
EFFICIENT LEARNING FOR HARDWARE SECURITY VALIDATION USING
ELECTROMAGNETIC SIDE CHANNELS

A Dissertation
Presented to

The Academic Faculty

By

Erik J. Jorgensen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Machine Learning in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2022

© Erik J. Jorgensen 2022

EFFICIENT LEARNING FOR HARDWARE SECURITY VALIDATION USING
ELECTROMAGNETIC SIDE CHANNELS

Thesis committee:

Dr. Alenka Zajić, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Matthieu Bloch, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. David Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mark Davenport
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Milos Prvulovic
School of Computer Science
Georgia Institute of Technology

Dr. Mikko Lipasti
Department of Electrical and Computer
Engineering
University of Wisconsin - Madison

Date approved: August 10, 2022

For Maggy!

This thesis would not exist without the guidance and support of many people. Prof.

Alenka Zajić and Prof. Milos Prvulovic took a chance bringing me into the lab and seeing

my path toward a doctorate when I was still seeing only one day ahead. I am wholly

appreciative for them having taken that chance and further building me into an independent

researcher. Any forethought or organization in my research and writing is due largely to

their influence.

I also thank my committee members who each have had great impact on my experience

and direction throughout my ongoing training in research. I thank Prof. Mikko Lipasti for

patiently molding my skills in research and encouraging me to aim higher than I thought

made sense. I thank Prof. Mark Davenport for generating enough excitement about sig-

nal processing at Georgia Tech to make me want to move out of my comfort zone in the

Midwest; and continue when it wasn’t always easy. I also want to thank Prof. Matthieu

Bloch and Prof. David Anderson for evolving my interests in machine learning through

their teaching, mentorship, and kindness toward students.

I need to thank my labmates and friends, both current and former, for helping me stay

motivated, keeping things light, and helping me work through countless silly mistakes. I

never pictured myself moving to the Southeast, but thank you all for making this whole

thing fun. And to Jihui for all the fun we had grading or keeping me afloat in coursework;

while constantly being a sounding board for all things research, jobs, and life.

I want to thank my family for all their support and love as I took my time finding out

where I’m headed. I thank my brother and sister for clearing the brush so I could find my

own trails in life. I thank my parents for their support in every way imaginable, even when

I decided to move half the country away. Finally, I thank Nicole for making the choice to

follow me when I didn’t know where we were going, under circumstances that would have

turned away any person less selfless, to learn and grow together far from home.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . xi

Summary . xv

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Deep Learning Classification of Motherboard Components by Leveraging
EM Side-Channel Signals . 2

1.3 Feature Selection for Non-Destructive Detection of Hardware Trojans us-
ing Hyperspectral Scanning . 3

1.4 Hyperspectral Image Recovery via Reliability-Weighted Compressed Sens-
ing for Hardware Trojan Detection . 5

1.5 Research Contributions . 7

1.6 Thesis Outline . 7

Chapter 2: Background . 9

2.1 Counterfeit Components . 9

2.2 Hardware Trojans . 11

v

2.3 Electromagnetic Side Channel . 13

2.4 Hyperspectral Imaging . 16

2.5 Compressed Sensing . 17

Chapter 3: Deep Learning Classification of Motherboard Components by Lever-
aging EM Side-Channel Signals . 20

3.1 Overview . 20

3.2 Structured signals . 21

3.2.1 Component excitations . 22

3.2.2 Features for classification . 22

3.3 Preprocessing and model architecture . 25

3.3.1 Preprocessing . 25

3.3.2 CNN Architecture . 28

3.4 Experimental design . 29

3.4.1 Device hierarchy . 30

3.4.2 Cross-validation . 30

3.4.3 Measurements . 33

3.4.4 Anomaly Detection . 34

3.4.5 Training parameters . 35

3.5 Results and Interpretability . 36

3.5.1 Classification results . 37

3.5.2 Interpreting results . 41

3.6 Conclusions . 44

vi

Chapter 4: Feature Selection for Non-Destructive Detection of Hardware Tro-
jans using Hyperspectral Scanning 46

4.1 Overview . 46

4.2 Dormant Hardware Trojan Detection . 47

4.2.1 Hardware Trojan Threat Model . 47

4.2.2 Backscattering EM Side Channel 49

4.2.3 Hyperspectral Imaging . 50

4.2.4 HT Detection Baselines . 51

4.3 A Novel Feature Selection Strategy for Hardware Trojan Detection using
Hyperspectral Scanning . 56

4.3.1 Feature Pre-Filtering . 57

4.3.2 Active Sampling . 58

4.3.3 Hyperspectral Dormant HT Detection Algorithm 60

4.4 Trojan Design and Hyperspectral Measurement Setup 61

4.4.1 Circuit Designs . 62

4.4.2 Backscattering Measurement Setup 66

4.4.3 Preprocessing of Measured Data 68

4.5 Validation . 68

4.5.1 Single Board Performance . 70

4.5.2 Multi-Board Performance . 71

4.5.3 Sampling Reduction . 72

4.6 Conclusions . 75

Chapter 5: Hyperspectral Image Recovery via Reliability-Weighted Compressed
Sensing for Hardware Trojan Detection 77

vii

5.1 Overview . 77

5.2 Dormant Hardware Trojan Detection . 78

5.2.1 Compressed Sensing . 78

5.2.2 Backscattering EM Side Channel 80

5.3 HT Detection with Compressive Hyperspectral Scanning 81

5.3.1 Hyperspectral Image Recovery with Reliability-Weighted Sampling 81

5.3.2 CS Recovery Bases . 84

5.3.3 Dormant Trojan Detection . 87

5.4 Trojan Design and Hyperspectral Measurement Setup 88

5.4.1 Circuit Design . 88

5.4.2 Measurement Setup . 90

5.5 Experimental Validation . 91

5.5.1 HT Detection Performance . 91

5.5.2 Reconstruction Analysis . 93

5.6 Conclusions . 96

Chapter 6: Research Contributions and Future Work 98

6.1 Research Contributions . 98

6.2 Future Research Directions . 101

References . 104

viii

LIST OF TABLES

3.1 Component models and counts across different device types and component
classes. Blank boxes indicate that the device does not have that component.
All devices come from the OLinuXino line of development boards and all
processors are in the ARM Cortex line. Memory and ethernet chips are
abbreviated to the first eight characters for space. 29

