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SUMMARY 

In recent years we have faced a plethora of social trends and new technologies such 

as shared mobility, micro-mobility, and information and communication technologies, and 

we will be facing many more in the future (e.g. self-driving cars, disruptive events). In this 

context, the perennial mission of transportation behavior analysts and modelers – to model 

behavior/demand so as to understand behavior, help craft responsive policies, and 

accurately forecast future demand – has become far more challenging.  

Specifically, behavioral realism and predictive ability are two key goals of 

modeling (travel) behavior/demand, and a key strategy for achieving those goals has been 

to introduce some type of heterogeneity in modeling. Thus, this thesis aims to improve our 

behavioral modeling by accounting for heterogeneity, with clues from the ideas of 

data/market segmentation, finite mixture, and mixture modeling. The objectives of the 

thesis are: (1) to build a framework for modeling finite mixture heterogeneity that connects 

seemingly less related models and various methodological ideas across domains, (2) to 

tackle various heterogeneity-related research questions in travel behavior and thus show 

the empirical usefulness of the models under the framework; and (3) to examine the 

potential, challenges, and implications of the framework with conceptual considerations 

and practical applications. Five inter-related studies in this thesis illuminate some part(s) 

of the framework and delineate how key concepts in the framework are connected to each 

other. 

CHAPTER 1 and CHAPTER 2 start with discussions about the necessity of 

studying heterogeneity, related key concepts, and an overview of modeling finite mixture 
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heterogeneity. Through a comprehensive and systematic review, the study (1) provides a 

broader understanding of the usage landscape of finite mixture modeling, (2) sheds light 

on various typologies related to methodological approaches to treat heterogeneity, and 

(3) discusses alternative model configurations. Transportation researchers may benefit 

from this study by understanding the general idea of finite mixture heterogeneity and where 

we are now in this modeling. As well, analysts can use this study as a compass while 

designing their models.   

CHAPTER 3 discusses parameter heterogeneity, which is the most popular type of 

heterogeneity. Specifically, the chapter connects three alternative approaches to treating 

finite-valued parameter heterogeneity: deterministic segmentation, endogenous switching, 

and latent class models. The study (1) expands the typology of mixture modeling by 

embracing “observed classes”, and (2) connects the finite mixture model with the switching 

model family by way of detailed discussions about their similarities and differences from 

conceptual and empirical standpoints. Specifically, with equation-rich discussions the 

study points out the distinctive usefulness of each approach: the often-better performance 

of the latent class model over competing models, and the proper framework for estimating 

treatment effects offered by the endogenous switching model (including an in-depth 

interpretation of treatment effects). Analysts may benefit from this study by understanding 

the connections between two modeling families (thus supporting model selection 

appropriate to satisfying their ends) and obtaining the correct equations for calculating 

treatment effects, especially when the dependent variable is log-transformed.  

CHAPTER 4 deals with the confirmatory latent class approach, which has been less 

discussed in the literature. The study illustrates the usefulness of the confirmatory latent 
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class approach with an empirical application (modeling leisure trip frequencies by car and 

air). Specifically, the zero-inflated model is embraced under the finite mixture 

heterogeneity framework, given the expanded typology of heterogeneity. Analysts may 

gain inspiration from this study on how to operationalize behavioral models when dealing 

with data showing a particular pattern and when having some behavioral hypotheses on 

such a pattern. 

CHAPTER 5 expands the latent class model by combining it with the endogenous 

switching model. It relaxes the latent class model’s implicit assumption of independence 

between the unobserved influences on class membership and outcome. With two empirical 

applications (modeling the willingness to share autonomous vehicle rides with strangers 

and the adoption of ridehailing for social-purpose trips), the study shows how the proposed 

models may give different insights compared to standard latent class models, even when 

parameter estimates and goodness-of-fit measures appear to be similar. Specifically, when 

conducting scenario analysis, the proposed method provides distinct marginal and 

conditional (on class) expectations, whereas the standard model only focuses on 

conditional expectations. The study opens the door to an avenue for evaluating “treatment 

effects” in the latent class modeling context, which analysts may wish to pursue in the 

future. 

CHAPTER 6 conceptually connects latent class modeling to the mixture of experts 

(MoE) approach arising from the machine learning domain. This study uses MoE as a data-

driven exploratory tool to identify nonlinear and interaction effects (which are special types 

of parameter heterogeneity) and uses what we learn from MoE to improve the performance 

of conventional models. Through experiments with synthetic data and an empirical 
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application (to mode choice), the study shows that MoE can automatically detect 

nonlinear/interaction effects and can be used to inform our model specifications. To our 

knowledge, this study is the first in the transportation domain to use the “indirect 

application” (as it is known in the psychometrics field) of latent class modeling. Hence, the 

study expands the usage of finite mixture structures and thus helps to diversify applications 

for analysts. 

The journey of this thesis concludes with discussions about challenges, potential 

technical advances, and outlook for the framework (CHAPTER 7). The dissertation is 

expected to give conceptual/methodological insights into the framework for modeling 

finite mixture heterogeneity and how various methodologies are connected under the 

framework. As well, the studies provide rich discussions about study-specific empirical 

findings and their implications. Thus, the dissertation can help improve our 

behavior/demand models by serving as a navigational compass for analysts. The 

conceptual contributions, methodological novelties, and selected empirical findings of this 

thesis are summarized in the following tables. 

  



 xvii 

 Conceptual contributions Methodological novelties 
Ch2 & 

Ch7 
• The first comprehensive review of 

heterogeneity and mixture modeling in 

transportation 

• Develops a typology of heterogeneity in 

travel behavior/demand  

• Examines key elements of mixture 

modeling and thus portrays the general 

usage of the method 

• Discusses potential technical advances 

• Presents critical issues and challenges of 

the finite mixture approach that have not 

been discussed 

 

• Applies topic modeling to papers of specific 

interest in the Scopus database (as opposed 

to typical applications in which topic 

modeling is applied to any type of study in a 

broad domain) 

 

Ch3 • The first conceptual connections/ 

comparisons among three finite 

segmentation models: deterministic, 

endogenous switching, and latent class 

• Extends the concept of finite mixture/ 

segmentation 

 

• Discusses model-specific usage and 

implications (performance, interpretations) 

when applied in the context of vehicle-

miles driven (VMD) modeling 

• Provides complete equations for calculating 

various treatment effects when a log-

transformation is applied (which has not 

been covered in travel behavior research) 

 

Ch4 • Embraces zero-inflated models under the 

confirmatory latent class approach 

• Discusses the usefulness of the 

confirmatory latent class approach 

 

• The first application that probabilistically 

decomposes different types of zeros in the 

context of modeling long-distance trip 

frequency 

 

Ch5 • The first introduction of the idea of 

combining latent class and endogenous 

switching models in the transportation 

domain 

• Delineates subtle conceptual differences 

between latent class models with and 

without an error structure 

• Derives marginal effects of the model 

• Discusses the issue of evaluating latent 

class models 

 

• The first application of latent class 

modeling in the context of modeling the 

willingness to share automated vehicle 

(AV) rides with strangers and adoption of 

ridehailing for social-purpose trips 

• Conducts statistical inference based on 

(parallelized) bootstrapping 

• Illustrates the usefulness of the method with 

scenario analyses 

 

Ch6 • The first study in travel behavior research 

that introduces the ideas of indirect 

application of latent class modeling and the 

mixture of experts (MoE) architecture 

• Proposes the idea of using MoE as a data-

driven tool to identify nonlinear/interaction 

effects 

 

• The first application of MoE in the travel 

behavior and choice modeling communities 

• Demonstrates the approximation abilities of 

MoE by experimenting with synthetic data 

 

 

  



 xviii 

 Empirical findings (selected) 

Ch2 & Ch7 • Found that heterogeneity and mixture modeling have gained popularity over the years 

in transportation research publications 

• Identified six subdomains in transportation that use mixture modeling: discrete choice 

modeling, general behavior analysis, crash/safety analysis, traffic analysis, travel time 

distribution, and electric vehicles 

• Summarized types of heterogeneity and related applications in the literature: variable 

distributions, parameters, model specification, attribute processing, functional forms, 

decision rules, causal structure/order, constraint/choice set 

• Illuminated that supervised learning and unsupervised learning applications tend to 

have divergent numbers of classes in their respective final solutions; many studies 

determined such a number qualitatively rather than quantitatively 

 

Ch3 • Urban residents were more sensitive to the availability of transit, whereas non-urban 

residents were more sensitive to local amenities 

• The lower-VMD latent class was influenced to drive less when living in more job-

dense or better transit-service areas, whereas the higher-VMD class was not 

significantly influenced by these factors 

• Propensities associated with residential location choice and VMT generation shared 

common unobserved factors   

 

Ch4 • Identified profiles of those in the structural zero-trip regime (as opposed to the trip-

making regime): they were the oldest and have the lowest household income for both 

air and car travel 

• The presence of children acted as a barrier to belonging to the trip-making regime for 

air travel, but it was a facilitator of doing so for car travel; it was negatively associated 

with the number of trips in both modes 

• As distance to airport increased, both entry into the trip-making regime and number of 

trips were inhibited for air travel, but car travel exhibited the opposite effects 

 

Ch5 • Found significant correlations between unobserved influences on latent segmentation 

and behavioral processes (for both empirical contexts of modeling the willingness to 

share AV rides with strangers and adoption of ridehailing for social-purpose trips) 

• Males, more educated, and those who have used ridehailing services were more willing 

to share AV rides with strangers 

• Identified a latent group of people who are “structurally unwilling” to share AV rides 

with strangers; (none of the tested factors affects their willingness)  

 

Ch6 • Experiments with synthetic data showed that MoE can capture nonlinear/interaction 

effects without prior knowledge of those effects 

• MoE identified significant nonlinear effects of time and cost on mode choice in an 

empirical application 

• Found significant interaction effects in this empirical application: in particular, travel 

time interacted with gender and trip purpose; travel cost interacted with gender and 

seat grade of train 

• Conventional logit models were substantially improved by re-specifying them on the 

basis of what MoE learned from the data 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

People make numerous transportation-related choices, always under a constellation 

of circumstances, but such circumstances – urban environments, transportation systems, 

and society – have been radically changing. We have faced a plethora of social trends and 

new technologies such as shared mobility, micro-mobility, and information and 

communication technologies, and we will be facing many more in the future (e.g. self-

driving cars, disruptive events). In this context, the perennial mission of behavioral analysts 

and transportation modelers – to model behavior/demand so as to understand behavior, 

help craft responsive policies, and accurately forecast future demand – has become far 

more challenging. 

Behavioral realism and predictive ability are two key goals of modeling (travel) 

behavior. It may seem that these goals are the same, in that better understanding of 

behavioral mechanisms and causality should lead to better predictions of outcomes. 

However, arguably, they are not completely congruent (e.g. Shmueli, 2010), and trying to 

achieve both at once may sometimes feel like “chasing two rabbits”. Many social science 

fields use statistical models “almost exclusively for causal explanation” (Shmueli, 2010, p. 

289), whereas some fields mainly focus on the utilitarian need for predictive accuracy. In 

the transportation domain, both goals co-exist, in sometimes separate but often overlapping 

realms. This reality is perhaps exemplified by the existence of separate standing 

committees of the US Transportation Research Board, respectively devoted to Traveler 

Behavior and Values (AEP30) and to Transportation Demand Forecasting (AEP50). 
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Membership on the former committee is typically dominated by academic researchers, 

while membership on the latter is a purposeful mixture of researchers with planners/ 

practitioners/industry in roughly equal proportions. To some extent, this dual nature can be 

traced to the position of the transportation field on the boundary between social science 

and engineering, where its social science perspective often leads to a search for behavioral 

explanations while its engineering perspective often calls for accurate forecasting in 

support of infrastructure development, planning, and policy.  

Myriads of models have been developed in various fields such as statistics, 

economics, psychology, and data science. However, such models were developed for 

different purposes and contexts and, even if some models are eventually performing similar 

mathematical tasks, they may have different names and/or application approaches. A major 

challenge for many researchers and practitioners is, “what model(s) is (are) appropriate for 

addressing this question?” which in turn stems from several sub-questions, such as: (1) 

what basic assumptions should be considered in order to have a useful model1 and (2) to 

what extent is compromise acceptable (including tradeoffs between behavioral realism and 

prediction ability, if any)? 

A key strategy for achieving either behavioral realism or predictive ability has been 

to introduce some type of heterogeneity in modeling. Heterogeneity has become a popular 

concept in (but not limited to) the behavior modeling field, in that it is conceptually more 

realistic for explaining human behavior. Many questions can arise at this point: What types 

of heterogeneity exist in behavioral modeling? How do we incorporate heterogeneity in 

                                                 
1 This question follows from the famous saying by statistician George Box, “All models are wrong, but 

some are useful,” which is an expanded version of the quote in Box (1976). 
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modeling travel demand and behaviors? What is the empirical usefulness of such 

modeling? What are the challenges and implications in applications? What are possible 

challenges and avenues for methodological advances? Addressing these questions may 

ultimately help improve our behavior/demand models. Thus, this thesis is a journey 

pursuing the answers to those questions, with clues from the ideas of segmentation, finite 

mixture, and mixture modeling.  

1.2 Setting up the context 

1.2.1 Heterogeneity 

We may need to step back and question, why heterogeneity? The concept of 

heterogeneity (or related synonyms) is ubiquitous and thus we can find it in almost every 

domain. Figure 1-1 shows the appearance of the word “heterogeneity” in the literature.2 

Figure 1-1a conveys a general idea that the word “heterogeneity” is more commonly used 

than the word “homogeneity” in recent decades. As well, Figure 1-1b illustrates, overall, 

that “heterogeneity” is far more often used than “homogeneity” in the academic articles of 

numerous domains. While one reason for these patterns may be that there is a lower 

perceived need to articulate the dominant, often implicit paradigm of homogeneity 

(whereas heterogeneity, when considered, generally needs to be explicitly named and 

contrasted with the dominant paradigm), the figure clearly suggests that the idea of 

heterogeneity is shouldering a greater role than homogeneity in research, and increasingly 

                                                 
2 The purpose of this figure is to give a general idea of how these words have appeared in the literature. The 

exact meaning of heterogeneity/homogeneity may differ substantially depending on the context, and 

appearance in the literature itself does not necessarily mean that those concepts are the core of the 

literature. As well, many variant words including synonyms are not considered here.  



 4 

more so in recent years. It is instructive to dip into the thinking throughout history of some 

selected influential scholars with respect to heterogeneity (bolding added for emphasis). 

• “The asymmetry may arise from the fact that the units grouped together in the 

measured material are not really homogeneous. It may happen that we have a 

mixture of 2, 3, …, n homogenous groups…” (Pearson, 1894, the first finite mixture 

model) 

• “In considering the sub-groups of a population – especially in dealing with local 

races in man, animals or plants – a problem of the following character has not 

infrequently arisen: It is found that a sub-class, for example a local sample, differs 

considerably from the general population.” (Pearson, 1906) 

• “Market segmentation, on the other hand, consists of viewing a heterogeneous 

market (one characterized by divergent demand) as a number of smaller 

homogeneous markets in response to differing product preferences among 

important market segments.” (Smith, 1956, the first idea of market segmentation) 

• “But all evolutionary biologists know that variation itself is nature's only 

irreducible essence. Variation is the hard reality, not a set of imperfect measures 

for a central tendency. Means and medians are the abstractions.” (Gould, 1985) 

• “Accounting for heterogeneity and diversity and its implications for economics 

and econometrics is a central message of this [Nobel] lecture and a main theme of 

my life’s work.” (Heckman, 2000, Nobel Memorial Prize in Economic Sciences) 

• “The original formulation of RUM [random utility maximization] as a behavioral 

hypothesis started from the standard model, with randomness attributed to 

unobserved heterogeneity in tastes, experience, and information on the attributes 

of alternatives.” (McFadden, 2000, Nobel Memorial Prize in Economic Sciences) 

• “Predictive accuracy is substantially improved when blending multiple predictors. 

Our experience is that most efforts should be concentrated in deriving substantially 

different approaches, rather than refining a single technique.” (Bell et al., 2007, 

Netflix Prize) 
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• “This approach, called ‘ensemble of specialists’,… overall forecasting accuracy 

would improve if one used a separate model for each group instead of a single 

one for the whole dataset.” (Smyl, 2020, M4 Competition) 

 

Figure 1-1. Appearance of the words “heterogeneity” and “homogeneity” over time 

The meaning of heterogeneity itself, of course, might be very heterogeneous 

depending on the context and domain. This thesis will articulate the meaning of 

heterogeneity in travel demand/behavior studies in a later section (2.3.1). However, from 
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a broader perspective, we can observe that there has been a consensus about the importance 

of considering heterogeneity in numerous fields. In addition, many scholars and studies 

have been finding a pathway to leverage our knowledge and/or improve their 

research/models by accounting for heterogeneity. This motivates the focus of this thesis on 

heterogeneity as a pathway to better behavior/demand modeling.  

1.2.2 Finite mixture modeling 

As discussed further below, in essence heterogeneity can have two fundamental 

natures: continuously varying across the population, or taking on only a finite number of 

different versions. This thesis specifically focuses on the finite nature of heterogeneity, 

anchored in mixture modeling but relating it to model cousins as appropriate. 

Finite mixture modeling is a statistical approach to modeling a variety of random 

phenomena, and it has a long history. As noted in McLachlan and Peel (2001), one of the 

first major analyses using mixture modeling was in the late 1800s. Specifically, Pearson 

(1894) fitted a distribution of the body length of crabs using a mixture of two normal 

distributions, indicating the possibility of two sub-species. Notable features of the mixture 

model are that it has a probabilistic nature and it can disentangle latent structure in the data 

(or subgroups in the population). Hence, the basic idea of mixture modeling is to posit the 

existence of within-subgroup homogeneity but between-subgroup heterogeneity in the 

population and to model those heterogeneous patterns/distributions/behaviors. A general 

form of finite mixture models is as follows: 
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 𝑓(𝑦) = ∑ 𝑓(𝑦, 𝑧)𝑍
𝑧=1 = ∑ 𝑃(𝑧|𝑾)𝑓𝑧(𝑦|𝑧, 𝑿)𝑍

𝑧=1  , (1.1) 

where 𝑦 is an outcome variable (target variable, dependent variable), 𝑿 is a vector of 

variables explaining 𝑦 (covariates), 𝑾 is a vector of variables explaining subgroup 

membership 𝑧 (segmentation bases), 𝑧 is a discrete segment or subgroup indicator (𝑧 =

1, 2, … , 𝑍), 𝑃(∙) denotes a mixture density function (or segment membership probability), 

and 𝑓𝑧(∙) denotes an outcome function for segment 𝑧. We will describe functional forms of 

𝑃(∙) and 𝑓𝑧(∙) in later sections (Sections 2.3.4 and 2.3.5). It is useful to see a graphical 

illustration of homogeneous and heterogeneous behavioral processes that could be handled 

by the finite mixture modeling paradigm (Figure 1-2). As opposed to assuming 

homogeneity in the data generation process (or behavior generation process, in the context 

of behavior studies), finite mixture modeling posits that there are multiple subpopulations 

having different behavior generation processes. Putting this in statistical terms, we aim to 

find the joint density of 𝑦 and 𝑧 (and thence the marginal density of 𝑦, obtained by summing 

over, or marginalizing out, 𝑧), which can be expressed as a product of the marginal 

probability of belonging to a segment and the conditional density of outcome given 

segment. By decomposing the joint density into two parts, it brings benefits of 

interpretation and the potential of technical extensions.  

When discussing finite mixture modeling, for a better understanding of the 

methodology it is instructive to make some distinctions with respect to some relevant 

concepts: (1) continuous versus discrete/finite mixture and (2) disaggregation versus 

segmentation. These two contrasts will be discussed in turn. 
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Figure 1-2. Conceptual illustration of homogeneous and heterogeneous behavioral 

processes 

1.2.2.1 Continuous versus discrete/finite mixture 

In the statistics literature, the weighted average of several functions is called a 

mixed function, and the density that provides the weights is called the mixing distribution 

(Train, 2009). Although we focus on finite mixtures, more broadly, mixture distributions 

can be either continuous or discrete (cf. Walker and Ben-Akiva, 2011; Vij and Krueger, 

2017)3. Continuous mixture models can appear in two different forms (Figure 1-3): 

mixtures over parameter space, and mixtures over latent variable space. A common 

example of a mixture over parameter space is the case in which the travel time coefficient 

in a mode choice model is specified to have a continuous distribution, 𝑔𝛽(𝛽), in the 

                                                 
3 It is possible to have another typology, where we focus on the distribution type instead of on the overall 

model structure: parametric mixture distribution, nonparametric distribution, and semi-(non)parametric 

distribution (cf. Vij and Krueger, 2017). Typical latent class models can be classified in the nonparametric 

family in that “the support of the distribution is defined as a fixed number of points in a high-dimensional 

coefficient space” (Vij and Krueger, 2017, p. 78). However, finite mixture modeling can also be considered 

a semi-parametric approach, which is between the fully parametric and nonparametric approaches 

(McLachlan and Peel, 2001).  
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population. In the general case where the vector of model parameters can have continuous 

distributions, the mixture model can be expressed as follows:  

 𝑓(𝑦) = ∫ 𝑓(𝑦|𝑿; 𝜷)𝑔𝛽(𝜷)𝑑𝜷 . (1.2) 

This means that 𝑓(𝑦|𝑿; 𝜷) is weighted by 𝑔𝛽(𝜷) and integrated over 𝜷, since 𝑔𝛽(𝜷) is a 

continuous density. The mixed logit model, in which 𝑓(𝑦|𝑿; 𝜷) is the logit probability 

function, is a popular form of this type of mixture model (cf. Hensher and Greene, 2003; 

Train, 2009).  

With respect to mixing over the latent variable space, the model can be expressed 

as follows:   

 𝑓(𝑦) = ∫ 𝑓(𝑦|𝑧, 𝑿; 𝜷)𝑔𝑧(𝑧|𝑾; 𝜶)𝑑𝑧 , (1.3) 

where 𝑧 is a latent (unobserved) variable. This means that 𝑓(𝑦|𝑧, 𝑿; 𝜷) is weighted by 

𝑔𝑧(𝑧|𝑾; 𝜶). The integrated choice and latent variable model (ICLV, or hybrid choice 

model; cf. Vij and Walker, 2016) is a particular type of this mixture model (Walker, 2001), 

in which 𝑧 is a continuous-valued variable such as an attitude, and 𝑓(𝑦|𝑧, 𝑿; 𝜷) is a discrete 

choice model.  

Finite mixture models can be viewed as degenerate special cases of both kinds of 

continuous mixture models, in which the mixing distribution is finite-valued and therefore 

the integrals of Eq. (1.2) and Eq. (1.3) are replaced by the summation in Eq. (1.1). The 

latent class model is the counterpart of Eq. (1.2) in which the parameter vector 𝜷 only takes 
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on a finite number of values, each with a non-zero probability; it is the counterpart of Eq. 

(1.3) in which the latent variable 𝑧 is a finite-valued marker of class membership, where 

the probability that 𝑧 takes on a given value is being modeled by a function of observed 

variables 𝑾 and parameters4 𝜶. Walker and Ben-Akiva (2011) compared the continuous 

behavioral mixture, Eq. (1.3), and discrete behavioral mixture models, Eq. (1.1).  

 

Figure 1-3. A tree of continuous and discrete/finite mixture modeling 

In this thesis, we focus on the discrete/finite mixture due to its three unique 

benefits. First, it brings convenience both conceptually and technically. Conceptually, it 

is cognitively easier to think of a finite number of sets of parameters rather than considering 

the distribution(s) of parameters. Along with this, it often provides a more tangible 

explanation of an individual’s behavior. Consider the mixed logit and latent class models 

for mode choice modeling as a simple example. With a discrete mixture, it is easier to 

                                                 
4 The parameters 𝜶 can be considered hyperparameters as well, since we are reparameterizing constant 

class membership probabilities as functions of 𝑾. This will be addressed further in Section 2.3.4. 
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understand that a particular type of person may have a willingness to pay of $A as opposed 

to $B for those in another class. On the other hand, mixed logit models may indicate that 

willingness to pay exhibits a certain distribution in the population, but it gives limited 

information as to where a person with certain characteristics would fall in such a 

distribution. To obtain such information from a continuously-distributed random 

parameter, the analyst must resort to parameterizing the parameters characterizing the 

distribution of the outcome model’s parameter (i.e., hypothesizing heterogeneity in the 

mean and/or variance of a given model parameter’s continuous distribution, and specifying 

such heterogeneity as a certain function of W), which only proliferates the parameter’s 

distribution rather than simplifying it. The technical convenience of finite mixture models 

arises because in continuous mixture models, the integral does not offer a closed form 

solution and thus it requires simulation for estimation. This means that in general it may 

require a longer time for estimation (although this can depend on model specification). 

Second, the discrete mixture is nicely connected with some other useful 

concepts or modeling approaches. One such important concept is market segmentation 

(see Section 2.1.2), which has been long and successfully used in the marketing field, and 

to which discrete mixture models are well suited (Wedel and Kamakura, 2012). In addition, 

discrete mixture models can even be associated with other segmentation models such as 

switching models (CHAPTER 3), and the ensemble method by weighting in machine 

learning (CHAPTER 6).  

Lastly and importantly, whereas continuous mixture models focus on how 

parameters/latent variables are distributed, discrete mixture models in fact expand our 

modeling capability by examining more diverse types of heterogeneity beyond 
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parameter heterogeneity (as will be covered in Section 2.3.1). However, the two 

approaches each have their own advantages, and there are often tradeoffs between them 

(e.g. continuous mixture models require distributional assumptions, but discrete mixture 

models are subject to decisions on the number and nature of classes). Therefore, the thesis 

does not assert superiority of finite mixture models over continuous mixture models; rather 

it aims to deepen our understanding of the finite mixture case and its implications. 

1.2.2.2 Disaggregation versus segmentation 

Another important distinction is to understand the meaning of the “segmentation” 

which is achieved by finite mixture modeling. Two key concepts are the level of (analysis 

unit) (dis)aggregation and the level of (data) segmentation. The terminology can be 

confusing because the word “disaggregation” is sometimes used as a synonym for 

“segmentation” (e.g., “the sample was disaggregated by income category”), but at the same 

time, “level of (dis)aggregation” can be used to describe one trait of the unit of analysis. 

The two dimensions of (dis)aggregation and segmentation have different implications for 

data analysis and its interpretation. 

We are exposed to a large spectrum of data – potentially about countries, states, 

cities, neighborhoods, transit agencies, employee groups, households, individuals, 

vehicles, and so on. One way of characterizing a data set is by the unit of observation: what 

type of entity is being measured by each data point? The unit of observation falls at some 

level of disaggregation: the aggregate level (i.e. each data point represents some 

aggregated group of actors), disaggregate level (i.e. each data point represents a single actor 

such as a person), and individual level (i.e. multiple data points are captured from the same 
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actor). In theory, data available at a finer-grained level of disaggregation can be aggregated 

to higher levels, provided there are “enough” finer-grained cases being aggregated to 

provide a good measure of the coarser-grained case they represent, and “enough” cases at 

the coarser level to enable reliable statistical analysis at that level. Obviously, the definition 

of an “actor” and the level of disaggregation can be context-dependent. As a concrete 

example, suppose we want to estimate the elasticity of driving distance with respect to 

income. In the aggregate-level analysis, we may collect data on average income and total 

vehicle-miles traveled (VMT) in major cities in the US, and model VMT as a function of 

income. Note that the aggregation could also be at the state or county level, and so on. At 

the disaggregate level, we may collect data on the income and VMT of individuals and 

estimate a similar model. At the individual level, we can even focus on a particular person 

and model a VMT-income relationship across multiple years of measurement.  

Another dimension for a study’s modeling strategy is the (often data-driven) 

segmentation of the data, i.e. the subdivision of the data into smaller groups. For example, 

if we had a sample of New York state residents, for modeling transit use behavior, we 

might be tempted to split the sample into residents of the New York metropolitan area and 

the rest of the residents. Note that this segmentation does not change the level of the 

observation unit: it would be the individual (disaggregate level) whether we segmented the 

data or not. In the continuum of segmentation, at one end is no segmentation (or pooled 

data), meaning that the data are analyzed as one group representing the whole “population”. 

The other end is highly-segmented and, at the extreme, each data point can be considered 

as its own segment. In theory, data segmentation can be applied to any level of 

(dis)aggregation of the data. Finite mixture modeling, which is the focus of this thesis, is 
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an approach of segmentation. In this study, we particularly focus on the segmentation 

scheme (via mixture modeling) with disaggregate-level data. 

1.2.3 Data used in this thesis 

For empirical applications, the thesis mainly uses survey data hereafter referred to 

as the “GDOT data” (Figure 1-4; CHAPTER 6 is an exception in that it employs synthetic 

data and a publicly available dataset, both of which will be described in that chapter). The 

survey was designed and the data were collected as a part of a research project titled “The 

Impact of Emerging Technologies and Trends on Travel Demand in Georgia”, funded by 

the Georgia Department of Transportation (GDOT). In keeping with the project’s name, 

the survey aimed to explore the impacts of emerging technologies and trends on travel 

behavior in Georgia (2017-2018), and accordingly the population of interest was adult 

residents of Georgia. The survey employed a combination of two sampling approaches: (1) 

recruiting respondents through address-based stratified random sampling in the 15 

Metropolitan Planning Organization (MPO) areas in Georgia (the “main” sample), and (2) 

recontacting survey participants who took the 2016–17 National Household Travel Survey 

(Westat, 2018) in Georgia (which included residents of non-MPO areas) and agreed to be 

surveyed further (the “NHTS” sample). The working dataset includes ~3,300 cases, but the 

final sample size varies by the study (each chapter will describe the working data and key 

variables in that study). More details about the survey and the data are available in the final 

report of the project (Kim et al., 2019b). 

The GDOT data were enriched through appending additional information based on 

geocodes of respondents’ home locations. External data sources include the American 
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Community Survey (ACS), Longitudinal Employer-Household Dynamics (LEHD), 

Alltransit, Google Place API, and Google Map API. In addition, several variables were 

created by using factor analysis (e.g. attitudinal constructs, Table 1-1) and principal 

component analysis (e.g. a proxy for local accessibility, Table 1-2).  
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Figure 1-4. Geographical distribution of the GDOT data 
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Table 1-1. Attitudinal Factors and Corresponding Factor Loadings 

Factor Statement 

Pattern 

matrix 

loading 

Non-car 

alternatives 

I like the idea of walking as a means of travel for me. 0.666 

I like the idea of bicycling as a means of travel for me. 0.628 

  I like the idea of public transit as a means of travel for me. 0.336 

Tech-savvy Learning how to use new technologies is often frustrating for me. −0.866 
 I am confident in my ability to use modern technologies. 0.801 

Commute 

benefit 

My commute is a useful transition between home and work (or school). 0.677 

My travel to/from work (or school) is usually pleasant. 0.579 

  I wish I could instantly be at work (or school)—the trip itself is a waste of time. −0.428 

Modern 

urbanite 

I like the idea of having stores, restaurants, and offices mixed among the homes 

in my neighborhood. 

0.417 

 My phone is so important to me, it’s almost part of my body. 0.350 

Work-oriented At this stage of my life, having fun is more important to me than working hard. −0.572 
 I'm too busy to have as much leisure time as I'd like. 0.527 

  It’s very important to me to achieve success in my work. 0.298 

Materialistic 
I usually go for the basic (“no-frills”) option rather than paying more money for 

extras. 

−0.565 

 The functionality of a car is more important to me than the status of its brand. −0.431 
 I would/do enjoy having a lot of luxury things. c 0.426 
 I like to wait a while rather than being first to buy new products. −0.357 
 I prefer to minimize the amount of things I own. −0.341 

Polychronic I prefer to do one thing at a time. −0.834 

  I like to juggle two or more activities at the same time. 0.697 

Pro-

environmental 

Cost or convenience takes priority over environmental impacts (e.g., pollution) 

when I make my daily choices. 

−0.914 

 I am committed to an environmentally friendly lifestyle. 0.481 

Pro-exercise The importance of exercise is overrated. −0.669 

  I am committed to exercising regularly. 0.663 

Family/friends

-oriented 

Family/friends play a big role in how I schedule my time. 0.612 

It’s okay to give up a lot of time with family and friends to achieve other worthy 

goals. 

−0.468 

Pro-suburban 
I prefer to live in a spacious home, even if it’s farther from public transportation 

or many places I go to. 

0.609 

  I see myself living long-term in a suburban or rural setting. 0.387 

Waiting-

tolerant 

Having to wait is an annoying waste of time. −0.831 

Having to wait can be a useful pause in a busy day. 0.533 

Travel liking I generally enjoy the act of traveling itself. 0.618 

  I like exploring new places. 0.593 

Sociable I consider myself to be a sociable person. 0.563 
 I’m uncomfortable being around people I don’t know. −0.507 

Pro–car-

owning 

I definitely want to own a car. 0.748 

I am fine with not owning a car, as long as I can use/rent one any time I need it. −0.576 
 I like the idea of driving as a means of travel for me. 0.535 

  
As a general principle, I'd rather own things myself than rent or borrow them 

from someone else. 

0.404 

Note: Factor loadings under 0.3 in magnitude are suppressed. 
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Table 1-2. PCA pattern loadings on number of amenities near geocoded home 

Number of amenities Pattern loading Number of amenities Pattern loading 

Bar 0.803 Bakery 0.821 

Convenience store 0.741 Café 0.838 

Doctor 0.734 Dentist 0.711 

Florist 0.670 Parking 0.606 

Home goods store 0.857 Bank 0.738 

Liquor store 0.698 Book store 0.655 

Restaurant 0.887 Clothing store 0.835 

Beauty salon 0.883 Hair care 0.860 

Gas station 0.661 Library 0.545 

Park 0.636 Pharmacy 0.634 

School 0.794 Supermarket 0.568 

Store 0.726    

Note: Numbers of amenities near the home location are collected via the Google Map API.  

1.3 Knowledge gaps and research objectives 

The ideas of heterogeneity, segmentation, and finite mixture modeling have been 

around in the transportation domain for some time and are becoming more popular recently 

(cf. Section 2.2). Then, what will be the merits of this thesis? Years of delving into these 

topics point to some knowledge gaps. 

First, the concepts of heterogeneity and finite mixture modeling have gained 

popularity, but the literature lacks a framework that integrates various types of 

heterogeneity and their model configurations. So the questions are: How has the 

transportation domain used finite mixture modeling? What types of heterogeneity have 

been discussed? What is the proper model configuration for a specific type of heterogeneity 

and what are the alternatives? (CHAPTER 2 – CHAPTER 6) Second, there has been little 

effort to connect methodological ideas scattered in various domains. For example, the 

relationship may seem slight at first, but the finite mixture model can be connected with 
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several classical econometric models (CHAPTER 3 and CHAPTER 4) and even models 

developed in the machine learning domain (CHAPTER 3 and CHAPTER 6). Knowledge 

of linkages among related models could bring benefits of enriching interpretations and the 

potential to shed light on new pathways to new approaches (e.g. CHAPTER 5 and 

CHAPTER 6). Lastly, there are plenty of conceptual/methodological details and issues 

“under the hood”, but discussions about those are scarce (and accordingly, each chapter, 

and especially CHAPTER 7, will aim to invite unique discussions). In this regard, the goals 

of this thesis are threefold: 

1. To build a framework for modeling finite mixture heterogeneity that connects 

seemingly less related models and various methodological ideas across domains; 

2. To tackle various heterogeneity-related research questions in travel behavior and 

thus show the empirical usefulness of the models under the framework; 

3. To examine the potential, challenges, and implications of the framework with 

conceptual considerations and practical applications. 

1.4 Thesis outline and contributions 

This section outlines the structure of the thesis (Figure 1-5) and describes the key 

contents of each chapter. In the thesis, each core chapter illuminates some part(s) of the 

framework and delineates how key concepts in the framework are connected to each other 

(and to other chapters as well). A summary of the conceptual contributions and 

methodological novelties of the thesis is offered in Table 1-3, and a summary of selected 

empirical findings appears in Table 1-4. 

CHAPTER 1 provided the motivation of this thesis and set up the background and 

thesis objectives. This section outlines the rest of the thesis. 
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CHAPTER 2 aims to provide a broader understanding of the usage landscape of 

finite mixture modeling, and also insights into detailed elements of the approach through a 

comprehensive and systematic review. The chapter does not simply summarize the 

literature; rather, it aims to provide conceptual insights (e.g. the typology of heterogeneity 

in Section 2.3.1). Section 2.1 skims related concepts in other domains. Section 2.2 presents 

how we obtained a pool of relevant papers and how the studies are distributed by year and 

topic. Section 2.3 dives into the key elements of the finite mixture model and how 

transportation studies have used the method. To the best of our knowledge, this is the first 

comprehensive conceptual/review study exploring heterogeneity and mixture modeling in 

the transportation domain. 

CHAPTER 3 focuses on parameter heterogeneity, which is the most popular type 

of heterogeneity. Specifically, the chapter connects three alternative approaches to treating 

parameter heterogeneity: deterministic segmentation, endogenous switching, and latent 

class models. The study compares them from theoretical and conceptual standpoints 

(Section 3.3) and with empirical applications (modeling vehicle-miles driven; Section 3.4). 

In addition, the chapter provides some important discussions related to the models, 

especially notes about estimating treatment effects (Section 3.5). To our best knowledge, 

this is the first study to connect those three alternative models, including theoretical, 

conceptual, and empirical comparisons. 

CHAPTER 4 deals with the confirmatory latent class approach. The confirmatory 

approach is introduced in Section 2.3.2, as distinguished from the exploratory approach 

which is more common in the literature. This chapter illustrates the usefulness of the 

confirmatory latent class approach with an empirical application (modeling the frequency 
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of overnight domestic leisure trips by car and air). Specifically, the zero-inflated model is 

embraced under the finite mixture heterogeneity framework given the expanded typology 

of heterogeneity. To our best knowledge, this is the first study to probabilistically classify 

two types of zero-trip cases (structural vs. incidental, which will be described in the 

chapter) in the context of modeling long-distance trip frequency. 

CHAPTER 5 expands the latent class model by combining it with another, 

previously encountered (CHAPTER 3), model family – the endogenous switching model. 

It relaxes an (often implicit) assumption of independence of the latent class model, by 

allowing the unobserved influences on class membership and outcome to be correlated. In 

doing so, however, the model deviates from the standard finite mixture model; hence, the 

chapter discusses the implications of this idea (Section 5.2). With two empirical 

applications (modeling willingness to share autonomous vehicle rides with strangers and 

adoption of ridehailing for social-purpose trips), the chapter shows how the proposed 

models may give markedly different pictures compared to the standard latent class models, 

even when parameter estimates and goodness-of-fit measures appear to be similar (Sections 

5.3 and 5.4). As far as we know, this is the first study in the transportation domain that 

introduces the idea of combining latent class and endogenous switching models. 

CHAPTER 6 examines the potential of using the mixture of experts (MoE) method 

as a data-driven exploratory tool to capture nonlinear and interaction effects (which are 

special types of parameter heterogeneity). Section 6.2 describes how the MoE fits into the 

framework of finite mixture heterogeneity (a so-called “indirect application” of finite 

mixture modeling). Section 6.3 verifies the usefulness of the MoE method with synthetic 

data and Section 6.4 applies the method to empirical data (mode choice). To our best 
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knowledge, this is the first study in the transportation domain that connects latent class 

modeling and MoE and proposes the idea of using MoE as a data-driven tool to capture 

nonlinear/interaction effects. 

CHAPTER 7 summarizes the thesis and invites further discussions. It suggests 

several avenues for future technical advances and presents some issues regarding mixture 

modeling. It concludes with remarks on the use of the methodology and improvements of 

our behavior/demand modeling. 

  

 

Figure 1-5. Schematic relationships among components of the thesis 
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Table 1-3. Summary of conceptual contributions and methodological novelties 

 Conceptual contributions Methodological novelties 
Ch2 & 

Ch7 
• The first comprehensive review of 

heterogeneity and mixture modeling in 

transportation 

• Develops a typology of heterogeneity in 

travel behavior/demand  

• Examines key elements of mixture 

modeling and thus portrays the general 

usage of the method 

• Discusses potential technical advances 

• Presents critical issues and challenges of 

the finite mixture approach that have not 

been discussed 

 

• Applies topic modeling to papers of specific 

interest in the Scopus database (as opposed 

to typical applications in which topic 

modeling is applied to any type of study in a 

broad domain) 

 

Ch3 • The first conceptual connections/ 

comparisons among three finite 

segmentation models: deterministic, 

endogenous switching, and latent class 

• Extends the concept of finite mixture/ 

segmentation 

 

• Discusses model-specific usage and 

implications (performance, interpretations) 

when applied in the context of vehicle-

miles driven (VMD) modeling 

• Provides complete equations for calculating 

various treatment effects when a log-

transformation is applied (which has not 

been covered in travel behavior research) 

 

Ch4 • Embraces zero-inflated models under the 

confirmatory latent class approach 

• Discusses the usefulness of the 

confirmatory latent class approach 

 

• The first application that probabilistically 

decomposes different types of zeros in the 

context of modeling long-distance trip 

frequency 

 

Ch5 • The first introduction of the idea of 

combining latent class and endogenous 

switching models in the transportation 

domain 

• Delineates subtle conceptual differences 

between latent class models with and 

without an error structure 

• Derives marginal effects of the model 

• Discusses the issue of evaluating latent 

class models 

 

• The first application of latent class 

modeling in the context of modeling the 

willingness to share automated vehicle 

(AV) rides with strangers and adoption of 

ridehailing for social-purpose trips 

• Conducts statistical inference based on 

(parallelized) bootstrapping 

• Illustrates the usefulness of the method with 

scenario analyses 

 

Ch6 • The first study in travel behavior research 

that introduces the ideas of indirect 

application of latent class modeling and the 

mixture of experts (MoE) architecture 

• Proposes the idea of using MoE as a data-

driven tool to identify nonlinear/interaction 

effects 

 

• The first application of MoE in the travel 

behavior and choice modeling communities 

• Demonstrates the approximation abilities of 

MoE by experimenting with synthetic data 
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Table 1-4. Summary of selected empirical findings 

 Empirical findings (selected) 

Ch2 & Ch7 • Found that heterogeneity and mixture modeling have gained popularity over the years 

in transportation research publications 

• Identified six subdomains in transportation that use mixture modeling: discrete choice 

modeling, general behavior analysis, crash/safety analysis, traffic analysis, travel time 

distribution, and electric vehicles 

• Summarized types of heterogeneity and related applications in the literature: variable 

distributions, parameters, model specification, attribute processing, functional forms, 

decision rules, causal structure/order, constraint/choice set 

• Illuminated that supervised learning and unsupervised learning applications tend to 

have divergent numbers of classes in their respective final solutions; many studies 

determined such a number qualitatively rather than quantitatively 

 

Ch3 • Urban residents were more sensitive to the availability of transit, whereas non-urban 

residents were more sensitive to local amenities 

• The lower-VMD latent class was influenced to drive less when living in more job-

dense or better transit-service areas, whereas the higher-VMD class was not 

significantly influenced by these factors 

• Propensities associated with residential location choice and VMT generation shared 

common unobserved factors   

 

Ch4 • Identified profiles of those in the structural zero-trip regime (as opposed to the trip-

making regime): they were the oldest and have the lowest household income for both 

air and car travel 

• The presence of children acted as a barrier to belonging to the trip-making regime for 

air travel, but it was a facilitator of doing so for car travel; it was negatively associated 

with the number of trips in both modes 

• As distance to airport increased, both entry into the trip-making regime and number of 

trips were inhibited for air travel, but car travel exhibited the opposite effects 

 

Ch5 • Found significant correlations between unobserved influences on latent segmentation 

and behavioral processes (for both empirical contexts of modeling the willingness to 

share AV rides with strangers and adoption of ridehailing for social-purpose trips) 

• Males, more educated, and those who have used ridehailing services were more willing 

to share AV rides with strangers 

• Identified a latent group of people who are “structurally unwilling” to share AV rides 

with strangers; (none of the tested factors affects their willingness)  

 

Ch6 • Experiments with synthetic data showed that MoE can capture nonlinear/interaction 

effects without prior knowledge of those effects 

• MoE identified significant nonlinear effects of time and cost on mode choice in an 

empirical application 

• Found significant interaction effects in this empirical application: in particular, travel 

time interacted with gender and trip purpose; travel cost interacted with gender and 

seat grade of train 

• Conventional logit models were substantially improved by re-specifying them on the 

basis of what MoE learned from the data 
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CHAPTER 2. HOW WE HAVE USED MIXTURE MODELING 

Paper title: Finite mixture (or latent class) modeling in transportation: Trends, usage, 

potential, and future directions 

This chapter explores studies using finite mixture modeling in transportation. It 

starts with related concepts in various disciplines and then examines publication trends by 

year and subdomains based on topic modeling. The chapter provides a comprehensive 

review of how transportation studies have used finite mixture modeling, develops a 

framework encompassing finite mixture modeling and related subjects, and discusses key 

elements of the framework with various typologies (e.g. a typology of heterogeneity). 

 

2.1 The arena of segmentation, finite mixture modeling, and other relevant concepts 

in various disciplines 

Transportation studies constitute a wide spectrum of research, but a majority of 

them employ analytic approaches involving some type of statistical modeling. Numerous 

studies have pointed out some types of heterogeneity that could be an important 

consideration in modeling. For example, unobserved heterogeneity in crash data is a critical 

issue for modeling in safety analysis, and has thus led to the proposal of various models to 

deal with it (cf. Lord and Mannering, 2010; Mannering and Bhat, 2014; Mannering et al., 

2016). In travel behavior studies, a key avenue of research has addressed how to capture 

heterogeneity with respect to a given behavioral process (e.g. Brownstone et al, 2000; Ben-

Akiva et al., 2002; Greene and Hensher, 2003). The interest in heterogeneity and 

corresponding modeling approaches has been exponentially growing over the past several 

decades (as will be shown in Section 2.2).  
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 The mixture modeling framework is extremely flexible, and thus it is a versatile 

tool for probabilistically and simultaneously taking various types of heterogeneity into 

account in behavioral modeling. This methodology has been applied to analysis techniques 

such as cluster analysis (unsupervised learning), regression/classification, and model 

systems (structural equation modeling). Thus, concepts of segmentation, heterogeneity, 

and mixture modeling have appeared in an arena of various fields beyond transportation, 

including (but not limited to) (bio-)statistics, econometrics, psychometrics, machine 

learning, marketing research, social/behavioral science, and transportation. Here, we 

briefly and selectively overview concepts and methodologies discussed in various domains 

that are relevant to the themes. 

2.1.1 Multigroup analysis in psychometric models 

Naturally, the existence of heterogeneity in human behavioral processes would be 

of fundamental interest to the discipline of psychology, and indeed, “group differences” or 

“multigroup analysis” has long been of interest in psychometrics. For instance, Meredith 

(1964) aimed to answer the question, “Under what conditions is it reasonable to expect that 

the factor structure inherent in a given set of variables will be invariant over populations?” 

In psychometric models, the focal point of multigroup analysis is to test multigroup 

invariance in model elements such as factor loadings, factor covariances, regression paths, 

and latent factor means (cf. Byrne et al., 1989; Ansari et al., 2000; Byrne, 2013). There 

have been several methodological approaches to treating heterogeneity in the population. 

For example, Joreskog (1971) described a procedure of testing for multigroup invariance 

(when the sample is drawn from several populations). Muthen (1989) introduced multiple 

indicator multiple cases (MIMIC) analysis as a method for describing heterogeneity. 
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Although he took another avenue to handle heterogeneity, he also hinted that “An 

alternative view to homogeneity is that data come from a mixture of populations with their 

own sets of parameter values. This relates to statistical modeling called finite mixture 

analysis” (p. 558). However, most multigroup analyses have been based on a certain 

deterministic group indicator of interest (e.g. gender, age). Early proposals adopting (finite) 

mixture modeling in psychometric models include Yung (1997) and Jedidi (1997a; 1997b). 

Yung (1997) proposed finite-mixture confirmatory factor-analysis models; Jedidi et al. 

(1997a; 1997b) proposed a latent-class version of the multigroup structural equation model 

(SEM)5, questioning the basic assumption of a known group indicator. 

2.1.2 Market segmentation in marketing research 

The concept of market segmentation has a long history in marketing research. Since 

the pioneering introduction of Smith (1956), market segmentation has become a dominant 

concept in marketing research and practice (Kotler and Armstrong, 2010; Wedel and 

Kamakura, 2012). Initially, segmentation was mainly performed using two approaches: 

direct segmentation on the basis of one variable at a time or perhaps the cross-tabulation 

of two or (seldom) more variables, and cluster-based segmentation, in which an initial 

cluster analysis was conducted on multiple variables, and then the data were segmented 

(for further analysis) on the basis of the resulting clusters (Wind, 1978). Both of these 

approaches are deterministic (manifest) and exogenous: the segment membership of each 

case is known a priori, having been determined outside of the model or process of interest.  

                                                 
5 This is a so-called finite-mixture SEM. This approach appears to be less well-known in the transportation 

domain – the authors are aware of only a few studies (Astroza et al., 2019; Allen et al., 2019; Pendyala et 

al., 2020; Kim et al., in progress). 
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Finite mixture modeling was an important analytical breakthrough. Since the first 

application of mixture modeling in the 1970s, it has been considered one of the most 

influential methodological developments in the field (Wedel and Kamakura, 2012). In the 

marketing literature, such models have been often called “latent class models”6 – 

terminology that is also familiar in the transportation domain. Early works in marketing 

research, which employed this type of mixture modeling, include DeSarbo and Cron 

(1988), Kamakura and Russell (1989), and Swait (1994). Particularly, Swait (1994) 

presented a useful conceptual model that embeds the latent class concept into the discrete 

choice process formulated by Nobel economist Daniel McFadden.  

2.1.3 Model structure and ensemble methods in machine learning 

A variety of machine learning techniques have been proposed in the last several 

decades. Among the myriads of model classes, some are relevant to our themes. As 

commented in Bishop (2006), if we focus on the mechanism of decision tree models 

(namely, to partition the input space into a set of rectangles and then fit a model for each 

segment), we may notice that the basic idea for solving the problem is segmentation. In 

addition, when examining the model structures of latent class models and neural networks, 

we may recognize that their structures are fairly similar to each other in that there are 

hidden (or latent) nodes in layers. Indeed, the latent class model can be considered as a 

particular form of a single hidden layer feedforward neural network with MNL activation 

functions (McFadden, 2001; Vermunt and Magidson, 2003).  

                                                 
6 According to Green et al. (1976), the term “latent class” seems to stem from the early work of Lazarsfeld 

(1950). 
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Lastly, one particular relationship pertains to a modeling approach (or model 

architecture) rather than to a single model per se. Considerable effort has been expended 

to improve the performance of models in the machine learning domain (cf. Kotsiantis et 

al., 2006). A particular approach is to combine models (ensemble methods). Loosely 

speaking, this approach aims to predict outcomes based on multiple (local) models instead 

of a single (global) model. There are various ensemble methods (cf. Rokach, 2010); one 

such method is the so-called mixture of (local) experts (MoE) proposed by Jacobs et al. 

(1991a). The basic idea is to split the input space into homogeneous regions, with different 

experts (i.e. models or also called learners) being “responsible for” (i.e. operating in) the 

different regions (Masoudnia and Ebrahimpour, 2014; Baldacchino et al., 2016). This 

approach is called “divide-and-conquer” from a problem-solving perspective (which is 

comparable to the concept of market segmentation). Then, results from the different experts 

are combined by a gating network (usually employing the so-called softmax function – 

known as multinomial logistic regression in other domains – which functionalizes the 

membership models of latent class models in most studies).  

Recalling the concepts of finite mixture modeling and market segmentation, these 

approaches are not far from each other. That is, although some details in application and 

context may not be identical, the basic idea for solving the problem is fairly similar. We 

can translate “homogeneous input spaces” into “latent classes” or “market segments”, 

“gating network” into “membership/segmentation model”, and “local expert/learner” into 

“class-specific outcome model”.  This will be covered in CHAPTER 6 in detail. Hence, 

the mixture modeling framework of interest in this study blends fundamental conceptual 

(e.g. marketing research) ideas with a promising analytic approach. This accordingly 
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suggests that the methodology has great potential to improve the interpretability as well as 

the performance of the models to which it is applied. 

2.2 Landscape and trends in transportation 

2.2.1 Methodology 

Although studies of research trends are not uncommon, only a few attempts to 

identify such trends through modeling can be observed in the transportation field. This has 

happened recently (2016-2020), since text mining and/or topic modeling has started to gain 

attention in the field. As shown in Table 2-1, four out of six studies used resources of the 

Transportation Research Board (TRB), including compendia of the Annual Meeting and 

the Transportation Research Record journal. A critical difference of this study from others 

is that this study specifically targets selected papers sharing a theme of interest, whereas 

others pooled all articles in the target sources. Hence, the previous studies identified 

macroscopic topics/trends in transportation at large, whereas this study aims to uncover 

topics/trends with respect to papers focusing on our interest (applications of latent class or 

finite mixture modeling). 

First, we find a large volume of journal articles, to encompass the landscape of 

transportation literature related to our interest. There are multiple sources of information 

on research articles (e.g. Google Scholar, Scopus, Web of Science, Transport Research 

International Documentation, individual journal websites); we use the Scopus database to 

identify our pool of articles. This study specifically uses the Scopus API since (1) it is one 

of the few sources publicly available (for non-commercial purposes) and (2) Scopus is a 
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major source-neutral abstract and citation database7. We search for our keywords in three 

fields: article title, keywords, and abstract. We do not search for keywords in the body of 

the paper, to focus on papers for which our keywords are highlighted and to avoid irrelevant 

papers (e.g. terms can be mentioned in the body of the paper in a way that is peripheral to 

the paper’s theme). However, this search strategy could be on the conservative side, 

because some studies may use the methods of interest without mentioning them in the title, 

keywords, or abstract. We limit our analysis to the pool of articles published through 2020 

(no lower bound)8. We directed our search query to focus on major peer-reviewed 

transportation journals as shown in Table 2-2. The keywords we use are: 

• “latent class”, “latent segmentation”, “endogenous segmentation”; 

• “mixture model(s)”, “mixture model(l)ing”, “finite mixture”. 

