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SUMMARY

In the past, physical systems/processes/phenomena were studied using expensive and

time-consuming physical experiments. However, with the advancement of computational

resources, computer models are now used extensively to minimize the need for such ex-

perimentation. A computer model provides a cheap alternative to explore the behavior of

physical processes in desired scenarios and make inferences. This thesis begins with the

topic of model calibration, a method to estimate unknown model parameters, and adjust the

model to mimic reality. This is followed by a couple of applications of computer models in

the field of material informatics and acoustic metasurface design. Novel machine learning

algorithms are developed that leverage the computer models for efficient exploration of the

physical processes, optimization of parameters of interest, and making inferences.

In Chapter 1, we propose a novel methodology to obtain a robust experimental design

for model calibration. A computer model can be used for predicting an output only after

specifying the values of some unknown physical constants known as calibration param-

eters. The unknown calibration parameters can be estimated from real data by conduct-

ing physical experiments. This chapter presents an approach to optimally design such a

physical experiment. The problem of optimally designing a physical experiment, using a

computer model, is similar to the problem of finding an optimal design for fitting nonlinear

models. However, the problem is more challenging than the existing work on nonlinear

optimal design because of the possibility of model discrepancy, that is, the computer model

may not be an accurate representation of the true underlying model. Therefore, we propose

an optimal design approach that is robust to potential model discrepancies. We show that

our designs are better than the commonly used physical experimental designs that do not

make use of the information contained in the computer model and other nonlinear optimal

designs that ignore potential model discrepancies. We illustrate our approach using a toy

example and a real example from the Procter & Gamble company.
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In Chapter 2, we present a novel machine learning algorithm for discovering new mate-

rials crystal structure. A material is (thermodynamically) stable and exists naturally when

its building blocks, i.e., the constituent atoms, are arranged so that the potential energy is

(globally) minimized. We aim to find such minimum energy configurations, to discover

a new crystal structure. We leverage density functional theory (DFT) to compute the po-

tential energy for a given configuration of the atoms. The problem is challenging because

there are infinitely large number of configurations, the DFT code for computing the en-

ergy is expensive, and the potential energy surface is highly non-linear and multi-modal.

We propose a novel expansion-exploration-exploitation framework to find the global min-

imum. The space spanned by a few known crystal structure configurations is expanded to

obtain a candidate set of configurations. A key feature of this step is that it tends to generate

a space-filling design without the knowledge of the boundaries of the domain space. Once

a candidate set of configurations is obtained, it is explored and exploited simultaneously,

using Bayesian optimization, to find the global minimum of potential energy. Gaussian

Process modeling along with the Expected Improvement algorithm is used to iteratively

update the model and guide the search towards the global minimum. We show the effec-

tiveness of our methodology on toy examples and a real problem of predicting the crystal

structure configuration of Al8.

In Chapter 3, we address the problem of designing acoustic metasurfaces for inde-

pendent amplitude and phase control of acoustic waves. Acoustic metasurfaces are mate-

rial structures of subwavelength thickness that are used for modulating propagating sound

waves. Several applications of acoustic metasurfaces, such as non-invasive biomedical

treatments, require independent phase and amplitude modulation of the reflected and trans-

mitted waves. These reflection and transmission outputs (or acoustic outputs) are governed

by the geometry of the acoustic metasurface. We model the geometry of the metasurface

as a unit cell with mn equal-sized square shaped elements, or a grid-size of m × n. Each

element can either be empty or filled with solid material leading to a total of 2mn unique

xiv



geometries! This makes it challenging to identify the relevant geometries for obtaining the

desired range of acoustic outputs, which are simulated using the COMSOL Multiphysics

software. We leverage the expansion algorithm developed in Chapter 2 to start with a few

geometries and iteratively add geometries to the set such that they span the entire range of

acoustic outputs using only a small fraction of the total number of possible geometries. The

algorithm is modified to identify and eliminate redundancy in the chosen geometries due to

various kinds of symmetry and other factors. With our modified expansion algorithm, we

were able to identify the smallest grid-size necessary for spanning the entire space of the

acoustic outputs using only around 24, 000 or 4.2× 10−9% of the total possible number of

distinct simulations.
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CHAPTER 1

ROBUST EXPERIMENTAL DESIGNS FOR MODEL CALIBRATION

1.1 Introduction

A physical system can be explored or optimized by conducting experiments, but they can

be expensive and time consuming. The whole field of experimental design in statistics is

focused on how to perform these experiments in an efficient way so that maximum informa-

tion about the system can be obtained with minimum cost [1]. Another way to reduce the

experimental cost is to develop mathematical models that can mimic the physical system

and explore the system through simulations [2]. These mathematical models can be very

complex, such as a system of partial differential equations, which needs to be solved nu-

merically. Computer implementation of the mathematical model using a numerical solver

is sometimes called a computer model. Exploration using computer models is useful and

can provide conclusive results only if they are good in representing the physical system.

However, the mathematical model and thus, the computer model is only an approximation

to the complex phenomenon that we are trying to explore in the physical system. Therefore,

the computer simulations should only be used to assist the physical experimentation and

physical experiments should always be performed to validate the computer models. This

article examines how to perform a physical experiment when a computer model is available

to the investigator.

A computer model can contain unknown parameters. Choosing them based on the

physical experimental data can make the computer models closer to reality. This approach

is known as model calibration and the unknown parameters are often referred to as calibra-

tion parameters [3]. Therefore, one possible approach to physical experiments is to design

them in such a way that the calibration parameters can be estimated efficiently from data.
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Since the computer models are often nonlinear in the calibration parameters, one can use

results from the nonlinear optimal design theory to design such experiments [4]. One of

the major pitfalls of this approach is that the optimal design is overly dependent on the

computer model and is not robust against possible model violations. However, detecting

such possible violations is at the core of the model calibration problem and is our main

aim. Thus, we need to design experiments that account for the computer model but at the

same time are robust to the misspecifications of the model.

The importance of designing experiments robust to the model assumptions has long

been recognized in the literature since [5]. A good account of the follow-up research on

their seminal paper and other related developments can be found in the review by [6].

Unfortunately, most of these approaches rely on an alternative class of possible models,

the specification of which is non-trivial. Therefore, the research in this area has not led

to practically implementable solutions other than in very simple settings such as adding a

center point when fitting a plane, etc. Moreover, the literature seems to be scarce on model-

robust designs for nonlinear models. Nonlinear models add complexity to the problem

because the optimal designs become functions of the unknown parameters. Robust designs

can be developed by expressing the uncertainties in the unknown parameters through a prior

distribution and using Bayesian optimal designs [7] or robust-Bayesian optimal designs

[8]. Introducing model uncertainty into this framework makes the problem even harder to

solve. Furthermore, most of the existing work focuses on simple nonlinear models such as

a logistic regression model and not on the complex computer models that we are interested

in. Computationally expensive computer models add another layer of complexity because

they are known only in the places where the computer simulations have been performed.

Therefore, we also need to entertain uncertainties arising due to incomplete knowledge

about the true computer model output.

We are not the first to look into the problem of designing physical experiments when

computer models are available. Based on the Bayesian model calibration framework of

2



[9], optimal designs for both computer and physical experiments using integrated mean

squared prediction error have been proposed by [10]. However, it has been recognized that

the Kennedy and O’Hagan model has severe identifiability issues [11, 12] and so, optimal

designs based on their model can inherit similar problems. [13] have proposed designing

physical experiments to mitigate the identifiability issues in the Kennedy and O’Hagan

model, but their procedure is computationally intensive. In this article, we will propose a

much simpler approach to deal with the identifiability issue. [14] and [15] have proposed

follow-up experimental designs for model calibration, but not an initial design that we plan

to develop here.

This article is organized as follows. In Section 1.2, we discuss the methodology of

obtaining a robust experimental design for model calibration. In Section 1.3, we perform

simulations on a toy example to illustrate the robustness of our proposed design to model

discrepancy. In Section 1.4, we apply our design methodology to a problem relating to the

diaper line from the Procter & Gamble (P&G) company. We conclude the chapter with

some remarks in Section 1.5.

1.2 Robust Experimental Designs

We will first explain how to develop experimental designs that are robust to model-form

uncertainties. Then we will explain how to make them robust to parameter uncertainties.

Finally, we will explain how to incorporate computer model approximation uncertainties

into this framework. These are now discussed in the following three subsections.

1.2.1 Model-form uncertainties

Let y be the output of the physical system and x = {x1, ..., xp} the set of inputs. Following

[9], we model the output as

y = f(x;η) + δ(x) + ε, (1.1)

3



where f(·; ·) is the computer model, η = {η1, ..., ηq} the set of unknown calibration param-

eters, δ(x) the discrepancy function, and ε i.i.d∼ N (0, σ2) the random error. For the moment,

we will assume that the computer model is an easy-to-evaluate function or that the complex

computer model has been replaced by an easy-to-evaluate surrogate model whose uncer-

tainties can be ignored. Later we will see how such uncertainties can also be included in

our approach.

As mentioned earlier, the model in Equation 1.1 has identifiability issues in the sense

that for any value of η we can find a δ(x) to get the same prediction [11, 12] and thus,

η and δ(x) cannot be estimated based on the data on y alone unless some additional as-

sumptions are imposed. Therefore, we will not directly use this model for developing the

robust designs. We will put some belief in the computer model and hope that, if properly

calibrated, we will not need the discrepancy term. Thus, we will first find an optimal design

for estimating η ignoring the model discrepancy term. We will then separately find an opti-

mal design for estimating δ(x) and then integrate them together. This approach follows the

sequential model building strategy proposed by [16], where η is estimated by first ignoring

the discrepancy. The discrepancy term is added only if it is necessary and if added, it is

estimated by fixing η at its initial estimate. This mitigates the identifiability issues that are

present in a joint estimation procedure.

Thus, first consider the case with no discrepancy, that is, δ(x) = 0. Our aim is to

choose a design to efficiently estimate η from the model

y = f(x;η) + ε. (1.2)

Suppose we have a total budget of N runs. We will use n runs to efficiently estimate η

and the remaining N − n runs to estimate the discrepancy function. Choice of n depends

on how much confidence we have in the computer model form. If we are fully confident

that there is no discrepancy, then n = N . On the other hand, if we have no confidence in

4



the computer model, then n = 0, that is, we will not use the computer model to design

the physical experiment. Let γ ∈ [0, 1] be a parameter that measures the experimenter’s

confidence in the computer model form. Then, n = γN , the nearest integer to γN . In

the absence of any knowledge about the confidence in the computer model, we recommend

choosing γ = 2q/N . This recommendation is based on the fact that at least q runs are

needed to estimate q parameters in the nonlinear model [e.g. 17]. Thus using twice the

minimum number of runs, we are likely to have two replicates for each run, which can be

used for estimating the unknown error variance, σ2.

The approximate optimal design for estimating η can be viewed as a discrete proba-

bility distribution in the experimental region X at points {x1, . . . ,xn} with probabilities

{w1, . . . , wn} [18]. Denote the approximate optimal design (or the distribution) by ξ, which

contains the design points as well as their probabilities. The Fisher Information matrix of

η is given by:

M(ξ;η) =
n∑
i=1

wi∇f(xi;η)∇f(xi;η)T , (1.3)

where ∇f(xi;η)T =
(
∂f(x1;η)

∂η1
, . . . ,

∂f(x1;η)

∂ηq

)
. Now an approximate locally D-optimal

design can be obtained by maximizing the determinant of M(η) for a given value of η.

Suppose η0 is a guess value of η. Then, we can obtain the approximate design as

ξ∗ = arg max
ξ

|M(ξ;η0)|. (1.4)

In general, this is a very difficult optimization problem. Here we will use the metaheuristic

algorithm proposed in [17], which is implemented in the R package ICAOD [19].

The approximate design can be converted to an exact design by rounding nw1, . . . , nwn

to the nearest integers. However, the total number of design points after rounding need not

be equal to n unless special care is taken [20]. Instead of the rounding approach, here we

propose a resampling-based approach, that is, sample with replacement from {x1, . . . ,xn}

with probabilities {w1, . . . , wn}. However, the commonly used random resampling meth-

5



ods are not suitable for generating an optimal design because the results can vary due to

the randomness involved in sampling. [21] recently proposed a deterministic resampling

method known as Importance Support Points (ISP), which finds an optimal set of samples

with equal weights to approximate a discrete probability distribution. The optimal samples

are obtained as the solution to the following optimization problem:

{x̃i}ni=1 ∈ arg min
u1,...,un∈{xj}nj=1

2

n

n∑
i=1

n∑
j=1

wj‖ui − xj‖2 −
1

n2

n∑
i=1

n∑
j=1

‖ui − uj‖2 . (1.5)

Thus, we obtain the final design Dη = {x̃1, . . . , x̃n} for efficiently estimating η by doing

an ISP resample on ξ∗ in which some of the points may be replicated.

Now that we have an optimal design to estimate the calibration parameters, we can

focus our attention on the design to estimate the potential model discrepancy, δ(x). Let

us denote the design by Dδ, which contains N − n runs. So the final design will be D =

Dη
⋃
Dδ.

[9] proposed to nonparametrically estimate δ(x) using a Gaussian process. However, a

Gaussian process model contains a set of unknown correlation parameters. These correla-

tion parameters are nonlinear, which brings up the same issue as the calibration parameters.

As before, we can guess the values of the correlation parameters and try to develop locally

optimal designs. However, there is something peculiar about these correlation parameters.

The optimal design criteria such as the integrated mean squared error [10] are dominated

by settings that produce low values of correlations [22]. Thus, we only need to focus on a

setting of the correlation parameters that minimizes the correlation. [23] have shown that

in such limiting cases the D-optimal designs will reduce to maximin designs and G-optimal

designs to minimax designs. In fact, these space-filling designs can be independently mo-

tivated using geometric considerations and are known to be robust to modeling choices.

Since our objective is to develop model-robust designs, they seem to be a perfect fit for

our problem. Besides maximin and minimax, there are many choices for space-filling de-
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signs [24]. In this article, we will illustrate the methodology using maximum projection

(MaxPro) designs [25], but we will keep this choice flexible for the experimenter. It is

important to note that these space-filling designs should be generated to optimally augment

the existing points in Dη and should not be generated independent of Dη.

The proposed method for generating the design is summarized in Algorithm 1.

Algorithm 1 : Generating the physical experimental design, accounting for model-form
uncertainties.

1: Input f(x,η), N, γ,η0

2: n← γN
3: Find ξ∗, as in (Equation 1.4) {R package: ICAOD }
4: Find Dη, as in (Equation 1.5), using ISP resampling on ξ∗

5: Find Dδ, a space-filling design with N − n runs, to augment Dη {R package: MaxPro
}

6: Output Dη
⋃
Dδ

As a simple example, suppose the computer model is a linear model given by f(x;η) =

η0 + η1x1 + η2x2 + η3x1x2. D-optimal design for estimating this model is a 22 full factorial

design. Suppose we have a total budget for N = 13 runs, and there is no knowledge of the

confidence in the computer model. If we choose γ = 2q/N = 8/N , then n = γN = 8 and

we will have two replicates for each of the four points in the 22 full factorial design. The

remaining N − n = 5 runs can be chosen to augment the eight runs using a space-filling

criterion. For example, if we use the MaxPro criterion, then the augmented design can be

obtained sequentially by adding one point at a time using the MaxProAugment function

in the R package MaxPro [26].

