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Abstract
Individuals connect to sets of places through travel, migration, telecommunications, and social interactions. This set of
multiplex network connections comprises an individual’s “extensibility,” a human geography term that qualifies one’s geo‐
graphic reach as locally‐focused or globally extensible. Here we ask: Are there clear signals of global vs. local extensibility?
If so, what demographic and social life factors correlate with each type of pattern? To answer these questions, we use
data from the Neighborhood Connectivity Survey conducted in Akron, Ohio, State College, Pennsylvania, and Philadelphia,
Pennsylvania (global sample N = 950; inmodel n = 903). Based on the location of a variety of connections (travel, phone call
patterns, locations of family, migration, etc.), we found that individuals fell into one of four different typologies: (a) hyper‐
local, (b) metropolitan, (c) mixed‐many, and (d) regional‐few.We tested whether individuals in each typology had different
levels of local social support and different sociodemographic characteristics. We found that respondents who are white,
married, and have higher educational attainment are significantly associated with more connections to a wider variety of
places (more global connections), while respondents who are Black/African American, single, and with a high school level
educational attainment (or lower) have more local social and spatial ties. Accordingly, the “urban poor” may be limited in
their ability to interact with a variety of places (yielding a wide set of geographic experiences and influences), suggesting
that wide extensibility may be a mark of privileged circumstances and heightened agency.
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1. Introduction

Humans are connected to a set of places through a
variety of mechanisms. These places can be childhood
home cities, other places they have lived for an exten‐
sive period, locations where they have extended family,
regions from where they receive information, or locales
where they are members of institutions. Some individ‐

uals are connected to many places, while others are
connected to few; some have distant connections, and
some have nearby connections. Colloquially, we might
call someone a “jetter” if they connect to a variety of
places (Chen&Wellman, 2009) or perhaps living in “little
boxes” if their ties and their energies are invested in local
places (Wellman, 1999a). These behaviors can be encom‐
passed under the scholarly term “extensibility,” defined
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as the reciprocal of time‐space convergence (Adams,
1995; Janelle, 1973), the geographic spread or reach of
an agent (Adams, 2009), or the geographic reach of a
place or event (Kwan, 2000). It is important to study indi‐
viduals’ extensibility because it can tell us more about
the places (i.e., communities) that may have influenced
an individual and the forces that continue to shape their
cultural, political, andworld views. A challenge, however,
is how to measure and codify extensibility so it can be
used as a descriptor variable for individuals (and, in turn,
for the places where these individuals reside).

Extensibility, in its simplest form, can be captured
by the number of places or people one has ties to, and
the geographic separation (the distance) between the
ego (an individual) and alters (their contacts; see Janelle,
1973). Social science researchers have used travel diaries
or surveys to capture the locations of social ties, commu‐
nications, and travel patterns (Fischer, 1982; Hampton
& Wellman, 2003; Stutz, 1973). These spatial and social
ties are distributed differently and can interact with
socio‐demographic attributes. For example, when dis‐
tance increases, the likelihood of forming weak or strong
ties also reduces (Hipp & Perrin, 2009); kin ties can be
distant in urban communities (Illenberger et al., 2011;
Kowald et al., 2013), yet local in rural communities
(Fischer, 1982); and social friendships tend to be more
spatially compact than core ties (Boessen et al., 2018).

