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SUMMARY

Gene prediction, the identification of the location and structure of protein-coding genes

in genomic sequences, is one of the first and most important steps in the analysis of assem-

bled genomes. The exponential growth of sequenced eukaryotic genomes necessitates fully

automated computational gene prediction methods. Due to the complexity and diversity of

eukaryotic genomes, the task of accurate automatic eukaryotic gene prediction remains an

open challenge. This work presents three novel gene prediction algorithms that address

specific aspects of this challenge and thus improve over existing gene prediction methods.

The first part of this thesis describes GeneMark-EP+, an unsupervised gene predic-

tion algorithm that uses homologous cross-species proteins to guide its model training and

gene prediction steps. In contrast to existing homology-based gene finders, which can

only extract information from proteins of closely related species, GeneMark-EP+ is de-

signed to utilize proteins of any evolutionary distance, including remote homologs. Con-

sequently, GeneMark-EP+ can fully exploit the information contained in large and ever-

growing protein databases that are, unlike transcriptomic data, always readily available

prior to a genome annotation project start. GeneMark-EP+ is shown to significantly im-

prove over previous GeneMark versions, including ones integrating transcriptomic data.

In the second part, BRAKER2 is presented—a fully automated protein homology-based

gene prediction pipeline that integrates GeneMark-EP+ with AUGUSTUS, an accurate

gene finder that requires supervised training. By combining complementary strengths of

these two gene prediction tools, BRAKER2 achieves state-of-the-art gene prediction accu-

racy in a fully unsupervised manner. The high gene prediction accuracy of BRAKER2 is

demonstrated in tests on a wide range of plant and animal genomes. Further, it is shown that

BRAKER2 compares favorably with MAKER2, one of the most popular gene prediction

pipelines.

Finally, this thesis describes GeneMark-ETP+, a self-training gene prediction algo-

xxix



rithm that simultaneously utilizes diverse information streams—genomic, transcriptomic,

and protein homology—throughout all stages of its model training and gene prediction.

This evidence integration is achieved by, among other things, creating a novel method for

simultaneous gene prediction in transcripts and genomic DNA. Notably, GeneMark-ETP+

builds upon the previous work of this thesis: its training is fully unsupervised and proteins

of any evolutionary distance are utilized. The integrative approach of GeneMark-ETP+ is

demonstrated to reach better prediction accuracy compared with competing tools combin-

ing ab initio-, protein homology-, and transcriptome-based predictions.
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CHAPTER 1

INTRODUCTION

Gene prediction, the identification of the location and structure of protein-coding genes in

genomic sequences, is one of the first and most important steps in the analysis of assembled

genomes [1]. The significance of accurate gene prediction cannot be overstated because in-

accurate predictions can hamper all downstream genomic analyses [2]; e.g., the functional

investigation of an organism’s genes, or even the analysis of related species [3].

In the past, accurate gene prediction was often achieved through manual curation and

experimental validation of predicted gene models. Such a time- and resource-intensive ap-

proach, suitable for the then limited amount of sequenced genomic sequences, is not scal-

able. The exponential growth of eukaryotic assemblies (Figure 1.1), driven by constantly

improving next-generation sequencing technologies, necessitates fully automated accurate

computational gene prediction procedures [4]. While such procedures have already been

successfully deployed for the computational annotation of prokaryotic genomes [7], the

task of automatic gene prediction in eukaryotes remains an open problem [8, 9].

This thesis describes new computational methods addressing many of the open chal-

lenges in automatic eukaryotic gene prediction. Specifically, this thesis is organized as

follows. Chapter 2 provides a background of gene prediction and defines the specific open

gene prediction problems addressed by this thesis.

Chapter 3 describes GeneMark-EP+, a novel unsupervised gene prediction algorithm

that uses homologous proteins to guide its model training and gene prediction steps. In con-

trast to existing homology-based gene finders, which are designed to extract information

from proteins of closely related species, GeneMark-EP+ utilizes proteins of any evolu-

tionary distance (including remote homologs) to better its predictions. The chapter shows

that GeneMark-EP+ significantly improves over previous GeneMark versions, including
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Figure 1.1: The growth of sequenced eukaryotic genomes. The data were collected from
Genbank’s genome table [5, 6].

ones integrating transcriptomic data. We also demonstrate that this improvement occurs

even when proteins originating from evolutionarily remote species are used as input to

GeneMark-EP+.

Chapter 4 describes BRAKER2, a fully automated protein homology-based gene pre-

diction pipeline that integrates GeneMark-EP+ and other algorithms introduced in Chap-

ter 3 with AUGUSTUS. By combining complementary strengths of multiple gene predic-

tion tools, BRAKER2 achieves state-of-the-art gene prediction accuracy in a fully unsuper-

vised manner. The chapter demonstrates this claim by evaluating BRAKER2’s accuracy on

a wide range of test genomes and comparing BRAKER2 with competing gene prediction

pipelines.

Chapter 5 describes GeneMark-ETP+, a gene prediction algorithm that utilizes di-

verse information streams—genomic, transcriptomic, and protein homology—throughout

all stages of its model training and gene prediction. The chapter demonstrates that the
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integrative approach of GeneMark-ETP+ results in better prediction accuracy when com-

pared to competing tools that combine multiple independent ab initio, homology-, and

transcriptome-based predictions. Notably, the method presented in this chapter builds upon

the work described in Chapter 3 and Chapter 4: its training is fully unsupervised, and the

protein homology evidence integration utilizes proteins of any evolutionary distance.

Finally, Chapter 6 concludes this thesis by summarizing its contributions to the gene

prediction field. Furthermore, the chapter lists several remaining unresolved challenges

and suggests what future work could be done to solve them.
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CHAPTER 2

BACKGROUND

This chapter provides the necessary background for Chapters 3 to 5. First, we define the

task of eukaryotic gene prediction. Next, we describe the common sources of information

used by gene prediction algorithms, along with examples of algorithms utilizing each given

source. Subsequently, we describe open gene prediction problems addressed by this thesis,

and finally, we define metrics used to assess gene prediction accuracy.

2.1 Gene prediction

Structural protein-coding gene prediction, also called structural genome annotation, is the

identification of the location and structure of protein-coding genes in a genomic sequence.

This is a distinct process from functional gene prediction/annotation which assigns a bi-

ological function to the predicted genes. For simplicity, we refer to “structural protein-

coding gene prediction in eukaryotic genomes” as gene prediction in this thesis. The rest

of this section describes the eukaryotic gene structure and uses the description to provide a

more precise gene prediction definition.

2.1.1 Eukaryotic gene structure

Genes specify the structure of proteins, the building blocks of life. In eukaryotes, the bi-

ological process of expressing a protein amino acid sequence from a gene stored in DNA

occurs in three major steps (Figure 2.1). First, the entire DNA sequence of a gene is tran-

scribed to a precursor messenger RNA (pre-mRNA) transcript. The DNA gene and the

corresponding pre-mRNA transcript are composed of two types of sequences, exons and

introns. In the second step, the introns are excised from the pre-mRNA in a process called

splicing. After the removal of introns, the exons are joined together to create a messenger
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Figure 2.1: Illustration of the eukaryotic gene structure and the gene expression process.

RNA (mRNA) transcript. Finally, an internal part of the mRNA is translated to a protein.

The translation occurs in triplets of nucleotides called codons; each codon codes for one

amino acid or a stop signal. Typically, the translation begins with an AUG start codon and

stops when it reaches one of the three stop codons (UAA, UAG, UGA).

2.1.2 Definition of gene prediction

With the description of a eukaryotic gene structure, we can define gene prediction more

precisely. The task is to predict the genomic locations of all protein-coding genes delin-

eated by the genomic positions of translation starts and stops in a DNA sequence. Due to

the possible presence of introns, the precise locations of all exon-intron boundaries, called

splice sites, must also be predicted. These coordinates fully define the resulting protein

molecule.

Apart from the presence of introns, eukaryotic gene prediction is further complicated

by alternative isoforms. A single gene can code for multiple alternative protein products,

created through alternative processing of pre-mRNA. This thesis describes methods both

with and without alternative isoform prediction capabilities.
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2.2 Sources of information for gene prediction

Gene prediction algorithms generally utilize data from one or more of the following sources:

(i) intrinsic statistical patterns of the genomic sequence itself, (ii) transcriptomic evidence

from RNA sequencing, and (iii) protein homology. Notably, these information sources

originate from the various stages of the gene expression process depicted in Figure 2.1.

2.2.1 Intrinsic evidence

Algorithms predicting genes solely from the intrinsic characteristics of the target genome

are referred to as ab initio methods. Ab initio algorithms model and detect genomic signals

used by the cell to express genes. These signals include, e.g., translation start patterns,

splice site motifs, or branch points. Furthermore, ab initio algorithms model genome-

specific characteristics such as the length distribution of exons and introns or the nucleotide

composition of coding and non-coding regions. Most modern ab initio gene finders use a

generalized hidden Markov model (GHMM) [10] (also referred to as HMM with duration

[11] or hidden semi-Markov model (HSSM)) as their underlying statistical model. Exam-

ples of popular GHMM-based ab initio gene finders are AUGUSTUS [12], SNAP [13],

GENSCAN [14], Fgenesh [15], or GeneMark-ES [16, 17].

The biggest strength of ab initio methods lies in their ability to predict genes based

on the DNA sequence alone, in the absence of other evidence. Ab initio gene finders thus

play a crucial role in the discovery of novel genes. Their weakness lies in the fact that the

statistical signals of many genes are weak and hard to distinguish from noise [18]. As a

result, the accuracy of purely ab initio gene finders is far from perfect, especially in large

eukaryotic genomes [19–22]. For this reason, gene prediction tools often combine the

ab initio component with other evidence which is extrinsic to the genomic DNA. Another

challenge in utilizing the intrinsic evidence is caused by significant inter-species variance in

statistical genomic patterns [23–26]. Accounting for this variation poses a problem which
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is discussed in Section 2.3.1.

2.2.2 Transcriptomic evidence

The general idea behind transcriptome-based gene prediction algorithms is to directly read

and map the mRNA transcript (see Figure 2.1) to the genomic DNA from which it was

transcribed. The mRNA reading is most commonly done by short-read RNA sequenc-

ing (RNA-Seq) [27]. Because of the short length of RNA fragments delivered by RNA-Seq

(typically 50–150 bp [28]), full-length transcripts need to be computationally reconstructed

from the individual reads. This can be done by de novo assembling RNA reads with tools

such as Trinity [29] or Oases [30]. However, more commonly in gene prediction, the in-

dividual short reads are first splice-aligned to the genome (e.g., by STAR [31] or HISAT2

[32]) and then assembled into full transcripts with tools such as StringTie [33, 34], Psi-

CLASS [35], or Cufflinks [36].

As an alternative to short-read RNA-Seq, the emerging long read sequencing technolo-

gies [37, 38] now enable the sequencing of full-length mRNA transcripts. Consequently,

there is no need to computationally assemble such transcripts and they can be directly

mapped to DNA, using tools such as GMAP [39] or Minimap2 [40]. However, compared

to short-read RNA-Seq, long-read technology is more costly and exhibits higher sequenc-

ing error rates [41, 42].

The mapping of a full mRNA transcript to DNA (obtained by either of the methods

described above) defines the location and the exon-intron structure of a gene. However,

it does not specify whether a gene is protein-coding and if so, where the translation start

and stop are positioned. This information can be obtained by algorithms which are de-

signed for predicting protein-coding genes in RNA transcripts, e.g., GeneMarkS-T [43] or

TransDecoder [29].

The accuracy of transcriptome-based gene prediction is limited by two main factors.

First, the transcriptomic evidence only covers genes which were expressed under the stud-
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ied conditions. This problem can be partially mitigated by conducting multiple RNA se-

quencing experiments; however, this introduces a new problem: how to combine all the

RNA-reads without introducing excessive noise. Second, the transcripts reconstructed from

short-read RNA-Seq have been shown to be highly unreliable [44]. A comprehensive study

evaluating the accuracy of transcripts obtained by mapping long RNA reads is currently in

progress [45]; nevertheless, results of other studies suggest that transcripts predicted from

long-read RNA sequencing are unreliable as well [46].

To offset these limitations, some gene finders combine the transcriptomic evidence with

an ab initio component; without necessarily attempting to directly assemble/map full length

transcripts. Examples of such tools, using information from splice-aligned RNA reads to

improve ab initio predictions, are BRAKER1 [47] or GeneMark-ET [48].

2.2.3 Protein homology evidence

Protein homology-based gene prediction algorithms rely on the conservation of genes be-

tween species. Gene structures are predicted by mapping known, evolutionarily related

proteins to orthologous genes in the target genome. Thus, in contrast to the genomic and

transcriptomic evidence, the protein homology evidence does not originate from the target

species of interest.

Protein homology gene prediction approaches are conceptually an extension to the

Needleman-Wunsch [49] sequence alignment that accounts for introns by allowing long

gaps with known splice site junctions. This task is commonly referred to as protein-DNA

spliced alignment. Examples of protein to DNA splice aligners relying exclusively on se-

quence similarity are PROCRUSTES [50], exonerate [51], GenomeThreader [52], or Pro-

Splign [53]. As was the case for transcriptomic evidence, some spliced aligners incorporate

an ab initio component to improve their gene prediction accuracy. Examples of such algo-

rithms are GeneWise [54], AUGUSTUS-PPX [55], or Spaln [56]. Notably, GeMoMa [57,

58] can combine protein homology with transcriptomic evidence, but lacks an ab initio
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component.

The strength of protein homology-based approaches is the ability to transfer knowledge

generated by other sequencing and annotation projects. Their weaknesses are (i) the in-

ability to predict genes that are evolutionarily unique to the genome of interest, and (ii)

a decrease in prediction accuracy with the increasing evolutionary distance between the

target gene and the reference protein. This latter issue is further covered in Section 2.3.2.

The protein homology evidence is not to be confused with sequence homology, uti-

lized by so-called comparative gene finders. These algorithms (e.g., CONTRAST [59] or

AUGUSTUS-cgp [60]) exploit the conservation patterns in the alignment of multiple re-

lated genomic sequences. Because comparative gene finders are currently not frequently

used (perhaps due to the difficulties associated with preparing the multiple genome align-

ment), the sequence homology evidence is not discussed in this thesis.

2.3 Open gene prediction challenges and opportunities for improvement

This section describes several challenges hindering the accuracy and ease of use of eukary-

otic gene prediction methods and briefly outlines how we addressed them in this thesis.

2.3.1 Automatic adaptation to the diversity of eukaryotic genomes

As discussed in Section 2.2, intrinsic evidence, leveraged by ab initio gene prediction algo-

rithms, plays a crucial role in gene prediction. Since eukaryotic gene organization (splicing

patterns, exon length distribution, codon usage, etc.) significantly varies from organism to

organism [23–26], gene finders with an ab initio component need to learn the species-

specific properties of their target genome. Most gene prediction methods use supervised

training to estimate such parameters [16], thus relying heavily on a large and high-quality

set of training genes [1, 16, 17, 19, 47, 61, 62]. It has been shown that supervised algorithms

trained on one species do not perform well when applied to others [13, 63]. Therefore, the

high-quality training sets need to be carefully curated for each new genome of interest. The
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preparation of such training sets requires manual work and validation by experts [13, 16,

17, 47]. Consequently, purely supervised training is not feasible for high-throughput, fully

automated annotation. To circumvent this issue, all new algorithms described in this thesis

(Chapters 3 to 5) were designed to work in a fully unsupervised manner. To enable the

integration of external supervised tools (as in Chapter 4), we developed new methods that

automatically prepare the necessary training sets in an unsupervised way from proteomic

and/or extrinsic evidence.

2.3.2 Utilization of remote protein homologs

The accuracy of protein to DNA spliced alignment algorithms (Section 2.2.3) quickly de-

grades with the increasing evolutionary distance between the query DNA and the target

protein [57, 63, 64]. König et al. [63] demonstrated this trend for GenomeThreader [52]

and exonerate [51], two popular spliced alignment programs. They used these algorithms

to predict genes in the genome of the common fruit fly (D. melanogaster), utilizing cross-

species proteins of other flies as the gene prediction evidence. The two programs performed

well (∼0.85 exon-level F1 score) when proteins of closely related D. simulans were used on

input. However, the accuracy rapidly decreased (F1 score≈ 0.45) with proteins from more

distant D. grimshawi; which is still in the same taxonomic genus. Finally, using proteins

of M. domestica, the common house fly, further reduced the F1 score to ∼0.4 (exonerate)

and ∼0.3 (GenomeThreader). The prediction accuracy of existing gene prediction tools

combining protein homology and ab initio evidence (Section 2.2.3) suffers from the same

issue. For example, the exon-level sensitivity of GeneWise [54], a homology-based gene

predictor used in Ensembl’s gene annotation system [65], was observed to be lower than

40% when the gene of interest had < 95% amino acid identity to the aligned homologous

protein [54].

The steep decrease in prediction accuracy with increasing evolutionary distance of ref-

erence proteins is a serious problem because newly sequenced species often lack annotated
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proteins of close-enough relatives. Chapters 3 and 4 of this thesis introduce gene prediction

algorithms that were designed to utilize proteins of any evolutionary distance, including

remote homologs. Consequently, these new algorithms can fully exploit the information

contained in large and ever-growing protein databases such as OrthoDB [66, 67], EggNOG

[68], or SwissProt [69]. As these databases are always readily available prior to a genome

annotation project start, the tools described in Chapters 3 and 4 should be especially im-

portant for the accurate annotation of species lacking other extrinsic (e.g., transcriptomic)

evidence.

2.3.3 Integration of distinct gene prediction evidence

As described in Section 2.2, gene prediction algorithms generally utilize data from one or

more of the following sources: (i) intrinsic statistical patterns of the genomic sequence it-

self, (ii) transcriptomic evidence, and (iii) protein homology. The simultaneous utilization

of all three information sources remains an open problem. The majority of tools integrat-

ing all the information (e.g., TSEBRA [70], FINDER [71], LoReAn [72], GAAP [73],

IPred [74], Evigan [75], EVidenceModeler [76], JIGSAW [77], Combiner [78], or GAZE

[79]) work as combiners: Their approach is to combine multiple independent ab initio,

transcriptomic, and homology-based predictions in order to create a prediction set that is,

on average, more accurate than any input source. This way, the integration of distinct in-

formation streams only occurs as a “post-processing” step of the gene prediction process.

Chapter 5 describes a new approach that integrates the three data sources throughout all

stages of an algorithm’s training and gene prediction; thus avoiding gene prediction errors

that are difficult to resolve only through the above-described combination of independent

predictions.
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2.4 Gene prediction accuracy metrics

Throughout this thesis, we evaluated the accuracy of gene predictions by comparing them

with known gene structures contained in reference annotations of the selected target ge-

nomes. This comparison was done on two distinct levels: exon and gene. An exon was con-

sidered to be predicted correctly when both of its boundaries exactly matched the bound-

aries of an exon in the reference annotation. Only protein-coding exons were considered in

this thesis; consequently, the outer boundaries of initial and terminal exons were defined by

their translation starts and stops, respectively. The remaining exon boundaries were defined

by the splice sites.

A predicted gene was considered to be correct when all its exons exactly matched all

exons of a reference gene. If the annotation contained alternative isoforms, a gene was

counted as correctly predicted when the prediction matched at least one alternative tran-

script. Because only a correct gene-level prediction perfectly defines the encoded protein,

the evaluations in this thesis mainly focused on the gene-level accuracy.

For both exons and genes, we counted the number of correct predictions as true pos-

itives (TP), the number of incorrect predictions as false positives (FP), and the number

of missed annotated exons/genes as false negatives (FN). Prediction sensitivity (Sn) and

specificity (Sp) were defined as:

Sn = 100× TP

TP + FN
(2.1)

Sp = 100× TP

TP + FP
(2.2)

To combine Sn and Sp into a single measure, we computed their harmonic mean (F1):

F1 = 2× Sn× Sp

Sn+ Sp
(2.3)
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2.4.1 Reliability of reference annotations

Comparing the predictions with known genes in a reference annotation is only meaningful

when the reference annotation itself can be trusted. Unfortunately, highly reliable anno-

tations, perfected by years of manual curation, are available only for a limited number

of genomes that were subjects of pilot genome projects [3]. The annotations of three such

genomes—A. thaliana, C. elegans, and D. melanogaster—were heavily utilized in all chap-

ters of this thesis. To assess the prediction accuracy in genomes with less reliable annota-

tions, the predictions were often compared with only a subset of the reference annotation.

These subsets were selected to represent the most reliably annotated gene structures; the

specific details of their preparation are described in each chapter.
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CHAPTER 3

GENEMARK-EP+: EUKARYOTIC GENE PREDICTION WITH

SELF-TRAINING IN THE SPACE OF GENES AND PROTEINS

Abstract

We present GeneMark-EP+, an unsupervised gene prediction algorithm that uses homolo-

gous cross-species proteins to guide its model training and gene prediction steps. In con-

trast to existing protein homology-based gene finders, which can only extract informa-

tion from proteins of closely related species, GeneMark-EP+ is able to utilize proteins of

any evolutionary distance, including remote homologs. Consequently, GeneMark-EP+ can

fully exploit the information contained in large and ever-growing protein databases that are,

unlike transcriptomic data, always readily available prior to a genome annotation project

start. In tests on genomes of fungi, plants, and animals, GeneMark-EP+ delivered better

prediction accuracy than ab initio GeneMark-ES and RNA-Seq-based GeneMark-ET, even

in situations when only evolutionarily remote proteins were used on input.

3.1 Introduction

One of the major challenges of gene prediction in eukaryotes is finding an optimal way to

combine sources of information extrinsic and intrinsic to the genome of interest. External

information can be transferred from RNA transcripts as well as from cross-species proteins

derived from annotated genomes. The integration of transcript information, e.g. RNA-Seq

reads, with ab initio gene prediction is implemented in several algorithms and software

tools, e.g. BRAKER1 [47], GeneMark-ET [48], EuGene [80, 81], and mGene.ngs [82].

The utilization of cross-species protein information is done by tools solving the prob-

lem of protein to DNA spliced alignment, e.g., GeneWise [54], GenomeThreader [52],
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ProSplign [53], and Spaln [56]. Beyond a single reference protein, a reference family of

homologous proteins can be used to map elements of gene structure conserved in evolution;

for instance, AUGUSTUS-PPX [55] uses protein profiles derived from conserved protein

domains. Information about intron position, conserved in protein primary structures of

multiple homologs, was used in another tool, GeMoMa [57]. Notably, an attempt to com-

bine protein profiles with intron position profiles for refinement of predicted genes was

made by yet another method, GSA-MPSA [83].

The main weakness of methods relying on mapping homologous proteins lies in the

patchiness of the evidence they generate; a sizable fraction of a whole complement of

genes may code for proteins with few or no orthologs. Another weakness, as discussed in

Section 2.3.2, is that protein spliced alignments become less accurate with the increasing

evolutionary distance of cross-species proteins [54, 57, 63, 64]. To mitigate these issues,

a protein homology-based gene finder should additionally rely on a strong ab initio com-

ponent; this is especially important in situations when sufficient transcriptomic evidence is

not available as a gene prediction input.

The application of ab initio algorithms for genome-wide eukaryotic gene prediction

was for a long time hampered by the need for tedious and time-consuming training (Sec-

tion 2.3.1; [1, 16, 17, 19, 47, 61, 62]). This issue was addressed by an ab initio gene finder

GeneMark-ES [16, 17] which automatically estimates model parameters by iterative unsu-

pervised training. GeneMark-ES thus does not require expert-based training or any exter-

nal information for building the training set. An extension to GeneMark-ES, GeneMark-ET

[48], was developed to integrate into the training process available transcript information—

raw RNA-Seq reads aligned to the genome in question.

Here, we describe GeneMark-EP, an algorithm that integrates into training information

extracted from a reference set of cross-species protein sequences of any evolutionary dis-

tance. To process the input protein database, we developed a specialized protein mapping

pipeline called ProtHint. ProtHint first identifies a set of proteins homologous to the pro-
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tein likely encoded in each putative genic locus. Then, ProtHint computes so-called protein

hints, a set of mapped splice sites (intron borders), and translation start and stop sites along

with the scores characterizing hints’ confidence. The most reliable hints can be used to

directly predict elements of final exon-intron structures; we call this mode of algorithm

execution with direct gene structure correction GeneMark-EP+.

A key question solved by GeneMark-EP is how to find an optimal method of hint incor-

poration into the automatic training of an ab initio algorithm. Unsupervised training imple-

mented in GeneMark-ES carries a risk of convergence to a biased set of model parameters.

On the other hand, giving too much weight to protein hints may generate parameters dic-

tated by a narrow set of conserved genes and proteins [84]. The GeneMark-EP algorithm

was designed to combine strong features of both methods: (i) the ability of unsupervised

iterative training of an ab initio gene finder to create a set of training sequences with a size

beyond the reach of conventional supervised training, and (ii) the ability to correct model

parameters as well as structures (the -EP+ mode) of newly discovered genes by the hints

derived from homologous cross-species proteins. Thus, the new training method falls into

category of gene prediction methods with semi-supervised training.

3.2 Materials

For the assessment of GeneMark-EP/EP+ as well as ProtHint accuracy, we selected anno-

tated genomes from diverse clades: fungi, worms, plants, insects, and vertebrae (Table 3.1).

The genome length varied from < 100 Mbp (Neurospora crassa) to > 1.3 Gbp (Danio

rerio). With the exception of Solanum lycopersicum, a species representing large-genome

plants important for the economy, all selected species are model organisms whose genomes

presumably have a high-quality annotation. In all genomic datasets, contigs not assigned

to any chromosome and the genomes of organelles were excluded from the analysis.
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Table 3.1: Genomes used for assessment of GeneMark-EP and GeneMark-EP+ perfor-
mance. Introns per gene values were computed with respect to the whole gene number,
including single-exon genes.

Species Assembly version Genome size, Mb Annotation version # Genes in annotation Introns per gene

Neurospora crassa GCA_000182925 40 Broad Institute (2013) 10,785 1.7

Caenorhabditis elegans GCA_001483305 100 WormBase WS271 (May 2019) 20,172 5.7

Arabidopsis thaliana GCF_000001735 119 Tair Araport11 (Jun. 2016) 27,445 4.9

Drosophila melanogaster GCA_000001215 134 FlyBase R6.18 (Jun. 2019) 13,929 4.3

Solanum lycopersicum SL4.0 773 Consortium ITAG4.0 (Sep. 2019) 33,562 3.5

Danio rerio GCF_000002035 1,345 Ensembl GRCz11.96 (May 2019) 25,254 8.2

Table 3.2: Characteristics of the OrthoDB v10 taxonomical space for each of the species
we tested. The number of species is naturally the largest in the kingdom section of the
database. *For tests in the genus-, family-, and order-excluded modes for D. melanogaster
and D. rerio, the phylum was used as the largest set of reference proteins.

Number of species in the 
same taxonomical unit

Genus Family Order Class Phylum Kingdom
OrthoDB root used 
for tests

# of proteins
in the root

Neurospora crassa 0 1 7 96 364 548 Fungi 5,850,648

Caenorhabditis elegans 2 2 4 5 6 447 Metazoa 8,266,016

Arabidopsis thaliana 1 7 9 - 99 116 Plantae 3,510,742

Drosophila melanogaster* 19 19 55 147 169 447 Metazoa 8,266,016

Solanum lycopersicum 1 9 10 - 99 116 Plantae 3,510,742

Danio rerio* 0 4 4 49 245 447 Metazoa 8,266,016

3.2.1 Protein database preparation

We used OrthoDB v10 protein database [66] as an all-inclusive source of protein sequences.

Still, for generating protein hints for a particular species, we used subsets of OrthoDB: plant

proteins for gene prediction in Arabidopsis thaliana, arthropod proteins for gene prediction

in Drosophila melanogaster, etc. (Table 3.2).

A principal feature of ProtHint and GeneMark-EP+ is their ability to extract informa-

tion from multiple homologous proteins. To evaluate this ability, we had to model practical

situations when the evolutionarily distance between the genome of interest and the most

closely related species with a sequenced and annotated genome varies significantly. To

simulate these variations in our tests, we introduced restrictions on evolutionarily distance

to the closest species from which the target proteins could be recruited. These restric-

tions were implemented by removing from the protein database (i) proteins encoded in the

genome of a given species; (ii) proteins from all species from the same subgenus; (iii) pro-
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teins from the same genus; (iv) proteins from the same family; (v) proteins from the same

order; and (vi) proteins from the same phylum. Notably, distributions of numbers of species

within a genus, family, etc. defined by a given species are species-specific (Table 3.2).

3.2.2 APPRIS principal isoform annotation

As an additional test set, we used annotation of major protein isoforms available in the

APPRIS database [85]; this assessment was done for C. elegans, D. melanogaster, and D.

rerio. Arguably, the accuracy of prediction of major isoforms is of significant interest, since

in most gene loci, the major isoform was observed to be expressed in significantly higher

volume than other (minor) isoforms [86].

3.3 Methods

3.3.1 Overview of GeneMark-EP/EP+

GeneMark-EP/EP+ executes the following tasks: (i) selecting genomic regions, seed re-

gions, containing gene candidates (seed genes); (ii) identifying a set of homologous pro-

teins for each seed gene; (iii) constructing spliced alignments of homologous proteins to

each seed region and generating hints to exon-intron structures; (iv) running iterative semi-

supervised training; and (v) making the final gene prediction without (EP mode) or with

an additional option (EP+ mode) to enforce high-confidence protein hints in the predicted

exon-intron structures.

Tasks (i)-(iii) are devoted to generating protein hints and are solved by the ProtHint

pipeline. Tasks (iv) and (v) correspond to the training and prediction steps of GeneMark-EP

and -EP+. At these steps, we use the hints to exon-intron structure coordinates as an input

to an expectation-maximization-type algorithm that finds models of compositional patterns

of protein-coding and non-coding regions simultaneously with the most likely parse of

genomic sequence into coding and non-coding regions.
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Figure 3.1: An overview of the ProtHint pipeline.

3.3.2 ProtHint: generating protein hints from a large protein database

3.3.2.1 ProtHint’s general logic

The role of the ProtHint protein mapping pipeline is to accurately predict locations of exon

boundaries (so-called protein hints) from a large number of proteins of any evolutionary

distance to the genome of interest. The workflow of ProtHint (Figure 3.1) is as follows.

ProtHint starts by running the unsupervised gene finder GeneMark-ES [16] to define

candidate seed regions containing putative protein-coding genes (seed genes). Each seed

gene is translated to a protein and queried against the entire input protein database (e.g.,

OrthoDB) using DIAMOND [87] in the BLASTp mode. A set of proteins with statistically

significant hits (e-val < 1e−3) defines target proteins presumed to be homologous to the

seed gene query. The best-scoring target proteins (up to 25 per seed) are splice aligned

back to the seed region (extended by 2000 nt both upstream and downstream) with Spaln

[56].

The resulting alignments are processed to predict the locations of exon boundaries (i.e.,

hints to coordinates of introns and translation start/stop codons). ProtHint scores each such

hint to remove spurious alignments and to classify the reported predictions into low- and

high-confidence groups. The details of the scoring system are described in the following

sections. By focusing on individual exon boundaries, instead of trying to infer the full gene
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structure from each protein alignment, ProtHint can predict accurate hints from conserved

domains of otherwise remotely related proteins.

3.3.2.2 Score system for introns

The evolutionary conservation between primary structures of target proteins and a protein

encoded in the seed region has to be quantified to evaluate the reliability of introns predicted

from spliced alignment. To facilitate this quantification, we define three types of scores.

Alignment of an Entire Exon (AEE) score is defined as a score of the Spaln (or Pro-

Splign) alignment of an exon translation and a target protein. The AEE scores are com-

puted for all exons adjacent to introns mapped by spliced alignments. The alignment score

is computed with BLOSUM62 [88] substitution parameters and a linear gap penalty = −4.

The AEE score is not normalized by the exon length; therefore, exons with low scores are

either too short or they are long and poorly aligned. At the initial step of the algorithm, we

keep introns bordered by exons with high AEE scores (further described in Section 3.3.2.3).

Intron Borders Alignment (IBA) score characterizes the conservation of exons adjacent

to the scored intron, with larger weights given to parts close to the donor and acceptor splice

sites. First, scores Sd and Su are computed for the downstream and upstream exons (relative

to the intron) defined by the spliced alignment. Sd is defined as:

Sd =
w∑
i=1

Sa(Gi, Pi)×W (i) (3.1)

Here, Sa(Gi, Pi) is a BLOSUM62 [88] substitution score defined for a target protein amino

acid Pi and a codon-defined amino acid Gi. Gaps are penalized with a linear gap penalty
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= −4. w defines a window width (by default, w = 10) and W (i) is a weight function,

W (i) =
K(i)∑w
i=1K(i)

(3.2)

where K(i) is a kernel value for position i counting in codons from the acceptor site. For

instance, a linear kernel (the default kernel) defines this value as:

K(i) = 1− |i| − 1

w
(3.3)

A value IBAraw is a geometric mean of Sd and Su (Su is computed in the same way as Sd):

IBAraw =


√
Sd × Su, if min (Sd, Su) > 0,

0, otherwise.
(3.4)

Finally, the IBA score is obtained by normalizing the IBAraw score into a [0, 1] range:

IBA =
IBAraw

max(Sa)
(3.5)

where max(Sa) is a maximum score among the elements of the amino acid substitution

matrix.

Intron Mapping Coverage (IMC) score is a count of how many times a given intron

was exactly mapped by spliced alignments of distinct target proteins. The IMC score is

computed only from the set of introns with IBA score > 0.1; in order to prevent high

scores through the accumulation of noise (details in Section 3.3.2.3).