Figure 1.1 (right) shows the 13-run design obtained using the Maxpro design for aug-

mentation along with maximin (left) and minimax (center) augmentation strategies. We

can see that all these designs will provide protection against possible departures from the

linear model assumption. At first glance, the maximin design seems most suitable for a

physical experiment as it has fewer factor levels. However, in a high-dimensional space,

this design may not give a good validation set as the points will occupy mostly the cor-

ners and boundaries of the hypercube. On the other hand, a MaxPro design simultaneously
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ensures space-fillingness in the full dimensional space as well as in all lower dimensional

subspaces. Moreover, it can easily be extended to incorporate qualitative factors [27]. How-

ever, a disadvantage of the MaxPro design is that it can produce too many levels for the

factors, which can be inconvenient for a physical experiment. One quick remedy to this

problem is to treat the factors as discrete-numeric with a specified number of levels in the

MaxProAugment function [26].

Figure 1.1: Three model-robust designs in 13 runs for estimating a linear model in two
variables. The replicates of the optimal design points are shown as circles and crosses, and
the space-filling points as triangles.

Now consider a nonlinear model:

f(x; η) = exp{−η(x1 − 1.5x2)
2}+ exp{−2η(x1 + x2 − 0.7)2}, (1.6)

where x1, x2 ∈ [0, 1]2. Suppose that we have a budget to perform eight physical exper-

iments. Assume η0 = 0.5, and that there is no information about the confidence in the

computer model. Then, we choose γ = 2q/N = 2/N . This leads to n = γN = 2. Then,

the exact locally D-optimal optimal design is a one-point design at {(0.50, 1.00)} with two

replicates. The remaining six runs are obtained by augmenting these two points with the

MaxPro design. The final model-robust optimal design is shown in Figure 1.2 (left). For

comparison, we have also shown a 22 design with two replicates in Figure 1.2 (right), which

would be a reasonable choice to make when we don’t have a computer model. Furthermore,
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we also show the D-optimal design with eight replicates in Figure 1.2 (center).We call this

design as the “pure computer model” design.

Figure 1.2: Comparison of our proposed design with the “pure computer model” design,
and full factorial design, over the computer model gradient contour. The replicates of the
D-optimal design points are shown as circles and crosses and the space-filling points as
triangles.

If there is no model discrepancy, the “pure computer model” design is likely to provide

the most accurate estimate of η. On the other hand, the full factorial design is likely to give

the least accurate estimate of η. In the presence of model discrepancy, the “pure computer

model” design is likely to perform poorly as it does not contain any space-filling points

for estimating model discrepancy. However, in both cases - presence or absence of model

discrepancy - our proposed design, though it may not be the best, is likely to provide a

relatively accurate calibrated model. This is because it contains both - the D-optimal design

points optimal for estimating η and the space-filling design points optimal for estimating

the model discrepancy.

1.2.2 Parameter uncertainties

A weakness of the locally optimal designs is that the solution depends on the guessed value

of η. If the guessed value is not close to the (unknown) true value, the results may not be

accurate especially when the model is highly nonlinear. As discussed in the introduction, a

natural way to address these uncertainties is to use a Bayesian approach by placing a prior
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on η. So let p(η) be the prior distribution. The η0 that we used in the previous section

could be viewed as the mean or mode of this prior distribution.

Following [8], now we will generate multiple values for η:

ηi ∼ p(η), i = 1, . . . ,m.

We can find approximate locally D-optimal designs for each of these values as described

in the previous section to obtain ξ1, . . . , ξm. Thus, we have a total of nm points with nm

probabilities. After re-scaling all the weights to sum to one, we can again use the ISP

resampling method to obtain the desired n-point optimal design Dη.

As we need to find ξi for i = 1, . . . ,m, the procedure is much more computationally

expensive than before. One idea to reduce the computational burden is to sample ηi using

support points [28] instead of random values from p(η), because support points will be

able to represent the prior distribution with fewer points than a Monte Carlo sample. Thus

we can use a much smaller m. The procedure is summarized in Algorithm 2.

Algorithm 2 : Generating the physical experimental design, accounting for model-form
and parameter uncertainties.

1: Input f(x,η), N, γ, p(η)
2: n← γN
3: Find m realizations of η from p(η) {R package: support}
4: for i ∈ {1, · · · ,m} do
5: η0 ← ηi
6: Find ξ∗i , as in (Equation 1.4) {R package: ICAOD }
7: wi ← wi/m
8: end for
9: Find Dη, as in (Equation 1.5), using ISP resampling on ξ∗

10: Find Dδ, a space-filling design with N − n runs, to augment Dη {R package: MaxPro
}

11: Output Dη
⋃
Dδ

Consider again the toy example with one calibration parameter used in the previous sec-

tion. We assume that the calibration parameter has a prior distribution η ∼ N (0.5, 0.22) .

We obtain m = 20 support points to represent this distribution using the R package
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Figure 1.3: (left): Approximate locally D-optimal design points incorporating parameter
uncertainties shown over the gradient contour of the computer model for η = 0.5; (right):
The desired N = 8-run design over the computer model contour for η = 0.5, the crosses
correspond to the exact D-optimal design for estimating η, and the triangles correspond to
the space-filling design.

support [29]. For each of the m = 20 realizations, we obtain two-point approximate

locally D-optimal design ξ∗i , i ∈ {1, · · · ,m}. The points corresponding to the m = 20

approximate optimal designs obtained are shown in Figure 1.3 (left).

Now we use ISP resampling to obtain n = 2 runs as shown by crosses in Figure 1.3

(right). This two-run design is augmented with the MaxPro design, shown by triangles in

Figure 1.3 (right), to obtain the desired 8-run design. We observe that the design obtained

is somewhat similar to the one obtained without incorporating parameter uncertainties in

Figure 1.2 (left). However, unlike the design in Figure 1.2 (left), the two points of the D-

optimal design for estimating η are a bit farther apart (instead of overlapping) to account

for parameter uncertainty.

Now consider the case where the prior is misspecified. The left panel of Figure 1.4

shows the set of locally D-optimal designs (circles) and Dη selected using ISP resampling

when the prior is U [0, 1]. The results are quite similar to the design obtained earlier using

the prior N (0.5, 0.22) except that the two selected design points are slightly more spaced-
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Figure 1.4: Approximate locally D-optimal design points (circles), and Dη (crosses) for
(left): η ∼ U [0, 1], over the computer model gradient contour for η = 0.5; (right): η ∼
U [0, 10], over the computer model gradient contour for η = 5.

out. Now consider the prior η ∼ U [0, 10], where the center of the distribution is far away

from the previous center. The results are shown in the right panel of Figure 1.4. We can

see that the Dη in Figure 1.3 is not useful anymore for efficiently estimating η. However,

because of the space-filling design points, the overall design is still good and would perform

much better than a pure computer model design.

1.2.3 Surrogate model uncertainties

So far we had assumed that f(x;η) is an easy-to-evaluate model. In reality the computer

model can be very expensive to evaluate. In such cases, we will first perform a computer

experiment to obtain an approximation of f(x;η). The approximate model is called a

surrogate model or an emulator. Although there exist many different methods to obtain

the surrogate model, Gaussian process modeling (or kriging) seems to be the most popular

choice because of its ability to provide uncertainty estimates [30].

Let S denote the computer experimental design and y be the output values. Note that

unlike in the physical experiment, the calibration parameters can be varied in the computer
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experiment. Thus, S has p + q columns. For simplifying the notations, let u = (x,η)

be the inputs in the computer experiment. Assume that f(·) is a realization of a Gaussian

process:

f(u)|η ∼ GP (µ,C(u; ·)),

where µ is the mean and C(u;v) = Cov{f(u), f(v)} is the covariance function. See [2]

for details on Gaussian process modeling. Given the data, the posterior distribution of f(u)

is also a Gaussian process given by

f(u)|η,y ∼ GP (f̂(u), C(u; ·)− C(u;S)C−1(S;S)C(S; ·)), (1.7)

where f̂(u) = µ + C(u;S)C−1(S;S)(y − µ1) is the surrogate model, C(u;S) is the

covariance vector with ith element C(u;Si), C(S;S) is the covariance matrix, and 1 is a

vector of 1’s.

Incorporating the surrogate model uncertainties into our design construction is concep-

tually very simple. We generate m samples from p(η) and for each sample, we generate a

realization of the function from (Equation 2.8):

ηi ∼ p(η),

fi(u)|ηi,y ∼ p(f(u)|ηi,y)

for i = 1, . . . ,m. Now we can proceed to find the optimal design in the same way as

in the previous section except for one difference. The gradients needed for the sensitivity

matrix need to be calculated numerically for each new realization of f(·). This makes the

procedure computationally very expensive. The procedure is summarized in Algorithm 3.

It is a good idea to make the physical experimental design a subset of the computer

experiment design, that is, a nested design [31]. This avoids the confounding between the

surrogate model approximation error and the discrepancy. To get a nested design, we have
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Algorithm 3 : Generating the physical experimental design, accounting for model-form,
parameter, and surrogate-model uncertainties.

1: Input p(f(x,η)|η,y), N, γ, p(η)
2: n← γN
3: Find m realizations of η from p(η) {R package: support}
4: for i ∈ {1, · · · ,m} do
5: η0 ← ηi
6: Find a realization of f(·) from p(f(x,η)|η = η0,y)
7: Find ξ∗i , as in (Equation 1.4) {R package: ICAOD }
8: wi ← wi/m
9: end for

10: Find Dη, as in (Equation 1.5), using ISP resampling on ξ∗

11: Find Dδ, a space-filling design with N − n runs, to augment Dη {R package: MaxPro
}

12: Output Dη
⋃
Dδ

two options: (i) go back and run the computer simulations at the optimal physical exper-

imental design points or (ii) choose the nearest points in S as the physical experimental

design. If we use option (ii), there will be some loss of efficiency. Therefore, option (i)

is preferred if the optimal design points are far away from S and it is feasible to run the

computer simulation again. It is possible that the new simulations can change the surrogate

model and hence the optimal design. So it seems some iterations will be needed to final-

ize the physical experimental design. However, we do not expect this to happen in most

realistic cases unless there is too much uncertainty in the surrogate model approximation.

Consider again the toy example. For illustrative purposes, we assume that the computer

model is too expensive to compute. We consider a 30-run MaxPro design in x1, x2, and η

to develop a surrogate Gaussian process model. Instead of the computer model f(x;η), we

use random realizations from the surrogate model fi(u)|ηi,y, for i = 1, . . . ,m, to obtain

the m = 20 approximate locally D-optimal designs ( Figure 1.5 (left)). It can be seen that

due to uncertainty in the surrogate model prediction, the design points are more dispersed

than in the case of no surrogate model uncertainty ( Figure 1.3 (left)).

As in the previous section, we use ISP resampling to obtain n = 2 runs as shown by

crosses in Figure 1.5 (right). This two-run design is augmented with the Maxpro design,
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Figure 1.5: (left): Approximate locally D-optimal design points incorporating parameter
and surrogate model uncertainties shown over the gradient contour of the computer model
for η = 0.5; (right): The desired N = 8-run design over the computer model contour for
η = 0.5, the crosses correspond to the D-optimal design for estimating η, and the triangles
correspond to the space-filling design.

shown by triangles in Figure 1.5 (right), to obtain the desired 8-run design. It can be

seen that with the addition of surrogate model uncertainty, the two-points of the D-optimal

design for estimating η are farther away as compared to the case in the previous section

(Figure 1.3 (right)).

1.3 Simulations

In this section we will investigate the robustness of the proposed design to potential model

discrepancies. Consider the toy example in (Equation 1.6) again. Let the output be

y = f(x; η) + δ(x) + ε, (1.8)

where ε i.i.d∼ N (0, 0.052). Assume that δ(x) ∼ GP (0, τ 2R(·)), where R(·) is a stationary

correlation function and τ 2 the variance. We will use the Gaussian correlation function

given by R(h) = exp(−θ‖h‖2) with θ = 10. Now we will generate the outputs by
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increasing the magnitude of the model discrepancy (i.e., by increasing τ 2) and study the

performance of the three designs shown in Figure Figure 1.2.

Given the design and the output, estimation of the model in Equation 1.8 is done in

two steps. First, ignoring δ(x), the posterior distribution of η is found using Markov chain

Monte Carlo (MCMC) simulations. Then, using the posterior samples ηi, i = 1, . . . , N ,

the physical experiment output at a point x is estimated as:

f̂(x) =
1

N

N∑
i=1

f(x; ηi). (1.9)

The discrepancy at each of the design points can be obtained as δi = y(xi) − f̂(xi) for

i = 1, . . . , n. Let δ̂(x) be the posterior mean of δ(x) given D and δ = (δ1, . . . , δn)′. Then

the bias-corrected calibrated model at a point x is given by:

ŷ(x) = f̂(x) + δ̂(x). (1.10)

The prediction accuracy of the model is evaluated on a 500-point Sobol test dataset gener-

ated using the R package randtoolbox [32].

Figure 1.6 plots the root mean squared prediction error (RMSPE) with τ 2 = 0.0, 0.01, . . . , 0.5.

We observe that, when there is no discrepancy, the “pure computer model” design is the

best, as expected, followed closely by our proposed design. However, as the model discrep-

ancy increases, our proposed design performs better than the other two designs, and this

performance gap increases with increasing discrepancy. This is because both the full fac-

torial and the “pure computer model” designs lack the space-filling points that are critical

in estimating the non linear discrepancy.
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Figure 1.6: Comparing performance of our proposed design with increasing non-linear
model discrepancy.

1.4 A Real Example

We apply our design strategy to a real example from P&G. The model is based on first

principles, and involves a transformation of the P&G diaper line, where absorbent gelling

material is being applied to a substrate. Figure 1.7 shows a schematic of the physical

process. The example has been slightly modified for the benefit of simplicity and to prevent

disclosure of any potential sensitive information. The anonymized physics-based model is:

f(x;η) = AGM ×B × 2000, (1.11)
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Figure 1.7: Schematic of the physical process of the real example from P&G.

where:

AGM =

{
(103x2)

2η3x5
2η3−1

η21(c4)2η3−1
+ 106k2x1x2

}{
(ex4 − c1)c2 + c3

}
x5,

B = 1−
{
k1 −

( 10−3A

(ex4 − c1)c2 + c3

) 1

x5
− x3

}2
1

η2
,

where the controllable process variables are x = {x1, ..., x5} and the unknown calibration

parameters η = {η1, ..., η3}. The details of the variables are omitted for confidentiality

reasons. The budget to calibrate the physics-based model is assumed to be N = 16 points.

P&G has provided us with 646 physical experimental data points gathered for multi-

ple purposes including calibration of the physics-based model. The unknown values of

the three calibration parameters were estimated from this dataset as η0 = (1.5, 200, 0.2)′.