Research has shown that localized, tight‐knit, or small
networks are often associated with individual charac‐
teristics such as low income, gender (male), single sta‐
tus, low educational attainment, and with the African
American community (Small, 2007; van Eijk, 2010).
Furthermore, those with greater educational attainment
and higher income tend to have connections from varied
ethnic backgrounds (Marsden, 1987), perhaps suggest‐
ing a relationship with multiple geographies. While sig‐
nificant correlation exists, socioeconomic indicators can
be weak predictors of personal network size, composi‐
tion, or contact frequency (Kowald et al., 2013; van den
Berg et al., 2009). Extensibility patterns also correlate
with levels of social support, travel behavior, and dis‐
aster resilience (Klinenberg, 2015). Extensive social net‐
works can provide social capital in the form of emo‐
tional or material aid (Lin et al., 2001; Wellman, 1999b)
and motivate travel (Picornell et al., 2015; van den Berg
et al., 2013). Conversely, individuals with less residen‐
tial mobility tend to have locally concentrated contacts
(Viry, 2012). Socially isolated individuals are also less
likely to abandon their homes in disastrous events due
to a lack of support and exposure to others’ decisions
(Sadri et al., 2017). These correlations may underline the
role of greater social factors (e.g., racial discrimination)
in including or excluding individuals in developing local
or far‐reaching ties (Sibley, 1995).

The emergence of big data has provided researchers
with large volumes of individual behavior, that, for pri‐
vacy reasons, is aggregated as place‐to‐place connectiv‐
ity, effectively expanding the concept of extensibility to

define groups of interconnected places (as described in
Neal, 2012). Studies using these types of datasets have
found that places with wealthier, more educated, and
more resourceful populations tend to have more far‐
reaching ties. For instance, Facebook friendship data tells
us that for a resident of Kentucky, the probability of hav‐
ing a Facebook friend outside 500 km is much lower
than for a resident of Los Angeles (Bailey et al., 2018).
Furthermore, people in counties with higher average
income and education have wider, more extensive net‐
works (Bailey et al., 2018). Relatedly, a study of British
telephone calls found that wealthy locales have connec‐
tions to many places, whereas poorer locales have fewer
connections (Eagle et al., 2010).

There are many ways we can connect to a place:
through movement, information transfer, social ties,
belongingness to organizations, etc. Yet, in many
survey‐based studies, social network researchers often
solely focus on social relationships or travel, not both.
Implications are typically drawn for single variables (such
as “places where kin live”) rather than a collective set of
places (e.g., where one has a vacation home, where they
grew up, and where they make calls to), despite ample
evidence that travel and relationships are intertwined
(Chen&Wellman, 2009). Big data sets do not provide the
full story of individual extensibility and its interactions
with other social and behavioral factors because one indi‐
vidual is rarely found and linked between datasets. If we
had such datasets, we could capture a larger swath of an
individual’s place‐based connections and thus, use this
extensibility profile as an independent or dependent vari‐
able withmore confidence than if we had only onemode
(locations of friends or cities visited). Thus, in this study,
we aimed to leverage the advantages of both survey data
and computational methods to characterize individuals’
extensibility. We created a new dataset of ego‐centric
and multi‐modal spatial social networks through a sur‐
vey deployed in multiple US cities and characterized indi‐
viduals through a data‐driven machine learning model.

Our research questions are twofold. First, do indi‐
viduals have common extensibility patterns (that is,
does a typology emerge) that match theories of local
(“little boxes”), glocal, and global reach (Wellman, 2001)?
Secondly, do individuals in each type have similar demo‐
graphic and behavioral attributes? To answer these ques‐
tions, we clustered 903 individuals (a subsample of the
950 respondents that were suited for the model) with
more than 20,000 connections into four groups (i.e., clus‐
ters, profiles, categories, classes, types). These groups
are distinctive in the distances of the locations they con‐
nect with and the types of connections. Clustering was
done using the K‐means clustering algorithm. Then we
used post‐hoc tests of ANOVA and Chi‐square to reveal
whether these groups can be distinguished by a priori
sociodemographic and behavioral factors.

We find four major types that reflect the “jetters”
and “little boxes” tropes, after Chen and Wellman
(2009) and Wellman (1999a), and two groups who have
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characteristics of each. Our results suggest correlations
between connectivity patterns and race, education, rela‐
tionship status, local social support, and the security
of having alternative places to stay. However, individ‐
uals within the same group do not have similar politi‐
cal orientation, age, gender, household size, or employ‐
ment status. Our findings that certain demographic vari‐
ables lead to more connections and more interaction
with a wide variety of places can help create rules of
thumb for questions such as: Which groups are more
likely to travel between cities?Whomay lack ties outside
of communities? Who may have been exposed to differ‐
ent types of cultures and environments throughout their
lives? Also, since individuals’ connectivity data are diffi‐
cult to source consistently, this studymakes a conceptual
advancement in data collection.

