, a1, a2, b1, b2) feasible if G is 5-

connected and one can find three pairwise independent paths A,B1, B2 such that A is from

a1 to a2 and Bi is from b1 to b2 for both i ∈ [2].

Another consequence of Lemma 2.1.2 is the following result that α(1, 2) = 5 (see

Table 1.1).

Corollary 2.1.4. For any 5-connected graph G and any distinct vertices a1, a2, b of G,

G− b contains an a1-a2 path P such that G− P is 2-connected.

Proof. Since G is 5 connected, by Menger’s Theorem, there exist two independent a1-a2

paths P1, P2 inG−b. By Menger’s Theorem again, there exist 5 paths from b to V (P1∪P2),

with only b in common. By Pigeonhole Principle, two of the paths, say Q1, Q2, are from b

to Pi(a1, a2) for some i ∈ [2]. Let B be the block of G− P3−i containing Q1 ∪Q2. By the

same proof in Lemma 2.1.2, G contains an a1-a2 path P ′ such that G − P ′ is 2-connected

and G− P ′ contains Q1 ∪Q2. Since b ∈ V (Q1 ∪Q2), P ′ ⊆ G− b and we are done.

2.2 Characterization of 2-linked graphs

A result we use often is a characterization of 2-linked graphs, proved independently

by Seymour [19], Shiloach [20], Thomassen [24], and Chakravarti and Robertson [17].
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A more general result on finding k disjoint paths can be found in [18] by Robertson and

Seymour in their monumental project on graph minors over a series of papers.

To state Seymour’s version on 2-linked graphs, we introduce several concepts.

A 3-planar graph (G,A) consists of a graph G and a set A = {A1, ..., Ak} of pairwise

disjoint subsets of V (G) (let A = ∅ when k = 0) such that

(i) for i 6= j, NG(Ai) ∩ Aj = ∅,

(ii) for 1 ≤ i ≤ k, |NG(Ai)| ≤ 3, and

(iii) if p(G,A) denotes the graph obtained from G by (for each i) deleting Ai and adding

edges joining every pair of distinct vertices in NG(Ai), then p(G,A) can be drawn in

the plane without crossing edges.

If, in addition, b1, b2, . . . , bn are vertices in G such that bi /∈ A for i ∈ [n] and A ∈ A,

p(G,A) can be drawn in a closed disk with no edge crossings, and b1, b2, . . . , bn occur

on the boundary of the disk in this cyclic order, then we say that (G,A, b1, b2, . . . , bn) is

3 -planar. If there is no need to specify A, we may simply say that (G, b1, b2, . . . , bn) is

3-planar. If A = ∅, we say that (G, b0, b1, ..., bn) is planar. If G is planar and is drawn in a

closed disk with no edge crossings, for any subgraph H ⊆ G, we say (G,H) is planar if all

vertices and edges of H are contained in the boundary of the disk, in which case H needs

to be the union of disjoint paths.

Now, we can state Seymour’s characterization on 2-linked graphs.

Lemma 2.2.1 (Seymour, 1980). LetG be a graph with distinct vertices x1, x2, x3, x4. Then

either (G, x1, x2, x3, x4) is 3-planar, or G has disjoint paths from x1, x2 to x3, x4, respec-

tively.

2.3 Characterization of graphs with special three paths

While there is no known generalization of the above result to three paths with fixed ends

(see Conjecture 1.4.1 of Thomassen), Yu [27, 28, 29] characterized graphs G in which any
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three disjoint paths from {a, b, c} ⊆ V (G) to {a′, b′, c′} ⊆ V (G) must contain a path from

b to b′. To state this result, we need to describe rungs and ladders.

Let G be a graph, {a, b, c} ⊆ V (G), and {a′, b′, c′} ⊆ V (G). (Here, a, b, c are pairwise

distinct, and a′, b′, c′ are pairwise distinct.) Suppose {a, b, c} 6= {a′, b′, c′}, and assume

that G has no separation (G1, G2) such that |V (G1 ∩ G2)| ≤ 3, {a, b, c} ⊆ V (G1), and

{a′, b′, c′} ⊆ V (G2). We say that (G, (a, b, c), (a′, b′, c′)) is a rung if one of the following

holds up to symmetry between {a, b, c} and {a′, b′, c′}, relabeling a and c, and relabeling

a′ and c′:

(1) b = b′ or {a, c} = {a′, c′}.

(2) a = a′ and (G− a, c, c′, b′, b) is 3-planar.

(3) {a, b, c} ∩ {a′, b′, c′} = ∅ and (G, a′, b′, c′, c, b, a) is 3-planar.

(4) {a, b, c}∩ {a′, b′, c′} = ∅, G has a separation (G1, G2) such that V (G1 ∩G2) = {x},
and {a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2), and (G1, a, a

′, b′, b) is 3-planar.

(5) {a, b, c} ∩ {a′, b′, c′} = ∅, and G has a separation (G1, G2) such that V (G1 ∩G2) =

{z, b}, and (G1 + bz, a, a′, b′, b) is 3-planar, {a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2),

and (G2, c, c
′, z, b) is 3-planar.

(6) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge disjoint subgraphs Ga, Gc,M

of G such that G = Ga ∪ Gc ∪M , V (Ga ∩M) = {u, z}, V (Gc ∩M) = {p, q},
V (Ga∩Gc) = ∅, and {a, a′, b′} ⊆ V (Ga), {c, c′, b} ⊆ V (Gc), and (Ga, a, a

′, b′, z, u)

and (Gc, c
′, c, b, p, q) are 3-planar.

(7) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge disjoint subgraphs Ga, Gc,M

of G such that G = Ga ∪Gc ∪M , V (Ga ∩M) = {b, b′, q}, V (Gc ∩M) = {b, b′, p},
V (Ga∩Gc) = {b, b′}, {a, a′} ⊆ V (Ga), {c, c′} ⊆ V (Gc), and (Ga, a, a

′, b′, q, b) and

(Gc, c
′, c, b, p, b′) are 3-planar.

See Figure 2.1 for illustration of all types of rungs.

Let L be a graph and let R1, . . . , Rm be edge disjoint subgraphs of L such that

(i) (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)) is a rung for each i ∈ [m],
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Figure 2.1: All types of rungs
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(ii) V (Ri ∩Rj) = {xi, vi, yi} ∩ {xj−1, vj−1, yj−1} for i, j ∈ [m] with i < j,

(iii) for any i, j ∈ [m] ∪ {0}, if xi = xj then xk = xi for all i ≤ k ≤ j, if vi = vj then

vk = vi for all i ≤ k ≤ j, and if yi = yj then yk = yi for all i ≤ k ≤ j, and

(iv) L = (
⋃m

i=1Ri) + S, where S consists of those edges of L each of which has both

ends in {xi, vi, yi} for some i ∈ [m] ∪ {0}.

Then (L, (x0, v0, y0), (xm, vm, ym)) is a ladder with rungs (Ri, (xi−1, vi−1, yi−1),

(xi, vi, yi)), i ∈ [m], or simply, a ladder along v0 . . . vm. See Figure 2.2 for an example of

ladder L. Note that in this example, edge xjvj and edge xjyj are in S.

Figure 2.2: Example of ladder L

By definition, for any rung (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)), Ri has

three disjoint paths from {xi−1, vi−1, yi−1} to {xi, vi, yi}. So for any ladder

(L, (x0, v0, y0), (xm, vm, ym)), L has three disjoint paths from {x0, v0, y0} to {xm, vm, ym}.

For a sequence W , the reduced sequence of W is the sequence obtained from W by

removing all but one consecutive identical elements. For example, the reduced sequence of

aaabcca is abca. We can now state the main result in [27, 28, 29].

Lemma 2.3.1 ([27, 28, 29]). Let G be a graph, {a, b, c} ⊆ V (G), and {a′, b′, c′} ⊆ V (G)

such that {a, b, c} 6= {a′, b,′ c′}. Then any three disjoint paths in G from {a, b, c} to

{a′, b′, c′} must include a path from b to b′ if, and only if, one of the following statements

holds:
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(i) G has a separation (G1, G2) of order at most 2 such that {a, b, c} ⊆ V (G1) and

{a′, b′, c′} ⊆ V (G2).

(ii) (G, (a, b, c), (a′, b′, c′)) is a ladder.

(iii) G has a separation (J, L) such that V (J ∩ L) = {w0, . . . , wn}, (J, w0, . . . , wn) is

3-planar, {a, b, c} ∪ {a′, b′, c′} ⊆ V (L), (L, (a, b, c), (a′, b′, c′)) is a ladder along a

sequence v0 . . . vm, where v0 = b, vm = b′, and w0 . . . wn is the reduced sequence of

v0 . . . vm.

Figure 2.3: Structure (iii) of Yu’s characterization for graph G

See Figure 2.3 for structure (iii) of Lemma 2.3.1, where L is a ladder (see Figure 2.2).

Note that structure (ii) of the theorem is when J = ∅.

To help readers familiarize with the above concepts and for later applications, we prove

the following properties of rungs.

Proposition 2.3.2. For any rung (G, (a, b, c), (a′, b′, c′)), the following statements hold:

(i) {a, b, c} and {a′, b′, c′} are independent sets in G.

(ii) For any x ∈ {a, b, c}4{a′, b′, c′}, NG(x) 6= ∅. When {a, b, c} ∩ {a′, b′, c′} = ∅,

|NG(x)| ≥ 2.
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(iii) Suppose {a, b, c} ∩ {a′, b′, c′} = ∅ or |{a, b, c} ∪ {a′, b′, c′}| = 5 and b 6= b′. Then,

for any x ∈ {b, b′}, NG(x) ∩ {a, c, a′, c′} = ∅. Moreover, any three disjoint paths in

G from {a, b, c} to {a′, b′, c′} must be from a, b, c to a′, b′, c′, respectively.

Proof. Suppose (i) fails and without loss of generality, let e ∈ E(G[{a, b, c}]). Let G1 =

({a, b, c}, {e}) and G2 = G − e. Then (G1, G2) is a separation in G contradicting the

definition of a rung. Hence, (i) holds.

To prove (ii), let x ∈ {a, b, c}4{a′, b′, c′} and, without loss of generality, assume x ∈

{a, b, c} \ {a′, b′, c′}. Then, NG(x) 6= ∅; otherwise {a, b, c} \ {x} is a 2-cut in G separating

{a, b, c} from {a′, b′, c′}, contradicting the definition of a rung. Now suppose {a, b, c} ∩

{a′, b′, c′} = ∅. If |NG(x)| = 1 then ({a, b, c} \ {x}) ∪ NG(x) is a 3-cut in G separating

{a, b, c} from {a′, b′, c′}, contradicting the definition of a rung. So |NG(x)| ≥ 2.

We now prove (iii). First, suppose |{a, b, c}∪{a′, b′, c′}| = 5 and b 6= b′. By symmetry,

we may assume a = a′ and (G−a, b, b′, c′, c) is 3-planar. By applying Lemma 2.2.1, we see

that any three disjoint paths in G from {a, b, c} to {a′, b′, c′}must be from a, b, c to a′, b′, c′,

respectively. Now, ba′ 6∈ E(G) by (i) as a = a′, and bc′ 6∈ E(G) as {a, b, c′} cannot be a

cut in G separating {a, b, c} from {a′, b′, c′}. Similarly, b′c, b′a 6∈ E(G).

It remains to consider the case when {a, b, c} ∩ {a′, b′, c′} = ∅. Then

(G, (a, b, c), (a′, b′, c′)) is a rung of type (3)-(7).

First, assume that (G, (a, b, c), (a′, b′, c′)) is of Type (3). Then (G, a, b, c, c′, b′, a′) is 3-

planar. By applying Lemma 2.2.1, we see that any three disjoint paths inG from {a, b, c} to

{a′, b′, c′} must be from a, b, c to a′, b′, c′, respectively. Now, ba′, bc′, b′a, b′c 6∈ E(G). For,

otherwise, by symmetry, assume bc′ ∈ E(G). Then, {a, b, c′} is a 3-cut in G separating

{a, b, c} from {a′, b′, c′}, a contradiction.

Next, assume (G, (a, b, c), (a′, b′, c′)) is of Type (4). Then G has a separation (G1, G2)

such that V (G1 ∩G2) = {x}, {a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2), and (G1, a, a
′, b′, b)

is 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from
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{a, b, c} to {a′, b′, c′} must be from a, b, c to a′, b′, c′, respectively. Now, we prove

ba′, bc′, b′a, b′c 6∈ E(G). By structure of G, bc′, b′c 6∈ E(G). So, by symmetry, sup-

pose ba′ ∈ E(G). Then, {a′, b, c} is a 3-cut in G separating {a, b, c} from {a′, b′, c′}, a

contradiction.

Suppose (G, (a, b, c), (a′, b′, c′)) is of Type (5). Then G has a 2-separation (G1, G2)

such that V (G1 ∩ G2) = {x, b}, {a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2), and (G1 +

xb, a, a′, b′, b) and (G2, c, c
′, x, b) are 3-planar. By applying Lemma 2.2.1, we see that any

three disjoint paths in G from {a, b, c} to {a′, b′, c′} must be from a, b, c to a′, b′, c′, re-

spectively. Now, we prove ba′, bc′, b′a, b′c 6∈ E(G). By structure of G, b′c 6∈ E(G). If

bc′ ∈ E(G), then {a, b, c′} is a 3-cut in G separating {a, b, c} from {a′, b′, c′}, a contra-

diction. So, by symmetry, assume ba′ ∈ E(G). Then, {a′, b, c} is a 3-cut in G separating

{a, b, c} from {a′, b′, c′}, a contradiction.

Now assume (G, (a, b, c), (a′, b′, c′)) is of Type (6). Then there are pairwise edge dis-

joint subgraphs Ga, Gc,M of G such that G = Ga ∪ Gc ∪ M , V (Ga ∩ M) = {u, z},

V (Gc ∩ M) = {p, q}, V (Ga ∩ Gc) = ∅, {a, a′, b′} ⊆ V (Ga), {c, c′, b} ⊆ V (Gc), and

(Ga, a, a
′, b′, z, u) and (Gc, c

′, c, b, p, q) are 3-planar. By applying Lemma 2.2.1, we see

that any three disjoint paths in G from {a, b, c} to {a′, b′, c′}must be from a, b, c to a′, b′, c′,

respectively. Now, we prove ba′, bc′, b′a, b′c 6∈ E(G). By structure of G, ba′, b′c 6∈ E(G).

So, by symmetry, suppose bc′ ∈ E(G). Then, {a, b, c′} is a 3-cut in G separating {a, b, c}

from {a′, b′, c′}, a contradiction.

Finally, assume (G, (a, b, c), (a′, b′, c′)) is of Type (7). Then there are pairwise edge

disjoint subgraphs Ga, Gc,M of R such that G = Ga ∪Gc ∪M , V (Ga ∩M) = {b, b′, q},

V (Gc ∩ M) = {b, b′, p}, V (Ga ∩ Gc) = {b, b′}, {a, a′} ⊆ V (Ga), {c, c′} ⊆ V (Gc),

and (Ga, a, a
′, b′, q, b) and (Gc, c

′, c, b, p, b′) are 3-planar. By applying Lemma 2.2.1, we

see that any three disjoint paths in G from {a, b, c} to {a′, b′, c′} must be from a, b, c to

a′, b′, c′, respectively. Now, we prove ba′, bc′, b′a, b′c 6∈ E(G). For, otherwise, by symmetry,

assume bc′ ∈ E(G). Then, {a, b, c′} is a 3-cut in G separating {a, b, c} from {a′, b′, c′}, a
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contradiction.
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CHAPTER 3

FRAMES AND CONSTRAINTS

Let G be a graph and a1, a2, b2, b2 ∈ V (G) be distinct. Recall that by Corollary 2.1.3

in Chapter 2, (G, a1, a2, b1, b2) is feasible if G contains three pairwise independent paths

A,B1, B2, such that A is from a1 to a2, and Bi is from b1 to b2 for i ∈ [2].

Our main Theorem 1.3.1 gives a structural result on infeasible 8-connected graphs. In

this chapter, we give the decomposition of G into edge disjoint subgraphs A1, A2 and H .

Suppose (G, a1, a2, b1, b2) is infeasible.

In section 3.1, we find the subgraphs A1, A2, H in G, and prove that A1 and A2 are both

planar by applying Lemma 2.2.1 on 2-linked graphs.

In section 3.2, by choosing favorite A1 and A2 and applying Lemma 2.3.1 on three

special paths, we show that there exists w ∈ V (H) such that H − w is a ladder of rungs.

We give an illustration of the structure of G in Figure 3.1.

3.1 Frame and its properties

For any three independent b1-b2 paths B1, B2, B3 in G−{a1, a2}, we use Ai(B1∪B2∪

B3), for i ∈ [2], to denote the (B1 ∪B2 ∪B3)-bridge of G containing ai.