We pool the selected papers using the union operation – in other words, our pool contains 

any papers having at least one of the keywords searched. This list of specified keywords 

may potentially include less relevant papers (e.g. when keywords appear in the abstract by 

coincidence) and/or exclude highly relevant papers (e.g. papers in other journals, but 

involving a transportation application).  

 

  

                                                 
7 For more details, refer to https://dev.elsevier.com/sc_apis.html, https://www.elsevier.com/solutions/scopus  
8 The up-to-2019 data were collected in January, 2020. Data for 2020 publications were collected at the end 

of December 2020. 

https://dev.elsevier.com/sc_apis.html
https://www.elsevier.com/solutions/scopus
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Table 2-1. Summary of topic modeling applications to transportation research 

Author Year Method Target sources 
Number of 

articles 
Period 

Das et al. 2016 
Latent Dirichlet 

allocation 

TRB annual meeting 

(compendia) 
15,357 2008-2014 

Das et al. 2017 
Structural topic 

modeling 

TRB annual meeting 

(compendia) 
15,357 2008-2014 

Sun & 

Yin 
2017 

Latent Dirichlet 

allocation 

22 selected 

transportation 

journals 

17,163 1990-2015 

Boyer et 

al. 
2017 

Latent Dirichlet 

allocation 

TRB annual meeting 

(compendia) 
32,090 1998-2016 

Kuhn 2018 
Structural topic 

modeling 

Aviation incident 

reports 
25,706 2011-2015 

Das et al. 2020 

Latent Dirichlet 

allocation; structural 

topic modeling 

Transportation 

Research Record 
30,784 1974-2019 

 

Table 2-2. The pool of transportation journals searched 

• Transportation 

• Transportation Research Part A: Policy and Practice 

• Transportation Research Part B: Methodological 

• Transportation Research Part C: Emerging Technologies 

• Transportation Research Part D: Transport and Environment 

• Transportation Research Part E: Logistics and Transportation Review 

• Transportation Research Part F: Traffic Psychology and Behaviour 

• Transportation Research Record 

• Transportation Science 

• Transportmetrica A: Transport Science 

• Transportmetrica B: Transport Dynamics 

• Transportation Letters 

• Travel Behaviour and Society 

• International Journal of Sustainable Transportation 

• Journal of Advanced Transportation 

• Journal of Public Transportation 

• Journal of Transport and Health 

• Journal of Transport and Land Use 

• Journal of Transport Geography 

• Journal of Transportation Engineering Part A: Systems 

• Research in Transportation Economics 

• Transport Policy 

• Transportation Planning and Technology 

• Journal of Intelligent Transportation Systems 

• Accident Analysis and Prevention 

• Analytic Methods in Accident Research 
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2.2.2 Yearly trends 

Finite mixture modeling or latent class modeling is gaining in popularity, and such 

studies appear in a portfolio of transportation journals. In particular, Transportation 

Research Part A, Accident Analysis and Prevention, Transportation Research Record, and 

Transportation are the main transportation journals publishing such papers. We compare 

the publication trend of our focus (latent class or mixture modeling) with the trends for two 

adjacent and overlapping topics: heterogeneity and random parameter models. Figure 2-1a 

plots the annual counts of identified papers having the selected keywords. We can observe 

a huge surge, beginning around 2008, in the number of publications that are related to the 

concept of “heterogeneity”9 (here, the red line graph of “heterogeneity”, which is the right 

y-axis, is superimposed on the area charts associated with the left y-axis). In addition, 

random parameters and latent class models have also surged. However, the total number 

of scientific papers across all fields has also been exponentially growing over the same 

period. Hence, we normalize the number of related papers by the total number of papers in 

the target journals in each year (Figure 2-1b). For example, as of 2020, the respective shares 

of papers pertaining to latent class modeling and heterogeneity were 1.5% and 7% out of 

all papers in the selected journals. The smallness of these shares is not surprising in view 

of the wide variety of topics and methodological approaches available in the transportation 

field, but the important point is that the shares of related papers are exhibiting increasing 

trends. Thus, the figure confirms that identifying and accounting for heterogeneity is 

becoming an important stream of research. Furthermore, the rising attention given to 

                                                 
9 For this query, we searched for the keywords “heterogeneity” and “heterogen(e)ous”. Since these terms 

are rather general, substantially diverse papers could be identified.   
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“random parameters” and “latent class” mirrors increasing publication trends similar to 

that for heterogeneity studies, thus implying that they might be major tools to be employed. 

Although the two approaches keep rapidly growing, the random parameter approach seems 

to be relatively more popular in terms of the number of papers. Some studies mentioned 

both concepts together, signifying that they compared the two approaches (we will revisit 

this in Section 2.3.7). Given that concepts of “heterogeneity” or “market segmentation” 

have been discussed in transportation journals since the late 1970s, it is likely that the 

spread of newer tools (i.e. random parameters or latent class modeling) has helped increase 

the number of papers discussing heterogeneity.10,11 

                                                 
10 This spread in transportation research might be partly attributable to some seminal papers about latent 

class models (Bhat, 1997), mixed logit models (Hensher and Greene, 2003), and comparisons of the two 

methods (Greene and Hensher, 2003), allowing time for the concepts to be disseminated, absorbed, applied, 

and for the application papers to be published. 
11 Another interesting manifestation of the penetration of statistical modeling for heterogeneity into the 

transportation domain can be found in a popular textbook used in many courses on statistical and 

econometric methods for transportation. Washington et al. added a separate chapter on random-parameter 

models in the second edition (2010) that was not in the first edition (2003). In their recent third edition 

(2020), the chapter on random-parameter models has been further elaborated and a chapter on latent class 

models has been newly added. 
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Figure 2-1. Publication of related papers over the years in target journals: (a) the 

number of papers, (b) the share of papers normalized by total number of papers 
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2.2.3 Topic modeling 

Latent class or mixture modeling approaches have been used in a variety of 

applications. To identify and classify research topics that employed the mixture modeling 

approach, we employ the nonnegative matrix factorization (NMF) technique. NMF aims 

to find the positive factorization of a given nonnegative matrix (i.e. a matrix with no 

negative elements; Xu et al., 2003; Shahnaz et al., 2006). Specifically, we begin with the 

nonnegative word-abstract matrix, 𝑋𝑚×𝑛, where m is the number of words, n is the number 

of abstracts, and the ijth element of 𝑋𝑚×𝑛, 𝑥𝑖𝑗, is a number between 0 and 1 that represents 

the value of word i to characterizing abstract j. The more abstracts that contain word i, the 

less valuable that word is in distinguishing among abstracts, and the smaller 𝑥𝑖𝑗 will be. 

We assume there are 𝑘 latent topics in our pool of abstracts, which are considered as proxies 

for the (relevant) contents of the papers themselves. The goal is to factorize 𝑋𝑚×𝑛 into two 

nonnegative matrices: a word-topic matrix, 𝑊𝑚×𝑘, and a topic-abstract matrix, 𝐻𝑘×𝑛. The 

objective function to be minimized is as follows: 𝐽 = ‖𝑋 − 𝑊𝐻‖2, where ‖∙‖2 denotes the 

squared sum of all the elements in the matrix. Figure 2-2 shows a schematic diagram of 

NMF. The darker colors indicate greater values. In this example, Abstract 2 is more 

relevant to Topic 2 and Word 3 is more relevant to Topic 1. Although methodologies take 

different mathematical forms, the basic idea of NMF is analogous to that of principal 

component analysis (PCA) or exploratory factor analysis (EFA), which are widely 

employed in the transportation domain. For example, when applying EFA to attitudinal 

statements, we aim to find latent psychological constructs (here topics) and estimate the 

loadings, or associations, of statements (here words) with constructs and with the factor 

scores of individuals (here abstracts). 
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When constructing a matrix 𝑋, we transform a raw word-abstract matrix into a 

matrix of tf-idf (term frequency-inverse document frequency) values. This concept is often 

used in text mining to measure the importance of words in each document (Beel et al., 

2016). It works by determining the relative frequency of words in a document compared to 

the inverse proportion of that word over the entire document corpus (Ramos, 2003); hence 

the tf–idf value increases proportionally with the frequency of a word’s appearance in the 

document, but is offset by the number of documents in the corpus that contain the word.  

 

Figure 2-2. Schematic diagram of NMF 
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Table 2-3. Word clouds for each topic 

Topic 1: Behavior analysis (26%) Topic 2: Discrete choice modeling (21%) 

  

 

Topic 3: Crash/safety analysis (17%) Topic 4: Traffic analysis (16%) 

  

 

Topic 5: Travel time distribution (14%) Topic 6: Electric vehicles (6%) 

 

 

 

 

We experimented with topic models having various numbers of topics (values of 

k), and ultimately identified six topics among 284 papers of interest. Based on the word-

topic matrix, we can identify the top keywords in each topic (Table 2-3). In the pool, studies 

“under the umbrella” of behavior analysis are the most common (topics 1, 2). Especially, 

discrete choice modeling is a major community using this methodology. Crash/safety 
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analysis is the main application domain (17%) using the method, followed closely by traffic 

analysis (16%). Each of the topics involves general issues of heterogeneity in analyses. For 

behavior analysis, it has been emphasized that human behaviors are heterogeneous. In 

addition, many studies have commented on heterogeneity in safety (Mannering and Bhat 

2014; Mannering et al., 2016) and travel-time related data (e.g. Kim and Mahmassani, 

2014; Yang and Wu, 2016; Zou et al., 2017). In a nutshell, mixture modeling has become 

a major methodological tool, having diverse applications in transportation. We will 

examine the literature and its keynotes in greater detail in later sections. 

2.3 How have we used mixture modeling? Diving into each key element 

This section explores how transportation studies have used the finite mixture 

modeling framework. For more detailed and specific discussions, we put more emphasis 

on transportation studies, further specializing in travel demand and behavior analysis. The 

following subsections successively discuss the key elements of mixture modeling: the 

types of heterogeneity considered and the types of approaches used (confirmatory versus 

exploratory), the types of problem to which mixture modeling is applied, the membership 

function, the outcome model, selection of the number of classes, model comparisons, and 

software and estimation approaches. 

2.3.1 Type of heterogeneity 

A number of different kinds of heterogeneity have been identified, particularly 

relevant to the field of behavior modeling. In this thesis, we classify heterogeneity as 

pertaining to one or more of the following aspects of a behavioral model: variable 

distributions, parameters, model specification, attribute processing, functional form, 
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decision rule, causal structure/order, and constraint/choice set.12 As shown in Figure 2-3, 

we suggest that these types of heterogeneity (rectangles) arise from four key sources 

(rounded rectangles): data, parameters, function, and conceptualization. The types of 

heterogeneity are briefly summarized in Table 2-4. Note that they are not mutually 

exclusive: some types can be obtained as special cases of others (but we keep them separate 

because they are typically treated separately in the literature), and multiple types of 

heterogeneity can appear in the same model. Below, we will examine each of the 

representations of heterogeneity found in the literature.  

 

Figure 2-3. Typology of forms of heterogeneity addressed by the mixture modeling 

framework 

                                                 
12 Other papers have discussed various kinds of heterogeneity. Multiple typologies of heterogeneity could 

be possible from different points of view; for example, heterogeneity can be discussed with respect to its 

source in a structural equation model context (Ansari et al., 2000), or the way it is treated (e.g. Kim and 

Mokhtarian, 2018). Note that the typology of heterogeneity presented here has built upon discussions in 

several studies cited in this thesis (e.g. Gopinath, 1995; Walker, 2001; Walker and Ben-Akiva, 2011; Vij et 

al., 2013; Hess, 2014). For example, Gopinath (1995) discussed that unobserved heterogeneity can stem 

from decision protocols, choice sets, and taste variations; Hess (2014) commented that attribute processing 

and decision-rule heterogeneity can be treated with mixture modeling. Some other studies commented on 

selected types of heterogeneity in the context of discussing the usefulness of mixture modeling. To our 

knowledge, discussion of the extensive list of aspects of heterogeneity presented here has not previously 

appeared in a single place. 
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Table 2-4. Descriptions of types of heterogeneity 

Heterogeneity Description 

Variable 

distributions 

A fundamental source of heterogeneity is the data distribution. There are 

subgroups in the population (no matter how we define them) and each 

segment has its own distributions of characteristics. For example, we 

may classify individuals into urban and non-urban residents; and then 

urban and non-urban resident segments may have different distributions 

of characteristics (e.g. gender, income, age, attitudinal dispositions). 

Mixture modeling can be used to probabilistically classify individuals on 

the basis of selected characteristics, or indicators. 

Parameters 

Individuals have heterogeneous sensitivities to, or preferences for, 

factors associated with the outcome. The most popular form of 

heterogeneity explored in transportation is parameter heterogeneity 

(referred to as “taste heterogeneity” or “taste variation” in the choice 

modeling context). 

Model specification/ 

Attribute processing 

Each class has a different model specification with respect to the set of 

attributes to be considered in the model. For example, a certain factor 

may not be considered in the decision-making of a certain segment. 

Functional form 

Each segment follows a different data generation process which is 

represented by a different functional form (not just different parameter 

values per se). For example, for some segments the choice may follow a 

multinomial logit form best, while for others a cross-nested logit form is 

more appropriate. 

Decision rule 

Each segment has a different behavioral mechanism, beyond functional 

forms per se. For example, some people may make the choice that gives 

maximal utility, whereas others may make the choice that gives minimal 

regret. 

Causal structure/ 

order 

The causal relationships among behavioral indicators may differ across 

segments. For example, some people may determine vehicle ownership 

and then residential location, whereas others may do so in the reverse 

order. 

Constraint/  

choice set 

Each segment has its own constraints on decision-making. Or each 

segment may have a different choice set. For example, a certain segment 

would never consider bicycle for a mode choice.   

 

We reserve the discussion of heterogeneity in variable distributions to 

Section 2.3.3.13 Turning to the second type, most applications of mixture modeling 

                                                 
13 This is because heterogeneity in variable distributions has a distinct nature. Other types of heterogeneity 
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highlight heterogeneity in parameters. The idea is that individuals have heterogeneous 

sensitivities to, or preferences for, factors. This is the most popular form of heterogeneity 

explored in the transportation literature (taste heterogeneity/variation in the choice 

modeling context, and in an even broader perspective, “structural change” in time-series 

analysis is a type of parameter heterogeneity). Hence, although many studies do not 

explicitly say which type of heterogeneity they are investigating, a majority of them 

implicitly examined parameter heterogeneity. Early works in travel-related choice 

modeling include modeling mode choice behaviors (Bhat, 1997; Walker, 2001) and route 

choice behaviors (Greene and Hensher, 2003). Many studies have provided conceptual and 

empirical evidence regarding how treating parameter heterogeneity (via mixture modeling) 

is helpful. In particular, in behavior analyses, it is well suited for explaining complicated 

human decisions. Several studies tried to understand behaviors as arising from 

endogenously segmented travel/life-related styles (e.g. Walker and Li, 2007; Vij et al., 

2013; Vij and Walker, 2014; Prato et al., 2017). Hence, the latent class modeling 

framework has been applied to a variety of subjects such as (but not limited to) mode choice 

(Wen et al., 2012; Ma et al., 2015; Vij et al., 2017; Qin et al., 2017; Saxena et al., 2019), 

flight choice (e.g. Wen and Lai, 2010; Seelhorst and Liu, 2015; Araghi et al., 2016), vehicle 

ownership (e.g. Anowar et al., 2014; Kim and Mokhtarian, 2018), vehicle type (e.g. Beck 

et al., 2014; Hackbarth and Madlener, 2016; Ferguson et al., 2018), location choice (Olaru 

et al., 2011; Fatmi et al., 2017), and some types of binary decisions regarding, or interest 

in, services/activities (e.g. Wen et al., 2016; Lin et al., 2017; Wolbertus and Gerzon, 2018; 

                                                 
deal with how behavioral outcome models differ across segments (related to “supervised learning”), 

whereas the variable distributions are about distribution differences per se (related to “unsupervised 

learning”). 
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Lin et al., 2018). Numerous safety analyses have also benefited from incorporating 

parameter heterogeneity since it has been claimed that unobserved heterogeneity is present 

in crash data. For example, latent class modeling has been an important tool for treating 

parameter heterogeneity in modeling crash/injury severity level (e.g. Xie et al., 2012; Eluru 

et al., 2012; Chu, 2014; Behnood et al., 2014; Yasmin et al., 2014; Shaheed and Gkritza, 

2014; Adanu et al., 2018; Fountas et al., 2018; Yu et al., 2019) and crash count (e.g. Zou 

et al., 2013; Yasmin and Eluru, 2016; Park et al., 2016). 

Studies of attribute processing (or information processing) strategies in choice 

modeling have also employed the mixture modeling framework (e.g. Hensher and Greene, 

2010; Hess et al., 2013b, Hensher, 2014). In this type of heterogeneity, each class is 

conceived of considering (or attending to) a different combination of attributes in the 

choice process (i.e. when there are 𝑝 attributes, 2𝑝 combinations are possible and thus there 

can be as many as 2𝑝 classes). Loosely speaking, this can be also considered as a branch 

of parameter heterogeneity in that different model specifications imply different parameter 

values (e.g. individuals in one segment take into account built environment attributes and 

thus have non-zero weights on those attributes, whereas individuals in another segment do 

not, and thus give them zero weight). Or, as Hess et al. (2013b) and Hensher et al. (2013) 

pointed out, attribute non-attendance and regular taste heterogeneity could be confounded 

while employing the mixture modeling framework. In any case, the latent class modeling 

framework (generally with constant-only membership models) has served as a formal 

specification of models considering attribute attendance. Collins et al. (2013) applied 

various specifications of attribute processing models (formulated with mixture modeling) 

to flight choice behaviors. Hensher et al. (2013) modeled route choice with a latent class 
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structure that allows heterogeneity in attribute processing rules (e.g. full attribute 

attendance, attribute non-attendance, aggregation of common-metric attributes). Pan et al. 

(2019) modeled electric vehicle (EV) charging choice with a latent class model accounting 

for attribute non-attendance. They reported that, with respect to the Akaike Information 

Criterion (AIC), the model was better than a counterpart that assumed the same model 

specification across segments. 

We can also imagine that different population segments may have different a priori 

model specifications apart from variations in attribute attendance. Even if an attribute is a 

factor for all segments, for some conceptual reasons, it may be formulated in different ways 

across segments (e.g. log-transformed, powered, or untransformed). For instance, Sun et 

al. (2012) conjectured three types of risk attitudes (risk avoider, risk taker, and risk neutral) 

related to route choice, and then constructed three classes having different utility functions 

to reflect such attitudes. El Zarwi et al. (2017) modeled the adoption and diffusion of new 

transportation services (e.g. Uber/Lyft) and formulated three types of technology adopters 

(innovator/early adopters, imitators, and non-adopters). Based on the technology diffusion 

literature, the systematic utility of the innovator class is formulated as a function of 

characteristics of the decision-maker and attributes of the new technology; the utility of 

imitators is a function of social influence as well as the aforementioned attributes; and the 

utility of the non-adopter class is formulated only with constant terms.  

A rationale behind heterogeneity in functional forms is that there could be 

alternative mathematical representations/functions of how segments generate outcomes 

(aside from different sensitivities). For example, Koutsopoulos and Farah (2012) applied 

latent class modeling to car-following behaviors. They assumed that there are three 
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possible (latent) states for vehicles (acceleration, deceleration, and do nothing) and that 

each state follows different models (lognormal distributions for the first two classes and 

normal distribution for the do-nothing class, in this study). Some studies posited that there 

are random and regular user groups of particular activities and applied latent class modeling 

(to shopping, Bhat et al., 2004 and use of EVs, Kim, Yang, Raouli, Timmermans, 2017). 

Bhat et al. (2004) modeled two different functional forms (proportional hazard 

accommodating the effect of observed and unobserved characteristics for the erratic-

shopper class and non-parametric hazard for the regular-shopper class). Kim et al. (2017) 

modeled EV inter-charging time with the exponential distribution (for the random user 

group) and the Erlang-2 distribution (for the regular user group). Or, we can consider 

conventional zero-inflated models (Lambert, 1992) as a particular form of latent class 

modeling addressing heterogeneity in functional forms. In this case, one class follows a 

usual behavioral generation process (e.g. represented by probit, Poisson or negative 

binomial), but another class structurally generates zero instances or amounts of the 

behavior (cf. CHAPTER 4). Ma et al. (2016) modeled injury severity with a two-class 

model: one assuming the multinomial logit and the other assuming the ordered logit (OL) 

functional form. They called the method a “hybrid finite mixture model” since the model 

includes two types of models. After comparing with a mixture of multinomial and mixture 

of ordered logit models, they (p.70) concluded that “…the FMMNL [finite mixture MNL] 

model provides a very flexible modeling structure but the interpretation of the factors is 

difficult, whereas the FMOL [finite mixture OL] model is simpler to interpret but less 

capable of mining complicated patterns of influence of factors. The proposed HFM [hybrid 
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finite mixture] model exhibits an appropriate balance between modeling flexibility and 

interpretation difficulty.” 

Particularly in the choice modeling context, there have been discussions of various 

decision rules (decision protocol or process heuristics) that could potentially govern human 

decisions (cf. Gopinath, 1995). Thanks to the seminal work of McFadden (2001) 

connecting economic theory (random utility maximization, RUM) with a statistical model, 

RUM has served as the dominant decision rule paradigm of choice modeling. However, 

due to the complexity of the human decision process, it has been argued that human 

behaviors cannot be explained solely by RUM. Hence, various alternatives have also been 

proposed such as lexicography (Payne et al., 1992) and random regret minimization 

(Chorus and Timmermans, 2008)14. Although numerous studies looked for the best 

decision heuristic given the empirical context, several studies posited that multiple decision 

rules can exist in the sample and endogenously clustered the sample into segments that 

follow different decision rules with the aid of a mixture modeling framework. Hess et al. 

(2012) provided four case studies, with each case study employing a mixture modeling 

framework to combine two different kinds of decision rules: (1) RUM versus lexicography, 

(2) RUM versus reference-dependent choice, (3) RUM versus elimination by aspects, and 

(4) RUM versus random regret minimization. The study demonstrated that the mixture 

modeling framework is flexible enough to accommodate behavioral process heterogeneity. 

Srinivasan et al. (2009) modeled mode choice under the assumption that individuals follow 

either utility maximization or disutility minimization decision rules. In this application, a 

                                                 
14 For more details about decision rules and relevant discussions, please refer to Ben-Akiva and Lerman 

(1985). 



 47 

sizable majority (68%) turned out to follow the disutility minimization rule. Zhang et al. 

(2009) utilized latent class structures to examine heterogeneous household decision-

making mechanisms. They built three separate two-class models that contain combinations 

of two decision-making mechanisms out of three: multi-linear utility, maximum utility, and 

minimum utility models. Boeri et al. (2014) conducted a choice experiment obtaining 

preferences among alternative traffic calming projects. They constructed two latent classes: 

one following random utility maximization and the other following random regret 

minimization. In their application, the share of the utility maximization class was dominant 

(57.3% versus 42.7%). Hensher et al. (2018) examined two process heuristics in the 

discrete choice modeling context: extremeness aversion and extended expected utility 

attribute transformation. Cranenburgh and Alwosheel (2019) used a latent class model with 

three classes of decision rules: random utility maximization, random regret minimization, 

and random. 

A large body of studies in transportation investigates causality or structural 

relationships among variables. Most of the previous studies have assumed a homogeneous 

model structure for the sample, but we can expect there could be subsamples that follow 

different structural relationships. Here, mixture modeling renders a framework for 

incorporating such an assumption in modeling. Chakour and Eluru (2014) employed a 

mixture modeling framework to segment two types of decision order: choosing train station 

first and then access mode (station-mode), and choosing access mode first and then train 

station (mode-station). In particular, the second choice is specified as a function of 

exogenous variables that include attributes of the first choice. They found that, based on 

modeling segment membership as a function of work status, walk time to closest station 
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and departure time, the mode-station choice segment consisted of 36% of the sample. 

Angueira et al. (2015, 2019) analyzed interrelationships between vehicle type choice and 

distance traveled. With the aid of a latent segmentation approach, two segments (vehicle 

type choice affects distance traveled; distance traveled affects vehicle type choice) were 

identified. The first segment consisted of 89% of the sample. Anowar et al. (2019) 

constructed a latent class joint choice model (mode choice and departure time) to 

understand university students’ behavior. They assumed two possible decision processes: 

mode choice first and then departure time choice (class 1), and the reverse choice order 

(class 2). Under this confirmatory latent class setting, they found that the model 

outperformed the baseline models (separate models assuming each order homogeneously), 

and that the departure-time-choice-first group has a higher share (64.65%) in the sample. 

Astroza et al. (2019) explored heterogeneous structural relationships among residential 

location, vehicle ownership, and use of shared mobility. In other words, the study assumed 

that each segment has a different structural relationship among the three individual choices 

in the bundle (e.g. residential location affects vehicle ownership for one segment, and vice 

versa for another). In their analysis, a majority of the sample (53%) presented the following 

structural relationships: residential location affects vehicle ownership and both decisions 

affect the use of shared mobility. 

Some groups of data (in particular, people) may have constraints on producing 

certain outcomes. An example is different choice sets. Ben-Akiva and Boccara (1995) is 

an early application in marketing that used mixture modeling for heterogeneity in choice 

sets. Some people may have the options of choosing car, public transit, or bike, whereas 

bike is not a feasible option for others. In the transportation literature, very few studies 
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have explored this type of heterogeneity. In behavior studies, some scholars have linked 

preference heterogeneity with the choice set (Vij and Walker, 2014). For example, Vij et 

al. (2013) discussed choice set generation related to modality styles. In their experiment, a 

three-class latent class model with heterogeneous choice sets across segments 

outperformed counterparts with uniform choice sets as well as mixed logit with error 

components, with respect to Bayesian and Akaike Information Criteria (BIC and AIC). 

2.3.2 Confirmatory versus exploratory approaches 

As aforementioned, one of the main reasons why mixture modeling has become 

popular is that it could be a suitable methodological approach for examining a number of 

types of heterogeneity. To capture certain types of heterogeneity with mixture modeling, 

however, analysts need to customize the model structure. In this regard, it is helpful to 

introduce two types of approaches using mixture modeling: exploratory and confirmatory15 

(Table 2-5). 

Most typical finite mixture models are considered exploratory (Hoijtink, 2001; 

Laudy et al., 2005). A key question expected to be addressed by the exploratory approach 

is: how many latent classes are there and what types/characteristics of classes are there, 

given the data? To answer this question, the number of classes is empirically explored and 

determined. For example, analysts do not start the modeling with a statement such as “we 

think there are three classes in this empirical dataset”. As well, there are no class-specific 

hypotheses imposed on the classes. This is an obvious consequence of not having a prior 

                                                 
15 “Exploratory” and “confirmatory” are properties of general modeling procedures in scientific research, 

not of a particular methodology itself. The two terms have been widely used in psychology/psychometrics. 

Wagenmakers et al. (2012) provides useful philosophical discussions focused on psychology studies, but 

they are also relevant to other fields of scientific research.  
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belief about the classes. Hence, the general procedure for the exploratory approach is as 

shown in Figure 2-4. First, select a functional form given the data, and determine model 

specifications. Then, test numbers of classes ranging from one to K and see if there is a 

satisfactory solution (Section 2.3.6 will cover this). A premise is that we do not have a 

priori hypotheses/knowledge about the latent classes, and are thus exploring possible 

solutions. 

On the other hand, it is relatively less often characterized as such, but some studies 

have employed the confirmatory approach in a mixture modeling context; this approach 

seems to have originated from psychometrics (cf. Hoijtink, 2001; Finch and Bronk, 2011). 

As discussed by Hess (2014) in a choice modeling context, confirmatory mixture modeling 

imposes certain a priori constraints, not only on the number of segments, but also on their 

distinctive natures. A key question expected to be addressed by the confirmatory approach 

is: are the hypotheses on the number of classes and their class-specific assumptions 

supported by the data? To answer this question, an analyst designs a behavioral 

mechanism or mathematical representation of each class based on prior assumptions, then 

tests the model upon the empirical data to see if the hypotheses are corroborated by the 

data (see the modeling flow chart in Figure 2-4). For example, suppose we have K model 

candidates and then want to identify how many and what type of individuals follow certain 

models. Then, researchers can combine the K models with mixing proportions (which 

could be just constants or a function of covariates) and then estimate such mixing 

proportions as well as the parameters of the K models. In this case, the number of classes 

is pre-determined; the purpose of using mixture modeling is then, as aforementioned, to 

identify the shares of classes and (potentially) to characterize the classes with covariates. 
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It is worth noting two caveats about this distinction. First, the two approaches are 

on a continuum rather than a dichotomy.16 The two approaches share common 

characteristics in practice. Both are partly theory-driven in that theories and conceptual 

validity are involved in (1) model specification and (2) the decision on the final solution. 

As well, both are partly data-driven in that model validity is subject to the empirical data. 

Second, the word “exploratory” may not be perfect in the context of latent class modeling. 

The main reason is that the exploratory approach is not, in fact, fully exploratory. In 

principle, a fully exploratory approach should be able to search all combinations of types 

of heterogeneity (as discussed in the preceding section) with numbers of classes. For 

example, in a mode choice problem, it should explore multiple combinations of decision 

rules (e.g. random utility maximization, random regret minimization), functional form (e.g. 

multinomial logit, probit, mixed logit), and so on with a hyperparameter governing the 

number of classes. This is an almost infeasible search problem. However, while assuming 

that many types of heterogeneity are not operative, the conventional approach still has an 

exploratory nature in terms of (1) the philosophy that the number of classes is empirically 

determined rather than assumed in advance, and (2) the fact that no class-specific 

constraints/assumptions are imposed on model parameters. 

Then, why do we need to discuss this distinction? Why don’t we just apply the 

exploratory approach? The benefits of this conceptual distinction and understanding the 

                                                 
16 Similar arguments can be found in the psychology/psychometrics literature: “…the fact [is] that almost 

no psychological research is conducted in a purely confirmatory fashion… psychological studies can be 

placed on a continuum from purely exploratory, where the hypothesis is found in the data, to purely 

confirmatory, where the entire analysis plan has been explicated before the first participant is tested” 

(Wagenmakers et al., 2012, p. 633) and “Most uses of ‘confirmatory’ factor analyses are, in actuality, partly 

exploratory and partly confirmatory in that the resultant model is derived in part from theory and in part 

from a respecification based on the analysis of model fit” (Gerbing and Hamilton, 1996, p. 71). 
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usefulness of the confirmatory approach are twofold. First, the confirmatory approach is a 

way of incorporating (human) expert knowledge in mixture modeling (and probably any 

other modeling as well). As a result, we may have more meaningful results accruing from 

more reasonable assumptions. In addition, from the technical viewpoint, we may reduce 

the search space of model configurations. This is an important merit because, in reality, we 

cannot search every possibility. Second, as indicated above, we may notice that the usual 

latent class model is not truly exploratory under the extended typology of heterogeneity. In 

practice, we do not impose class-specific hypotheses regarding functions and 

conceptualizations (see Figure 2-3) and thus the modeling can only find parameter 

heterogeneity. On the other hand, the confirmatory approach is customized to test other 

types of heterogeneity across classes. In other words, as shown in Figure 2-3, the blue 

dashed line presents the expanded territory of heterogeneity addressed by the confirmatory 

approach. We suggest that this is the key virtue of the confirmatory approach, and thus 

highlights a unique benefit of discrete mixtures as opposed to continuous mixtures. 

However, recalling the earlier argument that exploratory and confirmatory approaches are 

two ends of a continuum, any study may contain both characteristics and the placement of 

the study along the continuum is context- and application- dependent instead of simply 

constituting a certain approach. 
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Table 2-5. Summary of exploratory and confirmatory approaches under mixture 

modeling 

 Exploratory approach Confirmatory approach 

Common 

characteristics 
• Partly theory-driven: theories and conceptual validity are involved in 

(1) model specification and (2) the decision on the final solution  

• Partly data-driven: model validity is subject to the empirical data 

Key question How many latent classes and what 

types/characteristics of classes are 

there, given the data? 

Are the hypotheses on the number of 

classes and their class-specific 

assumptions supported by the data? 

Number of 

classes  

Empirically determined Hypothesized in advance  

Class-specific 

assumptions 

Not imposed Behavioral mechanism or 

mathematical representation of each 

class is designed based on prior 

assumptions 

Type of 

heterogeneity 

Parameter heterogeneity  Any type of heterogeneity 

Search space of 

model 

configurations 

Extremely large (even infinite, if 

truly exploratory) 

Search space is reduced based on 

knowledge/assumptions of the 

analyst 

 

 

Figure 2-4. Modeling flow charts of the two approaches 



 54 

2.3.3 Types of problem 

Finite mixture modeling has been applied in various types of contexts. In particular, 

the problem type shapes the narrative flow and the characteristics of the study. From a 

broad and practical viewpoint, types of problems that mixture modeling aims to address 

include (in machine learning parlance) supervised learning (classification/ regression) 

and unsupervised learning (cluster analysis) problems. Among the identified pool of 

papers, about 65% are supervised learning problems and the rest (35%) deal with 

unsupervised learning. Although the underlying frameworks are similar, the types of results 

obtained from the methodological framework are not necessarily identical. 

For applications of classification and regression, a majority of studies are 

particularly interested in the different functional forms of outcome models or distinct taste 

or sensitivity to factors exhibited by different segments. In other words, such studies aim 

to simultaneously estimate segmentation (i.e. clustering) and outcome models. Supervised 

learning can be subclassified by the type of target or outcome variable. The distinction 

between classification and regression is the standard one: classification deals with 

categorical outcomes (including binary, nominal, ordinal variables; such models are often 

referred to as latent class choice models, particularly in the choice modeling community), 

whereas regression deals with continuous or count outcomes (often referred to as latent 

class regression models). In other words, the type of target variable determines the type of 

outcome model (we will revisit this in Section 2.3.5). For either case, a common narrative 

flow in the papers is to describe how the latent segments are distributed (often with profiles) 

and how the outcome functions differ across segments.  
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In an unsupervised learning context, the purpose of using mixture modeling is to 

cluster the data with respect to indicators. It does not aim to simultaneously produce 

different behavioral outcome models for each segment. In this case, the clustering method 

is often referred to by some specific terms including Gaussian mixture models (GMM), 

latent class cluster analysis, latent profile analysis, and so on. From one perspective, 

cluster analysis based on mixture modeling can be considered as a special case of latent 

class regression, where the outcome equation(s) have only constant term(s).17 Unlike other 

popular clustering methods (e.g. distance-based clustering such as conventional k-means 

or hierarchical clustering), clustering based on mixture modeling is based on the 

distribution of data rather than distances between data points, and has a probabilistic nature 

in that observations only have probabilities of belonging to each segment, rather than being 

deterministically assigned to one and only one segment. In essence, constant-only 

regression models are fit for different classes as identified through segmentation variables.  

Although clustering is embedded in classification/regression problems when using 

mixture modeling, there are some differences in practical applications. First, studies using 

cluster analysis do not necessarily model or discuss how the different segments have 

different functions to explain/predict certain target variable(s), whereas that is usually the 

main focus of classification/regression problems. In other words, for studies classified as 

cluster analysis, identifying segments is a key goal (often the key goal) in its own right. 

                                                 
17 Following the notation of Eq. (1.1), the basic formulation of latent clustering can be expressed as 𝑓(𝑦) =
∑ 𝑃(𝑧|𝑾) ∏ 𝑓𝑧(𝑦ℎ|𝑧)𝐻

ℎ=1
𝑍
𝑧=1 , where ℎ indexes the number of indicators to be clustered (like dependent 

variables, ℎ = 1 … 𝐻). For example, a common GMM is 𝑓(𝑦) = ∑ 𝑃(𝑧)𝑓𝑧(𝑦|𝑧)𝑍
𝑧=1  where 𝑓𝑧 are normal 

densities (i.e. a constant-only regression with a normal error term); a common latent class cluster analysis on 

𝐻 binary indicators may be expressed as 𝑓(𝑦) = ∑ 𝑃(𝑧|𝑾) ∏ 𝑓𝑧(𝑦ℎ|𝑧)𝐻
ℎ=1

𝑍
𝑧=1  where 𝑓𝑧(𝑦ℎ|𝑧) are constant-

only binary logit models. 
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Another difference concerns the general tendency of the number of classes. Classification/ 

regression problems tend to end up with fewer classes than unsupervised learning problems 

do, for practical reasons (e.g. estimation and interpretability). This will be covered in 

Section 2.3.6. 

However, it has been also common to follow a “two-step approach” in the literature. 

One type of two-step approach, adopted by a few studies, first deterministically segments 

the sample and then applies latent class modeling to the multiple subsamples. The implicit 

assumption is that each subsample may have different latent classes and corresponding 

behavior functions. In this case, most applications choose a certain number of classes (two-

class is the most popular; we also revisit this in Section 2.3.6) and then constrain all 

subsamples to have the same number of classes (e.g. Olaru et al., 2011; Adanu et al., 2018; 

Lin et al., 2018; Potoglou et al., 2020; Choi and Mokhtarian, 2020). We speculate that this 

is for convenience of comparison across subsamples. 

Another type of two-step approach (Figure 2-5) consists of uncovering latent 

segments with the aid of some type of mixture modeling, and then constructing separate 

outcome models for each segment.18 For example, Machado et al. (2018) identified six 

latent transit customer types based on their perceptions and then built a separate structural 

equation model for each class to find heterogeneous behavioral models. Piendl et al. (2019) 

classified shipment types into four latent classes and then estimated class-specific shipment 

size choice models. Ahmed et al. (2020) clustered workers based on socio-demographics 

                                                 
18 Authors did not always disclose details of how segment-specific models were estimated in a separate 

second step when segment membership is unobserved, but it is common to assign each case to the highest-

predicted-membership-probability segment, whether correcting for misclassification bias or not (see Bakk 

et al., 2013; Bolck et al., 2004). 
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via latent class cluster analysis and then applied hierarchical logit models of destination 

choice to the resulting four classes.  

 

Figure 2-5. Types of problems addressed by using finite mixture modeling   

 

Typically, latent class choice/regression models estimate both class membership 

and class-specific outcome models simultaneously, and thus the latter type of two-step 

approach may not be efficient or may have an inferior goodness-of-fit. The latter can 

happen because when we simultaneously estimate membership and outcome models, latent 

classes are identified with respect to the outcome of interest via maximizing log-likelihood 

during estimation, whereas clustering in the two-step approach finds segments based on 

the distribution of variables and thus does not necessarily help explain the outcome better. 

However, this two-step approach could potentially bring some practical benefits. First, it 

simplifies the estimation process: it could reduce estimation time or help reduce the chance 

of having estimation issues. Second, it could make interpretation easier. Lastly, 

simultaneous modeling means that the specifications of the segmentation and outcome 

models can affect each other, and if the analyst does not want this situation (e.g. if it is 
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desirable to identify a set of clusters that remains stable across a number of different models 

or analysis purposes), a two-step approach may be beneficial. 

2.3.4 Membership model 

Sections 2.3.4 and 2.3.5 respectively examine the two model components in finite 

mixture modeling: membership (i.e. the model component that characterizes the 

segmentation, 𝑓𝑚) and outcome models (𝑓𝑜 in Figure 2-6). 

 

Figure 2-6. Illustration of model specifications in finite mixture modeling 

 

2.3.4.1 Membership function 

It is common to focus more on outcome models than on the membership model, but 

the membership model has its own value, since it helps us understand the nature of the 

classes. Our first interest is in the functional form of membership models. Some mixture 

modeling applications directly estimated membership probabilities (mixing coefficients). 

The basic implicit constraints are 0 ≤ 𝜋z ≤ 1 and ∑ 𝜋𝑧
𝑍
𝑧=1 = 1, where 𝑧 is a class 

membership indicator and 𝜋𝑧 is a mixing coefficient. These constraints are required 
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because we assume classes are collectively exhaustive and mutually exclusive given the 

sample. Although this approach, of directly estimating mixing coefficients, was the original 

idea of mixture modeling in the early stages, it is still used (e.g. Arentze, 2015; Park et al., 

2016). However, recently it seems more common to use certain link functions as 

membership models (denoted as 𝑓𝑚 in Figure 2-6), with the most popular link function 

being a logit link. There are two clear benefits of using a link function. First, from a 

technical perspective, we naturally satisfy the conditions of 0 ≤ 𝜋z ≤ 1 and ∑ 𝜋𝑧
𝑍
𝑧=1 = 1 

by reparameterization (e.g. 𝜋𝑧′ = exp(𝜏𝑧′) ∑ exp(𝜏𝑧)𝑍
𝑧=1⁄ ). For example, even when we 

construct a membership model with only constants, when a link function is employed those 

constants (e.g. 𝜏𝑧) do not need to be constrained, unless there are specific reasons to do so. 

Second, we can reparameterize membership probabilities with covariates of interest (as 

shown in Figure 2-6a). In theory, other types of link functions are possible (e.g. probit), 

but they are rarely used. We speculate that this is because using a probit link function adds 

a computational burden, unless it is a two-class situation (recall that the probit probability 

is not a closed form function). However, the probit link function has been used in the 

switching model (e.g. Ding et al., 2015; CHAPTER 3), which is closely related to finite 

mixture models (this can be illustrated by changing 𝑧 from a latent variable to a manifest 

variable in Figure 2-6; CHAPTER 3 covers more details about this connection). Another 

unique attempt in the transportation literature was to adopt a fuzzy c-means method to 

construct membership probabilities (Ishaq et al., 2014). 

Parameterizing the membership function with covariates not only improves the 

model, but also enriches interpretation. Without parameterization of the membership 

function, every individual has the same fixed segment membership probabilities. On the 
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other hand, characterizing segments using information such as individual traits provides 

more behavioral insights. In marketing research, the class membership variables, denoted 

as 𝑾 in Figure 2-6, are also known as segmentation bases (Wedel and Kamakura, 2012), 

and behavioral studies in transportation have widely used covariates in the membership 

model. The pie chart in Figure 2-7 exhibits the distribution of membership model 

specifications in the selected literature. Among 284 papers, 50% of them employed 

membership variables while 38% modeled class membership with only constants (e.g. Hess 

et al., 2013b; Li, 2018). One of the major reasons for constructing the membership model 

with only constant(s) is to minimize the complexity of the estimation process (e.g. Zou et 

al., 2014; Molin and Maat, 2015; Pan et al., 2019). Furthermore, if there is no clear 

conceptualization of the classes, or if empirical tests indicate that most of the segmentation 

variables are insignificant (e.g. Peer et al., 2014; Tirachini et al., 2017; Ferguson et al., 

2018; Oliva et al., 2019; Zhou et al., 2020), then it could be appropriate to assume that 

every individual case has the same membership probabilities.  

2.3.4.2 Membership variables 

There are many possibilities for representing a membership model. Table 2-6 

exhibits possible segmentation bases in travel behavior/demand applications. Figure 2-7 

(bar graph) presents the distribution of membership variables used in the literature. The 

most popular segmentation base in the literature is some individual characteristics (72% 

of papers using membership variables employed demographic traits). This is not surprising, 

because not only do demographics constitute common segmentation bases in marketing 

research but also they are typically the most basic information available in many datasets. 

Numerous demographics have been used for segmentation. In the selected literature, 
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gender, age, and income are particularly popular segmentation bases, and many studies 

have included those three components in membership models (e.g. Wen and Lai, 2010; 

Astroza et al., 2017; Krueger et al., 2018; Kim et al., 2019a; Li et al., 2020). Other personal 

characteristics have also been used such as education (e.g. Bailey and Axsen, 2015; Mouter 

et al., 2017; Kroesen, 2019) and race (e.g. Maness and Cirillo, 2016; Ardeshiri and Vij, 

2019; Guerra and Daziano, 2020), and work/occupation related information (e.g. Chakour 

and Eluru, 2014; Erdogan et al., 2015; Angueira et al., 2019). In terms of household 

characteristics, household size/composition (e.g. Olaru et al., 2011; Boeri et al., 2014; van 

de Coevering et al., 2018) and vehicle ownership (e.g. Nayum et al., 2013; Hackbarth and 

Madlener, 2016; Anowar et al., 2019) have been popular. 

In travel behavior studies, several studies have emphasized that attitudes are 

important factors shaping latent segments. Swait (1994) proposed an early conceptual 

model reflecting this approach, by conjecturing that general perceptions/attitudes as well 

as socio-demographics shape the membership likelihood of latent classes. Beck et al. 

(2014, p. 178) compared two models (latent class models without attitudes and with 

attitudes in the membership model) and reported that “The inclusion of the attitudinal data, 

however, allows a more robust class to emerge with clearly defined properties. The 

attitudinal data is crucial in understanding the class differences, a crucial requirement that 

allows policy decisions to be considered in a more informed framework and to thus avoid 

incorrect interpretations of results.” Olaru et al. (2011) estimated two location choice 

models to compare the relative importance of demographics and attitudes. In their 

application, the membership model that incorporated attitudes outperformed the one that 

contained demographics. Argahi et al. (2016) used attitudinal constructs to model class 
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membership and identified three classes of “price hunters, “luggage lovers”, and 

“ecoflyers” for flight choice. Molesworth and Koo (2016) segmented the sample into two 

classes based on two factors related to trust in technology. Bailey and Axsen (2015) 

employed variables of technology-oriented lifestyle, biospheric/altruistic values, and 

privacy concern to aid in segmenting the sample. Ma et al. (2015) employed three factor 

scores related to attitudes toward modes. Kim and Mokhtarian (2018) posited that attitudes 

could act as moderators on the effects of other factors; they identified two (auto-oriented, 

and urbanite) segments based on attitude measures and found that the two segments have 

different sensitivities to built environment characteristics. In a commute mode choice 

context, Choi and Mokhtarian (2020) hypothesized (and confirmed) the existence of 

classes based on attitudes toward work, multitasking, and productive uses of travel time. 

Tran et al. (2020) examined how classes based on environmentalism and attitude towards 

physical activity are associated with mode choice. 

Certain geographical or built environment characteristics have been crucial 

segmentation bases. Characteristics could be different scales of measures. For example, 

they can be regional factors such as state/province indicators (Wafa et al., 2015; Abotalebi 

et al., 2019; Kormos et al., 2019; Astroza et al., 2019), city/metropolitan indicators (e.g. 

Bhat et al., 2004; Angueira et al., 2015; Krueger et al., 2018; Kim et al., 2019a), and census 

division indicators (e.g. Maness and Cirillo, 2016). On a smaller scale, neighborhood type, 

particularly if it is an urbanized area, has been employed for segmentation (e.g. Kroesen, 

2015; Prato et al., 2017). Or some studies utilized indices such as “D variables”, which 

describe land use characteristics (e.g. Sobhani et al., 2013; Ferguson et al., 2018; Anowar 

and Eluru, 2018). 
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Behavioral indicators also have been used to characterize classes. In the literature, 

various factors have been used such as mode use habits (Fu, 2020), trip frequency (Fatmi 

and Habib, 2016), mode use frequency (Seelhorst and Liu, 2015; Rossetti et al., 2019; 

Saxena et al., 2019), the amount of driving (Tawfik and Rakha, 2013), and technology use 

(Saxena et al., 2019; Alonso-Gonzalez et al., 2020; Khan et al., 2020). Other contextual 

variables have also been employed. There are a variety of possibilities because numerous 

empirical contexts exist. Examples include crash characteristics in safety analysis (e.g. 

Eluru et al., 2012; Yasmin et al., 2014; Fatmi and Habib, 2019; Li et al., 2019; Li et al., 

2020), trip-related characteristics for mode choice analysis (e.g. Bhat, 1997; Wen et al., 

2012; Wang et al., 2020), choice situation (e.g. Tawfik and Rakha, 2013), and 

temporal/seasonal factors (e.g. Shamshiripour et al., 2019; Yu et al., 2019; Faghih-Imani 

and Eluru, 2020). 

Table 2-6. Typology and corresponding examples of segmentation bases in travel 

behavior/demand applications 

 Individual Geographical Behavioral Contextual 

Objective 

measures 

Demographics; 

household 

characteristics 

Regional 

indicator; 

neighborhood 

type; built 

environment 

characteristics 

Relevant 

behaviors; 

previous records 

Mode/vehicle 

related 

characteristics; 

temporal 

characteristics; 

seasonality 

Subjective 

measures 

Attitudes; 

preferences 

Perceptions about 

region 

Modality style; 

lifestyle 

Perceptions  

* Note: this table is a modification from Wedel and Kamakura (2012) by customizing it for transportation 

studies  
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Figure 2-7. Distribution of membership variables in the literature 

 

Although numerous variables have been used in the membership model, quite 

surprisingly, conceptual-level discussions about the “proper” specification of the 

membership model in the given context, i.e. (with reference to Figure 2-6) the definitions 

of 𝑾 versus 𝑿, are scarce. Most applications of latent class modeling follow the 

specification shown in Figure 2-6a (albeit without a discussion of the rationale for 

including a variable in one model instead of the other), whereas others (Figure 2-6 b-d) are 

possible in theory.19 In statistical terms, 𝑿 is a vector of explanatory variables that have 

direct effects on the outcome, whereas 𝑾 acts as moderators of the impacts of 𝑿 on the 

outcome (“dimmer switches” on the parameters, referring to Wu and Zumbo, 2007, 

although for finite mixture models the analogy is more like a knob or dial with only a finite 

number of settings, rather than a dial that can continuously vary the parameter).  

                                                 
19 Figure 2-6b and Figure 2-6c are possible specifications, but uncommon ones. However, the mixture of 

experts approach in machine learning follows the specification of Figure 2-6d. For more details, please 

refer to CHAPTER 6. 
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We are aware of only a few studies that discussed (1) the rationale or hypothesis 

for selecting membership variables and/or (2) how such a specification is empirically 

beneficial in the study context. Related to the rationale for selecting membership variables, 

Walker and Li (2007) aimed to find lifestyle segments related to household residential 

location choice; hence they selected variables that are expected to be associated with 

household lifestyle (e.g. household structure, employment situations in the household). Vij 

and Walker (2014), to allow for preference endogeneity, proposed to formulate class 

membership as a function of not only demographics, but also consumer surplus (which is 

a function of level of services and choice sets) of each decision-maker. Kim and 

Mokhtarian (2018) hypothesized that attitudes influence the impact of the built 

environment characteristics on vehicle ownership and formulated classes with attitudinal 

propensities. Choi and Mokhtarian (2020) conjectured that the disutility of travel time in 

the choice between transit with internet access and an alternative mode (such as driving 

alone) would differ depending on attitudes toward working and multitasking while 

traveling, and specified latent class membership models accordingly.  

Related to the value of having membership variables at all, Wen and Lai (2010) and 

Wen et al. (2012) compared latent class models with and without covariates (e.g. 

demographics and contextual factors) for choice modeling (airline choice and high-speed 

rail access mode, respectively), and found that adding covariates in the membership model 

improved the model fit. Zou et al. (2013) compared two finite mixture negative binomial 

models with and without membership variables; they found that the model with 

membership variables not only had a better performance but also that membership 

variables helped reveal the source of heterogeneity. Zou et al. (2014) compared 11 different 
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specifications of membership models and found empirical value to considering 

membership variables. Fountas et al. (2018) compared two models with different 

segmentation bases: road segment type versus accident type. They showed, for both 

approaches, empirical support for having membership explanatory variables compared to 

constant-only membership models. Hence, a common finding is that having membership 

variables helps to improve the model or interpretability.  

As an additional observation related to formulating the membership model, in the 

literature we also found several studies taking a “two-step approach”. This is distinct from 

the one described in Section 2.3.3, in which latent classes were identified first (generally 

using covariates) and outcome models estimated for each class in a separate second step. 

Here, two-step studies first build a latent class model with a constant-only membership 

model, and then construct a separate “class choice” model to characterize the latent classes 

(e.g. Simons-Morton et al., 2013; Ralph et al., 2016; Kim and Chung; 2016; Kim et al., 

2017; Pani et al., 2020). Although this could be an alternative approach, two things need 

to be noted. First, to construct a post hoc membership model, individuals must be assigned 

into segments (often based on posterior membership probabilities). By doing so, the 

probabilistic nature of latent class modeling is lost. Second, incorporating covariates in the 

membership model in the first place is more robust and efficient for estimation.  
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2.3.5 Outcome model 

Table 2-7. Various outcome models with selected example studies 

Type of 

variable 
Outcome model Example studies 

Binary Logit 

Wen et al. (2016), Molesworth and Koo (2016), 

Savolainen (2016), Lin et al. (2017), Jin et al. (2018), Ge 

et al. (2018), Griswold et al. (2018), Yu et al. (2019b) 

Multinomial 

Logit 

Bhat (1997), Greene and Hensher (2003), Walker and Li 

(2007), Vij and Walker (2014), Kim and Mokhtarian 

(2018) 

Error component logit 
Prato et al. (2017), Saxena et al. (2019a), Saxena et al. 

(2019b) 

Mixed logit 
 Hess et al. (2013), Razo and Gao (2013), Vij et al. (2013), 

Yu et al. (2019a) 

(Generalized) nested logit 
Wen et al. (2012), Wen et al. (2013), Pan (2019), Tinessa 

et al. (2020) 

Ordinal 
(Generalized) ordered logit 

Eluru et al. (2012), Yasmin et al. (2014), Anowar and 

Eluru (2018), Oliva et al. (2018), Fatmi and Habib (2019) 

Ordered probit Erdogan et al. (2015), Fountas et al. (2018) 

Count 
Poisson Simons-Morton et al. (2013), Yasmin and Eluru (2016) 

Negative binomial Zou et al. (2013), Zou et al. (2014), Park et al. (2016) 

Continuous 

Gaussian  Zahabi et al. (2015); Ma et al. (2016) 

Lognormal 
Van den Berg et al. (2012); Koutsopoulos and Farah 

(2012); Kazagli and Koutsopoulos (2013) 

Gamma 
Kim and Mahmassani (2014); Elhenawy and Rakha 

(2015); Li et al. (2015) 

Skew-t Zou and Zhang (2011), Zou et al. (2017) 

Tobit Anderson and Hernandez (2017), Chand and Dixit (2018) 

Due to the flexibility of the mixture modeling framework, numerous outcome 

models are possible (denoted as 𝑓0 in Figure 2-6). Decisions on the functional form of 

outcome models are mainly dependent on particular empirical contexts. For classification 

or choice modeling (nominal outcomes), multinomial logit models (binary logit models, if 

two classes) have served as the dominant functional form. Alternative models such as 

ordered logit, error component logit, (generalized) nested logit, and mixed logit also have 

been applied. For regression (continuous or count outcomes), various outcome models have 

been used such as Gaussian, log-normal, Poisson, negative binomial, Tobit, Gamma, skew-
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t, and so on. Given this plethora of possibilities, we do not enumerate the equations for all 

possible models. Readers may refer to some selected papers (Table 2-7) for details about 

outcome models of interest. An additional remark on the outcome model is that we can 

have a different type of outcome function for each class (heterogeneity in functional forms, 

see Section 2.3.1), by taking the confirmatory approach (Section 2.3.2). 