2. Data and Methods

2.1. Neighborhood Connectivity Survey

Our study uses data collected from the Neighborhood
Connectivity Survey, a large mail‐based survey con‐
ducted in 2017 and 2018. A mail was sent to participants
selected from cities near three major locales: Akron,
in the Ohio Metropolitan Area (pop. 700,000 as per
the 2018 US census); State College, in the Pennsylvania
Metropolitan Area, home to the large Pennsylvania
State University (pop. 158,000 as per the 2018 US cen‐
sus); and Philadelphia County, Pennsylvania, i.e., “urban
Philadelphia” (pop. 1.6 million as per the 2018 US cen‐
sus). These cities were chosen because they were of
interest to our partners at the John S. and James L.
Knight Foundation.

In 2017 and 2018, we mailed a total of 20,000
addresses and received 1,023 surveys, 950 of which
were sufficiently completed. The survey includes four
modules: connectivity, social life, behaviors, and demo‐
graphic metrics, which, combined, took roughly 30 min‐
utes to finish. Participants could answer the survey on
paper or online and were rewarded with a gift card
to nationwide retailers for their participation (see the
Supplementary File for a copy of the survey).

Using data from the 2018 US census from the
American Community Survey, we compared the demo‐
graphics (relationship status, educational attainment,
age, race/ethnicity) of our sample to those in the same
set of tracts where any respondents lived. We found
that our respondents have lower educational attainment
rates, higher average age, and fewer people in the 18–24
range than the population in the study area. Our sample
also has fewer Black and Latino members of the popula‐
tion than the study area.

2.2. Variables: Connections, Demography, and Behavior

We define connectivity as individuals’ connections to
geographic locations. To protect privacy, locations are

reported at the city level (and some international links
are reported as countries). We asked thirteen relational
questions and grouped them into five categories: migra‐
tion (i.e., where people have lived for an extensive period
of time), social ties (e.g., close friends/families, commu‐
nication, financial/legal supports, etc.), affiliated institu‐
tions (e.g., school, affiliated organizations), news (i.e.,
subscriptions to non‐local news), and travel (i.e., where
people have visited). These responses could be pre‐
sented as a network centered at a respondent’s home
location and connected to geographic locations to which
the individual has connections: 950 responses out of
1,023 total responses reported more than two connec‐
tions and 10 out of 950 responses were missing sociode‐
mographic information. However, we report findings for
only 903 subjects because 47 subjectswere not able to be
effectively classified using our method (see Section 2.3).

Demographic variables include age, race, employ‐
ment status, gender, relationship status, political orien‐
tation, and education level. Of the 903 respondents, 592
identified as female and278 asmale (33 reported “other”
or did not disclose their gender). About 80% (n = 719)
of respondents were White/Caucasian, 12.6% (n = 112)
were Black/African American, and 6.8% (n = 61) were
Hispanic/Latino, Asian, bi‐racial, or other. Most respon‐
dents were employed (n = 523) andmost described their
political orientation as neutral, left, or very left. About
one‐third attained a bachelor’s degree or higher, 48.2%
were married (n = 436), and 50.3% did not have children
in the home (n = 454).

Behavioral factors include a derived local social sup‐
port index, intercity travel frequency, and the percent‐
ages of people who could evacuate to locations of close
friends and families during emergencies.We generated a
local social support index based on questions about peo‐
ple’s social life, such as how often they have lunch with
coworkers and how many friends they feel comfortable
inviting to dinner (as in Stewart et al., 1988). The index
scales from 0 to 1, representing low to high levels of local
social support. We derived an estimate of people’s inter‐
city travel frequency based on how often they used inter‐
citymodes of transport (e.g., flights, intercity buses, etc.).
Respondents also listed locations theywould go to if they
had to evacuate the area for two weeks, two months,
and indefinitely. We then compared those locations to
locations of their close friends and families to calculate
the percentages of people evacuating to locations where
they had close ties.