We say that B1, B2, B3 form a frame in (G, a1, a2, b1, b2), if they satisfy (C1)-(C4), up

to relabeling a1 and a2 and relabeling b1 and b2.

(C1) B1, B2, B3 are independent induced b1-b2 paths in G− {a1, a2},

(C2) A1(B1 ∪B2 ∪B3) has all its attachments on B3,

(C3) A2(B1 ∪B2 ∪B3) has attachments on both B1(b1, b2) and B2(b1, b2), and

(C4) subject to (C1)-(C3), A1(B1 ∪B2 ∪B3) is maximal.
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In this section, we prove the existence of such a frame in 8-connected infeasible graphs,

as well as some related properties. Since G is 8-connected, by Theorem 2.1.1, there exist

three independent b1-b2 paths in G − {a1, a2}. Take such three paths B1, B2, B3 to be

induced; so (C1) holds.

Now, we show that (C2) holds for any three independent b1-b2 paths B1, B2, B3 in

G− {a1, a2}.

Lemma 3.1.1. Suppose (G, a1, a2, b1, b2) is infeasible and B1, B2, B3 are three indepen-

dent b1-b2 paths in G − {a1, a2}. Then there exist i ∈ [2] and j ∈ [3] such that

Ai(B1 ∪B2 ∪B3) has all its attachements contained in Bj .

Proof. For, suppose such i, j do not exist. Then there exists some k ∈ [2] such that, for

s ∈ [2], As(B1 ∪B2 ∪B3) has an attachement a′s ∈ V (Bk(b1, b2)). Let Qs denote an as-a′s

path in As(B1∪B2∪B3) internally disjoint from B1∪B2∪B3. Without loss of generality,

let k = 1. Then B2, B3, Q1 ∪ B1[a
′
1, a
′
2] ∪ Q2 show that (G, a1, a2, b1, b2) is feasible, a

contradiction.

Next, we show that ifB1, B2, B3 satisfy (C1)-(C3), then (A1(B1∪B2∪B3))∪B3, B3+

a2) is planar.

Lemma 3.1.2. Suppose (G, a1, a2, b1, b2) is infeasible and G is 4-connected, and suppose

B1, B2, B3 are independent b1-b2 paths in G − {a1, a2}. For any i ∈ [2] and j ∈ [3], if

Ai(B1 ∪ B2 ∪ B3) ∩ (B1 ∪ B2 ∪ B3) ⊆ Bj and A3−i(B1 ∪ B2 ∪ B3) intersects Bk(b1, b2)

for both k ∈ [3] \ {j}, then (Ai(B1 ∪B2 ∪B3) ∪Bj, Bj + ai) is planar.

Proof. Without loss of generality, we may assume i = 1 and j = 3. Let H be the graph

obtained from G by contracting G− (A1(B1 ∪B2 ∪B3)−B3) to a single vertex w.

Suppose there exist disjoint paths P1, P2 inH from b1, a1 to b2, w, respectively. Letw′ ∈

N(w) ∩ V (P2) ⊆ V (B3). By symmetry between B1 and B2, we may assume that G has a

path Q from w′ to B1 and internally disjoint from A1(B1∪B2∪B3)∪B1∪B2∪B3. Since

A2(B1∪B2∪B3) has attachments onB1(b1, b2), it contains an a2-w′ path, say P , internally
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disjoint from B1 ∪ B2 ∪ B3. Now (P2 − w) ∪ Q ∪ B1(b1, b2) ∪ P contains an a1-a2 path

independent of P1 and B2, which, together with P1 and B2, shows that (G, a1, a2, b1, b2) is

feasible, a contradiction.

So such paths P1, P2 do not exist in H . By Lemma 2.2.1, (H,A, {w, b1, a1, b2}) is 3-

planar, whereA is a collection of disjoint subsets of V (H)\{w, b1, a1, b2}. IfA = ∅, we are

done. Hence we may assume there existsA ∈ A. Since |NH(A)| ≤ 3 andG is 4-connected,

V (B3)∩A 6= ∅. Therefore, w ∈ NH(A) and, thus, |NH(A)∩V (B3)| = 2. Hence, H[A] ⊆

B3 by definition of A1(B1 ∪ B2 ∪ B3) and B3. This implies (H[A ∪ NH(A)], NH(A)) is

planar for all A ∈ A. Hence, (Ai(B1 ∪B2 ∪B3) ∪Bj, Bj + ai) is planar.

Before we prove the existence of a frame, we need the following lemma for 8-connected

graphs when (A1(B1 ∪B2 ∪B3), B3 + a1) is planar.

Lemma 3.1.3. Suppose (G, a1, a2, b1, b2) is infeasible andG is 8-connected. LetB1, B2, B3

be three independent induced b1-b2 paths inG−{a1, a2} such that (A1(B1∪B2∪B3), B3+

a1) is planar. Then there exists w ∈ V (A1(B1 ∪ B2 ∪ B3)) ∩ V (B3(b1, b2)) such that w is

not contained in any 3-cut of G− (A1(B1 ∪B2 ∪B3)−B3)−{a2} separating b1 from b2.

Proof. For convenience, let A1 := A1(B1 ∪ B2 ∪ B3) and H = G − (A1 − B3) − {a2}.

Suppose such w does not exist. Then every vertex in V (A1) ∩ V (B3(b1, b2)) is contained

in a 3-cut of H separating b1 from b2. Let V (A1) ∩ V (B3(b1, b2)) = {w1, . . . , wm} such

that b1, w1, . . . , wm, b2 occur on B3 in order. For i ∈ [m], let ui ∈ V (B1(b1, b2)), vi ∈

V (B2(b1, b2)) such that Ti := {ui, vi, wi} is a 3-cut of H separating b1 from b2. We may

assume that

(1) for all i ∈ [m − 1], b1, ui, ui+1, b2 occur on B1 in order and b1, vi, vi+1, b2 occur on

B2 in order.

To see this, we choose Ti such that the Ti-bridge of H containing b1, denoted by Hi, is

minimal. Suppose (1) fails. Then by symmetry between B1 and B2, we may assume that

for some i, b1, ui+1, ui, b2 are in order on B1.
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First, suppose b1, vi, vi+1, b2 occur on B2 in order. By the choice of {ui, vi, wi},

{ui+1, vi, wi} is not a cut in H separating b1 from b2. Hence, there exists a b1-ui path P in

Hi − {ui+1, vi, wi}. But then P ∪B1[ui, b2] is a b1-b2 path in H − Ti+1, a contradiction.

Now assume that b1, vi+1, vi, b2 are in order on B2. By the choice of {ui, vi, wi},

{ui+1, vi+1, wi} is not a cut in H separating b1 from b2. So there exists a b1-wi+1 path

Q in Hi+1 − {ui+1, vi+1, wi}. But again, Q ∪ B1[wi+1, b2] is a b1-b2 path in H − Ti, a

contradiction.

(2) V (H) = {b1, b2} ∪
(⋃

i∈[m] Ti

)
.

Otherwise suppose there exists x ∈ V (H) such that x 6∈ {b1, b2} ∪
(⋃

i∈[m] Ti

)
. Then,

x is not contained in the T1-bridge of H containing b1; as otherwise, T1∪{b1, a2} is a 5-cut

in G separating x from b2, a contradiction. Similarly, x is not contained in the Tm-bridge

of H containing b2. Hence, there exists i ∈ [m] such that x is contained in both the Ti+1-

bridge of H containing b1 and the Ti-bridge of H containing b2. Now Ti ∪ Ti+1 ∪ {a2} is a

cut in G of order at most 7 and separates x from {a1, a2}, a contradiction.

Since dG(bi) ≥ 8 for both i ∈ [2], it follows from (2) that

(3) dA1(bi) ≥ 5 for i ∈ [2].

(4) There exists i ∈ [m] such that dH(wi) ≥ 7.

Suppose for a contradiction, dH(wi) < 7 for all i ∈ [m]. Then, since G is 8-connected,

dA1(wi) ≥ 2 for all i ∈ [m].

Let H ′ be the graph obtained from A1 ∪B3 by adding a new vertex a and an edge from

a to each vertex in B3. Then, (H ′, a1, b1, a, b2) is planar. We take an embedding of H ′

in the plane such that a1, b1, a, b2 occur on the outer cycle of H ′ in clockwise order. Let

F (H ′) denote the set of faces of H ′. For convenience, for the rest proof of the lemma, we

write d(x) := dH′(x) for x ∈ V (H ′) ∪ F (H ′). When x ∈ F (H ′), d(x) is the number of

edges incident to x.
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Note that d(a) = |V (B3)|, d(w) ≥ 5 for all w ∈ V (B3), and d(v) ≥ 8 for all v ∈

V (A1 −B3). Moreover, d(a) ≥ 8; otherwise V (B3) is a cut of size ≤ 7 in G separating a1

from a2, a contradiction.

We now apply the discharging method to H ′. First, define σ(x) := d(x) − 4 as the

charge of x for all x ∈ V (H ′) ∪ F (H ′). Then, σ(x) ≥ −1 for all x ∈ F (H ′), σ(x) ≥ 1

for all x ∈ V (B3), and σ(x) ≥ 4 for all x ∈ V (A1 − B3) ∪ {a}. So σ(x) < 0 only if

x ∈ F (H ′) is a triangular face of H ′. By Euler’s formula,

∑
x∈V (H′)∪F (H′)

σ(x) = −8.

Next, we move charges from vertices to faces as follows: For every v ∈ V (H ′ − B3),

we discharge d(v)−4
d(v)

≥ 1
2

(since d(v) ≥ 8) from v to each of the triangular faces of H ′

incident to v. So the new charge τ(v) for each vertex v satisfies

τ(v) ≥ σ(v)− (d(v)− 4) ≥ 0,

and the new charge τ(f) for each triangular face f with at most one vertex on B3 satisfies

τ(f) ≥ σ(f) + 2 · 1
2
≥ 0.

For each w ∈ V (B3), we perform the discharging as follows. If d(w) ≥ 6, we discharge

d(w)−4
d(w)

≥ 1
3

from w to each of the triangular faces incident to w; the new charge of w is

τ(w) ≥ σ(w)− (d(w)− 4) ≥ 0.

If d(w) = 5, we discharge 1
4

from w to each triangular face f incident to w and having two
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vertices from B3 (there are at most four such faces); so the new charge of w is

τ(w) ≥ σ(w)− 4 · 1
4
= 1− 1 = 0.

Now, consider any traingular face f with two vertices on B3. f gets at least 1
2

from its

vertex in V (A1 −B3) and 1
4

from each of its vertices in V (B3). So the new charge of f is

τ(f) ≥ σ(f) +
1

2
+ 2 · 1

4
= 0.

Note that the infinity face of H ′, say f0, is incident to at least 4 vertices, so τ(f0) ≥ 0.

Thus,
∑

x∈V (H′)∪F (H′) τ(x) ≥ 0. Since the total charge is preserved, we have

0 ≤
∑

x∈V (H′)∪F (H′)

τ(x) =
∑

x∈V (H′)∪F (H′)

σ(x) = −8,

a contradiction. So we have (4).

By (4), let j ∈ [m] be such that dH(wj) ≥ 7. By (2) and the pigeonhole principal,

|V (Bi(b1, b2)) ∩ NG(wj)| ≥ 3 for some i ∈ [2]. By symmetry, assume |V (B1(b1, b2)) ∩

NG(wj)| ≥ 3.

(5) NG(wj) ∩ V (B1) = {uj−1, uj, uj+1} is disjoint from {b1, b2} and uj−1, uj, uj+1

are pairwise distinct, NG(uj) ∩ V (B2) ⊆ {vj−1, vj, vj+1}, NG(uj) ∩ V (B3) ⊆

{wj−1, wj, wj+1}, and if wj−1, wj, wj+1 are pairwise distinct thenNG(vj)∩V (B1) ⊆

{uj−1, uj, uj+1}.

Let x ∈ NG(wj) ∩ V (B1). If x ∈ V (B(uj+1, b2]) then wjx contradicts the existence of the

3-cut Tj+1 of H; and if x ∈ V (B1[b1, uj−1)) then wjx contradicts the existence of the 3-cut

Ti−1 of H . So by (2), NG(wj)∩ V (B1) = {uj−1, uj, uj+1}, and uj−1, uj, uj+1 are pairwise

distinct.

Now, consider NG(uj). Clearly, b1, b2 6∈ NG(uj) as B1 is induced path in G.
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Since uj−1, uj, uj+1 are pairwise distinct, similar arguments in last paragraph shows

NG(uj) ∩ V (B2) ⊆ {vj−1, vj, vj+1} and NG(uj) ∩ V (B3) ⊆ {wj−1, wj, wj+1}. Similarly,

if wj−1, wj, wj+1 are pairwise distinct then NG(vj) ∩ V (B1) ⊆ {uj−1, uj, uj+1}.

(6) a2 6∈ NG(uj).

Suppose uja2 ∈ E(G). Then, NG(uj) ∩ V (B3) = {wj}. Otherwise there exists

wl ∈ V (B3(b1, b2))− {wj} such that ujwl ∈ E(G). By symmetry, we may assume l < j.

Let P be a wl-a1 path in A1 independent of B3. Then, P ′ = P ∪ wluja2 is an a1-a2 path,

and, B1[b1, uj−1] ∪ uj−1wj ∪ B3[wj, b2] and B2 are two disjoint b1-b2 paths in G − P ′,

showing that (G, a1, a2, b1, b2) is feasible, a contradiction. But then, by (2), dG(uj) ≤

|{uj−1, uj+1, vj−1, vj, vj+1, wj, a2}| ≤ 7, a contradiction.

By (5) and (6), NG(uj) = {uj−1, uj+1, wj−1, wj, wj+1, vj−1, vj, vj+1}. Note that a2 ∈

NG(vj), to avoid 7-cut {uj−1, uj+1, wj−1, wj, wj+1, vj−1, vj+1} in G separating {uj, vj}

from {b1, b2}. Since dG(vj) ≥ 8, there exists wl ∈ V (B3(b1, b2)) \ {wj} such that vjwl ∈

E(G). By symmetry, we may assume l < j. Let P be a wl-a1 path in A1 independent of

B3. Then, P ′ = P ∪ wlvja2 is an a1-a2 path, and B1[b1, uj−1] ∪ uj−1wj ∪ B3[wj, b2] and

B2[b1, vj−1] ∪ vj−1uj ∪ B1[uj, b2] are two independent b1-b2 paths in G − P ′. This shows

that (G, a1, a2, b1, b2) is feasible, a contradiction.

Corollary 3.1.4. Suppose (G, a1, a2, b1, b2) is infeasible and G is 8-connected. Then G −

{a1, a2} contains three independent induced b1-b2 paths B1, B2, B3 such that for some

i ∈ [2], Ai(B1 ∪B2 ∪B3) has all its attachments contained in B3 and A3−i(B1 ∪B2 ∪B3)

has attachments on both B1(b1, b2) and B2(b1, b2).

Proof. Let B1, B2, B3 be three independent induced b1-b2 paths in G − {a1, a2}. Choose

B1, B2, B3 so that A1(B1 ∪B2 ∪B3) is maximal.

We may assume that A1(B1 ∪ B2 ∪ B3) has all its attachments on B3. For, otherwise,

since (G, a1, a2, b1, b2) is infeasible, A2(B1 ∪ B2 ∪ B3) has all its attachments on Bj for

exactly one j ∈ [2]. Then by relabeling, we see that B1, B2, B3 are desired paths.
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Let H := G− (A1(B1∪B2∪B3)−B3)−a2,. By the maximality of A1(B1∪B2∪B3),

we see that each w ∈ V (A1(B1 ∪ B2 ∪ B3)) ∩ V (B3(b1, b2)) is contained in a 3-cut in H

separating b1 from b2.

Let G′ be obtained from G−a2 by contracting G− (A1(B1∪B2∪B3)∪B3) to a single

vertex a′2. Suppose G′ contains disjoint paths Qa, Qb from a1, b1 to a′2, b2, respectively.

Then the independent b1-b2 paths B1, B2, Qb give the desired paths, as (G, a1, a2, b1, b2) is

infeasible and A1(B1 ∪B2 ∪Qb) has attachments on both Qb and B1(b1, b2) ∪B2(b1, b2).

So, such paths do not exist in G′. Hence, by Lemma 2.2.1, (G′,A, a1, b1, a′2, b2) is

3-planar, where A is a collection of disjoint subsets of V (G′) \ {a1, b1, a′2, b2}.

We claim that (A1(B1 ∪ B2 ∪ B3) ∪ B3, B3 + a1) is planar. If A = ∅, we are done.

Hence we may assume there exists A ∈ A. Since |NG′(A)| ≤ 3 and G is 8-connected,

V (B3)∩A 6= ∅. Therefore, a′2 ∈ NG′(A) and, thus, |NG′(A)∩V (B3)| = 2. Hence,G′[A] ⊆

B3 by definition of A1(B1 ∪ B2 ∪ B3) and B3. This implies (G′[A ∪NG′(A)], NG′(A)) is

planar for all A ∈ A. So (A1(B1 ∪B2 ∪B3) ∪B3, B3 + a1) is planar.