Figure 1.8 (left) plots the physical experiment data against the predictions from the cali-

brated model, which shows a good agreement between the two. Therefore, we will take

this calibrated model as the “true” model and use it to evaluate the proposed design with

the existing designs.
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Suppose we have a budget for N = 16 runs. No information about the confidence in

the computer model is assumed. Therefore, we choose γ = 2q/N = 6/N . This leads to

n = γN = 6, which can be used for efficiently estimating the calibration parameters. The

remaining 10 runs can be used for estimating the model discrepancy. Assume the following

prior distributions for the calibration parameters: η1 ∼ U [0.1, 10], η2 ∼ U [0.1, 1000], and

η3 ∼ U [0, 0.4]. Since the computer model is cheap-to-evaluate, there is no need to incor-

porate any surrogate model uncertainties. So, we use Algorithm 2 to generate the proposed

design.

We will compare the proposed design with (a) “pure computer model” design and (b)

Maximin augmented nested Latin hypercube design (MmANLHD) proposed by [10]. Since

the computer model is cheap-to-evaluate, we can view the LHD used for approximating the

computer model to have an infinite number of runs and therefore, the MmANLHD reduces

to a maximin design. It is easy to see that the maximin design in 16 runs is a 25−1 maximum

resolution fractional factorial design. For generating the “pure computer model” design, we

use Algorithm 2 with γ = 1.

For each of the experimental designs, the output is simulated as:

yi = f(xi;η0) + εi, (1.12)

where εi
i.i.d∼ N (0, σ2) with σ2 = 3. We follow the same model fitting method described in

Section 3 except that we do not include the model discrepancy.

The absolute prediction error is computed on each of the 646 points in the real dataset

using the calibrated model for each of the designs. Figure 1.8 (right) compares the distri-

bution of absolute prediction errors of the competing “pure computer model” design and

maximin design, with our proposed design. We observe that the “pure computer model”

design corresponds to the least prediction error. This is because there is no discrepancy in

the computer model as seen in Figure 1.8 (left). Since all the 16 runs of the “pure computer
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Figure 1.8: (left): Physical experiment data vs the true calibrated physics-based model
from P&G; (right): Distribution of the absolute prediction error ratio in case of an unbiased
physics-based model.

model” design are based on D-optimal design points, it provides the most accurate estimate

of the calibration parameters, and thereby the most accurate calibration. As our proposed

design has six runs of the D-optimal design points, it does better than the maximin design.

We are particularly interested to see the performance of our proposed design in the

presence of model discrepancy. As the computer model f(x;η) is unbiased, we will add

a randomly generated realization of a Gaussian Process discrepancy to the true model to

simulate the physical experiment output. Instead of simulating the physical experiment

output using (Equation 1.12), it is simulated as:

y = f(xi;η0) + δ(xi) + εi, (1.13)

where εi
i.i.d∼ N (0, 3), and δ(x) is a random realization from GP (0, τ 2R(·)) with τ 2 = 6,

and R(h) = exp(−‖h‖2). We fit the model in (Equation 1.1) on the simulated output to

estimate η and the model discrepancy δ(x). The same method of estimation, as in Section

3, is used. The calibrated model is given by (Equation 1.10).

Figure 1.9 (right) plots the absolute prediction errors of the three designs. We observe
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Figure 1.9: (left): Physical experiment output vs the biased physics-based model output;
(right): Distribution of the absolute prediction error ratio in case of a biased physics-based
model.

that our proposed design now corresponds to the least prediction error, which shows that it

provides the most accurately calibrated model. A very drastic drop in the relative perfor-

mance is observed in the case of the “pure computer model” design, as it does not have any

points to estimate model discrepancy. On the other hand, the maximin design does not use

any information from the computer model. So, it does not have optimal points to estimate

the calibration parameters, which leads to a sub-optimal performance. In contrast, our pro-

posed design uses the information from the computer model, while also accounting for the

model discrepancy, which leads to a better overall performance than both the competing

designs.

1.5 Conclusion

This article presented a strategy for designing physical experiments when a computer model

is available to the experimenter. Optimal designs can be generated by directly using the

computer model, but such designs are susceptible to possible model violations. Our design

strategy augments the optimal design points with space-filling points. These space-filling

points act as check points for the computer model and protect against possible model viola-
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tions. The proposed designs can become inferior to the optimal designs when the computer

model is perfect but will be superior when the computer model is imperfect. Since the op-

timal designs are a subset of our proposed design, the loss of efficiency when the computer

model is perfect is minimal, and for that reason we claim that our designs are model-robust.

The proposed design strategy is simple and also flexible to be extended. Our strategy

can be modified to augment points when some information of the model discrepancy is

available. For example, adding points corresponding to the maximum and minimum of the

computer model can be used to efficiently estimate a location-scale bias of the computer

model. These can be viewed as “features” of the computer model that can act as useful

model validation points. In fact, this also suggests that experimenters can extract other

features from the computer model, such as all the local maxima and minima, and add them

to the design, even when the connection to a discrepancy model is not evident. We hope to

investigate this further in a future work.
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CHAPTER 2

EXPANSION-EXPLORATION-EXPLOITATION FRAMEWORK FOR

DISCOVERING NEW MATERIALS CRYSTAL STRUCTURE

2.1 Introduction

One of the most ambitious goals of material scientists is to discover and design new mate-

rials with desirable properties and applications [33, 34, 35, 36, 37, 38]. Until the present

time, material discoveries are largely driven by expensive and time-consuming trial-and-

error approaches, i.e., they must be physically synthesized and tested in a laboratory with

limited guidance beyond empirical rules and experience. However, under some scenar-

ios, some properties of a material can be determined without synthesizing it, if its atomic

structure is known. Thus, determining the material atomic structure is a popular research

problem in material science.

The specific class of materials we are concerning in this work is crystal. A crystal can

be imagined as an infinitely repeated array (or lattice) of a unit cell along three Cartesian

dimensions. Any arrangement of the atoms within this cell is replicated throughout the

space. Our aim is to determine both the unit cell parameters and the position of the atoms

within this unit cell. Crystal materials are dominant in material science because of two

main reasons. First, a majority of materials are crystals and/or can be modeled very well

by crystal models. Second, because of its periodicity, crystal models are small enough so

that physics-based computational methods such as the Density Functional Theory (DFT)

[39, 40], the most reliable (but expensive) parameter-free computational method, may be

used. Thus, crystal structure prediction has been an important problem in material science

since the 1950s (Desiraju 2002).

Researchers have been studying materials crystal structures since a long time. [41]
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laid out a set of rules governing the structure of ionic crystals, based on crystal energy.

Later, [42] introduced some geometric principles to assist in crystal structure prediction of

organic materials. With the advancement of computational resources in the 21st century,

researchers started collecting and analyzing data, and found correlations between the struc-

tures of material and their corresponding chemistry. This led to topological approaches

[43, 44, 45], and data mining approaches [46] for crystal structure prediction. However, as

these approaches are based on existing data, they are prone to bias, and unlikely to lead to

the discovery of novel or unexpected structures.

The least biased and non-empirical approaches to crystal structure prediction involve

computational optimization [47]. These approaches involve explicit computation of the

potential energy of the crystal structure, followed by solving an optimization problem to

find the structure configuration corresponding to the least energy, or the most stable crystal

structure. With the availability of high-speed computation, random-search based methods

were developed to find the stable crystal structure configuration [48, 49]. The underlying

idea in these methods is to use the DFT to compute the energies of a randomly generated

set of potential crystal structure configurations. Thereafter, local optimization algorithms

are used to optimize the structures to the nearest local minimum of the energy. With a large

number of randomly selected samples, it is found that these approaches can successfully

determine the most stable crystal structure configuration in some cases. However, these

approaches have a couple of issues - inefficiency and in-applicability to large systems. Let

us first consider the issue of inefficiency. The set of randomly generated configurations

considered, also called the candidate set of configurations, may not be representative of

all the potential configurations of the crystal structure. Thus, even with a large number

of samples, we may miss to consider the most stable crystal structure configuration. The

second issue is that the approach is impractical to use in case of a large number of atoms

in a unit cell. The number of local minima of potential energy scale up exponentially with

the number of atoms [50, 51]. This makes the random search-based methods impractical
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to use for NA > 10, where NA is the number of atoms in a unit cell.

To address the second issue of the limitation of the random search-based methods to

small systems (NA ≤ 10), material scientists focused on only low-energy regions of the

potential energy surface. Methods such as simulated annealing [52, 53, 54], basin hopping

[55], minima hopping [56], metadynamics [57], and evolutionary algorithms [58] were de-

veloped, which could correctly estimate the stable crystal structure configuration for some

larger systems (NA & 20− 30). However, this restricted the search for crystal structures in

certain regions, which added bias to the results, and inhibited the discovery of unexpected

stable configurations.

The most important requirement for a stable crystal structure configuration is that its

potential energy, which depends on the position of its constituent atoms, should be mini-

mized, ideally at the global minimum of the (multi-dimensional) potential energy surface

(PES). However, external perturbations such as temperature, pressure, and other kinetic-

related factors may bring a local minimum down to be the global minimum at a specific

condition [59, 60, 61], or drive the atomic configuration to land at some nearby (accessi-

ble) local minima. Thus, certain local minima of the potential energy, which is a strong

function of the atomic arrangement (or configuration), are also of interest in many scenar-

ios. Therefore, another rule is that the configurations that are very far from (and/or very

well-separated by a high potential energy barrier with) the global minimum are also reliable

models. A classic example is diamond, which corresponds to a local minimum of elemen-

tal Carbon at ambient conditions but can be stabilized at high pressure and temperatures

[62]. Because transforming it back to the global minimum (graphite) requires extremely

high energy (as much as needed to completely destroy the diamond lattice into isolated

atoms and then rebuild it), diamond is actually stable with infinite lifetime, and is called

kinetically stable.

Predicting the stable atomic configurations of a given set of atoms can be mathemati-

cally formulated as an optimization problem, identifying the global minimum of a manifold
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in a very high-dimensional space. This is a very active research area in the emerging era of

materials discovery and design, when a large number of hypothetical materials should be

examined by computational methods before some of them can be advanced to the synthe-

sizing and testing steps. The two main objectives of materials structure prediction [63] are

(1) searching for low-energy atomic configurations of a given set of atoms and (2) explor-

ing new and possibly unusual domains of the PES where reliable local minima with novel

properties may be found [64].

We have developed an expansion-exploration-exploitation framework that addresses the

objectives of material structure prediction and avoids the issues with the current computa-

tional optimization-based state-of-the-art approaches, mentioned earlier. It is assumed that

a few possible configurations of the crystal structure are known. We expand the space

spanned by these configurations by perturbing them and generating more configurations in

their neighborhood. The configurations are generated such that they continuously expand

the spanned domain space of configurations, especially towards the low-energy regions

of the domain space. Once a representative candidate set of configuration is obtained, a

Bayesian optimization procedure [65] is used to explore the domain space regions with

high uncertainty in the potential energy estimate while simultaneously exploiting the low-

energy regions to find the global minimum and reliable local minima.

This article is organized as follows. In Section 2.2, we mention details about the crystal

structure, its representation and energy computation using the DFT. In Section 2.3, we

mention the constraints and challenges of the problem. In Section 2.4, we describe the

developed methodology that addresses these constraints and challenges. In Section 2.5, we

illustrate the effectiveness of our methodology on a real example. We conclude the chapter

with some remarks in Section 2.6.
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Figure 2.1: Material crystal structure of Al8, obtained by infinitely repeating the unit cell.

2.2 The Crystal model

This section describes the crystal structure and the computation of its potential energy. In

Section 2.2.1, the parameters of a crystal structure are presented. In Section 2.2.2, we

explain the crystal structure representation for efficient potential energy computation using

the DFT. In Section 2.2.3, we mention details regarding the DFT computations.

2.2.1 Parameters of a crystal structure

A crystal model of a material includes a parallelepiped unit cell defined by three basis

vectors ~a, ~b, and ~c, a given set of NA atoms arranged in the unit cell, and an assumption

that the unit cell is infinitely repeated along ~a, ~b, and ~c (see Figure 2.1 for an illustration).

Because a material does not change under rigid translations and rotations, three vectors ~a,

~b, and ~c can be uniquely determined by six independent numbers. Therefore, the crystal

structure prediction is mathematically equivalent to a global optimization problem on the

PES defined in a 3NA + 6 dimensional space (NA has no upper limit, and its typical values

can be as high as 100).
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2.2.2 Representing a crystal structure: AGNI fingerprint

As mentioned earlier, we use the DFT to compute the potential energy of a crystal struc-

ture. DFT computation requires a new and suitable representation of material structures,

as representation in the Cartesian coordinate system leads to redundancy in energy com-

putations. This is because the potential energy of a crystal structure depends only on the

relative distance between its atoms, and not on the absolute positions of atoms. This im-

plies that the energy is invariant to translational, rotational and permutational operations on

the crystal structure configuration. Such transformations change the configuration in the

Cartesian coordinate system, but do not change the material in any physical and chemical

way. For this reason, we use the recently developed AGNI (Adaptive, Generalizable and

Neighborhood Informed) fingerprint [66] which captures the atomic-level information of

the structure pretty well while preserving the material presentation under such “identity”

transformations in the materials space. In particular, the fingerprint used in this work is de-

fined as f ≡ ({Sk;Vk}nk=1) where the scalar components Sk and the vectorial components

Vk are given by

Sk =
∑
i 6=j

G(rij, σk)fc(rij), (2.1)

and

Vk =

√√√√ ∑
α=x,y,z

[∑
i 6=j

rαij
rij
G(rij, σk)fc(rij)

]2
, (2.2)

respectively. Here, rij is the distance between atoms i and j, rαij is the projection of rij onto

the Cartesian axis α, G(r, σk) is the Gaussian function centered at 0 with varying width σk:

G(r, σk) =
1√

2πσk
exp

(
−r2

2σ2
k

)
, (2.3)
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and fc(.) is a cutoff function that is used to disregard interaction among atoms that are

further than a distance Rc from each other:

fc(r) ≡
1

2
[cos(πr/Rc) + 1] . (2.4)

While summarizing over the atoms i and j, the periodicity of the unit cell is considered,

i.e., for an atom, its neighbors in all the repeated images of the unit cell are also taken into

account. Thus, the cutoff function, fc(r), defined in (Equation 2.4) is used to restrict the

neighborhood to a radius of Rc. We used Rc = 8 Å in this work, because the interaction

between two atoms at this distance is negligible. From the mathematical point of view,

AGNI fingerprint is a way of projecting the atomic positions onto a set of predefined basis

functions. Here, we used n = 16 functions G(r, σk), thus our fingerprint f has 2n =

32 components or dimensions. Note that the accuracy of the model using a fingerprint

increases as the dimension increases and then saturates. Our tests indicate that after 32

dimensions, the increase in model accuracy with increasing dimensions is negligible. The

AGNI fingerprint is one of the numerous material fingerprints [67, 68] developed during the

last decade. In the new language, each atomic structure is now represented by a numerical

of given dimensionality, and such vectors are then used for machine-learning algorithms.