2.3. Choosing a Clustering Algorithm

Wenext classified individuals into different groups based
on their spatial connections to find common types of
extensibility profiles. In prior work, the direction, magni‐
tude, and distance of flow patterns successfully revealed
typologies of places with different compositions of social
groups and spatial interactions (Andris & Hardisty, 2011;
Chen et al., 2021; Liu et al., 2018; Prestby et al., 2020).
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The goal is to sort each survey respondent into one of
n number of groups that help us find common types of
extensibility patterns (e.g., near, far, mixture, etc.).

We chose unsupervised learning to overcome the
limitations of a priori assumptions of connectivity pat‐
terns. Machine learning techniques have been widely
used to study network‐based data for different purposes,
such as finding a prevalent subgraph pattern (Cook
& Holder, 2006), classifying or identifying different
members (nodes) from a communication/social net‐
work (Alsayat & El‐Sayed, 2016; Nurek & Michalski,
2020), or measuring dynamics in networks (Agarwal &
Bharadwaj, 2015).

There are several advantages of using unsupervised
learning in this network study. First, the algorithms allow
us to input many data attributes into the classifier, and
second, they suggest an optimal number of clusters (i.e.,
typologies/profiles) to fit our data. The unsupervised
learning algorithm iterates assigning clusters to samples
until the sum of the feature attribute distances between
the samples in each cluster is minimized.

We tested and compared the results from three
prominent algorithms: nearest‐neighbor algorithms
(e.g., K‐means), decision tree algorithms (e.g., hierar‐
chical clustering), and model‐based clustering, in the
R statistical computing environment. We ultimately
chose K‐means clustering for our data analysis since the
algorithm resulted in an adequate number of clusters
and had better within‐cluster consistency (i.e., those
within a single group had similar characteristics) com‐
pared to the results of other algorithms, as calculated
by Silhouette scores for each cluster. The Silhouette
score is a standard method to evaluate the internal con‐
sistency of K‐means clusters. We calculated the 95%
confidence intervals ([−0.0176,−0.0172]) of Silhouette
scores by assigning individuals to random clusters 1,000
times. Though the clusters were moderately homoge‐
nous (Silhouette scores ranging from 0.25 to 0.32), they
still provided groupings that were significantly better
than random assignment. We excluded individuals with
negative Silhouette scores in the K‐means clustering ana‐
lysis, as a negative score indicates that theyweremisclas‐
sified or are best classified between clusters. Thus, in this
study, we used 903 responses for connectivity classifica‐
tion and statistical analyses.

2.4. Applying the K‐Means Algorithm

We input eight variables into the K‐means algorithm to
characterize each individual’s network. Five are the dis‐
tance distributions of all places (nodes) that the individ‐
ual connects with, and the other three are the total num‐
ber of links that the individual reports via relationship
questions, the number of unique place connections, and
the number of connection types (i.e., migration, social
ties, affiliated institutions, news, and travel). They repre‐
sent the network structure’s spatial scales, magnitudes,
and diversity, respectively.

To convert the distance distribution into a vector, we
divided the distribution into five distance bins: <5 km,
5–50 km, 50–1,300 km, >1,300 km, and non‐US. The dis‐
tance is measured as Euclidean distance, which closely
approximates the travel distance (Boscoe et al., 2012).
The thresholds were selected based on the observed dis‐
tribution, i.e., visually distinctive troughs (5, 50 km) or
natural breaks (1,300 km), and can be interpreted as con‐
nections in the neighborhood, city, and regional scale
(as in Boessen et al., 2014; see Figure 1). To avoid any
single feature dominating the classification process, we
used the percentage of links that fall in each distance bin
instead of the absolute numbers, and we used min–max
scaling to transform the three other features into ranges
of 0 to 1.