3.3.2.3 Application of the intron scores

ProtHint uses the following method to filter scored introns. First, introns whose two ad-

jacent exons have AEE scores ≥ Et are selected; where Et is a chosen threshold. For
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Figure 3.2: ProtHint high-confidence intron processing, shown for N. crassa. Introns were
generated by spliced alignments of target proteins from species beyond Neurospora genus.
(A) Distribution of the score vectors (IBA, IMC) of true positive (green) and false positive
(purple) introns. The black lines represent cutoffs at IMC = 4 and IBA = 0.25. Total
numbers of false and true positives are shown in the upper left corner. (B) Sn and Sp of
intron sets selected by thresholds on IBA score and IMC score. IMC score is computed
for introns that have IBA score ≥ 0.1 and exon AEE score ≥ 25. The red curve represents
the following. The left branch of the curve reflects (Sp, Sn) values of the sets of introns
selected by shifting the IMC threshold from 0 to 4. The one with the IMC threshold = 4 is
recorded as set A – the set corresponding to the black circle in the red curve. Then, the right
branch of the curve reflects (Sp, Sn) of the set of introns generated by applying to set A the
IBA score threshold changing from 0 to 0.25 and up to 1.0. Set B corresponds to the black
cross in the red curve, introns in this set have IMC ≥ 4 and IBA ≥ 0.25. Separate curves
for IMC score change (dashed blue) and IBA score change (dashed purple) are shown as
well.

Et = 25, in modeling on known genomes, we observed a relatively high Sn value of the

candidate introns (Figure A.1). Further increase of Et eliminated true introns while not

significantly improving the Sp value (Figure A.1). Thus, Et defaults to 25.

Next, a subset with an IBA score≥ It is selected; where It is another chosen threshold.

Our modeling has shown an increase in the Sp value of the candidate introns for It = 0.1

that occurred without a noticeable change in the Sn (Figure A.1). Thus identified subset of

introns represents a set of all mapped introns; this is used as an external evidence to generate

anchored introns for the GeneMark-EP training steps (described in Section 3.3.3.1).

Finally, within the set of all mapped introns, ProtHint selects a narrower set of high-
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confidence introns. At this stage, introns defined by alignments of multiple distinct target

proteins are collapsed to compute the IMC score. The IBA score of the collapsed introns

is defined as a maximum of the individual IBA scores. High-confidence introns must have

canonical GT-AG splice sites, an IMC score ≥ 4 and an IBA score ≥ 0.25 (Figure 3.2).

GeneMark-EP uses the high-confidence introns to estimate the initial parameters of its

intron model. Further, these introns are enforced in the prediction step of the GeneMark-

EP+ mode (Section 3.3.3.2).

3.3.2.4 Score system for translation starts and stops

Similarly to scores introduced for intron hint generation, we define a Border Alignment

Quality (BAQ) score for translation starts and stops. This score is computed for w amino

acids downstream (upstream) of a start (stop) codon, weighted by a kernel-dependent func-

tion (Equation (3.1)).

Next, a Site Mapping Coverage (SMC) score counts the number of N-terminals (C-

terminals) of distinct target proteins aligned to a particular start (stop) codon position of

a candidate gene. The SMC scores are computed only from the sets of initial (terminal)

exons whose BAQ scores are > 0.

Start codons are additionally scored by counting the number of protein alignments over-

lapping a given start. A precise definition of the overlap is as follows. Start S is considered

to be overlapped by a target protein P if an exon E in P overlaps S upon spliced alignment.

Still, to be counted as overlapping, exon E needs to satisfy these criteria: (i) AEE score

of E has to be ≥ 25. (ii) The spliced alignment of protein P must contain a mapped start

codon or an acceptor site (within the set of all reported starts/introns) that coincides with

the exon start. In other words, the start of the overlapping exon must define either a start

codon or an acceptor splice site (Figure 3.3).
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Figure 3.3: Gene start mapping coverage (SMC) scores and counts of exon overlaps. Start
(a) is overlapped by five exons that coincide with an upstream intron. Start (b) is overlapped
by one exon (green) but this exon’s upstream boundary does not coincide with an end of
an intron or a start codon mapped by ProtHint, therefore it does not contribute to the exon
overlap. Start (c) is overlapped by three exons which define an upstream start, green exon
is again not counted.
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Table 3.3: Sensitivity and specificity of all gene start hints created by ProtHint as well as of
the high-confidence start hints. High specificity was achieved with filtering by SMC scores
as well as by the removal of candidate starts overlapped by at least one target protein (sug-
gesting that a start is located upstream). Sn was defined with respect to a full complement
of starts, including alternative ones as given in annotation. The numbers were generated
in tests with reference proteins from species outside the relevant genus. Results for all test
species are shown in Table A.1.

All reported 
starts

Filtered with 
SMC >= 4

Filtered with 
SMC >= 4 and 
exon overlap =0

Sn 69.3 62.9 61.4

Sp 70.9 89.8 94.4
A. thaliana

3.3.2.5 Application of the start and stop scores

Translation starts and stops are filtered as follows. A start codon candidate is an ATG

codon present in a mapped initial exon and aligned to an N-terminal methionine in the

target protein; a stop codon candidate is a stop codon in a mapped terminal exon. The

initial (terminal) exon containing a candidate gene start (stop) must have AEE score ≥

25; otherwise the candidate start (stop) is removed. ProtHint subsequently removes starts

(stops) with BAQ score = 0.

To select a subset of high-confidence hints, ProtHint chooses stop codon candidates

with SMC score ≥ 4 as well as start codon candidates with SMC score ≥ 4 and no overlap

by longer target proteins (Figure 3.3). The set of high-confidence hints to translation starts

and stops is used to estimate parameters of GeneMark-EP models of translation initiation

and termination sites. Also, the high-confidence hints are directly enforced in the prediction

step of GeneMark-EP+.

Tables A.1 and 3.3 illustrate how the application of these rules leads to an increase in

the specificity of the predicted starts.
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3.3.3 Integration of genomic sequence patterns and protein homology into gene prediction

3.3.3.1 Model training

The iterative training of GeneMark-EP’s statistical models (Figure 3.4) works as follows.

In the first iteration, full-length introns mapped by ProtHint with scores exceeding a strin-

gent threshold (high-confidence hints) are used to estimate parameters of splice site mod-

els as well as branch point site models (particularly important for intron models of fun-

gal genomes). The splice site models together with heuristic models of protein-coding

and non-coding regions make a complete set of models of a generalized hidden Markov

model (GHMM) [16]. The models are used in the first run of the Viterbi algorithm (see

[89]) that generates a maximum likely parse of genomic sequence into coding and non-

coding regions—the parse delineating the first set of genes predicted by GeneMark-EP.

Next, GeneMark-EP analyzes available data to make updated training sets and re-estimate

model parameters. Coordinates of exons predicted by GHMM are compared with intron

hints determined by ProtHint. This comparison leads to the selection of so-called anchored

elements—exons with at least one splice site identified by both GHMM and ProtHint. A set

of the anchored exons along with a set of predicted single-exon genes (with length > 800

nt) comprises an updated training set for a three-periodic Markov chain model of protein-

coding regions [90]. Sequences of introns bounded by two anchored splice sites as well

as intergenic sequences bordered by anchored terminal and initial exons of adjacent genes

(Figure 3.5) are used to update parameters of the non-coding region model. The set of all

updated models is used by the Viterbi algorithm to generate a new set of predicted genes.

A new update of anchored elements and the next round of parameter re-estimation follows.

Several probability distributions used in GeneMark-EP, such as length distributions of

exon, intron, and intergenic regions, are initially defined as uniform ones. A more accurate

estimation of these distributions is done in subsequent steps of the iterative training (Fig-

ure 3.4). Prior to the final iteration, the estimates of the GHMM transition probabilities,
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27



HC
Start
codon

Correction
in PLUS

Correction
in PLUS

HC
Intron

Target
Proteins

Protein
Hints

Anchored elements
selected for training

Genome sequence

GeneMark.hmm
prediction at a
given iteration

Spliced

Alignment

Figure 3.5: Selection of anchored elements for GeneMark-EP+ training with enforcement
of High-Confidence (HC) hints.

affecting the frequencies of genes with a given number of introns, are estimated. Also,

the parameters of three-phase models of splice sites indexed by a nucleotide position after

which the intron divides a codon triplet are only estimated in the final steps. In experimen-

tal runs for genomes of different lengths, we have verified that six iterations are sufficient

for GeneMark-EP to reach convergence in coordinates of predicted genes and the values of

model parameters.

3.3.3.2 Final gene prediction

Gene predictions made in the final iteration are reported as the output of GeneMark-EP. The

Viterbi algorithm can also be run with enforcement of high-confidence elements mapped

by ProtHint. Particularly, this is done by modifying components of an objective function

of the Viterbi algorithm associated with chosen hidden states. The sites that are enforced

receive high values of the objective function to ensure their addition to a path selected by the

optimization algorithm seeking the maximum value of the log Viterbi objective function.

This mode of gene prediction produces the GeneMark-EP+ output.

Note that GeneMark-EP/EP+ algorithms are designed to predict non-overlapping genes
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with no alternative isoforms. This design suits the paradigm that each gene locus encodes

a major (expressed in most tissues) protein isoform [85].

3.3.3.3 General updates to the GHMM architecture

Compared to the published versions of GeneMark-ES and -ET, several updates to the un-

derlying GeneMark’s GHMM architecture were made. Since these updates improve the

general gene prediction accuracy of all algorithms in the GeneMark family; they were also

added to GeneMark-ES and -ET.

The first change involves updates to the modeling of intergenic length distribution. In-

stead of using a uniform distribution with a fixed maximum length, intergenic regions are

now modeled using a non-parametric estimation of a probability density function. The

non-parametric estimation is applied in the last (third) round of self-training iterations (see

flowchart in Figure 3.4). Furthermore, uniformly distributed pseudocounts are added to

smooth the distributions. In GeneMark-EP and ET, only those intergenic regions that are

situated between genes with anchored introns are used as data for the non-parametric esti-

mation of the length distribution.

The default minimum length of genes predicted by GeneMark-ES, -ET was set to 300

nt. Currently, shorter genes are allowed in the final prediction when supported by extrinsic

hints.

Finally, GeneMark-EP introduced a model for non-canonical introns with GC-AG splice

sites. The prior probability of GC-AG introns (compared to the canonical GT-AG ones) is

set to 0.001.

3.3.4 Methods related to algorithm assessment

This section describes the design of methods that were used to evaluate various questions

about the performance of GeneMark-EP/EP+ and ProtHint; other than the standard accu-

racy assessment described in Section 2.4. In all evaluations, regions of annotated pseudo-
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genes were excluded from comparisons.

3.3.4.1 Repeat masking

All tests were run on repeat-masked genomes. Repetitive sequences (interspersed repeats

and low complexity sequences) were identified by RepeatModeler [91] and RepeatMasker

[92]. A run of RepeatModeler on a whole genome produced a repeat library. Next, the

locations of repeats were identified and soft-masked by RepeatMasker.

3.3.4.2 Assessment of genomes with unreliable reference annotation

To assess the accuracy of gene prediction made for A. thaliana, C. elegans, D. melanoga-

ster, and N. crassa, we compared genes predicted and annotated on a whole genome scale.

In the case of S. lycopersicum, we made an additional sensitivity evaluation using a limited

set of genes that had all introns supported by RNA-Seq mapping. The RNA-Seq data was

mapped and sampled from NCBI’s Sequence Read Archive [93] by VARUS [94]. In the

case of D. rerio, we excluded annotated partial exons (ubiquitous in this genome) from

exon-level accuracy assessment; we computed gene-level sensitivity only for genes having

in annotation complete alternative transcripts.

3.3.4.3 The effect of using partially mapped proteins

ProtHint scores and filters all protein hints individually, irrespective of the quality of the

global protein alignment. As a result, it can extract accurate hints from conserved domains

of otherwise evolutionarily distant proteins. To evaluate the extent to which these “partial”

hints affect the final gene prediction accuracy, we ran GeneMark-EP+ with high-confidence

introns exclusively supporting full gene structures (determined by comparing the mapped

hints with annotation) and compared this run with a GeneMark-EP+ run using all mapped

high-confidence introns. Notably, because we selected the set of “complete” hints based on

a comparison with the reference annotation, this set did not contain any false positives.
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Figure 3.6: Gene splitting events caused by alternative isoforms that include other isoforms
as their components. We removed such cases from the test set for gene splitting assessment.
(a) Isoform A1 is correctly predicted. As a result, full isoform A2 cannot be predicted at
the same time and it is split. (b) The algorithm makes correct predictions of isoforms B1
and B2. If isoform B3 was considered as the annotation, it would be split by the prediction.

3.3.4.4 Assessment of gene merging and gene splitting errors

Gene merging and splitting errors are expected to be reduced by the use of protein hints

to gene translation starts and stops. This expected improvement in prediction accuracy of

GeneMark-EP+ can be more accurately observed on properly prepared test sets. Prior to

the evaluation of gene splitting, we excluded from the test sets (i) genes fully overlapping

shorter genes present inside introns in any strand; (ii) genes with larger isoforms combining

or including shorter alternative components (Figure 3.6); and (iii) genes with introns longer

than 10,000 nt (the default maximum intron length). For genes with annotated multiple

alternative isoforms, we used the longest one as a representative. Prior to the evaluation of

gene merging, overlapping genes present in annotation (e.g., a gene within an intron) were

merged into a single gene in order to exclude such cases from being counted as merged

genes.

3.3.4.5 Do introns mapped by ProtHint tend to occur in gene regions coding for con-

served domains?

To address this question, we used the following procedure. Annotated genes were translated

to proteins and used as queries in RPS-BLAST [95] to search (e-val < 1e−2) against

NCBI’s Conserved Domains Database [96]. The results of the RPS-BLAST searches were
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processed with a rpsbproc utility [96] to generate a map of conserved domains for each

RPS-BLAST query. Finally, coordinates of the conserved domains were mapped back to

the seed region of genomic DNA and compared with the ProtHint output to find out how

many introns were mapped into regions coding for conserved domains. We conducted this

analysis for genes of D. melanogaster, C. elegans, and D. rerio—genomes annotated in the

APPRIS database [85] representing genes coding for principal protein isoforms.

3.4 Results

We compared the gene prediction accuracy of GeneMark-EP and -EP+ with the accuracy

of GeneMark-ES and GeneMark-ET. In addition, we made a detailed accuracy assessment

of ProtHint. The assessments were done using the genomes of six species: N. crassa, C. el-

egans, A. thaliana, D. melanogaster, S. lycopersicum, and D. rerio (see Section 3.2); using

the accuracy evaluation methods presented in Section 3.3.4. Importantly, we executed Prot-

Hint and GeneMark-EP/EP+ with multiple protein databases on input, to simulate different

evolutionary distances of available input proteins (see Section 3.2.1).

3.4.1 Accuracy assessment of GeneMark-EP+ and comparison with GeneMark-ES

We first present the final results of GeneMark-EP+ (with the enforcement of high-confidence

hints) since it proved to be more accurate than GeneMark-EP (without the enforcement) in

all tested scenarios. Details on the accuracy assessment of GeneMark-EP vs GeneMark-

EP+ are given in Section 3.4.3.

For each genome (Table 3.1), we determined how the accuracy of GeneMark-EP+ at

the gene level (Figure 3.7) and exon level (Figure A.2) depended on the choice of a set of

the reference proteins. The pattern of accuracy changes at the gene level was similar to the

one observed at the exon level; therefore, we show the results of the accuracy assessment

at the gene level in the main text, while the results for the exon level are provided in the

Appendix.
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Figure 3.7: A comparison of GeneMark-ES and GeneMark-EP+ accuracy on the gene level.
The accuracy of GeneMark-EP+ is shown for cases when ProtHint works with different size
sets of reference OrthoDB proteins: from the largest (only proteins from the same species
are excluded) to the smallest (proteins of the whole phylum excluded).
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We present the results separately for three groups of genomes: fungal genomes, com-

pact eukaryotic genomes and large eukaryotic genomes.

3.4.1.1 Fungal genomes (N. crassa)

The accuracy of GeneMark-ES was high, as it has been typical for fungal genomes ([17]).

Even with hints originating from the largest set of reference proteins, those outside of genus

or order, GeneMark-EP+ improved the Sn value of GeneMark-ES only by ∼2 percentage

points (Figure 3.7A). With a smaller set of more remote reference proteins, originating

from the species outside of the fungal phylum, the accuracy of GeneMark-EP+ matched

the accuracy of GeneMark-ES (Figure 3.7A). This result went in line with previous ob-

servations showing that GeneMark-ES is a highly efficient ab initio gene finder for fungal

genomes [17].

3.4.1.2 Compact eukaryotic genomes (C. elegans, A. thaliana, and D. melanogaster)

When GeneMark-EP+ used the largest set of reference proteins (just without proteins from

the same species), for A. thaliana and D. melanogaster, we observed an improvement

of ∼20 percentage points in both Sn and Sp in comparison with GeneMark-ES (Fig-

ure 3.7CD). As the target proteins were coming from larger and larger evolutionary dis-

tances, the accuracy did steadily decrease. When the target proteins were selected from

outside of the same phylum, there was an increase of only 5 percentage points in gene-

level Sn and Sp in comparison with GeneMark-ES.

For C. elegans, when the set of reference proteins excluded just proteins of the same

species, GeneMark-EP+ improved the accuracy of GeneMark-ES by ∼6 percentage points

(Figure 3.7B). We observed almost no difference between GeneMark-EP+ and GeneMark-

ES when the reference proteins were only from species outside the C. elegans family and

a slight decrease in accuracy (∼2 percentage points) for reference proteins outside of the

taxonomical phylum. Notably, the gene-level accuracy for C. elegans was lower than that
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Table 3.4: An accuracy assessment for S. lycopersicum. Only genes which had all introns
in the gene supported by RNA-Seq mapping were selected for the test set A. All the other
genes were selected into set B. Single-exon genes were excluded from this analysis. Set
A contained 15,832 genes with 84,424 introns. Set B contained 9,506 genes with 34,282
introns.

GeneMark-

Test Set A B A B A B A B

Gene Sn 22.7 4.8 53.0 8.4 47.8 8.0 34.0 6.9

Exon Sn 76.5 46.1 88.8 52.5 87.3 51.9 81.5 48.7

Intron Sn 79.5 53.3 93.9 61.7 92.7 60.9 86.3 56.8

ProtHint HC

Test Set A B A B A B

Intron Sn 87.6 50.1 79.8 43.8 30.3 14.3

Start Sn 60.4 21.5 48.2 15.2 5.6 1.4

Stop Sn 69.3 20.5 54.3 14.7 8.1 1.7

ES EP+ genus excl. EP+ order excl. EP+ phylum excl.

genus excluded order excluded phylum excluded

for other species with compact genomes.

3.4.1.3 Large eukaryotic genomes (S. lycopersicum and D. rerio)

The gene-level accuracy of GeneMark-ES was low for these genomes (between 5 and 20

percentage points). GeneMark-EP+ improved the accuracy for S. lycopersicum by ∼15

percentage points when it used a protein reference set from species outside of the tomato

genus or order (Figure 3.7E). For D. rerio, having a reference set of proteins without those

from the same genus or the same order led to Sn and Sp improvements of ∼20 and ∼5

percentage points, respectively (Figure 3.7F). However, the improvements were twice as

low when reference proteins were available only outside of the S. lycopersicum or D. rerio

phyla.

The relatively low gene prediction accuracy in large genomes could be partially at-

tributed to incorrect and/or incomplete gene annotations. Therefore, we made an additional

effort to refine the test sets in S. lycopersicum and D. rerio by selecting genes supported by

RNA-Seq data and complete genes, respectively (Section 3.3.4.2).

We observed that annotated genes of the S. lycopersicum genome supported by RNA-

Seq hints were significantly better predicted by GeneMark-EP+ (Table 3.4). We divided the
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annotated multi-exon genes into two groups: (a) genes with all introns supported by RNA-

Seq and (b) all other genes. GeneMark-EP+’s sensitivity (for a GeneMark-EP+ run having

reference proteins outside of the S. lycopersicum genus) was better by 40 percentage points

in the set (a) compared to the set (b) on the gene, exon, and intron levels. It is important to

emphasize that RNA-Seq information was not used in GeneMark-EP+. Sensitivity defined

for the set of introns mapped by ProtHint was also better in the set (a) by ∼40 percentage

points (Table 3.4).

As already mentioned, the annotation of D. rerio contained many partial exons that in

turn were parts of incomplete transcripts. We evaluated the exon-level Sn separately for

exons within complete and incomplete transcripts (Table A.3) and observed a 75.1% exon

Sn in the “complete” group versus 67.6% in the “incomplete” group. Similarly, gene-level

sensitivity was better by 6 percentage points in predicting genes with complete transcripts

compared to all genes (Table A.3).

3.4.1.4 Summary for all groups

Altogether, we observed that for the majority of the considered species, the accuracy of

GeneMark-EP+ was better than the accuracy of GeneMark-ES, regardless of how large a

set of reference proteins was used for spliced alignments. For the fungal genome, N. crassa,

an improvement was negligible due to the ability of GeneMark-ES to deliver high accuracy

for fungal genomes; we also observed a small decrease of accuracy in the C. elegans test

with a phylum-excluded reference set of proteins (addressed in the Discussion).

3.4.2 Accuracy assessment of ProtHint

The main role of ProtHint is the generation of coordinates (and their confidence scores)

of potential borders between coding and non-coding regions in a novel genome. Specific

thresholds on confidence scores are defined to select different subsets of hints (e.g., the

high-confidence set). The GeneMark-EP training procedure can tolerate a high number
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Table 3.5: Accuracy of ProtHint for the D. melanogaster genome: sensitivity and speci-
ficity of hints to introns, start and stop codons. The results are shown for all reported hints
or just high-confidence hints. Results for all tested species are shown in Table A.4.

D. mel. All reported High conf. All reported High conf. All reported High conf. All reported High conf. All reported High conf.

Intron Sn 79.8 74.6 72.8 62.6 66.2 54.3 49.7 34.4 35.8 20.9

Intron Sp 83.5 98.9 79.6 98.8 79.5 98.8 80.5 99.0 88.4 99.5

Start Sn 70.3 60.7 49.8 36.5 37.7 29.2 22.3 15.9 14.1 9.7

Start Sp 79.5 97.4 75.6 96.7 71.6 95.6 73.4 94.5 75.0 93.5

Stop Sn 75.3 68.4 56.7 45.2 44.7 36.9 26.7 19.8 15.8 11.2

Stop Sp 94.8 99.3 94.2 98.8 92.8 98.5 94.5 98.9 95.8 99.2

The level of exclusion of database proteins

Species Subgenus Family Order Phylum

of false positive intron hints since only a subset, the anchored introns, is used in training

(Section 3.3.3.1). Thus, the set of all mapped hints should have high Sn while the Sp level

can be lower. On the other hand, the high-confidence hints—those utilized in the initial

GeneMark-EP parameter estimation as well as in the hints’ enforcement—must have high

Sp, as these hints are directly included in the final gene predictions.

3.4.2.1 Sensitivity of all protein hints

When the maximum set of reference proteins was used (all proteins except those from the

same species), the set of intron hints generated by ProtHint had > 75% intron Sn and∼70%

Sn for translation starts and stops (Tables A.4 and 3.5). The Sn was dropping down steadily

as the evolutionary distance to reference proteins was increasing. Particularly, when the

proteins from species of the same order were excluded, the Sn was, on average, ∼65%

for intron hints and ∼40% for translation start and stop hints. The largest reduction in the

volume of the protein reference set—the exclusion of proteins from the same phylum—

decreased Sn of all reported intron hints down to ∼40% on average (Table A.4). Here, the

largest Sn value (the fraction of correct intron hints) was observed for N. crassa (60%), and

the lowest one for C. elegans (26%). For the same protein set, the Sn of translation start

and stop hints varied significantly between the species, from 8% for C. elegans to 30% for

N. crassa (Table A.4).
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3.4.2.2 Specificity of high-confidence protein hints

The sets of high-confidence hints were observed to have high specificity, averaging over

95% (i.e., 5% of false positives) over the six species (Table A.4). This level remained high

even for the smallest sets of reference proteins, proteins from species outside of the phylum

of interest (Tables A.4 and 3.5). In the case of C. elegans, along with high Sp, we observed

a low Sn value of the high-confidence hints, which can be explained by the presence of

just a few species with sequenced genomes in the C. elegans phylum (Table 3.2). For all

other species, when compared to the simultaneous increase in Sp, a decrease in Sn upon

transition from all mapped to high-confidence hints was small (Tables A.4 and 3.5).

3.4.2.3 ProtHint results with non-default settings

All presented ProtHint results were shown for ProtHint runs with the default parameter

settings. This section describes results showing how changes in several important ProtHint

parameters affect the prediction accuracy. The significance of these results and their impact

on the ProtHint design is fully discussed in the Discussion section.

Choice of thresholds for high-confidence filtering Figure 3.2A shows the distributions

of vectors representing intron hints generated for N. crassa (both false and true as com-

pared with annotation). Figure 3.2B shows the corresponding Sp-Sn curves; generated for

sets of intron hints obtained by filtering with changing IMC and IBA thresholds. The dis-

tribution of the score vectors (Figure 3.2A) as well as the behavior of the Sp-Sn curves

(Figure 3.2B) depends on the selection of the set of reference proteins (genus or order or

phylum excluded; Figures A.3 to A.5). A choice of thresholds selecting high-confidence

intron hints eventually affects the accuracy of GeneMark-EP+. We assessed the extent of

this effect for A. thaliana, N. crassa, and S. lycopersicum (Figures A.3 to A.5). It was

shown that the best average prediction accuracy was achieved with the IBA threshold set to

0.25. Similar analyses produced the necessary thresholds for high-confidence hints to gene
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starts and stops.

Choice of a scoring kernel Computation of the IBA score involves a weighting step,

done by a weighting kernel (Equation (3.3)). Figure A.6 compares the accuracy achieved

by using (i) the default linear kernel, and (ii) a box kernel.

Maximum number of target proteins per seed gene ProtHint limits the number of tar-

get proteins that are splice aligned back to the corresponding seed regions (Section 3.3.2.1).

By default, this limit is set to 25; Figure A.7 shows how this parameter affects ProtHint’s

prediction accuracy.

3.4.3 Comparison of GeneMark-EP+ with GeneMark-EP

The accuracy of GeneMark-EP+ (which enforces the high-confidence hints in the gene

prediction step) was about the same as the accuracy of GeneMark-EP when the small-

est reference set of proteins—proteins from species outside the phylum of the species in

question—was used (Table A.2). The accuracy of GeneMark-EP+ increased significantly

when reference proteins from more evolutionarily close species were included; while the

accuracy of GeneMark-EP stayed about the same. The only exception was C. elegans in

which GeneMark-EP’s gene-level accuracy dropped by ∼4 percentage points for the ref-

erence set of species outside the same phylum in comparison with GeneMark-ES (while

GeneMark-EP+ showed the accuracy close to the level of GeneMark-ES; Table A.2).

3.4.4 The effect of distinct protein hints on the accuracy of GeneMark-EP+

To differentiate different contributions to GeneMark-EP+’s performance, we compared

runs that used only high-confidence intron hints to runs that used only high-confidence

hints to gene starts and stops (Table A.5). This experiment showed that enforceable hints

of both kinds contributed equally to overall accuracy improvement. However, these hints
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Figure 3.8: A comparison of exon-level accuracy between three gene prediction modes in
D. melanogaster. The use of introns from incomplete gene alignments led to a significant
increase in accuracy compared to using only introns from fully aligned gene structure.
GeneMark-ES is represented by a plus symbol. GeneMark-EP+ using only high-confidence
(HC) introns is represented by a red cross. GeneMark-EP+ using a subset of HC introns is
represented by a green circle. This subset corresponds to annotated gene structures with all
the introns supported by HC introns. In each panel, we show the percentage of such introns
among all HC introns.

contribute unequally to the reduction of different types of errors. The enforcement of high-

confidence intron hints led to a higher prediction accuracy of internal exons; while the

enforcement of high-confidence hints to gene starts and stops led to a reduction of errors in

initial and terminal exons (Table A.5).

Furthermore, we evaluated the effect of using “partial” vs “complete” protein hints

(Section 3.3.4.3). The result of this evaluation (Figure 3.8) shows that GeneMark-EP+

with the full set of protein hints, including the partial ones, consistently outperformed the

corresponding runs with complete hints only. This was observed despite the fact that all

false positives were removed from the set of complete hints (Section 3.3.4.3). Notably, the

accuracy of GeneMark-EP+ with complete hints only was lower than that of GeneMark-ES
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Genes ES EP
EP+

Introns
(a)

EP+
Starts/Stops

(b)

EP+
Full
(c) 

Merged 129 89 92 64 74

Split 83 96 89 106 91

Merged 1120 1076 1090 1019 1029

Split 588 725 614 731 622

Merged 743 634 629 215 251

Split 360 385 242 478 277

Merged 544 464 462 311 313

Split 285 297 204 324 221

Merged 2304 1871 1793 1165 1192

Split 1550 1644 1139 1962 1252

Merged 1921 1415 1351 883 884

Split 2553 2976 2018 3058 2010

S. lycopersicum

D. rerio

N. crassa

C. elegans

A. thaliana

D. melanogaster

Table 3.6: Numbers of merged and split genes in predictions of GeneMark-ES, -EP and
-EP+ with the enforcement of (a) only high confidence hints to introns, (b) only high con-
fidence hints to gene starts and stops (c) enforcement of both (a) and (b). All the numbers
were obtained for reference sets of target proteins from the species outside of relevant
genus.

when the most evolutionarily remote proteins were used on input (Figure 3.8).

3.4.5 Assessment of gene merging and splitting errors

We observed that GeneMark-ES was more likely to generate gene merging than gene split-

ting errors (Table 3.6); for instance, a comparison of the A. thaliana gene predictions and

annotation showed 360 split genes and 743 merged genes. The use of GeneMark-EP (with

reference proteins outside the same genus) decreased the frequency of errors in gene merg-

ing (a ∼15% decrease in all species); however, it also caused a slight increase in gene

splitting (Table 3.6). The transition to GeneMark-EP+ (the last column in Table 3.6) re-

duced gene merging dramatically.

The enforcement of only high-confidence intron hints in GeneMark-EP+ reduced the

number of split genes (by enforcing introns in place of incorrectly predicted intergenic

regions). Still, these hints had little or no effect on the gene merging (Table 3.6). The most

significant effect on gene splitting was observed for D. rerio—2010 split genes in the -EP+
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mode compared to 2976 in the -EP mode.

The enforcement of high-confidence hints to gene starts and stops significantly reduced

the number of merged genes and caused a slight increase in the number of split genes. For

instance, the number of merged genes dropped by∼500 in A. thaliana between GeneMark-

ES and GeneMark-EP+, a ∼66% improvement; ∼50% improvement was observed for the

other species in our tests, except for C. elegans. Altogether, in comparison with GeneMark-

ES and GeneMarkEP, GeneMark-EP+ achieved a significant reduction in the numbers of

both merged and split genes (Table 3.6).

3.4.6 Comparison of GeneMark-EP+ predictions with genome annotations defined by the

APPRIS database

We compared GeneMark-EP+ gene predictions with the annotations of major protein iso-

forms defined by the APPRIS database [85] in genomes of C. elegans, D. melanogaster,

and D. rerio. In comparison with our previous assessment using full genome annotations

made by respective genomic communities (Table 3.1), this test showed (Figure A.8) an in-

crease in exon-level sensitivity (by∼4 percentage points for C. elegans and D. rerio, by∼7

percentage points for D. melanogaster) and a decrease in exon-level specificity (by ∼1.5

percentage points for C. elegans, by 3 percentage points for D. melanogaster and by ∼8

percentage points for D. rerio). The decrease in Sp could be expected since the APPRIS

annotation contains a smaller number of exons. The increase in Sn is positive news indi-

cating that GeneMark-EP+, when predicting a single isoform per locus, is likely to predict

genes for the major protein isoforms.

At the gene level (Figure A.9), both Sn and Sp were reduced slightly in C. elegans and

D. rerio, and by 5 percentage points in D. melanogaster. To correctly interpret this result,

we have to remind the definition of gene-level accuracy—a gene is counted as correctly

predicted if the prediction matches all exons in at least one annotated alternative transcript.

Thus, the removal of alternative transcript isoforms from the reference annotation (as done
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in the APPRIS comparison) can only lead to a decrease in gene-level accuracy. The fact

that this decrease was small indicates that GeneMark-EP+ mostly predicts the principal

gene isoforms.

3.4.7 Comparison of GeneMark-EP/EP+ with -ET

We compared GeneMark-EP/EP+ with GeneMark-ET [48] that uses RNA-Seq short reads

to provide external information (hints to intron coordinates) to select anchored gene el-

ements for the GeneMark-ET’s algorithm parameter estimation. Notably, GeneMark-ET

does not have an “-ET+” mode in which predictions are directly guided by high-confidence

hints. We ran GeneMark-ET with hints to coordinates of introns mapped by VARUS [94]

from RNA-Seq reads. VARUS automatically sampled, downloaded, and aligned reads from

NCBI’s Sequence Read Archive (SRA) with the time stamp of 22 January 2020 [93]. The

time stamp is important for the reproduction of results since the VARUS outcome depends

on the amount of RNA-Seq data deposited to SRA. As one could see (Table A.2), the accu-

racy of GeneMark-ET with training guided by hints derived from mapped RNA-Seq reads

is very close to the accuracy of GeneMark-EP with training guided by hints derived from

mapped proteins. The accuracy of GeneMark-EP+, which uses high-confidence hints to

improve its predictions, was significantly higher than that of GeneMark-ET in all tests but

one (Table A.2); even with the most remote proteins (outside of the same phylum) on input.

3.4.8 More intron hints are generated in regions encoding conserved protein domains

To establish a baseline for this analysis, we first computed how many annotated introns

belong to conserved protein domains (using the procedure described in Section 3.3.4.5).

We found that ∼50% of the whole set of introns annotated in the APPRIS set of principal

isoforms are located within conserved protein domains (Table A.6).

In D. melanogaster, high-confidence intron hints generated by ProtHint from the species-

excluded reference set of proteins fell into regions coding for conserved domains in 55.9%
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Table 3.7: For the D. melanogaster genome, we show the fractions of high-confidence
(HC) intron hints mapped in regions coding for conserved protein domains. The results
are provided for sets of reference proteins with different sizes and evolutionary distances to
D. melanogaster. Out of 41,010 introns in the APPRIS-defined D. melanogaster genome
annotation, 21,562 (52.6%) are located in regions encoding conserved protein domains.