2.3.6 Number of classes and rationale behind decisions 

Identifying latent sub-segments is a critical element in applications of finite mixture 

modeling. This includes identification of (1) how many meaningful segments exist given 

the data, (2) the relative sizes of each segment (i.e. class shares), and (3) the distribution of 

key characteristics of interest within each segment. Thus, determining the number of 

classes is a key step in the modeling process.  

Most papers on the subject have a subsection giving a brief background on how to 

determine the number of classes. Various measures, in particular some information criteria 

(based on the log-likelihood), are mentioned. There are numerous other measures; readers 

can refer to McLachlan and Peel (2001) and Vermunt and Magidson (2016). Basically, 

when adding more segments, log-likelihood values improve monotonically because we are 

adding more parameters (creating a more flexible model, which – all else equal – is more 

likely than a more constrained model). Then the decision on the preferred model is linked 

to the question of how much the model complexity (i.e. number of parameters) needs to be 

penalized. Among three commonly-used measures, the degree of penalization decreases in 

order of CAIC (consistent AIC), BIC, and AIC. There is no universally accepted measure 

so far. In general, minimizing the BIC is the most common decision rule in the literature. 
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Another semi-quantitative decision guideline is the “elbow rule”, meaning to examine the 

change of measures by the number of classes and find an elbow (or knee) of the curve (e.g. 

Keskisaari et al. 2017). Numerous studies report a table that presents model selection 

indices by the number of classes, optionally including the final log-likelihood and number 

of parameters for each number of classes. A few other measures also have been used such 

as entropy (Prato et al., 2019; Jahanshahi and Jin, 2020), integrated completed likelihood 

criterion (Zou and Zhang, 2011; Yu and MacKenzie, 2016), informational complexity (Bae 

et al., 2019), and bootstrap likelihood ratio test (Yu et al., 2017). 

Interestingly, however, although most papers point out that these measures are 

common criteria for selecting the number of classes, a large fraction of studies made the 

final decision on the number of classes more heuristically and qualitatively (Figure 2-8a). 

About 25% and 40% of studies (respectively involving supervised and unsupervised 

learning) made more subjective final decisions. In about 25% and 8% more studies, the 

number of classes was pre-determined, either because a confirmatory approach was 

involved (see Section 2.3.2) or because the analyst chose a certain number of classes 

(mainly two) for convenience of comparisons, estimation, or interpretation. This lack of 

servitude to quantitative metrics is because it is advised that the analyst should choose the 

solution that is most interpretable and meaningful (cf. Scarpa and Thiene, 2005). In other 

words, studies look for the solution that can provide (1) conceptually valid 

signs/magnitudes of key parameters (e.g. Vij et al., 2017; Koresen, 2019; Thorhauge et al., 

2020), (2) statistical significance of key parameters (e.g. Molesworth and Koo, 2016; 

Rahmani and Loueiro, 2019; Wang et al., 2020), and/or (3) “meaningful” differences 

across classes or healthy sizes of class shares (e.g. Liao et al., 2018; Fu, 2020). Some 
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studies fix the number of classes to a certain number for the sake of model comparisons, 

for simplifying the empirical experiment. Hence, the literature tends to select models with 

fewer classes than the optimal number “confessed” by the data. A limited number of studies 

adopted more than the “optimal” number of classes (with respect to BIC) for securing better 

interpretation or statistical significance of parameters (e.g. Jin et al., 2018). Fewer than 

10% of studies explicitly reported that they considered both quantitative and qualitative 

dimensions and both criteria produced the same number of classes.20 Some studies did not 

report how they made decisions.  

Figure 2-8b shows the distribution of the number of classes chosen. It is worth 

noting that the average numbers of classes chosen vary across types of problems. On 

average, supervised learning problems had a smaller number of classes than that of 

unsupervised learning. A majority of (supervised) studies using classification/regression, 

in particular, adopted the two-class solution, whereas (unsupervised) studies using cluster 

analysis produced a more diverse number of clusters. Vij and Krueger (2017) also pointed 

out that most latent class (choice) models have been generally restricted to a small number 

of classes. We conjecture that this happens because studies focusing on cluster analysis 

have a primary goal of uncovering more diverse segments, whereas classification/ 

regression studies ultimately aim to examine meaningful outcome models across segments. 

In the latter instance, a larger number of classes (1) penalizes for complexity more heavily; 

                                                 
20 We counted this only when the authors explicitly commented that they considered both aspects and they 

matched. However, we expect that additional studies implicitly considered both aspects and they produced 

the same optimal number of classes. For example, some studies that reported making decisions based on 

quantitative decisions might have been likely to choose a final solution that was conceptually valid and 

interpretable.  
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(2) can create estimation difficulties; and (3) increases the difficulty of interpretation in 

view of the multiplicity of parameters across all membership and outcome functions.  

 

Figure 2-8. Distributions of (a) decision rationale and (b) number of classes chosen 

 

2.3.7 Model comparisons: baseline and competing models 

Model comparison has been fairly common in the literature, to show how well 

mixture modeling performs and thus why it is useful compared to other competing models. 

Model comparison is relevant to addressing important questions of whether the assumption 

of heterogeneity is valid and whether mixture modeling works well given the empirical 

context. There are multifaceted angles of possible comparisons: a certain type of mixture 

model can be compared with (1) the baseline model (i.e. a model with the homogeneity 

assumption), (2) deterministic/exogenous segmentation models, and (3) other competing 

models, particularly including continuous mixture models. There can also be an “internal” 

comparison, among models having a different number of classes (e.g. 2-class versus 3-

class solution). Since we discussed the latter in Section 2.3.6, here we focus on 

comparisons with other types of models. 
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First, the majority of studies posited unobserved heterogeneity in either taste or 

data, and this was a major reason why they proposed to use some type(s) of mixture 

modeling. Indeed, numerous papers have empirically corroborated the existence of 

heterogeneity in some kind of analysis. A devil’s advocate question is how bad the simpler 

model (which does not account for heterogeneity) is. Here, “how bad” could be with 

respect to the performance and/or bias of the results. Even if a sizable portion of studies 

discusses (or at least provides) a baseline model (i.e. a 1-class model), a non-trivial portion 

of studies takes heterogeneity for granted and skips this baseline model. In our literature 

review, about half of the studies did not report or discuss a baseline model. However, still, 

many studies reported better performance and more insights from a model with mixture 

modeling compared to the “one-size-fits-all” model. For example, Rahmani and Loueiro 

(2019) reported better prediction of the latent class model compared to the MNL (70.7% 

and 43.6%). Hackbarth and Madlener (2016) presented scenario analysis of vehicle type 

choice and showed that each segment produced notably different sensitivities compared to 

the pooled model. Kim and Mokhtarian (2018) addressed endogeneity bias via treating 

taste heterogeneity (using a latent class model) and compared how the biased estimates 

(without segmentation) and estimates based on the latent class model produced different 

solutions in the scenario analysis.  

Deterministic/exogenous segmentation has been widely used due to its simplicity. 

The basic idea is to segment the sample into subgroups based on certain factor(s) that are 

expected to be associated with heterogeneity. We can consider a deterministic 

segmentation model as a special case of mixture modeling where we know the “true” 

segment indicator (CHAPTER 3) – i.e., class membership probabilities are 1s and 0s. 
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Hence, this comparison is in fact linked to the fundamental question of whether latent 

segments are more helpful in explaining behaviors than observable segments. By reflecting 

the probabilistic nature of segmentation, mixture models can be conceptually more 

appealing and their superiority has often been demonstrated with empirical data. For 

example, Teichert et al. (2008) compared deterministic segmentation (by flight class) and 

latent class approaches in the flight choice context. They found that the latent class model 

was able to identify more diverse customer segments, and reported value in connecting the 

two solutions by cross-validation of the two approaches. Wafa et al. (2015, p. 138) reported 

that “It is found that endogenous segmentation [i.e. the latent class model] better fits the 

data as compared with exogenous segmentation, allows for higher-order interaction effects, 

keeps the number of segments under control, and provides more intuitive results with 

respect to the identification of homogeneous clusters of units.” Further, they showed 

empirical evidence of the superiority of endogenous segmentation over exogenous 

segmentation (by geography). Arunotayanun and Polak (2011) modeled freight shippers’ 

mode choice behaviors; they found that models deterministically segmented by commodity 

retained a substantial amount of residual heterogeneity and latent class modeling helped 

account for those heterogeneities. Kim and Mokhtarian (2018) compared deterministic 

segmentation and latent class choice models of vehicle ownership with respect to attitudes; 

the study found that the latent class model outperformed its deterministically segmented 

counterpart and the authors argued for its conceptual superiority. CHAPTER 3 compares 

deterministic segmentation, endogenous switching regression, and latent class models in 

the context of modeling vehicle-miles traveled. It concludes that each approach has its own 
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purpose and model choice might be context-dependent, but the latent class model provided 

better performance than the others, and a meaningful interpretation. 

As discussed in Section 1.2, finite mixture modeling treats (parameter) 

heterogeneity in a discrete way. A natural follow-up question is whether this assumption 

of discreteness is valid, or superior to that of continuous mixture models; hence this 

comparison has been particularly popular. In general, latent class models outperformed 

counterpart random parameter models with respect to some selected quantitative criteria. 

For example, Mahmud et al. (2020) model a speed choice behavior on a rural highway by 

comparing random parameter and latent class models; in spite of small differences due to 

the small sample size, the in-sample predictive performance results (e.g. RMSE, MAPE) 

indicated that the latent class model outperformed the random parameter model. Espino 

and Roman (2020) examined the transfer behavior of bus users in Gran Canaria, Spain and 

found that the latent class model is superior to mixed logit based on a test for non-nested 

choice models (while calling for more investigation into model comparisons). As well, 

many other studies reported that latent class models outperformed random parameter 

models in their empirical contexts (e.g. Wen et al., 2016; Yu and MacKenzie, 2016; Adanu 

and Jones, 2017; Qin et al., 2017; Faghih-Imani and Eluru, 2020).  

In Guerra and Daziano (2020), mixed logit models fit the data better than two-class 

latent class models, and yet the study focused on a latent class solution because of its 

behavioral insights. A few studies concluded that there was no definitive evidence that one 

model was better than the other in their empirical contexts. In addition, some studies 

presented a more cautious standpoint related to model comparisons. A seminal work of 

Greene and Hensher (2003) compared MNL, mixed logit, and latent class models in the 
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context of route choice. Although the latent class model had a bit higher pseudo-R-squared, 

they emphasized that the two approaches to dealing with heterogeneity have their own 

merits rather than selecting a preferred one. Arunotayanun and Polak (2011, p. 145) noted 

that neither mixed logit nor latent class models should be expected to be unambiguously 

superior to the other: “…MMNL [mixed logit] and latent class models characterise the 

taste heterogeneity in different ways. As a result, it is not necessarily the case that fit of a 

latent class model is superior to that of a MMNL model, and vice versa (Provencher and 

Bishop, 2004). The relative performance of the models will depend on the nature of the 

data.” 

A few studies compared the latent class model with another behavioral continuous 

mixture model, ICLV. Tran et al. (2020) examined two ways to incorporate attitudes in 

mode choice modeling and thus provided behavioral interpretations of two models based 

on the same empirical application. Although the study did not pursue a performance 

comparison, their results showed that the two models presented almost the same 

performance (in terms of in-sample information criteria). 

2.3.8 Software and estimation 

Undoubtedly, commercial or open-source software has catalyzed the spread of 

model estimation methodologies. In the mixture modeling context, several programs that 

have been used in the literature include Latent GOLD (Vermunt & Magidson, 2016), 

NLOGIT (NLOGIT, 2016), Mplus (Muthén & Muthén, 2017), Biogeme (Bierlaire, 2018), 

Apollo (Hess and Palma, 2020), SAS (Lanza et al, 2007), and Stata (Lanza et al., 2015). 
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Some open-source libraries are available (e.g. ‘MCLUST’, Scrucca et al., 2016; ‘Flexmix’, 

Leisch, 2004; ‘poLCA’, Linzer and Lewis, 2011).  

The most popular estimation method in the literature is based on the expectation-

maximization (EM) algorithm, which is proposed by a seminal work of Dempster et al. 

(1977). The basic idea of the EM algorithm is to firstly treat class membership as known 

to enable writing a complete data likelihood function; then find the expected value of the 

complete data likelihood, conditional on current parameters and data (E-step); then 

maximize the expected likelihood function with respect to parameters (M-step); then repeat 

the E-step and M-step iteratively until there is negligible change in the log-likelihood or 

the estimated parameters from one iteration to the next. Direct gradient-based optimization 

routines (e.g. quasi-Newton Raphson) are still possible (Kamakura and Russell, 1989; 

Gupta and Chintagunta, 1994; NLOGIT, 2016), but some studies noted that such 

algorithms are less stable (cf. Bhat, 1997), for several reasons such as the possibility of an 

extremely flat likelihood function, and the possibility of getting stuck in regions where the 

function is not well approximated by a quadratic expression (Vij and Krueger, 2017). 

Rather, many studies and software packages have used a mixture of EM with gradient-

based algorithms, thus employing the advantages of both algorithms and speeding up 

convergence (cf. Bhat, 1997; Vermunt and Magidson, 2016). NLOGIT (2016), however, 

favors direct maximum likelihood estimation (MLE) over the EM algorithm: (in theory) 

both algorithms do not produce different results of the log likelihood and the EM algorithm 

could be very slow. Regarding stability, both algorithms are subject to getting hung up on 

local optima, and thus in any case analysts should make an extra effort to ensure the global 

optimum has been found, by testing various starting points.  



 77 

One promising approach to speeding up the estimation can be found in the 

optimization algorithms that are widely used in machine learning. For example, deep neural 

networks are mostly trained with stochastic gradient descent (SGD) algorithms (cf. 

Goodfellow et al., 2016), as opposed to the “batch” gradient methods that use all training 

data to estimate the gradient (like the conventional quasi-Newton algorithm). Han (2019) 

applied this approach to estimate latent class choice models and found that SGD 

(specifically “Adam” in this study) was much faster than other algorithms including direct 

MLE (BFGS in this study) and EM methods. A few studies have taken a Bayesian 

framework for mixture modeling and estimated models with Markov chain Monte Carlo 

(MCMC) sampling (cf. Diebolt and Robert, 1994). As this study focuses primarily on the 

frequentist viewpoint, details on Bayesian estimation are beyond our scope.  

2.4 Conclusions 

This study examined the finite mixture modeling (latent class modeling) framework 

with respect to how it has been used particularly in the transportation domain. Through a 

comprehensive and systematic review, the study aimed to provide a broader understanding 

of the usage landscape and also insights into detailed elements. We firstly set up the mixture 

modeling framework (with distinctions of finite vs. continuous and disaggregation and 

segmentation); outlined an arena of various relevant research fields; and explained how it 

is connected to transportation analyses. Then, by using the Scopus database, we explored 

relevant papers to investigate macroscopic trends in usage of the methodology (yearly 

trends and research topics). We identified six subdomains in transportation with the aid of 

nonnegative matrix factorization: discrete choice modeling, general behavior analysis, 

crash/safety analysis, traffic analysis, travel time distribution, and electric vehicles. 
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We examined several components of the mixture modeling framework in detail. 

Firstly, we examined various types of heterogeneity, with less emphasis on heterogeneity 

in data distributions (associated with latent cluster analysis), and more emphasis on 

heterogeneity in parameters, model specification, attribute processing, functional forms, 

decision rules, casual structure/order, and constraint/choice set. There have been two 

approaches to mixture modeling – exploratory and confirmatory. The confirmatory 

approach is suitable for testing various types of hypotheses (e.g. allowing us to adopt 

several types of heterogeneity in mixture modeling).  The membership model is a unique 

component of mixture models that allows for endogenously/simultaneously segmenting the 

sample into more homogeneous subsamples with respect to the behavior generation process 

and thus it is well connected to the concept of market segmentation. We examined the use 

of the link function for membership models and various segmentation bases. Also, due to 

the flexibility of mixture modeling, we found that various outcome models have been used 

in the literature.  

Selecting the number of classes in mixture modeling is one of the key steps. Hence, 

we explored the number of classes chosen in empirical studies, and the rationales for the 

selection of a given number. To investigate how well mixture modeling works, there have 

been various comparisons with other competing models. This includes comparisons with 

the baseline model (reflecting homogeneity), deterministic/exogenous segmentation 

models, and continuous mixture models. In general, latent class models outperformed other 

competing models, thus showing their usefulness. In addition, we briefly touched on some 

estimation methods and software/programs that help analysts employ mixture models.  
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CHAPTER 3. ALTERNATIVE APPROACHES TO TREATING 

PARAMETER HETEROGENEITY 

Paper title: Alternative approaches to treating finite-valued parameter heterogeneity: 

application to modeling vehicle-miles driven (under peer review) 

 

3.1 Introduction 

This chapter focuses on parameter heterogeneity, taking a finite segmentation 

approach. Myriads of models have been developed in various fields such as statistics, 

economics, psychology, and data science. However, such models were developed for 

different purposes and contexts and, even if some models are eventually performing similar 

mathematical tasks, they may have different names and/or application approaches. 

Specifically, in the context of modeling vehicle-miles driven, the chapter highlights 

similarities and differences among three approaches: deterministic/exogenous 

segmentation, endogenous switching, and latent class models.  

The remainder of this chapter is organized as follows. Section 3.2 provides an 

overview of some relevant literature associated with modeling vehicle-miles traveled 

(VMT), particularly with respect to parameter heterogeneity. Section 3.3 examines the 

theoretical backgrounds of each approach and delineates connections among them. Section 

3.4 introduces the empirical context and describes model results. Section 3.5 discusses 

several considerations associated with applying the models of interest. Section 3.6 

summarizes the study and then discusses some implications and limitations of the study. 

Appendix A provides supplementary detailed discussions about treatment effects. 
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3.2 Literature review 

Vehicle-miles traveled (VMT) continues to serve as an important behavior/demand 

indicator in ground passenger transportation, mainly because it is closely related to traffic 

loads on roads and to transportation-based emissions. Many studies have conducted 

aggregate-level analyses of VMT to analyze trends (e.g. Cervero and Murakami, 2010, 

who modeled VMT per capita across 370 urbanized areas in the U.S.) or to investigate 

issues such as induced demand, the rebound effect of improved fuel economy (Hymel et 

al., 2010), or the impact of telecommuting on VMT (Choo et al., 2005). More recently, 

there have been analyses of whether VMT has “peaked” (e.g. Polzin and Chu, 2014; 

Circella et al., 2016), and of the impacts of ridehailing (e.g. Henao and Marshall, 2019; 

Tirachini and Gomez-Lobo, 2020) and (in the future) automated vehicles (e.g. Zhang et al., 

2018; Harb et al., 2018) on VMT. In this study, we focus on a disaggregate-level cousin, 

vehicle-miles driven (VMD), to explore individuals’ sensitivities to key factors such as 

attitudes and the built environment. 

There have been several efforts to incorporate a market segmentation approach to 

modeling VMT. Studies did not always explicitly mention the method, but deterministic 

segmentation by selected indicator(s) has been popular. For example, using the 2009 

National Household Travel Survey (NHTS), Akar and Guldmann (2012) modeled VMT of 

the pooled sample, and segmented by number of household vehicles. Ke and McMullen 

(2017) investigated regional differences in factors influencing household VMT. They 

compared an Oregon statewide (pooled) model with some segment-specific models (for 

selected regions and MPOs).  
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Several other segmentation approaches have also been taken. For example, Chen et 

al. (2017) modeled personal daily vehicle-kilometers traveled (VKT) in Shanghai, China. 

In particular, their sample selection (switching regression) model accounted for selection 

into transit-oriented development (TOD) areas and non-TOD areas, and allowed the VKT 

model to have different coefficients for each type of area. They found not only that 

residential self-selection existed, but also that the built environment and attitudes played 

crucial roles in explaining VKT. A few studies employed cluster analysis to produce 

particular segments of interest rather than segmenting the sample on the basis of a single 

variable. Ralph et al. (2016) followed a two-step approach. First, they conducted latent 

class cluster analysis to produce traveler types, and then applied quantile regression models 

of VMT for each traveler type.  

Self-selection has been a major issue in analyzing travel behavior (e.g. Mokhtarian 

and Cao, 2008; Cao et al., 2009). It has been considered crucial to account for self-selection 

when modeling VMT because the conventionally estimated effects of land use or built 

environments can be biased when residents self-select into certain residential locations. 

Hence, in recent years, modeling VMT at the disaggregate level has involved correcting 

for self-selection, using methods such as a Heckman model (Heckman, 1979). Zhou and 

Kockelman (2008) employed a two-step Heckman model (in this context, a limited-

information approach to estimating a switching regression model) to consider self-selection 

in home location choice (urban vs. suburban/rural) when modeling household VMD. Cao 

(2009) also used a two-step Heckman model. In the context of Northern California, he 

found that the self-selection effect accounted for 23.8% of the total influence of 

neighborhood type on weekly VMD. Salon (2015) segmented California census tracts into 
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five neighborhood types (central city, urban, suburban, rural-in-urban, and rural) and 

modeled choice of residential neighborhood types to enable incorporating neighborhood 

selection variables into the VMT model. This study is an application of Heckman’s two-

step approach where the number of selection groups is more than two. She confirmed some 

heterogeneous effects across neighborhood type. 

Although latent class modeling has been widely used in travel behavior, particularly 

in choice modeling contexts (e.g. Bhat, 1997; Vij et al., 2013; Kim and Mokhtarian, 2018), 

we are aware of only one application of latent class modeling to VMT prediction (Zahabi 

et al., 2015). Based on numbers of cars, children, and persons in the household, three latent 

classes were identified. 

As mentioned, recent studies have usually focused on self-selection effects when 

examining the impact of the built environment on travel behavior. In that context, living in 

a particular type of built environment (usually an urban, denser, mixed use neighborhood) 

is often viewed as a “treatment”, and built environment effects are analyzed using one or 

more of the treatment effect measurement approaches found in the evaluation literature. 

Although we will continue the discussion of treatment effect measurement in Section 3.5.1 

(with more details in the Appendix A), we will mainly focus on the parameter heterogeneity 

aspect of various approaches. In particular, we will present three different ways to address 

parameter heterogeneity (deterministic segmentation, switching regression, and latent class 

regression), apply them to modeling VMD, and compare the results.  Not only is latent 

class modeling of VMD rare, but so also are comparisons across alternative modeling 

approaches to treating heterogeneity; hence it is hoped that this study will contribute to our 

understanding of the implications of using alternative modeling approaches in practice. 
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3.3 Methodology 

In this section, we present several different modeling approaches for taking account 

of (parameter) heterogeneity, and explore how they are conceptually related and distinct. 

Of course, one common approach to accounting for such heterogeneity is to allow one or 

more parameters of the model to be a continuous-valued random variable having a pre-

specified distribution (cf. McFadden and Train, 2000; Greene and Hensher, 2003). In this 

study, we focus on another common approach, namely allowing a given model parameter 

to take on a finite number of different values. The basic premise is that there are a finite 

number of population segments having different sensitivities to key factors influencing 

their travel behavior (here, VMD). Options for reflecting this heterogeneity include 

deterministic segmentation, endogenous switching, and latent class models. For this study, 

we focus on a regression problem (where the dependent variable is continuous) and the 

two-segment context. Figure 3-1 exhibits generic model specifications by approach; each 

specification will be described in the following subsections. Here, observed variables are 

portrayed by rectangles, and latent variables by ovals. The dashed rounded rectangles 

denote that the influence of X variables on Y (i.e. the model coefficients) differs by class 

membership, which is given by z. 

In Section 3.3.1, we warm up with the simplest, “pooled”, model, where we assume 

homogeneity of parameters. Sections 3.3.2, 3.3.3, and 3.3.4 describe how three models that 

deal with heterogeneity are related.  
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Figure 3-1. Generic model specifications by approach 

 

3.3.1 Pooled model 

Most endeavors to model an outcome use an equation that describes the presumed 

relationship of inputs to the outcome, including unknown parameters to be estimated and 

an error term capturing the net influence of unmeasured variables on the outcome. If the 

data are cross-sectional (as opposed to longitudinal), then conditional on the explanatory 

variables, the observations on the dependent variable are conventionally assumed to be 

independent and identically distributed (i.i.d.) and thus the model assumes homogeneity of 

the sample. Homogeneity has multifaceted meanings, including that individuals are drawn 

from the same distribution and same decision process (i.e. decision structure/model, 

variables, parameters). Hence, the usual linear regression for a continuous dependent 

variable (𝑌𝑖|𝑿𝑖) assumes an i.i.d. normal error term and can be formulated as follows: 

 𝑌𝑖 = 𝑿𝑖𝜷 + 휀𝑖      휀𝑖~𝑁(0, 𝜎2) , (3.1) 

where 𝑖 indexes the individual, 𝑌 is a (continuous) dependent variable, 𝑿 is a vector of 

explanatory variables, 𝜷 is a vector of parameters, and ε is the error term. 
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3.3.2 Deterministic (and exogenous) segmentation model 

If the homogeneity assumption does not hold, the estimated model may not 

adequately represent the decision process of individuals, groups of individuals, or even the 

population, and could thus lead to a misunderstanding of behavioral implications and/or 

inferior predictive ability. Suppose we have two groups of interest and we have a priori 

knowledge (or conjecture) that the two groups have distinctive decision processes 

(meaning, in this context, parameter heterogeneity, i.e. differing 𝜷 coefficients). Let 𝑧 be 

a binary indicator of group membership where for any individual 𝑖, 𝑧𝑖 = 1 or 𝑧𝑖 = 0. Then, 

the most practical approach might be to deterministically and exogenously segment the 

groups and model them independently (or model the pooled sample by interacting all 

variables with the group indicator, a special case of using interaction terms). Note that 

individuals belong to only one of the groups (i.e. the groups are mutually exclusive). 

Because of that, deterministically segmented models have different conditional 

distributions, meaning that 𝑌 is distributed given that the group is 1 or 0: i.e. we can 

distinguish the outcomes by segment, and speak of 𝑌𝑖1|𝑋𝑖,𝑧𝑖=1 and 𝑌𝑖0|𝑋𝑖,𝑧𝑖=0. Hence, any 

estimates of the two models provide expectations conditional on the group indicator. 

Specifically, we have: 

 𝑌𝑖1 = 𝑿𝑖𝜷1 + 휀𝑖1      휀𝑖1~𝑁(0, 𝜎1
2) (3.2) 

 𝑌𝑖0 = 𝑿𝑖𝜷0 + 휀𝑖0      휀𝑖0~𝑁(0, 𝜎0
2) , (3.3) 

and conditional class-specific expectations are: 
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 𝐸(𝑌𝑖1|𝑿𝑖 , 𝑧𝑖 = 1) = 𝑿𝑖𝜷1 (3.4) 

 𝐸(𝑌𝑖0|𝑿𝑖 , 𝑧𝑖 = 0) = 𝑿𝑖𝜷0 . (3.5) 

Then, the unconditional outcome can be expressed as: 

 𝑦𝑖 = 𝑧𝑖𝑌𝑖1 + (1 − 𝑧𝑖)𝑌𝑖0 .21 (3.6) 

Since we assume normality, the conditional densities can be written as follows: 

 

𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 1) = 𝑓(𝑌𝑖1|𝑿𝑖) =
exp[− 

1

2𝜎1
2(𝑌𝑖1−𝑿𝑖𝜷1)2] 

√2𝜋𝜎1
2

=
1

𝜎1
𝜙 (

𝑌𝑖1−𝑿𝑖𝜷1

𝜎1
)   (3.7) 

 

𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 0) = 𝑓(𝑌𝑖0|𝑿𝑖) =
exp[− 

1

2𝜎0
2(𝑌𝑖0−𝑿𝑖𝜷0)2] 

√2𝜋𝜎0
2

=
1

𝜎0
𝜙 (

𝑌𝑖0−𝑿𝑖𝜷0

𝜎0
) . (3.8) 

The log-likelihood (𝐿𝐿) can be expressed as: 

 𝐿𝐿 = ∑ ln 𝑓(𝑦𝑖|𝑿𝑖)𝑁
𝑖=1 = ∑ ln[𝑧𝑖𝑓(𝑌𝑖1|𝑿𝑖) + (1 − 𝑧𝑖)𝑓(𝑌𝑖0|𝑿𝑖)]𝑁

𝑖=1    (3.9) 

                                                 
21 Alternatively, it can be expressed as 𝑦𝑖 = 𝑌𝑖1

𝑧𝑖  𝑌𝑖0
(1−𝑧𝑖). For the deterministic segmentation model, the 

two expressions produce identical log-likelihood functions and thence identical parameter estimates:  

 

 𝐿𝐿 = ∑ ln 𝑓(𝑦𝑖)
𝑁
𝑖=1 = ∑ ln{𝑓(𝑌𝑖1)𝑧𝑖𝑓(𝑌𝑖0)(1−𝑧𝑖)}𝑁

𝑖=1 = ∑ {𝑧𝑖 ln 𝑓(𝑌𝑖1) + (1 − 𝑧𝑖) ln 𝑓(𝑌𝑖0)}𝑁
𝑖=1   

      = ∑ {𝑧𝑖 ln [
1

𝜎1
𝜙 (

𝑌𝑖1−𝑿𝑖𝜷1

𝜎1
)] + (1 − 𝑧𝑖) ln [

1

𝜎0
𝜙 (

𝑌𝑖0−𝑿𝑖𝜷0

𝜎0
)]}𝑁

𝑖=1   

      = ∑ ln [
1

𝜎1
𝜙 (

𝑌𝑖1−𝑿𝑖𝜷1

𝜎1
)] +𝑧𝑖=1 ∑ ln [

1

𝜎0
𝜙 (

𝑌𝑖0−𝑿𝑖𝜷0

𝜎0
)]𝑧𝑖=0  . 
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= ∑ ln [𝑧𝑖
1

𝜎1
𝜙 (

𝑌𝑖1−𝑿𝑖𝜷1

𝜎1
) + (1 − 𝑧𝑖)

1

𝜎0
𝜙 (

𝑌𝑖0−𝑿𝑖𝜷0

𝜎0
)]𝑁

𝑖=1   

= ∑ ln
1

𝜎1
𝜙 (

𝑌𝑖1−𝑿𝑖𝜷1

𝜎1
) +𝑧=1 ∑ ln

1

𝜎0
𝜙 (

𝑌𝑖0−𝑿𝑖𝜷0

𝜎0
)𝑧=0    

Note that this deterministic segmentation model is closely related to decision tree 

regression. The basic idea of decision tree regression is to partition the input space into a 

set of rectangles (i.e. into segments) and then fit a model for each segment (Breiman et al., 

1984; Hastie et al., 2009). Hence, both the deterministic segmentation and decision tree 

regression models aim to build segment-specific models. However, in the usual 

applications of decision tree regression, all input variables are used to split individuals into 

branches (i.e. segments) and constant outcomes are predicted for each branch (usually the 

average outcome over cases in that branch) rather than having models per se.22 By contrast, 

in the usual applications of deterministic segmentation models, researchers pick one or a 

few segmentation variable(s) and then build segment-specific models with the remaining 

input variables. The deterministic segmentation model can easily be expanded to multiple 

classes and/or different types of outcome variables (e.g. binary, ordered, nominal); in fact, 

decision tree regression usually produces more than two segments. 

  

                                                 
22 We take quite a different approach from Brathwaite et al. (2017) for interpreting decision tree models. In 

a superb connection of machine learning and microeconomics, Brathwaite et al. (2017) linked decision tree 

models to non-compensatory decision rules (one of various decision protocols) in the discrete choice 

modeling context. In that case, input variables are considered explanatory variables in the model, but the 

linkage between explanatory variables and outcome function does not take a tidy linear compensatory form. 

Here, we interpret input variables in typical tree-based models as segmentation variables, so as to link them 

to latent class structure. Although in this study we focus on a regression model, our interpretation can also 

be applied to the context of discrete choice modeling. 
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3.3.3 Switching regression model 

The original idea of switching regression assumes two regimes, each generating an 

outcome, based on different equations. Switching could be either endogenous or exogenous 

(Maddala, 1986), respectively depending on whether the error terms of the outcome 

equations are or are not correlated with that of the switching (segmentation) model. The 

endogenous switching regression model, a type of sample selection model, is also known 

as the Tobit type 5 model (Amemiya, 1985), the mover-stayer model, or Roy’s model. This 

model is particularly related to some others [original Tobit (Tobin, 1958), two-part (e.g. 

Cragg, 1971), and Heckman’s original sample selection models (Heckman, 1979)].23  

To relate the switching regression models to mixture modeling, we need to 

consider similarities and differences. Both approaches start from the same key assumption 

– they posit that there are subpopulations in the population, which exhibit different 

behavioral processes. Strictly speaking, finite mixture modeling generally refers to cases 

where the mixing segments are latent (i.e. true segment membership is unknown; hence 

so-called latent class models), whereas in switching models, we know the true group 

                                                 
23 Both two-part and sample selection models appeared in the 1970s in the econometrics literature. The two 

approaches are interrelated, but the initial motivations were different. The two-part model focused on 

predicting actual (conditional) outcomes (Leung and Yu, 1996), and aimed to address having an 

“excessive” number of zeros in the sample distribution of a continuous variable. Cragg (1971) proposed 

some formulations of two-part models, following a precedent work of Tobin (1958). The earlier Tobit 

model introduced a latent variable (which is a sort of proxy for the outcome variable) to tackle a censor 

problem, but simply formulated probability-of-zero and outcome-if-not-zero models with the same 

explanatory variables. Cragg’s (1971) model allowed the so-called “participation” (zero versus non-zero) 

and “intensity/amount” (positive values) parts to have different specifications (so it has “two parts”). On the 

other hand, the sample selection model focused on predicting potential (unconditional) outcomes, in the 

context of endogenous sampling. In the original Heckman (1979) sample selection model, the outcome is 

only observed if self-selected (e.g. wage is not observed for the unemployed). The endogenous switching 

regression model can be considered as a variation of the sample selection model in which each segment (or 

regime) has its own outcome model (i.e. outcomes are observed in all regimes). As two-part and sample 

selection models gained attention, several studies compared the two approaches (Manning et al., 1987; 

Leung and Yu, 1996; Dow and Norton, 2003; Madden, 2008).  
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indicator. In this study, we want to generalize the concept of the finite mixture modeling 

framework by recognizing that knowledge of the true membership results in a special type 

of mixture model, one in which the ordinarily probabilistic class membership in fact 

consists of probabilities 1 and 0. In this regard, the (exogenous) switching model can be 

embraced under the mixture modeling framework. Endogenous switching, however, 

deviates from the mixture modeling approach in a seemingly slight, but substantively 

meaningful, way.  

An (endogenous) switching regression system of equations consists of two parts: 

the membership model (known in that literature as the selection model) and the outcome 

models. The membership model can be expressed as: 

 𝑧𝑖
∗ = 𝑾𝑖𝜶 + 𝑢𝑖 , (3.10) 

where 𝑖 indexes the individual, 𝑧𝑖
∗ is a latent continuous variable determining class 

membership, 𝑾 is a vector of membership variables, 𝜶 is a vector of membership 

parameters, and 𝑢𝑖 is an error term. If 𝑧𝑖
∗ > 0 the individual belongs to class 1 (𝑧𝑖 = 1), 

and otherwise the individual belongs to class 0 (𝑧𝑖 = 0). If we assume 𝑢𝑖~𝑁(0,1), we have 

a binary probit membership model, with probabilities given by: 

 𝑃(𝑧𝑖 = 1) = Φ(𝑾𝑖𝜶) , (3.11) 

 𝑃(𝑧𝑖 = 0) = 1 − 𝑃(𝑧𝑖 = 1) = 1 − Φ(𝑾𝑖𝜶) = Φ(−𝑾𝑖𝜶) . (3.12) 

The two class-specific outcome models are: 
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 𝑌𝑖1 = 𝑿𝑖𝜷1 + 휀𝑖1      휀𝑖1~𝑁(0, 𝜎1
2) (3.13) 

 𝑌𝑖0 = 𝑿𝑖𝜷0 + 휀𝑖0      휀𝑖0~𝑁(0, 𝜎0
2) , (3.14) 

where 𝑿 is a vector of outcome-model variables, 𝜷 is a vector of outcome-model 

parameters, and 휀𝑖 is an error term. 𝑌1 is observed if 𝑧∗ > 0 and 𝑌2 is observed if 𝑧∗ < 0. 

The error terms in the system follow the trivariate normal distribution: 

 

(

𝑢𝑖

휀𝑖1

휀𝑖0

) ~𝑁 [(
0
0
0

) , (

1 𝜌1𝜎1 𝜌0𝜎0

𝜌1𝜎1 𝜎1
2 0

𝜌0𝜎0 0 𝜎0
2

)]  (3.15) 

The variance of 𝑢𝑖 is fixed as 1 for convenience and identification, while 𝜌1 and 𝜌0 

represent the correlations of the unobserved variables influencing class membership with 

those influencing the respective outcomes for class 1 and class 0 members. Note that the 

covariance between 휀𝑖1 and 휀𝑖0 is fixed at zero since everyone can belong to only one of 

the two classes and thus the correlation is unidentifiable. As noted by Greene (2012), the 

choice of zero is merely for convenience and it does not play a role in the estimation of the 

model coefficients. 

Here, we need to be clear about a difference between exogenous and endogenous 

switching. This distinction is important because it affects how we characterize the model 

type. A critical question is, how do we define the measurement spaces of 휀1 and 휀0? As 

will be described later, in mixture modeling, 휀1 and 휀0 are defined over the subpopulations 

of class 1 and class 0, respectively. What about for the switching model? If it is exogenous 
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switching, 휀1 and 휀0 can be defined over either the population or the subpopulation. In the 

latter case, exogenous switching can be considered a special type of mixture modeling 

where the class indicator is known (which is the model in Section 3.3.2). In the case of 

endogenous switching, however, 휀1 and 휀0 must be defined over the population since we 

are allowing correlations with 𝑢 (which is defined over the population)24. 

For the switching regression model, the conditional class-specific expectations can 

be expressed as: 

 𝐸(𝑌𝑖1|𝑧𝑖 = 1, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷1 + 𝐸[휀𝑖1|𝑧𝑖 = 1, 𝑿𝑖 , 𝑾𝑖] = 𝑿𝑖𝜷1 + 𝜌1𝜎1
𝜙(𝑾𝑖𝜶)

Φ(𝑾𝑖𝜶)
  (3.16) 

 𝐸(𝑌𝑖0|𝑧𝑖 = 0, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷0 + 𝐸[휀𝑖0|𝑧𝑖 = 0, 𝑿𝑖 , 𝑾𝑖] = 𝑿𝑖𝜷0 + 𝜌0𝜎0 [
−𝜙(𝑾𝑖𝜶)

1−Φ(𝑾𝑖𝜶)
]   (3.17) 

where the second terms in each equation (compare Eqs. (3.4) and (3.5) for the deterministic 

segmentation model) reflect the selection bias in the conditional expected outcome when 

there is a non-zero correlation between unobserved influences on class membership and 

outcome. The factor multiplying 𝜌 and 𝜎 in each equation is known as the inverse Mills 

ratio. 

The overall (i.e. unconditional with respect to class) density is: 

                                                 
24 The confusion can arise because the statement “𝑌1 is observed if 𝑧∗ > 0” sounds like it is a conditional 

distribution. However, as noted by Maddala (1986), such a statement does not necessarily mean that the 

disturbance term should be specified only for that subpopulation (𝑧∗ > 0). In the endogenous switching 

model, both disturbance terms are defined over the population and this approach will be at the heart of 

selection modeling. 
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 𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖) = 𝑃(𝑧𝑖 = 1|𝑾𝑖) × 𝑓(𝑦𝑖|𝑧𝑖 = 1, 𝑿𝑖 , 𝑾𝑖)  

+𝑃(𝑧𝑖 = 0|𝑾𝑖) × 𝑓(𝑦𝑖|𝑧𝑖 = 0, 𝑿𝑖 , 𝑾𝑖)   
(3.18) 

The log-likelihood (𝐿𝐿) can be expressed as follows: 

 

𝐿𝐿 = ∑ ln [Φ (
𝑾𝑖𝜶+𝜌1(𝑦𝑖−𝑿𝑖𝜷1) 𝜎1⁄

√1−𝜌1
2

) × [
1

𝜎1
𝜙 (

𝑦𝑖−𝑿𝑖𝜷1

𝜎1
)]]𝑧=1     

+ ∑ ln [Φ (−
𝑾𝑖𝜶+𝜌0(𝑦𝑖−𝑿𝑖𝜷0) 𝜎0⁄

√1−𝜌0
2

) × [
1

𝜎0
𝜙 (

𝑦𝑖−𝑿𝑖𝜷0

𝜎0
)]]𝑧=0  . 

(3.19) 

Several comments are in order. First, deterministic segmentation and switching 

regression models share the feature that we know, in the sample, the group to which each 

individual belongs (i.e. the group indicator of interest). Second, if 𝜌0 and 𝜌1 are both 0, i.e. 

if we have exogenous rather than endogenous switching, then the conditional expectations 

(Eqs. (3.16) and (3.17)) are identical to those of the deterministic segmentation model (Eqs. 

(3.4) and (3.5)). In that case, the two models would differ only in their unconditional 

expectations and densities, where the deterministic segmentation model replaces the 

segment membership probability weights of the exogenous switching model with 0s and 

1s (as can be seen by comparing the argument of the natural log function in the first line of 

Eq. (3.9) with Eq. (3.18)), reflecting the certainty of segment membership. 

As generally applied, switching regression aims to be able to predict the expected 

outcome for a randomly-selected individual, and therefore needs to incorporate the 

probability of belonging to one group or the other, whereas analysts using the deterministic 
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(exogenous) segmentation model typically content themselves with explaining outcomes 

conditional on segment membership. But if unconditional as well as conditional outcomes 

are a key interest, then the foregoing discussion raises the question: when 𝜌0 and 𝜌1 are 

both 0, when should deterministic segmentation be used, as opposed to exogenous 

switching? More precisely (since, again, the conditional equations would be the same for 

both models), when is it useful or necessary to estimate a segment membership model as 

well as segment-specific outcome models? Note that a segment membership model could 

be estimated in a deterministic segmentation context (and when  𝜌0 and 𝜌1 are both 0, it 

would be identical to its exogenous switching counterpart) – it is just that it usually is not 

needed and therefore not estimated when segmenting deterministically. The answer to the 

question lies in how an estimated model is intended to be used. Clearly, if the model is to 

be used in a predictive, out-of-sample capacity, where for new cases 𝑿𝑖 and 𝑾𝑖 are known 

(e.g. for a synthetically-generated population) but not class membership 𝑧𝑖, then the 

segment membership model (Eqs. (3.11) and (3.12)) is a “must”, to enable prediction of 

class membership. For in-sample applications, by contrast (e.g. to scenario analysis), if 𝑿𝑖 

variables are changed but not 𝑾𝑖 variables (i.e. if there is no reason to expect segment 

membership to change), then it would seem appropriate to continue to reflect the certain 

knowledge of segment membership by using the deterministic segmentation model without 

a membership model25. On the other hand, even for in-sample applications, if desired 

scenarios are likely to involve shifts among segments, then the segment membership model 

is again indispensable. 

                                                 
25 Of course, any application to population-level analysis presumes that the sample is either representative 

of the population – particularly with respect to the segment membership shares (which is often not the 

case) – or else weighted to be so. 
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Furthermore, if 𝜌0 and 𝜌1 are not 0, then when conditioning on segment 

membership, the error distributions of the outcome equations are truncated (the related 

equations will be delineated in Section 3.5.1 and Appendix A). In this case, even if the 

analyst only cares about outcomes conditional on segment membership, the estimators of 

β that are obtained from the deterministic segmentation model are inconsistent, because 

(by assuming untruncated error distributions) they are absorbing the last terms of Eqs. 

(3.16) and (3.17). Put more plainly, the point (well-known in sample selection settings but 

not routinely taken into account in deterministic segmentation contexts) is that if 

unobserved factors associated with individuals’ selection into segments are correlated with 

those influencing the outcome of interest, then effects of the explanatory variables 𝑿𝑖, 

obtained when conditioning on segment, will be improperly estimated if not corrected for 

the presence of that correlation. This suggests that it should perhaps become routine, before 

using deterministic segmentation, to estimate an endogenous switching model to test 

whether 𝜌0 and 𝜌1 are both 0.  

3.3.4 Latent class model 

As noted, in the aforementioned models we know each individual’s group 

membership. Here, we posit that there are some underlying sub-populations having 

different decision processes and/or distinctive distributions, but we do not know who 

belongs to each sub-population (portrayed by the membership indicator 𝑧 becoming an 

oval instead of a square in Figure 3-1). Hence, we aim to uncover the population segments 

themselves, as well as their different behavioral models. Because we never know the 

ground truth of segment membership, we treat such membership as a (discrete) latent 

variable. In essence, group membership can be considered to be completely missing data 
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and thus unobservable (Little and Rubin, 2019). In addition, since we rely on the data to 

identify the latent segments, this latent class approach can be considered as more “data-

driven” than the other two models26. The way we functionally formulate latent class models 

is to use finite mixture modeling. The membership model is as follows: 

 𝑧𝑖
∗ = 𝑾𝑖𝜶 + 𝑢𝑖    𝑢𝑖~EV(0,1) 27 (3.20) 

 𝑃(𝑧𝑖 = 1) = 1 [1 + exp(−𝑾𝑖𝜶)]⁄ 28  (3.21) 

 𝑃(𝑧𝑖 = 0) = 1 − 𝑃(𝑧𝑖 = 1)  = 1 [1 + exp(𝑾𝑖𝜶)]⁄  . (3.22) 

The two class-specific outcome models are: 

 𝑌𝑖1 = 𝑿𝑖𝜷1 + 휀𝑖1      휀𝑖1~𝑁(0, 𝜎1
2)   (3.23) 

 𝑌𝑖0 = 𝑿𝑖𝜷0 + 휀𝑖0      휀𝑖0~𝑁(0, 𝜎0
2) . (3.24) 

                                                 
26 In other words, deterministic segmentation and endogenous switching regression could be considered as 

more theory-driven in that, a priori, we speculate that certain identifiable segments (e.g. age cohorts) have 

different behavioral models, or aim to test the “treatment effect” of a certain identifiable treatment (e.g. 

living in an urban versus non-urban area in the residential self-selection context). By contrast, latent class 

models aim to find optimal (but previously unknown) segmentations with respect to the target variable, 

because we maximize an objective function that includes membership-function terms. However, the 

distinction between being theory- and data-driven is continuous rather than binary, because theory generally 

suggests the variables to be included in the membership function of a latent class model, while data (i.e. 

empirical results) generally influence the final specifications of the other two models.  
27 As discussed further in Section 3.5.2, most latent class modeling applications employ the logit link 

function for the membership model and thus assume that the error term follows the extreme value 

distribution with location parameter equal to zero (without loss of generality as long as a constant term is 

being estimated) and scale parameter fixed to unity (for convenience and identifiability). However, in 

theory, it can be formulated with the probit model and thus have a normally distributed error term. 
28 This study focuses on two classes. Membership probabilities can be specified with the multinomial logit 

model if there are more than two classes. 
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The conditional class-specific expectations are: 

 𝐸(𝑌𝑖1|𝑧𝑖 = 1, 𝑿𝑖) = 𝑿𝑖𝜷1  (3.25) 

 𝐸(𝑌𝑖0|𝑧𝑖 = 0, 𝑿𝑖) = 𝑿𝑖𝜷0 . (3.26) 

The overall density is: 

 𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖) = 𝑃(𝑧𝑖 = 1|𝑾𝑖) × 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 1)  

+𝑃(𝑧𝑖 = 0|𝑾𝑖) × 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 0)  
(3.27) 

The log-likelihood (𝐿𝐿) can be expressed as follows: 

 𝐿𝐿 = ∑ ln[∑ 𝑃(𝑧𝑖|𝑾𝑖) × 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖)𝑧𝑖=0,1 ]𝑁
𝑖=1   

= ∑ ln [
1

1+exp(−𝑾𝑖𝜶)
×

1

𝜎1
𝜙 (

𝑌𝑖−𝑿𝑖𝜷1

𝜎1
) +

1

1+exp(𝑾𝑖𝜶)
×

1

𝜎0
𝜙 (

𝑌𝑖−𝑿𝑖𝜷0

𝜎0
)]𝑁

𝑖=1 . (3.28) 

It is instructive to examine closely the difference in the log-likelihoods of the 

switching regression model (Eq. 3.19) and the latent class model (Eq. 3.28) (setting aside 

the variant functional forms of the segment membership probabilities – which, as indicated 

in footnote 8, differ only by convention, not by necessity – and the ability of the former to 

account for correlated error terms). Each term in both equations involves outcome densities 

multiplied by segment membership probabilities, reflecting the contribution of both 

elements to parameter estimation and evaluation of the model’s performance. But the log-

likelihood of the switching regression model can be split into two sums, corresponding to 
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the known members of each of the two groups, and accordingly only the membership 

probability and outcome density associated with the segment to which the individual 

belongs need to be included in each term. In essence, each term is the natural log of the 

joint density of belonging to the observed group z and experiencing the observed outcome 

given belonging to z. The log-likelihood of the latent class model, on the other hand, cannot 

be split in that way because group membership is not known, and accordingly each term 

must include the membership probability and outcome density of both possible segments. 

In essence, each term is the natural log of the “total probability” (actually the expected 

density, for continuous outcomes) of experiencing the observed outcome. Thus, the former 

is the log-likelihood of a joint event (membership and outcome) while the latter is the 

(marginal) log-likelihood of a single event (outcome, summed over the membership 

probability distribution), and consequently the two log-likelihoods are not directly 

comparable. We will discuss the practical issue caused by this difference in Section 3.4.4. 

The deterministic segmentation model, on the other hand, can be considered as a 

special case of both models, where we know the binary indicator of membership (i.e. the 

probability of group membership, 𝑃(𝑧𝑖), is either 1 or 0).  In that case, all the probabilities 

of Eq. (3.19) for switching regression are 1, simplifying to Eq. (3.9), whereas in Eq. (3.28) 

for the latent class model, one of the probabilities in each term is 1 while the other one is 

0, again simplifying to Eq. (3.9).  
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3.4 Empirical application  

3.4.1 Data 

This study employs the GDOT data (Section 1.2.3). This study focuses on Georgia 

residents who have a driver’s license and drive. The dependent variable is self-reported 

weekly vehicle-miles driven (VMD), which is often studied as a major travel behavior 

indicator. As usual, VMD has a skewed distribution; hence we log-transform it (first adding 

1, to avoid taking the log of zero) to more closely achieve normality. Specifically for the 

deterministic segmentation and endogenous switching models, we divide the sample into 

urban and non-urban residents based on the population density of their residential Census 

block group29. This is a common segmentation variable in the literature associated with 

investigating the effect of neighborhood type on travel behavior, as described in Section 

3.2. For the sake of comparison, we employ the same set of variables (some attitudes, 

demographics, and population density) for the membership function in the latent class 

model. The original dataset consists of more than 3,200 cases, but it is reduced to 3,022 

after excluding non-drivers and cases with missing values on key variables (Table 3-1). 

Based on geocodes of the home location, we collected additional land use information from 

the American Community Survey (ACS), the Longitudinal Employer-Household 

Dynamics (LEHD) database, Alltransit, and Google Place API. The descriptive statistics 

                                                 
29 Since there is no universally-accepted definition of “urban”, we segment the sample into urban and non-

urban residents based on population density (people per acre; census block-group level American 

Community Survey 2017 estimates): urban if the population density is 4 people per acre (2,560 per square 

mile) or higher, and non-urban otherwise. We have a subjective measure of neighborhood type in the survey 

and an urbanized area designation in the census data, but they are too broad to effectively capture the 

effects being sought. Our definition of urban area is more conservative than the census designation – i.e. we 

draw the boundary at a higher density than the census does.   
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of the key variables are reported in Table 3-4 rather than in this section because it is more 

useful to compare the sample characteristics with other information. 

Table 3-1. Variable descriptions 

Variable Description Source 

Socio-demographics   

Gender Female dummy GDOT survey 

Race White dummy GDOT survey 

Age 18-34 dummy GDOT survey 
 65+ dummy GDOT survey 

Income Middle income ($50,000 - $99,999) dummy GDOT survey 
 Higher income ($100,000 or more) dummy GDOT survey 

Telecommute 
Dummies: weekly-based telecommuting, no or infrequent 

telecommuting (base: non-worker) 
GDOT survey 

Household Number of household members GDOT survey 
 Number of vehicles GDOT survey 

MPO type Atlanta region dummy GDOT survey 

Attitudes a   

 Pro-environmental GDOT survey 
 Urbanite GDOT survey 
 Travel-liking GDOT survey 
 Pro-car-owning GDOT survey 

Land use     

Density Population density (people per acre) ACS 
 Job density (jobs per acre) LEHD 

Transit score Level of transit service [0-1] Alltransit 

Local accessibility b PCA score of local amenities Google Place API 

a. Selected factor scores from a factor analysis. Selected attitudinal factors and highly-loading statements are 

reported in Table 1-1. The full factor analysis solution is reported in Kim et al. (2019b) as well. 

b. Principal component analysis (PCA) score of the first dimension which captures the largest portion of 

variation in number of amenities near home location. Amenities include 23 types of places such as restaurant, 

bar, store, and café. Pattern loadings are reported in Table 1-2. 

 

3.4.2 Estimation results 

For modeling VMD, based on the literature and empirical experimentation, we 

consider three sets of explanatory variables: demographics, geographic characteristics, and 

work-related characteristics. In Table 3-2, the pooled model shows mostly statistically 

significant parameters and those are consistent with conceptual expectations. Males, 

whites, higher income people, and those in a middle age group (35-64) tend to drive more. 

