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SUMMARY 

Interrupted in-situ tensile tests in a lab-based x-ray computed tomography machine 

were used to investigate the evolution of the strain field around internal defects. Digital 

volume correlation was utilized to directly determine local strain levels within the 

additively manufactured components in the vicinity of porosity defects. Effects of porosity 

on strain localization and eventual failure of the samples were evaluated. The influence of 

defect characteristics on the localization of strain was investigated. A non-local field 

analytical model for approximating the localization of strain based on defect geometry and 

loading direction was formulated. Correlation of the local characteristics and the non-local 

field with the local axial strain was evaluated. The non-local field, at both 1-to-1 voxel 

resolution and at the down sampled measurement point locations, was found to be the most 

correlated with the localization of strain followed by pore volume.  Shallow neural network 

models were utilized to predict the local strain magnitude from the local characteristics in 

the undeformed frame and the magnitude of the tensile load applied to the component. 

Models were found to be accurate at predicting local strain magnitude before failure. With 

greater than 92% accuracy in predicting the variation in the measured strain field. Synthetic 

porosity alterations were applied to each sample to measure how small changes in porosity 

characteristics would affect the accumulation and distribution of strain in components. 

Volumetric alterations were found to have the greatest effect on magnitude regionally, but 

translations of the porosity were found to have a greater effect on the intervoid ligament 

location and shape and the overall likely path of ductile rupture.  



 xvi 

The direct measurements of strain field evolution in the present study established 

understanding regarding how internal defect structure characteristics influence the 

evolution of the local strain fields for additively manufactured components. Early onset of 

failure was found to be associated with the availability of neighboring porosity in the 

vicinity of large defects that allowed for rapid progression of the fracture path. This high-

fidelity characterization and the associated phenomenological observations have bearing 

for supporting validation of numerical modeling frameworks for describing failure in these 

materials. The correlations established between local-characteristics and local-strain 

provide valuable information to designers to understand the hyperplane of specifying 

porosity tolerances. In addition, these correlations can improve the implementation of 

locally changing material properties and adaptation of constitutive relationships in 

numerical modelling frameworks of highly porous AM materials. The results of the non-

local field analysis allow for the identification of strain localization hotspots and thus 

identifies areas that are more critical to model with finite element techniques. Utilization 

of the high-fidelity characterization and non-local fields via machine learning provides a 

procedural framework for the use of machine learning in component assessment and 

qualification. Additionally, predictions on altered data allowed for the generation of 

valuable engineering knowledge for understanding local porous material behavior.  
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CHAPTER 1. BACKGROUND 

1.1 Additive Manufacturing  

1.1.1 Additive Manufacturing 

The American Society of Mechanical Engineers defines additive manufacturing (AM) 

as the “process of joining materials to make objects from three-dimensional (3D) model data, 

usually layer by layer,” [1]. There has been extensive growth and development in AM 

technologies since the mid-1980s and the list of AM processes now includes: stereolithography 

(SLA), fused deposition modeling (FDM), Direct Energy Deposition (DED), inkjet printing, 

and selective laser melting (SLM) processes like powder bed fusion (PBF) to name a few [2]. 

Components made by AM technologies are broken up into a series of cross-sections of the 

component geometry that are then constructed in series by an AM process. This allows for 

complex features and internal structures to be fabricated with relative ease compared to more 

traditional manufacturing processes [3]. In addition to those already discussed, other 

advantages AM offers over traditional manufacturing methods include: significantly less 

material waste due to the fabrication of a near net-shape part from a single setup, parts can be 

made on-demand for quick turnarounds and little to no tooling cost, and weight reduction of 

components through the use of topology optimization and embedded lattice frameworks that 

are only feasibly producible using AM technologies [4]. Thus, it is clear that AM, in particular 
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metal AM, stands to revolutionize manufacturing industries, however there are a few 

drawbacks to AM that are preventing its widespread adoption.  

While additive manufacturing (AM) technologies such as laser powder bed fusion 

(LPBF) are being used in industrial practice, qualification of such approaches is still 

relatively nascent, and parts based on such frameworks require significant empirical 

testing. Of particular importance to qualification are the criticality of defects that form 

during the AM process [5]. Metal AM is subject to pervasive manufacturing defects that 

can differ significantly from those common in traditional fabrication techniques like 

casting [6] and, consequently, their effect on mechanical behavior is not well understood 

[7, 8, 9]. Defects associated with AM processes can affect the mechanical properties of 

these components. The problem is complicated by the fact that laser and scanning parameters, 

powder quality, size and distribution, as well as surface chemistries of the wetted melt pools 

all play a role in influencing the quality of the fused material [10, 11].   

1.1.2 Defects in AM 

Given that there is a link between defect structure and mechanical performance in 

porous components, identification of defects prior to use is necessary to ensure component 

safety [12]. Common surface defects in AM parts include cracking, un-melted powder 

particles and roughness [13]. However, other surface defects such as keyhole porosity can be 
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devastating to the mechanical performance of the part [14, 15]. In the majority of research 

discussing internal defects for AM components is often just reduced to a discussion of their 

porosity, although for technical purposes internal can also include microstructure anomalies 

and inclusions. These porosity analyses often only focus on the size, the volume fraction, 

distribution, and location of pores within the material volume, but other parameters like 

sphericity, compactness, and orientation are mentioned in a few works [14]. For more complex 

defect characterizations, some have turned to expensive commercial software solutions like 

Volume Graphics [16, 17] and Avizo [18]. Note: Due to the large number of AM processes 

and the differences in their resultant mechanical processes, for the remainder of this proposal 

AM techniques/processes/methods and the properties associated with AM components will be 

in reference to metal powder techniques with a focus on L-PBF. 

Among the defects that are found in AM parts, inclusions arise from impure metal 

powders, contamination to the powders from exterior sources, and oxidation [19]. While 

inclusions are typically orders of magnitude smaller than the porosity discussed in relation 

to AM, it is at inclusion sites that void nucleation commonly occurs [9]. There are 2 primary 

types of porosity that occur in AM components: gas porosity and porosity due to lack of 

fusion. Gas porosity is most commonly attributed to entrapped shielding/inert gas in the 

material matrix. Three mechanisms give rise to the entrapped gas: 1) to high powder flow 

rates and thus lower specific energies of the melt pool in DED processes, 2) gas trapped 

inside the powder particles from the start, 3) Marangoni flow [20]. In fact, components 
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made from powders produced via gas atomization (GA) show 3 times greater porosity that 

those produced by plasma rotating electrode process (PREP) [21]. Lack of fusion (LOF) 

porosity is caused by an insufficient energy in the melt pool and thus an inability to fully 

melt powder particles. Due to the layer-wise build method of AM, the un-melted particles 

from the previous pass can compound with the next layer of powder deposited causing 

LOF pores to typically be larger and more tortuous that gas porosity [22]. Geometric 

anomalies are also common in AM. The most common type of geometric abnormality is 

due to melt pool flow due to gravity, but other common sources are overgrowth due to 

excess heat in the build volume and balling behavior in the melt pool powder interaction 

[23]. Geometric abnormalities are most often associated with dimensional inaccuracies 

when measuring AM parts, so a common work around has been the use of post processing 

of AM components to achieve their net shape. For more complete reviews of additive 

manufacturing defects, the works of H. Taheri et al. [20] and F. H. Kim and S. P. Moylan 

[24].  

1.1.3 Qualification of Additively Manufactured Components 

Inspection external to the part usually consists of measurements of part dimensions 

and surface topology, but in the case of AM components should also include attention to 

surface roughness [25, 26, 27]. Given that AM parts are subject to large amounts of internal 

defects and that surface inspection techniques, such as coordinate measurement machines 
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(CMM) and structured light scanning, are limited in that they can only measure surface 

topology [28]. As discussed above AM components are subjects to high levels of internal 

defects, as such proper inspection of AM components requires inspection of internal 

malformities. The metrology of internal features can be functionally divided into two 

categories: destructive and non-destructive techniques. Destructive techniques require 

some form of cutting, deforming, eroding, or otherwise destroying of a part to create or 

reveal internal surfaces for measurement. By contrast, non-destructive techniques do not 

require destruction of the component measured, although destructive processes can be 

brought into non-destructive techniques as discussed later with in-situ experiments. 

Common destructive techniques for internal inspection are fractography, and serial 

sectioning [29], but due to the nature of the present work these techniques are not 

employed. Similarly, the non-destructive technologies of ultrasonic and thermographic 

metrology are also not used because they are not typically used to produce 3D 

reconstructions of components [30, 31]. In terms of research attractiveness by far the most 

popular non-destructive technique for inspecting additive manufactured parts is X-ray 

computed tomography (XCT). XCT has been used to measure defects such as cracks, 

inclusions, pores, and geometry variations in components [32, 33]. XCT has also been used 

to show the effects of defects and inhomogeneities on lattice struts [34], and to determine 

the damage evolution and morphological changes in stainless steel components [35]. XCT 

is further set apart from other techniques by its application in digital volume correlation 
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(DVC) analysis to quantify the deformation of an object between scans [36], however, the 

application of DVC to AM components is still extremely scarce [14].  

Originally developed for medical applications, XCT is capable of obtaining full 3D 

reconstructions of the internal and external structures of given specimen. Industrial XCT 

systems consist of 3 primary components: an X-Ray source, 4-axis positioning system (X, 

Y, Z, C) for the component, and a flat panel detector. For each increment of the rotational 

stage, a radiograph of the x-ray energy at the detector is recorded (each radiograph can be 

averaged, summed, or otherwise extracted from multiple frames at each increment). By 

allowing for at least a full Nyquist-Shannon sampling of radiographs from the objects 360° 

rotation, a reconstruction in the form a voxel volume can be obtained [37, 38]. A more 

thorough review of the principles and parameters behind XCT can be found in [39, 40].  

1.2 Modelling Strain Localization and Ductile Failure 

Community efforts such as the Sandia Fracture Challenges [41, 42, 43] have tried 

to bridge the gap between bulk experimental measurements, such as those taken from XCT 

analyses, and computational modelling of deformation. The third Sandia Fracture 

Challenge found that local strain rates were more critical than the loading rate during failure 

[43]. Other studies have found that porosity can lower the strength of the component in 

proportion to the reduction in cross-section due to porosity [44], and that AM components 
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often have greater yield strength than their wrought alternatives [45]. One commonality in 

all this research is that the presence of defects lowers the elongation to failure of 

components under tensile loading [35, 46]. Still other efforts in recent years have focused 

on how advanced nondestructive measurement tools and machine learning can be used to 

understand and predict strain behavior in defect driven localization. Kim et al. have used 

XCT to peer inside of AM components and apply the internal structures to unique 

numerical models for the components scanned [47], additionally he has employed 3D DIC 

to monitor the deformation of components and develop models with this data [32]. Leicht 

et al. also applied DIC to study advance material deformation [48]. Dressler et al. used 

XCT to investigate inhomogeneities in AM struts in terms of strain localization [34]. 

Taking a step away from the realm of AM, Bourcier et al. in 1984 showed that strain 

in porous solids can be understood in terms of both bulk porosity and local porosity effects 

[49]. Bulk properties are characteristics like the ratio of pore volume to matrix volume for 

either the whole component or for a section of the component. These bulk properties can 

be used to understand the certain aspects of the mechanical behavior: increasing pore 

volume fraction results in lower bulk flow stress [49]. Local porosity effects occur on the 

scale of the pores and include things like the effect of internal void ligaments, internal 

necking and highly localized plastic zones in this interpore space [50, 51]. It is explained 
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in the ensuing that these local effects are responsible for the overall reduction in the parts 

ductility.  

1.3 The Gap 

The arbitrary geometry and non-uniform distribution, size, and orientation of pores 

and other defects in AM components complicate modeling efforts. Local deformation and 

strain are driven by these features and are thus tied to the spatial distribution and length 

scales of the local microstructure. However, the majority of 2D and 3D micro-mechanics 

investigations are performed with simple geometry and assumptions of distribution 

uniformity [35, 52, 53, 54]. These models fail to capture the spatial correlation and complex 

contributions of real 3D microstructures, especially highly porous micro-structures like 

those of AM. There are often mixed, cooperative, and competitive mechanisms of ductile 

rupture occurring in real components that FE-based simulations often miss due their 

assumptions of periodic defect distributions and constitutive law modifications based on 

models that use simple defect geometry [55]. As such, these models are unable to 

accurately assess the response of real multi-length scale and complex geometry 

microstructures. Homogenization of this kind fails to account for the influence that 

microstructure at greater length scales have on the response at small length scales. While 

there is some work in the area of incorporating digital image analysis into FE modeling 

[32, 56], there is surprisingly little research in this area for void driven microstructure 
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inhomogeneity [57, 58]. Given that AM components are highly porous and include 

heterogeneities and defects at multiple length scales, modeling with periodic/homogeneous 

distributions, or with simplified geometries, cannot capture the coupling or unique response 

of these materials locally. 

1.4 Research Proposed 

1.4.1 Research Question 

The proposed research will address the research question: “What are the critical 

defect characteristics (e.g., volume, gap, sphericity, compactness, orientation) that 

influence the damage accumulation and failure behavior of an AM component?” 

1.4.2 Research Objectives 

The goal of the research described herein is to shed light on that question. The 

proposed study will center on: (1) in-situ study of the evolving defect field in terms of 

morphological parameters and deformation variables (e.g. displacements and strains), (2) 

comprehensive analysis and description of the defect field in AM components, (3) 

development analytic and machine learning models for predicting the localization of strain 

as a function of the defect field characteristics, and (4) determination of the role of 

simulated AM defect changes on the localization of strain. This research will provide 
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robust tools for the analysis and qualification of defect criticality in AM components and 

uncover what characteristics of defects drive their failure. In addition, it will provide the 

foundation for the greater implementation of the proposed model. 

1.5 Organization of Dissertation 

The dissertation herein is organized into the following 4 sections. First the need for, 

the method of performing, and the results of the in-situ experiments are discussed in 0. 

Next, the segmentation, extraction, and quantification of defects is detailed in CHAPTER 

3. Additionally, the results of the extracted features are presented therein, and the 

correlation of these features with the localization of strain is examined. CHAPTER 4 is 

devoted to the modeling and prediction of local strain from the data gathered in the previous 

2 chapters. The conclusions of these efforts are summarized in CHAPTER 5. Lastly, 

supplementary figures are provided in Appendix A and supplementary tables are provided 

in Appendix B.  
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CHAPTER 2. DEFORMATION FIELDS IN TENSILE LOADING 

OF AM COMPONENTS  

2.1 Introduction 

Due to the fact that AM parts are subject to large amounts of internal defects, 

surface inspection techniques and most other non-destructive inspection techniques are 

generally insufficient [30, 31]. The exception being X-ray computed tomography (XCT). 

XCT has been used to measure defects such as cracks, inclusions, pores, and geometry 

variations in metal AM components [32, 33]. XCT has also been used to show the effects 

of defects and inhomogeneities on lattice struts [34], and to determine the damage 

evolution and morphological changes in stainless steel components [35, 47]. Kim et al. 

characterized the failure evolution for 17-4 stainless steel with engineered octahedral 

defects and LOF porosity. In-situ tensile testing with XCT measurements enabled FE based 

analysis of high stress concentrations associated with internal surfaces of the defects [47]. 

In-situ laminography has enabled several authors to study the mechanisms of failure in 

metal alloys. Artificial voids, approximated by machined holes, were used to study the 

strain in intervoid regions. In this study, Bulijac et al. made use of in-situ laminography 

scans obtained from a beamline at the European Synchrotron Radiation Facility (ESRF) in 

combination with digital volume correlation to investigate the effects of void arrangement 
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on damage in graphite cast iron [59]. In another study, Bulijac et al. investigated the 

damage mechanisms of a work hardened 2198 T3 aluminum alloy just ahead of its notch 

and noted that slanted strain bands with limited void nucleation around inclusions were to 

be found in the failure region [60]. In shear loading conditions, Roth et al. found evidence 

of damage nucleation and evolution using in-situ laminography at a synchrotron X-ray line 

[61]. In addition, there is a growing field of study using interrupted in-situ experiments to 

study the structural changes under load [62, 63] in both synchrotron and lab-based XCT 

systems. In-situ experiments have been used to compare the growth of defects to that 

predicted by void growth models [64]. Experiments by Croom et al. used in-situ XCT to 

study the mechanisms of ductile rupture in high-purity Cu [55]. They found that void 

growth and overall failure resulted from a collaborative process of damage mechanisms 

highly dependent on the local features and distribution of voids. 

In the present study, interrupted in-situ tensile tests in a lab-based XCT machine 

were used to investigate the evolution of the strain field around internal defects and 

examine their role in the macroscopic deformation of AM tensile coupons. This research 

focuses on the defects generated from LPBF of 316L stainless steel and employs digital 

volume correlation (DVC) [65] of in-situ deformations of AM components using a custom-

built loading frame to extract both deformation and strain fields of the components as they 

undergo uniaxial tensile loading. In the ensuing, the morphological evolution of AM 
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defects under mechanical loading are quantified and discussed in the context of effects on 

macroscopic tensile response.  

2.2 X-Ray Computed Tomography 

2.2.1 Physics of X-Ray Imaging 

 X-rays are a form of electromagnetic radiation with shorter wavelengths and higher 

energy than UV rays. A significant feature of x-ray radiation is its ability to penetrate 

materials as described by Beer’s Law:  

𝐼 = 𝐼!𝑒"∫$(&)(&  (1) 

where 𝐼 is the intensity after passing through the material, commonly referred to as the 

transmitted intensity, 𝐼! is the intensity of the x-ray beam, 𝑠 is the path the ray follows, and 

𝜇(𝑠) is the linear attenuation coefficient along the path [66]. The above equation explains 

how a ray passing through different materials or regions of varying absorption/attenuating 

properties will lose intensity. This attenuation of the rays allows for information about the 

material they passed through to be obtained via radiographs. 

2.2.2 Three-Dimensional Reconstruction 
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As described by the path dependence of Equation (1), the 3-dimensional 

information about the object imaged with x-rays is lost in the 2-dimensional radiographic 

output. However, the breakthrough of 3-dimensional x-ray imaging came in 1973s in the 

introduction of computed tomography or computerized transverse axial tomography (CAT) 

[67, 68, 69]. The linear attenuation coefficient at each point in a radiograph is derived as 

shown below [70].  

ln *
𝐼
𝐼!
+ = −-𝜇(𝑠)𝑑𝑠  (2) 

The problem of the 3D reconstruction can be thought of as a problem of solving for the 

value of 𝜇(𝑠) at every point within the 3D object [66]. As it is not the focus of this work, 

the full details and complexity in the 3D reconstruction of data obtained in the form of 2D 

radiographs can be found in Ref. [70]. 

It is necessary to note that laboratory CT systems are not monochromatic or ideal 

in environment and artifacts commonly occur in the reconstructed volumes generated from 

XCT scans. Common reconstruction artifacts include: streaks, edge blurring or partial 

volume, rings, noise, and beam hardening. Common causes of these artifacts is having 

overly attenuating materials in the field of view, issues with resolvability and scale of the 

physical features, defective or varying detector elements, low signal-to-noise ratio, and the 

polychromatic beam of a laboratory source [71, 72, 73, 74]. Uncertainty in the data 
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provided by XCT is an ongoing area of research, but among the most common calibration 

techniques is to compare the part scanned to a calibrated part scanned [75]. One common 

approach is to simply measure the part with another nondestructive measurement system 

and compare the results, CMMs provide a source of external feature measurement.   