All HC 
introns

Species 33,894 18,934 (55.9%)

Subgenus 28,437 17,475 (61.5%)

Family 24,670 16,057 (65.1%)

Order 15,829 11,984 (75.7%)

Phylum 9,719 8,222 (84.6%)

Exclusion
level

High-confidence introns
matching APPRIS introns

HC introns that fell 
into domains

of cases (Table 3.7). This fraction increased significantly as more proteins were excluded

from the reference set (e.g., proteins from species outside of the D. melanogaster genus).

Finally, the fraction reached 84.6% when only proteins originating from species outside

the D. melanogaster phylum were considered (Table 3.7). Similar trends were observed

for C. elegans and D. rerio (Table A.7). In the set of all reported intron hints, the fraction

of introns mapped to regions coding for conserved domains was lower than that in the set

of high-confidence intron hints (Table A.7); however, the proportion of introns mapped

into conserved domain regions also increased upon removing proteins from closely related

species.

3.5 Discussion

The main reason to develop GeneMark-EP/EP+ was a clear need to leverage abundant

protein sequence data available in public databases for improving the accuracy of auto-

matic gene prediction. It was well expected that the iterative ab initio parameterization of

statistical models (as done in GeneMark-ES) would become more precise, especially for

large genomes, if an efficient method to add data on protein footprints into training was

found. This goal was successfully achieved by the GeneMark-EP’s semi-supervised train-
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ing. Moreover, GeneMark-EP+ significantly improves its prediction accuracy by directly

integrating the most confident protein evidence into the predicted exon-intron structures.

The need to process large protein databases and determine the reliability of the mapped

protein evidence led to the development of a new pipeline called ProtHint. ProtHint finds

multiple proteins homologous to a gene initially predicted in a genomic locus and then

derives reliable hints to the true gene exon-intron structure by constructing and processing

multiple protein footprints.

In this section, we summarize the GeneMark-EP+ results observed in all of the tested

species. Next, we highlight the main features contributing to GeneMark-EP+’s high pre-

diction accuracy. We also discuss the main design decisions behind ProtHint that ensure its

fast computational speed and high specificity of high-confidence predictions. Finally, we

list several limitations of the GeneMark-EP+ approach, most of which are addressed in the

remaining chapters of this thesis.

3.5.1 Summary of the GeneMark-EP+ results

The most significant improvement in comparison with GeneMark-ES, observed in all species

but the fungus N. crassa, occurred when GeneMark-EP+ used the largest possible set of

reference proteins (Figures A.2 and 3.7). Although the magnitude of this improvement de-

creased with the increase of the evolutionary distance of input proteins, the decrease was

not dramatic. Even with the most remote proteins, those belonging to species outside of the

taxonomic phylum, GeneMark-EP+ was more accurate than GeneMark-ES in all but one

case (C. elegans).

For N. crassa, the use of protein evidence did not lead to a significant difference com-

pared to GeneMark-ES whose high accuracy for fungal genomes was demonstrated earlier

[16]. We assume that the relative drop in GeneMark-EP+ performance for C. elegans in

comparison with A. thaliana and D. melanogaster was related to a lower number of refer-

ence proteins within the C. elegans phylum (Table 3.2).
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In the genomes of S. lycopersicum and D. rerio, having longer on average intergenic

regions, we observed low exon-level specificity (∼55–60%), likely related to an elevated

false positive prediction rate of protein coding genes in the intergenic regions. The gene-

level accuracy for D. rerio, ∼30% Sn and ∼12% Sp, for any set of reference proteins

beyond the D. rerio genus, was difficult to improve. Notably, the genes in the D. rerio

genome have a rather large, 8.2, average number of introns per gene. Under the indepen-

dence of error assumption, a gene with a large number of introns is a difficult target for an

accurate prediction. Even though the independence assumption does not hold in the pres-

ence of external evidence, the gene error rate still increases with the increase in the number

of introns (data not shown). We also speculate that the relatively lower prediction accuracy

observed in the genomes of S. lycopersicum and D. rerio could be partly attributed to errors

in available reference annotations (Section 3.4.1.3). For instance, as shown in Table 3.4, S.

lycopersicum’s gene-level sensitivity dramatically improved when compared with a more

reliable subset of annotation supported by RNA-Seq reads. This was observed despite the

fact that RNA-Seq reads were not utilized by GeneMark-EP+.

3.5.2 Sources of accuracy improvements

3.5.2.1 Use of remote homologs

Existing protein-homology-based gene prediction methods, such as GenomeThreader [52],

exonerate [51], or GeneWise [54], rely on mapping proteins from closely related species

to produce predicted exon-intron structures. Thus, their prediction accuracy is dropping

fast with the increase of evolutionary distance between the species of interest and the input

proteins [54, 57, 63, 64]. In GeneMark-EP+, the simultaneous use of multiple homolo-

gous proteins proved to be important for keeping decent accuracy of predictions when the

evolutionary distance of input proteins increased. Particularly, due to the corroboration of

footprints originating from multiple homologous proteins, we observed an enrichment of

high-confidence introns in regions coding for conserved domains (Tables A.7 and 3.7). The
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use of partial protein footprints mapped from these domains—when a target protein map-

ping contributes less than full exon-intron structure—was an important feature of the new

method. Partial footprints were useful for expanding the training sets (see Section 3.5.2.2);

they also added confident corrections at the gene prediction step (Figure 3.8).

The novel scoring system employed by ProtHint made it possible to define a large num-

ber of protein hints with high confidence (>95% Sp; Table A.4), regardless of the evolu-

tionary distance of target proteins. Due to their high specificity, these high-confidence hints

could be directly incorporated into the final GeneMark-EP+ predictions; thus significantly

increasing the prediction accuracy (Section 3.4.3).

3.5.2.2 Semi-supervised training

Better performance of GeneMark-EP+ in comparison with GeneMark-ES was expected

due to two factors: (a) model parameterization on a better-validated training set as the

training process becomes semi-supervised instead of unsupervised and (b) enforcement of

high-confidence hints in gene prediction steps. Notably, even when direct corrections were

not made (GeneMark-EP mode where factor (b) is absent), for all the species but fungi

GeneMark-EP showed an improvement over GeneMark-ES (Table A.2).

The use of anchored elements in training was important for the integration of signals

originating from different sources (sites predicted from genomic sequence alone and sites

identified by protein footprints). The logic of selection of anchored elements enabled fil-

tering of “one-sided” noise present in one or another source. The use of anchored elements

was most beneficial for large genomes (S. lycopersicum and D. rerio; Table A.2) where

GeneMark-ES alone generated an elevated rate of false positive errors within long inter-

genic regions.

Surprisingly, GeneMark-EP showed only small fluctuations in accuracy when the size

of the reference set of protein increased by including more evolutionarily close species

(Table A.2). This observation suggests that even a relatively small number of anchored
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introns play a critical role in parameter estimation and a further increase in the number of

anchored introns does not improve the parameters. For the case of C. elegans, one could

argue that the sufficient minimum number of anchored introns was not found when proteins

of the reference set were limited to ones from the species outside the C. elegans phylum

(Table A.2).

3.5.2.3 Reduction of gene merging errors

The mapping of N- and C-terminals of target proteins allowed for better discrimination

between introns and intergenic regions than it could be done by an ab initio algorithm.

This improvement led to a significant reduction of errors in gene merging (when intergenic

regions were incorrectly predicted as introns; Table 3.6). The reduction in error rate of

gene splitting (when introns were incorrectly predicted as intergenic regions) was smaller

but still significant.

3.5.3 ProtHint design decisions

3.5.3.1 Computational speed

The protein mapping done by ProtHint requires a processing of millions of proteins con-

tained in a protein database. To accelerate this process, we limited the DIAMOND [87]

output by 25 target proteins per seed protein as a trade-off between computational speed

and prediction sensitivity (Figure A.7).

From the standpoint of runtime reduction, the choices of DIAMOND and Spaln [56]

were also critical. DIAMOND is several orders of magnitude faster than BLASTp [97].

The potentially lower alignment precision of DIAMOND was not a concern since ProtHint

uses Spaln to generate exact spliced alignment. Nevertheless, we verified that the sensitivity

of ProtHint using BLASTp does not significantly differ from the one using DIAMOND.

Spaln proved to be the fastest spliced aligner in our tests. A detailed comparison of Spaln

and ProSplign (a spliced aligner which can also be used by ProtHint; [53]) is described in
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the Appendix in Section A.2.3.1.

3.5.3.2 Ensuring the high specificity of high-confidence hints

GeneMark-EP+ improves over GeneMark-EP (Section 3.4.3) due to the direct influence of

enforced hints on prediction steps. The high specificity of high-confidence hints is critical

for this improvement to work. Therefore, a significant effort was made to develop the high

confidence selection criteria, notably:

• We tested several methods for filtering introns as well as alternative formulas for

computing intron borders alignment score (IBA). Longer alignments of individual

exons did not produce better intron prediction quality (Figure A.1). The IBA score

constructed as an arithmetic mean of upstream and downstream scores Sd and Su was

less accurate than a score using a geometric mean of Sd and Su (Equation (3.4)).

• IBA and BAQ scores used in the high-confidence hint selection characterize the qual-

ity of spliced alignment near the coordinates of a candidate hint. Alignments are

weighted by a linear kernel, which gives higher weight to alignment positions close

to the coding region boundaries. We tested several other kernels (box, parabolic, tri-

weight); however, the linear one was generating consistently best results for windows

of different sizes. A comparison between results of the application of a linear and

box kernel is shown in Figure A.6. Window sizes 5, 10, 15, and 20 were tested and

10 was selected as consistently best performing across the species tested.

• The IMC score (mapping coverage) threshold “≥ 4” was tested for proteins from two

databases: EggNOG and OrthoDB. In both cases, the cited threshold was leading to

similar results across various species tested. The IBA score threshold (0.25) was

selected based on the result described in Section 3.4.2.3.

• A comparison between IBA and IMC scores showed that a high value of IMC is a

better indicator of high intron specificity than a high value of IBA (Figure 3.2). A
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combination of these two scores allowed us to relax the IMC threshold and get a

larger set of High-Confidence introns.

• For start codon hints, removing starts overlapped by exons from other protein align-

ments was critical for ensuring high specificity (Figure 3.5 and Tables A.1 and 3.3).

For even more details about the ProtHint design, see Section A.2 in the Appendix.

3.5.4 Limitations of GeneMark-EP+

3.5.4.1 Accounting for pseudogenes

Since pseudogenes accumulate mutations over years, let us consider groups of “young” and

“old”. Young pseudogenes, ones with one or two mutations that make them dysfunctional,

still have all the sequence patterns that could be used in training. Old pseudogenes, ones

that accumulated many mutations, would harm statistical models if included in the training.

We argue that old pseudogenes are rarely predicted by GHMM and the many muta-

tions make them less likely to align against homologous proteins and produce high-scoring

protein hints. Therefore, they have little or no chance to be included in the training set of

anchored elements (which require both ab initio and protein homology support) or in the

final predictions.

On the other hand, elements of young pseudogenes could still be identified by GeneMark-

ES and mapped by ProtHint. Therefore, the young pseudogenes could positively contribute

to parameter training through their “intact” parts. Unfortunately, these “intact” parts would

also likely appear in the final predictions. Addressing the full complexity of this issue

goes beyond the scope of this project; therefore, currently, GeneMark-EP+ does not collect

information on frameshifts and potential pseudogenes.
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3.5.4.2 Prediction of alternative isoforms

GeneMark-EP+ searches for a single optimal genomic sequence parse that leads to the

prediction of a single gene and a single protein isoform in each locus. The importance of

alternative splicing has been debated recently [98], as the evidence was accumulated that a

large majority of predicted alternative transcripts may not even be translated into proteins

[99]. Moreover, claims were made that when a translated region produces multiple viable

protein isoforms, only one among the isoforms, the major one, is expressed in most tissues

[86].

If the gene prediction by GeneMark-EP+ is viewed as a prediction of the major isoform,

then the result should naturally be assessed in comparison with the annotation of the major

isoforms. Such comparison, done for C. elegans, D. melanogaster, and D. rerio, using

annotation of principal isoforms provided by the APPRIS database [85], showed improved

sensitivity in predicting genes of major protein isoforms; suggesting that GeneMark-EP+

disproportionately predicts the major gene isoforms.

Nonetheless, general tools able to predict all alternative isoforms are of significant in-

terest to the genomic community. Therefore, the task of predicting alternative isoforms is

addressed in Chapters 4 and 5.

3.5.4.3 Prediction in genomes with heterogeneous GC content

GeneMark-EP+ does not support multiple models needed for genomes with heterogeneous

nucleotide composition, such as genomes of mammals and monocots (e.g., rice and wheat).

While the current version of GeneMark-EP+ would perform better than GeneMark-ES

when running on such genomes, the overall accuracy could be significantly improved by

more accurate modeling of genome heterogeneity. Such modeling is implemented and de-

scribed in Chapter 5.
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3.6 Conclusion

In summary, GeneMark-EP+ should become a universal extension to GeneMark-ES, as

its application to a novel eukaryotic genome is facilitated by the use of a vast volume of

protein sequences of any evolutionary distance; always available in protein databases such

as OrthoDB [66, 67], EggNOG [68], or SwissProt [69]. In the tests on genomes of fungi,

plants, and animals, we observed that GeneMark-EP+ delivered better prediction accuracy

than ab initio GeneMark-ES and RNA-Seq-based GeneMark-ET, even in situations when

only evolutionarily remote proteins were used on input.

3.7 Availability

The full GeneMark-EP+ package, including ProtHint, is available at http://topaz.gatech.

edu/GeneMark/license download.cgi. The software is compiled for Linux and Mac OS

operating systems. ProtHint is also available as a stand-alone tool at https://github.com/

gatech-genemark/ProtHint. All scripts and data used to generate figures and tables in this

chapter are available at https://github.com/gatech-genemark/GeneMark-EP-ProtHint-exp.

To give an example, the overall runtime of ProtHint and GeneMark-EP+ on the D.

melanogaster genome (having ∼14,000 genes in a 134 Mbp long sequence) with target

proteins selected from species outside the Drosophilidae family was ∼5 h on an 8 CPU/8

GB RAM machine. In our experiments, the run-time grew linearly with respect to both

genome length and the number of genes.
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CHAPTER 4

BRAKER2: AUTOMATIC EUKARYOTIC GENOME ANNOTATION WITH

GENEMARK-EP+ AND AUGUSTUS SUPPORTED BY A PROTEIN DATABASE

Abstract

Full automation of gene prediction in eukaryotic genomes has been an important bioinfor-

matics task since the advent of next-generation sequencing. Here we introduce BRAKER2,

a protein homology-based gene prediction pipeline integrating ProtHint, GeneMark-EP+,

and AUGUSTUS. By combining complementary strengths of these gene prediction tools,

BRAKER2 achieves state-of-the-art gene prediction accuracy in a fully unsupervised man-

ner. Under equal conditions, the gene prediction accuracy of BRAKER2 was shown to be

higher than the one of MAKER2, one of the most frequently used gene prediction pipelines.

Furthermore, in tests with remotely related proteins, the accuracy of BRAKER2 was com-

parable to that of BRAKER1, which was supported by large amounts of RNA-Seq data.

4.1 Introduction

Constantly improving next generation sequencing (NGS) technology makes it now possible

to finish the sequencing of a complete eukaryotic genome within several days. Therefore,

accurate automatic methods of genome annotation have been in high demand since the

dawn of the NGS era. A self-training algorithm for ab initio gene prediction in eukary-

otic genomes, GeneMark-ES [16], has accelerated the process of structural annotation for

a number of genome projects, e.g., [100–104]. The application of NGS to transcript se-

quencing (RNA-seq) motivated active development of methods combining genomic and

transcriptomic information. A semi-supervised algorithm GeneMark-ET [48] integrated

data on spliced aligned RNA-seq reads into GeneMark-ES.
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On a parallel avenue, another algorithm, AUGUSTUS [12, 105–108] was demonstrated

to be one of the most accurate gene prediction tools [21, 22, 44]. AUGUSTUS carries a

flexible mechanism for the integration of external evidence into gene prediction. Further-

more, AUGUSTUS can also use the evidence to predict alternative isoforms. However,

like most gene predictors, AUGUSTUS is a supervised algorithm; thus relying heavily on

a high-quality training set to estimate its parameters (Section 2.3.1; [1, 16, 17, 19, 47, 61,

62]. The preparation of such training sets requires manual work and validation by experts

[13, 16, 17, 47], making it challenging to train AUGUSTUS for novel genomes.

It was apparent that a useful automatic tool could be created by combining strong fea-

tures of GeneMark-ET and AUGUSTUS. Such a tool, BRAKER1, was developed and

released in 2015 [47] to become a frequently used tool in genome annotation projects,

e.g., [109–113]. BRAKER1 requires the availability of RNA-seq data; however, not all

novel genomes are sequenced along with the species’ transcriptomes, e.g., within the Earth

BioGenome Project [4]. Moreover, for various reasons, a significant fraction of genes may

not be covered by transcripts even if the transcriptome data are generated in the project.

Here, we introduce BRAKER2, a gene prediction pipeline that uses sequences of known

cross-species proteins—readily available for any genome project—as external evidence.

The use of protein homology in gene prediction poses a challenge due to the patchiness of

the evidence proteins generate and the decrease in prediction accuracy with the increasing

evolutionary distance of proteins (see Section 2.3.2 for details). Nonetheless, the informa-

tion contained in large numbers of homologous proteins, including proteins from remotely

related species, has the potential to improve genome annotation. GeneMark-EP+, pre-

sented in Chapter 3, addressed the challenge by using a large number of cross-species pro-

teins to direct its self-training and gene prediction. To process the input protein database,

GeneMark-EP+ uses ProtHint (introduced in Section 3.3.2)—a tool that predicts accurate

locations of exon boundaries from a large number of proteins of any evolutionary distance

to the genome of interest. BRAKER2 integrates complementary strengths of ProtHint,
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GeneMark-EP+, and AUGUSTUS to create a fully automated homology-based gene pre-

diction pipeline.

There are several reasons why BRAKER2 performs better than AUGUSTUS or Gene-

Mark-EP+ alone. In contrast to GeneMark-EP+, AUGUSTUS allows for more flexible

integration of protein hints into an ab initio gene prediction. This makes it possible to

integrate all of the protein hints generated by ProtHint into AUGUSTUS predictions, not

just the subset of high-confidence hints utilized by GeneMark-EP+. On top of that, un-

like GeneMark-EP+, AUGUSTUS predicts alternative isoforms of protein-coding genes.

That said, AUGUSTUS cannot be used at all without a reliable training set—prepared by

GeneMark-EP+ in an unsupervised manner. Further, although AUGUSTUS contains a so-

phisticated mechanism for the integration of protein hints, the task of the actual preparation

and scoring of such hints is solved by ProtHint.

In summary, the salient features of BRAKER2 are (i) a fully automatic run, (ii) a mas-

sive database search for proteins homologous to proteins encoded in the new genome (yet

unknown ones), (iii) processing of millions of protein to genome spliced alignments to gen-

erate hints to exon-intron structures, and (iv) integration of genomic sequence patterns and

protein hints to the gene structure at all iterative steps of model training and gene prediction.

We assessed the prediction accuracy of BRAKER2 on well-studied and, arguably, well-

annotated genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila mela-

nogaster. For additional tests on nine additional genomes, we selected subsets of annotated

genes corroborated by RNA-Seq evidence. Further, we compared the performance and ac-

curacy of BRAKER2 to that of MAKER2 [114], the most frequently used competing gene

prediction pipeline, as well as to BRAKER1.

4.2 Materials

For testing BRAKER2, we used genomic sequences and gene annotations of twelve species.

Among them were the early sequenced model organisms: A. thaliana, C. elegans and D.
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Table 4.1: Genomes used in the tests; asterisks indicate model organisms. An average
number of introns per gene was determined with respect to the number of all the annotated
genes in the genome. For a gene to be considered complete and canonical, at least one of
the gene’s transcripts had to be fully annotated, such that the initial coding exon started
with a “canonical” ATG and the terminal coding exon ended with TAA, TAG, or TGA.

Species Annotation version
Genome 

size (Mb)

# Genes in 

annotation

# Introns 

per gene

% Non-canonical or 

incomplete genes

A. thaliana* Tair Araport 11 (Jun 2016) 119 27,445 4.9 0.3

C. elegans* WormBase WS271 (May 2019) 100 20,172 5.7 0.2

D. melanogaster* FlyBase R6.18 (Jun 2019) 138 13,929 4.3 0.3

Other species

Plantae

P. trichocarpa* JGI  Ptrichocarpa_533_v4.1 (Nov 2019) 389 34,488 4.9 0.3

M. truncatula* MtrunA17r5.0-ANR-EGN-r1.6 (Feb 2019) 430 44,464 2.9 0.0

S. lycopersicum Consortium ITAG4.0 (May 2019) 773 33,562 3.5 14.5

Arthropoda

B. terrestris NCBI Annotation Release 102 (Apr 2017) 249 10,581 7.1 4.7

R. prolixus VectorBase RproC3.3 (Oct 2017) 707 15,061 4.8 34.7

P. tepidariorum NCBI Annotation Release 101 (May 2017) 1,445 18,602 7.3 18.2

Vertebrata

T. nigroviridis TETRAODON8.99 (Nov 2019) 359 19,589 10.4 63.8

D. rerio* Ensembl GRCz11.96 (May 2019) 1,345 25,254 8.2 11.8

X. tropicalis* NCBI Annotation Release 104 (Apr 2019) 1,449 21,821 12.1 2.4

Species with early sequenced genomes

melanogaster. The other nine species were: the plants Populus trichocarpa, Medicago

truncatula, Solanum lycopersicum, the arthropods Bombus terrestris, Rhodnius prolixus,

Parasteatoda tepidariorum, and the vertebrates Tetraodon nigroviridis, Danio rerio, Xeno-

pus tropicalis (Tables B.1 and 4.1). In all genomic datasets, contigs not assigned to any

chromosome and the genomes of organelles were excluded from the analysis.

RNA-seq data used in the accuracy evaluation and runs of BRAKER1 were sampled

from the Sequence Read Archive [93] by VARUS [94]. To determine to which degree both

predicted and annotated genes covered the sets of universal single-copy genes identified by

the BUSCO protein families, we used the BUSCO database v4 [115].

4.2.1 Protein database preparation

We used the OrthoDB database v10 [66] as a source of protein data. A test of BRAKER2 on

a well-studied genome should utilize a set of cross-species proteins that imitates a protein
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Table 4.2: Composition of the clades of OrthoDB v10 used by BRAKER2. Numbers in
black bold show the largest numbers of species used to support gene predictions for a given
species (left column). The numbers of species removed from the largest OrthoDB segment
in evaluation assessments are shown in blue. Species whose proteins are not present in
OrthoDB v10 are marked with asterisks.

Genus Family Order Class Phylum Kingdom

A. thaliana 2 8 10 - 100 117 Plantae 3,510,742

C. elegans 3 3 5 6 7 448 Metazoa 8,266,016

D. melanogaster 20 20 56 148 170 - Arthropoda 2,601,995

P. trichocarpa* 1 5 5 - 100 117 Plantae 3,510,742

M. truncatula 1 10 10 - 100 117 Plantae 3,510,742

S. lycopersicum 2 10 11 - 100 117 Plantae 3,510,742

B. terrestris* 1 7 40 148 170 - Arthropoda 2,601,995

R. prolixus 1 1 16 148 170 - Arthropoda 2,601,995

P. tepidariorum 1 1 2 10 170 - Arthropoda 2,601,995

T. nigroviridis* 0 1 1 50 246 - Chordata 5,003,104

D. rerio 1 5 5 50 246 - Chordata 5,003,104

X. tropicalis 2 2 3 3 246 - Chordata 5,003,104

# of species in the OrthoDB clade Name of the largest 

OrthoDB segment 

# of proteins in the 

OrthoDB segment
Species

set available for running BRAKER2 on a newly sequenced genome. Proteins that originate

from the most evolutionarily close species are expected to be most informative for the

BRAKER2 algorithm. Therefore, a meaningful characteristic of a selected set of reference

proteins is the least evolutionary distance of proteins from the reference genomes to the

genome in the test.

To make these selections for A. thaliana, C. elegans, and D. melanogaster, we started

from large clades (Plantae, Metazoa and Arthropoda, respectively) and created three sets of

proteins for each species by excluding either (i) proteins from the given species per se, (ii)

proteins from all species of the same family, (iii) proteins from all species of the same order.

For the other nine species, we also defined the large clades and then only used partitions of

type (iii) (Table 4.2).
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Figure 4.1: Flowchart of the BRAKER2 pipeline. Input, intermediate and output data are
shown by ovals. The tools and processes of the ProtHint pipeline are shown in orange;
other components of BRAKER2 are shown in blue.

4.3 Methods

4.3.1 Overview of BRAKER2

The overview of BRAKER2 is shown in Figure 4.1. At the first step, BRAKER2 executes

the ProtHint protein mapping pipeline (described in detail in Section 3.3.2). In BRAKER2,

in addition to the original hint generation scheme, ProtHint makes hints called CDSpart

chains. This hint type helps to correctly combine exons predicted by AUGUSTUS into

a single transcript (details in Section 4.3.3). The hints generated by ProtHint are used by

GeneMark-EP+ to execute its self-training (Section 3.3.3.1) and gene prediction steps (Sec-

tion 3.3.3.2). From the whole complement of genes predicted by GeneMark-EP+, BRA-

KER2 selects a set of anchored genes that contain GeneMark-EP+ predictions supported

by protein hints (Figure 4.2; Section 4.3.2). The anchored genes are used to train AUGU-

STUS. Once trained, AUGUSTUS is used to predict genes in the genomic DNA. At the

stage of gene prediction, AUGUSTUS enforces all high-confidence hints defined by Prot-
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Figure 4.2: Evidence integration in BRAKER2. (A) Target proteins; (B) Introns, gene start
and stop sites defined by spliced alignments of target proteins to genome; (C) CDSpart
chains; (D) Genome sequence; (E) Genes predicted by GeneMark-EP+ at a given itera-
tion. The high-confidence hints are enforced (red arrows); (F) Anchored sites—the splice
sites and gene ends predicted ab initio and corroborated by protein hints; (G) Anchored
introns and intergenic sequences bounded by anchored gene ends, selected for the training
of a non-coding sequence model of GeneMark-EP+; (H) GeneMark-EP+ multi-exon and
single-exon genes anchored by protein hints—selected for the training of AUGUSTUS; (I)
Transcripts predicted by AUGUSTUS with the support of protein evidence.

Hint (Section 3.3.2.3). Furthermore, the CDSpart chain and non-high-confidence hints are

integrated into the AUGUSTUS gene prediction as well (Figure 4.1; Section 4.3.3). In the

genomic regions lacking hints from cross-species protein alignments, GeneMark-EP+ and

AUGUSTUS predict genes in an ab initio mode. At the end, BRAKER2 executes a second

major iteration in which ProtHint and AUGUSTUS are re-run using information from the

first iteration. The genes predicted by AUGUSTUS in the second iteration constitute the

final prediction set of BRAKER2.
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4.3.2 The selection of AUGUSTUS training sets

Genes predicted by GeneMark-EP+ are filtered and sampled prior to training AUGUSTUS

in the following way:

1. The ratio of multi-exon and single-exon genes is determined prior to filtering.

2. During filtering, multi-exon genes are retained if they are anchored, i.e., have support

by an intron hint from at least one protein alignment for every intron (Figure 4.2).

3. The minimum number of required single-exon genes in relation to filtered multi-exon

genes is computed to keep the proportion from step 1 in step 4.

4. Single-exon genes are selected if they are anchored, i.e., have support from protein

evidence in terms of start- and stop-codon hints (Figure 4.2). If the number of the se-

lected single-exon genes is lower than the minimum required number of single-exon

genes (step 3), additional single-exon genes predicted by GeneMark-EP+ lacking

protein evidence support are randomly added to reach the minimum number.

5. If the resulting number of training genes is lower than 4000, additional genes are

added in the diminishing order of their support rank by protein hints. A gene support

rank is computed as follows:

Sr =
#of supported borders of protein-coding exons

#of actual borders of protein-coding exons
(4.1)

Genes are then added in the descending order of their Sr.

6. Complex genes with many introns contribute more effectively to the training of AU-

GUSTUS than gene structures with few or no introns. Thus, “simple” genes with

few or no introns are down-sampled as described in [116].

7. Training genes are translated into protein sequences that are searched against each
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other. If two sequences have an identity of more than 80%, one gene is removed from

the training gene set. The similarity search is executed using DIAMOND [87].

8. If, at the end, there are more than 8000 training gene structures, genes are randomly

down-sampled to 8000 genes. This is done to decrease the runtime.

Thus prepared training gene set is then randomly split into three sets:

1. A set for running etraining, a tool for training AUGUSTUS parameters,

2. a set for evaluating AUGUSTUS meta-parameter optimization steps, and

3. a test set. This set is used as an independent test set for estimating the accuracy.

If the total number of genes is smaller than 600, 1/3 of all available genes are sampled into

each set. If there are 600 to 1000 available gene structures, 200 genes each are sampled

into the last two sets, all remaining genes go into the first set. If there are more than 1000

training gene structures, 300 genes each are sampled into the last two sets, all remaining

genes go into the first set. AUGUSTUS is then trained on these sets as described in [116].

4.3.3 Integration of protein hints

The types of protein hints generated by ProtHint and utilized by BRAKER2 in the final gene

prediction step of AUGUSTUS are shown in Figure 4.3. This section describes unique

aspects of hints integration that are implemented in BRAKER2 but were not present in

GeneMark-EP+.

4.3.3.1 Chained hints

GeneMark-EP+ and AUGUSTUS treat intron as well as start and stop hints as independent

ones, not necessarily related to one and the same gene. On the other hand, the CDSpart

hints, which specify the locations of protein-coding exons, are treated as a “chain” of

evidence when originating from the same protein. AUGUSTUS attempts to incorporate
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Figure 4.3: Schematics of the types of hints used in BRAKER2 (introns, start and stop,
CDSpart) derived by ProtHint from a spliced alignment of a protein to genomic sequence.

CDSparts from the same chain into the same transcript model. Thus, correctly chained

hints help to reduce gene splitting errors and aid in the correct identification of alternative

isoforms.

ProtHint prepares a chain of exon hints for each seed gene based on the spliced align-

ment of the highest-scoring target protein. In this process, all exons with an AEE score

< 25 are removed from the chain (see Section 3.3.2.2 for the definition of the AEE score).

Further, each exon hint is trimmed at its boundaries by 15 nucleotides (hence the “part” in

CDSpart hints). The trimming is done because, in ProtHint, the exact exon-intron bound-

aries are better captured and scored by hints to introns and start/stop codons.

We experimented with using more than one chain per seed gene; however, this only

led to a significant increase in the runtime of AUGUSTUS without increasing the overall

prediction accuracy.

4.3.3.2 Integration of all protein hints

Apart from the high-confidence ProtHint hints, which are enforced in the prediction steps of

both GeneMark-EP+ and AUGUSTUS, AUGUSTUS also utilizes all the remaining protein

hints to increase the likelihood of gene structure candidates that are in agreement with

the hints. BRAKER2 further separates the non-high-confidence hints into two categories:
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medium- and low-confidence (with medium-confidence hints having a bigger effect on

the likelihoods of AUGUSTUS predictions). For this separation, BRAKER2 uses logistic

regression with parameters that were obtained with ProtHint using the D. melanogaster

genome and Arthropoda section of OrthoDB.

Specifically, to train the logistic regression parameters, ProtHint intron hints were la-

beled as true or false using the reference annotation. A hold-out test set of 500 hints was

set aside. Hints were predicted as true or false based on their IMC and IBA scores (Sec-

tion 3.3.2.2) by fitting a logistic regression model. The accuracy of the model was checked

on the hold-out test set and determined to be 93% (the proportion of true positives in the

test set was 80%). We also verified that the classification procedure worked well across

the other tested species. The logistic regression training procedure for start and stop codon

hints was analogous, using the SMC and BAQ scores (Section 3.3.2.4).

The non-high-confidence hints classified as true by the logistic regression model are

put into the medium-confidence set, while the rest goes into the low-confidence set. The

influence hints in both sets have on modifying the likelihood of AUGUSTUS predictions

(i.e., the hints weights) was determined by supervised training in multiple genomes. The

final hint weights, used by BRAKER2 in all runs, are shown in the Appendix in Section B.1.

4.3.4 Second iteration of BRAKER2

BRAKER2 runs in two major iterations (Figure 4.1). The first one starts with ProtHint

using seed genes predicted by GeneMark-ES [16]. Seeds for some true genes might be

missed at this stage; therefore, to recover potentially lost seeds, BRAKER2 runs a second

iteration that uses the genes predicted in the first iteration as seed genes. In the second

iteration, ProtHint runs the database search and other processing only for seed genes that

differ from the original seeds and merges the newly defined hints with hints from the first

iteration. Then, AUGUSTUS uses the models trained in the first iteration along with the

updated protein hints to predict the final set of genes. The second BRAKER2 iteration has
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fewer steps (no GeneMark-EP+ or AUGUSTUS training, ProtHint is run only for unique

seeds); consequently, it does not significantly increase BRAKER2’s overall runtime.

4.3.5 Methods related to algorithm assessment

This section describes the design of methods that were used to evaluate aspects of BRA-

KER2; other than the standard accuracy assessment described in Section 2.4. In all evalu-

ations, regions of annotated pseudogenes were excluded from comparisons.

4.3.5.1 Repeat masking

All tested gene prediction algorithms (including BRAKER2 itself) were run on repeat-

masked genomes. Repetitive sequences (interspersed repeats and low complexity sequences)

were identified by RepeatModeler [91] and RepeatMasker [92]. A run of RepeatModeler

on a whole genome produced a repeat library. Next, the locations of repeats were identified

and soft-masked by RepeatMasker.