Atlanta residents, on average, drive more. Three geographic characteristics of the 
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residential vicinity (job density, transit score, and a proxy for local amenities) present 

negative parameters, indicating that accessibility and availability of transit reduce VMD in 

general. Compared to non-workers, workers generate more VMD and we can observe, on 

average, that workers who telecommute at least once a week generate less VMD than non- 

or infrequent telecommuters.  

Turning to the deterministic segmentation model, it shows some notable parameter 

heterogeneity across urban and non-urban segments (Table 3-2). For example, among 

urban residents younger people (18-34) tend to drive less than others, whereas among non-

urban residents they do not. Oppositely, older people (65 or higher) tend to drive less than 

others among non-urban residents, while those in urban areas do not. The impact of income 

on VMD is greater in urban than in non-urban areas; on average, ceteris paribus, switching 

from being lower income to being medium or higher income respectively leads to 49% and 

64% increases [(exp 0.40 − 1) ∗ 100% and (exp 0.50 − 1) ∗ 100%)] in (VMD+1) for 

urban residents, compared to 25% and 42% for non-urban residents. Urban residents are 

more sensitive to the availability of transit than non-urban residents are, whereas non-urban 

residents are more sensitive to local amenities than urban residents are. For the latter, we 

speculate the reason to be that urban residents tend to have more local amenities as a 

baseline, and thus marginal differences in the number of amenities in their activity radius 

may not significantly affect their overall VMD. However, for non-urban residents, if there 

are not enough local amenities within their activity radius, they may need to drive farther 

and thus increase average VMD.30 

                                                 
30 Note that there are some non-negligible correlations among the geographic variables (job density, transit 

score, local accessibility, and Atlanta MPO resident; rows/columns are in this order). The respective 
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Table 3-3 exhibits the estimation results of the endogenous switching and latent 

class models. Turning first to the endogenous switching model, the membership (or sample 

selection) model, which we do not have in the deterministic segmentation approach, shows 

how randomly-selected individuals choose their residence between urban and non-urban 

areas. Those with stronger pro-environmental and urbanite attitudes are more likely than 

others to choose to live in urban areas, whereas those who like traveling and 

owning/driving cars are more likely than others to choose to live in non-urban areas. In 

addition, workers and those having fewer vehicles and smaller households are more likely 

than others to live in urban areas. All of these results are plausible and, for the most part, 

expected. The outcome models, in general, are consistent with the results of the 

deterministic segmentation model.   

As we simultaneously estimate “membership” in neighborhood type and VMD, the 

key merits over the deterministic segmentation model are twofold. First, the endogenous 

switching model enables us to explain what kinds of people are more likely to belong to 

each neighborhood type. For the deterministic segmentation model we can only explain 

VMD generation given that we know which neighborhood type a person lives in, whereas 

for the endogenous switching model we can predict VMD for a randomly-selected person. 

This might be meaningful for demand forecasting in that analysts do not know which 

person will live in which neighborhood type. Additionally, error correlation estimates 

corroborate that the selection of neighborhood type and the generation of VMD share 

                                                 
correlation matrices for the pooled sample, urban area, and non-urban area segments are: 

 [

1.00 0.43
1.00

0.50 0.15
0.62 0.28
1.00 0.16

1.00

], [

1.00 0.36
1.00

0.47 0.12
0.55 0.24
1.00 0.03

1.00

] , [

1.00 0.43
1.00

0.46 0.10
0.45 0.16
1.00 0.07

1.00

]. 
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substantial unobserved characteristics. Hence, failing to account for those correlations 

among unobserved variables leads to inconsistent estimates of the coefficients of the 

deterministic segmentation model. Indeed, comparing the inconsistent coefficient 

estimates of the deterministic segmentation model (Table 3-2) to the consistent ones of the 

endogenous switching model (Table 3-3) indicates that while many coefficients are quite 

similar, there are also some substantial differences. For example, the deterministic 

segmentation model appears to exaggerate the importance of transit accessibility for urban 

residents and being white for non-urban residents, and to understate the importance of 

being a (tele)worker for both groups. 

The latent class model also involves a membership model and two outcome models 

(Table 3-3). For the purposes of comparison, we estimated only a two-class model. We 

specified the class membership model to have the same explanatory variables as those in 

the selection equation of the endogenous switching model, plus a population density 

variable that (since neighborhood types were defined on the basis of density) would have 

been essentially tautological to include in the selection equation. For the most part the same 

variables were significant with the same signs in the two models, with the exception that 

workers were more likely than others to live in urban areas for the endogenous 

segmentation model, but less likely than others to belong to “class 1” for the latent class 

model. Otherwise, however, those who are more urbanite and pro-environmental, who like 

travel and owning cars less, and who tend to own fewer vehicles and live in smaller 

households – traits that are also largely identified with urban residents – are more likely to 

be latent class 1 members.  
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Accordingly, it might be expected that the two latent classes respectively match the 

urban and non-urban segments of the previous two models. However, neither the 

membership model nor the outcome models fully support that presumption. First, as will 

be shown in Section 3.4.3, the latent class membership is somewhat different than the 

membership in the deterministic urban and non-urban classes (as can already be seen in 

Table 3-3 from the fact that 23% of the sample live in an urban area, whereas 52% belong 

to latent class 1), although latent class 1 tends to be more urban than class 0 as expected. 

On the basis of results shown in Section 3.4.3, we label class 1 as “lower VMD-inclined” 

and class 0 as “higher VMD-inclined”.   

In addition, when investigating the parameters in the two outcome models, we can 

observe that patterns of sensitivities to factors for the two latent classes are different from 

those for the deterministic groups in the previous two models. For example, relative to 

having a lower income, being of middle income has a substantially weaker (positive) 

impact on VMD for class 1 (lower VMD) of the latent class model than for the urban 

classes of the previous two models, and similarly for the (negative) impact of the transit 

score. The latter result (as corroborated by Table 3-4 in Section 3.4.3) is likely because 

members of latent class 1 are more scattered between urban and non-urban areas, and there 

may be little variability in transit scores for non-urban areas, which will dilute the impact 

of that variable across the segment. On the other hand, relative to non-workers, non- or 

infrequent telecommuting has a much smaller (positive) impact on VMD for latent class 0 

(higher VMD) than for the non-urban segments of the previous two models, while weekly 
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telecommuting has a smaller and insignificant impact for latent class 1 compared to its 

impact for the urban segments of the other two models31. 

In essence, given the variables proposed for the membership model, the latent class 

model identifies two distinct groups on the basis of their VMD model coefficients (finding 

the optimum balance between within-group homogeneity and between-group 

heterogeneity in that respect), without direct regard to whether they are urban or non-urban 

residents. Put another way, urban residents can “behave” like (stereotypical) non-urban 

residents with respect to influences on their VMD, and conversely; this model can more 

flexibly group the “non-urban-like” urban residents with their likeminded non-urban 

counterparts, and conversely for the “urban-like” non-urban residents. 

Table 3-2. Estimation results for the pooled and deterministic segmentation models 

(N=3,022) 

  Pooled Deterministic segmentation 

   Urban 

(Class 1) 
(23%)  

Non-urban 

(Class 0) 
(77%)  

Variable Parameter t-value Parameter t-value Parameter t-value 

Intercept 4.154 71.99 3.993 34.67 4.190 61.98 

Female -0.241 -7.36 -0.270 -3.98 -0.232 -6.21 

White 0.152 3.84 0.138 1.89 0.153 3.20 

Age:18-34 -0.058 -0.98 -0.280 -2.68 0.037 0.52 

Age:65+ -0.069 -1.72 0.011 0.13 -0.095 -2.09 

Middle income 0.277 6.91 0.402 4.80 0.228 5.01 

Higher income 0.400 9.16 0.498 5.45 0.356 7.14 

Atlanta residence 0.108 2.98 0.294 4.11 0.054 1.28 

Job density (jobs per acre) -0.012 -2.59 -0.014 -2.44 -0.017 -1.86 

Transit score -0.480 -5.15 -0.675 -4.93 -0.217 -1.53 

Local accessibility -0.072 -3.30 -0.021 -0.65 -0.085 -2.66 

Weekly telecommuting 0.274 4.78 0.233 2.04 0.287 4.32 

No or infrequent telecommuting 0.524 12.64 0.534 6.18 0.526 11.15 

 

Note: Coefficients statistically significant at the 0.05 level are bolded. The goodness-of-fit measures of these 

models are shown in Table 3-5 and discussed in Section 3.4.4. 

                                                 
31 We note in passing that for all models and segments, frequent telecommuters are associated with lower 

VMD than non-frequent or non-telecommuting workers, all else equal, consistent with typical findings of 

longitudinal studies (e.g. Mokhtarian et al., 1995) that telecommuting reduces an individual’s travel, on net. 
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Table 3-3. Estimation results for the endogenous switching and latent class models 

(N=3,022) 

  Endogenous switching model Latent class model 

 Urban 

(Class 1) 
(23%) 

Non-urban 

(Class 0) 
(77%) 

Lower 

VMD 

(Class 1) 

(52%) 

Higher 

VMD 

(Class 0) 

(48%) 

Variable Parameter t-value Parameter t-value Parameter t-value Parameter t-value 

Outcome models             

Intercept 3.000 13.16 4.495 63.31 3.595 25.72 4.936 36.98 

Female -0.243 -3.60 -0.213 -5.88 -0.191 -3.07 -0.270 -5.59 

White 0.123 1.69 0.084 1.78 0.244 3.47 -0.047 -0.70 

Age:18-34 -0.278 -2.67 0.037 0.55 -0.150 -1.44 0.005 0.07 

Age:65+ 0.022 0.26 -0.096 -2.12 0.117 1.59 -0.272 -3.94 

Middle income 0.399 4.81 0.232 5.24 0.267 3.85 0.243 4.12 

Higher income 0.481 5.29 0.321 6.60 0.448 5.75 0.296 4.90 

Atlanta residence 0.300 4.23 0.078 1.91 0.108 1.62 0.132 2.66 

Job density (jobs per 

acre) 
-0.013 -2.34 -0.012 -1.50 -0.013 -1.91 -0.006 -0.52 

Transit score -0.555 -4.03 -0.163 -1.20 -0.356 -2.31 -0.193 -1.14 

Local accessibility -0.013 -0.42 -0.074 -2.42 -0.031 -0.82 -0.060 -1.54 

Weekly 

telecommuting 
0.392 3.28 0.419 6.23 0.104 0.82 0.249 2.68 

No or infrequent 

telecommuting 
0.677 7.17 0.630 12.47 0.498 4.52 0.286 3.66 

Membership model                 

Intercept -0.677 -11.44 - - 0.523 1.37 - - 

Pro-environmental 0.043 1.97 - - 0.308 3.50 - - 

Urbanite 0.143 6.14 - - 0.169 2.05 - - 

Travel-liking -0.055 -2.62 - - -0.195 -2.31 - - 

Pro-car-owning -0.127 -5.91 - - -0.425 -4.38 - - 

Worker 0.309 5.96 - - -0.649 -1.85 - - 

Number of 

household vehicles 
-0.078 -3.80 - - -0.151 -2.02 - - 

Household size -0.035 -1.77 - - -0.008 -0.11 - - 

Population density - - - - 0.113 1.99 - - 

Additional 

parameters 
            

Sigma 1.033 14.83 1.022 45.29 0.880 34.46 0.605 21.57 

Error correlation 0.660 5.22 0.844 13.22 - - - - 

 

Note: Coefficients statistically significant at the 0.05 level are bolded. The goodness-of-fit measures of these 

models are shown in Table 3-5 and discussed in Section 3.4.4. 
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3.4.3 How do segments differ across models? 

Given the differences that have already been alluded to in class membership across 

models, it is natural to examine these differences more closely. As we touched on in the 

previous section, the two groups in the latent class model are distinct with respect to their 

average weekly VMD levels. Specifically, the average VMDs (based on prior probabilities) 

are 132 and 165 miles, respectively, for the latent class model, and are 118 and 160 miles 

respectively in urban and non-urban areas. Thus, as expected, in both models urban-

oriented residents have lower VMD. On average, both within-group averages are higher 

for the latent class model, which is also as expected.  Latent class 1 (with 52% of the cases) 

must have collected a sizable fraction of (residentially mismatched, i.e. “attitudinally 

urban”) non-urban residents (since non-urban residents as a whole comprise 77% of the 

cases). The weekly VMD for those non-urban, latent class 1 cases will tend to be higher 

than that of matched urban residents (because of the pull that their non-urban built 

environment exerts on their travel behavior) and lower than that of matched non-urban 

residents (because of the pull that their urban attitudes exert on their travel behavior). The 

net result is that the average VMD of latent class 1 is higher than that of urban residents as 

a whole. At the same time, latent class 0 has “lost” (to class 1) a number of non-urban 

residents with lower-than-(non-urban-)average VMD, and presumably gained some urban 

residents with higher-than-(urban-)average VMD, with the net result that its average VMD 

is higher than that of non-urban residents as a whole32 (Schwanen and Mokhtarian, 2005). 

Thus, the latent class model is better able to group similarly-minded individuals regardless 

of their residential location type.  

                                                 
32 This discussion unavoidably reminds us of statistician Frederick Mosteller’s (possibly apocryphal). 
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The greater within-group homogeneity of the latent class model is also attested by 

the sigma parameters (i.e. square roots of error variances). The estimates are a bit greater 

than one (1.03 and 1.02) in the endogenous switching model, while they are much lower 

(0.88 and 0.61) in the latent class model. In other words, the latent class model uncovers 

segments having less variability with respect to unobserved influences on VMD. This is 

because the latent class model identifies underlying groups specifically based on their 

VMD distributions, whereas the endogenous switching model segments individuals based 

on a certain indicator (here, neighborhood type) that is not necessarily directly tied to 

VMD.  

Table 3-4 shows profiles of the pooled, urban, non-urban, and two latent classes. 

Let us first compare the two latent classes. Compared to class 1 (lower VMD-inclined), 

class 0 (higher VMD-inclined) has the following characteristics, on average: higher 

income, more often white, living in smaller MPO areas with lower population density and 

lower accessibility, less urbanite, less pro-environmental, owning a higher number of 

vehicles, and more favorable toward owning vehicles. These tendencies are generally 

consistent with the contrasts between urban and non-urban segments. When it comes to 

built environment characteristics, however, the contrasts between latent classes are 

(understandably, given the previous discussion) less sharp than those between groups based 

purely on residential location. Specifically, the gaps between urban and non-urban 

segments on population density, transit scores, number of stores, and local accessibility are 

markedly wider than those between the lower- and higher-VMD classes. In addition, there 

                                                 
remark that “by leaving the Princeton math department to join the math department at Harvard he 

succeeded in raising the average IQ in both places” (Wainer, 1999, p. 44). 
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are more drastic differences in age, race, and MPO type between urban and non-urban than 

between lower- and higher-VMD classes. 

The latent classes also help explain some otherwise puzzling patterns with respect 

to two of the four attitudes. Urban dwellers are apparently less pro-environmental than non-

urban residents, which may be counter to stereotype, but the latent class model confirms 

that it is the higher-VMD individuals – regardless of where they live – who tend to be less 

pro-environmental. Similarly, there is a slight tendency for urban residents to like traveling 

(despite the significant negative coefficient of that variable in the segment membership 

model of the switching regression system; Table 3-3), but higher-VMD individuals like 

traveling considerably more, on average. Thus, at least for these two variables, there are 

enough non-stereotypical people in urban and non-urban neighborhoods to yield 

potentially non-intuitive “average” attitudes, but when sorting people by VMD proclivities 

irrespective of residential location, the stereotypes hold true.  
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Table 3-4. Profiles of segments (N=3,022) 

  Variable Pooled Urban 
Non-

urban 

Class 1: 

lower 

VMD 

Class 0: 

higher 

VMD 

Distribution          

Gender Female 51% 55% 50% 53% 49% 

Age 18-34 23% 34% 18% 23% 22% 
 35-44 17% 17% 17% 16% 18% 
 45-64 39% 33% 42% 37% 42% 
 65+ 21% 16% 23% 24% 18% 

Income Lower 39% 38% 39% 43% 35% 
 Medium 33% 35% 33% 31% 36% 

  Higher 27% 27% 28% 25% 30% 

Race White 63% 52% 68% 60% 67% 
 Black 29% 38% 25% 31% 26% 
 Else 8% 10% 7% 9% 7% 

Telecommute Non-worker 35% 28% 38% 41% 29% 
 No or infrequent telecommuting 51% 57% 48% 46% 57% 

  Weekly-based telecommuting 14% 15% 13% 13% 15% 

MPO tier ATL 53% 77% 43% 56% 49% 
 Mid-sized MPO 17% 15% 17% 16% 17% 
 Small-sized MPO 13% 7% 16% 12% 14% 
 Rural areas 17% 1% 24% 15% 19% 

Mean             

 VMD 148.06 118.58 160.90 132.35 165.22 

 ln(VMD+1) 4.55 4.31 4.65 4.41 4.70 

  Number of vehicles 2.10 1.81 2.23 1.90 2.32 
 Household size 2.34 2.21 2.39 2.23 2.45 

  Population density 3.32 7.74 1.39 4.08 2.50 
 Urbanite 0.11 0.42 -0.03 0.22 -0.01 
 Pro-environmental -0.07 -0.12 -0.05 0.07 -0.22 
 Travel-liking 0.03 0.08 0.01 -0.05 0.11 
 Pro-car-owning 0.04 -0.18 0.14 -0.18 0.28 

  Transit score 0.19 0.42 0.09 0.23 0.14 
 Number of stores 10.64 16.91 7.90 11.77 9.42 

  Local accessibility 0.08 0.90 -0.27 0.25 -0.10 

Note: all statistics are case-weighted to correct for sampling biases with respect to MPO size, income, 

household size, vehicle ownership, gender, education, race, age, and work status. 

 

3.4.4 Model performance 

In addition to the behavioral insights provided by the models, their goodness of fit 

is also of interest. First, we examine the final log-likelihood values, together with some 

information criteria that are most commonly considered in applications of latent class 
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modeling (Table 3-5). Due to having two classes, the deterministic segmentation model 

contains more information than the pooled model, at the cost of doubling the number of 

parameters; the latent class model contains even more information (requiring even more 

parameters) because of its membership model. Three information criteria penalize the 

model complexity, with the degree of penalization highest for the Consistent Akaike 

Information Criterion (CAIC), followed by the Bayesian Information Criterion (BIC) and 

then AIC. Hence, although the deterministic segmentation model is better than the pooled 

model with respect to AIC, it is not better with respect to BIC and CAIC. In other words, 

with a stronger penalty for complexity, the increment of model improvement is not 

sufficient to compensate for its additional complexity. On the other hand, the more lax AIC 

and BIC support the parameter-heavy latent class model, whereas with respect to the 

stricter CAIC, the much simpler pooled model barely edges it out.  

Following the discussion in Section 3.3.4, note that, with respect to the log-

likelihood and information criteria, we are not able to compare the switching regression 

model to the others. This is because the switching model estimation is maximizing the joint 

likelihood of class membership and outcome, whereas for the latent class model, class 

membership is unknown (latent) and so the model estimation is maximizing the likelihood 

of the outcome (expressed as a marginal likelihood obtained by “summing out” over the 

class membership probability distribution). The deterministic segmentation model, on the 

other hand, is estimated conditional on class, but since class membership is assumed to be 

independent of the outcome, the conditional likelihood of the outcome is equal to its 

marginal likelihood in that model.  
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Figure 3-2 provides a graphical comparison of model fits. The first panel shows the 

histogram of observed log-transformed VMD. The remaining panels present the estimated 

conditional densities for each observation in the sample (i.e. the individual-specific 

contributions to the likelihood function, conditional on class) [𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 1) or 

𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 0)]33. Accordingly, for each data point the higher the density (i.e. the higher 

the model-implied likelihood of observing this outcome 𝑦𝑖 given those 𝑿𝑖 , 𝑧𝑖 values), the 

better the fit of the model for that observation. On that basis, we can readily see that the 

latent class model has many data points with higher densities than the other models ever 

achieve. In particular, compared to the endogenous switching model, both classes of the 

latent class model tend to have higher densities and tighter spreads, and to be more sharply 

distinct from each other (signifying the greater within-group homogeneity that we have 

already seen in Section 3.4.3), graphically illustrating the superior fit achievable when the 

classes are flexibly identified to be best suited for the outcome variable at hand, rather than 

arbitrarily defined a priori. Collectively, the individual densities for the latent class model 

well approximate the bi-modal distribution of the observed data, unlike any of the other 

three models. 

Prediction accuracy34 is also an important measure by which to evaluate model 

performance. Given that the outcome variable is continuous, we compare R-squared and 

                                                 
33 For the latent class models, each case is plotted twice – once for 𝑧𝑖 = 1 and once for 𝑧𝑖 = 0 – whereas 

for the deterministic segmentation and switching regression models, each case is plotted once, for its 

known group indicator. As can be seen in earlier equations, the case-specific densities are a function of 𝑦𝑖 −
𝑿𝑖𝜷 and σ. The density is maximized when 𝑦𝑖 = 𝑿𝑖𝜷 (so the flat tops on the plots in the figure represent 

the cases where 𝑦𝑖 is close or equal to 𝑿𝑖𝜷), and the height of that maximum density is determined by σ 

(the narrower the spread of the density function, the taller and more peaked it is). 
34 Here, prediction accuracy is an in-sample measure. A more rigorous comparison would be based on out-

of-sample accuracy. Most transportation papers involving latent class modeling have used in-sample 

measures (with a sizable fraction of papers not even reporting performance). For simplicity we focus on 

excellence in making in-sample predictions, which is at least an expected precondition for excellence in 
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root mean squared error (RMSE) measures across models. In terms of R-squared (the 

higher the better) and RMSE (the lower the better), the models in descending order of 

goodness of fit are latent class, endogenous switching, deterministic segmentation, and 

pooled. One thing to note is that the endogenous switching and latent class models each 

have two different ways of calculating performance. In the case of the endogenous 

switching model, we can obtain predicted values (or residuals) either (1) conditional on the 

known urban indicator, or (2) as the membership-probability-weighted average of the 

predicted values for each class (van Herick and Mokhtarian, 2020a). In the case of the 

latent class model, we can obtain probability-weighted predicted values using either (1) 

prior membership or (2) posterior membership probabilities that take the outcomes into 

account. In a latent class discrete choice modeling context, Kim and Mokhtarian (2018) 

argued that, although using the posterior probability gives better performance measures, 

using the prior probability is more appropriate in many cases (in forecasting applications 

we will know neither class membership nor outcome, in which case using posterior 

information gives an inappropriate boost to the model’s calculated performance). Thus, it 

is not surprising to see that the posterior-weighted R-squared and RMSE for the latent class 

model are substantially better than the R-squareds and RMSEs for the other three models 

(regardless of whether the conditional or probability-weighted method is used for the 

endogenous switching model). It is a bit more surprising to note that the prior-weighted 

measures for the latent class model are essentially equivalent to the conditional measures 

for the endogenous switching model (which, in turn, are only slightly better than the 

                                                 
making out-of-sample predictions (Kim and Mokhtarian, 2018). 
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probability-weighted measures).  Hence, on the basis of these measures alone, the latent 

class model is not markedly superior unless posterior probability weights are used. 

Table 3-5. Model performance 

  Pooled model 
Deterministic 

segmentation 

Endogenous 

switching 

Latent class 

model 

Parameters 13 26 38 37 

Log-likelihood -3872.12 -3856.26 -5370.54 -3766.77 

AIC 7770.25 7764.51 10817.09 7607.55 

BIC 7848.43 7898.40 11045.61 7830.05 

CAIC 7861.43 7924.40 11083.61 7865.73 

R-squared 0.196 0.204 
 0.215 

(conditional) 

0.509 

(posterior-

weighted) 

   
0.208 

(probability-

weighted) 

0.216 

(prior-weighted) 

RMSE 0.871 0.867 
0.861 

(conditional) 

0.681 

(posterior-

weighted) 

     

0.865 

(probability-

weighted) 

0.860 

(prior-weighted) 

Note:  In comparing AIC, BIC, CAIC, and RMSE across models, lower values are better. For log-likelihood 

and R-squared, higher values are better. 



 114 

 

Figure 3-2. Plots of estimated likelihood contributions of each case by model 

 

3.5 Further discussion 

This section examines several implications/issues that arise in applications of 

endogenous switching and mixture models. Section 3.5.1 discusses an additional benefit of 

the endogenous switching model compared to other competing models, namely its ability 

to provide a consistent estimate of the effect of a discrete treatment or intervention. Section 

3.5.2 addresses how membership functions can be specified (particularly related to the 

latent class model) and how they behave for the different models. Section 3.5.3 briefly 

connects the models presented in this study with mixture modeling in a machine learning 

context (specifically under a neural network structure). 
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3.5.1 Treatment effects 

Although our main focus in this study is on parameter heterogeneity, in view of the 

different focus normally given to the endogenous switching model in the literature, we 

touch on this issue in our application. One of the main reasons for using an endogenous 

switching model is to estimate the effects of a discrete factor, or “treatment”, of interest 

after correcting for non-random selection (often self-selection) into either the treated or 

non-treated condition. Simply put, selection bias occurs when the selection and behavior 

mechanisms are not independent. In our context, we may be interested in the average effect 

on VMD of formerly non-urban residents who have already moved to urban areas, referred 

to as the “average treatment effect on the treated (TT)”. Alternatively, we may be interested 

in a second effect. A prominent policy discussion in urban planning has been: given the 

observation that people who have already chosen to live in urban areas tend to drive less 

than those currently living in non-urban areas, would the latter similarly reduce the amount 

of driving they do if they were to move to urban areas (or if their neighborhood becomes 

more urbanized)? The average change in VMD for such individuals is the “average 

treatment effect on the untreated (TUT)”. To the extent that those who have already moved 

to urban areas have “opted in” due to attitudinal predispositions, whereas those who move 

to (or end up in) such areas in the future do so as a consequence of policy-driven incentives 

or supply constraints, we would expect TT to be larger in magnitude than TUT. Finally, 

we could be interested in a third effect: that of randomly-selected individuals moving from 

non-urban to urban areas. This is simply referred to as the “average treatment effect 

(ATE)” (Heckman et al., 2001; Mokhtarian and van Herick, 2016). Across the population, 

the average treatment effect is the weighted average of the treatment effects on the treated 
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and the treatment effects on the untreated, where the weights are the shares of each group 

of people in the population (van Herick and Mokhtarian, 2020b; Wooldridge, 2015, Eq. 

15).  

In sum, if people are not randomly assigned to treatment and non-treatment groups 

(i.e. if they are self-selected), and if unobserved variables associated with self-selection are 

also associated with the outcome, then an estimate of the average treatment effect that is 

based on a simple, static comparison across groups is biased. It is important to correct for 

the fact that those who “opt in” to the treatment can differ in meaningful ways from those 

who do not. 

To express the issue more formally, seemingly the simplest approach to estimating 

the average treatment effect of neighborhood type on a person of characteristics 𝑿𝑖 would 

be to compute the difference between the expected outcomes indicated by the deterministic 

segmentation model: 

 ∫ 𝐸(𝑌𝑖1|𝑿𝑖1, 𝑧𝑖 = 1)𝑑𝐹(𝑿1) − ∫ 𝐸(𝑌𝑖0|𝑿𝑖0, 𝑧𝑖 = 0)𝑑𝐹(𝑿0)  

= ∫ 𝑿𝑖1𝜷1 𝑑𝐹(𝑿1) − ∫ 𝑿𝑖0𝜷0 𝑑𝐹(𝑿0) ≈
1

𝑛1
∑ 𝑿𝑖1 �̂�1𝑧=1 −

1

𝑛0
∑ 𝑿𝑖0 �̂�0𝑧=0    (3.29) 

where 𝑛1 and 𝑛0 respectively equal the number of cases for which 𝑧 = 1 and 𝑧 = 0, and 

the right-hand side indicates the sample-estimated versions of the quantities on the left-

hand side. 

The main problems with this approach are twofold. First, the two terms comprising 

this measure refer to different people, because no one can belong to both groups 
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simultaneously. Second, even if we compare expected values averaged over all individuals 

for both terms, the coefficients estimated for each equation are representative of the 

(samples of) people who self-select into their respective conditions, but not necessarily 

representative of the population as a whole. In other words, we would not expect to have 

the same (statistically equivalent) estimates of 𝜷1 if everyone were subject to the treatment 

as we do when only a non-random (self-selected) segment of the population is subject to 

it, and similarly for 𝜷0.  

Hence, to tackle these issues, we employ the endogenous switching model, which 

corrects the estimates of 𝜷1 and 𝜷0 for the selection bias associated with the 

deterministically segmented model. The average treatment effect (ATE) informally 

described above is defined as the expected gain (change) from treatment for a randomly 

chosen individual as opposed to a self-selected one (Heckman et al., 2001). The ATE for 

Y, conditional on characteristics 𝑿𝑖, is: 

 𝐴𝑇𝐸𝑌(𝑿𝑖) = 𝐸(𝑌𝑖1 − 𝑌𝑖0|𝑿𝑖) = 𝑿𝑖(𝜷1 − 𝜷0) . (3.30) 

Note that the estimates of 𝜷1 and 𝜷0 obtained from this equation (i.e. from the 

endogenous switching model) will differ from those appearing in Eq. (3.29). Then, the 

unconditional estimate of the ATE can be obtained by integrating the conditional (on 

characteristics) effect over the distribution of 𝑿: 

 𝐴𝑇𝐸𝑌 = 𝐸(𝑌𝑖1 − 𝑌𝑖0) = ∫ 𝐴𝑇𝐸𝑌(𝑿)𝑑𝐹(𝑿)  

= ∫ 𝑿(𝜷1 − 𝜷0) 𝑑𝐹(𝑿) ≈
1

𝑛
∑ 𝑿𝑖( �̂�1 −  �̂�0)𝑛

𝑖=1  , 
(3.31) 
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where the final expression indicates that the sample average treatment effect can be taken 

as a consistent estimate of the true average, provided of course that the pooled sample is 

representative of the population (or that the cases are weighted to achieve 

representativeness). 

As in a similar application of Cao (2009), we employed a log-transformation of 

VMD, and thus to see ATE in its original scale, ATEV, we need to back-transform it. Since, 

following the standard situation for linear regression, we assume that the transformed VMD 

is normally-distributed, the conditional (on characteristics) mean of VMD in its original 

scale obeys the lognormal distribution. For individual 𝑖, we have 

 𝐸[𝑉1𝑖 + 1|𝑿𝑖] − 𝐸[𝑉0𝑖 + 1|𝑿𝑖]  

= 𝐸[exp(𝑿𝑖𝜷1 + 휀1𝑖)|𝑿𝑖] − 𝐸[exp(𝑿𝑖𝜷0 + 휀0𝑖)|𝑿𝑖]  

= exp(𝑿𝑖𝜷1 + 𝜎1
2 2⁄ ) − exp(𝑿𝑖𝜷0 + 𝜎0

2 2⁄ ) , 
(3.32) 

where 𝑉1𝑖 and 𝑉0𝑖 refer to the VMD for person 𝑖 if she lived in an urban and non-urban 

area, respectively35. We estimate the population-wide ATEV with 

                                                 
35 Recall that the transformation is actually 𝑌𝑧 = ln (𝑉𝑧 + 1) for z = 1, 0 (to avoid taking ln(0) and to map 

𝑉𝑧 = 0 to 𝑌𝑧 = 0), where 𝑌𝑧 ~𝑁[𝑿𝜷𝑧, 𝜎𝑧
2]. This yields 𝑉𝑧 + 1 =  𝑓(𝑌𝑧) = exp(𝑌𝑧), where  𝑉𝑧 +

1 ~ 𝐿𝑁[𝑿𝜷
𝒛
, 𝜎𝑧

2]. From known properties of the lognormal distribution, the conditional expectation of 𝑉𝑧 + 

1 is 𝐸[exp(𝑿𝜷𝑧 + 휀𝑧) | 𝑿] = exp(𝑿𝜷𝑧 + 𝜎𝑧
2 2⁄ ), and its conditional median is exp(𝑿𝜷𝑧). If we approximate 

𝐸[𝑓(𝑌𝑧)  | 𝑿] with 𝑓(𝐸[(𝑌𝑧)  | 𝑿]) = 𝑓([𝑿𝜷𝑧]) (e.g. Cao, 2009), Eq. (3.33) would simplify to [exp(𝑿𝜷
1
) −

exp(𝑿𝜷
0
)]. But the equivalence is exact only for linear functions, whereas here, 𝑓(𝑌𝑧) is not linear. Since 

𝑓(𝑌𝑧) is a strictly convex function of 𝑌𝑧, Jensen’s inequality holds that 𝐸[𝑓(𝑌𝑧)  | 𝑿] > 𝑓(𝐸[(𝑌𝑧)  | 𝑿]), and 

thus the simpler approximation on the right-hand side of the inequality will underestimate the true expected 

value on the left-hand side. In fact, the approximation 𝑓([𝑿𝜷𝑧]) = exp (𝑿𝜷𝑧) is an estimate of the median 

of the lognormal distribution, as noted above. Because exp(𝑿𝜷 + 𝜎2 2⁄ ) > exp(𝑿𝜷), 𝐸[𝑉 + 1] >
𝑚𝑒𝑑𝑖𝑎𝑛[𝑉 + 1]. That is, the mean of VMD is greater than its median, consistent with the long right tail of 

the VMD distribution. 
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ATE𝑉 ≈

∑ 𝑤𝑡𝑖[exp(𝑿𝑖�̂�1+�̂�1
2 2⁄ ) − exp(𝑿𝑖�̂�0+�̂�0

2 2⁄ )]𝑁
𝑖=1

∑ 𝑤𝑡𝑖
𝑁
𝑖=1

 , (3.33) 

where 𝑤𝑡𝑖 is the case weight for person i, correcting for our oversampling of less-urban 

(non-Atlanta) cases (among other sampling and non-response biases36; see Kim et al., 

2019b for further details). 

In this study, the estimated ATE is -190 miles based on the endogenous switching 

model. In other words, when a randomly-selected person moves from a non-urban area to 

an urban area, the average reduction in weekly VMD would be 190 miles (with the average 

VMDs of random people living in urban and non-urban areas estimated at 71 and 261 

miles, respectively). This estimate seems fairly substantial (more than 27 miles a day) and 

perhaps counterintuitive. For example, the deterministic segmentation model tells us that 

the difference in expected VMD between urban and non-urban residents is about -42 miles 

per week. If the stereotypical residential self-selection effects were valid (i.e. “urbanists”, 

who are likely to prefer other travel modes over driving, self-select into urban areas), then 

we might expect negative correlations between selection into an urban area and VMD 

generation (the 𝜌1 and 𝜌0 of Eqs. (3.16) and (3.17)): unobserved traits increasing the 

propensity to live in urban areas would also tend to dampen VMD.  In that case, we would 

expect the uncorrected treatment effect to overestimate the true treatment effect, i.e. we 

would expect the true treatment effect in this application to be smaller than 42 miles. 

                                                 
36 Specifically, the original sample was weighted to represent the population of Georgia with respect to 

gender, age, race, education, work status, MPO type (of residential location), income, household size, and 

vehicle ownership. We did not recompute the weights after excluding some cases as described in Section 

3.4.1. 
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Instead, however, we found �̂�1 = 0.66 (and �̂�0 = 0.84), leading to the true treatment effect 

being much larger than 42 miles. We explain these results from the perspective of 

conceptual plausibility here. We also discuss this issue from the mathematical perspective, 

but do so in the Appendix A to avoid a lengthier digression here; readers who are interested 

in the technical details are referred to the Appendix A. 

 Although it may be counterintuitive, other studies have reported similar situations. 

Van Herick (2018) applied mover-stayer models (in both two-step and full information 

estimations) to weekly drive-alone commute days and reported positive correlations in both 

urban and suburban regimes. Singh et al. (2018) also reported that unobserved attributes of 

living in a medium (high) density area contribute to an increase in household VMT after 

accounting for other exogenous covariates. They commented (p. 34) that “Although this 

may appear counter-intuitive at first glance, it is not necessarily so. The very unobserved 

attributes that contribute to seeking residential location in higher density neighborhoods 

may very well contribute to higher VMT production. After controlling for built 

environment attributes and household socio-economic and demographic characteristics, 

households that favor active lifestyles and seek a variety of activity opportunities (latent 

unobserved traits) [leading them to locate in urban environments with a vibrant street life] 

are likely to undertake more travel and hence produce more VMT than observationally 

equivalent households that have different (more sedentary) lifestyle preferences.” 

Furthermore, in our application it is unclear what the unobserved variables actually 

represent. In the stereotypical explanation, unobserved variables are likely to include some 

attitudes such as environmental consciousness and a “car-lite” orientation, which would 

support a negative correlation between the error terms of the two equations. In our 
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application, however, the residential location choice model observes several attitudes that 

are typically unobserved, including pro-environmental, urbanite, travel-liking, and pro-car-

owning attitudes37. The logarithmic transformation of VMD may also be a source of 

sensitivity: a small difference in log terms becomes much larger when exponentiated to the 

original units.  

Another thing to note, particularly for transportation analysis, is that it is often 

ambiguous how to define the treatment (Mokhtarian and van Herick, 2016, especially 

footnote 10). Unlike in Heckman’s classical example, the treatment of interest is often 

continuous rather than binary, and there are multifaceted dimensions to be considered in 

defining what constitutes a treatment. For example, in the application of this study, 

treatment was defined as neighborhood type (urban and non-urban area). However, aside 

from the fact that every place has its own geophysical or cultural context, the level of 

urbanization ranges across a spectrum, and thus defining neighborhood type by a single 

cutpoint on that spectrum is rather arbitrary.  

In our application, we define “urban area” using census block-group-level 

population density, with the cutpoint being a population density of 4 people per acre in the 

residential block group. Although, as indicated in our footnote 10, this is already a higher 

density than the US Census uses to define “urbanized area”, it is still a rather low threshold, 

with the result being that “urban” includes many low-density areas, and “non-urban” is not 

                                                 
37 These attitudes, if unobserved, could be expected to contribute to 𝜌1 being “more negative”, and indeed, 

when the model was re-estimated without these attitudes (and keeping everything else the same), �̂�1 

became considerably smaller (more closely approaching negativity) at 0.43, and insignificant (t = 1.32). On 

the other hand, �̂�0 remained roughly unchanged at 0.86. In general, of course, the values of 𝜌1and 𝜌0 are 

very dependent on what is observed versus unobserved, i.e. on the specifications of the membership and 

outcome models. 
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far from “rural” (in our sample, the median population densities are 6.09 and 1.17 people 

per acre, or about 3,900 and 750 people per square mile, for urban and non-urban areas, 

respectively). From that perspective, it may not be surprising that, at least in our study (in 

line with the observation by Singh et al., 2018), unobserved characteristics increasing the 

propensity to live in less sparsely populated areas would also be associated with a 

propensity for more travel (propensities to take advantage of the greater number and 

diversity of activity opportunities found in more urban areas compared to very small towns 

and rural areas) rather than less. Conversely, unobserved traits decreasing the propensity 

to live in (somewhat) higher-density areas would tend to lead to less travel. To be sure, the 

built environment still exerts an important influence on travel, which is why the observed 

average VMD is higher for non-urban areas, given the longer distances required for 

essential travel in very low-density environments. The unobserved attitudinal 

predispositions, however, are (in our case) apparently acting counter to, rather than in 

concert with, the built environment. This has the following implications:  

(1) When a person self-selects into an urban area, she tends to be predisposed to travel 

more, in the sense that she desires a more active lifestyle with more, more diverse, 

and possibly more dispersed activity opportunities, but at the same time the built 

environment allows her to enact that predisposition with (perhaps much) less travel 

than would be required to accomplish that desired lifestyle in a non-urban area. The 

net effect of these counteracting forces is that she travels less than before (Eqs. (A3) 

versus (A6) in the Appendix A).   

(2) If a non-urban resident were counterfactually to be “dropped into” an “urban” area 

(despite having a lower propensity to live in such a place), the built environment 

would then support her predisposition to travel within a smaller activity space 

(because “everything needed” would be nearby), and her average VMD would be 

lower than that of a self-selected “urban” resident (Eqs. (A5) versus (A3) in the 
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Appendix A). Conversely, if an urban resident were to “be moved” to a non-urban 

area (despite having a lower propensity to do so), her inherent predisposition to 

travel more would be amplified by the longer distances between activities in her 

new lower-density built environment, and her average VMD would be higher than 

that of a self-selected non-urban resident (Eqs. (A6) versus (A4) in the Appendix 

A).   

(3) These counteracting effects also help explain why the average VMD for urban 

residents is not much lower than that for non-urban residents: urban residents are 

inclined to travel more but the built environment makes that less “necessary”, while 

the converse is true for non-urban residents (Eqs. A3 versus A4 in the Appendix 

A).   

These relationships are exactly what we see in our sample, as shown in Table A3 

and Figure A1 in the Appendix A. 

In addition, the range of the spectrum itself could be subject to the empirical 

context. For example, in this study, we modeled statewide residential locations, requiring 

that we include a wider spectrum of residential types (from urban to rural). However, many 

studies focused on treatment effects where the “treatment” indicates being moved from a 

suburban to an urban neighborhood in a specific metropolitan area (e.g. Cao, 2009; van 

Herick and Mokhtarian, 2020); Pinjari et al. (2008) and Bhat and Eluru (2009) divided 

1099 zones in the San Francisco Bay Area into neo-urbanist and conventional 

neighborhoods by applying factor/cluster analyses on several measures related to 

urbanicity. Due to the described incongruencies, treatment effects across studies are not 

necessarily comparable.  
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Because it is out of scope, this study does not expand the discussion about ATE 

further, but for future studies it would be worthwhile to investigate how ATE behaves 

depending on model specifications and definitions of “treatment”. 

Turning to the latent class model, we could mechanically apply Eq. (3.33) for 

ATE𝑉 to two classes, which yields a (weighted) ATE of -107 miles, suggesting that when 

a random person switches from class 1 to class 0, the average VMD reduction is 107 miles. 

However, unlike the endogenous switching model, it is unclear what this result really 

implies, in that belonging to a certain latent class is not associated with a particular physical 

treatment – as we have seen, individuals in either class can live in either type of area. 

Furthermore, it should also not be assumed that the same correction terms that apply to the 

sample selection model automatically apply here as well. Therefore, estimating a treatment 

effect is more appropriate for the endogenous switching model.  

3.5.2 Membership model: link function, specification, and type of probability 

The membership model plays a crucial role in either the endogenous switching or 

latent class formulation, in that we interpret the model as explaining how likely a given 

individual is to belong to each class. In this section we address several issues associated 

with the membership model: its functional form, specification, and the type of probability 

to use in downstream computations (prior versus posterior). 

There is little discussion in the literature about the optimal link function (and related 

“best” functional form of the membership model), and indeed, as stand-alone models, when 

the impacts of the unobserved variables associated with belonging to each class are 

independently distributed there is little empirical difference between the top contenders of 
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logit and probit. Here, we simply want to highlight that various fields seem to have different 

traditions. As is well known, it is most common to construct the membership model with 

a logit link function for latent class modeling, while the endogenous switching model 

typically employs a probit link function (for the purpose of formulating a bivariate normal 

density). In the early stages of latent class modeling (e.g. Kamakura and Russell, 1989), it 

seems that the logit link function was utilized mainly because of the simplicity of satisfying 

probability constraints when maximizing the log-likelihood function. The basic implicit 

constraints are 0 ≤ 𝜋z ≤ 1 and ∑ 𝜋𝑧
𝑍
𝑧=1 = 1, where 𝑧 is a class indicator and 𝜋𝑧 is the 

membership probability (also known as the mixing coefficient or mixing proportion, cf. 

DeSarbo and Cron, 1988) of class 𝑧. These constraints are required because we assume that 

classes are collectively exhaustive and mutually exclusive given the sample. By using the 

logit link function, we do not need to directly estimate mixing coefficients (which requires 

imposing the constraints above); rather we estimate unconstrained constants, which the 

logit formula (e.g. Eq. 3.21), for the two-class case) ensures will meet the necessary 

constraints. In other words, the choice of link function for the membership model often 

stems more from a mechanical reason than from an interpretation purpose. Hence, for 

example, many applications of latent class modeling do not necessarily contain variables 

in the membership model (e.g. Chiou et al., 2013; Anderson and Hernandez, 2016). 

As mixture modeling gained popularity, many studies parameterized the 

membership model as a function of some information (e.g. demographics), allowing a more 

meaningful characterization of the classes (this enhancement dates back at least to Swait 

(1994) and Bhat (1997)). This approach is at least partly due to the influence of market 

segmentation concepts from the field of marketing research (please refer to Wedel and 
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Kamakura (2012) for background on the application of latent class modeling in marketing 

research; additional discussion about membership variables and models can be found in 

Section 2.3.4. Parameterizing the membership model, therefore, means that there are two 

(possibly overlapping) sets of explanatory variables: the 𝑿 variables of the outcome model, 

and the 𝑾 variables of the membership model. The first three specifications in Figure 3-3 

respectively depict the roles of 𝑿 and 𝑾 for (a) typical single-class models, (b) latent class 

models, and (c) saturated models.  

However, in this case an important dilemma arises with respect to model 

specifications, one that applies to endogenous switching models as much as to latent class 

models: which variables belong to 𝑿, and which to 𝑾 (Figure 3-3)? Put another way, does 

a particular variable directly affect the outcome (in which case it belongs to 𝑿), or does it 

affect the weight (coefficient) another variable has on the outcome (in which case it 

belongs to 𝑾)? This decision is usually based on theory or knowledge. For example, Swait 

(1994) provided a conceptual framework for latent class modeling, in which the 

membership likelihood is a function of general perceptions/attitudes and socio-

demographics. However, problems could be twofold. First, for latent class modeling, it 

may not be clear how to characterize the latent classes with respect to the target outcome. 

Second, in behavioral modeling, situations will very likely arise where it is conceptually 

valid to model membership and outcome equations with the same variables (for example, 

income is likely to affect choice of residence as well as VMD). In theory, membership and 

outcome equations can have entirely the same set of variables (as shown by specification 

(c) in Figure 3-3); however, in practice we rarely find papers using such specifications (we 
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are unaware of any). We speculate that this is partly because doing so is apt to create 

estimation issues and/or to make interpretation difficult. 

 

Figure 3-3. Prototypical model specifications 

 

Turning now to the type of probability to use in downstream computations, we note 

that the ways membership probabilities can be calculated and how they behave could be of 

interest. Figure 3-4 shows the membership probabilities associated with our endogenous 

switching and latent class models. The first panel presents the membership probabilities 

(selection into urban or non-urban area) for endogenous switching. Since the membership 

model is estimated with respect to the selection of residential type, it is not necessarily 

correlated with the outcome variable (log-transformed VMD). The second and third panels 

exhibit the two types of membership probabilities of the latent class model: prior and 

posterior probabilities. The prior membership probability is as defined in Eqs. (3.21) and 

(3.22) in Section 3.3.4, 𝑃(𝑧𝑖 = 1|𝑾𝑖) or 𝑃(𝑧𝑖 = 0|𝑾𝑖). The posterior membership 

probability (�̌�) considers the information provided by the outcome, and updates the 

probability using Bayes’ Rule: 
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�̌�(𝑧𝑖 = 1|𝑦𝑖 , 𝑿𝑖 , 𝑾𝑖) =

𝑃(𝑧𝑖 = 1|𝑾𝑖) × 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 1)

𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖)
 

�̌�(𝑧𝑖 = 0|𝑦𝑖 , 𝑿𝑖 , 𝑾𝑖) =
𝑃(𝑧𝑖 = 0|𝑾𝑖) × 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 0)

𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖)
 

(3.34) 

where we make the conventional assumption that 𝑦𝑖 is independent of 𝑾𝑖 given 𝑧𝑖, and 

thus that 𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖 , 𝑧𝑖 = 1) simplifies to 𝑓(𝑦𝑖|𝑿𝑖 , 𝑧𝑖 = 1) (and similarly for 𝑧𝑖 = 0). 

There are two observations from Figure 3-4. First, the membership probabilities of 

the latent class model are more closely associated with VMD than those of the endogenous 

switching model. In other words, membership in class 1 (the lower-VMD segment) is 

negatively associated with VMD, while for class 0 it is positively associated. Again, this is 

because the latent class model finds the solution that optimally fits the distribution of the 

outcome variable, whereas, for the endogenous switching model, segmenting on 

neighborhood type does not necessarily align with how much they travel. Second, after 

taking into account the outcome, posterior probabilities show a much stronger association 

with VMD. Of course, it is not particularly surprising that class memberships are more 

distinctly sorted in this case, since the individual’s VMD outcome is accounted for in 

estimating (posterior) class memberships. As mentioned in Section 3.4.4, Kim and 

Mokhtarian (2018) argued that using prior probabilities is more appropriate in most 

discrete choice transportation applications where one-time prediction is the ultimate goal, 

since in such cases the outcome is not known in advance.  
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Figure 3-4. Membership probabilities for the endogenous switching and latent class 

models 

 

3.5.3 Mixture modeling in machine learning: Mixture density networks 

So far, we have examined various members of the family of statistical models that 

fall under the mixture modeling framework. It is worth touching on another family member 

that has been proposed in the machine learning field. Bishop (1994) proposed mixture 

density networks (MDN), which combine mixture modeling and neural network 

approaches. Some applications include speech analysis (e.g. Richmond, 2007; Zen and 

Senior, 2014) and touchscreen interaction locations in space and time (e.g. Martin and 

Torresen, 2018). 

 Figure 3-5 shows a conceptual illustration of MDN. In usual neural network 

applications, the neural network (regression) aims to minimize the squared loss function 

that approximates the conditional mean of the outcome (which is analogous to linear 
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regression). In contrast, MDN aims to map input variables to the parameters of a Gaussian 

mixture model (means 𝜇𝑧, variances 𝜎𝑧, and mixing weights 𝜋𝑧). Hence, MDN provides a 

probability density function of an outcome conditional on the input variables. Densities of 

related models are:  

Linear regression: 𝑓(𝑌𝑖|𝑿𝑖)~𝑁(𝑿𝑖𝜷, σ2), 

Standard latent class model: 𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖)~ ∑ 𝜋𝑧(𝑾𝑖) × 𝑁(𝑿𝑖𝜷𝑧, 𝜎𝑧
2)𝑍

𝑧=1 , 

Mixture density networks: 𝑓(𝑦𝑖|𝑿𝑖 , 𝑾𝑖)~ ∑ 𝜋𝑧(𝑿𝑖 , 𝑾𝑖) × 𝑁(𝜇𝑧(𝑿𝑖 , 𝑾𝑖), 𝜎𝑧
2(𝑿𝑖 , 𝑾𝑖))𝑍

𝑧=1 , 

where 𝜋𝑧(∙) is a membership function and all other notation is defined in Section 3.3. 

Figure 3-6 presents an application of MDN to our data. Since this study does not 

focus on MDN per se, we simplify the example. To model log-transformed VMD, we 

employ the four attitude measures which were used in our previous models (namely pro-

environmental, urbanite, travel-liking, and pro-car-owning) to estimate a mixture of two 

Gaussian densities. In addition, we assume a single hidden layer with two nodes, as shown 

in Figure 3-5. The three histogram panels in Figure 3-6 present how the estimated 𝜇, 𝜎, 

and 𝜋 are distributed for each mixture class, while the plots below the histograms represent 

individual density functions based on specific draws from each of the histograms.  

When comparing MDN and the usual latent class model, MDN has several potential 

advantages: 

1. It automatically captures nonlinearity in segmentation (Bishop, 2006) or in effects 

on the conditional mean. 
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2. We assume a homogeneous error variance within segment for the latent class 

model, whereas error variances are estimated as a function of input variables in 

MDN. 

3. We do not need to determine how to allocate variables between membership and 

outcome models. 

Of course, all advantages are possible at the expense of reducing interpretability. In 

addition, MDN is subject to multiple decisions of the analyst due to the embedded natures 

of the mixture modeling and neural networks. Specifically, the analyst must choose not 

only the number of mixtures (analogous to the choice of number of latent classes), but also 

the structure of hidden layers (i.e. how many layers and nodes and how each node is 

connected; cf. Bishop, 2006; Hastie et al., 2009). Put another way, the standard latent class 

model requires us to decide which variables belong to 𝑿 and 𝑾 (as described in Section 

3.5.2), but neural networks structure requires us to decide the network structure per se 

instead of decisions on 𝑿 and 𝑾. The network structure will influence how input variables 

interact with each other (potentially transforming the input space) in the “black box”. A 

key difference between the two decisions is that the decision in standard latent class models 

heavily relies on the analyst’s knowledge/theory (but is not entirely free from the data since 

the final decision is also based on model fitness), whereas the decision in neural networks 

is purely dependent on the data – i.e. how well the structure fits the data. For example, 

there are no conceptual considerations to influence the choice of a certain number of nodes 

and layers, no policy implications for having a 3-node-1-layer structure instead of a 2-

node-2-layer structure. 
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Figure 3-5. Conceptual diagram of mixture density networks 

 

 

Figure 3-6. Application of mixture density networks 

 

3.6 Conclusions 

This study examined various modeling approaches that are closely related to each 

other. Focusing on a regression problem (i.e. with a continuous-valued outcome), the study 

explored the theoretical backgrounds of, and connections between, pooled, deterministic 
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segmentation, (endogenous) switching, and latent class models. In particular, the study 

highlighted similarities and differences among the models from the standpoint of finite 

mixture or market segmentation approaches as a way of dealing with (parameter) 

heterogeneity.  

Models were applied to empirical data obtained from more than 3,000 Georgia 

residents. In particular, the study focused on weekly vehicle-miles driven (VMD), which 

is a key travel behavior indicator, and identified key explanatory variables as well as the 

different sensitivities to those variables exhibited by various population segments. 

Consistent with prior research, we found that, on average, not only do key demographic 

traits (e.g. gender, race, income) affect personal VMD, but so also do residential land use 

characteristics (job density, transit service level, and local accessibility) and 

telecommuting. Among the models of interest, the latent class model outperformed the 

competition. This implies that (1) there is notable heterogeneity in the population (when 

compared to the pooled model), and (2) uncovering latent segments can have benefits 

compared to segmenting on a certain predetermined factor. However, all models were able 

to provide meaningful insight for understanding the behavior of interest.  