2.3 Methodology 

2.3.1 Samples 

In this research, tensile tests were performed on additively manufactured 316L 

stainless steel samples. AM billets were manufactured on a 3D Systems ProX DMP 200 

powder bed fusion machine equipped with a Yb-fiber laser (continuous wave – 1070 nm 

wavelength). Process settings were set to 100 W nominal power and 100 µm nominal spot 

size. The scan speed was set at 1400 mm/s with a 50 µm hatch spacing and a hexagonal 

scan pattern was used. The build chamber oxygen was kept at a nominal 1000 ppm. The 

layer height was kept at 30 µm. Virgin 316 stainless steel powder (3D systems) was used 

to build the samples, where the volume-based particle size distribution was Dv10 = 13.6 

µm, Dv50 = 21.1 µm, and Dv90 = 32.7 µm, measured via laser diffraction with a Malvern 

Mastersizer. After the AM billets were built, the samples were wire electrical discharge 

machined (wire-EDM) to final high-throughput tensile (HTT) geometry from the AM 

billet. The HTT samples each have a square gage region 1 mm x 1 mm x 5 mm in cross-
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section and length. The sample geometry allowed for pocketed tensile grips that would 

ensure no slipping of the specimens during testing, similar to the high throughput system 

in Ref. [76]. 

2.3.2 Experiments 

2.3.2.1 In-Situ Testing Rig 

For interrupted loading experiments, a Zeiss Metrotom 800 system was used along 

with a custom-built tensile loading stage, shown in Figure 1(a). The tensile loading system 

rested on the rotation stage of the XCT system and, as such, the system rotated with the 

sample during the scan. The system was designed with in-line grip assemblies that do not 

occlude the sample during the scanning process. Load was measured in-line using a Futek 

LCM300 load cell with a 4448.22 N (1000lbf) capacity and a 0.1779 N (0.04 lbf), 

converted from lbf, sensitivity located below the lower tensile grip assembly and above the 

linear displacement arm of the tensile stage motor. To obtain a high-quality tomographic 

reconstruction, the support frame for the tensile jaws was made to be radially symmetric 

and of clear acrylic so to have a low impact on attenuation of the x-ray beam. The motor 

has a 38.1 mm (1.5 in.) full stroke and can exert a linear load of up to ~2224.11 N (500 lbf) 

and a displacement resolution of 4.9609 x 10-5 mm per sub-step [77]. To aid in the 

alignment of the system, the tensile grips were designed to be self-aligning once the system 
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was under tension. Both grips were mounted on ball joints for angular adjustment and the 

upper grip floated in its assembly for translational alignment. This alignment process can 

be seen for all samples in Appendix A.1 as montages of a single angle’s x-ray projection 

from the scanning process. The custom in-situ tensile system and the sequence projections 

for sample 1 and 4 are shown below in Figure 1. 
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Figure 1. (a)  Schematic of in-situ tensile loading frame and sequence of x-ray 
projections for the deformation of (b) Sample 1 and (c) Sample 4. 

2.3.2.2 X-Ray Computed Tomography Cabinet and Scanning Parameters 

XCT scans were run at the end of each deformation step to capture the internal and 

external changes in the sample geometry. These volumes were reconstructed from x-ray 
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projections taken over one complete rotation of the sample geometry. Each scan was 

carried out with the same settings: 130 kV and 30 µA of beam power, and 1 Hz frame rate. 

For clear sampling 1200 projections were taken per scan with 3 frames averaged per 

projection to improve the signal-to-noise ratio.  To reduce the variation in the energy 

signature, a copper filter was placed in front of the x-ray source to absorb the low energy 

rays. Each scan required approximately 50 minutes to complete and had a resolution of 8 

µm per voxel. Reconstruction volumes were 1167 x 1168 x 1474 voxels or approximately 

9.336 x 9.344 x 11.792 mm in dimension. Reconstructed volumes were cropped before 

analysis to a size of 391 x 391 x 891 voxels. 

2.3.2.3 Testing Parameters 

The interrupted tensile tests were performed using displacement control and a step 

size of 0.18 mm. This step size was chosen to provide approximately 10 deformation steps 

to part failure, based on the percent elongation observed for early samples. The motor was 

driven at 0.01 mm/s with an acceleration and deceleration of 0.01 mm/s2. Before each 

deformation step, the load cell was set to sample and record at 100 Hz. Recording of the 

load was not terminated until after the deformation step was completed. It was necessary 

to terminate the measurement of load, as the presence of the wired connection would 

prevent the closure of the x-ray cabinet. There were some signs of load relaxation, but they 

could not be recorded over the length of the scan.  
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2.3.3 Analysis 

2.3.3.1 Correlation Techniques 

Correlation techniques are used to track the displacement of regions of space. This 

is achieved by finding the pattern in the displaced data that best matches the pattern of the 

region in the undeformed data. These two data sets are sometimes referred to as the current 

(g) and reference (f) data sets, respectively. The quality of match between two regions of 

space is defined by a simple cost function: 𝐹 = 𝑔 − 𝑓. Unless the data moves with uniform 

rigid body motion, this correlation must be computed locally. This yields well to 

computational correlation, either digital image correlation (DIC) or digital volume 

correlation (DVC), for discrete representations of data with 2D pixels and 3D voxels, 

respectively. For correlation to be meaningful there must be an underlying pattern or 

texture that varies with that varies spatially.  

2.3.3.2 Digital Volume Correlation 

Digital volume correlation (DVC) was employed in the present work to measure 

the deformation between each XCT scan. This technique determines the 3D displacement 

and strain field measurements by maximizing the correlation between a gridded sub-

volume of the reference volume and its associated interrogation sub-volume in the 

deformed volume. The DVC method described by Ref. [36] was implemented in the 
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present study. This implementation begins with an approximation of rigid body 

displacements (𝑢, 𝑣, 𝑤) of the gridded sub-volumes from the reference volume (𝑓) to 

integer locations in the deformed volume (𝑔). This is obtained by finding the maximums 

of the cross-correlation of the sub-volumes in the frequency domain and yields 

displacements that are accurate to the voxel scale. Then sub-volumes registration is 

finalized with a non-rigid optimization of the sub-voxel displacements (𝛿𝑢, 𝛿𝑣, 𝛿𝑤) and 

strains (𝜀)) , 𝜀** , 𝜀++ , 𝜀)* , … ) of the linear displacement model shown in Equation (3):  
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where 𝑥. , 𝑦. , 𝑧. and 𝛥𝑥, , Δ𝑦, , Δ𝑧, are the center of the sub-volume and the distance to each 

voxel, 𝑖, within the sub-volume, respectively. This process uses an iterative least-squares 

framework, shown in Equation (4), to solve a non-linear least-squares formulation of the 

objective function (𝐹),  to update a parameter vector (𝑝) [36]. 

 

 𝑝/01	 = 𝑝/ −
𝛻𝐹(𝑝/)3𝐹(𝑝/)
𝛻𝐹(𝑝/)3𝛻𝐹(𝑝/)	 

 (4) 
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Also known as the residual field [65], 𝐹 is a scalar metric of how well the reference sub-

volume and the registered deformed sub-volume match for each voxel (𝑖). The objective 

function is shown below in Equation (5): 

 

 𝐹(𝑝/) = 𝑔P𝑥,-/ , 𝑦,-/ , 𝑧,-/Q − 𝛼/𝑓P𝑥,/ , 𝑦,/ , 𝑧,/Q − 𝛽/  (5) 

   

where 𝛼 and 𝛽 are intensity correction factors used to adjust for any intensity variations 

between scans and 𝑝/ = T𝛿𝑢/ , 𝜀))/ , 𝜀)*/ , 𝜀)+/ , 𝛿𝑣/ , 𝜀*)/ , 𝜀**/ , 𝜀*+/ , 𝛿𝑤/ , 𝜀+)/ , 𝜀+*/ , 𝜀++/ , 𝛼/ , 𝛽/U
3 

is the parameter vector representing the values of the unknowns at iteration k. At each 

voxel, 𝑖, the displacement and strain values of parameter vector (𝑝,) are updated with the 

quotient term of Equation (4). 𝛻𝐹,(𝑝/) is given as: 

 

 

	𝛻𝐹,(𝑝/)

= {𝑔),/ 		Δ𝑥,𝑔),/ 		Δ𝑦,𝑔),/ 		Δ𝑧,𝑔),/ 		𝑔*,/ 		Δ𝑥,𝑔*,/ 		Δ𝑦,𝑔*,/ 		Δ𝑧,𝑔*,/ 	𝑔+,/ 		Δ𝑥,𝑔+,/ 		Δ𝑦,𝑔+,/ 	

						Δ𝑧,𝑔+,/ 	− 𝑓, 	− 1} 

𝑔),/ = 𝜕𝑔(𝑥,-/ , 𝑦,-/ , 𝑧,-/)/𝜕𝑥 

𝑔*,/ = 𝜕𝑔(𝑥,-/ , 𝑦,-/ , 𝑧,-/)/𝜕𝑦 

𝑔+,/ = 𝜕𝑔(𝑥,-/ , 𝑦,-/ , 𝑧,-/)/𝜕𝑧 

 (6) 
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To assign a singular value to the registration of each deformed sub-volume, the zero-mean 

normalized cross-correlation (ZNCC) coefficient is used [78]:  

 

 𝑍𝑁𝐶𝐶 = 	
∑ _𝑓4)!	 ,*!	 ,+!	6	 − 𝑓`	_𝑔4)!#,*!#,+!#6 − 𝑔`
7
,81

a∑ b𝑓()!,*!,+!) − 𝑓c
97

,81 a∑ _𝑔4)!#,*!#,+!#6 − 𝑔`
9

7
,81

 (7) 

   

where 𝑓 ̅and �̅� are the mean intensity values of the sub-volumes 𝑓 and 𝑔, respectively. The 

method of DVC used in this paper has been validated by B. Pan et al. [36] and the 

implementation of the algorithm by H. Qiao et al. [79]. 

2.3.3.3 Pre-processing of Data 

As calculations at voxels located outside of the component body lack textural 

information for correlation, a mask of the component region was used to identify and 

remove subsets that had less than 60% of their volume within the mask. The high degree 

of subset overlap reduces loss of data near the mask boundary. During the process of 

pruning subsets based on registration quality, subsets were divided into those completely 

within the mask and those intersecting the mask boundary. The latter group was held to a 

higher threshold standard as the steep gradient between the component body and the 

background voxels may bias update of displacements. 
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2.3.3.4 Analysis Parameters 

The DVC method described above was implemented in an incremental fashion 

where the deformed volume from the previous step is used as the reference volume for the 

current step. This allowed the analysis to account for the large deformations of the material 

system and continuity was maintained with point tracing. The implementation used herein 

had cubic subsets spaced every 7 voxels with subset full width defined as 35 voxels. The 

high overlap allows for smoother results less susceptible to noise and high grid point 

frequency ensures that the technique captures even small changes between voids. The 

porosity and natural textural variations in the samples provided the inherent texture field 

for the DVC correlation. 

2.3.3.5 Post-processing and Upscaling 

Figure 2 shows the defect structure for Sample 1. Displacement was calculated 

using the iterative least-squares approach, followed by the strain calculated with the 

pointwise least-squares approach, as in Ref. [36]. The strain calculation window was set to 

span 5 displacement field points in width and to be calculated at every displacement field 

point. For strain windows near the boundary of the mask, only points within the mask were 

used to calculate the strain field. 
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Figure 2. Inherent texture field and microstructure of Sample 1 at each interrupting 
measurement of the deformation process. 

Displacement and strain field results were mapped to both the deformed and the reference 

frames of the analysis, such that final strain near failure can be attributed to a region of the 

undeformed sample geometry.  

2.4 Results 

2.4.1 Testing Results 

In total 34 scans were taken for in the loaded states of the samples. The break down 

was 5 for sample 1, 7 for sample 2, 9 for sample 3, and 13 for sample 4. The reference or 

undeformed state for each sample was defined as the first scan obtained after the load cell 
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reads positive loading, implying the system had crossed into tension and the weight of the 

bottom platen was no longer causing minute compression on the load cell. And by the 

settling of the sample into a stable position within the jointed tensile grip system. Since the 

motor and load cell systems were decoupled capturing stopping the motion just after the 

transition to positive load was a manual operation. User error resulted in a slightly higher 

initial load for the undeformed state of sample 1 than what was typically seen for samples 

2-4, but there was technically variation in the initial load of all 4 samples. These initial load 

differences are reflected in the initial stress at the minimum cross-section as shown by 

Figure 3 below, however due to the nature of the measurement being with respect to the 

reference scan this is not reflected in the reported global strains of Figure 3.  

2.4.2 Analysis Results 
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Figure 3. Stress Response versus global axial strain. 

Figure 3 shows stress-strain response for each specimen until fracture. In this data, the 

global strain was evaluated through gage length measurement on x-ray projections taken 

orthogonal to the sample front face. From the data, little variation was present in terms of 

yield strength across these specimens. However, Sample 4 exhibited higher elongation to 

failure of εf = 0.3363 compared to that of Samples 1, 2 and 3 which had elongation to 

failure results of εf = {0.1037, 0.1800, 0.2114}, respectively. 
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Figure 4. Initial (left) and final (right) local axial strain in the reference frame as 
calculated by DVC. a) Sample 1, b) Sample 2, c) Sample 3, d) Sample 4. 

The results in Figure 4 above show the distribution of strain for the first 

measurement and last measurement before failure, all results are shown mapped to the 

reference or undeformed configuration. It was typical for strain to group around large 

(volume-wise) porosity especially porosity that is connected to the outer surface are 

apparent.  Results are shown relative to the undeformed configuration to provide insight 

into the role of unique initial porosity in the localization of strain that ultimately leads to 

failure. As other works have shown, the elongation to failure in the samples is inversely 

proportional to their total void volume fraction [80].  

a) b) c) d) 
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Figure 5. Initial and final defect fields for (a, b) Sample 1, (c, d) Sample 2, (e, f) 
Sample 3, and (g, h) Sample 4. 

Figure 5 shows the distribution of porosity prior to deformation and just prior to 

mechanical failure for each of the samples under study and Table 1 summarizes the 

evolution of porosity before (φi) and after (φf) deformation. From the figure, there are clear 

differences in the size, grouping, location, and amount of porosity in each sample. In terms 

of overall distribution, Sample 1 had two major groupings: (1) an upper site located at 

approximately z = 4.20 mm contained two large pores 0.2650 mm and 0.5151 mm in 

maximum length with no connection to the surface of the component and (2) a lower site 

at z = 2.50 mm that consisted of a single large pore 0.3811 mm in maximum length with 
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surface connectivity. Sample 2 had one major pore 0.2335 mm in maximum length located 

at z = 5.25 mm, and a grouping of smaller elongated pores 0.0525-0.2799 mm in maximum 

length range near the base of the component at z = 1.50 mm. Samples 3 and 4 had singular 

major regions of porosity, with a large surface pore 0.3709 mm in maximum length at z = 

2.35 mm in Sample 3 and 0.2278 mm in maximum length at z = 4.30 mm in Sample 4. 

Table 1. Summary of the porosity evolution in deformed samples. 

Sample 
Porosity, φ Pore volume, 

Vpore, max (mm3) 

Axial position of 
major porosity 

groupings, z (mm) φi φf 
1 1.32% 2.65% 0.0030 [4.20, 2.50] 
2 0.82% 1.93% 0.0009 [1.50, 5.25] 
3 0.49% 1.65% 0.0029 2.35 
4 0.38% 1.91% 0.0007 4.30 
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Figure 6. Local strain εzz overlaid on the gray-scale cross sections of Sample 2 for 
global axial strains of (a) ε = 0.0187, (b) ε = 0.05252, (c) ε = 0.08772, (d) ε = 0.1190, 

and (e) ε = 0.1503. 

The strain distribution within each sample can be directly compared with the 

internal defect fields obtained from the tomographic imaging scans. Figure 6 shows a 

montage of y-z grayscale slices during tensile loading of Sample 2. In the figure, each 

grayscale slice is overlaid with a color mapping of the corresponding axial strain εzz at that 

section. From the cross-sectional images, the size of individual pores clearly increased 
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during the loading process and coalescence/growth was observed, particularly in the lower 

half of the sample. In one case, the pore, marked as A in Figure 6, eventually increased in 

extent such that it broke through to the free surface of the sample. It can be seen that local 

strain intensity was directly affected by porous defects in the sample. The strain field makes 

it clear that local strain intensity in the vicinity of pores was greater than that of the global 

axial strain and that this disparity only grew more pronounced as the parts approached 

failure. This corresponds well with similar findings for cast materials under tensile load 

[44, 81]. Clearly, pore size and surface connectivity affected local strain intensity to the 

point of failure as can be seen by additional strain-mapped cross-sections similar to Figure 

6 above found in Appendix A.2. Additionally, secondary accumulation of strain between 

locations of adjacent porosity (inter-void strain) can be clearly seen in the deformation 

occurring in Sample 2. Similar observations have been made in the literature, sometimes 

referred to as inter-void necking or inter-void plasticity [82]. From the present data, the 

evolution of the failure in the sample appeared more affected by pore-pore interaction 

rather than the relative size of the pores. For example, an initially large pore with 

connectivity to the exterior surface, marked as B in Figure 6, was initially the location of 

the greatest axial strain at εzz = 0.25. Despite this initially high localization, as the 

deformation process progressed, the grouping of pores in the vicinity of pore A grew to 

exhibit the highest total εzz = 1.0.  
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The impact of pore-pore interaction in the vicinity of near-surface porosity was also 

evident in the progression of failure for Sample 4, as is shown in Figure 7 below. As strain 

localizations were shown above to be concentrated in the vicinity of pores, a clearer 

identification of all the pores contributing to overall failure was made by visualizing the 

local strain field in the vicinity of a pore by strain mapping on to the pore surface. A surface 

pore at approximately z = 4.25 mm, marked as C in Figure 7, had an initially high strain of 

εzz = 0.054. Compared to the evolution of pore A in Sample 2, growth of pore C was 

significantly slower. One plausible reason for stagnated growth in this case is the lack of 

adjacent porosity in the immediate vicinity of the pore. It should be noted that there was an 

observable difference in the necking behavior between Sample 2 and Sample 4. It can be 

seen in Figure 6 that there were minimal signs of necking for Sample 2 and this is further 

corroborated by the minimal necking observed for this sample in the supplementary videos 

provided. In comparison, for Sample 4 in Figure 7(e), after a global axial strain of ε = 

0.3363, necking of the gage region was observed in the vicinity of pore C. After necking, 

the localization of strain between this pore and the adjacent porosity increased, and the 

pore grew more rapidly. Figure 7(e) shows the orientation of the growth to be on the top 

side of this pore, which is the direction towards its closest neighboring porosity.  
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Figure 7. Local strain εzz mapped to pore surfaces of Sample 4 for global axial 
strains of (a) ε = 0.0187, (b) ε = 0.05252, (c) ε = 0.08772, (d) ε = 0.1190, and (e) ε = 

0.1503. 
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Figure 8. (a) Mean true stress in each cross-section of the deformed volumes as 
calculated by the measured load over the actual cross-sectional area and (b) 

Maximum local strain εzz in each cross-section. 

Further investigation into the localization of strain in the material volume of each 

specimen was conducted by examining the distribution of stress and strain along the gage 

length of each sample. Figure 8(a) shows the mean stress for a given cross section of each 

sample at specific locations along the gage length of the sample. Stress was calculated as 

the measured load over the real cross-sectional area orthogonal to the loading direction, 

where the cross-sectional area was defined as that attributable to non-pore (e.g., solid) 

areas. From the figure, each sample exhibited localizations of stress along the gage length 

that increased with strain. Sample 1 and Sample 2 failed at relatively lower global strain 
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and exhibited maximum stress values of 200-210 MPa in the cross-section. Sample 3 failed 

with a maximum cross-section stress approaching 300 MPa. In contrast to these samples, 

Sample 4 reached stress approaching 400 MPa. Premature failure of Samples 1-3 can be 

explained by localizations in strain which occurred at earlier stages of the deformation, as 

is shown in Figure 8(b). In Figure 8(b), regions corresponding to high local stress 

conditions also corresponded to regions of high localized strains, this establishing the 

criticality of pore defects in those regions. It should be noted that this estimation of stress 

cannot account for the natural stress concentrations around the defects, as such, the actual 

local stress could be higher.  

