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SUMMARY 

Communication is critical to team coordination and interaction because it provides 

information flows allowing a team to build team cognition, which contributes to overall 

team performance. In recent years, autonomous (AI) team members are beginning to be 

considered as effective substitutes for human teammates. However, research has shown 

that AI team members may lack the communication skills that are required for effective 

team performance (McNeese et al., 2018). To better understand which aspects of 

communication an AI team member performs differently compared to a human team 

member, and how they impact team performance, the current study analyzes 

communication features of three-person teams that include all human teams and human-AI 

teams operating in a remotely piloted aircraft system (RPAS). The current study analyzed 

communication pattern predictability (communication determinism) and transition 

probabilities to measure communication flow and Latent Semantic Analysis (LSA) to 

measure communication content. The current study found that both communication flow 

and content distinguished communication in all-human teams from communication in 

human-AI teams and found that these communication flow and content features predicted 

team performance in all-human versus human-AI teams. In this way, the current study 

hopes these communication differences can provide feedback and suggestions to future 

adoption of AI as a teammate in team training and team operations. 
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CHAPTER 1. INTRODUCTION 

People can accomplish more work in a team setting than doing work alone (Gorman 

& Cooke, 2011). This is the case because most work demands more cognitive and/or 

physical skills and resources than a single person can provide. Increasingly, team-based 

work has become omnipresent in military and non-military settings (e.g., Salas et al., 2008; 

Chen, 2018; Gorman et al., 2018). Teaming in the workplace has increased significantly 

over the past several decades due to changes in the work environment as well as a large 

number of positive research outcomes from team research (Wynne & Lyons, 2018). 

Communication is one of the primary factors that researchers focus on when studying 

teamwork, because it has been consistently linked to team performance outcomes (e.g., 

Marks et al., 2001; Cooke et al., 2003) and, indeed, has been proposed as an embodiment 

of team cognition (Cooke et al., 2013). 

Traditionally, researchers define teamwork as a process that involves two or more 

humans working interdependently toward a shared and valued goal (Salas et al., 1992). 

However, with advances in technology, teamwork has been increasingly extended to teams 

of human, robots, and artificial intelligence (AI). Therefore, it is necessary to investigate 

communication patterns not only in human-human teams, but also in human-AI teams to 

understand differences in human-machine teamwork. The purpose of this study is to 

investigate whether communication content (what is said) and/or flow (who said it and 

when) distinguish communication in all-human teams from communication in human-AI 

teams to learn which aspects of communication predict team performance in all-human 

versus human-AI teams. 
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1.1 Team Communication 

Team communication can be defined as exchanging information between two or 

more team members through verbal and/or nonverbal channels (Mesmer-Magnus & 

DeChurch, 2009) and has been studied as interdependent team behaviors that continuously 

influence team performance outcomes (Marks et al., 2001). Communication is considered 

critical to teamwork and coordination because it provides information flows allowing the 

team to build team cognition, which contributes to situation awareness, decision making, 

and action at the team level (Cooke et al., 2003). Thus, team communication (verbal 

communications and nonverbal communications) has been a major focus when conducting 

teamwork analysis. Foushee and Manos (1981), Orasanu (1990) and Mosier & Chidester 

(1991), for instance, found that better-performing teams communicated with a higher 

overall frequency compared to lower performing teams. However, there is also evidence 

that shows that overall frequency of communication is not the only predictor of team 

performance. Jentsch and colleagues (1995) discovered that communication content also 

matters. They found that teams who communicate in more standardized ways, made more 

leadership statements, and talked more about what they observed in the environment 

identified a problem significantly faster than those who used fewer of these communication 

strategies, though they were not faster in solving the identified problem. Though the 

relationships between communication within teams and team performance depends largely 

on context (Urban et al., 1995), the studies described above suggest communication as a 

foundational mechanism that contributes to effective teamwork.  

Compared to the somewhat mixed results regarding communication frequency and 

performance, Marlow and colleagues’ meta-analysis (2018) indicates a stronger 
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relationship between communication quality and team performance. Drawing from various 

studies analyzing communication quality and/or frequency, Marlow et al., suggest that the 

act of providing too much information during the communication process is not always 

beneficial, as it can create unnecessary noise. Furthermore, information elaboration that is 

defined as the degree to which team members elaborate information shared in the team, 

was identified as having a stronger relationship with team performance (Homan et al., 

2008; Marlow et al., 2018). Therefore, it is useful to take both communication frequency 

and content quality into account when investigating the relationship between 

communication and performance in teams. 

Communication is an important aspect of team performance in all-human teams, but 

less is known about teams that consist of human and AI team members. Traditional views 

on human-centric automation put the human as an authority figure and limited the 

capabilities of AI (Chen, 2018). The AI can be referred to as automation in this context and 

requires the human operator’s control. Although human-automation interaction has been 

studied thoroughly, that research may not apply well with the current understanding of the 

role of AI in teams (Chen, 2020). As technologies advance, researchers have begun to 

consider AI as fully fledged teammate working with human operators in the team setting 

(McNeese et al., 2018). Researchers in recent years have argued that it is better to enable 

dynamic integration of information between human and AI agents through communication 

that depended on characteristics of the human and AI agent, the context of the task 

environment, and the task goals (Marathe et al., 2018). 

An autonomous AI teammate is defined as a type of technology that can collaborate 

with humans as teammates and perform essential tasks, including making decisions and 
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executing actions on its own, and has the functions (e.g., communication) required for 

teamwork (McNeese et al., 2018). In their study, McNeese and colleagues (2018) 

compared human-AI teams to all-human teams, including control teams that consisted of 

three novice human operators, and expert teams in which an experimenter served as an 

expert pilot. The researchers found that although the human-AI teams processed targets in 

a less efficient manner compared to both the control and expert conditions, because they 

exhibited different types of communication patterns to process targets (i.e., requesting 

information more and providing information less compared to all-human teams), overall 

they performed approximately the same compared to teams in the control condition. This 

led the researchers to conclude that synthetic AI teammates might replace human 

teammates for team training and one day might replace human teammates to conduct real-

world missions that are difficult or dangerous for humans. 

Researchers who propose human-AI teaming as a future direction came to the 

consensus that bidirectional communication should be implemented, allowing the AI and 

human team members to understand each other’s state (Marathe et al., 2018; Shively et al., 

2018). Previous research that focused on human teammates’ language preferences in 

human-robot interaction suggested that from a human teammate’s perspective, interacting 

with autonomy that communicates like a human is preferred (Scalise et al., 2018). 

However, technical constraints have limited the ability for AI to communicate like humans 

under many circumstances. Furthermore, it might not always be best to attempt to create 

an AI that communicates just like a human, because it makes the system overly complex 

to maintain its function both from a hardware level and from a software level (How, 2016). 
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At a minimum, the AI should be capable of sending, receiving, and replying to messages 

from human team members. 

1.2 The Current Study 

What AI communication characteristics need to be considered for a human-AI team 

to function most effectively? The current study seeks to answer this question by comparing 

all-human and human-AI team communication content (actual information shared between 

team members) and flow (who is communicating to whom and when,). To begin to 

determine whether communication features distinguish team types (i.e., human-AI vs. all-

human team), an initial discriminant analysis on rudimentary communication flow 

measures from a previous experiment was conducted. Either two human teammates worked 

with an autonomous AI teammate, or all teammates were human. All teams operated a 

simulated remotely-piloted aircraft (RPA) to take photos of ground targets. The pilot 

analysis showed promising results by identifying features of communication flow that 

distinguished between all-human and human-AI teams (described later in the Data Analysis 

section). However, that pilot analysis is substantially extended in the current study. 

Because the AI’s communication capabilities are limited compared to a human 

operator (e.g., AI is not able to elaborate information sent from human teammates if the 

message is not written in a format that can be processed by the agent), the communication 

frequency in human-AI teams is likely less than in all-human teams. In addition, human 

operators can better elaborate on the information even if the information is not provided in 

a full sentence; hence, the current study expect all-human teams to process information 

more efficiently than human-AI teams. Learning from the previous studies regarding 
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communication frequency and quality, the current study predicts that certain aspects of 

communication flow and content can serve as classifiers of all-human vs. human-AI team 

interaction. Therefore, the current study’s hypotheses examine whether communication 

flow and content are significant classifiers that can be used to distinguish between all-

human and human-AI teams. 

Previous research (McNeese et al., 2018) suggested that human-AI teams perform as 

well as all-novice human teams, but teams that included an expert team member performed 

the best. Although human operators are not as restricted in how they share information, 

they were trained with the same information, which included example messages that a 

specific role would send to other roles. In the actual missions, members in the all-novice 

teams might still have used the example messages they learned in the training to complete 

the mission. However, the communication content in teams that have an expert team 

member might include more variety. For example, the expert would initiate more positive 

information such as “thanks” or “roger that”. This communication content difference can 

also lead to communication flow differences, such as promoting closed loop 

communications in teams with an expert. Therefore, the current study hypothesizes that 

both communication content and flow can explain the performance differences in McNeese 

and colleagues’ study. 