This is a contradiction to Lemma 3.1.3.

Hence, by Corollary 3.1.4, we may choose three independent b1-b2 paths B1, B2, B3 in

G−{a1, a2}which satisfy (C1)-(C4). Moreover, by Lemma 3.1.2, (A1(B1∪B2∪B3), B3+

a1) is planar. Let

S := V (A1(B1 ∪B2 ∪B3)) ∩ V (B3).

By Lemma 3.1.3, there exists w ∈ S \ {b1, b2} such that G− (A1(B1 ∪B2 ∪B3)−B3)−

{a2, w} has three independent b1-b2 paths P1, P2, P3.

3.2 Ladders and rungs

In this section, we show that G− (A1(B1 ∪B2 ∪B3)−B3)−{a2, w} can be obtained

from a plane graph and a ladder (which consists of rungs as defined in section 2.3) by

gluing them along a path.
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Let A2(P1 ∪ P2 ∪ P3) be the (P1 ∪ P2 ∪ P3)-bridge of G containing a2. We choose

B1, B2, B3, w, P1, P2, P3, such that

(C5) subject to (C1)-(C4), A2(P1 ∪ P2 ∪ P3) is maximal.

By the maximality of A1(B1∪B2∪B3) (see (C4)), all attachments of A2(P1∪P2∪P3)

are contained in exactly one of P1, P2, P3, as otherwise, ifA1(P1∪P2∪P3) has attachments

on at least two of Pi’s for i ∈ [3], (G, a1, a2, b1, b2) is feasible; and if A1(P1 ∪ P2 ∪ P3) has

attachments only on one Pj for some j ∈ [3], P1, P2, P3, w would contradict the choice of

B1, B2, B3, w. So we may assume that

(C6) subject to (C1)-(C5), all attachments ofA2(P1∪P2∪P3) on P1∪P2∪P3 are contained

in P3.

Let

H = G− (A1(B1 ∪B2 ∪B3)− (B3 − w))− (A2(P1 ∪ P2 ∪ P3)− P3).

Label the vertices in V (A2(P1 ∪ P2 ∪ P3)) ∩ V (P3) as u1, . . . , um in order from b1 to b2.

Then by the maximality ofA2(P1∪P2∪P3) (see (C5)), each ui is in a 3-cut ofH separating

b1 from b2.

Lemma 3.2.1. For i ∈ [m], there are 3-cuts Ti = {ui, vi, wi} in H separating b1 from b2

such that b1, u1, . . . , um, b2 occur on P3 in order, b1, v1, . . . , vm, b2 occur on P2 in order,

and b1, w1, . . . , wm, b2 occur on P1 in order.

Proof. The proof is the same as (1) in the proof of Lemma 3.1.3.

Let H1 denote the T1-bridge of H containing b1, and Hm+1 denote the Tm-bridge of

H containing b2. Let Int(H1) = V (H1) \ (T1 ∪ {b1}) and Int(Hm+1) = V (Hm+1) \

(Tm ∪ {b2}). For i ∈ [m] \ {1}, let Hi denote the union of those (Ti−1 ∪ Ti)-bridges of H

containing the subpaths of Pj between Ti−1 and Ti for j ∈ [3].
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Lemma 3.2.2. For i ∈ [m] \ {1}, any three disjoint paths in Hi from Ti−1 to Ti contains a

ui−1-ui path.

Proof. Suppose for some i ∈ [m] \ {1}, Hi has three disjoints paths Qu, Qv, Qw from

ui−1, vi−1, wi−1, respectively, to Ti, with no ui−1-ui path. Then, ui ∈ V (Qv ∪ Qw). Let

P ′1, P
′
2, P

′
3 be formed by taking the union of Qu, Qv, Qw, respectively, with the subpaths

of P1, P2, P3 outside of Hi. We may assume that P ′1 ⊇ Qu and P ′2 contains Qv (if ui ∈

V (Qv)) or Qw (if ui ∈ V (Qw)). Then, P ′1, P
′
2, P

′
3 are three independent b1-b2 paths in

G− (A1(B1∪B2∪B3)−B3)−{a2, w} such that A2(P
′
1∪P ′2∪P ′3) has attachments on P ′1

and P ′2. Hence, P ′1, P
′
2, P

′
3, w contradict the choice of B1, B2, B3, w, or (G, a1, a2, b1, b2) is

feasible, a contradiction.

Thus, by Lemma 2.3.1, Hi = Ji ∪ Li, where Ji is planar and Li is a ladder from

(vi−1, ui−1, wi−1) to (vi, ui, wi). Let

L∗ = H1 ∪Hm+1 ∪ (
m⋃
i=2

Li).

We further choose P1, P2, P3 such that

(C7) subject to (C1)-(C6), (P1 ∪ P2 ∪ P3) ∩ Hi ⊆ Li for i ∈ [m] \ {1} (and hence,

P1 ∪ P2 ∪ P3 ⊆ L∗), and A′2(P1 ∪ P2 ∪ P3) := A2(P1 ∪ P2 ∪ P3) ∪ J2 ∪ . . . ∪ Jm is

maximal.

See the following Figure 3.1 for an illustration for all the above results.

The following observation will be convenient.

Observation 3.2.3. There exists no path in H from S \ {b1, b2} to P3(b1, b2) disjoint from

P1 ∪ P2.

Proof. For, suppose Q is a path between s ∈ S \ {b1, b2} and t ∈ V (P3(b1, b2)) internally

disjoint from P1 ∪ P2. We may further assume Q is independent of A1(B1 ∪ B2 ∪ B3) ∪
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Figure 3.1: Structure of infeasible (G, a1, a2, b1, b2)

A2(P1 ∪ P2 ∪ P3). Note that A1(B1 ∪ B2 ∪ B3) contains an a1-s path independent of H .

Let b ∈ V (P3(b1, b2))∩ V (A2(P1 ∪P2 ∪P3)). Then A2(P1 ∪P2 ∪P3) contains a a2-b path

Q2 independent of P3. Now Q1 ∪Q∪ P3(t, b)∪Q2 is an a1-a2 path disjoint from P1 ∪ P2.

This shows that (G, a1, a2, b1, b2) is feasible, a contradiction.

We conclude this section with a useful lemma concerning the rungs

(R, (a, b, c), (a′, b′, c′)) in L∗ with |∂R| = 6 or |∂R| = 5 and b 6= b′.

Lemma 3.2.4. (R, (a, b, c), (a′, b′, c′)) in L∗ with |∂R| = 6 or |∂R| = 5 and b 6= b′. Then

(a) any three disjoint paths inR from {a, b, c} to {a′, b′, c′}must be from a, b, c to a′, b′, c′,

respectively, and

(b) there are disjoint induced paths Pa, Pc in R − {b, b′} from a, c to a′, c′, respectively,

such that R− (Pa ∪ Pc) is connected and S ∩ V (R) ⊆ V (Pa ∪ Pc).

Proof. By (iii) of Proposition 2.3.2, we have (a). So there are disjoint induced paths Pa, Pc

in R − {b, b′} from a, c to a′, c′, respectively, such that {b, b′} is contained in a (Pa ∪ Pc)-

bridge of R, say Rb. Note that (S ∪N(w)) ∩ V (Rb) = ∅ by Observation 3.2.3.
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To prove (b), let us assume by symmetry that if |∂R| = 5 then a = a′. If Rb is the

only component of R − (Pa ∪ Pc) then (b) holds; for otherwise (G, a1, a2, b1, b2) would

be feasible as A2(P1 ∪ P2 ∪ P3) has attachments on P3(b1, b2). For any component X of

R− (Pa ∪ Pc) with X 6= Rb, it follows from 3-planarity of R or R− a′ (when a = a′) that

we may assume X has neighbors only on Pc unless a = a′. Moreover, the two neighbors of

X on Pc that are furtherest apart form a cut (with a if a = a′) in R, and these two neighbors

might be the same.

Hence, let {yi, zi} be the cut of size at most 2 in R (or R − a when a = a′) separating

Rb from Pc[yi, zi] and at least one vertex of R− (Pa∪Pc), such that Pc[yi, zi] are maximal.

Then by planarity, we may assume that c, y1, z1, . . . , yt, zt, c′ occur on Pc in order. Let Xi

denote the union of P [yi, zi] and all (Pa ∪ Pc)-bridges of R with all attachments contained

in Pc[yi, zi] (or Pc[yi, zi] + a if a = a′). Let X∗i = R[Xi + w] and Int(X∗i ) = V (X∗i ) \

{a, w, yi, zi}. Note that X∗i − (Pa ∪ Pc) 6= ∅; so V (B3) ∩ Int(X∗i ) 6= ∅ (to avoid the cut

{a, w, yi.zi}). Let r1, r2 ∈ V (B3) ∩ {a, w, yi, zi} with N(ri) ∩ Int(X∗i ) 6= ∅ for i ∈ [2],

such that B3[r1, r2] is maximal.

First, we claim that {r1, r2} 6= {yi, zi} for i ∈ [t]. For, suppose {r1, r2} = {yi, zi} for

some i ∈ [t]. Then Bi ∩ Int(X∗i ) = ∅ for i ∈ [2]. If there exists s ∈ (S ∩ Int(X∗i )) \

V (Pc[yi, zi]) then letting B′3 := (B3−B3(yi, zi))∪Pc[yi, zi] we see that A1(B1∪B2∪B′3)

contains A1(B1 ∪B2 ∪B3) + s, contradicting (C4). So S ∩ Int(X∗i ) ⊆ V (Pc[yi, zi]). Now

let Y be a (Pa ∪ Pc)-bridge of R contained in X∗i and y, z ∈ V (Y ) ∩ V (Pa ∪ Pc) with

Pc[y, z] maximal, such that no other (Pa ∪ Pc)-bridges of R has attachments in Pc(y, z).

Note Y is well defined because of planarity. Now there exists s ∈ S ∩V (Pc(y, z)) to avoid

the cut {a, w, y, z}. Let B′3 denote the union of (B3−B3(y, z)) and an induced y-z path in

Y − V (Pc(y, z)). Then A1(B1 ∪ B2 ∪ B′3) contains A1(B1 ∪ B2 ∪ B3) + s, contradicting

(C4).

Thus, for any i ∈ [t], we have w′ ∈ Int(X∗i ), or a = a′ and B3 enters Int(X∗i ) at a;

for, otherwise, B3 ∩X∗i would be a yi-zi path. This, in particular, implies t ≤ 2.
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Case 1. a 6= a′.

Then t = 1. First, suppose S ∩ Int(R) ⊆ V (X∗1 ). Let R′ be obtained from R∗ −

Int(X∗1 ) by adding edges {ab, bc, y1z1, c′b′, b′a′} (or {ab, bc, c′b′, b′a′} when y1 = z1), as

well as edges from w to K := {a, b, c, y1, z1, c′, b′, a′}. Then R′ is a planar graph. Let k =

|K| and m = |V (R′) \ (K ∪ {w})|. By the Hand-shaking lemma and Euler’s formula, we

see that k×4+k+8(|V (R′)|−k−1) ≤ 6|V (R′)|−12, which implies |V (R′)| ≤ 3k/2−2.

So m ≤ 3k/2 − 2 − (k + 1) = k/2 − 3 ≤ 1. This implies that there exists u ∈ Int(R)

such that NR(u) = K. (Note N(w) ∩ V (Rb) = ∅ as (G, a1, a2, b1, b2) is infeasible.) By

planarity of R, {a, u, c} is a cut in R separating {a, b, c} from {a′, b′, c′}, a contradiction.

Now, suppose there exists s ∈ S ∩ Int(R) and s /∈ V (X∗1 ). By symmetry, assume

s ∈ V (Pc(c, y1)). We choose such s with Pc[c, s] minimal. We consider the paths Bi ∩

R for i ∈ [3]. If we can find disjoint paths in R∗ − s linking the same ends of Bi ∩

R∗ for i ∈ [3], then by replacing Bi ∩ Int(R) with such paths in R∗ − s, we obtain

independent b1-b2 pathsB′1, B
′
2, B

′
3 such thatA1(B

′
1∪B′2∪B′3) containsA1(B1∪B2∪B3)+

s, contradicting (C4). So such paths do not exist. Hence by 3-planarity of (R, a, b, c, c′, b′a′)

we see that R has a 4-cut {s, v1, v2, a′} separating {a, b, c} from {y1, a′, b,′ c′} ∪ V (X∗1 ).

Let R′ denote the {w, s, v1, v2, a′}-bridge of R∗ containing {a, b, c} and assume notation

is chosen so that (R′ − w, a, b, c, s, v1, v2, a
′) is planar. Let R′′ be obtained from R′ by

adding edges in {ab, bc, sv1, v1v2, v2a′}, as well as edges from w to all vertices in K :=

{a, b, c, s, v1, v2, a′}. Let k := |K| and m := |V (R′′) \ (K ∪ {w})|. By Hand-shaking

lemma and Euler’s formula, we see that k× 4+ k+8(|V (R′′)| − k− 1) ≤ 6|V (R′′)| − 12,

which implies |V (R′′)| ≤ 3k/2− 3. So m ≤ 3k/2− 3− (k + 1) = k/2− 3 ≤ 1/2. This

leads to a contradiction to (ii) of Proposition 2.3.2.

Case 2. a = a′ and t = 1.

Suppose S∩ (Int(R)\V (X∗1 )) = ∅. Let R′ be obtained from R∗−a− (X∗1 −{y1, z1})

by adding edges bc, b′c′ and y1z1 if y1 6= z1, as well as edges from w to all vertices in

K := {b, b′, c, c′, y1, z1}. Let k = |K| and m = |V (R′) \ (K ∪ {w})|. By Hand-shaking
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lemma and Euler’s formula, we see that 4× k + k + 7(|V (R′)| − k− 1) ≤ 6|V (R′)| − 12,

which implies |V (R′)| ≤ 2k − 5. Thus, m ≤ k − 6, Since k ≤ 6, V (R′) = K. This leads

to a contradiction to (ii) of Proposition 2.3.2.

Now assume there exists s ∈ S ∩ Int(R) and s /∈ inV (X∗1 ). By symmetry, assume

s ∈ V (Pc(c, y1)). We choose such s with Pc[c, s] minimal. We consider the paths Bi ∩ R∗

for i ∈ [3]. If we can find disjoint paths in R∗ − s linking the same ends of Bi ∩ R∗ then

by replacing Bi ∩ Int(R) with such paths in R∗ − s, we obtain independent b1-b2 paths

B′1, B
′
2, B

′
3 such that A1(B

′
1∪B′2∪B′3) contains A1(B1∪B2∪B3)+ s, contradicting (C4).

So such paths do not exist. Hence by 3-planarity of (R−a, b, c, c′, b′) we see that R−a has

a 3-cut {s, v1, v2} separating {b, c} from {y1, b,′ c′}. Let R′ denote the {w, s, v1, v2}-bridge

of R − a containing {b, c} and assume notation is chosen so that (R′ − w, b, c, s, v1, v2) is

planar.

Let R′′ be obtained from R′ by adding edges {bc, sv1, v1v2}, as well as edges from w

to all vertices in K := {b, c, s, v1, v2}. let k := |K| and m := |V (R′′) \ (K ∪ {w})|. By

Hand-shaking lemma and Euler’s formula, we see that k × 4 + k + 7(|V (R′′)| − k − 1) ≤

6|V (R′′)| − 12, which implies |V (R′′)| ≤ 2k − 5. So m ≤ k − 6 < 0, a contradiction.

Case 3. a = a′ and t = 2.

Then since B3 ∩ Int(X∗i ) 6= ∅ cannot be a yi-zi path for i ∈ [2], we see that B3 enters

Int(X∗1 ) at a and leaves Int(X∗2 ) atw. Thus S∩Int(R) ⊆ V (X∗1 )∪V (Pc[z1, y2])∪V (X∗2 ).

Suppose S ∩ Int(R) ⊆ V (X∗1 ∪ X∗2 ). Let R′ be obtained from R∗ − a − (X∗1 −

{y1, z1}) − (X∗2 − {y2, z2}) by adding edges bc, b′c′ and yizi for i ∈ [2] with yi 6= zi, as

well as edges from w to all vertices in K := {b, b′, c, c′, y1, z1, y2, z2}. Let k = |K| and

m = |V (R′) \ (K ∪ {w})|. By Hand-shaking lemma and Euler’s formula, we see that

4 × k + k + 7(|V (R′)| − k − 1) ≤ 6|V (R′)| − 12, which implies |V (R′)| ≤ 2k − 5. So

m ≤ k − 6 ≤ 2. Using planarity of R′ − w and every vertex inside R′ − (K ∪ {w}) has

degree at least 7, we see that m = 1 and the only vertex in V (R′) \ (K ∪ {w}), say u, is

adjacent to both b and b′ (and bb′ ∈ E(G)) by (ii) of Proposition 2.3.2. Hence, by letting
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P ′3 = (P3 − bb′) ∪ bub′, we see that A′2(P1 ∪ P2 ∪ P ′3) contains A′2(P1 ∪ P2 ∪ P3) + bb′.