2.5 Discussion 

2.5.1 DVC Measurement Accuracy 

The measurement accuracy of the present study’s DVC technique, with the 

parameters described above, was validated using artificial deformations of the reference 

scan texture fields. Rigid body deformations of -11, -22, and -33 voxels along the z-axis 

were applied first. The range of these displacements approximated the range of 

displacements seen in actual experiments. Single precision floating point numbers were 

used for all parts of the analyses. It was found that the errors for all three of these voxel 

increment displacements was 0 with standard deviations of 0. The measurement accuracy 
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of intervoxel displacements and strains was tested by applying uniform tensile strains of 

1%, 2%, and 4% along the z-axis of the reference texture field. These strains approximate 

the global strains seen in the experiments. Since there was no displacement in the x and y 

directions, it is to be expected that their errors were on the order of 10-4 voxels (~10-4 µm). 

The average displacement error along the z-axis varied between 0.0579 voxels (~0.4 µm), 

0.1742 voxels (~1.4 µm), and 0.6697 voxels (~5.358 µm) for each case of tensile strain, 

respectively. Average standard deviations were 0.0412 voxels (~0.33 µm), 0.0663 voxels 

(~0.53 µm), and 0.2249 voxels (~1.8 µm), respectively. The average strain error along the 

z-direction was 0.0018, 0.0023, and 0.0012, with standard deviations of 0.0010, 0.0013, 

and 0.012, respectively. All other average strain errors and standard deviations were on the 

order of at least 10-4. These errors are slightly higher than those reported in Ref. [36]. It is 

presumed that this is due to lower contrast of the 316L SS texture field than the texture 

field employed in Ref. [36], but may also be due to the nature of real versus simulated 

patterns for correlation. 

2.5.2 Strain Localization 

The intrinsic porosity caused localizations in stress as is evident in Figure 9 which 

shows the maximum local strain measured by DVC as a function of the corresponding 

global strain measured for each sample.  From the figure, most of the samples immediately 

exhibited greater local strains than their global counterpart, indicating that strain was highly 
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localized in certain regions and low in other regions. These localized strains were 

approximately 5-10 times greater than that of the respective global strain value. As an 

outlier to this behavior, the local strains of Sample 4 were initially in line with the samples 

global strain. However, as the test continued this eventually isotropic behavior vanished 

and the local strain exceeded the global by a factor of approximately 3 at the point of 

failure. These measurements are important for the selection of modeling parameters in 

terms of bridging the gap between macro- and micro-scale observations as shown by the 

work in Ref. [83].  

 

Figure 9. Maximum local strain εzz measured from DVC compared with the global 
axial strain. 
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Figure 10. Maximum local strain εzz versus distance from free surface of each 
sample. 

Figure 10 shows the maximum local strain for each loading step as a function of 

distance from the surface of each sample. From the figure, higher strains were observed 

near the edges of each sample, and this increased at higher applied loads. Also evident in 

Figure 10 is the fact that, at higher applied loads, increased levels of strain were observed 
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to spread inward to the center of each sample. The presence of high strain near the specimen 

center is an indication that the porosity grew inward. The growth of these defects acts to 

reduce the load carrying capacity of the tensile samples due to the reduction of the local 

cross-sectional area. Reduction in area causes increased local stress and, consequently, also 

increases the rate of pore growth. As is observed in Figure 6, growth and coalescence of 

subsurface pores to the free surface was attributed as the cause of failure for Sample 2. 

Similar behavior was also observed in Sample 1, shown in Figure 11, where subsurface 

pore D exhibited growth to the free surface under load. The effects of these surface pores 

are critical as porosity at the surface is less stable than internal porosity, in a similar manner 

to surface cracks having a greater stress concentration shape factor than internal cracks 

[84].  
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Figure 11. Porosity mapped with the εzz of Sample 1 for global axial strains of (a) ε = 
0.0056, (b) ε = 0.0373, (c) ε = 0.0697 and (d) ε = 0.1037. 

2.5.3 Morphological Evolution of Defects 

The relative growth and coalescence of subsurface pores can be understood in terms 

of local material softening due to inter-void necking. In bulk metals with low initial 

porosity [82], voids generally grow with increasing stress and, at some threshold density 

of porosity, exhibit interactions with other voids/pores that eventually lead to overall 

fracture. Figure 6 shows the evolution of the deformation during tensile loading for Sample 
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2. In this case, a surface pore located at the top of the sample initially exhibited relatively 

high strain localization. As loading increased, subsurface porosity toward the bottom of the 

sample at z = 1 mm eventually bridged to the free surface and caused the overall failure of 

the sample. The high inter-void strain in this region was responsible for the sharpening of 

initially blunt surfaces of neighboring porosity, as shown in Ref. [85]. These factors 

accelerated the rate of pore growth. A similar observation can be made during the tensile 

loading of Sample 1 shown in Figure 11. In this case, the material had two regions of initial 

strain localization at z = 2.5 mm and z = 4.0 mm. Both of these regions had pores that grew 

and coalesced to become surface porosity. Even though the grouping of porosity at z = 2.5 

mm had the higher strain and larger surface pore, failure ultimately occurred at z = 4.0 mm. 

It should be noted from Figure 8 that the pores located at z = 4.0 mm in  Figure 11 were 

associated with higher local stress levels.  

The relative stability of surface pores under mechanical load despite high strain 

localization in these regions, as was seen for pore B in Figure 6, was also observed in the 

case of Sample 4 shown in Figure 7. Stagnation of pore growth can be understood in terms 

of effects of adjacent porosity. It has been observed in Ref. [82] that plastic flow 

localization between voids and non-uniform rate of deformation are functions of 

neighborhood influence. In the present work, pores increased in size steadily, but with 

minimal growth into the sample, likely due to the relatively lower amounts of porosity 

immediately adjacent to these pores. For Sample 4 in Figure 7, relative isolation of the 



 43 

large surface pore from the effects of inter-void strain until later stages of deformation 

limited tendency for the initial pore to grow. Although, the propagation of the surface pore 

was stunted in this case, it does appear that other porosity in this region exhibited growth 

at a higher rate, this indicating that the large surface pore may have caused elevated local 

strains in the region for other porosity.  

 

Figure 12. Progression of failure for Sample 3 mapped with εzz for global axial 
strains of (a) ε = 0.0546, (b) ε = 0.0877, (c) ε = 0.1197, (d) ε = 0.1521, (e) ε = 0.1822 

and (f) ε = 0.2114. 
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Evolution of pre-existing surface porosity during failure was also observed in the 

case of Sample 3, where continuous growth of a surface pore was the cause of overall 

failure of the sample. Figure 12 shows cross-sections of Sample 3 overlaid with the strain 

distribution at the location of overall sample failure. The mapping shows how local strain 

concentrated around surface porosity and bridged toward neighboring defects. Despite 

roughly equally distributed strain levels across the pore boundary, pore growth was 

observed to be primarily towards the neighboring defects across the image frames. This 

indicates that the blunting and sharpening of local pore growth behavior controlled the 

defect evolution. The growth of this surface porosity is also directly observable in Figure 

13, which tracks the evolution of the defect field for Sample 3, with the pore evolution in 

Figure 13 highlighted in red at an initial position of z = 1.75 mm. The evolution of pore 

size is quantitatively shown in Figure 14. Also observed in this figure is the fact that Sample 

4 showed markedly different behavior compared to the other samples in that its pores were 

relatively stable in size, this attributed to lack of surrounding porosity. 
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Figure 13. Tracking the progression of critical porosity in Sample 3 for global axial 
strains of (a) ε = 0.0546, (b) ε = 0.0877, (c) ε = 0.1197, (d) ε = 0.1521, (e) ε = 0.1822 

and (f) ε = 0.2114. Evolving pore morphology for select defects is highlighted across 
frames for clarity. 

 

Figure 14. Growth of defects in the failure region(s) of each sample vs deformation 
step. 
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Failure of the additively manufactured components in the present study can be 

understood in terms of ductile failure in bulk metals. In such cases, ductile failure is thought 

to occur from the onset of void nucleation, with negligible damage in the majority of the 

specimen until an effective strain is reached, beyond which the mode of strain proceeds in 

a uniaxial fashion [86]. From that point on, the material between the nucleated voids open 

(elastic unloading top and bottom) and, as a result, coalescence occurs [82]. In contrast, for 

initially porous solids, as in the case of the present additively manufactured components, 

there will be significant damage, in this case void growth, throughout the loading process, 

and localization of the plastic flow to the internal void (pore) ligaments will occur in a 

more frequent and dispersed fashion. Such observations are important to modeling efforts 

and can help with the definition of elastoplastic parameters in simulations [87]. This is due 

to the existence of significant stress concentrations adjacent to the porous defects already 

present in the material, as is clear from the above results. Hosokawa et al. [88] showed that 

this effect can been seen in the acceleration of void growth along the direction of notches 

being significantly faster. Moreover, it was found that void growth rate and subsequently 

the onset of void coalescence had a strong positive correlation to the initial pore volume 

fraction.  
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2.5.4 Generalization and Limitations of the Technique 

 In-situ experiments have allowed this research to examine the deformation of the 

AM samples, and through DVC this deformation has been quantified. However, the 

measurement of this deformation has only been possible due to the density of defects in 

the microstructure of these components. In truth, DVC subset windows were set to be large 

enough to capture this defect texture-field, which results in a virtual strain gauge at a scale 

or resolution greater than the length scale of the defects. This came at the expense of being 

able to measure truly local strains around the pores. In the present work, subset centers 

were place only 7 voxels apart while the full width of each subset was 35 voxels. This high 

degree of overlap allowed for a multiple measurement points to be located within the length 

scale of the defects. While this does not remedy the magnitude of the measured strain it 

does allow for an understanding of its distribution. In reality, measuring deformation with 

respect to the location on or around the average internal pore is not feasible at this time due 

to the lack of variation in the gray-scale texture-field in the solid metal matrix. It is feasible 

that future advances in x-ray phase contrast imaging (XPCI) may remedy this lack of 

texture, by providing additional information about the local refraction shift or scatter. 

However, following the same logic, it can be seen that there is no method for measuring 

true local strain as the scale of locality can always be further reduced.   
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 The lack of precipitates in 316L does not leave this analysis too dissimilar from 

steels that have precipitates. While the dislocation propagation is the primary damage in 

traditional 316L deformation it was shown that the dominant mechanism here is intervoid 

necking. Even the nucleation of voids at the precipitates in other steels and ductile metals 

would not pose a problem, as in this work it was shown that voids emerge as they grow to 

a resolvable size for the resolution of the XCT scan without major changes in the intervoid 

necking observed. Effectively as long as the lack-of-fusion defects are significantly larger 

than those nucleating or emerging, this style of analysis is valid even at steps where the 

microporosity cannot be resolved. However, the lack of sufficient pore/defect density, and 

therefore texture-field, results in weaker correlation. Even ductile metals with less initial 

porosity prove difficult to measure. This can be observed in the weaker measurements of 

strain for Sample 4, see Figure 7 and supplementary cross-sections in Appendix A. In fact, 

the strain measured orthogonal to the loading direction was similarly limited. While the 

subset windows were large enough to observe the strain in the loading direction, 

deformation orthogonal to this direction also required similarly large chunks of the texture-

field to observe. Thus, the problem arises from the high aspect ratio of the samples. In short 

portions of the interrogation window in the directions orthogonal to loading would more 

often than not rest outside the gage region. This in effect reduces the width of the window 

in these dimensions, resulting in measurements more susceptible to noise. As such, the 

metric of damage was effectively limited to axial strain. Even with the smoothing behavior 
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of the polynomial least-squares fitting of strain fields from the displacement fields, the 

orthogonal displacement fields, especially near the edge of the gage, were subject to 

significant noise error. This prevented the quantification of ductile damage with more 

preferable strain metrics such as equivalent strain. It is highly likely that other strains 

including shear strains were contributing to the failure of these components, however for 

the reasons stated they could not be accurately measured. 

 It should also be mentioned, that while this method worked well for the AM 316L 

SS used herein, there are other AM materials even metals that would not result yield well 

to this technique. Specifically, more brittle AM metals like AlMgSi would deform far less 

before rupture.  Further, any AM ceramics would not be feasible to measure this way. e 

damage in terms of the more preferred equivalent strain. There is also the limitation of the 

XCT resolution to consider. Since, AM porosity does not scale with component size, larger 

components would be difficult to scan at sufficient resolutions to resolve the small porosity 

within. Further, since ductile failure is a scale dependent process this technique may 

become less needed or poorly suited with increasing part size and due to the scope of this 

work the tipping point of this transition has not been identified.  

  



 50 

 

CHAPTER 3. IMPACT OF INTERNAL DEFECTS ON STRAIN 

LOCALIZATION  

3.1 Introduction 

The raw data generated by an XCT system takes the form of a three-dimensional 

integer array that represent how intense the gray-scale field is at a point in space. Each 

voxel of this grid has a representative size and is standardly isotropic in measurement, such 

that a single number can be used to describe its width, length, and height. Reconstructed 

volumes must be segmented to differentiate between what is background and material. 

Once the component volume has been accurately segmented, defect detection can be 

carried out entirely on the digital twin of the physical component; however, it has been 

shown that identification of porosity and defects by simple thresholding can yield great 

variation depending on the threshold [89, 90]. By far the most common type of image 

segmentation is that of global thresholding; a good review of global thresholding 

techniques was performed by Sezgin and Sankur in 2004 [91]. While ISO50 segmentation 

is the most commonly applied, advanced methods such as applying a deformable surface 

(active contour or snake algorithm) can be applied as necessary to improve the 

segmentation results [92]. Locally adaptive techniques tend to give better and more robust 
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segmentation accuracy but are more complicated to implement and require significantly 

greater computation. Other local techniques include fuzzy c-means, kriging, supervised 

Bayesian segmentation, and a number of active contour algorithms [93]. Growth in the 

field of machine learning algorithms has seen some application of AI to defect detection in 

both 2D images and in 3D volumes for AM [94]. Visualization of XCT data sets can be 

broken down into 2D and 3D representations. Image stacks can be used to provide a single 

cross-sectional view of the reconstructed gray-scale field. Generate surfaces from the 

segmentation of the image into specific classes that are useful to visualize in 3D, such as 

porosity or complex geometry. 

3.2 Methodology 

3.2.1 Segmentation 

Segmentation of the solid, pore, and background regions of each scan of each 

sample was necessary for both the DVC performed in herein and the feature extraction of 

the present work. For uniform segmentation analysis the grayscale range of each scan was 

normalized between 0 and 1. Segmentation was performed using the Trainable WEKA 

Segmentation 3D plugin [95] for ImageJ-FIJI. This plugin, based on the Waikato 

Environment for Knowledge Analysis (WEKA), allows for the classification of voxels in 

a 3D data set using machine learning. Built-in drawing tools and a simple guided user 
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interface allow the user to directly mark the training volume with examples of the correct 

class labels. The plugin creates feature volumes for each feature selected to complement 

and expand the grayscale training data provided.  Features include Gaussian Blur, 

Difference of Gaussians, Hessian, Laplacian, Derivatives, Structure, Edges, Minimum, 

Mean, Median, Maximum, and Variance. Edges, Minimum, and Maximum features were 

not used in the present study as they were found to skew the analysis between the pore and 

background classes. Gaussian Blurring, Difference of Gaussians, Mean, and Median 

feature volumes were used to reduce the influence of noise and improve the segmentation 

of pores occurring at or near the surface of the gage region [96]. The Hessian feature 

volumes allowed for the discrimination between thin and bulbous regions reducing the 

false positive identification of pores [95]. The Laplacian and Structure features allowed for 

the identification of subtle porous regions by highlighting the textural differences between 

regions [97]. Sigma, σ, defines the radius of the kernel used in the computation of all 

features. Separate feature volumes are generated for each variation of σ which for this work 

were 1, 2, 4, and 8 voxels. This resulted in a total of 83 volumes, including the original 

grayscale volume, used in each segmentation task. More information about these features 

can be found in Ref. [95]. For the present study the default classifier algorithm, a parallel 

random forest algorithm called FastRandomForest consisting of 200 decision trees and 2 

random features per node, was used. Decision trees are a structure of conditional 

statements, beginning with data input at a single node and branching out to additional nodes 
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with further branching until leaf nodes are reached. Each node operates as a conditional 

test on the incoming data to divide the data into ‘branches’ where additional conditions can 

be applied. The ‘leaf’ nodes at the end of the tree each represent a class label, numerical or 

categorical. A random forest is an expansion of this concept where multiple trees of unique 

structure each predict a target value for the input data. The output is the class selected by 

the majority of the trees [98]. The application herein utilizes the calculated features at each 

voxel or point in space to predict its appropriate classification.  

To create unbiased results the classifier needed to perform the same on the reference 

scans of all 4 samples. Since the plugin did not allow for updating the training of an 

imported classifier, another approach was defined that would train the classifier on all the 

reference volumes simultaneously. This was achieved by vertically stacking the reference 

volumes off all 4 samples into a large combined volume. Fortunately, feature volumes are 

created only in the first round of training and exist unchanged for all additional training 

iterations. At the end of each training run the model’s predictions were examined to locate 

errors in the segmentation. Errors were corrected by applying additional manual 

demarcation of the labels in the troubled regions, followed by another iteration of training 

with the complete labeled training data set. This process was repeated until the 

segmentation results appeared to perfectly match the distinguishable classes in the gage 

regions. Large pores that were connected to the surface of the gage regions proved 
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especially difficult to train the model to distinguish from the background class, and thus 

required a manual demarcation of every instance across all stacked reconstructions. 

Examples of each sample’s segmentation can be seen below in Figure 15. Additional 

examples of the classified volumes can be found in Appendix A.3, these results are shown 

for the deformation history of the components to exhibit the growth of the pores and the 

elongation of the components.  

 

Figure 15. Segmentation results for cross-sections of all 4 samples. a) Sample 1, b) 
Sample 2, c) Sample 3, d) Sample 4. 
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The resulting classified volume contained the solid, pore, and background classes 

of each sample’s reference scan. The data was loaded into Matlab and the unique classified 

volume of each sample was separated from the super volume and saved separately. 

Features of the pores and body of each gage region were then calculated and stored in a 

separate structure for each sample. For each sample the porosity label was broken up into 

unique pores by examining the 26-point connectivity of all voxels labeled pore, where each 

group of connected voxels identifies a unique pore. 

3.2.2 Pore Features 

It has been shown that properties of defects like volume and shape play an 

important role in the behavior of the material regions around them [99]. In the present 

work, defect volume, diameter, gap, sphericity, compactness, and tortuosity were 

quantified. Descriptions of the microstructure outside of the defect morphology such as 

distance from the outer surface and from the defect surfaces to interior points, as well as 

true wall thickness, and cross-section area orthogonal to the loading direction are also 

useful.  

3.2.2.1 Volume 

Pore volume was calculated from the count of pore voxels in each group multiplied 

by the voxel width cubed.  
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3.2.2.2 Circumscribed Sphere 

Several metrics of defect morphology compared against the ideal shape of a sphere. 

While some comparisons use a sphere of equivalent volume to the volume of the defect 

measured, the work herein has opted to use a circumscribed sphere as it maintains 

important spatial representation of its encapsulated defect. A circumscribed sphere is 

defined for each pore by first finding the two points on the pore’s surface with the greatest 

distance between them. For a given pore of N surface points, the distance between each 

surface point of this pore and all other surface points of this pore is calculated. In the present 

work this was done by constructing an NxN array for each location component (x, y, z) 

where each column represents the location-component of a single surface point repeated N 

times.  The component distances are found by subtracting each of the 3 arrays by the 

transpose of itself. The Euclidian distance from these components is then calculated. 

Retaining only the upper triangle allows for a unique maximal distance to be found where 

the two indices of the maximal distance in the upper triangle point to the two points that 

are furthest apart. These two surface points then become two points on the surface of the 

circumscribed sphere while the midpoint between them represents the center of this sphere. 

A circumscribed sphere for a large pore in sample 1 is shown below in Figure 16.  
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Figure 16. Visualization of a circumscribed sphere encapsulating a large pore in 
sample 1. 

3.2.2.3 Diameter  

The diameter of the circumscribed sphere is the diameter of the defect.  

