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SUMMARY

Optimization and control are powerful tools to design a system that works as effectively

as possible. Mathematical optimization and control methods are widely used in engineering

and science. In this thesis, we focus on applications of model-based optimization and con-

trol in complex virus-host systems. The model-based optimization and control frameworks

usually deal with modeling complex systems, and the model components are (partially)

known or estimated from data. We combine dynamical models of virus-host systems with

optimization- and control-theoretic principles to improve two specific decision-making pro-

cesses: (1) devise and improve the timing and composition of therapeutic phage cocktails

in phage therapy; (2) design non-pharmacological interventions to reduce fatalities arising

from COVID-19 while also enabling economic engagement.

Viruses that infect bacteria, i.e., bacteriophage or ‘phage’, are increasingly considered

as treatment options for the control and clearance of bacterial infections, particularly as

compassionate use therapy for multi-drug resistant infections. In practice, clinical use of

phage often involves the application of multiple therapeutic phage, either together or se-

quentially. However, the selection and timing of therapeutic phage delivery remains largely

ad hoc. Here, we evaluate principles underlying why careful application of multiple phage

(i.e., a ‘cocktail’) might lead to therapeutic success in contrast to the failure of single-strain

phage therapy to control an infection. We combine dynamical modeling of phage, bacteria,

and host immune cell populations with control-theoretic principles (via optimal control the-

ory) to devise phage cocktails and delivery schedules to control the bacterial populations.

The objective is to optimize the timing and composition of therapeutic phage cocktails

that leads to therapeutic success. Although single-strain phage therapy in immunodeficient

hosts can fail due to phage resistance, our optimal control analysis shows that a two-phage

cocktail that includes a counter-resistant phage can restore therapeutic efficacy in immun-

odeficient hosts. Furthermore, we leverage optimal control theoretic findings as a guide for
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practical use, and show that the practical schemes (discretized version) could also lead to

the same benefit.

A risk in using cocktails of different phage is that bacteria could simultaneously develop

resistance to all injected phage (i.e., selecting for multi-phage resistant). The next step is

to understand how to pre-select phage that have adapted via co-evolution with bacterial

strains and then to efficiently use these ‘future’ phage (i.e., identified from co-evolutionary

training) to clear the infection early on, before new phage-resistant bacteria can arise. We

develop the evolutionarily robust phage therapy in immunodeficient hosts given the infec-

tion networks that was identified in co-evolutionary training. Our computational results

provide several important insights to guide the phage therapy in complex eco-evolutionary

dynamics: (1) including a contingent specialist phage in multiphage cocktails may lead to

the outcome of competitive release; (2) the prey-predator oscillatory dynamics may play a

critical role for the cocktail treatment with a generalist phage.

Optimization and control not only can be applied to bacteria-phage-immune systems

(i.e., at the microbial level) to help design phage therapy, but also can be applied to epi-

demiological systems (i.e., at the large-scale population level) to guide the development

and deployment of efficient interventions. The COVID-19 pandemic has precipitated a

global health crisis; multiple public health strategies are being deployed to slow the coro-

navirus pandemic. Lockdowns and stay-at-home orders have reduced the transmission of

SARS-CoV-2, but have come with significant social and economic costs. The use of en

masse interventions has stemmed, in part, from the absence of sufficient testing capacity

to enable personalized changes to individualized behavior. In this section of the thesis,

we describe a control theory framework combining population-scale viral and serological

testing as part of an individualized approach to control COVID-19 spread. The aim is to

develop policies for modulating individualize contact rates depending on both personalized

disease status and the status of the epidemic at the population scale. In doing so, we pro-

vide evidence that lockdowns could be relaxed far more rapidly, and potentially avoided
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altogether, in the event that infectious individuals are isolated efficiently given sufficiently

widespread testing for SARS-CoV-2, and recovered individuals increase their interactions

to dilute potentially risky interactions between susceptible and infectious individuals.

Altogether in this thesis, we apply control strategies to alleviate the burden or spread

of disease at multiple scales. At microbial level, we advance efforts to guide future de-

velopment and deployment of therapeutic phage cocktails for clinical translation. At the

population level, we show how to move from en masse to individualized approaches to

changing behavior during a pandemic. This work also illustrates the capabilities and bene-

fits that mathematical optimization and control can bring to research at the intersection of

biology, immunology and epidemiology.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Some materials are adapted from:

Li, G.*, Leung, C.Y.*, Wardi, Y., Debarbieux, L. and Weitz, J.S., 2020. Optimizing the

Timing and Composition of Therapeutic Phage Cocktails: A Control-theoretic Approach.

Bulletin of Mathematical Biology, 82(6), pp.1-29.

Li, G.*, Shivam, S.*, Hochberg, M.E., Wardi, Y. and Weitz, J.S., 2020. Disease-dependent

interaction policies to support health and economic outcomes during the COVID-19 epi-

demic. Available at SSRN 3709833.

Weitz, J.S., Beckett, S.J., Coenen, A.R., Demory, D., Dominguez-Mirazo, M., Dushoff,

J., Leung, C.Y., Li, G., Măgălie, A., Park, S.W., Rodriguez-Gonzalez, R., Shivam, S. and

Zhao, C.Y., 2020. Modeling shield immunity to reduce COVID-19 epidemic spread. Nature

medicine, 26(6), pp.849-854.

1.1 Phage therapy for control of bacterial infections

The spread of multi-drug resistant (MDR) pathogens is a global public health crisis [1].

The emergence and spread of multi-antibiotic resistant pathogens has spurred research and

development of alternative antimicrobials, including phage [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Phage have been applied in compassionate use scenarios, for example, to successfully cure

patients both in the USA and in Europe [12, 13, 8, 9, 14], catalyzing the 2018 launch of the

first North American phage therapy center based at UCSD (IPATH). Yet, despite individual

successes, phage therapy has a mixed record in controlled clinical trials. For instance, a

large-scale trial involving more than 200 patients failed to demonstrate that phage treatment

improved outcomes for children infected by Escherichia coli with symptoms of severe

diarrhea in Bangladesh [15]. Similarly, the recent European phase II clinical trial to treat
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burn wound patients failed to show superiority compared to a reference treatment [16].

Phage dose and the time interval between doses are critical to the effectiveness of phage

therapy [17]. Control theory may be a useful approach to address the problem of optimiz-

ing the dosage, timing, and composition of therapeutic agents. For example, control theory

has been applied to optimize antiretroviral drug therapy for HIV infections [18, 19, 20, 21],

minimize resistance in antibiotic treatment [22], and determine the optimal dosing sched-

ule of antimalarial medications [23] and cancer therapies [24, 25, 26]. These applications

of control theory have focused on modeling the within-host disease dynamics using a set

of coupled nonlinear differential equations describing the population dynamics of disease

agents such as pathogens or tumor cells, as well as host cells that include immune cells

and/or cells targeted by pathogens. The cost function to be minimized is then chosen to

balance a number of treatment goals, including minimizing pathogen/tumor load, maxi-

mizing healthy cell populations, and limiting treatment costs and toxicity.

As examples beyond within-host treatments of diseases, control theory has also been

applied to optimize strategies in controlling between-host transmission of infections. In

these studies, the spread of the infectious disease is modeled by standard epidemiologi-

cal models such as the Susceptible-Infected-Susceptible (SIS) model or the Susceptible-

Infected-Recovered (SIR) model. The control strategies consist of epidemiological inter-

ventions such as vaccination, sanitation, and treatment of infected individuals. The cost

function is determined based on minimization of the infected population or number of

deaths subjected to costs of the control efforts. Such epidemiological applications of con-

trol theory have been used to optimize control strategies in vector-borne diseases [27],

cholera epidemics [28], anthrax infection in animals [29], and infectious disease with two

strains of pathogens [30].

In Chapter 2, we develop a control-theoretic framework to optimize monophage therapy

and multiphage (cocktail) treatment of immunodeficient hosts and in other scenarios where

standard phage therapy is likely to fail. We use a nonlinear dynamics model of within-host
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interactions to show that a combination of fast intra-host phage decay, evolution of phage

resistance amongst bacteria, and/or compromised immune response might limit the effec-

tiveness of single-strain phage therapy. To resolve these problems, we combine dynami-

cal modeling of phage, bacteria, and host immune cell populations with control-theoretic

principles (via optimal control theory) to devise evolutionarily robust phage cocktails and

delivery schedules to control the bacterial populations. Our numerical results suggest that

optimal administration of single-strain phage therapy may be sufficient for curative out-

comes in immunocompetent patients, but may fail in immunodeficient hosts due to phage

resistance. We show that optimized treatment with a two-phage cocktail that includes a

counter-resistant phage can restore therapeutic efficacy in immunodeficient hosts.

The above introduction materials (Chapter 1.1) and results presented for this work

(Chapter 2) are published [31].

In prior work [32] and on-going research, our collaborators have found that strain PAK

exposed to phage PAK P1 leads to the growth of phage-resistant strains, the PAK P1-

resistant bacterium is labeled as PAK rP1. A novel phage named PAK P6 can infect

PAK rP1. However, the exposure of strain PAK rP1 to phage PAK P6 selected for a novel

resistant bacterium named PAK rP6. Then, the bacterium PAK rP6 was used to isolate

another phage, named PAK P10. Therefore, selection of phage-resistant mutants in a se-

quential therapeutic treatment could continue indefinitely (for instance the emergence of

PAK P10 phage-resistant bacterium) if the bacteria pathogens are not eliminated. Fur-

thermore, a risk in using cocktails of different phage is that bacteria could simultaneously

develop resistance to all injected phage (multi-resistant bacteria, [33]).

A novel idea to combat the evolution of phage resistance is ‘training’ phage to evolve to

counter resistance before using them in therapy. Recent in vitro experiments successfully

showed that coevolutionary phage training could lead to greater bacterial suppression and

delays the evolution of phage resistance [34]. In Chapter 3, we focus on the second half

of this task. We propose a theoretical framework in order to identify a recipe for a phage
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therapy treatment strategy in immunodeficient hosts, that may be more robust to evolution

of phage-resistance against administered phage.

1.2 Non-pharmaceutical COVID-19 control

As of 7 March 2021, more than 116,166,652 cases of coronavirus disease 2019 (COVID-

19) have been reported worldwide with more than 2,582,528 deaths globally [35]. Starting

at the reported origin of the pandemic in Wuhan, China, control measures have been imple-

mented in most countries where outbreaks have occurred [36, 37, 38, 39, 40, 41]. Multiple

public health strategies are being deployed to slow outbreaks, and although recommenda-

tions always include social distancing and isolation of confirmed cases, the full spectrum

of measures and levels of adherence differ from country to country, making assessments of

strategy efficacy difficult (see [36], controversy surrounding [42]).

The non-pharmaceutical control strategies for COVID-19 largely follow those em-

ployed in previous viral epidemics, including SARS, Ebola and MERS. Initial strategies

can be broadly grouped into mitigation and suppression, where the former attempts to pre-

serve essential health care services and contain morbidity and mortality, whereas the latter

imposes more severe, emergency restrictions to prevent health care system collapse and

provide conditions for easing-off towards less intense mitigation strategies [43]. Both miti-

gation and suppression approaches carry considerable social and economic costs, meaning

that policymakers and the public at large only adopt them for short time periods [44]. A

problem is that control measures have often been applied irrespective of an individual’s

disease status (and/or likely infection risk severity) and are driven, in part, by the absence

of information-driven alternatives.

Hence, distinct from lockdowns, there is an increasing interest in implementing population-

wide prevention methods that decrease transmission risk while enabling economic re-engagement.

Examples of such measures include mask-wearing [45, 46], contact-free interactions [47],

and restructuring of physical spaces [48]. The use of masks, in particular, has been shown
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to be effective at reducing respiratory transmission of SARS-CoV-2, particularly when

individuals in a potentially infectious interaction routinely wear them [49, 50]. These

population-wide measures still carry uncertainty since individuals are expected to behave

uniformly irrespective of their disease status. COVID-19 screening provides a complemen-

tary route, and despite costs may confer both health and economic benefit [51] to overcome

the negative impact on the economy due to pandemic-related shutdowns [52]. As the scale

of COVID-19 testing has increased, jurisdictions may also have an opportunity to consider

implementing tactical mitigation strategies informed by testing.

Non-pharmaceutical COVID-19 control until effective vaccines become widely avail-

able will necessarily involve periods of reduced social and economic activity; i.e., ‘busi-

ness, but not as usual’. Control efforts are already generating hardship and could in the

longer-term result in social unrest and increased mortality [53, 54, 55]. In Chapter 4, we

confront a joint problem: how to identify policies that aim to reduce fatalities arising from

COVID-19 while also enabling economic engagement. First, we use optimal control to

assess both health and economic outcomes in an SEIR disease model framework. There is

a substantial and growing literature on optimal control for COVID-19, the bulk of which

focuses on non-personalized release policies or policies that target age- or risk-stratified

groups [56, 36, 57, 43, 58, 59]. Here, we identify optimal control policies to modulate

interaction rates based on disease - unifying prior efforts centered on isolation and shield

immunity. We find that intermediate policy outcomes can do nearly as well as strict public

health scenarios, without incurring the severe costs as suppression-centered policies. How-

ever, optimal controls can be fragile, when applied in practice given that they rely on time-

rather than state-based interventions; the consequence of mistiming interventions can be

severe [58]. Hence, guided by the optimal control analysis, we identify state-dependent

policies similar to feedback control that provide actionable guidance for individual behav-

ior. As we show, using population-wide PCR testing for infection alongside immune sta-

tus can reduce COVID-19 transmission while enabling more individuals to return to work
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sooner and with fewer restrictions than would otherwise be possible.

Furthermore, we show that targeted shield immunity could also enhance population

outcomes by focusing the effort of recovered individuals in subsets of the population. By

formulating an optimization problem for targeted (age-specific) shield immunity in an age-

structured epidemiological intervention model, we find that, preferentially targeting older

individuals by shielding those at highest risk, it is possible to further reduce cumulative

deaths by 30%.

The above introduction materials (Chapter 1.2) and results presented for this work

(Chapter 4) are accepted for iScience journal publication (a pre-print can be found at

[60]) and published at [61].
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CHAPTER 2

OPTIMIZING THE TIMING AND COMPOSITION OF THERAPEUTIC PHAGE

COCKTAILS: A CONTROL-THEORETIC APPROACH

Adapted from Li, G.*, Leung, C.Y.*, Wardi, Y., Debarbieux, L. and Weitz, J.S., 2020. Op-

timizing the Timing and Composition of Therapeutic Phage Cocktails: A Control-theoretic

Approach. Bulletin of Mathematical Biology, 82(6), pp.1-29.

2.1 Introduction

A number of mathematical models for phage-bacteria population dynamics with focus on

implications for phage therapy have been proposed [62, 63, 64]. These models account for

the ecological interactions between phage and bacteria, but do not explicitly consider the

effects of host immune response, which is an important driver of within-host infection dy-

namics. Other proposed models have incorporated the interactions between bacteria, phage

and host immune cells [65, 66, 67], but do not include features of realistic immune re-

sponses, including a bounded immune activation rate as well as density-dependence clear-

ance rates of pathogens by immune cells.

Building on earlier models [65, 66], a subset of us have developed phage therapy models

in prior work that consider key immunological features including saturation of immune

activation and immune evasion by bacteria at high pathogen density [68]. Combined with

animal experiments, the results have shown that bacterial populations are not necessarily

eliminated by either phage or the immune response alone. Instead, bacteria are eliminated

when phage and the immune response work in synergy [69]. Importantly, curative success

was not inevitable. For example, phage therapy was ineffective in innate immune activation

deficient hosts and neutropenic hosts. Therapeutic failure was caused by the spread of

phage-resistant bacteria as predicted by the mathematical models. Such failure raises a

7



new challenge: is it possible to rationally combine phage strains, dosage, and targeting to

overcome therapeutic failure in immunodeficient hosts and in other scenarios such as rapid

phage clearance from the host?

In this chapter, we introduce a mathematical model of phage therapy and define the

control problem. Second, we analyze the optimal control problem, show that the opti-

mal control solution exists, and derive the necessary conditions for the optimal control via

Prontryagin’s maximum principle [70]. Then, we implement a Hamiltonian-based algo-

rithm [71, 72] to numerically compute the optimal control solutions for monophage therapy

and a phage cocktail treatment consisting of two phage strains. The numerical results are

presented and followed by a discussion.

2.2 Problem formulation

2.2.1 A mathematical model of phage therapy

We propose a phage therapy model that considers the nonlinear dynamics arising from in-

teractions between sensitive bacteria S, phage-resistant bacteria R, phage PS (i.e., only

targeting sensitive bacteria), phage PR (i.e., only targeting phage-resistant bacteria) and the

host innate immune response I , see Fig. 2.1. Hence, this model intentionally makes the

assumption that phage are specialized in their infection of bacteria; generalizations of this

approach are considered in the Discussion. Two strains of bacteria (S and R) reproduce

given the limited environmental capacity KC . The phage-resistant bacteria emerge from

sensitive bacteria through mutation with a fixed probability µ per cellular division. Both

strains of bacteria are killed by the immune response and both stimulate immune activa-

tion. The immune response is stimulated by the presence of bacteria with a maximum

activation rate α until it reaches the maximum capacity KI . Phage populations PS and

PR infect and lyse sensitive and phage-resistant bacterial populations at rates F (PS) and

F (PR) respectively. In this study, we assume that the two phage types (PS and PR) have

identical adsorption rate φ, burst size β and decay rate ω for simplicity. In general, these
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three trait parameters can be strain-specific, and the optimal control analysis and simula-

tion procedures will be the same. We consider the phage decay rate to be independent

of the host immune response in accordance with prior experimental work in acute pneu-

monia that showed the phage introduction did not elicit a differential cytokine response

when administered intranasally [69]. It is possible that other strains of phage or alternative

administration routes could lead to an immunity-dependent phage clearance rate as consid-

ered in other models [67]. The treatments inject phage into the system, the injection rates

of phage PS and phage PR at time t are ρS(t) and ρR(t) respectively. The dynamics of

bacteria, phage and the innate immune system can be modeled using the following system

of nonlinear differential equations,

Ṡ =

logistic growth, mutation︷ ︸︸ ︷
rS

(
1− S +R

KC

)
(1− µ)−

lysis︷ ︸︸ ︷
SF (PS)−

immune killing︷ ︸︸ ︷
εIS

1 + (S +R)/KD

Ṙ =

logistic growth︷ ︸︸ ︷
r′R

(
1− S +R

KC

)
+

mutation from sensitive host︷ ︸︸ ︷
µrS

(
1− S +R

KC

)
−

lysis︷ ︸︸ ︷
RF (PR)−

immune killing︷ ︸︸ ︷
εIR

1 + (S +R)/KD

ṖS =

release of viruses︷ ︸︸ ︷
βSF (PS) −

adsorption︷ ︸︸ ︷
φSPS −

decay︷︸︸︷
ωPS +

phage injection︷ ︸︸ ︷
ρS(t)

İ =

immune stimulation, activation and immune saturation︷ ︸︸ ︷
αI

(
1− I

KI

)(
S +R

S +R +KN

)

ṖR =

release of viruses︷ ︸︸ ︷
βRF (PR) −

adsorption︷ ︸︸ ︷
φRPR −

decay︷︸︸︷
ωPR +

phage injection︷ ︸︸ ︷
ρR(t)

(2.1)

where F (Pi) = φPi/
(

1 + Pi

PC

)
for i ∈ {S,R} is the per-capita phage-induced bacterial

lysis rate that characterizes the effect of phage saturation during the infection. Specifically,

phage saturation occurs when multiple phage adsorb to the same target bacterial cell when

at high phage population density. We constrain the injection rates of two phage doses as

9



following,

ρS(t) ≥ 0, ρR(t) ≥ 0, ρS + ρR(t) ≤ ρmax, ∀t (2.2)

where ρmax is the fixed maximal injection rate. The goal is to control the phage injection

rates ρS(t) and ρR(t) so as to minimize the bacterial population over the entire treatment

and at the final time, while limiting the amount of phage injected into the body (i.e., treat-

ment costs). The specific cost functional associated with this goal will be introduced later

in Sect. 2.2.2.
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Phage Dose Injection
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Figure 2.1: Schematic of phage therapy model in the system (2.1). Sensitive bacteria (S)
and phage-resistant bacteria (R) are targeted by phage (PS) and phage (PR), respectively.
Innate immunity (I) is activated by the presence of bacteria and attacks both bacterial
strains.

Scaled model. To simplify system (2.1), we rescale state variables and parameters. As

the state variables and parameters have different units, we transform them, by scaling, into

10



non-dimensional variables. Accordingly, the dimensionless state vector x is

x = [x1, x2, x3, x4, x5]T =

[
S

KD

,
R

KD

,
PS
PC

,
I

KI

,
PR
PC

]T
, (2.3)

where (·)T is the notation of matrix transpose. The scaled model parameters and control

variables are:

ε̃ = εKI , q =
ρmax
PC

, kCD =
KC

KD

, kND =
KN

KD

, kPD =
PC
KD

, ψ = φKD,

u1(t) =
ρS(t)

ρmax
, u2(t) =

ρR(t)

ρmax
.

(2.4)

In doing so, the resulting scaled system is

ẋ1 = rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2

ẋ2 = r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− kPDx2I(x5)− ε̃x4x2

1 + x1 + x2

ẋ3 = βx1I(x3)− ψx1x3 − ωx3 + qu1(t)

ẋ4 = αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)
ẋ5 = βx2I(x5)− ψx2x5 − ωx5 + qu2(t),

(2.5)

where I(xi) = ψxi/ (1 + xi) for i ∈ {3, 5} is the scaled phage infection rate function.

Note that the injection rates (ρS, ρR) are scaled by the maximal injection rate ρmax, the

scaled injection rates (u1, u2) are interpreted as the relative intensity (or strength) of the

maximal injections, we have constrained: u1(t) ≥ 0, u2(t) ≥ 0 and u1(t) + u2(t) ≤ 1, ∀t.

2.2.2 Objective functional

Define the set U ⊂ R2 as a convex and compact set, U =
{
u ∈ R2

+ | ‖u‖1 ≤ 1
}

where

Rd
+ is the d dimensional non-negative orthant. We define the space of admissible controls,

denoted by U , as the set of Lebesgue-measurable functions u : [t0, tf ] −→ U . The cost

11



functional to be minimized over U is written in the following Bolza form,

J (u) =

∫ tf

t0

θB(x1 + x2) +
θu
2
‖u‖2

2 dt+ θf (x1(tf ) + x2(tf )), (2.6)

where θB, θu and θf are the regulator weights. We denote L(x, u) = θB(x1 + x2) +

(θu/2) ‖u‖2
2 as the running cost, which is the integrand of J (u). The terminal cost is

denoted as g(x(tf )) = θf (x1(tf ) + x2(tf )). The optimal control problem is

min{J (u)|u ∈ U}. (2.7)

Such optimal problems may not have solutions in the sense that the minimum in Eq. 2.7

does not exist. Generally the infimum exists, and we denote it by

J ∗ := inf{J (u)|u ∈ U}. (2.8)

Later we prove that for this particular problem the minimum exists (see Sect. ??), however,

there is no guarantee that the minimal solution is piecewise continuous. In practice, the

algorithm (see Sect. 2.4.1) computes piecewise-continuous functions, and we mention that

the computed solution, defined as the last iteration after the algorithm has stopped, provides

an adequate approximation to J ∗.