Hence, B1, B2, B3, w, P1, P2, P
′
3 contradict (C7).

Now assume there exists s ∈ S ∩ V (Pc(z1, y2)). We choose such s with Pc[z1, s]

minimal. We consider the paths Bi ∩R∗ for i ∈ [3]. If we can find disjoint paths in R∗ − s

linking the same ends of Bi∩R∗, then by replacing Bi∩Int(R) with such disjoint paths in

R∗− s, we obtain independent b1-b2 paths B′1, B
′
2, B

′
3 such that A1(B

′
1∪B′2∪B′3) contains

A1(B1∪B2∪B3)+s, contradicting (C4). So such paths do not exist. Hence by 3-planarity

of (R − a, b, c, c′, b′) we see that R − a has a 3-cut {s, v1, v2} separating {b, c} ∪ V (X∗1 )

from {b,′ c′} ∪ V (X∗2 ). Let R′ denote the graph obtained from the {w, s, v1, v2}-bridge

of R∗ − a containing {b, c} by deleting Int(X∗1 ), and assume notation is chosen so that

(R′ − w, b, c, y1, z1, s, v1, v2) is planar.

Let R′′ be obtained from R′ by adding edges in {bc, sv1, v1v2} and y1z1 (if y1 6= z1),

as well as edges from u to all vertices in K := {b, c, y1, z1, s, v1, v2}. Let k = |K| and

m := |V (R′′) \ (K ∪ {w})|. By Hand-shaking lemma and Euler’s formula, we see that

k×4+k+7(|V (R′′)|−k−1) ≤ 6|V (R′′)|−12, which implies |V (R′′)| ≤ 2k−5. Hence

m ≤ k − 6 ≤ 1. By planarity and (ii) of Proposition 2.3.2, we have m = 1. So the unique

vertex in V (R′) \ {b, c, s, v1, v2, u} ∪ {y1, z1}, say u, must be adjacent to w. However, this

means N(w) ∩ V (Rb) 6= ∅, a contradiction.
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CHAPTER 4

RUNGS INTERSECTING THREE SPECIAL PATHS

For any rung (R, (a, b, c), (a′, b′, c′)), let ∂R = {a, b, c, a′, b′, c′} and Int(R) = V (R) \

∂R. In this chapter, we consider the rungs R in L∗ such that Int(R) ∩ V (Bi) 6= ∅ for all

i ∈ [3], including H1 and Hm+1, and prove that only H1 or Hm+1 could intersect all three

paths.

First, in section 4.1, we prove a technical lemma that will be used to deal with such

rungs. In section 4.2, we use Lemma 4.1.1 to obtain structure results of H1 and Hm+1

in subsection 4.2.1, and that of the other rungs R in subsection 4.2.2. Last in Lemma 4.2.3,

we show that such rungs do not exist except when they are contained in H1 ∪ Hm+1 or

when |∂R| = 5 and b = b′.

Let w′, w′′ ∈ N(w) ∩ V (B3) such that b1, w′, w, w′′, b2 occur on B3 in order.

4.1 Technical lemma

In this section, we prove a technical lemma to deal with rungs intersecting Bi for all

i ∈ [3].

Lemma 4.1.1. Let {a′, b′, c′} be a 3-cut of L∗ with b′ ∈ V (P3) and separating {b1, w′}

from {b2, w′′}, let R denote the {a′, b′, c′}-bridge of L∗ containing {b1, w′}, and let R∗ =

R+ {w,wx : x ∈ N(w) ∩ V (R)}. Suppose there exists w∗ ∈ S ∩ V (B3(b1, w
′]) such that

R∗−w∗ contains three independent pathsQa, Qc, Qw from b1 to a′, c′, w, respectively, such

that b′ ∈ V (Qa), or Qa ∩ P3 is a subpath of P3[b1, b
′] and the (Qa ∪ Qc ∪ Qw)-bridge of

R∗ containing b′ has an attachment on Qa. Suppose A2(P1 ∪ P2 ∪ P3) has attachments on

both P3(b1, b
′] and P3(b

′, b2).

Then L∗ has a 3-cut {a′′, b′′, c′′} with b′′ ∈ V (P3) separating {a′, b′, c′} ∪ (N(w) ∩
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V (L∗)) from b2, and A2(P1 ∪ P2 ∪ P3) has no attachment in P3(b
′, b′′). Moreover, if R′′

denotes the graph obtained from H by deleting the components of L∗ − ({a′′, b′′, c′′} ∪

{a′, b′, c′}) containing b1 or b2 then R′′ = J ′′ ∪ L′′ with b′ ∈ V (J ′′ − L′′), (J ′′, J ′′ ∩ L′′)

planar, J ′′ ∩ L′′ is an a′-b′′ path, and L′′ a ladder from {a′, c′, w} to {a′′, b′′, c′′} along

J ′′ ∩ L′′.

Proof. Let a′′ = b′′ = c′′ = b2 if L∗ has no 3-cut separating {a′, b′, c′} ∪ (N(w) ∩ V (L∗))

from b2, and otherwise let {a′′, b′′, c′′} be a 3-cut of L∗ separating {a′, b′, c′} ∪ (N(w) ∩

V (L∗)) from b2 and let b′′ ∈ V (P3). Moreover, let R′ denote the graph obtained from L∗

by deleting the components ofL∗−({a′′, b′′, c′′}∪{a′, b′, c′}) containing b1 or b2, and choose

{a′′, b′′, c′′} to minimize R′. By the choice of R′, R′ has no cut of size at most 3 separating

{a′, b′, c′} ∪ (N(w) ∩ V (L∗)) from {a′′, b′′, c′′}. Let Rv = R′ + {v, w, va′, vb′, wx : x ∈

N(w) ∩ V (R′)}, where v is a new vertex.

Note thatRv contains three independent paths from v, c′, w, respectively, to {a′′, b′′, c′′}.

For, otherwise,Rv has a cut T of size at most 2 separating {v, c′, w} from {a′′, b′′, c′′}. Then

v ∈ T as, otherwise, T would separate {a′, b′, c′} ∪ (N(w) ∩ V (L∗)) from {a′′, b′′, c′′},

a contradiction. Moreover, w /∈ T because of the existence of three independent paths

Pi ∩R′, i ∈ [3], in R′. Now {b′, a′} ∪ (T \ {v}) is a 3-cut in L∗ contradicting the choice of

{a′′, b′′, c′′} (i.e., the minimality of R′).

We claim thatA2(P1∪P2∪P3) has no attachment on P3(b
′, b′′) (and, hence, {a′′, b′′, c′′}

is a cut in L∗). For, otherwise, there exists b∗ ∈ V (A2(P1 ∪ P2 ∪ P3)) ∩ V (P3(b
′, b′′)), and

we choose b∗ so that P3[b
∗, b′′] is minimal. Note that b∗ is contained in a 3-cut {a∗, b∗, c∗}

of L∗ separating {a′, b′, c′} from {a′′, b′′, c′′}. Let M denote the graph obtained from L∗

by deleting the components of L∗ − ({a∗, b∗, c∗} ∪ {a′′, b′′, c′′}) containing b1 or b2, and let

M∗ = M + {w,wx : x ∈ N(w) ∩ V (M)}. By the choice of {a′′, b′′, c′′} (minimality of

R′), w has a neighbor in V (M∗) \ {a∗, b∗, c∗}. By the choice of {a′′, b′′, c′′} again, M∗− b∗

contains independent paths Pa, Pc, Pw from a∗, c∗, w, respectively, to {a′′, b′′, c′′}. Now we

obtain three independent b1-b2 paths P ′1, P
′
2, P

′
3 from Qa ∪Qc ∪Qw ∪ Pa ∪ Pc ∪ Pw, (P1 ∪
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P2) ∩ (R′ − (M − {a′, c′}), and three independent paths from b2 to a′′, b′′, c′′, respectively,

in the {a′′, b′′, c′′}-bridge of L∗ containing b2. Then B1, B2, B3, w
∗, P ′1, P

′
2, P

′
3 contradict

(C5), as A2(P
′
1 ∪ P ′2 ∪ P ′3) contains A2(P1 ∪ P2 ∪ P3) + b∗.

We further claim that any three disjoint paths in Rv from {v, c′, w} to {a′′, b′′, c′′}

must contain a v-b′′ path. For, suppose Pv, Pc, Pw are disjoint paths in Rv from v, c′, w,

respectively, to {a′′, b′′, c′′} with no v-b′′ path. Then b′′ ∈ V (Pc) or b′′ ∈ V (Pw). If

b′′ ∈ V (Pw), let v′ ∈ {b′, a′} such that v′ ∈ V (Pv). Then, there is an a1-a2 path in union of

A1(B1 ∪B2 ∪B3)− (B3−w), Pw and A2(P1 ∪P2 ∪P3)−P3[b1, b
′] (as A2(P1 ∪P2 ∪P3)

has attachment on P3(b
′, b2)), which is independent from the two b1-b2 paths obtained from

two independent paths from b1 to {v′, c′} (subpaths of P1 ∪ P2 ∪ P3), Pv − v, Pc, and the

two independent paths from b2 to {a′′, c′′} (subpaths of P1 ∪P2 ∪P3). So (G, a1, a2, b1, b2)

is feasible. Thus, b′′ ∈ V (Pc). By symmetry, assume c′′ ∈ V (Pv) and a′′ ∈ V (Pw). If

a′ ∈ V (Pv), let Q′a = Qa; otherwise if b′ ∈ V (Pv), let Q′a be the b1-b′ path in union of Qa

and the (Qa∪Qc∪Qw)-bridge ofR∗ containing b′. Then we obtain three independent b1-b2

paths B′1, B
′
2, B

′
3 in H − w∗ from Q′a ∪Qc ∪Qw ∪ (Pv − v) ∪ Pc ∪ Pw and the three inde-

pendent paths from b2 to {a′′, b′′, c′′} (subpaths of B1, B2, B3), such that, A1(B
′
1∪B′2∪B′3)

contains A1(B1 ∪ B2 ∪ B3) + w∗ and A2(B
′
1 ∪ B′2 ∪ B′3) has attachments on both B′1 and

B′2 (by assumption on Qa). So B′1, B
′
2, B

′
3, w

∗ contradict (C4).

Hence, by applying Lemma 2.3.1 to (Rv, (w, v, c
′), (a′′, b′′, c′′)), we see that Rv = Jv ∪

Lv, where Lv is a ladder from (w, v, c′) to (a′′, b′′, c′′) and (Jv, Jv ∩ Lv) is planar.

Case 1. Jv ⊆ Lv.

Then by the choice of R′, Lv is a single rung. By relabeling a′′ and c′′ if necessary, we

may assume c′ = a′′ when c′ ∈ {a′′, c′′}. Then, since v, w /∈ {a′′, b′′, c′′}, it follows from

definition of rungs that either c′ 6= a′′ and (Lv, w, v, c
′, a′′, b′′, c′′) is 3-planar, or c′ = a′′ and

(Lv − c′, w, v, b′′, c′′) is 3-planar.

Hence, because of P1, P2, P3 and the choice of R′, R′ − b′ contains three disjoint paths

Pa, Pc, Pw from a′, c′, w to b′′, a′′, c′′, respectively. Now these three paths, Qa ∪ Qc ∪ Qw,
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and (P1∪P2∪P3)− ((R∗−a′′)+ Int(R′)) form three independent b1-b2 paths X1, X2, X3

inH−w∗ such that a′ ∈ V (X1), c′ ∈ V (X2), and w ∈ V (X3). Note thatA1(X1∪X2∪X3)

contains A1(B1 ∪B2 ∪B3) + w∗.

If A2(X1 ∪ X2 ∪ X3) has attachments on both X1 and X2 then X1, X2, X3, w
∗ con-

tradict (C4), or all attachment of A1(X1 ∪ X2 ∪ X2) are on X3, then (G, a1, a2, b1, b2) is

feasible with X1, X2 and an a1-a2 path in union of X3 and A1(X1 ∪X2 ∪X2). So assume

A2(X1, X2, X3) has all its attachments on X1. Then the (Pa ∪ Pc ∪ Pw)-bridge of Rv − v

containing b′, say J ′′, has all its attachments in Pa. By choosing Pa, Pc, Pw to maximize J ′′

and by the planarity of Lv (when |∂R| = 6) or Lv − c′ when |∂R| = 5), we see that J ′′ and

L′′ := (Rv − v)− (J ′′ − Pa) satisfies the conclusion of the lemma.

Case 2. Jv − Lv 6= ∅.

By the minimality of R′, we see that the boundary of Jv has a path from v to b′′ and

avoiding Lv−{v, b′′}, which we denote by Q. Note b′ ∈ V (Q) or a′ ∈ V (Q). If b′ ∈ V (Q)

then R′′ = Rv − v, J ′′ = Jv − v and L′′ = Lv − v satisfy the conclusion. So assume

a ∈ V (Q).

We claim that Rv − Q − w contains disjoint paths Bb, Bc from b′, c′, respectively, to

{a′′, c′′}; for otherwise, there is a cut vertex t inRv−Q−w separating {b, c′} from {a′′, c′′}.

However, this contradicts the existence of the disjoint paths Pi ∩ (Rv − w), i ∈ [3].

Now (P1 ∪ P2 ∪ P3) − Int(R′), and (Q − v) ∪ Bb ∪ Bc give three independent b1-b2

paths B′1, B
′
2, B

′
3 in L∗, such that A1(B

′
1 ∪ B′2 ∪ B′3) contains A1(B1 ∪ B2 ∪ B3) + w and

A2(B
′
1 ∪B′2 ∪B′3) attaches to two of B′1, B

′
2, B

′
3 (as A2(P1 ∪ P2 ∪ P3) has attachments on

both P3(b1, b
′] and P3(b

′, b2)). Hence, either (G, a1, a2, b1, b2) is feasible, or B′1, B
′
2, B

′
3, w

contradict (C4).

4.2 Structures

In this section, we apply Lemma 4.1.1 to obtain structures for H1 and Hm+1 and rungs

R in L∗ not contained in H1 ∪Hm+1. Then, in Lemma 4.2.4, we conclude that only H1 or
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Hm+1 could intersect all three paths.

4.2.1 H1 and Hm+1

First, consider H1 and Hm+1 in L∗.

Lemma 4.2.1. If Bi ∩ Int(H1) 6= ∅ for i ∈ [3] and if w′ ∈ V (H1) \ T1 and w′′ /∈ V (H1),

then, there exists w∗ ∈ S ∩ (V (H1) \ (T1 ∪ {b1})) such that,

(a) for each s ∈ S ∩ V (B3(b1, w
∗]), s is contained in a 3-cut of H∗1 := H1 + {w,wv :

v ∈ N(w) ∩ Int(H1)} separating b1 from T1 ∪ {w}, and

(b) for each s ∈ S ∩ V (B3(w
∗, w)), s is contained in a 3-cut of H∗1 separating {b1, x3}

from {w, x1, x2}, where for i ∈ [2], xi denotes the end of Bi ∩H1 other than b1, and

x3 ∈ T1 \ {x1, x2}.

The same holds for Hm+1 and b2.

Proof. By symmetry, we prove the assertion for H1. By definition, Bi ∩ H∗1 , i ∈ [3], are

paths inH1 from b1 to {u1, v1, w1, w}with only b1 in common. Letw∗ ∈ S∩(V (H1)\(T1∪

{b1})) such that w∗ is contained in some 3-cut T of H∗1 separating b1 from T1 ∪ {w}; and

if such w∗ does not exist we set w∗ = b1. We choose w∗ such that B3[b1, w
∗] is maximal.

Let H ′1 denote the T -bridge of H∗1 containing b1 (with V (H ′1) = {b1} if w∗ = b1).

We claim that for any s ∈ S ∩ V (B3(b1, w
∗)), s is contained in some 3-cut of H ′1

separating b1 from T . For, otherwise, H ′1 − s contains independent paths from b1 to T

with only b1 in common. Now these three paths and Bi − (H ′1 − T ) for i ∈ [3] form

three independent b1-b2 paths B′1, B
′
2, B

′
3 in H − s such that A1(B

′
1 ∪ B′2 ∪ B′3) contains

A1(B1 ∪B2 ∪B3) + s and A2(B
′
1 ∪B′2 ∪B′3) has attachments on both B′1 and B′2. Hence,

B′1, B
′
2, B

′
3 contradict (C4).