Repeat masking by RepeatModeler and RepeatMasker with default settings was suf-

ficient to achieve high gene prediction accuracy in all the tested genomes except for X.

tropicalis. X. tropicalis contained a large number of long tandem repeats (∼60 Mb in total)

with elevated GC content (Figure B.2) that were not identified by the default RepeatMod-

eler/RepeatMasker run. When left unmasked, these repeats caused GeneMark-ES (running

in the initial step of BRAKER2) to converge to an incorrect statistical model of a protein-

coding region and to make incorrect gene predictions. Particularly, GeneMark-ES would

predict a majority of coding exons (93%) in the GC-rich regions of the long tandem repeats

and would poorly predict the true X. tropicalis genes. To solve this problem, we identified

and masked the problematic X. tropicalis repeats by an additional run of Tandem repeats

finder [117] with the maximum repeat period size set to 500.
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4.3.5.2 Selection of reliable annotation subsets

To assess the accuracy of gene prediction made for A. thaliana, C. elegans, and D. me-

lanogaster, we compared the predicted genes with the full complement of the reference

annotation. For the nine additional genomes (Table 4.1), which arguably have less reliable

reference annotations [3], we prepared more reliable annotation subsets by selecting genes

that (i) were complete, and (ii) had all their introns supported by RNA-Seq hints mapped

by VARUS. The prediction sensitivity was then evaluated with respect to both the reliable

subset and the full reference annotation.

4.3.5.3 Use of universal single-copy genes from BUSCO families

The BUSCO metric evaluates the completeness of a genome assembly and annotation; it

is based on collections of single-copy genes expected to be present in a particular lineage

[118]. The “BUSCO genes” may constitute < 5% of genes in a genome; nonetheless, this

approach is practical for novel genomes given its relatively easy application. We used the

BUSCO metric to characterize gene sets predicted by BRAKER2 in the nine genomes with

less reliable annotations.

When using BUSCO, it is important to understand the limitations of BUSCO as a gene

prediction accuracy evaluation tool. While the BUSCO metric gives an estimate of the gene

prediction algorithm’s Sn value, it does not quantify an algorithm’s tendency to predict false

positives (the Sp value). Moreover, since BUSCO relies on an HMMER3 [119] search for

detecting homologs of the BUSCO proteins, it does not discriminate between precisely

and approximately predicted exon-intron structures. Therefore, the BUSCO metric is less

precise in the assessment of gene prediction accuracy than the methods comparing the

coordinates of predicted and annotated genes.
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4.3.5.4 Assessment of the AUGUSTUS training set selection

We conducted several experiments to assess the effect of selecting various AUGUSTUS

training sets on its prediction accuracy. First, we compared the accuracy of AUGUSTUS

trained on all vs anchored GeneMark-EP+ genes (Section 4.3.2). We further evaluated the

effect of (i) using training genes directly from the reference annotation, and (ii) using only

highly conserved genes. For this experiment, we used GeneMark-EP+ predictions made in

D. melanogaster, having only remote proteins on input (proteins from outside of the taxo-

nomic phylum). From the set of GeneMark-EP+ genes, we prepared four distinct training

sets: (i) anchored genes (the default training set), (ii) randomly sampled GeneMark-EP+

genes, (iii) randomly sampled true positive genes (as determined by comparison with the

reference annotation), and (iv) highly conserved genes—genes that had all introns sup-

ported by high-confidence hints mapped by ProtHint. All the sets contained the same

number of training genes (achieved by random downsampling). Finally, we evaluated the

effect of the number of anchored genes on the AUGUSTUS training by using 500, 1000,

2000, . . . , 10,000 anchored training genes (randomly sampled from the full set of anchored

genes). This experiment was done using the genome of A. thaliana since BRAKER2 gen-

erated more than 10,000 anchored genes for this genome.

4.3.5.5 The effect of increasing the number of species in the reference protein database

To demonstrate that the increase of the number of species in the reference protein set is

a positive factor for the accuracy of predictions, we conducted the following two experi-

ments. In the first experiment, we first sorted the species in the Drosophila genus by their

average protein similarity to D. melanogaster. Next, we ran BRAKER2 five times and

evaluated the prediction accuracy of each run. In the first run, only proteins from the 5th

most taxonomically distant Drosophila, D. virilis, were used. Next, we added proteins from

a more remote D. mojavensis to the set. In the third experiment, we included D. hydei, etc.

In the second experiment, we ran BRAKER2 on D. melanogaster with three different

66



input protein sets: (i) proteins from the Anopheles genus (14 distinct species), (ii) all pro-

teins of species outside of D. melanogaster’s taxonomic family, and (iii) proteins of species

outside of D. melanogaster’s taxonomic order. Importantly, Anopheles species are outside

of the D. melanogaster taxonomic family but in the same taxonomic order (Figure B.7).

The main goal of this experiment was to see whether using the larger number of proteins in

set (iii) can compensate for the benefit of having closer relatives in set (i).

In both experiments, the similarity between D. melanogaster and other species was esti-

mated as follows. We first aligned proteins of D. melanogaster against all target Arthropoda

proteins in OrthoDB (which included proteins of D. melanogaster itself) with DIAMOND.

Next, for each target species s, we computed the sum of bitscores Bits of all alignments

involving a target protein of s. The similarity measure Sim(s,melanogaster) between a

species s and D. melanogaster (melanogaster) was then determined as:

Sim(s,melanogaster) =
Bits

Bitmelanogaster

(4.2)

4.3.5.6 Predicting genes with BRAKER1

BRAKER1 is a genome annotation pipeline that combines self-training GeneMark-ET with

AUGUSTUS [47]. BRAKER1 uses external evidence in the form of introns originating

from short RNA-Seq reads mapped to genome. BRAKER1 was run on the genomes of

A. thaliana, C. elegans and D. melanogaster. The hints for BRAKER1 were prepared by

VARUS [94]; the details of the VARUS runs are described in Section B.2.

4.3.5.7 Predicting genes with MAKER2

The MAKER2 genome annotation pipeline can combine information from several sources,

such as ab initio gene predictions, mapped RNA-Seq reads, as well as alignments of pro-

teins to the genome [114, 120, 121].

For our tests, we chose genomes of A. thaliana, C. elegans, and D. melanogaster, ar-
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guably the best-annotated genomes among the ones we considered. For each genome, we

used the relevant segment of the OrthoDB database as described in Section 4.2.1, with the

exclusion of species of the same taxonomic order. All the components of the MAKER2

pipeline (e.g., the repeat annotation or training of gene finders), were executed in a de novo

mode; i.e., each of the three genomes was considered to be a “novel” one.

Because of MAKER2’s design, the protein mapping in MAKER2 is much slower than

protein mapping done by ProtHint in BRAKER2; therefore, we further limited each of the

three OrthoDB partitions to randomly selected ten species (Table B.2). To make a fair com-

parison, all comparisons between MAKER2 and BRAKER2 were done with BRAKER2

using the same limited protein database.

We used two MAKER2 execution protocols (Figure B.2). In the first protocol (Fig-

ure B.2A), recommended by the authors [121], the protein spliced alignments were used to

create training sets for AUGUSTUS and SNAP [13]. The final gene predictions were made

by combining predictions of self-training GeneMark-ES with the ones of AUGUSTUS

and SNAP, both using the protein-derived hints. Based on the experience with develop-

ing BRAKER2, we introduced a second training protocol (Figure B.2B). In this protocol,

which we called BRAKER2-like, protein spliced alignments and GeneMark-ES predictions

were used to create a training set for AUGUSTUS. The final gene predictions were done

by only two gene finders: GeneMark-ES and AUGUSTUS with hints.

MAKER2 offers two modes of gene prediction: to only get predictions supported by ex-

ternal evidence or to report all predictions, including ab initio predictions generated without

support. We executed MAKER2 in the second mode, the one producing higher Sn values.

This protocol is also more similar to BRAKER2, which reports all predictions.

The repeat masking for both BRAKER2 and MAKER2 was done with the same genome-

specific repeat libraries (generated by RepeatModeler; Section 4.3.5.1). Both BRAKER2

and MAKER2 training and predictions were done on repeat-masked sequences. However,

it is important to note that even though BRAKER2 and MAKER2 used the same repeat
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libraries, the two tools have different methods of processing repeat masking.

For the BRAKER2 runs, the sequences were soft-masked with RepeatMasker (Sec-

tion 4.3.5.1). Within BRAKER2, AUGUSTUS uses information on soft-masked regions

at the gene prediction step and reduces the probability of coding exon predictions in re-

peat regions. GeneMark-ES and -EP+ do hard-masking of soft-masked repeats longer than

1000 nt (or > 100 nt for genomes > 300 Mbp). The topic of repeat-masking in GeneMark

is addressed in detail in Chapter 5.

MAKER2 runs RepeatMasker internally. Subsequently, MAKER2 does hard-masking

of all interspersed (complex) repeats, while low-complexity (simple) repeats remain soft-

masked. Borders of complex repeats are extended by 50 nt. To evaluate the effect of

MAKER2’s rather strict hard-masking on its prediction accuracy, we also executed the

prediction steps of MAKER2 on unmasked genomes.

4.4 Results

We evaluated BRAKER2 on the twelve genomes described in Section 4.2, using the accu-

racy evaluation methods presented in Section 4.3.5. Importantly, we executed BRAKER2

with different protein sets on input, to simulate the absence of closely related species in the

input protein database (see Section 4.2.1).

4.4.1 Accuracy assessment of BRAKER2 and comparison with BRAKER1

4.4.1.1 Genomes of A. thaliana, C. elegans, and D. melanogaster

The accuracy of BRAKER2 was determined at gene and exon levels (Figures 4.4 and 4.5

and Tables B.3 to B.5). The gene-level Sn and Sp were determined in comparison with the

reference annotations of A. thaliana, C. elegans, and D. melanogaster, and showed the fol-

lowing patterns (Figure 4.4). BRAKER2 always performed better than BRAKER1 (by∼12

percentage points in terms of average F1 gene-level accuracy) when BRAKER2 used the

largest set of reference proteins—excluding only proteins of the same species (Tables B.3
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Figure 4.4: Gene-level Sn and Sp, corresponding to three runs of BRAKER2 with protein
support, a run of BRAKER1 with RNA-seq support, and a run of GeneMark-ES. BRA-
KER2 was run with the support of proteins from OrthoDB excluding proteins (i) of the
same species, (ii) of all species of the same taxonomic family, and (iii) of all species of the
same taxonomic order.

to B.5). With the smaller protein sets, those excluding proteins from all species of the same

family or of the same order, the comparison between BRAKER1 and BRAKER2 was more

mixed. On A. thaliana, BRAKER2 always outperformed BRAKER1, irrespective of the

input protein set used by BRAKER2. On D. melanogaster, BRAKER2 performed better

than BRAKER1 when proteins of the same taxonomic family were excluded from the pro-

tein database, but slightly worse when proteins from the same order were excluded. Finally,

on C. elegans, BRAKER2 only outperformed BRAKER1 when the proteins of the same

species were excluded. The patterns of accuracy change on the gene level mainly trans-

lated into the patterns observed at the exon level (Figure 4.5 and Tables B.3 to B.5). The

numbers of alternative isoforms predicted by both BRAKER1 and BRAKER2 are shown

in Table B.7.

4.4.1.2 Additional set of test genomes

Model organisms A. thaliana, C. elegans, and D. melanogaster were subjects of the pilot

genome sequencing projects; therefore, we used their longtime curated genome annota-

tions as whole genome test sets. In conducting tests on genomes of the other nine species
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Figure 4.5: Exon-level Sn and Sp for the same tests as shown in Figure 4.4.

Table 4.3: Gene prediction sensitivity of BRAKER2 at the gene and exon levels. The
test sets were: (All) all annotated multi-exon genes, and (Reliable) all annotated complete
multi-exon genes having all introns supported by mapped RNA-seq reads.

All Reliable All Reliable

A. thaliana 70.2 78.8 81.5 87.9 83.5

C. elegans 49.8 57.8 75.7 81.0 81.1

D. melanogaster 59.5 61.6 71.9 74.4 93.2

P. trichocarpa 69.3 76.4 86.2 90.4 84.6

M. truncatula 48.3 63.2 82.7 90.0 69.6

S. lycopersicum 40.7 68.0 78.5 92.1 54.4

B. terrestris 45.7 56.7 74.6 79.5 75.1

R. prolixus 13.2 45.5 61.4 80.2 26.4

P. tepidariorum 24.6 40.2 67.9 79.9 50.6

T. nigroviridis 10.4 67.7 60.6 89.5 11.2

D. rerio 39.1 50.3 75.6 86.3 70.8

X. tropicalis 38.9 46.3 75.3 80.0 74.8

Species

Table 3: Gene prediction sensitivity of BRAKER2 at the gene and exon levels.  The 

test sets were (All) all annotated multi-exon genes and (Reliable) all annotated 

complete multi-exon genes having all introns supported by mapped RNA-Seq 

reads, the ones sampled by VARUS [36].

% Reliable 

Genes 

Gene Sn Exon Sn

(the blue-colored names in Table 4.3), we used a different approach (see Section 4.3.5.2)

motivated by the following example. Upon comparison of the gene predictions made by

BRAKER2 in the R. prolixus genome with its reference annotation (Table 4.1), the gene-

level Sn value appeared to be 13.2% (Table 4.3). However, the Sn value was 45.5% when

computed against a set of multi-exon R. prolixus genes with all introns supported by at least

one mapped RNA-seq read (a 26.4%-large subset of all multi-exon genes).

In seven out of the nine additional genomes (the exceptions being P. trichocarpa and X.

tropicalis), large improvements (> 10 percentage points) in the gene-level Sn values were
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Figure 4.6: Statistics of the sets of genes from BUSCO families (complete, fragmented,
missing) identified in the reference genome annotation of R. prolixus (top); the same statis-
tics for the set of genes predicted by BRAKER2 (bottom).

observed when the base for comparison was changed from a whole set of annotated genes

to the narrower (reliable) set (Table 4.3). Reassuringly, such an effect was not observed for

A. thaliana, C. elegans, and D. melanogaster. Overall, in the test sets of genes supported

by the mapped RNA-seq reads, we observed exon Sn values near 80% for the three arthro-

pods, between 80 and 87% for the three vertebrates, and the highest, close to 90%, for the

three plants (Table 4.3). Detailed comparisons against full complements of the reference

annotations are shown in Table B.6.

Among the genes predicted by BRAKER2 in each of the nine genomes, we also iden-

tified genes encoding proteins from the species-specific BUSCO protein families (Sec-

tion 4.3.5.3). For a given genome, a percentage of such recognized “BUSCO members”

among the full species-specific BUSCO set provided an estimate of the sensitivity of a

gene prediction method (assuming no errors in assembly) and was be compared with the

corresponding figures determined for the reference genome annotation (Figures B.3 to B.5

and 4.6).
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In the plant and arthropod genomes, BRAKER2 missed ∼3% or less of the BUSCO

genes (Figures B.3 and B.4). Moreover, fewer BUSCO genes were missed by BRAKER2

than by the current reference annotations of genomes of M. truncatula, S. lycopersicum, P.

tepidariorum, and R. prolixus (Figure 4.6). The percentages of BUSCO genes missed by

BRAKER2 in the vertebrate genomes were: ∼12% in T. nigroviridis,∼5% in D. rerio, and

∼9% in X. tropicalis while the genome annotations missed ∼12, 3, and 3%, respectively

(Figure B.5).

4.4.2 Effect of the selection of training genes on gene prediction accuracy

We compared the effect of using all vs anchored GeneMark-EP+ training genes on AUGU-

STUS accuracy (see Section 4.3.5.4). The use of anchored sets improved the gene level

F1 values of ab initio gene prediction by AUGUSTUS in A. thaliana, C. elegans, and D.

melanogaster genomes by two to five percentage points (Table 4.4). We cite here the accu-

racy of ab initio gene prediction since the full BRAKER2 could get further improvements

from the external protein hints, which would overshadow the effects of training. The use

of anchored genes for the AUGUSTUS training had an even stronger effect for the large

genomes where the difference in F1 value at both exon and gene levels for D. rerio reached

∼10 percentage points (Table 4.4).

We further evaluated the effect of (i) using training genes from the reference annotation,

and (ii) using only highly conserved genes in training (Section 4.3.5.4). The result of this

experiment (Figure B.6) showed that an AUGUSTUS model trained on genes sampled

from the reference annotation only slightly outperformed the model trained on the anchored

genes. Conversely, training on highly conserved GeneMark-EP+ genes led to the lowest

prediction accuracy.

Finally, we evaluated the effect of the number of anchored genes on the AUGUSTUS

training (Section 4.3.5.4). As shown in Figure 4.7, low Sn and Sp values were observed for

500 genes. Both Sn and Sp significantly improved upon increasing the number of genes to
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Table 4.4: Ab initio prediction accuracy of AUGUSTUS trained on (i) All genes predicted
by GeneMark-EP+, and (ii) Anchored genes. The results for the first three species were
generated with reference proteins from species outside a taxonomic family of a relevant
species; for D. rerio we used proteins from species outside of the taxonomic order.
(*) When < 4000 anchored genes were available, additional genes were added in the de-
scending order of their support by protein hints to reach 4000 genes (see Section 4.3.2).
Particularly, this approach was used for C. elegans, which had 2,332 anchored genes.

C. elegans A. thaliana D. melanogaster D. rerio
All Anchored* All Anchored All Anchored All Anchored

Gene Sn 38.6 43.7 52.8 55.9 51.7 54.4 15.0 26.5
Gene Sp 46.2 50.9 55.5 56.9 52.2 55.7 7.3 13.1
Gene F1 42.1 47.0 54.1 56.4 51.9 55.0 9.8 17.5
Exon Sn 75.5 75.1 75.9 75.7 68.5 68.6 68.3 73.5
Exon Sp 83.4 86.2 81.6 83.2 76.2 80.5 50.4 63.0
Exon F1 79.3 80.3 78.6 79.3 72.1 74.1 58.0 67.8

Table 4.5: The cumulative effect of new ProtHint hint types on the gene prediction accuracy
of BRAKER2. The genome of A. thaliana and remote proteins (species of the same order
excluded) were used on input

ProtHint hints

high-confidence + non-high-confidence + CDSpart chains

Gene Sn 65.0 68.5 71.1
Gene Sp 63.6 66.0 67.0
Gene F1 64.3 67.2 69.0

1,000 and then kept increasing almost steadily when the number of genes increased from

1,000 to 8,000 genes. Based on this experiment, we chose 8,000 as the upper limit for the

number of training genes and 4,000 as the minimum number of required training genes (as

described in Section 4.3.2).

4.4.3 Impact of the novel ProtHint protein hints

Tables B.8 and 4.5 show the effect of using different types of ProtHint protein hints in

BRAKER2, particularly the effect of integrating novel hint types that were not utilized by

GeneMark-EP+ (see Section 4.3.3). For instance, in the genome of A. thaliana with remote

proteins on input (species of the same order excluded), the use of non-high-confidence hints
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Figure 4.7: Dependence of AUGUSTUS ab initio gene prediction accuracy on the number
of anchored genes in training. The experiment was done in the genome of A. thaliana and
the supporting proteins outside of the Arabidopsis genus.

improved the gene-level F1 accuracy by ∼3 percentage points. The addition of chained

CDSpart hints further improved the F1 accuracy by∼2 percentage points (Table 4.5). Sim-

ilar results for more species and protein databases are shown in the Appendix in Table B.8.

4.4.4 Prediction accuracy changes within the BRAKER2 pipeline

We observed a steady increase in the prediction accuracy upon moving from one to another

step of the BRAKER2 pipeline (Table B.9). For instance, at the gene level, the F1 value for

D. melanogaster supported by the largest protein database increased from GeneMark-ES

to GeneMark-EP+ by 17.1 percentage points. Runs of AUGUSTUS with hints added 8.2

percentage points in the first iteration, and 1.1 percentage points in the second iteration. For

the F1 values at the exon level, the numbers of increase were 8.8, 4.6, and 0.4 percentage

points, respectively.
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Figure 4.8: Change of BRAKER2 accuracy with the increasing number of species in the
reference protein database. The left panel shows the evolutionary distance of species to
D. melanogaster (see Section 4.3.5.5). The right panel shows the change in BRAKER2
accuracy with the increasing number of proteomes used on its input.

4.4.5 BRAKER2 prediction accuracy improves with the increasing number of species in

the reference protein database

Figure 4.8 shows the results of the first experiment described in Section 4.3.5.5. The pre-

diction accuracy of BRAKER2 was increasing steadily with the increasing number of the

reference proteomes. We attribute the small decrease in the accuracy for five proteomes in

training (instead of four) to stochastic effects in AUGUSTUS training.

The results of the second experiment are shown in Table 4.6. As expected, compared

to using only Anopheles species, including all proteins of species outside of the taxonomic

family led to a significant accuracy increase. Furthermore, even though the Anopheles

species are in the same taxonomic order as D. melanogaster, using a larger number of

proteins of species outside of D. melanogaster’s order also led to a slightly better gene

prediction accuracy.

4.4.6 Comparison of BRAKER2 with MAKER2

The coordinates of genes predicted by MAKER2 in genomes of A. thaliana, C. elegans and

D. melanogaster were compared to the annotations of the three genomes. When we used
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Table 4.6: BRAKER2 prediction accuracy in D. melanogaster computed for several sets
of input proteins: proteins of species (i) in the Anopheles genus, (ii) outside of D. mela-
nogaster’s taxonomic family, and (iii) outside of D. melanogaster’s taxonomic order (Fig-
ure B.7).

Anopheles
genus

All outside
of family

All outside
of order

Gene Sn 60.7 66.3 61.1

Gene Sp 60.2 64.8 60.2

Gene F1 60.4 65.5 60.6

Proteins from

Table 4.7: Prediction accuracy of MAKER2 and BRAKER2.

Gene Sn 49.3 53.9 70.6 25.5 30.4 43.7 42.6 48.0 60.0

Gene Sp 42.1 55.6 65.8 22.1 38.9 51.3 31.1 50.3 59.5

Gene F1 45.4 54.7 68.1 23.7 34.1 47.2 35.9 49.2 59.7

Exon Sn 73.5 74.7 80.6 61.7 62.6 71.9 62.9 63.7 71.3

Exon Sp 72.6 83.0 85.8 64.5 81.4 87.1 58.7 76.0 83.2

Exon F1 73.0 78.6 83.1 63.1 70.8 78.8 60.7 69.3 76.8

Table 4: Prediction accuracy of MAKER2 and BRAKER2

D. melanogaster

BRAKER2 BRAKER2

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

C. elegans

MAKER2 with 

recommended 

protocol

MAKER2 with 

BRAKER2-like

protocol

BRAKER2

A. thaliana

the recommended MAKER2 protocol (Figure B.2A), the accuracy was significantly lower

than the one of BRAKER2, which was run with the support of the same reference proteins.

Particularly, gene-level F1 values were lower for A. thaliana, C. elegans, and D. melanoga-

ster by 22.7, 23.5, and 23.8 percentage points, respectively (Table 4.7). Runs of MAKER2

with the second, “BRAKER2-like” protocol (Figure B.2B), resulted in reducing the gene-

level F1 gaps between MAKER2 and BRAKER2 to 13.4, 13.1, and 10.5 percentage points,

respectively (Table 4.7).

A detailed comparison of results obtained with the two MAKER2 protocols is shown

in Table B.10. Training by BRAKER2-like protocol (training on genes predicted by Gene-

Mark-ES and at least partially supported by protein alignments) produced better prediction

accuracy than training directly from protein alignments as recommended by the default

MAKER2 protocol (Table B.10). An improvement in the Sp values obtained as a result

of using the BRAKER2-like protocol was largely related to the absence of SNAP, which

generated an elevated number of false positive predictions. On the other hand, MAKER2
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predictions with AUGUSTUS only were less accurate than with the combination of AU-

GUSTUS and GeneMark-ES (Table B.10).

With the exception of C. elegans, the predictions on unmasked sequences (Table B.11)

showed an increase in prediction sensitivity and a decrease in specificity compared to the

predictions on repeat-masked genomes. Still, the average gene-level Sn of MAKER2 on un-

masked genomes (using the improved BRAKER2-like protocol) was 6.4 percentage points

lower than that of BRAKER2, which was executed on repeat-masked sequences. For C.

elegans, we observed an increase in both Sn and Sp when run on a masked genome. We

attribute this behavior to MAKER2’s hard-masking of all interspersed repeats (see Sec-

tion 4.3.5.7), which in the case of C. elegans resulted in many predictions being corrupted

due to repeat masking (11.9% of all annotated coding exons overlapped with sequences

hard masked by MAKER2).

The runtimes of BRAKER2 and MAKER2 in our experiments were difficult to compare

directly. We executed MAKER2 in the MPI mode [114] on a computational cluster with 96

CPUs. The runtime of MAKER2 (∼10 h) using proteins from 10 species was comparable

to the time needed for a run of BRAKER2 with proteins from 443 species executed on a

single node with 8 CPUs.

4.5 Discussion

The goal of BRAKER2 was to achieve optimal integration of ProtHint, GeneMark-EP+,

and AUGUSTUS—an integration which would combine the complementary strengths of

these tools. This goal was successfully completed, making BRAKER2 a fully automated,

state-of-the-art gene prediction pipeline with protein homology support; capable of utiliz-

ing proteins of any evolutionary distance to the genome of interest. In this section, we

discuss the prediction accuracy of BRAKER2 and its dependence on the characteristics

of the input protein database and the genome itself. Next, we highlight the main features

contributing to BRAKER2’s high prediction accuracy. Finally, we discuss how BRAKER2
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compares with (i) RNA-Seq-based BRAKER1 and (ii), MAKER2, one of the most fre-

quently used gene prediction pipelines.

4.5.1 BRAKER2 prediction accuracy analysis

4.5.1.1 The role of evolutionary distances and the total number of species in the protein

reference set

The accuracy of a gene finding algorithm that utilizes cross-species proteins generally

strongly depends on the evolutionary distance between the species of interest and reference

proteins [57, 63, 64]. Indeed, for A. thaliana, C. elegans, and D. melanogaster, we saw

that the accuracy steadily increased with the decreasing evolutionary distance of reference

proteins (Figure 4.4). Nevertheless, even in tests with the most remotely related proteins,

the accuracy of BRAKER2 was comparable to that of BRAKER1, which was supported by

a large amount of RNA-Seq (Figure 4.4; a more detailed comparison with BRAKER1 is

discussed later).

Another factor affecting the accuracy of BRAKER2 is the number of species whose

proteins are used for generating the protein hints. For instance, the gene prediction accu-

racy observed for A. thaliana and D. melanogaster, which had more species involved in

hints generation (Table 4.2), was higher than the accuracy for C. elegans, which had fewer

species in each instance of the protein reference set (Figure 4.4). The benefits of increasing

the number of species in the protein reference set were further demonstrated in a separate

experiment (Figure 4.8). Moreover, we showed that the increase in the total number of

species in the input protein set of BRAKER2 can compensate for the lack of close rela-

tives. The use of many species outside of the D. melanogaster’s taxonomic order delivered

better accuracy than the use of 14 Anopheles species within the order (Table 4.6).

It is important to also discuss situations in which a species with a sequenced and anno-

tated genome exists at a very close distance to the genome of interest; i.e., when the average

nucleotide identity computed for the two genomes is close to 100%. In such a case, a direct
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gene annotation transfer could be a more efficient way of annotation compared to using

BRAKER2; assuming that the reference annotation is of high quality. Otherwise, when the

reference annotation is not trusted, the use of BRAKER2 would be a reasonable choice;

BRAKER2’s mechanism of hints generation accounts for the presence of errors in refer-

ence protein annotations.

4.5.1.2 The impact of the genome length and composition

We evaluated the accuracy of BRAKER2 on genomes that varied in length from 100 Mbp

(C. elegans) to 1.4 Gbp (X. tropicalis). Notably, the exon level Sn computed on test sets

of “reliable genes” (Section 4.3.5.2) remained at 80–90% for both shorter and longer ge-

nomes (Table 4.3). However, the gene level Sn, determined on the same test sets, showed a

noticeable negative correlation with genome length. All genomes used in this study had rel-

atively homogeneous nucleotide compositions. The current versions of the algorithms used

in BRAKER2 employ a single set of species-specific models. The accuracy of BRAKER2

would drop down on genomes with heterogeneous composition, such as human (mam-

malian) or rice (grasses), where several models reflecting heterogeneous genome composi-

tion are necessary. This problem is addressed and solved in Chapter 5.

4.5.1.3 Completeness of BRAKER2 predictions

As a part of the accuracy assessment, we identified BRAKER2-predicted genes encoding

proteins in species-specific BUSCO families. For a given genome, a fraction of BUSCO

genes found provided a sensitivity estimate [118]. In all cases but X. tropicalis, the pre-

dicted sets of genes were comparable to or even more complete than the fractions of

BUSCO genes identified in the available reference genome annotations (Figures B.3 to B.5).

Notably, some of the BUSCO families were built from species within the same taxonomic

order as the species of interest (e.g., Hemiptera order of R. prolixus or Solanales order for

S. lycopersicum). At the same time, the only input to BRAKER2 were proteins of species
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outside of the corresponding taxonomic order.

A lower level of BUSCO accuracy in X. tropicalis could be related to an insufficient

number of external proteins. Removing the Anura taxonomic order from the OrthoDB par-

tition left no proteins from the Amphibia taxonomic class among input proteins (Table 4.2).

Also, a general cause for missing some of the BUSCO genes could be an inaccurate de novo

repeat masking. For example, among the BUSCO genes missed by BRAKER2 in the P.

trichocarpa genome, more than half were genes at least partially masked by long repeats

(>1000 nt).

4.5.2 Sources of accuracy improvements

4.5.2.1 Automatic training

Previous attempts to automatically prepare (in the absence of transcripts) training sets for

the training of supervised gene predictors were centered around the mapping of highly

conserved cross-species proteins. However, these attempts were not successful due to the

biases in the sets of the highly conserved genes [84]. We also indirectly observed this

issue—when training AUGUSTUS on four different sets selected from GeneMark-EP+

predictions, the model trained on the most conserved genes achieved the lowest prediction

accuracy (Figure B.6).

The new training approach of BRAKER2 uses cross-species protein conservation to

predict protein hints and an ab initio gene prediction to connect the mapped hints into gene

structures (i.e., GeneMark-EP+; Chapter 3). Compared to direct mapping of proteins or

using highly conserved genes, this approach leads to a significant increase in the size of

the training gene set supported by protein evidence. We argue that due to the sizes of

the training sets, BRAKER2 does not suffer from the biases present in the sets of highly

conserved genes (Figure 4.7). Furthermore, to achieve not just a large size, but also high

quality of the training set, the selection of anchored training genes (Section 4.3.2) proved

to be critical (Table 4.4).
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Still, arguably, training on a sufficiently large set of manually curated gene structures (a

supervised training) could outperform the automatic training implemented in BRAKER2.

For instance, AUGUSTUS trained on a randomly selected set of annotated genes slightly

outperformed AUGUSTUS trained by BRAKER2 (Figure B.6). Nonetheless, such an ideal

condition (a random sampling from a 100% correct annotation) is an unlikely case when

working with a novel genome.

4.5.2.2 Generation and integration of protein hints

BRAKER2 uses a novel approach for the preparation of protein hints. The protein map-

ping pipeline, ProtHint, predicts sets of hints with higher and lower confidence. All hints

contribute to the generation of anchored genes used in training. GeneMark-EP+ enforces

high-confidence hints in the prediction step. In turn, AUGUSTUS utilizes all hints at the

prediction step along with information about the hints’ connections within a putative tran-

script (CDSpart chains). While the use of high-confidence hints was already present in

GeneMark-EP+ (Chapter 3), the use of non-high-confidence and chained hints is unique to

BRAKER2.

The flexible use of hints leads to an increase in the accuracy of BRAKER2 (Tables B.8

and 4.5). Notably, since ProtHint is designed to generate accurate hints from proteins

of remotely related species, BRAKER2 is a useful tool for the annotation of genomes of

deeply branching species. Indeed, in all the results presented in this chapter, we observed

that BRAKER2 performed well even when remote proteins (of species outside of the same

order) were used on input (as already discussed in Section 4.5.1.1).

4.5.2.3 BRAKER2 iterations

The sensitivity of the ProtHint pipeline depends on the quality of seed genes predicted by

GeneMark-ES. In particular, GeneMark-ES does not necessarily need to accurately predict

the correct gene boundaries, it only needs to predict the correct gene loci; i.e., to have
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high nucleotide-level sensitivity. Although GeneMark-ES has been shown to indeed have

high nucleotide sensitivity [16], any ab initio gene finder may miss genes. In BRAKER2,

these missed genes translate into missed protein hints to the corresponding genomic loci.

The second iteration of BRAKER2 recovers hundreds of missed seed genes and leads to

an increase in gene prediction accuracy (Table B.9). BRAKER2 could execute more than

two iterations; however, we did not observe a significant increase in accuracy with three or

more iterations.

4.5.3 Comparison of BRAKER2 with different gene finders

4.5.3.1 Comparison with BRAKER1

As we demonstrated, the accuracy of BRAKER2 depends on the number and evolutionary

distance of reference proteins. In an analogous manner, the accuracy of BRAKER1 de-

pends on the volume of the RNA-seq data. Experiments with BRAKER1 on genomes of A.

thaliana, C. elegans, and D. melanogaster used RNA-Seq reads from NCBI SRA retrieved

by VARUS; i.e. the non-redundant volumes of RNA-Seq reads from the maximum number

of libraries available for each species.

When we used the largest number of supporting proteins for each species, only exempt-

ing proteins that originated from the tested genome, BRAKER2 was always more accurate

than BRAKER1 with the above-described comprehensive RNA-Seq support. When using

more remote proteins, the comparison between the accuracy of BRAKER2 and BRAKER1

was less clear cut (Figure 4.4); however, BRAKER2 with remote proteins was still more

accurate than RNA-Seq-supported BRAKER1 in several of the tests.

Both BRAKER1 and BRAKER2 predicted a rather low number of annotated alternative

isoforms (Table B.7). This is a result of a deliberate parameter setting in AUGUSTUS

which aims to reduce the number of false positives. Particularly, AUGUSTUS ignored

RNA-Seq or protein hints contradicting another hint with 10 times larger support. On the

other hand, the reference genome annotations of the three species are relatively inclusive
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in a sense of including potentially lowly expressed isoforms.