2.2.3 Computing the potential energy of a crystal structure: DFT

The adaptive expansion step in our approach is guided by single-point DFT computations

to determine the potential energy of the atomic configurations examined. Thus, the aim

of our density functional theory (DFT) computations is to determine the potential en-

ergy of any atomic structure examined without any local optimizations. Such (single-

point) calculations are performed using the ABINIT package [69], employing the Perdew-

Burke-Ernzerhof functional [70] for the quantum mechanical exchange-correlation ener-

gies. The electron-nuclear interactions are computed with help from the norm-conserving
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Hartwigsen-Goedecker-Hutter pseudopotentials [71]. For our calculations, the Brilouin

zone is sampled by a dense Monkhorst-Pack k-point mesh [72], and a basis set of plane

waves with kinetic energy up to 550 eV.

2.3 The Problem: Constraints and Challenges

Crystal structure prediction has several constraints that lead to the corresponding chal-

lenges. To be effective, the solution must address these challenges presented in the follow-

ing subsections.

2.3.1 Crystal structure representation: One-sided mapping

As mentioned earlier, we use the AGNI fingerprint to represent the crystal structure con-

figuration. There is one-to-one mapping between an atomic configuration and its energy in

the AGNI system, which is essential to find a unique crystal structure configuration that

corresponds to the minimum potential energy.

Although the AGNI system eliminates redundancy in the Cartesian coordinate repre-

sentation of the crystal structure configuration, and reduces the PES dimensionality from

3NA+6 to 32 (as described in Section 2.2), it introduces a constraint in solving the problem.

It is not possible to obtain the Cartesian coordinate system configuration for an AGNI fin-

gerprint, as one fingerprint corresponds to several redundant Cartesian coordinate system

configurations. We can only map a configuration in the Cartesian coordinate system to the

AGNI system, but not vice-versa.

The constraint mentioned above leads to a challenge in solving the optimization prob-

lem of finding the crystal structure configuration with the least potential energy. In the

absence of this constraint, we may have used a continuous optimization procedure in the

AGNI fingerprint space to find a solution and transform it to the physically interpretable

Cartesian coordinate system. However, in the presence of this constraint, we can only

use discrete optimization approaches to find the configuration with the least energy. Thus,
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we will need to consider a finite set of configurations (also called a candidate set of con-

figurations), find their corresponding fingerprints, and find the one with the least energy.

The discrete optimization approach gives rise to a huge challenge that the candidate set of

fingerprints must contain the solution(s) or fingerprints “close enough” to the solution(s).

2.3.2 Crystal structure representation: Unknown domain space

We are aware of the range of the coordinates of the crystal structure configuration in the

Cartesian coordinate system. However, we do not know the range of the configuration

coordinates of the corresponding AGNI fingerprint. This implies that we do not know

the domain space of the fingerprints. This gives rise to the challenge of obtaining a can-

didate set of fingerprints that are representative of all fingerprints, or a candidate set of

crystal structure configurations that are representative of all possible configurations. In

other words, it is challenging to know if a configuration, which is very different from the

rest, is missing from our candidate set. If we knew the domain space, we could have used a

space-filling design [24] to obtain a representative candidate set of fingerprints. However,

the challenge is to find a representative set of fingerprints without the knowledge of the

domain space of the fingerprints. In other words, we need to find a space-filling design

without knowing the boundaries of the space to be filled!

2.3.3 Expensive energy computation: Density functional theory (DFT)

To find the most stable crystal structure configuration, we need to find the one with the least

potential energy. As mentioned earlier, we use the quantum mechanical modelling method

known as the density functional theory (DFT), to compute the potential energy of a given

crystal structure configuration. However, each evaluation of the potential energy using DFT

requires several hours or even days. This is why predicting a simple crystal structure by

computations was regarded as “one of the continuing scandals in the physical sciences” in

1988 by a Nature’s editor, Sir John Maddox [73]. Although structure prediction methods
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have evolved dramatically since then and have led to numerous new materials predicted

computationally and realized experimentally [63], this remains a major bottleneck of con-

temporary materials discoveries. The expensive DFT computations constrain us to evaluate

the energy for only a few configurations, which gives rise to the challenge of optimizing a

huge potential energy surface, while observing it at only a few points.

2.3.4 Multi-modal potential energy surface (PES)

The potential energy surface is highly nonlinear and multi-modal. Given that we can ob-

serve it at only a few points (see constraint 2.3.3), it becomes challenging to accurately

model all the modalities. As the number of local minima scale up exponentially with the

number of atoms in a unit cell, NA, the challenge is even bigger for crystal structures with

largeNA. However, modeling the multi-modalities is necessary to find the global minimum

as well as other reliable local minima.

2.4 Methodology

We have developed an expansion-exploration-exploitation framework for crystal structure

prediction that addresses all the challenges presented in Section 2.3. This framework is

implemented in two steps. The first step is domain space expansion, where we expand

the space spanned by a small set of known configurations by iteratively adding more con-

figurations. This leads to a candidate set of configurations that will ideally either span the

entire domain space of possible configurations or at least span the space of stable configura-

tions. The expansion step consists of a sequence of two sub-steps: non-adaptive expansion

and adaptive expansion. Non-adaptive expansion refers to adding configurations without

considering their potential energy. This tends to include unexpected configurations in our

candidate set. If needed, this step is followed by adaptive expansion, which tends to add

configurations that further expand the low-energy regions of the domain space. The ex-

pansion step is followed by simultaneous exploration and exploitation of the domain space
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spanned by the candidate set to find the configuration that corresponds to the minimum

potential energy. We will explain these steps in the three sections below.

2.4.1 Non-adaptive domain space expansion

The purpose of this step is to obtain a candidate set of configurations that span as much

domain space as possible. We start from a set of few known configurations, and iteratively

add those configurations to the set that expand their spanned domain space. The potential

energy of the configurations is ignored, while developing the candidate set, to serve two

purposes. First, it may lead us to regions of the domain space where a low-energy con-

figuration is unexpected. Second, it saves the computational resources for calculating the

energy and helps us obtain a large candidate set within a given time period.

Let us explain the algorithm with a toy example. Although the AGNI fingerprint space

is 32-dimensional, we consider a two-dimensional toy example to visualize the algorithm.

Let the space of all possible fingerprints, or the fingerprint domain space, be [−3, 3] ×

[−3, 3]. However, in practice, we are not aware of the fingerprint domain space. So, we

will not feed this space information to our algorithm. Nevertheless, the objective of our

algorithm will be to find a candidate set of fingerprints that represent this domain space.

The algorithm begins by considering a set of known crystal structure configurations,

and their fingerprints as the initial candidate set. Let the initial candidate set of atomic con-

figurations be C = {c1, · · · , cI}, where c1, · · · , cI are the I initial atomic configurations.

Let the fingerprints corresponding to these atomic configurations be X = {x1, · · · ,xI},

where x1, · · · ,xI are the I initial fingerprints. We will iteratively add fingerprints to this

candidate set that make it more representative of the domain space of fingerprints. Let us

assume that there are a set of I = 5 known fingerprints for our toy example, as shown in

Figure 2.2 (left), and we have a budget of expanding it to N fingerprints. To find a rep-

resentative set of fingerprints, we must find fingerprints in the least represented regions of

the domain space. To identify the least represented region, we will find the space spanned
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by each fingerprint in the current candidate set.

Consider the two-dimensional fingerprints in Figure 2.2 (left). Intuitively, the space

spanned by a fingerprint depends on its proximity to its neighboring fingerprints. If the

neighbors on the left and right of the fingerprint, and below it are close (such as those for

x2), then it spans a small space in those neighborhoods. Such neighborhoods are already

well-represented in the candidate set, and we do not need to generate more fingerprints in

them. However, suppose the neighbor above the fingerprint is far away. Then, the space

spanned by the fingerprint in the neighborhood above it is large. This implies that there is

unexplored domain space in the neighborhood above the fingerprint, and we should gener-

ate fingerprints in that space to increase its representation. Thus, we need to generate new

fingerprints around the one that has the largest unexplored neighborhood, or the largest

span in any of its neighborhoods. For a p-dimensional fingerprint, there are 2p neighbor-

hoods - two on either side of it along each dimension. We intend to identify the fingerprint

that has the largest span in any of its 2p neighborhoods.

Figure 2.2: (left): Initial I = 5 fingerprints; (right): Distances to the closest neighbors of
fingerprint x3 in all of its 2p = 4 neighborhoods.

Let us find the space spanned by the fingerprint x3 in Figure 2.2 (right). For that we will
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find the space spanned in 2p = 2 × 2 = 4 neighborhoods - above and below x3, and right

and left of x3. The nearest neighbors above and below are x3 are at a distance of d35 = 0.96

and d34 = 0.75 respectively, while those on the left and right are at distance of d34 = 0.75

and d32 = 1.22 respectively. Since we are interested in the fingerprint with the largest

unexplored neighborhood, we compute the distance to the farthest neighbor among all the

four neighborhoods. The farthest neighbor of x3 is at a distance of max(d32, d34, d35) =

1.22. We define the space spanned by a fingerprint as a circle with radius equal to half of its

distance to the farthest neighbor. Let R = {r1, · · · , rI} be the vector of radii of the circle

corresponding to the space spanned by each fingerprint. Thus, the space spanned by x3 is

a circle of radius r3 = 0.5× 1.22 = 0.61.

Figure 2.3 (left) shows the space spanned by each fingerprint. Clearly, the fingerprint

x1 is spanning the largest domain space. In other words, the domain space around x1

consists of the most unexplored or sparse neighborhood. Let us label the fingerprint x1

as xsparse. So, we will find a fingerprint in the domain space around xsparse, and add it

to the candidate set to increase its representation. Note that an arbitrary shape might have

been more accurate to define the space spanned by each fingerprint, instead of a circle.

This is because the space spanned by a fingerprint differs by neighborhood. However,

we have considered a circle since it is defined by a single parameter, which makes the

computation much cheaper. Furthermore, we only need to identify the fingerprint with the

most unexplored neighborhood, and not the exact area/volume of that neighborhood.

Once the fingerprint with the most unexplored neighborhood is identified, we intend to

find a new fingerprint around it, and add it to the candidate set. To do so, we randomly per-

turb the atomic configuration corresponding to the identified fingerprint to generate another

configuration. Then, we fingerprint this randomly generated atomic configuration to obtain

the new fingerprint. This new fingerprint is added to the candidate set if it is “far enough”

from its nearest neighboring fingerprint. We use a threshold distance t, which is updated in

each iteration, and will be defined later, to check if the randomly generated fingerprint is
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Figure 2.3: (left): Space spanned by the initial I = 5 fingerprints; (right): Dotted circle
around each fingerprint with radius t, showing the minimum distance necessary between
them and an acceptable newly generated fingerprint; Two examples of acceptable new fin-
gerprints for inclusion in the candidate set - xa,xb.

“far enough”. If it is not “far enough”, then we discard it, update the threshold distance t,

and again perturb the same atomic configuration.

The purpose of the threshold distance t is twofold. First, it is used to avoid redun-

dancy of fingerprints in the candidate set. Second, it ensures that the fingerprints are evenly

spaced-out in their domain space. The threshold distance is updated in each iteration, irre-

spective of acceptance or rejection of the newly generated fingerprint. If ti is the threshold

distance in the ith iteration, and dmin,i is the distance of the new fingerprint to its nearest

neighbor in this iteration, then the threshold distance for the next iteration is given by:

ti+1 = 0.5(ti + dmin,i) ∀i > 1. (2.5)

The term dmin,i ensures that the threshold distance is large when large parts of the domain

space are unexplored, and small if the domain space is already well-explored. This makes

the fingerprints spread farther apart until the entire domain space has been explored. Once

the domain space has been explored, the threshold distance decreases so that new finger-
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prints may be added to the candidate set, until the budget of N fingerprints is exhausted.

The term ti ensures that the threshold distance does not change abruptly for an abrupt

change in dmin,i. For the first iteration, i = 1, t1 is taken as the mean of the distances to the

nearest neighboring fingerprint for each fingerprint.

In our toy example, x1 is the fingerprint identified with the most unexplored neighbor-

hood. So, we will perturb the atomic configuration corresponding to it to generate another

one, and fingerprint it. Figure 2.3 (right) shows the five fingerprints in the candidate set

with a dotted circle around them whose radius is equal to the threshold distance t1 = 0.75.

If the new fingerprint falls inside any of the dotted circles, then it will be rejected on account

of being redundant with the fingerprints in the candidate set. Figure 2.3 (right) shows two

examples of an acceptable new fingerprint - xa and xb. The two distinct examples throw

light on two different aspects of our adaptive space exploration algorithm. If xa is the new

fingerprint, then it contributes in filling the domain space between x1 and the rest of the

fingerprints in the candidate set. In other words, it fills gaps in the domain space of the

candidate set. If xb is the new fingerprint, then it contributes to expanding the convex hull

of the domain space. In other words, it expands the boundaries of the domain space. Thus,

the algorithm populates relatively sparse regions of the domain space, while also expanding

its boundaries. This dual behavior is key in obtaining a set of atomic configurations that

are representative of all possible atomic configurations of the crystal structure.

We repeat the exercise of identifying and adding a fingerprint around the most unex-

plored neighborhoods, until we have added the desired number of fingerprints in the candi-

date set. Figure 2.4 shows the results obtained when we have a candidate set of N = 200

fingerprints, and N = 400 fingerprints. Our algorithm performs well in (a) providing a

candidate set of fingerprints that are representative of the domain space, (b) spacing-out

fingerprints such that they evenly span the domain space within a given budget of N finger-

prints. Thus, our algorithm addresses the two challenges - (a) challenge 3.1 of exploring

all regions of the domain space, so that the region corresponding to the stable fingerprint(s)
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will be represented in the candidate set, (b) challenge 3.2 of obtaining a candidate set that

fills the domain space without the knowledge of the boundaries of the domain space. Once

the algorithm hits a boundary of the domain space, it moves to unexplored regions away

from the boundary. In essence, our algorithm “learns” the boundaries of the domain space,

and leverages the threshold distance t to provide the desired space-filling design. The non-

adaptive domain space expansion algorithm is summarized as algorithm 4.

Figure 2.4: Candidate set of (left): N = 200 fingerprints; (right): N = 400 fingerprints,
where the unknown fingerprint domain space is assumed to be [−3, 3]× [−3, 3].