3.2 Number of component measurements across all device types in the train-
ing, validation, and test sets for each component class. These constitute an
approximate 10%, 30%, 60% split for the training, validation, and test sets
respectively with a total of 273 distinct components. 37

3.3 Absolute difference of median CNN prediction accuracy over k-NN ac-
curacy across all component classes and excitation states. Positive values
mean the CNN outperformed the k-NN baseline. 38

3.4 Classification metrics averaged across 10 trials for each component model
and excitation type. Shown is the number of ICs of each component model
in the test set, True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) for both excitation
states. Component types are group by row and model names are abbrevi-
ated where necessary. 40

3.5 Classification metrics for anomaly detection averaged across 10 trials for
memory ICs in an excited state. Each group of five rows represents an
individual memory IC model being removed from training and treated as
unknown. Shown are the True/False Positive/Negative rates and per-model
classification accuracy. 42

4.1 Relative size of trigger circuitry versus the uninfected circuit, measured by
the number of adaptive logic modules. 64

ix

4.2 HT detection performance as the area under the receiver operating charac-
teristic curve (AUC) on a single DE0-CV board for each circuit with the
HT trigger monitoring a given number of bits. The HT RS232-T500 moni-
tors a 32-bit counter, so it is not tested for larger triggers. HTs are detected
nearly perfectly for all Trojan types and trigger sizes, except for the small-
est AES-T1800 1-bit Trojan. 71

4.3 HT detection performance (AUC) trained on multiple DE0-CV boards for
each circuit with the HT trigger monitoring a given number of bits. HTs are
detected more consistently than prior work [25] for the majority of tested
circuits, but expectedly less well than when trained on a single board. 72

5.1 Relative size of trigger circuitry compared to the resources used by the full
uninfected circuit, measured as the number of adaptive logic modules. . . . 89

5.2 HT detection performance for each reconstruction basis, compared against
prior results on the AES-T1800 circuit with trigger monitoring a given
number of bits. 93

x

LIST OF FIGURES

2.1 Integrated circuits with identical footprint and pinout, but a potential warn-
ing sign for counterfeiting given their distinct marking styles [38] 10

2.2 Hardware Trojan payload and trigger layout hidden in an encryption circuit.
Darker shaded blue blocks represent areas using greater logic and storage
resources for the circuit when loaded onto an FPGA. This circuitry takes up
approximately 0.7% and 0.6% of the area of the normal circuit resources
for the Trojan’s trigger and payload, respectively. 14

2.3 Received power of backscattered electromagnetic signal with harmonics
above the transmitted frequency ft = 3.031 GHz, separated by the device’s
clock frequency fc = 20 MHz. 16

2.4 Compressed sensing reconstruction of a 2-dimensional image from a sparse
set of randomly-sampled pixels using the discrete cosine transform basis
functions. Randomly sampled pixels (left) are recovered into the full image
(middle) using bases such as the one pictured (right), as adapted from [65]. . 19

3.1 EM emanation distribution of each component class and excitation state,
horizontally centered by the component carrier frequency and with vertical
axis converted to dB and mean subtracted. The median emanation mea-
surement across all components of the same model is drawn with shading
below and above corresponding to the 10% and 90% quantiles respectively.
Components are measured in the idle (left) and excited (right) states. Both
ethernet excitation states look identical but do differ, however imperceptibly. 23

3.2 Pseudo-code generating alternating X/Y excitation [66]. 24

xi

3.3 Excited EM emanation frequency domain structure in decibel scale, set to
zero-mean. The carrier frequency is downconverted to zero and shows a
modest amount of spread due to clock frequency variation. Harmonics are
present on both sides of the carrier, separated by the alternating frequency
fa of the executed program. Odd harmonics are stronger than even harmon-
ics since the program execution acts similarly to a square wave in the time
domain. 24

3.4 High-level schematic of the CNN architecture depicting the convolution
blocks (left) and fully-connected blocks (right). 27

3.5 Data breakdown and preprocessing pipeline. Device copies are broken into
training (blue), validation (green), and test (magenta) groups for prepro-
cessing and finally aggregated together with all other copies of their re-
spective sets. 31

3.6 Measurement setup for capturing EM emanations from components on moth-
erboards. 33

3.7 Classification accuracy distributions across all four component classes in
two excitation states each. Bar heights and inlaid number represent the me-
dian prediction accuracy across 10 trials, with bottom and top black mark-
ings representing the minimum and maximum accuracies respectively. . . . 38

3.8 Median of training set subsamples for processors in the idle state, scaled to
dB and subtracted to zero-mean for each component model with shading
below and above corresponding to the 10% and 90% quantiles respectively
(top). The flattened output of the same median and shaded quantiles after
passing through all convolution layers, just before entering linear layers
(bottom). 43

3.9 First linear layer weightsW with black vertical lines separating the weights
that correspond to the convolution output channels as color-coded in Fig-
ure Figure 3.8 (top). Comparison of the inputs of each component model
weighted by the sum of neuron weights (blue), overlaying the inputs (ma-
genta) to the first linear layer (bottom). Weighted inputs with strong corre-
lation (or anti-correlation) to inputs circled in green. 44

4.1 Proportion of total hyperspectral features showing statistically significant
difference between uninfected and infected AES-T1800 circuit. 49

xii

4.2 Average backscattered EM side-channel power across an FPGA with two
points of equal power marked (left). Corresponding power across a 700
MHz span for the same points on the IC, showing unique spectral charac-
teristics (right). 52

4.3 Clustering performance (adjusted rand index ∈ [−1, 1]) between an unin-
fected and infected AES circuit for a range of trigger sizes with the four
baseline HT detection methods. Scanning at the maximum power location
was uninformative for HT detection, using all hyperspectral features de-
tects HTs smaller than prior work [25], averaging scans provides negligible
improvement, and the best possible location can unveil even smaller Trojans. 53

4.4 HT detection accuracy when clustering as the number of features filtered
out from the sampling set increases (resulting in less sampling from left to
right), for Trojans with triggers of different sizes on the AES circuit. 55

4.5 Distribution of measured received power for hyperspectral point across all
measured FPGA boards (blue) and averaged per board (orange). 59

4.6 Process flow diagram depicting the experimental setup, methodology, and
validation of the methods in this chapter. 62