For communication flow, the current study examined measures of communication 

determinism and transition probabilities between team members. Communication 

determinism is often used to explore system transitions—the ability for teams to rapidly 

transition their coordination patterns in response to the changing task environment—which 

includes changes in team communication flow (Gorman et al., 2012). According to 
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previous studies (Gorman et al., 2010; Gorman et al., 2012), intact teams exhibit rigid 

coordination dynamics—reflecting inflexibility in their coordination patterns—and, 

therefore, generate high determinism. For the current study, although teams in the human-

AI condition, the all-novice (“benchmark”) condition, and the expert conditions are all 

intact teams, the flexibility for teams in the human-AI condition is limited because the 

agent can only recognize communication sequences following specific rules. Therefore, 

the current study expects teams in the human-AI condition to have higher determinism than 

teams in the other two conditions.  

For transition probabilities, due to the synthetic agent’s limited coordination skills, 

participants must communicate with the synthetic agent following a set of communication 

guidelines provided to them. Thus, it is expected that there will be less communication 

when the AI agent serves as a teammate, compared to teams with all human teammates. 

Furthermore, due to the rather fixed communication happening between human operators 

and the AI teammate, the current study expects longer “chains” (i.e., significant sequences 

of communication transitions) in human-AI teams, as their communication are less flexible 

and should follow more predictable sequences. This prediction is also logically consistent 

with increased determinism in these teams. Taken together, the current study hypothesizes 

that communication flow combining communication determinism and transition 

probabilities should discriminate between all-human and human-AI teams.  

Hypothesis 1: Communication flow should discriminate between all-human and 

human-AI teams. 
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Hypothesis 2: Teams that include the AI as a teammate have higher determinism than 

all-human teams.  

Hypothesis 3: Less communication occurs when the AI serves as a teammate 

compared to all-human teams. 

Hypothesis 4: Teams that include the AI as a teammate have longer chains compared 

to all-human teams. 

For communication content, because the interaction task that each team in this study 

uses is relatively fixed - the navigator always needs to send waypoint information to the 

pilot, the pilot always needs to confirm the settings are sufficient for the photographer to 

take a good photo, and the photographer always needs to notify the pilot and the navigator 

that a good photo is taken; the current study expects the communication content in all-

human and human-AI teams to be limited to the task itself. In addition, the AI team member 

works with a restricted vocabulary, which should cause certain communication content 

(e.g., positive, closed loop communication) to be different between all-human teams and 

human-AI teams. Thus, the current study hypothesizes that communication content should 

also discriminate between these team types. 

Hypothesis 5: Communication content should discriminate between all-human and 

human-AI teams. Specifically, due to differences in restricted vs. more open-ended 

vocabulary, human-AI, all-novice, and expert teams should form unique clusters in 

terms of semantic similarity. 
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Finally, based on a previous study suggesting that the performance of expert teams 

was better than the performance of all-novice and human-AI teams (McNeese et al., 2018), 

the current study expects similar results in this study.  

Hypothesis 6: Communication flow and content of the all-human teams (all-novice; 

expert) and human-AI teams should predict team performance differences across 

these conditions. 

By testing these hypotheses, the communication feature and pattern analyses in the 

current study can help us understand whether and how communication differs between 

human-AI teaming to all human teaming, and how those communication differences are 

related to team performance. 
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CHAPTER 2.  METHODS 

2.1 Participants 

For the current study, data were collected at the Cognitive Engineering Research 

Institute in Mesa, AZ. Seventy graduate and undergraduate students comprising 30 teams 

were recruited. The 30 teams were divided into three conditions. In the benchmark 

condition, each team included three naïve participants. In the expert and human-AI 

conditions, each team included two naïve participants. Participants were required to have 

a normal or corrected-to-normal vision as well as be fluent in English. Participants aged 

between 18 to 38 years of age (M = 23.7, SD = 3.3) with a gender distribution of 60 males 

and 10 females. Each participant was compensated $10 per hour for participating in the 

study. 

2.2 Materials 

2.2.1 CERTT Lab 

The experiment was conducted in the Cognitive Engineering Research on Team 

Tasks RPAS Synthetic Task Environment (CERTT-RPAS-STE; Cooke & Shope, 2004). 

The team’s task was to fly a simulated remotely-piloted aircraft (RPA) to take good photos 

of ground target waypoints. The team includes three distinctive roles: (1) navigator (Data 

Exploitation, Mission Planning and Communications Operator; DEMPC), who constructs 

the flying route and provides restriction information to the pilot; (2) pilot (Air Vehicle 

Operator; AVO), who adjusts the aircraft’s altitude, airspeed, and bearing based on target 

information and restrictions sent from the navigator, and communicates with the 
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photographer to ensure the RPA settings are adjusted so that the photographer can take a 

good photo of the target waypoint; and (3) photographer (Payload Operator; PLO), who 

manages the camera settings based on the information received from the pilot to take a 

good photograph of each target waypoint. The goal of all teams was to take as many good 

photographs of strategic target waypoints as possible during a series of 40-minute missions. 

Each team member was seated in a separate room at a workstation with monitors, a 

keyboard, and a mouse. Each workstation had different information on the display based 

on the team member role (Cooke et al., 2007). Team members communicated with each 

other through text-based chat. The display for each role and the chat display are illustrated 

in Figure 1. 

All roles were filled by naïve participants in the benchmark condition. In the expert 

condition, the AVO role was filled by the same confederate in every mission. The 

confederate had enough experience to be able to communicate and coordinate efficiently 

with the photographer and the navigator. In the human-AI condition, the AVO role was 

filled by a synthetic teammate pilot (Ball et al., 2010; McNeese et al., 2018). The synthetic 

teammate was designed to have a certain level of autonomy in that it could control its action 

(controlling vehicle altitude and airspeed) and change the action based on information 

received from text chat during the task. In all conditions, the three team members had to 

coordinate and share role-specific information to achieve their goal of taking good 

reconnaissance photos. 

Experimenters initiated and ended the experiment and monitored team interaction 

from a separate workstation, and experimenters were responsible for communicating with 
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the team in the role of “intelligence” if the team had questions during a mission. The 

experimenters would stop the mission before the 40-minute time limit if the team reported 

that they completed all mission goals. 

a. PLO photographer b. DEMPC navigator 

c. AVO pilot d. Chat box example 

Figure 1 – a. The photographer’s workstation display contains waypoints 
information, camera settings, and photos taken by the photographer; b. The 
navigator’s workstation display contains an area map and waypoint information; c. 
The pilot’s workstation display contains waypoints information, airspeed, altitude, 
and other flying information; d. Chat interface in the navigator’s workstation, which 
contains recipient selection options and a text box. 
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2.2.2 The Synthetic Teammate 

In the human-AI condition, the pilot role was played by a synthetic team member, 

which was developed using Adaptive Control of Thought-Rational (ACT-R) cognitive 

modeling architecture (Anderson, 2007) to simulate AI behavior. The agent is capable of 

interacting with human teammates via text-based chat. The synthetic agent not only 

performs the pilot’s task but also integrates the text information sent from the other team 

members into its performance. Similarly, the photographer and the navigator must integrate 

the information sent from the synthetic agent to perform each mission. Though the 

synthetic agent has a certain level of autonomy in that it can autonomously carry out its 

actions as the task unfolds, it is not equal to a human teammate in the sense that it is not 

explicitly designed to coordinate well with human teammates, especially in a timely 

manner. Nonetheless, the agent has its own dialog management system that makes the 

agent capable of managing information requests from other team members and to ask for 

updates. 

Participants in the human-AI condition were told that the pilot was a synthetic agent 

and were instructed to interact with the synthetic agent using a restricted language (i.e., in 

a certain format and without any typos). An example of a good communication sequence 

between the synthetic agent and the human teammates is (1) the navigator sends waypoint 

information including altitude and airspeed restrictions as well as the effective radius to the 

synthetic agent; (2) the synthetic agent negotiates a target-specific altitude and airspeed 

with the photographer; (3) the photographer takes a good photo and sends feedback to both 

the navigator and the synthetic agent. When the synthetic agent receives feedback from the 

photographer, it knows that a good photo has been taken and can fly to the next waypoint.  
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2.3 Experimental Design 

The study used a mixed factorial design, with team condition (all-novice teams; 

expert teams; human-AI teams) being the manipulated between-subjects independent 

variable and mission number being the within-subject variable. Participants were randomly 

assigned to the three between-subjects conditions, interacting with either the synthetic 

agent (human-AI), another participant (all-novice/benchmark), or the trained experimenter 

as the pilot (expert). All participants completed five 40-minute missions.  

2.4 Procedure 

Participants were randomly assigned to an RPA team role before they arrived for the 

experiment. They were assigned to either the pilot (AVO; only in the all-novice/benchmark 

condition), the navigator (DEMPC), or the photographer (PLO) role. Upon arrival, 

participants signed an informed consent document and proceeded to a role-specific 

workstation. 

Before the first mission, participants received 30 minutes of PowerPoint training 

covering general RPA task knowledge, role-specific information, and other roles’ 

responsibilities. After participants completed the PowerPoint training, all participants were 

given a 30-minute hands-on practice mission familiarizing them with their responsibilities. 