2.3 Analysis of optimal controls

2.3.1 Preliminaries

Positively invariant set. For many complex population dynamics models, the popula-

tions remain bounded forward in time, e.g., virus-host interactions [73], vector-borne dis-

eases [27]. The following proposition guarantees the boundedness of system (2.5) for any

controls u(t) ∈ U .
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Proposition 1. Let Ω be the following subset of R5
+ ,

Ω = {x ∈ R5
+ | x1 + x2 ≤ kCD, x3 ≤

q + βψkCD
ω

, x4 ≤ 1, x5 ≤
q + βψkCD

ω
}.

Then, Ω is a positively invariant set under system (2.5).

Proof. It should be clear that the state solutions are bounded from below by zero such that

x(t) ∈ R5
+ for all t ≥ 0, i.e., the densities of bacteria, phage and immune cells cannot be

negative. The following discussion assumes that the initial condition is in the set Ω, i.e.,

x(0) ∈ Ω. Note that

ẋ1 + ẋ2 ≤ rx1

(
1− x1 + x2

kCD

)
+ r′x2

(
1− x1 + x2

kCD

)
= (rx1 + r′x2)

(
1− x1 + x2

kCD

)
,

which implies that x1(t) + x2(t) ≤ kCD for t ≥ 0. Similarly, we must have x4(t) ≤ 1 for

all t ≥ 0. The control inputs (u1, u2)T ∈ U for all t ≥ 0, hence, we have

ẋ3 = βψx1

(
x3

1 + x3

)
− ψx1x3 − ωx3 + qu1 ≤ (βψx1 + q)− x3(ψx1 + ω).

Using the boundedness of x1, i.e., 0 ≤ x1 ≤ kCD, we have

ẋ3 ≤ (βψkCD + q)− x3ω.

Clearly, x3(t) ≤ (q + βψkCD)/ω for all t ≥ 0. Similarly, using the boundedness of x2,

we have x5(t) ≤ (q + βψkCD)/ω for all t ≥ 0. Altogether, we find that Ω is positively

invariant under system (2.5)

Existence of optimal control.

Remark 1. Notably, the system (2.5) is control affine and the control set U is compact and

convex, the integrand of the cost functional, L(x, u), is convex on U for each x, and the
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terminal cost function g(x) is continuous. Thus, the sufficient conditions for the existence

of optimal control are satisfied (see Theorem 4.1 in [74]). The similar exercises of proving

the existence of optimal control based on Theorem 4.1 in [74] are referred to [25, 19, 75,

27].

2.3.2 The optimality system

Once the existence of optimal control has been established, we derive the optimality system

by Pontryagin’s Maximum Principle (PMP). Note that PMP gives the necessary conditions

for the optimal control [70]. First, we formulate the optimal control problem as following

min{J (u)|u ∈ U} subject to ẋ = f(t, x, u), x(0) = x0, (2.9)

where J (u) is the cost functional given in Eq. 2.6, U is the admissible control space,

f(t, x, u) is right hand side (RHS) of system (2.5) and x0 is the initial condition. Apply-

ing PMP, we obtain the optimality conditions that must be met for an optimal control in

problem (2.9).

Theorem 2.3.1. If u∗(t) = [u∗1(t), u∗2(t)]T is an optimal control pair that solves problem

(2.9), x∗(t) is the corresponding state trajectory of the initial value system (2.5), and λ∗(t)

is the costate trajectory of the following terminal value system

λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗)

)T
, λ∗(tf ) = [θf , θf , 0, 0, 0]T (2.10)

where ∂f
∂x

is the Jacobian of state system (2.5) and ∂L
∂x

= [θB, θB, 0, 0, 0], then

u∗(t) = PU(û(t)) , û(t) = − q

θu

λ∗3(t)

λ∗5(t)

 . (2.11)

where PU(û(t)) represents the projection of û(t) onto U in `2-norm. The detailed imple-
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mentation of projection operator PU is given in Appendix 2.6.1.

Proof. Given that u∗ = [u∗1, u
∗
2]T is an optimal control pair that solves problem (2.9), and

x∗(t) and λ∗(t) are the corresponding state trajectory and costate trajectory, then the fol-

lowing equations are satisfied by PMP:

State equation : ẋ∗ = f(x∗, u∗) (2.12)

Costate equation : λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗)

)T
(2.13)

Maximum principle : ∀t ∈ [0, tf ], H(x∗(t), λ∗(t), u∗(t)) = min {H(x∗(t), λ∗(t), u) | u ∈ U}

(2.14)

Terminal condition : λ∗(tf ) =

(
∂g

∂x
(x∗(tf ))

)T
, (2.15)

where H is the Hamiltonian with form of H(x, λ, u) = λTf(x, u) + L(x, u). In our case,

we have

H(x, λ, u) = λ1

[
rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2

]
+ λ2

[
r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− kPDx2I(x5)− ε̃x4x2

1 + x1 + x2

]
+ λ3 [βx1I(x3)− ψx1x3 − ωx3 + qu1]

+ λ4

[
αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)]
+ λ5 [βx2I(x5)− ψx2x5 − ωx5 + qu2] + θB(x1 + x2) +

θu
2
‖u‖2

2

= Q+ qλ3u1 + qλ5u2 +
θu
2
‖u‖2

2 ,

where Q is the collection of terms that has no argument in u. The minimization of H over

u ∈ U is a linear constrained quadratic programming (QP) problem [76]. We write the
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minimization problem in its equivalent form,

min
{
Q+ qλ3u1 + qλ5u2 +

θu
2
‖u‖2

2 | u ∈ U
}

⇔ min
u∈R2

bTu+ uTAu

s.t 1
Tu ≤ 1, eT1 u ≥ 0, eT2 u ≥ 0

where e1 = [1, 0]T , e2 = [0, 1]T , 1 = [1, 1]T , and

A =
θu
2

1 0

0 1

 , b = q

λ3

λ5

 .
Let u∗ be minimizer of above constrained QP problem, we observe that u∗ has following

closed form

u∗ = PU(û) , û = − q

θu

λ3

λ5

 .
where PU(û) represents the projection of û onto U . Next, we derive the system of costate

in Eq. 2.13. Note that ∂L/∂x = [θB, θB, 0, 0, 0], the terminal condition of costate equation

is λ∗(tf ) = [θf , θf , 0, 0, 0]T by Eq. 2.15. The Jacobian of the RHS of state equation is

∂f

∂x
=



J11 J12 J13 J14 0

J21 J22 0 J24 J25

J31 0 J33 0 0

J41 J42 0 J44 0

0 J52 0 0 J55


,
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where

J11 =
r(1− µ)(kCD − 2x1 − x2)

kCD
− kPDI(x3)− ε̃(1 + x2)x4

(1 + x1 + x2)2
,

J12 =
ε̃x1x4

(1 + x1 + x2)2
− r(1− µ)x1

kCD
,

J13 = −kPD
ψx1

(1 + x3)2
, J14 = − ε̃x1

1 + x1 + x2

,

J21 =
µr(kCD − 2x1 − x2)

kCD
− r′x2

kCD
+

ε̃x2x4

(1 + x1 + x2)2
,

J22 =
r′(kCD − x1 − 2x2)

kCD
− µrx1

kCD
− kPDI(x5)− ε̃(1 + x1)x4

(1 + x1 + x2)2
,

J24 = − ε̃x2

1 + x1 + x2

, J25 = −kPD
ψx2

(1 + x5)2
,

J31 = βI(x3)− ψx3 , J33 =
βψx1

(1 + x3)2
− ω − ψx1,

J41 =
αkNDx4(1− x4)

(kND + x1 + x2)2
, J42 =

αkNDx4(1− x4)

(kND + x1 + x2)2
, J44 = α(

x1 + x2

x1 + x2 + kND
)(1− 2x4),

J52 = βI(x5)− ψx5 , J55 =
βψx2

(1 + x5)2
− ω − ψx2.

We have explained Eqs. 2.12 - 2.15.

2.3.3 Analysis of optimal control in monophage therapy

The monophage therapy can be modeled by a reduced form of system (2.5). The state

vector of population densities is [S,R, PS, I]T , the corresponding population dynamics is

modeled analogously to system (2.1) by excluding any terms associated with phage PR.

Via the same scale transformations in Eq. 2.3 and Eq. 2.4, the scaled system of monophage
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therapy model is

ẋ1 = rx1

(
1− x1 + x2

kCD

)
(1− µ)− kPDx1I(x3)− ε̃x4x1

1 + x1 + x2

ẋ2 = r′x2

(
1− x1 + x2

kCD

)
+ rx1

(
1− x1 + x2

kCD

)
µ− ε̃x4x2

1 + x1 + x2

ẋ3 = βx1I(x3)− ψx1x3 − ωx3 + qu1(t)

ẋ4 = αx4(1− x4)

(
x1 + x2

x1 + x2 + kND

)
.

(2.16)

Note that the RHS of system (2.16) is the same as the RHS of system (2.5) by excluding

all the terms associated with x5. Here, the space of controls is denoted by U1, which is the

set of Lebesgue-measurable functions u1 : [t0, tf ] −→ U1, where U1 = [0, 1]. The optimal

control formulation is

min{
∫ tf

t0

θB(x1 + x2) +
θu
2
u2

1 dt + θf (x1(tf ) + x2(tf )) | u1 ∈ U1}

subject to the system (2.16).

(2.17)

The existence of optimal control is still guaranteed. The necessary conditions of optimal

control in problem (2.17) are derived in appendix 2.6.2

2.4 Results

2.4.1 The Hamiltonian-based algorithm

We solve the optimal control problems by a Hamiltonian-based algorithm, this algorithm

is presented with greater detail in [71, 72]. A salient feature is that the algorithm converges

fast towards a near-optimal control (for a class of problems) if the Hamiltonian function

is convex in u and can be minimized effectively and efficiently. Here, we briefly describe

this algorithm. Two parameters are used to control the backtracking search, η ∈ (0, 1) and

s ∈ (0, 1), and we used η = s = 0.5.
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Algorithm ? Fix a finite grid of equally-spaced points in the interval [t0, tf ], henceforth

referred to as ‘the grid’. At the kth iteration of the algorithm, k = 1, 2, . . ., it starts with the

kth control iteration uk, and computes from it the next iteration, uk+1, as follows.

1. Given a control input uk, compute the state trajectory x forward using numerical

integration.

2. Compute the costate trajectory λ backward in time.

3. For every t in the grid on the interval [t0, tf ], compute v∗(t) that minimizes the Hamil-

tonian. Interpolate the results by a zero-order hold (piecewise-constant interpolation)

to define the control v∗ := {v∗(t) : t ∈ [t0, tf ]}. It serves as the steepest-feasible

descent direction from uk.

4. Compute Θ(uk) :=
∫ tf
t0

(
H(x, v∗, λ)−H(x, uk, λ)

)
dt.

5. Find `(uk) = min{` = 0, 1, 2, ... | J (s`v∗ + (1− s`)uk)− J (uk) ≤ ηs`Θ(uk)}.

6. Set uk+1 = (1− s`(k))uk + s`(k)v∗.

The state trajectory x(t) and the costate trajectory λ(t) are numerically integrated by Eu-

ler’s method [77], the time step is ∆t = 5 × 10−4. The convergence indicator |Θ(u)|

measures the extent to which u fails to satisfy the PMP. The algorithm will be terminated

when either |Θ(u)| ≤ 10−5 or the maximum number of allowed iterations is reached.

2.4.2 Preliminaries of simulations

The model parameters and initial conditions of system (2.1) are given in Table 3.1. The

in silico experiments run for 3 days post infection and all the treatments start at 2 hours

after initialization (consistent with in vivo treatments in [69]), we thus set t0 = 2 hrs and

tf = 72 hrs. In addition, the optimal dose and timing of therapy are not sensitive to the

final treatment time tf , see appendix 2.6.4. We fix the regulator weights θB = θf = 1. We
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will tune the value of θu to solve a practical variant of the original control problems (2.9)

and (2.17).

Practical treatment objective. The goal of the optimal control framework described in

Sect. 2.2.2 is to minimize the total bacterial population and penalizing the treatment costs

by optimizing the scaled phage injection rates. However, from a practical therapeutic per-

spective, we may want to find the minimal phage dosage required to eliminate bacteria

instead. Since the differential equation system (2.1) is continuous, we assume the bacterial

population is eliminated if there exists a time τ ∈ [0, tf ] such that S(τ) + R(τ) ≤ next,

where next = 1 CFU/g is the hard threshold of bacteria elimination.

The objective of practical therapy can thus be formalized as a constrained optimal con-

trol problem that minimizes the integral of phage injection rates subject to the constraint of

bacteria elimination in a hybrid system where the state equations are different before and

after bacterial elimination. The discontinuous nature of bacterial elimination events poses

considerable numerical challenge in explicitly solving the constrained hybrid optimal con-

trol problem. As a result, we utilize the ordinary control formulations (2.9) and (2.17) to

achieve the goal of eliminating bacteria with minimum dosage via a heuristic approach. In

this approach, we adjust the regulator weight θu and locate the highest value that results in

bacterial elimination. The total phage dosage is then computed to find the minimum dosage

corresponding to bacterial elimination.

Minimal phage dosage and regulator weight θu. Here, we detail the procedure of

achieving the practical control objective by tuning regulator weight θu in a certain range.

We search θu in the interval [10−11, 1011], ranging from negligible treatment costs (θu =

10−11) to dominating treatment costs (θu = 1011) in the control objective. For any fixed

θu ∈ [10−11, 1011], we can numerically solve the optimal control problems (2.9) and (2.17)

via a Hamiltonian-based algorithm. It is also easy to check if the optimal control solution

effectively eliminates bacterial populations based on the artificial threshold we introduced.
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In order to find the treatment (i.e., profiles of phage injection rate) that can eliminate

bacteria with minimal dosage, we sweep over the range of θu and extract all the ‘θu’ values

that lead to successful bacterial elimination. Assuming such ‘θu’ values exist, we then find

the minimum effective phage dosage by computing the integral of phage injection rate that

corresponds to the highest ‘θu’ value resulting in bacterial elimination, e.g., dosage of a

treatment that has two types of phage is D =
∫ tf
t0
ρS(t) + ρR(t) dt. In the case that no

optimal control treatment can eliminate the bacteria with θu in the range of [10−11, 1011],

we assume phage therapy would fail under all reasonable phage dosages in such conditions.

However, the computational costs of finding the value of θu corresponding to the mini-

mum effective dosage (θ∗u) via brute-force searching are very high. Intuitively, we note that

if bacteria is eliminated for a given θ′u ∈ [10−11, 1011], then bacteria would also be elimi-

nated for all θu ≤ θ′u, i.e., relaxing penalization on treatment costs would always eliminate

bacteria. Likewise, if bacteria is not eliminated for θ′u, then bacteria is also not eliminated

for all θu ≥ θ′u as higher penalization on treatment costs would lead to a less effective

treatment.

Building upon these intuitions, we implement a binary search algorithm to find θ∗u. We

first evaluate the two boundary cases (θu = 10−11 and θu = 1011) and assume that phage

therapy would fail in general if the optimal treatment corresponding to θu = 10−11 fails.

In addition, if the optimal treatment corresponding to θu = 1011 can successfully elimi-

nate bacteria, its associated phage dosage is identified as the minimum effective dosage.

If both of the aforementioned boundary conditions are not satisfied, we compute the opti-

mal treatment corresponding to an intermediate weight θui = 10(L+R)/2 where L = −11

and R = 11 for the two boundaries. If optimal treatment with θui works, we update left

searching boundary L ← (L + R)/2; otherwise, we update right searching boundary

R ← (L + R)/2. We iterate this procedure for n = 8 times (corresponding to a preci-

sion of about 22/28 ≈ 0.08 at power scale, where 22 is the length of power scale range for

θu ∈ [10−11, 1011]) to estimate the value of θ∗u.
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Classification of injection strategies. In this study, we focus on three types of injection

strategies: an optimal control strategy in monophage therapy, namely, one dimensional op-

timal control (1D-OC); an optimal control strategy using multiple types of phage, namely,

two dimensional optimal control (2D-OC); and a practical therapeutic treatment using ei-

ther single or multiple types of phage. The 1D-OC and 2D-OC are optimal controls solved

numerically from problems (2.17) and (2.9) respectively. However, 1D-OC and 2D-OC

are usually continuous signals, which cannot be directly implemented in (current) clini-

cal treatment, we thus have to convert the continuous treatment to a (discrete) multi-dose

treatment.

In this chapter, we only focus on developing multi-dose treatment guided by 2D-OC

treatment in immunodeficient scenarios. There are two types of phage in 2D-OC and we

allow one-time dose injection for each type of phage in the practical therapeutic treat-

ment. The timings of injecting phage PS and phage PR (in practical therapeutic treatment

guided by 2D-OC) are denoted by TPS
and TPR

respectively. We define TPS
= min{τ ∈

[t0, tf ] | ρS(τ) ≥ ρS(t) ∀t ∈ [t0, tf ]}, i.e., the first time that injection rate of phage PS

arrives its maximal rate. TPR
is defined in the same way as TPS

. We define the integral of

phage injection rate ρS(t) over [t0, tf ] asDS , and the analogous integral of the second phage

type as DR. In doing so, given a 2D-OC treatment (ρS(t), ρR(t)), the practical therapeutic

treatment guided by this 2D-OC treatment is: injectingDS amount of phage PS at time TPS

and injecting DR amount of phage PR at time TPR
. The in silico experiments using prac-

tical therapeutic treatment assumes bacteria and phage are eliminated locally when their

population densities drop below a threshold of 1 g−1. As the practical therapeutic treat-

ment guided by 2D-OC is only an approximation of the optimal treatment, it is possible for

the practical strategy to fail to eliminate bacteria. In this situation, we iteratively amplify

the dosages (ten percent higher for each step) of the two phage types used in practical ther-

apeutic treatment while fixing the timings of phage injection until bacterial populations are

eliminated.
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2.4.3 Monophage therapy in immunocompetent hosts

For immunocompetent hosts with intact immune activation, monophage therapy can be

highly effective in curing bacterial infections [69]. However, phage therapy can still fail

when the phage decay rate is high, or when the phage infection rate is low due to inefficient

phage strains or partial resistance [68, 69]. To explore these potential modes of failure,

we set the phage infection rate to be φ = 3.38 × 10−8 g/(h PFU), slightly lower than the

estimated value φ = 5.4 × 10−8 g/(h PFU) in [69]. We then plot the performances of 1D-

OC strategy by their minimal phage dosages for eliminating the bacterial population given

a range of phage decay rate ω ∈ [10−2, 102](h−1).

Figure 2.2: Minimal phage amount for eliminating bacterial cells using 1D-OC strategy
(green dots). There is no 1D-OC treatment that can eliminate bacteria in the regime of
high phage decay rate (ω ≥ 2.5h−1). Two 1D-OC examples are provided in Fig. 2.3: the
corresponding time series of population densities and injection rate trajectories. See model
parameters and simulation details in Sect. 2.4.2.

In Fig. 2.2, we find that the minimum phage dosage needed by 1D-OC strategies to

eliminate the bacteria increases monotonically with the phage decay rate. In addition, the
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(B) 1D-OC example (*: fast phage decay)

(A) 1D-OC example (+: slow phage decay)

Figure 2.3: Time series of population densities and optimal injection rates of two 1D-
OC examples (labeled in Fig. 2.2): slow phage decay (ω = 0.01h−1) and fast phage
decay (ω = 2.5h−1). (A) Optimal injection rate, ρS(t), is obtained by solving control
problem (2.17) with tuned regulator weight θu = 1011. The Hamiltonian-based algorithm
is terminated after k iterations and output control uk1, where k = 11. The numerical value
of objective cost in problem (2.17) with control uk1 is 228.47, and the convergence indicator
|Θ(uk1)| ≈ 2.11 × 10−6. Bacteria is eliminated around 50 hrs post infection. (B) Optimal
injection rate, ρS(t), is obtained by solving control problem (2.17) with tuned regulator
weight θu = 10. The Hamiltonian-based algorithm is terminated after k iterations and
output control uk1, where k = 9. The numerical value of objective cost in problem (2.17)
with control uk1 is 264.73, and the convergence indicator |Θ(uk1)| ≈ 5.20 × 10−6. Bacteria
is eliminated around 50 hrs post infection. See model parameters and simulation details in
Sect. 2.3.3.

dosage increase becomes extremely rapid at decay rate ω ∼ 1 h−1 and 1D-OC therapy fails

for all practical dosages when ω > 2.5 h−1. The time series of population dynamics at slow

phage decay rate are plotted in Fig. 2.3A. The single-impulse like optimal injection rate

shows that the 1D-OC treatment (in this case) is approximately a single-dose treatment:

injecting a small amount of phage (about 5× 102 PFU) at the very beginning of treatment
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2 hours post infection. In doing so, the optimized treatment reduces the phage-sensitive

bacterial population quickly and controls the emergence of resistant bacteria in an early

stage. On the other hand, when phage decay at a fast rate, the 1D-OC strategy maintains

the phage concentration and treatment efficacy by continuously injecting phage into the

system over a longer period of time (see Fig. 2.3B).

2.4.4 Phage therapy in immunodeficient hosts

Previous work has shown that a deficient immune response may lead to failure of phage

therapy in an acute pneumonia system [69]. Here, we explore whether phage combination

therapy (phage cocktails) that includes a host-range mutant phage targeting resistant bac-

teria can restore therapeutic effectiveness in immunodeficient hosts, and identify optimal

ways to achieve that. In the immunodeficient model, immune signaling is assumed to be

absent such that the immune response intensity is maintained at a basal level, I = I0. In

addition, the initial bacterial inoculum is lowered by two orders of magnitude in the im-

munodeficient model compared to the immunocompetent case [69]. We further assume that

the wild-type and host-range mutant phage target the phage-sensitive and phage-resistant

bacteria respectively with no cross infectivity. First, we compute 2D-OC treatments cor-

responding to minimal phage dosages given a range of basal-level immune density. Then,

we test a practical approximation of the 2D-OC treatment by converting the 2D-OC phage

injection profile into discrete doses of each phage strain (see Sect. 2.4.2 for details). For

each basal-level immune density, we evaluate the performance of the practical therapeutic

treatment guided by the 2D-OC treatment at the same basal-level immune density.

The numerical results show that the minimal phage amount of both 2D-OC and prac-

tical therapies for eliminating bacterial cells decreases with increasing basal-level immune

density (see Fig. 2.4A). Moreover, for practical therapeutic treatments in the entire range of

the basal-level immune density, the optimal timings of injecting the two types of phage are

both at the very beginning of treatment (i.e., TPS
= TPR

≈ 2 hrs). Furthermore, given our
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Figure 2.4: Minimal phage amount for eliminating bacterial cells using 2D-OC strategy
(left) and the practical therapeutic treatment (right). (Left) Minimal phage amount for
eliminating bacterial cells using 2D-OC strategy (red) and practical therapeutic treatment
guided by 2D-OC strategy (green). Two in silico experiments (high immune density I0 =
8 × 106 cell/g and low immune density I0 = 3 × 106 cell/g) are provided in Figs. 2.5 and
2.6 respectively. (Right) Dosage of phage PS (red) and dosage of phage PR (blue) used in
practical therapeutic treatment. The timings of injecting two types of phage dose are both
about two hours post infection (i.e., TPS

= TPR
≈ 2 hrs). Note that the total dosage of two

types of phage (add up of PS phage dosage and PR phage dosage) is the green curve in the
left panel. See model parameters and simulation details in Sect. 2.4.2.

model and parameter assumptions the optimal control algorithm always result in a dosage

of phage PS about ten times higher than the dosage of phage PR (i.e., DS/DR ≈ 10), see

Fig. 2.4B. When the basal-level immune density is very high, I0 ≈ 8.5 × 106 (cell/g), the

practical treatment only needs a small amount of phage PS (about 102 PFU) to eliminate

bacteria (see Fig. 2.4B and Fig. 2.7 in appendix 2.6.3). To investigate the phage deliv-

ery schedules identified by the optimal control strategies and understand the advantages

of phage combination therapy, we compare the injection rate and population dynamics of

1D-OC, 2D-OC and practical therapeutic strategies in Figs. 2.5 and 2.6.