4.7 FPGA allocation of adaptive logic modules for different size triggers. The
4-, 2-, and 1-bit triggers have minute differences that are not visible at this
scale. 63

4.8 Hyperspectral scanning measurement setup with DE0-CV board and high-
resolution probe (left), X-Y movement stages (middle), and FPGA IC die
dimensions (right). 67

4.9 Effect of preprocessing steps on ten scans of real measurement data from
the AES-T1800 circuit with 128-bit trigger, starting from the measured
power for an uninfected and infected circuit across several frequencies at
a single physical location on the chip (top), to power differences between
neighboring frequencies (middle), to standardized power differences (bot-
tom). 69

4.10 HT detection performance for three tested circuits as the number of features
filtered out from the sampling set increases (resulting in less sampling from
left to right). 73

xiii

5.1 Normalized spatial measurements of the backscattered EM side-channel
signal for the first 24 harmonics above the incident 3.031 GHz signal. Har-
monics generally exhibit smooth spatial variation. Variation between be-
tween frequencies is generally less smooth at higher harmonics. 81

5.2 Reliability-weighted sampling distribution preliability(x, y, h) of the backscat-
tered EM side-channel signals for the first 24 frequencies above the incident
3.031 GHz signal. Larger values correspond to hyperspectral locations that
will be sampled with greater likelihood due to the features’ lower reliabil-
ity across ICs there. Sampling emphasis is generally focused toward local
minima of the backscattered EM signal for each frequency. 85

5.3 Example 7x7 two-dimensional basis functions for the (a) DCT and (b) dic-
tionary bases learned from spatial slices of hyperspectral backscattering
side-channel images captured of uninfected ICs. 87

5.4 Flow diagram depicting the circuit layout design, random hyperspectral
sampling, image reconstruction, and Trojan detection process in this chapter. 88

5.5 Image reconstruction error for uniform random sampling compared to our
reliability-weighted sampling method for the DCT bases (a), learned dic-
tionary with 50 bases (b), and learned dictionary with 100 bases (c). 94

xiv

SUMMARY

The objective of this thesis is to combine the non-destructive monitoring advantages of

standard and backscattering electromagnetic side channels with modern machine learning

techniques to efficiently validate the authenticity of individual integrated circuits installed

on a motherboard.

The authenticity of integrated circuits is of increasing concern as more steps in the

device manufacturing supply chain are outsourced, especially in light of severe global

semiconductor shortages. Common methods for integrated circuit validation rely on ei-

ther destructive techniques before high resolution imaging of the circuit interconnects or

functional testing of a variety of test inputs with automated test equipment. These meth-

ods are time-consuming or even intractable to detect counterfeit components or stealthy

modifications of their underlying circuitry.

Side channels are any means of remotely leaking information related to a circuit’s ac-

tivity or architecture. Our work takes advantage of the electromagnetic (EM) side channel

to remotely capture identifying information emitted from or backscattered off integrated

circuits in the form of EM signals that can be used to validate their authenticity.

This research attempts to alleviate the need for time-consuming and expensive destruc-

tive validation methods for hardware security by robustly detecting inauthentic or modified

integrated circuits with remote EM side-channel measurements. The first aim of this re-

search is to apply deep learning methods to classify and detect counterfeits of major ICs on

a variety of motherboards. The second aim is to leverage hyperspectral scanning with the

backscattered EM side-channel and a novel active learning method to detect dormant hard-

ware trojans several times smaller than before. The last aim is to develop a compressed

sensing approach to heavily reduce sampling for hardware trojan detection as well as to

develop a hyperspectral characterization of expected and anomalous circuits.

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

As companies choose to outsource more steps in the electronic device manufacturing pipeline,

the authenticity of the integrated circuits contained on those devices becomes of increas-

ing concern. A device designer cannot trust the origins of its devices blindly due to the

ever-increasing number of entities involved in their development and manufacture. A fab-

ricated IC is vulnerable to potentially malicious actors across the design, fabrication, test-

ing, packaging, and other stages. It is estimated that counterfeit ICs represent about 1% of

semiconductor sales [1], resulting in losses in excess of $100 billion annually [2]. Recent

semiconductor shortages worldwide are expected to exacerbate the counterfeiting problem.

The integrated circuit (IC) supply chain involves several steps with components passing

through the facilities of several companies, often in different countries, on the route from a

silicon foundry to the electronic device delivered to a customer. Anywhere along that sup-

ply chain, malicious actors could introduce counterfeit or otherwise modified ICs in place

of the components intended to be placed. Even more, firmware or bitstream modifications

could have a similar effect even if the IC is the exact hardware expected. These suspicious

IC intrusions could be as simple as the use of a cheap alternative IC posing as the real

thing to cut costs, or as severe as the inclusion of hardware Trojans (Trojans or HTs) intro-

duced at the silicon foundry covertly change the circuit’s expected behavior. In applications

of critical importance like for devices used in infrastructure, military, or healthcare, these

inauthentic or modified ICs present a severe risk to both safety and security.

To detect these suspicious ICs, it is common to analyze components through physical or

electrical inspection techniques. Thorough physical inspection typically requires destruc-

1

tive defacing of the chip, layer-by-layer, to capture high resolution images of internal cir-

cuitry for validation of the layout [3]. Electrical inspection techniques can involve lengthy

automated tests that test a set assortment of cases that may not uncover counterfeit ICs or

malicious activity on the IC [4]. Side-channel methods have received significant attention

for their ability to remotely capture information leaking from devices that can be used to

fingerprint them. While certain side channels have been demonstrated to fingerprint entire

devices or even some modifications to the ICs on those devices, non-destructive methods

are still needed to detect individual inauthentic components or covert modifications to the

components.

This thesis demonstrates learning strategies to non-destructively detect counterfeit or

inauthentic components at a significantly smaller scale than has been achieved in literature

thus far, to the best of our knowledge. Paired with high bandwidth side-channel measure-

ments, this research develops novel methods to detect counterfeit integrated circuits and

efficiently uncover hardware Trojans at a scale not previously possible.