4.5.3.2 Comparison with MAKER2

The gap in accuracy between MAKER2 and BRAKER2 observed in our experiments was

quite large despite our attempts to improve the default MAKER2 protocol (Table 4.7). This

could be caused by differences in the methods of data preparation, training, processing re-

peats, ways of generating and selecting external evidence, connecting main elements of the

pipelines, or combining the gene predictions into the final annotation. Therefore, we pre-

sented detailed descriptions of the protocols used for running MAKER2 (Section 4.3.5.7)

as well as results obtained with different MAKER2 configurations (Tables B.10 and B.11).

MAKER2 uses the ab initio self-training algorithm GeneMark-ES, while BRAKER2

uses the more recent self-training GeneMark-EP+, which integrates protein hints into train-

ing and prediction. A more accurate training of AUGUSTUS is likely one of the important

factors of BRAKER2’s elevated accuracy. A comparison of protein hints generated by the

two pipelines is difficult since BRAKER2 uses hints to splice sites and start/stop codons

while MAKER2 uses hints to parts of exons.

The difference in the accuracy of BRAKER2 and MAKER2 is likely to be even larger

in eukaryotic genomes with longer length; however, such a comparison is harder to make

due to less accurate reference annotations. Since a comprehensive comparison of the two

methods is not a goal of this thesis, the comparisons were limited to the three well-studied

genomes.

Last but not least, the training of gene finders is not fully automated in MAKER2. Users

have to execute the training steps manually, even though recommendations are given on the

training protocols. On the other hand, BRAKER2 can be executed from start to finish with

a single command, which is identical for any input genomic sequence.
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4.5.3.3 Comparison with other gene finders

Several tools attempt accurate identification of gene structures in a novel genome by map-

ping homologous proteins (e.g., GenomeThreader [52], Scipio [122], or GeMoMa [57,

58]). This approach limits the gene discovery to genes of homologs present in the input

protein set and the accuracy of these methods drops significantly with the increase of evo-

lutionary distance between the species of interest and the reference proteins [57, 63, 64].

Another significant challenge, not addressed by the existing protein homology-based tools,

is the processing of large volumes of proteins (which is understandable when focusing on

a limited number of closely related species). Since the above-mentioned tools were not de-

signed for the situation when the reference protein data do not contain proteins of closely

related species, we did not compare their accuracy to BRAKER2.

4.6 Conclusion

BRAKER2 is a fully automated tool for gene prediction in novel eukaryotic genomes.

BRAKER2 leverages information accumulated in protein databases, including proteins of

large evolutionary distance to the species of interest. In tests on genomes of plants and

animals, we observed that BRAKER2 delivered state-of-the-art annotation accuracy and

was favorably compared to already existing tools.

4.7 Availability

BRAKER2 is available at https://github.com/Gaius-Augustus/BRAKER. All additional

scripts and data used to generate figures and tables in this chapter are available at https:

//github.com/gatech-genemark/BRAKER2-exp.

BRAKER2 does not require significant computational resources; for instance, in the

case of D. melanogaster, ∼2.6 million proteins were processed in ∼3 h on a single node

with 8 CPU cores; the overall BRAKER2 runtime being ∼10 hours.
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CHAPTER 5

GENEMARK-ETP+: AUTOMATIC INTEGRATION OF GENOMIC,

TRANSCRIPTOMIC, AND PROTEIN DATA FOR GENE PREDICTION IN

EUKARYOTIC GENOMES

Abstract

An integrative method of gene prediction in eukaryotic genomes has to solve the com-

plex task of parsing the genome into coding and non-coding regions in agreement with

extrinsic evidence at transcript and protein levels. We present GeneMark-ETP+, a new ad-

dition to the family of the GeneMark eukaryotic gene finders with unsupervised parameter

training. GeneMark-ETP+ utilizes transcriptomic, protein homology, and intrinsic data ev-

idence sources throughout all stages of the algorithm’s training and gene prediction. Both

the transcript and protein evidence have an uneven distribution across a genome. There-

fore, GeneMark-ETP+ proceeds, first, with the identification of genes in loci where ex-

trinsic data density is sufficient for gene identification with high confidence, and, second,

with gene finding in fragments between the high-confidence genes. The performance of

GeneMark-ETP+ was favorably compared with methods using a single type of extrinsic

evidence such as GeneMark-ET, GeneMark-EP+, BRAKER1, and BRAKER2. Further-

more, GeneMark-ETP+ achieved higher prediction accuracy than TSEBRA, a recently de-

veloped algorithm combining the predictions of RNA-Seq-based BRAKER1 and protein

homology-based BRAKER2.

5.1 Introduction

Gene prediction algorithms generally utilize data from one or more of the following sources

(Section 2.2): (i) protein homology, (ii) transcriptomic evidence, and (iii) intrinsic statis-
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tical patterns of the genomic sequence itself. Strictly homology-based approaches (e.g.,

exonerate [51], GenomeThreader [52], or ProSplign [53]) and exclusively transcriptomic-

based ones (e.g., StringTie [33, 34], PsiCLASS [35], or Cufflinks [36]) are limited to the

discovery of similar enough and sufficiently expressed genes, respectively. To correctly

predict novel/remotely homologous and weakly expressed genes, prediction algorithms

need to utilize intrinsic sequence features such as splice site motifs, intron/exon length

distributions, codon usage, etc. Several early-developed algorithms (e.g., Genie [10], GEN-

SCAN [14], GeneID [123], SNAP [13], AUGUSTUS [12]), so-called ab initio methods,

rely solely on these intrinsic features. Unfortunately, the accuracy of such methods is

far from perfect [19–22], especially for large eukaryotic genomes, because parts of the

gene structures often lack strong motifs that can be accurately predicted [18]. Therefore,

modern gene finders rely on intrinsic as well as proteomic and/or transcriptomic informa-

tion sources. GeneMark-EP+ (Chapter 3) and BRAKER2 (Chapter 4) are the most recent

examples of algorithms integrating protein homology and ab initio components. On the

other hand, GeneMark-ET [48] and BRAKER1 [47] are examples of algorithms integrat-

ing RNA-Seq and intrinsic data sources. Notably, GeMoMa [58] utilizes RNA-Seq data

to enhance homology-based predictions. However, GeMoMa lacks an ab initio component

and is limited to the annotation of closely related genomes only.

The simultaneous integration of all three information sources (protein homology, tran-

scriptomic, and genomic) remains an open problem. The majority of tools integrating all

the information (e.g., FINDER [71], LoReAn [72], GAAP [73], IPred [74], Evigan [75],

EVidenceModeler [76], JIGSAW [77], Combiner [78], or GAZE [79]) work as combiners:

Their approach is to first generate multiple independent ab initio-, protein homology-, and

transcriptomic-based predictions and subsequently combine them into a prediction that is,

on average, more accurate than any input source. Thus, the distinct evidence streams are

only integrated at a “post-processing” step of the gene prediction process. A better predic-

tion accuracy could potentially be achieved by integrating the different information sources
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in all prediction steps as well as during the training of prediction models.

In this chapter, we introduce GeneMark-ETP+, a tool combining transcriptomic, pro-

tein homology, and intrinsic data sources throughout all stages of the algorithm’s training

and gene prediction. GeneMark-ETP+ facilitates this integration by, among other things,

creating a novel method for simultaneous gene prediction in transcripts (assembled from

RNA-Seq) and genomic DNA. Importantly, the training of GeneMark-ETP+ is fully un-

supervised and the protein homology evidence integration utilizes proteins of any evolu-

tionary distance, including remote homologs (using techniques developed in Chapters 3

and 4). Last but not least, GeneMark-ETP+ also focuses on a comprehensive integration

of repeat annotations, an important information source that is often not given enough at-

tention in current gene prediction algorithms ([3, 124–126]). All over, due to its ability

to efficiently integrate all major gene prediction information streams in an unsupervised

manner, GeneMark-ETP+ offers an important step toward fully automated and accurate

eukaryotic gene prediction.

We assessed the prediction accuracy of GeneMark-ETP+ on seven genomes represent-

ing compact GC-homogeneous as well as large GC-heterogeneous eukaryotic genomes.

We compared the prediction accuracy of GeneMark-ETP+ with GeneMark-ET, GeneMark-

EP+, and the best theoretical combination of predictions made by these two tools. Further,

we compared GeneMark-ETP+ with TSEBRA [70], a recently published combiner that

combines the results of RNA-Seq-based BRAKER1 and homology-based BRAKER2.

5.2 Materials

For the assessment of GeneMark-ETP+, we selected seven genomes representing diverse

eukaryotic clades (Tables C.1 and 5.1). Based on their genomic organizations, the se-

lected genomes can be split into three groups. The first group, genomes of Arabidop-

sis thaliana, Caenorhabditis elegans, and Drosophila melanogaster, represented early-

sequenced model organisms with relatively short GC-homogeneous genomes. The remain-
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Table 5.1: Genomes used for the assessment of GeneMark-ETP+ accuracy. The numbers
in parentheses characterize the reliable annotation subsets. Introns per gene were computed
as a weighted average: the # of introns in each gene G was inversely weighted by the # of
alternative transcripts in G. Without this adjustment, the average would be skewed towards
genes with many annotated isoforms.

Species_main

C. elegans (roundworm) 100 19,969 28,544 4.8

A. thaliana (thale cress) 119 27,445 40,828 4.0

D. melanogaster (fruit fly) 138 13,951 22,395 2.8

S. lycopersicum (tomato) 807 25,158 (15,138) 31,911 (15,150) 4.4 (4.3)

D. rerio (zebrafish) 1,345 25,611 (17,894) 42,934 (19,978) 8.4 (8.4)

G. gallus (chicken) 1,050 17,279 (10,736) 38,534 (12,733) 9.0 (9.2)

M. musculus (mouse) 2,723 22,405 (16,531) 58,318 (20,708) 6.0 (8.6)

Table 1: Genomes used for the assessment of GeneMark-ETP+.

The numbers in parentheses show statistics for the reliable annotation subsets. Introns per gene were 

computed as a weighted average: the # of introns in each gene G was inversely weighted by the # of 

alternative transcripts in G. Without this adjustment, the average would be skewed towards genes with 

many annotated isoforms.

Species
Genomew

length (Mb)

Reference annotation statistics

# coding genes # coding transcripts introns per gene

Page 1

ing two groups, both containing larger genomes, represented GC-homogenous (Solanum ly-

copersicum, Danio rerio) and GC-heterogeneous (Gallus gallus, Mus musculus) genomes.

In all genomic datasets, contigs not assigned to any chromosome and the genomes of or-

ganelles were excluded from the analysis.

We used OrthoDB v10.1 protein database [66, 67] to prepare the input sets of cross-

species proteins for each species in the test set (Table C.2). Each protein set was generated

in the same way as described earlier in Sections 3.2.1 and 4.2.1. First, all proteins from a

large clade corresponding to the query species were used to create an initial protein set S.

Next, two smaller sets were created by removing from S (i) all proteins of the query species

itself, and (ii) all proteins from species of the same taxonomic order. The reduced sets of

type (ii) were generated to simulate large evolutionary distances between the query species

and input proteins, which could be expected in practical situations of running GeneMark-

ETP+ on a newly sequenced genome.

RNA-seq libraries of the Illumina paired reads were selected from the NCBI SRA

database [93]. The length of reads varied from 75 to 151 nt and the total size of all the

reads varied from 9 Gb in D. melanogaster to 83 Gb in M. musculus (Table C.3).
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Predicted genes
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Extrinsic evidence processing

Figure 5.1: A high-level overview of GeneMark-ETP+.

5.3 Methods

5.3.1 Overview of GeneMark-ETP+

GeneMark-ETP+ consists of three major parts. First, GeneMark-ETP+ infers a set of reli-

able exon-intron structures, so-called high-confidence (HC) genes, directly from the tran-

scriptomic and protein evidence. Second, the high-confidence genes are used to train a

species-specific model and to split the genomic sequence into non-overlapping fragments.

Finally, the trained model is used to predict genes in the fragments between high-confidence

genes. Available sources of transcript and protein evidence, even less reliable ones, such as

the alignments of remotely homologous proteins, are used in all three steps. A high-level

GeneMark-ETP+ diagram is shown in Figure 5.1.

Notably, GeneMark-ETP+ predicts genes in the assembled transcriptome as well as in

the genomic DNA and combines these two prediction sets into the final genome annotation.

Two distinct types of generalized hidden Markov models (GHMM) are used in the process.
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A GHMM with an intron model (described in GeneMark-ES [16]) is used to predict genes

in the genome and a GHMM with no intron model (described in [43]) is used to predict

genes in transcripts. The training of the latter model (with no intron model) is done by an

unsupervised GeneMarkS-T [43]. The unsupervised training of the genomic GHMM model

(with an intron model) is done by a new procedure that makes use of the transcriptome

predictions.

In the previously described GeneMark-EP+ (Chapter 3), as well as in GeneMark-ES/ET

[16, 17, 48], the genomic GHMM was trained in an iterative unsupervised (or semi-super-

vised) manner. In GeneMark-ETP+, depending on the volume of external data, the iterative

training procedure is not always necessary; in some situations, the GHMM can be trained

directly from the predictions made in transcripts.

5.3.2 Prediction of High-Confidence genes

The overview of the high-confidence gene prediction process is shown in Figure 5.2. Briefly,

transcripts are first assembled from RNA-Seq reads. Next, genes are predicted in the tran-

scripts with GeneMarkS-T (GMS-T) [43]. The raw GeneMarkS-T output may contain

incorrect predictions stemming from errors in the transcript assembly and errors made by

GMS-T itself. Furthermore, a large portion of correct predictions may be incomplete due

to the presence of incomplete transcripts. The shares of the incomplete and incorrect pre-

dictions depend on the quality of the RNA input and other factors; thus they significantly

vary between inputs. GeneMark-ETP+ employs a series of classification and filtering steps

to categorize complete and incomplete predictions and to remove false predictions from the

GMS-T output; thus creating a highly reliable set of high-confidence genes.

5.3.2.1 Transcript assembly and gene prediction in transcripts with GeneMarkS-T

To create transcript assemblies, RNA-Seq reads are mapped to the genome with HISAT2

[32] and subsequently assembled into transcripts with StringTie [33]. In this process, each
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Figure 5.2: A high-level overview of the high-confidence gene prediction.
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Coding region UTR

True gene structure

Transcript assembly 

Legend

Predicted coding region

Figure 5.3: Example of an incorrect incomplete coding gene prediction. Although the 5’
UTR of the assembled transcript is incomplete, the assembly contains the full coding re-
gion. However, due to the short length of the available non-coding sequence, the predicted
coding region was incorrectly extended to the 5’ end of the sequence.

RNA-Seq library is first aligned and assembled separately. At the end, the individual as-

semblies are merged into a single transcriptome assembly with StringTie. Once transcripts

are assembled, GeneMarkS-T, an algorithm with unsupervised training, is used to predict

coding regions in the transcripts.

If long RNA reads are available, they can be directly mapped to the genome with Min-

imap2 [40], without the need for the assembly step. However, the experiments in this thesis

only describe situations with short RNA-Seq reads on input.

5.3.2.2 Classification of predictions as complete and incomplete

GMS-T often predicts that a truly complete transcript with a short 5’ UTR is incomplete—

by missing the UTR and extending the coding region to the 5’ end of the sequence (as

illustrated in Figure 5.3). This makes the incomplete predictions highly unreliable. We

reduce the error rate by the following procedure.

Each 5’ incomplete coding region predicted by GMS-T is first shortened to the first

in-frame ATG start codon. If there is no such start codon, the prediction is classified as

incomplete. Both initially predicted incomplete coding region and the shortened one are
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5' incomplete prediction query

target hit

Figure 5.4: The alignment features used to classify complete and incomplete GMS-T pre-
dictions.

translated into proteins and searched for similarities against the input protein database by

DIAMOND [87] in the BLASTp mode. Next, up to 25 best alignments are selected from

both searches. If at least one pair of these alignments, made against the same target protein

from the database, shows better support for the longer incomplete sequence, the GMS-T

prediction is classified as incomplete (i.e., the classification agrees with the original GMS-

T prediction). Otherwise, the prediction is classified as complete, and it is subsequently

represented by its shortened version.

To compute the support score, we use the following features (illustrated in Figure 5.4):

• Qincomplete
start – the position of the start of the alignment in the incomplete query protein.

• T incomplete
start , T complete

start – the positions of the start of the alignment in the target protein

when aligned against the incomplete and complete candidate, respectively.

• AAI incomplete, AAIcomplete – the percentages of amino acid identities in the align-

ments of the incomplete and complete candidates, respectively.

If the inequality in Equation (5.1) is satisfied, the alignment supports the incomplete can-

didate.

(
T complete
start − T incomplete

start

)
−
(
Qincomplete

start − 1
)
+ ln

(
AAI incomplete

AAIcomplete

)1000

> 0 (5.1)
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Eq. (5.1):

Target proteins

Figure 5.5: Examples of GMS-T predictions classified as incomplete and complete, respec-
tively.

Examples of both complete and incomplete classifications, which illustrate how each of the

features contributes to the support score, are shown in Figure 5.5. Further details describing

how these features were derived are given in the Discussion.

Regarding 3’ incomplete predictions (unambiguously defined by the lack of a stop

codon)—these are excluded from the high-confidence output. Finally, genes predicted as

complete by GMS-T are not further re-classified—they are always treated as complete in

GeneMark-ETP+. See the Discussion for the rationale behind these design decisions.

5.3.2.3 Selection of high-confidence GMS-T gene predictions

After the above-described classification, both complete and incomplete GMS-T candidates

are translated to proteins and aligned against the protein database with DIAMOND in the

BLASTp mode. Then, the following rules are applied to select high-confidence gene pre-

dictions.

Complete high-confidence predictions supported by proteins

For each complete GMS-T prediction candidate, the following features are extracted from
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prediction query

target hit

Figure 5.6: The alignment features used to classify complete high-confidence genes sup-
ported by proteins.

up to 25 top scoring target protein alignments against the complete query (illustrated in

Figure 5.6):

• Qstart, Qend – the positions of the start and end of the alignment in the query protein,

respectively.

• Tstart, Tend – the positions of the start and end of the alignment in the target protein,

respectively.

• Qlen, Tlen – the length of the query protein and the aligned target, respectively.

If the alignment of any of the target proteins satisfies the condition in Equation (5.2), the

GMS-T candidate is classified as a high-confidence one.

(Qstart − Tstart ≤ 5) ∧ ((Qlen −Qend)− (Tlen − Tend) ≤ 20) (5.2)

As before, more details explaining the design of Equation (5.2) are given in the Discussion.

Incomplete high-confidence predictions supported by proteins

For an incomplete gene prediction to be classified as high-confidence, its C-terminus must

be supported by at least one protein alignment (as in Equation (5.2)). Since the support

for the incomplete N-terminus is implied by Equation (5.1), all incomplete candidates with
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the C-terminus support are classified as high-confidence. However, if the best-scoring pro-

tein alignment does not cover the incomplete prediction from its start (Qstart 6= 1), the

incomplete high-confidence gene prediction is shortened to the first in-frame ATG start.

High-confidence predictions supported by intrinsic evidence

The GMS-T gene predictions that have no significant hits on protein level or do not satisfy

Equation (5.2) are filtered as follows. First, all isoforms to HC genes already selected in the

previous steps are removed from consideration. Next, only one representative (having the

longest protein-coding region) is selected per a gene with multiple unsupported isoforms.

To be classified as a high-confidence gene, the selected representative must: (i) have length

≥ 300 nt, (ii) have GMS-T log-odds score > 50, (iii) be classified as complete, (iv) have

in-frame stop codon in the 5’ UTR, and (v) create no conflict with some other viable gene

predicted in the same locus. The last condition is verified by mapping the GMS-T-predicted

gene to genomic DNA and comparing the resulting exon-intron structure with a potentially

conflicting ProtHint prediction. The exact algorithm for checking this last condition is

described in the Appendix in Section C.1.

5.3.2.4 Adjustment of GMS-T predictions creating less than longest ORF

Complete GMS-T gene predictions that could be extended by changing the position of

the start codon are subjected to additional analysis. For each such gene, GeneMark-ETP+

generates an alternative by extension to the longest open reading frame (ORF). These alter-

natives are subjected to the filtering procedure described above. If the alternative satisfies

Equation (5.2), it is used instead of the original prediction.

5.3.2.5 Alternative high-confidence isoforms

Selected high-confidence gene predictions may include alternative isoforms of the same

gene. Note that the alternative isoforms are considered only for gene predictions supported
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by extrinsic evidence (vs intrinsic evidence, see Section 5.3.2.3). GeneMark-ETP+ selects

a subset of reliable protein-supported isoforms in the following way.

Let Igcomplete be a set of all complete isoforms of gene g and Igincomplete a set of all

its incomplete isoforms. Each isoform i is assigned a score s(i)—the bitscore of its best

protein hit in the protein database.

To select complete alternative isoforms, first, the maximum of scores of all complete

isoforms is computed for each gene g:

s(gcomplete) = max
i∈Igcomplete

s(i) (5.3)

The score of each isoform must satisfy the condition in Equation (5.4); otherwise, the

isoform is removed.

s(i) ≥ 0.8× s(gcomplete) (i ∈ Igcomplete) (5.4)

As a result, several isoforms can represent a complete high-confidence gene.

Conversely, only one representative, best supported by a protein alignment, is selected

among incomplete alternative predictions. Again, the maximum among scores of all in-

complete isoforms is computed for each gene g:

s(gincomplete) = max
i∈Igincomplete

s(i) (5.5)

The transcript with the score corresponding to this maximum (Equation (5.6)) is selected

to represent the incomplete high-confidence gene.

s(i) = s(gincomplete) (i ∈ Igincomplete) (5.6)

After this processing, a gene g may have both complete and incomplete HC isoforms. The
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incomplete prediction is removed from the set if condition in Equation (5.7) is fulfilled.

Otherwise, the HC gene is represented by the single incomplete prediction, and all the

complete isoforms are removed.

s(gcomplete) ≥ s(gincomplete) (5.7)

5.3.3 Genomic model training and genome segmentation

5.3.3.1 Training of a genomic GHMM

The training of a genomic generalized hidden Markov model (GHMM), which is used to

predict genes in the genomic sequence, is done based on the predicted high-confidence

genes as follows. For training, the set of complete HC genes predicted in the assembled

transcripts is reduced by selecting a single isoform of each HC gene (the one with the

longest protein-coding region). These isoforms are mapped to the genomic DNA. Next,

genomic loci and gene structures corresponding to these mapped genes are used to train the

GHMM.

Before the actual training starts, the average GC content of each training gene is cal-

culated. If the genes’ GC content distribution is such that more than 75% of genes fall

within a 10%-wide GC bin, the species’ genome is considered to be GC-homogeneous.

Otherwise, it is considered to be GC-heterogeneous.

For genomes classified as GC-homogeneous, all selected HC training genes are used

for the estimation of model parameters. If the training set is large enough (> 4,000 genes),

the training is concluded (Figure 5.7). Otherwise, an iterative training procedure, akin to

the one used in GeneMark-EP+ (Section 3.3.3.1), is executed (see Section 5.3.3.3).

For genomes classified as GC-heterogeneous, GeneMark-ETP+ splits the training set

of HC genes into three GC-bins: low, medium, and high. The width of the medium GC bin

is set to 10%. The bin’s location is selected to include the largest possible number of genes

from the HC training gene set. The low and medium GC bins are then unambiguously

99



High-confidence 
(HC) genes

RNA/Protein 
hints

Predicted genes

Parameter re-estimation

Select gene elements
supported by RNA/proteins

Iterate until convergence

Initial parameters

Train parameters on all HC
genes

 GC group
Yes

No

Was the training  
set large enough? Done!

GeneMark-EP+ style 
of training

Figure 5.7: Training of the genomic generalized hidden Markov model (GHMM).

defined with respect to the medium GC bin. The training of the GHMM is performed

inside each GC bin using the same method as described above for the GC-homogeneous

genomes.

5.3.3.2 Genome segmentation

GeneMark-ETP+’s step of genome segmentation, which is used in the extended training as

well as in the final prediction, is an important feature not present in the previous GeneMark

versions. A genome is segmented by the locations of all mapped high-confidence genes,

including the incomplete ones (Figure 5.8). The loci corresponding to the complete high-

confidence genes are used in the training of the GHMM (Section 5.3.3.1). In the remaining

segments, so-called non-HC-segments, the trained GHMM is used to predict genes (further

described in Section 5.3.4).

In the GC-heterogeneous genomes, GeneMark-ETP+ calculates the GC content of each

non-HC-segment and assigns segments to one of the GC bins according to the GC bin

classification from the model training step (Figure 5.8). Gene prediction and the extended

training are then executed separately in each bin using GC-bin-specific models.
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Figure 5.8: Splitting of the genome into non-HC-segments between high-confidence genes.
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5.3.3.3 Extended training

The extended training, executed when the set of training high-confidence genes contains

≤ 4,000 genes, is implemented in the same way as the iterative anchored training described

in Section 3.3.3.1. First, an initial gene prediction in non-HC-segments is created using a

GHMM trained from high-confidence genes. Then, training hints (mapped from RNA-Seq

and created by ProtHint), are used to iteratively extend the training set of high-confidence

genes by adding anchored elements from predictions in non-HC-segments (Figure 5.7).

5.3.3.4 Repeat penalty and its estimation

GeneMark-ETP+ changes the probability of a putative protein-coding sequence overlap-

ping a repeat by using a penalty q (n is the length of the overlap):

P (seq|coding state overlapping repeat) =
P (seq|coding state)

qn
(5.8)

The optimal (i.e., leading to the highest gene prediction accuracy) repeat penalty value may

depend on the species and the repeat annotation; therefore, GeneMark-ETP+ estimates the

optimal q during its unsupervised training. Particularly, the estimation algorithm attempts

to find the highest penalty value that does not disrupt correct predictions. The estimation

routine uses the already trained generalized hidden Markov model (GHMM), the predicted

high-confidence genes, genomic DNA, and predicted repeat coordinates. The input for this

procedure is a set of genomic loci containing mapped high-confidence genes, extended by

1000 nt on both ends. The GHMM is run with different q values to predict genes in this

sequence set (with no extrinsic evidence other than repeat annotation). The accuracy of the

predictions is evaluated on the mapped HC genes. In the first stage, the penalty estimation

algorithm finds q that maximizes emax, the number of correctly predicted exons. This often

corresponds to a value q close to 1. In the second stage, the algorithm looks for the highest
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Figure 5.9: Integration of extrinsic evidence into the GeneMark-ETP+ gene predictions in
non-HC-segments between mapped HC genes.

q with which the model correctly predicts ≥ 0.998 × emax exons. This q is the predicted

optimal value. To make this procedure fast, the penalty search space is explored using an

approach similar to simulated annealing [127].

5.3.4 Gene predictions in non-HC-segments of genomic DNA

In the last stage of GeneMark-ETP+, the generalized hidden Markov models trained in

the previous step are used to create preliminary predictions in the non-HC-segments (Sec-

tion 5.3.3.2). These predictions serve as seed genes for the ProtHint protein mapping

pipeline (Section 3.3.2). All GMS-T gene predictions excluded from the HC set are also

used as ProtHint’s seed genes. After the run of ProtHint, protein, as well as RNA-Seq ev-

idence (generated during RNA-Seq mapping with HISAT2), are ready to be used for the

final predictions in non-HC-segments between mapped HC genes.

5.3.4.1 Integration of genomic, transcriptomic, and protein evidence

Both evidence types (proteins and transcripts) are integrated into the final ab initio pre-

diction (Figure 5.9) to boost the accuracy of the generalized hidden Markov models. This

integration is done as follows.

1. Hints predicted independently from both proteins and RNA-Seq, are enforced into
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the predicted gene structures (as in Section 3.3.3.2).

2. Hints in loci covered exclusively by protein evidence are enforced if scored high by

ProtHint.

3. Ab initio predictions in loci covered exclusively by RNA-Seq evidence are enforced

to agree with RNA-Seq mapping in all cases where it can be confidently concluded

that the evidence does not originate from UTRs or non-coding genes. Specifically,

only RNA-Seq introns that conflict with a pure ab initio intron (i.e., intron not sup-

ported by any protein or RNA-Seq hints) are enforced.

4. Finally, all incomplete HC genes, identified in the previous step (Section 5.3.2.3), are

extended if possible to full predictions using the GHMM.

The final predictions in the non-HC-segments, together with the complete HC genes them-

selves (mapped to genomic DNA), constitute the final set of genes predicted by GeneMark-

ETP+.

5.3.4.2 Filtering of pure ab initio predictions

The final gene predictions in non-HC-segments can be split into two non-overlapping sets:

evidence-supported and pure ab initio predictions. The evidence supported genes must

have at least one element of their gene structure (either intron, start, or a stop) supported

by the protein or transcriptomic evidence. We observed that in larger genomes, the fraction

of correct purely ab initio predictions steadily decreased with the genome size. Therefore,

GeneMark-ETP+ offers two types of outputs for genomes larger than 300 Mbp—the first

with the full set of predictions and the second with pure ab initio predictions removed. We

used the second, reduced, output in the accuracy tests done for the four larger genomes.
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5.3.5 Methods related to algorithm assessment

This section describes the design of methods that were used to evaluate aspects of GeneMark-

ETP+; other than the standard accuracy assessment described in Section 2.4. In all evalua-

tions, regions of annotated pseudogenes were excluded from comparisons.

5.3.5.1 Repeat masking

To identify repetitive sequences, we used RepeatModeler2 [128] and RepeatMasker [129].

First, a repeat library was generated de novo using RepeatModeler2. Repeat sequences—

interspersed and tandem repeats—were subsequently found and soft-masked using Repeat-

Masker.

To assess the efficiency of the algorithm for automatic estimation of repeat masking

penalties (Section 5.3.3.4), we conducted the following experiment. We executed the final

prediction step of GeneMark-ETP+ with varying repeat penalties and calculated the predic-

tion accuracy with each penalty setting. These predictions were executed (and evaluated) in

the non-HC-segments (Section 5.3.3.2) between HC genes as HC genes themselves are not

affected by the repeat penalty. In order to illustrate how the masking estimation procedure

operates, we also plotted how the fraction of correctly predicted HC exons during penalty

estimation (see Section 5.3.3.4) depended on the varying penalty values.

5.3.5.2 Selection of reliable annotation subsets

Since curated genome annotations of A. thaliana, C. elegans, and D. melanogaster have

been updated multiple times, we considered their current complete annotations as “gold

standards”. Thus, all accuracy comparisons involving these genomes were done with re-

spect to the full complement of annotated genes. The reference annotations of the other

four genomes are arguably less trustworthy [3]. Therefore, we prepared reliable annota-

tion subsets containing coding transcripts that have identical annotations in two different

sources; see Table C.1 for the annotation sources used for each genome. Overall statistics
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describing the reliable genes are shown in parentheses in Table 5.1. The prediction sensi-

tivity estimates for the four large genomes were computed against these reliable annotation

subsets.

5.3.5.3 Optimal combination of GeneMark-ET and GeneMark-EP+

We compared the accuracy of GeneMark-ETP+ with the accuracy corresponding to the best

possible (hypothetical) combination of gene sets predicted by RNA-Seq-based GeneMark-

ET and protein-based GeneMark-EP+. To make such a comparison, we prepared two com-

binations of GeneMark-ET and -EP+ predictions: their union (U ) and intersection (I). The

intersection only contained genes with identical gene structures. Arguably, set U represents

the most comprehensive combination while I represents the most reliable one. Thus, the

sensitivity and specificity of the optimal combination were set to the Sn of U and the Sp

of I .

5.3.5.4 Running BRAKER1, BRAKER2, and TSEBRA

We ran RNA-Seq-based BRAKER1 [47] and protein-homology-based BRAKER2 (Chap-

ter 4) with the same sets of input RNA-Seq libraries and protein databases, respectively,

as the ones used by GeneMark-ETP+. See Chapter 4 for more details about BRAKER1

and (especially) BRAKER2. Next, we combined the results of BRAKER1 and BRAKER2

with TSEBRA [70]—a tool that finds an optimal combination of predictions made by BRA-

KER1 and BRAKER2 and generates a gene prediction set supported by both RNA-Seq and

homologous protein evidence. In a recently published paper [70], TSEBRA was shown to

achieve higher accuracy than (i) either BRAKER1 or BRAKER2 running alone, and (ii)

EVidenceModeler [76], one of the most prominent combiner tools.
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5.4 Results

We evaluated the accuracy of GeneMark-ETP+ for seven genomes representing diverse

taxonomic clades and genomic organizations (Section 5.2), using the accuracy evaluation

methods presented in Section 5.3.5. The experiments for each species were conducted with

two different protein databases (Section 5.2): (i) a database where only the proteins of the

query species itself were removed, and (ii) a database where all proteins from species of

the same taxonomic order were removed. To demonstrate the accuracy in the absence of

closely related cross-species proteins, most results shown in this section were generated

with the latter protein database on input (all results are shown in the Appendix).

5.4.1 Accuracy assessment of GeneMark-ETP+ and comparison with TSEBRA

GeneMark-ETP+ achieved significantly higher prediction accuracy than the previous Gene-

Mark versions, which integrate either RNA-Seq or protein evidence separately (Figures C.1,

5.10 and 5.11 and Table C.4). The improvements were most notable in large genomes, es-

pecially the GC-heterogeneous ones (Figure 5.11). For example, in terms of gene F1 accu-

racy, GeneMark-ETP+ improved over the protein-based GeneMark-EP+ by 14.1, 33.6, and

55.3 percentage points on average in the groups of compact, large homogeneous, and large

heterogeneous genomes, respectively (Table C.4). The corresponding improvements with

respect to GeneMark-EP+ in terms of Exon F1 accuracy were 5.2, 15.4, and 43.2; in the

same groups of genomes (Table C.4). The improvements in comparison to RNA-Seq-based

GeneMark-ET were even higher in all tested scenarios.

GeneMark-ETP+ also compared favorably against TSEBRA, a tool that combines

predictions of RNA-Seq-based BRAKER1 and protein-homology-based BRAKER2 (Fig-

ures C.1, 5.10 and 5.11 and Table C.5). The average differences between TSEBRA and

GeneMark-ETP+ in gene F1 accuracy were −2.2, 8.3, and 39.5 percentage points in the

groups of compact, large homogeneous, and large heterogeneous genomes, respectively
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(Table C.5). The improvements in terms of exon F1 values were 0.6, 1.0, and 19.1, respec-

tively (Table C.5).