For the 1D-OC case at high level of immune response (see Fig. 2.5A), the optimal phage

dosing occurs over a time period of nearly 60 hours with injection rate starting at around

the maximal value of 109 PFU/(h g) and decreasing after 24 hours. The immunodeficiency
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necessitated a much higher dosage of phage sustained over a long period of time even

for a low initial bacterial inoculum. The aggressive phage dosing results in a roughly

exponential decrease in phage-sensitive bacteria, but the phage-resistant bacteria is not

effectively controlled and increases slightly in population. Phage-resistant bacteria is even

more problematic at low baseline immune level (see Fig. 2.6A), where the resistant mutants

grow exponentially until they reach the carrying capacity despite a more aggressive phage

dosing that maintains a maximum injection rate until 48 hours post infection. The failure

of phage therapy in these cases is a result of the deficient immune response not being able

to control phage-resistant bacteria, as confirmed by the population dynamics at sufficiently

high baseline immune response (see Fig. 2.7 in appendix 2.6.3) which shows effective

control of both phage-sensitive and phage-resistant bacterial populations at much lower

phage dose.

Figs. 2.5B-C and 2.6B-C show how judicious use of a phage cocktail in the 2D-OC

strategy can improve the robustness of therapeutic success. In Fig. 2.5B, the host-range

mutant phage is injected for the entire dosing schedule to preemptively inhibit the phage-

resistant bacteria. Initially, wild-type phage targeting the phage-sensitive bacteria is in-

jected at a higher dose than the host-range mutant phage as the initial inoculum consists

mostly of sensitive bacteria. That balance is shifted as the relative proportion of resistant

bacteria increases and the host-range mutant phage becomes the major component of the

cocktail at around 12 hrs post infection. Thus, the optimal injection rates (in 2D-OC treat-

ment) exhibit interesting and complex temporal patterns. However, in real clinical treat-

ments, it is not (yet) feasible to implement such a complicated phage delivery schedules.

In Fig. 2.5C, the practical therapeutic treatment, i.e., a discretized form of the continuous

2D-OC treatment, also shows efficacy in eliminating the bacteria. In the case of low base-

line immune response, the temporal patterns in treatment strategies (2D-OC and practical

treatments) are similar to the case of high baseline immune response (see Figs. 2.6B-C

and compare to Figs. 2.5B-C), but the dosage of two types of phage used in treatments
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are much higher. This is consistent with our previous work showing that the host immune

status may be a critical factor determining phage therapy efficacy [69]. In addition, for low

immune level the time of switching over to a strategy dominated by the counter-resistant

phage is delayed to about 36 hours after infection as opposed to around 12 hours in the

high immune baseline case.

2.5 Discussion

In this chapter, we developed a control-theoretic framework to optimize the use of monophage

treatment and phage cocktails for treating bacterial infections in immunodeficient hosts or

in other scenarios such as high phage decay rate where standard phage therapy is likely

to fail. By incorporating phage administration as the control in a mathematical model de-

scribing the nonlinear interactions between phage, pathogenic bacteria and host immunity,

we derive a Hamiltonian-based algorithm to numerically minimize bacterial burden while

limiting the phage dose. Our results indicate that optimal control may provide important

insights to guide clinical use of phage therapy. In particular, a single dose of phage may be

sufficient to treat immunocompetent patients when the phage clearance rate is low, whereas

phage administration may need to be sustained over a longer period when phage clearance

is fast. In immunodeficient hosts, our results suggest that the success of optimal admin-

istration of phage cocktails can largely be reproduced in a simplified, discretized version

of the optimal therapy that would be easier to implement practically. The only trade-off

observed for the simplified practical therapy is a slight increase of the minimum effective

dose in cases of severe immunodeficiency. Our optimal control framework indicates that a

single phage strain may be effective for therapy at relatively high immunity levels, but the

use of multiple therapeutic phage is required for low immune intensities.

To ensure that the optimal control problem remains mathematically tractable, a num-

ber of simplifying assumptions have been made. For example, within-host dynamics is

assumed to be deterministic, whereas biological processes such as mutations are inherently
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stochastic. The gap between mathematical models and complex clinical trials can be even

wider due to various confounding factors. In addition, the optimal control solutions are

solved based on specific objective functional and model parameters. Hence, different sets

of parameters, models, and the objective costs could yield different suggested treatments

such that the robustness of our optimal treatments may not be guaranteed. Our model also

focuses on acute infections, and did not consider spatial heterogeneity or cocktails con-

sisting of more than two phage strains. These issues could be addressed in future work

by extending our modeling framework to incorporate stochastic control [78, 74] in spatial

models with multiple strains of phage. In doing so, it will be important to consider host

adaptive immunity, which is important in chronic infections and can generate specific re-

sponses against phage [79, 80]. Finally, we note that host-range phage mutants may be able

to infect multiple strain types [81]; hence future work should also address how to optimally

combine phage with overlapping host ranges.

2.6 Appendix

2.6.1 Implementation of projection operator PU

Here we present a closed form of projection operator PU via a geometric approach [76],

recall that u∗ = PU(û) in Theorem 2.3.1, then we have following:

u∗ = û, if û ∈ {u | eT1 u ≥ 0, eT2 u ≥ 0, 1Tu− 1 ≤ 0},

u∗ = PA(û), if û ∈ {u | 1Tu− 1 ≥ 0, 1̃Tu+ 1 ≥ 0, 1̃Tu− 1 ≤ 0},

u∗ = [0, 1]T , if û ∈ {u | eT2 u− 1 ≥ 0, 1̃Tu− 1 ≥ 0},

u∗ = [0, û2]T , if û ∈ {u | eT1 u ≤ 0, eT2 u ≥ 0, eT2 u− 1 ≤ 0},

u∗ = [0, 0]T , if û ∈ {u | eT1 u ≤ 0, eT2 u ≤ 0},

u∗ = [û1, 0]T , if û ∈ {u | eT1 u ≥ 0, eT1 u− 1 ≤ 0, eT2 u ≤ 0},

u∗ = [1, 0]T , if û ∈ {u | 1̃Tu+ 1 ≤ 0, eT1 u ≥ 1},
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where 1̃ = [−1, 1]T andA = {u | 1Tu− 1 = 0}. Computing the projection of û on toA is

straightforward. The orthogonality principle yields û−PA(û) must be colinear with 1, also

PA(û) ∈ A, i.e., û−PA(û) = z1 and 1TPA(û)−1 = 0. This yields z = (1T û−1)/(1T1)

and thus PA(û) = û− z1.

2.6.2 The optimality system of optimal control in monophage therapy

Here, we derive the necessary conditions for the optimal control problem (2.17) via Pon-

tryagin’s Maximum Principle (PMP) [70].

Theorem 2.6.1. If u∗1 is an optimal control that solves problem (2.17), and x∗(t) is the

corresponding state trajectory of the initial value problem (2.16), and λ∗(t) is the costate

trajectory of the following terminal value problem

λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗)

)T
, λ∗(tf ) = [θf , θf , 0, 0]T (2.18)

where ∂f
∂x

is the Jacobian of state equations (2.16) and ∂L
∂x

= [θB, θB, 0, 0], then

u∗1(t) =


0, if λ∗3(t) ≥ 0

− qλ∗3(t)

θu
, if − θu

q
≤ λ∗3(t) < 0

1, if λ∗3(t) < − θu
q
.

(2.19)

Proof. According to PMP, if u∗1 is an optimal control that solves problem (2.17), and if

x∗(t) and λ∗(t) are the corresponding state trajectory and costate trajectory, then the fol-
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lowing equations are satisfied,

State equation : ẋ∗ = f(x∗, u∗1) (2.20)

Costate equation : λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗1)

)T
(2.21)

Maximum principle : ∀t ∈ [0, tf ], H(x∗(t), λ∗(t), u∗1(t)) = min {H(x∗(t), λ∗(t), u1) | u1 ∈ U1}

(2.22)

Terminal condition : λ∗(tf ) =

(
∂g(x∗(tf ))

∂x

)T
, (2.23)

where H is the Hamiltonian with form of H(x, λ, u1) = λTf(x, u1) + L(x, u1). We find

that H(x, λ, u1) = Q̃ + qλ3u1 + (θu/2)u2
1, where Q̃ is the collection of terms that has

no argument in u1. Minimizing H(x, λ, u1) over u1 ∈ U1 yields Eq. 2.19. The costate

equation with terminal condition is

λ̇∗ = −
(
∂f

∂x
(x∗)

)T
λ∗ −

(
∂L
∂x

(x∗, u∗1)

)T
, λ∗(tf ) =

(
∂g(x∗(tf ))

∂x

)T
,

where ∂L/∂x = [θB, θB, 0, 0], λ∗(tf ) = [θf , θf , 0, 0]T . The Jacobian is

∂f

∂x
=



J11 J12 J13 J14

J21 J22 0 J24

J31 0 J33 0

J41 J42 0 J44


,
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where

J11 =
r(1− µ)(kCD − 2x1 − x2)

kCD
− kPDI(x3)− ε̃(1 + x2)x4

(1 + x1 + x2)2

J12 =
ε̃x1x4

(1 + x1 + x2)2
− r(1− µ)x1

kCD

J13 = −kPD
ψx1

(1 + x3)2
, J14 = − ε̃x1

1 + x1 + x2

J21 =
µr(kCD − 2x1 − x2)

kCD
− r′x2

kCD
+

ε̃x2x4

(1 + x1 + x2)2
,

J22 =
r′(kCD − x1 − 2x2)

kCD
− µrx1

kCD
− ε̃(1 + x1)x4

(1 + x1 + x2)2

J24 = − ε̃x2

1 + x1 + x2

, J25 = −kPD
ψx2

(1 + x5)2

J31 = βI(x3)− ψx3 , J33 =
βψx1

(1 + x3)2
− ω − ψx1

J41 =
αkNDx4(1− x4)

(kND + x1 + x2)2
, J42 =

αkNDx4(1− x4)

(kND + x1 + x2)2
, J44 = α(

x1 + x2

x1 + x2 + kND
)(1− 2x4).

We have explained Eqs. 2.20 - 2.23.

2.6.3 Effective single-dose treatment in immunodeficient hosts

When the baseline immune response is sufficiently high in immunodeficient hosts, all

the treatment strategies (1D-OC, 2D-OC and practical treatments) can eliminate bacte-

ria with a low dose of phage PS injected at very beginning of treatment (see Fig. 2.7 in

Appendix 2.6.3).

2.6.4 Robustness analysis of optimal timing and dose to variations in therapy duration

From our numerical simulations, e.g. Figs 2.3, 2.5, 2.6 and 2.7, we observe that successful

phage therapy relies on early injection (for both single-dose and multi-dose cases). Here,

we show that early ‘hit-hard’ approaches remain robust to variations in treatment duration

when the final treatment time tf is changed. Please refer to Fig. 2.8 for the optimal dose

and timing of the practical therapy for different final treatment time.
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(B) 2D-OC treatment (*: high level of baseline immune response)

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Figure 2.5: Comparison of time series of population densities with different treatments
in the high level of baseline immune response, I0 = 8 × 106 cell/g. (A) Optimal injec-
tion rate, ρS(t), is obtained by solving control problem (2.17) with tuned regulator weight
θu = 10−11 (the smallest regulator weight on treatment costs). The Hamiltonian-based al-
gorithm is terminated after k iterations and output control uk1, where k = 2. The numerical
value of objective cost in problem (2.17) with control uk1 is 0.03311, and the convergence
indicator |Θ(uk1)| ≈ 4.08 × 10−12. There does not exist curative 1D-OC treatment due to
the outgrowth of phage-resistant bacteria R. (B) Optimal injection rate, ρS(t) and ρR(t),
is obtained by solving control problem (2.9) with tuned regulator weight θu = 10. The
Hamiltonian-based algorithm is terminated after k iterations and output control uk, where
k = 5. The numerical value of objective cost in problem (2.9) with control uk is 0.048675,
and the convergence indicator |Θ(uk)| ≈ 3.55×10−6. Bacteria is eliminated around 30 hrs
post infection. (C) The practical therapeutic treatment is obtained from optimal injection
rate in (B): two doses, PS phage dose and PR phage dose, both are injected at two hours
post infection with amount of 2.6 × 107 PFU and 2.3 × 106 PFU respectively. Bacteria is
eliminated around 30 hrs post infection. See model parameters and simulation details in
Sect. 2.4.2.
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(B) 2D-OC treatment (+: low level of baseline immune response)

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Figure 2.6: Comparison of time series of population densities with different treatments in
the low level of baseline immune response, I0 = 3× 106 cell/g. (A) Optimal injection rate,
ρS(t), is obtained by solving control problem (2.17) with tuned regulator weight θu = 10−11

(the smallest regulator weight on treatment costs). The Hamiltonian-based algorithm is
terminated after k iterations and output control uk1, where k = 2. The numerical value
of objective cost in problem (2.17) with control uk1 is 3.75 × 105, and the convergence
indicator |Θ(uk1)| ≈ 1.15 × 10−12. There does not exist curative 1D-OC treatment due to
the outgrowth of phage-resistant bacteria R. (B) Optimal injection rate, ρS(t) and ρR(t),
is obtained by solving control problem (2.9) with tuned regulator weight θu = 10−2. The
Hamiltonian-based algorithm is terminated after k iterations and output control uk, where
k = 12. The numerical value of objective cost in problem (2.9) with control uk is 0.184,
and the convergence indicator |Θ(uk)| ≈ 1.13×10−6. Bacteria is eliminated around 60 hrs
post infection. (C) The practical therapeutic treatment is obtained from optimal injection
rate in (B): two doses, PS phage dose and PR phage dose, both are injected at two hours
post infection with amount of 3 × 109 PFU and 3 × 108 PFU respectively. Bacteria is
eliminated around 60 hrs post infection. See model parameters and simulation details in
Sect. 2.4.2.
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(B) 2D-OC treatment

(A) 1D-OC treatment

(C) Practical treatment guided by 2D-OC in (B)

Single-dose PS

Single-dose PR

Figure 2.7: Comparison of time series of population densities with different treatments in
the high level of baseline immune response, I0 = 8.5 × 106 cell/g. (A) Optimal injection
rate, ρS(t), is obtained by solving control problem (2.17) with tuned regulator weight θu =
1011 (the largest regulator weight on treatment costs). The Hamiltonian-based algorithm is
terminated after k = 11 iterations and output control uk1. The numerical value of objective
cost in problem (2.17) with control uk1 is 0.1024, and the convergence indicator |Θ(uk1)| ≈
1.68 × 10−8. Bacteria is eliminated around 30 hrs post infection. (B) Optimal injection
rate, ρS(t) and ρR(t), is obtained by solving control problem (2.9) with tuned regulator
weight θu = 1011. The Hamiltonian-based algorithm is terminated after k iterations and
output control uk, where k = 10. The numerical value of objective cost in problem (2.9)
with control uk is 0.1024, and the convergence indicator |Θ(uk)| ≈ 9.34× 10−7. Note that
the optimal injection rate of phage PR is nearly zero, i.e., ρR(t) ≈ 0 ∀t ∈ [t0, tf ]. Thus,
the optimal injection rates solved from 2D-OC and 1D-OC are nearly identical, i.e., ρS(t)
is a single-pulse signal centered at t = 2 hrs. Bacteria is eliminated around 30 hrs post
infection. (C) The practical therapeutic treatment is obtained from optimal injection rate
in (B): single-dose, PS phage dose, is injected at two hours post infection with amount of
5×102PFU. Bacteria is eliminated around 30 hrs post infection. See model parameters and
simulation details in Sect. 2.4.2.

35



Figure 2.8: The optimal timing and dose in practical therapeutic treatment with variation
of final time from 2 to 4 days (i.e., tf ∈ [48, 96] hrs). The baseline immune response is
fixed at I0 = 6 × 106 cell/g. (Left) Minimal phage amount for eliminating bacterial cells
with variation in final time tf . Optimal dosages of phage PS (red) and phage PR (blue) are
maintained at approximately 108 (PFU/g) and 107 (PFU/g) respectively. (Right) Optimal
timing (defined by the peak of the optimal phage injection profile) of two types of phage
injection with variation in final time tf . The timings of injecting two types of phage dose
are both about two hours post infection (i.e., TPS

= TPR
≈ 2 hrs). See model parameters

and simulation details in Sect. 2.4.2
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Table 2.1: Parameters and initial conditions in the system (2.1) from source [69]

Parameters Value

r, maximum growth rate of bacteria 0.75 h−1

r′, maximum growth rate of phage-resistant bacteria 0.675 h−1

µ, probability of emergence of phage-resistant mutant
per cellular division 2.85× 10−8

KC , carrying capacity of bacteria (wild-type) 1.0× 1010 CFU/g
KC , carrying capacity of bacteria (immunodeficient hosts) 8.5× 1011 CFU/g
β, burst size of phage 100
w, decay rate of phage 0.07 h−1

ε, killing rate parameter of immune response 8.2× 10−8 g/(h cell)
α, maximum growth rate of immune response 0.97 h−1

KI , maximum capacity of immune response 2.4× 107 cell/g
KI , maximum capacity of immune response
(no innate immune activation) same as I0

KD, bacterial concentration at which immune response
is half as effective 4.1× 107 CFU/g
KN , bacterial concentration when immune response
growth rate is half its maximum 1.0× 107 CFU/g
φ, adsorption rate of phage 5.4× 10−8 g/(h PFU)
PC , phage density at half saturation 1.5× 107 PFU/g
S0, initial bacterial density 7.4× 107 CFU/g
S0, initial bacterial density (immunodeficient hosts) 7.4× 105 CFU/g
R0, initial phage-resistant bacterial density 1 CFU/g
I0, initial immune response 2.7× 106 cell/g
I0, initial immune response (immunodeficient hosts) 3× 106 ∼ 8.5× 106, cell/g
PS(0), initial WT phage density 0 PFU/g
PR(0), initial host-range mutant phage density 0 PFU/g
ρmax, maximal phage dose injection rate 109 PFU/(h g)
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CHAPTER 3

OPTIMIZING THE USE OF MULTIPHAGE COCKTAILS FOR TREATMENT

OF IMMUNODEFICIENT HOSTS IN ECO-EVOLUTIONARY DYNAMICS

3.1 Introduction

The addition of therapeutic phage to treat multi-drug resistant (MDR) pathogens imposes

a strong selective pressure for the emergence of phage-resistant bacteria. We have already

established through modeling and in vivo experiments that resistant bacteria proliferate in

Myd88−/− mice, corresponding to the failure of phage therapy [69]. In Chapter 2, we

presented how a phage cocktail can be used to clear an infection in immunodeficient hosts

from a bacterium that can develop resistance to one of the two injected phage [31] but the

problem of how to treat an infection where bacteria can develop resistance to both phage is

still poorly understood.

One idea proposed to combat resistance is ‘training’ phage by using their natural ca-

pacity to evolve to counter resistance before applying them in phage therapy [34]. For

example, consider an environment inoculated with a target bacteria and potential therapeu-

tic phage. Over time, the selective pressure induced by phage infection and lysis can lead

to the emergence of phage-resistant bacteria. This emergence may itself drive the selection

of host-range mutant phage [82, 83, 84, 85, 86, 87, 88, 89]. Although coevolutionary dy-

namics between phage and bacteria can be subject of inquiry in their own right, here we

are interested in the extent to which such dynamics may improve control at the outset, if

appropriately leveraged.

In this chapter, we limit our study to to a post-hoc analysis. That is, we assume that

we have already established a phage-bacteria infection network that arose as a result of

coevolutionary training, exploiting the pre-identified evolved phage able to infect partial
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and complete resistant bacteria. We select those ‘trained’ phage from coevolution. We

consider every selected phage can infect bacteria via binding to a specific receptor on the

cell surface. Then, the generic bacteria-phage infection networks consists multiple pre-

selected trained phage and a set of bacteria strains that are characterized by a sequence of

binary sites, each site denotes that bacteria can be either resistant or sensitive to a given

trained phage. As discussed in Sect. 3.4.1, the treatment with generic infection networks

is not curative when phage are less efficient (e.g., low adsorption rate and high decay rate).

Then, we focus on two classes of networks. First, we add a contingent specialist phage into

networks. The added contingent specialist phage only targets WT bacteria (i.e., sensitive to

all trained phage) with high specificity. Second, we add a generalist phage into networks.

The added generalist phage can infect all bacteria strains except a fully resistant one (i.e.,

resistant to all trained phage), with associated costs of generalism [90]. In Sects. 3.4.2 and

3.4.3, we address how adding contingent specialist phage or generalist phage can improve

therapy in certain conditions.

3.2 Eco-evolutionary synergy model

We consider a model where bacteria evolve in a discrete phenotypic space, against a fixed

set of different types of phage present in the therapeutic phage library. If there are N

phage types, a bacterium phenotype is characterized by a binary sequence of length N :

σ = {σ[1], ..., σ[N ]}. The kth binary variable (σ[k]) represents the absence or presence of

resistance to phage type k: σ[k] = 0 means that the host is resistant to type k phage and

σ[k] = 1 means that the host is sensitive to type k phage. Overall, the state space of host

(bacterial) phenotypes is denoted by SN = {0, 1}N . For example, when N = 3, the state

space of host traits is SN = {111, 011, 101, 110, 001, 010, 100, 000}. In general, there are

2N host phenotypes.

We assume that mutations are restricted to occur between adjacent types (differing by

a single resistance trait) in state space SN . That is host types with binary sequence σ can
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mutate to another host types with binary sequence σ′ if ‖σ − σ′‖1 =
∑N

j=1 |σ[j]− σ′[j]| =

1, note that using 1-norm ‖.‖1 to measure the distance between two binary sequences is

equivalent to the Hamming distance. Here, we assume that the mutation probability µ (i.e.,

probability of emergence of phage-resistant mutant per cellular division) is universal for all

types of hosts. Mutations are random, given a mutation event, the probability of mutating

to any adjacent type is the same, P (σ → σ′; ‖σ − σ′‖1 = 1) = 1/N , whereN is the length

of phenotype binary sequence.

In our model we couple basal growth rate to resistance traits in order to mimic a growth-

rate-resistance trade-off [91, 82]. Denote the growth rate of a host type with phenotype

σ ∈ SN as r, the growth rate is a increasing function of ‖σ‖1 =
∑

j σ[j]. The simplest way

of modeling growth-rate-resistant trade-off is using linear function,

r(σ) = rmin +

(
rmax − rmin

N

)
‖σ‖1 , (3.1)

so that the basal growth rate of wild type (sensitive to all types of phage) is rmax and the

growth rate of the complete-phage-resistant type is rmin. The trade-off linearity assumption

is not universal, this relationship could be nonlinear, r(.) can be either convex (rate at

which costs in growth rate is decelerating) or concave (rate at which costs in growth rate is

accelerating), which depends on the specific biological systems.