1.2 Deep Learning Classification of Motherboard Components by Leveraging EM

Side-Channel Signals

It is well known that electronic components leak information through several different “side

channels.” When a digital device is powered on, this information leakage could arise as

variations in acoustic noise [5], temperature [6], power consumption [7], electromagnetic

(EM) emanation [8], or any other information leakage through empty space [9]. The con-

ductive traces on a device and inside integrated circuits act as antennas when the electrical

current running through them is changing. It has been shown that these changes in current

can emanate significantly more information about device activity than the other side chan-

nels listed previously [10], [11]. Known as the EM side channel, this information leakage

through electromagnetic waves caused by circuit activity has traditionally been cause for

security concern by being exploited to steal confidential information [8], [10], [12], [13].

2

At the same time, these EM side-channel emissions have also been used for identifying

devices from the scale of vehicles [14], [15] down to cellphones or microcontrollers [16],

[17]. While these EM side-channel techniques have shown success for classifying entire

devices, they have not been shown to identify individual ICs or components embedded on

those devices.

There is no established state-of-the-art solution to the problem of non-destructively

identifying individual components on an assembled motherboard from EM side-channel

signals. While there has been work to classify single components or entire motherboards

based on their EM signatures [18], [16], to our knowledge, there has been no work on

classifying components already integrated onto a motherboard. This testing scenario is

crucial for device designers, who need to validate that the components on their devices

have not been replaced with counterfeits somewhere in the device supply chain before

delivering their product to customers.

We present a deep learning strategy to classify components on already-assembled moth-

erboards by leveraging their EM side-channel emanations. With this method, a variety of

integrated circuit components are classified from their EM emanations using a lightweight

convolutional neural network (CNN) architecture that we specifically design for this data-

scarce scenario with high-dimensional measurements. Analyzing input signals as they pass

through our model allows us to generate insights about the most important discriminative

features for classifying each component type and model. Our results demonstrate that we

can classify a diverse set of ICs accurately in a practical scenario.

1.3 Feature Selection for Non-Destructive Detection of Hardware Trojans using Hy-

perspectral Scanning

Hardware Trojans are malicious and unauthorized circuitry modifications made to inte-

grated circuits. Like counterfeit components, HTs represent a great security threat that can

be introduced at several stages of the device supply chain. These Trojans can be respon-

3

sible for locking devices, leaking secure information, draining battery, or a host of other

changes that can have devastating consequences [19], [20], [21], [22]. When embedded

into circuits at the silicon foundry or packaging stages of the device supply chain, these

hardware modifications can supersede secure software that relies on a trusted hardware

platform. Alternatively, these Trojans may have similar effects by being loaded onto a field

programmable gate array (FPGA) through an inconspicuously corrupted bitstream [23],

[24]. Thus, detecting ICs whose security has been compromised by a Trojan is of critical

importance before those devices have been deployed or the Trojan activated.

No matter their origin, HTs are designed to be stealthy and difficult to detect by rou-

tine automated functional testing by activating under rare circumstances [19]. A typical

HT is designed with a trigger that monitors circuit behavior or inputs before activating a

payload that executes whatever malicious activity the Trojan is designed to do. A dor-

mant Trojan which has not yet been activated does not modify normal circuit behavior or

draw significant power. This makes it particularly hard to detect without destructive testing

methods that look at circuit trace architectures with high resolution. Non-destructive detec-

tion methods such as side-channel analysis often rely on monitoring for significant changes

in current or power consumption to detect when a Trojan is activated. However, detecting

a Trojan before its activation is much more valuable due to the grave concerns about the

damage that they can inflict when activated.

One method, using the backscattering EM side channel, has shown some success de-

tecting dormant HTs before their activation [25]. This backscattering HT detection method

draws inspiration from radio frequency identification (RFID) systems which modulate

an incoming signal to transmit information through the signal that reflects back to the

transceiver [26], [27]. Similarly, this HT detection method transmits a signal at an IC

and captures the reflected (backscattered) waves that will by modulated by a combination

of circuit trace architecture and program activity. With large enough Trojans, the difference

in transistor architecture between an uninfected and Trojan-infected circuit can be distin-

4

guished by the structure of those backscattered signals. Unfortunately, that method was

only able to detect large dormant trojans and required tedious manual probing to uncover

each type of Trojan’s presence. Without a priori knowledge of the size of the Trojan or

locations on an IC at which it would most reveal itself, that backscattering method may be

difficult to implement in the real world.

To overcome the shortcomings of those existing non-destructive HT detection methods,

we develop a novel approach to detect dormant HTs through intelligent sampling of hyper-

spectral backscattering EM side-channel measurements. We spatially scan the IC across

space and frequency with a high-resolution probe to generate point-scanned hyperspectral

images of the backscattered EM signal. We develop a novel filtering and active learning

strategy to greatly reduce the large feature space and selectively capture scans of features

based on the confidence of their measurements. This method improves our ability to detect

dormant hardware Trojans of much smaller sizes than in prior work.

1.4 Hyperspectral Image Recovery via Reliability-Weighted Compressed Sensing

for Hardware Trojan Detection

While detecting hardware Trojans using hyperspectral measurements of the backscatter-

ing EM side-channel shows tremendous improvements in being able to detect significantly

smaller dormant Trojans, it also requires the trade-off of requiring additional sampling

time versus methods before it. One of the main benefits of non-destructive HT detection

methods is generally their higher throughput compared to destructive methods. A destruc-

tive test can involve decapsulating an IC, capturing high resolution images of the surface,

removing another layer of material, and repeating the process until the entire trace architec-

ture is imaged [3], [28]. Then, those layered images are painstakingly compared to the IC’s

netlist-level design by skilled scientists; an entire process which is time-consuming and

completely destroys the tested IC. A non-destructive test then has the obvious advantage of

not needing to destroy the device under test (DUT), but also being able to make a classifi-

5

cation of the IC within minutes or seconds based on its response to automated inputs or its

side-side channel emanations. Point-scanning hyperspectral images, while non-destructive

and highly effective at detecting small dormant Trojans, can be heavily time-consuming.

As we demonstrate in [29], these measurements can potentially requiring an hour or more

to scan a single IC. To maintain the benefits of hyperspectral scanning but reduce measure-

ment time, we turn to compressed sensing.