Now let s ∈ S ∩ V (B3(w
∗, w)) be arbitrary. By the choice of w∗, s is not contained in

any 3-cut of H∗1 separating b1 from T1∪{w}. For i ∈ [2], let xi be the end of Bi∩H1 other

than b1. Thus, x1, x2 ∈ T1, and let x3 ∈ T1 \ {x1, x2}.
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If H∗1 − s contains no independent paths from b1 to x1, x2, w, respectively, then s is

contained in a 3-cut T ′ of H∗1 separating b1 from {x1, x2, w}. Since T ′ cannot separate b1

from T1 ∪ {w}, T ′ must separate {b1, x3} from {w, x1, x2}.

So assume that H∗1 − s contains independent paths Q1, Q2, Q3 from b1 to x1, x2, w, re-

spectively. These paths, B3[w, b2], and the parts of B1, B2 outside H1 form three indepen-

dent b1-b2 pathsB′1, B
′
2, B

′
3 inH−s. SinceA1(B

′
1∪B′2∪B′3) containsA1(B1∪B2∪B3)+s

and A2(B1 ∪ B2 ∪ B3) has attachments on both B1 and B2, it follows from (C4) that

A2(B
′
1 ∪ B′2 ∪ B′3) has all its attachments on Qi + b2 for exactly one i ∈ [2], and

that V (A2(B1 ∪ B2 ∪ B3)) ∩ V (B3−i) ⊆ V (H1). So u1 /∈ V (B1 ∪ B2 ∪ B3), u1 ∈

A2(B
′
1 ∪B′2 ∪B′3), and {x1, x2} = {v1, w1}.

Thus, we may apply Lemma 4.1.1 with the cut T1 as {a′, b′, c′} and u1 as b′. So L∗

has a 3-cut {a′′, b′′, c′′} with b′′ ∈ V (P3) separating {a′, b′, c′} ∪ (N(w) ∩ V (L∗)) from b2,

and A2(P1 ∪ P2 ∪ P3) has no attachment in P3(b
′, b′′). Moreover, if R′′ denotes the graph

obtained from H by deleting the components of L∗− ({a′′, b′′, c′′}∪ {a′, b′, c′}) containing

b1 or b2, then R′′ = J ′′ ∪ L′′ with b′ ∈ V (J ′′ − L′′), where (J ′′, J ′′ ∩ L′′) is planar, J ′′ ∩ L′′

is an a′-b′′ path, and L′′ is a ladder from {a′, c′, w} to {a′′, b′′, c′′} along J ′′ ∩ L′′. Let

P ′1, P
′
2, P

′
3 be three independent b1-b2 paths in H − w∗ obtained from Q1 ∪Q2 ∪Q3, three

disjoint paths in L′′ from {v1, w1, w} to {a′′, b′′, c′′}, and the subpaths of Pi, i ∈ [3], from

{a′′, b′′, c′′} to b2. Since b′ = u1 ∈ V (A2(B1, B2, B3)), we see that A′2(P
′
1 ∪ P ′2 ∪ P ′3)

contains A′2(P1 ∪ P2 ∪ P3) ∪ J ′′. Thus, B1, B2, B3, w
∗, P ′1, P

′
2, P

′
3 contradict (C7).

4.2.2 Rungs not in H1 ∪Hm+1

Next, consider rungs (R, (a, b, c), (a′, b′, c′)) not contained in H1 ∪ Hm+1. First, we

show results of such rungs R with w′ ∈ Int(R) and w′′ 6∈ V (R). We discuss them in

two cases: |∂R| = 5 and b = b′ in Lemma 4.2.2, and |∂R| = 6 or |∂R| = 5 and b 6= b′

in Lemma 4.2.3.

Lemma 4.2.2. Suppose (R, (a, b, c), (a′, b′, c′)) is a rung in L∗ such that R 6⊆ H1 ∪Hm+1
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and |{w′, w′′} ∩ Int(R)| = 1 = |{w′, w′′} ∩ V (R)|. Moreover, assume that b = b′ and

V (Bi) ∩ Int(R) 6= ∅ for i ∈ [3]. Then, for all s ∈ S ∩ Int(R), s is contained in a 3-cut

of R∗ = R+ {w,wv : v ∈ N(w)∩ Int(R)} separating {a, b, c} from {a′, c′, w}, or for all

s ∈ S ∩ Int(R), s is contained in a 3-cut of R∗ separating {a′, b′, c′} from {a, c, w},

Proof. By symmetry, let w′ ∈ Int(R) and w′′ /∈ V (R), and we may assume that

b1, w
′, w′′, b2 occur on B3 in order. Note that b ∈ V (P3), and we may assume that a ∈

V (P2), and c ∈ V (P1). Suppose for a contradiction that there exists some w1 ∈ S∩Int(R)

such thatR∗−w1 contains disjoint pathsQa, Qb, Qc from a, b, c, respectively, to {a′, c′, w}.

Observe that w /∈ V (Qb). For otherwise, by replacing (P1 ∪ P2)∩R with Qa ∪Qc, we

obtain from P1, P2 independent b1-b2 paths P ′1 and P ′2 such that G− (P ′1 ∪ P ′2) contains an

a1-a2 path. This shows that (G, a1, a2, b1, b2) is feasible, a contradiction.

Hence, by symmetry, we may assume that a′ ∈ V (Qb), c′ ∈ V (Qa), and w ∈ V (Qc).

Let K denote the {a′, b′, c′}-bridge of L∗ containing {b1, w′}, and let K∗ = K + {w,wx :

x ∈ N(w) ∩ V (K)}. Then Qa, Qb, Qc, P1[b1, c], P2[b1, a], and P3[b1, b] form three inde-

pendent paths Q1
a, Q

1
c , Q

1
w in K∗ − w1 from b1 to a′, c′, w, respectively, with b ∈ V (Q′a).

Hence, Q1
a ∩ P3 = P3[b1, b].

Since R 6⊆ H1 ∪ Hm+1, A2(P1 ∪ P2 ∪ P3) has an attachment on both P3(b1, b] and

P3(b, b2). Since b ∈ V (Q′a), we may apply Lemma 4.1.1 with the paths Q1
a, Q

1
c , Q

1
w. So L∗

has a 3-cut {a2, b2, c2} with b2 ∈ V (P3) separating {a′, b′, c′} ∪ (N(w) ∩ V (L∗)) from b2,

and A2(P1 ∪ P2 ∪ P3) has no attachment in P3(b
′, b2). Moreover, if R2 denotes the graph

obtained from H by deleting the components of L∗− ({a2, b2, c2} ∪ {a′, b′, c′}) containing

b1 or b2, then R2 = J2∪L2 with b′ ∈ V (J2−L2), where (J2, J2∩L2) is planar, J2∩L2 is

an a′-b2 path, and L2 is a ladder from (c′, a′, w) to (a2, b2, c2) along the path J2 ∩ L2. Note

that L2 contains three disjoint paths P 2
a , P

2
c , P

2
w from a′, c′, w, respectively, to {a2, b2, c2},

with P 2
a = J2 ∩ L2.

If N(w) ∩ V (R∗ \ {a, b, c}) = ∅ then let P 2
1 , P

2
2 , P

2
3 be three independent b1-b2 paths

in H − w∗ obtained from Q1
a ∪ Q1

c ∪ Q1
w, P 2

a ∪ P 2
c ∪ P 2

w, and the subpaths of Pi, i ∈ [3],
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from {a2, b2, c2} to b2. We see that A′2(P
2
1 ∪ P 2

2 ∪ P 2
3 ) contains A′2(P1 ∪ P2 ∪ P3) ∪ J2; so

B1, B2, B3, w
1, P 2

1 , P
2
2 , P

2
3 contradict (C7).

So assume N(w) ∩ V (R∗ \ {a, b, c}) 6= ∅.

We may assume that there exists w2 ∈ S ∩ Int(R) such that R∗ − w2 contains disjoint

paths Q2
a, Q

2
b , Q

2
c from a′, b′, c′, respectively, to {a, c, w}; otherwise the assertion of the

lemma holds. Hence, we may apply the same argument as above with respect to R and

b1, and conclude that L∗ has a 3-cut {a1, b1, c1} with b1 ∈ V (P3) separating {a, b, c} ∪

(N(w)∩ V (L∗)) from b1, and A2(P1 ∪ P2 ∪ P3) has no attachment in P3(b, b
1). Moreover,

ifR1 denotes the graph obtained fromH by deleting the components of L∗−({a1, b1, c1}∪

{a, b, c}) containing b1 or b2 then R1 = J1 ∪L1 with b ∈ V (J1−L1), where (J1, J1 ∩L1)

is planar, J1 ∩ L1 is an a-b1 path, and L1 is a ladder from (c, a, w) to (a1, b1, c1) along

J1 ∩L1. Note that L1 contains three disjoint paths P 1
a , P

1
c , P

1
w from a, c, w, respectively, to

{a1, b1, c1}, with P 1
a = J1 ∩ L1.

If R − b has disjoint paths from a, c to c′, a′, respectively, then, by definition of rung,

these paths can be chosen to avoid some s ∈ S∩Int(R). So these two paths, P i
a∪P i

c ∪P i
w,

i ∈ [2], and subpaths of Pj , j ∈ [3], from bi to {ai, bi, ci}, form three independent b1-

b2 paths B′1, B
′
2, B

′
3. We can show that (G, a1, a2, b1, b2) is feasible or there exists s ∈

S ∩ Int(R) such that B′1, B
′
2, B

′
3, s contradict (C4).

Thus, (R − b, a, a′, c′, c) is planar. Let Xa, Xc denote the disjoint paths in R − b from

a, c to a′, c′, respectively, such that Xa ∪Xc is contained in the outer walk of R − a. Then

S∩Int(R) ⊆ V (Xc) by (C4). Moreover, (R, a, b, a′, c′, c) is 3-planar. For, otherwise, there

exists s ∈ S ∩V (Pc(c, c
′)) such that R− s has disjoint paths from c, s to a′, b, respectively,

or disjoint paths from c′, s to a, b, respectively. The b-s path can be used to find an a1-a2

path that is disjoint from two b1-b2 paths using the other paths. So (G, a1, a2, b1, b2) is

feasible, a contradiction.

Let P ′1, P
′
2, P

′
3 be three independent b1-b2 paths inH obtained fromXa∪Xc, P i

a∪P i
c∪P i

w

(for i ∈ [2]), and the subpaths of Pj , j ∈ [3], from {ai, bi, ci} to bi (for i ∈ [2]). We see that
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A′2(P
′
1 ∪ P ′2 ∪ P ′3) contains A′2(P1 ∪ P2 ∪ P3) ∪ J1 ∪ J2. Thus, either (G, a1, a2, b1, b2) is

feasible, or for some s ∈ S ∩ Int(R), B1, B2, B3, s, P
′
1, P

′
2, P

′
3 contradict (C7).

Lemma 4.2.3. Suppose (R, (a, b, c), (a′, b′, c′)) is a rung in L∗ such that |∂R| = 6 or

|∂R| = 5 and b 6= b′, R 6⊆ H1∪Hm+1, and |{w′, w′′}∩ Int(R)| = 1 = |{w′, w′′}∩V (R)|.

Then there exists i ∈ [2] such that V (Bi) ∩ Int(R) = ∅.

Proof. By symmetry, let w′ ∈ Int(R) and w′′ /∈ V (R), and assume that b1, w′, w′′, b2 occur

on B3 in order. Note that b, b′ ∈ V (P3) and, since R 6⊆ H1 ∪ Hm+1, A2(P1 ∪ P2 ∪ P3)

has attachments on both P (b1, b] and P [b′, b2). Since |∂R| = 6 or |∂R| = 5 and b 6= b′,

it follows from (b) of Lemma 3.2.4 (with appropriate relabeling) that R contains induced

paths Pa, Pc from a, c to a′, c′, respectively, such that R − (Pa ∪ Pc) is connected and

contains {b, b′}, and S ∩ Int(R) ⊆ V (Pa ∪ Pc). Let R∗ = H[R + w]. We claim that

(1) N(w) ∩ V (R) ⊆ V (Pa ∪ Pc).

For otherwise, R∗ − (Pa ∪ Pc) contains a path Pw from w to {b, b′}. Let P ′1, P
′
2 be the

b1-b2 paths in L∗ obtained from P1, P2 by replacing (P1 ∪ P2) ∩ R with Pa ∪ Pc. Since

A2(P1∪P2∪P3) has attachments on both P3(b1, b] and P3[b
′, b2), (R∗−(Pa∪Pc))∪(A1(B1∪

B2 ∪B3)− (B3−w))∪ (A2(P1 ∪P2 ∪P3)∪ (P3(b1, b2)−R)∪Pw contains an a1-a2 path

independent of P ′1, P
′
2. This shows that (G, a1, a2, b1, b2) is feasible, a contradiction.

By symmetry, let w′ ∈ V (Pc). Then c 6= c′. Suppose the assertion of the lemma

fails, i.e., V (Bi) ∩ Int(R) 6= ∅ for i ∈ [3]. Then by planarity of (R, a, b, c, c′, b′, a′) or

(R − a, b, c, c′, b′), S ∩ Int(R) ⊆ V (Pc(c, c
′)). Let s ∈ S ∩ V (Pc(c, w

′)) with Pc[c, s]

minimal.

(2) s is not contained in any cut of R∗ of order at most 3 separating {a, a′, b, c} from

{b′, c′, w}.

For, suppose R∗ has a 3-cut containing s, say {s, v1, v2}, separating {a, a′, b, c} from

{b′, c′, w}.

46



First, assume a = a′. Let K denote the {s, v1, v2}-bridge of R∗ containing {a, b, c}.

By choosing notation of v1 and v2, we may assume that (K, b, c, s, v1, v2) is planar. Let K ′

be obtained from K + {bc, sv1, v1v2} by adding a new vertex v and edges from v to all of

{b, c, s, v1, v2}. Then by Hand-shaking lemma and Euler’s formula, 5×4+5+7(|V (K ′)|−

6) ≤ 6|V (K ′)| − 12. This implies |V (K ′)| ≤ 5, a contradiction.

Now consider the case when a 6= a′. Let K denote the {s, v1, v2}-bridge of

R∗ containing {a, a′, b, c}. By choosing notation of v1 and v2, we may assume that

(K, a, b, c, s, v1, v2, c
′) is planar. Let K ′ be obtained from K + {ab, bc, sv1, v1v2, v2a′}

by adding a new vertex v and edges from v to all of {a, b, c, s, v1, v2, a′}. Then by Hand-

shaking lemma and Euler’s formula, 7 × 4 + 7 + 8(|V (K ′)| − 8) ≤ 6|V (K ′)| − 12. This

implies |V (K ′)| ≤ 10. Hence, U := V (K) \ {a, b, c, s, v1, v2, a′} contains at most two

vertices. Since each vertex in U must have degree at least 8 and U ∩N(w) = ∅ by (1), we

have |U | = 2. However, this contradicts the planarity of (R, a, b, c, c′, b′, a′).

We claim that

(3) a = a′.

For, suppose a 6= a′. Then (R, a, b, c, c′, b′, a′) is planar. Thus, B3 ∩R∗ must be a c-w path,

andB1∩R∗ andB2∩R∗ must be an a-{a′, b′} path and a b-{b′, c′} path. By (2) and planarity

of R, we see that R∗ − s contains disjoint induced paths B′a, B
′
b, B

′
c connecting the ends of

B1∩R∗, B2∩R∗, B3∩R∗, respectively. Thus, by replacingB1∩R∗, B2∩R∗, B3∩R∗ with

B′a, B
′
b, B

′
c, we obtain from B1, B2, B3 three independent induced b1-b2 paths B′1, B

′
2, B

′
3.

Since A2(B1 ∪ B2 ∪ B3) has attachments on both B1 and B2 and has no attachment in

Int(R), A2(B
′
1∪B′2∪B′3) has attachments on both B′1 and B′2. Clearly, A1(B

′
1∪B′2∪B′3)

contains A1(B1 ∪B2 ∪B3) + s. So B′1, B
′
2B
′
3 contradicts (C4).

By (3), (R − a, b, c, c′, c′) is planar. Hence, by (2), (R∗ − a) − s contains disjoint

paths B2
b , B

2
c from b, c to c′, w, respectively. Note that B2

b , B
2
c and the subpaths of Pi,

i ∈ [3], between b1 and {a, b, c} form three independent induced paths Q2
a, Q

2
c , Q

2
w from b1
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to a, c′, w, respectively. Moreover, we see that Q2
c ∩ P3 contains P3[b1, b] and has has an

attachment of A2(P1 ∪ P2 ∪ P3)− b1. Note that b′ ∈ V (Q2
c) or the (Q2

a ∪Q2
c ∪Q2

w) ∩R∗-

bridge of R∗ containing b′ has an attachment in Q2
c . We can now apply Lemma 4.1.1 to

obtain a 3-cut {a2, b2, c2} in L∗ separating {a′, b′, c′}∪(N(w)∩V (L∗)) from b2. Moreover,

if R2 denotes the graph obtained from H by deleting the components of L∗− ({a′, b′, c′} ∪

{a2, b2, c2}) containing b1 or b2, then R2 = J2 ∪L2 with b′ ∈ V (J2−L2), where (J2, J2 ∩

L2) is planar, J2∩L2 is an c′-b2 path, and L2 is a ladder from (a′, c′, w) to (a2, b2, c2) along

J2 ∩ L2. Moreover, L2 − J2 has disjoint paths from {a, w} to {a2, c2} which, we may

assume, are P 2
a , P

2
w from a, w to a2, c2, respectively.