Here we extend a nonlinear dynamics model of bacteria, phage and the innate immune

system [69, 68] by incorporating changes in population dynamics with interaction networks

and life history traits via a eco-evolutionary multi-strain framework [82, 92, 83, 93]. In our

model the infection of a bacterium triggers a sequence of infection stages after which lysis

takes place. We denote the density of bacteria σ by Sσ, the density of virus j by Pj , the

infected bacteria σ that are infected by virus j at stage ` as E(`)
σ,j , and the density of host
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immunity by I . Our model of the eco-evolutionary synergy dynamics is,

Ṡσ =

growth︷ ︸︸ ︷
r(σ)Sσ

(
1− B

KC

)
(1− µ) +

mutations︷ ︸︸ ︷
µ

N

∑
{σ′: ‖σ′−σ‖=1}

r(σ′)Sσ′

(
1− B

KC

)

−

infection︷ ︸︸ ︷
Sσ
∑
j′

Fσ(Pj′)−

immune killing︷ ︸︸ ︷
εISσ

1 + (B/KD)
,

˙
E

(1)
σ,j =

infection︷ ︸︸ ︷
SσFσ(Pj)−

immune killing︷ ︸︸ ︷
εIE

(1)
σ,j

1 + (B/KD)
−

transition︷ ︸︸ ︷
η1E

(1)
σ,j ,

˙
E

(`)
σ,j =

transition︷ ︸︸ ︷
η`−1E

(`−1)
σ,j −

immune killing︷ ︸︸ ︷
εIE

(`)
σ,j

1 + (B/KD)
−

transition︷ ︸︸ ︷
η`E

(`)
σ,j , ` = 2, ..., L ,

Ṗj =

viral lysis︷ ︸︸ ︷
βjηL

∑
σ

E
(L)
σ,j −

adsorption︷ ︸︸ ︷
φjPj

∑
σ

Mσ,jSσ−
decay︷︸︸︷
wjPj

İ =

immune stimulation, activation and immune saturation︷ ︸︸ ︷
αI

(
1− I

KI

)(
B

KN +B

)
,

(3.2)

where B =
∑

σ′ Sσ′ +
∑

σ,j,`E
(`)
σ,j denotes the total bacteria density, Fσ(Pj) denotes the

infection rate of viruses of type j on hosts of type σ, e.g. Fσ(Pj) = Mσ,jφjPj/
(

1 +
Pj

PC

)
is the per-capita phage-induced bacterial lysis rate that characterizes the effect of phage

saturation during the infection. The parameters φj and βj are the adsorption rate and burst

size of virus j (which we assume is independent of bacteria type σ). To simplify the model

we assume that βj = β and φj = φ for all j’s. Here,M denotes the infection matrix, where

Mσ,j = 1 if virus j can infect bacteria σ and Mσ,j = 0 if virus j cannot infect bacteria σ.

In this chapter, we consider a small system with N = 3. First, we consider the generic

virus-host interactions, which are encoded by a 23 (= 8) by 3 infection matrix, denoted by
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M0,

M0 =

P1 P2 P3



1 1 1 S111

0 1 1 S011

1 0 1 S101

1 1 0 S110

0 0 1 S001

0 1 0 S010

1 0 0 S100

0 0 0 S000.

(3.3)

In Sect. 3.4, we show that bacterial cells cannot be eliminated given infection networks

M0 (with present model parameters) due to the chosen low density of host immunity I

and low adsorption rate φ. In our system, a given phage Pj is determined by an opti-

mization problem (3.11) only after it was injected following the therapy strategy (2 hrs

post-infection), before which Pj is set to 0.

In this chapter, we consider two modified infection networks. We define a 8 by 4 in-

fection matrixMc by adding a contingent specialist phage (Pc), that only targets for WT

bacteria (fully sensitive type, ‖σ‖1 = 3). To account the host range trade-off, i.e., a phage

with a broader host range has less advantageous life-history traits compared to viruses with

a narrower host range [94], we use a parameter αφ > 1 to control the benefit of contingent

specialist phage, the adsorption rate of Pc can be written as φc = αφφ. Such a scenario

could be relevant for real biological systems. Imagine that the probability of infection is

driven by the binding affinity between a receptor on the bacterial membrane and a ligand on

the phage tail. Let’s assume that there are three binding sites on the two proteins, and that

the binding affinity is determined by the number of sites that are able to bind (match) given

their biochemical properties. The contingent specialist phage ligand perfectly matches the

WT bacterium receptor, but the binding affinity depends on the binding sites in a coopera-
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tive way so that any (phenotypic) mutation in the receptor sites will hinder Pc ability’s to

infect. The other 3 phage will be able to infect if a specific ligand site can bind to just one

specific WT receptor site, and each of them target a different receptor site. So a single site

mutation will make the WT bacterium resistant to only one of the standard phage. But the

lower cooperativity in the binding interaction would result in a lower adsorption rate for

these phage compared to Pc.Mc can be written as

Mc =

Pc P1 P2 P3



1 1 1 1 S111

0 0 1 1 S011

0 1 0 1 S101

0 1 1 0 S110

0 0 0 1 S001

0 0 1 0 S010

0 1 0 0 S100

0 0 0 0 S000.

(3.4)

Including this contingent specialist phage may lead to the emergence of competitive release,

so the corresponding treatments must be designed carefully, see Sect. 3.4.

As an alternative, instead of using a contingent specialist phage, we add a generalist

phage (Pg), that can infect all bacteria cells except the fully resistant one (‖σ‖1 = 0).

In addition, we use a parameter εφ to model the cost of this generalist phage [95, 94].

The adsorption rate of Pg depends on bacterium phenotype σ, i.e., φg(σ). Following our

previous reasoning on ligand-receptor binding, Pg ligand would also perfectly match the

WT receptor. The generalist phage could infect the bacteria when any of the three binding

sites match the corresponding receptor site. An attempt to bind an incompatible site would

result in infection failure, resulting in an adsorption cost that increases with the number of
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mutated sites from the WT bacterium (in our case,
(

1− ‖σ‖1
N

)
). For simplicity, we use a

linear function,

φg(σ) =

[
(1− εφ)

‖σ‖1

N

]
φ, (3.5)

where N = 3.Mg can be written as

Mg =

Pg P1 P2 P3



1 1 1 1 S111

1 0 1 1 S011

1 1 0 1 S101

1 1 1 0 S110

1 0 0 1 S001

1 0 1 0 S010

1 1 0 0 S100

0 0 0 0 S000.

(3.6)

Our deterministic model assumes that the infected individuals are lysed with a mean

infection period τinf after all L stages are complete. The length of each stage has a transition

rate η` (corresponds to a mean transition period 1/η`), here we assume all the transition

rates are same, i.e., η` = η for all `’s. The advantage of adding the intermediate latent

stages is to ensure viral reproduction does not occur immediately after a virus enters a

host. This deterministic model is the average of a stochastic model where the length of an

infection is modeled as the sum of L independent exponential random variables (each with

mean period 1/η), yielding an Erlang distributed infection time. Note that

τinf =
L∑
`=1

1/η` = L/η, (3.7)
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so, the mean transition period (1/η) for each stage is equal to τinf/L. In a special case

of L = 1, the infectious period is exponentially distributed with a mean period τinf. In

our model, we choose L = 2 which is the lowest L yielding an unimodal distribution of

infectious period in the stochastic extension of the model.

Figure 3.1: The probability density function (pdf) of Erlang distributions with variations in
L, scale parameter is τinf/L (mean transition period during each stage) and shape parameter
is L (number of stages). The mean infectious period τinf is fixed as 2 hrs. We choose L = 2
in this study.

In this model we assume that phage types challenging the bacterial population are fixed

and don’t evolve. This mimics a situation where phage categories have been pre-selected or

trained for therapy separately. These in principle are not related phylogenetically as evolv-

ing one from the other would take times much longer than the infection timescales, when at

all possible. In this model we neglect the evolution of new phage mutants that evolve from

the injected therapeutic phage, which could generate the emergence of counter-resistance

to bacteria as well as complex co-evolutionary patterns. This is the same as assuming that

the emergence of counter-resistance would be rare on typical infection timescales.
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3.3 Initial condition optimization

The general goal is to optimize the phage therapy administrations so to minimize the total

bacterial population while penalizing the treatment costs. From a practical therapeutic

perspective, in this chapter we want to find the minimal phage dosage required to eliminate

bacteria. We assume the bacterial population is eliminated if there exists a time τ ∈ [t0, tf ]

such that (
∑

σ Sσ) < next, where
∑

σ Sσ is the total uninfected bacterial population density

and next = 1 CFU/g is the hard threshold of bacteria elimination. In [31, 69] we found

that injecting all phage as soon as possible (’early hit’) is a plausible treatment strategy.

Hence, we consider an initial condition optimization problem. The initial condition x(t0) =

[S(t0), E(1)(t0), ..., E(L)(t0), P (t0), I(t0)]T , where t0 is the start of treatment.

To achieve the practical goal of eliminating bacteria with minimum dosage, we propose

the following optimization problem. Define the feasible domain D as

D =

bacteria elimination︷ ︸︸ ︷
{P (t0)| exists τ ∈ [t0, tf ] such that

∑
σ

Sσ(τ) < next}
⋂ max dosage constrain︷ ︸︸ ︷
{P (t0)| ‖P (t0)‖1 ≤ Pmax},

(3.8)

where Pmax is the fixed max dosage. The cost is the total dosage, J (P (t0)) = ‖P (t0)‖1.

There are N virus types inM0 networks and N + 1 virus types inMc andMg networks.

The optimization problem can be written as (subject to system (3.2))

min
P (t0)∈D

J (P (t0)) , (3.9)

which is equivalent to

J (P (0)) =


‖P (t0)‖1 if P (t0) ∈ D

∞ otherwise
. (3.10)
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An assumption for optimization variables. We assume the initial phage dosages are all

equal in the optimal treatment an account of symmetry, i.e., P1(t0), P2(t0), ..., PN(t0) with

one exception: either the contingent specialist or generalist phage. Note that system (3.2)

is ‘symmetric’ in virus types 1, ..., N (i.e., reordering makes no difference in the system

dynamics and output). Suppose the initial dosages are different, the first effect of different

dosages would be to favour the growth of the bacteria resistant to the max dosage phage due

to reduced competition of the other strains. This may give more time for multi-resistance

to arise, especially in an high asymmetrical dosage where phage with the maximum dosage

would wipe out corresponding susceptible bacteria population (also depleting part of the

population susceptible to the other phage) and then decay. This implies that we may need

to inject more corresponding phage into the system to control the bacteria that are resistant

to the maximal dosed phage. On the other hand, if we neglect the complex host-host in-

teractions (or view it as a second order effect) and consider the virus-host interactions in

a one-to-one structure, i.e., assuming ‘weak coupling’, then minimizing the total dosage

is equivalent to minimize dosage component-wise, which supports the equal dosage as-

sumption. Hence, difference dosages may not be a feasible solution. The above argument

motivates us to posit that optimal dosages P1(t0), P2(t0), ..., PN(t0) should be equal. This

assumption may not be true in general, system (3.2) is a complex nonlinear system with

multiple latent stages (a de facto delayed effect). Nevertheless, using this assumption, there

are only two optimization variables, Pi(t0) (i ∈ {c, g}) and P1(t0) (dosage of symmetric

phage types 1, 2, ..., N ) and we can solve the optimization problem (3.9) at a greatly re-

duced computational cost. We test this assumption in Appendix 3.6.3 by perturbing the

injection strategy around the equal dosages situation checking that this is indeed a local

optimum (non-equal dosages with the same or lower ‖P (t0)‖1 would fail). In addition, we

will propose a numerical algorithm to solve the optimization problem (3.9) without equal

dosage assumption in Sect. 3.5.
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With the above assumption, the reduced optimization problem is

min
D
J (Pi(t0), P1(t0)) , (3.11)

where J = ‖P (t0)‖1 = Pi(t0) + NP1(t0) and i ∈ {c, g}. Here we adopt an adaptive

(refined) grid search method to solve the problem (3.11), see Algorithm 1 in Sect. 3.6.1 for

details.

3.4 Results

Parameters and initial condition. The model parameters and initial conditions of sys-

tem (3.2) are given in Table 3.1. In this chapter, we only focus on developing treatment

in immunodeficient scenarios, where the innate immune response is treated as a con-

stant. Throughout this chapter, the density of immune response is fixed at a low level,

I0 = 5 × 106 cell/g. We choose N = 3 (for convenience and low computational costs).

The in silico experiments run for 3 days post infection and all the treatments start at 2

hours after initialization (consistent with in vivo treatments in [69]), we thus set t0 = 2

hrs and tf = 72 hrs. Before treatment, we run system (3.2) from 0 to t0 with the ini-

tial condition x(0) = [S(0), E(1)(0), ..., E(L)(0), P (0), I(0)]T , where S(0) = [−Sσ(0)−]T

is fixed with high abundance dominate WT bacteria and low abundance one-step resis-

tant (‖σ‖ = 1) bacteria resistant bacteria (other bacteria types have zero initial density),

E(`)(0) = [−E(`)
σ,j(0)−]T and P (0) = [−Pj(0)−]T are zero vectors.

3.4.1 8 by 3 generic infection matrix,M0

When infection matrix is M0, we find that bacterial cells cannot be eliminated for any

initial treatment dosage given constraints that dosage must be less than Pmax = 109 PFU/g.

The treatment failure is not due to the outgrowth of fully resistant bacteria. As discussed

in [68], synergistic elimination (i.e., phage and immune response) occurs when the phage
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drive the bacterial population below some ‘certain level’ (depends on phage life-history

traits, ω, β, φ) where the constant (or static) innate immune response alone can eliminate

the bacteria. Since the adsorption rate is relatively low (φ = 1.5 × 10−8 g/(h PFU)) and

phage decay rate is relatively high (ω = 0.1/h) comparing to the parameter values used in

[69], the bacterial population cannot be driven below the level that innate immune response

can clear, see Fig. 3.2.

Figure 3.2: Time series of population densities with low mutation probability (µ = 10−9)
and high initial dosage treatment (P1(t0) = Pmax/3). See model parameters in Table 3.1.

3.4.2 8 by 4 infection matrix with a contingent specialist phage,Mc

In this section, we consider a 8 by 4 infection matrix with a contingent specialist phage,

Mc. Given our model and parameter assumptions the adaptive grid search algorithm results

in a small amount of contingent specialist phage and a small amount of symmetric specialist

phage when the benefit of contingent specialist phage is low (αφ = 2) to eliminate bacteria,

but a much higher symmetric specialist phage dosage is required when benefit is high (αφ =

10, 50, 100), see Fig. 3.3. We might wonder why do we need more dosage (in total) when

contingent specialist phage are associated with more benefits? This ‘counterintuitive’ result
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can be explained by the so-called competitive release [96, 97].

Competitive release is the result of an ‘ecological balance’: when two (or more) sub-

species compete for the same resources with one species dominating the other, if the dom-

inant species is removed, this can provide the needed release from competition that can

allow the less dominant species to flourish [98]. For a 8 by 4 infection networks with a

contingent specialist phage, there are 8 types of bacteria competing for resources and the

sensitive bacteria is the dominant species without therapy. Hence, the rapid decline of sen-

sitive bacterial population could lead to the outgrowth of partially or fully resistant bacterial

population. To control the outgrowth of partially or fully resistant bacteria populations, we

have to add a significant amount of symmetric specialist phage.

A contingent specialist phage can rapidly drive down niche competition amongst bacte-

rial cells, facilitating the rapid outgrowth of other bacteria populations. Therefore compet-

itive release is reinforced by higher αφ, and more corresponding phage dosages are needed

to eliminate resistant bacterial cells. To demonstrate this complex dynamics, we show the

population densities given high αφ but low dosages (in contrast to optimal treatment where

symmetric specialist dosage is high), see Fig. 3.4. Sensitive cells are wiped out in 5 hours

post infection, which leads to the fast growth of other type bacterial cells, low dosage treat-

ment fails in this scenario while it would succeed with lower αφ. Note that system (3.2) is

a mean-field model, which is justified by the large sizes of bacterial and phage populations.

We test the deterministic optimum (i.e., optimal treatment in deterministic model) using

stochastic simulations, the results are consistent, see Appendix 3.6.2 for more details.

In Figure 3.3, we observe that no treatment can eliminate the bacterial cells when mu-

tation probability is high due to the outgrowth of resistance bacteria population. Albeit

the risk of competitive release, the treatment range in mutation probability becomes wider

when contingent specialist phage is associated with higher benefit (i.e., higher αφ yields

wider range of mutation probability that bacteria can be eliminated). The contingent spe-

cialist phage with high benefit can eliminate WT bacteria less than 5 hours, there is no time
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Figure 3.3: Minimal initial dosages for eliminating bacterial cells using optimized treat-
ments as a function of mutation probability µ and contingent phage benefit αφ. Four in
silico experiments example dynamics (high and low mutation probabilities with high and
low contingent phage benefits) are provided in Fig. 3.5. The timings of injecting two types
of phage dose (blue for contingent phage dosage and red for symmetric specialist dosage)
are fixed at two hours post infection. See model parameters in Table 3.1.

for multi-resistant bacteria to raise though the mutation probability is high, see Fig. 3.5(Bot-

tom right). On the other hand, a longer time is needed for contingent specialist phage with

lower benefit to eliminate WT bacteria, which gives more time for multi-resistant bacteria

to raise and grow, see Fig. 3.5(Bottom left). This also explains why increasing the mutation
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Figure 3.4: Population densities with low mutation probability and high contingent spe-
cialist phage benefit provided low initial dosages of both phage types (10 PFU/g). The
present treatment is not curative (bacteria cells are not eliminated). See model parameters
in Table 3.1.

probability, higher dosages of contingent specialist phage are necessary for therapy to be

successful.

In summary, we found that the 8 by 4 infection networks with a contingent specialist

phage can avert the failure in generic 8 by 3 infection networks. The benefits of contin-

gent specialist phage are a ‘double-edged sword’, we must be careful to design treatment

(dosages as a function of αφ and µ) due to the interplay between competitive release and

multi-resistance emergence.

3.4.3 8 by 4 infection matrix with a generalist phage,Mg

Instead of using a contingent specialist phage, we add a generalist phage (Pg) to system.

The infection matrixMg is given by Eq. 3.6. Given our model and parameter assumptions

the adaptive grid search algorithm result in a small amount of generalist phage and a small

amount of symmetric specialist phage when the cost of generalist phage is relatively low

(e.g., εφ = 0.1, 0.2) to eliminate bacteria, see Fig. 3.6. As shown in Fig. 3.7, the density of

52



Figure 3.5: Comparison of time series of population densities with different mutation prob-
abilities and contingent phage benefits. (Top left) Bacteria is eliminated around 50 hrs post
infection in the case of low mutation probability and low benefit. (Top right) Bacteria is
eliminated around 15 hrs post infection in the case of low mutation probability and high
benefit. (Bottom left) Bacterial cells are not eliminated due to the outgrowth of resistant
bacteria, in the case of high mutation probability and low benefit scenario. (Bottom right)
Bacteria is eliminated around 16 hrs post infection in the case of high mutation probability
and high benefit. See model parameters in Table 3.1.

specialist phage is uniformly (slightly) higher than the density of generalist phage (given

the same initial condition) due to the costs for generalist phage. When the cost of generalist

phage is relatively high (e.g., εφ = 0.5, 0.9), adding generalist phage cannot significantly

improve treatment so that the present 8 by 4 system behaves similar to generic 8 by 3
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system, and bacterial cells cannot be eliminated. Next, we investigate the dynamics of

bacteria, phage, and the innate immune response and explain why only a small amount of

phage is required to eliminate bacteria.

Figure 3.6: Minimal initial dosages for eliminating bacterial cells using optimized treat-
ments with variations in mutation probability µ and generalist phage cost εφ. Two in silico
experiments (high and low mutation probabilities with a relative low generalist phage cost,
εφ = 0.2) are provided in Fig. 3.7. The timings of injecting two types of phage dose (blue
for generalist phage dosage and red for symmetric specialist phage dosage) are fixed at two
hours post infection. See model parameters in Table 3.1.

To begin, we ask a ‘simple’ question: if a treatment can eliminate bacterial population

with some phage dosage, does this implies bacterial population can be eliminated with
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Figure 3.7: Comparison of time series of population densities with different mutation prob-
abilities. (Left) Bacteria is eliminated around 60 hrs post infection in the case of low mu-
tation probability. (Right) Bacteria is eliminated around 62 hrs post infection in the case of
high mutation probability. See model parameters in Table 3.1.

higher phage dosage? The answer is No. In Fig. 3.8, we present two in silico experiments,

one with high dosage treatment and the other one with low dosage treatment, low dosage

treatment is curative while the high dosage treatment cannot eliminate bacteria. The bac-

teria and phage populations exhibit predator-prey oscillations. The phage drive the system

to some lower level so that the bacteria is eventually eliminated with the aid of the im-

mune response. The phage and innate immune response thus works in synergy to eliminate

the bacteria. This synergistic effect is caused by a reduction of the bacterial population

by phage below a desired level (which could be determined numerically as a function of

model parameters), where the bacteria could be controlled by the innate immune response

alone. Therefore, optimizing the use of multiphage ‘cocktails’ for treatment of immunode-

ficient hosts may not necessarily coincide with increasing to a higher dosage, the ‘landing

spot’ (i.e., initial state) in the transient prey-predator cycle plays a critical role. As shown

in Fig. 3.8, the landing state on the phase plane for low dosage treatment initially follows

the prey-predator oscillatory dynamics (large amplitude for the first cycle), then reaches
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the regime (lower bacterial density) that can be eliminated by immune response. In con-

trast, the landing state on the phase plane for high dosage treatment drives small-amplitude

prey-predator oscillations that cannot reach the space that can be eliminated by immune

response. Note that the phase trajectories in Fig. 3.8 only present the transient ecological

dynamics of susceptible bacteria, phage and innate immune response. On the other hand

note that, due to the smaller amplitude oscillations, the ”failing” high dosage treatment

yields much lower concentrations of bacteria than the low dosage one. If bacteria don’t go

extinct, the fully resistant bacteria would be selected for by phage and become predominant

over longer timescales dictated by mutation probability (µ) and phage numbers, which is

why all treatments fail at high mutation probability (µ).

In summary, we found that the 8 by 4 infection networks with a generalist phage can

also avert the failure in generic 8 by 3 infection networks. If the generalist cost is relatively

low it seems to be favorable to use the one with generalist phage instead of the contingent

specialist (much lower total dosages are needed, contrast Fig. 3.3 to Fig. 3.6) given the

current model parameters. We caution that care must be taken regarding the the landing

spot on virus-host phase plane.

3.5 Discussion

In this chapter, we proposed an eco-evolutionary synergy model and developed an opti-

mization framework (initial condition optimization problem) to optimize the initial mul-

tiphage cocktail (delivered at beginning of treatment) for treating bacterial infections in

immunodeficient hosts, coping with the risk of bacteria developing multi-resistance to the

injected phage. By making a reasonable assumption on composition of symmetric phage

dosage, we reduced the optimization problem (only two variables) and proposed a cus-

tomized adaptive grid search algorithm to numerically solve it.