Compressed sensing (CS) is a popular framework to recover high-dimensional images

from relatively few samples in a variety of problem domains. CS enables the accurate re-

covery of signals even when sampling far less than the Shannon-Nyquist rate, assuming

the data is sparsely represented in some basis [30],[31]. In the hyperspectral domain, CS is

typically used to recover two-dimensional images at visible or near-visible light frequency

at tens of frequencies [32], [33]. Due to measurement hardware constraints, capturing

high resolution images of the backscattering EM side channel can only be done by point-

scanning; one pixel at a time. Thus, we focus on a less-common version of CS which

captures individual pixels of an image, uniformly at random, and reconstructs them into

full images. However, the differences in hyperspectral measurements caused by small,

dormant Trojans are very sparse and not necessarily structured spatially [29]. Sparse uni-

form random sampling for image recovery with compressed sensing is likely to miss these

defects.

To increase the likelihood of uncovering the EM disturbances caused by a dormant

hardware Trojan while also maintaining the measurement reduction benefits of a com-

pressed sensing scheme, we develop a non-uniform sampling method that weights sam-

pling toward unreliable measurement regions. This sampling strategy maintains sampling

randomness to follow the compressed sensing framework and allows the strategy to re-

cover the backscattered EM side-channel signals more quickly and more accurately. Doing

so heavily reduces measurement requirements while maintaining or improving on HT de-

tection performance.

6

1.5 Research Contributions

This section outlines a summary of the main contributions of this thesis.

• A method for device designers to non-destructively validate the identity of compo-

nents and detect unseen components on already-assembled devices [34].

• A novel deep learning architecture, pre-processing, and validation strategy to ensure

classification robustness in high-dimensional, data-scarce scenarios using electro-

magnetic side-channel signals [34].

• Feature activation map modeling to compare discriminative features learned by the

deep network with conventional hand-crafted spectral features [34].

• A hyperspectral point-scanning methodology for measuring IC fingerprints with the

backscattering EM side channel [29].

• State-of-the-art non-destructive detection of hardware Trojans as small as 0.03% of

the circuit size [29], [35].

• An active learning and feature selection approach to for capturing and comparing

hyperspectral images of the backscattering EM side channel [29],

• A reliability-weighted compressed sensing technique for recovering point-scanned

hyperspectral images with heavily reduced measurement requirements using up to

ten times fewer measurements than previous efforts [35].

1.6 Thesis Outline

The remainder of this thesis is organized as follows. chapter 2 discusses the background

of counterfeit ICs, hardware Trojans, EM side channels, hyperspectral imaging, and com-

pressed sensing. chapter 3 discusses efforts to develop robust integrated circuit classifica-

tion and counterfeit detection on assembled devices. chapter 4 details the first efforts at

7

Trojan detection with hyperspectral, backscattering EM side-channel signals. Chapter 5

presents a compressed sensing approach to hyperspectral imaging that attains state-of-the-

art non-destructive Trojan detection performance. Finally, Chapter 6 draws conclusion to

this thesis by summarizing our research contributions and discussing future areas of re-

search.

8

CHAPTER 2

BACKGROUND

2.1 Counterfeit Components

A counterfeit integrated circuit is any semiconductor component that is misrepresented as

an authentic version of another IC. These could be copies produced by unauthorized man-

ufacturers, discontinued older models, recycled versions represented as new, or many other

misrepresentations [36], [37]. These counterfeits may be placed in designs at many stages

of the IC supply chain for intentionally malicious reasons, to lower costs, or simply due

to negligence or ignorance. In fact, each third-party supplier or assembler in the device

manufacturing pipeline introduces a potential vulnerability to counterfeit components be-

ing swapped in for their authentic counterparts. No matter their origin, these components

can be unreliable, lead to inter-operability issues between software and hardware, and pose

a safety and security risk. Components must be tested after the device’s complete assembly

to be sure that no counterfeits were introduced anywhere in the manufacturing pipeline.

Here we make a few assumptions about the potential threats that a counterfeit compo-

nent poses. First, we assume that counterfeit components in our intended scenario have

different underlying architecture. Counterfeit components with the same transistor archi-

tecture pose less of a threat since they should operate in the same way as the intended

component, barring any manufacturing variabilities introduced by the counterfeiting sup-

plier. Given a counterfeit with different underlying circuit trace or transistor architecture,

the differences will result in variations of the EM side-channel emanations compared to the

authentic component since the EM side channel is dependent on the antenna-like charac-

teristics of traces. Even visually identical components with the same footprint and pinout

like those shown in Figure Figure 2.1 may have transistor-level architecture differences that

9

Figure 2.1: Integrated circuits with identical footprint and pinout, but a potential warning
sign for counterfeiting given their distinct marking styles [38]

could result in security vulnerabilities or affect performance characteristics.

Second, we assume the device’s program activity is in the same state as the devices on

which the model is trained. Our method validates the authenticity of hardware through side-

channel emanations that change depending on software activity. Component validation is

most simple and reliable for the device designer to perform when the device is powered on

in an idle state without loaded program activity. While it may be a stronger assumption

to make for devices that are already deployed and in use, it is a standard assumption that

the devices be tested after assembly by the device designer or another trusted entity. To

ensure our method still can be useful after a device is deployed, we also test our method’s

performance when the device is running looping program activity to compare with prior

work [39]. This looping program activity can be a good proxy for testing edge or internet

of things devices that are designed to repeat the same activity monitoring or other repetitive

task at all times. However, the validation that we present in this work is not necessarily

possible when devices are running unknown programs because these programs can have

significant effects on the EM side-channel emanations.

Finally, we assume that the device designer has possession of at least one component

that could be a potential counterfeit swapped in for the original, authentic component. IC

fabricators regularly iterate on their designs, so it is reasonable to assume knowledge of

older IC models that pose a counterfeit risk due to their lower cost but similar design. The

10

neural network model we present here extracts discriminating features from the EM side-

channel emanations of a known set of components and devices. The feature embeddings

learned by the presented CNN are used to differentiate between known component mod-

els that could be swapped in as counterfeits. Deviation from the CNN’s activations for

known component models is used as an indicator to detect never-before-seen counterfeits

through anomaly detection. While this method could work using measurements of multiple

unrelated components, training with very similar components allows the network to learn

sensitive yet robust discriminative features to detect those small differences.

2.2 Hardware Trojans

At a smaller scale, components can also be compromised with hidden hardware trojans.