3.2.2.4 Gap  

For the purposes of this work, the gap between pores is defined as the distance 

between the surfaces of the circumscribed sphere of each pore. As such, gap can take on a 
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negative value when circumscribed spheres overlap. Gap was calculated as the distance 

between sphere centers minus the radius of each respective sphere. Gap is often negative 

for large pores. For data completeness, the gap between a given pore and all other pores, 

both in terms of vector and magnitude, was actually stored; however, only the magnitude 

of the minimum gap of each pore was used in remainder of this work. 

3.2.2.5 Sphericity 

In this work, the sphericity of a given pore was calculated as the ratio of the defect’s 

surface area divided by the surface area of its circumscribed sphere. To calculate defect 

surface area a tessellated isosurface of the defect is first generated. The area of this surface 

was calculated as one half the summation of the squared root of the cross product of each 

triangular face’s tangent vectors. These vectors are taken from 2 of the 3 edges of each 

triangular face. Surface area of the defect with n tessellated faces was calculated by 

Equation (8): 

𝐴(:;:<= =
1
2g

aP𝑎, × 𝑏,Q
7

,81

  (8) 

where a and b are vectors (not normalized) of two sides of each triangular face (iso-surface) 

of the defect geometry. The surface area of the sphere was then calculated: 
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𝐴&>?:@: = 4𝜋 *
𝐷
2+

9

  (9) 

  

3.2.2.6 Compactness 

In the present study, pore compactness is defined as the ratio of pore volume over 

the volume its circumscribed sphere. Pore volume was simply calculated as the number of 

voxels multiplied by the cube of the voxel size. Sphere volume was of course:  

𝑉&>?:@: =
4
3𝜋 *

𝐷
2+

A

  (10) 

3.2.2.7 Tortuosity 

Pore tortuosity was defined in this work as the ratio of the pore sphericity over its 

compactness. While both other features are calculated the ratio between the two provides 

an additional description of the defect. 

3.2.3 Component/Gage Features 

3.2.3.1 Cross-Sectional Area – show at least one vertical visualization  

The cross-section area of each xy-slice of the gage body is defined as the number 

of voxels in that slice labeled solid multiplied by the voxel width squared. This cross-



 60 

section area defines the load carrying area of the given slice. Figure 17 shows an example 

of mapping this cross-section area in a vertical slice of sample 2 just before failure.  

 

Figure 17. Visualization of the change in cross-sectional area along a vertical slice of 
sample 2. 

3.2.3.2 Distance from External Surface  

Distance from the external surface was calculated using a Euclidian distance 

transform from on a binary volume. The volume was masked to separate the interior and 
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exterior of the component. The algorithm was implemented via a built-in Matlab function, 

bwdist, and based on the work in Ref. [100].  

3.2.3.3 Distance from Internal Surfaces 

Similarly, distance from internal surfaces was calculated using a mask that 

separates the defects from all other voxel classes.  

3.2.3.4 Wall Thickness 

Wall thickness provides a physical description of how thin the material system is 

at all points. With all else held constant the likelihood of a voxel experiencing greater strain 

is inversely proportional to its wall thickness. As such wall thickness becomes an important 

descriptor of the likelihood for strain localization in an area. Wall thickness in the present 

analysis was calculated with a modified shrinking spheres algorithm as presented [101]. 

The algorithm uses a concept of the minimum-inscribed sphere (MIS) between any two 

walls in space.  

The algorithm initializes at each surface point by casting a ray internal to the wall 

and normal to the surface. The surface voxel this ray intersects with was defined as the 

opposite side of the initial sphere and defines the wall thickness normal to that point. Next 

all surface voxels within the given sphere are collected. Spheres between every enclosed 
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surface voxel and the origin surface voxel are generated simultaneously such that each new 

sphere has its center on the line between the origin surface voxel and the ray pierced surface 

voxel. This process can be visualized below in Figure 18. The MIS was then defined to be 

the sphere with the minimum distance between its center and the origin surface voxel. The 

wall thickness was then defined as the magnitude for the vector between the two points this 

MIS intersects. The original algorithm as stated in Ref. [101] called for an iterative process 

of refining the points of intersection of the MIS and the surface polygons it touches. The 

modification used herein, opted for surface voxels rather than surface polygons. Treating 

each voxel as a discreet point of space about its center removes the need to iteratively refine 

the model along the polygonal surfaces. Instead the model converges in a single step to the 

MIS. An example of the wall thickness for an ideal geometry is shown below in Figure 19. 
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Figure 18. Illustration of the shrinking sphere algorithm. 

 

Figure 19. Test geometry for modified shrinking sphere algorithm in a voxelized 
framework.   



 64 

The wall thickness model herein was calculated in parallel over the set of all surface 

voxels such that each worker of the CPU(s) calculates the wall thickness for a unique 

surface voxel, while other workers simultaneously calculate the wall thickness from their 

surface voxel. The algorithm used herein was designed to collect the indices of all voxels 

inside of each final MIS and stores them for a non-parallel computed consolidation process. 

The final wall thickness feature volume is made up of the maximum wall thickness value 

for each voxel of space. The indices stored for each MIS will overlap, but the largest wall 

thickness at each voxel is the final value of the wall thickness at that voxel. An example of 

the wall thickness calculated for sample 1 is shown in Figure 20 below. For data 

completeness, the information about the final vector between the origin voxel and the MIS 

surface point was retained in the data structure, although it was not used in the present 

work. 

 

Figure 20. Example of how wall thickness is distributed in sample 1. 
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3.2.4 Feature Expansion  

Spatially locating features to their associated object enriches the local data of the 

digital twin model and provides a means for the direct comparison of spatial features with 

local mechanical behavior. As such, defect descriptors were used to naturally classify the 

region of their associated defects, and component descriptors provided information about 

the material between defects. Accounting for the influence of defects on the region around 

them requires some approximation of regional influence of each defect. In the present 

work, balanced defect regions were generated using a watershed segmentation based on 

the distance from each defect surface. The features within each watershed region were 

expanded to fill the regions.  

3.2.5 Down Sampling 

Between the 4 samples there was a total of 24 deformation steps measured. This 

results in over 2.34 billion voxels of data for the resulting strain fields alone. Further, 

including the number of features computed for each data point sets this number over 2.1 

trillion.  Therefore, it was necessary to crop the feature volumes down to a manageable 

size. For continuity the cropping used in the calculation of the strain via DVC was also 

chosen to reduce the size of the feature volumes. Further, due to the uncertainty in the exact 
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distribution and potency of specific features from specific defects, this approximation will 

require some degree of blind smoothing of features between defect regions.  

A down sampling kernel was defined at the center of each DVC subset, such that 

minimum, mean, and maximum feature values were extracted for each subset. The span of 

the kernel window provided an effective blurring of region boundaries. In addition, the 

down sampling process made it easy to define the local defect density within each subset. 

This presents another component body feature, but unlike other feature volumes it has a 

singular value for each subset and not a minimum, mean, and maximum. Finally, the 

nonlocal field generated with the model proposed herein was also sampled and used to 

enrich the feature data sets as a means of quantifying spatial interaction. Down sampling 

provided additional advantages in that using the points of measurement from the DVC 

analysis removes the need to consider the effects of upscaling interpolation. Ultimately 

each measurement of every sample provided between 16,640 and 17,920 observations. 

3.2.6 Correlation Coefficient 

While some studies have considered correlating defect metrics to global or bulk 

mechanical properties, no study has yet attempted to correlate local strain and local defect 

and component features. In this work, the linear dependence of the local strain field on 

local features was measured using a correlation coefficient described by the following:  
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𝜌(𝐴, 𝐵) =
1

𝑁 − 1gq
𝐴 − 𝜇B
𝜎B

s *
𝐵 − 𝜇C
𝜎C

+
D

E81

  (11) 

where 𝜇 and 𝜎 are the mean and standard deviations, respectively, and 𝜌(𝐴, 𝐵) is the 

correlation coefficient between A and B [102].  

3.3 Results 

3.3.1 Distribution of Features 

The distribution of a few select features are shown in the histograms shown below 

in Figure 21. It is clear that the high amount of porosity in sample 1 was larger than the 

data in samples 2-4, but it can still be seen that the defect volume, gap, sphericity, and 

compactness trends of all 4 samples are similar. This implies that in general there was no 

fundamental morphological differences between the porosity in any of the 4 samples. 
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Figure 21. Histograms of defect features. (a) Defect Volume, (b) Defect Minimum 
Gap, (c) Defect Sphericity, (d) Defect Compactness. 

3.3.2 Correlations 

Table 2 below shows the values of the correlation coefficients calculated between 

the feature volumes and the strain volume in the down sampled resolution of each sample. 

The integrated nonlocal mapping provided the best feature in terms of correlation, however 

this predictor showed poor correlation with the strain measured for sample 4. Conversely, 
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the distance from the external surface, inverted, showed provided the best correlation with 

sample 4, but poor correlation with the other three samples, particularly sample 1. The full 

set of feature correlations with the measured strain can be found in the supplementary 

material in Appendix B.1. 

3.4 Discussion 

As shown by Table 2, the localization fields generated by the proposed nonlocal 

analysis provide the best correlation with the measured strain fields. Pore volume showed 

the next best correlation especially for sample 3 but had limited correlations with both 

sample 2 and 4. Inverted distance measurements showed fairly consistent positive 

correlation albeit anemic, in almost all cases. However, the inverted distance from the outer 

surface proved to be negatively correlated with the strain in sample 1. Conversely, it 

provided a fairly strong correlation with the early strain development in sample 4. Pore 

volume fraction only showed a weak correlation with strain for all 4 samples. This is in 

contrast with the conventional practice of using volume fraction to approximate where 

strain will localize for numerical modeling, however this may be due to the relatively small 

window in which pore volume fraction was taken such that it would be consistent with the 

sampling of other features. In fact, most features were found to be very weakly correlated 

(<10%) with the measured strain. While these results are true for the axial strain measured 

from the uniaxial tension tests, defects have profound impacts on other material properties 
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and behaviors as well. Porosity plays a role in the reducing the elastic modulus of materials, 

and in general increasing their shock tolerance. Defects especially porosity, in components 

that will be subject to high cycling are particularly deleterious. These defects will serve as 

the sites of microcrack initiation and the propagation thereof. Additional defect 

characteristics could be applied to quantify metrics of defect directionality, from principal 

component axes, or curvature from the local defect surfaces, but these characteristics were 

not quantified herein.  
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Table 2. Correlation Coefficients of a select few features. 
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0.56 -0.155 -0.157 -0.157 0.305 0.391 0.381 0.292 0.240 0.125 0.258 0.266 0.207 0.461 0.462 0.452 0.189 

3.74 -0.145 -0.146 -0.145 0.437 0.607 0.599 0.457 0.385 0.234 0.324 0.359 0.284 0.623 0.618 0.603 0.269 

6.97 -0.164 -0.164 -0.162 0.451 0.650 0.657 0.492 0.419 0.265 0.318 0.356 0.280 0.648 0.639 0.623 0.259 

10.37 -0.157 -0.156 -0.153 0.445 0.637 0.640 0.530 0.453 0.290 0.314 0.356 0.278 0.652 0.643 0.628 0.254 

2 

1.87 0.027 0.017 0.021 0.256 0.326 0.319 0.150 0.151 0.148 0.244 0.243 0.173 0.353 0.364 0.359 0.147 

5.25 0.050 0.040 0.039 0.268 0.352 0.335 0.264 0.279 0.289 0.329 0.358 0.293 0.439 0.451 0.445 0.181 

8.30 0.072 0.062 0.060 0.283 0.376 0.354 0.319 0.335 0.345 0.356 0.392 0.327 0.481 0.490 0.482 0.188 

11.90 0.069 0.058 0.055 0.298 0.401 0.376 0.342 0.353 0.358 0.371 0.409 0.343 0.520 0.527 0.517 0.195 

15.03 0.092 0.082 0.080 0.321 0.432 0.406 0.338 0.341 0.338 0.375 0.419 0.359 0.549 0.548 0.535 0.197 

3 

5.46 0.191 0.187 0.183 0.652 0.738 0.708 0.236 0.143 0.037 0.216 0.246 0.194 0.698 0.649 0.604 0.192 

8.77 0.205 0.201 0.198 0.666 0.748 0.714 0.262 0.162 0.045 0.237 0.273 0.216 0.713 0.666 0.622 0.226 

11.97 0.226 0.222 0.219 0.656 0.739 0.706 0.280 0.176 0.051 0.256 0.301 0.242 0.714 0.670 0.627 0.236 
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13.91 0.243 0.481 0.542 0.257 0.257 0.230 0.098 0.098 0.095 0.177 0.186 0.182 0.158 0.136 0.108 0.049 

16.84 0.224 0.463 0.526 0.275 0.276 0.249 0.125 0.124 0.119 0.161 0.180 0.183 0.190 0.168 0.139 0.058 

19.79 0.203 0.443 0.507 0.292 0.297 0.273 0.163 0.160 0.154 0.145 0.167 0.177 0.208 0.187 0.159 0.063 

25.50 0.284 0.493 0.543 0.302 0.310 0.285 0.020 0.013 0.003 0.224 0.252 0.241 0.222 0.195 0.161 0.069 

27.71 0.252 0.460 0.512 0.325 0.339 0.316 0.073 0.065 0.054 0.199 0.234 0.229 0.249 0.223 0.190 0.075 

30.59 0.207 0.407 0.460 0.343 0.366 0.348 0.139 0.130 0.118 0.163 0.205 0.210 0.265 0.242 0.211 0.079 

33.63 0.162 0.338 0.386 0.398 0.436 0.426 0.176 0.167 0.153 0.130 0.173 0.186 0.293 0.267 0.235 0.085 
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CHAPTER 4. MODELING STRAIN LOCALIZATION 

4.1 Introduction 

4.1.1 Mechanics of Ductile Failure 

In a fully dense material, ductile failure is thought to occur from the onset of void 

nucleation, with little damage in the majority of the specimen until an effective strain is reached 

beyond which the mode of strain proceeds in a uniaxial fashion. This means that E11
 & E22 

cease to exist and are replaced with elastic unloading above and below the pore [86]. Instead, 

from that point on rapid void growth occurs. As the material between the nucleated voids 

begins to open up (elastic unloading top and bottom), void coalescence occurs [82]. 

4.1.2 Mechanics of Strain Localization 

The mechanical behavior of porous solids differs from that of monolithic 

polycrystalline materials such as traditional wrought metals. It is a commonly held belief 

that ‘inferior’ or ‘variable’ mechanical properties that are likely to result from AM builds 

[103]. Part of the reason for this notion is that it is common for AM components to have 

higher yield strengths and ultimate tensile strengths than wrought specimens of the same 

material, they also have lower ductility and typically a strong anisotropy associated with 

their build direction [35, 46]. The reduced ductility of AM specimens is concerning, 
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because it is indicative of the underlying damage phenomena that AM components 

experience. Several works have attempted to model the mechanical behavior of AM 

components using both standard finite element methods [104, 105] and stochastic finite 

analyses [106, 107, 108, 109]. A major gap in the extant work on this subject is that these 

methods do not specifically account for locality and characteristics of internal defects of 

the AM materials. Instead, they homogenize these effects to allow for application at a 

macroscale. There have been a few works that attempt to combine the stochastic FEM 

analysis with localization of damage, but due to the infeasibility of modeling the real 

defects, damage is accrued with an internal state variable [110]. The more significant gap 

is that these methods effectively predict the average response of AM materials and 

components and do not provide information about how a given individual component may 

locally fail.  

4.1.3 Modelling Efforts 

In 1976, J.R. Rice developed a theoretical framework for the localization of strain 

before component failure [111]. Following efforts, including those by Asaro and Rice, 

looked at the role of strain hardening, positive or negative, in localization. They found that 

localization can occur with positive strain hardening given some deviations from the 

Schmid rule [112]. It has been found that actual computational modeling with finite 

elements suffers from mesh sensitivity as the element(s) refine towards zero length as noted 
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by Pijaudier-Cabot and Bažant [113]. Tvergaard used micro mechanical calculations to 

show that microporosity can introduce highly localized strain banding between larger voids 

[114]. Horstemeyer and Revelli investigated the effects of microporosity on the growth of 

voids and the localization of strain [115].  Considere’s Seminole work in 1985 showed that 

materials will inherently become plastically unstable in tension and even small defects can 

promote localization [116]. Further work by Tvergaard investigated the role of void 

coalescence in ductile failure [117]. Similar studies have been done in Ref. [118]. A review 

of continuum modelling efforts can be found in Ref. [119]. 

A.L. Gurson developed the foundations of void growth models (VGM) with his 

work on voids and yield criteria 1977 [120]. Modelling efforts for void growth and strain 

localization are primarily focused around finite element (FE) analyses with major 

simplifications of the pore geometry and distributions to axisymmetric formulations such 

as cylinders, spheroids, and ellipsoids with more or less regular distributions [50, 52, 120, 

121, 122]. Gologanu et al. developed a Gurson-like constitutive model with the added 

ability to account for more complex void shapes with ellipsoidal prolate and oblate voids 

[123, 124]. Their efforts have shown that both initial porosity distribution and pore shape 

play a significant role in the localization of plastic flow before coalescence and failure in 

low and high stress triaxialities, respectively [53, 125]. Macroscopic modeling of both void 

growth and localization commonly makes use of pore (void) volume fraction as a metric 
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of material behavior. More recent works have focus on incorporating these models into 

complete constitutive frameworks with notable works by Benzerga [53, 82, 126], and 

Morin [127, 128]. More recently, Muhammad et al. developed a machine learning model 

for the prediction of local strain for additively manufactured parts in Ref. [129], however, 

this model was only developed for small local strains up to 10% and only applied in 2D.  

4.2 Methodology  

4.2.1 Non-local Influence Model 

Past studies have shown that strain localization is influenced by microstructural 

parameters beyond void volume fraction; microporosity and geometric parameters such as 

void shape, size, and distribution also exert significant influence. Unit cell models have 

been used to show that it is common for strain to band between large voids and lead to 

local necking behavior in intervoid-ligaments.  However, the computational expense of 

these FE models is prohibitive in scaling to full 3D components with preexisting porosity. 

Further, these methods rely on simplifications of the shape and distribution of these voids, 

but LOF porosity in AM is often of tortuous shape and arbitrarily distributed. 

Consequently, these micromechanics-based models are not yet capable of tackling 

localization of strain in highly porous material systems. As such, an alternative method for 

predicting the localization of strain in porous media is the focus of this study. 
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The method proposed herein attempts to account for the influence of preexisting 

porosity on strain localization by treating each instance of porosity as a nonlocal source of 

influence. The approach is to extend a nonlocal material model of the integral type to 

include the directionality of each nonlocal source. Shown below in Equation (12) is the 

basic formulation of the integral nonlocal approach for a point, 𝜔, and nonlocal 

contributions from sources, 𝜑. 

𝑓(𝜔) = 	'𝑎(𝜔, 𝜑)𝑓(𝜑)𝑑𝜑
	

"
  (12) 

The nonlocal field at the local point, 𝑓(𝜔), is effectively a weighted average of the nonlocal 

contributions in the domain, Ω [54]. The nonnegative weight function, 𝑎(𝜔, 𝜑), decreases 

with distance from the source.  

The integral nonlocal approach provides a method of modeling the overlap of 

influence between defects. Given the link between porosity distribution and shape with 

void growth and strain localization [115], modification of the model to include shape and 

relative location of the nonlocal sources (defects) was necessary. Vectors between nonlocal 

sources and a given point are used to describe their relative location. Further, the 

breakdown of these vectors into their components parallel and orthogonal to the loading 

direction frames their influence in terms of both the prolate and oblate growth of the voids 

in the surrounding space, this formulation can be seen in the first and second terms of the 
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first set of brackets in Equation (14), respectively. Additional weights can be applied for 

greater malleability. The influence of the nonlocal source’s shape was similarly described 

by expanding the single nonlocal vector prescribed to each source to be a set of nonlocal 

vectors from the surface points of the source to the given local point. Each set of vectors, 

hereafter referred to as nonlocal vectors, further accounts for the shape of their source by 

swapping the componentization orthogonal to the loading direction with one relative to 

each surface point’s surface normal. In this way the crack tip like behavior at the one end 

of a nonlocal source is projected only in the direction of its potential propagation. At the 

same time, the side of a void opposite to an intervoid-ligament is effectively non-influential 

on the ligaments behavior as is expected. As with the traditional nonlocal model, the value 

at a given point is obtained from the weighted summation of the spatially augmented field 

and a function of its distance to the given point. Consider the representative volume 

element (RVE) shown in Figure 22. 
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Figure 22. Representative volume element of the vectorized nonlocal field 
integration. 