Let L1 denote the {a, b, c}-bridge of L∗ containing H1.

Case 1. N(w) ∩ V (L1 − {a, b, c}) = ∅.

Let Pb be the b-c′ path in the boundary of R − a containing b′ but not c. Suppose Pb is

an induced path. Then let P ′3 := P3[b1, b] ∪ Pb ∪ (J2 ∩ L2) ∪ P3[b
2, b2], and let P ′1, P

′
2 be

obtained from P1, P2 by replacing (P1 ∪ P2) ∩ (R ∪ R2) with P 2
a , Bc ∪ P 2

w. We see that

A′2(P
′
1 ∪ P ′2 ∪ P ′3) contains A′2(P1 ∪ P2 ∪ P3) ∪ J2; so B1, B2, B3, s, P

′
1, P

′
2, P

′
3 contradict

(C7).

Hence, Pb is not an induced path. Thus, let xy ∈ E(G) \ E(Pb) with x, y ∈ V (Pb).

Choose x, y with Pb[x, y] maximal. To avoid the cut set {x, y, w, a, b} inG, we may assume

that xb′, b′y ∈ E(Pb) and x, b′, y occur on Pb in this order. Let P ′3 := P3[b1, b] ∪ (Pb[b, x] ∪

xy ∪ Pb[y, c
′]) ∪ (J2 ∩ L2) ∪ P3[b

2, b2]. Let P ′1, P
′
2 be defined as above.

If b′a /∈ E(G), then we see that A′2(P
′
1 ∪ P ′2 ∪ P ′3) contains A′2(P1 ∪ P2 ∪ P3) ∪ J2; so

B1, B2, B3, s, P
′
1, P

′
2, P

′
3 contradict (C7). Thus, b′a ∈ E(G). By symmetry between a2 and

c2, let P ′c, P
′
w be disjoint induced paths in L2−{a, b2} from c, w to a2, c2, respectively. Let

B′1, B
′
2, B

′
3 be obtained from (P1 ∪ P2 ∪ P3) − ((R ∪ R2) − {a, b, c, a2, b2, c2} by adding

(Pb[b, x]∪xy∪Pb[y, c
′])∪P ′c, ab′∪(J2−(L2−b2)),Bc∪P ′w. By choosing notation, we may

assume w ∈ V (B′3), P3[b1, b] ⊆ B′1, and P3[b
2, b2] + a ⊆ B′2. Now A2(B

′
1 ∪ B′2 ∪ B′3) has

attachments on both B′1 and B′2. Clearly, A1(B
′
1∪B′2∪B′3) contains A1(B1∪B2∪B3)+s;
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so B′1, B
′
2, B

′
3 contradict (C4).

Case 2. N(w) ∩ V (L1 − {a, b, c}) = ∅.

Then consider disjoint paths B1
b , B

1
c in (R∗ − a) − s from b′, c′ to c, w, respectively,

which exists by planarity of (R−a, b, c, c′, b′). Now B1
b , B

1
c and the subpaths of Pi, i ∈ [3],

between b2 and {a′, b′, c′} form three independent induced paths Q1
a, Q

1
c , Q

1
w from b2 to

a, c, w, respectively. Moreover, we see thatQ1
c∩P3 contains P3[b2, b

′] and has an attachment

of A2(P1 ∪ P2 ∪ P3) − b2. We can now apply Lemma 4.1.1 to obtain a 3-cut {a1, b1, c1}

in L∗ separating {a, b, c} ∪ (N(w) ∩ V (L∗)) from b1. Moreover, if R1 denotes the graph

obtained from H by deleting the components of L∗ − ({a, b, c} ∪ {a1, b1, c1}) containing

b1 or b2, then R1 = J1 ∪L1 with b ∈ V (J1−L1), where (J1, J1 ∩L1) is planar, J1 ∩L1 is

an c-b1 path, and L1 is a ladder from (a, c, w) to (a1, b1, c1) along J1 ∩ L1. Note, L1 − J1

has disjoint paths from {a, w} to {a1, c1} which, we may assume, are P 1
a , P

1
w from a, w to

a1, c1, respectively.

Let Q denote an induced c-c′ path with V (Q) contained in the boundary of R − a

disjoint from Pc(c, c
′). Let P ′3 = P3[b1, b

1]∪ (J1 ∩L1)∪Q∪ (J2 ∩L2)∪P3[b
2, b2], and let

P ′1, P
′
2 be the b1-b2 paths obtained from P1 ∪ P2 by replacing (P1 ∪ P2) ∩ (R1 ∪ R2) with

P 1
a ∪P 2

a and P 1
w ∪P 2

w. We see that A′2(P
′
1 ∪P ′2 ∪P ′3) contains A′2(P1 ∪P2 ∪P3)∪ J1 ∪ J2;

so B1, B2, B3, s, P
′
1, P

′
2, P

′
3 contradict (C7).

We conclude this section with the following result.

Lemma 4.2.4. Let (R, (a, b, c), (a′, b′, c′)) be a rung in L∗ withR 6⊆ H1∪Hm+1 and b 6= b′.

Then there exists i ∈ [2] such that Int(R) ∩ V (Bi) = ∅.

Proof. Suppose Int(R) ∩ V (Bi) 6= ∅ for i ∈ [2]. Then, since G is 8-connected,

S ∩ Int(R) 6= ∅ and, hence, V (B3) ∩ Int(R) 6= ∅. Since R 6⊆ H1 ∪ Hm+1, it fol-

lows from Lemma 4.2.3 that w′, w′′ ∈ V (R) or {w′, w′′} ∩ Int(R) = ∅. Hence, |∂R| = 6.

By Lemma 3.2.4, let Pa, Pc be the induced paths in R from a, c to a′, c′, respectively, such

thatR−(Pa∩Pc) is connected and contains {b, b′}. Note thatN(w)∩Int(R) ⊆ V (Pa∪Pc);
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as otherwise (G, a1, a2, b1, b2) would be feasible.

Suppose {w′, w′′}∩ Int(R) = ∅ or B3∩R ⊆ Pa or B3∩R ⊆ Pc. Then Bi∩R, i ∈ [3],

are {a, b, c}-{a′, b′, c′} paths. By Lemma 3.2.4, we may assume that B1 ∩ R = Pa and

B3 ∩ R = Pc. So there exists s ∈ S ∩ V (Pc(c, c
′)). By definition of rung, R has no 3-cut

separating {a, b, c} from {a′, b′, c′}. Hence, R− s has three disjoint paths Qa, Qb, Qc from

a, b, c, respectively, to {a′, b′, c′}. By Lemma 3.2.4 again, a′ ∈ V (Qa), b′ ∈ V (Qb), and

c′ ∈ V (Qc). For each i ∈ [3], let B′i be obtained from Bi by replacing Bi ∩ R with one of

Qa, Qb, Qc. Now A1(B
′
1∪B′2∪B′3) contains A1(B1∪B2∪B3)+ s, and A2(B

′
1∪B′2∪B′3)

has attachments on bothB′1 andB′2 (asR 6⊆ H1∪Hm+1). SoB′1, B
′
2, B

′
3, w contradict (C4).

Hence, we may assume w′ ∈ V (Pa), and w′′ ∈ V (Pc). Choose wa ∈ N(w) ∩ V (Pa)

with Pa[a, wa] minimal, and choose wc ∈ N(w) ∩ V (Pc) with Pc[wc, c
′] minimal. Note

that S ∩ Int(R) ⊆ V (Pa[a, wa]) ∪ V (Pc[wc, c
′]). For otherwise, we could modify B3 by

replacing B3(wa, wc) with wawwc to obtain a new b1-b2 path B′3. Now A1(B1 ∪ B2 ∪ B′3)

contains A1(B1 ∪B2 ∪B3) and some vertex s ∈ S ∩ Int(R). Moreover, A′2(P1 ∪P2 ∪P3)

has attachments on both B′1 and B′2. So B1, B2, B
′
3, s contradict (C4).

Suppose there exists s ∈ S with s ∈ V (Pa(a, wa)) ∪ V (Pc(wc, c
′)). By symmetry,

assume s ∈ V (Pc(wc, c
′)). Since R has no 3-cut separating {a, b, c} from {a′, b′, c′}, R −

(Pa[waa
′]∪Pc[c, wc])−s contains two disjoint paths Qa, Qb from a, b to b′, c′, respectively.

Without loss of generality, we may assume a, a′ ∈ V (P1) and c, c′ ∈ V (P2). Let B′1 =

P1[b1, a] ∪ Qa ∪ P3[b
′, b2], B′2 = P3[b1, b] ∪ Qb ∪ P1[c

′, b2], B′3 = P2[b1, c] ∪ Pc[c, wc] ∪

wcwwa ∪ Pa[wa, a
′] ∪ P1[a

′, b2]. Now B′1, B
′
2, B

′
3 are independent b1-b2 paths. Moreover,

A1(B
′
1 ∪B′2 ∪B′3) contains A1(B1 ∪B2 ∪B3) + s, and A′2(P1 ∪ P2 ∪ P3) has attachments

on both B1 and B2 (as R 6⊆ H1 ∪Hm+1), contradicting (C4).

Thus, S ∩ (V (Pa(a, wa)) ∪ V (Pc(wc, c
′))) = ∅. This implies that S ∩ Int(R) ⊆

{wa, wc}. Let R∗ be the plane graph obtained from G[R+w] by adding ba, bc, b′a′, b′c′ and

all edges from w to V (Pa ∪ Pc) ∪ {b, b′}. Now |E(R∗)| ≥ 8(|R∗| − 8) + 6× 4 + 2× 5 =

8|R∗| − 30. So 8|R∗| − 30 ≤ 6|R∗| − 12. This implies |R∗| ≤ 9, a contradiction as
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|N(b) ∩ Int(R)| ≥ 2 by (ii) of Proposition 2.3.2.
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CHAPTER 5

STRUCTURE OF OTHER RUNGS

In this chapter, we consider rungs R in L∗ such that Int(R) ∩Bi = ∅ for some i ∈ [2].

First, in section 5.1, we prove technical lemmas for separation (G′, G′′) ofG−(A1(B1∪

B2∪B3)−B3) in whichBi∩(G′−G′′) = ∅ for some i ∈ [2]. Then, we deal withH1, Hm+1

in subsection 5.2.1 and all other rungs in subsection 5.2.2.

For x, y ∈ V (Bj) for some j ∈ [3], we denote x � y if Bj[b1, x] ⊆ Bj[b1, y]; and x ≺ y

if x � y and x 6= y.

5.1 Technical lemmas

We begin by showing that for any rung R in L∗ or for H1, Hm+1, if neither B1 nor B2

intersects Int(R) or Int(H1), or Int(Hm+1), then Int(R), Int(H1), Int(Hm+1) ⊆ S. For

convenience, we prove a more general statement in terms of separations in G − (A1(B1 ∪

B2 ∪B3)−B3).

Lemma 5.1.1. Suppose (G′, G′′) is a separation of G − (A1(B1 ∪ B2 ∪ B3) − B3) such

that |V (G′ ∩ G′′)| ≤ 7, V (G′ − G′′) 6= ∅, and V (G′′ − G′) 6= ∅. Suppose V (G′ − G′′) ∩

V (B1 ∪B2) = ∅. Then V (G′ −G′′) ⊆ S.

Proof. Note S ∩ V (G′ − G′′) 6= ∅; otherwise V (G′ ∩ G′′) is a cut of G contradicting the

(8, S)-connectivity. Let r1, r2 ∈ V (B3) ∩ V (G′ ∩ G′′) be such that B3[r1, r2] is maximal.

Note that it is possible B3[r1, r2] 6⊆ G′.

Suppose V (G′ − G′′) 6⊆ S and let X be an S-bridge of G′ −
(
V (G′ ∩ G′′) \ {r1, r2}

)
withX−S 6= ∅. Let x1, x2 ∈ V (X)∩

(
S∪{r1, r2}

)
such thatB3[x1, x2] is maximal. Then

|V (X)∩(S∪{r1, r2})| ≥ 3; otherwise,
(
V (X)∩

(
S∪{r1, r2}

))
∪
(
V (G′∩G′′)\{r1, r2}

)
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is a cut of G separating V (X) \
(
S ∪ {r1, r2}

)
from V (G′′ − G′), a contradiction to the

(8, S)-connectivity of G.

Hence, there exists s ∈ V (B3(x1, x2)) ∩ S. Let A be any induced x1-x2 path in X − s,

and B′3 =
(
B3 − B3(x1, x2)

)
∪Q. Then B1, B2, B

′
3 are independent b1-b2 paths in G such

that A1(B1 ∪B2 ∪B′3) contains A1(B1 ∪B2 ∪B3) +w and A2(B1 ∪B2 ∪B′3) attaches to

both B1 and B2, a contradiction.

Next, we consider rungs R whenInt(R) ∩ Bi = ∅ for exactly one i ∈ [2]. Again we

prove statements in terms of separations in G− (A1(B1 ∪ B2 ∪ B3)− B3). We first show

that all internal vertices are in V (Bi) ∪ S in Lemma 5.1.2. Then, we give structural results

of such rungs in Lemma 5.1.3.

Lemma 5.1.2. Suppose (G′, G′′) is a separation of G − (A1(B1 ∪ B2 ∪ B3) − B3) such

that |V (G′ ∩ G′′)| ≤ 7, V (G′ − G′′) 6= ∅, and V (G′′ − G′) 6= ∅. Let i ∈ [2] such that

V (G′−G′′)∩V (Bi) 6= ∅, and V (G′−G′′)∩V (B3−i) = ∅. Then V (G′−G′′) ⊆ V (Bi)∪S.

Proof. Note S ∩ V (G′ − G′′) 6= ∅; otherwise V (G′ ∩ G′′) is a cut of G contradicting the

(8, S)-connectivity ofG. Let r1, r2 ∈ V (B3)∩V (G′∩G′′) and t1, t2 ∈ V (Bi)∩V (G′∩G′′)

be such that B3[r1, r2] and Bi[t1, t2] are maximal. For convenience, let G∗ = G′−
(
V (G′∩

G′′) \ {r1, r2, t1, t2}
)
. We may assume r1 ≺ r2 and t1 ≺ t2.

Suppose for a contradiction, V (G′ − G′′) \ (V (Bi) ∪ S) 6= ∅. Then G∗ has a ((Bi ∪

S)∩G∗)-bridge X such that V (X) \ (V (Bi)∪ S) 6= ∅. Choose X and modify Bi ∩G∗ (if

necessary) so that

(1) |V (X) ∩ (S ∪ {r1, r2})| is maximal, and

(2) subject to (1), X is maximal.

Let x1, x2 ∈ V (X)∩(S∪{r1, r2}) withB3[x1, x2] maximal, and let x1 ≺ x2. We claim

that

(3) |V (X) ∩ (S ∪ {r1, r2})| ≤ 2.
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For, otherwise, there exists s ∈ V (X) ∩ V (B3(x1, x2)) ∩ S. Let Q be any induced x1-x2

path in X − (Bi + (S \ {x1, x2})), and let B′3 =
(
B3 −B3(x1, x2)

)
∪Q. Then B1, B2, B

′
3

are independent b1-b2 paths in G−{a1, a2} such that A1(B1 ∪B2 ∪B′3) contains A1(B1 ∪

B2 ∪B3) + s and A2(B1 ∪B2 ∪B′3) attaches to both B1 and B2, a contradiction.

By (3), V (B3(x1, x2)) ∩ S = ∅; so we may choose B3 such that

(4) B3[x1, x2] ⊆ X .

Then, |V (X ∩ Bi)| ≥ 2; otherwise by (3), V (X ∩ Bi) ∪
(
V (X) ∩ (S ∪ {r1, r2})

)
∪(

V (G′ ∩ G′′) \ {r1, r2, t1, t2}
)

is a cut in G of size ≤ 7 separating V (X − (Bi \ S) from

G′′ −G′, contradicting the (8, S) connectivity of G. Let y1, y2 ∈ V (X ∩ Bi) with y1 ≺ y2

such that Bi[y1, y2] is maximal. Then

(5) G∗ has no path fromBi(y1, y2) toBi−Bi[y1, y2] and internally disjoint fromBi∪B3.

For otherwise, let Q be an induced path in G∗ from z1 ∈ V (Bi(y1, y2)) to z2 ∈ V (Bi −

Bi[y1, y2]), and let B′i be an induced b1-b2 path in
(
Bi −Bi(z1, z2)

)
∪Q. Then, the ((B′i ∪

S) ∩G∗)-bridge of G∗ containing X also contains z2, contradicting (2).