Hardware Trojans present on a device represent a significantly more serious risk than sim-

ple design errors or natural runtime errors. While random errors may be accounted for

with error correction code, HTs act covertly and adversarially which can have unforeseen

effects on otherwise secure software. There has been much work to understand the threat

that HTs pose [40], [21], [41] while also further understanding and characterizing their im-

plementation [42], [43], [44], [45]. A device designer cannot trust the origins of its devices

due to the number of entities involved in their development and manufacture. Much like

a circuit counterfeit being replaced for the authentic chip, a fabricated IC is vulnerable to

potentially malicious actors across the design, fabrication, testing, packaging, and other

stages. Since all of these steps are typically completed by separate specialized entities,

ICs fabricated in the most robust supply chains may be vulnerable to HT injection by bad

individual, corporate, or political actors. A typical HT threat might modify the design of

an application-specific integrated circuit (ASIC), digital signal processor, microprocessor,

or other hardware at an untrusted foundry [20]. Even when a trusted designer securely

develops circuit modules and generate their layouts using trusted design tools, sending the

layouts to an untrusted foundry for manufacture leaves a window for potential modification

11

of the circuit layouts [46], [20]. Thus, it is necessary to perform final design verification of

the functional IC to detect the presence of HTs that may be added in this pipeline.

A growing body of research focuses on analyzing the threat and implementation of

HTs [40], [21], [41], [42], [44], [45]. Though traditionally these Trojans are thought of as

trace- or transistor-level modifications to an integrated circuit, the recent prevalence of field

programmable gate arrays (FPGAs) for prototyping or specialized critical applications also

presents a risk for malicious Trojans inserted as firmware modifications through the FPGA’s

bitstream [23], [24]. Even if an FPGA’s configurable logic blocks and programmable inter-

connects are not modified at the hardware level, the addition of covert Trojans into the bit-

stream can implement malicious logic independent of the hardware platform [24]. Though

the performance gap between FPGAs and ASICs is reducing, FPGAs do not necessarily

have the same circuit properties as ICs [23] and further investigation of HTs inserted into

ASICs is necessary to validate detection techniques. However, the path length and resulting

impedance changes caused by an inserted Trojan that affect EM side-channel emanations

or reflections could still be present whether in an FPGA or ASIC [23], [41]. The Tro-

jans analyzed in this work are implemented on FPGA platforms versus custom ASICs for

reasons of practicality.

These malicious modifications are designed to be triggered by rare inputs or circuit

activity so that the HT can avoid being detected in routine functional testing [21]. Their

activation mechanism is known as a trigger and is paired with a payload that modifies the

IC’s original behavior, as shown for an example circuit in Figure Figure 2.2. As further

detailed in [19] and [20], we analyze these rarely-activated Trojans that use what is called

a internally-activated, condition-based triggering mechanism. As opposed to externally-

activated triggers that require outside interaction or always on triggers that are inserted on

rarely-used circuitry, these triggers use small additional circuitry on the IC to monitor a

program state, sensor level, input pattern, or other combinational or sequential logic con-

dition to activate the payload. Before activation by the trigger, the dormant payload does

12

not modify normal circuit behaviour, making it difficult to detect without thorough destruc-

tive testing. This trigger and payload design of HTs allows the larger payload circuitry to

remain dormant while only a small bit of trigger circuitry is active. Small trigger circuits

draw little enough current when dormant compared to the IC’s normal circuitry to remain

undetectable with power analysis methods. However, once triggered, that HT’s payload

can leak secure information, drain battery, or many other nefarious activities. The HT’s

malicious purpose may be functional or non-functional. A functional HT might change the

value of the main circuit’s outputs or communicate secure information externally while a

non-functional HT may cause rapid battery drain or leak sensitive information through a

side channel, among many other possibilities. Since the effects of an activated Trojan can

be so devastating, it is critical to detect their presence before activation or, ideally, before

the device is even deployed. Detecting a dormant Trojan has proven difficult without de-

structive testing methods that can uncover tiny circuit modifications from high resolution

imaging. However, non-destructive methods like side-channel analysis have received more

attention to develop strategies that can detect smaller and smaller Trojans.

2.3 Electromagnetic Side Channel

EM side-channel signals are emissions due to changes in current in the ICs and conductive

traces on electronic devices [10], [47]. When a component on a digital device is supplied

power, the current-based EM emanations from the component follow consistent patterns

based on a host of factors. Among any number of noisy variations in the signal, emana-

tions change as a result of the component’s signal activation or physical properties. With

repeated excitation, such as a device clock signal or repeating code pattern, we expect to

see emanations that are especially noticeable in the frequency domain. These emissions

can show up as sharp spikes with harmonics in the frequency domain due to consistent

transistor switching from a clock signal or looping program activity [9]. While the EM

side channel has proven useful for fingerprinting devices based on their emanations due

13

Figure 2.2: Hardware Trojan payload and trigger layout hidden in an encryption circuit.
Darker shaded blue blocks represent areas using greater logic and storage resources for the
circuit when loaded onto an FPGA. This circuitry takes up approximately 0.7% and 0.6%
of the area of the normal circuit resources for the Trojan’s trigger and payload, respectively.

14

to changing current passing through their components, the static or inactive properties of

devices will not naturally produce emanations at a similar power scale. IC resources that

lack current flow will not leak significant emissions and are essentially hidden from the

perspective of the traditional EM side channel or other current-based side channels [25].

More recently, impedance-based side-channel analysis has shown the ability to fingerprint

devices based on their geometric and material properties as a whole.

At a large scale, impedance-based side-channel analysis has been used to fingerprint

large metal parts by their response to piezoelectric stimuli to assess their manufacturing

quality [48]. Until recently, similar methods had not been developed to probe devices or

components at the scale of integrated circuits. The authors of [25] developed what is known

as the backscattering EM side channel to reduce issues with noise and interference with the

original EM side channel. That work draws inspiration from the way that RFID tags can

transmit bits by switching between two antennas with different impedance [49]. The RFID

reader’s transmitted signal at frequency ft acts as a carrier for the impedance of the tag that

alternates at fc, resulting in an amplitude-modulated signal returning bits of information

back to the reader. Similarly, the backscattering EM side channel is captured by trans-

mitting a signal which is modulated depending on the state of an IC. The backscattered

signal reflects back differently depending on the transistors’ states, which have different

impedance when connected to a voltage source versus being grounded [50]. The reflected

signal is captured with an EM probe and holds information about the transistor architec-

ture of the circuitry, even without current passing through it. The majority of transistor

switching occurs at the IC’s clock frequency fc; picked up by a probe as modulated spikes

in the frequency domain at ft ± fc,±2fc, . . . as shown in Figure Figure 2.3. Variations of

these spikes occur depending on the specific circuit architecture and activity in the region

of the probe. These variations may flag the presence of a Trojan in the circuit when com-

pared against a reference signal. Circuits infected with dormant condition-based HTs can

be detected through the backscattering EM side channel because their distinct transistor ar-