𝜔 Local point of interest 

𝜑 A pore as a nonlocal source 

𝜕𝜑 Surface of a nonlocal source pore 

𝑛wFG Surface normal unit vector of a nonlocal source pore 

�̂� Unit vector between the nonlocal source or its surface and the point 𝜔 

𝛺 The material domain 

𝜕𝛺 Surface of the material domain as a nonlocal source 

𝑛wFH Surface normal unit vector of a nonlocal source that is the material domain 
surface 

𝐹z Unit vector of the loading direction 
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The projection of vector �̂� against the unit loading direction and also orthogonal to 

the unit loading direction provides the fields parallel and orthogonal, respectively, to the 

loading direction. These are sources for nonlocal weighted averaging at each point, 𝜔. The 

monotonically decreasing weight function, 𝑎(𝑥, 𝜑), provides the necessary dissipation of 

field intensity with distance from each source. This function is formulated below in 

Equation (13):  

𝑎(𝜔, 𝜑) = 	{*1 − |
𝑟
𝑅�

I
+
7

𝑓𝑜𝑟	0 ≤ 𝑟	 ≤ 𝑅

0 𝑓𝑜𝑟	𝑟	 ≥ 𝑅
  (13) 

where 𝑟 = �|𝜔 − 𝜉|� is the distance between the source and the local point and R is the 

interaction radius of a given source. In the present work R was determined as a function of 

the radius of a sphere of equivalent volume with its associated defect. Specifically, the 

quantity of 5 times this equivalent sphere radius was used. However, it has been suggested 

that the more rigorous determination of R would be derived from St. Venant’s Principle. 

The powers 𝑚 and 𝑛 control the shape of the decreasing function. A value of 1 for both 𝑚 

and 𝑛 produces a linear decay, 𝑚 = 1 and 𝑛 = 2 produces a quadratic decay, and 𝑚, 𝑛 =

2 produces a bell-shaped decay. The full formulation of the localization predicting model 

is: 
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𝑓(𝜔) = 	' 𝑎(𝜔, 𝜑) ,𝑞# .�̂� ∙ 𝑄34 + (1 − 𝑞#) .�̂� ∙ 𝐹349 ,1 − 𝑞$ .𝑄3 ∙ 𝐹349 𝑑𝜑
	

"
	

𝑄z = �	
𝑛wFG	(𝜑	 → 𝜕𝜑)
𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ⊥ 𝐹z

 

 

 (14) 

where 𝑞1, 𝑞9 are weights that allow for additional shaping of the nonlocal contributions. 

The second bracketed term allows control of the field distribution relative the shape of the 

pore and the loading direction, such that the field can be pushed to the brim of the shape 

and allow for an unloading zone above and below each pore. This equation can be further 

extended to account for the effects of surface roughness by adding the section below:  

 - 𝑎(𝜔, 𝜕𝛺) _𝑞3 |𝑝w ∙ 𝑛w𝜕𝛺� + P1 − 𝑞3Q |𝑝w ∙ 𝐹��` _1 − 𝑞4 |𝑛w𝜕𝛺 ∙ 𝐹��`𝑑𝜕𝛺
	

H
 (15) 

4.2.2 Artificial Neural Networks  

Both defect characteristics and the non-local field data were down sampled at the 

DVC analysis measurement points using the subsets from the analysis to obtain the 

minimum, mean, and maximum of these characteristics and non-local field at each 

measurement point. Prior to down sampling all data was stored as characteristic volumes 

of the same size and shape as their associated reconstruction volumes. After down sampling 

there were a total of 36 descriptive values associated with the center point of each subset 
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of the DVC analysis. These points were then linearized into a list of observations where 

each center point defined a unique observation with 36 features. The observation lists 

across samples and deformation steps were then concatenated into one unified list of 

observations. This final list was 418,560 x 37, where the 37th feature was the load measured 

for the given deformation state. The measured axial strain field was similarly linearized 

into a single column list. 

Initially, attempts were made to employ a 3D convolutional neural network (CNN), 

a form of deep learning, approach to predict strain from 3D arrays of the descriptive data. 

However, training of these models proved slow, and a more efficient approach was needed. 

Therefore, efforts were pivoted to developing shallow networks that could predict the strain 

at each point without inherent spatial coupling of the observations. Shallow network 

machine learning models in the vein of artificial neural networks (ANNs) were developed 

using Matlab 2020a [130]. ANNs are made up of hidden-layer(s) each with a given number 

of nodes or ‘neurons’ that will independently weight and offset the incoming data. These 

networks are designed such that each feature is handled as a channel of data. At each neuron 

the incoming channels of data are separately weighted and offset before being summed and 

scaled via a transfer function to the following layer. As such the total number of input 

channels, m, is multiplied by the given number of neurons, n, in the layer for a total of m 

x n weights and offsets to be tuned for said layer. In following layers, the number of data 
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channels is defined by the number of neurons of the previous layer. For the present work 

each hidden layer employed a symmetric hyperbolic tangent as the transfer function. As a 

continuous function with a high gradient, this function is ideal for general network training. 

In the present work the models had a single output layer with a single neuron and a pure 

linear transfer function that simply scaled and summed the incoming data channels to 

predict the strain for the given observation.  

4.3 Results  

4.3.1 Non-local Influence Fields 

 

Figure 23. Comparison of the normalized local axial strain measured (left) and the 
localization predicted by the nonlocal mapping analysis (right). a) Sample 1 

@10.37% global strain, b) Sample 2 @15.03% global strain, c) Sample 3 @21.14% 
global strain, d) Sample 4 @33.63% global strain. 
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Results of the non-local mapping analysis (right) as compared to the last strain 

measurement before failure (left) for each sample are shown in Figure 23 above. It should 

be noted that since the nonlocal influence model does not include terms that relate to the 

load or deformation progress, there is only one predicted localization field for each sample. 

Since failure rapidly follows strain localization, this prediction was designed to be most in 

line with the strain measured just before failure. The local axial strain fields were 

normalized at each measurement level to redistribute their range between 0 and 1 to 

represent no localization and high localization, respectively. The results show that the 

analysis was capable of identifying the areas of major localization, but also provided an 

overprediction of the localization elsewhere. In particular, Figure 23(d) shows that the 

model predicted medium-high localization between several intervoid locations and at one 

surface pore location, however these predictions did not match with the field measured for 

the sample. The correlation coefficients between the localization mapping and the 

measured strain are shown in Figure 24. As expected, the correlation improved as each 

sample approaches failure, mimicking the increase in strain localization within the 

components. It can be seen that sample 4 proved the worst in terms of predictability with 

this model.  
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Figure 24.Correlation coefficient of the nonlocal field with strain localization vs 
global axial strain. 

4.3.2 Optimal Network Architecture 

With the proposed shallow network, it was still necessary to optimize the network 

hyperparameters, which are number of hidden layers and the number of neurons per layer. 

To maintain model simplicity, the number of hidden layers was capped at 4 and the number 

of neurons was capped at 72, twice the number of sample features fed into the network. 

Each following layer was restricted to have half the number of neurons as the previous. 

This kept the total number of network permutations to 10. For each architecture, 10 models 
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of that architecture were generated. Each model was given a different random set of the 

training, validation, and test data, but the ratios of each were maintained across all 10. The 

combined prediction of 10 models in parallel allowed for the total prediction of each 

configuration to be far more robust to overfitting and variations in the training data. 

Table 3 shows the combined predications of the 10 models trained with each 

network architecture. Values shown are the average of the 10 models generated with the 

same architecture but a slightly different set of training and validation data. This provided 

a more robust prediction that is less likely to be overfit to the training data. As expected, 

the results showed that single hidden layer networks performed poorly, but that increasing 

the number of neurons in a layer boosted the training performance. This was also seen in 

the 2, 3, and 4 hidden layer networks. Acceptable mean squared errors (MSE) had a 10-4 

order of magnitude as this resulted in regression accuracy of 91+%. Ultimately, a 2 hidden-

layer 72 and 36 neuron network architecture, performed the best on the unseen data. 
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Table 3. Performance of the artificial neural network (ANN) architectures broken 
down by complexity. Values shown are the average of the 10 models generated with 

each architecture but a slightly different set of training and validation data. 

  
Number of Hidden Layers 

1 2 3 4 

Number 
of 

Neurons 
in First 
Layer 

9 

MSE 0.00193     
r 0.80719     
m 0.61968     
b 0.03528      

18 

MSE 0.0017 0.00124    
r 0.83333 0.88146    
m 0.66063 0.74119    
b 0.03144 0.02373     

36 

MSE 0.00157 0.00108 0.00104   
r 0.84621 0.8982 0.90233   
m 0.68927 0.76798 0.77656   
b 0.02875 0.02136 0.02073   

72 

MSE 0.00148 0.00077 0.00088 0.0009 
r 0.85618 0.92822 0.91724 0.91608 
m 0.71291 0.83774 0.80687 0.7991 
b 0.02646 0.01486 0.01775 0.01855 

 As shallow networks of simple architecture, model training time was not significant 

with the longest training taking only 2.78 hours and the shortest only 22 seconds to reach 

convergence. Convergence was defined as six iterations of training without improvement 

in the prediction of strain on the validation data set. Convergence of the optimal 

architecture models took longer than others. On average it took the optimal architecture 1.4 

hours to converge vs. 0.81 for the 3 hidden-layer architecture at 72-36-18 neuron. Model 
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accuracy normalized by convergence time shows that 2 hidden-layer 18-9 neuron 

architecture proved the most efficient. If model efficiency is the goal, then this architecture 

may be a good trade of in terms of accuracy vs. training time. 

4.4 Discussion 

4.4.1 Quality of the Non-local Influence Predictions 

The modified nonlocal field generation proved adept at predicting strain 

localization with the minimum correlation found being ~38% for the early stages of 

deformation in sample 2 and a maximum correlation of ~73% just before failure in sample 

3. Accuracy of the strain localization prediction improved with increasing strain in each 

sample. This is to be expected as localization of strain about defects is thought to accelerate 

as components strain to failure [53]. The cross-sectional comparisons show that the 

nonlocal integration was adept at predicting regions of high strain localization but suffered 

from the overestimation of strain in quieter regions. This suggests that either the model 

needs to have accelerated degeneration with distance or that the DVC analysis is more 

capable around the hot-spots due to the mechanism of correlating based on high contrast 

patterns. Further, measured axial strain in these low magnitude areas did trend with the 

nonlocal model predictions, but the form of the measured field was significantly more 

disperse and continuous. This suggests that the smoothing effects of the DVC analysis 
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windows likely underestimated these strains. Additionally, the growth of porosity in these 

regions and the emergence of previously unseen pores with increasing deformation further 

supports this assessment. Therefore, the disparity in the localization of strain in non-critical 

regions is likely due to both the simplified model implementation of the model and the 

limitations of the DVC analysis in terms of measuring areas of less unique texture and low 

deformation. Since the rate of field deterioration was tied to the characteristic length of the 

source, a function of the equivalent sphere radius; bringing associated characteristic lengths 

more in line will simultaneously coarsen and smooth the field for large and small porosity, 

respectively. Further, weighting of the model to penalize low volume defect sources and 

low volume fraction areas of porosity would significantly dampen this spotting. One 

possible solution would be to associate the characteristic length with some estimate of the 

region of influence as extracted from the DVC analysis. However, the difficulty of this 

would lie in estimating these measured regions of influence as some function of local defect 

characteristic. Moreover, separating the influence of one defect from that of another in 

regions where intervoiod necking is apparent has no clear solution at this time.  

In some samples, the prediction of additional elevated strain localization at porosity 

adjacent to the site of primary localization was seen. Figure 23(a, b) shows this behavior 

occurring in samples 1 and 2, respectively. The analysis for sample 1 predicted an elevated 

localization with porosity to the top left of the lower site of high strain localization, and in 
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sample 2 similar predictions were made for pores just below the primary strain localization 

site. These small nodal localizations between the adjacent porosity are not seen in the 

experimental results. This can be solved by tuning the ratio of strain contribution parallel 

and orthogonal to the loading direction with q1 and the accumulation of above and below 

the defects with q2. In the present work q2 was set to 0 to enhance the sense that the model 

was operating blindly or without preconceived notions of what the strain should look like. 

By setting q1 to 0.75, as such the vector components along the surface normal direction 

were set to be 3x stronger than those along the loading direction. This effectively assumes 

that the influence of defect shape will outweigh that of loading direction. The values of q1 

and q2 were chosen to demonstrate how the model performs with only a generalized 

formulation. Greater values of q1 and q2 would reduce the proclivity for the model to predict 

small localization nodes in adjacent sources above and below the primary localization site.   

Additionally, the measured fields showed greater trends of strain localization near 

the gage surfaces. This can be resolved with the inclusion of the outer surface integral 

shown in the model formulation. Inclusion of this term is a computationally expensive 

process that is several orders of magnitude slower than the limited integration from solely 

internal sources. Instead, an approximation of the contributions of the outer surface can be 

generated with a linear weighting scheme divided by the distance from the outer surface 

and added to the integrated solution from the internal sources.   
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It should be noted that the predictive capacity of the nonlocal model is inherently 

tied to the quality of the defect identification and demarcation and as such is dependent on 

the effective voxel size of the reconstruction. At the same time, increasing the resolution 

of the system will inevitably increase the computational time and load of the analysis. For 

a uniformly discretized space the computational cost scales at a rate greater than n3, where 

n is the ratio change in resolution relative to the previous resolution. Other difficulties arise 

in the determination of appropriate weights. In recognition, future work is suggested to 

apply the nonlocal model to nonuniform or even dynamic spatial resolutions and to tie the 

weight determination to secondary characteristics of the contributing defects. Finally, the 

model falls short of predicting the actual strain magnitude at a location, and as such can 

currently only function as a pointer to areas where critical strain can be expected or as a 

metric of how much strain is expected to localize in a component.  

4.4.2 Quality of the Shallow Network Predictions 

The performance distribution of the 10 network models generated for each network 

architecture is summarized in Figure 25. The mean squared error in Figure 25(a) is optimal 

at the lowest value, thus the least error. Similarly, the offset of the regression fit is optimal 

at 0 and for each architecture the distribution of the offset for each model can be seen in 

Figure 25(d). The regression value or each model represents the correlation of the predicted 

strains with those measured. Figure 25(b) shows the distribution of the regression values, 
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where a value of 1 indicates a perfect correlation and a value of -1 indicates anti-correlation. 

As, can be seen, even architectures that performed poorly relative to the optimal 

architecture found over 75% correlation. This implies that models of only 9 neurons and a 

single hyperbolic tangent transformation were able to capture over 75% of the variance in 

the measured results. Figure 25(c) is the slope of the regression line, where a slope of 1 

indicates that changes in feature values perfectly map to the changes in the strain. The 

variation in model architectures is provided by the data series in a nomenclature that 

describes the number of neurons in each hidden layer separated by underscores, such that 

0_0_0_18 and 0_36_18_9 are a single-hidden-layer network with 18 neurons and a 3-

hidden-layer network with 36, 18, and 9 neurons in each respective layer, respectively. It 

can be seen that the most complex architecture consisting of 4 hidden layers with 72, 36, 

18, and 9 neurons, respectively, had one model out of the 10 trained that converged at a 

local minimum instead of the apparent more accurate minima that the remaining 9 

converged towards.  
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Figure 25. Box and whisker plots of the sub-model performances on the fresh 
unseen data. (a) MSE, (b) regression value, (c) slope of the regression fit, and (d) 

offset of the regression fit. 

The results of the shallow network modeling revealed that even networks of 9 nodes 

in a single layer were able to obtain registration values of greater than 80% and fit line 

slopes of over 60% for fresh data not seen in training, validation, or testing. As such, the 

model was able to predict the localization and magnitude of strain from the unchanging set 

of features measured in its undeformed state and a knowledge of its expected load at that 
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stage of deformation. The optimal shallow network architecture of 2 hidden layers with 72 

and 36 neurons, respectively, had a combined mean squared error of 7.7x10-4. Thus, the 

implementation in the present work was more accurate per hidden layer and more accurate 

per number of neurons per layer when compared to Ref. [129]. All 10 component models 

with this architecture had regression values, r ≥ 	90% and linear regression slopes of just 

under 90% accuracy. Averaging the predictions of all ten sub-models produced a regression 

value of 92+%, which is greater than any of its sub-model’s regression value. This 

performance boost proves the robustness of the combined prediction approach employed 

herein. The combined prediction, averaged prediction from the 10 sub-models, produced 

an MSE of 0.00077, and a slope of the regression fit was 0.8377. This particular 

architecture outperformed the less and more complex model architectures in all categories 

when the models were used to predict the results of fresh unseen data. The more complex 

models only outperformed the optimal model on the training data. These performance 

metrics are shown in box and whisker charts for the 10 models or each architecture in 

Appendix A.5 where the results of the training, validation, and individual testing are 

shown. In addition, the performance on the fresh data set is shown.  

It was observed that model accuracy improved with increasing deformation in all 

samples. Since the localization of strain and subsequent failure of components occurs 

rapidly before failure, predictions discussed herein will be limited to the frames of strain 
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captured near failure. The combined prediction of this architecture’s models is visualized 

below in Figure 26. No interpolation was used to plot the data as values are shown at the 

center point of each DVC subset. The actual vs predicted local strain for sample 1, shown 

in Figure 26 (a, b), exhibits a visually compelling match between the measured axial strains 

and those predicted by the model. Similar compelling arguments can be made for samples 

2 and 3 in (c, d) and (e, f), respectively. Similar to the nonlocal influence model this model 

showed poorer performance for sample 4 relative to the other 3. Sample 4 was also the 

least like the other 4 samples in terms of morphological evolution and initial porosity, so it 

is possible that its prediction suffered from a lack of additional specimens with similar 

behavior. The model performed well at capturing even small local fluctuations in strain 

data as exhibited by (a, b) and (c, d) in Figure 26 below.  
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Figure 26. Visual comparison of the actual and predicted strain at the last 
measurement before failure mapped over the DVC grid points. Measured strain for 
samples 1, 2, 3, and 4, is shown in a, c, e, g, respectively, and the predicted strain for 

samples 1, 2, 3, and 4, is in b, d, f, h, respectively. 

4.4.3 Synthetic Alterations 

Regardless of the model performance on the given data, the introduction of data 

with different material or geometric systems would result in poor predictive performance. 

This is a known issue with machine learning techniques that limits their applicability to 

real world solutions. Moreover, extracting useful information from even simple model 

architectures is extremely difficult, however there is still use in such models. These models 

can function as interpolants for the given data sets. 

Experiments produce very specific results over the range of the samples tested. 

Given the time and expense of experiments in this domain, there is a need to effectively 



 96 

translate data between the experimental realm and the modeling one. Machine learning 

provides a simple path for this transition. To extend the amount of information obtained 

from experiments, the present work involved creation of artificial data via synthetic 

alterations of the experimental data. This artificial data can be used to see the effects of 

specific changes on the microstructure in terms of the strain predicted for the system. 

Further, these changes can be used to build a wealth of engineering knowledge about the 

behavior of AM microstructures and their strain localization. Synthetic alteration of only a 

small portion of the experimental data will not cause the model to need to extrapolate its 

results, provided that the changes made fall within the range of data collected for training. 

For reference the unaltered porosity configurations in the reference state of the sample are 

given below in Figure 27. 

