
ULTRASONIC IMAGING AND TACTILE SENSING FOR ROBOTIC SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Aravind Baradhwaj Balasubramanian

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

College of Engineering

Georgia Institute of Technology

August 2022

© Aravind Baradhwaj Balasubramanian 2022



ULTRASONIC IMAGING AND TACTILE SENSING FOR ROBOTIC SYSTEMS

Thesis committee:

Dr. David G. Taylor, Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Gregory D. Durgin
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Yorai Wardi
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Ying Zhang
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Aldo A. Ferri
Mechanical Engineering
Georgia Institute of Technology

Date approved: July 6, 2022



To my family for making this possible



ACKNOWLEDGMENTS

This dissertation has been possible only because of the guidance and support from

multiple individuals.

First and foremost, I want to express my deepest appreciation to my advisor, Dr. David

Taylor, for giving me the opportunity to work with him. Prof. Taylor has helped and

supported me throughout the research. I am very grateful for his invaluable advice, encour-

agement, and insight throughout the multi-year research project.

I am grateful to Prof. Durgin and Prof. Wardi for serving on the reading committee and

providing valuable feedback during the proposal and the dissertation phases. I also want

to sincerely thank Prof. Ferri and Prof. Zhang for their time in serving on the dissertation

committee.

Sponsorship for this research from Texas Instruments is gratefully acknowledged. Many

thanks to Dr. David Magee from Texas Instruments for his helpful feedback through monthly

meetings. I want to thank the school of Electrical and Computer Engineering for support as

a Teaching Assistant during the initial and final phases of the research.

I also want to recognize my lab mate Kartik Sastry for his input during the middle phase

of the project.

I want to thank James Steinberg and Kevin Ferri for their practical suggestions during

hardware development.

Lastly, I want to thank my family, my father Balasubramanian, my mother Radha, and

my brother Vishwanath without whom I would not have seen the light of this day. They have

been a constant source of strength and motivation, patiently supporting me in my higher

education pursuits.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapter 1: Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Ultrasonic Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Tactile Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Vibration Control of Transducers . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 3-D Ultrasonic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Stiffness Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Unique Contributions of This Research . . . . . . . . . . . . . . . . . . . . 16

2.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



Chapter 3: Ultrasonic Sensing System Analysis . . . . . . . . . . . . . . . . . . . 20

3.1 Hardware System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Transducer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Equivalent Circuit Parameter Estimation . . . . . . . . . . . . . . . 24

3.3 Transmit Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Transformer Equivalent Circuit Model . . . . . . . . . . . . . . . . 27

3.3.2 Transformer Driven Transducer System . . . . . . . . . . . . . . . 29

3.4 Baseline Excitation Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Receive Signal Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4: Time Optimal Enhancements for Transmitting Flexural Ultrasonic
Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Scaling of the Equation System . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Development of the Numerical Solver . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Orthogonal Collocation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Multiple Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Solution Generation Settings . . . . . . . . . . . . . . . . . . . . . 48

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 PWM Excitation Waveform Synthesis . . . . . . . . . . . . . . . . . . . . 51

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



4.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 5: Time Optimal Enhancements for Receiving Flexural Ultrasonic
Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 System Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Receive Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Excitation Signal Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 6: Model Free Enhancements for Flexural Ultrasonic Transducers . . . 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Proposed Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Transmitter Enhancement: Damping . . . . . . . . . . . . . . . . . 86

6.2.2 Receiver Enhancement: Masking . . . . . . . . . . . . . . . . . . . 87

6.2.3 Commissioning Algorithms . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Comparison of Damping with TXOPT . . . . . . . . . . . . . . . . 98

6.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 7: 3-D Ultrasonic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Sensor System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



7.3 Processing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Pre-processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.3 Post-processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Algorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Embedded Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 132

7.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 8: Stiffness Estimation in Single Degree of Freedom Systems . . . . . . 137

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 System Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.1 Stiffness Estimation Model . . . . . . . . . . . . . . . . . . . . . . 138

8.2.2 Actuator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.3 Simulation Model for Data Generation . . . . . . . . . . . . . . . . 141

8.2.4 Friction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.4 Stiffness Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4.1 Dataset Synthesis Settings . . . . . . . . . . . . . . . . . . . . . . 150

8.4.2 Regressor Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 9: Stiffness Estimation with Underactuated Transmission Mechanisms 161

viii



9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Stiffness Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2.1 Stiffness Control Loop . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2.2 Stiffness Loop Experimental Evaluation . . . . . . . . . . . . . . . 166

9.3 Stiffness Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.4 Regression Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Chapter 10: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Appendix A: Transducer Parameter Estimation Procedure . . . . . . . . . . . . 181

Appendix B: Transmit Drive Circuit Configurations . . . . . . . . . . . . . . . 182

Appendix C: Receiver Board Design . . . . . . . . . . . . . . . . . . . . . . . 188

Appendix D: Transformer Parameter Estimation . . . . . . . . . . . . . . . . . 191

Appendix E: Range Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Appendix F: Microphone Array Design . . . . . . . . . . . . . . . . . . . . . . 195

Appendix G: Parameter Estimation of the Dynamixel Smart-Servo Motor . . . . 196

Appendix H: Parameter Estimation of the Linear Actuator . . . . . . . . . . . . 199

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

ix



LIST OF TABLES

3.1 Estimated Parameters for the Murata MA58MF14-7N Transducer . . . . . . 26

3.2 Summary of Experimental System Parameters for Ultrasonic Sensing . . . . 36

6.1 Model Free Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Measurements of Performance Metrics . . . . . . . . . . . . . . . . . . . . 93

7.1 Array Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Ground Truth Location of the Reflectors . . . . . . . . . . . . . . . . . . . 122

7.3 Processing Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Beamformer Performance Comparison . . . . . . . . . . . . . . . . . . . . 127

7.5 Processing Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Computation Cost per Window . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Dataset Generation Parameters . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Mean % Error for Simulation Datasets with Ramp Actuation . . . . . . . . 155

8.4 Mean % Error for Simulation Datasets with Staircase Actuation . . . . . . . 155

8.5 Performance with Experimental Data . . . . . . . . . . . . . . . . . . . . . 160

9.1 Data Collection Settings with the Underactuated Finger . . . . . . . . . . . 171

x



9.2 Regressor Performance with the Underactuated Finger . . . . . . . . . . . 173

B.1 Ideal Drive Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . 184

B.2 State-Space Representation of Transmit Circuit Configurations . . . . . . . 185

D.1 Estimated Transformer Parameters . . . . . . . . . . . . . . . . . . . . . . 192

G.1 Dynamixel Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 198

H.1 Linear Actuator Parameter Estimation . . . . . . . . . . . . . . . . . . . . 201

xi



LIST OF FIGURES

1.1 Ultrasonic sensing system in the pulse-echo mode of operation. The reflect-
ing objects in the scene are labeled (1, 2, 3) and are located within the
operating range shown in [- -]. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gripper grasping an object with unknown stiffness ko. . . . . . . . . . . . . 6

2.1 Pulse-echo measurement with a single reflector for a 58.5 kHz Flexural
Ultrasonic Transducer (FUT) after amplification. End of excitation [- -], end
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SUMMARY

This research develops several novel algorithms that enhance the operation of ultrasonic

and tactile sensors for robotic applications. The emphasis is on reducing the overall cost,

system complexity, and enabling operation on resource-constrained embedded devices with

the main focus on ultrasonics. The research improves key performance characteristics

of pulse-echo sensor systems – the minimum range, range resolution, and multi-object

localization. The former two aspects are improved through the application of model-based

and model-free techniques. Time optimal principles precisely control the oscillations of

transmitting and receiving ultrasonic transducers, influencing the shape of the pressure waves.

The model-free approach develops simple learning procedures to manipulate transducer

oscillations, resulting in algorithms that are insensitive to parameter variations. Multi-object

localization is achieved through phased array techniques that determine the positions of

reflectors in 3-D space using a receiver array consisting of a small number of elements. The

array design and the processing algorithm allow simultaneous determination of the reflector

positions, achieving high sensor throughputs. Tactile sensing is a minor focus of this research

that leverages machine learning in combination with an exploratory procedure to estimate

the unknown stiffness of a grasped object. Gripper mechanisms with full-actuation and

under-actuation are studied, and the object stiffness is estimated using regression. Sensor

measurements use actuator position and current as the inputs. Regressor design, dataset

generation, and the estimation performance under nonlinear effects, such as dry friction,

parameter variations, and under-actuated transmission mechanisms are addressed.

xxi



CHAPTER 1

INTRODUCTION AND BACKGROUND

Ultrasonic sensing is a rapidly growing technology. Example applications include

navigation in vehicles (blind spot detection, lane assisting), mapping for robotics, and fluid

flow rate estimation. The measurement process involves a pulse-echo trial, where a short

duration pressure wave is emitted by a transmitting device and the collection of pressure

waves occurs at a receiving device. Transmission and reception may occur on the same

device, or two separate devices may be used. The time elapsed between the transmission of

a pressure wave and the reception of echoes determines the Time of Flight (ToF). Scaling

the ToF by the speed of sound in the transmission medium provides the travel distance of

the pressure wave. Air ultrasonic applications are the focus of this research, and employ a

frequency between 25 – 80 kHz (wavelength of 4 – 14 mm).

Ultrasonic sensing offers several advantages over other modalities, such as optical

or electromagnetic. Ultrasonic sensors have lower complexity and cost – computation

requirements, analog signal chain, and power budget. The low volume of data reduces the

redundancy and requires a fewer number of transducer elements. The analog signal provides

details about the operating conditions, leveraged by applications such as flow metering.

Ultrasonic sensors are immune to illumination conditions, which can vary significantly in

different environments, an important advantage over optical sensing technologies. Ultrasonic

sensor operation is also possible in harsh settings with high temperature, humidity, or in dirt

and dust-prone areas, with comparatively limited performance degradation.

Air ultrasonic applications also have a set of challenges. The lower propagation speed

of sound reduces the rate of pulse-echo trials. As an ultrasonic wave is a pressure wave,

typically launched through the vibration of a mechanical membrane, substantial conversion

losses can occur due to the lower transfer of energy between the electrical and acoustic
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domains requiring care during the design of transmitter hardware. A related issue is the

reduced sensitivity of received pressure waves, which requires amplification and filtering

of the signal content. Multi-path propagations, like other wave-based sensing techniques,

degrade the overall performance. Hence applications must be designed to overcome the

alterations imposed due to multi-path phenomena. The received pressure waves from a

reflector depend on the shape of the reflector degrading the Signal to Noise Ratio (SNR) for

ToF estimation applications. Other applications may use this degradation aspect to classify

targets of different shapes.

A minor focus of this research is on tactile sensing, another important measurement

quantity in robotic automation and haptic feedback devices. Tactile sensors detect contacts

between two surfaces and the respective contacting forces. Traditionally, the sensors utilize

piezo-resistive or piezo-capacitive modalities to monitor a change in the resistance or the

capacitance in response to an applied force. Several tactile sensor elements are employed

in an array to detect the contact location. The cost of high precision tactile sensing array

with associated electronics is high, which also substantially drives up the overall cost of

integration into a robotic system. Also, contact sensor arrays require routine maintenance

and care during operation. Obtaining reliable and repeatable measurements from a contact

force sensor needs a suitable actuation mechanism. In this research, a low-cost alternative

utilizing the measurements made with an electric motor (actuator position and actuator

current) is pursued instead of traditional approaches to tactile sensing, suitable for low

complexity mechanisms. However, nonlinear effects in the system and unmodeled dynamics

appear in the sensor measurements requiring data processing and extraction of relevant

metrics.
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Figure 1.1: Ultrasonic sensing system in the pulse-echo mode of operation. The reflecting
objects in the scene are labeled (1, 2, 3) and are located within the operating range shown
in [- -].

1.1 Background

1.1.1 Ultrasonic Sensing

The ultrasonic sensor system of interest is illustrated in Figure 1.1. It consists of a

transmitter (TX), a receiver (RX), and several reflectors (1, 2, 3). Although a TX-RX pair

is shown for generality, the sensor system may utilize a single transducer for both TX and

RX operations. The objective of the setup is to determine the location of multiple reflectors

in the scene using the pulse-echo mode of operation. Application of a time-gated electrical

voltage uT at the transmitter launches a pressure wave burst pT . The incoming pressure wave

at the receiver after propagating through the medium is pR, and yR is the voltage generated

at the receiver due to the pressure input signal pR. The echo bursts corresponding to each

reflector are separated in time. Determination of the time delay between the transmission

and the reception of echo bursts provides the round-trip Time of Flight (ToF). The range is

computed by scaling the ToF by the speed of sound as

Range =
ToF× vsound

2
(1.1)

3



where vsound = 340 m/s as air is the propagation medium. Additionally, the echo bursts

at yR also experience attenuation due to propagation through the medium, the reflector

properties, and the electric↔ acoustic conversion losses of the devices.

This research addresses improvements in important performance metrics of an ultrasonic

sensor system – the minimum range, range resolution, and multi-object localization. Fig-

ure 1.1 clarifies the metrics in more detail. During transmission events, the signal yR at RX

is influenced by the transmission bursts uT applied at TX. This aspect results in an initial

region where the sensor cannot detect echoes called the blind zone. The length of the blind

zone translates to the minimum range at which the sensing system can begin detecting echoes

from reflectors. As the pulse-echo process experiences amplitude losses, the magnitude of

yR imposes limits on the maximum range of the sensor system. A single reflector (object 1)

induces a voltage response yR at RX only when it is located within the operating region of

the sensor. Range resolution is the smallest separation between two reflectors (objects 2 and

3) for which both objects are detectable and their distances measured. In the sensor’s scene

shown by Figure 1.1, the objects are located at an off-centered position about the sensor’s

center; they all have a coordinate in the 3-D space. Determination of the reflector locations

for each object from yR is another important performance metric of an ultrasonic sensing

system, useful in several robotics applications.

This work considers piezoelectric and electrostatic ultrasonic transducers; both exchange

energy across multiple domains. Piezoelectric transducers have a thin slab of piezoelectric

material bonded to a metallic plate. During the transmission of a pressure wave, the

application of uT to the piezoelectric material results in the mechanical deformations of

the material, which in turn causes the bending or flexing of the metal plate. During the

reception, incoming pressure waves result in the flexing of a metal plate generating yR at

the electrical terminals. Such a transducer may be referred to as the Flexural Ultrasonic

Transducer (FUT). The transducer construction results in a narrowband operation, with a

bandwidth of about 3 – 4 kHz around the resonant frequency of the transducer.
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The electrostatic transducer is similar to the FUT, where a thin foil is mounted between

two electrodes. The application of large oscillatory voltages creates deflections in the foil,

allowing pressure waves to be launched. Such a transducer requires large voltages (few

kVs) to launch pressure waves of sufficient magnitude compared to much smaller voltages

(few 10s of volts) for a FUT. An advantage of the electrostatic transducer is the increased

sensitivity to incoming pressure waves compared to a FUT. Micromachined electrostatic

receivers are available at a low cost (a few cents), have wideband operating characteristics,

and are in a small form factor suitable for sensor array design.

In this work, the FUT is used for transmitting pressure waves and also as a receiver in

the vibration control work; electrostatic transducers are used in the receiver array design for

multi-object detection.

1.1.2 Tactile Sensing

The problem of applying tactile sensing to determine the unknown stiffness of an object

under a grasp by a gripper is studied. It is an essential distinguishing feature, and one

candidate application is to determine if a fruit is ripe. Figure 1.2 illustrates a parallel

jaw gripper grasping an object, commonly found in several industrial applications. The

mechanism consists of one actuated jaw and one fixed jaw. A position encoder measures

the jaw position, and a current sensor measures the applied force onto the object. Grasp

is achieved by operating the gripper either in the position control mode or force (current)

control mode. The objective is to determine the unknown stiffness ko of the grasped object

using only actuator position and current measurements; the literature utilizes dedicated

tactile sensor arrays mounted on the gripper’s jaws. Drawing inspiration from how humans

perceive stiffness, an exploratory procedure is employed, wherein the object’s stiffness

is estimated by squeezing it. Applying an increasing position command is equivalent to

the squeezing effect; the actuator current increases proportionally to the object’s stiffness.

Determining the object’s stiffness with the elementary approach of computing the stiffness
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Figure 1.2: Gripper grasping an object with unknown stiffness ko.

as a ratio of a change in force (current) to the change in displacement yields inaccurate

results due to system nonlinearities, such as friction or transmission mechanism. Machine

learning-based regression is leveraged as an alternative to estimate object stiffness and

overcome the system nonlinearities with the tactile sensorless approach presented in this

work.

1.2 Research Overview

The main focus of this research is to enhance the operation of ultrasonic transducers and

tactile sensors through algorithm development and validation on experimental hardware.

The research contributions are organized into three areas –

1. Vibration control of transducers: A time-gated uT launches a pressure wave but results

in sustained residual vibrations of pT , pR, and yR long after the excitation ends. Due

to the slow decaying tail, the minimum range and the range resolution are affected.

The research addresses the decaying tail issue by developing model-based techniques

to accelerate the decay process of pT and yR. Additionally, model-free algorithms

in this work rely on simple learning procedures resulting in methods insensitive to

parameter or component variations.

2. 3-D ultrasonic imaging: Array-based sensing hardware consisting of a small number

of receiver elements is designed to perform 3-D imaging of a robot’s workspace. The

sensor data processing scheme based on beamforming is developed and allows the

detection of multiple objects with a single pulse-echo trial. An embedded imple-
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mentation provides computing requirements and achieves high detection throughputs

suitable for object tracking.

3. Stiffness estimation: The stiffness of an object is estimated through a bio-inspired

approach using machine learning regression methods. Nonlinearities due to dry

friction are effectively overcome through regression. The stiffness estimation approach

is extended to an underactuated human-like finger mechanism consisting of a complex

tendon-pulley transmission.
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CHAPTER 2

LITERATURE SURVEY

The literature survey is also organized into the three focus areas of the research –

vibration control of transducers, 3-D ultrasonic imaging, and stiffness estimation.

2.1 Vibration Control of Transducers

Figure 2.1 shows an example of the signal ỹR acquired in the pulse-echo process after

passing the signal yR at the FUT through the analog signal chain consisting of a high gain

bandpass filter. By the pressure ↔ voltage analogy, the pressure signals pT and pR are

proportional to their electrical counterparts – the voltage signals vT and uR, respectively.

Since a single FUT is used to both transmit pressure waves and receive echoes, the signal yR

contains two components expressed as yR = vT + uR. The first component is the response

vT due to the time-gated voltage excitation component uT , and the second component is the

echo-induced component uR. Note that ỹR also inherits the decomposition: ỹR = ṽT + ũR

because ỹR represents yR after passing through the high-gain bandpass filter (ṽT = excitation

component and ũR = echo-induced component). As the FUT is a resonant device, uT is a 5

cycle rectangular pulse voltage excitation at the FUT’s resonant frequency of 58.5 kHz. The

voltage excitation ends at about 0.1 ms, after which the terminal voltage of the FUT (the

pulse-imposed component) decays slowly to equilibrium conditions, reaching noise floor

levels at about 1.2 ms. The slow decay is due to the high quality factor that enhances the

transmission characteristics and the echo sensitivity during reception. An effect is a blind

zone (the first 20 cm from the transducer), where no ToF or range estimate can be obtained as

the amplified signal yR remains saturated. Any echoes from reflectors located near the FUT

in the blind zone have a considerably lower amplitude compared to the high-amplitude decay

voltage appearing across the transmitter. The slow decay affects both single transducer and
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Figure 2.1: Pulse-echo measurement with a single reflector for a 58.5 kHz FUT after
amplification. End of excitation [- -], end of natural decay [- -]. The signal ỹR is obtained
after filtering and amplifying the signal yR.

multiple transducers systems, and the boundary of the blind-zone in Figure 1.1 is determined

by the end of the decay period as shown in Figure 2.1.

The Figure 2.1 also shows an echo from a single reflector at about 2.8 ms (47 cm). As the

pulse-echo process is linear, the echoes uR at the receiver’s input are scaled and time-shifted

copies of the transmitted pressure wave pT . Due to the extended decaying tail of pT , the

ability to resolve closely separated targets is reduced as copies of pT superimpose, degrading

the ability to detect two distinct objects. Sensor operation is enhanced by reducing the

decaying envelope of pT ; the blind zone in yR reduces, and the echo shape characteristics

improve, enhancing the range resolution.

Prior work on transducer vibration control and enhancing sensor operation can be

classified into two broad approaches – hardware-based [1–5], and the addition of damping

pulses [6–9]. Hardware-based approaches achieve passive damping by adding external

components [2, 3, 5]. The added passive circuits require system models during the design

phase. Otherwise, the inserted components need manual tuning. This method is ineffective,
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especially when part-to-part component variations can degrade the amplitude of the emitted

pressure wave. Active damping has been studied for linear-mode transmitter drives [1]

and switched-mode transmitter drives [4]. In both cases, an open-loop operation proved

sufficient to achieve desired results if the excitation and damping pulses are applied with

precise timing.

In [6], model-based command shaping is utilized to achieve damping. The resulting

design produced a non-oscillatory unipolar excitation signal that significantly limits the

amplitude of the generated pressure wave. Recent techniques append phase-shifted damping

pulses to uT after the application of excitation pulses [7–9]. These studies impose highly

specialized pulses onto the transducer using laboratory instrumentation (i.e. waveform

generators feeding power amplifiers for transmitter realization and conditioning amplifiers

feeding digital oscilloscopes for receiver realization), adjusted to demonstrate reduced burst

duration. Pulse train design parameters include: the shape, amplitude, and the number of

pulses in each pulse group; the number of pulse groups; and the time delay between pulse

groups. Procedures for selecting pulse train parameters are not discussed in these references.

The damping mechanism is analyzed in [7] using second-order models, but the relevant

case of transducer + drive circuits with higher-order dynamics studied in this research is not

considered. Phase-shifted damping pulses have two distinct applications as clarified by [8].

The voltage excitation applied to a transducer can be designed to emit a temporally short

burst of output pressure pT ; the excitation applied to the transducer can generate an input

pressure to produce a temporally-short burst of output voltage at the receiver yR.

The article [10] studies the intentional application of excess phase-shifted pulses resulting

in the creation of a second pressure burst with a detectable null. The double pressure burst

method improves the detection accuracy but degrades the FUT’s performance metrics.

The experimental systems studied in these references differ. The systems in [8] and [11]

consider separate transmitting and receiving transducers with no reflectors; [7] focuses on

the behavior of a transmitting transducer with no reflectors; [9] focuses on a transceiving
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transducer used to detect echoes from one reflector, and [12] considers the measurement of

airflow using separate transmitting and receiving transducers.

Note that the vibration control algorithms developed for ultrasonic sensors also apply to

vibrotactile actuators. The linear resonant actuator is a commonly used vibrotactile actuator

that provides tactile feedback to a user [13]. The actuators are present in smartphones and

vehicles and produce a short duration vibration to alert the user; an example is the vibrations

produced by a smartphone in response to the touch of a screen. Vibrotactile applications

have resonant frequencies in the range of 100s of Hz, unlike ultrasonic sensing, where

the resonant frequency is above 20 kHz. The generation of short-duration vibrations with

sufficient amplitude for human perception is a feature of interest for several vibrotactile

applications, an aspect addressed by the algorithms developed in this research.

2.2 3-D Ultrasonic Imaging

The emission of a pressure wave results in the dispersion about the transducer’s normal

and is called the main lobe. The operating region in Figure 1.1 illustrates this aspect. For

the pulse-echo operation mode, the reflected power is received from objects within the main

lobe of the transducer. When the system only has a single transmitter and a single receiver,

yR contains echoes produced by objects (1, 2, 3) of Figure 1.1, but details characterizing

the angular position of the reflector are not available in the signal yR. Consequently, only

the radial position of the echo can be extracted and corresponds to the ToF estimate for

each reflector. This aspect is clarified in the example of Figure 2.1, where the angular

position of the reflectors is unknown. Utilizing several closely-spaced transducers allows

the determination of the radial distance and the bearing angles – azimuth and elevation of

the reflectors.

Algorithms for determining the 3-D positions of reflectors can broadly be divided into

– multilateration [14–19] and phased-array techniques [20–26]. Multilateration methods

utilize transducers in a special arrangement – ring in [15–17, 19] and triangular in [14,
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18]. Echo processing at each receiver element in the array results in a round-trip distance

estimate traveled by the pressure waves between the transmitter and each receiver element

after reflecting off from the objects in the scene. For objects located away from the array’s

normal, the distance estimate is different at each reflector. Figure 2.2 clarifies this aspect

for a uniform linear array of receiver elements with an inter-element separation of d. The

scene consists of a reflector located at an angle of θ with respect to the array’s normal axis

and generates plane waves. The sensor array consists of M elements, which simultaneously

capture the incoming waves. As the reflector is located at an offset, the plane waves arrive at

different instants. In the example, sensor element 1 is the first to receive waves. The plane

waves travel an extra distance of d sin(θ) to reach sensor element 2, resulting in the delayed

arrival of pressure waves at the element. Sensor element M will be the last to receive waves

as the pressure waves travel an extra distance of (M − 1)d sin(θ).

The objective of multilateration techniques is to combine the plurality of range estimates

to determine the range and bearing of the reflector’s position, which results in a tight
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dependence on the transducer array’s geometry as explicit round-trip formulas need to

be derived. Since multiple range measurements need to be processed simultaneously, a

range association step needs to occur. This step is the issue of associating which echoes on

different receivers correspond to one another and ultimately to the same physical reflector.

An incorrect association of echoes between reflectors can yield significant errors and is

discussed in [14]. The research suggests radial and angular separation distances between

reflectors to overcome correspondence ambiguity problems. Mechanical motion is used

in [15, 19] to obtain pulse-echo measurements from different vantage points. Although

detection improves and the correspondence ambiguity problem is resolved, the hardware

cost and complexity increase. But any motion of the reflectors in the scene can result in

estimation errors. Also, the sensor throughput reduces as the sensor has to move to a new

mechanical configuration to acquire a snapshot of the scene.

On the other hand, phased array techniques (beamforming) improve the detection

robustness but at an increased computation cost. Figure 2.2 also illustrates the array

processing scheme. The sensor elements simultaneously receive the plane wave represented

by the signals s1, . . . , sM . The output y in the phased array mode of operation is given by

y =
M∑

m=1

sm(t− τm) (2.1)

where τ1, . . . , τM are the delays applied to the signals s1, . . . , sM , and for a uniform linear

array of elements

τm =
(m− 1)d sin(θ)

vsound
(2.2)

The signal y has maximum power when the time delays correspond to the arrival direction of

the echoes, which is also the bearing angle of the reflectors. Although the delays are applied

digitally, phased array processing has the effect of steering the sensor array mechanically

to be sensitive to signals from a look direction. A search in the region of interest by
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varying the angle θ (time delays τm) in Equation 2.2 determines the directions in which the

maxima occur. Several search-free techniques exist but are limited to specific receiver array

geometries [27].

Phased array techniques for air ultrasonic sensing applications have been explored only

recently due to the availability of small-sized micromachined electrostatic microphones [20,

22, 24–26]. Transducer array design requires care, as spurious artifacts called grating lobes

can occur during processing. This phenomenon arises due to the spatial separation between

the transducer elements and is avoided with a small inter-transducer separation, typically,

< λ/2, where λ is the wavelength of the pressure wave [28–30]. In air-based ultrasonic

applications, as the wavelength is between 4–14 mm, the development has been limited

mainly because of the transducer size.

Two possible phased-array implementations exist – a single transmitter with multiple

receivers [23–25], and multiple transmitters with multiple receivers [20, 22, 31]. In [20]

two dedicated linear FUT arrays are used, one for transmission and one for reception,

each with a different inter-transducer separation. Grating lobe artifacts are canceled in the

transmit-receive radiation pattern due to the array design. However, the usable field of

view reduces. The sensor array presented in [31] utilizes a 64 element FUT array. A 3-D

printed waveguide routes pressure waves between the transducer’s aperture that is large

to smaller outlets of a rectangular grid to satisfy the inter-element separation distance of

< λ/2. As the waveguides are reverberant, substantial loss in signal amplitude occurs due

to internal reflections and wave propagation through the printed part. Additionally, the noise

floor level of the beamformer output is higher, reducing the overall sensitivity of the sensor

array. Moreover, 3-D printing requires extensive post-processing due to the debris in the

waveguide and the non-uniform surface of the printed part.

Several recent publications explore the use of a receiver array consisting of low-cost

micromachined microphones [24–26]. To break the spatial periodicity, a random inter-

element separation between the microphones is utilized. Designs with 32 elements [24],
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and 36 elements [25, 26] are proposed. Although the grating lobe artifacts are suppressed,

[28] suggests an increase in the noise floor level of the beamformer’s output. Moreover,

a large size array increases the overall cost of the analog signal chain as data from each

element requires a dedicated path. The digital processing costs also increase as phased

array techniques require complex math matrix computations. The articles employ graphic

processing units to perform computations, increasing the overall sensor system cost and

power budget. Also, the articles employ a wideband transmitter to emit pressure waves and

focus on the array design aspects.

2.3 Stiffness Estimation

Stiffness estimation in prior research work utilizes a combination of position mea-

surements along with tactile sensor arrays installed on the jaws of grippers [32–35]. A

multi-degree of freedom gripper mechanism is used in [32, 33, 36], where the gripper

jaws resemble a human finger. The finger-like mechanisms have multiple links and are

actuated by a tendon-pulley transmission. Position measurements are obtained through

encoders on the gripper or through a camera in the workspace in [33, 34]. Tactile sensor

arrays significantly increase the overall system cost and complexity due to additional signal

processing. As noted in [37–40], tactile sensor arrays have actuation zones, and obtaining

reliable and repeatable measurements is challenging. They are also susceptible to hysteresis

and have a slow response time. The use of overhead cameras increases complexity due to

image processing software and results in low accuracy of stiffness estimation. A special

feature of [32, 33, 36] is the underactuation due to the transmission mechanism, which

results in a coupled motion of the finger links. Underactuated systems are increasing in

popularity due to the shape adaptation feature during grasping events and is also explored in

this dissertation.

Prior articles employing machine learning use experiments to generate datasets to

perform classification of objects [33, 35]. In [33], a measure representative of the stiffness
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is used to classify objects into four categories ranging from low to high linear stiffness (150

– 2000 N/m). The study also allows a change in the object shape in addition to a change

in stiffness during data collection. It is possible for the classifier to exploit shape-related

features during the prediction process, resulting in high classification accuracy. In [35], the

objects are classified into two categories – as hard or soft. In both studies, the classifiers are

trained on datasets containing a small number of items (about 50 items) which increases the

tendency to overfit during the training step [41, 42].