Our results provide important insights to guide the phage therapy in complex eco-

evolutionary dynamics. We study a situation in which a cocktail with three phage alone
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Figure 3.8: Comparison of phase portraits (projected on total bacteria - total phage plane)
for high and low dosage treatments. The cost of generalist phage εφ is 0.2 and the mutation
probability µ is 10−9. Blue line is the phase trajectory when initial phage dosage is high
while red line is the trajectory when initial phage dosage is low. The blue and red diamonds
are corresponding initial state of two treatments. The vertical dotted line marks the position
of bacteria elimination (threshold), the bacteria extinction regime is colored in green. The
trajectory of low dosage treatment hits the bacteria elimination threshold, so it’s curative.
The gray area serves as a cartoon to sketch the regime where bacteria can be cleared by in-
nate immune response alone. Note that gray area is only drawn to demonstrate the concept.
See model parameters in Table 3.1.

cannot clear the infection due to the interplay between ecological predator-prey cycles and

evolution of multi-resistance. We then show that adding to this cocktail either a contingent

specialist or a generalist phage we can restore therapeutic success over a wide range of

bacterial mutation rates.

For the 8 by 4 infection networks with a contingent specialist phage, due to the effect

of competitive release, we need high dosages of symmetric specialist phage to control the

rapid growth of resistant bacterial. In some related works (for prostate cancer treatment),

continuous adaptive therapeutic strategies are developed using a game-theoretic model, to
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control the competitive release of pre-existing resistant tumor cells [99, 100].

For the 8 by 4 infection networks with a generalist phage, we have to carefully ad-

ministrate phage, so that the landing state on bacteria-phage plane can be driven by the

prey-predator oscillations and reach the regime that bacterial population can be cleared by

a fixed level of innate immune response [68]. In addition, one needs to be cautious about a

potential severe consequence of low dosage treatments: the large oscillation (dynamics of

low dosage treatment) shown in Fig. 3.8 eventually can drive bacteria population towards

extinction (below the elimination threshold), but dynamics may lift bacteria density to po-

tentially perilously high levels (e.g., around 108 CFU/g, see Fig. 3.8). This is risky, as in

practice, those levels represent potentially serious physiological risks to the host organism.

Note that a number of simplifying assumptions have been made in the proposed eco-

evolutionary model and optimization framework. As mentioned above, in this model we as-

sume that phage types are fixed and don’t evolve, assuming that the emergence of counter-

resistance by phage would be rare on typical infection timescales. In future it will be im-

portant to remove this assumption and consider a setting where bacteria and phage evolve

unconstrained affecting each other diversities, but this goes beyond the purpose of the cur-

rent study.

Throughout this Chapter, we utilized a set of parameters close to those found to be

relevant in mouse lung infections [69]. In such condition, the infection can be cleared by

the synergy between immune response and phage dynamics, unless phage-resistance arises

early enough. But with low enough immune response bacteria would be able to coexist with

phage even without evolving resistance, albeit at concentrations much lower than carrying

capacity (see Fig. S3 in [69]).

Therefore in such conditions, we posit that therapeutic success would depend on find-

ing the right ”landing spot” in the predator-prey dynamics plane driving the initial bacte-

rial population to extinction, rather than targeting possible resistant mutants with adequate

phage, which would not be able to drive their target bacteria to extinction alone. It shall
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be noted that even in this case over longer timescales (dictated by mutation rate and selec-

tion pressure) resistant phage would become predominant and complete resistance would

doom any therapy to fail. This why in most situations our optimal dosages are relatively

insensitive to the mutation rate, until we reach high enough µ where fully resistant bacteria

emerge over the considered timescales and therapy is expected to fail.

Another important assumption in our study lies in the fact that we chose to optimize

the phage dosage conditioned to bacterial elimination, regardless of the total bacterial con-

centrations emerging during the course of infection. High concentrations of bacteria could

induce severe harm to the lungs leading to complications even after the infection is cleared.

In future it will be important to consider other possibilities and compare the corresponding

results. Considering explicitly the total number of bacteria, the optimization framework

then would also have to avoid big oscillations and overshoots. This may affect some of our

results, especially the considerations on the right ‘landing spot’ (see Fig. 3.8 ), as discussed

above.

Finally, in the adopted optimization framework, we assume the phage dosages except

newly added engineered phage (contingent specialist or generalist) are all equal in optimal

treatment. We verified the local optimality condition for the optimal strategy profile pre-

sented in Fig. 3.3, see Appendix 3.6.3 for details. However, this assumption may not hold

(in global optimality perspective) due to the complex nonlinear effects in system (3.2). If

this assumption is relaxed, there will be (N + 1) variables in optimization problem. The

proposed adaptive grid search algorithm is not scalable (time complexity exponentially in-

creases as N increases). To resolve this issue, we have to modify the previous approach to

make optimization algorithm scalable, see Appendix 3.6.4 for details.
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3.6 Appendix

3.6.1 Adaptive grid search

The optimization problem (3.11) can be numerically solved via an evolutionary algorithm

(e.g. genetic algorithm). However, there are some special structures in this problem can

not be efficiently utilized by evolutionary algorithms, see Algorithm 1 for details. For

example, suppose (P̃c(t0), P̃1(t0)) is feasible, then the optimal solution can not be found in

{(x, y) | x > P̃c(t0), y > P̃1(t0)}.

3.6.2 Testing optimised treatment in the hybrid system

Note that system (3.2) is a mean-field model, which is justified by the large sizes of bac-

terial and phage populations. However, the demographic stochasticity is crucial to some

‘reaction events’, e.g. mutations. Here, we follow a similar hybrid stochastic-deterministic

simulation protocol as the one introduced in Figure S6 in [92]. We further consider the

probability of avoiding accidental extinction. The per-capita birth and death rates of the

small mutant population are nearly constant at initial phase of growth, then we can model

the number of individuals of the mutant population as a standard birth-death process with

constant birth rate λb and death rate λd. The probability that the small mutant population

escapes stochastic extinction is (λb − λd)/λb if λb > λd; otherwise zero, where λb and λd

are the birth rate per capita and death rate per capita (see Appendix C in [101] for details).

We tested the optimal treatments solved from deterministic system in the hybrid stochastic-

deterministic system with the variation in mutation probability (µ) and WT phage benefit

(αφ). As shown in Fig. 3.3, we can write the optimal treatment P∗ (dosage of WT phage

and new type phage) as a function of (µ, αφ), namely P∗(µ, αφ). For each (µ, αφ), we ran

the the hybrid stochastic-deterministic system 100 times with initial treatment P∗(µ, αφ).

Success ratio is defined as the number of experiments with bacteria elimination over the

total number of experiments. We found that success ratio is always 100/100 (obtained by
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Algorithm 1 Customized adaptive grid search
1: Initialize `← 0, cost←∞ and εp ← desired grid resolution
2: Initialize finite grids G(0)

0 ⊂ [0, Pmax] and G(0)
1 ⊂ [0, Pmax/N ]

3: n0 ← size of G(0)
0 and n1 ← size of G(0)

1

4: Compute grid resolution← (max interval length)/Pmax
5: while grid resolution > εp do
6: for i0 ← 1 to n0 do
7: for i1 ← 1 to n1 do
8: Pc(t0)← G(`)

0 [i0] and P1(t0)← G(`)
1 [i1]

9: if (Pc(t0), P1(t0)) is feasible then
10: if J (Pc(t0), P1(t0)) < cost then
11: cost← J (Pc(t0), P1(t0))
12: grid index (a, b)← (i0, i1)
13: end if
14: n1 ← (i1 − 1)
15: Break i1 loop
16: end if
17: end for
18: if n1 = 0 then
19: Break i0 loop
20: end if
21: end for
22: `← `+ 1

23: Refine grids G(`)
0 ⊂

[
G(`−1)

0 [a− 1],G(`−1)
0 [a]

]
and G(`)

1 ⊂
[
G(`−1)

1 [b− 1],G(`−1)
1 [b]

]
24: n0 ← size of G(`)

0 and n1 ← size of G(`)
1

25: Compute grid resolution← (max interval length)/Pmax
26: end while
27: if cost <∞ then
28: Return searched grid

(
G(`)

0 [a], G(`)
1 [b]

)
29: else
30: Print no solution
31: end if
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running hybrid stochastic-deterministic simulations) if P∗(µ, αφ) is a curative treatment

in deterministic system, and success ratio is always 0/100 otherwise. This ‘trivial’ result

suggested that the robustness of our optimal treatments (obtained from deterministic sys-

tem) is guaranteed in the proposed hybrid stochastic-deterministic system. However, the

robustness may not be guaranteed for fully stochastic simulation (worth to explore in future

study).

3.6.3 Verification of optimization variable assumption

In Fig. 3.3, we write the optimal treatment P∗ (dosage of contingent specialist phage and

symmetric specialist phage) as a function of (µ, αφ), namely P∗(µ, αφ). In our model,

we let N = 3, then P∗ = [P ∗i (t0), P ∗1 (t0), P ∗1 (t0), P ∗1 (t0)], where i ∈ {c, g}. To test

its local optimality, we generate a uniform random vector, Z = [Zi, Z1, Z2, Z3], where

Zi, Z1, Z2, Z3 ∼ U(−1, 1) i.i.d. Then, the locally perturbed treatment is given by PZ =

10Z � P∗, where � represents the element-wise multiplication of vectors. Note that a

sample PZ will be rejected if ‖PZ‖1 > Pmax. Then, we test if perturbed treatment PZ is

curative. For each (µ, αφ), we ran above procedure for 2× 103 times. To demonstrate how

the local perturbation test works, we present a case of µ = 10−6 and αφ = 10. The optimal

treatment with equal dosage assumption is given asP∗(10−6, 10) = [106, 1.78×108, 1.78×

108, 1.78× 108] PFU/g, the total dosage of this treatment is 5.34× 108 PFU/g. As we can

see from Fig. 3.9, there is no treatment with less total dosage (comparing to the optimum

obtained under equal dosage assumption) that can eliminate bacterial population, which

proved it’s local optimality. We use the same procedure and verify the local optimality

condition hold for all µ, α and infection networks present in this chapter (M0,Mc and

Mg).
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Figure 3.9: A demonstration of local perturbation test on dosage equal assumption when
µ = 10−6 and αφ = 10. (Left) Histogram of total dosage for successful treatments
perturbed around optimal treatment P∗(10−6, 10). All the successful treatments are with
higher dosages than optimal treatment, all the samples are on the right side of a black ver-
tical line (the total dosage of P∗(10−6, 10)). (Right) Histogram of total dosage for failed
treatments perturbed around optimal treatment P∗(10−6, 10).

3.6.4 Iterative projected gradient descent (PGD) method for a constrained initial condition

optimization problem

We iteratively solve the following constrained initial condition optimization problem (3.12)

to achieve the practical goal of eliminating bacteria with minimum dosage via a heuristic

approach, see Algorithm 2.

Algorithm 2 Iterative PGD

1: Initialize left and right bounds: L← −2 and R← log(Pmax)
2: Initialize εp ← desired (log-scaled) precision
3: while (R− L) > εp do
4: Set total dosage upper bound C ← 10(R+L)/2

5: P∗C ← optimal dosage by solving problem (3.12) with upper bound C (via PGD)
6: if P∗C is a curative treatment then
7: R← (R + L)/2
8: else
9: L← (R + L)/2

10: end if
11: end while

In this approach, we adaptively adjust the upper bound of constrain C and locate the
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minimum value of C that results in bacterial elimination. For a fixed C, the optimization

problem is

min J (P (t0)) = min
∫ tf

t0

‖S(t)‖1 dt + ‖S(tf )‖1 , subject to ‖P (t0)‖1 ≤ C. (3.12)

We can numerically solve above constrained initial condition optimization problem (3.12)

by projected gradient descent (PGD) method, the analytical expression of the derivative

dJ /dP (t0) is derived in a more general form as following.

Consider the differential equation

ẋ(t) = f(x(t);x0), (3.13)

where t ∈ [t0, tf ], with initial condition x(0) = x0, and define J by

J (x0) = ψ(x0) +

∫ tf

t0

L(x(t)) dt+ φ(x(tf )). (3.14)

Here x(t) ∈ Rn, f : Rn → Rn, L : Rn → R, φ : Rn → R, and ψ : Rn → R. Considering

J (x0) as a function of x0, then, we derive expression for the derivative dJ /dx0 in terms

of a costate. Denote x(t) and x̃(t) as the corresponding state trajectory with initial state x0

and x0 +∆x0 respectively, and ∆x(t) = x̃(t)−x(t). Note that x0 +∆x0 is in a sufficiently

small neighborhood of x0. The first order difference in cost function is

∆J = J (x0 + ∆x0)− J (x0)

= ψ(x0 + ∆x0)− ψ(x0) +

∫ tf

t0

L(x̃(t))− L(x(t)) dt+ φ(x̃(tf ))− φ(x(tf ))

=
dψ

dx0

(x0)∆x0 +

∫ tf

t0

dL

dx
(x(t))∆x(t) dt+

dφ

dx
(x(tf ))∆x(tf ) + higher-order terms.

(3.15)
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The governing dynamics of difference term ∆x(t) is

∆̇x(t) = ˙̃x(t)− ẋ(t)

= f(x(t) + ∆x(t);x0 + ∆x0)− f(x(t);x0)

=
∂f

∂x
(x(t);x0)︸ ︷︷ ︸
n×n

∆x(t)︸ ︷︷ ︸
n×1

+ higher-order terms,

(3.16)

where initial condition is ∆x(t0) = ∆x0. Neglecting higher order terms and using the

state-transition matrix Φ(t, τ) ∈ Rn×n, the solution is

∆x(t) = Φ(t, t0)∆x0. (3.17)

Then, we plug Eq. 3.17 in Eq. 3.15 to obtain (drop higher order terms),

∆J =
dψ

dx0

(x0)∆x0 +

∫ tf

t0

dL

dx
(x(t))Φ(t, t0)∆x0dt +

dφ

dx
(x(tf ))Φ(tf , t0)∆x0. (3.18)

Hence, the derivative (first-order variation) is

dJ
dx0

=
dψ

dx0

(x0) +

∫ tf

t0

dL

dx
(x(t))Φ(t, t0)dt +

dφ

dx
(x(tf ))Φ(tf , t0). (3.19)

Define the costate λ(τ) ∈ Rn as

λT (τ) =

∫ tf

τ

dL

dx
(x(t))Φ(t, τ) dt+

dφ

dx
(x(tf ))Φ(tf , τ). (3.20)

Note that

λ̇T (τ) = −λT (τ)
∂f

∂x
(x(τ);x0)− dL

dx
(x(τ)), (3.21)

with terminal condition λT (tf ) = dφ
dx

(x(tf )). In doing so, we observe that Eq. 3.19 can be
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written in terms of the initial condition of costate

dJ
dx0

=
dψ

dx0

(x0) + λT (t0). (3.22)
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Table 3.1: Parameters and initial conditions in the system (3.2)

Parameters Value Source

rmax, maximum growth rate 0.75 h−1 [69]
rmin, minimum growth rate 0.5 h−1 [69]
µ, probability of emergence of
mutant per cellular division 10−9 ∼ 10−4 present
KC , carrying capacity of bacteria
(immunodeficient hosts) 8.5× 1011 CFU/g [69]
β, burst size of phage 100 [69]
w, decay rate of phage 0.07 h−1 [69]
ε, killing rate parameter of immune response 8.2× 10−8 g/(h cell) [69]
α, maximum growth rate of immune response 0.97 h−1 [69]
KI , maximum capacity of immune response
(no innate immune activation) same as I0 [69]
KD, bacterial concentration at which immune
response is half as effective 4.1× 107 CFU/g [69]
KN , bacterial concentration when immune
response growth rate is half its maximum 1.0× 107 CFU/g [69]
L, number of latent stages 2 present
τinf , mean infectious period 2 hs present
φ, adsorption rate of phage 1.5× 10−8 g/(h PFU) present
αφ, benefit of contingent specialist phage 2 ∼ 100 present
εφ, cost of generalist phage 0.1 ∼ 0.9 present
PC , phage density at half saturation 1.5× 107 PFU/g [69]
Sσ(0), initial (WT) bacterial density,
immunodeficient hosts (‖σ‖1 = N) 7.4× 105 CFU/g [69]
Sσ(0), initial phage-resistant bacterial density
(‖σ‖1 = N − 1) 1 CFU/g [69]
Sσ(0), initial phage-resistant bacterial density
(‖σ‖1 < N − 1) 0 CFU/g present
I0, initial immune response (immunodeficient hosts) 5× 106 cell/g present
Pj(0), initial phage density 0 PFU/g [69]
Pmax, maximal phage dosage 109 PFU/g present
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CHAPTER 4

DISEASE-DEPENDENT INTERACTION POLICIES TO SUPPORT HEALTH

AND ECONOMIC OUTCOMES DURING THE COVID-19 EPIDEMIC

Adapted from:

Li, G.*, Shivam, S.*, Hochberg, M.E., Wardi, Y. and Weitz, J.S., 2020. Disease-dependent

interaction policies to support health and economic outcomes during the COVID-19 epi-

demic. Available at SSRN 3709833.

Weitz, J.S., Beckett, S.J., Coenen, A.R., Demory, D., Dominguez-Mirazo, M., Dushoff,

J., Leung, C.Y., Li, G., Măgălie, A., Park, S.W., Rodriguez-Gonzalez, R., Shivam, S. and

Zhao, C.Y., 2020. Modeling shield immunity to reduce COVID-19 epidemic spread. Nature

medicine, 26(6), pp.849-854.

4.1 Introduction

Lockdowns and stay-at-home orders have partially mitigated the spread of COVID-19.

However, en masse mitigation - applying to all individuals irrespective of disease sta-

tus — has come with substantial socioeconomic costs. In this chapter we demonstrate

how individualized policies based on disease status (e.g., susceptible, infectious, recov-

ered/immune) can reduce transmission risk while minimizing impacts on economic out-

comes. We design feedback control policies informed by optimal control solutions to

modulate interaction rates of susceptible and immune individuals based on estimates of

the epidemic state. We identify personalized interaction rates such that recovered/immune

individuals elevate their interactions and susceptible individuals remain at home before

returning to pre-lockdown levels. As we show, feedback control policies can yield mit-

igation policies with similar population-wide infection rates to total shutdown but with

significantly lower economic costs and with greater robustness to uncertainty compared
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to optimal control policies. The switching policy enables susceptible individuals to return

to work when recovered/immune levels are sufficiently higher than circulating incidence.

Our analysis shows that test-driven improvements in isolation efficiency of infectious indi-

viduals can inform disease-dependent interaction policies that mitigate transmission while

enhancing the return of individuals to pre-pandemic economic activity.

4.2 Results

4.2.1 Optimal control framework for state-dependent contact rates policies that balance

public health and socioeconomic costs

We develop an optimal control framework to identify policies that address the tension

between decreasing contacts (that reduce new infections) with increasing contacts (that

are linked to socio-economic benefits). We represent the epidemic using a Susceptible-

Exposed-Infectious-Recovered (SEIR) nonlinear dynamic model (see Sect. 4.4.1 for com-

plete details; see Fig. 4.1). In doing so, the force of infection is influenced by state-specific

contact rates cS, cE, cI and cR for susceptible, exposed, infectious and recovered/immune

individuals, respectively - these different levels form the basis for a control policy that

directs individuals to interact at different levels depending on their test status.

In the optimal control framework, a set of state-specific contact rates are identified that

minimize the appropriately weighted sum of what we term ‘public health’ and ‘socioeco-

nomic’ costs. Public health costs are quantified both by average infected levels and cumu-

lative deaths. Socioeconomic costs are quantified in terms of reductions in the total rate

of interactions and by shifts in state-specific contact rates. The optimal control ‘solution’

is then a time-dependent set of disease-specific rates which are both shaped by and shape

the epidemic itself (see Sect. 4.4.3 for details on the gradient projection algorithm used to

identify the solution). Note that we constrain the contact rate of exposed individuals to

be equal to that of susceptible individuals given the challenges of timely identification of

exposed individuals who are not yet infectious (and presumably have insufficient viral titer
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Figure 4.1: Epidemic dynamics with optimal and feedback control of disease-status driven
contact rates. (Top) SEIR model schematic in which the force of infection is modulated
by state-specific contact rates, see text and Sect. 4.4 for details. (Middle) Diagram of op-
timal control approach: contact rates are pre-specified given model structure and estimate
of parameters and current conditions. (Bottom) Diagram of feedback control approach:
contact rates are updated in real-time based on measurements of the infected and recov-
ered/immune case counts via testing surveillance.

to be identified using screening tests; an issue we return to in the Discussion). Finally, we

utilize the parameter ξ to regulate the relative importance of costs associated with death

and spread of infection vs. socioeconomic impact.

Figure 4.2 shows the results of comparing a baseline outbreak (i.e., neglecting public

health costs, given weighting parameter ξ = 0) to a full lockdown scenario (i.e., neglecting

socioeconomic costs with 75% isolation for all, ξ � 1) and a balanced scenario with opti-

mized contact-rates (i.e., corresponding to ξ ∼ 1). At the time intervention starts (without

any intervention in first 60 days), the outbreak has an ongoing incidence of 19 (per 100,000)
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Figure 4.2: Comparison of health and economic outcomes of COVID-19 given various in-
terventions: baseline interactions (i.e., no intervention); optimal contact rate intervention
(balance both health and economic outcomes) and fully lock down intervention (applied
to all the subpopulations) with 75% isolation efficiency. (A) The optimal contact rate rel-
ative to the baseline contact rate (denoted as 100%) with 50% isolation effectiveness and
shield immunity level 2. (B) Cumulative deaths (health outcome) during the epidemic. (C)
Socio-economic costs (economic outcome) during the epidemic. (D) Measure of effective
reproduction number (Reff ) for different interventions during the epidemic.

per day, prevalence of 0.4%, and a cumulative infection level of 0.8%. As shown in Fig-

ure 4.2, in the baseline scenario, the disease spreads through the population leading to 94%

cumulative infection (as expected given strength-size relationships for R0 = 3). In con-

trast, a full lockdown scenario with 75% reduction in contact rates of all individuals after 60

days leads to a total outbreak size of 4% of the population. The optimal control solution in

the balanced case ξ = 1 reveals a potential route to jointly address public health and socioe-

conomic cost. From the perspective of public health, the optimal control solution leads to
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25% cumulative infections. In addition, the socioeconomic costs in the optimal control case

are higher in the short-term but approach that of the baseline scenario in the long-term. In-

deed, the effective reproduction number identified via an optimal control framework in the

balanced scenario gradually reduces to sub-critical levels (close to an effective reproduction

number, Reff = 0.75) while gradually relaxing controls over time. The optimal control

solutions are shown in Figure 4.2A. The optimal control solutions differ based on dis-

ease status, recovered/immune individuals elevate their interactions, infectious individuals

isolate, and susceptible individuals lock-down before gradually returning to pre-lockdown

levels.

4.2.2 Personalized, test-based optimal control policies and their impact on public health

and socioeconomic outcomes.

In order to explore the mechanisms identified by the optimal control framework, we system-

atically modulate the effectiveness of isolation and evaluate its effect on the state-dependent

optimal contact rates and disease dynamics. In practice, isolation effectiveness is influ-

enced by availability, accuracy, and speed of testing as well as fundamental limitations

on an individual’s ability to isolate (which can vary with socioeconomic and other factors).

Figures 4.3A-C evaluate low, medium, and high efficiency of isolation spanning 25%, 50%

and 75% reduction in the contact rates of infected individuals, respectively. As is evident,

the optimal control solutions for state-dependent contact rates vary significantly with isola-

tion effectiveness; suggesting that COVID-19 response policies that can vary with disease

status may open up new possibilities to balance public health and socioeconomic outcomes.