15

3.0
51

3.0
71

3.0
91

3.1
11

3.1
31

3.1
51

3.1
71

3.1
91

3.2
11

3.2
31

3.2
51

3.2
71

3.2
91

Frequency (GHz)

120

100

80

60

Re
ce

iv
ed

 P
ow

er
 (d

Bm
)

Backscattering EM Side Channel Harmonics

Figure 2.3: Received power of backscattered electromagnetic signal with harmonics above
the transmitted frequency ft = 3.031 GHz, separated by the device’s clock frequency
fc = 20 MHz.

chitecture reflects EM signals differently than their uninfected circuit counterparts. While

we do not test other types of internally-activated HTs in the following works, the addition

of any Trojan that modifies the IC layout could potentially affect the backscattered signal

enough to be detectable. The backscattering EM side channel has the main advantages

over the original EM side channel of being impedance-based and being adjustable to avoid

frequency bands with significant interference.

2.4 Hyperspectral Imaging

Hyperspectral imaging (HSI) typically refers to the collection of many two-dimensional

images at different frequency bands in the visible or near-visible light spectrum . While

normal color photos are represented in 3-dimensional space with two spatial dimensions

and one frequency dimension for the red, green, and blue channels, HSI captures tens or

hundreds of frequencies in a 3-dimensional hypercube of data per image. While visible

light HSI is typically used in fields such as geoscience [51] and biomedicine [52], [53],

16

some HSI techniques have been used to analyze the quality and composition of printed

circuit boards [54], [55] for electronics recycling. HSI is typically performed in one of three

ways: point-scanning, spectral scanning, and non-scanning imaging [56]. Point-scanning

captures individual measurements across frequency, one at a time, and raster scanning in

space to capture the whole data hypercube. Spectral scanning involves capturing an entire

2D spatial scene at a single frequency before physically switching or tuning the sensors to

the next frequency and repeating. Finally, non-scanning or snapshot imaging captures the

entire hypercube at once through projected acquisition and subsequent reconstruction back

to the correct perspective [57]. Unfortunately, these well-researched HSI techniques with

visible or near-visible light do not penetrate an IC’s packaging to fingerprint an integrated

circuit.

With existing high resolution probes, the backscattered EM side-channel has been

shown to pass through an IC’s packaging and reflect back differently based on the un-

derlying trace architecture [58]. Given those constraints, point-scanning must be used to

create non-traditional hyperspectral images of the backscattered EM side-channel signals

needed to fingerprint ICs at a small scale. Unfortunately, the main drawback of point-

scanning is the large increase in scanning time to capture entire hyperspectral images since

the time physically move a probe is significant for high-dimensional images. On the other

hand, point-scanning allows for flexibility in scans. Scans do not necessarily need to be

made sequentially; left-to-right and top-to-bottom. Additionally, point-scanning allows for

an arbitrary number of measurements at a fixed point in the spatio-spectral space. With this

flexibility, we can investigate unique forms of measurement frameworks like compressed

sensing.

2.5 Compressed Sensing

A popular way of reducing measurement costs is to reconstruct images from very few

measurements in a compressed sensing framework. Unlike iteratively selecting individual

17

measurements as in an active sampling or reinforcement learning regime, CS takes ad-

vantage of an assumed underlying structure in the data’s domain to allow sparse random

sampling for reconstruction [31]. Many works used basis functions like the Fourier trans-

form or discrete cosine transform (DCT) to approximate the smoothness and continuity of

the data’s domain [59]. For better reconstruction of natural images, other bases were devel-

oped that incorporated piece-wise smooth properties like various wavelet functions [60].

Further work showed that an overcomplete dictionary of bases learned from images similar

to those being reconstructed often outperformed any of the former bases for which closed

form analytical expressions exist [61], [62].

The CS framework can be represented with the standard linear model y ≈ Ax where y

is a vector of measurements, A is a measurement sampling matrix and x is a set of learned

coefficients that represent the reconstructed image. Assuming x can be sparsely represented

by some set basis vectors Ψ, then this problem can be rewritten as y = Ax = AΨs where

s is the sparse coefficient vector reconstructing x in that basis, meaning x = Ψs as seen for

an example image reconstruction problem in Figure 2.4. To ensure that the solution can be

stably recovered, A and Ψ should be incoherent, meaning they cannot sparsely represent

the other. In practice, Ψ could be the Fourier, Wavelet, learned dictionary, or any other

bases that are sparsifying for the signals to be reconstructed. A is then incoherent with Ψ

if it is structured for uniformly-random sampling. This binary matrix A could be thought

of as measuring a sparse random set of pixels which are then used to reconstruct the entire

2D image. In the heavily underdetermined setting where the number of samples is far fewer

than the dimensionality of the data, the sparse recovery problem shown in (Equation 2.1)

has a unique solution and can be solved with a standard LASSO solver [63], [64].

min
s
∥s∥1 subject to ∥AΨs− y∥2 ≤ ϵ (2.1)

18

Figure 2.4: Compressed sensing reconstruction of a 2-dimensional image from a sparse set
of randomly-sampled pixels using the discrete cosine transform basis functions. Randomly
sampled pixels (left) are recovered into the full image (middle) using bases such as the one
pictured (right), as adapted from [65].

19

CHAPTER 3

DEEP LEARNING CLASSIFICATION OF MOTHERBOARD COMPONENTS BY

LEVERAGING EM SIDE-CHANNEL SIGNALS

3.1 Overview

As introduced in Chapter Chapter 1, there is no established non-destructive solution to the

problem of accurately identifying individual components present on an already-assembled

motherboard. While research has shown the ability to identify entire motherboards or large

individual components based on their EM signatures [18], [16], to our knowledge there has

been no success classifying components already integrated onto a motherboard. This sce-

nario is important for device designers, who need ways of validating that the components

on their devices have not been replaced by an untrusted third-party assembler or supplier

with counterfeits.