Let us discuss the choice of N . Ideally, the minimum value of N should be the num-

ber of fingerprints needed to span over the domain space of all fingerprints. This means

that we must keep on adding fingerprints in the candidate set at least until no more do-

main space remains to be explored. Simultaneous occurring of two events will indicate

the exploration of the entire domain space. First, the convex hull of the candidate set of

fingerprints will stop expanding, and become constant. Second, the threshold distance t

will start decreasing. When these two events occur, it means that the algorithm is further

exploring the already explored regions of the domain space. It is reasonable to stop adding

fingerprints to the candidate set at this moment. However, in practice, the domain space of

fingerprints is too large, and the convex hull is likely to continue expanding. In such cases,
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Algorithm 4 : Non-adaptive domain space expansion
1: Input Nmax, C,X
2: i← I
3: ComputeR = {r1, · · · , rI} {Space spanned by each fingerprint}
4: ComputeD = {d1, · · · , dI} {Distance to the nearest neighbor of each fingerprint}
5: t← mean(D)
6: while i ≤ Nmax do
7: per← arg maxi ri
8: Randomly perturb cper to generate cnew
9: xnew ← fingerprint(cnew)

10: Compute dmin {Distance to the nearest neighbor of xnew}
11: if dmin > t then
12: C ← append(C, cnew)
13: X ← append(X ,xnew)
14: i← i+ 1
15: UpdateR,D
16: end if
17: t← 0.5(t+ dmin)
18: end while
19: Output C,X

the number of fingerprints will need to be constrained by the maximum permissible budget

N = Nmax. Suppose the unknown domain space of fingerprints is [−20, 20] × [−20, 20].

Then, the candidate set of fingerprints obtained for Nmax = 200 and Nmax = 400 are as

shown in Figure 2.5. In these cases, the convex hull of the candidate set continues to ex-

pand and so we stop after the budget of Nmax fingerprints is exhausted. As a thumb-rule,

for a p-dimensional fingerprint, we suggest a candidate set of size Nmax = 100p in the

non-adaptive expansion procedure.

As the non-adaptive expansion algorithm does not consider the potential energy of the

configurations, it addresses the second objective of crystal structure prediction mentioned

earlier, i.e., exploring new and possibly unusual domains of the PES.

2.4.2 Adaptive domain space expansion

Adaptive domain space expansion is an optional step and may not be needed if we obtain

a “good enough” candidate set with the non-adaptive expansion algorithm. A candidate set
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Figure 2.5: Candidate set of (left): Nmax = 200 fingerprints; (right): Nmax = 400 finger-
prints, where the unknown fingerprint domain space is assumed to be [−20, 20]× [−20, 20].

is “good enough” if it spans over the entire domain space of crystal structure configura-

tions. Spanning the entire domain space is likely if the convex hull of the candidate set of

fingerprints stops expanding during the non-adaptive expansion procedure. Let us consider

the two dimensional toy example of Section 4.1. In Figure 2.4 the convex hull of N = 200

fingerprints is approximately [−3, 3] × [−3, 3], which is the same as the convex hull of

N = 400 fingerprints. Thus, the convex hull does not expand after we have N = 200

fingerprints in the candidate set. This leads to the conclusion that N ≥ 200 fingerprints

represent the entire domain space of crystal structure configurations and further expansion

is not needed.

In practical scenario, we do not expect the candidate set to span the entire domain space

of configurations due to the typically large size of the PES. In Figure 2.5 we observe that

the convex hull of the candidate set of fingerprints continues to expand throughout the non-

adaptive expansion procedure. Thus, we conclude that even N = 400 fingerprints do not

span the entire domain space, or there is unexplored domain space that may contain the

global minimum. We need to identify, and if necessary, then further expand the low-energy

regions of the domain space. To illustrate the need for adaptive expansion, we will consider
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this variation of the example in the rest of this section, i.e., Nmax = 400 and the unknown

fingerprint domain space assumed to be [−20, 20]× [−20, 20].

As the budget of non-adaptive expansion (Nmax = 400) is exhausted, we will focus

on the “promising regions” or the low-energy regions of the domain space, instead of the

sparsely populated regions. For identifying low-energy regions, we use DFT to compute

the energy of, say, 10p = 20 fingerprints, from the candidate set of N = 400 fingerprints.

Then, a Gaussian process model based on this known-data is used to estimate the energy of

all the configurations, and identify the low-energy “promising regions”.

To develop the best possible model, we need to carefully choose the appropriate 20

configurations for which to compute the potential energy. First, all the five fingerprints

corresponding to the initially known configurations are chosen, as those are likely to be

stable. The remaining 15 fingerprints are chosen by augmenting these five fingerprints with

the maximum projection (MaxPro) design [25]. The MaxPro design is a space-filling de-

sign that simultaneously ensures space-fillingness in the full dimensional space as well as

in all the lower dimensional subspaces. The augmented design can be obtained sequen-

tially by adding one fingerprint at a time using the MaxProAugment function in the R

package MaxPro [26]. Note that the function selects 15 space-filling fingerprints from the

candidate set of Nmax = 400 fingerprints. Figure 2.6 shows the MaxPro design obtained

for our toy example. The five crosses in the center are the initial fingerprints that are aug-

mented sequentially by 15 space-filling fingerprints from the candidate set of Nmax = 400

fingerprints.

Let us assume that the potential energy obtained using DFT in our toy example is given

by:

e(x) =

√(
x1
15

)2

+

(
x2
15

)2

(2.6)

We obtain 20 fingerprints, x = {x1, · · · ,x20} using the MaxPro design, and their corre-

sponding potential energy e = {e1, · · · , e20} using (Equation 2.6).

A Gaussian Process model is developed on the known-data, and is used as a cheap
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Figure 2.6: The space-filling MaxPro design, shown as crosses, for the toy example with
Nmax = 400 and the unknown fingerprint domain space as [−20, 20]× [−20, 20].

surrogate to estimate the potential energy of all the configurations in the candidate set. The

flexible and smooth Gaussian process model is a good fit for the highly multi-modal and

non-linear potential energy surface. We assume that e(·) is a realization of a Gaussian

process:

e(x) ∼ GP (µ,C(x; ·)), (2.7)

where µ is the mean and C(xu;xv) = Cov{f(xu), f(xv)} is the covariance function.

See [2] for details on Gaussian process modeling. Given the known-data, the posterior

distribution of e(x) is also a Gaussian process given by

e(x)|e ∼ N (ê(x), s(x)), (2.8)

where ê(x) = µ + C(x;S)C−1(S;S)(e − µ1) is the surrogate model, s(x) = C(x; ·) −

C(x;S)C−1(S;S)C(S; ·) is the standard error, C(x;S) is the covariance vector with ith

element C(x;Si), C(S;S) is the covariance matrix, and 1 is a vector of 1’s. We use the

R package DiceKriging [74] to develop the Gaussian process model. Figure 2.7 (left)
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shows the potential energy contour based on the developed Gaussian process model. We

see that the estimated global minimum seems to lie in the “interior” of the candidate set of

configurations. In this case, there is no need to further expand the “low-energy” region, as

it is already surrounded by the candidate set of configurations.

Now, let us consider another scenario, where the potential energy obtained using DFT

is given by:

e(x) =

√(
x1 − 10

15

)2

+

(
x2 − 10

15

)2

(2.9)

Figure 2.7 (right) shows the potential energy contour based on the developed Gaussian pro-

cess model. The estimated global minimum seems to lie at the “boundary” of the candidate

set of configurations. In this case the “low-energy” region is not well explored on all sides.

Thus, in this case, we need to further expand the “low-energy” region to ensure that the

minimum of the “low-energy” region, which may potentially be the global minimum or a

reliable local minimum, is included in the candidate set of configurations.

Figure 2.7: Estimated potential energy contour for the toy example with Nmax = 400, the
unknown fingerprint domain space as [−20, 20]× [−20, 20], and the DFT function as given
in (left): equation (Equation 2.6); (right): equation (Equation 2.9).

The definition of the “boundary” and the “interior” of the candidate set of configurations

is based on the dimension p of the fingerprint. A two-dimensional fingerprint, assumed to
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be at the origin, lies in the interior of the domain space if it has neighboring fingerprints in

each of the four quadrants, within a distance r around it. Otherwise, it lies on the bound-

ary of the domain space spanned by the candidate set of fingerprints. Here r is taken to

be the maximum distance to the nearest neighbor for the candidate set of N fingerprints

obtained with the non-adaptive expansion algorithm. Similarly, a three-dimensional finger-

print should have neighboring fingerprints in each of the eight octants (instead of quadrants

for the two-dimensional case) within a radius r around it, to lie in interior of the spanned

domain space, and so on. Figure 2.8 shows examples of two-dimensional fingerprints that

lie on the boundary or in the interior of the domain space spanned by the candidate set.

Figure 2.8: Examples of two-dimensional fingerprints that lie (left): on the boundary of
the domain space spanned by the candidate set; (right): in the interior of the domain space
spanned by the candidate set. Note that the radius of the circle is r.

Based on the different variations of the toy example presented in Figure 2.4 and Fig-

ure 2.7, we conclude that adaptive expansion is needed when two conditions are satisfied.

First, the convex hull of the candidate set of fingerprints continues to expand in the non-

adaptive expansion procedure. In other words, the domain space of all possible configura-

tions has not not been fully explored. Second, the estimated minimum of the candidate set

lies at the boundary of the spanned domain space. In other words, the low-energy region(s)

of the domain space have not been fully explored.

For the case shown in Figure 2.7 (right), there is a need to further expand the low-

energy region, as the minimum lies at the boundary of the spanned domain space. New

fingerprints are generated as in the non-adaptive expansion algorithm, i.e., by perturbing a

fingerprint already in the candidate set. However, the choice of the fingerprint to perturb
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is focused on expanding the low-energy region. As we need to push the boundary of the

low-energy region, we perturb the lowest energy fingerprint that lies on the boundary of

the spanned domain space. As we continue to expand the spanned domain space, we also

need to add data points to the known-data to update our model. With the addition of every

10 fingerprints to the candidate set, DFT is used to compute the potential energy of the

fingerprint with the least energy estimate. The Gaussian process model is then updated to

better estimate the energy in the newly explored lower-energy domain space. A periodic

model-update helps navigate the expansion of the lower-energy region.

A criterion is required to stop the adaptive expansion once the low-energy regions have

been well explored. If the fingerprint having the minimum estimated potential energy does

not change within 10 successive DFT computations, it means the low-energy minimum is

surrounded by the candidate set of fingerprints, and we stop the algorithm. On the other

hand, if the fingerprint with the minimum estimated potential energy continues to change,

it means the algorithm is expanding the spanned domain space to lower-energy regions,

and we must continue to generate new fingerprints adaptively.

The adaptive domain space exploration algorithm is summarized as algorithm 5.

Figure 2.9 shows the result of applying the adaptive expansion algorithm to the sce-

nario presented in Figure 2.7 (right). The algorithm adaptively adds 110 fingerprints to the

set of 400 fingerprints obtained through non-adaptive expansion. Note that the algorithm

continues to expand until the low-energy region is fully explored, and the minimum is well

surrounded by the candidate set of fingerprints.

As the adaptive expansion algorithm is focused on further expanding the low-energy

regions of the domain space, it addresses the first objective of crystal structure prediction

mentioned earlier, i.e., searching for low-energy atomic configurations of a given set of

atoms.
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Algorithm 5 : Adaptive domain space expansion

1: Import C,X ,R,D, t {Obtained at the end of the non-adaptive expansion procedure}
2: XI ← {x1, · · · ,xI}
3: Augment XI by 10p−I space-filling fingerprints to obtain XDFT {R package:MaxPro
}

4: e← DFT (XDFT )
5: model← GP (XDFT , e)
6: ê← GP.predict(X )
7: flag← 1; DFT period← 0; iter← 0;
8: while flag = 1 do
9: Find cper, the configuration with minimum estimated energy lying on the boundary

10: Lines 8− 10 from the non-adaptive domain space expansion algorithm
11: if dmin > t then
12: Lines 12− 15 from the non-adaptive domain space expansion algorithm
13: DFT period← DFT period+1
14: enew ← GP.predict(Xnew)
15: ê← append(ê, enew)
16: if DFT period = 10 then
17: iter← iter+1
18: if iter = 10 then
19: Find cmin, the configuration with the minimum estimated potential energy
20: emin ← DFT (cmin)
21: e← append(e, emin)
22: XDFT ← append(XDFT , cmin)
23: model← GP (XDFT , e)
24: ê← GP.predict(X )
25: iter = 0
26: if cmin has not changed since the last 10 DFT computations then
27: flag = 0
28: end if
29: emin ← DFT (cmin)
30: e← append(e, emin)
31: XDFT ← append(XDFT , cmin)
32: model← GP (XDFT , e)
33: ê← GP.predict(X )
34: iter = 0
35: end if
36: end if
37: end if
38: t← 0.5(t+ dmin)
39: end while
40: Output C,X
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Figure 2.9: Adaptive expansion further expands the low-energy region. This is for the
variation of the toy example with Nmax = 400, the unknown fingerprint domain space as
[−20, 20]× [−20, 20], and the DFT function assumed to be as in (Equation 2.9).

2.4.3 Exploration and exploitation of the domain space: Bayesian optimization

The purpose of this step is to identify the crystal structure configuration with the least

potential energy in this candidate set of size N obtained from the expansion steps. The

naive method is to compute the energy of each of the N fingerprints in the candidate set,

and find the one with the minimum energy. However, as mentioned in Section 3.3, energy

computation using the density functional theory (DFT) is too expensive, and so such a

method will be impractical to use for a high value of N . So, we will use the Gaussian

process model developed during the adaptive expansion procedure to estimate the energy of

all the N fingerprints. Bayesian optimization [65] will then be used to iteratively optimize

and update the model. The method will let us identify the global minimum with energy

computations over only a small fraction of N fingerprints in the candidate set.

Bayesian optimization involves iterative improvement of the global minimum estimate

based on the surrogate model. Let e be the vector of potential energy, computed using DFT,

for n fingerprints, and s(.) be the standard error of their energy estimate. Then, the expected
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improvement of the global minimum estimate at x can be expressed as the following closed

form jones1998efficient:

EI(x) = [min(e)− ê(x)]Φ

(
min(e)− ê(x)

s(x)

)
+ s(x)φ

(
min(e)− ê(x)

s(x)

)
, (2.10)

where Φ and φ are respectively the cumulative distribution function and the probability

density function of the standard normal distribution. As the surrogate model is cheap, we

evaluate (Equation 2.10) on all the N fingerprints in the candidate set, and find the one that

maximizes it:

xnew = arg max
x

EI(x). (2.11)

DFT is used to compute the potential energy at xnew, and the known-data set is updated to

include [xnew, e(xnew)]. Then, we use (Equation 2.8) to update our surrogate model based

on the updated known-data.

We continue repeating the exercise of finding a new fingerprint using (Equation 2.11),

computing the potential energy for this fingerprint, and updating the surrogate model us-

ing (Equation 2.8). Ideally, the algorithm should stop when it spots the global minimum.

However, in practice, we will not know when we have found the global minimum. One

option is to perform as many iterations as per the maximum available computation budget.

However, [75] argue that such an approach may lead to wastage of resources, and it is rea-

sonable to stop iterations if the expected improvement is less than a user-specified small

threshold constant tEI . The choice of tEI depends on the problem. For example, for our

real example (details deferred to Section 2.5) we chose to stop iterations when the expected

improvement became less than 0.001% of the current minimum potential energy estimate.