First, in the low (25%) or medium (50%) effectiveness cases, susceptible, exposed,

and infectious individuals adopt the maximal level of isolation. Inefficient isolation of

infectious individuals elevates risks of new transmission that are not outweighed by so-

cioeconomic benefits. Notably, the optimal control solution includes an elevated level of

interaction by recovered/immune individuals. This finding recapitulates ‘shield immunity’
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Figure 4.3: SEIR dynamics with contact rate interventions for various isolation efficiencies,
(A) 25% isolation efficiency; (B) 50% isolation efficiency and (C) 75% isolation efficiency.
The relative importance (ξ) is 1 for all the cases (A), (B) and (C). The contact rate inter-
ventions start at 60 days, people follow baseline (or normal) interactions before that. For
all the isolation efficiency scenarios (three rows), the left panel shows the population dy-
namics given the optimal contact rate (related to the baseline contact rate, with 100% as
baseline) shown in the middle panel. The gray curve in the middle panel represents the
measure of corresponding effective reproduction number (Reff ). The right panel shows
the corresponding socio-economic costs. See Sect. 4.4 for additional scenarios.

[102, 61], insofar as recovered/immune individuals are protected from re-infection over the

course of the intervention. The elevated contacts of recovered/immune individuals have

multiple effects: both diluting interactions by susceptibles (and reducing transmission risk)

and by increasing socioeconomic activity. In contrast, for sufficiently high levels of isola-
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tion efficiency (75%), the optimal control solutions suggest there is no need for a general

lockdown. Instead, the combination of infected case isolation and shielding by the subpop-

ulation of recovered/immune individuals is sufficient to rapidly reduce and contain Reff

below 1, leading to a decreasing number of new infections. We note that irrespective of

isolation effectiveness, balancing public health and economic outcomes drivesReff below

1, but not necessarily to 0 (albeit, given the constraints imposed by lockdown efficiency,

such an extreme reduction may not even be possible), and eventually increased immunity

permits an easing-off in restrictions yielding an increase inReff [103].

4.2.3 Sensitivity of optimal control approach to mis-timed implementation of policies

Despite its potential to balance public health and socioeconomic costs, a central drawback

of optimal control solutions is the potential exponential growth of errors. Given the fact the

COVID-19 dynamics are only partially observed (with significant uncertainty in the actual

state), application of a policy requires an estimate of the time since epidemic initiation,

what we term ‘epidemic age’. In order to evaluate the sensitivity of optimal control policies

due to mis-timing, we first computed the optimal control policy for a system one month

after an outbreak. However, instead of implementing the policy matched to the actual

epidemic age, we enforce the optimal control policy 30 days later, i.e., at the end of 60 days

after the start of the outbreak. Figure 4.12 shows the difference in the mis-timed control

policy vs. the optimal control policy; as is evident the mistimed policy relaxes stringent

lockdown when the optimal policy continues to lock-down. As a consequence the total

deaths are far higher for 25% and 50% isolation efficiency (see Table 4.1). The mistimed

policy, in effect, biases the system towards minimizing socioeconomic rather than public

health costs. This significant difference in performance metrics demonstrates the potential

shortcomings of implementing a policy based on optimal control. However we note that

with a stringent isolation efficiency, delays are less problematic. The reason is that with

efficient infected case isolation, both the mis-timed and optimal control policy could enable
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Optimal Control Without Delay With Delay
Isolation Efficiency

(shielding = 2)
Deaths

(per 10,000) Working Fraction
Total Deaths
(per 10,000) Working Fraction

25% 600 90.95% 720 94.96%
50% 250 67.13% 510 83.65%
75% 40 99.92% 40 99.95%

Table 4.1: Comparison between optimal control approach for contact policy with and with-
out delay. The comparisons are made for isolation efficiencies of 25%, 50% and 75%, with
performance metrics of total deaths and working fraction. The total death is significantly
higher for the system with delay when the isolation efficiency is 25% and 50%, suggesting
poor robustness of the computed optimal control to input-delay.

nearly all individuals to work, given that Reff is held below 1 by infection isolation on its

own.

Despite its fragility, we identify common features of the optimal control policy given

variation in the effectiveness of infectious case isolation. First, the optimal control policy

minimizes infected contact rates. The optimal control solutions also robustly identify an

immune shielding strategy such that recovered/immune individuals elevate their interac-

tions to the maximum possible relative to baseline. Importantly, differences in the optimal

control policy are primarily centered on identifying a switch point in contact rate level for

the susceptible population. From Figures 4.9, 4.10 and 4.11, we observe the switch point

as a function of time, showing that irrespective of isolated case effectiveness and shield im-

munity constraints, the increase in susceptible contact rates happens later in the lockdown

period. Switch over points correspond to times when the infection prevalence is relatively

low compared to the recovered/immune population. This observation provides the basis for

a feedback, rather than optimal, control policy.

4.2.4 Feedback-control policy for balancing public health and socioeconomic costs

We propose the use of a feedback control policy adapted from emergent features of the op-

timal control policy solutions: (i) infectious individuals isolate as far as is possible; (ii) re-

covered/immune individuals increase their activities as much as possible, i.e., akin to shield
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Feedback Control Without Delay With Delay
Isolation Efficiency

(shielding = 2)
Deaths

(per 10,000) Working Fraction
Total Deaths
(per 10,000) Working Fraction

25% 620 89.98% 620 89.94%
50% 250 62.40% 250 62.12%
75% 30 99.90% 30 99.90%

Table 4.2: Comparison between feedback control approach for contact policy with and
without delay. Isolation efficiencies of 25%, 50% and 75% are used for the purpose of
comparison, with performance metrics of total deaths and working fraction. Both of the
performance metrics are nearly identical for all cases, which suggests high robustness to
delay on the system.

immunity. Hence, we set out to identify a system-dependent change in the contact rate of

susceptible individuals, separating lockdowns vs. return-to-work. In practice, we identify

a critical curve in I−R plane (i.e., infected-recovered cases plane) via a genetic algorithm,

such that the recommended behavior of susceptible individuals is dictated by surveillance-

based estimates of infectious and recovered/immune individuals (see Sect. 4.4.5 for more

details).

Figure 4.4 summarizes the results of the feedback control policy. From a policy per-

spective, the feedback control policy identifies a switch between lock-down and return-

to-work when there are significantly more recovered/immune individuals than infectious

individuals. The timing of the return from lockdowns is accelerated given increases in

isolation efficiency (rows) with additional benefits from the implementation of shield im-

munity (columns). Typically, the transition between lockdown and re-openings occur when

circulating case levels are low relative to recovered/immune individuals. The critical ratio

of recovered to infectious individuals decreases as isolation increases. Notably when there

are sufficiently high levels of isolation of infectious individuals then the optimal feedback

policy suggests that no lockdown is required (note the entirely ‘white’ regions in the bot-

tom row). In the Discussion we provide additional context on the potential impacts of

vaccination on this central finding.

Critically, the performance of the test-driven feedback policy is nearly identical for the
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performance metrics with or without mis-timing (see Table 4.2). This finding implies that

state-based approaches will be less likely to have exponentially mis-timed applications,

and reinforces the need for population-scale testing for both active infections and recov-

ered/immune individuals. To examine the robustness of the feedback strategy in terms of

model mis-specification, we consider three cases in which the isolation efficiency is unbi-

ased, overestimated (by ∼ 10%) and underestimated (by ∼ 10%) relative to the true value.

We then compare the total deaths and working fraction of a feedback strategy based on

these (potentially incorrect) estimates of the isolation efficiency. We find that the feedback

strategy is robust to such mis-specification, particularly when isolation efficiency is high or

low (see SI Figure S10 for details). We also note that a simple policy with only two states -

‘lockdown’ and ‘open’, respectively, corresponding to minimum and baseline contact rates

for the susceptible cases, would be easier to implement than one with continuous ‘phases’

or state changes. In Figure 4.13, we document the generalizability of results given variation

in infected case isolation and the level of shield immunity.

The results presented in Chapter 4 so far are accepted for iScience journal publication,

a pre-print is available at [60].

4.2.5 Optimised age-dependent immune shielding deployment

In this section, we apply an age-structured model to explore the outcome of having the

shields act in positions where they could be more or less likely to interact with different

age groups. For simplicity, we ignore births and other causes of death. We consider a

population of susceptible (S), exposed (E), infectious asymptomatically (Ia), infectious

symptomatically (Is) and recovered (R) who are free to move without restrictions in a

‘business as usual’ scenario. A subset of symptomatic cases will require hospital care,

which we further divide into subacute (Ihsub) and critical and/or acute (requiring intensive

care unit (ICU) intervention, Ihcri) cases. We assume that a substantial fraction of critical

cases will die. Age-stratified risk of hospitalization and acute cases are adapted from the
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values from [57], which models potential outcomes in the United Kingdom and the United

States. The rate of transmission is reduced by a factor of 1/(Ntot + αRshields) where Ntot

denotes the fraction of the population in the circulating baseline, and Rshields denotes the

total number of recovered individuals between the ages of 20 and 60 years (a subset of the

total recovered population). In this model, we assume that all recovered individuals have

immunity, but that only a subset are able to facilitate interaction substitutions. The model

assumes that the individuals in the circulating pool are not interacting with hospitalized pa-

tients. Interactions with patients in the hospital setting need to be incorporated into specific

implementation scenarios with healthcare workers [104]. The baseline epidemiological

parameters, age-stratified risk and population structure are provided in Sect. 4.4.7.

Fig. 4.5 shows that an improved way of distributing shielding effort is to prioritize low,

but non-zero, shielding of young and place increasing effort on shielding elderly members

of the population (see Fig. 4.6 for shielding concentrations). Using the optimized shielding

deployment, the reduction in deaths (Dtot(tf )) is substantial (∼ 30%). The results suggest

advantages of preferentially shielding those who are most at risk.

The results presented in Chapter 4.2.5 are published [61].
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    45% 
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    55% 
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    65% 
Isolation
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2x
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Figure 4.4: Heuristic state feedback intervention policies varying with isolation efficiency
(rows) and shielding levels (columns). In each panel, the trajectory is noted in black with
the final state as green diamond. An optimal line divides the plane into two regions which
determines the optimal contact rate for the susceptible population for the current infected
and recovered cases. The optimal policy in the dark grey region is lockdown and open in
the white region. The phase plots show the dynamics of the infected and recovered case
fractions over the period of 360 days, while applying the control strategy described above
in the absence of shielding and for shielding levels of 2 and 4 respectively. For the case of
isolation efficiency of 75%, no lockdown is needed at all for the susceptible population.
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Figure 4.5: COVID-19 dynamics in the two shielding scenarios (α = 2 and α = 20),
compared to the scenarios with optimized age dependent shield deployment for the same
values of α with the baseline case included for reference. The results are displayed for both
high (left) and low (right) R0 scenarios. The optimal deployment significantly reduces the
total death count and the need for ICU beds for both α = 2 and α = 20.
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Figure 4.6: Optimal shielding concentration for all age classes for high (left) and low (right)
R0 scenarios. The optimal shielding concentrations (for both scenarios) are obtained via
solving an optimization problem with low and high shielding levels (see Methods). The
optimal shielding concentration (θa/fa) is larger for classes with a higher age, which would
reduce casualties as the older population is disproportionately affected by COVID-19.
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4.3 Discussion

We have developed a linked series of optimal- and feedback-control analyses to evaluate

the effectiveness (and benefits) of modifying contact rates for managing the COVID-19

pandemic from both health and economic perspectives. Throughout, our central goal was

to optimize the interactions between individuals based on disease status so as to achieve a

defined balance between public health and economic outcomes. By explicitly incorporat-

ing contact rates as the control variables in a SEIR model, we were able to identify optimal

control policies that could, in theory, significantly reduce expected infections (and fatal-

ities) while reducing the negative socioeconomic costs of sustained lockdowns. Optimal

control policies are unlikely to be applied in practice, given the potential exponential mis-

specification of policies over time. Hence, we leveraged insights from the optimal control

solutions to guide a feedback control approach that performs nearly as well as the optimal

control approach with significant improvements in robustness given uncertainty in estimat-

ing the epidemic state. Collectively, our control policies indicate that infected individuals

should be isolated (as effectively as possible), recovered/immune individuals should be en-

couraged to return to work (given benefits accrued via shield immunity), while the release

of other individuals from lock-down should be guided by the epidemic state. The transition

from lock-down to return-to-work occurs when circulating case-loads are far lower than

recovered case counts; with the scope of the epidemic sharply controlled by infection case

isolation. A combination of policies, e.g., mask-wearing, physical distancing, will help to

reduce transmission risk for individuals who do return to work.

The SEIR framework used as the basis for the present control study is intentionally sim-

plified. The epidemic model does not account for process or observational noise, analytic

test features, heterogeneity, stratified risk, asymptomatic cases, and detailed elaboration

of severe cases. By reducing the model complexity, we have tried to shed light on the

general problem of balancing public health with socioeconomic outcomes. In doing so,
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we have highlighted a middle ground between dichotomous outcomes that focus on public

health or socioeconomic costs solely. We recognize that extensions and applications of the

present work will require consideration of additional epidemic complexities (e.g., asymp-

tomatic transmission) and additional evaluation of joint public health and economic costs

(e.g., arising from hospitalization burden). Translating the present findings into practical

use will also require improved assessments of the ways in which behavior is influenced by

awareness and communication of the pandemic state, in addition to the influences of formal

implementation of policy campaigns [105, 106].

A salient point that emerged from the control analysis is the benefit of reducing inter-

actions by infectious individuals and increasing interactions by recovered/immune individ-

uals. In doing so, it is critical to note that the conception of the model preceded the avail-

ability of vaccines. The increase of activity by recovered/immune individuals effectively

dilutes risky contacts between susceptible and infectious individuals. We contend that this

principle of shield immunity is also relevant when individuals are vaccinated, and therefore

move from susceptible directly to the recovered/immune category. Increases in vaccina-

tion may provide opportunities to reduce risk for susceptible individuals, beyond benefits

accrued by susceptible depletion alone. We recognize that adopting policies that include

individual disease status are likely to raise both privacy and ethical concerns [107, 108].

Yet, given the slow rate of vaccine dissemination, we suggest that the absence of action-

taking that could increase protection to those yet to be vaccinated also comes at a public

health and socioeconomic cost. Even now, more than a year after the identification of the

first SARS-CoV-2 case, we remain closer to the beginning than the end of the COVID-19

pandemic. As we have shown, accelerating the slow-down of transmission while restoring

economic activity may be enabled by both personalized, test-driven, policies as the basis

for mitigation that reduce risk for all.
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4.4 Methods

4.4.1 Model and parameters

The epidemic model analyzed here is an ’SEIR’ model, including SEIR dynamics [109],

susceptibles S, exposed E, infectious I , recovered R , with the total number of fatalities

denoted by D. The force of infection is the contact rate of infectious individuals multiplied

by the probability that the interaction is with a susceptible person multiplied by the prob-

ability that the event leads to an infection. Let cS , cE , cI and cR equal the contact rate of

S, E, I , and R individuals respectively. Although such different rates imply the existence

of an implicit contact matrix, we are only focused on infection dynamics associated with a

single epidemiological birth state, such that the force of infection can be represented by a

single term, F (S,E, I, R; c). The force of infection is

F (S,E, I, R; c) = ηIcI

(
cSS

cSS + cEE + cII + cRR

)
, (4.1)

where ηI is the measure of disease transmission effectiveness from I class to S class [110].

Suppose all the contact rates are equal to a baseline contact rate cB. Assuming relatively

few fatalities per-capita, then the total population is approximately constant at N , such that

the force of infection can be approximated as F ≈ ηIcB(S/N), which recovers the standard

SEIR model by defining β = ηcB as infection rate. In the generalized case, the model is
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given by the following system of nonlinear differential equations

dS

dt
= −F (S,E, I, R; c)I

dE

dt
= F (S,E, I, R; c)I − 1

TE
E

dI

dt
=

1

TE
E − 1

TI
I

dR

dt
= (1− µ)

1

TI
I

dD

dt
= µ

1

TI
I,

(4.2)

where F (S,E, I, R; c) is the force of infection given in Eq. 4.1, and TI is the infectious

period, TE is the incubation period, µ is the case fatality ratio for infected individuals, see

SEIR model schematic in Fig. 4.7. At the start of an outbreak (t = 0), the contact rate of

Figure 4.7: SEIR Model Schematic. The interactions between susceptible and infected
individuals lead to newly exposed cases. These interactions are modeled by the force of
infection F (S,E, I, R; c). The exposed individuals undergo an incubation period (TE)
before the onset of infectiousness. Infectious individuals will either recover (and develop
protective immunity) or die after an infectious period (TI), see model equations in Eq. 4.2.

each individual is cB. The basic reproduction numberR0 of this compartmental model is

R0 =

average infectious time︷︸︸︷
TI ×

infection rate︷︸︸︷
ηIcB . (4.3)
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The initial exponential growth rate (r) of the epidemic spread is given by the largest eigen-

value of the Jacobian matrix evaluated around the disease-free equilibrium (DFE). Lin-

earizing system (4.2) about the DFE, the Jacobian matrix of infected subsystem reads

J0 =

−1/TE ηIcB

1/TE −1/TI

 . (4.4)

Then, the largest eigenvalue of J0 (i.e., early exponential growth rate r) is

r =
1

2

−( 1

TE
+

1

TI

)
+

√(
1

TE
− 1

TI

)2

+ 4
ηIcB
TE

 . (4.5)

The assumed model parameters used in the model are shown in Table 4.3.

We denote c(t) = (cS(t), cE(t), cI(t), cR(t))T as the contact rate vector at time t, where

(·)T denotes a matrix transpose. The effective reproduction numberReff(t) is

Reff(t) =

average infectious time︷︸︸︷
TI ×

infection rate in susceptible population︷ ︸︸ ︷
ηI(t)cI(t)

cS(t)S(t)

Q(t)
, (4.6)

where Q(t) = cS(t)S(t) + cE(t)E(t) + cI(t)I(t) + cR(t)R(t).

Initial conditions and contact rate. The model assumes an initial total population of

1, 000, 000 (one million) denoted as N0. An initial outbreak is seeded in this population

given one infected individual. The simulation is run for two months (60 days) with fixed

baseline contact rate (all c’s are equal to cB) - we use this time point (which we denote

time t0 in our simulations) as the time at which intervention policies might be applied.

The individual behaviors (or activities) are quantified by contact rates, cS(t), cE(t), cI(t)

and cR(t), thus the control of contact rates can be mapped to intervention strategies. For

examples, when cS goes down that means shelter-in-place, when cE or cI goes down that

can mean quarantine and isolation. When there is no intervention during the epidemic, the
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population dynamics of SEIR model is shown in Fig. 4.8. At the time intervention starts

(60 days), the disease spreads through the population without any intervention leading to

incidence 19 (per 10, 000), prevalence 0.4%, and a cumulative infection level of 0.8%.

Figure 4.8: Population dynamics of SEIR model without control, i.e., all c′s are equal cB
from t0 to tf . (Left) Population dynamics of SEIR model without control. (Right) Epidemic
growth as measured by the effective reproduction number (Reff ), the basic reproduction
numberR0 is 3.

4.4.2 Optimal control formulation

Here, we aim to optimally deploy public health control strategies (via control of the contact

rates) that minimizes deaths during the outbreak while keeping the socioeconomic costs

low. The baseline average of contacts at time t, Q(t), equals cBN(t), where cB is the

baseline contact rate and N(t) = S(t) + E(t) + I(t) + R(t) is the total number of alive

individuals. The socioeconomic costs may result from two consequences of contact rate

interventions: (1) loss of essential connections; (2) shifting of roles relative to baseline, as

quantified by variation in contact rates by testing status. Given the intervention policy c(t)

at time t, we quantify the socioeconomic costs as E1 + E2, where E1 and E2 may take form
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of

E1(Q(t);W1) = W1exp
(
K

(
cBN(t)−Q(t)

cBN(t)

))
E2(c(t);W2) =

1

2

∑
i∈{S,E,I,R}

wi

(
cB − ci(t)

cB

)2

=
1

2

(
cB − c(t)

cB

)T
W2

(
cB − c(t)

cB

)
,

(4.7)

where W1 ≥ 0, W2 = diag(wS, wE, wI , wR) � 0 are weight parameters, and K is a

constant shape parameter for the exponential function. In the absence of any strategy,

there are few deaths. This would mean that N(t) ≈ N0. For the sake of simplicity, E1

is approximated as W1exp (K (cBN0 −Q(t)) /cBN0). For every t, we restrict the contact

rate vector c(t) ∈ [cmin, cmax]
4, where cmin and cmax are the minimum contact rate and

maximum contact rate. The set C = [cmin, cmax]
4 is a convex and compact set in R4. We

define the space of admissible controls, denoted by A, as the set of Lebesgue-measurable

functions c : [t0, tf ] −→ C. The (dimensionless) cost functional is written in the following

Bolza form,

J (c) =

costs of deaths︷ ︸︸ ︷
WD

D(tf )

N0

+

∫ tf

t0

socioeconomic costs︷ ︸︸ ︷
E1(Q(t);W1) + E2(c(t);W2) +

infectious case costs︷ ︸︸ ︷
WI

I(t)

N0

dt, (4.8)

where WI ≥ 0 and WD ≥ 0 are weight regulators. The optimal control problem is

min {J (c)|c ∈ A}. (4.9)

The weight parameters used in Eq. 4.8 are shown in table 4.4, these weight parameters are

set to balance the scale of different cost components in Eq. 4.8.

However, frequent and continuous updates bring in practical issues in terms of (1) es-

tablishing how subtle changes in contact rates actually translate into applicable changes in

individual behaviors (i.e., a continuous strategy can not be practically implemented), and

87



(2) individual fatigue (and reduced adherence to proposed measures) due to frequent be-

havioral adjustments (i.e., frequent update is also impractical). To address these concerns,

we need to modify the space of controls A.

To begin with, we fix the full time horizon of control as [t0, tf ]. For example, t0 is

fixed to 60 days after outbreak (see Sect. 4.4.1) and tf to 360 days after outbreak, where

we set the timing of the outbreak to 0. We only consider an intervention policy which

is updated a finite number of times in the interval [t0, tf ]. These epochs are denoted by

t0 < t1 < t2 < · · · < tM = tf . Let O denote the corresponding partition of [t0, tf ], and

denote by F(O) the space of functions c : [t0, tf ]→ R4 which have constant values in the

intervals [tm−1, tm), m = 1, 2, . . .. The resulting optimal control problem is

min {J (c)|c ∈ A ∩ F(O)}. (4.10)

In most cases, the exposed individuals are unaware of their infection status, so it’s

impractical to control their behaviors separately from the susceptible individuals. Hence,

we view them as susceptibles for the purpose of policy setting and set cE(t) = cS(t) ∀t ∈

[t0, tf ]. In doing so, the contact rate vector c(t) actually is a three dimensional vector

consisting of cS(t), cI(t) and cR(t).

4.4.3 Numerical algorithm and simulation details

We follow the framework presented in Polak [111] for computational optimal control based

on optimization on Hilbert spaces. We first discuss the conceptual algorithm in an abstract

setting of infinite-dimensional spaces, and then provide approximation details in the sequel.

Let Ln2 [t0, tf ] denote the space of equivalence classes of square integrable functions

from [t0, tf ] into Rn (n = 3 in our case). We use the notation ‖·‖ and 〈 ·, ·〉 for the norm

and scalar product in Euclidean space (e.g. Rn), and use ‖.‖H and 〈 ., .〉H for the norm

and scalar product in a Hilbert space H. For example, given u, v ∈ Ln2 [t0, tf ] (a Hilbert
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space), the norm ‖.‖2 and scalar product 〈 ., .〉2 are: ‖u‖2 =
√∫ tf

t0
‖u(t)‖2 dt; 〈u, v〉2 =∫ tf

t0
〈u(t), v(t)〉dt.