5.4.2 Results of the optimal combination of GeneMark-ET and GeneMark-EP+

The accuracy of the optimal combination of GeneMark-ET and -EP+ (see Section 5.3.5.3)

was significantly lower than the accuracy of GeneMark-ETP+. This result was observed

for all genomes: compact (Figure 5.12), and especially the larger genomes (Figure C.2).

5.4.3 Accuracy of the GMS-T gene prediction refinements

In GeneMark-ETP+, the protein-guided refinement of GMS-T gene predictions produces a

set of high-confidence genes (Section 5.3.2). The evaluation of this procedure (Tables C.6

and 5.2) proved its importance. For both types of protein databases, with closely related

(Table C.6) but also with remote proteins (Table 5.2), the refinement led to an average

increase in gene-level specificity by 25 percentage points. As a result, the specificity of the
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Table 5.2: Gene level accuracy of raw GMS-T predictions and the final high-confidence
(HC) genes. The first column (Raw GMS-T) shows the accuracy of initial GMS-T gene
predictions in all assembled transcripts. The second column (HC genes) shows the accuracy
of the refined and selected HC genes. Remote proteins (proteins from species of the same
taxonomic order removed from the database) were used in each case.

HC_main

Order

Raw GMS-T HC genes

Sn 47.6 35.8

Sp 63.8 88.4 24.6

Sn 51.7 57.0

Sp 80.0 97.3 17.3

Sn 60.5 55.2

Sp 82.0 94.7 12.7

Sn 68.0 75.1

Sp 74.6 92.8 18.2

Sn 60.5 67.3

Sp 57.2 84.6 27.3

Sn 49.8 74.7

Sp 43.3 85.6 42.3

Sn 50.0 63.7

Sp 59.5 90.4 30.9 90.5

24.7

Species

Sp.-excl. proteins Raw GMS-T Final HC

Sn 47.6 52.0

Sp 63.8 90.6 26.9

Sn 51.7 59.1

Sp 80.0 97.6 17.5

Sn 60.5 64.1

Sp 82.0 95.9 13.9

Sn 68.0 75.8

Sp 74.6 92.4 17.8

Sn 60.5 68.0

Sp 57.2 84.0 26.7

Sn 49.8 74.3

Sp 43.3 84.8 41.5

Sn 50.0 64.2

Sp 59.5 90.3 30.8 90.8
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Page 3

predicted set of high-confidence genes averaged over 90% on the gene level.

Furthermore, the results presented in Table 5.2 showed a significant increase in gene

prediction sensitivity in five of the seven tested genomes (notably, in all seven genomes

when protein database included all species other than the species of interest, see Table C.6).

This increase was driven by the modifications to GMS-T predictions, especially by the im-

proved classification of complete and incomplete GMS-T predictions (described in Sec-

tion 5.3.2.2). For instance, considering transcripts with correctly predicted stop codons

and no assembly errors, 2,753 (out of 22,979) predictions were classified as incomplete

by GMS-T in D. rerio. According to the reference annotation, 1,384 of those predictions

were truly incomplete while 1,369 were complete predictions misclassified as incomplete.

The classification process (results in Figure 5.13) correctly identified and shortened 1,159

of the 1,369 misclassified predictions (85% sensitivity). This came at a cost of incorrectly

interpreting as complete 122 genes from the group of 1,384 truly incomplete genes (9%

error rate). Table C.7 shows the results of this analysis for all the tested genomes.

110



1,159 122

210 1,262

True status

Actually
complete

Truly
incomplete

Predicted 
complete

Predicted 
incomplete

N = 2753

Figure 5.13: Confusion matrix for the procedure of complete/incomplete classification of
GMS-T predictions (described in Section 5.3.2.2) in D. rerio. Remote proteins (proteins
from species of the same taxonomic order removed from the database) were used on input.

5.4.4 Assessment of the repeat masking penalty estimation

The results of the experiment described in Section 5.3.5.1 showed that the automatically

estimated penalty values were close to the optimal ones; i.e., to the values maximizing the

gene-level F1 accuracy (Figure 5.14A). Furthermore, Figure 5.14B shows that the changes

in the fraction of correctly predicted HC exons during penalty estimation reflected the

changes in the GeneMark-ETP+’s overall prediction sensitivity.

The final penalty estimates for all genomes are shown in Table C.9. Notably, in GC-

heterogeneous genomes, GeneMark-ETP+ estimates an optimal masking penalty for each

of the GC bins; Table C.9 thus also shows how the estimated penalty values varied be-

tween GC bins. Finally, the amount of repeat-masked sequence (masked by RepeatMod-

eler2/RepeatMasker) in each genome is shown in Table C.10.

5.4.5 Effect of the filtering of pure ab initio predictions

The filtering of pure ab initio predictions (described in Section 5.3.4.2) ensures high pre-

diction specificity in large genomes. The evaluation of this procedure (Table C.8) showed
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Figure 5.14: (A) The dependence of the final gene prediction accuracy on the repeat mask-
ing penalty values. The gene prediction accuracy was computed against the reference an-
notation, but only in the non-HC-segments as HC genes themselves are not affected by
the repeat penalty. (B) The dependence of the % of correctly predicted HC exons during
penalty estimation (see Section 5.3.3.4) on the masking penalty.
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the following trends. In the three compact genomes (< 300 Mbp), the filtering, on average,

increased the gene-level specificity by 3.4 percentage points at the cost of a 2.5 sensitivity

decrease. Conversely, in the four large genomes (≥ 300 Mbp), the filtering, on average,

increased the gene-level Sp by 19.6 percentage points at the cost of a 0.4 Sn decrease.

5.5 Discussion

The main reason to develop GeneMark-ETP+ was a clear need to create a self-training

algorithm that would utilize the full extent of information in diverse information streams—

genomic, transcriptomic, and cross-species proteins. The design of GeneMark-ETP+ was

largely motivated by our attempts to combine RNA-Seq and protein-homology evidence

in the prediction steps of existing GeneMark-ET and -EP+, since such an approach pro-

duced only marginally better results than GeneMark-EP+ alone. Thus, we had to develop

a new algorithm that would simultaneously utilize all the information streams throughout

all stages of its model training and gene prediction.

In this section, we describe specific factors contributing to GeneMark-ETP+’s high pre-

diction accuracy, other than the integration of available evidence sources in all training and

prediction steps. Next, we discuss how GeneMark-ETP+ adapts to variations in the size and

quality of the input transcript and protein data. We also discuss the main design decisions

behind the algorithm for the refinement of GeneMarkS-T predictions, which sits at the core

of GeneMark-ETP+. Finally, we compare GeneMark-ETP+ with previous GeneMark ver-

sions and with TSEBRA, a tool that combines transcriptome- and protein homology-based

results of BRAKER1 and BRAKER2.

5.5.1 Sources of accuracy improvement

5.5.1.1 Refinement of GMS-T predictions and high-confidence genes

Transcriptomic assemblies reconstructed from short RNA reads are highly unreliable [44].

The task of protein-coding gene prediction in transcripts is further complicated by the pres-

113



ence of numerous long non-coding RNAs. Finally, computational gene predictions (such

as the ones made by GMS-T) can be wrong even in correctly reconstructed transcripts,

especially when the length of the assembled 5’ UTR sequence is short (Figure 5.3).

To avoid the transfer of assembly and GMS-T errors into final gene predictions, Gene-

Mark-ETP+ uses protein homology to filter out and in some cases adjust wrong predic-

tions in the transcripts. The resulting set, so-called high-confidence genes, is signifi-

cantly more accurate than the initial set of all GMS-T predictions (Tables C.6 and 5.2).

Thus, the algorithm for refining GMS-T predictions and selecting high-confidence genes

is an essential step of GeneMark-ETP+. Without this step, which we believe is unique

to GeneMark-ETP+, the raw GMS-T predictions in all transcript assemblies would not be

accurate enough to be used either (i) as a training set, or (ii) directly mapped to genomic

DNA to constitute the final predictions in corresponding genomic loci.

5.5.1.2 GC-specific training and predictions

The addition of GC-specific training (both in GMS-T and genomic GHMM) and predic-

tions is a critical new feature because the absence of multiple GC models prevented pre-

vious GeneMark versions from reaching high accuracy in GC-heterogeneous species, such

as the mammalian genomes (as discussed in Section 3.5.4.3). This explains why the differ-

ence between GeneMark-ETP+ and the older GeneMark versions was by far the highest in

GC-heterogeneous genomes (Figure 5.11).

Still, GeneMark-ETP+ has a “GC-homogeneous” mode, which is applied to genomes

in which GC-heterogeneity was not detected (Section 5.3.3.1). We observed that in GC-

homogeneous genomes, using the GC-heterogeneous path led to an increased runtime and

a slight accuracy decrease. We speculate that the decrease in accuracy was caused by

splitting the training set into three smaller subsets; thus making the training less stable. For

these reasons, GeneMark-ETP+ automatically detects GC-heterogeneity to decide whether

to apply the GC-specific training and predictions.
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Figure 5.15: The importance of choosing the optimal repeat penalty.

5.5.1.3 Integration of repeat annotation evidence

Repetitive elements make gene prediction difficult because they often contain open reading

frames with a composition similar to actual coding genes. This causes portions of trans-

posons to be predicted as exons, thus ruining the gene predictions [3, 124]. To mitigate

this issue, most gene prediction algorithms incorporate the annotation of repeats into the

gene prediction process. Unfortunately, repeat annotations are usually imperfect because

computational repeat masking methods are prone to masking parts of true coding genes

with conserved functional motifs [125]. Therefore, the annotated repeats cannot be simply

excluded (hard-masked) from the sequence.

The previous versions of GeneMark incorporated repeat annotation by hard-masking

all repeats longer than a threshold T and ignoring the rest of the repeats (by default,

T = 1000 nt for genomes shorter than 300 Mbp, and T = 100 nt for longer genomes).

Such an approach was not optimal because (i) the information in repeats shorter than T is

lost and (ii) any coding exons overlapped by repeats longer than T cannot be predicted cor-

rectly. GeneMark-ETP+’s probabilistic repeat-integration approach, in which the coding

probability is decreased proportionally to the length of the repeat overlap, solves both of

these issues.
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To our knowledge, most other gene prediction algorithms and pipelines adopt the hard-

masking strategy or attempt to filter out repeat-containing predictions in a post-processing

step. AUGUSTUS [12, 105–108] is an exception as it uses a probabilistic repeat integra-

tion. In fact, the repeat masking integration of ETP+ was directly inspired by this approach.

Still, AUGUSTUS uses a fixed default repeat penalty value for all input genomes. Our re-

sults (Figure 5.14 and Table C.9) suggest that the optimal value is specific to each input

genome; Figure 5.15 illustrates the importance of choosing the optimal value. The ability

to automatically estimate this species-specific penalty value (Figure 5.14) contributes to

the overall increase in GeneMark-ETP+’s prediction accuracy. While the repeat penalty

estimates varied between different genomes, they were stable with respect to changing sets

of input proteins (Table C.9), and thus to the number of high-confidence genes used for the

penalty estimation.

5.5.1.4 Filtering of pure ab initio predictions

The filtering of pure ab initio predictions in non-HC-segments (Section 5.3.4.2) is critical

to ensure high prediction sensitivity in long genomes with a large intergenic space—the

filtering increased the prediction specificity by ∼20 percentage points in this group of ge-

nomes (Table C.8). To a lesser extent, the filtering also improved the prediction specificity

in compact genomes (Table C.8). However, in these smaller genomes, the specificity in-

crease came at a cost of a comparable sensitivity decrease; thus it is not applied in genomes

< 300 Mbp.

These results may create an impression that the ab initio component does not play any

useful role in large genomes. However, it is important to realize that only exclusively ab

initio predictions, with no protein or transcript support, are removed. A significant portion

of predictions may be only partially supported by the extrinsic evidence and the ab initio

component is essential to connect the partial evidence into full gene structures.
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5.5.2 Adapting to variations in the size of extrinsic inputs

The main focus of GeneMark-ETP+ is on the optimal integration of RNA-Seq and protein

evidence sets. While optimal prediction accuracy is achieved when both of these inputs

are large (i.e., sufficient transcriptome coverage and closely related proteins), we designed

GeneMark-ETP+ to also work well when one of these inputs lacks in size.

One such design decision was to train the genomic GHMM model in a semi-supervised

way (as in GeneMark-ET, and -EP+) when the set of high-confidence contains less than

4,000 genes. This way, a high-quality genomic model, which can capture the genes missing

in the high-confidence set, is trained even when the extrinsic input set is limited. We

observed that the use of the extended training did not improve prediction accuracy when

> 4,000 training genes were available.

Another decision, aimed at cases when the input proteins are only remotely related

to the genome of interest, was to add GMS-T predictions with no protein but strong in-

trinsic support into the set of high-confidence genes (Section 5.3.2.3). As a result, com-

pared to GeneMark-EP+ (which uses proteins only), GeneMark-ETP+ is less affected by

the changes in the input protein database. For example, the accuracy of GeneMark-EP+

decreased by 11.4 percentage points (gene-level F1) when remote proteins were used in

place of closely related ones in D. melanogaster (Table C.4). In the same situation, the

accuracy of GeneMark-ETP+ decreased by 6.3 percentage points. Here it is important to

note that proteins are still utilized to improve the quality of high-confidence genes with

intrinsic support because predictions in conflict with input proteins are removed from the

high-confidence set (Sections C.1 and 5.3.2.3). This proved to be an important filtering

step that removes false predictions caused by partially incorrect assemblies (e.g., with an

in-frame intron retention).
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5.5.3 Design decisions for the refinement of GMS-T predictions

5.5.3.1 Removal of 3’ incomplete GMS-T predictions

As described in Section 5.3.2.2, GeneMark-ETP+ attempts to improve the accuracy of

GMS-T predictions that were predicted as 5’ incomplete. The GMS-T predictions can also

be incomplete at their 3’ ends (unambiguously defined by the lack of a stop codon). We

observed that 3’ incomplete predictions were much less common than their 5’ counterparts

and that they usually indicated a prediction error rather than an actual 3’ incomplete assem-

bly. This was not unexpected since most RNA-Seq libraries are prepared using the poly-A

tail enrichment of mRNA transcripts and are thus biased towards coverage on 3’ ends [130].

For these reasons, all 3’ incomplete predictions are removed from the high-confidence gene

set.

5.5.3.2 Reliability of complete GMS-T predictions

GMS-T often incorrectly predicts that a truly complete transcript with a short 5’ UTR is

incomplete (Figure 5.4); GeneMark-ETP+ attempts to fix these errors (Section 5.3.2.2).

The corresponding type of a GMS-T error—incomplete assemblies misclassified as com-

plete coding—can also occur, but this is much less common in the GMS-T output. We

observed that most genes predicted as complete by GMS-T have an upstream in-frame stop

codon in the 5’ UTR and/or a strong translation initiation signal (TIS). For the remaining

predictions, with a weak TIS and no in-frame stop codon in the 5’ UTR, we attempted to

use the scoring system from Equation (5.1) to improve the classification of complete and

incomplete predictions. However, in our experiments, this classification was not able to

significantly improve the original (mostly correct) GMS-T labeling, and it is therefore not

used in the algorithm.
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5.5.3.3 Adjustment of predictions creating less than longest ORF

Most transcripts are translated from the start codon closest to the 5’ end [131]. Still, the

translation can be initiated at a downstream start; e.g., when the upstream starts have a

weak translation initiation signal (the Kozak pattern [132]). GMS-T accounts for the pos-

sibility of non-5’-most translation starts by predicting the translation start based on the

strength of its Kozak pattern (derived in species-specific self-training). Because the Kozak

pattern is a relatively weak signal (and possibly because of the bias in reference annotations

towards the 5’-most translation initiation sites), the non-5’-most GMS-T start predictions

exhibit a higher false-positive rate when compared to their 5’-most start counterparts. To

mitigate this issue, GeneMark-ETP+ extends predictions with the non-5’-most start to the

longest open reading frame when the longer prediction is well-supported by external pro-

tein evidence (Section 5.3.2.4). As a result, the high-confidence gene set can still contain

non-5’-most predictions, but their error rate is significantly lower than the original set of

all such GMS-T candidates.

5.5.3.4 Derivation of classification scores

To derive Equations (5.1) and (5.2), we trained random forest and logistic regression classi-

fiers—using all alignment features offered by DIAMOND’s tabular output—to classify pre-

dictions as complete/incomplete (for Equation (5.1)), or true/false (for Equation (5.2)). The

ground-truth labels were determined by comparisons with reference annotations; the set of

training data contained representative GMS-T predictions from each group of genomes

(Table 5.1). Next, we explored the trained models to determine which alignment features

were the most important for correct classification. Finally, by trying multiple designs, we

found how to best combine the most important features into single scores with a straight-

forward biological interpretation, giving rise to Equations (5.1) and (5.2). Notably, when

used to classify GMS-T predictions in a hold-out test set, the application of Equations (5.1)

and (5.2) led to better prediction accuracy than the classification with the trained random
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forest and logistic regression models.

5.5.4 Comparison of GeneMark-ETP+ with other gene finders

5.5.4.1 Comparison with GeneMark-ET, -EP+, and their optimal combination

In all tested genomes, GeneMark-ETP+ significantly outperformed the previous Gene-

Mark versions—the RNA-Seq-based GeneMark-ET and protein-homology-based Gene-

Mark-EP+. This improvement may not be surprising as GeneMark-ET and -EP+ each

use only a single source of extrinsic evidence. Therefore, we also compared the accu-

racy of GeneMark-ETP+ to the accuracy corresponding to an ideal combination of gene

sets predicted by GeneMark-ET and -EP+ (Section 5.3.5.3). This optimal combination

would have the sensitivity and specificity corresponding to the union and the intersection

of gene predictions by the two tools, respectively. Assuming this ideal combination could

be achieved, its prediction accuracy would still be far below that of GeneMark-ETP+ (Fig-

ures C.2 and 5.12). This comparison demonstrates that the high prediction accuracy of

GeneMark-ETP+ is a result of integration of transcriptomic and protein data in all stages

of the algorithm, and cannot be achieved in a “post-processing” step.

5.5.4.2 Comparison with TSEBRA

RNA-Seq-based BRAKER1 and protein-homology-based BRAKER2 were demonstrated

to be one of the most accurate gene prediction pipelines ([47], Chapter 4). In turn, TSE-

BRA, a tool that finds an optimal combination of predictions made by BRAKER1 and

BRAKER2, was shown to achieve higher accuracy than (i) either BRAKER1 or BRA-

KER2 alone, and (ii) EVidenceModeler [76], one of the most prominent combiner tools.

Therefore, TSEBRA is an excellent representative of tools combining RNA-Seq- and pro-

tein homology-based predictions.

In the group of large genomes, GeneMark-ETP+ achieved significantly higher accuracy

than TSEBRA (Figure 5.11). This was especially true for the GC-heterogeneous genomes
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(G. gallus, M. musculus), which is not surprising because BRAKER1 and BRAKER2 do

not adjust for variations in GC content (as discussed in Section 4.5.1.2). However, GC-

heterogeneity is not the only reason for GeneMark-ETP+’s improved accuracy in large

genomes, as it showed significant improvements over TSEBRA in the GC-homogeneous

genomes of S. lycopersicum and D. rerio as well. The accuracy differences were much

smaller in the group of compact genomes (Figure 5.10), with TSEBRA achieving higher

accuracy in C. elegans.

The fact that neither tool was clearly better in all tested genomes is actually encourag-

ing, as it hints at the possibility of joining the two algorithms. In the spirit of BRAKER1

and BRAKER2, a gene prediction pipeline, BRAKER3, could be developed to combine

the strengths of GeneMark-ETP+, AUGUSTUS, and TSEBRA.

5.6 Conclusion

GeneMark-ETP+ is a self-training eukaryotic gene prediction algorithm that combines ge-

nomic, transcriptomic, and protein homology information sources throughout all stages

of its automatic model training and gene prediction. We observed that GeneMark-ETP+

delivered high prediction accuracy in all tested genomes, including the group of difficult-

to-annotate, large, GC-heterogeneous genomes. Furthermore, GeneMark-ETP+ achieved

significantly better prediction accuracy than any combination of previous GeneMark ver-

sions that use either transcriptomic or protein homology evidence.

5.7 Availability

We are currently finalizing the GeneMark-ETP+ distribution package. GeneMark-ETP+

will be available on GitHub and at http://topaz.gatech.edu/GeneMark/license download.

cgi. The runtime of GeneMark-ETP+ scales with the genome size and is comparable to the

one of GeneMark-EP+. For example, on a machine with 64 CPU cores, with the genomes

of D. melanogaster, D. rerio, and M. musculus on input, the runtimes were 1, 4.5, and 6.5
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hours, respectively.
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CHAPTER 6

CONCLUSION

This dissertation presented three novel algorithms for automatic gene prediction in eu-

karyotic genomes, each of which solved several problems that hindered the accuracy and

usability of existing gene prediction methods.

First, we presented GeneMark-EP+, an unsupervised gene prediction algorithm that

uses homologous cross-species proteins to guide its model training and gene prediction

steps. The main reason to develop GeneMark-EP+ was a clear need to leverage abundant

protein sequence data available in public databases for improving the accuracy of automatic

gene prediction. The use of protein homology in gene prediction poses a challenge due to

the patchiness of the evidence proteins generate and the decrease in prediction accuracy

with the increasing evolutionary distance of proteins. GeneMark-EP+ addressed this chal-

lenge by finding an optimal method of homologous protein evidence incorporation into the

automatic iterative training of an ab initio algorithm. The need to process large protein

databases and determine the reliability of the mapped protein evidence led to the devel-

opment of a new pipeline called ProtHint—a tool that predicts accurate locations of exon

boundaries from a large number of proteins of any evolutionary distance to the genome of

interest. The novel scoring system developed in ProtHint made it possible to define protein

hints with over 95% specificity regardless of the number and evolutionary distance of target

proteins. Due to their high specificity, these reliable hints could be directly incorporated

into the final GeneMark-EP+ predictions; thus significantly increasing its prediction accu-

racy. We showed that GeneMark-EP+ delivered better prediction accuracy than ab initio

GeneMark-ES and RNA-Seq-based GeneMark-ET, even in situations when only evolution-

arily remote proteins were used on input. GeneMark-EP+ should thus become a universal

extension of GeneMark-ES because the protein databases are (unlike transcriptomic data)
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always readily available prior to a genome annotation project start. Indeed, since its re-

lease in May 2020, GeneMark-EP+ has been downloaded > 5000 times and references to

GeneMark-EP+ (cited 80 times) have appeared in a number of genome projects annotating

fungi, protists, plants, and animals.

Second, we introduced BRAKER2, a fully automated protein homology-based gene

prediction pipeline that integrates ProtHint and GeneMark-EP+ with AUGUSTUS. By

combining complementary strengths of multiple gene prediction tools, BRAKER2 achieves

state-of-the-art gene prediction accuracy in a fully unsupervised manner. There are several

reasons why BRAKER2 performs better than AUGUSTUS or GeneMark-EP+ alone. In

contrast to GeneMark-EP+, AUGUSTUS allows for more flexible integration of protein

hints into an ab initio gene prediction. This makes it possible to integrate all of the protein

hints generated by ProtHint into AUGUSTUS predictions, not just the subset of reliable

hints utilized by GeneMark-EP+. On top of that, unlike GeneMark-EP+, AUGUSTUS pre-

dicts alternative isoforms of protein-coding genes. That said, AUGUSTUS, a supervised

algorithm, cannot be used at all without a reliable training set—prepared by GeneMark-

EP+ in an unsupervised manner. Further, although AUGUSTUS contains a sophisticated

mechanism for the integration of protein hints, the task of the actual preparation and scor-

ing of such hints is solved by ProtHint. We demonstrated that BRAKER2 achieves high

prediction accuracy in the absence of closely related proteins, and illustrated how this is

facilitated by an optimal AUGUSTUS training and the simultaneous use of multiple refer-

ence proteins. We showed that even in tests with the most remotely related proteins, the

accuracy of BRAKER2 was comparable to that of BRAKER1, which was supported by a

large amount of RNA-Seq data. Finally, we showed that BRAKER2 achieved significantly

higher prediction accuracy than MAKER2, one of the most frequently used gene prediction

pipelines. The usefulness of BRAKER2 has been verified by its use in numerous genome

annotation projects; since its release in January 2021, BRAKER2 has been referenced by

close to 200 publications.
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Finally, we presented GeneMark-ETP+, a self-training eukaryotic gene prediction algo-

rithm that combines genomic, transcriptomic, and protein homology information sources

throughout all stages of its automatic model training and gene prediction. The main reason

to develop GeneMark-ETP+ was a clear need to create a self-training algorithm that would

utilize the full extent of information in the mentioned information streams. GeneMark-

ETP+ facilitates the evidence integration by, among other things, creating a novel method

for simultaneous gene prediction in transcripts (assembled from RNA-Seq) and genomic

DNA. Importantly, the training of GeneMark-ETP+ is fully unsupervised and the protein

homology evidence integration utilizes proteins of any evolutionary distance, including re-

mote homologs; thus building upon the work described in the previous two chapters. We

described the salient components of GeneMark-ETP+—a novel method that uses protein

homology to refine GMS-T predictions in transcripts, GC-content specific automatic train-

ing, and a novel mechanism of integrating repeat annotations—and showed how each of

these components contributed to GeneMark-ETP+’s high gene prediction accuracy. We

showed that GeneMark-ETP+ achieved significantly better accuracy than any combination

of previous GeneMark versions (-ET, -EP+) that use either transcriptomic or protein homol-

ogy evidence. We also demonstrated that in large eukaryotic genomes, GeneMark-ETP+

was more accurate than TSEBRA, a combiner of BRAKER1 and BRAKER2 predictions.

Overall, we expect GeneMark-ETP+ (manuscript in preparation) to be an important step

toward fully automated and accurate eukaryotic gene prediction.

Despite the advances described in this thesis, there are still opportunities for further

enhancements. For instance, as hinted at the end of Chapter 5, the strengths of GeneMark-

ETP+ and AUGUSTUS could be combined to develop a gene prediction pipeline, BRA-

KER3. To outline BRAKER3, the high-confidence genes predicted by GeneMark-ETP+

would make an ideal set for AUGUSTUS training, including the training of GC-specific

models. AUGUSTUS could, in turn, be used to predict more accurate genes in non-HC-

segments, including predictions of alternative isoforms; as GeneMark-ETP+ only predicts
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alternative isoforms in the high-confidence loci. Another opportunity for improving gene

prediction methods lies in the utilization of long RNA reads. Although GeneMark-ETP+

was designed to directly work with transcripts assembled from long-read RNA sequencing,

careful tests must be conducted to determine whether long reads positively contribute to

GeneMark-ETP+’s prediction accuracy and whether the design of GeneMark-ETP+ needs

to be adjusted to better account for the long reads.

126



Appendices



APPENDIX A

GENEMARK-EP+

A.1 Accuracy assessment of GeneMark-EP+ on exon level

The exon level accuracy of GeneMark-EP+ (Figure A.2) followed the same trends as the

gene level accuracy described in Section 3.4.1.

A.1.1 Fungal genomes (N. crassa)

In comparison with GeneMark-ES, we observed small improvements in GeneMark-EP+

(by ∼2 percentage points) when the hints originated from proteins of species outside of

the N. crassa genus and order (Figure A.2A). No difference between -ES and -EP+ was

observed when the hints came from proteins outside of the N. crassa phylum.

A.1.2 Compact eukaryotic genomes (C. elegans, A. thaliana, and D. melanogaster)

GeneMark-ES was quite accurate within this group of genomes, still the prediction ac-

curacy of GeneMark-EP+ was higher. The improvements were most pronounced for A.

thaliana (Figure A.2C) and D. melanogaster (Figure A.2D). GeneMark-EP+ with hints of

proteins from the relevant genus and beyond improved over GeneMark-ES by 5–10 per-

centage points in both Sn and Sp. This improvement was reduced when the evolutionary

distance to target proteins increased. However, even for more distant target proteins, sit-

uated outside the relevant phylum, we saw an increase in specificity by 2–4 percentage

points. For C. elegans (Figure A.2B), the accuracy of GeneMark-EP+ improved slightly

over -ES when target proteins from inside the same genus were admitted but remained al-

most the same when target proteins were selected from species outside the C. elegans genus

or phylum.
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A.1.3 Large eukaryotic genomes (S. lycopersicum and D. rerio)

GeneMark-ES was less accurate for large genomes than for the compact genomes. When

proteins of species inside the same phylum could be used as targets for hints genera-

tion, GeneMark-EP+ showed significant increases in performance (Figure A.2EF) with Sn

∼75% comparable to the Sn values reached for the compact genomes. The Sp value was

improved to 55%–60%. Still, this was much lower than the average Sp observed for com-

pact genomes (a part of this difference could be attributed to the quality of the reference

annotations, see Section 3.4.1.3). The improvement of GeneMark-EP+ over GeneMark-ES

was by ∼10 percentage points in Sn and Sp (Figure A.2EF). This improvement remained

high even when more remote target proteins were used for hints generation, i.e., from

species outside the same phylum.

A.2 Details of the ProtHint design

A.2.1 IBA score for an exon with a frameshift

If the spliced alignment contains a frameshift, we modify the protein alignment downstream

from the frameshift point (for a downstream exon) or upstream from the frameshift point

(for an upstream exon) by replacing each translated codon with a gap. Each such artificial

gap adds a penalty = −4 during the computation of the IBA score (Section 3.3.2.2).

A.2.2 Comparison between intron border alignment (IBA) and intron mapping coverage

(IMC) Scores

A direct comparison of Sp-Sn curves in Figure 3.2 is not entirely fair for the following

reason. All introns are filtered with IBA ≥ 0.1 and AEE ≥ 25 prior to computing the IMC

score (Section 3.3.2.3). This removes a significant number of false predictions (Figure A.1).

Thus, the IMC score is computed from a set already filtered with the IBA score.
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A.2.3 Invariance of the spliced alignment with respect to alignment tools

ProtHint also supports the use of ProSplign as an alternative to generating spliced align-

ments with Spaln. We observed that the accuracy of hints generated by ProSplign as well

as the accuracy of subsequent GeneMark-EP+ gene predictions did not differ significantly

from the results obtained with Spaln. Since Spaln is significantly faster, it is used by de-

fault. ProtHint also supports an alternative to DIAMOND, a more sensitive but slower

BLASTp. We have not observed a significant difference in ProtHint accuracy when either

DIAMOND or BLASTp was used. Since DIAMOND is several orders of magnitude faster

than BLASTp, ProtHint uses DIAMOND by default.

A.2.3.1 Differences between the usage of ProSplign and Spaln

ProSplign has a built-in filtering procedure; therefore the initial filtering steps described in

the main text can be skipped and all hints mapped by ProSplign can be used directly. Still,

the procedure of scoring and selecting high-confidence hints remains the same.

The slow speed of ProSplign hampers its use. ProSplign does not use heuristics to

speed-up its dynamic programming based alignment algorithm; therefore it is 10-100x

slower than Spaln, depending on the length of the genome locus and the length of the

protein being aligned. To run ProSplign in a reasonable time, the “ProSplign mode” of

ProtHint works as follows. ProtHint first runs Spaln to generate a set of hints. For each hint

mapped by Spaln, the top ten supporting proteins are selected and aligned with ProSplign.

This selection reduces the number of target proteins to be aligned by ProSplign by an order

of magnitude.

We observed that the raw set of hints mapped by ProSplign was generally less sensi-

tive and more specific than hints produced by Spaln, due to ProSplign’s internal filtering

procedure. However, the set of high-confidence hints was almost the same for both tools,

meaning that our scoring system was insensitive to the choice of a spliced alignment en-

gine. Consequently, the results of GeneMark-EP+ did not significantly change when either
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Spaln- or ProSplign-generated alignments were used. Currently, Spaln is used as the de-

fault option in ProtHint due to its superior speed.

A.2.4 Use of a Custom Protein Database

A custom protein database could be used as an alternative to OrthoDB. A special attention

should be paid to the construction of such database, as the presence of identical proteins

(for example, proteins from subspecies of the same species) can lead to artificially inflated

coverage as well as increase in the execution time.

A.3 Supplementary Figures
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Figure A.1: ProtHint intron Sp-Sn curves built upon filtering sets of mapped introns by
exon AEE scores (dashed orange) and intron borders alignment score (IBA, dashed purple).
The combined curve (red) is generated by, first, selecting out all introns with AEE scores
above the threshold changing from 0 to 25; next, all the selected introns are checked for
having IBA scores above the threshold changing from 0 to 0.1 and up to 1.0. The position
of the black cross in the combined curve represents IBA score ≥ 0.1 and AEE score ≥ 25.
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A B C D

E F

Figure A.2: A comparison of GeneMark-ES and GeneMark-EP+ accuracy on the exon
level. The accuracy of GeneMark-EP+ is shown for cases when ProtHint works with dif-
ferent in size sets of reference OrthoDB proteins: from the largest (only the same species
excluded) to the smallest (the whole same phylum excluded). Exon level Sn and Sp are
defined with respect to a full complement of annotated exons, including alternative types.
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Figure A.3: The Effect of the IBA threshold on the accuracy of high-confidence hints and
GeneMark-EP+ for A. thaliana.
Left side graphs show distributions of score vectors of true positive (green) and false posi-
tive (purple) introns (mapped and scored by ProtHint), the vectors’ components are intron
borders alignment (IBA) and intron mapping coverage (IMC) scores. The black lines rep-
resent cutoffs at IMC = 4 and IBA = 0.25. Total numbers of false and true positives are
shown in the upper left corners.
Middle graphs display ProtHint’s Sp-Sn curves. The curves are generated by first, selecting
out all introns below changing the IMC threshold from 0 to 4 and then selecting out all the
introns with IBA score from 0 to 0.25 and up to 1.0. The Sp-Sn values for various IBA
cutoffs (0.1, 0.2, 0.25, 0.3, 0.4) are shown at the curves. The curves illustrate the procedure
of selecting introns mapped with high confidence.
Right side graphs display how gene-level prediction accuracy of GeneMark-EP depends on
IBA score cutoffs used to select sets of high confidence introns. Sp and Sn of GeneMark-
EP, i.e., without high confidence intron enforcement, as well as for GeneMark-ES, are
shown too.
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Figure A.4: The effect of the IBA threshold on the accuracy of high-confidence hints and
GeneMark-EP+ for N. crassa. For more details see the legend to Figure A.3.
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Figure A.5: The effect of the IBA threshold on the accuracy of high-confidence hints and
GeneMark-EP+ for S. lycopersicum. For more details see the legend to Figure A.3.