Participants in the human-AI condition were able to practice communicating with the 

synthetic teammate during this time. In the expert condition, the confederate used a script 

to request information if it was not provided in a timely manner. Experimenters provided 

help for any questions during the training session and ensured that everyone could perform 

their roles’ duties. Participants were then given a 15-minute break.  



 15 

After training, the experiment began with each team performing five 40-minute 

missions. The duration of the experimental session was eight hours. The team flew five 

missions with a 15-minute break after Mission 1, a 30-minute lunch break after Mission 2, 

and 15-minute breaks after Missions 3, 4, and 5. After all missions were completed, 

demographic information was collected, and the participants were debriefed. 

2.5 Measures 

2.5.1 Communication Measures 

A chat log recorded the message sent time in seconds, the sender and receiver(s) of 

the message, when the message was received, and the content of the message. The 

experimenters could view these interactions from their workstation. During each mission, 

experimenters monitored the chat and coded the interactions for team process behaviors 

(not analyzed here). At the end of the experimental session, experimenters saved the chat 

log output as an Access database document. Communication features for the current study 

were taken from these Access database files to test which of the features predict team type 

(human-AI team or all-human team) and how they relate to team performance. 

2.5.1.1 Communication Flow 

Ordered sequences of chat codes (one for each team and each mission) were 

generated as the input for the communication flow measures. The input included ordered 

sequences of mutually exclusive nominal codes for each mission in two ways. The first 

way was coding the sequence based on sender-receiver differences: 1 = AVO Sending 

Message to PLO; 2 = AVO Sending Message to DEMPC; 3 = AVO Sending Message to 
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All; 4 = PLO Sending Message to AVO; 5 = PLO Sending Message to DEMPC; 6 = PLO 

Sending Message to All; 7 = DEMPC Sending Message to AVO; 8 = DEMPC Sending 

Message to PLO; 9 = DEMPC Sending Message to All. The second way was coding only 

the sender sequence: 1 = AVO Sending Message; 2 = DEMPC Sending Message; and 3 = 

PLO Sending Messages. 

2.5.1.1.1 Communication Determinism 

The first communication feature that the current study investigated was 

communication determinism (%DET), which was calculated using discrete recurrence 

plots (Webber & Zbilut, 1994; Gorman et al., 2012). Discrete team communication states 

taken from the set of mutually exclusive codes identifying which team member is sending 

the message and which team member(s) receives it are ordered in a sequence and 

analyzed using a recurrence plot. Figure 2 shows an example of chat events lined up on 

the x-axis representing a sequence of codes over time. The recurrence plot takes in this 

communication sequence and forms a symmetric matrix by lining up the same sequence 

on the y-axis. Recurrence points are plotted whenever a code at xi is the same as a code at 

yi. The main diagonal in the matrix is trivial, as it contains all of the events plotted 

against themselves. Recurrence points located off of the main diagonal indicate when 

codes at one time match codes at earlier and later times. Recurrence points forming 

diagonals above the main diagonal are called patterns and indicate sequences of speaker 

codes that repeat over time. These patterns are used to calculate %DET. 

%DET is the percentage of the number of recurrent points forming diagonals divided 

by total recurrent points. Because the recurrence plot is symmetric, only the upper triangle 
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above the main diagonal is analyzed. %DET ranges from 0 (random/no patterning) to 100 

(perfectly repeating pattern). In real-world applications, however, %DET usually lies 

between these extremes (Gorman et al., 2012). In the current study, for each RPA mission, 

a discrete recurrence plot was created. %DET scores were then calculated from recurrent 

diagonals relative to all recurrent points, using Equation 1: 

 
%DET =

number of recurrent points forming diagonals
total number of recurrent points

 X 100 (1) 

 

Figure 2 – Example discrete recurrence plot from Gorman et al., 2020. 

 

2.5.1.1.2 Transition Probabilities 

Transitions between senders and receivers as well as just senders were calculated to 

obtain the transition probabilities of each sender-receiver combination (AVO to PLO, AVO 

to DEMPC; PLO to AVO, PLO to DEMPC; DEMPC to AVO, DEMPC to PLO), as well 
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as the transition probabilities of sender sequences. First, a raw transition matrix was formed 

for each mission (e.g., Table 1), and transition probabilities were then be computed by 

dividing each transition frequency by the row frequency as a separate communication 

feature for the analyses (e.g., Table 2). A transition probability is a type of conditional 

probability that measures the observed probability (relative frequency) of all “from-to” 

combinations over a mission. Simple transition probabilities (“Lag-0”) measure transition 

probabilities from time t to time t + 1, as shown in Table 2. To identify longer from-to 

sequences (“chains”), the lag is increased (e.g., Lag-1; Lag-2; etc.). As represented as event 

sequences, Lag 0 represents the probability of observing event B given event A, right after 

event A; Lag 1 represents the probability of observing event B given event A, after one 

intervening event, and so on (Bakeman & Gottman, 1997). Based on prior research (Kiekel 

et al., 2002), transition probabilities are computed up to four lags in the current study. 

After obtaining the lagged transition probabilities, to calculate which transition 

probabilities occur significantly greater than chance, a z-score approach for Lag-sequential 

modeling was conducted (O’Connor, 1999). Z scores are called adjusted residuals in the 

Lag-sequential modeling, and these scores are assessed by referencing to the standard 

normal distribution. Z scores are used to identify the significance of transition probabilities 

(O’Connor, 1999). The current study used Lag-sequential modeling to look for statistically 

significant higher-order lags of transition probabilities (i.e., significant chains of 

communication events; e.g., AVOPLODEM would be a lag two chain). Max chain 

length is another communication feature that measures the consistency of communication 

pattern in teams. The max chain length was determined based on summing up the frequency 

of significant transition probabilities up to lag four in a single mission. If there was a 
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significant transition probability within a specific lag, the frequency would be “1” for that 

lag. An example of max chain length calculated for a mission is illustrated in Table 3. 

Table 1 – Transition Matrix. 

  To  

 AVO DEMPC PLO 

 

AVO 0 23 13 
 

DEMPC 30 0 1 
 

PLO 16 1 13 

 

Table 2 – Transition Probability Matrix. 

  To  

 AVO DEMPC PLO 

 

AVO 0 0.6389 0.3611 
 

DEMPC 0.9677 0 0.0323 
 

PLO 0.9412 0.0588 0 

 

Table 3 – Max Chain Length. 

Team Mission Lag 1 Lag 2 Lag 3 Lag 4 Max Chain Length  
1 1 1 1 1 0 3 

 

Fr
om

 
Fr

om
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2.5.1.2 Communication Content 

Content information—what was said—is also recorded in the chat log output. To 

measure communication content features, the current study performed Latent Semantic 

Analysis (LSA). 

2.5.1.2.1 LSA 

LSA is a mathematical/statistical method used to represent and analyze semantic 

knowledge in a domain of discourse. It was developed based on the theory that knowledge 

is reflected in how word meaning derives from the surrounding context of words within 

meaningful discourse (Landauer & Dumais, 1997). Previous research has concluded that 

the main advantage of LSA over other communication content analysis tools is that LSA 

is examining the semantic relatedness of utterances of the conversation rather than focusing 

on the meanings of individual words (Dong, A. 2005).  

LSA compares team communication (e.g., chat messages) to a semantic space, where 

the semantic space represents a factor analytic model of the domain of discourse (e.g., 

Gorman et al., 2016). The current study used the topic space named “General Reading up 

to 1st year college” provided on the LSA Colorado website (lsa.colorado.edu) as well as a 

custom UAV semantic space created for the current study. 

To create a semantic space, LSA converts the model input (called a “corpus” or a 

body of text: e.g., manuals and transcripts) to a frequency co-occurrence matrix of terms 

(unique words; rows) by documents (paragraphs; columns). The UAV semantic space 

created for this study contains inputs from a corpus that included the Unmanned Aerial 
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Vehicle Aircrew Training Manual and the Remote Pilot Study Guide, in addition to the 

one-hundred-and-fifty mission transcripts from the current dataset (previous research 

identified including transcripts in the corpus as a standard practice; e.g., Gorman et al., 

2016). The co-occurrence matrix dimensions were 5,087 unique words × 1,688 unique 

paragraphs. 

LSA then reduces the dimensionality of the frequency co-occurrence matrix to 

compute the underlying, latent semantic factors using singular value decomposition (SVD). 

SVD is similar to principal components/factor analysis in that the magnitude of singular 

values corresponds to how salient the factors are but can be performed on a rectangular 

matrix. The optimal number of dimensions (factors) was determined based on results and 

recommendations from previous studies (Landauer et al., 1998; Gorman et al., 2016). There 

were 300 dimensions in the UAV semantic space. 

Two LSA metrics used in the current study are (1) the vector length of a piece of 

discourse and (2) the cosine between two pieces of discourse (cosine similarity). The vector 

length measures the amount of speech weighted by the discourse’s domain-specific 

content. The cosine is the dot product between two pieces of discourse plotted in the 

semantic space, which measures the correlation between any two pieces of discourse 

regardless of the utterances’ length or the time the utterances occur (e.g., Gorman et al., 

2016). 