Datasets using experimental measurements have several advantages. They do not require

a knowledge of the system’s physics, which can be challenging to develop for systems

with multiple degrees of freedom operating under friction with complex transmission

mechanisms. However, an experimental approach must limit the amount of data collected

from the hardware, as it is a time-consuming and expensive exercise requiring human

intervention [43]. Moreover, it is possible to overuse the experimental hardware during

data collection. Additionally, manufactured items have a tolerance associated with each

component present in the system. A regressor trained via experiments on one hardware may

not achieve a similar level of performance on another hardware. A simulation approach

to dataset generation for training the regressor can overcome many of the shortcomings of

experimental data collection [41–43].

2.4 Unique Contributions of This Research

The algorithms developed in this research emphasize reducing the overall cost, sys-

tem complexity, and operation on resource-constrained embedded devices. The research

contributes to the body of knowledge in the following ways:

Vibration Control of Transducers:

1. Develops a generalized time-optimal control framework to enhance the operation of

transmitting Flexural Ultrasonic Transducer (FUTs) fed by driver circuits. Extends

the time-optimal framework to enhance the operation of receiving FUTs.
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2. Develops model-free algorithms to address residual vibrations – transmitter enhance-

ment that accelerates damping and a receiver enhancement through a subtractive

masking process.

3. Demonstrates enhancements to the minimum range and range resolution through

accelerated damping of FUTs. Provides a detailed comparison of the schemes in

item 1.

4. Develops a Pulse Width Modulation (PWM) synthesis algorithm based on superpo-

sition principles for bench realization using an off-the-shelf Microcontroller Unit

(MCU).

5. Develops Nonlinear Programming Problem (NLP) based numerical methods to gener-

ate solutions for high order time-optimal control problems.

3-D Ultrasonic Imaging:

6. Designs a low-cost ultrasonic sensor consisting of a small number of elements for the

detection of reflectors in 3-D space.

7. Identifies system design requirements – for the sensor, analog signal chain, and digital

processing.

8. Develops a high throughput processing algorithm. Fully embedded operation on a

low-cost MCU achieves high update rates comparable to vision systems.

9. Develops a 2-D peak interpolation algorithm.

10. Compares sensor array performance with different beamformers.

Stiffness Estimation:

11. Develops a bio-inspired approach using a squeeze test to estimate the stiffness of

objects for a single degree of freedom gripper using regression. Extends the stiffness
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estimation approach to an underactuated finger mechanism driven by a tendon-pulley

transmission.

12. Leverages machine learning to determine the stiffness of objects under grasp with

a sparse sensor suite (uses only position and current sensor measurements instead

of expensive tactile sensor arrays). Exposes the ability of regressors to overcome

nonlinear effects due to dry friction, gripper actuation commands, and tendon-pulley

underactuated transmissions.

13. Training for machine learning occurs on datasets generated through simulations.

Trained regressors are evaluated on a representative single degree of freedom experi-

mental hardware. Dataset generation simulation program models dry friction in the

mechanism.

14. Designs a stiffness apparatus to systematize the generation of linear stiffness for

experimental data collection. Achieves linear stiffness regression for an underactuated

finger system using an experimentally generated dataset.

2.5 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 3 presents a systems

perspective of the ultrasonic sensing system for the pulse-echo mode of operation. The

chapter provides details of the transducer model, the transmitter driver, and the receiver

system. Chapter 4 studies the time-optimal transmit optimization problem. The chapter

describes the problem formulation, the implementation of the NLP solver to generate

numerical solutions, and the PWM synthesis algorithm. Chapter 5 extends the framework

developed in Chapter 4 to receiving FUT systems. The tradeoff between the transmit and

receive optimization schemes and a robustness analysis is presented. Chapter 6 discusses

simple model-free algorithms to enhance the operation of transmitter FUTs by applying

damping pulses and receiver FUTs through a masking signal. Chapter 7 outlines the design
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of a low-cost sensor array and the processing algorithm based on beamforming to detect

multiple reflectors in 3-D space. Chapter 8 discusses the stiffness estimation of an object

through a bio-inspired squeeze test procedure. Machine learning-based regressors are trained

using simulation data and evaluated on a real-world single degree of freedom experimental

hardware. Chapter 9 extends the squeeze test approach to an underactuated tendon-pulley

finger mechanism. The chapter outlines a stiffness apparatus for experimental data collection

and develops stiffness regressors using the experimentally generated dataset. Chapter 10

concludes the dissertation with a summary of the completed work and topics for future

research.
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CHAPTER 3

ULTRASONIC SENSING SYSTEM ANALYSIS

This chapter presents a systems perspective of the ultrasonic sensing system for the pulse-

echo mode of operation. The chapter discusses a new transducer model that captures the

operation of the transducer under both transmission and reception modes. The transformer

fed transducer drive circuit used in the research is studied, and the design requirements for

the receive signal chain are summarized. The chapter concludes with a description of the

data acquisition system used in the experimental work.

3.1 Hardware System Overview

Excitation
Logic

Excitation
Circuit

Transmit Wave

Transducer

Echo
Filter

A to D
Conversion

uT

yR
ỹR

Object

Figure 3.1: Ultrasonic sensing system architecture.

Figure 3.1 shows the architecture of an ultrasonic sensing system. It consists of a

transmit path for emitting a pressure wave from a FUT and a receive path to capture and

process echoes reflecting off from objects in the scene. The excitation control block issues a

time-gated excitation signal and controls switches of an excitation circuit. The excitation

circuit includes components, such as a transformer, to improve the power transfer to the

FUT. In low-cost applications, PWM peripherals of a MCU implement the excitation logic

and realize the desired voltage excitation signal by operating the transistor switches of

the excitation circuit. Echoes from reflectors in the scene produce electrical voltages with

significantly smaller amplitudes. The signals pass through a bandpass filter designed based
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on the resonant frequency of the FUT. An Analog to Digital Converter (ADC), also located

within the MCU is used to sample the analog signal for digital processing. The ranging

specifications of the system and the desired SNR level of the voltage signals determine the

analog filter’s gain. The combined use of the transmit and receive paths determine the ToF

of echoes, where the start of transducer excitation triggers the data logging process.

3.2 Transducer Model

Rs Rair

− +
vT

Ls
Cs

−
+ uR

yT

Cp

+

−
yR

S

Rsrc

−
+uT

Figure 3.2: Lumped electrical equivalent circuit model of a FUT.

Figure 3.2 shows the electrical equivalent circuit representation of a narrowband FUT.

An electrical representation is convenient because a transducer has access only to the

electrical terminals; a voltage excitation launches pressure waves, and incoming echoes

generate voltages. The model is inspired by the standard Butterworth Van Dyke (BVD)

model [44]. The lumped circuit representation is useful and sufficient for sensing system

designers, while for a transducer designer, a detailed partial differential equation model of

the transducer is essential. The lumped model presented above includes the operation of a

transducer during reception and the loading presented by the environment. The oscillatory

branch of the transducer is modeled by the series branch components Rs, Rair, Ls, and Cs.

The values of Ls and Cs determine the resonant frequency f of the transducer. The series

resistance Rs represents the damping inherent within the transducer due to the construction.

Rair represents the electrical equivalent loading presented by air (the radiating medium) on

the oscillatory branch. The parallel capacitor branch Cp models the dielectric property of a

FUT, as the piezoelectric material is bonded to a metal plate in a FUT. uT and uR represent
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Figure 3.3: Equivalent circuit model of the FUT during transmission. x1 is current through
Ls, x2, x3 are the voltages across Cs and Cp.

the input voltage, and yT and yR are the output current and the output voltage during the

transmission and reception operations. vT is the voltage across Rair and Rsrc models the

resistance of the source. The model is applicable even for an electrostatic transducer, where

Cp models the capacitance between the electric foil and the transducer’s backplate.

Transmission:

During transmission, uR = 0 and the switch S is closed, resulting in the voltage uT

appearing across the transducer. Figure 3.3 shows the circuit during transmission. Let

the state variables x1 be the current through Ls and x2, x3 be the voltages across Cs

and Cp. At resonance, uT appears across Rs and Rair. For a well-designed transmitting

transducer, Rs < Rair, maximizing the power output to the radiating medium. The voltage

vT developed across Rair is a scaled version of the acoustic pressure pT output from the

transducer. Equivalently, the current x1 is a scale factor of the voltage vT across Rair.

Therefore, the value of x1 = yT can be viewed as a scaled version of the pressure pT

released from the transducer. The state equations of the FUT during transmission with
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x = [x1, x2, x3]
T are given by

ẋ =


−Rs

Ls

− 1

Ls

1

Ls

1

Cs

0 0

− 1

Cp

0 − 1

CpRsrc


x+


0

0

1

CpRsrc


uT

yT =

[
1 0 0

]
x

(3.1)

Reception:

Rs Ls
Cs

−
+ uRCp

+

−
x1

+

−

yR

Figure 3.4: Equivalent circuit model of the FUT during reception. x1 is voltage across Cp

and x2 = ẋ1 (not shown). For the RXOPT formulations discussed in Chapter 5, x5 and x6
are used instead of x1 and x2.

During reception, the switch S is opened, and uR is the electrical equivalent input voltage

induced at the FUT due to the incoming pressure wave pR. Let x1 be the voltage generated

across the capacitor Cp. yR is the voltage across the FUT. It is also the input to the receive

signal chain, which normally has high input impedance. The state variable x2 = ẋ1 for

convenience. x2 represents a scaled version of current through Cp. The state equations of

the FUT during reception with x = [x1, x2]
T are given by

ẋ =

 0 1

−Cs + Cp

LsCsCp

−Rs

Ls

x+

 0

−Rs

Ls

uR
yR =

[
1 0

]
x

(3.2)
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Figure 3.5: Complex impedance measurement data collected by the frequency response
analyzer. Data fitting is performed through two nonlinear least squares curve fitting methods.
(Measured data [—], data fitting method – 1 [—], data fitting method – 2 [—]).

As only Rs is present in the circuit, which is small, the damping of the FUT during reception

is low; this maximizes the sensitivity of the echo generated due to the incoming pressure

wave. It is interesting to note that during transmission, the FUT has a model order of 3,

whereas, during reception, the FUT has a model order of 2.

3.2.1 Equivalent Circuit Parameter Estimation

The research uses a Murata MA58MF14-7N transducer having a center frequency of

58.5 kHz. The transducer can transmit and receive pressure waves. The equivalent circuit

parameters are obtained by using a frequency response analyzer to collect the complex

impedance measurement data and fitting the data to the transducer model presented in

Section 3.2. The equipment applies electrical excitation to the FUT at several frequencies,

and Figure 3.5 shows the impedance response of the transducer. Appendix A discusses the

details of the experimental circuit and the procedure used during the data collection step.

Let the measured complex impedance data at the n = 1, . . . , N discrete frequencies
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ωn be given by Zn = An + jBn. From Figure 3.2 the transducer impedance estimate at

frequency ωn can be computed as

Ẑn = Ẑ(ωn) =

[
Rs + jωnLs +

1

jωnCs

]
||
[

1

jωnCp

]
= Ân + jB̂n

(3.3)

A nonlinear least-squares parameter estimation procedure inspired by [45] is used. An

unconstrained nonlinear optimization solver with g(x) as the cost function and x as the set of

optimization variables is specified as min
x
g(x). The cost function for the data fitting problem

minimizes the error between the measured impedance and the estimated impedance at the ωn

frequencies. The optimization variables, i.e., Rs, Ls, Cs, and Cp, are the unknown model

parameters of the transducer. Note that Rs includes the Rair component, and decomposition

is not possible from the impedance response measurement data. Two different cost function

formulations confirm if the parameter estimates converge to the same set of values.

Method 1: Minimization of impedance terms: The Root Mean Square (RMS) error

corresponding to the real terms of the estimated and measured impedances, and the RMS

error corresponding to the imaginary terms of the estimated and measured impedances, are

minimized. The cost function is given by:

Cost(Rs, Ls, Cs, Cp) =

√√√√ 1

N

N∑
n=1

(Ân − An)2︸ ︷︷ ︸
RMS error real part

+

√√√√ 1

N

N∑
n=1

(B̂n −Bn)2︸ ︷︷ ︸
RMS error imaginary part

(3.4)

where Ân and B̂n are computed from the optimization variables at the ωn frequencies.

Method 2: Minimization of impedance magnitudes: In this method, the RMS error

between the estimated and measured impedance magnitudes is minimized. The cost function
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Table 3.1: Estimated Parameters for the Murata MA58MF14-7N Transducer

Parameter Symbol Method 1 Method 2 Units
Oscillatory Branch Resistance Rs 1185.89 1185.93 Ω

Oscillatory Branch Inductance Ls 133.16 135.91 mH
Oscillatory Branch Capacitance Cs 55.72 54.59 pF

Parallel Branch Capacitance (Estimated)
Cp

1.41 nF
Parallel Branch Capacitance (Datasheet) 1.40 nF

Resonant Frequency (Estimated)
f

58.43 kHz
Resonant Frequency (Datasheet) 58.5 kHz

Only Cp and f are specified in the transducer datasheet.

is given by

Cost(Rs, Ls, Cs, Cp) =

√√√√ 1

N

N∑
n=1

(|Ẑn| − |Zn|)2 (3.5)

The unconstrained optimization solver fminsearch in MATLAB is used to determine the

transducer parameters with either method. The termination tolerance is set to 10−6. Through

trial and error the initial guesses to each problem are set to Rs = 500 Ω, Ls = 100 mH,

Cs = 20 pF, Cp = 500 pF. The estimated values are shown in Table 3.1. The quality of fit

is determined by computing the Normalized Root Mean Square Error (NRMSE). For the

measurement Z and the estimate Ẑ, the fit percent is given by

Fit(Z, Ẑ) % =

[
1− ||Ẑ − Z||
||Ẑ − E(Ẑ)||

]
× 100 (3.6)

All N data points are used to compute the Fit % with the above expression. For the methods

given by Equation 3.4 and Equation 3.5, the fit percent is 97.2% and 97.6% respectively,

indicating a tight fit and a comparable performance as shown in Figure 3.5. The methods

result in parameter values that are close to one another. Hence an average is computed from

the estimated parameter set. Also, the estimated values for Cp and f agree with the datasheet

values.
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3.3 Transmit Drive Circuit

The drive circuit block in Figure 3.1 transfers the power from the source to the FUT. It

consists of transistor switches connected to passive elements, such as inductors, capacitors,

or transformers. Some common drive circuit topologies include the direct drive (shown in

Figure 3.3), inductor-capacitor (LC) drive, capacitor-inductor (CL) drive, and transformer

drive. The design parameters for the drive circuits can be selected by applying the maximum

power transfer principle. From [46], for complex impedances, power transfer is maximized

when Zsource = Z∗
load. The research develops algorithms primarily for the transformer-driven

transducer circuit. However, the algorithms are also applicable to other drive configurations.

Appendix B describes other drive topologies, the physics models, and the design formulas

for selecting the drive circuit parameters.

3.3.1 Transformer Equivalent Circuit Model

A step-up transformer with a turns ratio of n is shown in Figure 3.6. Let v1 and v2

be the primary and secondary voltages. Based on [47], Figure 3.7 shows the equivalent

circuit representation of the transformer in Figure 3.6. The transformer coil’s magnetizing

inductance at the primary is Lm1. The relationship between the transformer’s secondary and

primary coil inductances can be related by Lm2 = n2Lm1. R1 and Ll1 are the resistance and

the leakage inductance at the primary side. R′
2 and L′

l2 are the resistance and the leakage

inductance of the secondary referred to the primary side. They are both given by

R′
2 =

R2

n2
, L′

l2 =
Ll2

n2

where R2 and Ll2 are the actual resistance and leakage inductance at the transformer’s

secondary. v′2 and i′2 are the secondary voltage and current referred to the primary. The

relationship between the actual voltage v2 and the current i2, and their referred counterparts
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Figure 3.6: Step-up transformer representation.
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Figure 3.7: Equivalent circuit representation of the transformer.

are given by

v′2 =
v2
n
, i′2 = ni2

where the secondary circuit components are referred to the primary side of the transformer.

The representation of the transformer model in Figure 3.7 using a dependent voltage and a

dependent current source is shown in Figure 3.8. The novel representation of the transformer

through dependent sources is convenient because the isolation existing between the primary

and the secondary terminals of the transformer is preserved. Also, analysis at the primary

and the secondary side of the transformer can be performed independently.

R1 i1
Ll1 L′

l2 R′
2i′2

Lm1

+

−

v1 −
+v2

n

i′2
n

i2

+

−

v2

Figure 3.8: Dependent source model of the transformer.
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Figure 3.9: Transformer driven transducer circuit. Also, Lm = Lm1.

3.3.2 Transformer Driven Transducer System

Figure 3.9 shows the transducer circuit driven by the transformer. Modeling simplifica-

tions are introduced to the transformer model of Figure 3.8. The leakage inductances Ll1

and L′
l2 of the transformer are negligible compared to the coil inductance of the transformer

and can be neglected; the model order of the system also reduces. For a well-designed

transformer, R1 and R′
2 are small to minimize copper losses in the transformer. Rsrc lumps

the resistances R1, R
′
2 and the internal resistance of uT . The subscript 1 in Lm1 is dropped

in Figure 3.9 for notational convenience; therefore, Lm = Lm1. The state equations of the

transformer driven FUT system with x = [x1, x2, x3, x4]
T are given by

ẋ =



−Rs

Ls

− 1

Ls

1

Ls

0

1

Cs

0 0 0

− 1

Cp

0 − 1

n2CpRsrc

− 1

nCp

0 0
1

nLm

0


x+



0

0

1

nRsrcCp

0


uT

yT =

[
1 0 0 0

]
x

(3.7)
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3.4 Baseline Excitation Signal

A voltage excitation is applied to the FUT to emit a pressure wave. The baseline

excitation signal (BASE) consisting of ne excitation cycles at the transducer’s resonant

frequency f is given by

uT (t) =

 +(−1)i , t ∈ Te

0 , otherwise
(3.8)

where the integer i is determined from

i = ⌊2(t− t0)f⌋, (3.9)

t0 is the time instant at which transmission begins, ⌊·⌋ denotes the floor function, and the

excitation cycle time intervals are given by

Te =
[
t0, t0 +

ne

f

)
(3.10)

The signal uT (t) given by Equation 3.8 results in a rectangular wave excitation, which

is suitable for the narrowband FUT used in this research. A bipolar excitation signal

is preferable over a unipolar excitation because transducer oscillation occurs about an

equilibrium position; bipolar excitation provides twice the peak emission pressure amplitude.

Additionally, a DC excitation signal can deform the piezoelectric material permanently

due to the high voltages appearing at the FUT’s electrical terminals and should be avoided.

The transformer drive is AC coupled and protects the FUT compared to the direct drive

and LC drive configurations. Research in [7–9] applies a sinusoidal excitation signal to a

narrowband FUT, which is not necessary; the excitation signal defined by Equation 3.8 is

consistent with low-cost implementations. Also, previous research does not consider the

driver stage between the source and the FUT.
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Figure 3.10: Simulation – voltage (x3) appearing across the FUT.

3.4.1 Simulation

The simulations of the direct-driven and the transformer-driven systems are shown in

Figure 3.10 and Figure 3.11. The voltage excitation signal uT consists of a ne = 5 cycle

excitation applied at the resonant frequency f of the FUT with an amplitude of 5 V. The

same excitation signal is applied to both configurations in the simulations. The source

impedance is assumed to be purely resistive, i.e. Zsrc = Rsrc. The estimated parameters

of the transducer listed in Table 3.1 are used in the simulation. The parameters of the

transformer are estimated using the procedure in Appendix D and the values are listed in

Table D.1. The plots show the state variables x1 corresponding to the oscillatory branch

current representing the emission pressure amplitude and x3 corresponding to the voltage

appearing across the FUT’s electrical terminals.

Direct-drive is the simplest topology connecting the source and the FUT as shown in
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Figure 3.11: Simulation – current (x1) through the oscillatory branch of the FUT. Current
represents the emitted pressure.

Figure 3.3. The excitation signal appears across the FUT, i.e. uT ≈ x3. For the same ne,

the emission pressure amplitude can be increased by increasing the amplitude of uT . The

transformer drive configuration (also LC and CL) can apply voltage excitations with higher

amplitudes to the FUT. In Figure 3.10, x3 has a higher value for the transformer-driven

circuit and is scaled by the transformer’s turns ratio. Consequently, a higher current x1 flows

through the oscillatory branch, resulting in an increased amplitude of the emitted pressure

wave. Note that increasing ne is another option to increase the amplitude of emission

pressure wave; however, the increase obtained is lower when compared to hardware driver

circuit solutions.

3.5 Receive Signal Chain

The voltage yR developed at the receiving FUT in a pulse-echo trial depends on several

factors – excitation voltage amplitude, number of excitation cycles, transmitter sensitivity,

propagation losses, reflector curvature, material properties of the reflector, multi-path

propagation, and receiver sensitivity. A custom analog signal chain is designed to filter

and amplify the voltage yR before analog to digital conversion. Since f = 58.5 kHz, a
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bandpass filter with passband between 44 – 72 kHz is used. The amplification levels are

determined by studying the propagation and attenuation experienced by the emitted signal

yT . Only a few off-the-shelf solutions exist but lack the flexibility a custom receive signal

chain offers – cutoff frequency, gain, and synchronizing the operation of multiple receivers

with the transmitter.

The emission characteristics are described by a sensitivity parameter. For a transmitter, it

is the output pressure for an input excitation amplitude. This parameter is expressed in terms

of Sound Pressure Level (SPL) and calibrated against the ANSI/ASA acoustic standard

reference pressure with a magnitude of Pref = 20 µPa. The SPL of an acoustic device is

given by

SPL(r) = 20 log10

(
P (r)

Pref (rref )

)
(3.11)

where r is the travel distance, and rref is the reference distance at which the transducer is

calibrated. The propagation of a pressure wave results in spreading losses and P ∝ r−1. In

units of SPL, for a target at r, the pulse-echo response is given by

SPL(r) = SPL(rref )− 20 log10

(
2r

rref

)
− TS (3.12)

where TS is the reflector’s target strength that varies with the reflector’s shape. The nominal

transmit SPL for a 58.5 kHz transducer is 110 dB at 30 cm for a 10 V RMS excitation signal,

resulting in an emission pressure of about 6.5 Pa. Assuming a planar reflector, the target

strength TS= 10 log10
r2

4
, based on [48]. The pressure at the receiver is about 0.5 Pa and

undergoes a substantial attenuation in its amplitude.

Receiver sensitivity is the parameter that characterizes the voltage developed at the FUT
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Figure 3.12: Center-tap transformer excitation circuit used to transmit pressure waves. The
transmit and receive operations occur on the same device. The experimental system has
access only to ỹR.

for an input pressure. It is specified in dB and is given by

SensitivitydB = 20 log10

(
SensitivityV/Pa

ReferenceV/Pa

)
(3.13)

For a nominal receiver sensitivity of -70 dB with the ReferenceV/Pa = 10 V/Pa, the

voltage developed at the receiver is about 1.5 mV. A single-ended ADC is used and accepts an

input voltage between 0 – 3V; the nominal amplification level for achieving full-scale voltage

measurements is ≈ 1000 V/V. Several fixed gains selected through analog multiplexing

support receiver operations up to a maximum range of 1.5 m. Compared to time-varying

gains, multiple fixed gains have low complexity and are cost-effective. Appendix C discusses

the hardware circuit implementation of the receive signal chain, which consists of several

sub-circuits installed on a printed circuit board. The receiver board features an expandable

design philosophy where multiple boards can be stacked to provide parallel signal paths,

essential for the array mode of operation.

3.6 System Implementation

Figure 3.12 shows the implementation of the sensing system. The circuit uses the Murata

MA58MF14-7N FUT and Subsection 3.2.1 discusses the parameter estimation details.
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A TDK B78416A2232A003 center-tap step-up transformer drives the transducer and is

switched by two Fairchild FQP30N06L MOSFETs connected in a push-pull configuration at

the transformer’s primary. The body diodes of the MOSFETs are not shown for convenience.

The desired input signal uT is converted to PWM signals which operate the switches through

the driver DRV. Although the input signal uT given by Equation 3.8 – Equation 3.10 can

be synthesized without the PWM peripheral, the forthcoming chapters on the time-optimal

operation of FUTs produce uT excitation signals that have arbitrary duty cycles, which

requires usage of the PWM peripheral. Also, the PWM peripheral is preferable as dedicated

hardware circuits are present within the module to realize edge placements with high timing

accuracies (≈10s of ns).

Transmission and reception occur at the same device; both the excitation applied to the

transducer and the echo-induced voltage signals developed at the transducer pass through the

high gain bandpass filter. yR is the voltage input to the receive signal chain by the FUT, and

ỹR is the voltage after filtering and amplification. Appendix C discusses the implementation

of the filter circuit. An off-the-shelf evaluation module LAUNCHXL-F28379D from Texas

Instruments is used, which has an onboard Texas Instruments TMS320F28379D MCU. The

embedded software is executed on the MCU which generates the two PWM signals and

acquires the amplified analog voltage signal using the ADC peripheral. The experiment

control and data acquisition occur through a serial communication link between the MCU

and a host computer. For convenience, Table 3.2 summarizes all the system parameters

listed in Table 3.1 and Table D.1.

The signals PWM 1 and PWM 2 are complementary, resulting in the following operating

modes:

• PWM 1 = low, PWM 2 = low: As no current will flow through the transformer coils,

the voltage induced at the transformer secondary is zero.

• PWM 1 = high, PWM 2 = low: Current flows through the bottom coil of the trans-

former’s primary, inducing a positive voltage at the secondary.
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Table 3.2: Summary of Experimental System Parameters for Ultrasonic Sensing

Parameter Symbol Value Units
Transducer Frequency f 58.4 kHz

Transducer Period – 17.1 µs
Speed of Sound vsound 340 m/s

Wavelength of Pressure Wave λ 5.8 mm
Oscillatory Branch Resistance Rs 1185.9 Ω
Oscillatory Branch Inductance Ls 134.7 mH
Oscillatory Branch Capacitance Cs 55.2 pF

Parallel Branch Capacitance Cp 1.41 nF
Step-Up Transformer Turns Ratio [Full-Tap] 1 : n 1:4.17 V/V
Step-Up Transformer Inductance [Full-Tap] Lm, Lm1 164.1 µH
Step-Up Transformer Resistance [Full-Tap] R1 +R′

2 2.62 Ω

ADC Sampling Frequency fs 250 kHz
ADC Sampling Period – 4 µs

ADC Resolution – 12 bits
Receiver Passband Frequencies – 44–72 kHz

Receiver Passband Gain [Chapter 4 – Chapter 6] – 1170 V/V
Receiver Passband Gain [Chapter 7] – 300 V/V

Transmitter Source Voltage – 5 V
PWM Timebase Period Tb 4.29 µs

Number of Excitation Cycles ne 3 – 10 cycles

• PWM 1 = low, PWM 2 = high: Current flows through the top coil of the transformer’s

primary, inducing a negative voltage at the secondary.

For completeness, PWM 1 = high, PWM 2 = high will also induce a zero voltage at the

transformer’s secondary, just like the case when both PWM signals are low; but switch

dissipation losses are higher.

Circuits and the state space representation presented in Subsection 3.3.2 are valid even

for the center-tap configuration of Figure 3.12 after minor adjustments to the parameter

values. For the center-tap transformer (subscript “ct”), the primary coil inductance is

Lm1, ct =
Lm1

2
, and the turns ratio is nct = 2n.
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CHAPTER 4

TIME OPTIMAL ENHANCEMENTS FOR TRANSMITTING FLEXURAL

ULTRASONIC TRANSDUCERS

4.1 Introduction

Figure 2.1 shows a pulse-echo trial with a 58.5 kHz narrowband FUT. The signal capture

exhibits sustained residual vibration long after the excitation has ended, where the total

transmission duration consists of two components – the excitation time and the decay time.

Section 2.1 discusses how the signal ỹR contains two components – the pulse-imposed

component and the echo-induced component. The focus of this chapter is on designing

a FUT excitation scheme to achieve a rise and decay of the pressure wave in minimum

time without compromising the amplitude of the transmitted pressure wave; effectively

controlling the FUT’s response due to the pulse-imposed component. The work contributes

to the knowledge base in several ways. The time-optimal control problem determines

the excitation signal minimizing the total transmit time. A step-up transformer fed FUT

transmitter system is studied, and the system has fourth-order dynamics as discussed in

Subsection 3.3.2. The production of a solution to the Optimal Control Problem (OCP) is

non-trivial and requires Nonlinear Programming Problem (NLP) solvers; two NLP solvers

are developed – orthogonal collocation and multiple shooting. Consistent with low-cost

implementations, an algorithm to synthesize the excitation signal using PWM peripherals is

described. Several experiments demonstrate the achieved reduction in the total transmission

time, the minimum range, and the range resolution.
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Figure 4.1: Illustration of the transmitter optimization problem.

4.2 Optimization Problem

Figure 3.12 shows the hardware topology of the FUT system, where the FUT is connected

to both the transmitter and the receiver circuits. The state-space representation of the

transformer-driven transducer is given by Equation 3.7. The excitation signal uT is applied

in an open-loop and is advantageous as additional sensors are not required and reduce the

overall system cost and complexity. The downside is the need for an accurate system model,

but fortunately, the model parameters do not change with time. Also, [1, 4] demonstrate that

open-loop operation is sufficient if the excitation pulses are applied with precise timing.

Figure 4.1 motivates the optimization problem. The current waveform (state x1) is of

interest as its amplitude is proportional to the pressure wave emitted by the FUT as discussed

in Section 3.2. In the diagram, the current envelope takes tR to rise to a target level of I0

in response to the excitation and tD to decay down to equilibrium levels from the target

level of I0. Therefore, reducing the total transmission time tR + tD allows the FUT to detect

echoes earlier, while the specification of a target level I0 allows the peak transmit pressure

strength to be regulated. Additionally, minimizing the total transmission time is equivalent

to reducing the length of the blind zone, as the range is the result of scaling time by the

speed of sound. There exist two competing problem formulations.

• Formulation 1: Solve the optimization problem as two separate subproblems, where

tR is minimized in the first subproblem with a target current level of I0, and tD is
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minimized in the second subproblem starting from a target current level of I0 to

achieve equilibrium.

• Formulation 2: Solve the optimization problem as a single equilibrium-to-equilibrium

problem where the total time tR + tD is minimized while also reaching the target level

of I0 at some intermediate time instant.