135



45

50

55

60

65

80 85 90 95

S
e
n
si
ti
v
it
y

Specificity

Linear kernel

Uniform kernel

IBA ≥ 0.25

Figure A.6: ProtHint intron hint Sp-Sn curves built for intron border alignment scores
(IBA) computed with the use of linear and uniform kernels (window width = 10). The
crosses at the curves represent IBA score ≥ 0.25, with 0.25 being a value of the IBA
threshold used for the high-confidence intron selection. D. melanogaster genome with
target proteins from species outside the Drosophilidae family were used in this experiment.
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Figure A.7: The effect of the maximum number of target proteins N per seed gene on
sensitivity and specificity of hints to introns, start and stop codons. All reported and high-
confidence hints are shown. Number N limits how many proteins found by DIAMOND are
splice-aligned back to a seed region. The examples shown are (a) for a large genome of
D. rerio, and (b) for a compact genome of D. melanogaster. The increase in Sn of intron
hints is larger in D. rerio because of a higher number of introns per gene (Table 3.1). The
default value of N is set to 25 as a trade-off between computational speed of ProtHint and
the Sn of produced hints. The specificity of high-confidence hints decreases slightly with
the increasing N. We recommend to use more strict (higher) SMC/IMC filtering thresholds
when N > 25 is selected.
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A.4 Supplementary Tables

Table A.1: Sensitivity and specificity of all gene start hints created by ProtHint as well as of
the high-confidence start hints. High specificity was achieved with filtering by SMC scores
as well as by the removal of candidate starts overlapped by at least one target protein (sug-
gesting that a start is located upstream). Sn was defined with respect to a full complement
of starts, including alternative ones as given in annotation. The numbers were generated in
tests with reference proteins from species outside the relevant genus.

All reported 
starts

Filtered with 
SMC ≥ 4

Filtered with 
SMC ≥ 4 and 

exon overlap = 0

Sn 65.3 39.4 38.8

Sp 75.6 88.5 93.7

Sn 13.4 6.1 6.0

Sp 68.2 94.5 95.8

Sn 69.3 62.9 61.4

Sp 70.9 89.8 94.4

Sn 37.7 29.6 29.2

Sp 71.6 92.2 95.6

Sn 48.9 43.6 42.8

Sp 39.2 65.4 72.4

Sn 47.6 40.8 39.6

Sp 61.4 80.8 84.1
D. rerio

N. crassa

C. elegans

A. thaliana

D. melanogaster

S. lycopersicum
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Table A.2: A comparison of GeneMark-ES, GeneMark-ET, GeneMark-EP and GeneMark-
EP+ in terms of accuracy on gene, exon, and intron levels. Exon and intron level Sn and
Sp were defined with respect to a full complement of exons/introns, including ones from
alternative isoforms. The accuracy of GeneMark-EP and GeneMark-EP+ is shown for
various types of protein database partition (species-excluded, etc).

N. crassa ES ET EP EP+ EP EP+ EP EP+

Gene Sn 64.5 64.6 64.7 67.1 64.3 66.1 64.1 64.7

Gene Sp 71.9 71.9 72.0 74.5 71.8 73.4 71.6 72.1

Exon Sn 75.7 75.9 75.7 77.8 75.4 77.2 75.3 75.8

Exon Sp 84.8 84.8 85.1 85.5 84.9 85.0 84.7 84.7

Intron Sn 79.5 79.8 79.6 82.5 79.3 82.0 79.1 80.3

Intron Sp 89.8 90.0 90.5 90.7 90.3 90.5 90.0 90.4

C. elegans ES ET EP EP+ EP EP+ EP EP+

Gene Sn 46.8 47.8 48.7 53.4 45.2 47.4 43.5 45.7

Gene Sp 46.4 47.4 47.1 51.8 42.8 45.8 40.4 43.6

Exon Sn 81.0 81.0 81.3 82.4 80.0 80.3 79.6 79.9

Exon Sp 82.4 83.0 82.6 84.1 80.0 81.5 78.3 80.1

Intron Sn 87.5 87.3 87.5 88.4 86.4 86.6 86.1 86.3

Intron Sp 86.4 87.1 86.7 88.1 84.4 85.7 82.8 84.5

A. thaliana ES ET EP EP+ EP EP+ EP EP+ EP EP+ EP EP+

Gene Sn 55.8 57.2 57.5 73.7 57.5 73.2 57.3 67.5 57.4 66.8 57.0 59.2

Gene Sp 54.0 55.3 55.4 69.4 55.4 69.1 55.3 64.6 55.4 64.0 55.3 57.3

Exon Sn 77.2 77.5 77.6 81.8 77.5 81.6 77.4 80.3 77.5 80.1 77.1 77.8

Exon Sp 79.2 80.4 80.5 84.8 80.5 84.7 80.6 83.7 80.6 83.5 80.6 81.4

Intron Sn 85.2 85.5 85.5 89.0 85.5 89.0 85.4 88.2 85.4 88.1 85.1 86.0

Intron Sp 82.4 83.9 83.9 87.7 83.9 87.7 83.9 87.1 84.0 87.0 84.1 85.1

D. melanogaster ES ET EP EP+ EP EP+ EP EP+ EP EP+ EP EP+

Gene Sn 50.2 52.4 53.3 69.2 52.9 61.8 52.7 59.5 52.6 55.8 52.6 54.3

Gene Sp 47.6 48.8 50.0 63.1 49.6 58.0 49.6 56.1 50.1 53.3 49.7 51.7

Exon Sn 67.6 68.5 68.7 76.2 68.4 73.0 68.3 71.9 68.1 70.0 68.1 69.1

Exon Sp 72.0 73.6 74.8 80.9 74.5 78.9 74.6 78.2 75.1 77.0 74.8 76.0

Intron Sn 70.1 70.6 70.7 77.6 70.5 75.3 70.4 74.3 70.3 72.6 70.2 71.6

Intron Sp 75.5 77.3 78.7 84.2 78.5 82.9 78.6 82.3 79.2 81.5 78.8 80.3

S. lycopersicum ES ET EP EP+ EP EP+ EP EP+

Gene Sn 19.3 23.9 24.1 36.3 24.2 33.5 24.2 26.1

Gene Sp 16.1 19.5 19.5 28.9 19.7 27.1 20.3 22.0

Exon Sn 65.2 68.8 69.0 75.5 68.9 74.3 68.0 69.5

Exon Sp 46.2 54.0 53.7 59.1 54.0 58.8 55.7 57.0

Intron Sn 71.9 76.3 76.3 84.6 76.2 83.5 75.5 77.8

Intron Sp 48.8 59.3 58.7 65.9 59.1 65.6 61.4 63.3

D. rerio ES ET EP EP+ EP EP+ EP EP+

Gene Sn 12.1 16.2 16.2 29.8 16.2 27.0 16.4 20.4

Gene Sp 4.5 6.0 5.8 11.5 5.8 10.6 5.7 7.6

Exon Sn 64.0 66.5 66.5 72.7 66.3 71.6 66.1 68.3

Exon Sp 43.7 49.0 48.0 54.2 48.1 53.8 47.3 50.7

Intron Sn 63.7 66.2 66.3 73.1 66.2 72.1 66.0 68.7

Intron Sp 45.8 52.2 51.3 58.1 51.5 57.8 50.9 54.5

The level of exclusion of database proteins

*

* *

* * *

* See the first column to the right

*

PhylumSpecies Subgenus Family Genus Order 

*

*

* * *

**

Table A.3: A comparison of GeneMark-EP+ predictions against a full D. rerio annotation
as well as annotation with partial CDS removed. Other columns show accuracy defined
for a set of genes with complete/incomplete transcripts and for sets of complete/incomplete
genes. A gene is considered complete if its transcripts are complete. All the numbers were
generated in tests for protein database with proteins from species outside of the D. rerio
genus.

Original
Annotation

Partial CDS 
removed, all 
transcripts

Complete 
transcripts 

Incomplete 
transcripts

Complete
genes

Incomplete
genes

Exon Sn 69.90 72.67 75.06 67.60 75.08 68.71

Gene Sn 23.98 24.34 27.11 0.19 29.84 12.11
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Table A.4: Performance of ProtHint: Sensitivity and specificity of hints to introns, gene
start and stop codons. Some cells of the table are left empty due to a low number or even
complete absence of species within particular taxonomic ranks (Table 3.2). The results are
shown for all reported hints as well as high-confidence hints.

N. crassa All reported High conf. All reported High conf. All reported High conf.

Intron Sn 76.0 66.2 69.9 60.7 60.2 37.3

Intron Sp 58.4 96.8 61.6 96.9 70.8 98.3

Start Sn 65.3 38.8 43.0 34.3 27.4 9.6

Start Sp 75.6 93.7 76.0 91.5 73.7 89.0

Stop Sn 65.7 40.0 44.1 35.9 29.6 10.9

Stop Sp 94.1 98.5 95.9 98.4 96.1 99.2

C. elegans All reported High conf. All reported High conf. All reported High conf.

Intron Sn 76.7 36.7 37.4 18.1 26.0 12.9

Intron Sp 91.8 99.0 92.8 99.3 93.7 99.2

Start Sn 47.7 13.4 13.4 6.0 8.2 5.1

Start Sp 75.8 96.5 68.2 95.8 76.2 95.0

Stop Sn 54.8 18.1 18.9 8.8 10.8 7.3

Stop Sp 90.7 97.0 92.4 97.7 92.9 97.3

A. thaliana All reported High conf. All reported High conf. All reported High conf. All reported High conf. All reported High conf.

Intron Sn 88.4 85.0 87.9 84.3 82.6 74.2 80.3 71.6 51.3 28.3

Intron Sp 85.8 97.3 86.0 97.5 90.9 98.8 91.2 98.8 95.0 99.6

Start Sn 71.1 62.0 69.3 61.4 52.8 39.4 46.7 37.8 9.9 4.0

Start Sp 69.9 94.4 70.9 94.4 78.2 94.8 77.6 94.4 54.2 93.1

Stop Sn 67.1 60.4 64.9 59.0 47.9 37.5 43.3 36.3 11.1 5.1

Stop Sp 88.6 95.1 89.6 95.4 94.4 97.4 94.4 97.4 94.1 99.1

D. melanogaster All reported High conf. All reported High conf. All reported High conf. All reported High conf. All reported High conf.

Intron Sn 79.8 74.6 72.8 62.6 66.2 54.3 49.7 34.4 35.8 20.9

Intron Sp 83.5 98.9 79.6 98.8 79.5 98.8 80.5 99.0 88.4 99.5

Start Sn 70.3 60.7 49.8 36.5 37.7 29.2 22.3 15.9 14.1 9.7

Start Sp 79.5 97.4 75.6 96.7 71.6 95.6 73.4 94.5 75.0 93.5

Stop Sn 75.3 68.4 56.7 45.2 44.7 36.9 26.7 19.8 15.8 11.2

Stop Sp 94.8 99.3 94.2 98.8 92.8 98.5 94.5 98.9 95.8 99.2

S. lycopersicum All reported High conf. All reported High conf. All reported High conf.

Intron Sn 80.6 76.8 76.0 69.4 46.4 25.7

Intron Sp 70.5 92.0 81.7 93.5 89.7 95.6

Start Sn 48.9 42.8 39.9 32.9 8.5 3.4

Start Sp 39.2 72.4 43.8 74.6 40.7 77.9

Stop Sn 51.9 46.6 42.3 35.6 10.1 4.9

Stop Sp 69.9 83.6 76.9 85.5 85.8 92.0

D. rerio All reported High conf. All reported High conf. All reported High conf.

Intron Sn 65.5 55.8 61.2 50.1 37.6 24.3

Intron Sp 84.4 92.2 86.8 93.5 90.1 96.8

Start Sn 47.6 39.6 39.6 31.3 14.3 8.7

Start Sp 61.4 84.1 70.4 85.7 64.1 89.5

Stop Sn 52.1 46.3 46.2 38.9 17.3 11.2

Stop Sp 79.8 89.8 85.6 91.8 87.6 95.5

The level of exclusion of database proteins

***

Phylum

*

*

*

Species Subgenus Genus

* *

* *

*

*

*

* See the first column to the right

*

Family Order 
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Table A.5: Accuracy assessment of GeneMark-ES, GeneMark-EP and GeneMark-EP+.
GeneMark-EP+ was run with enforcement of (a) only high confidence intron hints, (b)
only high confidence hints to gene starts and stops (c) enforcement of both (a) and (b).
The accuracy is shown at gene level, exon level (for all exons and separately for the initial,
internal, terminal, and single exons), intron level as well as for starts and stops. All the
numbers were obtained for tests in genus-excluded mode.

ES EP
EP+

Introns
EP+

Starts / Stops
EP+
Full

Gene Sn / Sp 64.5 / 71.9 64.7 / 72.0 66.0 / 73.6 66.3 / 73.4 67.1 / 74.5

Exon Sn / Sp 75.7 / 84.8 75.7 / 85.1 77.3 / 84.9 76.7 / 85.8 77.8 / 85.5

Initial Sn / Sp 70.9 / 81.3 70.2 / 81.2 72.4 / 82.0 72.2 / 82.3 73.2 / 82.7

Internal Sn / Sp 77.4 / 88.2 77.2 / 89.1 80.4 / 87.5 77.8 / 89.8 80.4 / 88.7

Terminal Sn / Sp 79.0 / 89.5 79.2 / 89.8 79.9 / 89.1 80.2 / 90.3 80.5 / 89.8

Single Sn / Sp 74.7 / 70.7 74.5 / 69.9 73.3 / 71.5 75.7 / 70.5 74.3 / 71.7

Intron Sn / Sp 79.5 / 89.8 79.6 / 90.5 82.5 / 90.4 80.2 / 90.9 82.5 / 90.7

Start Sn / Sp 76.2 / 83.2 76.0 / 82.8 76.8 / 83.7 77.5 / 83.8 77.8 / 84.3

Stop Sn / Sp 85.8 / 92.0 86.0 / 92.1 86.4 / 92.6 86.8 / 92.4 86.9 / 92.7

Gene Sn / Sp 46.8 / 46.4 45.2 / 42.8 46.4 / 45.0 46.3 / 43.8 47.4 / 45.8

Exon Sn / Sp 81.0 / 82.4 80.0 / 80.0 80.2 / 81.2 80.2 / 80.4 80.3 / 81.5

Initial Sn / Sp 53.5 / 63.4 53.1 / 60.1 53.3 / 61.7 53.8 / 60.8 54.0 / 62.4

Internal Sn / Sp 90.7 / 87.7 89.6 / 86.4 89.9 / 87.1 89.6 / 86.7 89.8 / 87.4

Terminal Sn / Sp 73.6 / 77.2 72.6 / 72.8 72.6 / 74.5 73.1 / 73.2 73.0 / 74.7

Single Sn / Sp 15.6 / 50.5 16.6 / 46.5 16.7 / 48.3 18.1 / 47.4 17.8 / 48.8

Intron Sn / Sp 87.5 / 86.4 86.4 / 84.4 86.7 / 85.5 86.4 / 84.7 86.6 / 85.7

Start Sn / Sp 53.7 / 64.8 53.4 / 61.5 53.6 / 63.2 54.0 / 62.3 54.3 / 63.7

Stop Sn / Sp 73.5 / 78.0 72.6 / 73.5 72.6 / 75.3 73.1 / 73.9 73.0 / 75.4

Gene Sn / Sp 55.8 / 54.0 57.5 / 55.4 65.2 / 63.1 65.7 / 61.4 73.2 / 69.1

Exon Sn / Sp 77.2 / 79.2 77.5 / 80.5 80.1 / 82.5 79.6 / 83.0 81.6 / 84.7

Initial Sn / Sp 60.5 / 68.9 61.1 / 69.5 63.3 / 71.4 66.7 / 73.9 67.9 / 75.3

Internal Sn / Sp 87.1 / 83.4 87.3 / 85.1 90.6 / 87.1 87.6 / 87.3 90.5 / 89.2

Terminal Sn / Sp 61.2 / 72.2 61.9 / 72.9 63.7 / 74.6 66.3 / 76.0 66.9 / 76.9

Single Sn / Sp 58.6 / 74.2 59.1 / 73.3 58.3 / 76.1 64.3 / 75.9 63.7 / 78.5

Intron Sn / Sp 85.2 / 82.4 85.5 / 83.9 89.0 / 86.3 86.0 / 85.5 89.0 / 87.7

Start Sn / Sp 65.4 / 74.1 65.8 / 74.1 66.5 / 75.3 71.4 / 78.0 71.3 / 78.7

Stop Sn / Sp 67.0 / 77.0 67.8 / 77.5 68.4 / 78.8 71.8 / 79.5 71.7 / 80.2

Gene Sn / Sp 50.2 / 47.6 52.7 / 49.6 55.4 / 53.4 57.0 / 52.5 59.5 / 56.1

Exon Sn / Sp 67.6 / 72.0 68.3 / 74.6 70.9 / 76.6 69.8 / 76.3 71.9 / 78.1

Initial Sn / Sp 55.0 / 59.8 56.3 / 61.4 57.4 / 63.8 59.8 / 64.0 60.2 / 66.1

Internal Sn / Sp 75.9 / 78.0 76.0 / 82.0 80.1 / 83.2 76.1 / 83.8 79.8 / 85.0

Terminal Sn / Sp 63.1 / 68.2 64.4 / 69.6 65.5 / 72.4 67.2 / 71.5 67.7 / 73.7

Single Sn / Sp 50.8 / 73.4 52.7 / 71.7 51.9 / 73.1 55.7 / 71.6 54.8 / 72.6

Intron Sn / Sp 70.1 / 75.5 70.4 / 78.6 74.3 / 81.1 71.0 / 79.9 74.3 / 82.3

Start Sn / Sp 58.4 / 65.5 59.7 / 66.6 60.1 / 68.5 63.3 / 68.9 63.1 / 70.4

Stop Sn / Sp 68.5 / 75.3 69.5 / 75.9 70.0 / 78.2 72.1 / 76.9 72.0 / 78.7

Gene Sn / Sp 19.3 / 16.1 24.1 / 19.5 31.3 / 25.7 28.9 / 22.4 36.3 / 28.9

Exon Sn / Sp 65.2 / 46.2 69.0 / 53.7 73.9 / 57.8 71.6 / 55.4 75.5 / 59.1

Initial Sn / Sp 40.2 / 31.1 44.1 / 33.7 47.0 / 36.4 50.7 / 36.9 51.8 / 38.8

Internal Sn / Sp 79.0 / 51.4 82.3 / 62.9 88.5 / 67.5 82.7 / 64.6 88.4 / 69.1

Terminal Sn / Sp 49.7 / 37.5 55.1 / 41.1 59.1 / 44.7 61.4 / 43.8 62.9 / 46.2

Single Sn / Sp 29.7 / 46.9 33.2 / 42.1 32.7 / 43.6 37.1 / 43.9 36.6 / 45.2

Intron Sn / Sp 71.9 / 48.8 76.3 / 58.7 84.6 / 65.1 77.2 / 59.7 84.6 / 65.9

Start Sn / Sp 44.4 / 39.2 47.9 / 40.5 49.5 / 42.7 54.5 / 43.8 54.6 / 45.3

Stop Sn / Sp 53.9 / 46.7 58.2 / 48.4 60.4 / 51.1 63.9 / 50.6 64.2 / 52.3

Gene Sn / Sp 12.1 / 4.5 16.2 / 5.8 21.8 / 8.6 24.4 / 8.5 29.8 / 11.5

Exon Sn / Sp 64.0 / 43.7 66.5 / 48.0 71.2 / 52.4 68.8 / 50.3 72.7 / 54.2

Initial Sn / Sp 29.3 / 15.4 34.3 / 17.4 37.7 / 20.9 45.6 / 22.8 47.0 / 25.7

Internal Sn / Sp 71.3 / 52.7 73.2 / 59.4 78.3 / 63.0 73.6 / 61.3 78.2 / 64.6

Terminal Sn / Sp 43.8 / 23.2 47.9 / 24.5 51.4 / 28.8 55.5 / 28.1 56.5 / 31.2

Single Sn / Sp 32.9 / 26.0 37.3 / 23.3 38.0 / 25.4 50.3 / 26.1 50.1 / 27.8

Intron Sn / Sp 63.7 / 45.8 66.3 / 51.3 73.0 / 57.0 67.0 / 52.9 73.1 / 58.1

Start Sn / Sp 32.9 / 17.5 38.3 / 19.5 40.9 / 22.8 51.3 / 25.5 51.7 / 28.1

Stop Sn / Sp 48.7 / 26.0 52.6 / 26.9 55.6 / 31.0 61.7 / 30.8 62.0 / 33.8

Danio
rerio

Neurospora
crassa

Caenorhabditis
elegans

Arabidopsis
thaliana

Drosophila
melanogaster

Solanum 
lycopersicum
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Table A.6: Numbers of all annotated introns in the APPRIS set of principal isoforms and
numbers of introns located within regions encoding conserved protein domains.

All

D. melanogaster 41,010 21,562 (52.6%)

C. elegans 102,254 50,134 (49.0%)

D. rerio 178,867 106,288 (59.4%)

Species

Introns in the APPRIS set of 
principal isoforms

In regions coding for 
conserved domains

Table A.7: The change in the fraction of high-confidence and all reported intron hints
mapped to conserved protein domains when the protein database size is changed from the
largest (species or genus excluded) to the smallest (phylum excluded). Gene annotations
use the principal protein isoforms defined by the APPRIS database.

All All

Species 33,894 18,934 (55.9%) 35,338 19,414 (54.9%)

Subgenus 28,437 17,475 (61.5%) 32,413 18,917 (58.4%)

Family 24,670 16,057 (65.1%) 29,576 18,257 (61.7%)

Order 15,829 11,984 (75.7%) 22,620 16,016 (70.8%)

Phylum 9,719 8,222 (84.6%) 16,535 13,110 (79.3%)

Species 38,912 30,346 (78.0%) 80,402 45,210 (56.2%)

Family 19,155 16,556 (86.4%) 39,379 29,270 (74.3%)

Phylum 13,668 12,216 (89.4%) 27,464 23,140 (84.3%)

Genus 108,236 71,239 (65.8%) 126,010 80,307 (63.7%)

Order 97,457 67,335 (69.1%) 118,131 78,078 (66.1%)

Phylum 47,860 40,117 (83.8%) 73,568 58,355 (79.3%)

Drosophila
melanogaster

Caenorhabditis
elegans

Danio
rerio

Species

All reported introns
matching APPRIS introns

In domains

Exclusion
level

High-confidence introns
matching APPRIS introns

In domains
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APPENDIX B

BRAKER2

B.1 Extrinsic evidence configuration parameters in AUGUSTUS in BRAKER2

Extrinsic parameters for evidence integration with AUGUSTUS were adapted using Ara-

bidopsis thaliana genome and hints generated with ProtHint using OrthoDB v10 Plants

section (exempting proteins from the same species). Tests using other genomes and pro-

tein databases did not result in significantly different parameters. The final AUGUSTUS

extrinsic parameters used for all species by BRAKER2 were:

[SOURCES]

M RM P C

# M: manual hints, to be enforced hints

# RM: repeats

# P: protein hints

# C: chained protein hints

[GENERAL]

start 1 1 M 1 1e+100 RM 1 1 P 2 1 1e3 1e6 C 1 1e6

stop 1 1 M 1 1e+100 RM 1 1 P 2 1 1e3 1e6 C 1 1e6

ass 1 1 1 M 1 1e+100 RM 1 1 P 2 1 1e2 1e2 C 1 1e2

dss 1 1 1 M 1 1e+100 RM 1 1 P 2 1 1e2 1e2 C 1 1e2

intron 1 0.168 M 1 1e+100 RM 1 1 P 2 1 1e2 100 C 1 3.16

CDSpart 1 1 0.99 M 1 1e+100 RM 1 1 P 2 1 1e2 1e4 C 1 1e4

nonexonpart 1 1 M 1 1e+100 RM 1 1.14 P 2 1 1 1 C 1 1
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B.2 Running VARUS to sample and align RNA-Seq libraries

VARUS [94] (version from March 26, 2020) was run with fastq-dump [93] (v2.10.4) and

HISAT2 [32] (v2.1.0). Results of VARUS depend on the date it was run because the amount

of data deposited to NCBI Sequence Read Archive [93], from which VARUS samples the

reads, is changing in time. Therefore, we uploaded the result of VARUS for each species

at https://github.com/tomasbruna/braker2-exp/tree/master/${SPECIES}/varus. The afore-

mentioned folder also contains information on when VARUS was run and what specific

VARUS parameters (VARUSparameters.txt) were used.

B.3 Supplementary Figures
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Figure B.1: GC-content of tandem repeats in the X. tropicalis genome shown as a function
of the size of the repeat period.
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Figure B.2: Schematics of the MAKER2 training protocols: (A) a protocol recommended
by the MAKER2 authors [121]; (B) an alternative protocol (conceptually similar to BRA-
KER2) that was implemented and produced better gene prediction accuracy.
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C:5224, F:64, M:78, n:5366

C:5304, F:24, M:38, n:5366BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: fabales_odb10 (built from 10 species)
Medicago truncatula

C:2298, F:5, M:23, n:2326

C:2256, F:7, M:63, n:2326BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: eudicots_odb10 (built from 31 species)
Populus trichocarpa

C:5526, F:169, M:255, n:5950

C:5726, F:92, M:132, n:5950BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: solanales_odb10 (built from 11 species)
Solanum lycopersicum

Figure B.3: Statistics of the sets of genes from BUSCO families (complete, fragmented,
missing) of plant species identified in the reference genome annotation (top in each panel);
the same statistics for the set of genes predicted by BRAKER2 (bottom in each panel).
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C:5902, F:43, M:46, n:5991

C:5584, F:222, M:185, n:5991BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: hymenoptera_odb10 (built from 40 species)
Bombus terrestris

C:2291, F:98, M:121, n:2510

C:2403, F:50, M:57, n:2510BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: hemiptera_odb10 (built from 16 species)
Rhodnius prolixus

C:2717, F:60, M:157, n:2934

C:2715, F:123, M:96, n:2934BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: arachnida_odb10 (built from 10 species)
Parasteatoda tepidariorum

Figure B.4: BUSCO statistics for Arthropoda species. See the caption of Figure B.3 for
details.
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C:3026, F:200, M:414, n:3640

C:2983, F:205, M:452, n:3640BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: actinopterygii_odb10 (built from 26 species)
Tetraodon nigroviridis

C:3467, F:55, M:118, n:3640

C:3259, F:187, M:194, n:3640BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: actinopterygii_odb10 (built from 26 species)
Danio rerio

C:5141, F:25, M:144, n:5310

C:4447, F:361, M:502, n:5310BRAKER2

Annotation

0 20 40 60 80 100

%BUSCOs

 Complete (C)   Fragmented (F)   Missing (M)

Lineage dataset: tetrapoda_odb10 (built from 38 species)
Xenopus tropicalis

Figure B.5: BUSCO statistics for Metazoa species. See the caption of Figure B.3 for
details.

149



Figure B.6: The effect of selecting various AUGUSTUS training sets (selected from a
GeneMark-EP+ prediction) on its ab initio prediction accuracy. See Section 4.3.5.4 for the
description of this experiment. The genome of D. melanogaster with supporting proteins
outside of the same phylum were used in this experiment.
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Figure B.7: Species selected for the accuracy evaluation experiment described in Sec-
tion 4.3.5.5. The species are sorted in order of the increase of their evolutionary distance
to D. melanogaster (the measure is defined in Section 4.3.5.5). In the X-axis, we show the
name of every 10th species in the reference protein set. The green dashed lines separate
species from inside and outside of the D. melanogaster’s taxonomic family (the left one),
as well as the species from inside and outside of the D. melanogaster’s taxonomic order
(the right one). The orange dashed lines delimit the space of the Anopheles species.
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B.4 Supplementary Tables

Table B.1: Genome assemblies used for testing BRAKER2.

Species Assembly version

Arabidopsis thaliana GCF_000001735

Caenorhabditis elegans GCA_001483305

Drosophila melanogaster GCA_000001215

Other species

Plantae

Populus trichocarpa Ptrichocarpa_533_v4.0

Medicago truncatula GCA_003473485.2

Solanum lycopersicum SL4.0

Arthropoda

Bombus terrestris GCF_000214255.1

Rhodnius prolixus GCA_000181055.3

Parasteatoda tepidariorum GCF_000365465.2

Vertebrata

Tetraodon nigroviridis TETRAODON 8.0

Danio rerio GCF_000002035

Xenopus tropicalis GCF_000004195.4

Species with early sequenced genomes

Table B.2: Proteins of these species were used as external evidence in tests comparing
MAKER2 with BRAKER2. The three groups of ten species were selected at random from
the OrthoDB partitions (see Section 4.2.1).

A. thaliana C. elegans D. melanogaster
Dendrobium officinale Buceros rhinoceros silvestris Pogonomyrmex barbatus
Parasponia andersonii Cardiocondyla obscurior Oryctes borbonicus
Beta vulgaris subsp. vulgaris Drosophila elegans Heliconius melpomene
Aegilops tauschii Geospiza fortis Stegodyphus mimosarum
Nelumbo nucifera Sarcoptes scabiei Calopteryx splendens
Triticum urartu Austrofundulus limnaeus Wasmannia auropunctata
Ananas comosus Nomascus leucogenys Fopius arisanus
Coccomyxa subellipsoidea C-169 Pieris rapae Limulus polyphemus
Populus euphratica Anas platyrhynchos Tribolium castaneum
Phalaenopsis equestris Numida meleagris Myzus cerasi

152



Table B.3: Gene prediction accuracy of BRAKER2 and BRAKER1 observed in tests on
the A. thaliana genome. The sets of reference proteins for BRAKER2 were selected from
the Plantae section of OrthoDB.

BRAKER2
Order Family Species BRAKER1

excluded excluded excluded
Gene Sn 71.1 73.6 79.4 61.6
Gene Sp 67.0 69.7 72.8 61.7
Gene F1 69.0 71.6 76.0 61.6
Exon Sn 80.7 81.5 83.3 79.9
Exon Sp 86.6 87.4 86.8 81.7
Exon F1 83.5 84.3 85.0 80.8

Table B.4: The same information as in Table B.3 for a test on the C. elegans genome.
The sets of reference proteins for BRAKER2 were selected from the Metazoa section of
OrthoDB.

BRAKER2
Order Family Species BRAKER1

excluded excluded excluded
Gene Sn 49.8 49.1 67.4 58.2
Gene Sp 56.2 55.1 68.3 62.3
Gene F1 52.8 51.9 67.8 60.2
Exon Sn 75.4 74.7 84.3 83.6
Exon Sp 88.6 88.2 90.7 87.2
Exon F1 81.5 80.9 87.4 85.4

Table B.5: The same information as in Table B.3 for a test on the D. melanogaster genome.
The sets of reference proteins for BRAKER2 were selected from the Arthropoda section of
OrthoDB.

BRAKER2
Order Family Species BRAKER1

excluded excluded excluded
Gene Sn 61.1 66.3 77.8 63.1
Gene Sp 60.2 64.8 72.9 61.8
Gene F1 60.6 65.5 75.3 62.4
Exon Sn 71.4 74.5 79.8 76.7
Exon Sp 83.2 85.1 87.6 80.7
Exon F1 76.8 79.4 83.5 78.6
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Table B.6: Complementary information for Table 4.3; Sn, Sp, and F1 values computed on
exon and gene levels. Contrary to Table 4.3, the comparisons were made against the full
complements of reference annotations; annotated single exons genes were included as well.
For a gene to be considered complete and canonical, at least one of the gene’s transcripts
had to be fully annotated, such that the initial coding exon started with a “canonical” ATG
and the terminal coding exon ended with TAA, TAG, or TGA.

Sn Sp F1 Sn Sp F1

P. trichocarpa 69.1 60.2 64.3 84.9 82.3 83.6 0.3

M. truncatula 44.7 44.0 44.3 78.7 71.5 74.9 0.0

S. lycopersicum 41.2 34.4 37.5 76.6 67.7 71.9 14.5

B. terrestris 46.9 25.0 32.6 74.5 72.0 73.2 4.7

R. prolixus 16.0 10.6 12.8 60.6 49.7 54.6 34.7

P. tepidariorum 30.4 14.9 20.0 67.7 59.6 63.4 18.2

T. nigroviridis 11.0 7.9 9.2 60.5 56.7 58.5 63.8

D. rerio 40.6 20.5 27.2 75.3 69.4 72.2 11.8

X. tropicalis 40.6 25.9 31.6 75.1 77.5 76.3 2.4

% Non-canonical or 
incomplete genes

Gene
Species

Exon

Table B.7: Numbers of genes, transcripts, and alternative transcripts predicted by BRA-
KER1 and BRAKER2 in genomes of three species with different sets of proteins on input
(from the relevant OrthoDB partitions with proteins from the same species, family, and the
order excluded).

Genes Transcripts
Alternative 
transcripts

% Alt from 
all

Annotation 27,444 40,827 13,383 32.8

BRAKER1 27,403 28,899 1,496 5.2

Species 29,902 31,844 1,942 6.1

Family 28,988 30,153 1,165 3.9

Order 29,101 30,248 1,147 3.8

Genes Transcripts
Alternative 
transcripts

% Alt from 
all

Annotation 20,172 28,506 8,334 29.2

BRAKER1 18,833 20,978 2,145 10.2

Species 19,916 21,366 1,450 6.8

Family 17,977 18,466 489 2.6

Order 17,883 18,283 400 2.2

Genes Transcripts
Alternative 
transcripts

% Alt from 
all

Annotation 13,929 22,247 8,318 37.4

BRAKER1 14,208 15,470 1,262 8.2

Species 14,863 16,149 1,286 8.0

Family 14,247 15,266 1,019 6.7

Order 14,142 14,605 463 3.2

A. thaliana

BRAKER2 with 
exclusion of

proteins from

C. elegans

D. melanogaster

BRAKER2 with 
exclusion of 

proteins from

BRAKER2 with 
exclusion of 

proteins from
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Table B.8: Accuracy of BRAKER2; determined for three genomes with different combina-
tions of ProtHint hint types: high-confidence hints (HC), non-high-confidence hints (LC),
chained CDSpart hints (Chains).