These two metrics were used to analyze the amount of domain-relevant knowledge 

contained on average in the chat messages and the average semantic relatedness of chat 

messages in terms of RPA-relevant content during each mission. Due to computational 
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difficulties, the “General Reading up to 1st year college” topic space (lsa.colorado.edu) was 

used to compute vector length. However, the UAV space was used for all cosine 

similarities analyses, which are the most commonly reported type of LSA analyses.  

2.5.2 Team Performance Measures 

2.5.2.1 Team Performance Outcome 

Team performance was calculated for every mission as the weighted composite of 

several system parameters, including duration of warning or alarm state, rate of good 

photographs per minute, fuel and film used, and the number of missed targets. At the 

beginning of each mission, each team had an initial score of 1,000, and points were 

deducted based on the final value of each system parameter (Cooke et al., 2007). The 

current study used the team communication features to predict these team performance 

scores across the human-AI and all-human conditions. 

2.5.2.2 Target Processing Efficiency (TPE) 

Target processing efficiency was calculated for every target based on the time spent 

within a target waypoint’s effective radius to get a good photo. Higher TPE scores indicate 

greater efficiency. For each target, teams had an initial score of 1,000. Points were deducted 

based on the number of seconds in the effective radius, and an additional 200 points would 

be deducted if the team failed to get a photo for that target (Cooke et al., 2007). TPE 

measures teams’ efficiency regarding targets and is thus sampled more frequently than 

team performance outcome, which is based on the overall mission. Similar to team 
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performance outcome, the current study used the team communication features to predict 

TPE scores, averaged across mission, for the human-AI and all-human teams. 
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CHAPTER 3. RESULTS  

3.1 H1: Communication Flow will Discriminate Team Type. 

 To test H1 that communication flow will discriminate between human-AI and all-

human teams, the current study performed a discriminant function analysis to check 

whether the flow features (%DET scores, lag 0, lag 1, and lag 2 transition probabilities for 

all missions) were included in the discriminant function as predictors. The discriminant 

function with these flow features as predictors to differentiate human-AI teams from all-

human teams was significant (Wilks’s Λ = .407, 𝜒𝜒2 (18) = 124.837, p < .001). The 

canonical correlation was .77 for the discriminant functions, indicating that the relationship 

between selected flow features and team type (human-AI or all-human team) was 

significant in the discriminant function.  

Looking at the standardized canonical discriminant function coefficients (Table 4), 

the discriminant function had the largest relationship with lag 2 transition probabilities, 

starting with a DEMPC event, followed by several lag 0, lag 1, and lag 2 transition 

probabilities started with either AVO, DEMPC, or PLO events, and finally, %DET. 

However, when looking at the structure matrix (Table 5), the results showed that only lag 

1 transition probabilities started with an AVO event and followed by an AVO event, lag 2 

transition probabilities started with an AVO event to an AVO event, lag 1 transition 

probabilities started with a PLO event followed by a DEMPC event, and lag 2 transition 

probabilities started with a DEMPC event to an AVO event had values above .30 (Brown 

& Wicker, 2000). This indicated that these four communication flow features were 

significant predictors in the discriminant function and all other features were considered as 
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poor predictors. The discriminant function equation bellow presented how each feature 

contributed to the discriminant function: 

Discriminant score = (12.371*DEMPC2AVO) + (14.41*DEMPC2PLO) + (11.365* 

DEMPC2DEMPC) + (-7.888* PLO1PLO) + (-6.295* PLO2DEMPC) + (-7.185* 

AVO1AVO) + (-5.544* AVO2AVO) + (5.818* DEMPC1DEMPC) + (3.284* 

DEMPC1AVO) + (-3.502* PLO2AVO) + (-2.337* PLO1AVO) + (-4.871* 

AVO2DEMPC) + (-2.519* AVO0PLO) + (1.718* DEMPC0AVO) + (-1.773* 

PLO1DEMPC) + (1.272* PLO0AVO) + (-1.08* AVO1DEMPC) + (-.001*%DET) – 

3.169.  

Their group centroids were -1.694 and .847, respectively. Thus, all-human teams 

scored higher on the discriminant function with selected flow features as predictors than 

human-AI teams. The cross validated classification showed that human-AI teams and all-

human teams were correctly discriminated based on that difference in 88.0% of the cases. 

Discriminant analysis does not precisely indicate how these predictors differ between 

human-AI and all-human teams. However, results relevant to this question are included in 

Hypotheses 2-4. Overall, the results supported the hypothesis, suggesting that 

communication flow features discriminate between human-AI and all-human teams.  

Table 4 – Standardized Canonical Discriminant Function Coefficients for predictors. 

Rank Predictor Coefficients 
1 DEMPC2AVO 1.937 
2 DEMPC2PLO 1.891 
3 DEMPC2DEMPC 1.396 
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Table 4 continued. 

4 PLO1PLO -.987 
5 PLO2DEMPC -.919 
6 AVO1AVO -.814 
7 AVO2AVO -.754 
8 DEMPC1DEMPC .687 
9 DEMPC1AVO .681 
10 PLO2AVO -.607 
11 PLO1AVO -.492 
12 AVO2DEMPC -.457 
13 AVO0PLO -.337 
14 DEMPC0AVO .27 
15 PLO1DEMPC -.251 
16 PLO0AVO .213 
17 AVO1DEMPC -.111 
18 %DET -.003 

 

Table 5 – Structure Matrix. 

Rank Predictor Coefficients 
1 AVO1AVO -0.607 
2 AVO2AVO -0.361 
3 PLO1DEMPC 0.358 
4 DEMPC2AVO -0.351 
5 PLO1AVO -0.238 
6 PLO2DEMPC -0.233 
7 DEMPC2PLO 0.225 
8 AVO2DEMPC 0.222 
9 DEMPC2DEMPC 0.202 
10 PLO0AVO 0.173 
11 DEMPC1DEMPC 0.135 
12 DEMPC1AVO -0.133 
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Table 5 continued. 

13 PLO2AVO -0.052 
14 DEMPC0AVO 0.037 
15 AVO0PLO 0.033 
16 %DET -0.023 
17 AVO1DEMPC -0.005 
18 PLO1PLO 0.004 

      Note. Bolded predictors that were above the .30 cut-off. 

3.2 H2: Human-AI Teams have Higher Determinism than All-Human Teams.  

To test H2, the current study carried out an independent-samples t-test (Table 6) 

comparing the %DET per mission between human-AI teams and the all-human teams. 

Results showed that the effect of team type was not significant, t(148) = -.33, p = .739, d = 

-.058; indicating that all-human teams’ (M = 58.59, SD = 3.87) communication 

determinism was not statistically different from human-AI teams’ (M = 58.83, SD = 4.68). 

Table 6 – Summary of T-Test comparing %DET between Human-AI Teams and All-
Human Teams. 

 
t df p d 

Total -.334 148 .739 -.58 

Note. This model tests if the mean %DET in All-Human Teams is greater than that in 
Human-AI Teams. 

Nonetheless, %DET was included as a predictor in the discriminant analysis. To 

understand if there were variation based on condition, the current study conducted a one-

way ANOVA to compare the effect of condition (Human-AI, Benchmark, and Expert) on 

%DET. The ANOVA results are summarized in Table 7 and the post hoc analysis results 
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are summarized in Table 8. Results revealed that there was a statistically significant 

difference in mean %DET score between at least two groups (F(2, 147) = 6.41, p = .002, 

𝜂𝜂𝑝𝑝2 = .080). The Tukey post hoc test for multiple comparisons found, surprisingly, that the 

mean value %DET scores was not significantly different between the human-AI teams (M 

= 58.83, SD = 4.68) and all-novice teams (M = 57.16, SD = 4.36; p = .097) nor the human-

AI teams and expert teams (M = 60.013, SD = 2.68; p = .303). However, there was a 

statistically significant difference in mean value of %DET between all-novice teams and 

expert teams (p = .001, 95% C.I. = [-4.75, -.957]). 

Together, these results do not support Hypothesis 2, indicating human-AI teams and 

all-human teams did not differ on communication determinism. While all-novice teams had 

lower mean %DET score compared to human-AI teams, expert teams had the highest mean 

%DET value.  

Table 7 – Summary of ANOVA Results comparing %DET among Human-AI Teams 
and All-Novice Teams, and Expert Teams. 

Cases Sum of 
Squares df Mean 

Square F p η²p  

Condition 205.272 2 102.636 6.409 .002 .08 
Residuals 2354.079 147 16.014    

Note. This model tests if the mean %DET varies among Human-AI Teams, All-Novice 
Teams, and Expert Teams. 
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Table 8 – Summary of Post Hoc Comparisons on Condition. 

   95% CI for Mean 
Difference     

 
 Mean 

Difference Lower Upper SE t ptukey   

Human-AI Novice 1.667 -.228 3.562 .8 2.083 .097  

Residuals Expert -1.185 -3.08 0.71 .8 -1.481 .303  

Novice Expert -2.852 -4.747 -0.957 .8 -3.563 .001  

Note. P-value and confidence intervals adjusted for comparing a family of 3 estimates 
(confidence intervals corrected using the tukey method). 