The study posited that people would generate different VMD and have different 

sensitivities by residence type (urban versus non-urban), and supporting evidence was 

found in the deterministic segmentation and endogenous switching models. An 

endogenous switching model was able to find those who are more likely to live in urban 

areas (e.g. workers, pro-environmental, and less favorable to driving). In addition, the 

estimated error correlations in the endogenous switching model corroborated that there are 

unobserved factors common to the joint decisions of residential choice and VMD 
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generation. After correcting for this self-selection effect, the average effect on VMD of 

moving from a non-urban to an urban area (where “urban” is arbitrarily defined as a 

population density of 4 or more people per acre in the residential block group) is estimated 

as -190 miles per week (further discussion of this result appears in Section 3.5 and the 

Appendix A). The latent class model identified lower-level and higher-level VMD 

segments. The two segments had different sensitivities. For example, individuals in the 

lower-VMD group tend to drive less as they live in more job-dense or better transit-service 

areas, whereas those variables do not have significant effects on VMD in the other segment.  

These three segmentation models can be considered alternative ways of 

investigating parameter heterogeneity based on a finite segmentation framework. To help 

decide among them, some key questions for analysts are: (1) Is there a single variable that 

is reasonably suspected of introducing heterogeneity (deterministic segmentation (DS) or 

endogenous switching (ES)), or is segment membership conceived as being 

probabilistically associated with a bundle of variables (latent class (LC))? (2) Is it suspected 

that joint decisions (here, membership in known segments and VMD generation) share 

unobserved factors (ES), or not (DS)? Some models have additional merits with respect to 

certain purposes. For example, the endogenous switching model has the benefit of offering 

an estimate of the average effect of switching from one segment to another, i.e. the 

treatment effect, after properly accounting for non-random selection into a given segment. 

Hence, researchers should consider using this model when investigating the treatment 

effect of a specific factor, e.g. the impact of neighborhood type on VMD, as was examined 

in this study. The latent class model has the benefit of identifying the latent segments best 
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suited to the data and to a specific outcome variable; hence it has the potential of offering 

a better performance (not to mention new behavioral insights). 

The study suggests some directions for future research. In the section on Further 

Discussions, we gave an overview of some fundamentals of the membership model in 

mixture modeling, which characterizes the segments. Each conceptual approach to 

formulating the model would have different performance and implications; hence future 

studies can apply each approach to empirical data, comparing their performance and 

analyzing how each approach leads to interpretational differences. Second, we also briefly 

touched on the use of mixture modeling in machine learning (mixture density networks, 

MDN, in particular). So far, there is a lack of discussion about heterogeneity in travel 

behavior studies using machine learning approaches. Hence, investigating heterogeneity 

with the aid of a combination of mixture modeling and a machine learning approach (e.g. 

MDN) might be interesting. Lastly, although this study examined the case of a continuous 

dependent variable (i.e. a regression problem), its conceptual discussions can also be 

applied to classification/choice problems.  
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CHAPTER 4. USEFULNESS OF THE CONFIRMATORY 

LATENT CLASS APPROACH 

Paper title: Who (never) makes overnight leisure trips? Disentangling structurally zero 

trips from usual trip generation processes (Travel Behaviour and Society, 28, 78-91, 2021) 

 

4.1 Introduction 

Long-distance travel is an important pillar of the travel industry in particular and 

the economy in general. According to statistics from the U.S. Department of Transportation 

(USDOT, 2006), Americans are estimated to take 2.6 billion long-distance trips per year 

and 7.2 million trips per day (based on the National Household Travel Survey, NHTS, 2001 

data, which defined long-distance trips as those longer than 50 miles). About nine out of 

ten long-distance trips are by personal vehicle, followed by air (7%) and then other modes 

such as bus and train. More recent statistics show the crucial economic role of long-distance 

travel. For example, the U.S. Travel Association (2020) estimates total long-distance 

travel-related output at $2.6 trillion (about 12% of the nation’s gross domestic product), 

and 15.8 million travel-related jobs (about 10% of employed individuals). Annual growth 

rates of spending, employment, tax revenues, and personal trips in the U.S. domestic travel 

industry are estimated at 4.4, 1.8, 5.2, and 1.7% respectively.  

Despite the importance of long-distance travel, data on long-distance travel 

behavior in the U.S. is relatively less available. For example, the NHTS had an additional 

long-distance component in 1977-2001, the 2009 survey did not have it, and the recent 
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2017 survey asked a few questions only in certain add-on regions (NHTS, 2018).38 A few 

other surveys have had an emphasis on long-distance travel behavior, such as the 1995 

American Travel Survey (e.g. Hwang and Fesenmaier, 2003), the Longitudinal Survey of 

Overnight Travel (Harvey et al., 2015), and the Utah Travel Survey (UDOT, 2013). 

Long-distance travel generates discussions about social disadvantage and 

sustainability that differ from those associated with local travel. First, long-distance travel 

is more discretionary than daily travel. Long-distance travel is for those who are able (in 

terms of monetary expenditure and time, as well as physical and mental capacity) and 

desirous or willing. Second, a substantial portion of transportation-related emissions can 

be attributed to long-distance travel. Given that train and intercity bus have marginal 

market shares overall in the U.S., private vehicles and airplanes serve most long-distance 

travel in this country. Beyond the carbon footprint of cars, total emissions from air travel 

are quite substantial as well (cf. Ottelin et al., 2014; Czepkiewicz et al., 2018), with unit 

CO2 emissions (per passenger per km traveled) for air exceeding those of car (BBC, 2019; 

Gonçalves, 2019). As a consequence, environmentalists and scholars have been concerned 

about the (un)sustainability of air travel for some time (cf. Becken, 2002; Åkerman, 2005), 

with the “flight shaming” movement representing a recent manifestation of that concern 

(e.g. Baron, 2019; Gossling et al., 2019; Gossling et al., 2020; Piskorz, 2019). Further, the 

asymmetric participation in long-distance travel implies that the carbon footprint from 

long-distance travel is not evenly distributed with respect to demographics and geography.  

                                                 
38 However, the “NextGen NHTS” currently in advanced planning will measure long-distance travel. 



 138 

Granting the importance of long-distance travel to the sustainability mission, the 

purpose of this study is neither to lament nor celebrate long-distance travel or those who 

undertake it. Rather, we wish to investigate the factors triggering long-distance travel 

(separately by mode) and identify those who are generating long-distance travel (or not), 

to inform the transportation policymaking that can address the social disadvantage and 

sustainability issues described (as well as informing the travel industry itself). Whereas 

most studies of long-distance travel focus on the trips made and the people making them, 

our understanding of those who “never” travel long-distance is limited. Hence, this study 

contributes to the literature by distinguishing between those who “structurally” do not 

make such trips and those who do generate long-distance trips, even if not very often (and 

who may therefore “incidentally” make zero trips during the study period). Based on 

questioning about lifetime frequencies, Graham and Metz (2017) created a similar typology 

of frequent, infrequent, and non-flyers for long-distance air travel in the UK. In our study, 

we do not have the full information required to make such a classification deterministically. 

Hence, we introduce a methodology that enables us to probabilistically classify cases into 

the typology. This approach is of interest in the many situations for which only imperfect 

information is available. We are not aware of any other studies of long-distance travel that 

have differentiated between structural and incidental zero-trip-makers in this way.   

4.2 Literature review 

There is no clear boundary between long-distance travel and other, more “usual”, 

travel; rather, it depends on how we define “long distance”. Long-distance travel has 

multifaceted dimensions such as distance, frequency, tour duration, purpose, mode, and 

destination (Table 4-1). Daily trips also have such dimensions, but there is a larger 
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spectrum of possibilities (e.g. distance has a wider range, destinations are more numerous 

and diverse) for long-distance travel. In addition, numerous constraints are likely to be 

involved in decisions relating to the dimensions of long-distance travel. In the literature, 

there is not a universally accepted definition of long-distance travel. Some studies defined 

it based on distance measures (e.g. 50 miles, NHTS 2001; 40 miles, UDOT, 2013; 100 

miles, Berliner et al., 2018; 100 km, Czepkiewicz et al., 2020). Multiple studies employed 

a definition of “overnight” travel, mainly to avoid arbitrary distance thresholds (e.g. 

LaMondia et al., 2015; Aultman-Hall et al., 2018; Dowds et al., 2020). Some studies 

explored how various definitions of long-distance travel produce different results (e.g. 

LaMondia et al., 2014; Aultman-Hall et al., 2018). It is likely that no single measure would 

serve all purposes; rather, the definition chosen should depend on the research focus. In 

this study, we follow the definition of trips involving an overnight stay.  

Since the travel mode is a major interest in transportation, a sizeable number of 

studies have examined mode choice for long-distance travel based on choice experiments. 

Hess et al. (2018) analyzed mode choice among train, personal car, air, and bus for selected 

major cities in the U.S. In particular, they applied a hybrid choice model and found a 

meaningful influence of attitudes on choices. van der Waerden and van der Waerden (2018) 

modeled medium- /long-distance travel mode choices between train and car, particularly 

focusing on access mode attributes. They found that travel time and cost are the most 

influential, whereas effects of ancillary attributes of access modes are relatively marginal. 

Lannoo et al. (2018) and Van Acker et al. (2020) explored the extent to which Belgian 

business travelers are interested in intercity coach services (compared to other modes). 

Monchambert (2020) focused on willingness to carpool for long-distance trips in France. 
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The study reported that people have a stronger willingness to travel alone rather than 

carpool, and carpoolers exhibited a higher average value of time compared to train or bus 

riders. Bergantino and Madio (2020) studied potential modal shifts under the planned high-

speed rail services in Italy. They found that potential shifts are more likely from air and 

conventional rail services than from bus, carpooling, and private car. 

Another approach taken in the literature to understanding behavior related to long-

distance travel is to explore trip generation. That is, what factors stimulate long-distance 

travel and how much? Given the type of information available, several statistical models 

have been applied to modeling the frequency of long-distance travel. Frandberg and 

Vilhelmson (2003) modeled number of international trips in the preceding year with 

multiple regression models. LaMondia et al. (2014) applied ordered probit models to a 

four-level frequency category for each purpose (work and leisure/personal) and mode (air, 

intercity rail, and intercity bus). Aguilera and Proulhac (2015) modeled frequency of long-

distance business trips with Poisson regression. LaMondia et al. (2015) examined inter-trip 

time intervals using 628 respondents to a longitudinal survey of overnight travel and 

employing negative binomial (NB) regression. With the same data, Aultman-Hall et al. 

(2018) applied NB regression to model annual tour generation for various definitions of 

long-distance travel. Berliner et al. (2018) modeled number of trips (total, leisure, and 

business purposes) with NB regression models. Czepkiewicz et al. (2020) also utilized NB 

regression models for modeling numbers of domestic ground trips, international leisure 

trips, and non-work air trips. 

Various factors have been found to be significant influences on long-distance travel 

behavior, including gender, age, income, household composition, and geographic 
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characteristics. Specifically, age (e.g. Aultman-Hall et al., 2018; Berliner et al., 2018), 

income (e.g. Aultman-Hall et al., 2018; Berliner et al., 2018; Czepkiewicz et al., 2020), 

and being male (e.g. Berliner et al., 2018; Czepkiewicz et al., 2020) are positively 

associated with long-distance trip frequency. Attitudes are considered important 

influences, but relatively few studies have considered them for modeling long-distance 

travel (Berliner et al., 2018 and Czepkiewicz et al., 2020 being exceptions). Interestingly, 

long-distance travel behavior is likely to be dependent on accessibility to major airports, 

but a fairly limited number of studies have accounted for it (e.g. Enzler, 2017; Aultman-

Hall et al., 2018) – we speculate that this is because information on the airports that are 

relevant to a given individual’s trip, and the distance/travel time to those airports, is not 

readily available. These findings in previous studies are the foundations of our key 

hypotheses, which will be described in Section 4.3.3. 

Graham and Metz (2017) is an important paper that shares a similar aim with this 

study. They employed UK data collected in 2014-2015 and described profiles of three types 

of people related to air travel: frequent flyers are those who have flown in the 12 months 

preceding the survey, infrequent flyers are those who have not flown in the preceding 12 

months, and non-flyers are those who have never flown. Although this typology overlaps 

with the one we adopt (which will be described in Section 4.4.4), there are several 

important differences between Graham and Metz (2017) and this study. First, in addition 

to the two studies having different geographical contexts (UK vs. US), the two studies also 

have different focuses on travel mode. Graham and Metz (2017) particularly focused on 

air travel (no distinction between domestic and international), whereas we explore both air 

and car travel separately (particularly for domestic trips). In other words, Graham and Metz 
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(2017) specialized in air travel, whereas this study focuses on general long-distance travel. 

We believe car travel is a worthwhile form of long-distance travel to be explored, because 

the US is relatively more car-dependent than European countries39 and thus the personal 

vehicle is a major source of long-distance trips in the US40. We start the study with the 

hypothesis that the motivations and factors respectively associated with air and car travel 

could be somewhat different and thus that the profiles of the three types of travelers may 

be distinctive across modes. 

Second, Graham and Metz (2017) focus on examining profiles of air-travel market 

segments by using descriptive statistics. On the other hand, this study aims to model as 

well as describe, and to address both the segmentation and frequency of long-distance 

travel. Descriptive statistics are useful, but they generally do not indicate the effects of 

some factors while controlling for other factors, and thus they offer limited information 

when classifying new persons into segments. As well, our study simultaneously models the 

frequency of long-distance trips, whereas the trip frequency itself was not the interest of 

Graham and Metz (2017). 

Lastly and importantly, the survey used in Graham and Metz (2017) explicitly asked 

respondents whether they had ever flown or not, whereas our study only measured the 

frequency in the past 12 months. In our case, we cannot explicitly distinguish the two types 

of zeros (infrequent and never) since the survey did not include such a direct question. This 

                                                 
39 There are clear differences in the distributions of household car ownership in 2017 (in order of zero, one, 

two, three or more vehicles): US (9, 33, 37, and 21%), Georgia (7, 33, 38, and 22%), and UK (21, 43, 29, 

and 7%). (Source: the U.S. Census and the office for National Statistics, UK) 
40 For example, according to the 2001 NHTS in the US, 90 percent of long-distance trips were by personal 

vehicle, with the caveats that this share depends on the definition of long-distance trips and the actual 

distance traveled, where air would likely dominate for the longer trips. 
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is not an uncommon situation in real-world data analysis, where a general-purpose survey 

(like the NHTS) does not drill down into any specific issue in great detail, and thus where 

there is imperfect information. Hence, it is useful to present and apply appropriate methods 

for treating such cases. This study aims to tackle such a situation where only imperfect 

information is available; specifically, with the aid of the latent segmentation approach 

(which will be delineated in Section 4.3), the study will separate out the two different types 

of zero trips (by identifying two different behavioral mechanisms) and profile people in 

each segment. 

Table 4-1. Scopes of recent long-distance travel studies in the literature 

Study Definition Mode Destination Purpose Time period 

Jou et al. (2013) NA 
High-

speed rail 

Domestic cities 

(in Taiwan) 
Business Previous year 

LaMondia et al. 

(2014) 

Overnight / mode / 

international trip 

Air, rail, 

bus Any 

Business / 

leisure 
Previous year 

LaMondia et al. 

(2015) Overnight travel Any Any Any 

Past 12 

months 

Aguilera and 

Proulhac (2015) Over 80 km   Any 
Business 

Previous 3 

months 

Reichert et al. 

(2016) 

Involving overnight 

stay Any Any Any 

Last 3 

months 

Davis et al. 

(2018) Over 50 miles Any Any 

Non-

commute 8 weeks 

Aultman-Hall et 

al. (2018) 

Overnight stop at least 

50 miles from home; 

multiple distance 

thresholds 

Any 

Regional/inter-

regional/contin-

ental/global 

Work / 

personal 

Per year / last 

month 

Berliner et al. 

(2018) 

A trip longer than 100 

miles (one way) 

Total / 

air 
Any 

Business / 

leisure 

Past 12 

months 

Czepkiewicz et 

al. (2020) 100 km (one way) 

Ground / 

air 

Domestic 

(Iceland) / 

international Leisure 

Previous 12 

months / last 

month 

Dowds et al. 

(2020) Overnight travel 

Total / 

air 
Domestic (US) / 

international 

Business / 

leisure Last month 
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4.3 Methodology 

4.3.1 Confirmatory latent class modeling 

The main methodological issue posed by this study is the fact that we are missing 

the information needed to distinguish two types of processes generating zero domestic 

long-distance trips in the past 12 months. As noted in Sections 4.1 and 4.2, the ideal 

scenario is to measure life-long experiences of long-distance travel and thus explicitly 

separate those who have “never flown” from those who “have flown, but not in the past 12 

months” (cf. Graham and Metz, 2017). In the absence of such an explicit measure, this 

study aims to separate the two types of zeros by probabilistic modeling. One way of making 

an inference on completely missing data is to use mixture modeling to identify underlying 

latent classes. As opposed to standard latent class models, which have an “exploratory” 

nature (cf. Hoijtink, 2001; Laudy et al., 2005), we employ a confirmatory approach in that 

we design latent classes with specific but differing assumptions about the behavioral 

models associated with each class. 

To elaborate: as will be indicated in Section 4.4.1, our data are characterized by 

having a disproportionate share of zero-trip counts and this hints that there could be 

possibly more than one type of underlying behavioral mechanism generating trip counts 

(whether zero or not). Specifically, we posit that there are two behavioral processes in this 

context: some people are governed by a typical trip generation process (including zeros), 

while others are governed by a deterministic process of systematically producing zeros (i.e. 

they do not make long-distance trips at all). This is a type of heterogeneity in behavioral 

mechanisms and functional forms (Section 2.3.1). If people make a non-zero number of 

trips in the past 12 months we know they belong to the first class, but if they make zero 
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trips, we do not know to which class they belong, and we characterize their class 

membership with a binary-alternative probabilistic model. I.e., we assume the existence of 

two latent classes of zero tripmakers, each with a substantively different behavioral 

outcome process. Since we are imposing, a priori, these differing assumptions about the 

outcome processes for each class, such a model is considered confirmatory rather than 

exploratory, where an exploratory model would typically assume that outcome processes 

are similar in their essential nature but differing in parameters across latent classes (cf. 

Hoijtink, 2001; Finch and Bronk, 2011; Hess, 2014).  

4.3.2 Formulation 

As noted in Section 4.2, generation of long-distance travel has been modeled 

mainly with Poisson or negative binomial (NB) regression models. In view of our large 

shares of zeros, we consider the zero-inflated (ZI) versions of these models (Lambert, 

1992). Note that another model cousin has also been proposed to capture cases involving a 

disproportionate share of zeros: hurdle models (Mullahy, 1986). Figure 4-1 illustrates these 

potential models. They resemble each other in that they each consist of two parts: a certain 

type of segmentation and a model for the outcome of interest (trip count in this case). 

However, the two models differ with respect to how they operationalize behavior. In brief, 

the ZI model assumes two different outcome regimes, where one regime always produces 

a zero outcome and the other follows a typical trip generation process (including zeros). 

For zero-outcome cases, regime membership is unknown, and selection between the two 

regimes is governed by a probabilistic model. From this perspective, the ZI model can be 

viewed as a particular type of latent class model as described above, in that we 

probabilistically segment zero-trip cases into two regimes whose membership is unknown 
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to researchers: the “structural zero-trip” regime and the “trip-making” regime. The hurdle 

model, by contrast, focuses on explaining non-zero outcomes with a truncated count 

model, together with a probabilistic participation model governing whether the outcome is 

observed (i.e., non-zero) or not – a distinction that is known. We now elaborate on each 

model in turn. 

The ZI model can be expressed as follows: 

 𝑃[𝑌 = 0] = 𝑃[𝑧 = 0] + 𝑃[𝑧 = 1] × 𝑃[𝑌 = 0|𝑧 = 1] , and (4.1) 

 𝑃[𝑌 = 𝑦𝑖 > 0] = 𝑃[𝑧 = 1] × 𝑃[𝑌 = 𝑦𝑖|𝑧 = 1] , (4.2) 

where 𝑃[∙] is a probability, 𝑌 is the number of long-distance trips made by an individual 

[𝑦𝑖 = 0, 1, 2, … for individual i] and 𝑧 is a regime indicator (0 for structural zero; 1 for trip 

generation). Eq (4.1) reflects the probability of zero trips occurring via either of the two 

regimes, while Eq. (4.2) captures the probability of being in the trip generation regime and 

𝑦𝑖 > 0 trips occurring.  

Here, we employ the NB model for the trip generation process (i.e., given 𝑧 = 1); 

hence, the “ZINB” model overall. We also experimented with Poisson models, but NB 

regressions outperformed them in every case. This is because our data exhibit 

overdispersion (greater variability than the Poisson model would predict) and thus an 

additional parameter (𝛿) controls for such dispersion (Cameron and Trivedi, 2005). The 

NB probability density can be obtained by incorporating a random component ui into the 

conditional mean of the Poisson distribution, such that  
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𝑃[𝑌 = 𝑦𝑖|𝑿𝑖 , 𝑢𝑖]  =  

𝑒−𝜆𝑖𝑢𝑖(𝜆𝑖𝑢𝑖)𝑦𝑖

𝑦𝑖!
 and (4.3) 

 𝐸[𝑌|𝑿𝑖 , 𝑢𝑖] = 𝜆𝑖𝑢𝑖 , (4.4) 

where E is the expectation operator, 𝜆𝑖, the mean of the Poisson distribution, is 

parameterized as 𝑒𝑿𝑖𝜷 for mathematical convenience and to ensure a non-negative mean, 

𝑿𝑖 is a vector of explanatory variables, and 𝜷 is a vector of parameters. Assuming the 

gamma distribution with mean 1 and variance 1 𝜃⁄  for 𝑢𝑖, and then integrating out Eq. (4.5) 

over that distribution, yields a relatively tractable solution for the conditional density of Y 

(for details, please to refer to Greene, 2012 and Cameron and Trivedi, 2005): 

 𝑃[𝑌 = 𝑦𝑖|𝑿𝑖] =  ∫ 𝑃[𝑌 = 𝑦𝑖|𝑿𝑖 , 𝑢𝑖]𝑔(𝑢𝑖)𝑑𝑢𝑖
∞

𝑢𝑖=0
  

=
Γ(𝜃+𝑦𝑖)

Γ(𝑦𝑖+1)Γ(𝜃)
𝑟𝑖

𝑦𝑖(1 − 𝑟𝑖)𝜃 , 

(4.5) 

where 𝑔(𝑢) is the gamma probability density function, 𝑟𝑖 =
𝜆𝑖

𝜆𝑖+𝜃
, 𝜃 is reparametrized by 𝛿 

(=1 𝜃⁄ ), which is the dispersion parameter, Γ(∙) is the gamma function, and the other 

notation is defined as above. The conditional mean of Y is still 𝜆𝑖 (as for the Poisson 

distribution), but its conditional variance is now 𝜆𝑖(1 + 𝛿𝜆𝑖) instead of 𝜆𝑖. Therefore, when 

𝛿 = 𝑉ar(𝑢𝑖) = 0 (signifying that the random variable 𝑢𝑖 is actually a constant, namely its 

mean of 1), the conditional variance of Y becomes 𝜆𝑖, Eq. (4.5) becomes Eq. (4.3) with 𝑢𝑖 

= 1, and the NB collapses into Poisson. 
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Also, the regime membership model is expressed as follows: 

 𝑃[𝑧 = 0] =
exp(𝑾𝑖𝜶)

1+exp(𝑾𝑖𝜶)
 , (4.6) 

where 𝑾𝒊 is a vector of explanatory variables and 𝜶 is a vector of parameters. The log-

likelihood function to be maximized (with respect to the unknown parameters 𝜷, 𝛿, and 𝜶) 

is as follows: 𝐿𝐿 = ∑ ln{𝑃[𝑧 = 0] + 𝑃[𝑧 = 1] × 𝑃[𝑌 = 0|𝑧 = 1]}𝑌=0 + ∑ ln{𝑃[𝑧 =𝑌>0

1] × 𝑃[𝑌 = 𝑦𝑖|𝑧 = 1]}.  

The hurdle model, as mentioned, also consists of two models. One governs the 

probability of generating a zero versus non-zero outcome, and the second is a count model 

that is truncated at (i.e. does not include) zero: 

 𝑃[𝑌 = 0] = 𝑃[𝑛𝑜𝑛 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛] = 𝑃[𝑧 = 0]  (4.7) 

 𝑃[𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑌 = 𝑦𝑖 > 0]  

= 𝑃[𝑌 = 𝑦𝑖|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛] × 𝑃[𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛]  

=
𝑃[𝑌=𝑦𝑖]

1−𝑃[𝑌=0]
𝑃[𝑧 = 1]  

(4.8) 

where now 𝑧 = 0 signifies non-participation (making 0 trips, for any reason) while 𝑧 = 1 

indicates participation (making a non-zero number of trips); 𝑃[𝑌] denotes the untruncated 

count density (probability); 
𝑃[𝑌=𝑗]

1−𝑃[𝑌=0]
 is the truncated density of observing j > 0 trips given 

participation (i.e. the untruncated density rescaled so that the new probabilities will sum to 

1 across j > 0); and 𝑃[𝑧 = 1] is the selection or participation probability.  
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For reasons explained momentarily, we consider the ZI approach to be more 

suitable for this application. However, we also experimented with hurdle models and found 

that, in practice, the two approaches produced similar parameter estimates. The conceptual 

appeal of the ZI approach is that it allows us to differentiate between two types of zero-trip 

cases: (1) systematic or structural zeros, arising in our context because not everybody 

makes long-distance trips in the general population; and (2) random or incidental zeros, 

here arising because long-distance travel can be relatively infrequent and thus the 

respondent may simply not have made any such trips during the time period in question. 

Thus, we can separate the effects of factors on the quantity of trips generated (which could 

include zero trips generated for that period) from the effects of factors on the participation 

in trip-making altogether. For the hurdle model, by contrast, the “zero trips generated 

during this period” cases are confounded with the “non-participation altogether” cases. 

Accordingly, the basic idea of the ZI approach is potentially useful for many behavioral 

studies where there are heterogeneous reasons for a given value such as zero, and the data 

do not explicitly classify cases according to those reasons. 

What kinds of people might fall into each regime? Conceptually, the non-trip-

making regime captures those who do not make long-distance leisure trips because of 

possible structural constraints (e.g. affordability, mental/physical limitations, or attitudinal 

indifference or resistance with respect to long-distance travel, leisure travel, and/or 

adventure/exploration). By contrast, zero trips being made by members of the trip-making 

regime are less likely to be owing to such structural constraints. Rather, they are likely to 

be accounted for by temporary factors (e.g. some important life events, and/or changes in 
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income or free time) prohibiting (or failing to stimulate) long-distance travel in the past 12 

months. 

 

Figure 4-1. Illustration of two modeling approaches 

 

4.3.3 Hypotheses 

As aforementioned, in this study, we posit that there are two population segments 

related to long-distance travel. The structural zeros regime always produces zero long-

distance trips because of structural/ permanent constraints or lack of motivation, whereas 

the trip-making regime can generate long-distance travel (where the number of trips is 

modeled with a count model). First, we generate a list of several hypotheses based on the 

literature (H1, H2, H3, and H5) and additional hypotheses (H4 and H6) based on informed 

speculation. The key hypotheses include: 

H1. Income is a major factor that influences participation in long-distance travel 

and (if participating) the number of trips (e.g. LaMondia et al., 2014; Berliner 

et al., 2018); 
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H2. Presence of children reduces the likelihood of both participation in long-

distance travel and (if participating) the number of trips (e.g. Berliner et al., 

2018); 

H3. Distance to a major airport reduces the likelihood of participation in air travel 

and (if participating) the number of air trips; 

H4. Distance to a major airport increases the likelihood of participation in car travel 

and (if participating) the number of car trips; 

H5. Urbanites make long-distance trips more often than others (potentially due to 

several reasons, such as a greater geographic dispersion of social networks, a 

“rebound effect” due to lower expenditures on car travel, or “compensation” for 

lower local access to green spaces; Holz-Rau et al., 2014; Czepkiewicz et al., 

2018); 

H6. Overall, factors more strongly affect air travel than car travel. 

H1, H2, H3, and H5 aim to check whether our data return results related to the key 

drivers of long-distance travel that are consistent with those in the literature. For example, 

LaMondia et al. (2014) and Berliner et al. (2018) reported positive impacts of income on 

the frequency of long-distance travel, while Holz-Rau et al. (2014) and Czepkiewicz et al. 

(2018) discussed the role of urban form in explaining long-distance travel behavior. H3, 

H4, and H6 focus on the possibility of heterogeneous behaviors across travel modes. 

Specifically, the way people respond to airport accessibility may differ by mode.  After 

incorporating our key hypotheses, we tested various model specifications by adding a 

number of other commonly-included variables, such as education, employment, and car 

ownership. Although H1-H6 are the key hypotheses of the study, this second step allows 

us to investigate additional potential influences on long-distance trip generation and latent 

class membership and to control for the effects of other factors. Our final models were 

chosen based on goodness of fit and conceptual validity; some tested variables were 
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dropped due to multicollinearity or insignificant impact in this sample. Note also that we 

postulate that attitudes cause behavior, as is conceptually plausible, conjectured in related 

studies (Berliner et al., 2018; Czepkiewicz et al., 2020), and in keeping with numerous 

enduring psychological behavioral theories such as the Theory of Planned Behavior, 

Technology Acceptance Model, and Extended Model of Goal-Directed Behavior. 

Nevertheless, the opposite direction of causality is also plausible, and this could be 

considered a limitation of the study. 

4.4 Empirical application 

4.4.1 Data 

This study employs the GDOT data (Section 1.2.3). In this study, we define long-

distance trips as those that involve an overnight stay. We collected information on 

respondents’ self-reported number of long-distance trips over the past 12 months. For better 

understanding, we decomposed long-distance travel by purpose (business/work/school-

related and leisure/recreational/social), mode (car, bus, plane, and other), and destination 

(within Georgia, states adjacent to Georgia, elsewhere in the U.S., Canada/Mexico/ 

Caribbean, and elsewhere in the world). We confine our interest in this study to certain 

types of long-distance travel. First, we limit the analysis to leisure/recreational/social 

(henceforth, “leisure”) trips, for two reasons: work/business travel is closer to mandatory 

travel and thus the generation of long-distance business travel is less relevant (albeit not 

completely irrelevant) to the individual’s willingness or constraints; and work trips are only 

taken by employed individuals while leisure trips can be taken by anyone. In terms of 

modes, we focus on car and plane because the shares of bus and other modes are marginal 

(in our sample, 0.8% and 2.2%, respectively); this is not only true of Georgia, but is also 
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generally characteristic of the U.S. context. In addition, we narrow the scope to domestic 

trips (77.8% of the air trips reported) to enable us to compare models of car and air travel.  

We employ several sets of key variables, which have been found relevant in the 

literature as described in Section 4.2. In modeling, explanatory variables include 

demographics (both individual and household characteristics), attitudes, and geographical 

characteristics. The current study employs some attitudinal constructs that were identified 

through factor analysis on attitudinal statements. Geographical characteristics based on 

home locations are appended using external sources. Population density (per acre; Census 

block-group level) is calculated by using the 2017 American Community Survey (ACS) 5-

year estimates. As a key variable, we measured the distance from home to airports via the 

Google Map API41. 

Table 4-2 exhibits descriptive statistics for key variables of the study. After 

excluding a few cases having missing values, the study analyzes 3,230 observations. Due 

to typical non-response biases, the sample is older and higher-income than the Georgia 

population as a whole (ACS estimates). We apply sample weights to help correct for 

sampling biases with respect to MPO size, income, household size, vehicle ownership, 

gender, education, race, age, and work status. The two dependent variables of interest are 

the numbers of long-distance domestic leisure air and car trips made over the past 12 

months. On average, people made 0.76 and 4.25 such trips by air and car respectively. As 

                                                 
41 In Georgia, there are nine commercial service airports. In particular, Atlanta Hartsfield International 

Airport (ATL) is one of the busiest airports in the world, serving as an international hub and thus having a 

distinct level/size of services. The other airports are rather small and have limited routes and frequencies 

(see Table B1 in Appendix B). We did not collect distances to airports outside Georgia. Although this is a 

limitation, given the few cases that would be closer to such airports than to ones in Georgia (with no 

assurance that such airports would actually be chosen by those few Georgia residents), we do not expect 

this to materially affect the results. 
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expected, in general, people traveled more often by car than by air. In addition, large 

standard deviations indicate that the number of long-distance trips is fairly dispersed in the 

sample.  

It is worth noting that 74% (air) and 35% (car) of the sample reported zero for the 

number of long-distance trips within the period. As in many count data contexts, the 

numbers of zeros appear to be, so to speak, “inflated” (relative to what would be expected 

from a reasonable distribution, such as Poisson, describing the other counts; see Figure 

4-2). The large shares of people not making a long-distance trip suggests that there could 

be heterogeneous reasons why they did not travel. In the next section, we will posit possible 

reasons and outline the methodology we used to address this issue. Figure 4-3 presents the 

geographical distribution of the sample and airports in Georgia. 
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Table 4-2. Descriptive statistics of key variables (N=3,230) 

Variable Category  
Unweighted 

count 

Unweighted 

Share 

Weighted 

count 

Weighted 

share 

Share in 

population 

Gender Female 1574 48.7% 1682 52.0% 52.0% 

Age (yrs) 18-34 285 8.8% 715 22.1% 31.5% 

 35-64 1631 50.5% 1840 57.0% 52.1% 

 65+ 1314 40.7% 675 20.9% 16.4% 

Annual household 

income 

Lower income (below 

$50,000) 
1025 31.7% 1365 42.2% 49.0% 

 Medium income ($50,000 - 

$99,999) 
1173 36.3% 1019 31.6% 29.7% 

 Higher income ($100,000 or 

more) 
1032 32.0% 846 26.2% 21.3% 

MPO size Atlanta MPO 1043 32.3% 1665 51.6% 52.1% 

 Mid-sized MPOs 1171 36.3% 588 18.2% 13.8% 

 Small-sized MPOs 814 25.2% 425 13.2% 11.0% 

 Non-MPO areas 202 6.3% 552 17.1% 23.1% 

Household 

composition 

Presence of children age 14 

and under 
505 15.6% 698 21.6% - 

     
 

Mean 

 

Std. 

deviation 

 

Mean 

 

Std. 

deviation  

Long-distance 

travel (domestic, 

leisure) 

Number of air trips over the 

past 12 months 
0.71 1.84 0.76 2.01 - 

 Number of car trips over the 

past 12 months 
4.91 7.84 4.25 6.69 - 

Geographical 

characteristics 
Population density (per acre) 2.83 3.21 3.41 3.92 - 

 Distance to Atlanta airport 

(miles) 
104.74 78.60 82.50 73.20 - 

 Distance to nearest major 

airport (miles) a 68.89 44.60 60.05 44.68 - 

 
Distance to nearest 

commercial service airport 
26.24 17.51 29.16 17.65 - 

Attitudinal 

constructs b Tech-savvy 0.00 1.00 0.17 1.01 - 

 Pro-car-owning 0.00 1.00 -0.02 1.09 - 

 Travel-liking 0.00 1.00 0.00 1.02 - 

  Polychronic 0.00 1.00 -0.01 1.05 - 

a. In this study, Atlanta (ATL) and Savannah (SAV) are considered “major” airports. They are the only 

international airports in Georgia, and although SAV’s passenger count is dwarfed by ATL’s, SAV still has 

more than three times as many annual flights and four times as many passenger enplanements as the next 

largest airport in the state (Table B1, Appendix B). 

b. Attitudes are estimated factor scores (standardized) obtained by applying factor analysis to attitudinal 

statements. Statements highly loading on each factor, with their loadings, are reported in Table 1-1.  
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Figure 4-2. Distribution of the number of overnight domestic leisure air/car trips in 

the past 12 months (N=3,230) 

 

Figure 4-3. Geographic distribution of the sample and commercial service airports 

in Georgia 
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4.4.2 Estimation results 

4.4.2.1 Models of membership in the zero-trip regime 

Table 4-3 and Table 4-4 show the final ZINB models for air and car travel. First, 

we investigate the zero-inflation component – i.e. the selection model that explains 

membership in the structural zero-trip regime. For this model, a negative coefficient means 

that an increase in the associated variable decreases the likelihood of belonging to the 

structural zeros regime and thus increases the likelihood that domestic leisure long-distance 

trips will be generated. Not surprisingly, lower income people are more likely to belong to 

the structural zeros regime (i.e. no domestic leisure long-distance travel) for both modes. 

The same is true for women, a result for which we had no prior expectation. With respect 

to long-distance trip count models, there are mixed results in the literature: our finding is 

consistent with that of LaMondia et al. (2014) and Berliner et al. (2018), but the opposite 

directionality is also found (e.g. Aultman-Hall et al., 2018). With respect to total distance 

traveled for long-distance entertainment/recreation/ social purposes, Mokhtarian et al. 

(2001) also found the opposite directionality, with women traveling farther than men, 

ceteris paribus. Interestingly, the presence of children age 14 and under has opposite 

effects across modes. Having children increases the likelihood of never traveling by air, 

whereas it decreases the likelihood of never traveling by car. This, too, is not particularly 

surprising in view of the relative financial and logistical burden associated with flying with 

children compared to traveling by car with them, perhaps together with a lingering tradition 

of the “road trip” for family vacations or visiting relatives.  
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Population density is used as a proxy for the urbanicity of the residential location. 

It is negatively associated with selection into the structural zeros regime. That is, people 

living in more urban areas are more likely to generate long-distance travel for both air and 

car travel (but the magnitude and significance level are weak for car travel), in support of 

H5. This finding is consistent with the compensation hypothesis and similar arguments 

found in the literature, namely that people living in dense areas travel farther or more 

frequently for leisure, to compensate for a scarcity of open and/or green space in their living 

environment (Holz-Rau et al., 2014; Czepkiewicz et al., 2018). However, as mentioned, 

there are other possible explanations for why urbanites could make more long-distance 

trips, such as a rebound effect, access to transport infrastructure, socio-demographics, and 

greater dispersion of the social networks of urban residents (cf. Czepkiewicz et al., 2018). 

To test the compensation hypothesis more rigorously, we would need to control for some 

relevant factors (e.g. access to a private garden; cf. Strandell and Hall, 2015), which are 

not available in our data.  

As distance to the Atlanta Hartsfield-Jackson airport increases, people are more 

likely to produce structural zeros for air travel, whereas it is the opposite for car travel. It 

is not surprising that the impedance of accessing the airport greatly affects whether the 

person can or will make long-distance trips by air. The opposite effect for car travel 

indicates that ground transportation, which is comparatively less burdensome when the 

airport is far away, is used to meet some needs for long-distance travel. Attitudes are also 

significant factors, confirming that structural zeros are not necessarily owing to monetary 

or physical barriers. Rather, attitudes or mental willingness are also involved in decisions 

on long-distance travel. Those who are tech-savvy, favorable toward travel, and 
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polychronic (enjoy multitasking) are more likely to generate long-distance travel. 

Polychronicity might be involved because the expectation of working or amusing oneself 

while traveling (particularly at the airport or on the plane) or at the destination could lower 

a mental barrier to long-distance travel. In addition, polychronicity is associated with a 

personality that thrives on multiple synchronous sources of stimulation, such as may be 

found on a long-distance leisure trip. 

4.4.2.2 Count models for domestic leisure long-distance travel 

Now, we turn to the second part of the model, which explains the amount of travel. 

First, we confirm that both dispersion parameters are significantly different from zero 

(otherwise, the NB model would collapse into the Poisson), indicating significant 

overdispersion in frequency. It is worth mentioning that when we used conventional (non-

zero-inflated) NB regression models, both the air and car models presented much larger 

dispersion parameters (in our experiments, they were about 2.5). That is, when using ZI 

models, the magnitudes of the dispersion parameters are reduced. This implies that the ZI 

model is disentangling “ordinary” dispersion from the effects of heterogeneity in the trip 

generation process that would otherwise have been absorbed into the effects of the usual 

dispersion. 

In both air and car travel, younger people tend to generate more long-distance trips. 

Income is an important factor that increases the amount of travel. However, the magnitudes 

are greater for air travel. This implies that income has a greater role in increasing the 

amount of travel for air than for car, which makes sense in view of the economies of scale 

associated with multiple people traveling together by car. The presence of children 
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decreases the number of trips in general for both modes. Hence, recalling the selection 

model for car travel, the presence of children has different roles between its influence on 

the selection into the zero-trip regime and its influence on the number of trips made. That 

is, the presence of children increases the likelihood of generating car-based long-distance 

trips in the first place, but it has a negative effect on the number of trips generated (given 

that the person belongs to the trip-making regime). Both results are logical, and illustrate 

again the value of separating the structural zero regime from the trip-making regime. 

Population density is not a significant factor for either mode. Hence, living in a 

denser area increases the likelihood of generating trips at all (from the regime membership 

model), but it does not necessarily affect how many trips are generated. Distances to the 

closest major airport (either Atlanta or Savannah; see note on Table 4-2) significantly affect 

the amount of travel for both modes, but having opposite effects. Such distances reduce the 

number of air trips, but they increase the number of car trips (although the magnitudes are 

smaller). As described above, this may signify that people living farther away from the 

major airports tend to meet their needs for travel by car. Note that as described in 

Section 4.4.1, we collected distance measures to all commercial service airports in Georgia. 

In modeling, we tried various combinations of variables for distance measures in both the 

selection and count parts of the model. The current specification produces the best fit as 

well as more meaningful results. In particular, the shortest distance considering all 

commercial service airports in Georgia (Figure 4-3) is not generally significant. There are 

huge differences in airport sizes in Georgia (Table B1 in Appendix B), so this result implies 

that the amount of air travel (and, secondarily, the amount of car travel) is affected by 

accessibility primarily to the major airports, which provide more numerous and diverse 
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flight options. Lastly, although other key attitudes are not significant for the count models, 

travel-liking propensity generally increases the number of air and car trips. We tested 

whether a pro-environmental predisposition affects decisions on leisure long-distance 

travel [cf. cognitive dissonance between environmental attitudes and long-distance travel 

in Hares et al. (2010) and Davison et al. (2014)]. We could not find meaningful results in 

this application, indicating that there is no strong support in our data for such a 

presumption. This result is consistent with other findings in the literature – for example, 

Hares et al. (2010) found that none of the tourists in their four focus groups considered 

climate change when planning holiday trips (despite the fact that climate change was the 

explicit subject of the focus group and flying was the third-most-commonly cited influence 

of their lifestyles on climate change); Chen et al. (2011) surveyed Taiwanese travelers and 

found notable gaps between their general pro-environmental behaviors and pro-

environmental air travel behaviors. 
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Table 4-3. Zero-inflated negative binomial model (air travel, N=3,230) 

Membership component    

  Variable Estimate t-value 

Intercept Intercept -0.572 -1.72 

Gender Female -0.440 -3.97 

Annual household income $50,000 - $99,999 -0.684 -4.82 

 (ref: less than $50,000) $100,000 or more -1.324 -8.17 

Household composition Presence of children age 14 and under 0.540 3.24 

Geographical 

characteristics 
Log-transformed population density (per acre) -0.177 -4.09 

  Log-transformed distance to ATL airport (mi) 0.330 5.14 

Attitudes Tech-savvy -0.236 -3.97 
 Pro-car-owning 0.383 5.98 
 Travel-liking -0.111 -1.83 

  Polychronic -0.245 -4.49 

 

Count component 
   

  Variable Estimate t-value 

Intercept Intercept 0.790 3.79 

Age (ref: 35-64) 18-34 0.212 1.77 
 65+ -0.113 -1.48 

Annual household income $50,000 - $99,999 0.463 4.48 

 (ref: less than $50,000) $100,000 or more 0.782 7.80 

Household composition Presence of children age 14 and under -0.219 -1.97 

Geographical 

characteristics 
Log-transformed population density (per acre) 0.019 0.59 

  
Log-transformed distance to the nearest major 

airport (mi) 
-0.275 -5.82 

Attitudes Travel-liking 0.130 3.60 

Dispersion parameter Delta 0.908 6.42 

 

Summary 
      

 Final log-likelihood (LLF) -3121.96  

 
Pseudo-R2, 1 −

𝐿𝐿𝐹

𝐿𝐿𝐶
  

(where “C” means the constant-only Poisson 

model) 

0.30  

  Vuong statistic  5.99   

Note: The bolded numbers indicate coefficients that are statistically significant at the 0.05 level. 
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Table 4-4. Zero-inflated negative binomial model (car travel, N=3,230) 

Membership component   

  Variable Estimate t-value 

Intercept Intercept 0.149 0.47 

Gender Female -0.324 -2.96 

Annual household income $50,000 - $99,999 -1.272 -9.80 

 (ref: less than $50,000) $100,000 or more -1.657 -9.38 

Household composition Presence of children age 14 and under -0.389 -1.93 

Geographical 

characteristics 
Log-transformed population density (per acre) -0.065 -1.69 

  Log-transformed distance to ATL airport (mi) -0.168 -2.46 

Attitudes Tech-savvy -0.366 -6.20 
 Pro-car-owning -0.066 -1.20 
 Travel-liking -0.312 -5.98 

  Polychronic -0.202 -3.55 

 

Count component 
   

  Variable Estimate t-value 

Intercept Intercept 1.316 11.02 

Age (ref: 35-64) 18-34 0.176 2.58 
 65+ -0.094 -2.12 

Annual household income $50,000 - $99,999 0.063 1.28 

 (ref: less than $50,000) $100,000 or more 0.277 5.37 

Household composition 
Presence of children age 14 and 

under 
-0.156 -2.52 

Geographical 

characteristics 
Log-transformed population density (per acre) -0.016 -1.03 

  
Log-transformed distance to the nearest major 

airport (mi) 
0.077 2.80 

Attitudes Travel-liking 0.113 5.74 

Dispersion parameter Delta 0.855 25.31 

 

Summary 
      

 Final log-likelihood, LLF -8129.49  

 Pseudo-R2, 1 −
𝐿𝐿𝐹

𝐿𝐿𝐶
  

(where “C” means the constant-only Poisson model) 
0.42  

  Vuong statistic  8.27   

Note: The bolded numbers indicate coefficients that are statistically significant at the 0.05 level. 

 

4.4.3 Investigation of the zero-trip shares 

As argued in Section 4.3, a major benefit of the zero-inflated methodological 

approach compared to the usual ones is that we can (probabilistically) identify two distinct 

behavioral groups and two different types of zeros. When testing typical NB model 
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specifications, we observed that their coefficients were inflated relative to those of the final 

models presented here. In the former models, effects that would otherwise appear in the 

regime membership models are absorbed into the count models, thereby biasing the 

parameter estimates of the typical models.  

From our final models, two important estimates for zero trips are possible. First, we 

can estimate the fraction of those who structurally generate zeros, as 0.40 (air) and 0.10 

(car) respectively. Put the other way, it implies that “all” domestic leisure long-distance 

trips are generated by about 60% and 90% of the sample, respectively. An additional 

takeaway is that the share of the zero-trip regime for air travel is substantially higher than 

that of car travel. This is not surprising in that there are more constraints for air travel 

(probably mainly monetary, but also psychological, e.g. a fear of flying). Hence, in fact, 

only half the population is expected to be able/inclined to generate long-distance travel. 

Some may meet their needs for long-distance travel by car, others’ needs may remain 

unmet, and some portion of people may not have such needs at all.  

A second estimate we can make from our models is the probability of generating 

zero trips for those who make trips. Under the modeling assumptions, those in the trip-

making regime can generate long-distance travel, but some may not make any long-

distance trips in the given period. It is estimated that 43.1% (air) and 13.3% (car), 

respectively, of those in the trip-making regime did not make long-distance trips. This 

might be due to temporal constraints (as opposed to systematic or permanent constraints) 

or simply a low average demand (i.e. the inter-trip time is greater than a year). Air travel 

has a higher fraction of these incidental zeros than car travel does. This is also reasonable 

in that air travel is relatively less frequent and thus zeros can be encountered more easily.  
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Combining these two estimates, we can calculate that the shares of structural zeros, 

incidental zeros, and non-zero trip-making in the sample are respectively 41%, 33%, and 

26% for air, and 10%, 25%, and 65% for car. Referring back to Figure 4-2, these numbers 

mean that structural zeros constitute about two-thirds (69%) of the zero bar for air, and 

66% of the zero bar for car. It is of interest to compare our results with those obtained by 

Graham and Metz (2017) for the UK. Their sample contained 8% non-flyers, 43% 

infrequent flyers, and 49% frequent flyers. Given that the typology of segments is similar, 

it is quite surprising that the two studies report such different shares of segments 

(correspondingly 41%, 33%, and 26% in our study). Seemingly, overall, the fraction of 

zero-trip individuals in our study is greater than that of the UK study. However, this simple 

comparison requires some caveats. First, the numbers in Graham and Metz (2017) include 

any trip purposes and any destinations (i.e. both domestic and international), whereas our 

study focused on leisure-purpose domestic trips. Hence, we expect a larger share of zero 

trips in our study. Second, due to geographical and economic factors, driving is more 

feasible/attractive for those who make long-distance trips in the contiguous US than those 

in the UK (which is an island about 1/40th of the land area of the US, and having higher 

gas prices in general). Third, the UK has more airports (about 40 airports, whereas there 

are 9 airports in Georgia) and greater urbanization; hence, UK residents may have greater 

accessibility to airports than Georgians. These second and third factors make it much more 

likely that Georgians will drive instead of fly for many of their long-distance leisure trips, 

relative to UK residents. Lastly, the distribution of demographics might be at play. Graham 

and Metz (2017) reported that their sample quotas were set to be representative of the UK 

with respect to gender and age; however, it is not clear how geography, income, and vehicle 
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ownership (which would affect air travel patterns) are distributed in the sample. On the 

other hand, our study employed sample weights, but the sample is still biased to some 

extent. All these discrepancies doubtless contributed to the differences in the results (which 

are in the expected direction). 

Regarding one important factor, Figure 4-4 exhibits the estimated share of cases in 

the structural zeros regime as distance to ATL airport is hypothetically varied for everyone 

in the sample, from “no impedance” to several hundred miles away (leaving other factors 

at their sample values). As everyone moves from the place of “no impedance” to 100 miles 

away from the ATL airport, the share falling into the structural zeros regime changes from 

0.2 to 0.52 for air travel. This means, on the one hand, that 20% of people would not make 

long-distance leisure trips by air even if they have no accessibility impedance to the airport 

– i.e., about a fifth of the population may have hard-core constraints or disinclinations to 

traveling by air for leisure. It means, on the other hand, that if everyone lived 100 miles 

away from the ATL airport, slightly under half (about 48%) of them would still generate 

domestic leisure air travel. By contrast, the change for the same scenario is from 0.3 to 0.18 

for car travel. The share of structural zeros decreases because greater distance from a major 

airport motivates some to choose car for their long-distance leisure travel instead of flight. 

However, about 15% of people would not generate car-based long-distance leisure trips 

regardless of their accessibility to the airport (i.e., no matter how far away an airport is) – 

again indicating the presence of hard-core constraints or disinclinations, this time 

associated with the car mode. 
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Figure 4-4. Estimated share of those in the structural zeros regime by hypothetical 

distance to the ATL airport 

 

4.4.4 Profiles of each group 

In this study, we built two ZINB models for air and car travel. A natural follow-up 

question might be, “who never makes long-distance trips?” and “who did not make long-

distance trips all year, even if they do so less often?” Table 4-3 and Table 4-4 already hinted 

at answers to this question. To provide more concrete answers, Table 4-5 presents the 

profiles of specifically three types of people: structural zero trip-makers, incidental zero 

trip-makers, and non-zero trip-makers. Profiles for the two types of zeros are calculated 

based on membership probability-weighted (and sample-weighted) characteristics among 

zero-trip individuals, whereas those of non-zero trip-makers are determined by their non-

zero-trip observations.  
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On average, the non-zero trip-makers are the youngest and have the highest income, 

whereas the structural zero trip-makers are the oldest and have the lowest household 

income for both air and car travel. There is a difference in the share of cases having children 

age 14 and under with respect to car travel – the share of those in the structural zero regime 

is particularly lower. Non-zero air trip-makers live in the densest areas on average, whereas 

structural zero regime members for air travel live in the lowest density areas. As expected, 

there are notable differences in average distance to ATL or nearest major airport among 

the three air travel groups. However, the differences seem marginal among the three car 

travel groups. As expected, average tech-savvy, travel-liking, and polychronic propensities 

score in descending order for non-zeros, incidental zeros, and structural zeros for both air 

and car trips. In terms of the pro-car-owning propensity, the air and car groups exhibit 

opposite directions of progression. In sum, we can clearly see the role of instrumental 

factors such as income, age, and presence of children, as well as attitudinal factors such as 

travel-liking and pro-car-owning, in distinguishing the structural zero cases from the trip-

making cases in general and the incidental zero cases in particular.  

We looked at two additional attitudinal constructs that are seemingly relevant but 

not included in the final models: the pro-exercise and family-oriented predispositions also 

differ by group. For both air and car modes, the non-zeros group has the highest average 

proclivity for exercise, followed by the incidental zeros and then structural zeros. It seems 

that the enjoyment of physical activity is one motivation for long-distance leisure travel 

(e.g. for camping, hiking, and other outdoor physical activities). Similarly, the average 

family-oriented attitude scores follow the same ordering, for both air and car trips, 

suggesting that visiting family and/or traveling with family are additional motivations for 
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long-distance leisure travel. The differences in average propensities are greater for car 

travel than for air travel. In particular, the structural zero regime members for car travel 

have the lowest average family-oriented predisposition.   