(6) |V (X) ∩ (S ∪ {r1, r2})| ≥ 1.

For, suppose V (X) ∩ (S ∪ {r1, r2}) = ∅. Then by (1), no ((Bi ∪ S) ∩ G∗)-bridge of

G∗ has attachment in S ∪ {r1, r2}. Hence by (5) and since S ∩ V (G∗) ⊆ V (B3), there

exists an induced path Q′ in G∗ from some vertex y ∈ V (Bi(y1, y2)) to some vertex s ∈

(S ∪ {r1, r2}) ∩ V (G∗), internally disjoint from X ∪ Bi + S. Let Q′′ be an induced y1-y2

path inX−Bi(y1, y2) andB′′i :=
(
Bi−Bi(y1, y2)

)
∪Q′′. Then, the ((B′′i ∪S)∩G∗)-bridge

of G∗ containing Q′ also contains s, contradicting (1).

By (3) and (6), we have two cases.

Case 1. |V (X) ∩ (S ∪ {r1, r2})| = 2.
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Since {x1, x2, y1, y2} ∪
(
V (G′ ∩G′′) \ {r1, r2, t1, t2}

)
is not a cut in G separating X −

{x1, x2, y1, y2} fromG′′−G′, it follows from (5) that there is a y3-x3 pathQ inG∗ internally

disjoint from X ∪ Bi + S, with y3 ∈ V (Bi(y1, y2)) and x3 ∈ V (B3). Since B3 ∩ Bi ⊆

{b1, b2}, if B3 ∩Q 6= ∅ then x3 may be chosen so that x3 ∈ (S ∪ {r1, r2}) \ {x1, x2}.

Note that xj ∈ V (B3(x3−j, x3)) for some j ∈ [2], and thus, xj ∈ S. By symmetry, we

may assume j = 2 and x1 ≺ x2 ≺ x3, and that there exists z ∈ V (A2(B1 ∪ B2 ∪ B3) ∩

Bi[b1, y2)). Let Q′ be any x1-y2 path in X − y3 internally disjoint from Bi ∪ S.

Then, the following paths show that (G, a1, a2, b1, b2) is feasible: B3−i, B3[b1, x1]∪Q′∪

Bi[y2, b2], and an a1-a2 path in the union of A1(B1∪B2∪B3)− (B3−x3), Bi[z, y3]∪Q∪

B3[x3, x2], and A2(B1 ∪B2 ∪B3)− ((B1 ∪B2)− z).

Case 2. |V (X) ∩ (S ∪ {r1, r2})| = 1.

So x1 = x2. Since {x1, y1, y2} ∪
(
V (G′ ∩ G′′) \ {r1, r2, t1, t2}

)
is not a cut in G

separating X −{x1, y1, y2} from G′′−G′, it follows from (5) that there exist disjoint paths

Q1, Q2 from z1, z2 ∈ V (Bi(y1, y2)) to x2, x3 ∈ V (B3−x1), respectively, internally disjoint

from X ∪ Bi + S. We may choose x2, x3 ∈ (S ∪ {r1, r2}) \ {x1}. (If Q1, Q2 intersect

B3 − S then we obtain a new bridge contradicting (1).) Since the order of z1, z2 will not

matter in the rest of our argument, we may assume x1 ≺ x2 ≺ x3 or x2 ≺ x1 ≺ x3.

First, suppose x1 ≺ x2 ≺ x3. Let Q be an induced x1-y2 path in X independent of Bi,

and let B′i = Bi[b1, z2] ∪ Q2 ∪ B3[x3, b2] and B′3 = B[b1, x1] ∪ Q ∪ Bi[y2, b2]. Note that

A2(B3−i ∪ B′i ∪ B′3) attaches to B3−i as well as B′i or B′3. If A2(B3−i ∪ B′i ∪ B′3) attaches

to B′3 then, since x1 ∈ S, we see that (G, a1, a2, b1, b2) is feasible. If A2(B3−i ∪ B′i ∪

B′3) attaches to B′i then B3−I , B
′
i, B

′
3, x1 contradict (C4) as A1(B3−i ∪ B′i ∪ B′3) contains

A1(B1 ∪B2 ∪B3) + x1.

Now suppose x2 ≺ x1 ≺ x3. Let Y be an induced y1-y2 path in X − x1 independent of

Bi, let B′3 = B3[b1, x2] ∪ Q1 ∪ Bi[z1, z2] ∪ Q2 ∪ B3[x3, b2] and let B′i = Bi[b1, y1] ∪ Y ∪

Bi[y2, b2]. Then A1(B3−i ∪B′i ∪B′3) contains A1(B1 ∪B2 ∪B3) + x1. So B3−i, B
′
i, B

′
3, x1

contradict (C4).
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Lemma 5.1.3. Suppose (G′, G′′) is a separation of G − (A1(B1 ∪ B2 ∪ B3) − B3) such

that |V (G′ ∩ G′′)| ≤ 7, V (G′ − G′′) 6= ∅ and V (G′′ − G′) 6= ∅. Suppose for some

i ∈ [2], V (G′ − G′′) ∩ V (Bi) 6= ∅, and V (G′ − G′′) ∩ V (B3−i) = ∅. Let r1, r2 ∈

V (G′∩G′′∩B3) and t1, t2 ∈ V (G′∩G′′∩Bi) such thatB3[r1, r2] andBi[t1, t2] are maximal,

and NG′−G′′(rj) ∩ S 6= ∅ for both j ∈ [2]. Let V ′ = V (G′ ∩G′′) \ ({r1, r2} ∪ V (Bi)).

Then, for some e with e = ∅ or e ∈ E(G′ − V ′) incident to either r1 or r2, if xjyj ∈

E(G′ − V ′) \ (E(Bi ∪ B3) ∪ {e}) with xj ∈ V (Bi) and yj ∈ V (B3) for j ∈ [2], then

x1 � x2 implies y1 � y2.

Proof. By Lemma 5.1.2, V (G′ − G′′) ⊆ V (Bi) ∪ S. Thus, G∗ := G′ − V ′ is obtained

from G∗ ∩ (Bi[t1, t2] ∪ B3[r1, r2]) by adding edges with one end in Bi and the other end

in B3. For any distinct x1, x2 ∈ V (Bi ∩ G∗) and distinct y1, y2 ∈ V (B3 ∩ G∗), we say

(x1, x2, y1, y2) is a cross if x1 ≺ x2, y1 ≺ y2 and x1y2, x2y1 ∈ E(G∗). If there is no cross,

lemma holds with e = ∅. So assume there is a cross.

For any cross (x1, x2, y1, y2), we have S ∩ V (B3[bk, yk]) = ∅ for some k ∈ [2]. For

otherwise, both b1-b2 paths B′i := Bi[b1, x1] ∪ {x1y2} ∪ B3[y2, b2], B
′
3 := B3[b1, y1] ∪

{y1x2} ∪Bi[x2, b2] have an internal vertex in A2(B1 ∪B2 ∪B3). Since A2(B1 ∪B2 ∪B3)

attaches to B3−i and one of B′i or B′3, we see that (G, a1, a2, b1, b2) is feasible.

Thus, since V (G′−G′′) ⊆ V (Bi)∪S, we have, for any cross (x1, x2, y1, y2), yj = rj /∈

S for some j ∈ [2]. For convenience, let t1 ≺ t2 and r1 ≺ r2.

Next, we show that, for any cross (x1, x2, y1, y2), if y1 = r1 then Bi(t1, x2) = ∅,

and if y2 = r2 then Bi(t2, x1) = ∅. For, otherwise, suppose y1 = r1 and there exists

x ∈ V (Bi(t1, x2)). SinceBi is induced andG is 8-connected, |NG∗(x)∩(S∪{r1, r2})| ≥ 3;

so let s1, s2, s3 ∈ NG∗(x) ∩ (S ∪ {r1, r2}) with s1 ≺ s2 ≺ s3. Then s2 ∈ S \ {r1, r2}. Let

B′3−i = B3−i,B′i := Bi[b1, x]∪{xs3}∪B3[s3, b2], andB′3 := B3[b1, y1]∪{y1x2}∪Bi[x2, b2].

Then we see that A2(B
′
1 ∪ B′2 ∪ B′3) has attachments on B′3−i and one of B′i and B′3, and

A1(B
′
1 ∪B′2 ∪B′3) contains A1(B1 ∪B2 ∪B3) + s2. It is easy to see that (G, a1, a2, b1, b2)

is feasible or B′1, B
′
2, B

′
3, s2 contradict (C4).
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Now let (x1, x2, y1, y2) be a cross with y1 = r1 /∈ S, and we further choose this cross

to maximize Bi[t1, x2]. By above, we see that V (B[t1, x2]) = {x1, x2}. If all crosses

use the edge y1x2, then the assertion of the lemma holds with e = y1x2. So assume

there is a cross (x′1, x
′
2, y
′
1, y
′
2) with y′1x

′
2 6= y1x2. Then y′1 6= y1. Hence, y′1 ∈ S and

y′2 = r2 /∈ S. This implies that V (Bi[x
′
1, t2]) = {x′1, x′2}. Note that x′1 6= x1 and x′2 6= x2

(as V (Bi)∩V (G′−G′′) 6= ∅). Thus, x2 ≺ x′1. By the maximality of Bi[t1, x2], we see that

y2 6= y′1.

Let B′i := Bi[b1, x1]∪ {x1y2} ∪B3[y2, y
′
1]∪ {y′1x′2} ∪Bi[x

′
2, b2] and B′3 := B3[b1, r1]∪

{r1x2} ∪ Bi[x2, x
′
1] ∪ {x′1r2] ∪ B3[r2, b2]. Then, both B′i(t1, t2) and A2(B1 ∪ B2 ∪ B3)

contains y′1 and y2; so G − (B′3 ∪ B3−i) has an a1-a2 path, showing that (G, a1, a2, b1, b2)

is feasible.

5.2 Structures

In this section, we use technical lemmas from previous section to give structural results

of H1, Hm+1 and rungs R ∈ L∗ not contained in H1 ∪Hm+1.

5.2.1 H1 and Hm+1

First, we consider H1, Hm+1 when Int(H1), Int(Hm+1) intersects Bi for at most one

i ∈ [2].

Lemma 5.2.1. If Bi∩Int(H1) 6= ∅ for at most one i ∈ [2], then one of the following holds:

(a) Int(H1) ⊆ S.

(b) Int(H1) ⊆ V (Bi) ∪ S for some i ∈ [2] and the following holds:

– Let G′ := G[V (H1) ∪ {w}]; let r1, r2 ∈ V (B3) ∩ (T1 ∪ {w, b1}) and t1, t1 ∈

V (Bi)∩ (T1∪{w, b1}) such that N(rj)∩S∩ Int(H1) 6= ∅ for both j ∈ [2] and

subject to this, B3[r1, r2] and Bi[t1, t2] are maximal; let V ′ = (T1 ∪ {w, b1}) \

57



({r1, r2} ∪ V (Bi)). Then, there exists e with e = ∅ or e incident to either r1

or r2, such that, if xjyj ∈ E(G′ − V ′ − e) \ E(Bi ∪ B3) with xj ∈ V (Bi) and

yj ∈ V (B3) for j ∈ [2], then x1 � x2 implies y1 � y2.

The same holds for Hm+1 and b2.

Proof. If Int(H1) = ∅ then (a) holds. So assume Int(H1) 6= ∅. Then |S ∩ Int(H1)| ≥ 3;

otherwise T1 ∪ {w, b1} ∪ (S ∩ Int(H1)) is a cut in G of size ≤ 7 separating Int(H1) from

b2, contradicting the (8, S)-connectivity of G.

Suppose V (B1 ∪ B2) ∩ Int(H1) = ∅. Let G′ := G[V (H1) ∪ {w}] and G′′ := G −

Int(H1)−E(G[T1 ∪ {w, b1}]). Then, by Lemma 5.1.1, Int(H1) = V (G′−G′′) ⊆ S, and

thus, (a) holds.

So V (Bi)∩Int(H1) 6= ∅ for some i ∈ [2] and V (B3−i)∩Int(H1) = ∅. By Lemma 5.1.2

with G′ := G[V (H1) ∪ {w}] and G′′ := G − Int(H1) − E(G[T1 ∪ {w, b1}]), Int(H1) ⊆

V (Bi) ∪ S.

Let r1, r2 ∈ V (B3) ∩ (T1 ∪ {w, b1}) and t1, t1 ∈ V (Bi) ∩ (T1 ∪ {w, b1}) such that

N(rj) ∩ S ∩ Int(H1) 6= ∅ for both j ∈ [2] and subject to this, B3[r1, r2] and Bi[t1, t2] are

maximal. Let V ′ = (T1 ∪ {w, b1}) \ {r1, r2, t1, t2}. Then, G′ − V ′ = G[V (B3[r1, r2] ∪

Bi[t1, t2])], and (b) follows from Lemma 5.1.3.

5.2.2 Rungs not in H1 ∪Hm+1

We now consider rungs R in L∗ such that R 6⊆ H1 ∪ Hm+1. First, we show that if a

rung R is 3-planar then R is planar, except in a very special situation which can occur in at

most twice in all rungs of L∗.

Corollary 5.2.2. Suppose (R′, R′′) is a separation of rungR inL∗ such that |V (R′∩R′′)| ≤

3 and ∂R ⊆ V (R′). Then,

(a) (R′′, V (R′ ∩R′′)) is planar, or
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(b) {w′, w′′}∩V (R′′−R′)) 6= ∅ and {w′, w′′} 6⊆ V (R′′), |V (R′∩R′′)| = 3,R′′−R′ 6= ∅,

V (R′′ − R′) ⊆ Bi ∪ S for some i ∈ [2] and there exists e = ∅ or e has one end in

V (R′ ∩R′′) such that (R′′ − e, V (R′ ∩R′′)) is planar.

Proof. Note that V (R′′ − R′) ∩ S 6= ∅ as G os 8-connected. Suppose |V (R′ ∩ R′′) ∩

V (B3)| ≥ 2. Since |V (R′ ∩ R′′)| ≤ 3, V (R′′ − R′) ∩ V (B1 ∪ B2) = ∅. Let G′ := R′′ and

G′′ := G[V (G)\V (R′′−R′)]. Then, |V (G′∩G′′)| ≤ 3 and V (G′−G′′)∩V (B1∪B2) = ∅.

By Lemma 5.1.1, V (R′′ − R′) = V (G′ −G′′) ⊆ S, and thus, R′′ − R′ is a subpath of B3.

Now, R′′ − B3 = ∅ or is a single vertex, and hence, (R′′, V (R′ ∩ R′′)) is planar and (a)

holds.

Now, assume |V (R′∩R′′∩B3)| = 1. Then, {w′, w′′}∩V (R′′−R′) 6= ∅ and {w′, w′′} 6⊆

V (R′′). Let G′ := G[V (R′′)∪{w}] and G′′ := G− (R′′−R′)−E
(
G[V (R′∩R′′)∪{w}]

)
.

If V (R′′−R′)∩V (B1∪B2) = ∅, then by Lemma 5.1.1, V (R′′−R′) = V (G′−G′′) ⊆ S,

and thus, R′′ − R′ is a subpath of B3. Now, V (R′′ − B3) is a set of two vertices (in

V (R′ ∩R′′)) and, hence, (R′′, V (R′ ∩R′′)) is planar.

So V (R′′ − R′) ∩ V (B1 ∪ B2) 6= ∅. Indeed, there exists unique i ∈ [2] such that

V (R′′ − R′) ∩ V (Bi) 6= ∅. Then, |V (G′ ∩ G′′)| = |V (R′ ∩ R′′) ∪ {w}| = 4, V (G′ −

G′′) ∩ V (Bi) 6= ∅, and V (G′ − G′′) ∩ V (B3−i) = ∅. By Lemma 5.1.2, V (G′ − G′′) =

V (R′′ −R′) ⊆ (V (Bi) ∪ S) \ {w}. Hence, (b) follows from Lemma 5.1.3.

Next, we make the following observation to be used.

Observation 5.2.3. (N(w) ∪ S) ∩ V (P3(b1, b2)) = ∅.

Proof. For, suppose there exists v ∈ (N(w)∪S)∩V (P3(b1, b2)). If v ∈ S, then letQ1 be an

a1-a2 path in the union ofA1(B1∪B2∪B3)−(B3−v) andA2(P1∪P2∪P3)∪P3(b1, b2); and

if v ∈ N(w) then letQ2 be an a1-a2 path in the union ofA1(B1∪B2∪B3)−(B3−w), {wv}

and A2(P1 ∪ P2 ∪ P3) ∪ P3(b1, b2). Now, P1, P2 and Q1 or Q2 show that (G, a1, a2, b1, b2)

is feasible.

59



Now, we show structures for all rungs R in L∗ with Int(R) ∩ Bj = ∅ for some j ∈ [2]

in Lemma 5.2.4.