 

3.3 H3: Less Communication will Occur in Human-AI Teams compared to All-

Human Teams. 

To test H3, the current study carried out an independent-samples t-test (Table 9) 

comparing the total frequency of lag 1 transition probabilities per mission between human-

AI teams and all-human teams. Results showed a significant effect of team type, t(148) = 

1.97, p = .026, d = .34; indicating that all-human teams (M = 90.16, SD = 25.13) had 

significantly more communication during the missions compared to human-AI teams (M = 

73.76, SD = 75.67). 

Table 9 – Summary of T-Test comparing Communication Frequency between 
Human-AI Teams and All-Human Teams. 

 
t df p d 

Total 1.967 148 .026 .341 

Note. This model tests if the mean lag 1 frequency in All-Human Teams is greater than that 
in Human-AI Teams. 



 30 

 To further understand what contributed to this difference, the current study 

conducted a one-way ANOVA to compare the effect of condition (Human-AI, All-novice, 

and Expert) on communication frequency. The ANOVA results are summarized in Table 

10 and the post hoc analysis results are summarized in Table 11. Results revealed that there 

was a statistically significant difference in mean frequency of lag 1 transition probabilities 

between at least two groups (F(2, 147) = 6.92, p = .001, 𝜂𝜂𝑝𝑝2 = .086). The Tukey post hoc 

test for multiple comparisons found that the mean value of lag 1 transition probabilities 

was not significantly different between human-AI teams and all-novice teams (p = .980). 

However, there were statistically significant differences in mean frequency of lag 1 

transition probabilities between human-AI teams and expert teams (p <.01, 95% C.I. = [-

53.15, -8.85]) and between all-novice teams and expert teams (p <.01, 95% C.I. = [-51.35, 

-7.05]).  

Together, these results supported Hypothesis 3, indicating less communication 

happened when the AI served as a teammate compared to all-human teams. However, this 

difference was primarily due to expert teams that communicated significantly more than 

either human-AI teams or all-novice teams. 

Table 10 – Summary of ANOVA Results comparing Communication Frequency 
among Human-AI Teams and All-Novice Teams, and Expert Teams. 

Cases Sum of 
Squares df Mean 

Square F p η²p  

Condition 30281.333 2 15140.667 6.917 .001 .086 
Residuals 321758.560 147 2188.834    

Note. This model tests if the mean lag frequency varies among Human-AI Teams, All-
Novice Teams, and Expert Teams. 
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Table 11 – Summary of Post Hoc Comparisons on Condition. 

   95% CI for Mean 
Difference     

 
 Mean 

Difference Lower Upper SE t ptukey   

Human-AI Novice -1.800 -23.954 20.354 9.357 -.192 .980  

Residuals Expert -31.000 -53.154 -8.846 9.357 -3.313 .003  

Novice Expert -29.200 -51.354 -7.046 9.357 -3.121 .006  

Note. P-value and confidence intervals adjusted for comparing a family of 3 estimates 
(confidence intervals corrected using the tukey method). 

 

3.4 H4: Longer Chains in Human-AI Teams compared to All-Human Teams. 

To test H4, the current study compared the z scores for lag 1 and lag 2 transition 

probabilities in human-AI teams and all-human teams to determine if human-AI teams 

have more lag one and lag two chains than All-Human Teams. The results are summarized 

in Table 12. 

Based on the results, the lag one chains that human-AI teams had more than all-

human teams were AVO  AVO, and AVO  DEMPC. The lag two chains that human-

AI teams had more than all-human teams was DEMPC   AVO. The lag one chains 

that all-human teams had more than human-AI teams were AVO  PLO, and PLO  

DEMPC. The lag two chains that all-human teams had more than human-AI teams were 

AVO   DEMPC and PLO   AVO. The results indicated that for just lag one and 

lag two chains, human-AI teams did not have more or longer chains than all-human teams. 
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Table 12 – Summary of T-Test comparing Z Scores for Lag 1&2 Transition 
Probabilities between Human-AI Teams and All-Human Teams. 

Feature t df p 
AVO1AVO -3.889 148 < .001∗ 

AVO1DEMPC -2.281 148 . 024∗ 
AVO1PLO 6.824 148 < .001∗ 

DEMPC1AVO 2.870 148 . 005ᵃ 
DEMPC1DEMPC -1.758 148 .081 

DEMPC1PLO -1.886 148 .061 
PLO1AVO 1.480 148 .141 

PLO1DEMPC 4.133 148 < .001∗ 
PLO1PLO -6.090 148 < .001ᵃ 

AVO2AVO -1.453 148 .148 
AVO2DEMPC 2.442 148 . 016∗ 

AVO2PLO -1.128 148 .261 
DEMPC2AVO -2.255 148 . 026∗ 

DEMPC2DEMPC 1.618 148 .108 
DEMPC2PLO .763 148 .447 

PLO2AVO 3.201 148  .002∗ 
PLO2DEMPC -3.822 148 < .001ᵃ 

PLO2PLO .974 148 .332 

Note. These model test if the mean z score for lag 1 and lag 2 transition probabilities in 
Human-AI Teams is greater than that in All-Human Teams.  ∗  Significant results.  𝑎𝑎 
Leven’s test is significant (p < .05). 

Nonetheless, the results did not rule out the possibility of longer lag chains, so the 

current study carried out an independent-samples t-test (Table 12) comparing the max 

number of chains (summed from lag one to up to lag four transition probabilities) per 

mission between human-AI teams and the all-human teams. Levene’s test was significant, 

indicating a violation of the equal variance assumption.   
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Table 13 – Summary of T-Test comparing Max Chain Length between Human-AI 
Teams and All-Human Teams. 

 
t df p d 

Total -1.70 148 . 091𝑎𝑎 -.294 

Note. This model tests if the mean max chain length in Human-AI Teams is differ than that 
in All-Human Teams. 

To further investigate whether the max chain length differs among the three 

conditions, the current study performed a one-way ANOVA to compare the effect of 

condition (Human-AI, Benchmark, and Expert) on the max chain length. The ANOVA 

results are summarized in Table 14. Results revealed that there was no significant 

difference in mean max chain length between at least two groups (F(2, 147) = 2.47, p = 

.088, 𝜂𝜂𝑝𝑝2 = .032).  

Together, these results do not support Hypothesis 4, indicating human-AI teams and 

all-human teams did not differ on chain length.  

Table 14 – Summary of ANOVA Results comparing Max Chain Length among 
Human-AI Teams and All-Novice Teams, and Expert Teams. 

Cases Sum of 
Squares df Mean 

Square F p η²p  

Condition 4.120 2 2.060 2.466 .088 .032 
Residuals 122.820 147 .836    

Note. This model tests if the mean max chain length varies among Human-AI Teams, All-
Novice Teams, and Expert Teams. 

 

3.5 H5: Communication Content will Discriminate Team Membership. 

3.5.1 Vector Length 
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To test H5, the current study first performed an independent-samples t-test (Table 

15) comparing the averaged vector length per mission between human-AI teams and all-

human teams. The Levene’s test was significant indicating a violation of the equal variance 

assumption.   

Table 15 – Summary of T-Test comparing Vector Length between Human-AI Teams 
and All-Human Teams. 

 
t df p d 

Total 1.259 148 . 210𝑎𝑎 .218 

Note. This model tests if the mean vector length in All-Human Teams is greater than that 
in Human-AI Teams.  𝑎𝑎 Leven’s test is significant (p < .05). 

 To further investigate whether vector length differs among the three conditions, the 

current study performed a one-way ANOVA to compare the effect of condition (Human-

AI, Benchmark, and Expert) on vector length. The ANOVA results are summarized in 

Table 16 and the post hoc analysis results are summarized in Table 17. Results revealed 

that there was a statistically significant difference in mean vector length between at least 

two groups (F(2, 147) = 8.75, p < .001, 𝜂𝜂𝑝𝑝2 = .106). The Tukey post hoc test for multiple 

comparisons found that the mean value of vector length was not significantly different 

between human-AI teams and all-novice teams (p = .678). However, there were statistically 

significant differences in mean vector length between human-AI teams and expert teams 

(p <.01, 95% C.I. = [-.571, -.079]) and between all-novice teams and expert teams (p <.001, 

95% C.I. = [-.658, -.166]). The results indicated that expert teams had more domain-

specific content of utterances compared to all-novice and human-AI teams. 
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Table 16 – Summary of ANOVA Results comparing Vector Length among Human-
AI Teams, All-Novice Teams, and Expert Teams. 

Cases Sum of 
Squares df Mean 

Square F p η²p  

Condition 4.717 2 2.359 8.749 < .001 .106 
Residuals 39.630 147 .270    

Note. This model tests if the mean vector length among Human-AI Teams, All-Novice 
Teams, and Expert Teams. 

 

Table 17 – Summary of Post Hoc Comparisons on Condition. 