2.5. Statistical Tests With Chi‐Square and ANOVA

To examine whether the resulting clusters have statis‐
tically distinctive demographic and behavioral charac‐
teristics, we used Chi‐Square post‐hoc tests for all cat‐
egorical (demographic) variables and ANOVA post‐hoc
tests (Tukey HSD) for continuous (behavioral) variables.
We calculated the standardized residuals in Chi‐Square
post‐hoc tests for each cluster. The residuals repre‐
sent the extent to which the observed counts of a
demographic category in a cluster deviate from the
expected counts (i.e., total counts divided by the num‐
ber of clusters) normalized by the residual cell variance V
(Agresti, 2018):

Std Residuals = Observed − Expected
√V

We also used Bonferroni correction for the p‐values to
account for the multiple comparisons. We used ANOVA
post‐hoc tests to compare each cluster to each other clus‐
ter for each of the variables.We use the Tukey HSD statis‐
tic to define the statistical significance of themean differ‐
ences, as it accommodates groups with unequal sample
size, which is the case in our survey.

3. Results

3.1. Classification of Extensibility

The K‐means clustering returned four clusters, each with
a distinct feature distribution. We call the first cluster
“hyperlocal” (n = 195) becausemost connections are con‐
centratedwithin 5 kmof the respondent’s home location
(Figure 2). These connections tend to represent social
and institutional ties and contain scant non‐local news
subscriptions or travel outside of the local areas, indi‐
cating a close‐knit local social circle, or “little boxes”
(Figure 3). The 195 people in this category are marked
with an overlap between the distribution of their spatial
ties and local social ties. Consistent with this interpreta‐
tion, the number of unique places they are connected to
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Figure 1. Destinations in different distances range from the respondents’ origin cities.

is also the lowest compared with people from other clus‐
ters (Figure 2). Among all cities, Philadelphia has the high‐
est percentage of people identified as hyperlocal (41%),
which reflects Boessen et al. (2018)’s observation that
people living in denser neighborhoods are more likely to
have a restricted geographic reach, as well as prior find‐
ings that deprived populations have smaller social net‐
works (see Small, 2007).

The second cluster is called “metropolitan” (n = 213),
named after the concentration of links within a
metropolitan area (i.e., within 50 km; see Figure 2).
The distance distribution of people’s migration his‐
tory closely follows their social and institutional ties
(Figure 3) in both the neighborhood (0–5 km) and the
city (5–50 km) range. People in this cluster have many
total connections and connection types, as with those
in the hyperlocal cluster. Cities with the most respon‐
dents under this category are Cuyahoga Falls (51%) and
Barberton (48%), two periphery cities in Akron.

The third cluster, called “mixed‐many” (n = 273), has
the highest average number of total connections and
mixed‐distance ties (Figure 2). Individuals in this clus‐
ter have local connections through institutions, while at
the same time, maintain extensive social networks and
spatial footprints (migration and travel; see Figure 3).
The respondents in this category have the most con‐
nections to international destinations and the most

diverse ties in terms of connection types and the num‐
ber of unique places. Many individuals in this cate‐
gory (47%) are from the university town, State College
(Pennsylvania), and we expect that being affiliated with
a university and academic system may encourage inter‐
national ties and movement patterns.

Finally, “regional‐few” (n = 222) has the fewest num‐
ber of total links, most of which extend across regions
(Figure 2). Respondents tend to lack local ties and
have the least diverse connection types. While their
institutional connections are mostly local, their spa‐
tial, social, information (news), travel histories, and net‐
works are generally found within the (regional) range
between 50–1300 km (Figure 3). The overlap may sug‐
gest that a respondent recently moved to their cur‐
rent city but still maintained social contacts from for‐
mer places. Accordingly, State College has the highest
percentage of regional‐few individuals (43%), which may
indicate that university affiliates have been to a distant
city but are not deeply rooted in their local area.