Analysis with second-order systems presented in [49] reveals that a small performance

degradation in time optimality occurs when formulation 1 is used, but the computation costs

with formulation 1 are substantially lower compared to formulation 2. Note that the solutions

obtained through either formulation are expected to be different. The two subproblems of

formulation 1 are:

Subproblem 1: Rise time minimization:

minimize tR

subject to ẋ = Ax+BuT

|uT | ≤ V

x(0) = 0

|x1(tR)| ≥ I0

(4.1)

Subproblem 2: Decay time minimization

minimize tD

subject to ẋ = Ax+BuT

|uT | ≤ V

x(0) = x(tR)

|x(tD)| ≤ ϵ

(4.2)

The input applied to the system is constrained to the rail limits V . The initial conditions
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for the decay time minimization subproblem are equal to the values at the end of the rise

time minimization subproblem. ϵ is a small value around the equilibrium of the system.

The above formulation applies to any choice of drive configurations shown in Figure B.2

with the system dynamics in Table B.2. Determining a closed-form solution to the OCP

is challenging. Therefore, the solution to the system of equations is determined through

numerical techniques.

4.3 Scaling of the Equation System

Examination of Figure 3.10 and Figure 3.11 shows that the values for the state variables

of the equation system differ by several orders of magnitude, and the time scale is on the

order of a few milliseconds. Before computing the numerical solution, the state variables,

the input, and the time variable are scaled. This intermediate step improves the quality of

the solution and the convergence of numerical solvers. Let a reference maximum for the

state variable i, the input, and time be Xi, V , and T . The relationships between the scaled

(xs, uTs, ts; As, Bs) and the unscaled (x, uT , t; A, B) quantities are given by

xs = S−1x, S = diag {Xi}

uTs = V −1uT , ts = T−1t

As = TS−1AS, Bs = TS−1BV

(4.3)

Suitable values for the scaling quantities can be determined through the maximum operating

conditions expected during regular use. For the transformer driven system with 4th order

dynamics, the values determining S are X1 = 15.73 mA, X2 = 809.69 V, X3 = 20.72 V

and X4 = 352.4 mA. The values are obtained by exciting the system at the supply voltage

V = 5 V and resonant frequency f = 58.4 kHz using 20 excitation cycles (maximum

expected during regular use), resulting in T = 20/f = 342.46 µs.

40



4.4 Development of the Numerical Solver

The formulation in Section 4.2 is evaluated numerically. Two possible approaches exist

to solve the OCP. The first approach is to apply the optimality principles, which results in the

generation of a set of costate equations. Numerical solutions are generated for the combined

system consisting of the plant dynamics equations, the costate equations, and the boundary

conditions for the state + costate system. The second approach is more direct, which involves

converting the problem formulation (dynamic equations) into a set of constraint equations

using a discretization scheme. Optimization is then performed on the discretized problem.

The second approach presents several advantages and is preferred. The discretization

scheme results in constraint equations describing the state trajectories and the control input,

fed into a nonlinear programming problem. The costate equations for the optimal control

problem do not need to be derived, unlike the former approach. Input constraints, an

important practical aspect, can be easily introduced. A drawback, however, is that the

resulting NLP system consists of a large number of constraint equations (about 1000) with

a large number of optimization variables (about 30000), requiring computing capability

during solution generation. Also, the solver can converge to a local minimum. Therefore, the

solver’s exit conditions need investigation to determine if the resulting solution is acceptable.

Numerical solutions for each subproblem described by Equation 4.1 and Equation 4.2

are generated by using two different direct optimization methods – Orthogonal Collocation

and Multiple Shooting. The use of two approaches allows the verification of the generated

optimal excitation signal u∗T . A NLP takes the following form:

min
x
f(x)

subject to:

glb ≤ g(x) ≤ gub

xlb ≤ x ≤ xub

(4.4)

with cost function f(x), optimization variables x having the limits [xlb, xub], and inequality
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Figure 4.2: Collocation problem setup with fixed step-size h for interval i. The collocation
points are denoted by τ1, . . . , τK .

constraints g(x) having the limits [glb, gub]. Inequality constraints are converted to equality

constraints by setting glb = gub = 0; solvers automatically convert the zero in the equality

constraint to a small value depending on the solver configuration. After discretization, the

high dimension NLP is numerically solved using a constrained optimization problem solver,

such as the open-source IPOPT solver or the FMINCON solver native to MATLAB.

4.4.1 Orthogonal Collocation

The system dynamics in the state-space representation is

dx

dt
= Ax+Bu = f(x, u) (4.5)

For notational convenience, assume a one dimension system. With higher-order systems, the

same formulas apply after appropriate adjustments to the dimensions of the system’s states

x and the matrices A and B. Mathematical details for setting up the collocation problem are

described in §10.1–10.3 of [50].
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Figure 4.2 illustrates the discretization process. Consider a time duration T over which

the solution needs to be computed. The total number of intervals is N , giving the fixed

step-size h =
T

N
. Let the intervals be denoted by i = 1, . . . , N . In each interval i of length

h from ti ≤ t ≤ ti+1, a piecewise Lagrange interpolation polynomial of degree K is used to

represent the state. The control input is assumed to be piecewise constant throughout the

interval i. The Lagrange interpolation profile describing the state is given by

x(t) =

[
l1(τ) . . . lK(τ)

]
Xi , ti ≤ t ≤ ti+1, 0 ≤ τ ≤ 1 (4.6)

where

Xi =

[
xi,1 . . . xi,K

]T
(4.7)

Therefore, the time t ∈ [ti, ti+1] can be specified as t = ti + hτ . The formula for lj(τ) is

given by

lj(τ) =
K∏

k=0,̸=j

τ − τk
τj − τk

(4.8)

τk are the interpolation points within each interval h, and xi,1, ..., xi,K are the values of

the state at the K interpolation points as shown in Figure 4.2. The Legendre roots of a

degree K Gauss-Jacobi polynomial provides the lowest truncation error of O(h2K) [50].

Let τ1, . . . , τK be the K roots of the polynomial, which are also the K interpolation points

(also known as collocation points). Let τ0 = 0. Define the matrices Yi and M as

Yi =

xi
Xi

 , M =
dL

dτ
=


dl0
dτ

(τ1) . . .
dlK
dτ

(τ1)

... . . . ...
dl0
dτ

(τK) . . .
dlK
dτ

(τK)

 (4.9)

Every element of M provides coefficients for the time derivative of the interpolation profile
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for the states at the collocation points. For each interval, the collocation equations for the

ODE are modeled as equality constraints given by

MYi − hf (Xi, ui) = 0 (4.10)

Equality constraints apply at the end of one interval and the beginning of the next interval.

They are given by

xi+1 −
[
l0(1) ... lK(1)

]
Yi = 0 (4.11)

The constraint at t = T can be specified as

F−
[
l0(1) ... lK(1)

]
Yi = 0 (4.12)

where F are the final conditions of the system. The initial conditions I of the system at

t = 0 can be specified as

xi=1 = I (4.13)

Summary:

The time-optimal NLP problem with the collocation method after scaling the state variables

and the time is given by

min
u

T

subject to:


MYi − hf (Xi, ui)

xi+1 −
[
l0(1) ... lk(1)

]
Yi

F−
[
l0(1) ... lK(1)

]
YN

 = 0
(4.14)
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Figure 4.3: Multiple shooting problem setup with fixed step-size h and M sub-steps within
each step. Trajectory after convergence [—] and initial trajectory [—].

where the optimization variables are

lb ≤
[
T Y T

i ui

]T
≤ ub (4.15)

ub and lb are the upper and lower bounds of the system. For a scaled system the variable

limits are 0 ≤ T ≤ 1, −1 ≤ Yi ≤ +1 and −1 ≤ ui ≤ +1. The initial and final conditions

are given by I and F. Note that T is also one of the optimization variables. This is because

of time scaling and is discussed in Section 4.3. The value of the optimization variables in

the first solver run can be random and lie anywhere within the variable limits. Convergence

of the solver results in the optimal time duration T , the profile for the state, and inputs for

the time horizon in which the solution is computed.

4.4.2 Multiple Shooting

Consider the system given by Equation 4.5. §9.1 – 9.4 of [50] discusses mathemati-

cal details of the multiple shooting problem. In the single shooting method, during the
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integration of an initial value problem, there exists a tendency for the numerical routine to

become unstable. Multiple shooting overcomes this issue by splitting the solution interval

into smaller intervals, with numerical integration performed in these smaller intervals. The

initial conditions for each interval are originally unknown. Equality constraints impose

convergence at the interval boundaries resulting in the determination of the solution for the

entire interval of interest. The numerical integration is at the heart of the multiple shooting

method, and any integration method may be used – Forward/Backward Euler, Trapezoidal

Rule, Runge-Kutta. The classic Runge-Kutta 4-step method is used, which gives a truncation

error of O(h5). Figure 4.3 illustrates the multiple shooting method. T is the time duration

over which the solution is computed and consists of N intervals. The fixed step size is

h =
T

N
. Let the intervals be denoted by i = 1, . . . , N .

To improve numerical accuracy of the IVP and the convergence of the NLP, M sub-steps

are taken within each step h starting from xi. This leads to an equivalent integration step-size

of δ =
h

M
. As shown in Figure 4.3, for the interval i, let the intermediate value of the

M steps be xi,j at time ti,j for j = 0, ...,M . Perform the M -step numerical integration

within the sub-interval i starting with an initial value xi,0 = xi and a step-size of δ. The

Runge-Kutta integration steps are

k1 = f(xi,j, ui)

k2 = f

(
xi,j +

δ

2
k1, ui

)
k3 = f

(
xi,j +

δ

2
k2, ui

)
k4 = f

(
xi,j +

δ

2
k3, ui

)
xi,j+1 = xi,j +

δ

6
(k1 + 2k2 + 2k3 + k4)

(4.16)

where xi,j is the state at the interval i and sub-step j, i.e. at time t = ti,j . ui is the value of

the control input which is a constant throughout interval i. At the start of the NLP solver, the

initial values for each interval may be assigned arbitrary values within the range of the state
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variable. Figure 4.3 shows the state trajectory at the initial time interval. Upon convergence

of the NLP, xi,M = xi+1 resulting in the determination of the state and the control profile

for the entire interval. This condition is imposed through the equality constraint

xi,M − xi+1 = 0 (4.17)

The condition at the final time t = T with F as the final conditions of the system is specified

by the equality constraint

xi=N,M − F = 0 (4.18)

The initial conditions I for integration in the interval i = 1 starting at t = 0 is set as

xi=1 = I (4.19)

Summary: The time-optimal NLP problem using the multiple shooting method after scaling

the state variables and the time variable is given by

min
u

T

subject to:

xi,M − xi+1

xN,M − F

 = 0
(4.20)

where the optimization variables are

lb ≤
[
T xi ui

]T
≤ ub (4.21)

ub and lb are the upper and lower bounds of the system. For a scaled system, the variable

limits are 0 ≤ T ≤ 1, −1 ≤ xi ≤ +1, and −1 ≤ ui ≤ +1.
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4.4.3 Solution Generation Settings

The solver equations with collocation given by Equation 4.14 and multiple shooting

given by Equation 4.20 result in high dimension NLP implementations of the optimal control

problem. It is convenient to exploit symbolic math capability in engineering software to

implement the relevant equation systems. One open-source tool providing robust symbolic

math capability is [51]. NLP solvers are gradient-based techniques. The tool in [51] allows

machine precision gradients and Hessians to be determined through automatic differentiation,

improving performance and convergence characteristics of the NLP solver. The time horizon

T is divided into 4000 intervals in both methods. For a nominal transducer excitation

duration of T = 100 µs, the edges can be placed with an accuracy of 25 ns, which is also

the quantization achieved by the PWM peripheral of the microcontroller. In the collocation

method, a 3rd order polynomial is used, and in multiple shooting 10 sub-steps are used. With

the scaled system, the optimality and constraint tolerances of the solver are set to 10−6.

4.5 Simulation Results

For the Baseline Excitation Signal (BASE) defined by Equation 3.8, the system response

of the transformer driven transducer system is shown in Figure 4.4 – Figure 4.6. The

experimental system parameters are listed in Table 3.2. The parameter values are common

to both the simulations and the experiments. For BASE, a ne = 5 cycle voltage excitation is

applied at the FUT’s resonant frequency f . State x1 corresponds to the oscillatory branch

and responds to the application of uT . From Figure 4.5, the peak value of the current

representing the emitted pressure wave is x1 = 6.513 mA. State x3 is measured across the

electrical terminals of the FUT, which is also connected to the receive signal chain. After

the excitation ends, residual vibrations can be observed beyond 0.1 ms, which can interfere

with incoming echoes, and are undesirable as shown in Figure 2.1.

The system response with Time Optimal Transmit Excitation Signal (TXOPT) pre-
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Figure 4.4: Input uT for BASE.

Figure 4.5: State variable x1 for BASE. The peak current level is I0 = 6.513 mA for the 5
cycle rectangular excitation.
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Figure 4.6: State variable x3 for BASE measured at the transducer terminals.

sented in this chapter is shown in Figure 4.7 – Figure 4.9. The signal u∗T is assembled by

concatenating the results obtained by solving the subproblems given by Equation 4.1 and

Equation 4.2. The concatenation time point is shown by the dashed line in Figure 4.7. To

compare improvements between TXOPT and BASE strategies, the target current level I0 is

set to 6.513 mA, which is the peak current level obtained with BASE for ne = 5 as shown in

Figure 4.5. The u∗T generated through the numerical evaluation of the optimization problem

is shown in Figure 4.7. The optimal excitation signal has a bang-bang pattern switching

between the rail limits of ±V , consistent with the theory of time-optimal control for linear

time-invariant systems [52]. The u∗T signal evaluated to the same switching pattern with both

the collocation and the multiple shooting approaches confirms the accuracy of the generated

signal. The u∗T pattern up until the dashed line obtained by solving subproblem 1 allows the

current x1 to rise to the target current level more quickly than BASE. The TXOPT approach

applies a phase shift at t = 0 and a final short pulse around the dashed black line. The u∗T

pattern beyond the dashed line obtained by solving subproblem 2 accelerates the decay of

x1 to steady-state. The intermediate full-width rectangular pulses are at the FUT’s resonant

50



Figure 4.7: Input u∗T for TXOPT.

frequency f . The current waveform with u∗T is shown in Figure 4.8, and a comparison of the

current envelopes with respect to BASE is shown in Figure 4.10. Comparison of Figure 4.5

and Figure 4.8 shows that steady-state conditions are reached with TXOPT at 0.15 ms when

the excitation is stopped, while residual vibrations persist with BASE.

4.6 PWM Excitation Waveform Synthesis

The synthesized time-dependent bang-bang excitation signal u∗T is realized using the

waveform synthesis procedure to verify and validate the TXOPT scheme. Figure 3.12

presents the hardware realization of the transformer-fed circuit, where the transistor switches

are operated with the MCU’s PWM peripherals to apply the excitations to the FUT. The

PWM can place signal transitions with high timing accuracy (about 25 ns).

Figure 4.11 shows the operation of the PWM peripheral. The main components required

during signal synthesis are – 1. timebase reference, 2. timebase period Tb, 3. time

quantization determining the edge placement, 4. edge placement action. The timebase

reference is a periodic signal, such as a sawtooth waveform operating at a frequency of
1

Tb
.
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Figure 4.8: State variable x1 for TXOPT. The target current level is I0 = 6.513 mA, which
is the same peak level as BASE with ne = 5 of Figure 4.5.

Figure 4.9: State variable x3 for TXOPT at the FUT’s terminals.
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Figure 4.10: Current (x1) envelope comparison with BASE [—] and TXOPT [—].

Figure 4.11: Operation of the PWM peripheral.
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The sawtooth waveform is digitally implemented as a counter. An up-counting timebase

takes cmax counter steps to complete one period. The counter is reset to zero at t = Tb.

The counter values cr and cf determine the action at a digital output pin of the MCU;

cr is programmed to apply a rising edge transition (0 → 1) at the time instant τr, while

cf is programmed to apply a falling edge transition (1 → 0) at the time instant τf . The

relationship between the counter values c and the edge placement at the time instant τ is

given by

c = τC, where C =
cmax

Tb
(4.22)

As a bidirectional excitation signal needs to be synthesized, two PWM peripherals are

employed. The synthesis algorithm leverages the superposition principle to generate the

transistor gating signals. The peripheral PWM1 applies gating signals to generate positive

voltages specified by (c1r, c1f ), and the peripheral PWM2 applies gating signals to generate

negative voltages specified by (c2r, c2f ). In scaled voltage units, three levels (0, + 1, − 1)

describing the excitation signal and the transitions occurring between each level can be

synthesized. Consider the signal synthesis example shown in Figure 4.12, where the desired

signal spans between 0 and 3Tb.

Interval 0 ≤ t < Tb: A rising edge transition 0 → +1 occurs, and c1r determines the

transition instant. Setting c1f = cmax maintains a positive signal level for the remainder of

the interval. c2r = c2f = 0 as no negative voltage appears in the interval.

Interval Tb ≤ t < 2Tb: In this interval the desired signal is positive initially, and then

transitions to a negative voltage level. c1r = 0 allows a positive voltage to be maintained

at t = Tb. As a +1 → −1 transition occurs, setting c1f and c2r to a suitable value with

c1f = c2r determines the transition point within the interval. Setting c2f = cmax maintains

the negative voltage level for the remainder of the interval.

Interval 2Tb ≤ t < 3Tb: In this interval the desired signal is negative initially, and then
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Figure 4.12: Red solid line = duty cycle for rising edge, red dashed line = duty cycle for
falling edge.

transitions to a zero voltage level. c2r = 0 allows a negative voltage to be applied at t = 2Tb.

A −1→ 0 transition occurs in the interval, and c2f determines the transition point within

the interval. c1r = c1f = 0 because no positive voltage needs to be generated.

Within each timebase period, the set of allowable transitions is summarized in Fig-

ure 4.13, where up to three different voltage levels (−1, 0,+1) can be synthesized. However,

the transitions +1→ −1→ +1 and −1→ +1→ −1 occurring within a single timebase

period are disallowed. This limitation exists because only two counter values (cr, cf ) per

PWM peripheral are used to synthesize the desired signal.

The signal u∗T has several transitions, and it is preferable to automate the process of

determining the counter values for the gating signal. Algorithm 1 describes the synthesis

procedure. The inputs to the algorithm are the timebase period, the desired excitation signal,
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and the duration of the excitation signal. The algorithm outputs the counter values for

the gating signals, which can be directly loaded into the registers controlling the PWM

peripheral’s operation. The transducer is a resonant device and operates at the fundamental

frequency f ; the majority of the pulses in u∗T generated in Section 4.2 are full-width pulses

and have a duration of
1

f
. Switching transitions for full-width pulses occur at intervals of

1

2f
. Figure 4.7 shows that it is also possible to produce pulses that have widths shorter than

1

2f
at the beginning of excitation, the end of excitation, and also during the transition from

startup to shutdown. Based on simulations, setting Tb =
1

4f
is sufficient to meet the needs

of u∗T .

In Algorithm 1, based on the superposition principle, the signal is decomposed into

positive and negative pulse segments in line 5 – line 7. This step isolates the signals that

the PWMs generate in each timebase period. In line 8 – line 13, the time instants when the

rising and falling edges occur are determined by looking for step level changes in the signal.

The time instants where the edges occur are converted to PWM counter values in line 14 –

line 16.

A multi-mode PWM formulation is studied in [49], where Tb =
1

2f
is used. This choice

allows edge placements to occur with twice the precision of edge placements of Algorithm 1.

However, this choice requires a special alignment procedure; the transition interval shown

by the dashed line in Figure 4.7 needs to be aligned with the timebase signal of the PWM

peripheral. Such an alignment is not feasible with the excitation waveforms described

in Chapter 5, where two such transition events occur with pulse edges shorter than
1

2f
.

Algorithm 1 is applicable for the methods presented in both Chapter 4 and Chapter 5.

4.7 Experimental Results

Figure 3.12 shows the hardware circuit for the experimental verification. Experiments

evaluate improvements in the minimum range and the range resolution when the TXOPT
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Figure 4.13: Voltage levels synthesized in one time base period. C =
Tb
Cmax

. To synthesize

+1 (or −1) starting at t = 0, c1r = 0 (or c2r = 0). If the signal remains at +1 (or −1) for
the remainder of the time base period, the duty cycle c1f = 1 (or c2f = 1).
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Algorithm 1: PWM Excitation Waveform Synthesis
Inputs:

Tb: Timebase period (in seconds)
cmax: Maximum counter value
u(t): Desired signal. u, t ∈ Rm

tm: Excitation signal duration
Outputs:

Counter values ∈ Rp

For positive voltage synthesis by PWM - 1: (c1r, c1f ) and
For negative voltage synthesis by PWM - 2: (c2r, c2f )

1 Determine the number of timebase period segments when u(t) is active, i.e.

p := ceil
(
tm
Tb

)
2 Set C := ceil

(
cmax

Tb

)
3 for k ← 1 to p do
4 Step 1: uk(τ) := u(τ) where τ ∈ [(k − 1)Tb, kTb] and
5 uk(τ) ∈ Rl, l = length of uk
6 Step 2: Decompose signal into positive and negative pulse segments
7 u+(τ) = 1 ({τ : uk(τ) ≥ 0}) for PWM - 1
8 u−(τ) = 1 ({τ : uk(τ) < 0}) for PWM - 2
9 Step 3: Determine rising and falling edges for u+(τ) and u−(τ):

10 Rising edge detection:
11 τ(r, P ) := τ s.t. τl−1 = 0 and τl = 1
12 Falling edge detection:
13 τ(f, P ) := τ s.t. τl−1 = 1 and τl = 0
14 where P = (u+(τ), u−(τ))
15 Step 4: Determine the counter values for each segment:
16 c(r, P ) := Cτ(r, P )

17 c(f, P ) := Cτ(f, P )

18 end
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excitation is applied. The target current level I0 is set equal to the peak current level obtained

when the FUT is excited with BASE for ne = 5, similar to Figure 4.4 and Figure 4.7. The

measurements as seen by the ADC after analog filtering and amplification are shown in

Figure 4.14. When u∗T is applied, the decay time reduces. To measure the reduction in the

total transmission duration, the time instant when the envelope goes below the threshold is

determined. Since the ADC is single-ended, for a threshold of 10% of the positive signal

range of the ADC (i.e., 0 – 2047 counts) corresponding to the noise floor of the ADC, the

envelope with TXOPT crosses the threshold about 0.4 ms earlier than BASE. The optimal

excitation does not cause ỹR to reach noise floor levels immediately at the end of excitation

because of amplification, nonlinearities in the dynamics of the transformer-fed FUT system,

plant parameter estimation error, and imperfections in actuation.

The detection of echoes from reflectors near the FUT was tested by placing a flat object

at a distance of 15 cm in front of the FUT. Pulse-echo trials were conducted by applying

both BASE and TXOPT excitations to the FUT. The improvement in minimum range and

the ability to detect nearby objects is shown in Figure 4.15. With the TXOPT approach, an

echo from the reflector is detected, while with the BASE excitation, the echo is not detected.

This occurs because the vibration amplitude of the FUT as it decays to steady-state is larger

than the amplitude of the incoming echo, resulting in detection losses.

Figure 4.16 demonstrates the range resolution enhancement. Two flat objects are present

in the scene at a distance of 35 cm and 38 cm in front of the FUT. Application of the TXOPT

excitation scheme results in the detection of both objects, whereas the application of BASE

results in the detection of only one object. The echo with BASE has an extended envelope

because of the slow decaying tail of the transmitted pressure wave. Equation E.4 discusses

how the range resolution depends on the pulse width. With TXOPT, since the pulse width

of the transmitted pressure wave reduces due to the shorter decaying tail, the pulse width

of the voltage induced by the echoes also reduces, improving the range resolution of the

sensing system.
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Figure 4.14: Experiment 1: Residual vibrations and envelope after analog filtering and
amplification with no reflector. (BASE [—], TXOPT [—], threshold [- -], and total transmis-
sion duration [- .].

Figure 4.17 shows the experimental performance improvement in the minimum range of

the TXOPT case over the BASE case. The range is computed by scaling ToF by half the

speed of sound as given by Equation 1.1. The minimum range is the range corresponding to

the time instant when the decaying tail goes below a threshold as shown in Figure 4.14. The

minimum range improves by an average of 32% with TXOPT when compared to BASE.

4.8 Summary and Conclusion

In this chapter, time-optimal control principles are applied to design the excitation signals

of an FUT to minimize the residual vibrations. The control problem formulation requires

the current through the oscillatory branch to reach a specified level. Two numerical solvers

– collocation and multiple shooting are developed, and numerical solutions to the control

problem are determined. Although the solution generation process requires a PC, the PWM

waveform synthesis algorithm allows the computed excitations to be translated into a list of

counter values for application using the PWM peripherals found in many low-cost MCUs.
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Figure 4.15: Experiment 2: Echo detection with the optimal excitation signal demonstrating
minimum range enhancement. One reflector at 15 cm. (BASE [—], and TXOPT scheme
[—]).

Figure 4.16: Experiment 3: Range resolution enhancement with the optimal excitation
signal. Two reflectors in the scene at 35 cm and 38 cm. (BASE [—], and TXOPT scheme
[—]).
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Figure 4.17: Experimental minimum range improvement of TXOPT [—] over BASE [—].
Target current I0 for u∗T is set to the peak current value obtained with BASE.

The advantages of applying optimal excitations were demonstrated through simulations and

experiments. The reduction in the decay time allows the detection of objects located near

the FUT. The work presented in this chapter resulted in the publication [53].
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CHAPTER 5

TIME OPTIMAL ENHANCEMENTS FOR RECEIVING FLEXURAL

ULTRASONIC TRANSDUCERS

5.1 Introduction

In Chapter 4 the focus was on reducing the residual vibrations through time-optimal

control for a transmitting transducer (TX-FUT). The designed optimal excitation (TXOPT)

accelerated the damping of the TX-FUT. Consequently, the length of the blind zone reduced,

improving the sensing system’s minimum range and range resolution. This chapter extends

the results developed in the previous chapter by studying the influence of an incoming pres-

sure wave on a receiving transducer (RX-FUT), which is also a dynamic system. Figure 5.1

clarifies the focus of this chapter. Through time-optimal control principles, this chapter

develops a solution to synthesize excitations uT for the TX-FUT to cancel the dynamics of

the RX-FUT so that yR has a sharp rise to the peak followed by a sharp fall to the noise

floor level. As the range is a scaled version of the time axis, by Equation E.4, echoes at

the RX-FUT with shorter pulse widths yield improvements in the range resolution of the

sensing system.

The problem formulation achieves the temporal width reductions while maintaining

the peak amplitude of the echoes. The approach applies to both monostatic and bistatic

sensing configurations, and the system under study results in a high model order (6th order).

Numerical solution methods developed in Chapter 4 produce the excitation profile for the

TX-FUT. The chapter also compares the two competing problem formulations studied in

this research (TXOPT and RXOPT) and the impact on the minimum range and the range

resolution. The experiments demonstrate improvements in the sensor’s performance metrics

while illustrating the tradeoffs.
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Figure 5.1: Comparison of echoes at RX-FUT. Reduced pulse width of echoes (yR) improves
the range resolution of the sensing solution. Peak echo amplitude at RX-FUT is maintained.

5.2 System Physics

The system under study consists of a dedicated transmitting device fed by a transformer

(TX-FUT) and a dedicated receiving device (RX-FUT). Figure 3.9 shows the electrical

equivalent circuit for a transformer-fed transducer, and the corresponding state-space repre-

sentation is given by Equation 3.7. During reception, Figure 3.4 describes the equivalent

circuit of the RX-FUT with the state-space representation given by Equation 3.2. Figure 1.1

illustrates the pulse-echo mode of operation, which can be modeled as a linear process. By

the pressure↔ voltage analogy, the pressure wave pT and pR are proportional to the voltages

vT and uR respectively. Section 3.2 discusses how pT is also proportional to the current yT

flowing in the oscillatory branch of the FUT. Therefore, the pressure wave received by the

RX-FUT uR(t) may be modeled as a scaled and time-shifted copy of the emitted pressure

wave yT (t) and can be written as

uR(t) = αyT (t− τ) (5.1)
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where α is a scale factor that accounts for the propagation losses due to the reflector’s

location, shape, and material properties. On the other hand, τ encodes the round-trip travel

distance of the pressure waves. The input uR to the RX-FUT cannot be determined in

advance as both α and τ are unknown. The reflector’s characteristics are also unknown.

Note that the transducer experiences electrical↔ mechanical↔ acoustic conversion losses

as discussed in Section 3.5.

Modeling simplifications are possible by setting τ to a constant, implying that the

pressure waves travel a fixed distance between the transmitting and the receiving devices.

One good option is to set τ = 0. As the α parameter encodes the reflective properties of the

scatterer, one choice is to set α = 1, implying a lossless reflection. Section 3.2 describes

how the current x1 through the oscillatory branch of the transmitter model represents the

emitted pressure wave. Therefore, uR = yT = x1. Since two identical transducers from the

same batch are used, one to transmit and one to receive pressure waves, the parameter values

are assumed to be the same. The combined state-space model of the transmit-receive system

is a 6th order dynamic system – 4th order dynamics describe the transformer-fed transmitter,

and 2nd order dynamics describe the receiver. The state variables for the transmitter system

are [x1, . . . , x4] and given by Equation 3.7. Let x5 and x6 be the new state variables for the

receiver system given by Equation 3.2. With reference to Figure 3.4, x5 models the voltage

across the capacitor Cp, and x6 = ẋ5 models a scaled version of the current through the

capacitor Cp. In the state-space representation, the A matrix has the dimension 6× 6, and

the B matrix has the dimension 6× 1. The (i, j)th entry of the sparse matrices defining the
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Figure 5.2: Illustration of the receiver echo shape optimization problem. x5 represents the
voltage at the receiver across the capacitor Cp.

combined TX-RX system is given by

a11 =
−Rs

Ls

, a12 =
−1
Ls

, a13 =
1

Ls

, a21 =
1

Cs

,

a31 =
−1
Cp

, a33 =
−1

n2RsrcCp

, a34 =
−1
nCp

, a43 =
1

nLm

,

a56 = 1, a61 =
α

LrCp

, a65 =
−(Cs + Cp)

LsCsCp

, a66 =
−Rs

Ls

,

and b31 =
1

nRsrcCp

(5.2)

5.3 Receive Optimization Problem

Figure 5.2 motivates the optimization problem. The echo takes a time tr to rise to a

voltage level of V0 from equilibrium conditions, after which it decays back to the noise floor

in time td. As shown by Figure 5.1, reducing the total time duration of the echo, i.e. tr + td,

is equivalent to improving the range resolution characteristics of the sensor by Equation E.4.