   95% CI for Mean 
Difference     

 
 Mean 

Difference Lower Upper SE t ptukey   

Human-AI Novice .087 -.158 .333 .104 .842 .678  

Residuals Expert -.325 -.571 -.079 .104 -3.128 .006  

Novice Expert -.412 -.658 -.166 .104 -3.969 < .001  

Note. P-value and confidence intervals adjusted for comparing a family of 3 estimates 
(confidence intervals corrected using the tukey method). 

 

3.5.2 K-Means Cluster 

For the cosine similarities (semantic relatedness) feature, the current study conducted 

K-Means clustering of the mission × mission cosine matrix. This matrix contained the 

cosines (essentially, correlations) between all mission transcripts across all experimental 

conditions (150 × 150). To determine the optimal number of clusters, the current study 

computed the K-Means elbow function. The result indicated that 3 was the optimal number 

for K-Means clustering (Figure 3).  
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Figure 3 – K-Means Elbow Function Result. 

The K-Means clustering results are presented in Figure 4. K-Means cluster centroids 

were calculated, and the Euclidean distances among the three clusters are summarized in 

Table 18. The Euclidean distances indicate the degree of similarities between the cluster’s 

centroids. 

To examine K-Means clustering classification results, the clustered were relabeled 

based on condition. As shown on the Figure 5, expert teams and human-AI teams each 

clustered based on communication differences, whereas all-novice teams were more 

dispersed. Overall, K-Means clustering successfully classified 98% of the human-AI 

teams, 88% of the expert teams, but only 50% of the all-novice teams (Table 19).  
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Table 18 – Euclidean Distances of Cluster Centroids. 

Cluster - Condition Cluster Euclidean distance 

0 – Expert 0 1 2.83 
1 – Human-AI 0 2 2.08 
2 – All-Novice 1 2 3.26 

 

 

Figure 4 – K-Means Clustering Results. 
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Figure 5 – K-Means Clusters Relabeled Based on Condition. 

 

Table 19 – Summary of K-Means Clustering Classification Results. 

 Predicted Total %Correctness 

Human-AI 49 50 98% 
Novice 25 50 50% 
Expert 44 50 88% 

 

3.5.3 Discriminant Function Analysis 

To further examine whether communication content features can discriminate team 

membership, the current study conducted a discriminant analysis to predict whether the 

team was human-AI team or all-human team with the vector length and K-Means results 
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of the mission cosine matrix as predictors. The discriminant function with just the content 

features as predictors to differentiate human-AI teams from all-human teams was 

significant (Wilks’s Λ = .643, 𝜒𝜒2(2) = 64.913, p < .001). The canonical correlation was 

.597 for the discriminant function. The discriminant function had a larger relationship with 

K-Means of the cosine matrix (1.011), followed by vector length (-.066). The structure 

matrix corresponds to the relationships, indicating K-Means of the cosine matrix as a 

significant predictor in the discriminant function (.998) and vector length as a poor 

predictor. Their group centroids were .523 and -1.047, respectively. Hence, all-human 

teams scored higher on the content discriminant function than human-AI teams. Human-

AI teams and all-human teams were correctly discriminated based on that difference in 

78.7% of the cases. The discriminant function is: 

Discriminant score = (1.427*K-Means) + (-.122*vector length) -.908. 

Furthermore, the current study added the vector length and K-Means results of the 

mission cosine matrix into the discriminant function input and performed discriminant 

function analysis using both flow and content features. The results showed an increase in 

the discriminant function predictability.  

Overall, the discriminant function with flow and content features as predictors to 

differentiate human-AI teams from all-human teams was significant (Wilks’s Λ = .264, 

𝜒𝜒2(20) = 183.613, p < .001). The canonical correlation was .858 for the discriminant 

functions, indicating that 85.8% of variance was explained by the relationship between 

selected flow and content features and team type (human-AI team or all-human team) in 

the discriminant function.  



 40 

There were some changes with the relationships between discriminant function and 

the predictors. Specifically, vector length and K-Means of cosine similarity matrix were 

included in the discriminant function. Although the discriminant function still had the 

largest relationship with lag 2 transition probabilities started by a DEMPC event, there 

were slight differences on the lag 0, lag 1, and lag 2 transition probabilities started with 

either AVO, DEMPC, or PLO events compared to the earlier analysis. The standardized 

canonical discriminant function coefficients for all identified predictors are reported in 

Table 20. Taking a closer look at the structure matrix (Table 21), adding K-Means of cosine 

similarity matrix and vector length resulted in decreases in the original flow predictors’ 

loadings. Only K-Means of cosine similarity matrix and lag 1 transition probabilities 

started with an AVO event followed by an AVO event were significant (coefficients above 

.30). The discriminant function becomes: 

Discriminant score = (15.752*DEMPC2AVO) + (17.063*DEMPC2PLO) + (15.206* 

DEMPC2DEMPC) + (1.258*K-Means) + (-7.204* AVO1AVO) + (-5.087* AVO2AVO) 

+ (3.169*PLO1AVO) + (3.024*DEMPC0AVO) + (3.027*PLO1DEMPC) + (-

2.916*AVO0PLO) + (-2.592*PLO2DEMPC) + (-1.911*PLO2AVO) + (-

2.873*AVO1DEMPC) + (2.418*DEMPC1DEMPC) + (-2.596*AVO2DEMPC) + 

(.561*DEMPC1AVO) + (.205* Vector Length) + (-.489* PLO0AVO) + (.562*PLO1PLO) 

+ (.011*%DET) – 12.703.  

All-human and human-AI teams’ group centroids were 1.172 and -2.343, 

respectively. Hence, all-human teams scored higher on the combined flow and content 

discriminant function than human-AI teams. Human-AI teams and all-human teams were 

correctly discriminated based on that difference in 91.3% of the cases, which is a 3.3% 
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increase compared to only including flow features in the discriminant function. To 

conclude, the results supported H5, suggesting that cosine similarities (semantic 

relatedness) are communication content features that discriminate between human-AI 

teams and All-Human Teams. 

Table 20 – Standardized Canonical Discriminant Function Coefficients for predictors 
after adding Communication Content. 

Rank Predictor Coefficients 
1 DEMPC2AVO 2.466 
2 DEMPC2PLO 2.239 
3 DEMPC2DEMPC 1.868 
4 K-Means .891 
5 AVO1AVO -.817 
6 AVO2AVO -.692 
7 PLO1AVO .667 
8 DEMPC0AVO .476 
9 PLO1DEMPC .429 
10 AVO0PLO -.39 
11 PLO2DEMPC -.378 
12 PLO2AVO -.331 
13 AVO1DEMPC -.295 
14 DEMPC1DEMPC .285 
15 AVO2DEMPC -.244 
16 DEMPC1AVO .116 
17 Vector Length .111 
18 PLO0AVO -.082 
19 PLO1PLO .07 
20 %DET -.046 

  Note. Bolded predictors that were communication content features. 



 42 

Table 21 – Structure Matrix after adding Communication Content. 

Rank Predictor Coefficients 
1 K-Means 0.446 
2 AVO1AVO -0.439 
3 AVO2AVO -0.261 
4 PLO1DEMPC 0.259 
5 DEMPC2AVO -0.254 
6 PLO1AVO -0.172 
7 PLO2DEMPC -0.168 
8 DEMPC2PLO 0.163 
9 AVO2DEMPC 0.16 
10 DEMPC2DEMPC 0.146 
11 PLO0AVO 0.125 
12 DEMPC1DEMPC 0.098 
13 DEMPC1AVO -0.096 
14 Vector Length 0.062 
15 PLO2AVO -0.038 
16 DEMPC0AVO 0.027 
17 AVO0PLO 0.024 
18 %DET -0.016 
19 AVO1DEMPC -0.003 
20 PLO1PLO 0.003 

  Note. Bolded predictors that were communication content features. 

3.6 H6: Communication Flow and Content Predicting Human-AI Team and All-

Human Team Performance. 

3.6.1 Correlation Analyses 

 The sixth hypothesis tested whether the selected communication flow and content 

features can predict team performance variation across conditions. To test H6, zero-order 

Pearson correlations were performed to investigate the relationships between the 
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communication flow and content features selected from the discriminant function analysis 

and the outcome measures (team performance and TPE; Table 22).  

Table 22 – Summary of Pearson Correlation Coefficients. 