Once the algorithm stops, the fingerprint with the least potential energy in the known-data

is considered to be the most stable among the candidate set of N fingerprints.

The Bayesian optimization algorithm is summarized as algorithm 6.

The Bayesian optimization algorithm addresses the remaining two challenges in Section
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Algorithm 6 : Bayesian optimization

1: Import C,X {Obtained from the expansion algorithms}
2: Input tEI
3: Lines 2− 5 from the adaptive domain space expansion algorithm
4: emin ← min(e)
5: EIi ← EI(xi); i ∈ {1, · · · , N} {Use (Equation 2.10)}
6: percent improve← max(EI)/emin
7: while percent improve ≤ tEI do
8: i maxEI ← arg maxi(EI); i ∈ {1, · · · , N}
9: enew ← DFT (xi maxEI)

10: XDFT ← append(XDFT ,xi maxEI)
11: e← append(e, enew)
12: model← GP (XDFT , e)
13: EIi ← EI(xi); i ∈ {1, · · · , N} {Use (Equation 2.10)}
14: percent improve← max(EI)/emin
15: end while
16: i stable← arg mini e; i ∈ {1, · · · , nrows(XDFT )}
17: Output xi stable, ci stable

3 − 3.3 and 3.4. The algorithm computes the potential energy for only a small fraction of

fingerprints in the candidate set. This minimizes the expensive DFT computations, thereby

addressing challenge 3.3. As the Gaussian process model is very good in modeling highly

non-linear and smooth surfaces, it models the highly multimodel potential energy surface

well, which helps us spot the global minimum quickly. Thus, the flexibility and smoothness

of our surrogate model addresses challenge 3.4. The expected improvement (EI) criterion

balances exploration of the PES with exploitation, thereby simultaneously addressing both

the objectives of crystal structure prediction - exploiting low-energy regions to search for

the minimum and exploring new and possibly unusual domains of the PES.

2.5 Real example

We will demonstrate our developed methodology on a real example. The objective is to find

the most stable crystal structure configuration of Al8. In other words, we need to search

for the global minimum of the potential energy surface that corresponds to the space of

all the atomic structures, each of which contains eight Aluminum (Al) atoms arranged in
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a parallelepiped unit cell. The extreme point of this PES corresponds to the face-centered

cubic (fcc) structure of Aluminum, which is already known ( Figure 2.1). The eight-atoms

structures were created by (1) randomly choosing a specific value of volume v falling within

±5% of the known specific volume of the Al fcc structure, (2) randomly selecting three

vectors ~a, ~b, and ~c of the unit cell so that its volume, given by V ≡ ~a · (~b × ~c) = 8v, and

(3) randomly arranging the eight Al atoms in the cell so that the distance between any pairs

is larger than 2.0 Å. Two constrains (1) and (3) of this procedure, which were formulated

from the known facts of the fcc Al structure, clearly limit the examined configuration space

but the search domain remains staggering and certainly contains the global minimum.

Within our expansion-exploration-exploitation framework, we start from a finite set of

structure configurations (a few hundreds) for which the energy is computed at the DFT

level. Then, we aim at (1) adding more structures into the initial set such that the con-

figuration domain space is expanded and filled efficiently and (2) searching for the global

minimum of the expanded dataset. Note that the DFT calculations performed herein in-

volve only single-point energy calculations but not any local optimizations, which may be

103 − 104 times more expensive. Therefore, in general, none of the examined structures is

a local minimum of the PES. However, the main objectives of this work, i.e., (diversely)

filling the configuration space and searching for the global minimum of a big and diverse

structure dataset, can be demonstrated and is very useful for material structure prediction.

To obtain a candidate set of fingerprints, we start with the non-adaptive domain space

expansion algorithm (Algorithm 1). The algorithm requires three inputs - an initial set of

atomic configurations C, their corresponding fingerprints X , and the size of the candidate

set of fingerprints Nmax. We have a set of I = 270 known atomic configurations of Al8.

These configurations become the input C, and their corresponding fingerprints become the

input X . The fingerprints have a dimension of p = 32. As per the thumb-rule mentioned

earlier, we take Nmax = 100p = 3, 200. Here, we have assumed that the size of the convex

hull of the candidate set of fingerprints will keep increasing, or the algorithm will keep
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exploring new domain space, as we continue to add fingerprints in the candidate set. This

assumption is later found to be true. As we do not expect the candidate set to fully span

the huge domain space of configurations, we do not consider it necessary to monitor the

convex hull of the candidate set during the non-adaptive expansion algorithm.

As the AGNI fingerprint is 32-dimensional, it cannot be visualized directly. We use

Principal Component Analysis [76], or PCA to reduce its dimensionality. We found that

the first three PCs captured 97% of the variance of the candidate set of AGNI fingerprints.

Thus, the first three PCs are sufficient to visualize the AGNI fingerprints obtained by

our non-adaptive domain space expansion algorithm. We will compare them with the PCs

corresponding to the fingerprints obtained from the state-of-the-art approach.

Figure 2.10 (left) shows the initial set of fingerprints (grey circles) that are input to

the non-adaptive space expansion algorithm (Algorithm 1). The solid black circle (in this

and all the subsequent figures) is the most stable fingerprint, or the fingerprint that has the

minimum potential energy. This is not a part of the initial candidate set. However, this is

the solution that we hope to achieve. Note that there is a relatively large gap between it

and the initial set of fingerprints. Ideally, our expansion algorithms will expand the initial

candidate set to include the most stable fingerprint, and then the Bayesian optimization

algorithm should identify this fingerprint as the global minimum.

Figure 2.10 (center) shows the candidate set of Nmax = 3, 200 fingerprints obtained

using our non-adaptive space expansion algorithm. There are a couple of points to note

regarding the algorithm. First, the algorithm fills the gap between different clusters of

fingerprints in the initial candidate set. Second, the algorithm expands the volume of the

domain space spanned by the initial candidate set of fingerprints. Thus, the algorithm found

fingerprints in unexplored regions of the domain space, and added them to the candidate

set, as was desired.

Figure 2.10 (right) shows the candidate set of Nmax = 3, 200 fingerprints obtained us-

ing the random search-based state-of-the-art approach. In this approach, the fingerprints

51



Figure 2.10: (left): Initial set of fingerprints; (center): candidate set of Nmax = 3, 200
fingerprints obtained using our non-adaptive space expansion algorithm (Algorithm 1);
(right): candidate set of Nmax = 3, 200 fingerprints obtained using the random search-
based state-of-the-art approach. The solid black circle is the true global optimum, not
included in the candidate set.

are randomly perturbed to generate new ones, and added to the candidate set. These fin-

gerprints seem to span a similar volume of the domain space as spanned by our proposed

candidate set.

Although for Nmax = 3, 200 fingerprints, we did not see a significant difference in the

space spanned by the two candidate set of fingerprints (Figure 2.10), this difference be-

comes larger as the candidate set size increases. Figure 2.11 shows the median distance to

the nearest neighbor of a fingerprint as the candidate set size increases. Note that our pro-

posed candidate set keeps expanding to new regions of the domain space with the addition

of fingerprints, thereby leading to a minimal change in its proximity to the nearest neigh-

bor. On the other hand, the state-of-the-art approach fails to expand the spanned volume of

the domain space, resulting in drastic decrease in the median distance to the nearest neigh-

bor as the candidate set size increases. With the state-of-the-art approach, generating more

fingerprints may lead to wastage of resources after a certain point of time as the algorithm

restricts itself to the already explored domain space. On the other hand, our non-adaptive

expansion algorithm will continue to expand the explored domain space, thereby always

providing more information with each newly generated fingerprint.
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Figure 2.11: Distance to the nearest neighbor vs candidate set size for fingerprints in our
candidate set obtained using the non-adaptive space expansion algorithm, and the candidate
set obtained using the state-of-the-art approach.

Figure 2.12 shows examples of three configurations corresponding to the fingerprints

obtained from the non-adaptive domain space expansion algorithm. The stark differences

in these configurations shows that the algorithm spans through quite distinct regions of the

domain space.

After obtaining a candidate set of 3, 200 fingerprints from the non-adaptive expansion

algorithm, we need to determine if adaptive expansion of the candidate set is needed. We

find that the convex hull of the fingerprints has continued to expand throughout the non-

adaptive expansion procedure. So, it is likely that there exists unexplored domain space.

As we have already exhausted the budget of non-adaptive (or free) expansion, we may need

to identify and further expand the low-energy regions of the domain space.

For estimating the low energy regions, a Gaussian process model is developed. To

develop the model, DFT is used to compute the potential energy for 10p = 320 finger-

prints. To select these 320 appropriate fingerprints for DFT computations, first we include
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Figure 2.12: Sample configurations from the set of 3, 200 configurations obtained with the
non-adaptive domain space expansion algorithm.

the initial candidate set of 270 fingerprints corresponding to known configurations. The

remaining 50 fingerprints are chosen from the candidate set by augmenting the set of 270

initial fingerprints with the space-filling MaxPro design. Figure 2.13 shows the initial fin-

gerprints and the ones augmented using the MaxPro design. The MaxPro design ensures

that fingerprints for DFT computations are well spread throughout the candidate set.

Figure 2.13: (left): Initial set of fingerprints (orange) over the candidate set of fingerprints
(green); (right): Initial set of fingerprints augmented by the space-filling MaxPro design
(red).

We develop a Gaussian process model based on the data collected by DFT computa-
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tions. The model is used to estimate the potential energy of the entire candidate set of

fingerprints. Figure 2.14 (left) shows the estimated potential energy contour. A low-energy

regions seems to be around the boundary of the spanned domain space. Using the boundary

definition mentioned earlier and illustrated in Figure 2.8, we find that the estimated min-

imum of the candidate set is actually at the boundary of the spanned domain space. So,

it is necessary to further expand this low energy region as the it may lead to further mini-

mization of the current estimate of the energy-minimum. Note that we work in the space

of the first three principal components for determining the boundary, as it is excessively

expensive to work in the 32-dimensional fingerprint space.

The adaptive expansion algorithm (Algorithm 2) is used to further expand the identified

low-energy region of the spanned domain space. Figure 2.14 (right) shows the added fin-

gerprints and the updated potential energy contour after the adaptive expansion procedure.

The algorithm adds 530 fingerprints to the candidate set, and DFT computations are done

for every 10th fingerprint added to the set, i.e., for a total of 53 fingerprints. The algorithm

stops when the estimated minimum does not change with 10 successive DFT computa-

tions. We observe that the algorithm succeeds in expanding the candidate set towards the

unknown true global minimum, which is what we desired!

Once a candidate set of fingerprints is obtained by the expansion algorithms, we explore

and exploit it for the global minimum of potential energy, using the Bayesian optimization

algorithm (Algorithm 3). The algorithm requires two inputs - the candidate set of con-

figurations C and their corresponding fingerprints X . The input X in this example is the

candidate set of 3, 200 + 530 = 3, 730 fingerprints that we obtained using the expansion

algorithms.

We will again use principal component analysis (PCA) to visualize the fingerprints

obtained in the Bayesian optimization procedure. The circles in Figure 2.15 are the can-

didate set of N = 3, 200 fingerprints. The potential energy was computed for a set of

320 + 53 = 373 fingerprints (in the adaptive domain space expansion algorithm), shown as
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Figure 2.14: (left): Potential energy contour of the candidate set of fingerprints obtained
after non-adaptive expansion; (right): Potential energy contour of the candidate set of fin-
gerprints obtained after adaptive expansion.

squares in Figure 2.15 (left). A Gaussian process model was developed using the potential

energy data of the 373 fingerprints. The model provided an estimate of the potential energy

surface along with uncertainty in the estimate. Then, the Expected Improvement (EI) crite-

rion was used to simultaneously exploit and explore the potential energy surface, to guide

the search towards the fingerprint having the minimum potential energy. The iterative pro-

cedure of updating the Gaussian process model, and adding a point in the known-data

based on the EI criterion is continued until the expected improvement becomes lesser than

a threshold value tEI . We chose tEI to be 0.001% of the current minimum value of potential

energy in the known-data. Thus, for the ith iteration, the threshold value is:

tEI = 10−5 ×min(e1, · · · , en+i). (2.12)

This is a reasonably low value as the potential energy in the known-data varies by 5%

around its mean. With the above threshold, the algorithm stopped after the 95th iteration.

The fingerprints iteratively added in the known-data are shown as triangles in Fig-

ure 2.15 (right). There are three points to note about the iteratively added fingerprints.
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First, 93 of the 95 fingerprints are selected in the region around the global minimum, which

shows that the algorithm does well in exploiting the “promising” region of the domain

space. Second, two fingerprints are selected in regions far away from the global minimum.

These are regions at the boundary of the domain space, where probably there is high un-

certainty in the potential energy estimate of the Gaussian process surrogate model. This

shows the exploratory nature of the algorithm, where it tries to find the global minimum in

regions other than the “promising region”. This exploratory feature of the algorithm makes

it better than the state-of-the-art approaches such as basin hopping and minima hopping,

which focus only on exploiting the “promising region” of the domain space for the global

minimum. Third, though the true global minimum was not a part of the candidate set, we

identified the fingerprint closest to it as the global minimum! Thus, the algorithm provided

a solution that is potentially very similar to the true global minimum.

Figure 2.15: Candidate set of 3, 200 fingerprints (circles), (left): initial set of 320 + 53 =
373 fingerprints for which the potential energy is computed using DFT (squares); (right)
iteratively selected 95 fingerprints during the Bayesian optimization procedure (triangles).

Figure 2.16 (left) shows the expected improvement as a percentage of the current min-

imum estimate of potential energy from the known-data. The expected improvement has a

decreasing trend with the number of iterations. As the algorithm learns the potential energy
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surface and exploits promising locations for global minimum, a lesser improvement in the

current global minimum estimate is expected in further iterations. Figure 2.16 (right) shows

the potential energy of the first n = 320 observations of the known-data (black circles), fol-

lowed by that of the 53 fingerprints (red circles) iteratively added to the known-data during

the adaptive expansion procedure, which are in-turn followed by the 95 fingerprints (blue)

added to the known data during the Bayesian optimization procedure. This figure makes it

clear that the non-adaptive expansion algorithm expands the domain space without consid-

ering the potential energy, the adaptive expansion algorithm drives the expansion towards

lower-energy regions, and the Bayesian optimization procedure explores the candidate set

and exploits the low-energy regions for the global minimum of potential energy.

Figure 2.16: (left): Percentage of expected improvement with respect to the current energy
minimum estimate; (right): Potential energy of all the fingerprints in the known-data -
for the initial known fingerprints (in black), for the fingerprints added by non-adaptive
expansion (in red), for the fingerprints added during the Bayesian optimization procedure
(in blue).

The algorithm’s output and our solution is the configuration corresponding to the fin-

gerprint selected in the 368th DFT computation, as it has the minimum potential energy

in the known-data. Note that this configuration is the most stable only in our candidate set
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of configurations, and is not necessarily the most stable configuration. Material scientists

need to perform the DFT-based local optimization at this configuration to find the closest

local minimum. Figure 2.17 shows the estimated stable configuration ofAl8, as obtained by

our expansion-exploration-exploitation framework. Our solution appears to be very similar

to true stable configuration of Al8 ( Figure 2.1). It seems that with the DFT-based local

optimization, our estimated configuration will converge to the true configuration!