Table 4-5. Characteristics of the three groups 

  Mode  Air    Car   

 Group 
Structural 

zeros 

Incidental 

zeros 

Non-

zeros 

Structural 

zeros 

Incidental 

zeros 

Non-

zeros 

  Share 0.41 0.33 0.26 0.10 0.25 0.65 

Share          

Gender Female 0.49 0.54 0.54 0.49 0.51 0.53 

Age 18-34 0.17 0.22 0.31 0.09 0.19 0.25 
 35-44 0.16 0.16 0.20 0.15 0.16 0.18 
 45-64 0.40 0.41 0.37 0.40 0.41 0.39 
 65+ 0.27 0.21 0.11 0.36 0.24 0.17 

Income Below $50,000 0.60 0.39 0.19 0.84 0.53 0.32 
 $50,000 - $99,999 0.28 0.33 0.34 0.13 0.31 0.35 

  $100,000 or more 0.12 0.27 0.47 0.04 0.16 0.34 

Household 

composition 

Presence of 

children age 14 and 

under 

0.24 0.21 0.19 0.12 0.20 0.24 

Mean               

Geographical 

characteristics 

Population density 

(per acre) 
2.46 3.60 4.67 2.98 3.62 3.40 

 Distance to ATL 

airport (mi) 
104.42 77.71 54.37 87.28 82.28 81.86 

  
Distance to nearest 

major airport (mi) 
73.83 58.07 41.07 67.30 61.68 58.30 

Attitudes Tech-savvy -0.13 0.25 0.53 -0.51 0.08 0.31 
 Pro-car-owning 0.20 -0.12 -0.26 -0.21 0.04 -0.02 
 Travel-liking -0.16 0.04 0.20 -0.54 -0.08 0.12 

  Polychronic -0.28 0.10 0.26 -0.57 -0.09 0.10 

 Pro-exercise -0.33 -0.11 0.32 -0.51 -0.19 0.02 

 Family-oriented -0.16 -0.06 -0.04 -0.36 -0.28 0.02 

4.5 Conclusions 

4.5.1 Summary and relevance of findings 

This study examined long-distance travel behavior of residents in the state of 

Georgia. Based on a survey conducted in 2017-2018, we modeled the number of domestic 

leisure long-distance trips (involving an overnight stay) over the past 12 months by air and 
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car modes. We observed that zero trips comprised more than half the responses, and posited 

that there could be two possible types of zeros: structural and incidental. The former is 

generated by those who either cannot make long-distance trips because of more permanent 

reasons such as monetary/physical/mental constraints or who simply lack the motivation 

to do so; the latter occurs among those who do make such trips but did not do so over the 

past 12 months for incidental reasons.  

Based on that supposition, we used zero-inflated negative binomial (ZINB) models, 

which are a special type of latent class model, to simultaneously explain the selection of 

people into a structural zero-trip regime or a trip-making regime, and the number of trips 

(possibly including zero) made by the latter group. To our knowledge, this is the first study 

of long-distance travel to decompose the zeros using this methodological approach to 

treating an issue of imperfect information (namely, ignorance of the regime to which a 

zero-trip person belongs). The models produced meaningful insights. Selected 

demographics, attitudes, and geographical characteristics played important roles in 

explaining the segmentation of people into the two regimes, and the amount of long-

distance leisure travel.  

The study presented separate models by mode and they showed different 

sensitivities to the explanatory variables. In particular, the presence of children and 

distance to a major airport had different roles in the models. For example, the presence of 

children acted as a barrier to membership in the trip-making regime for air travel, but it 

was a facilitator for car travel. On the other hand, it was negatively associated with the 

number of trips in both modes. Not surprisingly, accessibility to airports does matter. As 

distance increased, both the probability of membership in the trip-making regime and the 
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count of trips were diminished for air travel, but car travel exhibited the opposite effects. 

In addition, it is not about accessibility merely to any nearest airport (a variable that was 

tested and found insignificant). Rather, accessibility to major airports, which provide 

greater flight frequencies and more destination options, appears to be more important. A 

profile analysis of the two zero groups and the non-zero group showed clear differences 

across all three groups with respect to both instrumental factors (e.g. income, age, and 

presence of children) and attitudinal factors (e.g. travel-liking and pro-car-owning), in 

expected but still informative ways. 

The two types of zeros identified in this study could be of interest to several types 

of actors, including planners/policymakers, environmental groups, and the tourism 

industry, as well as researchers specializing in each of those areas. The structural zeros call 

for deeper investigation into their sources, specifically the extent to which people never 

make domestic leisure long-distance trips due to constraints (which points to an association 

with social disadvantage) versus lack of interest/motivation (which is a matter of personal 

preference). In particular, those with constraint-based structural zeros for air travel would 

tend to have a limited range for their long-distance leisure travel. For the incidental zeros, 

on the other hand, it is desirable to understand the factors contributing to making more or 

fewer trips. But while the questions may be similar, the uses to which the answers would 

be put may differ by entity.  Environmentalists may wish to discourage long-distance travel 

(especially by air); the tourism industry wishes to encourage it (both by increasing the trip 

frequency of trip-makers and by nudging some people out of the zero-trip regime); and 

policymakers may wish to balance well-being, social disadvantage, environmental, and 

economic considerations. 
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4.5.2 Limitations and directions for future research 

The decomposition of zeros into permanent or structural zeros versus occasional or 

incidental zeros is suitable for many contexts in behavioral studies. Specifically, analysts 

are often required to explain both whether people participate in a particular activity at all, 

and how much they do so, with different processes governing each of those decisions and 

with an inability to observe whether a zero is permanent or incidental. For example, we can 

expect that some kinds of people will “never” use (micro-) shared mobility (e.g. Uber/Lyft, 

e-scooter, e-bike), e-shopping, teleworking, etc., while others may only “incidentally” not 

use it during the study period. As with other studies taking a similar approach, such as 

Alemi et al. (2019), it will be worthwhile to apply the method to those empirical contexts. 

As noted in Section 4.3, zero-inflated and hurdle models are both candidates for addressing 

“excessive” zero issues, but they work on different assumptions about the behavioral 

mechanisms. Hence, researchers should exercise care in choosing the method and 

interpreting the results, to adduce proper implications from the empirical context.  

The present study has several limitations, which point to fruitful directions for 

future research.  It focused on the number of any domestic leisure overnight trips by each 

mode. However, decisions on the number of trips and travel mode are expected to heavily 

depend on a particular origin-destination pair (for example, decisions for Atlanta-Orlando 

and Atlanta-Los Angeles could be different). Due to the limited information in the survey, 

the study could not account for such specificity, and thus is not capable of addressing how 

people make decisions on travel mode given the particular choice situation. Further studies 

may delve into those issues. 
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Along the same lines, multiple purposes are often involved in long-distance travel 

(e.g. a leisure purpose can be added to a business trip). The survey did not capture such 

mixed purposes, and indeed the present study focused on trips whose primary purpose was 

leisure. In this regard, it would be desirable for future research to analyze mixed-purpose 

long-distance trips or interactions among multiple purposes in the long-distance travel 

context. Another limitation of our survey is that it did not measure trip durations. There 

could well be a tradeoff between frequency and duration, with some people – perhaps 

especially families with children (as a reviewer pointed out) – making fewer but longer 

trips. It would be useful to measure both frequency/counts and duration, and model them 

jointly. 

With respect to modeling, we estimated the share of those who systematically 

generate zero trips. Although we were able to profile the members of the structural zero-

trip regime to some extent, our general-purpose survey did not measure life-long 

experiences of long-distance travel, nor explicit reasons for not making long-distance trips 

(such as fear of flying, or geographic extent of one’s social network). Ideally, those key 

variables should be measured by designing a special-purpose survey. For example, Graham 

and Metz (2017) presented the shares of the self-reported reasons for being non-flyers (e.g. 

budget constraints, flying is not an option, preferring other modes, etc.). Tackling the issue 

of the missing information, the present study relied on modeling, resulting in the 

probabilistic classification of people, instead of being able to exploit an explicit indicator 

that could deterministically classify them. There is no formal way to demonstrate that our 

(probabilistic) classifications are valid, without an indicator of the ground truth. At best, 

we can check the goodness of fit of the model and confirm that it explains the data 
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significantly better than a simpler model. Thus, this caveat remains in the method (in fact, 

this issue is embedded in any type of latent class modeling). 

Two remarkable “interventions” are prominent in transportation research 

nowadays, and they have implications for long-distance travel. Autonomous vehicles 

(AVs) enable “hands-free” travel, thus rendering greater convenience and comfort for long-

distance trips and particularly allowing the passenger to conduct other activities while 

traveling (cf. LaMondia et al., 2016; Kim et al., 2019a; Perrine et al., 2020). Hence AVs 

can provide the benefits of both air travel (e.g. comfort, no need to drive, activities while 

traveling) and car travel (e.g. privacy, less expensive for groups, availability of one’s own 

car at the destination). We speculate that AVs will ultimately reduce the share of people 

belonging to the structural zero-trip regime. For example, some of those who do not make 

long-distance leisure trips by car because of their high value of time and resistance to long-

distance driving may benefit from hands-free car travel. In addition, some of those who 

cannot travel by air because of the price of airfare, living far from the airport, and having 

mental/physical barriers to flying will take advantage of AVs. Another intervention is the 

COVID-19 pandemic, which is significantly affecting long-distance travel-related 

industries. We expect that COVID-19 creates both types of zero trips for long-distance 

travel. A first-order impact is to generate temporal or incidental zeros. This is mainly 

because of travel advisories/ prohibitions/ flight-and-event cancellations as well as fear of 

contact with others. Making zero trips due to these reasons may not last as conditions 

eventually return to a new normal, and hence, those zero trips are expected to gradually 

change to trips. In the near-term recovery period, some people are likely to travel at even 

higher frequencies than before, due to the release of suppressed demand and as postponed 
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events are rescheduled. This study is unable to explore the effects of these two 

interventions, but they are fertile areas for future research. 

Lastly, the study context is specifically the U.S. state of Georgia. We can conjecture 

that long-distance travel behavioral processes will vary across states and countries as we 

already hinted in Section 4.4.3 in comparing our results with those of Graham and Metz 

(2017). Aside from the fact that demographics and economies differ across region, we 

particularly expect that the geographical locations of major airports, the size of the airports, 

and the destination options in adjacent regions would matter. Recall that Georgia has the 

ATL airport, which has the largest passenger flows in the U.S. (and among the highest in 

the world), and thus other airports may have smaller catchment areas (meaning that the 

effect of accessibility may be smaller). In addition, European or Asian contexts, which are 

geographically more condensed and have substantial rail passenger flows, may produce 

different stories for long-distance travel, such as different shares of the structural zero-trip 

regime, roles of modes, and size of airport catchment areas. 
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CHAPTER 5. LATENT CLASS MODELS WITH AN ERROR 

STRUCTURE 

Paper title: Latent class models with an error structure: Investigating potential dependence 

between latent segmentation and behavior generation 

 

5.1 Introduction 

In the year 2000, James L. Heckman and Daniel L. McFadden won the Sveriges 

Riksbank Prize in Economic Sciences in Memory of Alfred Nobel. Their main 

contributions were “for his [Heckman’s] development of theory and methods for analyzing 

selective samples” (emphasis added) and “for his [McFadden’s] development of theory 

and methods for analyzing discrete choice” (emphasis added)42. Indeed, their theories and 

methods are now ubiquitous and have provided major horsepower to research in various 

fields such as economics, other social sciences, and transportation. Their seminal works 

are distinct, but interrelated. Heckman recollected the background behind his development 

of methods in his Nobel Prize lecture (Heckman, 2001, p .686): “The two sets of tools 

available to me were classical Cowles Commission simultaneous equations theory and 

models of discrete choice originating in mathematical psychology that were introduced into 

economics by Quandt (1956, 1970), McFadden (1974, 1981), and Domencich and 

McFadden (1975). My goal was to unite these two literatures in order to produce an 

economically motivated, low dimensional, simultaneous equations model with both 

                                                 
42 The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2000. NobelPrize.org. 

Nobel Media AB 2020. Tue. 9 Jun 2020, https://www.nobelprize.org/prizes/economic-

sciences/2000/summary/. 

https://www.nobelprize.org/prizes/economic-sciences/2000/summary/
https://www.nobelprize.org/prizes/economic-sciences/2000/summary/
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discrete and continuous endogenous variables that accounted for systematically missing 

wages for nonworkers and different dimensions of labor supply within a common 

framework, that could explain female labor supply, and that could be the basis for a 

rigorous analysis of policies never previously implemented.”  

Not only is discrete choice analysis embedded in sample selection models, but also 

the sample selection approach is closely related to endogenous sampling and relevant 

statistical treatments in discrete choice analysis, when the standard assumption of random 

sampling is violated (McFadden, 2001). Additionally, one of McFadden’s important 

studies (McFadden and Train, 2000) demonstrated the power of mixed logit models by 

showing that any discrete choice model derived from random utility maximization can be 

approximated as closely as desired by a mixed logit model. An important comment in the 

study pertains to the latent class model, which is our interest in this chapter: it is a special 

case of mixed logit where the mixing distribution has finite (instead of continuous) 

supports. Our study exploits the fundamentals of these two economics giants’ contributions 

as connecting some of the major ideas embedded in both the latent class model and sample 

selection. Although Heckman’s sample selection model was originally devised for linear 

regression problems, it has been extended to many cases including choice problems.  

As indicated, in this study we focus on latent class modeling. A basic idea of latent 

class models in behavioral modeling is to introduce a finite mixture into the discrete choice 

model (or any other outcome model) and to probabilistically segment the sample into 

(latent) subgroups that have different behavior functions. Latent class modeling (or finite 

mixture modeling) has been widely used in various applications such as residential location 

(Walker and Li, 2007), health care utilization (d’Uva and Jones, 2009), purchase channel 
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choice (Tang and Mokhtarian, 2009), rail ticket purchase timing (Hetrakul and Cirillo, 

2013), financial satisfaction (Brown et al., 2014), obesity (Greene et al., 2014), college 

choice (Schmidt et al., 2019), choice of financial advisors (Amaral and Kolsarici, 2020), 

and so on. In particular, transportation has been an important application domain for latent 

class modeling, involving topics such as mode choice (Bhat, 1997; Vij et al., 2013), vehicle 

ownership (Anowar et al., 2014; Kim and Mokhtarian, 2018), preference for bus fare 

structure (Hess et al., 2013), and crash analysis (Eluru et al., 2012; Yasmin et al., 2014). A 

more comprehensive review is available in CHAPTER 2. Its popularity is mainly 

attributable not only to its performance, but also its conceptual attractiveness for treating 

various types of heterogeneity (Hess, 2014; CHAPTER 2).  

One of the major differences of latent class modeling from other discrete 

segmentation models is, as we can infer from the name, that we do not know the true 

indicator for segmenting the population. Interestingly, there are a few implicit assumptions, 

whose tenability has been rarely discussed, associated with most latent class models. As 

noted in CHAPTER 3, a particular assumption of interest in this study is that the 

membership and outcome models are independent (i.e. those two behavioral processes are 

not associated and thus their error terms are not correlated). This is a crucial difference 

from sample selection modeling, which postulates that sample selectivity is endogenous to 

the outcome equations, aside from the other difference that typical sample selection models 

have a known group indicator (which is not the case for latent class models). What if the 

mechanisms governing how people belong to segments and how people generate behaviors 

share common unobservables? This could be likely in many contexts – for example, 

suppose it is revealed that there are health “nuts” and those who are indifferent to 
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maintaining healthy practices. If we model the number of walk/bike trips, such a model 

will likely share unobserved characteristics with membership in those segments. In this 

case, the propensity of belonging to the health-nuts class and the propensity to generate 

walk/bike trips could be positively associated. 

In other words, we want to combine the main ideas of latent class modeling and 

sample selection modeling (or the endogenous switching model). To this end, we 

incorporate an error structure into the latent class modeling framework. There have been 

several types of latent class models incorporating an error structure. Errors could be 

correlated across decisions by an individual (Vij et al., 2013), across alternatives (Wen et 

al., 2012), between joint choices (Vij et al., 2013), and between an endogenous variable 

and the error term (Maness and Cirillo, 2016). However, another possible avenue, which 

we discuss in this chapter, is to have an error structure between the membership and 

outcome models. As noted by Greene et al. (2014), this approach resembles the switching 

regression model, but the key difference is that the individual’s segment membership is 

unobserved. Greene et al. (2014) is the only attempt we are aware of that questions the 

implicit assumption of independence for latent class models and provides some supporting 

results. They proposed this approach, in particular with two latent classes, and applied it to 

obesity analysis in health economics. The present authors are unaware of discussions about 

the validity of the independence assumption elsewhere, including in the transportation 

domain, despite the numerous applications of latent class modeling. Hence, this study aims 

to introduce this approach to transportation analysts and latent-class model users, to 

propose models, and to demonstrate empirical applications with two different examples. In 
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addition, our study provides key equations (including for marginal effects) and discusses 

subtle but important methodological implications of the proposed approach. 

The remainder of this chapter is organized as follows. Section 5.2 proposes the 

modeling framework. In Sections 5.3 and 5.4, we apply the proposed methodology to two 

empirical contexts. Section 5.5 summarizes the findings and discusses future directions.  

5.2 Methodology 

5.2.1 Model formulation 

This study derives equations for two latent classes, and two types of outcome: 

binary or ordinal. Let us start with the membership model (or selection model). Suppose 

there are two segments in the population. If we formulate a binary probit model (i.e. 

assuming normality of the error term), the membership propensity and probabilities are 

given by Eqs. (5.1, 5.2, 5.3). 

 𝑧𝑖
∗ = 𝑾𝑖𝜶 + 𝑢𝑖 , (5.1) 

 𝑃(𝑧𝑖 = 1) = Φ(𝑾𝑖𝜶) ,  (5.2) 

 𝑃(𝑧𝑖 = 0) = 1 − 𝑃(𝑧𝑖 = 1) = 1 − Φ(𝑾𝑖𝜶) = Φ(−𝑾𝑖𝜶) , (5.3) 

where 𝑖 indexes the individual, 𝑧𝑖
∗ is a latent variable determining class membership, 𝑾 is 

a vector of membership variables, 𝜶 is a vector of membership parameters, and 𝑢𝑖 is an 

error term. Throughout the chapter, 𝜙(∙) and Φ(∙) denote the standard normal density and 

cumulative probability functions, respectively. If 𝑧𝑖
∗ > 0 an individual belongs to class 1 
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(𝑧𝑖 = 1), and otherwise belongs to class 0 (𝑧𝑖 = 0). The class-specific outcome utility 

functions are: 

 𝑌𝑖1
∗ = 𝑿𝑖𝜷1 + 휀𝑖1  (5.4) 

 𝑌𝑖0
∗ = 𝑿𝑖𝜷0 + 휀𝑖0 , (5.5) 

where 𝑌𝑧
∗ denotes the latent outcome propensity for class 𝑧 (1 or 0), 𝑿 is a vector of 

explanatory variables, 𝜷 is a vector of parameters, and 휀 is an error term. The unconditional 

(marginal) outcome probabilities, Eq. (5.6), can be obtained by summing over 𝑧 the joint 

probability of belonging to class 𝑧 (= {1,0}) and obtaining an outcome 𝑦 (= {1,0} if binary 

and = {1, 2, . . ., 𝑗, . . ., 𝐽} if ordinal). Each of the overall probabilities will be specified 

shortly. 

 𝑃(𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖) = 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖) + 𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖) (5.6) 

The heart of the proposed methodology is to introduce an error correlation structure 

over the equations for joint modeling. The error terms in the system are assumed to follow 

the trivariate normal distribution, as in Eq (5.7): 

 

(

𝑢𝑖

휀𝑖1

휀𝑖0

) ~𝑁 [(
0
0
0

) , (

1 𝜌1 𝜌0

𝜌1 1 0
𝜌0 0 1

)] . (5.7) 

Here, the variances of 𝑢𝑖, 휀𝑖1, and 휀𝑖0 are fixed at 1 for identification. 𝜌1 and 𝜌0 

correlate the unobserved variables associated with the membership model with those of the 
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respective outcome models. Note that the covariance between 휀𝑖1 and 휀𝑖0 is fixed at zero 

since everyone can belong to only one of the two classes and thus the correlation is 

unidentifiable. As noted by Greene (2012), the choice of zero is merely for convenience 

and it does not play a role in the estimation of the model coefficients. This error structure, 

in fact, is equivalent to that of the endogenous switching model (cf. Cameron and Trivedi, 

2005; Greene et al., 2014; CHAPTER 3), a variation on Heckman’s original sample 

selection model (in which, originally, an outcome was observed for only one of the two 

segments; Heckman, 1979).  

 Allowing the error structure in the modeling system (specifically between the 

segmentation and outcome equations) calls for some important remarks. The standard 

latent class model is formulated with (finite) mixture modeling, which implies that Eqs. 

(5.4) and (5.5) are conditional (on class) distributions and 휀1 and 휀0 are defined over the 

subpopulations of class 1 and class 0 respectively. On the other hand, the proposed method 

takes the nature of a latent class model by treating the class membership indicator (𝑧) as 

latent, but at the same time, it takes on endogenous switching model characteristics. In the 

spirit of the endogenous switching model, 휀1 and 휀0 are defined over the population 

because 𝑢, which is correlated with 휀1 and 휀0, is defined over the population (Maddala, 

1986).43 In this case, Eqs. (5.4) and (5.5) are specified at the population (rather than the 

subpopulation) level and we observe 𝑌1 only if 𝑧∗ > 0 and 𝑌2 only if 𝑧∗ < 0.  

                                                 
43 Greene et al. (2014) provided the inspiration for this approach, but were not clear about this point. For 

example, they claimed (p.5), “This paper extends the finite mixture/latent class model literature by 

explicitly defining a latent variable for class membership as a function of both observables and 

unobservables, thereby allowing the equations defining the class membership and observed outcomes to be 

correlated”. However, the phrase “finite mixture model” may introduce confusion. Indeed, this proposed 

method can be considered latent class modeling and perhaps, loosely speaking, finite mixture modeling, in 

that the model contains finite latent classes that have different behavioral processes (or functional forms). 



 183 

The joint choice probabilities are as follows: 

In the binary case, 

 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, 𝑿𝑖𝜷1, 𝜌1]  

𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = Φ2[−𝑾𝑖𝜶, 𝑿𝑖𝜷0, −𝜌0]  

𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 0|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, −𝑿𝑖𝜷1, −𝜌1]  

𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 0|𝑿𝑖 , 𝑾𝑖) = Φ2[−𝑾𝑖𝜶, −𝑿𝑖𝜷0, 𝜌0]  
(5.8) 

In the ordinal case, 

 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, (𝜇1,1 − 𝑿𝑖𝜷1), 𝜌1]  

𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, (𝜇1,𝑗 − 𝑿𝑖𝜷1), 𝜌1] −

Φ2[𝑾𝑖𝜶, (𝜇1,(𝑗−1) − 𝑿𝑖𝜷1), 𝜌1]  

𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 𝐽|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, (−𝜇1,(𝐽−1) + 𝑿𝑖𝜷1), −𝜌1]  
(5.9) 

 𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = Φ2[−𝑾𝑖𝜶, (𝜇0,1 − 𝑿𝑖𝜷0), −𝜌0]  

𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖) = Φ2[−𝑾𝑖𝜶, (𝜇0,𝑗 − 𝑿𝑖𝜷0), −𝜌0] −

Φ2[−𝑾𝑖𝜶, (𝜇0,(𝑗−1) − 𝑿𝑖𝜷0), −𝜌0]  

𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 𝐽|𝑿𝑖 , 𝑾𝑖) = Φ2[−𝑾𝑖𝜶, (−𝜇0,(𝐽−1) + 𝑿𝑖𝜷0), 𝜌0]  
(5.10) 

where Φ2(∙) denotes the bivariate cumulative standard normal distribution, 𝜇𝑧,𝑗 represents 

the 𝑗th threshold parameter of class 𝑧, and the other notation is as defined earlier. Given 

                                                 
However, statistically speaking, allowing the error correlation structure puts this model closer to the 

endogenous switching model family than to the mixture model family, due to the reasons described above. 
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the joint probabilities and marginal probabilities of membership, the class-specific 

conditional choice probabilities are given by Eqs. (5.11) and (5.12). 

 𝑃(𝑦𝑖 = 𝑗|𝑧𝑖 = 1, 𝑿𝑖 , 𝑾𝑖) =
𝑃(𝑧𝑖=1,𝑦𝑖=𝑗)

𝑃(𝑧𝑖=1)
  , and (5.11) 

 𝑃(𝑦𝑖 = 𝑗|𝑧𝑖 = 0, 𝑿𝑖 , 𝑾𝑖) =
𝑃(𝑧𝑖=0,𝑦𝑖=𝑗)

𝑃(𝑧𝑖=0)
  . (5.12) 

The joint probabilities are equivalent to bivariate probit models. In conventional 

bivariate probit models, however, we know the choice indicators for both dimensions, 

whereas here one of the dimensions is latent. If 𝜌1 and 𝜌0 are zeros, the models are reduced 

to standard latent class models with a probit link function (instead of the usual logit link, 

cf. CHAPTER 2). Hence, in this case, the joint probabilities are just the products of the two 

associated marginal probabilities.  

Returning to the more general (error correlation) case, the log-likelihood (𝐿𝐿) can 

be obtained by summing the logged marginal probabilities of the chosen outcomes over 

individuals (binary and ordinal respectively): 

 𝐿𝐿 = ∑ [𝑦𝑖 ln 𝑃(𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) + (1 − 𝑦𝑖) ln 𝑃(𝑦𝑖 = 0|𝑿𝑖 , 𝑾𝑖)]𝑛
𝑖=1  ,44 (5.13) 

 𝐿𝐿 = ∑ ∑ 𝐼(𝑦𝑖 = 𝑗) ln 𝑃(𝑦𝑖 = 𝑗|𝑿𝑖 , 𝑾𝑖)
𝐽
𝑗=1

𝑛
𝑖=1  , (5.14) 

                                                 
44 In the empirical application (Study 2), the model will deviate from this standard form. We will derive the 

log-likelihood function under the assumption that only one of the regimes has an outcome equation. This is 

a type of confirmatory latent class model (CHAPTER 2 and CHAPTER 4), and is analogous to the zero-

inflated model. The revised likelihood equation will be provided in Section 5.4. 
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where 𝐼(𝑦𝑖 = 𝑗) = {
1, 𝑖𝑓 𝑦𝑖 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  

For statistical inference, we calculate standard errors via bootstrapping that 

provides asymptotically consistent estimates. Bootstrapping approximates the distribution 

of a statistic by a Monte Carlo simulation. In other words, the basic idea is to re-estimate 

many times on different samples taken from the original sample (with replacement). This 

bootstrapping method also relies on asymptotic theory like other conventional methods 

(Cameron and Trivedi, 2005). The asymptotic covariance matrix based on bootstrapping is 

as follows: 

 

𝑉(�̂�) =
1

𝐵 − 1
∑ [�̂�𝑏

∗ − �̅̂�𝐵]

𝐵

𝑏=1

[�̂�𝑏
∗ − �̅̂�𝐵]

′
 (5.15) 

where 𝑏 indexes bootstraps (𝑏 = 1, 2, … , 𝐵), �̂�𝑏
∗  indicates the vector of estimated 

parameters {�̂�, �̂�, �̂�1, �̂�0}
𝑏
 for the 𝑏𝑡ℎ bootstrapped sample, and �̅̂�𝐵 is the average of the 𝐵 

bootstrapped estimates.  

A major decision is the number of bootstraps, which has been discussed in several 

studies (e.g. Efron and Tibshirani, 1986; Davidson and McKinnon, 2000). In this study, we 

employ 500 bootstraps, which is considered sufficient. For details about the bootstrapping 

method, please refer to Efron and Tibshirani (1986), Greene (2012), or Train (2009). One 

of the drawbacks of using bootstrapping is estimation time, since we need to repeat the 

estimation process multiple times with resampled cases. As a partial remedy, we employ 

parallel computation (i.e. giving computation tasks to multiple cores instead of one; this 
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study uses 40 logical processors). Since each computation task (i.e. estimation of each 

bootstrapped sample) does not need to communicate with any others (i.e. no dependence), 

parallelization is particularly straightforward and beneficial.  

5.2.2 Marginal effects 

It is often of interest to see how choice probabilities change with respect to changes 

in an explanatory variable. Here we present several derivatives of probabilities (i.e. 

partial/marginal effects) with respect to variables of interest. For the binary case, 

derivatives of the joint probabilities with respect to 𝑊𝑚 and 𝑋𝑚 are given by: 

 
𝜕𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝜕𝑊𝑖𝑚
=

𝜕Φ2[𝑾𝑖𝜶,𝑿𝑖𝜷1,𝜌1]

𝜕𝑊𝑖𝑚
= 𝜙(𝑾𝑖𝜶)Φ (

𝑿𝑖𝜷1−𝜌1𝑾𝑖𝜶

√1−𝜌1
2

) 𝛼𝑚 , (5.16) 

 
𝜕𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝜕𝑋𝑖𝑚
=

𝜕Φ2[𝑾𝑖𝜶,𝑿𝑖𝜷1,𝜌1]

𝜕𝑋𝑖𝑚
= 𝜙(𝑿𝑖𝜷1)Φ (

𝑾𝑖𝜶−𝜌1𝑿𝑖𝜷1

√1−𝜌1
2

) 𝛽1𝑚 , (5.17) 

and analogously for the remaining combinations of values for 𝑧 and 𝑦. 

Derivatives of the choice probabilities conditional on membership (for 𝑧𝑖 = 1,

𝑦𝑖 = 1), with respect to 𝑋𝑚 and 𝑊𝑚, are given by: 

 
𝜕𝑃(𝑦𝑖=1|𝑧𝑖=1)

𝜕𝑋𝑖𝑚
=

𝜕
𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝑃(𝑧𝑖=1)

𝜕𝑋𝑖𝑚
=

1

Φ(𝑾𝑖𝜶)
𝜙(𝑿𝑖𝜷1)Φ (

𝑾𝑖𝜶−𝜌1𝑿𝑖𝜷1

√1−𝜌1
2

) 𝛽1𝑚 , (5.18) 
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𝜕𝑃(𝑦𝑖=1|𝑧𝑖=1)

𝜕𝑊𝑖𝑚
=

𝜕
𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝑃(𝑧𝑖=1)

𝜕𝑊𝑖𝑚
  

= 𝑃′(𝑧𝑖 = 1, 𝑦𝑖 = 1) ∗
1

𝑃(𝑧𝑖=1)
+ 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 1) ∗ (

1

𝑃(𝑧𝑖=1)
)

′
    

=
1

Φ(𝑾𝑖𝜶)
𝜙(𝑾𝑖𝜶)Φ (

𝑿𝑖𝜷1−𝜌1𝑾𝑖𝜶

√1−𝜌1
2

) 𝛼𝑚 +

Φ2[𝑾𝑖𝜶, 𝑿𝑖𝜷1, 𝜌1] (−
1

Φ(𝑾𝑖𝜶)2) 𝜙(𝑾𝑖𝜶)𝛼𝑚  
(5.19) 

The derivative of the marginal membership probability (for 𝑧𝑖 = 1) with respect to 𝑊𝑚 is: 

 𝜕𝑃(𝑧𝑖=1)

𝜕𝑊𝑖𝑚
= 𝜙(𝑾𝑖𝜶)𝛼𝑚 . (5.20) 

As a special case, when the membership and outcome models are independent (i.e. 

𝜌1 = 0), 

 𝜕𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝜕𝑊𝑖𝑚
=

𝜕Φ2[𝑾𝑖𝜶,𝑿𝑖𝜷1,𝜌1=0]

𝜕𝑊𝑖𝑚
= 𝜙(𝑾𝑖𝜶)Φ(𝑿𝑖𝜷1)𝛼𝑚  , (5.21) 

 𝜕𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝜕𝑋𝑖𝑚
=

𝜕Φ2[𝑾𝑖𝜶,𝑿𝑖𝜷1,𝜌1=0]

𝜕𝑋𝑖𝑚
= 𝜙(𝑿𝑖𝜷1)Φ(𝑾𝑖𝜶)𝛽1𝑚 , (5.22) 

 
𝜕𝑃(𝑦𝑖=1|𝑧𝑖=1)

𝜕𝑋𝑖𝑚
=

𝜕
𝑃(𝑧𝑖=1,𝑦𝑖=1)

𝑃(𝑧𝑖=1)

𝜕𝑋𝑖𝑚
  

=
1

Φ(𝑾𝑖𝜶)
𝜙(𝑿𝑖𝜷1)Φ(𝑾𝑖𝜶)𝛽1𝑚 = 𝜙(𝑿𝑖𝜷1)𝛽1𝑚 , 

(5.23) 

and similarly for 𝑧𝑖 = 0 when 𝜌0 = 0. 
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Hence, when membership function and outcome function errors are uncorrelated, 

the derivative of the conditional outcome probability with respect to one of its explanatory 

variables is reduced to the marginal effect of a simple binary probit model (i.e. the effect 

on the outcome probability is independent of membership, as expected). The derivative of 

the conditional outcome probability with respect to one of the membership function’s 

explanatory variables is 0: 

 𝜕𝑃(𝑦𝑖=1|𝑧𝑖=1)

𝜕𝑊𝑖𝑚
=

1

Φ(𝑾𝑖𝜶)
𝜙(𝑾𝑖𝜶)Φ(𝑿𝑖𝜷1)𝛼𝑚 +

Φ[𝑾𝑖𝜶]Φ[𝑿𝑖𝜷1] (−
1

Φ(𝑾𝑖𝜶)2) 𝜙(𝑾𝑖𝜶)𝛼𝑚  

=
1

Φ(𝑾𝑖𝜶)
𝜙(𝑾𝑖𝜶)Φ(𝑿𝑖𝜷1)𝛼𝑚 −

Φ[𝑿𝑖𝜷1]
1

Φ(𝑾𝑖𝜶)
𝜙(𝑾𝑖𝜶)𝛼𝑚 = 0  

(5.24) 

It is worth noting two things. First, the derivations above are for cases where 

variables in the membership model (𝑾) and outcome model (𝑿) are mutually exclusive. In 

other words, variables do not have double roles in both models (otherwise, the derivatives 

would need to account for their role in both models). Second, when a variable is 

transformed in the model, an additional term is required. For example, in Study 2, 𝑊𝑖𝑚 

(population density) is actually modeled with ln 𝑊𝑖𝑚 and thus to calculate the derivative 

with respect to the original variable, 
𝜕𝑃(𝑧𝑖=1)

𝜕𝑊𝑖𝑚
= 𝜙(𝑾𝑖𝜶)𝛼𝑚 ∗ (

1

𝑊𝑖𝑚
) by the chain rule 

(
𝑑𝑃

𝑑𝑊
=

𝑑𝑃

𝑑𝑟

𝑑𝑟

𝑑𝑊
 where 𝑟 = ln 𝑊 and 

𝑑𝑟

𝑑𝑊
=

1

𝑊
). This applies to other derivatives as well. For 

the ordinal case, the derivations are basically the same, after making the logical 

replacements in the bivariate probit derivatives. 
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5.2.3 Overview of empirical applications 

In this study, we present two empirical applications of the proposed methodology. 

We want to note several things before getting into the empirical results. First, our case 

studies do not necessarily aim to demonstrate the superiority of the proposed method over 

conventional ones. For example, although the proposed method has, in theory, a more 

realistic assumption (relaxing a previous restriction), the goodness-of-fit improvement 

could be marginal. In our applications, the goodness-of-fit and parameter estimates turned 

out to be fairly similar between the standard and proposed models (we will discuss the 

reason for this in Section 5.5.1). However, we will show how the proposed method could 

exhibit different behavioral implications. In addition, in both cases, although we attended 

to conceptualization based on the literature and experimented with various model 

specifications, the final models may not be necessarily the best ones for explaining the 

behaviors in question. Rather, we aim to present the potential of the proposed method for 

travel behavior applications. Particularly, variables related to emerging transportation 

services are selected (ridehailing services and autonomous vehicles, AVs). This is because 

although they have gained substantial attention recently, factors related to use of ridehailing 

services and willingness to use AV-based services are relatively less studied. Hence, we 

may not be able to correctly specify the models and thus there could be greater potential 

for having substantial influence of unobserved variables (or, variables that are in fact 

observed, but inadvertently omitted from the models). If so, specifying error correlations 

might be helpful. Figure 5-1 illustrates the two modeling frameworks; details will be 

delineated in the following subsections.  
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Figure 5-1. Conceptual diagrams of the two empirical models 

 

5.3 Empirical application (1) 

Study 1. Modeling willingness to share AVs with strangers (ordinal outcome variable) 

5.3.1 Background 

Studies on autonomous vehicles (AVs) have proliferated over recent years, 

demonstrating the lofty expectations regarding their potential impacts. Since the primary 

goal of this study is to show an application of the proposed method, we do not present a 

fine-grained snapshot of AV studies here. In this study, we are interested in the willingness 

to use AVs, particularly for ridehailing and even more particularly for sharing a ride in one. 

In other words, we want to learn not just about the willingness to use AVs for ridehailing 

services (i.e. sequential sharing), but also about the willingness to (simultaneously) share 

the ride with strangers (as in currently-available UberPOOL services). It is important to 
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envision such willingness because, although everything is uncertain yet, AV-based 

dynamic ridesharing is considered to be a competitive business model that might affect 

overall vehicle ownership and vehicle miles traveled (e.g. Fagnant and Kockelman, 2018; 

Gurumurthy and Kockelman, 2018). 

Due to its importance, several studies have examined the willingness to use AVs. 

However, there are some variations because the measurement scales and AV use 

configurations vary across studies. Barbour et al. (2019) modeled the binary willingness 

(yes/no) to use shared AVs (SAVs; e.g. the willingness to share one’s own AV with 

strangers, or to share an AV ride with strangers) with a random parameters logit model. 

Lavieri et al. (2017) jointly modeled interest in AV adoption (with options of no interest, 

AV sharing only, AV ownership only, and both AV sharing and AV ownership; the 

meaning of sharing was not specified), current behavioral choices, and vehicle ownership. 

Nazari et al. (2018) developed a multivariate ordered probit model of the level of interest 

in private AVs and four types of SAVs (renting an AV, using an AV with and without a 

backup driver, and using an AV for a short trip to get to a vehicle; the presence of strangers 

in the vehicle was not specified). Lavieri and Bhat (2019) conducted a stated preference 

survey to see tradeoffs between solo and shared options (with strangers) when choosing 

AV rides. 

Although relevant studies are available, the current study mainly focuses on the 

general willingness to share AV rides with strangers and takes a different methodological 

approach which aims to identify distinct segments having heterogeneous sensitivities to 

factors. Note that there could be volatility in general willingness, given the uncertainty that 

is embedded in any AV study. The current study collected data in 2017-2018 and thus 
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general willingness was measured based on 2017-2018 knowledge about AVs. In addition, 

the COVID-19 pandemic brings another dimension of uncertainty. The general willingness 

to share rides could be reshaped based on the post-pandemic “new normal”. For example, 

aside from supply-side issues (e.g. how ridehailing companies change their operation 

strategy), a sizable number of consumers may not fully lose their fear of exposure to the 

virus. It is not clear to what extent the general willingness will change, but we can certainly 

expect it to be lower, to some extent, than if we had not had the pandemic. 

5.3.2 Data and modeling approach 

This study employs the GDOT data (Section 1.2.3). In the AV section of the survey, 

respondents were asked to respond to the statement “I would use a driverless taxi with other 

passengers who are strangers to me (like UberPOOL)”. Originally, a five-level option was 

provided (“very unlikely” to “very likely”), but we collapsed them into three options 

(“unlikely”, “somewhat likely”, and “likely”) for modeling purposes. There are companion 

papers using the same dataset, but envisioning AV futures from different angles such as 

short-term mode use propensities (Kim et al., 2019a), possible mid-term behavioral 

changes (Kim et al., 2020a), and longer-term residential and vehicle ownership changes 

(Kim et al., 2020b). 

For descriptive purposes, the sample was initially weighted to represent the 

population on nine selected variables (refer to Kim et al., 2019b for more details about 

weighting; however, the data were not reweighted, nor were factor scores restandardized, 

after some cases were excluded due to missing data or ineligibility). For simplicity (and 

reflecting the fact that models portray conditional relationships between variables rather 
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than absolute distributions, and therefore that population representativeness is less 

important in that context), the models were estimated on the unweighted data. Table 5-1 

shows the descriptive statistics for the unweighted and weighted sample used in Study 1.  

The basic model structure is as illustrated in Figure 5-1. Among the major decisions 

related to latent class modeling, we need to determine membership factors and outcome 

factors. As noted in CHAPTER 2, such model specification issues are is less-often 

discussed in the literature. In the early generation of marketing literature, no prior 

information was used for segmentation – i.e. segmentation was modeled with only 

intercepts and thus every individual had the same class membership probabilities – 

(Kamakura and Russell, 1989). Gupta and Chintagunta (1994) introduced demographic 

information for segmentation in latent class models. Swait (1994) provided a conceptual 

framework for the latent segmentation model, where class membership is formulated with 

general attitudes/perceptions as well as socio-demographics. Kim and Mokhtarian (2018) 

employed attitudes as the segmentation basis of the latent class model, based on the premise 

that attitudes moderate the effects of socio-demographics and the built environment on the 

vehicle ownership decision. In this application, we follow the approach of Kim and 

Mokhtarian (2018) and thus specify attitudes as the segmentation basis on the expectation 

that they moderate demographic effects on the outcome. Again, the primary goal of this 

application is to illustrate the proposed method rather than to find the best model 

specification per se; hence the final solution may not be the best one.   
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Table 5-1. Descriptive statistics of the sample (Study 1, N=3,215) 

Variable Category Unweighted share Weighted share 

Willingness to share AV  Unlikely 0.706 0.697 

rides with strangers Somewhat likely 0.183 0.182 

 Likely 0.111 0.121 

Gender Female 0.487 0.518 

Education High school or less 0.126 0.316 

 Some college 0.295 0.322 

 4-year degree or higher 0.579 0.362 

Age 18-44 0.193 0.402 

Use of ridehailing services Have used ridehailing 0.344 0.398 

Variable Category Unweighted mean Weighted mean 

Attitudes a Pro-no-car-modes 0.004 -0.007 

 Tech-savvy 0.014 0.180 

 Urbanite -0.001 0.132 

  Sociable -0.001 -0.039 

a. Attitudes are estimated factor scores (standardized) obtained by applying factor analysis to attitudinal 

statements. Statements highly loading on each factor, with their loadings, are reported in Table 1-1.  

 

5.3.3 Results 

Table 5-2 exhibits the estimation results of two models: a standard latent class 

model, and a latent class model with correlated errors. At a glance, the two models are 

similar to each other with respect to their estimated coefficients and final log-likelihood 

values. They also produce consistent parameter interpretations. Two latent classes are 

identified as a function of attitudes. Class 1 consists of those who are relatively less 

favorable to non-car modes, less tech-savvy, less urbanite, and less sociable. In both 

models, class 1 has notable features. As shown in Table 5-3, class 1 mostly produces the 

conditional choice of “unlikely” – even more drastically in the proposed model than in the 

standard latent class model. Considering that most estimated parameters (except intercepts) 

in class 1 are not statistically different from zeros, the latent class models have 
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distinguished a group of people who are “structurally unwilling” to share AV rides with 

strangers regardless of any factors included. Unlike class 1, class 0 presents average choice 

probabilities more distributed over the alternatives and has significant sensitivities to 

factors. Males, more educated, and those who have used ridehailing services are more 

willing to share AV rides with strangers. Females may be, on average, more afraid of taking 

rides with strangers and education might be associated with familiarity with new 

technologies and AVs. Experiences with using ridehailing services would give individuals 

more confidence in taking a ride with strangers.  

There are several differences between the two models. First, the proposed model 

presents a negative error correlation for class 0 that is statistically significant at the 0.01 

level. This means that unobserved variables that increase the propensity to belong to the 

“structurally unwilling” class (i.e. that increase 𝑢𝑖 of Eq. (5.1)) tend to reduce the 

propensity to share (i.e., decrease 휀𝑖0 of Eq. (5.5)) for people who actually belong to the 

“potentially willing” class. Thus, the negative correlation for class 0 seems reasonable.45 

This is an important finding, that dependency between latent segmentation and behavior 

generation is corroborated in this empirical context. Due to this error structure, we observe 

that the two models bring about different results. For example, we can confirm that the two 

models even give different pictures in a scenario analysis. Figure 5-2 presents the expected 

effect of the pro-no-car-mode attitude (a membership variable) on the conditional and joint 

                                                 
45 On the other hand, if the same logic is applied to class 1, then its estimated positive correlation could be 

counterintuitive. Although the estimate is not small, it is not significant at the 0.05 level. If taken at face 

value, however, the opposite signs of the two error correlations mean that unobserved factors that increase 

the propensity to be in class 1 (increasing 𝑢𝑖) tend to decrease the willingness to share (decreasing 휀𝑖0) for 

class 0 (as expected), while increasing it (increasing 휀𝑖1) for class 1. It is challenging to identify such 

factors, but in principle the phenomenon is quite possible, just as the same observed variable can have 

coefficients with opposite signs in the two outcome models (thereby demonstrating how valuable it is to 

have segmented models). 
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choice probabilities for class 0. The slope of the tangent line at each point of the graphs is 

the marginal effect of the selected variable that is derived in Section 5.2. As the pro-no-

car-modes attitude becomes stronger, the expected conditional choice probability of being 

“unlikely to share” decreases and probabilities of the other options increase, whereas they 

are constant in the standard latent class model (this is already derived in Section 5.2). In 

other words, when there is no endogeneity, the standard latent class model is not sensitive 

to factors related to segmentation, whereas the proposed model is. This demonstrates that 

even if the standard and proposed models have seemingly similar parameter values, they 

may produce different implications for prediction. For instance, in this case, if the overall 

attitudinal propensities are changing over the years, then the landscape of classes would 

change and the distribution of their behavioral decisions as well. 
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Table 5-2. Estimation results of Study 1 (N=3,215) 

  
Standard latent class model 

Latent class with error 

correlations 

Membership component (for class 1)         

  Estimate t-value Estimate t-value 

Intercept 0.454 1.71 -0.068 -0.22 

Pro-no-car-modes -0.711 -3.35 -0.523 -3.17 

Tech-savvy -0.191 -1.42 -0.140 -1.45 

Urbanite -0.312 -2.38 -0.241 -2.35 

Sociable -0.232 -2.57 -0.175 -2.59 

Outcome component (class 1)       

  Estimate t-value Estimate t-value 

Intercept 1 | 2 1.125 7.90 0.917 4.23 

Intercept 2 | 3 1.759 10.36 1.288 4.80 

Gender (female=1) -0.312 -1.31 -0.399 -1.22 

Education (college=1) -0.232 -0.66 -0.344 -0.83 

Education (bachelor’s or graduate=1) 0.039 0.20 -0.053 -0.23 

Age (18-44=1) 0.025 0.12 -0.005 -0.02 

Have used ridehailing services (=1) 0.342 1.73 0.190 0.61 

Outcome component (class 0)         

  Estimate t-value Estimate t-value 

Intercept 1 | 2 0.275 1.31 0.143 0.69 

Intercept 2 | 3 1.273 7.34 1.046 5.99 

Gender (female=1) -0.302 -2.60 -0.235 -2.28 

Education (college=1) 0.489 2.68 0.402 2.17 

Education (bachelor’s or graduate=1) 0.463 2.81 0.403 2.95 

Age (18-44=1) 0.117 0.90 0.084 0.78 

Have used ridehailing services (=1) 0.442 3.61 0.418 3.95 

Error correlations         

Rho parameter (class 1) - - 0.375 1.80 

Rho parameter (class 0) - - -0.474 -2.64 

Summary         

Class share (class 1, class 0) 0.632 0.368 0.451 0.549 

Number of parameters 19   21  

Log-likelihood at zero -3532.0385  -3532.0385  

Log-likelihood at convergence -2397.3835   -2394.8090  

McFadden’s R2 0.3212   0.3225   
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Table 5-3. Average marginal, conditional, joint choice probabilities 

  Standard latent class model Latent class with error correlations 

  Unlikely Somewhat likely Likely Unlikely Somewhat likely Likely 

Marginal choice (class 1) - - - 0.873 0.060 0.067 

Marginal choice (class 0) - - - 0.403 0.329 0.267 

Conditional choice (class 1) 0.877 0.085 0.038 0.938 0.034 0.028 

Conditional choice (class 0) 0.438 0.348 0.215 0.555 0.295 0.150 

Joint choice (class 1) 0.558 0.051 0.023 0.444 0.018 0.015 

Joint choice (class 0) 0.152 0.130 0.086 0.266 0.164 0.093 

 

Figure 5-2. Scenario analysis of the impact of the pro-no-car-mode attitude on class 

0’s choice probabilities 

5.4 Empirical application (2) 

Study 2. Modeling ridehailing use for social purposes (binary outcome variable) 

5.4.1 Background 

There is a growing body of literature uncovering behaviors related to the use of 

ridehailing services. A few studies have started to analyze actual trip data to understand 
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general trip characteristics (e.g. Dias et al., 2019; Yan et al., 2020; Soria et al., 2020). 

However, important variables such as user demographics and detailed trip information are 

usually missing in such actual trip data. Such data can play useful roles, but they lack the 

ability to improve our understanding in key ways. An important piece of information, we 

think, is trip purpose. Why do people use ridehailing services and what factors motivate 

them to ridehail for such purposes?  

Ridehailing usually exhibits an evening/night-peak of trip generation that is distinct 

from other modes. For example, demand peaked around 7-8 pm and exhibited a high 

plateau in the late evening in San Francisco (Castiglione et al., 2016). Dias et al. (2019) 

reported that 55% of RideAustin trips were at night (10 pm-7 am). From this fact we can 

infer that many trips might be for personal/social purposes. Several studies presented 

descriptive statistics for trip purposes. Young and Farber (2019) used a household travel 

survey in Southern Ontario, Canada, and found that “other” purpose trips (including 

entertainment, personal business, social and recreational trips) comprised about 28% of the 

ridehailing total (this is substantial given that 14% of trips by any mode are “other” purpose 

trips). Tirachini and del Rio (2019) surveyed residents in the Santiago (Chile) metropolitan 

region in 2017, and found that the most common purpose of ridehailing use was leisure 

(55.4%) followed by work (17.4%) and others. This finding – that the major trip purpose 

of ridehailing users is leisure/social – is consistent with other studies (e.g. Clewlow and 

Mishra, 2017; de Souza Silva et al., 2018). A limited number of studies aimed to model 

trip purposes. Dias et al. (2019) employed RideAustin trip data for modeling the number 

of ridehailing trips by destination trip purpose; they inferred trip purpose based on land use 

characteristics of trip origins/ destinations since trip data do not have such information. 
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Lavieri and Bhat (2019) is the only study we are aware of that aimed to identify factors 

affecting trip purpose. Using a sample from the Dallas-Fort Worth-Arlington Metropolitan 

Area of Texas, they developed a multivariate multinomial probit model of several 

characteristics (including purpose as well as time-of-day, companionship, and self-reported 

mode substitution) of the individual’s last ridehailing trip. 

5.4.2 Data and modeling approach 

This study employs the GDOT data (Section 1.2.3). Aside from the fact that the 

Study 1 and Study 2 used partially different variables, this study uses only a subset of the 

sample (people who have used ridehailing services), given its focus on the purpose of 

ridehailing trips (Table 5-4; the data were not reweighted, nor were factor scores 

restandardized, after some cases were excluded due to missing data or ineligibility). In the 

survey, respondents were asked to check the purposes of the trips that they had made by 

ridehailing or shared ridehailing services. The dependent variable is a binary indicator of 

whether the respondent (who has used ridehailing services for any purpose) has used either 

ridehailing or shared ridehailing services for any of shopping/eating/drinking/social/ 

recreational purposes.  

In this study, we hypothesize that some people use ridehailing services only for 

mandatory (e.g. work-related) or occasional events (e.g. airport, sports event), while others 

use them for a wider array of purposes including social purposes. Accordingly, in the 

context of identifying the relevant factors motivating people to use ridehailing services for 

more general purposes, particularly social purposes, we speculate that there is a type of 

person who has a greater potential of using ridehailing services for social purposes (even 
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if not all such people have actually have used them for those purposes) and another type of 

person who never considers ridehailing services for social purposes (and thus structurally 

generates no choice for social purposes), even if using such services for other reasons. This 

model takes a confirmatory latent class approach as opposed to the more common 

exploratory approach (cf. CHAPTER 2). In other words, we hypothesize certain data 

generation processes for each of the classes and check if this presumption is valid based on 

the data, whereas typical latent class models do not impose particular forms of data 

generation processes and thus each of the classes has the same form (but parameters are 

freely estimated to allow parameter heterogeneity). The proposed model resembles a zero-

inflated model, which detaches the generation of “structural/systematic zeros” from the 

usual behavior generation process (e.g. CHAPTER 4).  

We derived the probability and log-likelihood functions in Section 5.2 under the 

assumption that the two regimes have outcome equations with parameter heterogeneity (i.e. 

assuming the usual exploratory latent class approach). In this case study, because of the 

hypothesis described above, we slightly modify the probability functions (Eq. (5.25) to 

demonstrate that the proposed method can be also applied to the confirmatory latent class 

approach. In particular, we assume two regimes, where one regime (𝑧𝑖 = 1) has the 

potential to generate various outcomes (here, 𝑦𝑖 = 1 or 𝑦𝑖 = 0) and the other (𝑧𝑖 = 0) 

structurally generates a particular outcome (here, the outcome “not used for such 

purposes”, i.e. only 𝑦𝑖 = 0). Hence, in this setting, as illustrated in Figure 5-1, there is a 

single error correlation to be estimated, whereas the usual model may have the number of 

error correlations equivalent to the number of latent classes. For estimation of this model, 

we replace the marginal choice probabilities of Eq. (5.6) and error structure of Eq. (5.7) 
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with Eqs. (5.25) and (5.26), respectively, and insert Eq. (5.25) into the log-likelihood 

function, Eq. (5.13). Since 𝑧 = 0 (i.e. a structural zero) is assumed not to have a behavioral 

process in this confirmatory approach, 𝑃(𝑧𝑖 = 0, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) and 𝑃(𝑧𝑖 = 0, 𝑦𝑖 =

0|𝑿𝑖 , 𝑾𝑖) in Eq. (5.8) are not specified in this application. Notation follows the definitions 

in Section 5.2. 