Features Team Performance Score Average TPE Score 
AVO0PLO r = -.029, p = .727 r = .098, p = .232 
PLO0AVO r = .088, p = .284 r = .203, p = .013 

DEMPC0AVO r = .19, p = .02 r = .102, p = .215 
AVO1AVO r = -.107, p = .193 r = -.243, p = .003* 

AVO1DEMPC r = -.072, p = .378 r = .03, p = .715 
DEMPC1AVO r = .324, p < .001** r = .209, p = .01 

DEMPC1DEMPC r = -.279, p < .001** r = -.08, p = .33 
PLO1AVO r = .202, p = .013 r = .113, p = .167 

PLO1DEMPC r = -.042, p = .612 r = .074, p = .369 
PLO1PLO r = -.306, p < .001** r = -.302, p < .001** 

AVO2AVO r = .127, p = .12 r = -.045, p = .586 
AVO2DEMPC r = -.142, p = .084 r = -.007, p = .93 
DEMPC2AVO r = .097, p = .238 r = -.011, p = .891 

DEMPC2DEMPC r = -.152, p = .064 r = -.067, p = .319 
DEMPC2PLO r = .014, p = .867 r = .069, p = .403 

PLO2AVO r = .191, p = .019 r = .147, p = .072 
PLO2DEMPC r = -.165, p = .044 r = -.097, p = .236 

%DET r = .098, p = .231 r = .032, p = .696 
Vector Length r = .2, p = .014 r = .17, p = .037 

K-Means r = .477, p = < .001** r = 0.571, p = < .001** 

Note. Correlations of communication flow and content features with outcome measures. 
Medium to large correlations are in bold, with asterisks denoting the following *p < .01, 
**p < .001. 

 Based on these correlation results, the current study found correlations of medium 

sizes for K-Means group membership based on cosine similarities, indicating an 

association of communication content with both team performance (r = .477, p = < .001) 

and TPE (r = 0.571, p = < .001). Due to the large number of correlations, a medium-to-
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large effect size criteria was used to identify meaningful correlations. Although there are 

several other significant correlations, many of the results do not fulfill the medium-to-large 

effect size criteria. Nonetheless, the correlation analysis only looks at relationships between 

communication features and outcome variables at the individual level, while the 

discriminant function combines these features to perform classification. Therefore, the 

current study also examined a combination effect of communication flow and content 

features on outcome variables.  

3.6.2 Multiple Regression 

 To further examine H6, the current study performed a multiple regression to 

investigate whether the selected communication flow and content features could 

significantly predict outcome variables (Team performance, TPE).  

3.6.2.1 Team Performance 

 The results of the regression indicated that the model explained 43% of the variance 

and that the model was a significant predictor of team performance, F(20,129) = 4.88, p < 

.001. The coefficients are summarized in Table 23. Based on the results, the lag 1 transition 

probabilities with the sequence AVO  AVO (B = -521.93, 𝛽𝛽 = -.527, t = -2.57, p =.011), 

DEMPC  DEMPC (B = -387.51, 𝛽𝛽 = -.333, t = -2.17, p =.032) and K-Means of the 

cosine similarities (B = 63.223, 𝛽𝛽 = .166, t = 4.58, p < .001) contributed significantly to 

the model. The final predictive model was:  

Team performance score = 604.924 + (-1.124*AVO0PLO) + (-124.18*PLO0AVO) + 

(80.283*DEMPC0AVO) + (-521.93*AVO1AVO) + (-75.135* AVO1DEMPC) + 

(41.348* DEMPC1AVO) + (-387.51* DEMPC1DEMPC) + (221.612* PLO1AVO) + 

(228.966* PLO1DEMPC) + (147.318*PLO1PLO) + (201.061* AVO2AVO) + (74.114* 

AVO2DEMPC) + (-239.96* DEMPC2AVO) + (-307.89* DEMPC2DEMPC) + (-303.98* 
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DEMPC2PLO) + (132.727* PLO2AVO) + (75.22* PLO2DEMPC) + (-4.729*%DET) + 

(10.269* Vector Length) + (63.223* K-Means) 

Table 23 – Summary of Multiple Regression Analysis for Team Performance. 

 B SE B 𝛽𝛽 t p 
(Constant) 604.924 946.643  .639 .524 
AVO0PLO -1.124 93.827 -.001 -.012 .99 
PLO0AVO -124.18 66.406 -.153 -1.87 .064 

DEMPC0AVO 80.283 74.574 0091 1.077 .284 
AVO1AVO -521.93 203.098 -.527 -2.57 .011 

AVO1DEMPC -75.135 171.496 -.055 -.438 .662 
DEMPC1AVO 41.348 122.703 .062 .337 .737 

DEMPC1DEMPC -387.51 178.777 -.333 -2.168 .032 
PLO1AVO 221.612 376.9 .349 .588 .558 

PLO1DEMPC 228.966 363.385 .254 .63 .53 
PLO1PLO 147.318 410.499 .133 .359 .72 

AVO2AVO 201.061 240.916 .214 .835 .406 
AVO2DEMPC 74.114 233.103 .052 .318 .751 
DEMPC2AVO -239.96 870.556 -.293 -.276 .783 

DEMPC2DEMPC -307.89 851.819 -.28 -.361 .718 
DEMPC2PLO -303.98 846.36 -.297 -.359 .72 

PLO2AVO 132.727 149.279 .166 .889 .376 
PLO2DEMPC 75.22 142.344 .082 .528 .598 

%DET -4.729 3.245 -.141 -1.457 .148 
Vector Length 10.269 18.51 .04 .555 .58 

K-Means 63.223 13.819 .401 4.575 < .001** 

Note. This model tests if the predictors in the discriminant function predict team 
performance. Significant predictors are in bold, with asterisks denoting the following *p < 
.01, **p < .001. 

 

3.6.2.2 TPE 
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 The results of the regression indicated that the model explained 45.9% of the 

variance and that the model was a significant predictor of TPE, F(20,129) = 7.32, p < .001. 

The coefficients are summarized in Table 24. Based on the results, the lag 1 transition 

probabilities with the sequence AVO  DEMPC (B = 643.394, 𝛽𝛽 = .295, t = 2.58, p 

=.011), DEMPC  AVO (B = 361.689𝛽𝛽 = .34, t = 2.02, p =.045) and K-Means of the 

cosine similarities (B = 109.317, 𝛽𝛽 = .432, t = 5.43, p < .001) contributed significantly to 

the model. The final predictive model was:  

Average TPE score = 604.924 + (244.506*AVO0PLO) + (101.814*PLO0AVO) + (-

47.429*DEMPC0AVO) + (-171.51*AVO1AVO) + (643.394* AVO1DEMPC) + 

(361.689* DEMPC1AVO) + (278.783* DEMPC1DEMPC) + (-400.62* PLO1AVO) + (--

327.89* PLO1DEMPC) + (-996.46*PLO1PLO) + (-550.76* AVO2AVO) + (-541.26* 

AVO2DEMPC) + (-1087.8* DEMPC2AVO) + (-1490.5* DEMPC2DEMPC) + (-773.62* 

DEMPC2PLO) + (-57.947* PLO2AVO) + (-156.8* PLO2DEMPC) + (1.075*%DET) + 

(2.58* Vector Length) + (109.317* K-Means) 

Table 24 – Summary of Multiple Regression Analysis for TPE. 

 B SE B 𝛽𝛽 t p 
(Constant) 1736.67 1379.3  1.259 .21 
AVO0PLO 244.506 136.709 .146 1.789 .076 
PLO0AVO 101.814 96.756 .078 1.052 .295 

DEMPC0AVO -47.429 108.658 -.033 -.436 .663 
AVO1AVO -171.51 295.922 -.108 -.58 .563 

AVO1DEMPC 643.394 249.877 .295 2.575 .011 
DEMPC1AVO 361.689 178.784 .34 2.023 .045 

DEMPC1DEMPC 278.783 260.485 .149 1.07 .287 
PLO1AVO -400.62 549.16 -.393 -.73 .467 

PLO1DEMPC -327.89 529.466 -.227 -.619 .537 
PLO1PLO -996.46 598.113 -.558 -1.666 .098 

AVO2AVO -550.76 351.024 -.366 -1.569 .119 
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Table 24 continued. 

AVO2DEMPC -541.26 339.641 -.235 -1.594 .113 
DEMPC2AVO -1087.8 1268.44 -.828 -.858 .393 

DEMPC2DEMPC -1490.5 1241.14 -.843 -1.201 .232 
DEMPC2PLO -773.62 1233.18 -.471 -.627 .532 

PLO2AVO -57.947 217.505 -.045 -.266 .79 
PLO2DEMPC -156.8 207.401 -.106 -.756 .451 

%DET 1.075 4.728 .02 .227 .82 
Vector Length 2.58 26.97 .006 .096 .924 

K-Means 109.317 20.135 .432 5.429 < .001 

Note. This model tests if the predictors in the discriminant function predict team 
performance. Significant predictors are in bold, with asterisks denoting the following *p < 
.01, **p < .001. 

 Altogether, the two multiple regression models predicting team performance and 

TPE supported H6, indicating that several of the communication flow and content features 

selected from the discriminant function predicted team outcome variables: team 

performance and TPE. 
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CHAPTER 4. DISCUSSION 

This study illustrates whether communication flow and content features can 

discriminate between human-AI teams and all-human teams and which of these features 

predict team performance. The present study will discuss the interpretations and 

implications of the findings within the context of the feature types (flow and content). 

4.1 Communication Flow 

The first four hypotheses were about aspects of communication flow serving as 

discriminant predictors for differentiating all-human teams and human-AI teams. The flow 

features selected were communication determinism as well as lag 0, lag 1, and lag 2 

transition probabilities. In support of H1, this study found %DET and a handful of 

transition probabilities contributed to the first discriminant function, successfully 

classifying 88.0% of the team types. Unexpectedly, %DET, although being a predictor, had 

a minimal contribution to the discriminant function. It also failed to support H2, in which 

the current study predicted human-AI teams would have higher communication 

determinism than all-human teams. It was surprising to find that expert teams had the 

highest average %DET score, and the current study only found a significant difference 

comparing expert teams and all-novice teams. There may be a possible data loss due to 

choosing a discrete method to assess teams’ communication determinism for getting these 

results. 