Similar to Section 4.2, a two subproblem optimization setup is preferred, solved in sequence.

In the first subproblem, the rise time is minimized, and in the second subproblem, the decay

time is minimized.

The input uT to the transducer is constrained to a maximum rail voltage of V . The peak

level of the echo is V0 and introduced into the formulation through an inequality constraint.
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The state variables for the decay time minimization problem are initialized with the values

of the state variables at the end of the rise time minimization problem. Additionally, let ϵ be

the noise floor level. The two subproblems for the receive optimization problem RXOPT

are given by

Subproblem 1: Rise time minimization of the echo

minimize tr

subject to ẋ = Ax+BuT

|uT | ≤ V

x(0) = 0

|x5(tr)| ≥ V0

(5.3)

Subproblem 2: Decay time minimization of the echo

minimize td

subject to ẋ = Ax+BuT

|uT | ≤ V

x(0) = x(tr)

|x(td)| ≤ ϵ

(5.4)

The numerical techniques orthogonal collocation and multiple shooting discussed in

Section 4.4 are employed to determine the optimal solution to each subproblem. As the

state variables in the system differ by several orders of magnitude, and the time axis is

on the order of milliseconds, scaling discussed in Section 4.3 is performed to improve the

numerical convergence. Just as before, the numerically synthesized excitation signal uT is

applied to the TX-FUT in an open loop. Also, the optimality and constraint tolerances of

the solver are set to 10−6.
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5.4 Simulation Results

The system is simulated with the model parameters listed in Table 3.2. The parameter

values are common to both the simulations and the experiments. The TX-FUT and the RX-

FUT are identical copies from the same batch. Although the resistance of the transducer’s

oscillatory branch is expected to be slightly different during reception and transmission

operations, they are assumed to be equal due to reciprocity. Moreover, the estimation of the

receiver’s resistance requires sophisticated instrumentation. The simulation study considers

three cases:

1. Baseline Excitation Signal (BASE): Applies a voltage excitation uT at the TX-FUT

with ne = 3 given by Equation 3.8 at the resonant frequency f .

2. Time Optimal Transmit Excitation Signal (TXOPT): Applies the voltage excitation

u∗T at the TX-FUT synthesized through the numerical solution for the formulations

given by Equation 4.1 and Equation 4.2. I0 is set equal to the peak transmit current at

the TX-FUT (state variable x1) when BASE is applied.

3. Time Optimal Receive Excitation Signal (RXOPT): Applies the voltage excitation

u∗T at the TX-FUT synthesized through the numerical solution for the formulations

given by Equation 5.3 and Equation 5.4. V0 is set equal to the peak echo voltage at

the RX-FUT (state variable x5) when BASE is applied.

Figure 5.3 – Figure 5.5 shows the excitation input uT applied to the TX-FUT, the state

variable x1 representing the transmitted pressure, and the state variable x5 representing the

echo voltage generated at RX-FUT with each excitation scheme. The total time taken by the

transmitted pressure and the received echo reveals important performance parameters of the

ultrasonic sensing system, such as the minimum range and the range resolution. The metrics
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to compare the three schemes are given by

tTX = min(τ) where {τ : |x1(τ)| ≤ ϵTX} and

tRX = min(τ) where {τ : |x5(τ)| ≤ ϵRX}
(5.5)

where tTX and tRX determine the total transmission and reception durations, ϵTX and ϵRX

are threshold values above zero indicative of the equilibrium levels of the system. The two

quantities provide the total time to rise to a peak value and decay back to equilibrium condi-

tions. The metric tTX characterizes the minimum range, and the metric tRX characterizes

the range resolution of the system. A smaller tTX reduces the length of the blind zone as

illustrated by Figure 1.1 and allows reflectors to be closer to the sensor system. A smaller

tRX implies a smaller separation between two objects as clarified by Figure 5.1. The values

for ϵTX and ϵRX are set to 10% of the peak value of x1 and x5 respectively. This provides

a reasonable threshold level to estimate the timing metrics and study the relative system

performance with different excitation schemes.

In BASE, a short excitation is applied to the TX-FUT, which consists of ne = 3 cycles at

the resonant frequency as shown in Figure 5.3a. The resulting signal yT at the TX-FUT and

the echo yR generated at the RX-FUT have an extended decaying tail as shown in Figure 5.4a

and Figure 5.5a. Both minimum range and range resolution of the system degrades due to a

large tTX and tRX value.

For the RXOPT excitation scheme, the numerical results are generated through the

solution of Equation 5.3 and Equation 5.4. The peak echo voltage V0 obtained from the state

variable x5 of RX-FUT has the same amplitude when compared to the BASE excitation

scheme. Figure 5.3c shows the excitation input to the TX-FUT. It is a bang-bang signal,

switching between the rail limits, which is characteristic of linear time-invariant systems

[52]. Compared to the BASE excitation scheme, the RXOPT scheme lasts for a substantially

longer duration. Figure 5.4c shows the pressure wave (current waveform x1) emitted by

the TX-FUT with the RXOPT scheme, and Figure 5.5c shows the corresponding voltage at
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the RX-FUT. The current in the oscillatory branch shows a sequence of two pressure bursts

emitted by the TX-FUT. The first burst is responsible for building up the voltage signal at

the RX-FUT to the desired voltage level V0, while the second burst causes the voltage signal

in the RX-FUT to decay back to equilibrium conditions. The echo voltage signal given by

x5 shows a sharp rise to the peak followed by a sharp drop to equilibrium levels. The width

of the echo has been reduced substantially by about 68% when compared with BASE, which

results in a corresponding improvement in the range resolution of the system with RXOPT.

It is interesting to note that the peak transmit pressure level with the RXOPT scheme is

higher compared to the BASE scheme due to the additional excitation cycles. In the echo,

small levels of residual vibrations with an amplitude less than ϵRX exist and are in the noise

floor regime. Another interesting aspect is the coupled nature of the problem; uT is applied

to the TX-FUT to launch a pressure wave pT (signal yT ) that interacts with the dynamics of

the RX-FUT to bring improvements to yR. With RXOPT, both the transmitted pressure and

the received echo transition to equilibrium conditions immediately after the excitation input

ends.

The resulting excitation uT with the TXOPT scheme is shown in Figure 5.3b, where the

peak current I0 is the same as that of the BASE excitation scheme. The transmitted pressure

wave has a sharp rise to the peak amplitude level, followed by a sharp fall to equilibrium

levels. With the TXOPT scheme tTX is smaller compared to both the BASE and the RXOPT

schemes. This aspect improves the minimum range of the ultrasonic sensing system as the

length of the blind zone reduces. On the other hand, the echo waveform of the RX-FUT

has an amplitude reduction of about 52% compared to the BASE and the RXOPT schemes.

Also, the tRX for the echo is about 1.6 times larger than the RXOPT scheme but is about

19% smaller than BASE. The range resolution improves even with the TXOPT scheme, but

the improvement comes at the expense of the peak echo amplitude.

In summary, the RXOPT scheme provides the best improvement in the range resolution

of the system, with a marginal improvement in the minimum range of the system. On the
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other hand, the TXOPT scheme provides the best improvement in the minimum range of the

system and marginal improvement in the range resolution of the system.

5.5 Experimental Results

The experiments use two identical 58.5 kHz narrowband Murata MA58MF14-7N FUTs

located side-by-side as shown in Figure 1.1 with a separation of 3 cm between the TX-FUT

and the RX-FUT. Note that the FUTs are capable of monostatic operation, i.e., the same

device can be used to both transmit and receive pressure waves. The voltages appearing at

the terminals of both FUTs pass through the receive signal chain described in Appendix C.

The dedicated receive signal paths use a gain of 1170 V/V to study the effect of the three

excitation schemes. The TX-FUT is also connected to the transmitter hardware circuit as

shown in Figure 3.12, allowing the excitation-imposed decay characteristics to be studied.

The RX-FUT is only connected to the receive signal chain to comply with the model given

by Equation 5.2. The PWM synthesis procedure described in Algorithm 1 translates the

generated excitation signals into PWM counter values for experimental verification.

The experimental results are shown in Figure 5.6 – Figure 5.8 and compare the per-

formance of the three excitation schemes discussed in Figure 5.3. The plots show the

measurements after removing the bias (2047 ADC counts for a 12-bit ADC). Figure 5.6

shows the signal capture at the TX-FUT and is used to compare the minimum range for

monostatic systems, the main focus of Chapter 4. The reduction in the total transmission

time is determined by the time instant when the envelope goes below the threshold (shown by

the dashed line in Figure 5.6). For a threshold at about 10% of the maximum signal level, the

envelope decays about 0.34 milliseconds earlier with the TXOPT scheme when compared

to the BASE scheme, improving the minimum range. With the RXOPT excitation scheme,

there is a marginal improvement when compared to the BASE excitation scheme because,

as shown in the simulations, the peak transmit pressure is higher in RXOPT resulting in a

longer decay. The TXOPT excitation gives the best minimum range. For bistatic systems,
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(a) BASE excitation for ne = 3. Results in peak transmit current I0 = 4.56 mA and peak echo
voltage V0 = 2.74 mV.

(b) TXOPT excitation signal. Results in peak transmit current I0 = 4.56 mA.

(c) RXOPT excitation signal. Results in peak echo voltage V0 = 2.74 mV.

Figure 5.3: Voltage excitation uT applied to the TX-FUT.
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(a) BASE excitation. tTX = 0.56 ms. Peak transmit current = 4.56 mA.

(b) TXOPT excitation. tTX = 0.089 ms. Peak transmit current = 4.56 mA. Results in the shortest
transmit duration.

(c) RXOPT excitation. tTX = 0.242 ms. Peak transmit current = 6.53 mA. Results in a higher peak
amplitude w.r.t BASE. Second emission burst accelerates damping of RX-FUT.

Figure 5.4: The current x1 of the TX-FUT represents the emission pressure wave with each
excitation scheme.
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(a) BASE excitation. tRX = 0.717 ms. Peak echo voltage = 2.74 mV.

(b) TXOPT excitation. tRX = 0.581 ms. Peak echo voltage = 1.29 mV.

(c) RXOPT excitation. tRX = 0.227 ms. Peak echo voltage = 2.74 mV. RXOPT achieves same peak
amplitude w.r.t BASE, but has a much shorter tRX .

Figure 5.5: The voltage x5 at the RX-FUT represents the induced echo with each excitation
scheme.
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Figure 5.6: Experiment 1: Measurements at the TX-FUT. Transmitter decay determines
the minimum range. (BASE [—], TXOPT [—], RXOPT [—], Threshold [- -]). TXOPT
provides the best minimum range.

the minimum range enhancement depends on the separation between the TX-FUT and the

RX-FUT, the receiver’s sensitivity, and the directionality of the devices. Since the separation

between the TX-FUT and the RX-FUT is comparatively large (3 cm), and the RX-FUT also

has a low receive sensitivity, the minimum range improvements with TXOPT excitation

in a bistatic configuration is marginal. However, Figure 7.8 illustrates that for a sensitive

omnidirectional receiver, the TXOPT excitation scheme accelerates the damping in the

receiver reducing the blind zone of the sensing system.

Figure 5.7 and Figure 5.8 show the performance comparisons at the RX-FUT when

the excitations are applied at the TX-FUT. In Figure 5.7 a single reflector is present in

the scene. Horizontal dashed lines indicate the threshold corresponding to each excitation

scheme, while vertical dashed lines indicate the time instants when the signal envelope goes

below the threshold. With the RXOPT excitation, the echoes have a sharp rise to the peak,

followed by a fast decay to the noise floor level when compared with BASE and TXOPT.

For a threshold at 10% of the peak echo amplitude, the width of the echo has been reduced
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Figure 5.7: Experiment 2: Measurements at the RX-FUT. Echoes are received from a single
flat reflector in the scene located 27.5 cm from the sensing system. (BASE [—], TXOPT
[—], RXOPT [—], Echo start [- -]). RXOPT has shortest echo and maintains peak amplitude
when compared to BASE.

Figure 5.8: Experiment 3: Measurements at the RX-FUT. Echoes are received from two
flat reflectors in the scene located at 27.5 and 30.5 cm from the sensing system. (BASE
[—], TXOPT [—], RXOPT [—]). TXOPT and RXOPT improve range resolution when
compared to BASE.
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by about 60% with the RXOPT scheme and by about 16% with the TXOPT scheme when

compared to BASE. But an important difference is that the echo with the RXOPT scheme

has the same peak amplitude when compared to BASE. With the TXOPT scheme, however,

the improvement comes at the expense of a reduction in the peak echo amplitude, which

drops by about 49% when compared to BASE. The amplitude drop of the echo with the

TXOPT scheme is due to a shorter decaying tail of the transmitted pressure wave. For

the RXOPT scheme, the echo shows a faster rise to the peak compared to the BASE and

the TXOPT excitation schemes, demonstrating the minimization of the rise time to peak

for the echo. On the other hand, the TXOPT scheme has a peak occurring about 0.1 ms

earlier compared to BASE, which is because the rise time of the transmitted pressure wave

is minimized in the TXOPT scheme.

Figure 5.8 shows improvements in the range resolution due to the shortening of the

width of the echoes. Two flat reflectors are present in the scene with a 3 cm separation. The

experiments show detection of both reflectors in the case of RXOPT and TXOPT excitation

schemes. On the other hand, with the BASE excitation scheme, the signal capture has an

extended envelope due to the superposition of the echoes from the two reflectors. Therefore,

detecting the echo from the reflector located farthest away from the sensing system poses

challenges when compared to both TXOPT and RXOPT methods.

Note that α = 1 for the simulations and the excitation signal applied to the TX-FUT. In

actual pulse-echo experiments, α << 1. Also, the value of α is unknown and determined by

the experimental conditions. In both experiments shown by Figure 5.7 and Figure 5.8, α is

maintained the same for all the three excitation schemes. The experiments consider a bistatic

mode of operation as the designed excitations are for a receiver connected directly to the

analog receive signal chain. However, the RXOPT methodology applies even to monostatic

systems. For such situations, the transformer’s secondary coil will need to be decoupled

during reception to remove its influence on the receiver’s dynamics. The other option

is to model the transformer’s secondary coil connected to the receiver during reception.
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Additional improvements may be obtained with a more accurate parameter estimation of the

RX-FUT as the transmitter and receiver parameters are assumed to be equal.

5.6 Excitation Signal Sensitivity

This section studies the impact of model parameter variations on key sensor performance

metrics – tTX , aTX , tRX , aRX , where aTX = max (|yT |) and aRX = max (|yR|). The

analysis summarizes the sensitivity of the experimental system to simulation-generated

excitation commands with errors in the model parameter values. The excitation signal

(TXOPT or RXOPT scheme) synthesized for the system with a nominal set of parameters

is applied to a system with a slightly different set of model parameters to study the effect

on the metrics. Equation 5.2 gives the model for synthesizing the RXOPT excitation

signals, which is an extended version of the model for synthesizing the TXOPT excitation

signal given by Equation 3.7. Hence analysis with the RXOPT scheme is sufficient to

understand the behavior with the TXOPT scheme. Recall from Subsection 3.3.1, that

the parameters of the ultrasonic sensing system can be organized into three blocks – the

parameters of the source and the transformer driver circuit (Rsrc, Lm), the parameters of

the TX-FUT (Rt, Lt, Ct, Ctp), and the parameters of the RX-FUT (Rr, Lr, Cr, Crp).

Note that parameter variations of the TX-FUT influence both the TX-FUT and the RX-FUT,

whereas parameter variations of the RX-FUT do not influence the TX-FUT. The study

does not consider the transformer turns ratio (n) as the parameter scales the metrics under

consideration.

Figure 5.9 – Figure 5.11 plot the variation of the four sensor performance metrics when

subjected to model parameter variations. It is useful to consider normalized units when

studying the effects due to parameter variations. The nominal system is the system for

which the RXOPT excitation is synthesized, corresponding to no parameter variations, and

the plots show the amount of variation observed with each metric when compared to the

nominal system. Recall that tTX provides a measure of the time to reach equilibrium after
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excitation of the TX-FUT, determining the minimum range of the system. A reduction of

tTX is preferable as it improves the minimum range of the system. The aTX provides a

measure of the peak transmit amplitude. It is preferable to have an increase of aTX as it

improves the maximum range while also reducing the amplification requirements of the

receiver’s analog signal chain. The tRX assesses the range resolution of the system, and as

per Appendix E, a smaller tRX improves the range resolution of the sensor system. Lastly,

aRX provides a measure of the amplitude at the RX-FUT. An increase in aRX is preferable

and provides an improved SNR of the echo at the RX-FUT. In the simulation-based analysis,

the X-Axis of the graphs determines the level of parameter variations, while the Y-Axis

determines the variation of the metric under consideration. Note that the scale values are

different for each plot as each parameter affects the system differently.

Source and Transformer Driver Circuit: Figure 5.9 shows the corresponding effects.

• Rsrc: There is a marginal impact on the system’s performance metrics due to the

variation of Rsrc. For observable effects, Rsrc needs to be modified by a large

magnitude. At higher values of Rsrc, the losses at Rsrc increase and reduce the power

delivered to the TX-FUT. Therefore, aTX and tTX both reduce as the magnitude of

the transmitted pressure wave decreases. The metrics aRX and tRX reduce because of

dependence on the transmitted pressure wave. Moreover, the Rsrc parameter does not

alter the oscillatory characteristics of the TX-FUT.

• Lm: Variation of Lm has a limited impact on the system’s performance metrics.

Higher values of Lm reduce the current drawn from the source during excitation

intervals, allowing a slightly more efficient power delivery to the FUT.

Transmitting FUT: Figure 5.10 shows the corresponding effects.

• Rt: Increasing the value of Rt increases the damping in the oscillatory branch of the

TX-FUT. Also, since the voltage across Rt represents the magnitude of the emitted

pressure wave, a higher Rt results in a higher aTX value. Because of increased
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Figure 5.9: Variations of the source and the transformer driver circuit’s model parameters:
Rsrc, Lm.
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Figure 5.10: Variations of the TX-FUT’s model parameters: Rt, Lt, Ct, Ctp. ω and ζ are
the resonant frequency and the damping ratio of the TX-FUT.
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damping, the tTX metric is only marginally affected at higher aTX values. Both aRX

and tRX are higher as the emitted pressure increases as Rt increases.

• Lt and Ct: Since Lt and Ct determine the resonant frequency of the TX-FUT, it is

helpful to study them together. Any variations in either parameter modify the resonant

frequency of the TX-FUT, in which case, the RX-FUT’s resonant frequency also

differs from the TX-FUT’s resonant frequency creating a mismatch. A small 5%

change can result in the tTX value changing by more than 25%. Hence, it is essential

to estimate the Lt and Ct parameters accurately. With an increased tTX , the tRX

metric also increases because of an increased length of the transmitted pressure wave.

The value of aTX shows non-monotonic variations at higher parameter discrepancies

because multiple pulse bursts exist. Consequently, the trends for aRX are also non-

monotonic as it depends on the emitted pressure wave.

• Ctp: Changes to the value of Ctp do not affect any of the sensor’s performance metrics

because Ctp represents the bulk capacitance of the piezoelectric material and is not

responsible for influencing the oscillatory characteristics of the FUT.

• Rt, Lt, Ct vary with fixed ω and ζ: In this special case, all the parameters of the

oscillatory branch vary, but the resonant frequency and the damping ratio are constant.

Variation in aTX occurs because Rt changes when Lt and Ct vary in order to maintain

a constant damping ratio of the oscillatory branch. Higher values of Rt result in

higher values of both aTX and aRX . Because of increased damping, the tTX metric

varies marginally. The tRX metric also has marginal variations because the oscillatory

branch is excited at the same resonant frequency and preserves the envelope of the

emitted pressure wave, which is not the case when only ζ or ω change.

Receiving FUT: Figure 5.11 shows the corresponding effects. Since changes to the RX-

FUT’s parameters do not affect the TX-FUT’s metrics aTX and tTX , they are not displayed

in the plots.
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Figure 5.11: Variations of the RX-FUT’s model parameters: Rr, Lr, Cr, Crp.

• Rr: By circuit analysis of Figure 3.4, an increase in Rr results in a higher value of

aRX and tRX . The increased damping in the RX-FUT prevents a large increase of the

tRX value when aRX increases.

• Lr, Cr: Similar to the TX-FUT, changes to either Lr or Cr alters the resonant

frequency of the RX-FUT; any small changes to either parameter result in large

variations of the tRX value. The aRX metric has non-monotonic changes because

it is possible to induce echoes consisting of multiple bursts at the RX-FUT when a

frequency mismatch occurs. Such behavior is not preferable as the range resolution

degrades.

• Crp: From Figure 3.4, smaller values of Crp are preferable because the Crp capacitor

charges more quickly, presenting larger voltages at the output of the RX-FUT. The

tRX value has a marginal impact because changes to Crp do not alter the resonant

characteristics of the RX-FUT.

5.7 Summary and Conclusion

In this chapter, time-optimal control principles are applied to design the excitation

signals of a TX-FUT to influence the damping of an RX-FUT. The RXOPT control problem
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minimizes the width of the voltage yR induced at the RX-FUT by the incoming echoes.

The chapter also compares the RXOPT scheme with the TXOPT scheme of Chapter 4.

Experiments show a reduction in the width of the induced voltage by about 60% with the

RXOPT scheme and by about 16% with the TXOPT scheme when compared with the BASE

scheme. The RXOPT scheme maintains the peak amplitude of the echoes at the receiver,

whereas the TXOPT scheme has a 49% drop in the peak amplitude of the echo voltage. The

RXOPT scheme provides the best improvement in the range resolution followed by the

TXOPT scheme when compared with BASE. For the minimum range, the TXOPT scheme

provides the best improvement, while the RXOPT scheme provides a marginal improvement

over BASE. A high-order transformer fed FUT along with the receiver’s dynamics is

considered. The solution to the 6th order control problem is non-trivial and determined

through numerical techniques presented in Section 4.4. The sensitivity of the excitation

signal to variations in the system parameters is summarized. The research develops a

math-based solution and emphasizes the tradeoffs between the three excitation schemes. For

comparison, recent research presented in [8] discusses an undisclosed sub-optimal manual

tuning procedure.
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CHAPTER 6

MODEL FREE ENHANCEMENTS FOR FLEXURAL ULTRASONIC

TRANSDUCERS

6.1 Introduction

This chapter presents two methods to improve the performance of ultrasonic transducers

actuated by a pulse timing signal uT consisting of an integer number of excitation cycles

followed by an integer number of out-of-phase damping cycles. Note that the PWM

peripheral with arbitrary duty cycles is not essential to realize this simplified design concept.

Figure 2.1 shows the excitation response when a single FUT is used to both transmit

pressure waves and receive echoes. As discussed in Section 2.1, the signal yR contains two

components – a pulse induced component (vT ) and an echo-induced component (uR), where

yR = vT + uR. The constrained form of uT is consistent with low-cost implementations.

The first method is a transmitter enhancement; motivated by the time-optimal problem

formulations of Chapter 4, a number of out-of-phase damping cycles are appended to the

desired number of excitation cycles to minimize the settling time of vT without reducing the

peak value of vT . The second method is a receiver enhancement; the echo-induced transducer

voltage uR is isolated from the pulse-imposed transducer voltage vT by subtracting a stored

masking signal from the acquired receiver signal. The proposed methods rely on a simple

learning procedure that does not require a mathematical model of the system or the use of

a nonlinear programming solver, as discussed in Section 4.4. Because this procedure is

executed on an embedded microcontroller, the proposed methods are insensitive to variations

in components or parameters. Experiments demonstrate improvements in minimum range

and range resolution; measurements using one and two reflectors are discussed.

The first method involving out-of-phase damping cycles goes beyond existing literature
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in several ways: an embedded low-cost solution is developed, thereby eliminating the

need for laboratory instrumentation and the reliance on highly specialized vT waveforms;

explicit procedures are given that automatically produce the optimal number of damping

cycles for a desired number of excitation cycles, thereby eliminating the ambiguity arising

from undisclosed manual tuning processes used in existing work; circuit modifications and

component variations are both easily accommodated without any need for microcontroller

reprogramming, due to the model-free self-tuning framework. The second method, which

uses a stored masking signal to estimate the echo-induced voltage via uR = yR − vT , is not

presented in the published literature.

6.2 Proposed Enhancements

In this section, the proposed enhancements are described with a level of detail sufficient

to enable their use by others. It is assumed that the resonant frequency f and hence period

T =
1

f
of the transducer have been determined, e.g. using methods from [54]; embedded

solutions are possible.

6.2.1 Transmitter Enhancement: Damping

Recall from Figure 3.12 that uT (t) is the pulse timing signal generated by the mi-

crocontroller. Consistent with low-cost implementation, uT (t) is constrained to take the

form

uT (t) =


+(−1)i , t ∈ Te

−(−1)i , t ∈ Td

0 , otherwise

(6.1)

where the integer i is determined from

i = ⌊2(t− t0)/T ⌋, (6.2)
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t0 is the time instant at which transmission begins, ⌊·⌋ denotes the floor function, and the

excitation and damping cycle time intervals are given by

Te = [t0, t0 + neT ) (6.3)

Td = [t0 + neT, t0 + (ne + nd)T ) (6.4)

where ne is the integer number of excitation cycles and nd is the integer number of out-

of-phase damping cycles. According to Equation 6.1 – Equation 6.4, the only variables

available to influence vT (t) are ne and nd, implying that the precise shape of vT (t) cannot

be directly manipulated. The maximum range of the sensor is proportional to ne (over the

usable range of ne), and the goal of the proposed transmitter enhancement is to determine

the nd that minimizes the settling time of vT (t) for a given ne.

6.2.2 Receiver Enhancement: Masking

Recall from Figure 3.12 that ỹR(t) is the signal sampled by the microcontroller for

purposes of echo detection and processing. Since ỹR(t) represents yR(t) after passing

through a high-gain bandpass filter, it inherits from yR the decomposition

ỹR(t) = ṽT (t) + ũR(t) (6.5)

where ṽT (t) represents the pulse-imposed component of the measurement and ũR(t) repre-

sents the echo-induced component of the measurement. If no reflectors are in the field of

view, then the signal components {ṽT (t), ũR(t)} = {ỹR(t), 0} will depend on (ne, nd) in

a consistent and predictable way. For any (ne, nd) of interest, it is possible to record ỹR(t)

with no reflectors present during commissioning to obtain an estimate v̂T (t) of ṽT (t) for
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subsequent use, i.e.

v̂T (t) =

 ỹR(t) , t ∈ [t1, t2)

0 , otherwise
(6.6)

where ỹR(t) is measured with no reflectors present, t1 is the first time instant for which the

peaks of ỹR(t) fall below the voltage saturation level, and t2 is the first time instant for which

the peaks of ỹR(t) fall below the voltage noise level. In subsequent experiments involving

reflectors, Equation 6.5 – Equation 6.6 establish that the signal ũR(t) may be estimated

using the measured ỹR(t), the previously stored v̂T (t), and the relationship

ûR(t) =

 0 , t ∈ [0, t1)

ỹR(t)− v̂T (t) , otherwise.
(6.7)

An echo may be reliably detected from ûR(t) beginning at t1, or from ỹR(t) beginning at

t2. The blind zone for reliable echo detection has been reduced because t1 < t2. The signal

v̂T (t) is called a mask, since it potentially hides detectable echoes from nearby reflectors.

The objective of the proposed receiver enhancement is to record the mask v̂T (t) for desired

values of (ne, nd), to improve minimum range via Equation 6.7.

6.2.3 Commissioning Algorithms

The enhancements defined in Subsection 6.2.1 and Subsection 6.2.2 are enabled by a

sensor commissioning procedure that involves pulse-echo experiments conducted with no

reflectors present. In this procedure, transmitter parameters (ne, nd) are inputs and receiver

signal samples y[k] = ỹR(kTs) are outputs, where k is the sampling index and Ts is the

sampling period. Given an initial index K, a window length L and a threshold value Y , the
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signal y[k] is characterized by a settling index ks, defined as the smallest value of k such that

|y[i]| ≤ Y, i ∈ [k, k + L), k ≥ K (6.8)

The commissioning procedure relies on two algorithms. The first algorithm systematizes the

evaluation of settling index ks by finding the smallest k satisfying Equation 6.8, whereas the

second algorithm uses settling index values to obtain the information needed to implement

the proposed enhancements. An auxiliary result of the second algorithm is a set of metrics

quantifying achievable improvements in sensor performance.

Algorithm 2 takes a receiver signal y[k], which is generated by the transmitter using

Equation 6.1 – Equation 6.4 with (ne, nd), and extracts the settling index ks of that signal.

Three parameters provide some flexibility in the specification of ks: the initial index K

should be such that KTs ≥ t0 to limit the search to the active transmitter interval; the

window length L should be such that LTs ≥ T to ensure at least one cycle of oscillation

is accounted for; and threshold level Y should be set to either a large value, say Ylarge

corresponding to saturation level, or a small value, say Ysmall corresponding to noise level,

depending on use case. Line 4 requires that signal magnitude be below the threshold for all

samples in the window. The left window edge defines the settling index ks, implying that

y[ks] is the first sample of y[k] to settle below threshold level Y .

Algorithm 3 determines and stores the information needed to implement the transmitter

enhancement (damping) and the receiver enhancement (masking); i.e. the optimal (ne, nd)

pairs subject to transmitter operating constraints Equation 6.1 – Equation 6.4, and the

corresponding signals v̂T [k] defined in Equation 6.6. For each ne value of interest, a range

of nd values results in a sequence of no-reflector experiments and resulting receiver signals

y[k]. Each receiver signal is evaluated to determine two settling indexes, k1 and k2, using

Algorithm 2; the first uses a saturation-level threshold Y = Ylarge to determine when y[k]

settles below saturation, whereas the second uses a noise-level threshold Y = Ysmall to
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Algorithm 2: Settling Index Evaluation for (ne, nd)
Input:

- signal y[k] from (ne, nd), parameters K, L, Y
Outputs:

- settling index ks
1 Initialize q ← 1
2 Initialize k ← K
3 while q = 1 do
4 if |y[i]| ≤ Y for all i ∈ [k, k + L) then
5 ks ← k
6 q ← 0

7 else
8 k ← k + 1
9 end

10 end
11 return ks

determine when y[k] settles below noise. For each ne, line 1 defines the range of nd under

consideration, and line 7 selects from this range the value n∗
d that provides minimum settling

index k1 or k2. The search range nd ∈ [0, ne] is consistent with the need to balance the

energy contributions of ne (positive) and nd (negative). The values obtained for n∗
d by

minimizing either k1 or k2 will be the same, for appropriate choices of (K, L, Y ). Line 8

stores the corresponding mask signal v̂T [k], which is nonzero over k ∈ [k1, k2], for use in

echo detection. Line 9 stores the corresponding values (k1, k2) as performance metrics.