Figure 2.17: (left): Configuration with the least potential energy estimated by our
expansion-exploration-exploitation framework.

2.6 Conclusion

We have developed an active learning method to obtain the most stable crystal struc-

ture configuration of a crystalline material given its chemical formula and the underly-

ing thermodynamic conditions - temperature and pressure. The novelty of our approach

is the expansion-exploration-exploitation framework that extends the traditionally used

exploration-exploitation Bayesian optimization framework to better achieve the objectives

of crystal structure prediction. The expansion algorithms ensure that the candidate set con-

tinues to expand with the addition of each fingerprint - first in arbitrary directions (with

respect to potential energy) to explore new and possible unusual domains of the PES, and

then towards lower-energy atomic configurations. The Bayesian optimization procedure

brings a balance to the contrasting components of exploration and exploitation. Methods

that tend to consider all possible atomic configurations, such as random-search [49], fail

59



in case of larger systems. The focus of these methods is skewed towards exploration. On

the other hand, methods that consider only “promising regions” such as minima-hopping

[56] fail in case of unexpected stable crystal structure configurations. The focus of these

methods is skewed toward exploitation.

The first part of our method is the non-adaptive domain space expansion algorithm,

which provides a candidate set of atomic configurations. There are two novel features of

this algorithm. First, the expansion is focused towards the under-represented regions of

the domain space. This makes the candidate set generation more efficient as compared to

approaches that are guided by randomness [48]. Second, our algorithm provides a space-

filling design without the knowledge of the boundaries of the design space. This is a novel

contribution to the field of experimental design, where most of the work on space-filling

design [24] is focused on cases of known design space.

The second part of our method is the adaptive domain space expansion. This step en-

sures that the local minima of all the low-energy regions are included in the candidate set.

Even if the non-adaptive expansion algorithm “touches” a low-energy region, the corre-

sponding local minimum will be included in the candidate set.

The third part of our method is the Bayesian optimization algorithm. For Al8, the

algorithm identified the most stable crystal structure configuration with additional DFT

computations for only 95 or 3% of the candidate set configurations. This shows that once

a representative candidate set of fingerprints is identified, the optimization is very efficient.

This also shows that the Gaussian process model is appropriate for modeling the highly

non-linear and multi-model potential energy surface.

Although our method worked well for Al8, there are a couple of challenges that still

need to be addressed. First, the adaptive space exploration algorithm involves a fixed per-

turbation of the selected atomic configuration. This means that even if a large part of the

domain space is unexplored, the algorithm will take relatively small steps to fill the space.

The amount of perturbation should be adaptive, instead of fixed. The perturbation should
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initially be higher to rapidly span through the domain space. Once the convex hull of the

candidate set of fingerprints tends to stop expanding, then the perturbation amount must be

reduced. This will ensure that the entire domain space is explored even with a low budget

of the candidate set sizeN . Second, the Expected Improvement criterion is known to be too

greedy [77] in terms of favoring exploitation a lot more than exploration. The generalized

Expected Improvement criterion [78] involves an additional parameter that determines the

balance between exploration and exploitation. That parameter needs to be tuned to a value

that works best for crystal structure prediction.

Although we demonstrated our approach on a simple problem, the new concepts are

powerful and can easily be generalized to more realistic problems. However, heavy cal-

culations, e.g., DFT-based local optimizations, which may contain 102 − 103 single-point

DFT calculation, were avoided in this work. Therefore, further critical developments are

still needed for our approach to be used as a new structure prediction method.

We will address these challenges in a future work.
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CHAPTER 3

DESIGN OF ACOUSTIC METASURFACES WITH INDEPENDENT

AMPLITUDE AND PHASE CONTROL

3.1 Introduction

Acoustic metasurfaces are structures that modulate the acoustic properties, namely the

phase and amplitude of sound waves. When a sound wave strikes an acoustic metasur-

face, a part of it may be reflected from it, while the remaining part may be transmitted

through it. Thus, for a given acoustic metasurface (or the input), there are four acoustic

outputs - (1) Reflection amplitude, (2) Reflection phase, (3) Transmission amplitude, and

(4) Transmission phase. We will mention these as acoustic outputs from hereon, for brevity.

These outputs rely on the design of the geometry of the acoustic metasurface. In this work,

we have developed a method that provides the appropriate acoustic metasurface design to

achieve the desired acoustic outputs.

Physically, acoustic metasurfaces are an artificial sheet of material with subwavelength

thickness formed by different unit cells to modulate propagating sound waves [79]. The

ultrathin feature of the metasurfaces allows wave-matter interactions and wave manipu-

lations within a deep subwavelength space. This deep subwavelength wave modulation

functionality has enabled many applications of metasurfaces, including beam steering and

forming [80, 81], perfect sound absorbers [82, 83], high-speed communications and ground

cloaking [84, 85], all of which are critical for the development of underwater exploration,

non-invasive biomedical treatments, architectural designs, and noise control. In most of

these applications, independent control of the acoustic amplitude and phase profile is cru-

cial.

Despite the importance of metasurfaces, most existing designs lack the capability to
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control the acoustic amplitude and phase independently. This is critical for most practical

applications where the generation of an arbitrary wave pattern is significant for applications

such as, acoustic illusions [85], holography [86], signal multiplexing for high-speed com-

munications [87, 88], particle levitation and motion control [89]. A recent experimental

study has suggested the introduction of controlled energy loss in the design of metasur-

faces to realize a decoupled modulation of sound amplitude and phase [90]. However, the

intrinsic loss resulted from this design method limits the efficiency of acoustic wave mod-

ulation. Yet, the additional loss parameter increases the complexity of the problem when

compared to previous geometry-based metasurface designs that prevent the development of

a systematic analytical design methodology for arbitrary acoustic metasurfaces with inde-

pendent amplitude and phase controllability for different applications. Moreover, the loss

design demonstrated can only be used for the modulation of reflected acoustic waves [90].

Let us consider the challenge in designing an acoustic metasurface for independent

phase and amplitude modulation. We know that change in the geometry of the metasurface

usually leads to the variation in acoustic outputs. A systematic discretization method is

typically used to characterize the geometry of the acoustic metasurface and study its effect

on the amplitude and phase of the transmitted and reflected acoustic waves. Because of the

large number of possible geometries, performing simulations on all of them is practically

infeasible. For example, a 5-by-5 meshed unit cell can produce more than 33 million pos-

sible geometries. This makes it challenging to understand the dependence of the acoustic

outputs on geometry, and use it to identify the geometry required for the desired acoustic

outputs. The state-of-the-art machine learning models are all data-driven models and do not

obey physical principles. Therefore, even if we develop a model on a sample of simulated

geometries, it will not perform well when extrapolation in the model space is needed.

In this work, we have proposed an approach to address the above challenges, and mod-

ulate the acoustic outputs independently. All possible geometries are characterized using

a spatial discretization method. We propose a novel machine learning algorithm based on
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the non-adaptive expansion algorithm described in Chapter 2. The algorithm starts from

a set of few initial geometries, and then uses them to select geometries that efficiently fill

the space of the desired acoustic outputs. The key feature of the algorithm is that it iter-

ates through only a small fraction of the possible number of geometries to find the set of

geometries that span the entire domain space of the desired acoustic outputs. Then, given

the desired output, we can pick the geometry that corresponds to the output. Note that the

domain space of transmitted and reflected amplitudes is [0, 1], while the respective phases

are in [−180◦, 180◦].

This chapter is organized as follows. In Section 3.2, we describe the assumptions be-

hind the acoustic metasurface modeling, characterization of the acoustic metasurface ge-

ometry, and the full wave simulation setup. In Section 3.3, we mention the objectives and

preliminary simulation results. In Section 3.4, we describe the redundancies in the acous-

tic metasurface geometry with regard to the acoustic outputs. In Section 3.5, we describe

our proposed methodology to achieve the objectives. In Section 3.6, we present the results

obtained. We conclude the chapter with some remarks in Section 3.7.

3.2 Modeling the acoustic metasurface and simulation setup

3.2.1 Assumptions

Comparing the impedance of the solid materials used in the fabrication of metasurfaces,

the acoustic impedance of air is significantly smaller. This strong acoustic impedance mis-

match allows us to assume the structures formed by solid materials are hard wall acoustic

boundaries. Another assumption in the design of the acoustic metasurface unit cells is that

the couplings between the unit cells are assumed to be zero, where the acoustic metasur-

face is an array of repeated unit cells. This is a common assumption in metasurface designs.

The coupling between the unit cells has been shown to be insignificant in many previous

experiments with pure phase modulating metasurfaces [80, 81, 91, 92, 93, 94, 95, 96, 97].

Meanwhile, the air is assumed to be non-slippery at the interface between the solid and
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air, and the classical fluid boundary layer assumption is used in the modeling to calculate

the thermoviscous loss when small air channels exist in the design. Based on these two

assumptions, we will perform the full wave simulations in COMSOL multiphysics.

3.2.2 Characterizing the geometry of an acoustic metasurface

To characterize all possible geometries for the design of an acoustic metasurface, we will

discretize the two-dimensional continuous space into a finite number of elements. Note

that this design method can be generalized for the development of three-dimensional struc-

tures as well. The size of the unit cell will first be specified in a rectangular region whose

sides are functions of the wavelength of the target acoustic waves, as shown in Figure 3.1.

The height of the unit cell is chosen to be 1/3 of wavelength (λ/3) to cut off higher or-

der acoustic waveguide modes. Because the goal of the development of metasurfaces is

to modulate acoustic waves with the smallest possible space, the width of the specified

rectangular region is specified to be λ/3.

Figure 3.1: Single unit cell simulation in a one dimensional waveguide.

We discretize the unit cell into a grid of mn equal-sized square-shaped elements, where

m is the number of elements perpendicular to the waveguide, and n is the number of ele-

ments along the length of the waveguide. Figure 3.1 shows a unit cell with m = n = 4,

resulting in 16 elements. Each element can either be filled with a solid material or be

empty. The solid material is assumed to act as a hard wall acoustic boundary, while an

empty element is filled with air, where the acoustic waves can propagate.

We encode an element filled with a solid material as 1, while an empty element as 0.
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Thus, the geometry of the unit-cell, which serves as the input, is an m × n grid of 0s and

1s. We need to choose an optimal grid size, i.e. optimal values for m and n, to perform

the simulations. If the grid size is too small, there may not be enough number of distinct

geometrical structures that can span the desired range of the amplitude and phase outputs.

We wish to modulate amplitude to any value in [0, 1] normalized by the incident wave, and

the phase to any value in [-180º, 180º]. On the other hand, if the grid size is too large,

it may lead to unnecessarily large number of geometries, leading to redundant outputs.

For a grid size of m × n, the number of possible geometries of the unit cell, where each

element can be either 0 or 1, is 2mn. For example, for a grid size of 4×4, the number of

possible geometries is 216 = 65,536. Performing simulations for all these geometries can

be very time consuming. Thus there are two important questions to answer: (i) what is the

minimum grid size (m and n) that can generate the phase and amplitude for both reflection

and transmission in the desired range with reasonable precision? and (ii) Given a grid size,

which geometries (out of 2mn) should we consider to achieve the desired span of acoustic

outputs.

3.2.3 Full wave simulations

The full wave simulations of acoustic wave modulation by a single metasurface unit cell

are performed in the Pressure Acoustic Module of COMSOL Multiphysics. Because we

assume that the coupling between the unit cells is zero, each individual unit cell can be

simulated separately. In order to calculate the amplitudes and phases of propagating acous-

tic waves transmitted and reflected by each unit cell, we will apply a one-dimensional

acoustic waveguide as shown in Figure 3.1. The top and bottom boundaries will be set to

be sound hard boundaries, which confines the acoustic energy inside the one-dimensional

waveguide. An acoustic plane wave will be incident from the left end of the waveguide,

whose phase will be set such that the incident acoustic phase is zero at the left boundary

of the metasurface unit cell. The transmission and reflection will be calculated by the pres-

66



sure fields along two vertical lines with a distance to be an integer multiple of the targeted

acoustic wavelength (nλ) from the right and left boundaries of the metasurface unit cell,

respectively, to avoid near-field effects. Note that the incident acoustic wave is known and

the reflected acoustic wave equals the difference of the calculated pressure field and the in-

cident acoustic wave at the same line. Because the distance between the lines used for the

calculation of transmission and reflection and the boundaries of the unit cell is an integer

multiple of wavelength, the acoustic phases retrieved are exactly the same as the phases

at the boundaries of the unit cell, and therefore, identical to the transmitted and reflected

phases. Figure 3.2 visualizes a COMSOL simulation for a 4× 4 geometry. We can see the

near-field effects at the boundaries of the metasurface. However, these effects disapper as

we move farther away from the metasurface, and the amplitude and phase stablize across

the cross-section of the wave. This modeling method is a classical method for the analysis

of metasurface performance used in most previous studies. The amplitudes and phases of

acoustic waves transmitted and reflected from all the geometries in the unit cell are the

acoustic outputs that we intend to control.

3.3 Objectives and preliminary simulation results

Now that we have described the modeling framework, we will mention the precise objec-

tives of this work. As described in the previous section, the larger the grid size, the higher

will be the number of possible geometries. Higher number of geometries will imply more

distinct paths for the acoustic wave, which in turn will lead to a broader range of acous-

tic outputs. However, as the grid size increases, it becomes more expensive to physically

construct the acoustic metasurface. It also increases the redundancy in the acoustic outputs

(described later) obtained from distinct geometries. Thus, our first objective is to find the

smallest grid size (or the optimal grid size), (m×n)optimal, for which the observed acoustic

outputs span over the entire domain space of the desired outputs. Once the optimal grid

size is obtained, our second objective is to develop an algorithm to identify the geome-
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Figure 3.2: Example visualizing a COMSOL simulation for a 4× 4 geometry.

try, based on the optimal grid size, that can produce the desired acoustic outputs, or the

desired combination of reflection amplitude, reflection phase, transmission amplitude and

transmission phase. Note that all the acoustic outputs except the reflection and transmis-

sion amplitudes are independent of each other. The reflection and transmission amplitudes

are related by the principle of conservation of energy (explained later). Thus, our second

objective is to provide geometries that can independently control three acoustic outputs -

transmission phase, reflection phase, along with either the transmission amplitude or the

reflection amplitude.

For finding the optimal grid size that can cover the entire range of the desired acous-

tic outputs, we will first consider small grid sizes for which it is practically feasible to

simulate all possible geometries on the COMSOL Multiphysics software. We perform a
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set of preliminary simulations for which we consider grid sizes containing a maximum of

16 elements, which corresponds to a maximum of 216 = 65, 536 distict geometries. This

included grid sizes such as 4× 2, 8× 2, 2× 8 and 4× 4.