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

Gene Sn 47.5 49.6 49.3 49.8 45.9 48.8 48.5 49.1 55.1 65.9 65.1 67.4

Gene Sp 54.9 56.6 55.9 56.2 52.8 55.2 54.6 55.1 58.7 67.1 66.4 68.3

Gene F1 50.9 52.9 52.4 52.8 49.1 51.8 51.4 51.9 56.9 66.5 65.7 67.8

Exon Sn 73.8 75.1 75.2 75.4 72.5 74.1 74.3 74.7 78.7 83.4 83.2 84.3

Exon Sp 88.7 89.0 88.7 88.6 88.0 88.5 88.3 88.2 89.4 91.0 90.9 90.7

Exon F1 80.6 81.5 81.4 81.5 79.5 80.7 80.7 80.9 83.7 87.0 86.9 87.4

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

Gene Sn 65.0 68.5 70.2 71.1 66.9 70.7 73.3 73.6 72.9 76.7 79.1 79.4

Gene Sp 63.6 66.0 66.4 67.0 65.8 68.5 69.6 69.7 69.6 71.6 73.2 72.9

Gene F1 64.3 67.2 68.3 69.0 66.3 69.6 71.4 71.6 71.2 74.1 76.0 76.0

Exon Sn 78.5 79.9 80.4 80.7 79.1 80.6 81.2 81.5 81.3 82.6 83.1 83.3

Exon Sp 86.3 86.6 86.6 86.6 87.0 87.4 87.6 87.4 86.8 86.6 87.2 86.7

Exon F1 82.2 83.1 83.4 83.6 82.9 83.8 84.3 84.3 83.9 84.5 85.1 85.0

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

HC Hints
HC Hints
LC Hints

HC Hints
Chains

HC Hints
LC Hints
Chains

Gene Sn 58.6 60.2 60.4 61.1 62.8 64.6 65.7 66.3 73.7 76.0 77.5 77.8

Gene Sp 59.0 60.1 59.8 60.2 63.1 63.9 64.7 64.8 71.0 72.1 73.0 72.9

Gene F1 58.8 60.1 60.1 60.6 63.0 64.3 65.2 65.6 72.3 74.0 75.2 75.3

Exon Sn 69.4 70.5 70.9 71.4 72.2 73.5 74.0 74.5 78.0 79.1 79.5 79.8

Exon Sp 83.3 83.5 83.3 83.2 84.9 85.0 85.4 85.1 87.2 87.4 87.9 87.6

Exon F1 75.7 76.5 76.6 76.8 78.1 78.8 79.3 79.5 82.3 83.0 83.5 83.5

Species excluded proteinsFamily excluded proteinsOrder excluded proteins

D. melanogaster

Species excluded proteinsFamily excluded proteinsOrder excluded proteins

Family excluded proteinsOrder excluded proteins

C. elegans

A.thaliana

Species excluded proteins
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Table B.9: Change of the gene prediction accuracy upon successive steps of BRAKER2.
Experiments on the three genomes used reference proteins from the relevant OrthoDB par-
titions with (A) proteins from the same taxonomic family excluded, and (B) proteins from
the same species excluded.

ES EP+ first 
iteration

second 
iteration

ES EP+ first 
iteration

second 
iteration

Gene Sn 55.8 67.5 73.2 73.6 Gene Sn 55.8 73.7 78.9 79.4

Gene Sp 54.0 64.6 69.4 69.7 Gene Sp 54.0 69.4 72.7 72.9

Gene F1 54.9 66.0 71.3 71.6 Gene F1 54.9 71.5 75.7 76.0

Exon Sn 77.2 80.3 81.3 81.5 Exon Sn 77.2 81.8 83.1 83.3

Exon Sp 79.2 83.7 87.3 87.4 Exon Sp 79.2 84.8 86.8 86.7

Exon F1 78.2 81.9 84.2 84.3 Exon F1 78.2 83.2 84.9 85.0

ES EP+ first 
iteration

second 
iteration

ES EP+ first 
iteration

second 
iteration

Gene Sn 46.8 47.4 48.9 49.1 Gene Sn 46.8 53.4 66.8 67.4

Gene Sp 46.4 45.8 54.9 55.1 Gene Sp 46.4 51.8 67.7 68.3

Gene F1 46.6 46.6 51.7 51.9 Gene F1 46.6 52.6 67.2 67.8

Exon Sn 81.0 80.3 74.7 74.7 Exon Sn 81.0 82.4 84.1 84.3

Exon Sp 82.4 81.5 88.1 88.2 Exon Sp 82.4 84.1 90.6 90.7

Exon F1 81.7 80.9 80.8 80.9 Exon F1 81.7 83.2 87.2 87.4

ES EP+ first 
iteration

second 
iteration

ES EP+ first 
iteration

second 
iteration

Gene Sn 50.2 59.5 65.6 66.3 Gene Sn 50.2 69.2 76.6 77.8

Gene Sp 47.6 56.1 64.1 64.8 Gene Sp 47.6 63.1 72.0 72.9

Gene F1 48.9 57.7 64.8 65.6 Gene F1 48.9 66.0 74.2 75.3

Exon Sn 67.6 71.9 74.2 74.5 Exon Sn 67.6 76.2 79.3 79.8

Exon Sp 72.0 78.2 84.9 85.1 Exon Sp 72.0 80.9 87.3 87.6

Exon F1 69.7 74.9 79.2 79.5 Exon F1 69.7 78.5 83.1 83.5

A B

GeneMark GeneMark

GeneMarkGeneMark

D. melanogaster

Family 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints
GeneMark

C. elegans

Family 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints

A. thaliana

Family 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints

A. thaliana

Species 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints

C. elegans

Species 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints

D. melanogaster

Species 
excluded
proteins

BRAKER2 BRAKER2 

steps 1 and 2 steps 3 and 4

AUGUSTUS

with hints
GeneMark
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Table B.10: Prediction accuracy of MAKER2 on three repeat-masked genomes. The ta-
ble shows (i) the accuracy of gene finders trained directly on gene structures derived by
protein alignments, as recommended by the MAKER2 protocol; (ii) the accuracy of gene
finders trained on genes predicted by GeneMark-ES and supported at least partially by
protein alignments (BRAKER2-like, see Figure B.2). Three combinations of gene find-
ers in MAKER2 (SNAP + GeneMark-ES + AUGUSTUS; GeneMark-ES + AUGUSTUS;
AUGUSTUS) are compared.

Species A. thaliana C. elegans D. melanogaster

Training MAKER2 / BRAKER2-like MAKER2 / BRAKER2-like MAKER2 / BRAKER2-like

Predictors

SNAP
GM-ES

AUGUSTUS

SNAP
GM-ES

AUGUSTUS

SNAP
GM-ES

AUGUSTUS
GM-ES AUGUSTUS GM-ES AUGUSTUS GM-ES AUGUSTUS

AUGUSTUS AUGUSTUS AUGUSTUS

Gene Sn 49.3 / 50.6 52.9 / 53.9 48.5 / 49.8 25.5 / 26.2 28.4 / 30.4 24.6 / 26.6 42.6 / 44.6 45.0 / 48.0 42.8 / 46.2

Gene Sp 42.1 / 43.8 54.1 / 55.5 49.9 / 51.8 22.1 / 23.0 37.1 / 38.9 32.1 / 34.0 31.1 / 31.5 46.8 / 50.3 44.8 / 48.8

Gene F1 45.4 / 47.0 53.5 / 54.7 49.2 / 50.8 23.6 / 24.5 32.2 / 34.1 27.9 / 29.8 35.9 / 37.0 45.9 / 49.2 43.8 / 47.5

Exon Sn 73.4 / 73.8 74.5 / 74.7 72.5 / 72.7 61.7 / 63.8 59.7 / 62.6 58.3 / 61.2 62.8 / 64.3 61.7 / 63.7 60.4 / 62.5

Exon Sp 72.6 / 72.9 83.4 / 83.0 82.1 / 81.5 64.5 / 65.0 80.6 / 81.4 78.3 / 79.2 58.7 / 54.6 75.3 / 76.0 74.3 / 75.1

Exon F1 73.0 / 73.3 78.7 / 78.6 77.0 / 76.8 63.1 / 64.4 68.6 / 70.8 66.9 / 69.0 60.7 / 59.1 67.8 / 69.3 66.6 / 68.2

Table B.11: The same comparison as in Table Table B.10, with gene predictions made on
unmasked genomes.

Species A. thaliana C. elegans D. melanogaster

Training MAKER2 / BRAKER2-like MAKER2 / BRAKER2-like MAKER2 / BRAKER2-like

Predictors

SNAP
GM-ES

AUGUSTUS

SNAP
GM-ES

AUGUSTUS

SNAP
GM-ES

AUGUSTUS
GM-ES AUGUSTUS GM-ES AUGUSTUS GM-ES AUGUSTUS

AUGUSTUS AUGUSTUS AUGUSTUS

Gene Sn 52.9 / 54.3 58.6 / 59.2 53.5 / 54.7 34.9 / 34.5 43.0 / 43.9 36.0 / 39.3 46.1 / 48.3 50.1 / 52.0 45.8 / 49.3

Gene Sp 35.1 / 36.7 45.4 / 46.7 46.2 / 49.0 25.8 / 25.5 38.1 / 38.9 43.7 / 46.8 24.1 / 26.0 35.8 / 37.8 42.0 / 45.8

Gene F1 42.2 / 43.8 51.2 / 52.2 49.6 / 51.7 29.7 / 29.3 40.4 / 41.3 39.5 / 42.8 31.7 / 33.8 41.8 / 43.8 43.8 / 47.5

Exon Sn 75.7 / 76.0 77.6 / 77.4 75.2 / 75.1 75.9 / 76.6 78.2 / 79.2 69.2 / 72.5 65.7 / 67.1 65.5 / 66.8 62.2 / 64.5

Exon Sp 62.8 / 63.3 72.3 / 72.1 76.6 / 75.7 66.0 / 64.8 77.7 / 78.1 84.2 / 85.2 46.5 / 46.2 60.0 / 60.8 69.8 / 69.7

Exon F1 68.7 / 69.1 74.8 / 74.7 75.9 / 75.4 70.6 / 70.2 77.9 / 78.7 76.0 / 78.3 54.4 / 54.7 62.6 / 63.7 65.8 / 67.0
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APPENDIX C

GENEMARK-ETP+

C.1 Identification of GMS-T predictions that conflict with a cross-species protein

alignment

GMS-T prediction candidates that are not fully supported by proteins must satisfy several

conditions to be classified as high-confidence ones (Section 5.3.2.3). One such condition

is that they must not conflict with a cross-species protein alignment. This condition is

evaluated as follows: The prediction candidate is first mapped to the genomic DNA. Next,

ProtHint (Section 3.3.2) is run using the mapped candidate as a gene seed. The elements of

the mapped candidate (introns, start, and stop) not supported by ProtHint hints are selected

for further inspection. Here, all the unsupported elements are compared to the spliced

alignment of the best scoring homologous protein selected by ProtHint. If any of the un-

supported elements conflict with this spliced alignment, the entire prediction candidate is

deemed to conflict with a cross-species protein. An unsupported element is said to conflict

with the spliced alignment when (i) an unsupported intron overlaps a spliced alignment-

defined exon, (ii) an unsupported stop overlaps a spliced alignment-defined exon or intron,

(iii) an unsupported start overlaps a spliced alignment-defined exon (except when the over-

lap coincides with the exon start) or intron.
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C.2 Supplementary Figures
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Figure C.1: Gene level accuracy of GeneMark-ETP+ and other tools. The comparisons are
the same as in Figures 5.10 and 5.11; the only difference lies in the protein database used
on input: all proteins except for the proteins belonging to the species of interest were used
on input in all tests.
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Figure C.2: Gene-level accuracy of the optimal combinations of GeneMark-ET (ET) and
GeneMark-EP+ (EP+) (Section 5.3.5.3) compared to the prediction accuracy of GeneMark-
ETP+. The results for D. melanogaster are shown with closely related proteins on input
(only proteins of the tested species itself were excluded from the database); the other two
genomes used remote proteins (proteins of the same taxonomic order as the species of
interest removed from the input database).
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C.3 Supplementary Tables

Table C.1: Data sources for each genome tested. The numbers in parentheses show the date
of the last update.
(*) The reliable subset for M. musculus was selected by choosing a subset of GENCODE
transcripts with the following attributes: CCDS (Agreement with RefSeq annotation),
transcript support level=1 (All splice junctions of the transcript are supported
by at least one non-suspect mRNA), and basic (Prioritises full-length protein-coding
transcripts over partial or non-protein-coding transcripts within the same gene).Species_supplement

Species Assembly version Main annotation
Supplementary annotation used

to prepare the reliable subset

C. elegans GCF_000002985.6 Wormbase WS284 (Feb 2022) -

A. thaliana GCF_000001735.4 Araport11 (Mar 2021) -

D. melanogaster GCF_000001215.4 FlyBase r6.44 (Feb 2022) -

S. lycopersicum GCF_000188115.4 NCBI annot. release 103 (Jun 2019) ITAG3.2 (Jun 2017)

D. rerio GCF_000002035.6 NCBI annot. release 106 (Oct 2019) Ensembl GRCz11.105 (Oct 2021)

G. gallus GCF_000002315.6 NCBI annot. release 104 (Mar 2020) Ensembl GRCg6a.105 (Oct 2021)

M. musculus GCF_000001635.27 GENCODE M28 (Dec 2021) RefSeq*

Table S1: Data sources for each test species. Numbers in parenthesis show the date of the last update.

* The reliable subset for M. musculus  was selected by choosing a subset of GENCODE transcripts with the following 

attributes: CCDS  (Agreement with RefSeq annotation), transcript_support_level= 1 (All splice junctions of the transcript are 

supported by at least one non-suspect mRNA), and  basic (Prioritises full-length protein coding transcripts over partial or non-

protein coding transcripts within the same gene).
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Table C.2: Composition of the clades of OrthoDB v10.1 used by GeneMark-ETP+. Num-
bers in black bold show the largest numbers of species used to support gene predictions for
a given species (left column). The numbers of species removed from the largest OrthoDB
segment (see Section 5.2) are shown in blue.

Genus Family Order Class Phylum Kingdom

C. elegans 3 3 5 6 7 448 Metazoa 8,266,016

A. thaliana 2 8 10 - 100 117 Plantae 3,510,742

D. melanogaster 20 20 56 148 170 - Arthropoda 2,601,995

S. lycopersicum 2 10 11 - 100 117 Plantae 3,510,742

D. rerio 1 5 5 50 246 - Chordata 5,003,104

G. gallus 1 3 4 62 246 - Chordata 5,003,104

M. musculus 3 5 20 111 246 - Chordata 5,003,104

Species
# of species in the OrthoDB clade Name of the largest 

OrthoDB segment 

# of proteins in the 

OrthoDB segment

Table S2: Composition of the clades of OrthoDB v10 used by BRAKER2. Numbers in black bold show the largest numbers of 

species used to support gene predictions for a given species (left column). The numbers of species removed from the largest 

OrthoDB segment (see Materials) are shown in blue.
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Table C.3: RNA-Seq libraries used for the assessment of GeneMark-ETP+.

Species RNA-Seq library ID
Number of paired 

reads (M)
Read length (nt) Library size (Gb)

SRR065717 29.1 76 4.4

SRR065719 73.3 76 11.1

SRR473298 19.9 100 4.0

SRR2054452 10.2 100 2.0

Total 132.5 21.5

SRR934391 20.0 101 4.0

SRR5588566 24.7 125 6.2

SRR7169927 19.2 101 3.9

Total 63.9 14.1

SRR023505 8.4 76 1.3

SRR023546 8.9 76 1.4

SRR023608 11.9 76 1.8

SRR026433 22.1 76 3.4

SRR027108 7.2 76 1.1

Total 58.5 9.0

SRR2002284 56.2 73 8.2

SRR7959012 25.4 149 7.6

SRR7959019 27.9 149 8.3

SRR14055940 21.2 150 6.4

Total 130.7 30.5

SRR9735169 28.2 75 4.2

SRR10004226 21.6 150 6.5

SRR10040127 25.9 126 6.5

Total 75.7 17.2

ERR2812450 44.9 150 13.5

SRR3971633 24.0 100 4.8

SRR6337028 10.0 100 2.0

SRR11038071 16.4 151 5.0

Total 95.3 25.3

SRR567480 155.7 101 31.5

SRR567482 161.1 101 32.5

SRR567497 94.3 101 19.0

Total 411.1 83.0

M. musculus

A.thaliana

C. elegans

D. melanogaster

S. lycopersicum

D. rerio

G. gallus
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Table C.4: Comparison of gene- and exon-level prediction accuracy between ab ini-
tio GeneMark-ES, RNA-Seq-based GeneMark-ET, protein-based GeneMark-EP, and
GeneMark-ETP+. The accuracy estimates are shown for two different protein sets used
on input: remotely related (proteins of the same taxonomic order as the species of interest
removed from the input database) and closely related (only the proteins of the species of
interest removed).

GeneMark_Comparison

EP+ ETP+ EP+ ETP+

Gene Sn 48.2 48.9 48.5 59.7 55.2 67.7

Gene Sp 47.9 48.8 46.8 67.7 53.8 73.6

Gene F1 48.0 48.8 47.6 63.5 54.5 70.5 15.8 16.0 Avg Gene compact: 14.1

Exon Sn 81.8 81.7 81.1 82.0 83.3 85.1 Avg Exon compact: 5.2

Exon Sp 83.1 83.7 82.0 90.4 84.9 91.5

Exon F1 82.5 82.7 81.5 86.0 84.1 88.2 4.5 4.1

Gene Sn 55.8 57.1 66.6 75.9 73.4 78.0

Gene Sp 55.9 57.3 65.9 80.1 71.5 81.2

Gene F1 55.9 57.2 66.3 77.9 72.4 79.5 11.7 7.1

Exon Sn 76.9 77.1 79.8 82.2 81.5 82.9

Exon Sp 80.8 82.1 84.9 91.0 86.3 91.1

Exon F1 78.8 79.5 82.3 86.3 83.8 86.8 4.0 3.0

Gene Sn 51.2 53.3 56.5 71.6 69.9 79.2

Gene Sp 48.5 49.7 53.9 78.2 63.5 83.0

Gene F1 49.8 51.4 55.1 74.7 66.5 81.0 19.6 14.5

Exon Sn 67.8 68.6 70.2 76.3 76.5 80.7

Exon Sp 72.8 74.2 77.3 89.8 81.1 91.4

Exon F1 70.2 71.3 73.6 82.5 78.8 85.7 8.9 7.0 Avg Gene homo: 33.6

Gene Sn 43.4 47.2 67.0 87.4 72.7 89.8 Avg Exon homo: 15.4

Gene Sp 29.8 33.6 48.3 79.2 52.0 77.1

Gene F1 35.3 39.3 56.1 83.1 60.7 83.0 26.9 22.3

Exon Sn 82.6 83.5 90.5 96.4 92.1 97.1

Exon Sp 66.5 71.3 77.8 91.5 78.7 90.2

Exon F1 73.7 76.9 83.7 93.9 84.9 93.5 10.2 8.6

Gene Sn 13.2 20.4 35.7 73.0 39.6 74.3

Gene Sp 4.3 7.1 12.7 54.3 14.0 53.7

Gene F1 6.5 10.5 18.7 62.3 20.7 62.3 43.6 41.6

Exon Sn 75.3 79.1 84.9 93.6 86.2 94.0

Exon Sp 39.6 48.9 54.3 83.4 54.9 82.9

Exon F1 51.9 60.4 66.3 88.2 67.1 88.1 21.9 21.0

Gene Sn 0.1 2.4 14.1 78.4 14.4 78.1 Avg Gene hetero: 55.3

Gene Sp 0.1 1.3 10.8 66.7 11.1 65.6 Avg Exon hetero: 43.2

Gene F1 0.1 1.7 12.2 72.1 12.5 71.3 59.9 58.8

Exon Sn 0.3 15.1 28.7 95.4 29.0 95.4

Exon Sp 0.2 26.5 52.5 90.7 52.9 90.2

Exon F1 0.2 19.2 37.1 93.0 37.5 92.8 55.9 55.3

Gene Sn 2.2 7.8 22.0 71.3 23.7 72.7

Gene Sp 1.8 4.8 13.8 66.4 14.7 65.5

Gene F1 1.9 6.0 17.0 68.7 18.1 68.9 51.8 50.8

Exon Sn 25.4 49.7 57.3 90.8 58.1 91.5

Exon Sp 25.1 50.3 63.7 91.8 64.3 91.5

Exon F1 25.2 50.0 60.3 91.3 61.0 91.5 31.0 30.5

M. musculus

A. thaliana

D. melanogaster

S. lycopersicum

D. rerio

G. gallus

ES ET
Order-excluded Species-excluded

C. elegans

Page 2
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Table C.5: Comparison of gene- and exon-level prediction accuracy between RNA-Seq-
based BRAKER1, protein-based BRAKER2, TSEBRA (a tool for the combination of
BRAKER1 and BRAKER2 results), and GeneMark-ETP+. The accuracy estimates are
shown for two different protein sets used on input: remotely related (proteins of the same
taxonomic order as the species of interest removed from the input database) and closely
related (only the proteins of the species of interest removed).BRAKER_Comparison

BRAKER2 TSEBRA ETP+ BRAKER2 TSEBRA ETP+

Gene Sn 61.8 46.8 62.8 59.7 69.1 73.3 67.7

Gene Sp 65.6 54.1 78.2 67.7 70.1 81.0 73.6

Gene F1 63.7 50.2 69.7 63.5 69.6 76.9 70.5 -6.2 -6.4

Exon Sn 85.0 74.0 76.6 82.0 84.8 83.9 85.1

Exon Sp 88.5 87.8 93.4 90.4 91.5 93.8 91.5

Exon F1 86.7 80.3 84.2 86.0 88.0 88.6 88.2 1.8 -0.4

Gene Sn 59.6 72.6 74.8 75.9 79.3 80.9 78.0

Gene Sp 61.3 70.1 81.4 80.1 75.6 83.0 81.2

Gene F1 60.4 71.3 78.0 77.9 77.4 82.0 79.5 -0.1 -2.4

Exon Sn 78.3 81.0 79.6 82.2 83.1 82.7 82.9

Exon Sp 82.5 88.4 93.7 91.0 88.2 93.2 91.1

Exon F1 80.4 84.5 86.1 86.3 85.6 87.6 86.8 0.3 -0.9

Gene Sn 63.8 61.1 69.0 71.6 78.9 81.6 79.2

Gene Sp 62.3 60.9 75.7 78.2 73.6 81.2 83.0

Gene F1 63.0 61.0 72.2 74.7 76.1 81.4 81.0 2.5 -0.4

Exon Sn 77.0 71.4 72.1 76.3 80.1 79.8 80.7

Exon Sp 80.9 83.4 89.9 89.8 88.5 92.2 91.4

Exon F1 78.9 76.9 80.0 82.5 84.1 85.6 85.7 2.5 0.1

Gene Sn 61.8 79.6 83.4 87.4 84.2 86.4 89.8

Gene Sp 43.3 52.6 66.8 79.2 55.3 67.8 77.1

Gene F1 50.9 63.3 74.2 83.1 66.7 76.0 83.0 8.9 7.0

Exon Sn 90.7 94.2 94.9 96.4 95.4 96.1 97.1

Exon Sp 73.1 80.6 88.5 91.5 80.4 88.3 90.2

Exon F1 81.0 86.9 91.6 93.9 87.3 92.0 93.5 2.3 1.5

Gene Sn 51.7 55.0 67.7 73.0 57.8 69.8 74.3

Gene Sp 26.6 28.0 43.8 54.3 26.4 44.0 53.7

Gene F1 35.1 37.1 53.2 62.3 36.3 54.0 62.3 9.1 8.4

Exon Sn 91.1 88.0 89.4 93.6 89.4 90.1 94.0

Exon Sp 73.2 76.7 84.9 83.4 73.9 84.4 82.9

Exon F1 81.2 81.9 87.1 88.2 80.9 87.1 88.1 1.1 1.0

Gene Sn 6.7 25.2 27.7 78.4 27.2 29.5 78.1

Gene Sp 3.2 15.9 21.9 66.7 17.3 23.1 65.6

Gene F1 4.3 19.5 24.4 72.1 21.2 25.9 71.3 47.7 45.4

Exon Sn 66.1 35.0 59.8 95.4 35.3 60.0 95.4

Exon Sp 47.3 58.3 73.3 90.7 59.6 73.2 90.2

Exon F1 55.2 43.7 65.8 93.0 44.3 66.0 92.8 27.2 26.8

Gene Sn 27.8 32.5 44.9 71.3 35.9 47.5 72.7

Gene Sp 13.5 19.6 29.4 66.4 21.5 30.7 65.5

Gene F1 18.1 24.5 35.5 68.7 26.9 37.3 68.9 33.2 31.6

Exon Sn 83.9 57.6 77.4 90.8 59.3 78.1 91.5

Exon Sp 66.7 71.0 82.6 91.8 72.1 82.8 91.5

Exon F1 74.3 63.6 79.9 91.3 65.1 80.4 91.5 11.5 11.1

D. melanogaster

S. lycopersicum

D. rerio

G. gallus

M. musculus

BRAKER1
Order-excluded Species-excluded

C. elegans

A. thaliana
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Table C.6: A gene-level accuracy evaluation of raw GMS-T predictions and the final high-
confidence (HC) genes. The accuracy is shown separately for complete and incomplete
predictions as well as for both sets together (Combined). The first three columns (Raw
GMS-T) show the prediction accuracy of unprocessed GMS-T predictions in all assembled
transcripts. The remaining columns (HC genes) show the accuracy of the processed, high-
confidence gene sets. The accuracy of HC genes is shown for two different protein sets used
on input: remotely related (proteins of the same taxonomic order as the species of interest
removed from the input database) and closely related (only the proteins of the species of
interest removed).

HC_supplement

Complete Incomplete Combined Complete Incomplete Combined Complete Incomplete Combined

Sn 43.7 3.9 47.6 33.6 2.1 35.8 48.0 4.0 52.0

Sp 82.2 18.3 63.8 88.9 81.5 88.4 91.6 80.7 90.6

Sn 50.3 1.4 51.7 55.9 1.1 57.0 57.6 1.6 59.1

Sp 89.2 17.0 80.0 97.4 92.3 97.3 97.8 90.8 97.6

Sn 57.2 3.2 60.5 53.4 1.8 55.2 61.0 3.1 64.1

Sp 87.7 38.1 82.0 95.0 85.3 94.7 96.5 84.8 95.9

Sn 66.6 1.4 68.0 73.9 1.3 75.1 74.4 1.5 75.8

Sp 81.2 21.0 74.6 93.1 81.3 92.8 92.8 78.9 92.4

Sn 56.2 4.3 60.5 63.2 4.2 67.3 63.4 4.5 68.0

Sp 66.0 29.0 57.2 86.0 73.8 84.6 86.0 70.0 84.0

Sn 44.1 5.7 49.8 68.2 6.5 74.7 66.6 7.7 74.3

Sp 61.0 18.3 43.3 86.0 82.8 85.6 86.6 75.7 84.8

Sn 48.8 1.2 50.0 61.0 2.7 63.7 60.8 3.4 64.2

Sp 76.1 7.5 59.5 92.4 62.7 90.4 92.4 65.3 90.3
M. musculus

A. thaliana

D. melanogaster

S. lycopersicum

D. rerio

G. gallus

Raw GMS-T
HC genes

Order-excluded proteins Species-excluded proteins

C. elegans
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Table C.7: Accuracy of the complete/incomplete classification (described in Sec-
tion 5.3.2.2). The transcripts shown in this evaluation were classified as incomplete by
GMS-T, had a correctly predicted stop codon, and contained no assembly errors. The row
and column names are the same as in the confusion matrix shown in Figure 5.13, see Sec-
tion 5.4.3 for details. Sensitivity represents the percentage of complete transcripts that were
classified as such. Error rate represents the percentage of incomplete transcripts that were
incorrectly classified as complete. The results are shown for two different protein sets used
on input: remotely related (proteins of the same taxonomic order as the species of interest
removed from the input database) and closely related (only the proteins of the species of
interest removed). complete_incomplete

Actually complete Truly incomplete Actually complete Truly incomplete

Predicted complete 1487 127 1981 78

Predicted incomplete 274 207 394 471

Sensitivity

Error rate

Predicted complete 1476 55 1442 22

Predicted incomplete 107 203 165 249

Sensitivity

Error rate

Predicted complete 272 77 299 9

Predicted incomplete 49 253 130 388

Sensitivity

Error rate

Predicted complete 920 90 887 69

Predicted incomplete 80 314 118 349

Sensitivity

Error rate

Predicted complete 1159 122 1054 80

Predicted incomplete 210 1262 325 1345

Sensitivity

Error rate

Predicted complete 3318 227 3034 128

Predicted incomplete 456 892 741 999

Sensitivity

Error rate

Predicted complete 1945 9 1799 3

Predicted incomplete 472 209 620 218

Sensitivity

Error rate

M. musculus
80.5 74.4

4.1 1.4

G. gallus
87.9 80.4

20.3 11.4

D. rerio
84.7 76.4

8.8 5.6

S. lycopersicum
92.0 88.3

22.3 16.5

D. melanogaster
84.7 69.7

23.3 2.3

A. thaliana
93.2 89.7

21.3 8.1

Order-excluded proteins Species-excluded proteins

C. elegans
84.4 83.4

38.0 14.2
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Table C.8: Comparison of gene- and exon-level prediction accuracy between GeneMark-
ETP+ results with and without filtering of pure ab initio prediction. The superior F1 accu-
racy between the two sets is highlighted in bold. The pure ab initio predictions are removed
from the default GeneMark-ETP+ output in genomes ≥ 300 Mbp in size (the bottom four
genomes). The results are shown for two different protein sets used on input: remotely
related (proteins of the same taxonomic order as the species of interest removed from the
input database) and closely related (only the proteins of the species of interest removed).unsupported

All

predictions

Pure ab initio

removed

All

predictions

Pure ab initio

removed

Gene Sn 59.7 58.1 67.7 67.0

Gene Sp 67.7 71.0 73.6 75.8

Gene F1 63.5 63.9 70.5 71.1

Exon Sn 82.0 80.2 85.1 84.6

Exon Sp 90.4 91.8 91.5 92.4

Exon F1 86.0 85.6 88.2 88.3

Gene Sn 75.9 71.7 78.0 77.5

Gene Sp 80.1 86.4 81.2 84.1

Gene F1 77.9 78.4 79.5 80.7

Exon Sn 82.2 80.8 82.9 82.6

Exon Sp 91.0 94.5 91.1 92.6

Exon F1 86.3 87.1 86.8 87.3

Gene Sn 71.6 64.2 79.2 78.6

Gene Sp 78.2 82.0 83.0 84.8

Gene F1 74.7 72.0 81.0 81.6

Exon Sn 76.3 74.0 80.7 80.5

Exon Sp 89.8 92.7 91.4 93.0

Exon F1 82.5 82.3 85.7 86.3

Gene Sn 89.1 87.4 90.3 89.8

Gene Sp 68.3 79.2 68.7 77.1

Gene F1 77.4 83.1 78.1 83.0

Exon Sn 96.8 96.4 97.2 97.1

Exon Sp 85.9 91.5 85.9 90.2

Exon F1 91.0 93.9 91.2 93.5

Gene Sn 73.3 73.0 74.4 74.3

Gene Sp 38.9 54.3 39.0 53.7

Gene F1 50.8 62.3 51.2 62.3

Exon Sn 93.8 93.6 94.2 94.0

Exon Sp 73.3 83.4 73.2 82.9

Exon F1 82.3 88.2 82.3 88.1

Gene Sn 78.6 78.4 78.2 78.1

Gene Sp 42.8 66.7 42.5 65.6

Gene F1 55.4 72.1 55.1 71.3

Exon Sn 95.5 95.4 95.4 95.4

Exon Sp 79.2 90.7 79.0 90.2

Exon F1 86.6 93.0 86.5 92.8

Gene Sn 71.7 71.3 72.8 72.7

Gene Sp 35.3 66.4 35.9 65.5

Gene F1 47.3 68.7 48.1 68.9

Exon Sn 91.2 90.8 91.7 91.5

Exon Sp 72.3 91.8 72.6 91.5

Exon F1 80.7 91.3 81.0 91.5

D. rerio

G. gallus

M. musculus

Order-excluded Species-excluded

C. elegans

A. thaliana

D. melanogaster

S. lycopersicum
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Table C.9: The masking penalty values estimated by GeneMark-ETP+ for each of the tested
species. In GC-heterogeneous genomes, GeneMark-ETP+ estimates an optimal masking
penalty for each of the GC bins. The values are shown in the logarithmic space (natural
logarithm). The results are shown for two different protein sets used on input: remotely
related (proteins of the same taxonomic order as the species of interest removed from the
input database) and closely related (only the proteins of the species of interest removed).

penalties

C. elegans

A. thaliana

D. melanogaster

S. lycopersicum

D. rerio

Low Medium High Low Medium High

G. gallus 0.15 0.17 0.12 0.14 0.17 0.12

M. musculus 0.13 0.14 0.14 0.13 0.14 0.14

GC GC

0.09 0.08

0.04 0.04

0.08 0.07

Order-excluded proteins Species-excluded proteins

0.06 0.05

0.03 0.03

Page 5

Table C.10: Percentages of sequence masked by RepeatModeler2/RepeatMasker in each
tested genome. Masking

Species % Genome masked

C. elegans 18.7

A. thaliana 17.2

D. melanogaster 19.3

S. lycopersicum 62.4

D. rerio 60.4

G. gallus 13.1

M. musculus 42.0

Table S:masking: Percentages of 

sequence masked by 

RepeatModeler2/RepeatMasker in each 

tested genome.

Page 9
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