3.2. Statistical Correlation With Sociodemographic and
Behavioral Characteristics

To associate extensibility patterns with sociodemo‐
graphic characteristics, we report the standardized resid‐
uals from Chi‐square post‐hoc tests (Table 1).
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Figure 2. Boxplots and sampled ego‐centric networks from each of the four resulting clusters. Notes: The boxplot shows
the descriptive statistics of each feature in each cluster; for non‐distance features, the boxplots report the distribution of
absolute counts; for distance‐related features, the boxplots report the distribution of the percentage of links in the dis‐
tance ranges rather than absolute counts. The labeled statistics on the boxplots are the unscaled median values for each
feature; the y values are then scaled between 0 and 1 for relative comparison. The sampled networks on the right provide
examples of scale, wherein the edges are weighted by the number of links connected to each location.

We found that respondents with a high school edu‐
cation level or lower are statistically more likely to have
locally concentrated ties, as featured by the hyperlocal
and metropolitan patterns. Conversely, respondents
with a Bachelor’s degree or higher aremore likely to have
a mixed‐many network pattern. We also observed that
pursuing an associate’s degree is correlated with a spa‐
tial social network that expands beyond one’s local con‐
text. We postulated that education beyond high school
may have a significant impact on people thatmeet others
from distant places or visit places outside of their home‐
town areas.

The metropolitan and mixed‐many clusters were
comprised of many white individuals, while Black or
African American individuals were often found in the
hyperlocal category (with a residual of 6.41). Black or
African American respondents were more likely than

white respondents (32% vs. 11%) to be in the hyper‐
local category. Forty‐six percent (n = 51) of Black or
African American respondents were classified as hyper‐
local, which exceeds the expected 25% if the population
was evenly split across four patterns. In addition, race
and education levels were correlated: 76% (n = 39) of
Black or African American respondents in the hyperlocal
category also had educational attainment at the high
school level or lower. This groupmay also have close‐knit
relationships at the neighborhood level.

Respondents who identified as single seemed to con‐
centrate in the hyperlocal cluster, but this effect may be
explained by education levels. Most single people in the
hyperlocal cluster have an education level of high school
or lower. In contrast, people who are married tend to
have a mixed‐many type of connectivity pattern. Three
percent of married mixed‐many individuals are Black or
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hood/frequency of occurrence.

African American, which is significantly lower than the
overall percentage (12%) in the total respondent popu‐
lation. Black or African American respondents who are
single and have lower levels of educational attainment
are often found in the hyperlocal pattern.

In terms of behavioral characteristics, the ANOVA
post‐hoc tests report statistically‐significant mean dif‐
ferences between two clusters (Figure 4). Respondents
with more long‐distance connections (in the mixed‐
many and regional‐few categories) travel more often
between cities. This correlation is reasonable because
connections provide motivations for (and evidence
of) past travel, perhaps visiting family or attending
alumni events.

People with hyperlocal and metropolitan styles of
extensibility also reported less local social support than
people in the mixed‐many group, despite the former
having a high concentration of local ties. Since the
local social support index only measures the quality of
social life locally, the result indicates that people in the

mixed‐many group are more likely to receive social sup‐
port from their local networks than people in hyperlocal
and metropolitan clusters, even if they share a similar
number of total connections.

Lastly, we tested whether people with different
extensibility patterns have more or few options regard‐
ing alternative places to stay (which is especially use‐
ful in emergencies). Eighty‐four percent of mixed‐many
respondents identified plausible evacuation locations,
while only 45%, 43%, and 27% of people in hyperlocal,
metropolitan, and regional‐few groups, respectively,
described destination cities for evacuations. The hyper‐
local group had the fewest percentage of people (36%)
that said they would evacuate to locations where they
also had friends and families (inferred), perhaps because
their ties are nearby (and likely to be impacted by the
same evacuation events due to co‐location). Still, many
respondents in themixed‐many cluster appeared to be at
an advantage, as they could supply more scenarios with
support during evacuation events.
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Table 1. Standardized residuals from Chi‐square post‐hoc tests.