  In this section a single pore within each sample’s ultimate failure region, and 

adjacent to the critical porosity, was chosen to be altered. These pores are identified and 

shown in Figure 28 below, the critical pores are shown in magenta and the pores to be 

altered are shown in purple. Two views, one perspective and one straight on down the 

sample gage, are given for each sample, top and bottom, respectively. Alterations included 

morphologically changing the volume of the pore, moving the pore along a vector defined 

between itself and the critical pore, and moving the pore along a vector defined between 

itself and the closest point on the external surface of the component. These relatively small 



 97 

changes to each data set allow the wealth of predictive power of the model to be probed. 

Further, the pores to be altered were chosen specifically for their apparent role in the strain 

localization that lead to failure originating at the critical surface pore of each sample.  

 

Figure 27. Visualization of the defect fields color mapped to represent the strains at 
the surface of each defect. Focused views of each sample’s failure region porosity 

are shown below their given sample. a) Sample 1, b) Sample 2, c) Sample 3, d) 
Sample 4.  
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Alterations were performed on the chosen pore for the reference configuration of 

each classified volume. The alterations focused on the pore volume, distance between 

pores, and distance from the pore to the surface of the component. Each metric was changed 

independently and incremented to increase twice and decrease twice relative to each 

independent parameter a summary is provided in Table 4. Since the system of features are 

inherently linked, changes to the defect volume will change features around this pore.  

Table 4. Pore alteration applied to each sample for each sample's given global 
strain. 

 Alterations 

Pore Volume 

Δr =  -2 vx 
Δr =  -1 vx 
Δr = +1 vx 
Δr = +2 vx 

Pore Gap 

Δdcrit =  -26 vx 
Δdcrit =  -13 vx 
Δdcrit = +13 vx 
Δdcrit = +26 vx 

Surface Distance 

Δdext =  -26 vx 
Δdext =  -13 vx 
Δdext = +13 vx 
Δdext = +26 vx 

 Alterations were applied to the last two measured states of each sample. So, with 

the total of 4 samples, 2 states per sample, and 12 alterations per state, there are 96 synthetic 

defect volumes generated. Each generated volume required the features of that volume to 

be recalculated, for the new defect configuration. This whole process generates over 1.72 
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million new observations to be fed to the trained model, greatly increasing the amount of 

data obtained from a single set of experiments.  

Pore volume changes made use of morphological erosion and dilation with a 

spherical structural element with radius equal to 1-2 voxels depending on if it was a minor 

or major alteration, respectively, see Table 4. The gap between the pores identified in 

Figure 28 was altered by calculating the vector between the centroids of the altered and 

critical defect and moving one of the altered along the direction this vector provides. 

Finally, the movement of the altered defect relative to the exterior surface was carried out 

by finding the closest surface voxel of the exterior surface to the altered defect’s surface 

and moving this defect along the vector between this point and the defect center. Each 

alteration would have ripple effects that facilitate the need to recalculate all the defect 

features and nonlocal integral field. The purpose of these changes in the experimental data 

is that the unintended consequences are actually witnessed. Fully artificial data allows the 

user to isolate specific testing questions, but at the expense of ignoring the combined 

(effects from all the ripple changes and from all the other nonlocal defects) effects of real 

data changes. 
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Figure 28. Visualization of the critical pore (magenta) and pore to be altered 
(purple) for each sample. a) Sample 1 in perspective (top) and straight on (bottom) 
views, b) Sample 2 in perspective (top) and straight on (bottom) views, c) Sample 3 
in perspective (top) and straight on (bottom) views, d) Sample 4 in perspective (top) 

and straight on (bottom) views. 
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4.4.3.1 Effect of Pore Volume Changes 

Results of the predictions on synthetic data varied from sample to sample. Samples 

1 and 3 were more sensitive to the synthetic alterations than samples 2 and 4. This is in 

part due to the nature of the failure in samples 1 and 3. Both samples 1 and 3 had oblate 

surface pore growth that lead to rapid coalescence with horizontally adjacent porosity and 

failure. While samples 2 and 4 also failed due to surface pore growth, their mode of failure 

was dissimilar. The failure in sample 2 was due to growth of a surface pore diagonally and 

then the rapid propagation along shear bands towards other adjacent large pores as 

described in Tvergaard as a void-sheet mechanism in Ref. [117] and or more specifically 

as Barsoum and Faleskog described it as intervoid shear in Ref. [131]. The conditions for 

shear localization are given in Ref. [132]. On the other hand, sample 4 exhibited primarily 

prolate growth of a surface pore. Necking occurred in this same region likely due to the 

softening effects of the porosity and the reduced cross-section. As noted by Noell et al. 

there are often multiple competing and collaborating failure mechanisms in ductile 

fracture, especially with preexisting voids [133]. In general, alterations in samples 1 and 3 

resulted in changes in strain that were an order of magnitude greater than the same 

alterations caused in samples 2 and 4. Another consideration is the original size of the pore 

being altered. In samples 1 and 3 the pore being altered is of significant size even before 

dilation; whereas, in samples 2 and 4 the pore is of a size that is only slightly above average 
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for that sample. Nonetheless all pores were chosen for their proximity and observed 

interaction with the critical porosity in their sample. 

 Increasing pore volume via dilation with a spherical element of a 2-voxel radius 

(Δr = +2 vx) resulted in local strain rises around the altered pore of samples 1 and 3 of up 

to 0.87 and 0.6, respectively. Samples 2 and 4 exhibited rises of only 0.12 and 0.17, 

respectively. On average the rise in strain around the altered pore was approximately 0.5, 

0.08, 0.3, and 0.07 for samples 1 through 4, respectively. Erosion of the pore volume (Δr 

= -2 vx) similarly resulted in drops up to -0.29, -0.08, -0.4, and -0.2 with averages around 

-0.14, -0.03, -0.15, and -0.09 for samples 1-4, respectively. The minor dilations and 

erosions (Δr = +1 vx and Δr = -1 vx) were effectively linearly proportional to these major 

changes. The effects of changing pore volume in sample 2 can be seen below in Figure 29. 

Here the strain predicted for the experiment was subtracted from the strain predicted for 

each volume alteration case to highlight the changes to the strain field caused by the change 

of pore volume. The grey end caps of the displayed porosity are regions that would fall 

outside of the given prediction region and as such no predicted strain was mapped to their 

surface.  
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Figure 29. Pore volume changes in sample 2. Visualization of the difference between 
the prediction on synthetic and the prediction on the experimental defect fields. 
First column displays the difference in strains in 3D with strain mapped pore 

surfaces and a vertical slice plane between the critical and altered pores. The second 
and third columns show the isolated slice plane and a horizontal slice plane, 

respectively. (a)-(c) Δr = -2 vx, (d)-(f) Δr = -1 vx, (g)-(i) Δr = +1 vx, (j)-(l) Δr = +2 vx. 

4.4.3.2 Effect of Distance Between Internal and External Surfaces 

Changes in distance between surfaces, both pore-to-pore and pore-to-external, 

resulted in comparable changes in the predicted results. Since these are highly porous 
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samples, the retreat from one surface often incorporates the approach of an entirely 

different surface and vice versa. As such, this discussion will be broken down into 

considerations of the strain changes in terms of approaching a surface and in terms of 

retreating from a surface. Samples 1 and 3 experienced greater changes in strain than 

samples 2 and 4 with respect to these alterations. In general, the approach of a pore towards 

a new surface will cause a sharp local rise in strain, and these changes in strain magnitude 

and distribution will affect the pore growth path and thus the path dependence of the sample 

failure [134, 135]. The original locations of the altered pores had fairly consistent decrease 

in strain regardless of where the pore was moved. Sample 4 was unique in that moving the 

altered pore did not cause any major strain changes at its original location. This is largely 

due to the low amount of intervoid interactions that were observed in sample 4. The greatest 

increase in local strain due to synthetic pore displacements was found in sample 1 with an 

increase of around 0.6. Most changes in pore location failed to significantly change the 

strain at the critical pore of each sample, the one exception being the movement of the 

altered pore in sample 2 into the region of high local strain of the critical surface defect in 

sample 2. This resulted in the local strain magnitude increase ~ 1.5 times its predicted value 

for the experiment configuration. Similar placement of the altered pore into the zones of 

localization around critical pores in sample 3 and 4 did not produce the same results. For 

sample 3, this scenario increased the size highly strained region. In sample 4, this motion 

simply established the first intervoid ligament in this sample. The new intervoid ligament 
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in sample 4 was accompanied by a drop in strain on the opposing side of the ligament, due 

to the increase in strain in ligaments often to the exclusion of strain in neighboring regions 

[115]. 

 Figure 30 below shows the strain at a horizontal cross-section through the altered 

pore of sample 1 predicted by the model. Alterations shown are the movement of the altered 

pore 26 voxels up (Δdext =  +26 vx) in Figure 30(a) and 26 voxels down (Δdext =  -26 vx) 

in Figure 30(c), where up and down are relative to the image frame. Figure 30(b) shows 

the prediction for the actual configuration of the pores in the experiment, and Figure 30(d) 

and Figure 30(e) show the difference between the predictions in the synthetic 

configurations and the experiment configuration. The intensity of the strain drop in the 

original location of the pore was more or less constant across the two opposing motions, 

as were the rises in magnitude. One particularly interesting prediction was the strain drop 

above and to the left of the altered pore in Figure 30(a) and below and to the right of the 

pore in Figure 30(c). This behavior is in line with the theories of ductile strain between 

voids, where intervoid strain localization is to the exclusion of strain outside this region 

[54, 115]. Similar behavior was seen in pore displacement alterations of samples 1 through 

3 and in one case in sample 4.   
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Figure 30. Strain in horizontal cross sections of the sample 1. a) Strain predicted for 
the vertical movement of the altered pore up towards the top of the image, Δdext = 
+26 vx. b) Predicted strain for the true or experimental configuration of pores. c) 
Predicted strain for the vertical movement of the altered pore down towards the 

bottom of the image, Δdext = -26 vx. d) The difference in predicted strain between a) 
and b). e) The difference in predicted strain between b) and c). 

 In sample 3, the altered pore will actually coalesce with the critical surface pore at 

its closest point. In this scenario the strain field was predicted to be carried further into the 

body of the component, but there were practically no changes in the strain intensity of this 

now larger pore. As this pore was moved away from the critical surface pore it approached 

the opposite exterior surface and began to have increased strain towards that surface. The 
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maximum rise in strain between the experiment and this prediction was 0.29, while the 

decrease strain at its original location was around -0.25. As seen in Figure 31, the 

movement away from the critical surface pore was also a movement away from the small 

porosity that acted as a bridge for coalescence between the critical surface pore and this 

altered pore. Movement of this pore away from these small coalescence bridge pores causes 

an overall drop in strain in this region. Accordingly, as the altered pore moved closer to the 

small coalescence bridge pores, there was a rise in strain of up to 0.34 and a decrease strain 

near the initial location of up to -0.24. The large rise in strain seen as the altered pore moves 

into, and actually coalesces/connects with, the critical surface porosity in Figure 31(e), was 

due to this the fact that the newly enlarged critical surface pore now reached further into 

the component body with its heightened strain field as seen in Figure 31(a).  
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Figure 31. XY cross-sections showing the movement relative to the critical surface 
pore of the altered pore in sample 3. a) Δdcrit = -26 vx, b) Δdcrit = -13 vx, c) Δdcrit = 

+13 vx, d) Δdcrit = +26 vx. e-h) exhibit the difference between the experiment 
measurement for this cross-section and the predictions of the altered configurations 

in a-d), respectively.  

Interestingly, it is evident that movement of the pore close to the zone of critical 

strain produced significantly different results than actually connecting the altered pore to 

the critical surface pore in this zone. For all other cases, the overall strain at the critical site 

was relatively unaffected, but the coalescence path was altered. For the case of joining the 

two pores, the local strain in the zone was morphologically altered to distribute itself more 

towards the small coalescence bridge pores, but the ultimate magnitude of the strain in this 

zone does not change significantly. The decrease in strain as the altered pore approached 
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the critical surface pore seems paradoxical at first glance, however this drop in strain was 

actually accompanied by a rise in strain to a point on the surface of the critical pore that 

was actually closer to the altered pore. The reason for this is that the motion of the altered 

pore does not lie perfectly within the cross-section shown, as was evident by the change in 

pore shape between frames. In general, the drop in strain at the old location of the altered 

pore remains around -0.25 for all scenarios. The difference in the predicted strains and the 

experiment for an even steeper diagonal movement through the component body is shown 

in Figure 32. 

This extension of the ML model with small synthetic alterations is limited by the 

size of the alterations and the need to keep changes within the range of data used to train 

the models. As with the ML model itself, these extensions are limited to one material 

system and similar component geometries. Additionally, the predictions of the model are 

tied to the uniaxial loading of the experiments and cannot be used to predict the strain in 

other loading scenarios. As such, future work lies in expanding the range of the porosity 

conditions performing additional in-situ loading test to be used for model training. Other 

model expansions, such as including material properties or build parameters in the list of 

features are possible. Ultimately, the goal of this research has been to show how models 

developed directly from measured data can be used to further the understanding of 

deformation in highly porous systems.  
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Figure 32. Difference maps of the strain changes for moving the altered pore in 
sample 3. a) Δdext = +26 vx, b) Δdext = +13 vx, c) Δdext = -13 vx, and d) Δdext = -26 vx. 

4.4.4 Generalization and Limitations of the Models 

The models developed in the present work serve as an alternative to more traditional 

fracture mechanics analysis. There are complex states of stress occurring within the 

microstructures shown. Since yield criteria require some knowledge of principal loading 
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directions and thus the state of the stress, fracture mechanics becomes impractical with 

complex microstructures. Within these microstructures, especially within regions where 

failure is likely to occur, measurements or assumptions of yield stress cannot be applied, 

because the magnitude and directionality of the loading are not clear. As noted by Noell et 

al. in Ref. [133], there are a possible 7 mechanisms of ductile rupture and they can exist 

simultaneously. This work has stressed the intervoid necking mechanism, but as seen for 

sample 2 in Appendix A the void sheeting mechanism and thus shear mechanisms are also 

at play. However, in less porous samples traditional fracture mechanics will play an 

important role in predicting yield. Given that models developed herein are inherently 

dependent on the initial porosity of the specimens, there will be a soft transition in initial 

porosity volume fraction that will yield the models less effective and traditional fracture 

mechanics more effective. It would appear that the tipping point for the defect driven 

models developed herein to be valid requires that the initial ratio be greater than 0.48%. 

This is based on the weaker performance of the machine learning model in predicting the 

axial strain in sample 4 vs its robust predictions for samples 1-3. Even with an 

approximation of minimum porosity needed, consideration should be taken for both defect 

size and density as shown by Table 1. Ultimately, the models’ efficacy increases with initial 

porosity, pore size, and the resolvability of the porosity.   
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Expansion of the present models to other material systems will require some 

alteration as discussed below. Traditionally manufactured 316L SS has no precipitates and 

therefore almost no void nucleation, it is unlikely that AM 316L will have much in terms 

of precipitates either. The in-situ experiments performed did not have sufficient resolution 

to observe any void nucleation, but the morphological evolution of the components does 

give rise to emergent porosity, that since originally unknown and unaccounted for serves a 

similar function in this work. These microvoids will affect the localization behavior as 

shown by Ref [114], but as seen by the accuracy of the non-local and ML models they are 

not dominating the behavior and the localization of strain can still be predicted without 

knowledge of their existence. As long as lack of fusion (LOF) porosity defects are 

significantly larger, the model assumptions and the formulation of the model itself are 

likely still valid. Assuming that other material systems are sufficiently porous and ductile 

the model behavior will only change relative to the specifics of the non-local weighting 

and the data provided to the machine learning model, as new data with the new material 

system will need to be provided for accurate ANN predictions. There should be no reasons 

for the reformulation of the model formulations or architectures. This does of course 

exclude brittle materials as discussed in the Chapter 1 discussion. 

The loading of components in uniaxial tension provided a solid foundation upon 

which to build formulations of strain localization and models to predict it. However, these 
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formulations are not necessarily valid for other stress-states, such as pure-shear or bending. 

The framework of the machine learning model will likely require less change than the non-

local formulation. The machine learning model will likely pick up a few additional loading 

parameters as inputs for more complex loading scenarios but could also easily be altered 

to have multiple outputs for each component of strain desired. Additional loading direction 

terms could be applied to the non-local formulation to account for complex loading. But if 

the ductile behavior varies significantly from that in the uniaxial tension, as may be the 

case for loading in pure-shear, a ground up reformulation of the non-local model would be 

needed. The role of the non-local formulation would remain the same, but some alterations 

should be considered in terms of actual field shape. This could take the form of changing 

the nature of the field dot product with vectors of the defects surfaces to better represent 

the state of the shear stress at or near the surface. 

  Finally, while the ANN model can be extended to look at the effects of things like, 

defect shape, density and spatial uniformity; variation of the data outside of the training 

envelope would not provide accurate predictions. Further, detailed control of these 

parameters requires more purposeful planning and understanding of how it will affect the 

regions around the alteration. It is technically possible to design completely artificial 

scenarios of porosity, however, doing so would be far more difficult to stay within this 

envelope.  
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CHAPTER 5. CONCLUSIONS 

5.1 Summary 

In the present study, the tensile failure of AM components with porosity defects 

was evaluated using in situ XCT. These data were useful for direct observations of initial 

defect structure, pore growth and coalescence, as well as quantitative mapping of strain 

localizations made using DVC-based measurements. From the present results, it was found 

that tensile performance in terms of elongation to failure of these AM components was 

directly tied to their unique defect structures. As can be seen from Figure 16, there is a 

significant difference between the topology of a sphere and a large pore in these 

components. This further emphasizes the need for realistic porosity modelling to 

understand the mechanics of real porous systems. Characteristics of the porosity 

distribution, including presence of porosity at the surface or near-surface of components, 

as well as the proximity of pores to each other were found to influence the evolution of 

failure in these components. Early onset of failure was found to be associated with the 

availability of neighboring porosity that can allow for rapid progression of the fracture 

path. Analysis of the strain distributions within the components found that strain associated 

with surface porosity was higher than that of the porosity distributed within the sample 

interior. Further, higher intervoid strains were observed to be associated with promoted 
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growth and coalescence of porosity. Under conditions wherein critical pores did not 

neighbor other pores, samples behaved in a manner more typical of wrought materials, 

including exhibiting necking instability. As such, it is revealed that early failure of AM 

components with porosity defects will depend not only on characteristics like distance from 

the surface or size of the defects, but also on the adjacency of the defects in the component. 

Defect features were calculated for each defect of each sample and component 

features were calculated for each sample. Features were expanded uniformly to the bounds 

of each defect’s watershed segment and then down sampled as their minimum, mean, and 

maximum at calculation points of the DVC analysis. This both blindly approximated spatial 

regions of interest and smoothed the data across regions of interest to allow for a more 

organic approximation of the feature space. Correlations were drawn between the down 

sampled features and the calculated axial strains at each DVC analysis point. This is the 

first work to show a comprehensive list of local feature characteristics correlated with local 

strain.  

The nonlocal influence analysis proposed in this work performed well at predicting 

how the strain would localize just before failure with voxel-for-voxel correlations of up to 

73% and at the lowest just above 55%. This work has also considered at the correlations 

between local defect and component features with local axial strain. The correlation 

coefficients showed that both the nonlocal influence analysis and pore volume were highly 
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correlated with this strain. Sample 4 showed dissimilar correlations with the other 3 in 

terms of nonlocal influence, pore volume, and the distance from the gage surface. Sample 

4 also presented different morphological evolution behavior. Interestingly, the local pore 

volume fraction did not correlate well with the development of local strain. This stands at 

odds with the common practice of using void volume fraction as the sole defect parameter 

in FE analyses [115, 136]. However, in the present case the poor correlation may have 

more to do with the relatively smaller sampling window than those used for FE void 

volume fraction.  