The settling indexes provided by Algorithm 2 and Algorithm 3 quantify the performance

improvements enabled by the proposed transmitter enhancement (damping) and the proposed

receiver enhancement (masking). Algorithm 2 returns a settling index ks that functionally

depends on five parameters:

ks = f(ne, nd, K, L, Y ) (6.9)

Algorithm 3 explicitly returns settling indexes k1 and k2, but it also implicitly returns another
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Algorithm 3: Learning Procedure for Damping and Masking
Input:

- parameter range ne ∈ [ne,min, ne,max]
Outputs:

- (ne, n
∗
d) pairs and associated v̂T [k] masks

1 for ne ← ne,min to ne,max do
2 for nd ← 0 to ne do
3 acquire y[k] using (ne, nd)
4 evaluate k1 using Algorithm 2 with Ylarge
5 evaluate k2 using Algorithm 2 with Ysmall

6 end
7 determine n∗

d as the nd that minimizes k1 or k2
8 store v̂T [k] mask corresponding to (ne, n

∗
d)

9 store (k1, k2) metrics corresponding to (ne, n
∗
d)

10 end
11 return (ne, n

∗
d) and v̂T [k] for ne ∈ [ne,min, ne,max]

settling index k3, and all of these settling indexes are special cases of Equation 6.9 via

k1 = f(ne, n
∗
d, K, L, Ylarge)

k2 = f(ne, n
∗
d, K, L, Ysmall)

k3 = f(ne, 0, K, L, Ysmall)

with k0 < k1 < k2 < k3 where transmitter operation begins at t0 = k0Ts. An echo may be

reliably detected beginning at t3 = k3Ts for the baseline system, at t2 = k2Ts with damping

enabled, or at t1 = k1Ts with damping and masking enabled.

6.3 Experimental Results

Figure 3.12 shows the hardware circuit for experimental verification. The significant

parameters of the experimental setup are summarized in Table 3.2. The Table 6.1 provides

the parameters for executing the model-free algorithms. With just 4.25 samples per cycle

and 12-bit resolution, the implementation intentionally emphasizes low cost applications; the

relatively low sampling frequency is visually evident in the data plots that follow. Threshold
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Table 6.1: Model Free Algorithm Parameters

Parameter Symbol Value
Initial Index k0, K 30

Window Length L 10
Saturation Threshold Ylarge 2030

Noise Threshold Ysmall 204

values are listed without units, since sample values y[k] are interpreted as signed integers

between −2048 and 2047 (even though signal ỹR(t) is a voltage). All experiments use the

same transmitter source voltage, the same receiver passband gain, and (when present) the

same flat wooden reflectors.

The commissioning procedure defined in Algorithm 3 was applied to the experimental

system with no reflectors present, using the parameters listed in Table 6.1. The window

length L corresponds to 2.35 cycles, and the chosen threshold values Ylarge and Ysmall

result in identical (ne, n
∗
d) pairs using either k1 or k2 minimization in line 7; moreover,

the resulting (ne, n
∗
d) pairs remain the same for all neighboring parameter choices. The

performance metrics obtained from Algorithm 3 are summarized in Table 6.2. The values

listed in the k3, k2, and k1 columns represent the earliest sampling indexes for which an

echo may be reliably detected, for the cases of baseline, damping alone, and damping with

masking, respectively. Minimum range is

rmin =
1

2
vsound(ki − k0)Ts, i ∈ {1, 2, 3} (6.10)

For ne = 5, Equation 6.10 yields rmin ∈ {11.1, 14.6, 18.8} cm. Using Equation 6.10,

the final two columns show the extent to which the proposed transmitter and receiver

enhancements improve minimum range over the baseline system for each ne; damping alone

yields measured rmin improvements of 18 – 28%, whereas damping with masking yields

measured rmin improvements of 31 – 44%.

In the sequence of plots presented below, the focus is on a comparison of sensing system
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Table 6.2: Measurements of Performance Metrics

ne n∗
d k1 k2 k3

k3 − k1
k3 − k0

k3 − k2
k3 − k0

3 2 180 237 289 0.42 0.20
4 3 199 248 302 0.38 0.20
5 3 193 245 306 0.41 0.22
6 4 221 261 315 0.33 0.19
7 4 192 239 319 0.44 0.28
8 4 219 263 332 0.37 0.23
9 5 242 282 336 0.31 0.18

10 5 237 273 340 0.33 0.22

performance for two particular transmitter parameter pairs. The choice (ne, nd) = (5, 0)

leads to baseline performance (BASE), whereas the choice (ne, nd) = (5, 3) leads to

enhanced performance. Figure 6.1 shows the pulse timing signal uT (t) for the (ne, nd) pairs

of interest, generated by Equation 6.1, where transmitter operation begins at 0.12 ms.

Figure 6.2 reveals the effect of damping alone, using measured y[k] versus kTs plots;

Figure 6.2a corresponds to the no-reflector commissioning experiments, whereas Figure 6.2b

corresponds to experiments with a reflector located 15 cm from the transducer (round-trip

time of 0.882 ms). The transmitter begins at 0.12 ms, so the echo arrives around 1 ms. When

the baseline parameters (ne, nd) = (5, 0) are used, the echo cannot be detected. On the

other hand, when the preferred parameters (ne, nd) = (5, 3) are used, the echo is clearly

detectable in Figure 6.2b. Therefore, damping alone has a favorable impact on the sensor’s

minimum range.

Figure 6.3 – Figure 6.4 reveals the effect of damping and masking together, using

measured y[k] versus kTs plots; Figure 6.3 corresponds to the no-reflector commissioning

experiments, whereas Figure 6.4 corresponds to experiments with a reflector located 11.1

cm from the transducer (round-trip time of 0.65 ms). The transmitter begins at 0.12 ms, so

the echo arrives around 0.77 ms.

The preferred parameters (ne, nd) = (5, 3) are used in Figure 6.3 – Figure 6.4, but
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(a) Signal uT (t) using (ne, nd) = (5, 0).

(b) Signal uT (t) using (ne, nd) = (5, 3).

Figure 6.1: Pulse timing signal without and with damping.
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(a) No-reflector commissioning signal for damping.

(b) One reflector at 15 cm. Echo detected from ỹR for (ne, nd) = (5, 3).

Figure 6.2: Plots reveal the benefits of damping. Signal ỹR for (ne, nd) = (5, 0) [—].
Signal ỹR for (ne, nd) = (5, 3) [—].
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(a) (ne, nd) = (5, 3), commissioning signal ỹR.

(b) (ne, nd) = (5, 3), commissioning signal v̂T .

Figure 6.3: No-reflector commissioning experiment for masking.

the echo cannot be detected from y[k] in Figure 6.4a. The mask signal v̂T [k] shown in

Figure 6.3b is used to compute the echo signal ûR[k] shown in Figure 6.4b which clearly

reveals the otherwise hidden echo. Therefore, masking in combination with damping further

improves the sensor’s minimum range.

Figure 6.5 reveals the influence of damping on echo duration. In Figure 6.5a there is

one reflector at 38 cm, whereas in Figure 6.5b there are two reflectors at 35 cm and 38 cm

(round-trip separation time of 0.176 ms). In Figure 6.5, comparing nd = 0 and nd = 3, the

echo duration has been reduced by damping, offering a greater possibility for detecting the

presence of two closely spaced reflectors. From Appendix E, the range resolution can be
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(a) (ne, nd) = (5, 3), echo not detected from ỹR.

(b) (ne, nd) = (5, 3), echo detected from ûR.

Figure 6.4: Plots reveal the benefits of masking with one reflector at 11.1 cm.
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quantified from measured echoes according to

∆rmin = 1
4
vsound (kR − kL)Ts (6.11)

where kR and kL are the right and left indexes that determine echo duration, using magnitude

bound Ysmall = 100 and window length L, as shown in Figure 6.5. Values of ∆rmin from

Equation 6.11 are 3.94 cm for Figure 6.5a and 2.35 cm for Figure 6.5b, so damping provides

a 41% improvement. Reflector separation in Figure 6.5b is 3 cm, so nd = 0 will fail

but nd = 3 will succeed. These predictions are correct, since the measurement of y[k] in

Figure 6.5b with nd = 0 shows a single-peak envelope, whereas the measurement of y[k]

with nd = 3 shows a two-peak envelope.

6.3.1 Comparison of Damping with TXOPT

Figure 6.6 and Figure 6.7 compare the damping obtained with the three schemes – BASE,

the TXOPT scheme of Chapter 4, and the model-free damping approach of this chapter.

The BASE and the model-free damping methods apply the excitation (ne, nd) = (5, 0) and

(ne, nd) = (5, 3) respectively as shown in Figure 6.1, and the TXOPT excitation scheme

applies the excitation signal shown in Figure 4.7. The TXOPT scheme has the best decay

characteristics, which is closely followed by the model-free damping scheme as shown

in Figure 6.6a. The TXOPT excitation applies fractional width pulses and provides the

additional enhancement in the decay characteristics when compared with the model-free

damping scheme which applies an integral number of full-width pulses. With a single

reflector at 15 cm in front of the sensor system, the TXOPT and the model-free schemes

achieve comparable performance as shown by Figure 6.6b. Note that the TXOPT scheme’s

envelope has slightly faster rise and decay characteristics compared to the model-free

scheme. The peak amplitude with the TXOPT scheme is marginally higher compared to the

model-free damping scheme.
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(a) One reflector at 38 cm. (ne, nd) = (5, 0), echo has longer duration.
(ne, nd) = (5, 3), echo has shorter duration. Horizontal dashed lines are at ±100.

(b) Two reflectors at 35 cm and 38 cm. (ne, nd) = (5, 0), envelope shows one peak.
(ne, nd) = (5, 3), envelope shows two peaks.

Figure 6.5: Interval between vertical dashed lines is (kR − kL)Ts. Echo duration is reduced
by damping. (ne, nd) = (5, 0) is shown in [—], and (ne, nd) = (5, 3) in [—].
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(a) Residual vibrations and the envelope after exciting the FUT. No reflector in the scene.

(b) Echo detection with a single reflector at 15 cm.

Figure 6.6: Experiment: Plots compare BASE for ne = 5 [—], TXOPT scheme [—], and
the Model-Free damping scheme for (ne, nd) = (5, 3) [—].

Figure 6.7 compares the minimum range with the three schemes under consideration.

The indices (k3) returned by Algorithm 3 for the model-free damping scheme are converted

to range estimates using Equation 1.1. The TXOPT scheme provides the best minimum

range (decay characteristics) with an average improvement of about 32%, whereas the model-

free approach provides an average improvement of about 22%. The model-free damping is

approximately time-optimal and is simpler to implement compared to the TXOPT approach,

which requires a math model of the system, knowledge of system parameter values, and the

use of NLP solvers to determine the numerical solution to an OCP.
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Figure 6.7: Experimental minimum range improvement of the TXOPT [—] and Model-Free
Damping [—] schemes over BASE [—]. Target current I0 for u∗T in the TXOPT scheme is
set to the peak current value obtained with BASE.

6.4 Summary and Conclusion

Two enhancements, referred to as damping and masking, have been developed to avoid

the undesired consequences of residual vibrations in monostatic sensing systems that use

flexural ultrasonic transducers. Out-of-phase damping cycles are applied subsequent to

the excitation cycles during transmitter operation to reduce the time duration of oscillation

without sacrificing the peak amplitude of oscillation. Masking signals that are measured and

stored during commissioning are used to modify the signals obtained during receiver opera-

tion to reveal reflector echoes that would otherwise remain hidden. These two enhancements

improve the sensor’s minimum range and range resolution, as verified by experiments.

The proposed enhancements represent novel contributions that are broadly applicable

and simple to implement. There is no significant restriction on the type of transducer or

circuitry being used, there is no need for a system model or parameter values aside from the
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maximum number of allowed excitation cycles, and the commissioning procedure is fully

defined by two algorithms that can be easily realized using low-resource microcontrollers.

The self-tuning capability resulting from the embedded implementation of these algorithms

automatically provides minimum settling time, subject to the constraints on transmitter

operation adopted here. The work presented in this chapter resulted in the publication of the

journal paper [55].
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CHAPTER 7

3-D ULTRASONIC IMAGING

7.1 Introduction

Previous chapters focused on improving ranging capabilities (the minimum range

and the range resolution) of ultrasonic sensors by controlling the residual vibrations of

an FUT. In the example of Figure 1.1, the objects (1, 2, 3) are located at different radial

distances but also in different directions. The transducer configurations already studied can

estimate only the reflector’s range. This chapter addresses the design of an ultrasonic sensor

utilizing multiple transducers and a beamforming-based processing algorithm to determine

the reflector positions in 3-D space, estimating both the range and the bearing.

The sensor consists of a single narrowband FUT for transmitting pressure waves and a

small number of analog MEMS microphones for receiving the pressure waves. Fewer receiv-

ing elements reduce the overall cost to manufacture the array, the associated computation

cost, and the data storage requirements. The processing algorithm allows data acquisition

to occur at high update rates of up to 45 Hz, comparable to a vision-based system. The

sensor also has a small footprint making it suitable for use in applications that have space

constraints. The chapter describes end-to-end system design aspects such as sensor array

design and analog and digital processing requirements. The processing algorithm is designed

to be executed rapidly on low-cost embedded devices and uses a single pulse-echo trial to

resolve multiple reflectors. Computation cost details specify requirements for dedicated

single-chip solutions. Experiments demonstrate array design and algorithm performance in

a scene consisting of several reflectors.

103



O
X
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Reflector k
(ρk, θk, ϕk)

Sensor
Plane

Figure 7.1: Schematic of the sensor’s workspace. The reflector k is located at the point
(ρk, θk, ϕk), where ρk is the radial distance, ϕk, and θk are the azimuth and polar angles.

7.2 Sensor System

Figure 7.1 clarifies the sensor’s workspace. The elements of the sensor are located in

the YZ plane. The k reflectors are at the spherical coordinate (ρk, θk, ϕk), where ρk is the

radial distance, ϕk, and θk are the azimuth and polar angles measured from the origin of the

array to each reflector. The array’s normal is along the positive X-axis. The designed array

is shown in Figure 7.2 and consists of a single narrowband FUT (Murata MA58MF14-7N)

operating at the resonant frequency (fe) of 58.5 kHz, and an array of wideband MEMS

microphones (Knowles SPV08A0LR5H-1). The FUT is used only for emitting pressure

waves and is driven by the transformer network of Figure 3.12. The pressure wave is

launched by exciting the FUT with an integral number of cycles ne at the resonant frequency

fe given by Equation 3.8 – Equation 3.10. The receiver array consists of M low-cost MEMS

microphones to collect echoes from the scene and are installed on a printed circuit board.

Appendix F provides the schematic of the receiver array and the board layout.

The transmitter and the microphones have a circular aperture, and the Airy function
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Microphone Array

Microphone

Transmitter

Y

Z

Figure 7.2: Ultrasonic sensor. The transmitter and the elements of the microphone array are
located in the YZ plane with the origin situated at the center of the microphone array.

describes the radiation pattern. From [28], it is given by

H(θ) =

J1

(
2π

λ
a sin (θ)

)
(
2π

λ
a sin (θ)

) (7.1)

where J1 is a Bessel function of the first kind, λ is the wavelength, and a is the radius of

the aperture. The radiation pattern functionally depends only on the polar angle (θ) due to

the symmetry of the circular aperture about the azimuth. The distribution of microphone

elements is a design choice. A uniform circular arrangement is preferable because of

symmetry, routing of the circuit traces on the printed circuit board, and suitability for

manually installing sensor elements. Uniform circular arrays also have lower levels of beam

broadening compared to other arrangements as the look direction is varied [28, 56].

Figure 7.3 plots the normalized radiation pattern of the transmitter element, the receiver

element, and the operation of the sensor array using the parameters listed in Table 7.1. The

region of interest is the front of the sensor array, i.e., a sweep range of θ ∈ [−90, + 90]

degrees. The span of the main lobe determines the active region of a transducer, determined

using the −3 dB definition in the literature [28]. In Figure 7.3, it is represented by the line at

−3 dB w.r.t the maximum amplitude. The transmitter insonifies a region of space between

±12.5o. On the other hand, the microphone has an omnidirectional response; because
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Figure 7.3: Normalized radiation pattern. Element factor of the FUT (Ht) [—], element
factor of the microphone (Hm) [—], array factor (AF ) and the receiver array radiation
pattern (Hr) [—], two-way radiation pattern (Htr) [—], and −3 dB line [- -]. As |Hm| ≈
1, |Hr| ≈ |AF |.

|Hm(θ)| ≈ 1, echo reception is possible from anywhere in front of the array.

For the circular microphone array, two design freedoms exist – the number of elements

(M ) and the radius of the ring containing the elements. For the choice of M = 8, the

microphone elements have an angular separation of 45o between them. To effectively

suppress grating lobes occurring in the visible region, based on [28, 56] array elements

require a separation smaller than
λ

2
. For the circular array, the radius of the ring on which

Table 7.1: Array Design Parameters

Parameter Value Units
Transducer Radius (datasheet) 7 mm
Microphone Radius (datasheet) 0.25 mm

Receiver Array Radius 3.7 mm
Number of elements (M) 8 -

Transducer’s Center Frequency (fe) 58.5 kHz
Speed of Sound (vsound) 340 m/s

Wavelength (λ) 5.81 mm
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the elements are located is given by

Radius of the Ring =
λ/2

2π/M
(7.2)

Using the specifications of Table 7.1, the radius of the ring is 3.7 mm. It is interesting to

note that the 8 microphone elements are located on a ring that is about one-half the radius of

the transmitter FUT. The receiver array’s response is given by

Hr = AF ×Hm (7.3)

where AF is the array factor determined by the location of each microphone element in the

receiver array. The array factor AF is given by

AF =
M∑

m=1

exp

[
j
2π

λ
(xmu+ ymv + zmw)

]
(7.4)

where (xm, ym, zm) are the locations of the M microphone elements. The unit vectors

(u, v, w) of the spherical coordinate system defined in Figure 7.3 can be written as

u = cos(θ), v = sin(θ) cos(ϕ), w = sin(θ) sin(ϕ) (7.5)

Because the microphone elements have an omnidirectional response, |Hr| ≈ |AF |. In the

pulse-echo mode of operation, the two-way transmit-receive radiation pattern defines the

operating region of the sensor array and is given by

Htr = Ht ×Hr (7.6)

From Figure 7.3, the transmitting FUT limits the operating region of the sensor array. Also,

the side lobes are 97% smaller than the main lobe resulting in high detection SNR. The

theoretical angular resolution (azimuth and polar) is 19.8o based on the 3 dB definition from
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[28, 30]. Increasing the number of elements allows better angular resolution but has several

disadvantages. Each microphone requires a dedicated receive signal path and memory for

storing the microphone data, increasing the hardware cost. Additionally, several steps during

digital processing involve complex matrix math computations; the overall compute costs

grow approximately as a square of the number of receiver elements, reducing the sensor’s

throughput. Employing fewer microphones is beneficial for low-cost space-constrained

applications operating on a power budget.

7.3 Processing Algorithm

Figure 7.4 illustrates the various steps of the processing algorithm. Broadly the algorithm

is organized into pre-processing steps, the beamforming step, followed by several post-

processing steps. Data logging begins when the transmitter emits a pressure wave in response

to a voltage excitation consisting of ne cycles (TXOPT or RXOPT schemes may also be

applied). The algorithm takes in the digital signal capture as the input and outputs the 3-D

positions of multiple reflectors in the scene.

7.3.1 Pre-processing Steps

The analog voltage signal containing the echoes at each microphone first passes through

a bank of bandpass filters discussed in Appendix C. The M dedicated filters use a fixed

gain of 300 V/V to amplify the signal, which is sampled by a 12-bit ADC of a MCU at a

sampling frequency of fs. The integer-valued signal at the ADC after adjusting for bias has

a range between −2048 and 2047. The signal capture for the M microphones is given by

sss(t) = [s1(t), . . . , sM(t)]T , 0 ≤ t < T (7.7)

where T is the time duration of the signal capture, giving a total capture length of N = Tfs.

The noise component is assumed to be small in sss(t); explicit representation of noise in
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Equation 7.7 is suppressed for notational convenience. The maximum range is obtained by

scaling T by the speed of sound as given by Equation 1.1. The signal capture is split into

multiple smaller-length windows to detect several reflectors in the scene. Let Q be the total

number of windows, and q = 1, . . . , Q. For a window length of L and an overlap length of

αL between subsequent windows, where α ∈ [0, 1], the number of windows is computed as

Q =
N − αL
L(1− α)

(7.8)

The parameters (N, L, α) impact the memory requirements and the computation cost. A

smaller window length reduces the memory utilization during subsequent processing steps

but increases the computation cost as all the downstream steps of the algorithm will need

to be repeated for each window. After partitioning the length N signal, each window is

weighted using a length L window function defined as h(t) for 0 ≤ t <
L

fs
; h(t) is a

Hanning window. The corresponding operations are given by

sssq(t) = sss(t)h(t− T s
q ), T s

q ≤ t < T s
q +

L

fs

where T s
q =

(q − 1)αL

fs
, q = 1, . . . , Q

(7.9)

The weighting reduces the discontinuities at the boundary between two windows and

the associated spectral leakages. The microphone signals will have echoes of sufficient

amplitude only during some time intervals. At other time intervals, the signal level of sss(t)

will be around the noise floor level of the system. To eliminate redundant computations and

boost the sensor throughput when echoes of sufficient amplitude are not present, a window

selection is performed as

sssq(t) =


sssq(t), ∃ |sssq(t)| > µ, T s

q ≤ t < T s
q +

L

fs

0, otherwise
(7.10)
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where µ is the threshold. For an embedded application, to determine the windows that

need to be processed, a 1-D peak detector is applied and is outlined in Algorithm 4. The

algorithm takes in a signal vector and a threshold value as inputs. It outputs the number

of peaks, the time instants when they occur, and the peak values. Line 4 of the algorithm

checks if the current signal index has a higher value compared to the adjacent indices while

also satisfying the threshold criterion. To perform the selection, one of the length L signals

of sssq(t) is fed as input to Algorithm 4. If the peak detector returns more than one peak, the

downstream steps of Figure 7.4 are evaluated one window at a time.

Algorithm 4: 1-D Multiple Peak Detector
Inputs:

- s(t): Input signal of length L
- µ: Threshold

Outputs:
- k: Number of peaks
- tk: Time at peak k
- pk: Value of peak k at time tk

1 Initialize loop variable i := 0
2 Initialize peak counter k := 0
3 for i← 1 to L− 1 do
4 if s(ti) > s(ti−1) and s(ti) > s(ti+1) and s(ti) > µ then
5 k := k + 1
6 pk = s(ti)
7 tk = ti
8 i := i+ 1

9 end

Frequency-domain beamforming is preferable for determining the directions of arrival

of echoes because it offers computational efficiency. The L-point FFT of sssq(t) is computed,

resulting in a frequency spectrum that has a length of
L

2
spanning between 0 and

fs
2

. Both

the transmitted acoustic pressure waves and the received echoes are narrowband. Hence it

is beneficial to retain only a subset of the spectral content corresponding to the frequency

range fb for the remaining processing steps. The frequency spectrum computation can be
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written as

SSSq(f) = FFT(sssq(t)), where f ∈ fb (7.11)

The M ×M spatial correlation matrix Rq for window q is essential for the beamforming

step and may be derived by computing the output power of Equation 2.1. The Rq matrix is

given by

Rq = SSSq(f)SSS
H
q (f), f ∈ fb (7.12)

7.3.2 Beamforming

Figure 2.2 and Section 2.2 clarify the operation of a beamformer. Time delays that

functionally depend on the look direction are applied to process the signals at the receiver in

Equation 2.1 and Equation 2.2. For a specific set of time delays, the power of Equation 2.1

is maximized, which determines the object’s direction. To detect the two unknown angles

(polar, azimuth), define the M × 1 length steering vector as

ψ(u, v, w) =


exp

[
j
2π

λ
(x1u+ y1v + z1w)

]
...

exp

[
j
2π

λ
(xMu+ yMv + zMw)

]
 (7.13)

where (u, v, w) are the unit vectors in the spherical coordinate system given by Equation 7.5,

and (xm, ym, zm) are the positions of the microphones in the receiver array. The unit vectors

(u, v, w) are functions of (θ, ϕ) and correspond to the arrival direction of the pressure

waves. In Figure 7.2, the microphone elements are located on the YZ plane. Therefore

x1, . . . , xM = 0, resulting in Equation 7.13 reducing to ψ(v, w).

Beamforming is at the core of the processing flow in Figure 7.4. The signal power is

computed along several look directions determined by the uniformly spaced (v, w) values
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defining a 2-D search grid as illustrated by Figure 7.5b. Local maxima are then determined

from the power computations to identify the arrival directions (vl, wl). Figure 7.5 also

clarifies that the (v, w) grid and the (θ, ϕ) grid are related by Equation 7.5; correspondingly

the identified (vl, wl) directions are converted to (θl, ϕl) identifying the directions of arrival

of echoes. The span of the main lobe in the two-way radiation pattern shown in Figure 7.3

defines the grid’s limits. Theoretical foundations of beamforming are discussed in [29],

and only aspects relevant to the processing algorithm are outlined. The three beamforming

methods considered in this work to determine the power matrix are:

1. DAS: The power is computed as

Pq(v, w) = ψH(v, w)Rqψ(v, w) (7.14)

where (·)H denotes the complex conjugate transpose of a matrix. The DAS approach is

non-adaptive and requires low computation resources. A downside is the lower angular

resolution. Figure 2.2 discusses the DAS beamformer.

2. MVDR: This approach is adaptive, where a weighting matrix η(v, w) suppresses the

power computations from directions that do not coincide with the echo’s arrival directions.

In directions that coincide with the echo’s arrival directions, the weighting matrix is kept

constant. The MVDR problem is formulated as an optimization problem as

min
η(v, w)

ηH(v, w)Rqη(v, w)

subject to |ηH(v, w) ψ(v, w)| = 1

(7.15)

Fortunately, the optimization problem has a closed-form solution that determines the

optimal direction-dependent weights, first determined by Capon [29]. It is given by

η(v, w) =
R−1

q ψ(v, w)

ψH(v, w) R−1
q ψ(v, w)

(7.16)
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The power computation with the optimal weights applied is given by

Pq(v, w) =
1

ψH(v, w)R−1
q ψ(v, w)

(7.17)

Because weighting is applied, the resolution with MVDR improves when compared to

DAS.

3. MUSIC: This adaptive approach involves several steps. First, the eigendecomposition

of the correlation matrix Rq is determined. The eigenvalues Λm are arranged, say, in

increasing order; νm are the corresponding eigenvectors. Define the columns of the

matrix η as

η := νm ∀ (Λm < Threshold) (7.18)

where Threshold = α×max{Λ1, . . . ,ΛM} and α = [0, 1]. Therefore, η defines a matrix

of eigenvectors corresponding to the smallest eigenvalues. Note that η will have fewer

than M columns after the thresholding operation. The eigenvalues corresponding to

the noise subspace are orders of magnitude smaller than the eigenvalues of the signal

subspace, and an α ≈ 0.1 is sufficient to identify all the eigenvectors. Other methods

such as AIC or BIC discussed in [29] may be employed to perform eigenvalue selection.

However, the thresholding approach is simple and produces a similar level of perfor-

mance compared to AIC or BIC. The estimated correlation matrix determined with the

eigenvectors of the noise subspace is given by

Rq,MUSIC = ηηH (7.19)
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The power computations with MUSIC is given by

Pq(v, w) =
1

ψH(v, w) R−1
q,MUSIC ψ(v, w)

(7.20)

Pq computed using Equation 7.14, Equation 7.17, and Equation 7.20 is a function of

(v, w), which is evaluated at several points on a uniformly spaced 2-D search grid. Let the

matrix PPP q aggregate the signal power computed at all the 2-D grid locations.

7.3.3 Post-processing Steps

The matrix PPP q may contain several local maxima, each representing an arrival direction

of the pressure waves. Algorithm 5 describes a 2-D peak detection algorithm to identify the

maxima. The algorithm accepts a 2-D matrix and a threshold value as inputs. It outputs the

number of peaks, the coordinates where the peaks occur, and the peak values. Figure 7.6

clarifies the condition on Line 4 – Line 5 of the algorithm. The condition checks if the value

at the center of a 3× 3 matrix of points is the highest. The threshold condition ensures that

only maxima above the noise floor level of the matrix PPP q are detected. Note that Line 2 and

Line 3 of the algorithm add a boundary of zeros to the 2-D input matrix to simplify the peak

finding logic and allow for detection to occur at the edges of the input matrix.

WhenPPP q is determined on a uniformly spaced (θ, ϕ) grid, thePPP q values have a spherical

variation. Figure 7.5a clarifies that adjacent values of θ correspond to different heights,

while adjacent values of ϕ correspond to points on a circle; the automatic detection of

2-D peaks in PPP q will require a spherical-to-Cartesian conversion. On the other hand, for a

uniformly spaced grid of (v, w) values, as shown in Figure 7.5b, the PPP q matrix has a direct

mapping to each grid point; the automatic detection of 2-D peaks can occur without any

intermediate operations. After the peak values (v, w) are identified, conversion to (θ, ϕ)

is made using Equation 7.5. Therefore, evaluation of the matrix PPP q on the (v, w) grid is

computationally efficient and preferable. Note that a uniformly spaced (v, w) grid results in
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Algorithm 5: 2-D Multiple Peak Detector
Inputs:

- M : Input 2-D matrix of size V ×W
- µ: Threshold

Outputs:
- k: Number of peaks
- (ik, jk): Location of peak k
- pk: Value of peak k at (ik, jk)

1 Initialize peak counter k := 0
2 for i← 0 to V + 1 do
3 for j ← 0 to W + 1 do
4 if M(i, j) > M(q, r) and M(i, j) > µ, where
5 {q ∈ [i− 1, i+ 1], r ∈ [i− 1, i+ 1], (q, r) ̸= (i, j)} then
6 Update k := k + 1
7 Update pk =M(i, j)
8 Update (ik, jk) = (i, j)

9 end
10 i := i+ 1, j := j + 1

11 end

Indexing for matrix M(i, j) is in the range i = 1, . . . , V and j = 1, . . . ,W . For
i = {0, V + 1} and j = {0, W + 1}, an outer boundary of zeros is added to the
matrix M .
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(a) Points on a uniformly spaced 2-D (θ, ϕ) grid result in a spherical variation. Variation of θ results
in circular contours at various heights. Variation of ϕ covers the circle.