One potential reason for the null results might be because the current study chose to 

compute %DET over whole 40-minute missions, rather than using a continuous windowing 
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procedure (e.g., Gorman et al., 2020). The current study picked the discrete approach due 

to previous research using this approach to distinguish between more rigid and more 

flexible team communication patterns (Gorman et al., 2012). The difference between the 

current study and the previous study was that the current study only contained intact teams, 

whereas the previous study included both intact and newly mixed teams. The teams in the 

previous study also went through more missions than the teams in the current study. Thus, 

the %DET computed for the current study might not capture all the differences between 

human-AI and all-human teams’ communication flow. 

A significant %DET effect found that there were communication determinism 

differences among the three conditions. Although it was due to the difference between all-

novice and expert teams, it nevertheless provides insights into the all-human teams. The 

all-novice teams had the lowest average %DET, suggesting that teams that did not have 

someone leading the communication were more variable in their flow patterns. The expert 

teams had the highest average %DET; however, the teams should not be categorized as 

fixed or rigid. A relatively higher %DET might have indicated that expert team did not 

communicate randomly, because the expert had expertise in performing the pilot role and 

could lead the team to communicate based on a certain sequence. This does not rule out 

the possibility that expert teams were being flexible, because expert teams’ %DET has not 

traditionally been considered too high to be rigid, previous research refer to this type of 

teams as being metastable (Demir et al., 2018).  

The third hypothesis predicted that less communication would occur in human-AI 

teams compared to all-human teams. The current study found significant differences in 

communication frequency between human-AI teams and all-human teams, as well as 
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among the three conditions. The multiple comparison results found that expert teams 

communicated significantly more than both all-novice teams and human-AI teams. In 

addition, human-AI teams had the lowest communication frequency. Overall, the results 

supported H3, indicating that human-AI teams did communicate less. This may be due to 

practical reasons such as the AI agent’s slow reading speed, or the expert teams went 

through more targets. The AI agent used in the current study did have a slow reading speed 

and could not comprehend messages that contained misspelling or incomplete sentences 

(e.g., missing “a” or “the”). Because of the AI agent’s limited communication ability, 

messages took longer to transmit. 

Additionally, because the photographer has to negotiate with the pilot for changing 

altitude and speed, slow message transmission would lead to a longer time taken at each 

target, thus resulting in overall lower communication frequency compared to all-human 

teams. Another interpretation may be plausible, given that the expert pilot could read the 

message at a faster speed and be capable of speeding up message transmission. Not only 

do team members with an expert communicate more at each target, but also communicate 

more because they reached more targets, resulting in more communication compared to 

all-novice and human-AI teams. 

The fourth hypothesis predicted that human-AI teams would have longer chains 

compared to all-human teams. Results did not support H4 with more lag one and two chains 

identified in all-human teams, and max chain length did not differ between human-AI and 

all-human teams. A possible explanation for the null results might be because the team task 

for the current study was structured in a way that required interactions had to be made 

among team members, yet certain information was shared between at least two team 
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members, resulting in a flexible way to acquire information. As shown in the results, the 

lag one and lag two chains that either human-AI teams or all-human teams performed were 

what this study proposed as good communication sequences between the AI agent and the 

human teammates. An interesting discovery was that the photographer did not appear to 

have stable communication sequences in the human-AI teams, indicating that the 

photographer might sometimes choose to not communicate with teammates, or interact 

with the navigator to acquire information that originally should come from the pilot.  

Together, for communication flow, the results might further suggest that human 

teammates may not enjoy communicating with the AI agent compared to communicating 

with other humans. With median %DET scores, less communication happening, and no 

significant lag one or lag two chains involving the photographer in human-AI teams, it is 

possible that the human teammates were exhausted by the limited language capability of 

the AI agent. Unless it was necessary, the human teammates might not reach out to the AI 

agent, either being passive toward the task by not communicating to the AI pilot or try to 

acquire information elsewhere by interacting with a human teammate.  

4.2 Communication Content 

The fifth hypothesis regarded which aspects of communication content might serve 

as discriminant predictors for differentiating all-human and human-AI teams. Results 

generally supported H5 with K-Means clustering based on cosine similarities (i.e., 

semantic relatedness between transcripts) successfully predicting 98% of the human-AI 

teams and 88% of the expert teams. All-novice teams were the hardest to classify because 

they did not cluster as well based on the semantic relatedness (cosine similarity) compared 
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to the two other types of teams. Nonetheless, a combination of vector length and K-Means 

group membership being included as predictors in discriminant function 2 increased the 

classification results to 91.3% correctness for classifying team type. 

Results using vector length alone presented a unique picture into the communication 

content differences, in that expert teams engaged in more domain-specific content 

utterances than all-novice teams and human-AI teams. The results suggested that expert 

teams might be more focused on the task compared to all-novice teams and human-AI 

teams. Additionally, because vector length and message length are known to be highly 

correlated, that expert teams communicated more frequently could account for higher 

vector length. What all-novice teams and human-AI teams may experience was that they 

were not able to take good photos of targets and therefore generated communication on the 

failure rather than the task. Similarly, because all-novice teams and human-AI teams 

communicated less, this could account for lower vector length in these two types of teams. 

The K-Means clustering results showed that expert teams’ communication was more 

semantically similar to each other as were the human-AI teams. However, all-novice did 

not cluster well in terms of semantic similarity. The expert team cluster might suggest 

specific communication content that the expert might initiate (e.g., consistent patterns of 

pushing and pulling, positive, closed-loop communication) that differentiate these teams 

from all-novice or human-AI teams. Overall, this finding demonstrated that the content 

metrics produced by LSA were able to discriminate between all-human and human-AI 

teams. 

4.3 Team Performance 
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The final hypothesis examined whether communication flow and content features 

can predict team performance. The present study addressed this hypothesis with regard to 

two performance variables, mission team performance, and target processing efficiency 

(TPE). For the correlation analysis, the current study only found one feature to be 

moderately correlated with both team performance and TPE, and that was the K-Means 

cluster membership assignment based on cosine similarities (semantic relatedness). For the 

multiple regression analysis, the current study found the model to be significant in 

predicting team performance and TPE. These results indicate that communication content 

and flow differences among conditions may also predict team performance and TPE 

differences across these conditions.  

4.4 Limitations and Future Directions 

The primary concern of the current study was whether communication flow and 

content features can discriminate between human-AI and all-human teams. Because the 

data were not collected specifically for the current study, there were only 50 human-AI 

teams’ missions compared to 100 all-human teams’ mission, minimizing the possible 

differences this study may find between these two general types of teams. Future research 

will be necessary to address these issues, by collecting the same number of teams for all-

human and human-AI conditions. 

Another limitation is the AI agent’s “age”. In other words, the data were collected 

several years ago with an earlier implementation of the synthetic teammate. As technology 

advances, it remains uncertain if improvements in the AI agent’s ability, such as reading 

speed and communication comprehension, would affect communication flow and/or 
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content. Additionally, the current study only included an AI agent to fulfill the pilot role, 

and the impact of the AI agent fulfilling the photographer role or the navigator role is 

untested. Future research should look at different AI agents with heterogeneous roles to 

determine other communication features that are able to discriminate between human-AI 

teams and all-human teams to make the predictors generalizable to other types of teams. 

Furthermore, the current study used existing methods to assess communication flow 

and content features, and other features may be added using different algorithms. For 

example, in creating the LSA space, the Truncated SVD function provided by scikit-learn 

on Python was used to decompose the document term matrix, but SVD can be performed 

differently, such as using the randomized SVD function of scikit-learn. Additionally, there 

are different ways to train K-Means clustering algorithms to achieve better classification 

results that could be tested. Moreover, it should be possible to build a machine learning 

model to learn from previous data from all-human teams and human-AI teams to classify 

novel team communication data as coming from a certain type of team. Therefore, future 

research should look into the possibility of using different algorithms or creating machine 

learning models to discriminate between human-AI and all-human teams. 

4.5 Conclusion 

The current findings illustrate that communication flow and content can be useful 

features for discriminating between human-AI and all-human teams. It is the current 

study’s hope that this work can provide helpful feedback showing differences in 

communication flow and content between human-AI and all-human teams to provide 

suggestions on what communication aspects of the AI should be the focus of team 
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performance improvement. Furthermore, these results should generalize to other teams that 

have equivalent requirements on the AI’s ability to perform bi-directional communication. 

This work is beneficial as communication is critical for teamwork. To create more effective 

human-AI teams, programmers need specific information on what level of language ability, 

including both content and flow, AI teammates should have. One practical implication of 

this research is to help design AI teammate communication abilities using predictive 

communication features from high performing (e.g., expert) teams discovered in this 

research. 
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