 𝑃(𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 1|𝑿𝑖 , 𝑾𝑖) = Φ2[𝑾𝑖𝜶, 𝑿𝑖𝜷1, 𝜌1] , 

𝑃(𝑦𝑖 = 0|𝑿𝑖 , 𝑾𝑖) = 𝑃(𝑧𝑖 = 1, 𝑦𝑖 = 0|𝑿𝑖 , 𝑾𝑖) + 𝑃(𝑧𝑖 = 0|𝑿𝑖 , 𝑾𝑖)  

= Φ2[𝑾𝑖𝜶, −𝑿𝑖𝜷1, −𝜌1] + Φ[−𝑾𝑖𝜶] , and (5.25) 

 
(

𝑢𝑖

휀𝑖1
) ~𝑁 [(

0
0

) , (
1 𝜌1

𝜌1 1
)] . (5.26) 

 

Table 5-4. Descriptive statistics of the sample (Study 2, N=1,105 ridehailing users) 

Variable Category 
Unweighted 

share 

Weighted 

share 

Use of ridehailing services Have used ridehailing for social trips 0.700 0.710 

Gender Female 0.484 0.512 

Age 18-34 0.179 0.404 

Household income Below $50,000 0.176 0.247 

 $50,000-$99,999 0.340 0.350 

 $100,000+ 0.483 0.403 

Education 4-year degree or higher 0.740 0.591 

Race White 0.784 0.612 

Variable Category 
Unweighted 

mean 

Weighted 

mean 

Residential characteristics Population density (per acre) 3.698 1.052 

Attitudes Tech-savvy 0.381 0.612 

  Pro-no-car-mode 0.245 0.211 
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5.4.3 Results 

Table 5-5 exhibits the estimation results for two confirmatory latent class models, 

having uncorrelated and correlated errors, respectively. At a glance, as in Study 1, the two 

models are similar to each other with respect to the face values of coefficient estimates and 

final log-likelihoods. Both models present logical estimation results. As imposed, we 

identify two latent classes: one for those who are “potential social-purpose ridehailers” 

(class 1) and the other for those who are “structurally zero social-purpose ridehailers” (class 

0). As expected, class 0 tends to include those living in less-populated areas, and their share 

in the sample is marginal (about 10%).46 In all, 30% of the sample did not ridehail for social 

purposes, and our models decomposed that group into two: those who made zero social 

ridehailing trips because they are presumably structurally uninterested in ridehailing for 

social trips (the 10% of cases belonging to class 0), and those who incidentally did not 

make social trips but may do so in the future (the remaining 20%, who belong to class 1). 

In both models, for those belonging to class 1, several demographics and attitudes are 

related to trip-making behaviors. Unsurprisingly, younger people, higher-income people, 

and whites are more likely to have used ridehailing services for social trips. The education 

dummy is not statistically significant in either model. Females are more likely to use 

ridehailing services for social trips, although not significantly so at the 0.01 level. We found 

one attitude – tech-savviness – to be positively significant in the models, indicating that 

those who are tech-savvy are more likely to use ridehailing services for social trips. In our 

model experiments (not presented in this chapter), other attitudes had significant impacts 

                                                 
46 This, and the other shares mentioned in this paragraph, should not be considered representative of the 

population shares, since the model was estimated on the unweighted sample. 



 204 

on whether to use ridehailing services at all or not, but, given that a person has used such 

services, tech-savviness was the only factor significant to using them for social purposes. 

So far, the standard latent class model and the proposed model seem fairly similar. A 

difference comes from the correlation parameter 𝜌1, which turns out to be statistically 

significant and positive. It indicates that unobserved characteristics influencing whether 

people belong to class 1 (the potential social-purpose ridehailers) and those influencing 

their choice to ridehail for social purposes are positively associated. The effects of 

correlation can be confirmed when we examine a scenario analysis of how the probabilities 

of interest change by various factors.  

Figure 5-3 exhibits the average probabilities of class 1 membership and 

(conditional) choice to ridehail for social purposes, as functions of (raw) population density 

(which is a membership variable) while holding other variables at their sample values. This 

result shows that the two models (uncorrelated and correlated errors) could provide 

different pictures for prediction, although the parameter estimates and final log-likelihoods 

do not seem to be markedly different. As the membership factor (population density) 

changes, both models show similar increase patterns in class 1 membership probabilities. 

However, the conditional (on being in class 1) behavioral probabilities are rather different 

between the two models. They remain constant with respect to changes in population 

density for the model with uncorrelated errors, because the model assumed independence 

of the segmentation and behavior generation processes, and population density only affects 

the former. On the other hand, as population density increases, the conditional choice 

probabilities for the proposed method decrease, due to the association between 

segmentation and choice processes. Viewed the other way, when population density is very 
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low, then conditional on belonging to the potential social-purpose ridehailer class in the 

first place, the individual is far more likely to actually choose to ridehail for social purposes 

– presumably because without a strong motivation to actually ridehail for social purposes, 

someone in a very low-density area would otherwise belong to the structurally zero social-

purpose ridehailer class. The general principle is that when unobservables of latent 

segmentation are associated with those of the behavior generation process, the assumption 

of independence could be incorrect, and a model which imposes that assumption could 

provide biased estimates of effects.  

Table 5-5. Estimation results of the error-independent and error-correlated models 

(Study 2, N=1,105) 

  
Latent class model  

with uncorrelated errors 

Latent class model 

 with correlated errors 

Membership component (for class 1)         

  Estimate t-value Estimate t-value 

Intercept 1.256 5.59 1.183 5.36 

Log-transformed population density 0.208 2.05 0.247 2.16 

 

Outcome component  

(class 1 specific) 

      

  Estimate t-value Estimate t-value 

Intercept -0.478 -2.96 -0.551 -3.37 

Gender (female=1) 0.209 1.82 0.202 1.78 

Age (18-34=1) 0.842 3.55 0.854 3.69 

Income (medium income=1) 0.401 2.38 0.395 2.40 

Income (higher income=1) 0.480 2.78 0.478 2.90 

Education (bachelor’s or graduate =1) 0.170 1.30 0.168 1.30 

Race (white=1) 0.660 5.25 0.637 5.24 

Attitude: Tech-savvy 0.168 2.67 0.161 2.57 

Attitude: Pro-non-car-modes 0.051 0.85 0.052 0.86 
       

Rho parameter - - 0.546 6.65 

Summary         

Class 1 share 0.914   0.905  

Number of parameters 11   12  

Log-likelihood at zero -765.9276  -765.9276  

Log-likelihood at convergence -624.0779   -623.9649  

McFadden’s R2 0.1852   0.1853   
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Figure 5-3. Scenario analysis of population density change 

 

5.5 Conclusions 

5.5.1 A note about the performance of the proposed models 

Study 1 and Study 2 presented two empirical applications that compared standard 

latent class and the proposed models. As illustrated, the proposed method could be 

meaningful in its relaxation of the restrictive assumption of independence. We did not 

expect dramatic improvements in goodness of fit given that we are only adding one or two 

parameters (which are not even based on “new” information), but the improvements we 

obtained were modest, to say the least. The degree of improvement might be dependent on 

the empirical context, but we think improvement, in general, could be marginal due to the 

nature of latent class models. 
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To see this, first consider how we evaluate conventional latent class models. In 

general, compared to a single-class model, latent class models (with two or more classes) 

bring notably better performance with respect to log-likelihood-based information criteria. 

Although model assessment based on information criteria is important, in fact, such 

improvements do not represent all the benefits of latent class models. A real benefit (and 

perhaps the main goal of using latent class models in many cases) is that (to echo previous 

discussion) the model decomposes the sample into subgroups that might have different 

behavior generation processes (this “heterogeneity” can be viewed from many angles – 

please refer to CHAPTER 2). The implication is that this step allows us to 

understand/interpret (1) class-specific behavior generation processes and (2) how the 

sample (population) consists of subsegments – this includes the overall shares of classes or 

probabilities of belonging to classes of individuals, as well as profiles of the average 

member of each class. However, the final model log-likelihood only partly captures this 

benefit. Since we do not know true class membership, we evaluate the log-likelihood (Eq. 

(5.13)) using unconditional (marginal) probabilities (Eq. (5.6) or the first equalities of Eq. 

(5.25)) rather than conditional probabilities. If the latent class models captured true 

heterogeneity adequately, there should be a notable improvement in the overall likelihood, 

but the unconditional likelihood is an imperfect measure of the effect of segmentation.  

Turning now to the introduction of an error correlation structure, a key merit of 

doing so stems from modeling how two (or more) decisions are associated and thus how 

joint probabilities behave. Since the unconditional likelihood does not explicitly represent 

the joint choice likelihood, likelihood-based information criteria, again, cannot fully 

capture the benefit of latent segmentation with an error correlation structure. Because, as 
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already mentioned, the proposed method is a variant of the standard joint model, it is easier 

to think of this issue in comparison with a standard bivariate probit model. When estimating 

a bivariate probit model (say, two binary choices), we evaluate the likelihood with the 

information on two choice indicators whose values we know. Hence, in this example, the 

likelihood is evaluated using 2×2 joint choice cells. From this viewpoint, if error 

correlations adequately captured joint decisions, their roles are reflected in the joint-choice-

based likelihood evaluation of the model; hence the improvement of goodness of fit with 

the aid of an error structure could be significant. On the other hand, in latent class models, 

(again) we do not know the true membership indicator and thus the likelihood is only 

evaluated with respect to the outcome choice indicator (i.e. based on only one of the choice 

dimensions). Thus, since latent class models – with or without an error structure – only 

evaluate marginal-choice-based likelihoods, the benefit of introducing an error structure is 

undervalued. This is perhaps why the standard latent class model and the latent class model 

with an error structure may have similar log-likelihoods, even if they present different 

pictures of jointness.  

5.5.2 Summary and contributions 

In spite of the recent great popularity of latent class models, discussions about 

whether their basic assumptions are valid in empirical contexts are scarce. This study 

questioned whether one of those basic assumptions, namely that of independence between 

latent segmentation and the behavior generation process, is tenable. The study formulated 

the latent class model where unobserved influences on latent segmentation and behavior 

generation are correlated, by combining the key concepts of latent class and endogenous 

switching modeling. The proposed method is implemented in two empirical applications. 
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In the first application, the dependent variable was measured on an ordinal scale and the 

model took an “exploratory” latent class approach (i.e. there was no imposed difference 

across class-specific outcome models). In the context of modeling willingness to share AV 

rides with strangers, standard latent class and the proposed method provided reasonable 

results. In the second application, the dependent variable was binary and the model took a 

“confirmatory” latent class approach (i.e. there was an imposed difference between the two 

class-specific behaviors). Here, in modeling whether a person has used ridehailing services 

for social purposes, class 0 is posited to produce systematic zeros, whereas class 1 followed 

a typical behavior process. In both applications, error correlations were statistically 

significant, indicating that segmentation and behavior generation processes were jointly 

determined. Our scenario analyses showed how the proposed model could be useful due to 

its consideration of jointness with correlations. Improvements in goodness-of-fit were 

relatively small in our applications, and thus we discussed major reasons for such 

phenomena. 

The main contribution of the study is to question the validity of a basic assumption 

of the standard latent class model and to provide a potential avenue of methodological 

development. The usefulness of the method may depend on the purpose and research 

question of the study. For example, if the study aims for better predictive ability per se, the 

method may not be necessarily appealing (the issue of explanation versus prediction has 

been discussed in studies such as Shmueli, 2010; Mannering et al., 2020). Rather, the 

proposed method could provide a framework with a conceptually more realistic 

assumption. If the association between segmentation and behavior processes is true given 

the empirical context, then estimates should be more reliable than those under the 
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independence assumption, which is more restrictive. Models using the proposed method 

can therefore provide more appropriate predictions of joint choices. As well, this approach 

may open the door to an avenue of evaluating “treatment effects” in the latent class 

modeling context. In the standard latent class model, latent classes act as intrinsically-fixed 

characteristics of individuals. However, as an example, if individuals change their 

attitudinal propensities (and thus “switch” their classes) by an education program, then the 

study may want to measure its treatment effect as statistically controlling for potential self-

selection effects. 

5.5.3 Future directions 

A number of further studies could profitably be pursued. The study proposed 

methodologies under the two-class context. As noted by CHAPTER 2, more than half of 

the empirical studies employing latent class models (in the transportation domain) have 

used two classes for the final solution. Hence, two-class solutions are expected to cover 

many research contexts. However, the methodology can be expanded to three or more 

classes. In such cases, the error structure should be enlarged to accommodate more error 

correlations. The authors think, however, that such an effort should be preceded by solid 

hypotheses, because adding complexity could be less beneficial compared to the effort 

when classes are latent and thus the conceptual validity of error correlations could be less 

straightforward. In other words, in any case, allowing a less-restrictive error structure 

should be more realistic in theory, but testing the conceptual validity of any particular such 

structure could be challenging. Second, the study employed probit link functions for 

membership models instead of the conventional logit link function. This assumption was 

for convenience in that joint or marginal probability densities of the bivariate normal 
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distribution are well-known. However, other link functions are worth trying. One rationale 

is that since probit has thin tails, sometimes it could be computationally less stable. For 

example, Dubey et al. (2020) proposed a t-distributed error kernel (so-called robit link) for 

multinomial response models. Adopting this idea, a possibility is to use the bivariate t-

distribution instead of the bivariate normal distribution. Another plausible avenue is to 

introduce the copula-based approach (cf. Bhat and Eluru, 2009), if the normality 

assumption is considered too strict. Lastly, although this study proposed the methodology 

and applied it to two empirical contexts (here, willingness to share AVs with strangers and 

the purpose of ridehailing use), more theoretical and empirical studies should be pursued 

to confirm the usefulness and potential of this approach. For example, as we discussed, the 

proposed method can be a way of evaluating treatment effects when endogeneity exists. 

Thus, future studies may explore this research avenue. 
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CHAPTER 6. MIXTURE OF EXPERTS AND 

NONLINEAR/INTERACTION EFFECTS 

Paper title: Mixture of experts as a data-driven exploratory tool for improving conventional 

model specifications 

 

6.1 Introduction 

6.1.1 Use of machine learning in the transportation domain 

Machine learning, or so-called “data-driven”, approaches have proved their success 

with respect to performance over the past several decades. Machine learning has been built 

within a community of its own, but it has now penetrated into a variety of domains, and is 

seemingly becoming ubiquitous. Many scholars in various domains have been pondering 

the implications of introducing machine learning (or deep learning) into their applications, 

such as in economics (Mullainathan and Spiess, 2017; Athey, 2018; Athey and Imbens, 

2019), psychology (Yarkoni and Westfall, 2017; Urban and Gates, 2019; Orru et al., 2020), 

sociology (Molina and Garip, 2019), choice modeling (Timothy et al., 2017; Hillel et al., 

2021), and so on. Common conclusions mostly include consensus on the usefulness of 

machine learning models with respect to their prediction ability and, at the same time, some 

reservations on their usefulness due to their lack of interpretability. In response to this 

lament, interpretable/explainable machine learning (or artificial intelligence) has become 

a popular topic of research.  

In the travel behavior and choice modeling fields, applications of machine 

learning are notably increasing. In the context of mode choice modeling, artificial neural 
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networks (ANN) have been the most popular machine learning technique following the 

logit family (Hillel et al. 2021). Beyond the mechanical applications, a recent mainstream 

of work is to exploit machine learning models to extract behavioral implications. Some 

initial efforts were devoted to understanding how the learned model maps input features to 

the outcome, for which a useful tool is the partial dependence plot (cf. Friedman, 2001; 

Hastie et al., 2009; Molnar, 2020; Zhao and Hastie, 2021). For example, Zhao et al. (2020) 

compared the random forest and logit models (multinomial and mixed logit) with the aid 

of partial dependence plots and concluded, in their empirical context (p. 22), that 

“However, we find that the random forest model produces behaviorally unreasonable arc 

elasticities and marginal effects when these behavioral outputs are computed from a 

standard approach.” Alwosheel et al. (2019) were inspired by an approach in computer 

vision and proposed to synthesize prototypical examples with a trained ANN to diagnose 

whether the learned model behaves reasonably. One avenue has been to understand the 

neural networks structure as a generalized logit model that contains implicit random utility 

maximization in the black box (Bentz and Merunka, 2000; Wang et al. 2020a; Wang et al. 

2020b; Zhang et al. 2020). 

 Another approach, also related to the initial one, is to combine classical model 

structure and neural network structure under the premise of achieving a balance between 

interpretability and performance. Sifringer et al. (2020) proposed the learning multinomial 

logit (L-MNL) and learning nested logit (L-NL) models, which embrace a knowledge-

driven part and a data-driven one in the systematic utility specification (i.e. embedding the 

neural network in the standard logit model). Han et al. (2020) proposed the TasteNet-MNL 

model. In this model, taste parameters in MNL are functionalized using neural networks to 
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capture systematic taste heterogeneity. Wang et al. (2021) developed the TB-ResNets 

model, which connects a classical discrete choice model and neural networks with a 

weighting parameter to represent deterministic utilities. 

6.1.2 Challenge of model specification and the usage of machine learning 

Despite the breakthrough of machine learning, theory-driven classical models have 

long played a critical role in informing public policy. In addition to the simplicity and 

interpretability of the classical models, there is arguably an inertia on the part of analysts 

and/or policymakers that favors the use of familiar models, plus the fact that the benefits 

of using more complex models are seemingly limited (e.g. datasets may not be large 

enough, or the “first-order” approximations of simpler models are sufficient). In these 

simpler models (such as classical choice models), the model specification (or the utility 

specification in choice modeling) is the key step. Misspecification could result in biased 

estimates and thus lead to an erroneous understanding of the behavioral process and lower 

prediction power (Abe, 1998; Torres et al., 2011; Van Der Pol et al., 2014). This 

misspecification could take the form of omitted relevant variables, the inclusion of 

irrelevant variables, and failure to capture nonlinear effects or interaction effects, among 

others (Greene, 2012). The key issue is that we almost always have limited prior knowledge 

of the correct specification (Ben-Akiva and Lerman, 1985) or even if prior knowledge is 

valid it may not hold in a particular empirical context, and thus we mostly rely on time-

consuming trial-and-error model experiments. However, the trial-and-error approach is not 

only time-/effort-intensive, but also the solution space is too vast to be systematically 

searched; hence some specification possibilities, especially complex effects such as 

nonlinear or interaction effects, are often excluded from the outset.  
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A promising approach to tackling this challenge might be to take advantage of 

machine learning techniques to aid in the process of specifying a conventional model. 

Machine learning techniques, in general, have a larger search space for the solution and 

they can automatically detect nonlinear and interaction effects without prior information. 

Some studies have tried to use such benefits. For example, Hillel et al. (2019) built gradient 

boosting decision trees (GBDT) and extracted the learned structure to inform the utility 

specification for a choice model. Ortelli et al. (2021) translated the utility specification 

problem into a combinatorial (optimization) problem. In their study, the proposed method 

produced a better out-of-sample performance than a benchmark (simple) model and at the 

same time it ensured behavioral realism. Another method is to use some “approximator” 

such as neural networks. It is known that neural networks are universal approximators 

(Hornik et al., 1989; Cybenko, 1989); in other words, neural networks can approximate 

any function without any a priori assumptions. Inspired by this property, several studies 

utilized neural networks to obtain a better choice model specification (Bentz and Merunka, 

2000; Hruschka et al., 2002; Hruschka et al., 2004; Hruschka, 2007). For example, Bentz 

and Merunka (2000) identified interaction and threshold effects in brand choice with the 

aid of neural networks and revised MNL models based on the learned knowledge. Although 

there was only a marginal improvement of model performance in the empirical application, 

indicating that there was only a weak nonlinear component in the utility function, the study 

offered an insightful pathway for using neural networks as a diagnostic tool. 

In the present study, we take this pathway to improve our behavioral models. In 

other words, we use machine learning models as data-driven exploratory tools to 

automatically identify nonlinear and interaction effects and thus to improve model 
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specifications for “simpler” models that are more intuitive. To our knowledge, this is the 

first study to introduce the idea of mixture of experts (MoE), which will be described in 

the following section, to travel behavior research. More importantly, we illuminate the 

linkage between MoE and the latent class model, and suggest using MoE to capture 

complex effects. The expected benefits include the improvement of performance and the 

reduction of potential bias by taking into account systematic heterogeneity while keeping 

the model as simple (and, ideally, interpretable) as possible. The remainder of this chapter 

is as follows. Section 6.2 describes the pertinent methodologies. Section 6.3 presents model 

experiments with synthetic data and Section 6.4 exhibits the application of the approach to 

the well-known Swissmetro data. Section 6.5 concludes the chapter with some remarks. 

6.2 Methodology 

6.2.1 Mixture of experts 

In this study, we use the mixture of experts (MoE) architecture proposed by Jacobs 

et al. (1991a). The basic idea is to design a model architecture that decomposes tasks and 

assigns them to “experts” (cf. Jacobs et al. 1991b). In other words, the model splits the 

input space into homogeneous regions, and different local experts (i.e. models, or also 

called learners) are “responsible for” (i.e. operating in) the different regions (Masoudnia 

and Ebrahimpour, 2014; Baldacchino et al., 2016). This approach is called “divide-and-

conquer” from a problem-solving perspective (which is comparable to the concept of 

market segmentation). Then, results from the different experts are combined by a gating 

network (mostly employing the so-called softmax function, which is also known as 

multinomial logistic regression). This is a type of ensemble method that combines multiple 
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local models instead of having a “global” model (cf. Kotsiantis et al., 2006; Bishop, 2006; 

Rokach, 2010).  

The main reasons for using MoE in this study are twofold. First, in the field of 

information theory, it has been proved that the MoE is a universal approximator (Zeevi et 

al., 1998; Nguyen et al., 2016). That is, it has the capability to approximate any unknown 

true mapping function between input features and outcome, to any specified degree of 

accuracy. Second, it is connected to the well-known latent class (or finite mixture) model. 

We can translate “homogeneous input spaces” into “latent classes” or “market segments”, 

“gating network” into “membership/segmentation model”, and “local expert/learner” into 

“class-specific outcome model”. 

The structures of the standard latent class model and the MoE are basically 

identical: 

 

𝑓(𝑦|𝑿) = ∑ 𝑃(𝑧|𝑿; 𝜶)𝑓𝑧(𝑦|𝑧, 𝑿; 𝜷𝑧)

𝑍

𝑧=1

 (6.1) 

where 𝑦 is an outcome variable, 𝑿 is a vector of input features, 𝑧 is a discrete latent segment 

or subgroup indicator (𝑧 = 1,2, … 𝑍), 𝑃(∙) denotes a (finite) mixture density function (or 

segment membership probability), and 𝑓𝑧(∙) denotes an outcome function (or a local expert) 

for segment 𝑧. 𝑃(∙) is typically represented by the softmax function and 𝑓𝑧(∙) depends on 

the type of problem (cf. CHAPTER 2). In this study, as we focus on the binary 

classification problem, the 𝑓𝑧(∙)’s are logit functions. We maximize a log-likelihood 

function with an additional regularization term (if needed). 
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 max 𝐿𝐿𝜆(𝜽) = max(∑ ln[∑ 𝑃(𝑧𝑖|𝑿𝑖)𝑓𝑧(𝑦𝑖|𝑧𝑖 , 𝑿𝑖)𝑍
𝑧=1 ]𝑁

𝑖=1 + 𝜆‖𝜽‖2
2)  (6.2) 

where 𝜽 denotes all parameters in the model (= {𝜶, 𝜷1, 𝜷2 … , 𝜷𝑍}), 𝜶 represents a vector 

of parameters in 𝑃(∙), 𝜷𝑧 represents a vector of parameters in 𝑓𝑧(∙), 𝜆 is the regularization 

coefficient, and 𝜆 ‖𝜽‖2
2 is the squared L2 regularization term47.  

Despite this similarity, there are a few practical differences. In most standard latent 

class models, as noted in CHAPTER 2 and CHAPTER 3, input features are split into two 

parts: variables that characterize latent classes (denoted as 𝑾) and variables that feed to 

class-specific outcome functions (mostly alternative-specific characteristics, such as travel 

time/cost, in many choice models). On the other hand, in applications of MoE, 𝑾 are 

usually not distinguished from 𝑿; rather all 𝑿 are used in 𝑃(∙) and 𝑓𝑧(∙). The former strategy 

could have value in that it might offer interpretation benefits (e.g. testing of hypotheses 

regarding whether certain characteristics are related to distinctive groups), whereas the 

latter could have value in that it can avoid a key dilemma of this model form (which 

variables should go into the membership versus outcome models?) and allow the data to 

“confess” the best specification (from a purely mechanical standpoint). 

Second, as alluded to earlier, individual local experts (or latent classes) are mostly 

not the main focus in the MoE method; rather, it focuses on how they collectively produce 

the overall outcome. On the other hand, the interpretation of individual latent classes is the 

key in most standard latent class models. As noted in psychometrics, there are two 

                                                 
47 ‖𝜽‖2

2 = ∑ 𝜃𝑚
2𝑀

𝑚=1  , where 𝑚 indexes parameters (𝑚 = 1,2, … 𝑀). Other regularizations (e.g. L1, 

𝜆‖𝜽‖1 = 𝜆 ∑ |𝜃𝑚|𝑀
𝑚=1 ) are also possible. If 𝜆 = 0, then there is no regularization on parameters. In this 

study, we confine ourselves to the squared L2 regularization for experiments. 
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approaches taken with finite mixture modeling: “direct” and “indirect” applications (cf. 

Bauer, 2005; Masyn, 2013; Cole and Bauer, 2016). In direct applications, the assumption 

of heterogeneous subgroups is the key idea and thus the main focus is on latent classes – 

studies in the travel behavior domain almost exclusively take this approach. Although less-

often used, in indirect applications, the finite mixture structure is just used to build up a 

more tractable semi-parametric model (Masyn, 2013).48 For example, by using an indirect 

approach, Bauer (2005) aimed to capture nonlinear relationships between latent variables 

with the aid of the finite mixture structure. In this regard, MoE builds a set of local experts 

to capture nonlinear or higher-order interaction effects (like the indirect application) and 

thus MoE approximates a true mapping function. 

It is also pertinent to remark on the distinction between the seemingly similar 

concepts of MoE and Bayesian model averaging49. As noted by Bishop (2006), MoE is a 

way of combining models to improve performance. As aforementioned, the key idea of the 

MoE approach is to have multiple experts that are each responsible for part of the input 

space. On the other hand, in Bayesian model averaging, models (ℎ = 1, … , 𝐻) are weighted 

by prior probabilities, 𝑃(ℎ), to reflect uncertainty on which model is the global model. 

Simply put, MoE postulates that the dataset is generated by multiple data generation 

processes (represented by local experts), whereas in Bayesian model averaging, the dataset 

is generated by a single model and prior probabilities are applied to reflect model 

                                                 
48 Thus, the finite mixture model (or the latent class model) is often called a nonparametric model if 

focusing on the ad hoc distribution of model coefficients across segments (e.g. Vij and Krueger, 2017). This 

implicitly takes the viewpoint of the direct application. On the other hand, the model is often called a 

semiparametric model if taking the viewpoint of indirect application (cf. McLachlan and Peel, 2001; Bauer, 

2005). 
49 Bayesian model averaging can be expressed as 𝑓(𝑦) = ∑ 𝑃(ℎ)𝑓ℎ(𝑦|ℎ)𝐻

ℎ=1  (adapted from Bishop, 2006). 

ℎ indexes models and 𝑃(ℎ) characterizes the uncertainty about which model  𝑓ℎ(𝑦|ℎ) is the global model. 
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uncertainty. For example, Hancock et al. (2020) discussed the use of the “sequential latent 

class approach” for model averaging. This sequential approach implies estimating 

individual (pre-specified) models on the same (single) dataset independently in the first 

stage and averaging them by estimating the weights of each model (through fixing the 

individual first-stage log-likelihood values) in the second stage. Thus, the equation for this 

approach is similar to that of MoE, but the philosophy for solving the problem is distinct. 

An important question is, which local experts are to be used? In the original study 

of MoE (Jacobs et al., 1991a), individual local experts were described as neural networks. 

From the broader perspective on the general model architecture of MoE, any models can 

be used as local experts (class-specific outcome models in the latent class modeling 

language). As reviewed by CHAPTER 2, these class-specific outcome models are often 

formulated with classical econometric models such as logit; in the choice modeling 

community, the MNL model is the most popular one. In addition, in theory, we can 

customize and design different types of models for each of the local experts following the 

confirmatory latent class approach (cf. Hess, 2014; CHAPTER 2; CHAPTER 4). In this 

study, we confine our attention to the logit model for local experts rather than making more 

complex models, for three reasons. First, the main goal of the study is to discuss the general 

idea of using MoE as an approximator and extracting the information the model learned; 

hence the simplicity is helpful for delivering the main idea. Second, as a practical reason, 

having neural networks as the local experts is parameter-intensive, and thus our dataset 

with its limited number of cases might not be large enough to learn such complicated 

models. Lastly, in fact, we expect that having “simple” local experts is not a bad idea, 
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because it is common to have “weak learners” (even only slightly more accurate than 

random) when using ensemble models (cf. Hastie et al., 2009; Rokach, 2010).  

6.2.2 Neural networks 

Our focus is on the MoE in this study, but we also train neural networks as another 

benchmark, given their popularity and ability of approximation. There are two types of 

activation functions in neural networks: one in hidden layer(s) and another in the output 

operation. An activation function serving as an output operation is subject to the type of 

outcome variable (e.g. logistic for binary, softmax for multinomial, linear for continuous). 

An activation function in hidden layer(s) serves as a sort of hyperparameter for neural 

networks; hence analysts generally use the one of the three most popular (nonlinear) 

activation functions (logistic, hyperbolic tangent, and ReLU) that offers the best 

performance given the data. In this study, we use the logistic function because of its 

popularity as well as to achieve greater comparability with the mixture of experts which is 

the main interest of this study. More detailed equations and descriptions can be found in 

standard machine learning textbooks (e.g. Bishop, 2006; Hastie et al., 2009). 

6.2.3 General approach of the study 

We feed input features, i.e. explanatory variables (without specifying nonlinear or 

interaction effects), to three models:  

• Benchmark (logit) model: this serves as the baseline, representing the simplest 

model; 

• Neural network (NN): this is an alternative machine learning model, which also 

(like MoE) has the property of a universal approximator. If NN and MoE present 
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“identical” results, then we may claim that both models have reached the “ceiling” 

of possible performance (given the data); 

• Mixture of experts (MoE): this model is the main interest of the study.  

In the experiments, after training the models, we plot the true choice probabilities 

and (systematic) utilities versus estimated probabilities/utilities of the three models. Choice 

probabilities are the ordinary final output of the models, but utilities are not clear for NN 

and MoE. We convert choice probabilities into systematic utilities by fixing the reference 

alternative’s systematic utility to zero, focusing on the relative utility of the other 

alternative, and assuming that the true data generation process follows the logit model 

formulation.50 Thus, in the binary choice context, the estimated systematic utility of the 

non-reference alternative is: 

 �̂� = − log (
1

�̂�
− 1) = log �̂� − log(1 − �̂�) , (6.3) 

where �̂� is the estimated choice probability of that alternative (�̂� =
1

1+exp(−�̂�)
).51  

After training the models and obtaining choice probabilities and utilities, we 

explore whether they approximate the true values. To examine the effects of travel time 

and cost, we examine how the output (choice probabilities or utilities) behaves with respect 

                                                 
50 For experiments with synthetic data (Section 6.3), we generate the data with logit models (i.e. the true 

data generation process follows the logit model). For the empirical application (Section 6.4), we do not 

know the true data generation process. We assume, for convenience, that it follows the logit model. Note 

that we are not (here) trying to reverse-engineer the specific equation for V, only the total value of V.  The 

equation for V could be quite complicated (e.g. with random coefficients, interaction terms, inclusive value 

terms, etc.), but as long as we can express total utility (difference) as the sum of V and a random 

component having a logistic distribution – assumptions that are quite standard even for complex discrete 

choice models – then this is a reasonable approach. Of course, as with any model, the reality could differ 

from the assumption we make. 
51 Since “only differences in utility matter” (Train, 2009), in effect we are finding the difference in 

systematic utilities between the non-reference alternative and the reference alternative. 



 223 

to changes in the variable of interest (while fixing other variables as they are). This is how 

we obtain marginal effects in choice modeling (cf. Hensher et al., 2015), and what is known 

in machine learning as the partial dependence plot (cf. Friedman, 2001; Hastie et al., 2009; 

Molnar, 2020). For interaction effects, we additionally plot how the slopes of utilities vary 

by the interacted variables. The following sections have separate purposes:  

• Section 6.3 experiments with synthetic data, for which we know the true data 

generation processes. The main goal of the section is to demonstrate the ability of 

MoE to detect and approximate nonlinear and interaction effects. If its abilities are 

verified, then it implies we can use MoE as an exploratory tool to find effects that 

would otherwise have not been identified. 

• Section 6.4 applies the methodology to empirical data. We train and find the best 

model given the data. Then we discuss how to extract the information learned from 

those exploratory tools, and devise a general process of informing simpler models 

of better specifications based on knowledge that can be gained from machine 

learning. 

6.3 Experiments with synthetic data 

6.3.1 Experimental setting 

This section aims to evaluate the ability of the two approximators, MoE and NN, 

to identify atypical functional forms by experimenting with synthetic data. In particular, 

we focus on how well they can recover the true parameters, compared to a simple logit 

benchmark model that does not consider complex effects. To this end, we generate a 

training set (N=8,000) and a testing set (N=4,000) of observations simulating a binary 

mode choice application. First, we draw input features with distributions defined in Table 

6-1. By applying the true systematic utility equations (Table 6-2), we obtain choice 

probabilities for each individual and, based on those probabilities, draw a chosen 
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alternative in each case. This procedure is analogous to those in Vij and Krueger (2017) 

and Han et al. (2020). We have four experiments, specifically focusing on two nonlinear 

effects and two interaction effects involving travel time. These four effects can be 

considered instances of (systematic as opposed to unobserved) parameter heterogeneity, 

in which parameters vary by region of the input space. For nonlinear effects, the sensitivity 

of the outcome to a given input is a function only of the size of that single input; for 

interaction effects, the parameter associated with one input variable is a function of other 

variables (e.g. the travel time coefficient depends on the individual’s income status). Note 

that, in this study, we assume that the true data generation processes follow random utility 

maximization theory and the binary logit function. However, it is likely that in the real 

world, other types of behavioral generation processes can be mixed (e.g. regret 

minimization, lexicography). Thus, future research may need to explore this avenue.  

Table 6-1. Description of synthetic data 

Variable Notation Data generation process 

Cost of car ($) 𝐶𝑂𝑐𝑎𝑟 𝑈(1,10) 

Cost of bus ($) 𝐶𝑂𝑏𝑢𝑠 𝑈(1,4) 

Travel time for car (min) 𝑇𝑇𝑐𝑎𝑟 𝑈(5,40) 

Travel time for bus (min) 𝑇𝑇𝑏𝑢𝑠 𝑈(𝑇𝑇𝑐𝑎𝑟 , 1.2 ∗ 𝑇𝑇𝑐𝑎𝑟) 

Lower-income dummy 𝐼𝑁𝐶 𝐵𝑒𝑟𝑛(0.3) 

Attitudinal propensity (continuous) for 

monochronicity 

𝐴𝑇 𝑁(0,1) 
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Table 6-2. True utility equations generated 

 Effect Utility equation 

1.1 Nonlinear – 

polynomial  

𝑉𝑏𝑢𝑠 − 𝑉𝑐𝑎𝑟 = 0.4 − 0.2 𝐶𝑂 − (0.6 + 0.1 𝑇𝑇) 𝑇𝑇  

 

Example: The travel time differential has a quadratic effect, where the 

longer travel time for bus initially decreases the attractiveness of bus 

(relative to car), but past a certain point increases its relative utility 

(perhaps due to having a meaningful amount of travel time during 

which other activities can be conducted). 

1.2 Nonlinear – 

threshold 

(saturation) 

𝑉𝑏𝑢𝑠 − 𝑉𝑐𝑎𝑟 = 0.4 − 0.2 𝐶𝑂 + (0 − 0.4 𝑡)𝑇𝑇 + 0.8 𝑡 ,   

where 𝑡 is a dummy variable (𝑡 = 1 if 𝑇𝑇 > 2, 𝑡 = 0 otherwise) 

 

Example: If the travel time differential is minimal, then it does not 

affect preference among alternatives. However, when the time 

differential is greater than a certain value, then it would affect her 

choice behavior.  

2.1 Interaction – 

binary 

𝑉𝑏𝑢𝑠 − 𝑉𝑐𝑎𝑟 = 0.4 − 0.2 𝐶𝑂 + (−0.1 − 0.3 𝐼𝑁𝐶) 𝑇𝑇 + 0.1 𝐼𝑁𝐶  

 

Example: It is known that income groups (or certain demographic 

groups) have different sensitivity to travel time. 

2.2 Interaction – 

continuous 

𝑉𝑏𝑢𝑠 − 𝑉𝑐𝑎𝑟 = 0.4 − 0.2 𝐶𝑂 + (−0.4 − 0.2 𝐴𝑇) 𝑇𝑇 + 0.3 𝐴𝑇  

 

Example: How people perceive travel time or cost is a function of their 

personalities or attitudes. For example, people who cannot or do not 

wish to use in-vehicle time productively have greater sensitivity to 

travel time.  

* 𝐶𝑂 = 𝐶𝑂𝑏𝑢𝑠 − 𝐶𝑂𝑐𝑎𝑟, 𝑇𝑇 = 𝑇𝑇𝑏𝑢𝑠 − 𝑇𝑇𝑐𝑎𝑟 

6.3.2 Results 

Figure 6-1 and Table 6-3 show how well the three models approximate the true 

values of the choice probabilities and utilities. Figure 6-1 visualizes how close the estimates 

are to the true values (black lines). Overall, NN and MoE present good approximations, 

whereas the benchmark model (logit without specifying nonlinear/interaction effects) 

deviates substantially from the true values. Table 6-3 quantifies their closeness with R-

squared measures for the regression of estimated against true values.  

The next question is how well the three models are recovering the true parameters 

defined in Table 6-2. To this end, parameters are compared across models (Table 6-4). 
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First, the logit model with the true specification has, overall, the lowest MAPE (i.e. comes 

closest to the true values). The model is replicating the true parameters at satisfactory 

levels, but not exactly replicating the true values because of randomness. We also find that 

NN and MoE well approximate the true parameters (note that their MAPE values are 

similar to those of the logit model with the true specification), with MoE generally 

performing a bit better than NN. On the other hand, the benchmark model (logit with the 

simple specification) gives substantially biased estimates for all experiments. In particular, 

due to dismissing nonlinear or interaction effects, the relevant parameter (i.e. the travel 

time difference coefficient) is significantly affected. Along with this analysis, Figure 6-2, 

Figure 6-3, and Figure 6-4 visually show how well the three models are capturing nonlinear 

and interaction effects. First, Figure 6-2 illustrates whether the variable of interest has a 

linear or nonlinear effect on systematic utility. The slopes of the black lines portray the true 

marginal effects for the experiments (1.1 and 1.2) involving polynomial and threshold 

nonlinear effects, respectively. When we specify the logit model without such nonlinear 

effects, the model fails to capture those effects and produces a constant marginal effect of 

the time differential on systematic utility (see the yellow lines). On the other hand, even if 

we do not inform them of such nonlinearity, NN and MoE replicate the true nonlinear 

effects (see the blue and red lines). 

For the interaction effects, we refer to Figure 6-3 and Figure 6-4. The left panel of 

Figure 6-3 plots utilities as a function of the travel time differential, and shows how the 

slopes vary by the interacting binary dummy (experiment 2.1). The two slopes are the same 

for the benchmark model, whereas NN and MoE exhibit different slopes based on values 

of the dummy variable and thus we can confirm that the two models capture the interaction 
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effect between travel time and the income dummy. The bottom panel in Figure 6-3 shows 

the same plot for the cost variable; none of the three models present an interaction effect. 

Thus, this demonstrates that NN and MoE automatically identify which variables should 

be interacted “under the hood”. Figure 6-4 visualizes interaction effects between two 

continuous variables (experiment 2.2). The benchmark model gives a plane surface of 

utility as a function of the two variables (due to the linearity), whereas NN and MoE 

identify the nonlinear surface (saddle shape). Thus, throughout a series of experiments, we 

demonstrate that MoE (and NN) can capture nonlinear and interaction effects without prior 

information. 

 Table 6-3. The squared correlation of true with estimated probabilities and utilities 

   Probability Utility 

 Effect  Logit NN MoE Logit NN MoE 

1.1 Nonlinear – polynomial  0.746 0.993 0.991 0.716 0.993 0.992 

1.2 Nonlinear – threshold (saturation) 0.957 0.990 0.991 0.952 0.988 0.989 

2.1 Interaction – binary 0.900 0.990 0.997 0.893 0.989 0.996 

2.2 Interaction – continuous 0.879 0.989 0.987 0.859 0.988 0.984 
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Table 6-4. Parameter estimates by model 

Experiment Variable True value 
Logit with the 

true specification 

Benchmark 

(logit) 
NN a MoE a 

ex 1.1 Intercept 0.400 0.461 -0.106 0.460 0.428 
 𝐶𝑂  -0.200 -0.213 -0.207 -0.212 -0.213 
 𝑇𝑇  -0.600 -0.659 -0.017 -0.658 -0.628 

  𝑇𝑇2  0.100 0.108 - 0.108 0.103 

 MAPE (%) b  9.8 81.8 9.7 5.3 

ex 1.2 Intercept 0.400 0.460 0.752 0.490 0.465 

 𝐶𝑂  -0.200 -0.209 -0.207 -0.211 -0.213 
 𝑇𝑇  0.000 -0.040 -0.299 -0.076 -0.051 
 𝑇𝑇 ∗ 𝑡  -0.400 -0.368 - -0.327 -0.353 

 𝑡  0.800 0.752 - 0.691 0.713 

 MAPE (%)  8.3 72.9 15.0 11.3 

ex 2.1 Intercept 0.400 0.435 0.675 0.452 0.449 

 𝐶𝑂  -0.200 -0.203 -0.198 -0.203 -0.203 
 𝑇𝑇  -0.100 -0.102 -0.198 -0.108 -0.108 
 𝑇𝑇 ∗ 𝐼𝑁𝐶  -0.300 -0.317 - -0.292 -0.306 

  𝐼𝑁𝐶  0.100 0.101 -0.619 0.055 0.074 

 MAPE (%)  3.8 197.4 14.0 10.0 

ex 2.2 Intercept 0.400 0.428 0.401 0.443 0.412 

 𝐶𝑂  -0.200 -0.211 -0.207 -0.205 -0.210 
 𝑇𝑇  -0.400 -0.408 -0.380 -0.402 -0.398 
 𝑇𝑇 ∗ 𝐴𝑇  -0.200 -0.205 - -0.175 -0.176 

  𝐴𝑇  0.300 0.239 -0.198 0.189 0.180 

 MAPE (%)  7.5 55.0 12.7 12.1 

a. Parameters are estimated by regressing the estimated utilities of Eq. (6.3) on the variables in the table. 

b. MAPE (mean absolute percentage error) is calculated based on true values. 
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Figure 6-1. Estimated versus true values of probabilities and utilities 
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Figure 6-2. Systematic utilities for polynomial/threshold models 

 

 

Figure 6-3. Identified interaction effect (with binary dummy, experiment 2.1) 
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Figure 6-4. Identified interaction effect (with continuous variable, experiment 2.2) 

 

6.4 Empirical application 

6.4.1 Data 

In this study, we employ the Swissmetro data,52 which have been widely used in 

the choice modeling community. The dataset consists of survey data collected on trains 

between St. Gallen and Geneva, Switzerland. The original dataset contains stated 

preference (SP) measures over three modes (train, Swissmetro, which is a hypothetical 

                                                 
52 The data are available at https://biogeme.epfl.ch/data.html.   

https://biogeme.epfl.ch/data.html
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high-speed rail alternative, and car) for intercity travel. More details about the data are 

available at the source link (footnote 52). We confine our attention to the binary choice 

context (choice between conventional train and car, where car is the reference alternative) 

and analyze 3859 observations. We randomly split the data into a training set (3299, 75%) 

and a test set (560, 25%). 

Table 6-5. Variables used in modeling (N=3,859) 

Variable Coding Mean 

Choice Choice (1 if train, 0 if car) 0.202 

Travel time difference (min) reference: car 0.413 

Travel cost difference (CHF scaled by 100) reference: car 0.121 

Sex dummy male = 1 0.792 

Age dummy 39 or less = 1 0.295 

Age dummy 65 or greater = 1 0.100 

Lower-income dummy Under 50k CHF* annually = 1 0.147 

Luggage dummy 1+ piece of luggage = 1 0.596 

First-class traveler dummy First class = 1 0.507 

Purpose dummy commute/business = 1 0.578 

Train headway dummy 30 min = 1 (60 or 120 min = 0) 0.354 

* CHF stands for Swiss Franc (approximately similar to USD) 

6.4.2 Training and performance 

We estimate three models with the variables described in Table 6-5. To pick the 

best models, we grid-search some combinations of hyperparameters. The number of hidden 

nodes (for NN) and classes (for MoE) are explored over [2, 12] and the lambda value (for 

the L2 regularization term) is explored over [0, 0.01, 0.1], with 5 different seeds for random 

starting points53. We find the best set of hyperparameters using 5-fold cross-validation. 

                                                 
53 This search space may be narrower than for typical machine learning applications. For example, for NN, 

we fix a single layer and use logistic activation functions. As well, the numbers of hidden nodes (for NN) 

and classes (for MoE) are fairly small. One reason for this is that the purpose of the study is simply to 

illustrate the idea of using MoE as an approximator that finds nonlinear and interaction effects. More 

importantly, however, due to the (quite small, for machine learning) sample size, it is less beneficial to 

increase the complexity of the models (i.e. the number of parameters is mainly affected by the number of 

hidden nodes and classes). 
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Specifically, for each combination of hyperparameters, the training set is split into five 

parts and the model is trained after holding out one part; this is repeated while holding out 

each of the five parts in turn. Then, we average the performance on the five hold-out 

validation sets for each combination of hyperparameters, change the combination of 

hyperparameters, and repeat the process. Finally, we select the model with the best average 

performance across all combinations tested. Based on this approach, the 10-node NN 

model and 6-class MoE model are selected. 

Table 6-6 presents the performance of the three models. MoE and NN show 

improvement in predictive accuracy over the benchmark logit model. The 𝜌2 measure 

improves substantially, from 0.46 (logit) to 0.57 (MoE and NN). The final log-likelihoods 

are similar on the test set for MoE and NN, and both better than for the benchmark model. 

The comparisons for the Akaike and Bayesian information criteria (AIC and BIC), where 

smaller values are better, are more ambiguous, but overall, by employing MoE and NN, 

we gained better performance over the benchmark logit model.  

Table 6-6. Model performance 

Model Dataset 

Accuracy 

(probability-

weighted) * 

Log-

likelihood 
𝝆𝟐 AIC BIC 

Benchmark  Training set 0.743 -1364.82 0.403 2751.65 2818.76 

(logit) Test set 0.762 -208.49 0.463 438.98 486.59 

 Pooled 0.746 -1573.31 0.412 3168.63 3237.47 

NN Training set 0.831 -873.40 0.618 1988.81 2727.07 

 Test set 0.822 -164.74 0.576 571.48 1095.16 

  Pooled 0.829 -1038.14 0.612 2318.28 3075.52 

MoE Training set 0.815 -954.31 0.583 2150.63 2888.89 

 Test set 0.816 -165.72 0.573 573.44 1097.12 

  Pooled 0.815 -1120.03 0.581 2482.07 3239.30 

* The share correctly classified, using probability-weighted predictions. 
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6.4.3 Identifying nonlinear effects 

Our interest is in what the models learned from the data, particularly regarding time 

and cost effects. To find the nonlinear effects learned from the data, we plot choice 

probabilities and systematic utilities as a function of time and cost (Figure 6-5), and 

consider the marginal effects of these variables by examining the slopes of these functions. 

For both time and cost, as expected, we find that the benchmark model (logit) produces 

constant marginal effects on utilities (i.e. constant parameters). On the other hand, both 

MoE and NN capture the nonlinear effects of both variables. If the time difference (between 

train and car) is less than zero, the slope is gentle or close to zero, whereas the slope is 

steeper when the time difference lies in [0, 1]. Cost also shows nonlinear effects. The 

estimated marginal effects are not identical, but both MoE and NN show consistent 

nonlinear effects of time and cost.  

We can approximate these nonlinearities by interacting the main variable with 

dummy variables (similar to a piecewise regression approach) in an ordinary binary logit 

model. To see the benefit of capturing nonlinear effects, we compare three models in this 

section (Table 6-7): the model without nonlinear effects (N1), the model having a two-

region piecewise linear effect (N2), and the model having a three-region piecewise linear 

effect (N3). As we add more nonlinearity dummies, the new parameters play significant 

roles and the models are substantially improved on all performance metrics. Thus, by 

exploring the identified marginal effects learned from MoE (or NN), they can inform us 

regarding how to specify nonlinear effects in a conventional logit model.  
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Figure 6-5. Choice probabilities and systematic utilities as functions of (a) time and 

(b) cost 

 

Table 6-7. Binary logit model results incorporating nonlinear effects learned from 

MoE 

Estimates 

  N1   N2   N3   

  Estimate t value Estimate t value Estimate t value 

Intercept -0.896 -17.29 0.383 0.65 0.413 0.69 

TT -1.427 -13.72 -0.073 -1.08 -0.124 -1.78 

CO -1.263 -14.43 -0.231 -0.62 -0.211 -0.57 

Dummy_TT (TT>0) - - -0.033 -0.26 0.082 0.61 

Dummy_CO_1 (CO<-1) - - -0.795 -1.35 -1.186 -2.00 

Dummy_CO_2 (CO>0.5) - - - - -2.248 -7.24 

TT * Dummy_TT - - -2.572 -12.41 -2.878 -13.04 

CO * Dummy_CO_1 - - -1.266 -3.27 -3.107 -7.55 

CO * Dummy_CO_2 - - - - 4.826 16.58 

 

Performance 

  Accuracy  
Log-

likelihood 
𝝆𝟐 AIC BIC 

N1 0.728 -1682.595 0.371 3371.190 3389.965 

N2 0.740 -1604.068 0.400 3222.136 3265.943 

N3 0.764 -1443.377 0.460 2904.755 2961.078 
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6.4.4 Finding the best specification of the conventional model 

By training MoE models, they can learn not only nonlinear effects, but also 

interaction effects among variables. In theory, we can detect interaction effects by 

following steps similar to those in Sections 6.3.2 and 6.4.3. However, in real-world 

contexts numerous combinations of interaction terms can be possible, and testing such 

combinations individually can be tedious and haphazard. It is of interest to explore whether 

a somewhat more (though not completely) automated process can produce meaningful and 

useful results. Accordingly, here we conduct regression modeling to approximate what we 

learned with MoE. Specifically, we regress the estimated utilities (the �̂�s of Eq. (6.3)) on 

the available explanatory variables, including nonlinear and interaction terms, and select 

the specification that best predicts those utilities and thus best approximates the results of 

MoE (in a spirit similar to that of stepwise regression, or actually in this instance, all-

possible-subsets regression). In this study, we purposefully allow interactions only up to 

three variables rather than allowing any possible higher-order interactions. This 

“degeneration” might be seen as unnecessary, but we consider that allowing higher-order 

interaction severely impedes interpretability and thus we may lose the benefit of using 

conventional models over just using machine learning models. However, if needed, 

analysts can allow higher-than-three-level interactions following the same process 

described in this study. 

After finding the best specifications through regression, we estimate choice models 

(i.e. based on the observed choices) with those best specifications. Figure 6-6 plots the 

ratios of the 𝜌2 measure of the MoE result to that of each choice model in turn, thereby 

illustrating the level of approximation to MoE achieved by the various specifications. The 
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same specifications and their performance in modeling the observed choices are listed in 

Table 6-8. We consider that MoE represents the practical “ceiling” on how close we can 

come to the true data generation process in the sample. Thus, the question is how closely 

more conventionally-specified models can approximate the data generation process 

captured by the MoE. Here are several observations from Figure 6-6. 

• Overall, specifying nonlinear effects of time/cost substantially improves 

performance. In particular, their contributions are even greater than those obtained 

by adding other explanatory variables (M0b vs. M1a). 

• Specifying interaction effects improves performance compared to the model 

without interaction effects. The model with three-variable interactions is better than 

that with two-variable interactions, but the improvement is not significant (M2 vs. 

M3). 

• Combinations of nonlinear and interaction effects bring the best approximation to 

the ceiling (M4a vs M5a, M4a vs M5b). 

• Having two splits in the piecewise linear effect of cost approximates the ceiling 

better than having one split (M1a vs. M1b; M4a vs M4b; M5a vs. M5b).  

From this application, two key observations emerge. First, as in the experiments 

with synthetic data (Section 6.3), we can confirm that MoE captures nonlinear and 

interaction effects without prior knowledge. We can identify nonlinear effects by plotting 

the estimated choice probabilities and systematic utilities, and important interaction effects 

by conducting regression on the MoE results. In this empirical context, time interacts with 

MALE and PURP; cost interacts with MALE and FIRST. The final model is in Table 6-9. 

Second, by using these discoveries, we can inform the specifications of 

conventional (logit) models. Here, however, we face a dilemma regarding the decision on 

the final model specification. The best model specification with respect to the degree of 
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approximation to the ceiling (i.e. data-driven) is M5a. In particular, the nonlinear effects 

of time and cost bring significant improvements. Such a model may, however, contradict 

conventional theory, because it renders positive coefficients of time and cost for certain 

segments of people. Hence, analysts should decide which one to pick depending on their 

purpose. If the analyst pursues better performance, either accepting an inconsistency 

between the solution and theory or having some theories to explain the positive coefficient 

of cost, then the final specification might be M5a. However, if the analyst places more 

weight on theory or if the positive coefficient can pose a problem for decision-making, then 

the analyst should adopt the best model giving results that are consistent with theory (while 

sacrificing a bit of performance).  