(v1, w1) . . . (vV , w1)
... . . . ...

(v1, wW ) . . . (vV , wW )

(v, w) grid

(b) Matrix representation of the 2-D (v, w) grid with uniform grid spacing between adjacent matrix
entries.

Figure 7.5: Relationship between (θ, ϕ) grid and (v, w) grid.

a non-uniformly spaced (θ, ϕ) grid. This aspect requires a 2-D interpolation procedure to

improve the accuracy of the identified peak’s location.

2-D peak interpolation

The beamformed power spectrum PPP q results in a 2-D matrix, which is a function of

the discretized 2-D grid points (v, w). Several local maxima representing maximum

constructive interference are present in the power spectrum. The locations (ik, jk) of the k

local maxima are returned by the 2-D peak detector given by Algorithm 5 and correspond to
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j − 1 j j + 1

i− 1

i

i+ 1 True Peak

Detected Peak

Figure 7.6: 2-D peak detection and interpolation to determine fractional indices.

the polar and azimuth angles (θk, ϕk). As (v, w) are discretized with a uniform separation

of ∆v and ∆w, the indices (i, j) of the matrix can be used instead of the actual values

(v, w) to derive closed-form expressions interpolating the 2-D peak. In the graphic shown in

Figure 7.6, the identified indices returned by the peak detector are located at (i, j), whereas

the true peak is present at an off-grid location. Determining the true peak location will

result in indices containing fractional values. The corresponding values of (v̂, ŵ) evaluate

to an intermediate point between the grid points resulting in increased angular estimation

accuracy. The fractional peak location is estimated by fitting a paraboloid of the form

f(i, j) = Ai2 +Bij + Cj2 +Di+ Ej + F (7.21)

where A, . . . , F are the coefficients of the approximating paraboloid. As shown in Fig-

ure 7.6, the peak and the 8 neighbouring points surrounding the peak in the 3 × 3 block

are considered, where the power spectrum values at the indices {i − 1, i, i + 1} and

{j − 1, j, j + 1} are utilized. The coefficients A, . . . , F are determined through least-

squares curve fitting of the 9 points. For computations, temporarily set (i, j) = (0, 0); the

indices take the values {−1, 0, 1}, resulting in an over-determined system of dimension
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9× 6 for the 9 points of Figure 7.6 and is given by

[
p2 pq q2 p q 1

]
A

...

F

 =

[
f(p, q)

]

where p = {−1, 0, 1}, q = {−1, 0, 1}

(7.22)

The values of A, . . . , F after computing the pseudo-inverse is given by


A

...

F

 =
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f(−1, − 1)

f(−1, 0)

f(−1, + 1)

f(0, − 1)

...

f(1, 1)


(7.23)

The equation of the paraboloid has now been fully determined. In Equation 7.23, the values

of f(i, j) on the RHS are known and evaluate to points in the 3× 3 window. The values of

A, . . . , F are computed by weighting the values of f(i, j). The peak location is obtained

from the gradient of Equation 7.21 and is given by

∂f

∂i
= 0 = D + 2Ai+Bj

∂f

∂j
= 0 = E +Bi+ 2Cj

(7.24)

Solving Equation 7.24 results in the values for (̂i, ĵ) as

î =
2CD −BE
B2 − 4AC

and ĵ =
2AE −BD
B2 − 4AC

(7.25)
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The values A, . . . , F are given by Equation 7.23, and the values for v̂ and ŵ where the

interpolated 2-D peak occurs is given by

v̂ = v + î∆v and ŵ = w + ĵ∆w (7.26)

The approach presented in this section determines a closed-form expression for a uniformly

spaced grid. The procedure requires low computing resources and is suitable for embedded

implementations as only elementary operations, such as multiplications and additions, are

needed. The interpolation procedure discussed in [57] does not consider the additional

simplifications introduced by a uniform 2-D grid. Also, the approach in [57] requires

iterative techniques to determine a least-squares solution to the fitting problem, resulting in

additional computations compared to the above method.

Radial distance determination

After obtaining the interpolated locations of the k peaks in window q as (v̂kq , ŵ
k
q ), the

polar and azimuth angles (θ̂kq , ϕ̂
k
q) are determined by manipulating Equation 7.5. The radial

distance ρkq is the only quantity that remains to be estimated. Recall from Equation 2.1 that

the output of the beamformer is a sum of all the input signals after applying the time delays

that depend on the look direction. Also, recall from Equation 7.13 that the vector ψ(v, w)

corresponds to the look direction (v, w), in the frequency domain, the output spectrum of

the beamformer is given by

SSSk
q(f) = ψH(v̂kq , ŵ

k
q )SSSq(f) (7.27)

The radial distance is estimated by using Equation 1.1, which scales the round trip ToF by

the speed of sound. Several algorithms exist to determine the ToF, and matched filtering

(also known as cross-correlation) is applied as the SNR is maximized. The cross-correlation
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operation is given by

Ckq (f) = S∗(f)SSSk
q(f) (7.28)

where S(f) is the known template spectrum of an echo, and (·)∗ denotes the complex

conjugate. There are two options to generate the template – from models presented in

Section 3.2 or through experimental measurements. Experimental measurements provide

an accurate representation of an echo. But, model-based generation of a template can be

synthesized easily in software and can apply modifications when needed without relying on

new experimental measurements. A disadvantage of the model-based generation approach

is the need for accurate knowledge of the system’s model parameters.

The complex-valued time-domain representation of Equation 7.28 is determined through

an inverse FFT and is written as

ckq(t) = IFFT(Ck
q (f)) (7.29)

Based on [58], the signal envelope is determined by computing the absolute value of

Equation 7.29, i.e. |ckq(t)|. The 1-D peak detector discussed in Algorithm 4 is applied to

|ckq(t)| to obtain the time instant tkq where the signal envelope achieves a maximum. The

offset introduced due to windowing by Equation 7.9 needs to be accounted. The radial

distance ρkq to each reflector is computed as

ρkq = (T s
q + tkq)

vsound
2

(7.30)

With this step, all three quantities that define the position of a reflector in spherical coordi-

nates (ρkq , θ̂
k
q , ϕ̂

k
q) have been estimated. The corresponding Cartesian coordinates can be
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Figure 7.7: Sensor’s workspace consisting of two reflectors.

Table 7.2: Ground Truth Location of the Reflectors

Reflector
Reflector Ground Truth

Radius (cm) (x, y, z) cm
Reflector - 1 1.5 (27, 0,−8.5)
Reflector - 2 5.75 (50,−17, 0)

computed using Equation 7.5 as

xkq = ρkq û
k
q , ykq = ρkq v̂

k
q , zkq = ρkq ŵ

k
q (7.31)

7.4 Algorithm Evaluation

Consider the workspace consisting of two reflectors as shown in Figure 7.7. The sensor

is located 10 cm above the floor. Reflector 1 rests on the floor of the workspace, and reflector

2 is located at an angle. The ground truth locations of the reflectors are in Table 7.2. The

processing algorithm of Section 7.3 uses the parameters listed in Table 7.3.

The signals at each step of the processing algorithm are shown in Figure 7.8 – Figure 7.13.

A ne = 5 cycle voltage excitation is applied to the transmitter to emit a pressure wave at the

resonant frequency fe = 58.5 kHz. The positions of both reflectors are determined with a
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Table 7.3: Processing Algorithm Parameters

Parameter Symbol Value Units
Excitation Cycles ne 5 cycles

Filter Gain – 300 V/V
Signal Capture Length N 1792 samples

Window Length L 512 samples
Overlap Fraction α 0.5 –

Threshold µ 0.1 normalized
Frequency Bins fb [51, 66] kHz

Grid Size V ×W 32x32 –
Polar Angle Range – [−45, 45] deg

Azimuth Angle Range – [0, 180] deg

single pulse-echo trial. The analog echo-containing signals pass through a bank of dedicated

custom analog bandpass filters discussed in Appendix C. Note that the receiver microphones

have ≈ 30 dB better sensitivity when compared to the FUT. Hence, a lower gain of 300 V/V

is sufficient.

The amplified signal is sampled by a 12-bit single-ended ADC at a sampling frequency

of fs = 250 kHz, about four times the operating frequency of the sensor system, and is

shown in Figure 7.8a. The integer-valued signal at the ADC after removing the bias has a

range between -2048 and 2047 counts, as shown in Figure 7.8b. The signal captures for

all eight microphones is superimposed. The capture shows an initial decaying tail which

occurs due to the residual oscillations of the transmitter after its excitation. Therefore, the

initial portion of the signal up to 0.9 ms is not processed. Methods presented in Chapter 4 –

Chapter 6 address the decaying tail issue and may be applied to reduce the minimum range

and enhance the range resolution of the sensor system. Two echoes of sufficient amplitude

around 1.7 and 3 ms are present that correspond to the two reflectors in the workspace.

As the analog filter is well-designed, the captured signal has low levels of in-band noise,

obviating the need for digital filtering, which is a computation-intensive process.

The signal capture has a length of 1792 samples (7.192 milliseconds), translating to

a maximum range of about 1.2 meters. A window length of 512 samples with a 50%
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(a) Signal captured by the single-ended 12-bit ADC.

(b) Signal sss(t) after bias compensation. Vertical dashed lines indicate the start of
each window.

Figure 7.8: Acquired microphone signals. The data from all 8 microphones are
superimposed.

Figure 7.9: Hanning weighting function.
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overlap between the windows gives a good balance between memory and compute cost. In

Figure 7.8b, the dashed lines indicate the start of each window, and the signal trace consists

of a total of six windows. The window q = 1 exists between 0 ≤ t < 2.048 milliseconds,

window q = 2 between 1.024 ≤ t < 3.072 milliseconds, and so forth.

The Hanning function shown in Figure 7.9 weights the signal samples in each window

as given by Equation 7.9 and has the same length as the window. The weighting coefficients

are close to zero at the interval boundaries (sample indices 1 and 512) and have a value

of 1 around the middle of each interval (sample index 256). Since the overlap between

the windows is 50% (256 samples), the presence of a signal spanning two windows is

not a concern. With weighting, the signal is emphasized in one of the windows while

suppressed in the other windows. For example, consider the signal at around 3 milliseconds

in Figure 7.8b. In the windows, 1.024 ≤ t < 3.072 milliseconds and 3.072 ≤ t < 5.12

milliseconds, the window weights suppress the signal because it is close to the interval

boundaries and in the window 2.048 ≤ t < 4.096 milliseconds, the signal is approximately

at the center of the window and is emphasized as shown in Figure 7.10.

As there are only two echoes of sufficient amplitude in the signal trace, windows q = 2

and q = 3 are retained by the window selection step and advanced through the remaining

compute-intensive stages. Figure 7.10 shows the isolated windows after applying the 1-D

peak detector of Algorithm 4 during window selection.

After the window selection, the downstream operations are performed window-by-

window, first for the window q = 2 and then for window q = 3. As the sensor utilizes

narrowband pressure waves with a bandwidth of ≈ 3 kHz, only a subset of frequency

bins fb = [51, 66] kHz are retained. This step reduces the compute cost and the memory

requirements by about eightfold in this case.

The uniform (v, w) grid has a size of 32 × 32 and the grid limits are determined

by the two-way radiation pattern shown in Figure 7.3. The sweep limits for the polar

angles are [−45o, 45o], and the azimuth between [0o, 180o]. Figure 7.11 and Figure 7.12
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(a) Signals sss2(t) corresponding to window 2 after the weighting step.

(b) Signals sss3(t) corresponding to window 3 after the weighting step.

Figure 7.10: Signals after window weighting and selection.
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(a) DAS. (b) MVDR. (c) MUSIC.

Figure 7.11: Beamformer output power PPP 2 for window 2.

(a) DAS. (b) MVDR. (c) MUSIC.

Figure 7.12: Beamformer output power PPP 3 for window 3.

show the normalized power matrix PPP q for windows q = 2 and q = 3 with the three

beamformers – DAS, MVDR, and MUSIC. As only a single dominant echo exists in each

window corresponding to the physical object, only a single 2-D peak is present in each

window.

The beamformer performance is compared using experimental measurements. Angular

resolution and noise floor level characterize the performance of the ultrasonic sensor. The

Table 7.4: Beamformer Performance Comparison

Beamformer Angular Resolution (deg) Noise Floor (dB)
DAS 24.84 -12

MVDR 8.17 -24.4
MUSIC 6.26 -30.5
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smallest detectable separation between two objects in the azimuth or the polar directions

determines the angular resolution of a sensor array. For a uniform circular array, due to

symmetry, they are both equal. The main lobe’s beamwidth determined by the 3 dB criterion

discussed previously provides the resolution. A smaller beamwidth yields a higher angular

resolution. Noise floor level, on the other hand, is the nominal level of power in the PPP q

matrix and determines the separation between the peak value of PPP q and the residual level.

Both these metrics – better angular resolution and a smaller noise floor level improve the

detection and discrimination of multiple objects within each window. Table 7.4 summarizes

the experimental performance of the beamformers.

The DAS beamformer has the lowest angular resolution and the highest noise floor level

compared to the other two adaptive beamformers. The MVDR beamformer has an improved

angular resolution and noise floor level as it applies a direction-dependent weighting factor

to the acquired signal data during processing. The MUSIC beamformer has the best angular

resolution and the lowest noise floor levels providing the best detection capability among

the three beamformers. From a computation perspective, the DAS beamformer has the

lowest computation cost. Both MVDR and MUSIC achieve a higher resolution with an

increased computation cost. The MVDR requires the inverse of the correlation matrix Rq,

while MUSIC requires the eigenvalue decomposition of Rq and a matrix inversion. These

additional steps need matrix factorizations of Rq increasing the computation cost.

From Figure 7.11 and Figure 7.12, the 2-D peak interpolation operation is apparent as

the identified values of (v, w) at which the peaks occur are slightly different with each

method and do not correspond to discretized locations on the (v, w) grid. Figure 7.13 shows

the resulting matched filtered signal envelope ckq(t) after progressing through the remaining

post-processing steps. Applying the 1-D peak detector of Algorithm 4 determines the time

instant at which the maximum value occurs. The 1-D peak detector identifies only one peak

in ckq(t) as it is derived from the 2-D peak at (v̂kq , ŵ
k
q ). The identified reflector locations are

listed in Table 7.5, demonstrating a high detection accuracy of the processing algorithm.
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(a) Signal envelope corresponding to window 2.

(b) Signal envelope corresponding to window 3.

Figure 7.13: Signal envelope after matched filtering.
(DAS [—], MVDR [—], and MUSIC [—]).

The error with the MVDR beamformer is slightly higher because of the adaptive look

direction-dependent weighting value computations. MUSIC achieves the best performance

and has higher resolving capability compared to DAS. Also, the small discrepancies in the

estimates are due to the reflector’s curvature and multi-path propagation effects.

7.5 Embedded Implementation

A high update rate (i.e., rate of pulse-echo trials) is essential for real-world robotic

applications, such as workspace mapping or object tracking. The processing algorithm of

Figure 7.4 is implemented on the Texas Instruments TMS320F28379D MCU to determine

the computing requirements for dedicated chip solutions. This step also avoids the exchange

of large volumes of data through serial communication, which is used extensively during
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experiments in the previous chapters. For comparison, to exchange 1792 samples of signal

data from 8 elements of the microphone with each sample represented using 16 data bits,

the total data exchanged after each pulse-echo trial is about 229 Kbits. For a nominal

serial communication speed of 4 MBaud, the data transmission duration takes about 60

milliseconds. Since the operating system schedules the software running on a host PC, the

maximum update rate achieved for PC-based processing is about 5 – 8 Hz; the low update

rate is unsuitable for applications that require real-time object detection.

The MCU consists of two processing cores and two control law accelerator cores, and

all the cores operate at the maximum clock frequency of 200 MHz. The Table 7.6 lists

the computation cost per window of the processing algorithm, and all the steps use single

precision floating point math. The beamforming step, as expected, is the most computation-

intensive step requiring about 10 milliseconds to run as beamforming requires complex

math computations at each coordinate in the 2-D (v, w) grid. Using all four cores of the

MCU to process the pulse-echo measurement data in parallel minimizes the computation

load due to the beamforming step, improving the sensor’s throughput. The other processing

steps consume only about 8% of the MCU’s time and have a negligible impact. The fully

embedded solution requires a total of 64 – 70 kilobytes of memory; the memory-intensive

aspects are – the analog signal data, the complex-valued FFT spectra, the coordinates of

the 2-D grid (v, w) points, the correlation matrix, and the output power matrix of the

beamformer. For a processor utilization of 80%, the sensor achieves a throughput between

20 and 45 Hz. The throughput varies depending on the number of windows that need to be

processed. Although the processing loop can achieve higher throughputs, the maximum

rate is limited due to the manufacturer prescribed maximum cycle rate of the TX-FUT.

Note that the computation requirements scale as the square of the number of microphone

elements. Hence it is beneficial to use an array consisting of a small number of microphones.

For comparison, other solutions utilize several expensive and powerful processors [24, 25]

and graphic processing units [26, 31] operating at high clock speeds (few GHz) with large
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Table 7.6: Computation Cost per Window

Processing Step Cycles % of Total Cycles
Window Weighting 7348 0.37
Window Selection 8195 0.41

FFT 14643 0.73
Correlation Matrix 23765 1.19

Beamforming 1852324 92.91
2-D Peak Detection 33791 1.69
Matched Filtering 45408 2.28

1-D Peak Detection 8194 0.41
Total Cycles 1993668

The clock frequency of the microcontroller is 200 MHz. The processing steps use 32-bit
floating point math.

memory (few gigabytes).

7.5.1 Experimental Evaluation

Figure 7.14 shows the experimental setup to demonstrate the sensor array’s ability to

track moving objects. The scene consists of a single spherical reflector (a ball) mounted

at the end of a motorized arm. The Dynamixel XM430-W210R smart servo motor used

in Chapter 8 and Chapter 9 provides the rotational capability, while the motor’s onboard

position encoder provides ground truth position measurements. The spherical reflector is

present in front of the sensor and is above the sensor’s center. The scene also consists of

other surfaces that can produce reflections and are covered with foam to enhance the echoes

arising from the spherical reflector. However, it is still possible to capture reflections from

parts of the rotary arm, leading to different distance estimates.

Figure 7.15 and Figure 7.16 display the point cloud measurements obtained with the

sensor array. The motor commands result in the spherical reflector tracing a circular arc

in the XY plane. The repositioning event occurs at a constant speed, and measurement

data from both the motor and the ultrasonic sensor array are collected simultaneously.

Figure 7.15a shows a 2-D view comparing the points detected by the sensor array with that
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X

Z

Figure 7.14: Experiment setup evaluating the embedded implementation of the processing
algorithm.

of the encoder measurements. The point cloud data provided by the sensor approximately

follows a circular path. Since the scattering mechanism of ultrasonic pressure waves is

predominantly specular, only a small region of points on the spherical reflector within the

main beam of the two-way radiation pattern produce reflections. In the 3-D view of the

same experimental data shown in Figure 7.15b, the majority of the points are at a height

from the sensor array, and some of the points indicate reflections arising from the rotary arm.

Figure 7.15b emphasizes both the spatial and temporal aspects measured by the ultrasonic

sensor, where the 3-D Cartesian coordinates estimated by the sensor array are compared

with the encoder measurements. The 10-second log contains estimates from 400 points

(each point is from a pulse-echo trial), providing continuous 3-D point cloud measurements

of the moving reflector.

7.6 Summary and Conclusion

A low-cost ultrasonic sensor consisting of a single narrowband transducer to insonify a

robot’s scene is used with an array of MEMS microphone receivers to determine the positions

of multiple reflectors in the sensor’s scene. The chapter discusses end-to-end system design

considerations of the sensor, analog signal chain, and the digital processing of the received
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(a) XY plane. The sensor is located at x = 0.

(b) 3-D view.

Figure 7.15: Sensor point cloud for the tracking experiment. (Sensor measurements [•],
center of the spherical reflector [•], outer periphery of the spherical reflector [•]).
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Figure 7.16: Spatio-temporal plot of the 3-D point cloud data. Sensor measurements [•],
ground truth encoder measurements [—].

signals. The use of fewer receivers reduces the overall cost of the sensor hardware, the

computation and memory requirements (the processing algorithm requires only kilobytes

of memory), and the overall power consumption. Experimental results illustrate the ability

to detect multiple objects in a 3-D space simultaneously with high accuracy. Experimental

results also demonstrate the detection and tracking of a moving object.
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CHAPTER 8

STIFFNESS ESTIMATION IN SINGLE DEGREE OF FREEDOM SYSTEMS

8.1 Introduction

This chapter focuses on estimating stiffness, an essential quantity in tactile sensing.

Consider the simplified representation of a gripper consisting of two jaws as shown in

Figure 1.2. Only one gripper jaw is actuated, and the actuator has a position and current

sensor. Sensor measurements are obtained after achieving a grasp through a squeeze test,

which involves changing the position (or force) applied to the object by the mechanism. This

chapter extends the knowledge base by developing a sensing solution that uses only position

and current measurements to estimate an object’s unknown stiffness. In contrast, prior

work in [33, 35, 38] utilizes tactile sensor arrays mounted on the gripper’s jaws to obtain

force measurements. Machine learning-based regressor models the relationship between

the position and current sensor measurements and the stiffness value in SI units. Stiffness

outputs from the regressor are continuously valued, while prior research only classifies

input data into stiffness classes, i.e., high, moderate, or low stiffness. Virtual datasets are

generated through simulation models of the system to train regressors, which are later

evaluated on a representative single degree of freedom experimental hardware system to

assess the real-world stiffness estimation performance. The chapter also studies how dry

friction in the mechanism and the gripper’s actuation can influence the sensor measurements,

and how regressors can overcome the introduced effects.
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8.2 System Physics

8.2.1 Stiffness Estimation Model

The model of the gripper grasping an object with unknown stiffness ko shown in Fig-

ure 1.2 can be represented by a second-order system as shown in Figure 8.1. The unknown

linear spring stiffness is ko, while M is the lumped mass of the object and the linear actua-

tor’s shaft, F is the force applied by the actuator onto the object representing the grasping

force, and Ff models the lumped friction force arising due to the gripper mechanism and

the object under grasp.

M

ko
F

Ff

Figure 8.1: Linear model for stiffness estimation.

Figure 8.2 shows the rotational version of the second-order system of Figure 8.1 modeling

the single degree of freedom gripper mechanism. It consists of a torsion spring of unknown

stiffness ko that needs to be determined using the squeeze test, and J is the inertia of the

actuator’s shaft and the rotary arm driving the torsion spring. τ is the torque applied by the

rotary actuator, and τf is the lumped friction torque present in the system.

ko

J τ

τf

Figure 8.2: Rotational model for stiffness estimation.

8.2.2 Actuator Model

For simplicity, a rotary DC motor is considered and generates the torque τ . For a

squeeze test, one possible method is to modify the position of the jaws. This method applies
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Mechanical
Subsystem
(θ, ω, u)

Position sensor

θcmd

Figure 8.3: Single stage position controller. θ = motor position, and ω = motor velocity are
the state variables. u = input motor voltage. θcmd = commanded position.

increasing compression onto the object under grasp and translates to the operation of the DC

motor under the position control mode. The alternate approach modifies the compression

applied to the object, which translates to the current control mode of operation. The set of

equations modeling the electromechanical characteristics of a rotary DC motor is given by

Electrical subsystem: u = iR + L
di

dt
+Km

dθ

dt

Mechanical subsystem: Kmi = Jm
d2θ

dt2
+ bm

dθ

dt
+ τl

(8.1)

where u is the voltage applied to the motor, i is the motor current, θ is the angular position,

and ω = dθ/dt is the angular velocity of the rotor. R and L are the winding resistance and

inductance. Jm and bm are the inertia and the mechanical damping of the actuator’s shaft. τl

is the load torque on the motor. Coupling exists between the electrical and the mechanical

subsystems through the motor constant Km. The equation system given by Equation 8.1 has

an order of three. There exist two possible position controller implementation options, and

[59] provides detailed discussions about the design. Only aspects essential to the research

are summarized.

Single stage position controller

The high level representation of a single-stage position controller is illustrated in Fig-

ure 8.3. In this approach, the input voltage applied to the motor controls the motion of the

rotor to a target position of θcmd. This design requires only one sensor – to measure the

rotor position. As the electrical system’s dynamics are faster than the mechanical system’s
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Electrical
Subsystem
(i, u)

Current sensor

Mechanical
Subsystem
(θ, ω, icmd)

Position sensor

θcmd

icmd

Figure 8.4: Two-stage position controller. θ = motor position, ω = motor velocity, and i =
motor current are the state variables. u = input motor voltage. θcmd = commanded position,
and icmd = commanded current issued by the mechanical subsystem to the electrical
subsystem.

dynamics, model order reduction is possible through a quasi-static approximation of the

electrical system. Setting
di

dt
= 0 reduces Equation 8.1 to a second-order system. The

resulting current equation is given by

i =
u−Kmω

R
(8.2)

With u as the voltage input to the motor and the load torque wm modeled as a disturbance

input, the DC motor’s plant in state-space form for designing the single-stage position

controller is

d

dt

θ
ω

 =

0 1

0 −α


θ
ω

+

0
β

u+
 0

−1
Jm

wm (8.3)

where α =
K2

m + bmR

JmR
and β =

Km

JmR
. The single-stage position controller results in a

simpler implementation. However, a drawback of this approach is the possibility of operating

the motor outside of its current limits.

Two stage position controller

The two-stage approach has two control loops that allow the operation of the motor

within its current limits. Figure 8.4 illustrates the high-level function which exploits the

separation existing between the electrical and mechanical subsystems in Equation 8.1. The

inner control loop regulates the faster electrical subsystem, and the outer control loop
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regulates the slower mechanical subsystem. This design requires a second sensor to monitor

the current in addition to a position sensor. icmd is the commanded signal issued to the

current control regulator by the mechanical subsystem, and wm is the disturbance load

torque input to the mechanical subsystem. The plant equations for designing the slower

mechanical subsystem performing position regulation are given by

d

dt

θ
ω

 =

0 1

0 − bm
Jm


θ
ω

+

 0

Km

Jm

 icmd +

 0

−1
Jm

wm (8.4)

The outer position control loop issues current command requests icmd to the inner current

control loop. The current regulator applies voltage inputs u to the motor. The motor’s speed

ω from the mechanical system is treated as a disturbance input to the current control loop

and denoted by we. The plant model for designing the faster current regulator is given by

di

dt
=

[
−R
L

]
x3 +

[
1

L

]
u+

[
−Km

L

]
we (8.5)

Due to multiple control loops, the design complexity is higher when compared to the

single-stage architecture but allows for the motor’s operation within its current limits.

8.2.3 Simulation Model for Data Generation

With reference to Figure 8.2, the motor torque relates to the motor current and is given

by τ = Kmi. During an exploratory procedure (squeeze test), the DC motor is operated

with an increasing position command, and the current is monitored, which is proportional to

the applied torque. The motor current level changes in response to overcome the torsion

spring stiffness, the friction torque, and the inertial torque. Assuming a two-stage position

controller, the state-space representation of Figure 8.2 with the state variables [θ, ω], input
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ω

τf

−τbrk

+τbrk η

τc

| |2ωbrk

Figure 8.5: Stick-slip friction law.

current i, and friction torque disturbance τf is given by

d

dt

θ
ω

 =

 0 1

−ko
J

0


θ
ω

+

 0 0

Km

J
− 1

J


 i

τf

 (8.6)

Note that J represents the lumped inertia of the actuator’s shaft and the grasped object,

while τf represents the lumped friction forces in the system. Equation 8.6 is similar to

Equation 8.4, but accommodates the lumped friction torque in the system and the spring

stiffness of the object. Also, Equation 8.6 follows directly from the mechanical subsystem

description of Equation 8.1 and formulates the simulation model as a second-order system

instead of a third-order system. This is because the current regulator in the two-stage position

controller eliminates the need to model the electrical dynamics. Another advantage is that

only parameters corresponding to the mechanical system need to be known, i.e., (Km, J).

The current loop’s saturation effects and the quantization effects of the position and current

sensors are included to improve the accuracy of the simulation model.

142



8.2.4 Friction Model

Modeling of friction effects is also critical. Some friction models employ a smooth

variation of friction torque around ω = 0, resulting in a unique one-to-one mapping between

friction torque and angular velocity [60]. However, many systems exhibit stick-slip behavior,

wherein a discontinuity in friction torque exists at ω = 0. The Karnopp friction model is

used to account for stick-slip friction; with this model, simulations can be performed with

high fidelity at a low computation cost [60, 61].

The Karnopp friction model summarized in Figure 8.5 requires only four parameters,

whereas other friction models require up to eight parameters [60]. Figure 8.5 illustrates two

modes, “stick” mode corresponding to ω = 0 and |τf | ≤ τbrk and “slip” mode corresponding

to |ω| ≥ ωbrk and τf = τc sign{ω} + η ω. The breakaway torque τbrk represents the static

friction level in the system, whereas the breakaway speed ωbrk represents a small but non-

zero speed. τc is the Coulomb friction torque and η is the viscous friction coefficient. For

simulation of the system given by Equation 8.6 with the friction model of Figure 8.5, the

friction torque in the system is given by

τf =

 Kmi− koθ , during stick

τc sign{ω}+ η ω , during slip
(8.7)

Transition from stick to slip is triggered by the condition |Kmi− koθ| > τbrk. On the

other hand, the transition from slip to stick is triggered by the condition |ω| < ωbrk. When

the system given by Equation 8.6 is restricted to pure viscous friction, under equilibrium

conditions the stiffness may be directly computed as ko =
Kmieq
θeq

; this simple approach

does not apply when stick-slip behavior — notoriously difficult to predict or characterize

in real-world applications — is significant. This is one of the motivations for leveraging

machine learning methods for stiffness estimation.
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Table 8.1: System Parameters

Parameter Symbol Value Units
Inertia J 2.28× 10−3 kg-m2

Motor Constant Km 1.30 N-m/A
Position Sensor Quantization – 2π/4096 rad
Current Sensor Quantization – 2.69× 10−3 A

Supply Voltage – 12 V
Sampling Frequency fs 1 kHz

8.3 Simulation

The experimental system utilizes a Dynamixel XM430-W210R smart servo DC motor.