Figure 3.3 and Figure 3.4 visualize the simulation results for all the grid-sizes under

consideration. These results help us make a couple of key inferences. First, it is clear that

even the largest grid sizes with 16 elements are not sufficient to span the entire domain

space of the reflection and transmission outputs. Thus, we infer that the optimal grid size

will have more than 16 elements. Second, the spanned space of acoustic outputs increases

with increase in the grid size. However, for grid-sizes with the same numbers elements, the

increase in spanned space for both the transmission and reflection outputs seems to be the

highest when m = n. Thus, we infer that the optimal grid size will have m = n. In other

words, our first objective is to find the optimal grid-size having the form (n× n)Optimal.

Figure 3.3: Visualizing reflection outputs for different grid sizes of the unit cell.
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Figure 3.4: Visualizing transmission outputs for different grid sizes of the unit cell.

Figure 3.5 shows the output from the simulation of a 4× 4 grid as a scatterplot matrix.

We can see an almost perfect relationship between the amplitudes of reflected and trans-

mitted waves. This is expected because in our simulations we have used lossless acoustic

elements. According to the conservation of energy in a lossless acoustic system, the two

amplitudes satisfy the relationship:

T 2 +R2 = I2, (3.1)

where T,R, and I are the amplitudes of transmission, reflection, and incidence, respec-

tively.

Analyzing these results, we observed that some distinct geometries provide the same

acoustic outputs. It appeared that due to certain geometrical symmetries, there was re-

dundancy in geometries. In the next section, we will show that discarding such redundant
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Figure 3.5: Scatter plot matrix of output data from the simulation (with lossless acoustic
elements) of a 4× 4 grid.

geometries from consideration greatly reduces the total number of possible geometries.

Such a reduction is critical for analyzing geometries with higher grid-sizes.

3.4 Redundancies in acoustic metasurface geometry

A big proportion of the possible 2mn geometries are redundant, producing the same output,

and thus can be ignored. Redundancy is present because of the following reasons, which

we explain using the 4× 4 grid as an example.

a. Vertical flip: If the geometry is flipped vertically, then it produces the same output.

For example, geometry pairs such as those shown in Figure 3.6 are redundant, and one of

each pair can be discarded. We remove the redundant geometries, which results in data

reduction by around 50%. For the 4 × 4 example, the number of geometries reduce from

65, 536 to 32, 896.

b. Redundant solid material: In some cases, the solid material in an element of the grid

may be redundant. This may happen when the acoustic wave does not strike the element,

when other elements “shield” the element under consideration. Figure 3.7 shows examples
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Figure 3.6: Geometries flipped along the horizontal axis produce the same output.

of redundant geometries. For the 4 × 4 example, the number of geometries further reduce

from 32, 896 to 10, 146.

Figure 3.7: Geometries with redundant solid materials produce the same output.

c. Translation of sub-geometry: If the entire set of solid cells shifts along the direction

of the incident wave within the unit cell, then all the acoustic outputs are same, except

the reflection phase. The reflection phase changes by a constant per unit translation of the

solid unit cells. Figure 3.8 shows an example with this type of redundancy. For the 4 × 4

example, the number of geometries further reduce from 10, 146 to 8, 912.

Figure 3.8: Translation of the set of solid unit cells along the direction of the acoustic waves
produces the same or perfectly correlated output.

d. Vertical flip along multiple horizontal axis: This redundancy is found in geometries

that are symmetric along the central horizontal axis, or produce the same geometry with

a vertical flip. If the upper half and lower half of these geometries are flipped along their

respective horizontal axis, then the same acoustic outputs are obtained. Figure 3.9 shows
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examples of such redundant geometries. For the 4× 4 example, the number of geometries

further reduce from 8, 9126 to 8, 838 leading to a total reduction of 87% in the data.

Figure 3.9: Geometries that are symmetric along the central horizontal axis lead to the
same output when their upper and lower halves are flipped vertically along their respective
horizontal axis.

e. Horizontal flip: The transmission amplitude and phase do not change on flipping

the geometry horizontally along its central vertical axis, as the acoustic wave still passes

through the same path, albeit in the opposite direction. Figure 3.10 shows examples of

such redundant geometries. For the 4 × 4 example, the number of geometries with regard

to transmission further reduce from 8, 838 to 4, 184 leading to a total reduction of 94% in

the transmission data.

Figure 3.10: Geometries flipped along the vertical axis produce the same transmission
output.

The algorithms to eliminate each of the above redundancies are given in Appendix A.

3.5 Methodology: Acoustic domain space expansion algorithm

Although identification of redundancies eliminates a large proportion of the possible ge-

ometries, the reduction is still insufficient to consider higher grid-sizes. For example, let

us consider the grid-size of 5 × 5. The total number of geometries before reduction is

225 = 33 million. Even with a 99% reduction in the total number of geometries under con-
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sideration, it will be infeasible to consider the remaining 1%, or 330 thousand geometries.

Thus, elimination of redundancy may assist, but will not suffice to achieve our objectives.

As we cannot simulate even all possible non-redundant geometries, we should iden-

tify and simulate only those that will be sufficient to fill the domain space of the acous-

tic outputs. This problem is similar to the materials crystal structure prediction problem

of Chapter 2. For crystal structure prediction, we wanted to have a set of fingerprints

that spanned the entire domain space of fingerprints. To obtain such a set, we used the

non-adaptive expansion algorithm (Algorithm 4). The algorithm began with a few known

configurations, and perturbed the configuration corresponding to the most sparsely located

fingerprint. This generated a fingerprint in the lesser represented regions of the domain

space, and either expanded or filled a gap in the domain space spanned by the set of finger-

prints. Similarly, in this problem, we wish to obtain a set of acoustic outputs that span their

entire domain space. We are performing COMSOL simulation to find the acoustic outputs,

instead of fingerprinting a crystal structure configuration to find the fingerprint. We will

start with simulating the outputs of a few geometries. Let G = {g1, · · · , gI} denote the

set of I initial geometries, and X = {x1, · · · ,xI} denote the set of their corresponding

acoustic outputs. Then, the geometry corresponding to the most sparsely located acoustic

output will be “perturbed” (perturbation of a geometry will be explained later). This will

generate another geometry whose output is likely to be in the sparsely populated region of

the output domain space. This in turn will lead to filling the “gaps” in the domain space of

the desired acoustic outputs.

Te purpose of perturbation is to produce a geometry that produces an output that is

similar to the output of the geometry that is being perturbed. Intuitively, a similar geometry

is likely to produce a similar output. So, we perturb the chosen geometry in one of the

following ways to produce a similar geometry: (1) Change one of the unit-cell elements

from solid to empty, (2) Change one of the unit-cell elements from empty to solid, or (3)

Interchange the position of a solid element with a neighboring empty element. The type of
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perturbation is randomly chosen from the above three types. Figure 3.11 shows an example

of the three types of perturbation.

Figure 3.11: Examples of geometries obtained by perturbation of a geometry.

Even though the non-adaptive expansion algorithm (algorithm 4) can be directly used

for this problem, there are three unique characteristics of this problem which help us in

making the algorithm much faster. First, we know the domain space of the desired outputs.

So, the algorithm does not need to “learn” the boundaries of the domain space, which

saves several iterations. Second, after obtaining the perturbed geometry, we perform a

redundancy check, and discard the geometry if it is redundant (as described in Section 3.4)

with any of the geometries already existing in the set of geometries for which acoustic

outputs have been obtained using COMSOL simulations. Thus, each simulated geometry

produces a unique acoustic output, which leads to a faster filling of the domain space.

Third, since the domain space of the desired acoustic outputs is known, we know when the

outputs have spanned the entire domain space. This gives us a precise stopping criterion.

We stop the algorithm when the largest gap in the domain space is lesser than the tolerance,

say tol, of the desired acoustic outputs. Although there are four desired acoustic outputs,

reflection amplitude and transmission amplitude are related as shown in (Equation 3.1).
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Thus, with this algorithm we aim to fill the three-dimensional space of reflection amplitude,

reflection phase and transmission phase.

The algorithm used in this work is based on the non-adaptive expansion algorithm (Al-

gorithm 4), and is called the acoustic domain space expansion algorithm. It is summarized

as Algorithm 7.

Algorithm 7 : Acoustic domain space expansion
1: Input G,X , tol
2: i← I
3: ComputeR = {r1, · · · , rI} {Space spanned by each acoustic output}
4: ComputeD = {d1, · · · , dI} {Distance to the nearest neighbor of each acoustic output}

5: t← mean(D)
6: Gapmax ← max(D)
7: while Gapmax > tol do
8: per← arg maxi ri
9: Perturb gper to generate gnew

10: if gnew is redundant, goto (9)
11: xnew ← COMSOL simulation(gnew)
12: Compute dmin {Distance to the nearest neighbor of xnew}
13: if dmin > t then
14: G ← append(G, gnew)
15: X ← append(X ,xnew)
16: i← i+ 1
17: UpdateR,D
18: Gapmax ← max(D)
19: end if
20: t← 0.5(t+ dmin)
21: end while
22: Output G,X

3.6 Results

We used the acoustic domain space expansion algorithm to simulate geometries for higher

grid-sizes such as 5× 5, 6× 6, and 7× 7. Figure 3.12 shows the scatter plot of the acoustic

outputs for the 7× 7 grid size. With this grid size, the acoustics outputs obtained span the

entire desired domain space of the acoustic outputs, with a tolerance of 5.4%. Thus, the
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7 × 7 grid-size is the optimal grid size, which addresses our first objective. As reflection

amplitude is related to the transmission amplitude by the conservation of energy principle,

it is impossible to control it independently with transmission amplitude, and thus we have

ignored it in our method.

Note that our algorithm simulated only 24, 000 geometries, which is only 4.2× 10−9%

of the 563 trillion possible geometries for the 7×7 grid-size. Thus, our algorithm addressed

the problem of infeasibilty of simulating geometries of higher grid-sizes.

Figure 3.12: Scatter plot matrix of output data from the simulation (with lossless acoustic
elements) of a 7× 7 grid.
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With our algorithm, we have collected the simulation data for the 7 × 7 grid-size, i.e.,

the set of geometries and the corresponding acoustic outputs. Given a desired output, we

will pick out a geometry that provides the output within 5.4% error. Note that 5.4% will be

the maximum error among the errors for each of the individual four acoustic outputs. Thus,

using the geometries selected by our algorithm, we will be able to independently modulate

the phase and amplitude of the reflected and transmitted acoustic waves. This addresses

our second objective.

3.7 Conclusion

In this work, we have developed a novel acoustic expansion algorithm to find the acoustic

metasurface geometries that efficiently fill the domain space of the set of desired acoustic

outputs - namely the reflection amplitude, reflection phase, transmission amplitude and

transmission phase. The key feature of our algorithm is that it simulates only a small

fraction of the total number of possible geometries to obtain the set of relevant ones. Thus,

it addresses the infeasibility issue of simulating all possible geometries, and provides a

small candidate set of geometries to independently modulate the phase and amplitudes of

the reflected and transmitted acosutic waves.

Our approach has several advantages over the traditional machine learning algorithm.

First, the traditional algorithms will work well only within the domain space of the data

used to train them. They often fail to predict the geometry that will provide them the

acoustic outputs not observed in the data. Second, the traditional algorithms will depend

on the grid-size. A set of predictors significant for a given grid-size may not be significant

for another grid-size. This will lead to a different model for each grid-size, and add to com-

plexities in identifying the optimal grid-size. Third, our approach can be easily extended

to modulate additional acoustic outputs, such as the backward reflection phase. It will only

add a dimension to the domain space to be filled. However, the traditional machine learn-

ing algorithm may require separate training on the data corresponding to the new acoustic
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output.

In future work, we will extend our acoustic domain space expansion algorithm to mod-

ulate additional acoustic outputs independently. Even though the phases for forward and

backward transmissions are identical (as seen in Section 3.4), the reflection phases for for-

ward and backward propagations can be different . Our next goal will be to control the

phases of the two reflections independently. This is typically important for metasurface

designs because independent control of the two reflection phases can lead to larger steering

angle of the acoustic beamforming and asymmetric noise cancellation.
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APPENDIX A

DESIGN OF ACOUSTIC METASURFACES WITH INDEPENDENT

AMPLITUDE AND PHASE CONTROLS

Algorithm 8 can be used to obtain the vertically flipped geometry.

Algorithm 8 : Vertical flip

1: Input g,m, n {n: number of columns; m: number of rows}
2: for i in 1:n do
3: for j in 1:m do

gvert[j][i] = g[m+ 1− j][i]
4: end for
5: end for
6: Output gvert

Algorithm 9 can be used to identify if the geometry is redundant due to the presence of

redundant solid material.

Algorithm 9 : Redundant solid material

1: Input g,m, n {n: number of columns; m: number of rows}
2: Find empty elements indices using g,m, n {indices of empty elements of the

grid}
3: Find wave path {indices of empty elements in the first column of the grid}
4: current wave path← first col empty
5: while current wave path changes after each iteration do
6: for e in wave path do
7: Find ae {ae: empty indices adjacent to e}
8: new path← intersect(ae,empty element indices)
9: wave path← append(wave path,new path)

10: end for
11: current wave path← wave path
12: end while
13: if wave path already exists in the candidate set of geometries then
14: redundant← 1
15: else
16: redundant← 0
17: end if
18: Output redundant
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Algorithm 10 can be used to identify if the geometry is redundant due to translation of

a sub-geometry.

Algorithm 10 : Translation of sub-geometry

1: Input g,m, n {n: number of columns; m: number of rows}
2: Find empty elements indices using g,m, n {indices of empty elements of the

grid}
3: Find solid elements indices using empty elements indices {indices

of solid elements of the grid}
4: if max(solid elements indices) < mn − n or

min(solid elements indices)> n then
5: Alternate solid elements indices← solid elements indices +

i×h, where i ∈ Z such that Alternate solid elements indices∈ [1,mn]
6: end if
7: for a in alternate solid elements indices do
8: if a already exists in the candidate set of geometries then
9: translated subgeometry← 1

10: else
11: translated subgeometry← 0
12: end if
13: end for
14: Output translated subgeometry

Algorithm 11 can be used to obtain the vertically flipped geometry along multiple hor-

izontal axis, and Algorithm 12 can be used to obtain the horizontally flipped geometry.
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Algorithm 11 : Vertical flip along multiple horizontal axis

1: Input g,m, n {n: number of columns; m: number of rows}
2: Find gvert using Algorithm 8.
3: if gvert = g then
4: mc← ceiling(m/2)
5: mf ← floor(m/2)
6: for i in 1:n do
7: for j in 1:mf do

gvert2[j][i] = g[mf + 1− j][i]
8: end for
9: for j in (mc+1):m do

gvert2[j][i] = g[2mc+ 1− (j −mf)][i]
10: end for
11: end for
12: end if
13: Output gvert2

Algorithm 12 : Horizontal flip

1: Input g,m, n {n: number of columns; m: number of rows}
2: for i in 1:m do
3: for j in 1:n do

ghor[i][j] = g[i][m+ 1− j]
4: end for
5: end for
6: Output ghor
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