Sociodemographic Variables Hyperlocal Metropolitan Mixed‐many Regional‐few Count

Age: 18–24 1.02 −1.25 −0.65 0.95 39
Age: 25–34 1.05 −0.70 −0.77 0.50 162
Age: 35–54 −0.65 0.80 −0.93 0.83 267
Age: 54–65 0.45 0.85 −0.85 −0.36 184
Age: 65+ −1.12 −0.41 2.68 −1.39 246

Employment: Unemployed 1.96 0.78 −2.34 −0.12 46
Employment: Retired or Disabled 1.15 1.55 −0.52 −2.06 268
Employment: Student 0.31 −2.00 0.72 0.91 39
Employment: Employed −2.10 −0.97 1.25 1.60 523

Gender: Female 0.08 −0.15 2.55 −2.63 592
Gender: Male −0.08 0.15 −2.54 2.63 278

Education: High school or less 6.41*** 4.04** –6.41*** –3.12* 376
Education: Associate –3.76** 0.21 2.22 0.95 247
Education: Bachelor −1.76 –3.40* 3.74** 0.98 165
Education: Master or above −2.74 −2.65 2.45 2.54 79

Political Orient: Very right −0.88 −0.57 −0.14 1.50 50
Political Orient: Moderate right −1.00 0.53 −0.01 0.39 140
Political Orient: Neutral 1.33 1.57 −1.70 −0.88 222
Political Orient: Moderate left −0.66 −0.78 1.93 −0.75 215
Political Orient: Very left 0.77 −1.12 −0.15 0.57 133

Race: White or Caucasian –7.06*** 3.37** 4.22*** −1.13 719
Race: Black of African American 6.70*** –3.21* –3.79** 0.85 112
Race: Other 2.27 −1.07 −1.63 0.65 61

Relationship: Single 4.37*** −0.01 –4.72*** 0.89 177
Relationship: In a relationship 0.13 1.81 −0.65 −1.21 115
Relationship: Married –3.73** −1.81 3.53** 1.56 436
Relationship: Divorced or separated −0.70 0.63 0.32 −0.30 107
Relationship: Widowed 1.22 0.40 0.90 −2.51 62

Children below 18: Yes 1.49 0.18 1.67 0.24 204
Children below 18: No −1.49 −0.18 −1.67 −0.24 454
Notes: *p < 0.05; **p < 0.01. ***p < 0.001; p‐values are adjusted by Bonferroni correction; the standardized residuals should be com‐
paredwithin the sociodemographic subtypes (e.g., gender, race, education) for a particular cluster; a statistically‐significant standardized
residual means that a sociodemographic attribute is highly concentrated in a cluster beyond the expected mean (see Section 2.5); the
count is the number of people in a sociodemographic subtype.

Age, employment, gender, children status, and polit‐
ical orientation variables are relatively well‐distributed
across the clusters and thus do not exhibit a significant
correlation with one or more patterns.

4. Discussion and Conclusions

This study created a typology of individual connectiv‐
ity patterns (including hyperlocal, metropolitan, mixed‐
many, and regional‐few) through an extensive mail‐
based survey called the Neighborhood Connectivity
Survey. The survey provided a unique dataset that
included a wide range of spatial social connections of

individuals and socio‐demographic information. We con‐
ducted unsupervised clustering of the individual spatial
social networks using the K‐means algorithm to charac‐
terize the individual connectivity with multiple features.
Lastly, we examined the tendencies in sociodemographic
characteristics, social life, and spatial activities of individ‐
uals with each connectivity pattern through ANOVA and
Chi‐square tests.