Machine learning models were tested to predict the magnitude and localization of 

strain based on all features, and it was found that a two hidden layer, 72 and 36 neuron 

model outperformed both the more and less complex model architectures at predicting 

strain in portions of the data that were withheld from the training and validation. Regression 

values were greater than 0.92 for the robust combined prediction. The models were then 

used to show the effects of simple defect morphology changes on the localization of strain 

in the critical regions of each component. It was found that the distance between defect 

surfaces was the most influential factor for strain localization with decreases between 

surfaces generally resulting in rises in strain and increases in this distance resulting in drops 

in local strain. The strength of the response varied from sample to sample, but in general 

several samples exhibited far greater sensitivity to the morphological change. This is in 
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part due to the large size of surface pores in specific samples that were being supported by 

the altered porosity. This study finds that large exterior-surface tangent and or exterior-

surface adjacent porosity is the most critical, followed closely by surface-to-surface 

distance of interior pores adjacent to these critical regions.  

5.2 Contributions 

The following contributions have been made in this work: 

• Comprehensive understanding of failure in AM components from in situ 

observations. 

o Determined the evolution of internal defects and their role in overall failure 

of the component.  

o Provided a description of how damage accrues from morphological changes 

in defects and association of those changes with the region’s strain. 

o Provided full field 3-dimensional displacement and local axial strain 

measurements for 316L stainless steel samples produced by LPBF.  

• A comprehensive description of AM defects, including locally-varying character of 

these defects and quantification of critical morphological parameters of these 

defects. 
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• A correlation-based understanding of how specific defect and component features 

changed the mechanical response for AM components. 

• A weighted analytical formulation for predicting where strain will localize in 

porous solids.  

• A robust model for the mechanical behavior of porous solids that is capable of 

predicting where damage will occur and how the defects will lead to failure. 

o Demonstrated that very simple ANN networks of 9 neurons and a single 

hyperbolic tangent transfer function layer are capable of explaining >75% 

of the variation in local measured strain. 

o Provided a framework for the direct integration of DVC strain 

measurements into machine learning models for the prediction of local 

strain.  

• A model-based understanding of how changes in specific defect parameters cause 

changes in the mechanical response for AM components.  

5.3 Future Work 

This research represents an early point in the employment of XCT and in-situ 

testing to measure ductile deformation and failure, and as such, further experimental work 
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is needed to test other geometries and material systems. Additional, expansions to other 

modes of loading will also follow. 

Further work is also needed in the analysis via full-field 3D displacements and 

strains. Improvements to correlation techniques to account for the unique convolution 

geometric information as described by Beer’s Law are necessary. Where ostensibly 

advances in laboratory XCT systems and reconstruction algorithms will undoubtably allow 

for greater reconstruction coherence and detail resolvability. This is especially true for x-

ray scatter sensitive techniques that are capably of further patterning the voxelized digital 

twin’s with information about the unique refraction properties of different materials and 

different material phases. There is even potential to extend the voxel format to an RGB 

style of data profundity that stacks this additional pattern information in higher dimensions.  

There is always room to define and quantify additional characteristics and features 

of each digital twin and its defects. Consequently, any truly unique metric would naturally 

enrichen the development of shallow network models to predict local strain. One example 

of this would be the development of robust techniques to both distinguish and measure 

local surface curvature, and then to determine how it affects the surrounding area. There is 

also additional work to be done in tying feature and material metrics to the weighting of 

the non-local model. Ultimately, the goal of future work will be to improve the robustness 

and range of the ML modeling efforts; however, there is additional potential incorporating 



 120 

this data into more traditional finite-element techniques in terms of boundary conditions, 

classifying the gradient of material properties with greater local accuracy, or even 

developing better constitutive laws based on the observed morphological and strain 

evolutions.  
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APPENDIX A. SUPPLEMENTARY FIGURES 

A.1  Radiograph Timeline of Sample Deformation 

 

Supplementary Figure 1. Radiograph projections of sample 1. Front view at global 
strains: (a) 0.0000%, (b) 0.5643%, (c) 3.7354%, (d) 6.9734, (e) 10.3672. 
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Supplementary Figure 2. Radiograph projections of sample 1. Side view at global 
strains: (a) 0.0000%, (b) 0.5643%, (c) 3.7354%, (d) 6.9734, (e) 10.3672. 
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Supplementary Figure 3. Radiograph projections of Sample 2. Front view at global 
strains: (a) 0.0000%, (b) 0.3912%, (c) 1.8721%, (d) 5.2516%, (e) 8.2976%, (f) 

11.9025%, (g) 15.0341%, (h) 18.00301. 

 

Supplementary Figure 4. Radiograph projections of Sample 2. Side view at global 
strains: (a) 0.0000%, (b) 0.3912%, (c) 1.8721%, (d) 5.2516%, (e) 8.2976%, (f) 

11.9025%, (g) 15.0341%, (h) 18.00301. 



 124 

 

Supplementary Figure 5. Radiograph projections of Sample 3. Front view at global 
strains: (a) 0.000%, (b) 0.9524%, (c) 2.6819%, (d) 5.4640%, (e) 8.2976%, (f) 

11.9746%, (g) 15.2186%, (h) 18.2241%, and (i) 21.1419%. 

 

Supplementary Figure 6. Radiograph projections of Sample 3. Side view at global 
strains: (a) 0.000%, (b) 0.9524%, (c) 2.6819%, (d) 5.4640%, (e) 8.2976%, (f) 

11.9746%, (g) 15.2186%, (h) 18.2241%, and (i) 21.1419%. 



 125 

 

Supplementary Figure 7. Radiograph projections of Sample 4. Front view at global 
strains: (a) 0.0000%, (b) 0.7351%, (c) 2.736513, (d) 4.410781, (e) 7.5046%, (f) 

10.6992%, (g) 13.9121%, (h) 16.8433%, (i) 19.7903%, (j) 25.5049%, (k) 27.7057%, 
(l) 30.5934%, and (m) 33.6317%. 

 

Supplementary Figure 8. Radiograph projections of Sample 4. Side view at global 
strains: (a) 0.0000%, (b) 0.7351%, (c) 2.736513, (d) 4.410781, (e) 7.5046%, (f) 

10.6992%, (g) 13.9121%, (h) 16.8433%, (i) 19.7903%, (j) 25.5049%, (k) 27.7057%, 
(l) 30.5934%, and (m) 33.6317%. 

A.2  Strain Field Cross-sections 
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Supplementary Figure 9. Strain field evolution in sample 1. Vertical cross-sections 
at global strains: (a) 0.5643%, (b) 3.7354%, (c) 6.9734, (d) 10.3672.  
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Supplementary Figure 10. Strain field evolution in Sample 1. Horizontal cross-
sections at global strains: (a) 0.5643%, (b) 3.7354%, (c) 6.9734, (d) 10.3672. 
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Supplementary Figure 11. Strain field evolution in Sample 2. Vertical cross-sections 
at global strains: (a) 1.8721%, (b) 5.2516%, (c) 8.2976%, (d) 11.9025%, (e) 

15.0341%. 
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Supplementary Figure 12. Strain field evolution in Sample 2. Horizontal cross-
sections at global strains: (a) 1.8721%, (b) 5.2516%, (c) 8.2976%, (d) 11.9025%, (e) 

15.0341%. 
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Supplementary Figure 13. Strain field evolution in Sample 3. Vertical cross-sections 
at global strains: (a) 5.4640%, (b) 8.2976%, (c) 11.9746%, (d) 15.2186%, (e) 

18.2241%, and (f) 21.1419%. 
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Supplementary Figure 14. Strain field evolution in Sample 3. Horizontal cross-
sections at global strains: (a) 5.4640%, (b) 8.2976%, (c) 11.9746%, (d) 15.2186%, (e) 

18.2241%, and (f) 21.1419%. 
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Supplementary Figure 15. Strain field evolution in Sample 4. Vertical cross-sections 
at global strains: (a) 7.5046%, (b) 10.6992%, (c) 13.9121%, (d) 16.8433%, (e) 

19.7903%, (f) 25.5049%, (g) 27.7057%, (h) 30.5934%, and (i) 33.6317%. 
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Supplementary Figure 16. Strain field evolution in Sample 4. Horizontal cross-
sections at global strains: (a) 7.5046%, (b) 10.6992%, (c) 13.9121%, (d) 16.8433%, 

(e) 19.7903%, (f) 25.5049%, (g) 27.7057%, (h) 30.5934%, and (i) 33.6317%. 
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A.3 Morphological Evolution of Defects through Segmentation 

 

Supplementary Figure 17. Morphological evolution in Sample 1. Vertical cross-
sections at global strains: (a) 0.5643%, (b) 3.7354%, (c) 6.9734, (d) 10.3672. 
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Supplementary Figure 18. Morphological evolution in Sample 1. Horizontal cross-
sections at global strains: (a) 0.5643%, (b) 3.7354%, (c) 6.9734, (d) 10.3672. 



 136 

 

Supplementary Figure 19. Morphological evolution in Sample 2. Vertical cross-
sections at global strains: (a) 1.8721%, (b) 5.2516%, (c) 8.2976%, (d) 11.9025%, (e) 

15.0341%. 
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Supplementary Figure 20. Morphological evolution in Sample 2. Horizontal cross-
sections at global strains: (a) 1.8721%, (b) 5.2516%, (c) 8.2976%, (d) 11.9025%, (e) 

15.0341%. 
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Supplementary Figure 21. Morphological evolution in Sample 3. Vertical cross-
sections at global strains: (a) 5.4640%, (b) 8.2976%, (c) 11.9746%, (d) 15.2186%, (e) 

18.2241%, and (f) 21.1419%. 
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Supplementary Figure 22. Morphological evolution in Sample 3. Horizontal cross-
sections at global strains: (a) 5.4640%, (b) 8.2976%, (c) 11.9746%, (d) 15.2186%, (e) 

18.2241%, and (f) 21.1419%. 
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Supplementary Figure 23. Morphological evolution in Sample 4. Vertical cross-
sections at global strains: (a) 7.5046%, (b) 10.6992%, (c) 13.9121%, (d) 16.8433%, 

(e) 19.7903%, (f) 25.5049%, (g) 27.7057%, (h) 30.5934%, and (i) 33.6317%. 
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Supplementary Figure 24. Morphological evolution in Sample 4. Horizontal cross-
sections at global strains: (a) 7.5046%, (b) 10.6992%, (c) 13.9121%, (d) 16.8433%, 

(e) 19.7903%, (f) 25.5049%, (g) 27.7057%, (h) 30.5934%, and (i) 33.6317%. 

A.4 Identifying Tracked Porosity 
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Supplementary Figure 25. Defect Tracking in Sample 1 at global strains: (a) 
0.5643%, (b) 3.7354%, (c) 6.9734, (d) 10.3672. 
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Supplementary Figure 26. Defect tracking in Sample 2 at global strains: (a) 
1.8721%, (b) 5.2516%, (c) 8.2976%, (d) 11.9025%, (e) 15.0341%. 
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Supplementary Figure 27. Defect tracking in Sample 3 at global strains: (a) 
5.4640%, (b) 8.2976%, (c) 11.9746%, (d) 15.2186%, (e) 18.2241%, and (f) 

21.1419%. 
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Supplementary Figure 28. Defect tracking in Sample 4 at global strains: (a) 
7.5046%, (b) 10.6992%, (c) 13.9121%, (d) 16.8433%, (e) 19.7903%, (f) 25.5049%, 

(g) 27.7057%, (h) 30.5934%, and (i) 33.6317%. 
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A.5  Machine Learning Regression 

 

Supplementary Figure 29. Artificial neural network performance, mean squared 
error: training data. 

 

Supplementary Figure 30. Artificial neural network performance, mean squared 
error: validation data. 

M
SE

5.00E-04
7.00E-04
9.00E-04
1.10E-03
1.30E-03
1.50E-03
1.70E-03
1.90E-03
2.10E-03
2.30E-03
2.50E-03

Training Data: Mean Squared Error
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18

M
SE

5.00E-04
7.00E-04
9.00E-04
1.10E-03
1.30E-03
1.50E-03
1.70E-03
1.90E-03
2.10E-03
2.30E-03
2.50E-03

Validation Data: Mean Squared Error
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18



 147 

 

Supplementary Figure 31. Artificial neural network performance, mean squared 
error: testing data. 

 

Supplementary Figure 32. Artificial neural network performance, mean squared 
error: fresh data. 

M
SE

5.00E-04

7.00E-04

9.00E-04

1.10E-03

1.30E-03

1.50E-03

1.70E-03

1.90E-03

2.10E-03

2.30E-03

2.50E-03

Testing Data: Mean Squared Error
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18

72_36_18_9

M
SE

5.00E-04

7.00E-04

9.00E-04

1.10E-03

1.30E-03

1.50E-03

1.70E-03

1.90E-03

2.10E-03

2.30E-03

2.50E-03

Fresh Data: MSE
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18

72_36_18_9



 148 

 

Supplementary Figure 33. Artificial neural network performance, regression value: 
training data. 

 

Supplementary Figure 34. Artificial neural network performance, regression value: 
validation data. 
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Supplementary Figure 35. Artificial neural network performance, regression value: 
testing data. 

 

Supplementary Figure 36. Artificial neural network performance, regression value: 
fresh data. 
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Supplementary Figure 37. Artificial neural network performance, slope of 
regression fit: training data. 

 

Supplementary Figure 38. Artificial neural network performance, slope of 
regression fit: validation data. 

Sl
op

e 
of

 th
e 

Re
gr

es
sio

n 
Fi

t, 
m

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training Data: Slope of the Regression Fit
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18

72_36_18_9

Sl
op

e 
of

 th
e 

Re
gr

es
sio

n 
Fi

t, 
m

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Validation Data: Slope of the Regression Fit
0_0_0_9

0_0_0_18

0_0_0_36

0_0_0_72

0_0_18_9

0_0_36_18

0_0_72_36

0_36_18_9

0_72_36_18

72_36_18_9



 151 

 

Supplementary Figure 39. Artificial neural network performance, slope of 
regression fit: testing data. 

 

Supplementary Figure 40. Artificial neural network performance, slope of 
regression fit: fresh data. 
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Supplementary Figure 41. Artificial neural network performance, offset of 
regression fit: training data. 

 

Supplementary Figure 42. Artificial neural network performance, offset of 
regression fit: validation data. 
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Supplementary Figure 43. Artificial neural network performance, offset of 
regression fit: testing data. 

 

Supplementary Figure 44. Artificial neural network performance, offset of 
regression fit: fresh data. 
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APPENDIX B. SUPPLEMENTARY TABLES  
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B.1  Extended Feature Correlation Table 

Supplementary Table 1. Correlation of distance from the external surface with local 
axial strain.  

Sample Global 
Strain 

Min 
External 
Distance 

Average 
External 
Distance 

Max 
External 
Distance 

Min 
Inverse 
External 
Distance 

Average 
Inverse 
External 
Distance 

Max 
Inverse 
External 
Distance 

1 

0.564331 -1.89E-01 1.31E-01 1.35E-01 -1.55E-01 -1.57E-01 -1.57E-01 
3.73549 -2.69E-01 1.17E-01 1.21E-01 -1.45E-01 -1.46E-01 -1.45E-01 

6.973407 -2.59E-01 1.33E-01 1.36E-01 -1.64E-01 -1.64E-01 -1.62E-01 
10.36721 -2.54E-01 1.24E-01 1.26E-01 -1.57E-01 -1.56E-01 -1.53E-01 

2 

1.87214 -1.47E-01 -5.96E-02 -5.26E-02 2.68E-02 1.65E-02 2.07E-02 
5.251557 -1.81E-01 -3.30E-02 -2.89E-02 5.03E-02 3.97E-02 3.86E-02 
8.297619 -1.88E-01 -4.33E-02 -4.00E-02 7.25E-02 6.21E-02 6.01E-02 
11.90252 -1.95E-01 -3.23E-02 -2.91E-02 6.87E-02 5.78E-02 5.54E-02 
15.03405 -1.97E-01 -5.73E-02 -5.42E-02 9.15E-02 8.15E-02 7.95E-02 

3 

5.464012 -1.92E-01 -1.49E-01 -1.51E-01 1.91E-01 1.87E-01 1.83E-01 
8.772282 -2.26E-01 -1.64E-01 -1.66E-01 2.05E-01 2.01E-01 1.98E-01 
11.97461 -2.36E-01 -1.90E-01 -1.92E-01 2.26E-01 2.22E-01 2.19E-01 
15.21862 -2.43E-01 -1.92E-01 -1.93E-01 2.26E-01 2.21E-01 2.18E-01 
18.22408 -2.43E-01 -1.96E-01 -1.97E-01 2.27E-01 2.22E-01 2.19E-01 
21.14185 -2.45E-01 -1.44E-01 -1.43E-01 1.68E-01 1.62E-01 1.60E-01 

4 

7.504601 -3.56E-02 -5.26E-01 -5.33E-01 2.72E-01 4.81E-01 5.29E-01 
10.69917 -4.43E-02 -5.50E-01 -5.58E-01 2.62E-01 4.88E-01 5.43E-01 
13.91213 -4.93E-02 -5.68E-01 -5.74E-01 2.43E-01 4.81E-01 5.42E-01 
16.84327 -5.82E-02 -5.70E-01 -5.76E-01 2.24E-01 4.63E-01 5.26E-01 
19.7903 -6.35E-02 -5.63E-01 -5.68E-01 2.03E-01 4.43E-01 5.07E-01 
25.5049 -6.90E-02 -5.72E-01 -5.77E-01 2.84E-01 4.93E-01 5.43E-01 
27.7057 -7.50E-02 -5.54E-01 -5.58E-01 2.52E-01 4.60E-01 5.12E-01 

30.59347 -7.89E-02 -5.17E-01 -5.21E-01 2.07E-01 4.07E-01 4.60E-01 
33.63166 -8.54E-02 -4.42E-01 -4.45E-01 1.62E-01 3.38E-01 3.86E-01 
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Supplementary Table 2. Correlation of distance from internal surfaces with local 
axial strain. 

Sample Global 
Strain 

Min 
Internal 
Distance 

Average 
Internal 
Distance 

Max 
Internal 
Distance 

Min 
Inverse 
Internal 
Distance 

Average 
Inverse 
Internal 
Distance 

Max 
Inverse 
Internal 
Distance 

1 

0.564331 -2.71E-01 -2.80E-01 -2.78E-01 1.55E-02 2.94E-01 3.01E-01 
3.73549 -3.20E-01 -3.38E-01 -3.45E-01 2.56E-02 3.64E-01 3.88E-01 

6.973407 -3.10E-01 -3.26E-01 -3.33E-01 2.48E-02 3.54E-01 3.78E-01 
10.36721 -3.13E-01 -3.29E-01 -3.36E-01 2.40E-02 3.56E-01 3.81E-01 

2 

1.87214 -2.36E-01 -2.39E-01 -2.34E-01 1.94E-01 2.39E-01 2.46E-01 
5.251557 -3.08E-01 -3.18E-01 -3.17E-01 2.49E-01 3.08E-01 3.28E-01 
8.297619 -3.29E-01 -3.43E-01 -3.43E-01 2.67E-01 3.31E-01 3.55E-01 
11.90252 -3.43E-01 -3.57E-01 -3.58E-01 2.80E-01 3.47E-01 3.72E-01 
15.03405 -3.39E-01 -3.55E-01 -3.59E-01 2.79E-01 3.48E-01 3.76E-01 

3 

5.464012 -1.92E-01 -2.13E-01 -2.27E-01 1.87E-01 2.27E-01 2.60E-01 
8.772282 -2.15E-01 -2.37E-01 -2.51E-01 2.03E-01 2.48E-01 2.86E-01 
11.97461 -2.35E-01 -2.58E-01 -2.73E-01 2.20E-01 2.70E-01 3.10E-01 
15.21862 -2.51E-01 -2.72E-01 -2.87E-01 2.34E-01 2.87E-01 3.26E-01 
18.22408 -2.61E-01 -2.82E-01 -2.96E-01 2.41E-01 2.97E-01 3.36E-01 
21.14185 -2.63E-01 -2.81E-01 -2.92E-01 2.54E-01 3.05E-01 3.39E-01 

4 

7.504601 -2.42E-01 -2.87E-01 -3.26E-01 9.82E-02 1.94E-01 2.92E-01 
10.69917 -2.61E-01 -3.09E-01 -3.50E-01 1.04E-01 2.07E-01 3.08E-01 
13.91213 -2.72E-01 -3.19E-01 -3.60E-01 1.07E-01 2.11E-01 3.11E-01 
16.84327 -2.86E-01 -3.29E-01 -3.67E-01 1.18E-01 2.19E-01 3.15E-01 

19.7903 -2.90E-01 -3.31E-01 -3.66E-01 1.17E-01 2.18E-01 3.09E-01 
25.5049 -3.10E-01 -3.51E-01 -3.87E-01 1.54E-01 2.52E-01 3.46E-01 
27.7057 -3.13E-01 -3.50E-01 -3.84E-01 1.53E-01 2.49E-01 3.38E-01 

30.59347 -3.01E-01 -3.34E-01 -3.63E-01 1.44E-01 2.34E-01 3.13E-01 
33.63166 -2.78E-01 -3.04E-01 -3.27E-01 1.36E-01 2.13E-01 2.79E-01 
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Supplementary Table 3. Correlation of pore diameter and pore volume with local 
axial strain. 