The smart servo is designed to be used as a black-box actuator and implements several

control algorithms – position, velocity, and current. To simulate and generate datasets for

regression, several parameters of the single degree of freedom rotation system, shown in

Figure 8.2 and governed by Equation 8.6 and Equation 8.7 need to be determined. The

parameter estimates are determined through experiments on the unloaded DC motor, and

Appendix G provides details of the estimation procedure. The parameters are listed in

Table 8.1 and are common for the simulations, dataset synthesis, and experiments. A

designed persistently exciting speed command signal is applied to the motor, and the motor’s

position, current, and voltage are measured. Two methods are used to fit the measurement

data – linear least squares and the greybox parameter identification tool of MATLAB. Only

the viscous friction component is estimated for the motor, and the Coulomb friction and

the stick-slip friction, although present in the unloaded motor, are assumed to be small and

neglected. Moreover, the estimation of the motor’s friction parameters is computationally

challenging and is subject to change when an object, i.e., when a torsion spring is introduced

into the system.

Figure 8.6 – Figure 8.11 shows the simulation response of the system when the DC

motor’s position control loop is subjected to a position reference command. Two actuation

commands are considered – ramp and staircase. The increasing position reference command
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Figure 8.6: Simulated ramp position command to π/2 rad
(without friction [—], with friction [—], position command [- -], regressor inputs [:]).

results in the compression of the torsion spring, which is equivalent to an increased amount

of squeezing of the object in the single degree of freedom gripper application with the

grasp maintained. The simulation parameters are: ko = 111 N-mm/rad, τbrk = 200 N-mm,

τc = 150 N-mm, η = 50 N-mm-s/rad, ωbrk = 10−3 rad/s. Note that the vertical dotted lines

in the figures indicate the sampling instants used as input to the regressor discussed later.

For the ramp position actuation in Figure 8.6, the current through the motor shown in

Figure 8.7 rises smoothly in response. However, under friction, a small error in the position

can be seen initially up to t = 0.2 seconds due to some small stick-slip behavior as the

system begins to move from rest. When the system is under motion, the current waveform

for the system with friction has an offset compared to the system without friction. As the

spring moves at a constant velocity, it results in a constant level of Coulomb and viscous

friction torque as shown by Figure 8.8, with the offset in the current proportional to the

friction level in the system.

Figure 8.10 shows the current waveform when the system is subjected to a staircase

position actuation command shown in Figure 8.9. For the frictionless system, as the spring
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Figure 8.7: Simulated current measurement with ramp actuation
(without friction [—], with friction [—], regressor inputs [:]).

Figure 8.8: Friction torque with simulated ramp command.
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Figure 8.9: Simulated step position command to π/2 rad, 10 steps
(without friction [—], with friction [—], position command [- -], regressor inputs [:]).

is compressed, the motor current also increases in steps, with a constant current existing

between each step. Under friction, the motor position closely tracks the position commands

like the frictionless case. However, the current waveform exhibits a memory effect due to

stick-slip friction behavior occurring between two subsequent steps. As motion ceases to

exist after a steady-state is reached, with each step position change, the current takes on any

value over a large range as given by Equation 8.7. This results in non-monotonic variations

in the current waveform when the spring is compressed, as the additional current is used

to overcome the friction effects as shown in Figure 8.11. The current spikes occur at the

start of each repositioning step command event as the system begins to move from rest. The

response to the staircase actuation is simulated for a longer duration to allow the position

reference command to settle to steady-state before the next repositioning event and to study

the regressor’s performance under dry friction conditions.
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Figure 8.10: Simulated current measurement with step actuation
(without friction [—], with friction [—], regressor inputs [:]).

Figure 8.11: Friction torque with simulated step command.
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8.4 Stiffness Regression

Through simulations, Section 8.3 establishes that the determination of the stiffness of

an object as a ratio of the change in current to a change in position is applicable only for

systems without friction at equilibrium. For stiffness estimation, the plant and the friction

parameters change when a spring is introduced into the system, leading to an incorrect

stiffness estimate if it is calculated as a ratio. Classical parameter estimation approaches can

be employed to estimate the value of the unknown stiffness ko. Although other parameters of

the system can also be simultaneously estimated along with the unknown stiffness, classical

approaches have several disadvantages. They require a knowledge of the plant physics

to establish the estimation equations, a persistently exciting signal for the simultaneous

estimation of multiple parameters [62], and have a higher computation cost when high

bandwidth parameters related to friction are involved. Moreover, the design of persistently

exciting signals needs care in situations such as grasping, as the object under a grasp can be

ejected out of a grasp.

Inspired by data-driven machine learning approaches, regressors are developed and

evaluated. The regressor models a function f between the input and the output data. As

shown in Figure 8.12, the regressor accepts position and current measurements each of

length L as the input and outputs a measure of stiffness. In the first step, referred to as the

training step, the coefficients modeling the regressor function f are determined from the

dataset consisting of the inputs and the ground-truth stiffness values. In the second step, the

coefficients modeling f in the first step estimate the unknown object stiffness ko. Since data

approximates the function to estimate the stiffness, obtaining an accurate stiffness value

from the trained regressor requires a large dataset [41, 42]. A simulation of the plant and

friction parameters given by Equation 8.6 and Equation 8.7 is utilized to generate the dataset.

A portion of the simulation dataset, referred to as the test dataset, is held out to evaluate

the regressor function, where only the inputs (position and current) are provided, and the
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Figure 8.12: Estimating stiffness through regression.

accuracy of the stiffness estimate is computed. Regressors trained on datasets generated

through simulations are also evaluated with experimental measurement data.

Although the synthesis of the virtual dataset requires an accurate physical description of

the plant, the plant parameter values, its variability, and computing power during the dataset

synthesis and regressor training phases, several benefits exist. A large virtual dataset can be

more easily generated as a batch process with limited human intervention when compared

to the work in Chapter 9; previous research in [32, 33, 39] also use experiments to generate

sparse datasets. Based on [41, 42] a large dataset also helps prevent the overfitting of the

regressor function f . In the virtual world, high bandwidth phenomena (friction) can be

simulated with high fidelity, which can be challenging to introduce in an experimental setup.

Since mechanisms are comprised of multiple parts manufactured to a tolerance specification,

the part-to-part variability is another aspect that can be injected during virtual synthesis.

This minimizes performance degradation when regressors trained on virtually generated

datasets are used on real-world experimental data. Moreover, a trained regressor can be

deployed onto low-cost embedded solutions as the evaluation of stiffness requires only

elementary operations that can be performed rapidly.

8.4.1 Dataset Synthesis Settings

Several datasets are synthesized using the simulation model to study the ability of

regressors to estimate stiffness in the presence of dry friction effects and variations in

the plant parameters for the two actuation commands – ramp and staircase. Each dataset

consisted of N unique items, where each item corresponded to a different stiffness value.
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Table 8.2: Dataset Generation Parameters

Parameter Symbol Value Units
Dataset Size N 2000 –

Training:Testing Ratio – 60:40 –
Sensor Measurement Length L 10 –

Stiffness Range ko [1, 500] N-mm/rad
Ramp Actuation Duration – 4 s

Staircase Actuation Duration – 10 s
Breakaway Friction Range τbrk [1, 300] N-mm

Coulomb÷Breakaway
α [0.45, 0.95] –

Friction Range
Viscous Friction Range η [1, 300] N-mm-s/rad
J and Km Tolerance – 5 %

Additional variations are introduced to the friction parameters, i.e. τbrk, τc, η, and the DC

motor’s nominal plant parameters J and Km listed in Table 8.1. A uniformly distributed

random number generator provides the parameters for each simulation based on the operating

range listed in Table 8.2. The dataset statistics for the various parameter values is shown

in Figure 8.13. As per the Karnopp friction model, since τc < τbrk, the value for τc is

determined as a randomly generated fraction of the value of τbrk, i.e., τc = ατbrk. The

position controller’s gains were tuned based on a nominal set of plant parameters and kept

unchanged throughout the dataset generation process.

8.4.2 Regressor Evaluation

A Support Vector Machine (SVM) regressor with a linear kernel is considered. Mathe-

matical details of the regressor are discussed in [41, 42]. The regressor accepts position and

current sensor inputs each of length L, which controls its size. Other regressor architectures

developed for time-series data and exploiting the sequential nature of the sensor measure-

ments may be employed with similar performance. Since the simulations generate data on

a dense time axis, the time instants at which the L position and current measurements are

obtained is another design choice. For the dataset synthesis in this work, the L sampling
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Figure 8.13: Statistics for the randomly generated set of parameter values. Each simulation
run has a different set of parameters.

instants on the time axis shown by the vertical dotted lines in Figure 8.6 – Figure 8.7 and

Figure 8.9 – Figure 8.10 are used. For the ramp actuation, the first point is logged at an

offset to ensure that the system is in motion. Subsequent points are logged at equal intervals.

For the staircase actuation, the L points are logged at the middle of each step. The datasets

synthesized for each actuation are:

• Dataset D1: No friction or parameter variation

• Dataset D2: Friction without parameter variation

• Dataset D3: Parameter variation without friction

• Dataset D4: Both friction and parameter variation

A regressor is trained for each dataset corresponding to each actuation signal. Built-in

routines in MATLAB from the Statistics and Machine Learning Toolbox are used during the
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training stage. The regressor’s performance is evaluated by computing the metric

% Error =
|kEstimate − kTruth|

kTruth

× 100 (8.8)

where kEstimate is the regressor predicted stiffness value, and kTruth is the ground

truth stiffness used to generate the data. The datasets are abbreviated as Dx, while the

corresponding regressors are abbreviated as Rx, where x = 1, . . . , 4. Figure 8.14 shows

the performance of the regressors designed for operation with the ramp position actuation,

and Figure 8.15 shows those designed for operation with the staircase position actuation

command. The mean performance error for the two actuation commands are tabulated

in Table 8.3 and Table 8.4 respectively. Each cell corresponds to the performance when

regressor Rx is evaluated on the dataset Dx. During regressor training, the datasets are

partitioned into a training set and a test set based on the ratio listed in Table 8.2. So two

performance measures corresponding to the training and testing set are listed for the diagonal

entries in the tables. For the off-diagonal entries, the full dataset of length N is used to

evaluate the regressor’s performance, and therefore only one performance measure is listed

in the table. However, for the Figure 8.14 and Figure 8.15, only the performance with the

test dataset is displayed.

The dataset D1 represents the ideal scenario. Errors during the experimental iden-

tification of the system’s parameters and due to part-to-part variation for manufactured

components are both neglected. Regressor R1 applied to dataset D1 demonstrates that

stiffness is accurately predicted with the position and current measurement data. In dataset

D2, the friction effects are included and represent a situation closer to the experimental

system. When regressor R1 is evaluated on dataset D2, there is a significant deterioration in

the stiffness estimates with both the ramp and staircase actuation. For the ramp actuation,

Figure 8.7 shows that the degradation is because of the offset in the current waveform due to

Coulomb and viscous friction. For the staircase actuation, due to the presence of stick-slip

behavior, the current waveform has non-monotonic changes as shown in Figure 8.10. Perfor-

153



Figure 8.14: Stiffness regression performance on simulation datasets with ramp actuation.

mance degradation also occurs when regressor R1 is tested on dataset D4, which shows the

importance of modeling friction phenomena in the system. When regressor R1 is applied to

dataset D3, the performance degradation is mainly due to parameter variation introduced into

the dataset. Friction has a more significant impact on the accuracy of stiffness estimation

than the variation of simulation model parameters.

When the regressor R2 trained on dataset D2 that includes friction effects is evaluated

on dataset D1 that does not have friction effects, performance comparable to the situation

when regressor R1 is tested on dataset D1 is obtained. Moreover, the regressor R2 evaluated

on dataset D2 shows that an SVM with a linear kernel can overcome the friction effects,

which is predominantly viscous for the ramp actuation, and predominantly stick-slip for

the staircase actuation. Similarly, regressor R2 applied to dataset D4 demonstrates good

stiffness prediction accuracy. The performance degradation when regressor R2 is tested

on dataset D3 is mainly because of the errors introduced due to the parameter variations.

Hence, dataset D2 is a good starting point. Regressor R3 modeled on dataset D3 containing
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Table 8.3: Mean % Error for Simulation Datasets with Ramp Actuation

% Error
Regressor/

R1 R2 R3 R4
Dataset

D1
0.29∗

0.53 0.39 1.20
0.32

D2 96.06
0.51∗

86.68 0.84
0.54

D3 1.34 1.43
1.32∗

1.64
1.33

D4 103.55 1.46 93.45
1.58∗

1.64
∗ performance of the training dataset only

Table 8.4: Mean % Error for Simulation Datasets with Staircase Actuation

% Error
Regressor/

R1 R2 R3 R4
Dataset

D1
0.37∗

3.16 0.24 0.85
0.43

D2 61.49
3.06∗

58.28 2.28
3.23

D3 1.43 3.86
1.32∗

1.71
1.33

D4 56.70 3.72 53.67
2.95∗

3.16
∗ performance of the training dataset only

only parameter variations performs poorly when evaluated on datasets D2 and D4 due to

friction in both datasets.

The regressor R4 trained on dataset D4 containing both friction and parameter variation

has an all-round performance similar to regressor R2 modeled on a dataset that considers

only friction. Dataset D4 is a superset of all the datasets D1 – D3. As an SVM approximates

a nominal set of coefficients from the underlying dataset, regressor R4 modeled on dataset

D4 shows a slight performance degradation when used on other datasets. The percent errors

for the staircase actuation are higher than the percent errors for the ramp actuation. This is
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Figure 8.15: Stiffness regression performance on simulation datasets with staircase actuation.

because of the stick-slip phenomena with staircase actuation. Coulomb and viscous friction

can be made more dominant by lubricating mechanical systems to reduce stick-slip friction

and selecting actuations having a smooth motion, such as a ramp. Also, it is essential to

include friction phenomena occurring in the system during virtual dataset synthesis.

8.5 Experimental Results

Figure 8.16 shows a CAD rendering of the experimental setup of the rotational system.

It consists of a 3-D printed frame and a rotary arm installed on a Dynamixel XM430-W210R

smart servo motor’s shaft. The motor operates in the current-based position control mode.

A Texas Instruments TMS320F28379D microcontroller issues time-periodic commands

via a serial communication interface to the motor and logs the motor’s position and current

sensor measurement data at a rate of fs. The axes of the motor and an off-the-shelf left-hand

wound torsion spring are aligned. The experimental setup emulates a single degree of

freedom gripper system. One end of the spring contacts the frame, and the other end of
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Figure 8.16: CAD rendering of the setup for experimental evaluation.

the spring contacts the rotary arm. Compression of the spring occurs between the frame

and the rotary arm. The smart servo is commanded with a ramp and staircase actuation

profile, similar to the commands used during the simulation and the dataset generation steps.

Figure 8.17 – Figure 8.20 show the experimental measurement data with each actuation

profile for torsion springs of two different stiffness values. The experiments show trends

similar to the simulations. Since spring 2 has higher stiffness, the motor current for spring 2

is higher when compared to spring 1. Also, similar to the simulations, Figure 8.20 shows

the presence of dry friction effects in the current measurement data with step actuation. A

subset of the data log containing the L input points at the defined time instants shown by the

dotted vertical lines is the input to the regressor. As the motor and the torsion springs have

friction, the regressor modeled on the dataset with both friction and parameter variations is

used.

Table 8.5 tabulates the experimental results and evaluates regressor R4. The regressor

is trained on virtually synthesized dataset D4 and contains both friction and parameter

variation. Off-the-shelf springs from McMaster-Carr Supply Co. are used (Spring 1 Part

No. 9271K708, Spring 2 Part No. 9271K232). The tables list the mean of 5 trials for each

case. The worst-case stiffness estimation accuracy for ramp actuation is 3.4%, and for the

staircase actuation is 5%.
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Figure 8.17: Experimental ramp position command to π/2 rad
(Spring 1 [—], spring 2 [—], position command [- -], regressor inputs [:]).

Figure 8.18: Experimental current measurement with ramp actuation
(Spring 1 [—], spring 2 [—], regressor inputs [:]).
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Figure 8.19: Experimental step position command to π/2 rad, 10 steps
(Spring 1 [—], spring 2 [—], position command [- -], regressor inputs [:]).

Figure 8.20: Experimental current measurement with step actuation
(Spring 1 [—], spring 2 [—], regressor inputs [:]).
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Table 8.5: Performance with Experimental Data

Ground Truth Spring 1 Spring 2
(N-mm/rad) 111.5 161.8

Regressor
Estimate Error Estimate Error

N-mm/rad % N-mm/rad %
Ramp actuation 110.4 0.9 167.3 3.4

Staircase actuation 117.0 4.9 169.9 5.0
Datasheet specified ground truth tolerance = 10%.

8.6 Summary and Conclusion

This chapter considers a single degree of freedom gripper mechanism and demonstrates

how only actuator position and current measurements can determine the unknown stiffness

of an object, i.e., a spring, using regression. The chapter also discusses the synthesis of

datasets for training regressors through simulation and the aspects that need consideration.

Simulation allows the generation of large datasets as a batch process, which prevents

overfitting issues during regressor training. The chapter exposes how nonlinear effects,

such as dry friction, can be incorporated during the dataset generation process to improve

the regressor’s prediction accuracy. Regressors improve stiffness estimation performance

when dry friction and parameter variation are present in the mechanism. Also, regressors

trained on simulation datasets can accurately estimate the stiffness when fed experimental

measurements. The work presented in this chapter resulted in the publication [63].
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CHAPTER 9

STIFFNESS ESTIMATION WITH UNDERACTUATED TRANSMISSION

MECHANISMS

9.1 Introduction

Research in [32, 33, 36] presents grippers that have multiple jaws that resemble human

fingers. The finger mechanisms utilize an underactuated transmission mechanism to achieve

motion. Figure 9.1 shows a schematic representation of a finger driven by a tendon-pulley

transmission mechanism inspired from [32, 33]. A single actuator drives the two-link

mechanism; the tendon starts at the pulley attached to the motor, runs continuously through

the body of link-1, and terminates at link-2. From [64], the kinematic constraint that relates

the motor’s position and the link angles is given by

θmrm = θ1r1 + θ2r2 (9.1)

where rm, r1, r2 and θm, θ1, θ2 are the pulley radii and positions of the motor and links 1

and 2 respectively. Equation 9.1 illustrates the coupled motion of the two links due to the

tendon-pulley mechanism. The application of an increasing motor torque allows the taut

tendon to transfer torques to the two links causing a rotation, say in one of the directions as

indicated in the schematic. During contact between an object and the finger, an increasing

motor torque transfers a compressive force onto the object under a grasp. It is interesting to

note that the rotation of the motor can cause motion of the links only in one of the directions

(counter-clockwise in the graphic). Torsion springs are located along the link axes and

cause motion of the links in the opposite direction (clockwise in the graphic). When the

motor torque is removed, the restoring torque provided by the springs returns the links to

their equilibrium position. Other designs described in [64] utilize additional tendon pulley
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Figure 9.1: Schematic of the underactuated tendon-pulley transmission mechanism.

transmission trains to cause rotations in the opposite direction to restore the links but result

in fully actuated mechanisms.

Underactuated mechanisms in grippers are increasing in popularity because control

algorithms have low levels of complexity resulting in open-loop operation. Fewer sensors

are needed, which reduces the overall cost of grippers, i.e., joint position and torque sensors

are not required. Equation 9.1 also illustrates the adaptability of the finger to an object’s

shape. For a given θm and assuming a taut tendon, θ1 and θ2 can change based on the object’s

shape. This feature is suitable for applications where object manipulation is essential. The

reduced control complexity also comes at a price, where it is not possible to enforce

control of both links (θ1, θ2) simultaneously, which may be desirable for some applications.

Reorientation of the gripper pose could result in a drop in the tendon tension resulting in a

loss of grasp. On the other extreme, it is also possible to apply forces that damage the object

or eject it out of a grasp. Compared to fully actuated mechanisms, the operating workspace

of the underactuated gripper is reduced and requires care during the design phase [36].

The focus of this chapter is to extend the squeeze test approach presented in Chapter 8

to underactuated fingers driven by tendon-pulley transmission mechanisms as shown in

Figure 9.1. The finger has access only to position and current sensor measurements from the
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actuator that drives the transmission train. For comparison, prior research work in [32, 33,

35] utilize force sensor arrays mounted on the finger to classify stiffness into a few categories

(high, medium, low stiffness). The chapter designs regressors for the underactuated finger

mechanism to provide a continuous-valued linear stiffness output in SI units. The dataset to

train and evaluate the regressor is obtained through automated squeeze test experiments and

provides a comparison with the approach presented in Chapter 8, which uses simulations

to generate the dataset to train the regressor. Since a large dataset is needed to train the

regressor, an apparatus that simulates stiffness is developed. The apparatus presents a

standardized and calibrated stiffness to the underactuated finger mechanism during data

collection and can be adjusted electronically. The approach overcomes the challenges of

previous research in [32, 33, 35]; in [33], a small dataset (about 75 items) is obtained from

objects made from polyurethane foam of different linear stiffness, and [35] uses everyday

objects during data collection. It is essential to retain the object’s shape when stiffness

is varied, as classifiers can exploit attributes that characterize the shape during machine

learning. The stiffness apparatus systematizes the data collection process and allows only

the stiffness to vary.

9.2 Stiffness Apparatus

The apparatus to emulate linear stiffness is shown in Figure 9.2. It consists of parallel

plates driven by a linear DC motor. A load cell is located between the actuator and the plates

to measure the normal forces applied to the apparatus by the gripper’s fingers. The linear

actuator operates in a position control loop. Stiffness regulation is achieved by commanding

a position to the linear actuator using the load cell’s readings. Direct measurement of the

applied external force obviates the need to model the friction and backlash arising in the

linear actuator, which can be significant.
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Figure 9.2: Cross-section of the stiffness apparatus for electronically generating linear
stiffness during data collection.

9.2.1 Stiffness Control Loop

The stiffness control loop architecture is shown in Figure 9.3. The design model follows

the single-stage position control formulation discussed in Subsection 8.2.2 and based on [59].

An Actuonix L12-P DC motor with a 3 cm pitch operates the parallel plate device. The Texas

Instruments TMS320F28379D MCU implements the embedded controller. PWM signals

generated by the MCU apply voltage input to the DC motor through an H-Bridge (DRV8305

booster pack). The rail voltage of the H-Bridge is set to V = 6 V. Analog position feedback

provided by the motor is logged using an ADC peripheral. A 5 kg load cell TAL220B

connects to a load cell amplifier HX711 and provides digital force measurements to the

MCU through serial communication. The HX711 provides measurements at a maximum

rate of 80 Hz.

In Figure 9.3, kref is the desired stiffness of the apparatus, F and y are the measurements

from the force and the position sensor. Equation 8.3 provides the plant model used to design

the controller gains (K11, K12, K2) and the estimator gains (L1, L2) for the position control

loop. Note that Equation 8.3 lists the plant physics for a rotary motor, but the same equations

apply even to a linear motor by interpreting the parameters in terms of their linear analogues.

x̂ = [x̂1 x̂2]
T are the estimator’s states corresponding to the linear position and velocity.

164



σ is the state variable associated with the integrator. yref is an equilibrium position of the

apparatus. Force sensor measurements modify the command issued to the position control

loop w.r.t. the equilibrium position. The pre-saturated control input u∗[k] at the current

instant k is computed as

u∗[k] = −K11x̂1[k]−K12x̂2[k]−K2σ[k] (9.2)

The control input to the actuator is limited to a maximum rail voltage of V . Actuator

saturation is achieved by

u[k] =

 V, u∗[k] > V

−V, u∗[k] < −V
(9.3)

For a control loop rate of h, applying forward Euler discretization, the integration equations

are given by

x̂1[k + 1] = x̂1[k] + h (x̂2[k]− L1(x̂1[k]− y[k])) (9.4)

x̂2[k + 1] = x̂2[k] + h (−αx̂2[k] + βu[k]− L2(x̂1[k]− y[k])) (9.5)

where α and β are the motor’s parameters. The integrator update equation with anti-windup

compensation is implemented as

σ[k + 1] = σ[k] +


0 , |u∗[k]| > V

h

(
y[k] +

F [k]

kref
− yref [k]

)
, |u∗[k]| ≤ V

(9.6)

The H-Bridge applies the voltage across the motor, and the duty cycle applied for an
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Figure 9.3: Stiffness control loop implementation. kref sets the stiffness level of the
apparatus.

up-down time-base counter is determined by

d[k] =
1

2

(
1.0 +

u[k]

V

)
(9.7)

Based on [59], with the regulator and estimator parameters λr and λe, the formulas for the

loop gains are given by

K11 =
3λ2r
β
, K12 =

3λr − α
β

, K2 =
λ3r
β

L1 = 2λe − α, L2 = (λe − α)2
(9.8)

9.2.2 Stiffness Loop Experimental Evaluation

The linear motor’s parameters are obtained experimentally with the procedure detailed

in Chapter H and the identified parameters are listed in Table H.1. The embedded controller

implements the equations listed in Subsection 9.2.1. The control loop is operated at a rate of

1 kHz (h = 1 ms) with the gain values set to λr = 30 rad/s and λe = 120 rad/s. Note that

the position sensor’s measurements are sampled at the control loop’s rate of 1 kHz, while
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Figure 9.4: Stiffness loop performance for kref = 500 N/m. Force of 1.96 N through a 200
g test mass is introduced at t ≈ 0.1 s. Onset of loading [- -], commanded stiffness [- -].

the force sensor’s measurements are sampled at 80 Hz. During the periodic execution of the

control loop, for approximately 12 samples, the same force sensor reading is used during

the integration of the state equations described in Subsection 9.2.1. The PWM peripheral

uses a timebase frequency of 25 kHz.

The operation of the stiffness loop is shown in Figure 9.4, where the stiffness level is

set to kref = 500 N/m. The stiffness apparatus is subjected to a force of 1.96 N (test mass

of 200 g) at about 0.1 seconds. The initial reference position of the stiffness apparatus is

at 2.5 cm, and the application of force results in a compression of about 3.9 mm, settling

approximately 0.32 seconds later. The mean steady-state error in stiffness due to the step

force application in the example is ≈ 1.2 N/m.

9.3 Stiffness Data Collection

Figure 9.5 shows the snapshot of the underactuated finger applying compressive forces

to the stiffness apparatus. The finger hardware and the stiffness apparatus were 3-D printed
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d

Figure 9.5: Underactuated finger applying compressive forces onto the stiffness apparatus
during a squeeze test.

using ABS plastic. The stiffness apparatus implements hardware and algorithms discussed

previously to behave like a linear spring. Since the squeeze test involves no manipulation

during grasping (i.e., lifting, relocating the object), the finger assembly and the stiffness

apparatus are clamped to the table. The finger design is inspired by [32] but makes several

upgrades through simulations of the finger’s physics. The restoring mechanisms connecting

the links use a torsion spring instead of a linear spring used in [32, 33], minimizing contact

between various components. Lubrication is introduced at the joints to make viscous friction

effects dominant. As clarified by Equation 9.1, an increasing motor position (tendon tension)

results in a coupled motion of both links.

The MCU connects to a host PC through the serial communication interface and ex-

changes stiffness settings and the finger actuator’s measurement data during each squeezing

experiment. Apart from the linear stiffness, the setup also allows variations in the distance

between the gripper and the apparatus (d in Figure 9.5). The two experimental conditions

are used to build the dataset and permit some degree of automation during data collection.

The finger-apparatus contact can occur in several ways – fingertip contacts, proximal or

distal links contact at an interior point, or both links contact. The data collection considers

only fingertip contacts, and the separation distance (d) between the gripper and the apparatus
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Figure 9.6: Position measurements during squeeze test (stiffness kref = 400 N/m [—],
stiffness kref = 600 N/m [—], position command [- -], regressor inputs [:]).

is selected to meet the constraint. Also, contacts that transition to a fingertip contact are not

considered.

Similar to Chapter 8, the Dynamixel XM430-W210R smart servo motor drives the

underactuated finger of Figure 9.5. The motor operates in the position control mode during

data collection. The controller gains are tuned to a nominal set of parameters based on

trial-and-error and are unchanged throughout the dataset generation process. A Texas

Instruments TMS320F28379D MCU issues serial commands to the servo motor and obtains

the motor’s position and current sensor data. Figure 9.6 – Figure 9.7 show the measurements

when a staircase position command is applied by the motor controlling the gripper’s finger.

Both links are initially at an equilibrium position and do not contact the object. As the

position command increases, the underactuated finger closes in on the object and makes

initial contact. With increasing compression of the object, the current through the motor

also increases. Figure 9.7 shows that the finger-object contact occurs at around 4.75 seconds,

after which the finger applies compressive forces.

The approach phase is an additional element in the underactuated finger experiments,
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Figure 9.7: Current measurements during squeeze test (stiffness kref = 400 N/m [—],
stiffness kref = 600 N/m [—], regressor inputs [:]).

while in Chapter 8, the spring and the jaw are in contact throughout the data collection

phase. The position, current, and the contact instant also include attributes characterizing

the object’s size and the location within the finger’s workspace. As the stiffness apparatus

maintains the same object size, it ensures that the regressor learns only components that

affect the stiffness. In the figures, as the stiffness increases, the discrepancy between the

commanded position and the measured position also increases. The controller attempts to

bridge the position gap with the increased current flow, features leveraged by the regressor-

based stiffness estimation approach. Some small non-monotonic behavior is visible in the

current waveform, which is attributable to low levels of dry friction in the mechanism; dry

friction appears due to contact between the links and tendon-link contact.

The data collection settings are summarized in Table 9.1. Chapter 8 discusses the

effects of dry friction and the selection guidelines for an actuation signal. However, a

staircase actuation signal is selected to provide a conservative estimate of the stiffness

regression performance for the underactuated finger mechanism. The L vertical dashed lines
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Table 9.1: Data Collection Settings with the Underactuated Finger

Parameter Symbol Value Units
Dataset Size N 750 items

Training:Testing Ratio - 0.8 -
Staircase Actuation Duration - 10 s
Number of Staircase Steps - 15 -

Sensor Measurement Length L 16 -
Sampling Frequency fs 1 kHz

Stiffness Range ko [400, 1800] N/m
Position Range d [6, 10] cm

in Figure 9.6 – Figure 9.7 indicate the time instants when the data is sampled for regressor

input, similar to Chapter 8. The staircase actuation duration, the position command, and

the number of steps are the design criteria for the actuation signal; selected based on the

stiffness range, the gripper’s workspace, and to allow for equilibrium to be achieved in the

position and current measurements before the samples for the regressor inputs are obtained.