We found that the four typologies have distinct exten‐
sibility profiles and are only moderately homogenous,
indicating that individuals can deviate from the typolo‐
gies or have mixed profiles of extensibilities. We also
found that race, education, and relationship status
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Figure 4. Mean and standard deviations of local social support, percentage of people that could leave to the locations
of close friends and families, and intercity travel frequency for each extensibility type. Notes: The y axis scales with the
minimum andmaximum value in a behavioral factor; a black line between any two clusters signals a statistically‐significant
relationship and is annotated with the absolute value of the mean difference between those two clusters at either end of
the black line; the statistical significance of the mean difference is tested with ANOVA multiple comparisons (Tukey HSD);
the p‐value is adjusted by Bonferroni correction (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

correlate with individuals’ spatial social network pat‐
terns, while age, gender, family size, employment status,
and political orientation did not show a significant cor‐
relation with the clusters. A notable finding is that resi‐
dents with low education attainment and residents from
Black or African American populations had the smallest
networks (by area). This finding triangulates with past
research showing that Black individuals tend to have
smaller and weaker social networks and maintain fewer
social ties outside of families than white individuals
(Small, 2007). It also reflects prior findings that education
beyond secondary schools is statistically associated with
network heterogeneity and levels of resources leverage‐
able from the social networks (van Eijk, 2010). Yet, our
findings further reveal that these local ties are likely to
be social and institution connections (thus with limited
lived experience, news, and travel outside of the home
city) and that individuals in this group are least likely to
evacuate to locations of closest friends and families dur‐
ing disastrous events. It is also important to note that
despite a high concentration of local ties, they may not
have the highest level of local social support. Accordingly,
more attention and resources should be allocated to this
community in terms of community facilities and emer‐
gency preparedness.

Our results also speak to the privilege of mixed‐
range and diverse network patterns. mixed‐many and
regional‐few individuals tended to beWhite, married, or
college‐educated, and exhibited frequent travel tenden‐
cies between cities, local social support, and resilience
during disaster events. Similarly, Viry (2012) found that
people’s social support (i.e., the number of supporting
ties) is not affected by the geographic distribution of
their networks and the frequency of moving, though
those who move frequently lean toward a sparsely knit
and transitive social network.

These results serve as evidence that systemic depri‐
vation and exclusion in terms of race and especially
access to education tends to result in a geographically‐
limited range of social contacts and experiences. While
our results associate traveling and having experiences
in many places with higher socioeconomic status, we
acknowledge that migration can also be forced, as in the
case of population displacement during crises. However,
a more novel perspective is that these patterns tend to
be consistent regardless of the respondent’s home loca‐
tion, and urban or rural distinctions. Therefore, we sug‐
gest that inferring peoples’ experiences given the tradi‐
tional context of the geographic situation (i.e., home‐
town location) should also consider the influence of
inclusive or exclusive social factors (as in Sibley, 1995).

Finally, this study has a number of limitations. First,
the sample population was limited to residents in a few
cities in neighboring states in the US. Accordingly, the
distance distribution was reasonably consistent across
the sample population. Due to the limited sample size,
we also did not examine the implications of these cities’
characteristics on extensibility patterns, which has been
explored in other studies (Boessen et al., 2014, 2018;
Mazumdar et al., 2018). Given the differences in our sam‐
ple characteristics and the population characteristics of
our study area, asmentioned, our results may be skewed
to represent older people who have less educational
attainment and are white. Next, variances persisted
between individuals within each cluster. Using the mean
values of the features for clustering removed impor‐
tant parts of the data distribution (such as anomalies
or bimodal trends). Lastly, we lacked a detailed explana‐
torymechanism for the clusters. Unsupervised clustering
captures intrinsic tendencies but does not explain why
variables within one group may correlate. Future work
should examine direct correlation with fewer variables
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from our survey data to provide a more in‐depth under‐
standing of how different connections are associated
with demographic or lifestyle factors. We suggest that
this type of extensibility‐drivenwork be replicated across
a wider range of geographic areas to capture communi‐
ties that differ in terms of density, isolation, etc., and
to capture respondents from a wider variety of socio‐
demographic groups.
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