Lemma 5.2.4. For any rung (R, (a, b, c), (a′, b′, c′)) in L∗ with R 6⊆ H1 ∪ Hm+1 and

Int(R) ∩Bj 6= ∅ for at most one j ∈ [2], |∂R| ≤ 5 and one of the following holds:

(a) Int(R) ⊆ S, and if |∂R| = 5 then b = b′, or

(b) b = b′ and, for some i ∈ [2], V (Bi) ∩ Int(R) 6= ∅ and Int(R) ⊆ V (Bi) ∪ S.

Moreover, let r1, r2 ∈ (V (B3) ∩ ∂R) ∪ {w} with NInt(R)(rj) ∩ S 6= ∅ for j ∈ [2],

and let t1, t2 ∈ V (Bi) ∩ ∂R such that B3[r1, r2] and Bi[t1, t2] are maximal. Let

R∗ = R + {w,wv : v ∈ V (R)} and V ′ = ∂R \ ({r1, r2} ∪ V (Bi)). Then, there

exists e with e = ∅ or e ∈ E(R∗) incident to either r1 or r2, such that, if xjyj ∈

E(R∗ − V ′) \ (E(Bi ∪ B3) ∪ {e}) with xj ∈ V (Bi) and yj ∈ V (B3), for j ∈ [2],

then x1 � x2 implies y1 � y2.

Proof. Suppose S ∩ Int(R) = ∅. Then Int(R) = ∅ to avoid the cut ∂R ∪ {w} in G (of

size ≤ 7). By (ii) and (iii) of Proposition 2.3.2, if |∂R| = 6 or |∂R| = 5 and b 6= b′,

NInt(R)(b) 6= ∅. So for Int(R) = ∅, |∂R| ≤ 5 and if |∂R| = 5 then b = b′.

Now, assume Int(R) 6= ∅. First, suppose V (B1 ∪ B2) ∩ Int(R) = ∅. Let G′ :=

G[V (R) ∪ {w}] and G′′ := G − Int(R) − E(G[∂R]). Then, by Lemma 5.1.1, Int(R) =

V (G′ − G′′) ⊆ S. Assume (a) fails. Then, |∂R| = 5 and b 6= b′ or |∂R| = 6. By (b)

of Lemma 3.2.4, let Pa, Pc be disjoint paths in R − {b, b′} from a, c to a′, c′, respectively,

such thatR−(Pa∪Pc) is connected and contains {b, b′}. Then, Int(R) ⊆ Pa∪Pc; otherwise

by replacing (P1∪P2)∩R with Pa∪Pc, we obtain from P1, P2 independent b1-b2 paths P ′1

and P ′2 such that G− (P ′1∪P ′2) contains an a1-a2 paths, which shows that (G, a1, a2, b1, b2)

is feasible, a contradiction. By (ii) and (iii) of Proposition 2.3.2, N(b) ∩ Int(R) 6= ∅. So

by symmetry, assume there exists s ∈ NInt(R)(b) ∩ V (Pc). Then, {a, b, s} is a 3-cut in R

separating {a, b, c} from {a′, b′, c′}, contradicting the definition of rung.
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So V (Bi) ∩ Int(R) 6= ∅ for some i ∈ [2]. Hence V (B3−i) ∩ Int(R) = ∅. By

Lemma 5.1.2, with G′ := G[V (R) ∪ {w}] and G′′ := G − Int(R) − E(G[∂R]), we

obtain Int(R) ⊆ V (Bi) ∪ S. By Observation 5.2.3, we see that {b, b′} has no neighbors in

S ∩ Int(R). Thus, {b, b′} ∩ {r1, r2} = ∅ by definition of r1 and r2. By Lemma 5.1.3, to

prove (b), we need to show b = b′. Suppose for a contradiction b 6= b′.

First, consider that case when |∂R| = 4. Then, {b, b′} ∩ {t1, t2} 6= ∅ and at least one of

the vertices in {b, b′}∩ {t1, t2}, say b = t1, has a neighbor v such that v ∈ V (Bi)∩ Int(R)

and vb ∈ E(Bi). Let s ∈ N(v) ∩ Int(R) ∩ S, which exists since Bi is induced and G is

8-connected. Now, there is an a1-a2 path in the union of A1(B1 ∪B2 ∪B3), bvs, P3(b1, b2)

and A2(P1 ∪ P2 ∪ P3), which is disjoint from b1-b2 paths P1, P2. So (G, a1, a2, b1, b2) is

feasible, a contradiction.

Now assume |∂R| ≥ 5. Then |∂R| = 5 and b 6= b′ or |∂R| = 6. When |∂R| = 5,

we may assume (R − a, b, b′c, c′) is planar. By (b) of Lemma 3.2.4, let Pa, Pc be dis-

joint paths in R − {b, b′} from a, c to a′, c′, respectively, such that R − (Pa ∪ Pc)

is connected and contains {b, b′}. As before, Int(R) ∩ S ⊆ V (Pa ∪ Pc) (as other-

wise, (G, a1, a2, b1, b2) would be feasible) and NInt(R)(b) ∩ V (Pa ∪ Pc) = ∅. Then,

by (iii) of Proposition 2.3.2 and by Observation 5.2.3, NInt(R)(b) ∩ V (Bi) 6= ∅. Let

v ∈ NInt(R)(b)∩V (Bi). Since Bi is induced, |N(v)∩V (Bi)| = 2. Since G is 8-connected

and N(v) ⊆ V ′∪V (Bi)∪{r1, r2}∪ (Int(R)∩S), there exists s ∈ N(v)∩Int(R)∩S. By

3-planarity and since Int(R) ⊆ V (Bi)∪S, {a, v, s} or {a′, v, s} is a 3-cut in R separating

{a, b, c} from {a′, b′, c′}, contradicting the definition of rung.
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CHAPTER 6

A 7-CONNECTED EXAMPLE

In this chapter, we give a 7-connected graph G with distinct vertices a1, a2, b1, b2 ∈

V (G) such that (G, a1, a2, b1, b2) is infeasible. As shown below, G is obtained by gluing H

in Figure 6.1 and A1 in Figure 6.2 together along the b1-b2 path B3.

Figure 6.1: H with m = 7(74 − 2) + 3 = 75 − 11

Figure 6.2: A1

As shown in Figure 6.1, B1, B2, B3 are 3 independent b1-b2 paths. H is the graph with

V (H) = {a2, b1, b2, w−1, w0, wm+1, ui, vi, wi : i ∈ [m]} andE(H) =
⋃

i∈[3]E(Bi)∪{a2x :

x ∈ V (B1 ∪ B2)} ∪ {ujvj, ujwj, vjwj, ujvj+1, vjuj+1, wjuj+1, wjvj+1 : j ∈ [m − 1]} ∪

{w−1u1, w−1v1, w0u1, w0v1, wm+1um, wm+1vm}, where m = 75 − 11.
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We construct A1 as in Figure 6.2, Si’s are the horizontal paths from b1, w−1, w0, w1, w2

to b2, wm+1, wm, wm−1, wm−2, respectively for i ∈ [5]. So V (A1) = {a1} ∪
⋃

i∈[5] V (Si).

For each i ∈ [5], let xij be the j-th vertex from left to right on Si. For any vertex x ∈

V (Si) \ {w1, wm−1} where i ∈ {0} ∪ [4], |NSi+1
(x)| = 7.

In the following sections, we show that G is infeasible and 7-connected.

6.1 Infeasibility

Suppose G is feasible and let P be the a1-a2 path such that there exist two independent

b1-b2 paths Q1, Q2 in G− P . Denote Ti = {ui, vi, wi} for i ∈ [m].

Now, let wj ∈ V (P ) be such that V (P [a2, wj)) ∩ V (B3) = ∅. Since P ∩ Si 6= ∅ for

all i ∈ [5], |(V (Q1) ∪ V (Q2)) ∩ Tk| = 2 for k ∈ {j, j + 1}. Let x ∈ NP [a2,wj)(wj). Then,

x ∈ {ui, vi|i ∈ {j, j + 1}}. Suppose x ∈ {uj, vj}. Then, |V (P ) ∩ Tj| = 2, and thus,

|(V (Q1) ∪ V (Q2)) ∩ Tj| = 1, a contradiction.

So x ∈ {uj+1, vj+1}. Since wj+1uj, wj+1vj 6∈ E(G), (V (Q1) ∪ V (Q2)) ∩ Tj+1 =

{uj+1, vj+1} \ {x}, a contradiction.

Hence, (G, a1, a2, b1, b2) is indeed infeasible.

6.2 7-connectivity

Suppose not, let T be a minimum cut of G. Then, |T | ≤ 6. Note that with our construc-

tion, V (H) ∩ V (A1) = V (B3). For simplicity, paths will be represented as sequences of

vertices with consecutive vertices adjacent. For path P and u, v ∈ V (P ), we denote uPv

be the subpath of P from u to v. For vertices u, v, w such that uv, vw are edges, we use

uvw to denote the v-w path of length 2.

Claim 6.2.1. All components of G− T intersect V (B3).

Proof. Suppose for a contradiction, there exists a component C of G−T such that V (C)∩

V (B3) = ∅. Then, V (C) ⊆ V (H −B3) or V (C) ⊆ V (A1 −B3).
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First, suppose V (C) ⊆ V (A1 − B3). Then, there exists xj ∈ V (C) ∩ V (Sj) for some

0 ≤ j ≤ 4. For any j ≤ i ≤ 4 and xi ∈ V (C) ∩ V (Si), since |NSi+1
(xi)| = 7 > |T |, there

exists xi+1 ∈ V (C) ∩NSi+1
(xi). Hence, there exists x5 ∈ V (C) ∩ V (S5), a contradiction.

So C ⊆ V (H−B3). Clearly, C 6= H−B3; otherwise V (B3) ⊆ V (T ), a contradiction.

We claim that a2 6∈ C. Suppose a2 ∈ C. Since a2 ∈ NH(x) for all x ∈ V (B1 ∪ B2),

|NC(a2)| ≥ deg(a2) − |T | = 2m + 2 − 6 = 2m − 4. Since NC(a2) \ T ⊆ V (B1 ∪ B2),

|NB3(C)| ≥
|NC(a2)\T |

2
≥ m− 2 > |T |, a contradiction.

Hence there exists x ∈ V (C) and y ∈ V (H − B3) \ V (C). Since uivi, ujuj+1 ∈

E(H) for all i ∈ [m] and j ∈ [m − 1], {x, y} 6= {ui, vi} and {x, y} 6=

{uj, uj+1}. By symmetry and without loss of generality, {x, y} = {ui, uj} for some

1 ≤ i < i + 1 < j ≤ m. But, there exist the following 7 independent

ui-uj paths in G: uia2uj , uiB1uj , uivi+1B2vj−1uj , uiwiB3wj−1uj , uiB1b1S1b2B1uj ,

uiviB2v1w−1S2wm+1vmB2vjuj , uiwi−1B3w0S3wmB3wjuj .

By Claim 6.2.1, there exist x, y ∈ V (B3) such that x, y belongs to different components

of G − T . Note that xy 6∈ E(B3). But we can find 7 independent x-y paths in all cases as

the following, which leads to a contradiction:

Case 1. x = b1, y = w0.

The 7 independent x-y paths are: b1a2v2w1w0, b1u1w0, b1v1w0, b1B3w0, b1x22x
3
2·7S3w0,

b1x
2
3x

3
3·7x

4
3·72S4x

4
3w0, b1S1b2B3x

5
7x

4
2w0.

Case 2. x = b1, y = wi for i ∈ [m− 1].

The 7 independent x-y paths are: b1a2ui+1wi, b1B1uiwi, b2B2viwi, b1B3wi,

b1x
2
2x

3
2·7x

4
2·72S4swi where {s} = NS4(wi), b1x23x

3
3·7S3wmB3wi, b1S1b2B2vi+1wi.

Case 3. x = b1, y = wi for i ∈ {m,m+ 1}.

The 7 independent x-y paths are: b1a2umwi, b1B1um−1wm−1B3wi,

b1B2vmwi, b1a1b2B3wi, b1S1x
1
6x

2
6·7x

3
6·72S3wm or b1S1x

1
6x

2
6·7S2wm+1,
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b1x
2
3x

3
3·7x

4
3·72S4x

4
74−3wm or b1x23x

3
3·7S3x

3
73−3wm+1, b1x22x

3
2·7x

4
2·72x

5
7(2·72−1)S5wm−2x

4
74−1wm

or b1x22x
3
2·7x

4
2·72S4x

4
7(73−1)x

3
73−1wm+1.

Case 4. x = b1, y = b2.

The 7 independent x-y paths are: b1a2b2, b1B1b2, b1B2b2, b1B3b2, b1a0b2, b1S1b2,

b1x
2
2S2x

2
72−1b2.

Case 5. x = wi, y = wj where i ∈ {−1, 0} and j ∈ [m− 1].

The 7 independent x-y paths are: wiu1a2uj+1wj , wiv1B2vjwj , wiB3w1u2B1ujwj ,

wiB3b1S1b2B2vj+1wj , w−1S2wm+1B3wj or w0S3wmB3wj , w−1x33x
4
3·7S4swj or w0x

4
3S4swj

where {s} = NS4(wj), w−1x32x
4
2·7S4x

4
2w2B3wj or w0x

4
2w2B3wj .

Case 6. x = wi, y = wj where i ∈ {−1, 0} and j ∈ {m,m+ 1}.

The 7 independent x-y paths are: wiu1a2umwj , wiB3w1u2B1um−1wm−1B3wj ,

wiv1B2vmwj , wiB3b1S1b2B3wj , and the other three paths are

X1, X2, X3, where {X1, X2, X3} is one of the following:

{w−1x34S3wm, w−1x
3
3x

4
3·7S4x

4
74−2wm, w−1x

3
2x

4
2·7x

5
7(2·7−1)S5wm−2x

4
74−1wm},

{w−1S2wm+1, w−1x
3
4S3x

3
73−3wm+1, w−1x

3
3x

4
3·7S4x

4
7(73−1)x

3
73−1wm+1},

{w0S3wm, w0x
4
3S4x

4
74−2wm, w0x

4
2x

5
7S5wm−2x

4
74−1wm}, or

{w0S3x
3
73−3wm+1, w0x

4
3S4x

4
7(73−2)x

3
73−2wm+1, w0x

4
2x

5
7S5x

5
7(7(73−1)−1)x

4
7(73−1)x

3
73−1wm+1}.

Case 7. x = wi, y = b2 where i ∈ {−1, 0}.

The 7 independent x-y paths are: wiu1a2b2, wiv1B2b2, wiB3w1u2B1b2, wiB3b1a1b2,

and the other three paths are X1, X2, X3, where {X1, X2, X3} is one of the

following: {w−1S2x
2
72−2b2, w−1x

3
3S3x

3
7(72−1)x

2
72−1b2, w−1x

3
2x

4
2·7x

5
7(2·7−1)B3b2} or

{w0S3x
3
7(72−2)x

2
72−2b2, w0x

4
3S4x

4
72(72−1)x

3
7(72−1)x

2
72−1b2, w0x

4
2x

5
7B3b2}.

Case 8. x = wi, y = wj for 1 ≤ i < i+ 1 < j ≤ m− 1.

The 7 independent x-y paths are: wiuia2uj+1wj , wiui+1B1ujwj , wivi+1B2vjwj ,

wiB3wj , wiviB2b1S1b2B2vj+1wj , wiB3w0S3wmB3wj , wisS4twj where {s} = NS4(wi)

and {t} = NS4(wj).

Case 9. x = wi, y = wj where i ∈ [m− 1] and j ∈ {m,m+ 1}.
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Note that {x, y} 6= {wm−1, wm}. The 7 independent x-y paths are: wiuia2umwj ,

wiui+1B1um−1wm−1B3wj , wivi+1B2vmwj , wiviB2b1S1b2B3wj , wiB3w−1S2wm+1(wm),

wiB3wm−2x
4
74−1wm(wm+1), wisS4x

4
74−2wm or wisS4x

4
7(73−2)x

3
73−2wm+1 where {s} =

NS4(wi).

Case 10. x = wi, y = b2 for i ∈ [m− 1].

The 7 independent x-y paths are: wiuia2b2, wiui+1B1b2, wivi+1B2b2, wiB3b2,

wiviB2b1S1b2, wiB3w−1S2x
2
72−3b2, wisS4x

4
72(72−2)x

3
7(72−2)x

2
72−2b2 where {s} = NS4(wi).

Case 11. x = wm, y = b2.

The 7 independent x-y paths are: wmumb2, wmvmb2, wmB3b2, wmwm−1um−1a2b2,

wmx
4
74−1wm−2B3b1S1b2, wmx

4
74−2S4x

4
72(72−2)x

3
7(72−2)x

2
72−2b2, wmS3x

3
7(72−1)x

2
72−1b2.

Hence, G is a 7-connected infeasible example as desired.
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