The dataset consists of N items, and each item corresponds to data from a unique

experiment (stiffness setting, distance change). The stiffness range models a wide variety of

objects. The linear stiffness range between [400, 1800] N/m is selected based on the results

presented in [33], where the values at the lower bound correspond to compressible objects

(ex. foam), while those at the upper bound correspond to rigid objects (ex. wood block). A

uniformly distributed random number generator programs a reference stiffness level kref

for each trial. Additionally, the dataset diversity is increased by modifying the separation d

between the gripper’s base and the stiffness apparatus as shown in Figure 9.5 every 75 trials

by 0.4 cm.

9.4 Regression Performance

Figure 8.12 illustrates the high-level representation of the regression architecture. Po-

sition and current, each of length L, are the inputs to the function f . The L data points

correspond to the values at the time instants shown by the vertical dashed lines in Figure 9.6

– Figure 9.7. The function f outputs a measure of the linear stiffness in N/m. Since the finger
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consists of multiple links driven by the tendon-pulley transmission mechanism, the physics

of the finger involves trigonometric terms. This motivates the use of a nonlinear function

to model f from the regression dataset. The function f consists of three layers – an input

layer, a network layer, and an output layer. The input layer mainly formats the data and

performs normalization. For the network layer, two competing options exist – a single layer

Neural Network (NN) and a single layer Long Short Term Memory (LSTM), each having

a size of 50. References [41, 42] discuss the theoretical details of the NN and the LSTM

networks. The design choices considered in this chapter are referred to as shallow networks.

On the other hand, for example, the network layer for deep networks is characterized by

multiple copies of NN or LSTM layers. The output layer consists of a fully-connected layer

to provide the linear stiffness estimate in SI units.

The dataset is divided into a training set and a test set, and the test set is held out during

the training phase. This process is analogous to training a regressor and deploying the

trained model into the gripper for live validation with new measurement data under different

experimental conditions (kref , d). The networks are designed and trained with built-in

libraries from MATLAB’s Deep Learning Toolbox. Figure 9.8 summarizes the performance

during the training and testing phase, where the predicted stiffness is compared with the

ground truth stiffness for each item in the datasets. The deviation from the nominal value,

i.e., ground truth = estimate and shown by the dashed red line, indicates the estimation error.

The performance error in the stiffness measurements is determined using Equation 8.8, and

Table 9.2 summarizes the mean prediction accuracy. Regressor-based stiffness estimation

achieves comparable performance with both networks – NN and LSTM.

The performance with the test dataset suggests that the regressor can generalize well to

new test scenarios that the regressor has not seen. Since the staircase actuation is applied,

the measurement data contain effects due to dry friction in the mechanism and provide

conservative performance estimates. Additionally, the measurement data also includes

effects due to the stiffness apparatus. Because stiffness = force change/compression, higher
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Figure 9.8: Regressor performance comparison between estimated and ground truth stiffness.
The nominal estimation performance with no error is represented by [- -].

Table 9.2: Regressor Performance with the Underactuated Finger

Regressor
% Error

Train Test
Neural Network 4.01 5.55
LSTM Network 2.59 5.05

stiffness values require larger forces to be applied to the stiffness apparatus to induce a

detectable compression. After all the data collection logic disallows multiple grasps of the

object to permit adaptation of the staircase profiles based on initial measurements and uses

the same staircase actuation command for low and high stiffness levels, the errors increase at

higher stiffness levels. The performance of the LSTM regressor is slightly better compared

to the NN regressor because the LSTM is suitable for modeling relationships occurring in

sequential data [42], and the position and current data are time-series measurements.
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9.5 Summary and Conclusion

This chapter studies an underactuated finger driven by a tendon-pulley transmission

mechanism and extends the squeeze test approach presented in Chapter 8. The work

demonstrates that position and current measurements are sufficient to determine the unknown

stiffness of an object using regression. Experiments generate the dataset to train and

test the regressor, with the finger actuated by a staircase command signal to achieve and

maintain a fingertip grasp. An electronically controlled stiffness apparatus is discussed that

systematizes the data collection process and allows the acquisition of multiple measurements

from the experimental setup. Regressors using single layer NN and LSTM networks trained

on experimental datasets accurately estimate the stiffness presented to the finger by the

apparatus.
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CHAPTER 10

CONCLUSION

10.1 Contributions

This research addresses several key issues to enhance the operation of ultrasonic trans-

ducers. Time optimal control principles are applied to study a transformer-driven transducer

system, which results in a high order of the system. The resulting excitation scheme main-

tains the amplitude of the transmitted pressure wave and improves the minimum range and

the range resolution by shortening the length of the decaying tail of the TX-FUT. The OCP

formulation consists of a sequence of two sub-problems, and numerical solutions are deter-

mined through a high dimension NLP. The PWM excitation synthesis procedure exploits the

superposition principles to realize the excitation schemes on the bench using low-cost MCUs.

Although the studies focus on a transformer-driven configuration, the developed methods

apply to other drive configurations as outlined in Appendix B. Experimental results achieve

an average improvement in the minimum range by about 32% versus the baseline excitation

strategy, which applies an integral number of pulses at the FUT’s resonant frequency. The

range resolution of the system also shows a similar improvement.

Time optimal formulation is also applied to enhance the shape characteristics of an echo

at a receiving FUT by manipulating the voltage excitation applied to a transmitting FUT.

The math-based formalism considers the transmitter and the receiver dynamics (results

in a 6th order system). The transmitter excitation scheme obtained through the numerical

solutions results in echoes with a sharp rise to the peak followed by a fast fall to equilibrium.

Experimental evaluations show an improvement of about 60% in the pulse width resulting

in improved range resolution. The enhancements maintain the peak amplitude level of the

echo when compared to the baseline excitation that applies an integral number of cycles

to the transmitting FUT at the resonant frequency. The research illustrates tradeoffs in the
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minimum range, range resolution, amplitude of the transmitted pressure, and received echo

with the two competing time-optimal schemes.

Two simple model-free algorithms – damping and masking, are developed for transmitter

and receiver enhancements. The algorithms can run on low-cost, resource-constrained

embedded devices. The model-free approaches remove the need for a mathematical model

of the system and an accurate knowledge of the system’s parameters. The algorithms can

use any excitation driver circuit topology between the source and the FUT as discussed in

Appendix B, can capture sensor installation conditions, and also self-tune depending on the

pressure↔ voltage sensitivity of the FUT. The transmitter damping approach improves

both minimum range and range resolution and achieves approximate time-optimality by

appending out-of-phase damping cycles. On the other hand, the masking algorithm improves

the minimum range of the FUT, where the echo-induced voltage component is isolated

from the pulse-imposed voltage component by subtracting a stored masking signal from the

acquired signal. Because the commissioning procedure can run within a short duration, both

algorithms can execute whenever recalibration is needed.

The research presents an ultrasonic sensor array that uses a single narrowband transmitter

and a receiver array consisting of MEMS microphones to detect multiple objects in 3-D space.

A small number of microphone elements is beneficial, as it allows for a significant reduction

in the system cost and computing requirements while also boosting the sensor’s throughput.

Several phased array algorithms (DAS, MVDR, MUSIC) determine the directions of arrival,

where Chapter 7 discusses beamforming in a transformed (v, w) space. The post-processing

algorithms outline the extraction of multiple local maxima from an array and interpolation

to improve the detection accuracy of the sensor. Experimental results demonstrate the

high throughput of the sensor system, comparable to a vision system when the processing

algorithm runs on an embedded device. The sensor system, processing architecture, and a

detailed computation cost analysis provide requirements for dedicated single-chip solutions.

In the tactile sensing area, the research studies the problem of estimating the stiffness
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of a grasped object. The squeeze test exploratory procedure uses only position and current

measurements to determine the unknown stiffness of the grasped object. The overall system

implementation is cost-effective as the system does not use contact force sensors on the

gripper’s jaws (fingers). The research addresses if regression can estimate object stiffness

and provide a continuous-valued stiffness output in the presence of dry friction and parameter

variation effects. The performance of regressors trained with simulation-generated datasets

on real-world experimental measurement data is also evaluated. The regression approach is

extended by successfully estimating the stiffness with an underactuated finger consisting of a

tendon-pulley transmission mechanism. Chapter 9 describes an apparatus that systematizes

the generation of linear stiffness for collecting experimental data and training regressors

instead of relying on everyday objects as stiffness sources.

The research resulted in the following publications:

• A. Balasubramanian, K. Sastry, D. Magee, and D. Taylor, “Time Optimal Operation of

Flexural Ultrasonic Transducers For Enhanced Ranging,” IEEE Industrial Electronics

Society Conference, pp. 1–6, 2021.

• A. Balasubramanian, D. Magee, and D. Taylor, “3-D Ultrasonic Sensing in Air

with a Narrowband Transmitter and a Receiver Microphone Array,” IEEE Industrial

Electronics Society Conference, pp. 1–6, 2021.

• A. Balasubramanian, D. Magee, and D. Taylor, “Stiffness Estimation in Single Degree

of Freedom Mechanisms using Regression,” IEEE Industrial Electronics Society

Conference, pp. 1–6, 2021.

• A. Balasubramanian, K. Sastry, D. Magee, and D. Taylor, “Transmitter and Receiver

Enhancements for Ultrasonic Distance Sensing Systems,” IEEE Sensors Journal, vol.

22, no. 11, pp. 10692–10698, 2022.

Results from Chapter 5 on the operation of transmitting FUTs to enhance the echo shape at

a receiving FUT will be submitted to a journal for publication.
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10.2 Future Work

The research uses low-cost hardware to excite the transducer, and the excitation schemes

are constrained to the rail limits. The design of hardware topologies that allow transducer

excitations with less constrained inputs is a potential focus area. The application of ex-

citations in a closed-loop setting is another candidate area. Analysis of the relationship

between the excitations synthesized through time-optimal schemes presented in the research

and pulse compression schemes is a prospect. The synthesis of excitation schemes through

system inversion is another investigation opportunity. The model-free algorithm self-tunes

only transmitting FUTs; a model-free self-tuning algorithm enhancing receiver operation

for results in Chapter 5 is another candidate. The ultrasonic array operation for detecting

multiple objects performs beamforming at the receiver. Transmit beamforming will allow

for a higher field of view, but the transmitter size is a limiting factor. MEMS-based design

of transducer arrays can address the limitations of transmitter/receiver array designs. The

research discusses an architecture for the processing algorithm and provides computing

requirements to achieve throughputs comparable to a vision system. The design of dedicated

chip solutions and accelerators for compute-intensive beamforming is a valuable next step.

The 3-D sensor array provides point cloud data; the classification of objects using ultrasonic

point clouds and sensor fusion with multiple ultrasonic sensor arrays or vision sensors is

another potential research area.

The stiffness estimation work focuses on a single underactuated finger and considers

fingertip contact. Extension to multi-fingered underactuated mechanisms that consider

other grasp types utilizing multiple squeeze tests to adapt the actuation signal is a natural

next step. The compression tests assume that the application of forces retains the object’s

shape. Stiffness estimation allowing object shape changes is an investigation opportunity.

The design of a dynamic model of the underactuated system and the influence of the

dynamics on stiffness estimation is another candidate for exploration. Transferring regressors
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trained for underactuated gripper systems using simulation data for use with real-world

experimental measurements is a natural extension. The stiffness apparatus introduces

systematic stiffness emulation facilitating the collection of a large-sized experimental dataset

suitable for regression and classification architecture design. The adaptation of pre-trained

regression architecture to new applications is an opportunity.
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APPENDIX A

TRANSDUCER PARAMETER ESTIMATION PROCEDURE

An AP Instruments Model 300 frequency response analyzer collects the frequency

response data from the FUT. Figure A.1 shows the connection details of the electrical circuit

during data collection. The equipment applies calibrated electrical voltage excitation of

Vin(ω) to the circuit. A reference resistor Rref connects in series with the FUT’s electrical

terminals. During the data collection step the measurement probes connect across the

reference resistor as shown by the probing points A and B in Figure A.1. A PC-based

software supplied by the equipment manufacturer, AP Instruments, controls the analyzer.

The input voltage during measurements is set to Vin(ω) = 1.77V RMS for each center

frequency and the reference resistor value Rref = 1 kΩ for the FUT is programmed in

the tool. The device performs a frequency sweep between 30 kHz and 80 kHz in steps of

100 Hz, and the bandwidth of the instrumentation system is 10 Hz, with a gain of 6 dB.

Measurement data is averaged 50 times to reduce the noise at each frequency. The tool

automatically performs pre-processing based on the configurations to provide the complex

impedance measurements of the FUT.

Rref

FUT

A

BVin(ω)

Figure A.1: Circuit for collecting frequency response measurements for an FUT. The trans-
former parameter estimation in Appendix D also uses the same circuit, and the transformer’s
primary terminals connect to Rref in place of the FUT.
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APPENDIX B

TRANSMIT DRIVE CIRCUIT CONFIGURATIONS

Figure B.1 shows an overview of the excitation circuit, and Figure B.2 provides the

detailed version. A driver circuit exists between the source and the FUT for transferring

power. With Zsrc and Zload as the complex source and load impedances, from [46], power

transfer is maximized when Zsrc = Z∗
load. Some common drive circuit choices have multiple

combinations of passive elements (inductors, capacitors, or transformers) but increase the

overall system order, cost, and complexity. For a narrowband FUT the four suitable drive

configurations are – direct drive, transformer drive, CL, and LC drive.

Applying the maximum power transfer principle to each configuration results in an ideal

set of design parameters for each drive circuit and is summarized in Table B.1. The LC and

CL drive configurations are obtained by rearranging the locations of the inductor and the

capacitor elements. The transformer drive configuration, which this research emphasizes,

is modeled using dependent sources as discussed in Subsection 3.3.1. Table B.1 lists two

design options for the transformer drive system. The first design option specifies the ideal

value for both the transformer coil inductance Lm1 and the turns ratio n, resulting in a less

realizable design. The second option specifies only the transformer coil inductance Lm1 and

provides flexibility in the choice of the turns ratio n. The state-space representations for

each drive configuration are summarized in Table B.2. The addition of driver circuits has

the effect of canceling the bulk capacitance Cp of the FUT.

The transformer drive and the CL drive configurations are AC coupled and protect

Source
Driver
Circuit

FUT

Figure B.1: Excitation circuit overview.
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Figure B.2: Detailed excitation circuit. Drive configurations choices – direct, transformer,
CL and LC drive. One of the four choices is connected between the excitation source and
the transducer. For simplicity, Xsrc = 0.
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Table B.1: Ideal Drive Design Parameters

System Configuration Parameter Values

LC drive Lm =
RsrcQ−Xsrc

ω
; Cm =

Q

ωRs

− Cp

CL drive Lm =
Rs

ω (ωRsCp +Q)
; Cm =

1

ω (QRsrc +Xsrc)

Transformer drive Option 1: Lm1 =
R2

src +X2
src

ω (RsrcRsωCp −Xsrc)
; n =

√
RsRsrc

R2
src +X2

src

Option 2: Lm2 =
RsRsrc

ω (RsrcRsωCp −Xsrc)
= n2Lm1

Formulas for different system configurations are obtained through impedance matching.

ω =
1√
LsCs

and Q =

√
Rs

Rsrc

− 1. Xsrc is included in the derivations for completeness.

the FUT compared to the direct drive and LC drive configurations; the application of DC

voltages to the FUT can cause permanent deformations of the piezoelectric material [65].

The direct drive results in the lowest model order of 3, whereas the CL drive results in a

system that has an order of 5. Prior research [7–9] utilizes a sinusoidal excitation signal to

excite a narrowband FUT, which may not be necessary. Since the FUT is bandpass, a square

wave voltage is sufficient and requires simpler hardware to synthesize the excitation signal

(using H-Bridge circuits). Previous research also does not consider the intermediate driver

stage. The vibration control methods and experiments study the transformer-driven system,

but the methods also apply to the other drive configurations listed in Figure B.2.

The simulations for the direct drive and the transformer drive configurations are shown

in Figure 3.10 and Figure 3.11. For the transformer drive configuration, using the design

formulas provided by the design option 1 in Table B.1 result in the parameter values:

Lm1 = 4.88 µH and n = 32.8. This design is not practically realizable as the value for Lm1

is small (close to leakage inductance levels) and the transformer has a high turns ratio. With
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Table B.2: State-Space Representation of Transmit Circuit Configurations

System Configuration A-Matrix B-Matrix

Direct drive


−Rs

Ls

− 1

Ls

1

Ls

1

Cs

0 0

− 1

Cp

0 − 1

CpRsrc




0

0

1

CpRsrc



Transformer drive



−Rs

Ls

− 1

Ls

1

Ls

0

1

Cs

0 0 0

− 1

Cp

0 − 1

n2CpRsrc

− 1

nCp

0 0
1

nLm

0




0

0

1

nRsrcCp

0



LC drive



−Rs

Ls

− 1

Ls

1

Ls

0

1

Cs

0 0 0

− 1

Cp + Cm

0 0
1

Cp + Cm

0 0 − 1

Lm

−Rsrc

Lm





0

0

0

1

Lm



CL drive



−Rs

Ls

− 1

Ls

1

Ls

0 0

1

Cs

0 0 0 0

− 1

Cp

0 − 1

CpRsrc

− 1

Cp

− 1

CpRsrc

0 0
1

Lm

0 0

0 0 − 1

CmRsrc

0 − 1

CmRsrc





0

0

1

CpRsrc

0

1

CmRsrc
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Figure B.3: Simulation – voltage (x3) appearing across the FUT.

the design option 2 the transformer’s turns ratio is a free parameter giving the secondary

inductance value of Lm2 = 5.3 mH. The transformer used in the experimental work is

selected based on this guideline and has Lm2 = 3 mH as listed in Table D.1.

Figure B.3 and Figure B.4 show the simulations for the LC and CL drive systems where

the excitation defined by Equation 3.8 – Equation 3.10 with ne = 5 is applied. Ideal design

values for the inductor and the capacitor based on the design formulas in Table D.1 are

selected for the LC and CL networks. Both networks achieve comparable performance; the

peak amplitude of the current x1 (transmitted pressure wave) is higher when compared to

the direct drive simulations of Figure 3.11 for the same uT because of a better power transfer

from the source to the load. For the transformer-driven network, a higher turns ratio can

provide similar peak current amplitudes as the ideal LC or CL-driven networks.
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Figure B.4: Simulation – current (x1) through the oscillatory branch of the FUT. Current
represents the emitted pressure.
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APPENDIX C

RECEIVER BOARD DESIGN

Figure C.2 shows the schematic of the custom receiver designed especially for the needs

of this research, and Figure C.1 shows the hand-assembled receiver. A custom receiver is

essential for analog signal processing, data collection, and experimental evaluation of the

developed algorithms. Only a few commercial solutions provide access to the analog signal

data (Texas Instruments PGA460), offering limited customization and without synchronized

data collection, which is essential when using multiple receiver elements. The receiver

amplifies and filters in two stages to allow for flexibility while also meeting the specifications

of the low-noise opamp. The amplifier has four selectable gains for the first stage, introduced

through analog multiplexing, and the second stage provides a fixed gain, allowing net input-

output amplifier gains of {300, 600, 1170, 1800} V/V. Multiple amplifier gains allow

operation with different input devices (microphone or FUT), receive sensitivity variations

(microphone has ≈ 30 dB better sensitivity compared to the FUT), and accommodate

modifications to the operating range of the sensor. The bandpass filter has a net passband

frequency between [44, 72] kHz and is tuned to operate around the FUT’s resonant frequency

of 58.5 kHz.

(a) Front. (b) Back.

Figure C.1: Assembled receiver board.
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The receiver board has several circuits – an onboard voltage regulator to provide a fixed

rail supply of 3 V to the filtering and the amplification stages; a bias generator to provide

a fixed reference level at 1.5 V for converting bipolar voltage signals [−1.5, 1.5] V into a

unipolar signal [0, 3] V before feeding a single-ended ADC. As shown in Figure C.1, the

header pins allow the stacking of multiple boards on top of one another, which is suitable

for the array mode of operation. Each receiver board feeds a dedicated ADC pin on the

TMS320F28379D MCU. The opamp’s output signal can be routed to one or more header

pins feeding the MCUs ADC channel by shorting the ADCx and ADCSELx traces, where

x = 1, . . . , 8. In the assembled board shown in Figure C.1, ADCSEL1 is shorted and

connects the opamp output to channel ADC1.
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Figure C.2: Receiver board schematic. Passband frequency: [44, 72] kHz, and selectable
gains: {300, 600, 1170, 1800} V/V.
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APPENDIX D

TRANSFORMER PARAMETER ESTIMATION

A TDK EPCOS B78416A2232A003 step-up pulse transformer is the driver stage be-

tween the excitation source and the FUT. The data collection circuit is shown in Figure A.1

with Rref = 10 Ω. The transformer is the device under test, and the transformer’s primary

terminals connect between the ground and Rref . Two impedance measurement tests provide

the data to obtain the parameters of the circuit of Figure 3.8 – short-circuited secondary

and open-circuited secondary; Figure D.1 plots the resulting data. The effective impedance

measured by each test is given by

Open-circuit secondary: ZOC = (R1 +R′
2) + jω(Ll1 + L′

l2 + Lm1)

Short-circuit secondary: ZSC = (R1 +R′
2) + jω(Ll1 + L′

l2)

(D.1)

where ω is the angular frequency at which the measurement is obtained. ZOC and ZSC are the

impedances measured with each test. Linear least-squares parameter estimation is applied

to each dataset, and the corresponding equation is written as

[
Zx

]
=

[
1 ω

]Re(Ẑx)

Im(Ẑx)

 , x = {OC, SC} (D.2)

where Zx is a vector of measurements obtained at the ω frequencies. Ẑx is the estimated

impedance and is a scalar quantity. Based on [47], it is assumed that the leakage inductance

is small; therefore, Ll1 + L′
l2 << Lm1. Also, leakage inductance Ll1 = L′

l2 is assumed.

The turns ratio is determined by applying a fixed voltage sinusoid at the transducer’s

resonant frequency using a function generator at the transformer’s primary and measuring

the voltage at the transformer’s secondary with an oscilloscope. Algebraic manipulation of

Ẑx determines the transformer parameters, and Table D.1 summarizes the estimates.

191



Figure D.1: Frequency response analyzer measurements for transformer parameter estima-
tion (measured [—], linear least-squares fit [—]).

Note that the transformer used has center-taps in the primary side. Measurements

obtained during parameter estimation consider the full primary coil and do not use the center

tap. With a center-tap configuration, the primary coil inductance modifies to Lm1, ct =
Lm1

2
,

the secondary:primary turns ratio modifies to nct = 2n, R1, ct =
R1

2
andR′

2, ct =
R′

2

2
, where

the subscript “ct” denotes the parameters in the center-tapped configuration.

Table D.1: Estimated Transformer Parameters

Parameter Symbol Estimate Datasheet Units
Primary Coil Resistance R1 1.81 – Ω

Secondary Coil Resistance
R′

2 0.81 – Ω
referred to Primary

Primary Coil Inductance Lm1 164.02 169.26 µH
Secondary Coil Inductance Lm2 2.91 3 mH

Leakage Inductance Ll1 = L′
l2 1.49 – µH

Turns Ratio n 4.21 V/V
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APPENDIX E

RANGE RESOLUTION

L

t1 t2

Case - 1

t1 t2

Case - 2 =⇒

t1 t2

Case - 2

Figure E.1: Range resolution. Case-1 shows the detection of both echoes. In Case-2, the
second echo overlaps with the first and is hidden.

The range resolution of an ultrasonic sensor is the ability to distinguish between two

objects that have a small separation. Figure E.1 illustrates the issue, where the triangular

envelope represents an echo and has an equal rise time and fall time. Let the temporal length

of the wave packet be L. Two echoes from the scene are present, at t1 and t2, which are

from two objects 1 and 2 in the scene. In Case-1, since both echoes are temporally separated,

the echoes are easily detected, giving the range estimates:

ri =
tivsound

2
, i = 1, 2 (E.1)

On the other hand, Case-2 is obtained by moving object 2 closer towards object 1. Conse-

quently, the time difference between t1 and t2 reduces, and t2 starts getting closer to the

echo at t1. At some point, the echoes overlap as shown by the red region in Figure E.1, and
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due to superposition, results in a flat top and occurs when t2 = t1 +
L

2
. For t2 < t1 +

L

2
,

the echoes from object 2 and object 1 merge and appear as though a single object produced

the echo. Therefore, for the objects to be detectable we need

t2 > t1 +
L

2
(E.2)

Using Equation E.1, the range inequality may be determined by multiplying the term
vsound
2

giving

vsound
2

t2 >
vsound
2

(
t1 +

L

2

)
r2 − r1 >

Lvsound
4

(E.3)

The lower bound for range resolution ∆r (the minimum separation between two objects) is

given by

∆r >
Lvsound

4
(E.4)
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APPENDIX F

MICROPHONE ARRAY DESIGN
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(a) Array schematic consisting of M = 8 microphone elements.

(b) Board layout. Microphone elements are on a ring of radius = 3.7 mm.

Figure F.1: Microphone array design.
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APPENDIX G

PARAMETER ESTIMATION OF THE DYNAMIXEL SMART-SERVO MOTOR

This section discusses the parameter estimation procedure for the Dynamixel XM430-

W210R smart-servo. The motor package includes a gearbox, position encoder, and a current

sensor, all packed into a compact assembly. The smart-servo is designed to be used as a

black-box actuator and consists of an onboard embedded processor that implements several

control algorithms – position, speed, and current control. A user only needs to specify

commands to the servo motor and is exchanged through a serial communication interface.

Control loop gains can be programmed based on the application. The motor’s parameters

are used for generating simulation-based datasets in Chapter 8. The simulation plant model

is given by Equation 8.6, which is equivalent to the two-stage position control formulation

given by Equation 8.4. The motor’s embedded software implements proprietary control

algorithms for the various operating modes. Hence a sophisticated input signal is designed

inspired by the work presented in [66]. The motor is operated without a load in the speed

control mode to obtain reliable measurement data. A persistently exciting speed command

signal is applied to the motor and is given by

ωcmd = ω1 sin (2πf1t) + ω2 sin (2πf2t) (G.1)

where ω1 = 9, ω2 = 3 rad/s and f1 = 10, f2 = 50 Hz. Other command signals (position,

current, and voltage) are affected by the motor’s embedded controller, which implements

several proprietary safety mechanisms. Figure G.1 shows the motor’s sensor data, and the

measured speed does not follow the commanded speed due to loop gains and motor inertia.

However, the measured current and voltage show frequency components present in the

designed commanded signal. Neglecting the disturbance terms present in Equation 8.4 we
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get

θ̈ = −αθ̇ + βi (G.2)

where α =
bm
J

and β =
Km

J
. After taking Laplace transform we get

s2Θ(s) = −αsΘ(s) + βI(s) (G.3)

Note that for the stiffness estimation work in Chapter 8, α modifies when an object (spring)

is introduced into the system. However, during the parameter extraction procedure, to

obtain accurate estimates of β, the α term is retained. The linear least squares parameter

identification from [59] is used. Equation G.3 is multiplied by the filter H(s) =
λ3

(s+ λ)3

with the design parameter λ, we get

[
H2(s)Θ(s)

]
=

[
−H1(s)Θ(s) H0(s)I(s)

]α
β

 (G.4)

where Hi(s) =
λ3si

(s+ λ)3
, for i = 0, 1, 2. When θ(t) and i(t) are passed through the filters

defined by Hi(s), we obtain

Θi(s) = Hi(s)Θ(s) and Ii(s) = Hi(s)I(s) (G.5)

Equation G.5 gives the filtered components of the measured signals to obtain the unknown

parameters α and β. The resulting parameters are listed in Table G.1 achieving a quality of

fit of 94.9% with the linear least-squares method. For comparison, the greybox parameter

identification tool built into MATLAB is used and results in a quality of fit of 95.8%.
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Table G.1: Dynamixel Parameter Estimation

Symbol Value
Least-Squares Greybox

α 564.52 578.65
β 11.21 7.99

Fit % 94.9 95.8

Filter parameter λ = 50 rad/s.

Figure G.1: Dynamixel data collection for stiffness estimation. Sampling frequency = 1
kHz. For speed plot: Measured speed [—] and commanded speed [—]. For the position
plot: Measured position [—], linear least-squares [—] and greybox [—].
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APPENDIX H

PARAMETER ESTIMATION OF THE LINEAR ACTUATOR

The linear actuator from Actuonix L12-P is used in the stiffness apparatus of Chapter 9.

The actuator consists of a built-in potentiometer to provide position measurements. The

single stage position control loop given by the plant design equations Equation 8.3 is

implemented. Consequently, only two parameters α and β need to be identified by the

parameter estimation procedure. Note that Equation 8.3 provides the plant design model for

a rotary actuator. As a linear actuator is used, the linear analogues (mass, linear damping,

linear position, linear velocity, etc.) are used in the model. The voltage input applied to

the linear actuator is shown in Figure H.1 and the corresponding position measurement is

shown in Figure H.2. Neglecting the disturbance term in Equation 8.3 and denoting the

linear position by x(t), we get

ẍ = −αẋ+ βu (H.1)

with the Laplace transform given by

s2X(s) = −αsX(s) + βU(s) (H.2)

Similar to Appendix G, the linear least-squares parameter identification from [59] is applied.

A filter H(s) =
λ3

(s+ λ)3
is multiplied on both the sides of Equation H.2 with the filter

design parameter λ, we get

[
H2(s)X(s)

]
=

[
−H1(s)X(s) H0(s)U(s)

]α
β

 (H.3)
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Figure H.1: Input voltage applied to the motor for parameter estimation collected at 1 kHz
sampling frequency.

where Hi(s) =
λ3si

(s+ λ)3
, for i = 0, 1, 2.

When x(t) and u(t) are passed through the filters defined by Hi(s), we obtain

Xi(s) = Hi(s)X(s) and Ui(s) = Hi(s)U(s) (H.4)

They are the filtered components of the measured signals and are used in Equation H.3 to

obtain the unknown parameters α and β. The resulting parameters are shown in Table H.1

and achieve a quality of fit of 95% using the linear least-squares estimation procedure. For

comparison, the parameters are also determined using the greybox parameter identification

tool built into MATLAB, which provides a quality of fit of 95.2%.
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Figure H.2: Linear actuator position data collected at 1 kHz sampling frequency (measured
[—], linear least squares [—], greybox [—]).

Table H.1: Linear Actuator Parameter Estimation

Symbol Value
Least-Squares Greybox

α 28.106 29.29
β 0.067 0.0701

Fit % 95 95.2

Filter parameter λ = 50 rad/s.

The formulas for α =
K2

m + bmR

MmR
and β =

Km

MmR
.

The units are skipped because α and β have multiple terms.
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