In the optimal control problem under consideration, we define the state variable of the

system, x ∈ R5, by x = (S,E, I, R,D)T . We also define the control variable, c ∈ R3,

by c = (cS, cI , cR)T . The dynamic equation of the system, Eq. 4.2, can be rewritten in a

compact form:

ẋ(t) = f(x(t), c(t)), (4.11)

where dot represents differentiation with respect to time t, and f(x(t), c(t)) is the right

hand side (RHS) of equations 4.2. The cost functional defined by Eq. 4.8 can be written

succintly as

J (c) = φ(x(tf )) +

∫ tf

t0

L(x(t), c(t)) dt, (4.12)

where L(x(t), c(t)) := E1(Q(t);W1) + E2(c(t);W2) + WI
I(t)
N0

and φ(x(tf )) = WD
D(tf )

N0
.

The costate (adjoint) variable, λ(t) ∈ R5, is defined by the following equation,

λ̇(t) = −
(
∂f

∂x
(x(t), c(t))

)T
λ(t)−

(
∂L

∂x
(x(t), c(t))

)T
, λ(tf ) = ∇xφ(x(tf )). (4.13)

Next, recall the optimal control problem defined by Eq. 4.10, where the cost functional

(performance integral) J : A → R is defined by Eq. 4.12. We will propose a gradient-

descent algorithm for solving this problem, where the gradient ∇J (c(t)) is given by the

following equation,

∇J (c(t)) =

(
∂f

∂c
(x(t), c(t))

)T
λ(t) +

(
∂L

∂c
(x(t), c(t))

)T
; (4.14)

see [111, 112, 113].

The principal elements of most gradient-descent algorithms (including the one de-

scribed here) are the descent direction and the stepsize. For our problem, the descent
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direction is based on −∇J (c(t)); in fact, it is the projection of c(t) − ∇J (c(t)) into

the constraint-set C = [cmin, cmax]
3 as defined in Sect. 4.4.2. The stepsize that we use is

the Armijo stepsize (see [111]) described in the sequel, which gives an approximate line

minimization of J in the computed descent direction from the control c(t).

Consider first the conceptual algorithm. In its formal presentation by Algorithm 1,

below, we use the term “compute” in a conceptual sense, since the ‘computations’ refer

to elements in the Hilbert space Ln2 [t0, tf ]. Also, we use the notation PA to mean the

projection from Ln2 [t0, tf ] into the space A.

Algorithm ?? : Conceptual. Given a control iteration c(i) ∈ A, compute from it the next

iteration, c(i+1) ∈ A, as follows.

Parameters: Constants α ∈ (0, 1) and β ∈ (0, 1). (These parameters play a role in the

computation of the step size.)

1. Compute the state trajectory x(t) and costate trajectory λ(t) by Eqs. 4.11 and 4.13,

respectively.

2. Compute∇J (c(t)) by Eq. 4.14.

3.
(

Here we define, for all y ≥ 0, h(i)(y) = PA(c(i) − y∇J (c(i)))
)

. Compute `(i) > 0

defined as follows,

`(i) = min{` = 0, 1, ...|J (h(i)(β`))− J (c(i)) ≤ −α〈∇J (c(i)), c(i) − h(i)(β`)〉2}.

4. Set γ(i) = β`(i), and set

c(i+1) = PA(c(i) − γ(i)∇J (c(i))).

We remark that PA(c(i)− γ(i)∇J (c(i)))− c(i) is descent direction for J from c(i), and

γ(i), the Armijo stepsize, provides an approximate-line minimization in that direction.

90



The main modification of Algorithm 1 towards implementation is in numerical solutions

of the state equation and costate equation. Furthermore, the time-interval [t0, tf ] has to

be discretized by a suitable grid in order to adequately represent various time-dependent

functions such as c(i)(t) and ∇J (c(t)). All of this can be achieved by a common grid,

G0 := {t0, t1, . . . , tN} ⊂ [t0, tf ]. Furthermore, the projection PA(c(i) − β`∇J (c(i))) in

Step 3 of Algorithm ?? can be computed as follows: For a given grid-point tj ∈ G0, project

the point c(i)(tj) − β`∇J (c(i))(tj) ∈ R3 into the set C, where C = [cmin, cmax]
3 ⊂ R3.

This can be done by a simple co-ordinate projection since C is a box. Denote the result

of this pointwise projection by PC(c(i)(tj) − β`∇J (c(i))(tj)) ∈ C, and observe that the

function comprised of a zero-order or first-order interpolation of these points can serve to

approximate the functional projection PA(c(i) − β`∇J (c(i))).

These modifications of the conceptual algorithm give an implementable version for it.

The resulting implementable algorithm falls in Polak’s framework of numerical optimal

control [111] which includes results pertaining to asymptotic convergence.

As noted, the control c(t) must be piecewise constant and maintain constant values

for substantial periods. At the same time, the state trajectory typically is continuous and

not piecewise constant. Therefore, it is natural to maintain the present framework of

continuous-time optimal control and not to consider the problem in the setting of discrete-

time systems. To do that, we have to consider a form of projection of the control functions,

c(t), into the space of piecewise-constant functions. We next describe the specific way we

did that in our simulations.

Consider an increasing set of points {t0 = t0 < t1 < t2 < ... < tM = tf}, and

the corresponding partition of the time-interval [t0, tf ) by the subintervals [tm−1, tm), m =

1, . . . ,M . Denote the interval [tm−1, tm), m = 1, . . . ,M , by ∆m; right-close the last

interval to be ∆M = [tM−1, tM ], and denote the partition by O. Let ψm(t), m = 1, . . . ,M

denote the indicator function of the subinterval ψm, namely ψm(t) = 1 for t ∈ ψm and

ψm(t) = 0 otherwise. A continuous-time signal can be approximated over an interval by
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a constant equal to its average value over that interval. Given a continuous-time policy

c : [t0, tf ]→ R3, the piecewise constant reconstruction is

c̃(t) =
M−1∑
m=1

θmψm(t), θm =
1

|∆m|

∫ tm+1

tm

c(s) ds, (4.15)

here θm ∈ R3. Let VO denotes the operator comprising this piecewise- constant reconstruc-

tion procedure. Then Eq. 4.15 can be written as c̃ = VO(c). Now we modify the algorithm

by replacing the projection operator PA in Step 3 by the operator VO ◦ PA, comprised of

PA followed by VO.

In summary, the implementable algorithm that we use consists of the following modifi-

cation of Algorithm ??:

1. Compute x(t) and λ(t) by numerical integrations using the forward-Euler method.

2. Compute∇J (c(t)) only at the points tj on the grid G0.

3. Redefine h(i)(y) as h(i)(y) = VO ◦ PA(c(i) − y∇J (c(i))).

4. Replace PA by VO ◦ PA.

Simulation details. The model assumes an initial total population of 1, 000, 000 (one

million) denoted as N0. An initial outbreak is seeded in this population given one infected

individual. The simulation is run for two months (60 days) with fixed baseline contact rate

(all c’s are equal to cB) - we use this time point (which we denote time t0 in our simulations)

as the time at which intervention policies might be applied: we have c(t) = cB ∀t ∈ [0, t0],

and we set the initial state to x0 = x(t0).

For the algorithm, we set α = 0.1 and β = 0.5, the grid’s time increments to 0.05,

∆m = 30 days, t0 = 60 and tf = 360 days. For the uncontrolled part of the simulation we

take c(t) = cB for all t ∈ [0, t0]. The term Θ(i) := |J (c(i+1)) − J (c(i))|/J (c(i)) acts as

a convergence indicator for stopping the algorithm. The algorithm is terminated whenever
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Θ(i) ≤ 10−6.

4.4.4 Optimised time-dependent contact rate

Fraction of working-days recovered. One way of estimating the economic impact is

measuring the fraction of working-days recovered, i.e., how many days are people working.

We assume that if a person has a contact rate less than the base contact rate (cB), it implies

a proportional reduction of in-person contacts that have a direct economic benefit. For

example, for a susceptible individual, the working fraction at day t can be computed as

c∗S(t) = min{1, cS(t)/cB}, where cB is the baseline contacting rate. This ensures that

contact rates above the baseline does not correspond to an increase in hours worked. For

a given contact rate policy c = (cS, cE, cI , cR)T , the working days restored in the period

[t0, tf ] is

Ψrestored =

∫ tf

t0

c∗S(t)S(t) + c∗E(t)E(t) + c∗I(t)I(t) + c∗R(t)R(t) dt, (4.16)

where c∗k(t) = min{1, ck(t)/cB}, k ∈ {S,E, I, R}, is the working fraction of an individual

in subpopulation class k at day t. When there is no policy intervention, the contact rate

of each individual is cB for all time, the working days will be maximized, which can be

written as

Ψmax =

∫ tf

t0

S(t) + E(t) + I(t) +R(t) dt. (4.17)

Then, the fraction of working days restored can be written as

Ψ(c) =
Ψrestored

Ψmax

. (4.18)

Economic costs are proportional to 1 − Ψ(c); such that economic impacts of policies are

minimized as Ψ(c) approaches 1
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Varying the relative importance of the illness-related cost vs. socioeconomic costs.

The relative importance given to the socioeconomic impact of the epidemic and the cost

associated with deaths and infection spread is critical to design intervention policies. From

Eq. 4.8, we note that the cost function J can be decomposed into the two parts, socioeco-

nomic costs (JE) and costs of infectious diseases (JI), J = JE + JI , where

JE =

∫ tf

t0

E1(Q(t);W1) + E2(c(t);W2) dt

JI = WD
D(tf )

N0

+

∫ tf

t0

WI
I(t)

N0

dt.
(4.19)

In order to explore how to manage and control disease outbreak with low socioeco-

nomic costs, we need to balance the importance of these two seemingly conflicting objec-

tives. To this end, we define a new cost function where the relative importance of JE and

JI can be parameterized. With this parameter, optimal policy decisions can be made based

on the relative importance assigned to the socioeconomic effect and public health impacts.

Define the relative weight ratio as ξ and the altered cost function is J (c; ξ) = JE+ξJI . As

ξ increases, the relative importance of costs associated with death and spread of infection

are increased vis-a-vis the socioeconomic impact and vice versa. The optimal intervention

policies with different relative importance ratios (ξ = 10−4, 1, and 104) vary with isolation

efficiencies (25%, 50%, 75%) are shown in Figs. 4.9, 4.10, 4.11.

For example of balance case (ξ = 1) in the case of 50% isolation efficiency, Fig. 4.10

(middle) shows that the way of managing the epidemic while considering the socioeco-

nomic impact is to isolate all the infected cases and enhance the interactions of recovered

cases (i.e., shielding, [61]), the susceptible cases are stay home first and slowly go back

to normal towards the end of intervention period. Using the optimized intervention policy

(i.e., optimal contact rate), the reduction in final deaths (D(tf )) is substantial (∼ 75%).

The fraction of working-days recovered is about∼ 66%. The results suggest advantages of

isolation of infected cases and shielding enhancement of recovered cases.
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4.4.5 Inferring state-dependent heuristic policies from optimal control solutions

In the previous sections, an optimal policy based on contact rates of different sub-populations

was derived. However, as is often the case with optimal control solutions, these policies

are open-loop, that is, once computed, they are prescribed to the system without feedback.

Therefore, open-loop policies can have large sensitivities to modeling errors and signal-

delays in the loop, especially if the system is unstable, as is the case with dynamic models

of epidemics near the disease-free equilibrium at the onset of an outbreak. To address this,

we design a feedback law for optimizing a ‘reasonable’ performance metric which, though

different from the one of the optimal control problem, gives similar respective measures of

two important performance metrics: total mortality (D(tf )), and working fractions (Ψ). In

Sect. 4.4.6 we verify this point by comparative simulations of the optimal control solution

and the feedback control system, and not surprisingly, the sensitivity of the former with

respect to a one-cycle (30-days) delay is much larger than that of the latter.

The optimal control solutions reveal a general structure that guides us in the choice of

the feedback control law. The patterns observed in the computed optimal-policy solutions

(see Figs. 4.9, 4.10, 4.11) suggest that the contact rates for the infected cases should be the

smallest possible while the recovered population should be used as shields. Further, they

display switch overs between the low and high contact rates for the susceptible populations,

and these tend to occur towards the end of the lock-down period in a way that depends on

the numbers of infected and recovered individuals.

To find the state feedback policy, the I-R (Infected-Recovered) phase plane is divided

into 2 parts - one where the susceptibles need to isolate and another where they can get

back to work. If the number of infected cases is high, the susceptible population should

isolate to reduce the infection spread. For simplicity, the I-R plane is divided by a line,

though better classification boundaries may exist. On one side of the line, the contact rate

for the susceptible population is set to the minimum while on the other side, it is equal to

the baseline (corresponding to opening the system).
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The optimal slope of the dividing line is found via a genetic algorithm [114] using

Matlab’s built-in optimization function ga, with the maximum generation number (set to

30) serving as the stopping criterion [115]. The intercept of the line is fixed to a small

negative number (10−3) as the results are not affected by the intercept. The slope parameter

is called θ, and the following cost function is minimized:

J (θ) = w̃
D(tf )

N0

+ Ψ(c), (4.20)

where D(tf )/N0 gives the normalized casualties, Ψ(c) is the fraction of working-days re-

stored and w̃ is a weight to bring the two terms on the same scale (see Table 4.4). The

output of the genetic algorithm is θ∗, the slope of the optimal dividing line. We assume

that the divided plane on the side of the line with the origin, i.e., zero infected and recov-

ered cases, is the side where the susceptibles are free to work, while the divided plane on

the other side corresponds to lockdown. The simulation is run for different isolation and

shielding levels and the compiled results are shown in Fig. 4.4. The isolation efficiencies

vary from 35% to 75% while the shielding ratio varies from no shielding to 4× shielding.

We note that as the efficiency of isolation increases, the susceptible population can be

let out for a longer duration towards the end of the epidemic. This is because the reduced

contact rate of the infected population reduces the spread of infection. If the isolation

efficiency is 65% or more, there is no need for the susceptible population to be in lockdown.

Similar observations can be made for the shielding ratio. While the effects of it are not as

dramatic, an increase in shielding ratio decreases the force of infection, resulting in a a

lower time necessary for lockdown.

4.4.6 Sensitivity analysis

Sensitivity of optimal control and feedback control to mis-timed implementation of

policies. We compute an optimal control for a system with a delayed input. We do not
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assume any modeling uncertainty, and attribute the perturbation only to the delayed appli-

cation of the computed control. Suppose that an optimal control is computed for a scenario

where its application is slated to commence 30 days after the outbreak of an epidemic,

but the computed input control is uniformly delayed by 30 days. Then, by simulating the

epidemic with a delayed policy, we can compare total deaths and working fraction for the

delayed system with the results obtained without delay and with the same initial conditions.

The results, comprising total death and working fraction, are presented in Table 4.1 for

various isolation efficiencies. These findings indicate higher death rates as well as higher

working fractions for the delayed system except for the third, and highest efficiency of

isolation, where the respective performance measures are similar. For the case of 50%

isolation, the death count is more than doubled due to delay. This significant difference

in performance metrics demonstrates the shortcomings of implementing a policy based on

optimal control if the system is not precise.

We also tested the sensitivities of the total death and working fraction to 30-day delays.

The results, shown in Table 4.2 below, indicate low sensitivity compared to the observed

results for the optimal control solution. We compared these performance metrics obtained

from applications of the optimal control vs. feedback control to the system without delay.

The results, summarized in Tables 4.1 and 4.2 respectively, indicate similar performance

with respect to the performance metrics used. Thus, feedback control is nearly as good

as optimal control if there is no delay; while having more robust features in the event that

there is a delay in application.

Sensitivity of feedback control for mis-estimated isolation efficiency. Robustness of

the feedback strategy (in terms of model mis-specification) can be studied by computing

the total deaths and working fraction for the system with mis-specified isolation efficiency

(cmin). In doing so, health and economic outcomes for the mis-specified system (i.e., over-

estimate or underestimate of isolation efficiency) are compared with the results obtained
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from the system with an accurately estimated isolation efficiency.

The isolation efficiency is varied from 35% to 75% with a 2% increment. For every

isolation efficiency (for example with a true isolation efficiency of 50%), we consider three

cases - unbiased, overestimated and underestimated isolation efficiency. For the unbiased

case, i.e., when the isolation efficiency is accurate, we apply the feedback strategy (optimal

line) associated with 50% isolation efficiency to the system to obtain the total deaths and

working fraction. Second, for the case of overestimation, the isolation efficiency is assumed

to be ε% higher, so we apply the feedback strategy associated with (50 + ε)% isolation

efficiency to obtain the total deaths and working fraction in the overestimated scenario.

Finally, we consider the underestimated case that is similar to the overestimated case, in

which the feedback strategy associated with (50− ε)% isolation efficiency is applied to the

system.

The results are presented in Fig. 4.13. The feedback strategy is robust, especially when

isolation efficiency is either low (< 40%) or high (> 65%). The results are expected as

the feedback strategy is stationary in those ranges, i.e., when isolation efficiency is low,

our policy suggests lockdown (for susceptible individuals) most of time; when isolation

efficiency is high, our policy suggests staying open (for susceptible individuals), see Fig.

4.4. However, the feedback strategy is (slightly) sensitive when the isolation efficiency

is in the range of 40% ∼ 65%. From 40% isolation efficiency to 65% isolation efficiency,

lockdown policy (for susceptible individuals) switches to full open decision (for susceptible

individuals), hence a small estimation error may cause to nonnegligible changes in policy,

which may lead to the variability in working fraction and total deaths. As we can observe

from Fig. 4.4, the feedback strategy varies rapidly from 40% ∼ 65%, i.e., from lockdown

most of time to open entirely.
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4.4.7 An age-structured model and age-dependent immune shielding deployment

An age-structured model. We present the age-structured epidemiological model dis-

cussed in the Sect. 4.2.5. Consider a population of susceptible S, exposed E, infectious

asymptomatic Iasym, infectious symptomatic Isym, and recovered R who are free to move,

without restrictions in a ‘business as usual’ scenario. A subset of symptomatic cases will

require hospital care, which we further divide into subacute Ihsub, and critical/acute (i.e.,

requiring ICU intervention) Ihcrit cases. Vital dynamics (births and other causes of death)

are ignored for simplicity. The model is visually represented in Fig. 4.14 and the system

of nonlinear differential equations governing this age-structured epidemiological model are

shown below:

dS(a)

dt
= −

symptomatic contact︷ ︸︸ ︷
βsS(a)Isym,tot
Ntot + αRShields

−

asymptomatic contact︷ ︸︸ ︷
βasymS(a)Iasym,tot
Ntot + αRShields

dE(a)

dt
=

symptomatic contact︷ ︸︸ ︷
βsymS(a)Isym,tot
Ntot + αRShields

+

asymptomatic contact︷ ︸︸ ︷
βasymS(a)Iasym,tot
Ntot + αRShields

−
onset of infectiousness︷ ︸︸ ︷

γeE(a)

dIasym(a)

dt
=

asymptomatic onset︷ ︸︸ ︷
p(a)γeE(a) −

recovery︷ ︸︸ ︷
γaIasym(a)

dIsym(a)

dt
=

symptomatic onset︷ ︸︸ ︷
(1− p(a))γeE(a)−

transfer from Isym︷ ︸︸ ︷
γsIsym(a)

dIhsub(a)

dt
=

subcritical cases︷ ︸︸ ︷
h(a)(1− ξ(a))γsIsym(a)−

transfer from Ihsub︷ ︸︸ ︷
γhIhsub(a)

dIhcrit(a)

dt
=

critical (ICU) cases︷ ︸︸ ︷
h(a)ξ(a)γsIsym(a)−

transfer from Ihcrit︷ ︸︸ ︷
γhIhcrit(a)

dR(a)

dt
=

recovery from Iasym︷ ︸︸ ︷
γaIasym(a) −

recovery from Isym︷ ︸︸ ︷
(1− h(a))γsIsym(a)−

recovery from Ihsub︷ ︸︸ ︷
γhIhsub(a) −

recovery from Ihcrit︷ ︸︸ ︷
(1− µ)γhIhcrit(a)

dD(a)

dt
=

mortality︷ ︸︸ ︷
µγhIhcrit(a),

(4.21)
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where Isym,tot are the total number (across all age classes) of symptomatic infectious indi-

viduals, Iasym,tot are the total number of asymptomatic infectious individuals, Ntot is the

total number of alive individuals (not in the D state), and RShields are the number of recov-

ered individuals who could serve as serological shields - which we define as those of ages

between 20 and 59. The assumed model parameters used in the baseline models are shown

in Tables 4.5 and 4.6.

Basic reproduction number R0. Based on the parameters in Tables 4.5 and 4.6, R0 is

calculated as a weighted average between the symptomatic and asymptomatic reproduction

numbersRasym andRsym respectively:

R0 = pRasym + (1− p)Rsym. (4.22)

These can be further expanded based on age groups to obtain:

R0 =
∑

a∈Age Groups

p(a) · f(a) · Rasym(a) + (1− p(a)) · f(a) · Rsym(a), (4.23)

which yields a basic reproduction number of about 1.57 in the low scenario and 2.33 in the

high scenario.

Initial condition of age-structured model. The baseline model assumes a population

of 10,000,000 with age demographics as given in Table 4.6 unless stated otherwise. An

initial outbreak is seeded in this population given one exposed individual in the 20-29 age

class. The simulation is run forward until 10,000 people have been exposed to the virus

(i.e., 10,000 people are no longer in the susceptible states) - we use this time point (which

we denote time 0 in our simulations) as the time at which intervention policies might be

applied. At this point, once 10,000 people have already been exposed we simulate the

dynamics forward either with, or without the interventions.
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Age-dependent immune shielding deployment. In system (4.21), we assumed that shields

(recovered individuals aged 20-59) were deployed such that they interact with people of all

ages equally. In other words, all the susceptible individuals (across ages) have an infection

rate that scales with Itot/(Ntot + αRshields) such that the shields are uniformly interact-

ing with all ages. Here, we explore the outcome of having the shields act in positions

where they could be more or less-likely to interact with different age groups, i.e., using the

same effort as in the core model, then taking the αRshields of effort but distributing it non-

uniformly across ages. To explore the ‘optimised’ distributions of the shields effort, we

introduce non-uniform shield interactions in the model. To do so, we modify the equations

of S(a) and E(a) in the core model as follows:

dS(a)

dt
= −βa

S(a)Iasym,tot
Ntot + αRshields(θa/fa)

− βs
S(a)Isym,tot

Ntot + αRshields(θa/fa)

dE(a)

dt
= βa

S(a)Iasym,tot
Ntot + αRshields(θa/fa)

+ βs
S(a)Isym,tot

Ntot + αRshields(θa/fa)
− γeE(a),

(4.24)

where fa is the fraction of the population of age a (fa-s are fixed parameters) and θa is the

distributed shielding fraction of the sub-population class of age a, i.e. how we distribute

the shields to interact across different age classes. θa are the optimization variables. In

addition, we define the ratio θa/fa as the age-dependent shielding concentration. When

fa/θa = 1 for all ages a, the uniform shields interactions case is recovered i.e., we recover

the core model. We note that
∑

a θa = 1 such that the effort is the same as in the core

model, but allowing for asymmetric distribution across ages. For example, if 25% percent

of the population belongs to class a and gets all the shields protection, then fa = 0.25 and

θa = 1, this implies θa/fa = 4, i.e., a 4-fold boosted protection for that particular class.