 

Figure 6-6. Approximation to MoE result by various specifications 
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Table 6-8. Model performance based on the final specifications 

Training set      

Model Time Cost Other variables 
Accu

-racy 
LL 𝝆𝟐 

M0a Linear Linear NA 0.726 -1454 0.364 

M0b Linear Linear Linear 0.743 -1365 0.403 

M1a 
Nonlinear 

(1 split) 
Nonlinear (1 split) NA 0.763 -1239 0.458 

M1b 
Nonlinear 

(1 split) 
Nonlinear (2 splits) NA 0.738 -1376 0.398 

M2 Linear Linear 
Interact with time & cost  

(1 level) 
0.750 -1301 0.431 

M3 Linear Linear 
Interact with time & cost  

(2 levels) 
0.757 -1269 0.445 

M4a 
Nonlinear 

(1 split) 
Nonlinear (2 splits) 

Interact with time & cost  

(1 level) 
0.783 -1135 0.504 

M4b 
Nonlinear 

(1 split) 
Nonlinear (1 split) 

Interact with time & cost  

(1 level) 
0.764 -1225 0.464 

M5a 
Nonlinear 

(1 split) 
Nonlinear (2 splits) 

Interact with time & cost  

(2 levels) 
0.793 -1089 0.524 

M5b 
Nonlinear 

(1 split) 
Nonlinear (1 split) 

Interact with time & cost  

(2 levels) 
0.771 -1195 0.478 

       

Test set       

Model Time Cost Other variables 
Accu

-racy 
LL 𝝆𝟐 

M0a Linear Linear NA 0.742 -228 0.411 

M0b Linear Linear Linear 0.762 -208 0.463 

M1a 
Nonlinear 

(1 split) 
Nonlinear (1 split) NA 0.767 -205 0.473 

M1b 
Nonlinear 

(1 split) 
Nonlinear (2 splits) NA 0.749 -228 0.411 

M2 Linear Linear 
Interact with time & cost  

(1 level) 
0.764 -209 0.463 

M3 Linear Linear 
Interact with time & cost  

(2 levels) 
0.767 -207 0.466 

M4a 
Nonlinear 

(1 split) 
Nonlinear (2 splits) 

Interact with time & cost  

(1 level) 
0.788 -189 0.514 

M4b 
Nonlinear 

(1 split) 
Nonlinear (1 split) 

Interact with time & cost  

(1 level) 
0.773 -208 0.465 

M5a 
Nonlinear 

(1 split) 
Nonlinear (2 splits) 

Interact with time & cost  

(2 levels) 
0.793 -184 0.526 

M5b 
Nonlinear 

(1 split) 
Nonlinear (1 split) 

Interact with time & cost  

(2 levels) 
0.772 -213 0.452 
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Table 6-9. Best model results 

M5a   

  Estimate t value 

(Intercept) 0.418 0.56 

TT -0.843 -1.89 

Dummy_TT_1 0.067 0.38 

CO 1.527 2.83 

Dummy_CO_1 -2.807 -3.91 

Dummy_CO_2 -2.251 -5.95 

MALE 0.501 2.25 

PURP 1.493 6.31 

FIRST 1.142 4.15 

AGE12 0.265 2.07 

AGE5 0.589 3.32 

INC1 0.933 6.20 

LUG 0.922 7.50 

T_HE1 0.611 5.42 

TT* Dummy_TT_1 -3.203 -8.83 

CO* Dummy_CO_1 -4.610 -8.84 

CO* Dummy_CO_2 5.811 15.49 

MALE*PURP -1.771 -6.25 

TT*MALE 0.421 0.88 

TT*PURP 0.962 2.18 

MALE*FIRST -1.220 -3.97 

CO*MALE -0.522 -1.70 

CO*FIRST -2.374 -5.98 

TT*MALE*PURP -0.254 -0.45 

CO*MALE*FIRST 1.870 4.17 

 

6.5 Conclusions 

This study examined the possibility of using the mixture of experts (MoE) as an 

exploratory tool to capture nonlinear and interaction effects (particular types of parameter 

heterogeneity) when having no prior knowledge of those effects. Firstly, we explained that 

MoE is connected to the popular latent class model; more specifically, the usage of MoE 

is connected to the “indirect application” (in psychometric parlance) of finite mixture 
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modeling. To demonstrate its usefulness, we experimented with synthetic data for which 

we know the true nonlinear/interaction effects. In the experiments, MoE was able to 

identify those true effects. In a separate application to empirical data, MoE identified 

significant nonlinear effects of time and cost on mode choice and captured interaction 

effects as well. By using the information from the MoE results, we were able to revise the 

specifications of conventional logit models and thus improved model performance.  

There are several avenues for future research. MoE could be extremely parameter-

greedy, as a function of the number of experts and the complexity of each expert. As one 

possibility to reduce complexity, we may feed explanatory variables only to the 

segmentation model or only to the experts (i.e. the class-specific outcome functions). This 

can lessen the number of parameters, but whether its performance can be equivalent to that 

of standard MoE (in which variables are fed to both segmentation and outcome functions) 

has not been studied. Second, the current study required the analyst’s judgment to translate 

the identified effects into particular model specification elements (e.g. definition of the 

number and location of piecewise linear splits; specific interaction terms). It might be 

helpful if we could have a more systematic framework for performing this translation (e.g. 

algorithmic detections). Third, the analyst’s engagement is also required to determine 

whether “statistically significant” effects are conceptually meaningful/interpretable or not. 

Some automation of this step could also be helpful, but this avenue could be challenging 

because analysts would have to codify domain knowledge in a form suitable for machine-

based evaluation. This would not be easy, because domain knowledge itself may contain 

effects that are complex, and there may not be consensus in the domain on the directionality 

or composition of many effects. At a minimum, some constraints in estimation might be 
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used to ensure directionality of effects where such a consensus does exist. Lastly, we 

applied the models to simple empirical data (i.e. a binary decision with small sample sizes), 

but more empirical studies are needed to verify the usefulness of MoE. 
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CHAPTER 7. DISCUSSION AND CONCLUSION 

7.1 Summary 

This thesis aimed to pave the way to improving our behavioral/demand models by 

taking an in-depth look at the heterogeneity in human behavioral processes, and ways of 

incorporating that heterogeneity into our models. It specifically focused on finite-valued 

forms of heterogeneity, embracing concepts of market/data segmentation and finite 

mixture modeling. The thesis set up the objectives: 

1. To build a framework for modeling finite mixture heterogeneity that connects 

seemingly less related models and various methodological ideas across domains; 

2. To tackle various heterogeneity-related research questions in travel behavior and 

thus show the empirical usefulness of the models under the framework; 

3. To examine the potential, challenges, and implications of the framework with 

conceptual considerations and practical applications. 

For these purposes, five inter-related studies were conducted on this journey. 

CHAPTER 1 and CHAPTER 2 started with discussions about the necessity of 

studying heterogeneity, related key concepts, and an overview of modeling finite mixture 

heterogeneity. Through a comprehensive and systematic review, the study (1) provided a 

broader understanding of the usage landscape of finite mixture modeling, (2) shed light on 

various typologies related to methodological approaches to treat heterogeneity, and 

(3) discussed alternative model configurations. Transportation researchers may benefit 

from this study by understanding the general idea of finite mixture heterogeneity and where 

we are now in this modeling. As well, analysts can use this study as a compass while 

designing their models.   
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CHAPTER 3 discussed parameter heterogeneity, which is the most popular type of 

heterogeneity. Specifically, the chapter connected three alternative approaches to treating 

finite-valued parameter heterogeneity: deterministic segmentation, endogenous switching, 

and latent class models. The study (1) expanded the typology of mixture modeling by 

embracing “observed classes” and (2) connected the finite mixture model with the 

switching model family by way of detailed discussions about their similarities and 

differences from conceptual and empirical standpoints. Specifically, with equation-rich 

discussions the study pointed out the distinctive usefulness of each approach: the often-

better performance of the latent class model over competing models, and the proper 

framework for estimating treatment effects offered by the endogenous switching model 

(including an in-depth interpretation of treatment effects). Analysts may benefit from this 

study by understanding the connections between two modeling families (thus supporting 

model selection appropriate to satisfying their ends) and obtaining the correct equations for 

calculating treatment effects, especially when the dependent variable is log-transformed.  

CHAPTER 4 dealt with the confirmatory latent class approach, which has been less 

discussed in the literature. The study illustrated the usefulness of the confirmatory latent 

class approach with an empirical application (modeling leisure trip frequencies by car and 

air). Specifically, the zero-inflated model is embraced under the finite mixture 

heterogeneity framework, given the expanded typology of heterogeneity. Analysts may 

gain inspiration from this study on how to operationalize behavioral models when dealing 

with data showing a particular pattern and when having some behavioral hypotheses on 

such a pattern. 
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CHAPTER 5 expanded the latent class model by combining it with the endogenous 

switching model. It relaxed the latent class model’s implicit assumption of independence 

between the unobserved influences on class membership and outcome. With two empirical 

applications (modeling the willingness to share autonomous vehicle rides with strangers 

and the adoption of ridehailing for social-purpose trips), the study showed how the 

proposed models may give different insights compared to standard latent class models, 

even when parameter estimates and goodness-of-fit measures appear to be similar. 

Specifically, when conducting scenario analysis, the proposed method provides distinct 

marginal and conditional (on class) expectations, whereas the standard model only focuses 

on conditional expectations. The study opens the door to an avenue for evaluating 

“treatment effects” in the latent class modeling context, which analysts may wish to pursue 

in the future. 

CHAPTER 6 conceptually connected latent class modeling to the mixture of 

experts (MoE) approach arising from the machine learning domain. This study used MoE 

as a data-driven exploratory tool to identify nonlinear and interaction effects (which are 

special types of parameter heterogeneity) and used what we learn from MoE to improve 

the performance of conventional models. Through experiments with synthetic data and an 

empirical application (to mode choice), the study showed that MoE can automatically 

detect nonlinear/interaction effects and can be used to inform our model specifications. To 

our knowledge, this study is the first in the transportation domain to use the “indirect 

application” (as it is known in the psychometrics field) of latent class modeling. Hence, the 

study expands the usage of finite mixture structures and thus helps to diversify applications 

for analysts. 
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7.2 Challenges  

Although the preceding five studies showed promising aspects of the finite mixture 

framework, it is not free from challenges as well. Thus, this section describes several 

challenges, which have been little discussed in the literature, that analysts need to 

contemplate.  

7.2.1 Sample representativeness 

One of the potential issues of the market segmentation or finite mixture approach 

might stem from the sample: is the sample representative of the target population? This 

question would be embedded in any study using empirical data and it is an important issue. 

However, the issue could be even more crucial for studies involving segmentation. 

Numerous studies conduct modeling to identify structural relationships among variables, 

or the effects of key variables on a target outcome. In such cases, sample bias may not 

necessarily be critical, in that the studies focus on conditional relationships (Babbie, 2012): 

given these characteristics 𝑿, what is the expected outcome Y? However, even aside from 

estimator bias, if we apply finite mixture modeling to sample data that are not 

representative of the target population, then projecting the results onto the target population 

could yield inappropriate answers. In particular, the shares of classes and compositions of 

classes may not represent those in the population of interest. For example, if the sample is 

highly skewed toward wealthy people, then the shares of classes related to such 

demographics could be inflated. Even worse, analysts may fail to identify substantive latent 

classes that exist in the real population. Another possibility is misleading interpretations. 

For example, suppose tech-savviness measures are used to identify latent classes from each 

of two samples: one of the general population and one of “tablet PC users”. Although each 
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sample may produce a “tech-savvy class” (compared to the other classes in the sample), 

would “tech-savviness” have the same meaning in each sample? Probably not, because 

mixture modeling would identify relative classes within the sample. This issue also makes 

it challenging to compare latent classes across different studies.  

In our review, relatively few studies reported or discussed this issue (or how they 

handled it). For instance, several studies reported that the sample was fairly representative 

of the target population with respect to some key demographics (e.g. Srinivasan et al., 

2009; Nayum et al., 2013; Fu and Juan, 2017; Mouter et al., 2017; Rahmani and Loureiro, 

2019; Saxena et al., 2019b; Gong et al., 2020). Or some studies acknowledged that the 

sample may not be fully representative of the target population, such as the whole cycling 

population of Santiago (Rossetti et al., 2019), or the German population (Hackbarth and 

Madlender, 2016). Several studies applied sample weights to make the results more 

representative (e.g. Bailey and Axsen, 2015; Prato et al., 2017; Vij et al., 2017). However, 

this issue may not be pertinent in some studies, if the data represent “all” populations of 

interest or the data are “big” enough. Alternatively, remedies such as sample weighting 

may be adequate to address the issue, although that could be debated (since we cannot 

weight with respect to unobserved characteristics). Either way, however, 

representativeness should certainly be considered when applying mixture modeling to a 

sample and then making inferences for the population.  

7.2.2 Overfitting and generalizability 

Overfitting issues are a concern in any model estimation process, but they can be 

obscured when it comes to latent class modeling. First, this is because latent class 
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modeling, by nature, simultaneously involves both “unsupervised learning” and 

“supervised learning”. In latent class choice models or latent class linear regression 

problems, the problems per se are supervised learning problems (outcomes are observed, 

and the model is oriented toward predicting those outcomes as well as possible), but 

clustering is embedded in the model (and cluster membership is not predetermined). In 

unsupervised learning problems such as cluster analysis, it is not easy to say whether the 

solution is overfitting or not, because the purpose of the analysis is to find latent structure 

in the data and there is no ground truth against which to test whether the structure is “right” 

or not.  

In addition, an important rationale behind using mixture models or segmentation 

is to find heterogeneity. If the model identifies some substantial types of heterogeneity, 

then it is interesting news for analysts who look for heterogeneity. However, the million-

dollar question is, are such differences an indication of true heterogeneity, or a 

consequence of overfitting? The more complicated the models are (e.g. having more classes 

or more parameters), the more likely it is that both true heterogeneity and overfitting are 

confounded.  

One might argue that we can determine whether the solution is overfitted or not 

by checking whether it is generalizable to other datasets (e.g. using a holdout sample, or 

cross-validation). However, this question is also tricky to answer. That is because it is 

unclear how to properly evaluate model performance correctly for latent class modeling. 

If we knew the true class membership in the test sample and if we knew how to properly 

“guess” class membership using the model, then we could compare those two things and 

assess the performance of the model adequately. However, by nature, classes are latent, 
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and thus neither of those conditions are satisfied. Hence, although we interpret latent class 

models using their class-specific (conditional) outcome functions (which is a key virtue of 

such models), for evaluating model fit we end up relying on the expected (marginal) 

outcomes obtained by probability-weighting the class-specific predictions (since we do not 

know which conditional, or class-specific, prediction applies to any particular case). This 

implies that there is an inconsistency between how we interpret the models and how we 

evaluate the models, and this inconsistency leads us to a systematic undervaluation of latent 

class models, because the true value of latent class models lies in how well they explain 

the behavioral processes of each class, not some average outcome.  

The two (extreme) examples shown in Figure 7-1 illustrate how an accuracy test 

can undervalue the latent class model. We generate two Y-X relationships54 (red and blue; 

the left panel shows a case where the two relationships are positive, but with impacts of 

different magnitudes; the right panel exhibits a case where the two relationships reflect 

impacts of different signs as well as magnitudes). By applying a simple linear regression 

on the pooled data (black dashed lines), the results deviate from the true data generation 

processes; this becomes even more severe when the two data generation processes are 

notably different (e.g. different signs of parameters; see case 2). On the other hand, the 

latent class model (with two classes) recovered the true parameters for both classes (i.e. the 

two data generation processes are recovered). The problem is that when obtaining new data 

points, we are not sure whether a given point is generated from Class 1 or Class 2. Hence, 

we obtain the marginal prediction (the yellow lines; the weights in the linear combination 

                                                 
54 Here, for simplicity of discussion, the examples are very extreme cases and are presented as simple 

regression problems.  



 250 

of the two class-specific models are the estimated class membership probabilities), but in 

so doing we lose the original idea of latent class modeling and prediction becomes poor as 

well.  

An obvious (and commonly exercised) option is to assign individuals to classes 

based on their estimated class probabilities, specifically assigning a case to the class with 

the highest predicted membership probability for that case. There are three issues here. 

First, misclassification of at least some cases is almost inevitable. Second, it is common to 

use posterior probabilities (i.e. considering the information provided by the outcome and 

thus updating the class membership probability using Bayes’ Rule) when assigning in-

sample individuals into classes (cf. NLOGIT 2016; Vermunt and Magidson, 2016). 

However, this is arguably “cheating” in that we are using information about the outcome, 

which is supposed to be unknown while predicting (Kim and Mokhtarian, 2018). In 

addition, in a real prediction exercise, the outcome values are likely to be unknown (which 

is why we are modeling/predicting in the first place) and thus we may not be able to obtain 

posterior probabilities in a holdout or entirely new sample. Third, the meaning of class 

probabilities is somewhat misused in this case. As Train (2009) and Hensher et al. (2015) 

point out, such a “hard classification” based on the highest-probability class (the so-called 

unit-weighted method) violates the basic idea of a probabilistic choice model. For example, 

if there were 100 people, each of whom had a 0.51 probability of belonging to Class 1 and 

0.49 for Class 2, it would be unrealistic to assign all of them to Class 1 (as the unit-weighted 

method would do) – instead, we would expect only about 51 of them to belong to Class 1.  
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Figure 7-1. Illustration of how evaluation of finite mixture models can be misleading 

 

7.2.3 The “Rashomon effect” 

Given the flexibility offered by the concept of finite mixture heterogeneity, as 

highlighted in this thesis, we can use that approach to model numerous types of 

heterogeneity problems. However, this flexibility may possibly turn into a pitfall since it 

can raise the question, “when the finite mixture model performs better than competing 

ones, how can we be sure that the model captured the effects intended by the analyst?” In 

other words, couldn’t there be multiple ways of interpreting the model or formulating the 

model to fit the data? In machine learning, Breiman (2001) used the term “Rashomon 
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effect”55 to describe situations in which a multitude of different models can explain the data 

with about the same performance. A similar phenomenon has been discussed in 

psychometrics, the so-called “equivalent models”. When building structural equations 

models, there could be equivalent models that provide the same general statistical fit 

indexes, but they may imply very different interpretations of the data (cf. MacCallum et 

al., 1993; Raykov and Marcoulides, 2001). As well, in the transportation and choice 

modeling community, as noted in Section 2.3.1, Hess et al. (2013b) and Hensher et al. 

(2013) pointed out that attribute non-attendance (a type of heterogeneity) and regular taste 

heterogeneity could be confounded while employing the mixture modeling framework. 

The situation becomes even more complex under the expanded typology and 

framework discussed throughout this thesis. There are at least four aspects that can possibly 

introduce a Rashomon effect. 

1. Typology of heterogeneity: There are various types of heterogeneity, but 

possibly they can be confounded. The findings in Hess et al. (2013b) and Hensher 

et al. (2013) belong to this category. 

2. Confirmatory latent class approach: Since analysts can design finite mixture 

structures depending on their needs, there could be an almost infinite number of 

possibilities. 

3. Direct vs. indirect applications: Two usages of finite mixture modeling have 

been identified in the psychometric literature. In so-called direct applications, we 

interpret the class-specific behavioral models. On the other hand, we can also use 

the method to capture overall nonlinear/interaction effects of explanatory 

variables, neglecting the class-specific functions – a so-called indirect application. 

                                                 
55 Rashomon is a Japanese film (1950), which is known for a plot device that involves various characters 

providing subjective, alternative, self-serving, and contradictory versions of the same incident. The word 

Rashomon, afterward, has been used to describe a situation in which multiple different descriptions exist 

about the same incident. 
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Then, given a particular empirical context, should a certain model necessarily be 

interpreted as if it is a direct application (or alternatively an indirect application)? 

4. True heterogeneity vs. overfitting: As described in Section 7.2.2, the more 

complex models become, the more likely it is that true heterogeneity and 

overfitting can be intertwined. 

Even worse, these four situations can themselves be confounded in a given 

empirical application. Thus, future research needs to explore the Rashomon effect, and 

seek possible remedies to alleviate it.  

7.2.4 Revisiting the usefulness of finite mixture modeling 

Finite mixture modeling is well suited to explore various types of heterogeneity 

(Section 2.3.1), and it has been verified in numerous empirical studies that the method 

gives behavioral insights and better performance over other competing models (Section 

2.3.7). However, it is often questioned how useful the finite mixture model really is, and 

what would happen if we dismiss it. One may argue that a population-level perspective, 

which melds differences into an aggregate “average”, could be sufficient for planning 

purposes. 

We still contend that uncovering population segments will render both more correct 

and more useful assessments of infrastructure plans or policy instruments. First, identifying 

the population average does not mean that everyone exhibits such behavior. Consider a 

simple situation in which we know that there are two groups of people, respectively willing 

to pay fees of $6 and $20 for toll lane access. A homogeneous model might give us a 

willingness-to-pay estimate of around $13, but in fact no one has a willingness to pay near 

$13. Hence, planning based on population means can be misleading. Second, a key is that 
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such segments are not randomly distributed, particularly geographically. For example, 

“urbanite” people are more likely to live in urban areas than in suburban/rural areas and 

they would be more transit-friendly than “non-urbanite” people. Hence, an understanding 

of latent population segments (via finite mixture modeling in this study), and particularly 

how they are distributed, could be useful for the assessment of the effectiveness of 

planning/policy instruments. 

Obviously, we are subject to falling prey to confirmation bias, since we typically 

hypothesize the existence of heterogeneity and mixture models seem to “look better” than 

the simpler models. Almost no one would reject the model if it is what the analyst wanted/ 

expected and it exhibits satisfactory goodness of fit. Then, what should we do to truly 

corroborate the usefulness of the finite mixture model? The first step might be comparisons 

with simpler models. As covered in Section 2.3.7, comparisons with some baseline models 

have been reported in many studies, but still, a non-trivial fraction of studies skipped this 

process. Having such baseline models could be considered redundant in that more 

complicated models will almost always outperform the simpler models. However, it can 

still be useful to see how much worse the simpler models are (or how well the mixture 

models actually work).  

Furthermore, even when studies compared models, such comparisons were often 

limited to simple statistical goodness of fits (e.g. particularly in-sample information 

criteria; cf. Parady et al., 2021). Ideally, future studies should be able to validate56 the 

models and show how our estimates/predictions (e.g. willingness to pay, modal shift, 

                                                 
56 However, as alluded to in Section 7.2.2, we need more discussion on “how to validate”.  
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vehicle-miles reduction) could change by comparing the predictions that do and do not 

account for heterogeneity in the population. Scenario or sensitivity analysis is one of the 

possible avenues. For example, what outcomes will each segment produce in response to 

key factors or policy variables (e.g. Vij et al., 2013; Bailey and Axsen, 2015; Seelhorst and 

Liu, 2015; Lin et al., 2017; El Zarwi et al., 2017; Kim and Mokhtarian, 2018; Kormos et 

al., 2019)? The real value of mixture modeling may come from some additional analyses 

that would not have been possible for simpler models.  

Lastly, transportation modelers may need to think about how to use “latent class 

solutions”. In many academic papers, analysts have enjoyed using latent class models and 

those studies have reported numerous interesting findings. However, we seem to be 

missing deeper discussions about how to use latent classes in subsequent studies or how to 

exploit them for actual (demand) forecasting practice. This could be because (1) we might 

be less confident to use latent classes because they are “latent” and thus too intangible 

compared to other deterministic segmentation indicators (e.g. gender, age, income), and 

(2) it is unclear whether latent classes are temporally and spatially stable and transferable. 

These issues remain unanswered. 

7.3 What’s next? 

Pursuing better behavior/demand modeling (specifically, in this thesis, accounting 

for finite mixture heterogeneity), we've come a long way, and have a long way to go57. 

Then, what’s next? Obviously, the challenges listed in Section 7.2 should be addressed or 

at least formally discussed in future research. Aside from responses to those challenges, 

                                                 
57 This was the title for a panel discussion, lectern session 1087, which discussed advances in travel 

behavior research (moderated by the AEP30 committee; 100th TRB Annual Meeting, Jan. 25, 2021). 
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due to the versatility and flexibility of the finite mixture approach, there could be a variety 

of avenues to enrich our behavior/demand modeling. Considering recent developments, 

here we briefly list some possibilities. 

7.3.1 Combining continuous and discrete mixtures 

There has been a growing interest in combining different types of heterogeneity in 

the model. In particular, combining continuous and discrete natures of heterogeneity 

becomes of interest. Two distinct approaches are possible: (1) latent class random 

parameters – random parameters considered for the class-specific outcome models and (2) 

random parameter or latent variable models where the random parameters (or latent 

variables) follow finite mixtures of (generally continuous) distributions. The former can be 

considered as adopting continuous heterogeneity within each segment. A major rationale 

is to relax the homogeneity assumption within a class of a latent class model, by introducing 

random parameters. In other words, unlike the usual latent class model that focuses solely 

on inter-class heterogeneity, this approach assumes there is also intra-class heterogeneity. 

Boeri et al. (2014) found, in the context of choice of traffic calming scheme, that the 

outcome models for the two latent classes each had significant standard deviation 

parameters, confirming taste heterogeneity within each class. This is also supported by the 

goodness of fit measures compared to those for the standard latent class model. Haghani 

and Sarvi (2016) modeled pedestrian exit choice behaviors with standard latent class and 

random parameter latent class models. In this application, both models are significantly 

better than the ordinary logit model, but both models also exhibited almost identical results, 

indicating that within-class heterogeneity was not significant given the data. Orvin and 

Fatmi (2020) examined the destination choice behavior of users of a dockless bike sharing 
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service with a random parameter latent-segmentation logit model; they found heterogeneity 

in the means of the random parameter distributions across two classes. This modeling 

approach has also been recently gaining popularity in safety analysis (cf. Mannering et al., 

2016; Li et al., 2018; Yu et al. 2019a). 

The second approach constitutes a type of random parameter model where the 

parameters are assumed to follow a certain mixture distribution (e.g. Gaussian mixture). 

Random parameters are generally assumed to follow a particular parametric distribution 

(most often the normal distribution, but others are possible such as log-normal, triangular, 

and uniform). Adopting mixture distributions, which can approximate any arbitrary 

continuous distribution in theory, the distribution of a parameter can be more flexible (e.g. 

allowing asymmetry, multimodality). As one example, Buddhavarapu et al. (2016) 

modeled a random parameter negative binomial model with a finite mixture multivariate 

normal structure on the random parameters for crash count data. Alternatively, the finite 

mixture can be used to specify distributions of latent variables in an ICLV model. In other 

words, although a latent variable is often specified as having a parametric distribution (e.g. 

normal, lognormal), allowing a finite mixture of such distributions offers more flexibility 

in the shape of the overall distribution, while retaining the advantages of parametric 

distributions. For example, Brey and Walker (2011) modeled flight choice with a latent 

temporal preference that follows a mixture of normals. 

An approach that is related in the sense that it is another way to approximate 

complex parameter distributions, albeit not specifically combining continuous and discrete 

heterogeneity, is to introduce more structured support of a distribution, such as a grid (i.e. 

“casting a net in the coefficient space”, Vij and Krueger, 2017, p. 81), as opposed to the 
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parameters having unstructured distributions in the parameter space as is the case in 

conventional latent class models. With this method, it is possible to have a large number 

of mass points (i.e. classes) while retaining computational tractability. This could be a 

useful approach not only for computational ease but also for better explaining 

heterogeneity. With sufficient mass points, the discrete distribution can approximate any 

distribution to a high degree of accuracy (Heckman and Singer, 1984). However, as we 

discussed in Section 2.3.6, the number of classes is confined to a limited number in practice 

due to interpretability as well as estimability, and “finite mixture models with a smaller 

number of mass points may inadequately capture the full extent of heterogeneity in the 

data” (Allenby and Rossi, 1999). Dong and Koppelman (2014) first proposed a mixed logit 

with a discrete distribution with finite support, referring to it as the discrete mixed logit 

model (DMXL), and compared it with the latent class model, which is a special case of a 

DMXL. Vij and Krueger (2017) proposed a more flexible modeling framework using the 

EM algorithm and, with applications to mode choice modeling, showed its usefulness in 

interpretation as well as predictive ability. 

7.3.2 Latent variable sub-models 

Many studies have acknowledged the role of some latent constructs (e.g. attitudes) 

to explain target outcomes (e.g. behaviors). Hence, incorporating such constructs has been 

a key interest. This has been done in three different ways. First, a few studies have used 

raw attitudinal statements as variables (e.g. Beck et al., 2014; Bailey and Axsen, 2015; 

Hackbarth and Madlender, 2016; Ferguson et al., 2018). Second, a sizable number of 

studies have used a two-step approach to incorporate attitudes or other type of latent 

construct. Specifically, they have estimated latent factor scores first (often via exploratory 



 259 

factor analysis) and then used the estimated scores in latent class modeling (e.g. Olaru et 

al., 2011; Araghi et al., 2016; Molesworth and Koo, 2016; Molin et al., 2016). This two-

step approach avoids model complexity at the expense of losing the benefits of 

simultaneous estimation (e.g. incorporating measurement errors, estimation efficiency).  

A third, more conceptually rigorous, approach is to embed a latent variable model 

into the finite mixture modeling system. For example, constructing a membership model 

as a function of a (latent) attitude, Hess et al. (2013) incorporated a measurement model 

into the membership model. Motoaki and Daziano (2015) constructed a membership 

function containing a latent variable of bicyclist status by adopting a multiple indicator and 

multiple causes (MIMIC) structure. Pan et al. (2019) estimated latent class models with a 

risk aversion latent variable to understand expected electric vehicle charging behavior. 

Alizadeh et al. (2019) modeled route choice behavior with a latent class integrated choice 

and latent variable (LC-ICLV) model. By adding two latent variables (consciousness and 

cautiousness), the model fitted better than a benchmark standard latent class model. 

Krueger et al. (2018) suggested a framework incorporating latent variable (mode-specific 

and ecological normative beliefs) and latent class (modality styles) sub-models. A more 

intuitive approach to understanding this framework is to consider it as a latent class cluster 

analysis where the class membership is a function of latent variables (having multiple 

indicators). This is analogous to hybrid choice models where utilities are a function of 

latent variables.  

Another avenue of incorporating latent variable models was proposed in Hurtubia 

et al. (2014). Specifically, they added class-specific measurement models (with the 

indicators being ordinal psychometric indicators). By doing so, in two empirical 
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applications, they found different estimates for the class-membership model and gained 

behavioral insights with the additional measurement models. 

7.3.3 Marriage with other “machine learning” architectures 

So far, the latent class models discussed in this review (CHAPTER 2) have been 

operationalized with “conventional” statistical models. As reviewed in Section 2.3.4, the 

membership model is almost exclusively specified as a softmax function (multinomial 

logit) and the outcome models have been represented with well-known classical models 

(e.g. linear regression, logit, Poisson, etc.; see Section 2.3.5). However, we may view finite 

mixture modeling as a general model architecture and expand it by marrying it with other 

machine learning architectures. Specifically, we can embed other architectures (e.g. neural 

networks) in the mixture modeling framework by replacing membership and/or outcome 

models with new methods. In fact, this idea is analogous to the mixture of experts proposed 

by Jacobs et al. (1991a) in neural computation (CHAPTER 6 presented a preliminary 

analysis of this avenue). In the original proposal, the class-specific outcome functions were 

neural networks. In this case, given that neural networks can automatically capture 

nonlinear and higher-order interactions, individual class-specific functions may be able to 

capture complex relationships among variables, or intra-class heterogeneity, that would 

have not been identified by simpler functions (without explicit specifications). In theory, 

class-specific functions can take any form if one is able to specify the objective function 

and properly optimize it. Considering the confirmatory approach described in Section 

2.3.2, class-specific outcome functions do not need to be the same as well (e.g. class 1 

follows nested logit and class 2 follows neural networks, etc.). In this case, of course, the 
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rationale of such specifications and how to interpret them are the responsibility of the 

analyst.  

The same logic can be applied to the membership model as well, if the membership 

probability can satisfy conditions of 0 ≤ 𝜋z ≤ 1 and ∑ 𝜋𝑧
𝑍
𝑧=1 = 1. For example, Ishaq et 

al. (2014) used a fuzzy c-means method to construct membership probabilities. Han (2019) 

represented the class membership model with a feed-forward neural network. The rationale 

behind this effort is that “In contrast to choice models [outcome models], where we more 

clearly know about the trade-offs between attributes, the class membership model 

specification is less clear to define” (Han, 2019, p. 86). By representing the class 

membership model with a neural network, nonlinear effects can be automatically captured 

in the membership model. In a nutshell, the mixture modeling framework can be 

generalized to embrace other methods in the architecture, with the premise of achieving 

better performance and gaining more information on heterogeneity (at the expense of 

model complexity, corresponding computational cost, and the challenge of 

interpretability). 

7.4 Outlook and concluding remarks 

Throughout the thesis, we explored the possibility of teaching “older” models 

“newer” tricks58, finding clues for the tricks from the ideas of heterogeneity, finite 

segmentation, and mixture modeling architecture.  

                                                 
58 This borrowed the name of the University Transportation Center TOMNET, Center for Teaching Old 

Models New Tricks, which funded this thesis.  
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We believe that a real value of modeling finite mixture heterogeneity is its 

capability and flexibility of allowing a variety of research questions to be tested that are of 

particular interest to analysts.59 The methodology has been widely used, but we expect it 

will gain more attention. For example, as new mobility technologies and services (e.g. 

shared mobility, autonomous vehicles, e-commerce) keep emerging, human responses to 

such technologies will be diverging. Hence, the necessity for models to consider 

unobservable influences on behavior will keep growing. In addition, using “big data” will 

increasingly require analysts to unearth and model the seemingly undetectable 

heterogeneity in the data. From this perspective, finite mixture modeling could serve as an 

appealing approach. Lastly, as we have observed, advances in computational power will 

allow more complicated models (and thus more sophisticated and comprehensive research 

questions). Thus, we conjecture that modeling finite mixture heterogeneity will be 

shouldering a crucial role in transportation studies, and expect that various methodical 

developments will enrich the analyses and thus bring more insights that would not have 

been uncovered with simpler models. As a final note, we believe that the true value in 

employing the finite mixture heterogeneity framework lies not just in permitting the 

estimation of slightly more complicated statistical models; rather, it is to broaden the 

horizons of research questions that can be built upon a solid statistical framework. Hence, 

the thoughtful conceptualization of research questions constructed upon a theoretical 

                                                 
59 An analogy to the flexibility offered by the finite mixture heterogeneity approach is offered by a 

documentary on Lego blocks (“A Lego Brickumentary”, 2014). For only six bricks (that have the same 

color and size, each with eight studs), there are 950,103,765 options for putting them together. Mathematics 

professor Søren Eilers comments, “By mathematical definition, this is a finite system. We have a finite 

number of bricks. They have a finite number of studs and holes. But for all practical human purposes, these 

bricks are infinitely flexible and not only that, they define a mathematical problem of infinite complexity. 

So I would say that, ‘Yes, it is finite but in a way it’s also infinite.’ ” This is the source of creativity of Lego 

designs. 
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foundation is essential for maximizing the usefulness of models involving finite mixture 

heterogeneity. 
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APPENDIX A. TECHNICAL DETAILS ABOUT TREATMENT 

EFFECTS (CHAPTER 3) 

This appendix reports technical details about treatment effects, which were dealt 

with in CHAPTER 3. Although the treatment effect is not the main focus of the chapter, 

this appendix explains why we have such a large average treatment effect (ATE) in 

Section 3.5.1. We also include some notes related to using the sample selection model with 

a log-transformed dependent variable, which we hope will be useful to the transportation 

research community. 

The heart of the sample selection idea is selection on unobservables, as opposed to 

selection on observables (Cameron and Trivedi, 2005; Greene, 2012). In other words, the 

continuous latent variable 𝑧∗ related to selection in Eq. (3.10) is not observed; rather we 

observe the discrete state defined by its sign, which we denote with the binary variable 𝑧 

(here, the indicator of urban residence). If 𝑧∗ is associated with outcome generation (here, 

of ln(VMD)) through correlation of their unobserved influences, Eq. (3.15), then 

conditional expectations are the sum of the unconditional expectation and the selection 

effect.  

The unconditional (on selection) expectations are: 

 𝐸(𝑌𝑖1|𝑿𝑖) = 𝑿𝑖𝜷1 and (A1) 

 𝐸(𝑌𝑖0|𝑿𝑖) = 𝑿𝑖𝜷0 . (A2) 
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Eq. (A1) represents what the expected value of 𝑌 (i.e. ln(VMD)) would be for a 

randomly-selected person with characteristics 𝑿𝑖 if she were to live in an urban area, and 

Eq. (A2) represents what the expected value would be for a randomly-selected person with 

those observed characteristics if she were to live in a non-urban area. 

The conditional (on selection) expectations are (as in Eqs. (3.16) and (3.17)): 

 𝐸(𝑌𝑖1|𝑧𝑖
∗ > 0, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷1 + 𝐸[휀𝑖1|𝑧𝑖

∗ > 0, 𝑿𝑖 , 𝑾𝑖]  

= 𝑿𝑖𝜷1 + 𝜌1𝜎1
𝜙(𝑾𝑖𝜶)

Φ(𝑾𝑖𝜶)
 and 

(A3) 

 𝐸(𝑌𝑖0|𝑧𝑖
∗ < 0, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷0 + 𝐸[휀𝑖0|𝑧𝑖

∗ < 0, 𝑿𝑖 , 𝑾𝑖]  

= 𝑿𝑖𝜷0 + 𝜌0𝜎0 [
−𝜙(𝑾𝑖𝜶)

1−Φ(𝑾𝑖𝜶)
] . 

(A4) 

Eq. (A3) represents the expected value of 𝑌 for a person with characteristics 𝑿𝑖 , 𝑾𝑖 

who is living in an urban area, and Eq. (A4) represents the expected value for a person 

with those observed attributes who is living in a non-urban area. These quantities differ 

from their counterparts in Eqs. (A1) and (A2) because unobserved characteristics relevant 

to the outcome differ, on average, between residents of urban and non-urban areas. 

We can also define the counterfactual conditional expectations as: 

 𝐸(𝑌𝑖1|𝑧𝑖
∗ < 0, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷1 + 𝐸[휀𝑖1|𝑧𝑖

∗ < 0, 𝑿𝑖 , 𝑾𝑖]  

= 𝑿𝑖𝜷1 + 𝜌1𝜎1 [
−𝜙(𝑾𝑖𝜶)

1−Φ(𝑾𝑖𝜶)
] and 

(A5) 

 𝐸(𝑌𝑖0|𝑧𝑖
∗ > 0, 𝑿𝑖 , 𝑾𝑖) = 𝑿𝑖𝜷0 + 𝐸[휀𝑖0|𝑧𝑖

∗ > 0, 𝑿𝑖 , 𝑾𝑖]  

= 𝑿𝑖𝜷0 + 𝜌0𝜎0
𝜙(𝑾𝑖𝜶)

Φ(𝑾𝑖𝜶)
 . 

(A6) 
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Eq. (A5) represents what the expected value of 𝑌 would be for a non-urban resident 

with characteristics 𝑿𝑖 , 𝑾𝑖 if she were to live in an urban area, and conversely for Eq. 

(A6).   

For both types of conditional expectations, the selection effect term is a product of 

the appropriate inverse Mills ratio quantity, IMR (
𝜙(𝑾𝑖𝜶)

Φ(𝑾𝑖𝜶)
 or 

−𝜙(𝑾𝑖𝜶)

1−Φ(𝑾𝑖𝜶)
), and its coefficient 

(𝜌𝜎, which is often known as 𝜆 in Heckman’s selection model), and it is the consequence 

of the truncation of the normal distribution of 𝑧∗ by conditioning on its sign. In the context 

of the bivariate normal distribution, if the two normal distributions are independent, a 

truncation of one normal random variable (by selection) does not affect the other normal 

random variable. However, since the two distributions are correlated here, the truncation 

of one also truncates the other normal distribution (and the expected value of the truncated 

normal distribution is the IMR term). 

In addition to the ATE, defined as the difference between Eq. (A1) and Eq. (A2), 

integrated over the distribution of X, we can define: 

• the (average) treatment effect on the treated (TT) (in log-transformed terms) as the 

difference between Eq. (A3) (the urban resident’s expected ln(VMD)) and Eq. 

(A6) (the urban resident’s counterfactual expected ln(VMD) if she were to live in a 

non-urban area), integrated over the distribution of X; and 

• the (average) treatment effect on the untreated (TUT) (in log-transformed terms) as 

the difference between Eq. (A5) (the non-urban resident’s counterfactual expected 

ln(VMD) if she were to live in an urban area) and Eq. (A4) (the non-urban 

resident’s expected ln(VMD) where she currently lives), integrated over the 

distribution of X. 
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Returning to our issue, Table A1 presents various estimated expected values of 

ln(VMD), distinguishing urban and non-urban components (for simplicity, we do not apply 

the sample weights here; also, we explain the relevant quantities in log-scale and then 

discuss the back-transformation later). It can be seen that the estimated unconditional 

means, after properly accounting for selection effects (obtained by estimating Eqs. (A1) 

and (A2) and averaging the respective results over the entire sample), have a greater 

difference (which is the average treatment effect, ATE, in log scale) than the observed 

means. This may initially be surprising, as discussed in Section 6.1, but two issues arise 

when we simply compare our estimated unconditional means with the observed group 

means in the sample. First, if self-selection is in effect (i.e. significant correlations 𝜌 exist), 

then those observed group means are the consequence of self-selection. That is, those 

values have already absorbed the selection effects. Second, the observed group means are 

based on the segmented subsamples (since they are already self-selected), not on the pooled 

sample (as is the case for the unconditional means, per Eq. (3.31)). As shown in Table A1, 

the conditional means on the segmented sample replicate the observed group means. 

Hence, a more proper interpretation is that when we eliminate self-selection effects (i.e. if 

we could randomly assign individuals to neighborhood type), then the expected outcomes 

for each class are 3.62 and 4.93, respectively.  

Stereotypically, unobserved “urbanite” predispositions would reduce VMD 

relative to that of an average person, thus leading us to expect negative 𝜌1 and 𝜌0. This is 

important because, by Eqs. (A3) and (A4), the directions of the self-selection correction 

are determined by the signs of 𝜌1 and 𝜌0, since 𝜎1, 𝜎0, and 
𝜙(𝑾𝑖𝜶)

Φ(𝑾𝑖𝜶)
 are strictly positive and 



 268 

[
−𝜙(𝑾𝑖𝜶)

1−Φ(𝑾𝑖𝜶)
] is strictly negative. However, in our empirical application we obtained  �̂�1 =

0.66 and  �̂�0 = 0.84. This means we obtained opposite-from-expected signs for 𝜌1and 𝜌0, 

and the two error correlations have substantial magnitudes. The consequences are: 

• For the urban resident group, given that 𝐸(𝑌𝑖1|𝑧𝑖
∗ > 0, 𝑿𝑖 , 𝑾𝑖) approximates the 

observed outcome (since the latter is conditional on the same variables), Eq. (A3) 

shows that 𝐸(𝑌𝑖1|𝑧𝑖
∗ > 0, 𝑿𝑖 , 𝑾𝑖) > 𝑿𝑖𝜷1, and thus the unconditional expectation 

of 𝑿𝑖𝜷1 is (unexpectedly) smaller than the observed mean.  

• For the non-urban resident group, given that 𝐸(𝑌𝑖0|𝑧𝑖
∗ < 0, 𝑿𝑖 , 𝑾𝑖) approximates 

the observed outcome, Eq. (A4) shows that 𝐸(𝑌𝑖0|𝑧𝑖
∗ < 0, 𝑿𝑖 , 𝑾𝑖) < 𝑿𝑖𝜷0, and 

thus the unconditional expectation is greater than the observed mean. This 

direction of correction is also unexpected, and such a high correlation makes the 

corrected expected value rather large. 

In a nutshell, in this empirical application, we end up having an ATE that is greater 

than the observed difference. 

Table A1 also presents the components of the treatment effects on the treated (TT) 

and on the untreated (TUT), and all three treatment effects are illustrated in Figure A1. For 

reference, Figure A2 schematically portrays the situation when 𝜌1 and 𝜌0 are both negative.  
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Figure A1.  Relationships among the various components of interest in our sample 

(when 𝝆𝟏 and 𝝆𝟎 are positive) 

 

Figure A2.  Schematic of relationships among the various components of interest 

when 𝝆𝟏 and 𝝆𝟎 are negative 
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Table A1. Estimated expected values of Y (log-transformed VMD; unweighted) 

 Formula for the Estimated Difference Urban 
Non-

urban 

Differ-

ence 

Observed mean 
1

𝑛1
∑ 𝒀𝑖1𝑧=1 −

1

𝑛0
∑ 𝒀𝑖0𝑧=0   4.39 4.63 -0.24 

Conditional (on selection) 

mean on segmented sample 

(Eq. A3 – Eq. A4) 

1

𝑛1
∑ {𝑿𝑖1 �̂�1 + �̂�1�̂�1  

𝜙(𝑾𝑖�̂�)

Φ(𝑾𝑖�̂�)
}𝑧=1 −

1

𝑛0
∑ {𝑿𝑖1 �̂�0 + �̂�0�̂�0  

−𝜙(𝑾𝑖�̂�)

Φ(−𝑾𝑖�̂�)
}𝑧=0   

4.39 4.63 -0.24 

Unconditional (on selection) 

mean (ATE;  

Eq. A1 – Eq. A2)  

1

𝑛
∑ 𝑿𝑖1 �̂�1

𝑛
𝑖=1 −

1

𝑛
∑ 𝑿𝑖0 �̂�0

𝑛
𝑖=1   3.62 4.93 -1.31 

Treatment effect on the 

treated (TT;  

Eq. A3 – Eq. A6)  

{
1

𝑛1
∑ 𝑿𝑖1 �̂�1𝑧=1 +

1

𝑛1
∑ �̂�1�̂�1  

𝜙(𝑾𝑖�̂�)

Φ(𝑾𝑖�̂�)𝑧=1 } −

{
1

𝑛1
∑ 𝑿𝑖1 �̂�0𝑧=1 +

1

𝑛1
∑ �̂�0�̂�0  

𝜙(𝑾𝑖�̂�)

Φ(𝑾𝑖�̂�)𝑧=1 }  
4.39 5.93 -1.55 

Treatment effect on the 

untreated (TUT;  

Eq. A5 – Eq. A4) 

{
1

𝑛0
∑ 𝑿𝑖1 �̂�1𝑧=0 +

1

𝑛0
∑ �̂�1�̂�1  

−𝜙(𝑾𝑖�̂�)

Φ(−𝑾𝑖�̂�)𝑧=0 } −

{
1

𝑛0
∑ 𝑿𝑖1 �̂�0𝑧=0 +

1

𝑛0
∑ �̂�0�̂�0  

−𝜙(𝑾𝑖�̂�)

Φ(−𝑾𝑖�̂�)𝑧=0 }  
3.39 4.63 -1.24 

 

Another complication arises when we back-transform the dependent variable from 

the log scale to its original units (miles driven). It is common to model VMD with the log 

transformation to achieve greater normality, but reporting the results in the original scale 

is not straightforward. As mentioned in the body of the CHAPTER 3, since 

ln(𝑉𝑀𝐷 + 1) = 𝑌 and  ~𝑁[𝑿𝜷, 𝜎2], then (𝑉𝑀𝐷 + 1 | 𝑿 )~ 𝐿𝑁[𝑿𝜷, 𝜎2] (throughout this 

passage, the individual subscript i is suppressed for simplicity). From known properties of 

the lognormal distribution, [𝑉𝑀𝐷 + 1 | 𝑿] = 𝐸[exp(𝑿𝜷𝑧 + 휀) | 𝑿] = exp(𝑿𝜷𝑧 + 𝜎𝑧
2 2⁄ ) 

. This equation gives the back-transformed counterparts to Eqs. (A1) (for z = 1) and (A2) 

(for z = 0). 

To help increase awareness of little-known details associated with back-

transforming the log transformation in the context of treatment evaluations, we provide the 

proper equations for the back-transformed conditional means. Adapting the equation found 
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in Yen and Rosinski (2008; the formal derivation of the equation is in their Appendix) to 

our notation, the conditional mean of 𝑉, where ln 𝑉 = 𝑌 = 𝑿𝜷 + 휀, is: 

 𝐸(𝑉|𝑐1 − 𝑾𝜶 < 𝑢 < 𝑐2 − 𝑾𝜶)  

= exp(𝑿𝜷 + 𝜎2 2⁄ )
Φ(𝑐2−𝑾𝜶−𝜌𝜎)−Φ(𝑐1−𝑾𝜶−𝜌𝜎)

Φ(𝑐2−𝑾𝜶)−Φ(𝑐1−𝑾𝜶)
 , 

(A7) 

where 𝑐1 and 𝑐2 are constants to be properly specified depending on the context, as shown 

below. 

The conditional expectation for the treatment group (i.e. urban residents; the back-

transformed counterpart to Eq. (A3)) is (𝑐1 = 0, 𝑐2 = ∞): 

 𝐸(𝑉1| − 𝑾𝜶 < 𝑢, 𝑿, 𝑾)  

= exp(𝑿𝜷1 + 𝜎1
2 2⁄ )

Φ(∞−𝑾𝜶−𝜌1𝜎1)−Φ(0−𝑾𝜶−𝜌1𝜎1)

Φ(∞−𝑾𝜶)−Φ(0−𝑾𝜶)
  

= exp(𝑿𝜷1 + 𝜎1
2 2⁄ )

1−Φ(−𝑾𝜶−𝜌1𝜎1)

1−Φ(−𝑾𝜶)
  

= exp(𝑿𝜷1 + 𝜎1
2 2⁄ )

Φ(𝑾𝜶+𝜌1𝜎1)

Φ(𝑾𝜶)
  

(A8) 

The conditional expectation for the untreated group (i.e. non-urban residents; the 

back-transformed counterpart to Eq. (A4)) is (𝑐1 = −∞, 𝑐2 = 0): 

 𝐸(𝑉0|𝑢 < −𝑾𝜶, 𝑿, 𝑾)  

= exp(𝑿𝜷0 + 𝜎0
2 2⁄ )

Φ(0−𝑾𝜶−𝜌𝟎𝜎0)−Φ(−∞−𝑾𝜶−𝜌0𝜎0)

Φ(0−𝑾𝜶)−Φ(−∞−𝑾𝜶)
  

= exp(𝑿𝜷0 + 𝜎0
2 2⁄ )

Φ(−𝑾𝜶−𝜌0𝜎0)−0

Φ(−𝑾𝜶)−0
  

= exp(𝑿𝜷0 + 𝜎0
2 2⁄ )

Φ(−𝑾𝜶−𝜌0𝜎0)

Φ(−𝑾𝜶)
  

(A9) 
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Similarly, the counterfactual expectations are: 

 𝐸(𝑉1 |𝑢 < −𝑾𝜶, 𝑿, 𝑾) = exp(𝑿𝜷1 + 𝜎1
2 2⁄ )

Φ(−𝑾𝜶−𝜌1𝜎1)

Φ(−𝑾𝜶)
  (A10) 

 𝐸(𝑉0| − 𝑾𝜶 < 𝑢, 𝑿, 𝑾) = exp(𝑿𝜷0 + 𝜎0
2 2⁄ )

Φ(𝑾𝜶+𝜌0𝜎0)

Φ(𝑾𝜶)
 , (A11) 

the respective counterparts to Eqs. (A5) (where here, 𝑐1 = −∞, 𝑐2 = 0) and (A6) (𝑐1 =

0, 𝑐2 = ∞). 

Using Eqs. (3.32) and (A8)-(A11), Table A2 shows various expected values and 

treatment effects. Note that the observed and ATE quantities differ somewhat from their 

counterparts reported in Sections 5.2 (Table 4) and 6.1 because here, for simplicity, we 

have not weighted the results (Eq. (3.34) gives an example of how to do so). The non-urban 

counterfactual component of the TT is quite large (about 88 miles a day), but given the 

arguments in Section 6.1, this represents “what it would take” for an urban resident, 

predisposed toward an active lifestyle involving numerous and diverse destinations, to 

achieve such a lifestyle in a very low-density area (hence the self-selection into an urban 

area, whose built environment will be more supportive of such a lifestyle at a lower travel 

cost). On the other hand, it is likely that the sensitivity of the log transformation is also at 

play here, in that a fairly small reduction in the transformed counterpart to the 613.47 miles 

of Table A2 (i.e. in the 5.93 of Table A1) would lead to a sizable reduction in miles.  
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Table A2. Estimated expected values of VMD and treatment effects (unweighted) 

  Urban Non-urban Difference 

Observed 124.10 152.89 -28.79 

ATE (Eq. (3.33)) 71.71 255.30 -183.59 

TT (Eq. (3.8) – Eq. (3.11)) 149.66 613.47 -463.80 

TUT (Eq. (3.10) – Eq. (3.9)) 49.00 151.60 -102.60 
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APPENDIX B. AIRPORTS IN GEORGIA AND 2017 STATISTICS 

(CHAPTER 4) 

Table B1. Airports in Georgia and 2017 statistics a 

Airport Number of flights 
Number of passenger 

enplanements 

Origin airport 
Airport 

code 
Domestic 

Inter-

national 
Total Domestic 

Inter-

national 
Total 

Atlanta Hartsfield Intl. 

Airport 
ATL 384,134 38,914 423,048 44,351,038 5,891,684 50,242,722 

Savannah / Hiltonhead 

International Airport 
SAV 15,452 179 15,631 1,182,353 7,420 1,189,773 

Augusta Regional 

Airport- Bushfield 

Airport 

AGS 4,905 0 4,905 268,228 0 268,228 

Columbus 

Metropolitan Airport 
CSG 1,208 0 1,208 44,767 0 44,767 

Valdosta Regional 

Airport 
VLD 1,020 0 1,020 43,734 0 43,734 

Southwest Georgia 

Regional Airport 
ABY 991 0 991 37,900 0 37,900 

Brunswick Golden 

Isles Airport 
BQK 995 0 995 36,219 0 36,219 

Middle Georgia 

Regional Airport 
MCN 69 0 69 1,292 0 1,292 

Athens-Ben Epps 

Airport b 
AHN 2 0 2 1 0 1 

a. Created based on data provided by the Bureau of Transportation Statistics of the U.S. Department of 

Transportation. 

b. AHN had a small and declining number of annual flights (from 1,112 in 2010 to 361 in 2014), mainly 

connecting to Nashville, Tennessee, because Athens is one of the communities subsidized by the US 

government “Essential Air Service” program, which aims to secure a minimum level of air service in local 

communities. Since 2014, AHN has been de-subsidized due to unmet passenger load requirements, although 

it completed a $17 million runway extension project in 2015 and is now looking for new commercial airlines 

to provide service.  
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