Sample Global 
Strain 

Min Pore 
Diameter 

Average 
Pore 

Diameter 

Max 
Pore 

Diameter 

Min Pore 
Volume 

Average 
Pore 

Volume 

Max 
Pore 

Volume 

1 

0.564331 3.24E-01 4.00E-01 3.92E-01 3.05E-01 3.91E-01 3.81E-01 
3.73549 4.23E-01 5.53E-01 5.50E-01 4.37E-01 6.07E-01 5.99E-01 

6.973407 4.20E-01 5.66E-01 5.74E-01 4.51E-01 6.50E-01 6.57E-01 
10.36721 4.20E-01 5.66E-01 5.72E-01 4.45E-01 6.37E-01 6.40E-01 

2 

1.87214 1.88E-01 2.63E-01 2.65E-01 2.56E-01 3.26E-01 3.19E-01 
5.251557 2.31E-01 3.23E-01 3.19E-01 2.68E-01 3.52E-01 3.35E-01 
8.297619 2.53E-01 3.54E-01 3.46E-01 2.83E-01 3.76E-01 3.54E-01 
11.90252 2.72E-01 3.83E-01 3.74E-01 2.98E-01 4.01E-01 3.76E-01 
15.03405 2.99E-01 4.16E-01 4.05E-01 3.21E-01 4.32E-01 4.06E-01 

3 

5.464012 5.07E-01 5.74E-01 5.61E-01 6.52E-01 7.38E-01 7.08E-01 
8.772282 5.22E-01 5.88E-01 5.72E-01 6.66E-01 7.48E-01 7.14E-01 
11.97461 5.21E-01 5.90E-01 5.75E-01 6.56E-01 7.39E-01 7.06E-01 
15.21862 5.11E-01 5.84E-01 5.71E-01 6.33E-01 7.18E-01 6.89E-01 
18.22408 4.99E-01 5.79E-01 5.70E-01 6.14E-01 7.02E-01 6.75E-01 
21.14185 4.79E-01 5.70E-01 5.76E-01 5.87E-01 6.91E-01 6.87E-01 

4 

7.504601 2.22E-01 2.22E-01 2.07E-01 2.40E-01 2.38E-01 2.15E-01 
10.69917 2.29E-01 2.24E-01 2.00E-01 2.51E-01 2.44E-01 2.13E-01 
13.91213 2.34E-01 2.35E-01 2.16E-01 2.57E-01 2.57E-01 2.30E-01 
16.84327 2.48E-01 2.51E-01 2.32E-01 2.75E-01 2.76E-01 2.49E-01 
19.7903 2.60E-01 2.66E-01 2.49E-01 2.92E-01 2.97E-01 2.73E-01 
25.5049 2.59E-01 2.62E-01 2.41E-01 3.02E-01 3.10E-01 2.85E-01 
27.7057 2.75E-01 2.83E-01 2.63E-01 3.25E-01 3.39E-01 3.16E-01 

30.59347 2.84E-01 2.97E-01 2.80E-01 3.43E-01 3.66E-01 3.48E-01 
33.63166 3.15E-01 3.39E-01 3.26E-01 3.98E-01 4.36E-01 4.26E-01 
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Supplementary Table 4. Correlation of pore gap and pore sphericity with local axial 
strain. 

Sample Global 
Strain 

Min Pore 
Gap 

Average 
Pore Gap 

Max Pore 
Gap 

Min Pore 
Sphericity 

Average 
Pore 

Sphericity 

Max Pore 
Sphericity 

1 

0.564331 -3.57E-01 -3.92E-01 -3.83E-01 -2.56E-02 -1.00E-02 1.40E-02 
3.73549 -4.71E-01 -5.14E-01 -5.03E-01 -6.30E-02 -4.63E-02 -2.68E-02 

6.973407 -4.85E-01 -5.27E-01 -5.16E-01 -7.41E-02 -5.51E-02 -3.46E-02 
10.36721 -4.93E-01 -5.30E-01 -5.17E-01 -9.04E-02 -7.24E-02 -5.11E-02 

2 

1.87214 -2.07E-01 -2.46E-01 -2.49E-01 -5.75E-04 1.02E-02 1.10E-02 
5.251557 -2.50E-01 -2.98E-01 -3.09E-01 -4.16E-03 1.29E-02 1.83E-02 
8.297619 -2.66E-01 -3.20E-01 -3.35E-01 -5.89E-03 2.00E-04 2.31E-03 
11.90252 -2.92E-01 -3.45E-01 -3.57E-01 -1.53E-02 -1.40E-02 -1.25E-02 
15.03405 -3.09E-01 -3.58E-01 -3.64E-01 -2.89E-02 -3.34E-02 -3.41E-02 

3 

5.464012 -2.46E-01 -2.73E-01 -2.72E-01 2.12E-02 1.96E-02 7.80E-03 
8.772282 -2.49E-01 -2.80E-01 -2.83E-01 2.96E-02 2.59E-02 1.21E-02 
11.97461 -2.58E-01 -2.90E-01 -2.93E-01 2.92E-02 2.19E-02 6.42E-03 
15.21862 -2.71E-01 -3.04E-01 -3.07E-01 2.91E-02 2.26E-02 7.80E-03 
18.22408 -2.85E-01 -3.17E-01 -3.16E-01 2.53E-02 2.05E-02 8.90E-03 
21.14185 -3.05E-01 -3.35E-01 -3.30E-01 1.74E-03 5.45E-03 6.18E-03 

4 

7.504601 9.15E-02 6.63E-02 3.61E-02 5.17E-02 2.55E-02 -1.09E-02 
10.69917 1.13E-01 8.16E-02 3.97E-02 5.78E-02 2.16E-02 -2.06E-02 
13.91213 1.04E-01 7.36E-02 3.19E-02 4.54E-02 1.21E-02 -2.52E-02 
16.84327 9.98E-02 6.89E-02 2.80E-02 4.17E-02 1.12E-02 -2.18E-02 
19.7903 8.88E-02 5.87E-02 2.01E-02 4.13E-02 1.40E-02 -1.48E-02 
25.5049 9.76E-02 6.35E-02 2.11E-02 5.32E-02 1.33E-02 -2.78E-02 
27.7057 9.16E-02 6.05E-02 1.94E-02 4.69E-02 1.16E-02 -2.41E-02 

30.59347 9.40E-02 6.83E-02 3.20E-02 4.68E-02 1.37E-02 -1.96E-02 
33.63166 9.73E-02 7.72E-02 4.67E-02 4.94E-02 1.98E-02 -9.07E-03 
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Supplementary Table 5. Correlation of pore compactness and pore tortuosity with 
local axial strain. 

Sample Global 
Strain 

Min Pore 
Compactness 

Average 
Pore 

Compactness 

Max Pore 
Compactness 

Min Pore 
Tortuosity 

Average 
Pore 

Tortuosity 

Max Pore 
Tortuosity 

1 

0.564331 -2.08E-01 -2.00E-01 -1.55E-01 2.71E-01 3.26E-01 3.17E-01 
3.73549 -2.89E-01 -2.77E-01 -2.22E-01 3.59E-01 4.57E-01 4.55E-01 

6.973407 -2.96E-01 -2.80E-01 -2.22E-01 3.57E-01 4.69E-01 4.77E-01 
10.36721 -3.00E-01 -2.84E-01 -2.26E-01 3.57E-01 4.75E-01 4.87E-01 

2 

1.87214 -1.51E-01 -1.33E-01 -8.21E-02 1.36E-01 2.00E-01 2.04E-01 
5.251557 -2.18E-01 -2.07E-01 -1.50E-01 1.93E-01 2.77E-01 2.78E-01 
8.297619 -2.33E-01 -2.26E-01 -1.66E-01 2.17E-01 3.10E-01 3.08E-01 
11.90252 -2.47E-01 -2.38E-01 -1.72E-01 2.37E-01 3.42E-01 3.41E-01 
15.03405 -2.62E-01 -2.54E-01 -1.88E-01 2.66E-01 3.79E-01 3.76E-01 

3 

5.464012 -1.41E-01 -1.53E-01 -1.44E-01 3.59E-01 3.98E-01 3.71E-01 
8.772282 -1.45E-01 -1.61E-01 -1.53E-01 3.69E-01 4.06E-01 3.76E-01 
11.97461 -1.49E-01 -1.66E-01 -1.57E-01 3.69E-01 4.09E-01 3.80E-01 
15.21862 -1.53E-01 -1.68E-01 -1.56E-01 3.61E-01 4.06E-01 3.80E-01 
18.22408 -1.58E-01 -1.69E-01 -1.51E-01 3.51E-01 4.03E-01 3.81E-01 
21.14185 -1.73E-01 -1.75E-01 -1.45E-01 3.29E-01 3.95E-01 3.88E-01 

4 

7.504601 -7.95E-02 -1.01E-01 -1.19E-01 1.70E-01 1.57E-01 1.32E-01 
10.69917 -6.09E-02 -9.29E-02 -1.20E-01 1.70E-01 1.49E-01 1.18E-01 
13.91213 -7.10E-02 -1.01E-01 -1.25E-01 1.71E-01 1.53E-01 1.23E-01 
16.84327 -7.52E-02 -1.03E-01 -1.24E-01 1.72E-01 1.56E-01 1.28E-01 
19.7903 -7.65E-02 -1.05E-01 -1.25E-01 1.70E-01 1.52E-01 1.22E-01 
25.5049 -6.90E-02 -1.06E-01 -1.35E-01 1.80E-01 1.55E-01 1.18E-01 
27.7057 -7.41E-02 -1.10E-01 -1.37E-01 1.77E-01 1.53E-01 1.17E-01 

30.59347 -7.30E-02 -1.09E-01 -1.35E-01 1.69E-01 1.46E-01 1.12E-01 
33.63166 -8.31E-02 -1.17E-01 -1.39E-01 1.80E-01 1.60E-01 1.25E-01 

 



 160 

Supplementary Table 6. Correlation of cross-section area relative to the loading 
direction with local axial strain. 

Sample Global 
Strain 

Min 
Cross-

Section 
Area 

Average 
Cross-

Section 
Area 

Max 
Cross-

Section 
Area 

Min 
Inverse 
Cross-

Section 
Area 

Average 
Inverse 
Cross-

Section 
Area 

Max 
Inverse 
Cross-

Section 
Area 

1 

0.564331 -2.90E-01 -2.36E-01 -1.26E-01 2.92E-01 2.40E-01 1.25E-01 
3.73549 -4.54E-01 -3.79E-01 -2.32E-01 4.57E-01 3.85E-01 2.34E-01 

6.973407 -4.88E-01 -4.14E-01 -2.63E-01 4.92E-01 4.19E-01 2.65E-01 
10.36721 -5.26E-01 -4.48E-01 -2.88E-01 5.30E-01 4.53E-01 2.90E-01 

2 

1.87214 -1.50E-01 -1.51E-01 -1.48E-01 1.50E-01 1.51E-01 1.48E-01 
5.251557 -2.66E-01 -2.81E-01 -2.90E-01 2.64E-01 2.79E-01 2.89E-01 
8.297619 -3.21E-01 -3.38E-01 -3.47E-01 3.19E-01 3.35E-01 3.45E-01 
11.90252 -3.44E-01 -3.55E-01 -3.60E-01 3.42E-01 3.53E-01 3.58E-01 
15.03405 -3.39E-01 -3.42E-01 -3.39E-01 3.38E-01 3.41E-01 3.38E-01 

3 

5.464012 -2.32E-01 -1.41E-01 -3.79E-02 2.36E-01 1.43E-01 3.70E-02 
8.772282 -2.57E-01 -1.60E-01 -4.58E-02 2.62E-01 1.62E-01 4.45E-02 
11.97461 -2.75E-01 -1.73E-01 -5.26E-02 2.80E-01 1.76E-01 5.13E-02 
15.21862 -2.96E-01 -1.88E-01 -5.82E-02 3.02E-01 1.92E-01 5.71E-02 
18.22408 -3.01E-01 -1.90E-01 -5.59E-02 3.07E-01 1.94E-01 5.49E-02 
21.14185 -3.09E-01 -1.80E-01 -2.11E-02 3.17E-01 1.85E-01 2.01E-02 

4 

7.504601 -3.33E-02 -3.26E-02 -2.98E-02 4.09E-02 4.09E-02 3.86E-02 
10.69917 -5.55E-02 -5.44E-02 -5.13E-02 6.33E-02 6.30E-02 6.05E-02 
13.91213 -9.04E-02 -8.94E-02 -8.57E-02 9.79E-02 9.78E-02 9.47E-02 
16.84327 -1.18E-01 -1.16E-01 -1.10E-01 1.25E-01 1.24E-01 1.19E-01 
19.7903 -1.55E-01 -1.52E-01 -1.45E-01 1.63E-01 1.60E-01 1.54E-01 
25.5049 -9.98E-03 -1.80E-03 8.14E-03 2.04E-02 1.26E-02 2.77E-03 
27.7057 -6.26E-02 -5.36E-02 -4.27E-02 7.34E-02 6.48E-02 5.39E-02 

30.59347 -1.28E-01 -1.18E-01 -1.06E-01 1.39E-01 1.30E-01 1.18E-01 
33.63166 -1.64E-01 -1.54E-01 -1.41E-01 1.76E-01 1.67E-01 1.53E-01 
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Supplementary Table 7. Correlation of wall thickness with local axial strain. 

Sample Global 
Strain 

Min Wall 
Thickness 

Average 
Wall 

Thickness 

Max Wall 
Thickness 

Min 
Inverse 

Wall 
Thickness 

Average 
Inverse 

Wall 
Thickness 

Max 
Inverse 

Wall 
Thickness 

1 

0.564331 -2.92E-01 -2.66E-01 -2.15E-01 2.58E-01 2.66E-01 2.07E-01 
3.73549 -3.60E-01 -3.38E-01 -2.77E-01 3.24E-01 3.59E-01 2.84E-01 

6.973407 -3.47E-01 -3.29E-01 -2.71E-01 3.18E-01 3.56E-01 2.80E-01 
10.36721 -3.47E-01 -3.28E-01 -2.68E-01 3.14E-01 3.56E-01 2.78E-01 

2 

1.87214 -2.64E-01 -2.40E-01 -1.79E-01 2.44E-01 2.43E-01 1.73E-01 
5.251557 -3.60E-01 -3.55E-01 -2.96E-01 3.29E-01 3.58E-01 2.93E-01 
8.297619 -3.86E-01 -3.85E-01 -3.24E-01 3.56E-01 3.92E-01 3.27E-01 
11.90252 -3.98E-01 -3.96E-01 -3.34E-01 3.71E-01 4.09E-01 3.43E-01 
15.03405 -3.98E-01 -4.01E-01 -3.43E-01 3.75E-01 4.19E-01 3.59E-01 

3 

5.464012 -2.37E-01 -2.22E-01 -1.90E-01 2.16E-01 2.46E-01 1.94E-01 
8.772282 -2.63E-01 -2.48E-01 -2.11E-01 2.37E-01 2.73E-01 2.16E-01 
11.97461 -2.85E-01 -2.70E-01 -2.31E-01 2.56E-01 3.01E-01 2.42E-01 
15.21862 -3.00E-01 -2.84E-01 -2.44E-01 2.69E-01 3.20E-01 2.59E-01 
18.22408 -3.10E-01 -2.96E-01 -2.56E-01 2.76E-01 3.34E-01 2.73E-01 
21.14185 -3.11E-01 -3.01E-01 -2.65E-01 2.82E-01 3.46E-01 2.89E-01 

4 

7.504601 -3.39E-01 -3.28E-01 -2.81E-01 1.91E-01 1.93E-01 1.80E-01 
10.69917 -3.65E-01 -3.53E-01 -3.00E-01 1.90E-01 1.92E-01 1.80E-01 
13.91213 -3.78E-01 -3.70E-01 -3.21E-01 1.77E-01 1.86E-01 1.82E-01 
16.84327 -3.85E-01 -3.80E-01 -3.33E-01 1.61E-01 1.80E-01 1.83E-01 
19.7903 -3.82E-01 -3.79E-01 -3.35E-01 1.45E-01 1.67E-01 1.77E-01 
25.5049 -4.28E-01 -4.30E-01 -3.86E-01 2.24E-01 2.52E-01 2.41E-01 
27.7057 -4.17E-01 -4.22E-01 -3.80E-01 1.99E-01 2.34E-01 2.29E-01 

30.59347 -3.90E-01 -3.99E-01 -3.65E-01 1.63E-01 2.05E-01 2.10E-01 
33.63166 -3.46E-01 -3.61E-01 -3.40E-01 1.30E-01 1.73E-01 1.86E-01 
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Supplementary Table 8. Correlation of non-local field and pore volume fraction 
with local axial strain. 

Sample Global 
Strain 

Min 
Non-
local 
Field 

Average 
Non-
local 
Field 

Max 
Non-
local 
Field 

Pore 
Volume 
Fraction 

1 

0.564331 4.61E-01 4.62E-01 4.52E-01 1.89E-01 
3.73549 6.23E-01 6.18E-01 6.03E-01 2.69E-01 

6.973407 6.48E-01 6.39E-01 6.23E-01 2.59E-01 
10.36721 6.52E-01 6.43E-01 6.28E-01 2.54E-01 

2 

1.87214 3.53E-01 3.64E-01 3.59E-01 1.47E-01 
5.251557 4.39E-01 4.51E-01 4.45E-01 1.81E-01 
8.297619 4.81E-01 4.90E-01 4.82E-01 1.88E-01 
11.90252 5.20E-01 5.27E-01 5.17E-01 1.95E-01 
15.03405 5.49E-01 5.48E-01 5.35E-01 1.97E-01 

3 

5.464012 6.98E-01 6.49E-01 6.04E-01 1.92E-01 
8.772282 7.13E-01 6.66E-01 6.22E-01 2.26E-01 
11.97461 7.14E-01 6.70E-01 6.27E-01 2.36E-01 
15.21862 7.09E-01 6.69E-01 6.28E-01 2.43E-01 
18.22408 6.98E-01 6.62E-01 6.25E-01 2.43E-01 
21.14185 7.47E-01 7.15E-01 6.79E-01 2.45E-01 

4 

7.504601 1.26E-01 1.01E-01 7.11E-02 3.56E-02 
10.69917 1.38E-01 1.15E-01 8.66E-02 4.43E-02 
13.91213 1.58E-01 1.36E-01 1.08E-01 4.93E-02 
16.84327 1.90E-01 1.68E-01 1.39E-01 5.82E-02 
19.7903 2.08E-01 1.87E-01 1.59E-01 6.35E-02 
25.5049 2.22E-01 1.95E-01 1.61E-01 6.90E-02 
27.7057 2.49E-01 2.23E-01 1.90E-01 7.50E-02 

30.59347 2.65E-01 2.42E-01 2.11E-01 7.89E-02 
33.63166 2.93E-01 2.67E-01 2.35E-01 8.54E-02 
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