Optimization objective. The optimization objective here is to minimize total deaths

Dtot(tf ), where tf is the final time of the simulation – 1 year after shielding begins, while

keeping ICU beds less than the maximum carrying capacity B at every time instant. We

seek to find the optimum distribution for deploying the effort of the serological shields. The
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non-uniform shielding fraction can be represent by a vector Θ = [θa]a=1:10 = [θ1, ..., θ10],

and we aim to solve the following minimization problem:

min J (Θ) =

∫ tf

t0

barrier function (constraint)︷ ︸︸ ︷
Wi × d(I tothcri(t)) dt +

costs of deaths︷ ︸︸ ︷
Wd ×Dtot(tf ),

subject to
10∑
a=1

θa = 1 , θa ≥ 0 ∀ a = 1, 2, ..., 10;

(4.25)

where Wi are Wd are weight regulators. The barrier function d is chosen such that it in-

creases the cost dramatically as the number of ICU beds in use approach the capacity B

of the system, to prevent overloading the healthcare system. To satisfy this property, we

pick d(x) = log
(

1
B−x

)
. The barrier function goes to infinity as x approaches B from the

left. Here, we consider the maximum capacity B as a ‘strict’ (or ‘hard’) constraint and any

distributed shielding fraction Θ that leads to the ICU beds exceeding B is not considered a

feasible shielding deployment. Given the simulation results shown in main text, we set B

as 200 ICU beds per 100,000 for the high scenario case and B = 80 ICU beds per 100,000

people for the low scenario case. Note that at this point we are trying to see if we can

improve the effectiveness of serological shields, by deploying them unevenly across a pop-

ulation. Moreover, the barrier function in the cost function is negative if Ihcri(t) < B − 1,

which is a ‘reward’ if occupancy of the ICU beds is low. In practice, we set Wi to be

arbitrarily small since it serves much like a constraint, e.g., Wi = 10−7. We let Wd = 1

as minimizing deaths is the primary goal. The optimization problem (4.25) is solved via

a genetic algorithm [114] using Matlab’s built-in optimization function ga, with the max-

imum generation number (set to 30) serving as the stopping criterion [115]. Genetic (or

evolutionary) optimization algorithms do not scale well with complexity, we may choose

first-order algorithms (e.g. gradient descent) as our numerical optimization solvers to han-

dle more complex system parameter optimization problems. The derivation of gradient in

a more general parameter optimization problem is present in Appendix 4.5.1.
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Figure 4.9: Population dynamics in a SEIR model with controlled contact rate (25% iso-
lation efficiency). (Top) The relative importance ratio (ξ) is set as 10−4, the policy (i.e.,
contact rate) is deployed to primarily minimize socioeconomic costs (JE). The socioe-
conomic costs are maintained at low level for all the policy intervention period (see the
right panel after 60 days). Final state of the system in terms of population fraction is:
D(tf ) ≈ 1%, S(tf ) ≈ 4% and R(tf ) ≈ 95%, where tf = 360 days. The fraction of
working-days recovered is about 100%. (Middle) The relative importance ratio (ξ) is set
as 1, the policy (i.e., contact rate) is deployed to minimize infectious diseases costs (JI)
while keeping the socioeconomic impacts low. The Final state of the system in terms of
population fraction is: D(tf ) ≈ 0.6%, S(tf ) ≈ 38% and R(tf ) ≈ 61%, where tf = 360
days. The fraction of working-days recovered is about 91%. (Bottom) The relative impor-
tance ratio (ξ) is set as 104, the policy (i.e., contact rate) is deployed to primarily minimize
infectious diseases costs (JI). The controlled contact rates of susceptible cases (cS) and
infected cases (cI) are overlapped at minimum contact rate boundary (cmin). The Final
state of the system in terms of population fraction is: D(tf ) ≈ 0.6%, S(tf ) ≈ 38% and
R(tf ) ≈ 61%, where tf = 360 days. The fraction of working-days recovered is about 88%.
Here, we set cmin = (3/4)cB (i.e., up to 25% isolation efficiency) and cmax = 2cB (i.e., up
to twice enhanced interactions).
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Figure 4.10: Population dynamics in a SEIR model with controlled contact rate (50% iso-
lation efficiency). (Top) The relative importance ratio (ξ) is set as 10−4, the policy (i.e.,
contact rate) is deployed to primarily minimize socioeconomic costs (JE). The socioe-
conomic costs are maintained at low level for all the policy intervention period (see the
right panel after 60 days). Final state of the system in terms of population fraction is:
D(tf ) ≈ 1%, S(tf ) ≈ 3% and R(tf ) ≈ 96%, where tf = 360 days. The fraction of
working-days recovered is about 100%. (Middle) The relative importance ratio (ξ) is set
as 1, the policy (i.e., contact rate) is deployed to minimize infectious diseases costs (JI)
while keeping the socioeconomic impacts low. The Final state of the system in terms of
population fraction is: D(tf ) ≈ 0.25%, S(tf ) ≈ 75% and R(tf ) ≈ 25%, where tf = 360
days. The fraction of working-days recovered is about 66%. (Bottom) The relative impor-
tance ratio (ξ) is set as 104, the policy (i.e., contact rate) is deployed to primarily minimize
infectious diseases costs (JI). The Final state of the system in terms of population fraction
is: D(tf ) ≈ 0.25%, S(tf ) ≈ 75% andR(tf ) ≈ 25%, where tf = 360 days. The fraction of
working-days recovered is about 59%. Here, we set cmin = cB/2 (i.e., up to 50% isolation
efficiency) and cmax = 2cB (i.e., up to twice enhanced interactions).
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Figure 4.11: Population dynamics in a SEIR model with controlled contact rate (75% iso-
lation efficiency). (Top) The relative importance ratio (ξ) is set as 10−4, the policy (i.e.,
contact rate) is deployed to primarily minimize socioeconomic costs (JE). The socioe-
conomic costs are maintained at low level for all the policy intervention period (see the
right panel after 60 days). Final state of the system in terms of population fraction is:
D(tf ) ≈ 1%, S(tf ) ≈ 4% and R(tf ) ≈ 95%, where tf = 360 days. The fraction of
working-days recovered is about 100%. (Middle) The relative importance ratio (ξ) is set as
1, the policy (i.e., contact rate) is deployed to minimize infectious diseases costs (JI) while
keeping the socioeconomic impacts low. Infected individuals are locked down at home for
all intervention period while susceptible and recovered individuals are free to go out. The
Final state of the system in terms of population fraction is: D(tf ) ≈ 0.04%, S(tf ) ≈ 96%
and R(tf ) ≈ 4%, where tf = 360 days. The fraction of working-days recovered is about
100%. (Bottom) The relative importance ratio (ξ) is set as 104, the policy (i.e., contact rate)
is deployed to primarily minimize infectious diseases costs (JI). The Final state of the
system in terms of population fraction is: D(tf ) ≈ 0.03%, S(tf ) ≈ 97% and R(tf ) ≈ 3%,
where tf = 360 days. The fraction of working-days recovered is about 50%. Here, we
set cmin = cB/4 (i.e., up to 75% isolation efficiency) and cmax = 2cB (i.e., up to twice
enhanced interactions).
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Figure 4.12: Population dynamics in a SEIR model with mis-timed control policy for vari-
ous isolation efficiencies: (Top) 25% isolation efficiency; (Middle) 50% isolation efficiency
and (Bottom) 75% isolation efficiency. The relative importance (ξ) is 1 for all the cases.
The optimal control policy is computed for a system one month after an outbreak. Then, we
enforce the optimal control policy 30 days later, i.e., at the end of 60 days after the start of
the outbreak. The contact rate interventions start at 60 days. The total deaths and working
fraction for the delayed system are presented in Table 4.1 for various isolation efficien-
cies. The optimal control policies and their corresponding dynamics without mistiming are
shown in the middle row of Figs. 4.9, 4.10, 4.11.
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Figure 4.13: Health and economic outcomes of the feedback control system with estima-
tion error in isolation efficiency. The shielding level is fixed at 2, the isolation efficiency
varies from 35% to 75% with a 2% increment. (Top) Low uncertainty case. The range of
uncertainty is +/ − 6%, i.e., ε = 6. The blue dashed lines represent the working fraction
and total death for the system outputs with 6% higher isolation efficiency. The red dashed
lines represent the working fraction and total death for the system outputs with 6% lower
isolation efficiency. The black lines represent system outputs without mis-specification in
isolation efficiency. (Bottom) High uncertainty case. The range of uncertainty is +/−10%,
i.e., ε = 10. The blue dashed lines represent the working fraction and total death for the
system outputs with 10% higher isolation efficiency. The red dashed lines are the working
fraction and total death for the system outputs with 10% lower isolation efficiency. The
black lines represent system outputs without mis-specification on isolation efficiency.
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Figure 4.14: Model schematic of system (4.21). We consider a population susceptible
individuals (S), interacting with infected (Isym, Iasym) and recovered (R) individuals. In-
teractions between susceptible and infectious individuals lead to new exposed cases (E).
Exposed individuals undergo a period of latency before disease onset, which are symp-
tomatic (Isym) or asymptomatic (Iasym). A subset of symptomatic individuals require hos-
pitalization (Ih) which we further categorize as acute/subcritical (Ihsub) and critical (Ihcri)
cases, the latter of which can be fatal. Individuals who recover can then mitigate the rate of
new exposure cases by interaction substitution - what we denote as immune shielding - by
modulating the rate of susceptible-infectious interactions by fasym(α,R) and fsym(α,R)

respectively, where fasym(α,R) = S(a)Iasym,tot

Ntot+αRshields
. Here, the tot subscript denotes the total

number of cases across all ages, i.e., Isym,tot =
∑

a Isym(a).
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4.5 Appendix

4.5.1 Control system parameter optimization

Consider the differential equation

ẋ(t) = f(x(t); θ), (4.26)

where t ∈ [t0, tf ], with initial condition x(t0) = x0 and parameter vector θ, and define J

by

J (θ) = ψ(θ) +

∫ tf

t0

L(x(t), θ) dt+ φ(x(tf ), θ). (4.27)

Here x(t) ∈ Rn, θ ∈ Rp, f : Rn × Rp → Rn, L : Rn × Rp → R, φ : Rn × Rp → R,

and ψ : Rp → R. Considering J (θ) as a function of θ, then, we derive expression for the

derivative dJ /dθ in terms of a costate. Denote xθ(t) and xθ+∆θ(t) as the corresponding

state trajectory with model parameter θ and θ+ ∆θ respectively, and ∆xθ(t) = xθ+∆θ(t)−

xθ(t). Note that θ + ∆θ is in a sufficiently small neighborhood of θ. The first order

difference in cost function is

∆J = J (θ + ∆θ)− J (θ)

= ψ(θ + ∆θ)− ψ(θ) +

∫ tf

t0

L(xθ+∆θ(t), θ + ∆θ)− L(xθ(t), θ) dt

+ φ(xθ+∆θ(tf ), θ + ∆θ)− φ(xθ(tf ), θ)

=
dψ

dθ
(θ)∆θ +

∫ tf

t0

dL

dx
(xθ(t), θ)∆xθ(t) +

dL

dθ
(xθ(t), θ)∆θ dt

+
dφ

dx
(xθ(tf ), θ)∆xθ(tf ) +

dφ

dθ
(xθ(tf ), θ)∆θ + higher-order terms.

(4.28)
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The governing dynamics of difference term ∆xθ(t) is

˙∆xθ = ˙xθ+∆θ − ẋθ

= f(xθ+∆θ; θ + ∆θ)− f(xθ; θ)

=
∂f

∂x
(xθ(t); θ)︸ ︷︷ ︸
n×n

∆xθ︸︷︷︸
n×1

+
∂f

∂θ
(xθ(t); θ)︸ ︷︷ ︸
n×p

∆θ︸︷︷︸
p×1

+higher-order terms,

(4.29)

where initial condition is ∆xθ(t0) = 0. Neglecting higher order terms and using the state-

transition matrix Φ(t, τ) ∈ Rn×n, the solution is

∆xθ(t) =

∫ t

t0

Φ(t, τ)
∂f

∂θ
(xθ(τ); θ)∆θ dτ. (4.30)

Then, we plug Eq. 4.30 in Eq. 4.28 to obtain (drop higher order terms),

∆J =
dψ

dθ
(θ)∆θ +

∫ tf

t0

[
dL

dx
(xθ(t))

∫ t

t0

Φ(t, τ)
∂f

∂θ
(xθ(τ); θ)∆θ dτ

]
+

dL

dθ
(xθ(t), θ)∆θ dt

+
dφ

dx
(xθ(tf ))

∫ tf

t0

Φ(t, τ)
∂f

∂θ
(xθ(τ); θ)∆θ dτ +

dφ

dθ
(xθ(tf ), θ)∆θ

(4.31)

Changing the order of integral for the second term of right hand side (RHS), we have

∆J =
dψ

dθ
(θ)∆θ +

∫ tf

t0

[∫ tf

τ

dL

dx
(xθ(t))Φ(t, τ) dt

]
∂f

∂θ
(xθ(τ); θ)∆θ dτ

+

∫ tf

t0

dL

dθ
(xθ(τ), θ)∆θ dτ

+

∫ tf

t0

dφ

dx
(xθ(tf ))Φ(tf , τ)

∂f

∂θ
(xθ(τ); θ)∆θ dτ

+
dφ

dθ
(xθ(tf ), θ)∆θ.

(4.32)
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Hence, the derivative (first-order variation) is

dJ
dθ

=

∫ tf

t0

[∫ tf

τ

dL

dx
(xθ(t))Φ(t, τ) dt

]
∂f

∂θ
(xθ(τ); θ) + ...

...+
dφ

dx
(xθ(tf ))Φ(tf , τ)

∂f

∂θ
(xθ(τ); θ) +

dL

dθ
(xθ(τ), θ) dτ

+
dψ

dθ
(θ) +

dφ

dθ
(xθ(tf ), θ).

(4.33)

Define the costate λ(τ) ∈ Rn as

λT (τ) =

∫ tf

τ

dL

dx
(xθ(t))Φ(t, τ) dt+

dφ

dx
(xθ(tf ))Φ(tf , τ). (4.34)

Note that

λ̇T (τ) = −λT (τ)
∂f

∂x
(xθ(τ); θ)− dL

dx
(xθ(τ)), (4.35)

with terminal condition λT (tf ) = dφ
dx

(xθ(tf )). Then, Eq. 4.33 can be rewritten in terms of

costate

dJ
dθ

=
dψ

dθ
(θ) +

dφ

dθ
(xθ(tf ), θ) +

∫ tf

t0

λT (τ)
∂f

∂θ
(xθ(τ); θ) +

dL

dθ
(xθ(τ), θ) dτ. (4.36)
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4.5.2 Supplementary tables

Parameter Meaning Value
ηI Measure of disease transmission effectiveness 0.1
TE Mean incubation period 4 days
TI Mean infectious period 6 days
µ Case fatality ratio of infected cases 0.01
cB Baseline potentially infectious contact rate 5/day
R0 Basic reproduction number 3
r early exponential growth rate 0.15/day

Table 4.3: Epidemiological characteristics for SEIR model (4.2).

Parameter Meaning Value
W1 Weight of E1 1
W2 Weight matrix of E2 0.1I, I is identify matrix
WI Weight of infection control cost 104

WD Weight of final deaths cost 105

K Shape parameter in exponential function E1 7
w̃ weight of final deaths in heuristic cost 5× 102

Table 4.4: Weight regulators and optimization parameters.

Parameter Meaning Value
βa Asymptomatic transmission 0.3/day
βs Symptomatic transmission 0.6/day

1/γe Mean exposed period 4 days
1/γa Mean asymptomatic period 4 (low) and 6 (high) days
1/γs Mean symptomatic period 4 (low) and 6 (high) days
1/γh Mean hospital period 10 days
R0 Basic reproduction number 1.57 (low) and 2.33 (high)

Table 4.5: Epidemiological characteristics for age-structure model (4.21). Parameters
based on [57, 116]
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Age Frac. Population f Frac. Asymp p Hospital Frac. h ICU Frac. ξ
0-9 0.12 0.95 0.001 0.05

10-19 0.14 0.95 0.003 0.05
20-29 0.14 0.9 0.012 0.05
30-39 0.13 0.8 0.032 0.05
40-49 0.13 0.7 0.049 0.063
50-59 0.13 0.6 0.102 0.122
60-69 0.10 0.4 0.166 0.274
70-79 0.06 0.2 0.243 0.432
80-89 0.04 0.2 0.273 0.709
90-99 0.01 0.2 0.273 0.709

Table 4.6: Age-stratified risk for COVID-19. Of note, the model assumes that 50% of ICU
cases die. Parameters based on [57, 117, 116, 118, 119].
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CHAPTER 5

CONCLUSIONS

In this thesis, we applied mathematical tools of optimization and control to identify and pro-

pose management and decisions for virus-host systems at multiple scales, from microbial

systems to epidemiological systems. Optimization and control applied to virus-host sys-

tems also provide valuable insights into the application of optimization principle to more

general complex biological systems.

5.1 Rational design of phage therapy

Bacteriophage therapy is increasingly being put to the test – both in the lab and in com-

passionate use cases in the clinic. In practice, clinical use of phage often involves the

application of multiple therapeutic phage, either together or sequentially. In Chapters 2

and 3, our results give practical insights on how to rationally and optimally design phage

therapy via integrating computational modeling with control theory.

The theoretical framework presented in Chapter 2 is intended to help advance the ratio-

nal design of monophage and phage cocktail therapy. Phage cocktails have been proposed

as a solution to tackle phage resistance and broaden the antimicrobial spectrum of phage

preparations [3, 120, 121], but it is often unclear how to optimize their composition to ob-

tain maximum effectiveness. Part of the difficulty in determining the appropriate dosage

and composition of phage treatments is due to the self-amplifying nature of phage. Our

work demonstrates how control theory can be applied to optimize the dose and timing of

therapeutic agents that have the ability to proliferate in vivo, find the minimal phage dosage

required to eliminate bacteria, and provide insights, both of a conceptual and practical na-

ture, in the development of phage therapy. In contrast to the observed failure of single-strain

phage therapy in immunodeficient hosts due to phage resistance [69], our optimal control
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analysis shows that the optimized treatment with a two-phage cocktail, one strain of which

is a counter-resistant phage, can restore therapeutic efficacy in immunodeficient hosts. The

framework can also be extended to other therapeutic contexts with replicating agents, such

as the use of probiotic bacteria [122, 123], as well as cancer therapies involving oncolytic

viruses [124, 125] and live immune cells [126, 127].

To mitigate the risk of using cocktails of different phage (could potentially lead to the

emergence of bacteria simultaneously resistance to all injected phage), we proposed an

initial condition optimization framework (i.e., ‘early-hit’, phage cocktails are injected at

start of treatment) to exploit how to efficiently utilize the ‘future’ phage (i.e., identified

in the aforementioned phage therapy experiments) to clear the bacterial infections. The

results in Chapter 3 provide important insights to guide the phage therapy in complex eco-

evolutionary dynamics. The cocktail treatment that contains contingent specialist phage is a

‘double-edged sword’, the treatment should be administrated carefully due to the interplay

between competitive release and multi-resistance emergence. The cocktail treatment with

generalist phage seems to be favorable as much less phage are required to eliminate bacte-

rial cells. During the treatment, total bacterial density might increase to high level which

could be detrimental to the host before the bacterial population is eliminated. Clinical re-

searchers may have to be particularly careful in considering the dynamical consequences

of nonlinear feedback mechanisms arising from the use of generalist phage in a therapeutic

context.

Altogether, Chapters 2 and 3 provide principled control and optimization frameworks

for devising evolutionarily robust phage cocktails and delivery schedules to control the

bacterial populations. We hope the theoretical and computational frameworks developed

in this thesis can facilitate the development and deployment of therapeutic phage cocktails

for future clinical translation.
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5.2 Epidemics, behavior, and policy

It is evident that strategic interventions are needed to mitigate against COVID-19 and future

pandemics. Our approach presented in Chapter 4 is enabled by extending phenomenologi-

cal SEIR like models to a framework that explicitly incorporates disease-dependent contact

rates, i.e., human behavior while aiming to jointly optimize public health and economic

outcomes. First, our framework goes beyond an optimal control framework to develop a

feedback control approach that is robust to mis-timing of applications and, robust to mis-

specification of the modeled vs. realized level of isolation efficiency. Second, the increase

in test capacity has revealed the potential to control outbreaks when used at scale. Third,

we show that testing for virus alone (via a PCR or antigen approach) is sufficient to switch

from en masse to individualized policies; a process that can be augmented by serological

testing but does not require 100% coverage to achieve qualitatively improved outcomes.

We recognize that the epidemiological intervention model (a SEIR framework) and

control frameworks used in Chapter 4 are intentionally simplified. The extensions and

applications of the present model will require consideration of additional epidemic com-

plexities (e.g., asymptomatic transmission), pharmaceutical interventions (e.g., large-scale

vaccination) and additional evaluation of joint public health and economic costs (e.g., aris-

ing from hospitalization burden). The explicit consideration of test status (for both virus

and antibodies) should also be part of future work to scale the concepts here into practice

[102]. On the other hand, the feedback control framework solves the issue of model mis-

specification (fragility w.r.t. parameters of the model) to some degree (better than optimal

control). However, a full treatment, including estimation methods that incorporates gaps

between prediction and measurement as a means to refine state specification is in fact a

target for extensions of this research initiative.

Our work advances the foundation for practical interventions, providing novel and

timely evidence that large-scale testing for infected and recovery status can help reduce
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the risk of transmission for all and enable safer economic re-engagement. We hope our

work will provide a framework to mitigate future epidemics. We hope that the policymak-

ers would also benefit from the focus on non-dichotomous approaches to action-taking that

explicitly balances public health and economic outcomes in a single analytical framework.

5.3 Control of viral systems across scales

Our results showed that open-loop optimal control policies can significantly improve the

decision-making processes in virus-host systems across scales under the assumption of ex-

act model knowledge. This thesis tended to use optimal control as a starting point, but not

the ending point. Moving beyond optimal control approach, here we used certain heuristics

to make strategies and policies more robust to mis-estimates and mis-specifications (w.r.t

system states and dynamics). To further advance and scale the conceptual efforts here

into practice, in a more realistic scenario with uncertain data (e.g., with observation noise)

and model mismatch, integrating control theoretic framework with a system identification

module may lead to a more reliable performance (e.g., model predictive control, MPC).

The system identification algorithm compares model and system output given the same

control input, and leverages differences in output to refine the model specification [128].

For bacteria-phage-immune systems, the model parameters may vary in time, e.g., infec-

tion networks and life-history traits may evolve due to mutations and extinctions. We need

to collect experimental measurements to update the model (via computational Bayesian

frameworks, e.g., particle Markov Chain Monte Carlo [129, 130]) and adjust control ac-

cordingly. While for epidemiological systems, the isolation efficiency and other epidemio-

logical characteristics may vary in time due to the attention, awareness and preparedness of

pandemics [105]. As such, the individualized control policy should be updated frequently

via a predictive control framework (e.g., MPC) using new data (e.g., new cases, fatalities,

released government public health news).

Altogether, we hope the optimization- and control-theoretic frameworks developed in
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this thesis shed light on more general disease control problems, and provide a path forward

for combining systems-model refinement via model-data integration.
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