Motivated by these shortcomings, in this work we develop a novel method to solve

a variety of component identification tasks using fingerprints from their electromagnetic

emanations. Here we train a single Convolutional Neural Network (CNN) architecture to

solve several component identification tasks using measurements of their EM emanations

in an idle and active state. We show that this approach can distinguish individual IC models

within four general classes (processors, memory ICs, power management ICs, and ethernet

transceivers). We choose these four component types due to the security threat they pose

if counterfeited given their handling of potentially secure data. Additionally, the relative

expense of these four compared to other component types like I/O connectors, capacitors,

op-amps, etc. makes them more likely targets of counterfeiting. To demonstrate the ro-

bustness of our methods we also test our method’s capabilities while the IoT motherboards

these ICs reside on are operating in “Idle” and “Excited” conditions. This idle state is the

20

most realistic scenario for component validation on an already-assembled device. Then we

test on an excited state to demonstrate the performance of our method in a similar setting as

[39]. We train our network with a random bootstrap sampling method of cross-validation to

achieve more consistently accurate performance over that of a k-Nearest Neighbors base-

line. We compare our method against a common off-the-shelf classifier (k-NN) since the

problem has no established state-of-the-art solution. It is important to emphasize that we

test classification accuracy on held-out devices separate from a training set, rather than

subsampling measurements from the same device for training and testing. Additionally, we

implement an anomaly detection procedure to show our design can be used to detect com-

ponents on which the network was never trained. Finally, by examining the signals passing

through the neural network, we build hypotheses about the features of different classes of

ICs that make them most distinguishable. In doing so, we present a generic approach for

accurate and interpretable component-level classification and counterfeit detection on IoT

devices.

3.2 Structured signals

When a component on a digital device is supplied power, EM emanations from the com-

ponent follow consistent patterns based on a host of factors. Among any number of noisy

variations in the signal, emanations change as a result of the component’s underlying trace

architecture and signal activation. With repeated excitation, such as a device clock signal

or looping code pattern, we see emanations that are especially noticeable in the frequency

domain. In this work, we measure emanations when the device is in an idle state and also

when it is activated by a controlled, repeating code execution. This idle state emulates the

primary intended use case of this work. Upon receipt of a newly fabricated device, the

device designer powers it on to test a variety of functions and confirm the authenticity of

its components with non-destructive scans of the EM side channel. We also test with a re-

peated code execution pattern to emulate the use case of testing the authenticity of a device

21

already deployed and running a known piece of software. Here we discuss these states and

the distinguishing features one may look for when understanding the emanated signal.

3.2.1 Component excitations

When powering a device and simply remaining in an idle state, components exhibit minimal

structure in their EM emanations besides a peak at the device’s clock frequency, as seen

in the top-left panel of Figure 3.1. However, with controlled code execution, components

can exhibit more structured excitations that are directly related to the activity on the specific

integrated circuit. To excite the component, we execute a repeating code pattern to generate

amplitude modulation of the looping program activity with the clock frequency [9]. By

repeating a pattern of two alternating code sequences (activity X and Y in Figure 3.2), we

can control the modulating frequency and duty cycle of amplitude modulation on the device

clock frequency. The program execution time spent in one loop versus the other controls

duty cycle, while the total execution time of the pattern Ta controls the alternating rate fa =

1
Ta

. That alternating rate shows up as amplitude modulated peaks (excitation) and harmonics

on both sides of the centered carrier (clock) frequency, fc. The result is a frequency domain

pattern of spikes at frequencies fc ± fa and their harmonics fc ± 2fa, fc ± 3fa, . . . with

features marked in Figure 3.3.

3.2.2 Features for classification

As seen in each row of Figure 3.1, the distinguishing features of emanations may dif-

fer greatly between the idle and excited states. In the idle state, a hand-crafted classifier

might extract features related to the clock frequency spread or the trail-off in the sidebands

at the edges of the measurement bandwidth. Without color-coding the measurements as

in the figure, reliably classifying the signals manually would be difficult. In the excited

state, the same features displayed in the idle state are generally present. Additionally, the

excited components may be distinguished by features such as the alternating frequency,

22

Processor - Idle Processor - Excited

Memory - Idle Memory - Excited

Power - Idle Power - Excited

Ethernet - ExcitedEthernet - Idle

Figure 3.1: EM emanation distribution of each component class and excitation state, hor-
izontally centered by the component carrier frequency and with vertical axis converted to
dB and mean subtracted. The median emanation measurement across all components of the
same model is drawn with shading below and above corresponding to the 10% and 90%
quantiles respectively. Components are measured in the idle (left) and excited (right) states.
Both ethernet excitation states look identical but do differ, however imperceptibly.

23

Figure 3.2: Pseudo-code generating alternating X/Y excitation [66].

Carrier

fa
ExcitationHarmonic

Clock
spread

Figure 3.3: Excited EM emanation frequency domain structure in decibel scale, set to
zero-mean. The carrier frequency is downconverted to zero and shows a modest amount
of spread due to clock frequency variation. Harmonics are present on both sides of the
carrier, separated by the alternating frequency fa of the executed program. Odd harmonics
are stronger than even harmonics since the program execution acts similarly to a square
wave in the time domain.

24

relative excitation and harmonic magnitudes, modulations on other unknown sources, and

more. While these features are somewhat distinguishable in the idle and excited states

when color-coded, it is clear that robust classification of these signals would be difficult by

manual inspection. Additionally, given the high dimensionality of the signals, traditional

classification models could suffer from the curse of dimensionality; meaning that the noise

present throughout the signal overwhelms the ability of a classifier to find the sparse dis-

tinguishing features present. To solve these issues and distinguish the components reliably,

we develop a preprocessing pipeline and neural network classifier fit for electromagnetic

emanation measurements.

3.3 Preprocessing and model architecture

We develop a preprocessing pipeline that is implemented uniformly across eight datasets

(four component types with two excitation patterns each) to decrease biases and analyze

differences between different datasets. Additionally, we design a convolutional neural net-

work (CNN) classifier to reduce dimensionality while maintaining important discrimina-

tory features of the EM emanations. Here we detail the main preprocessing procedure and

our CNN model architecture for classification.

3.3.1 Preprocessing

Each EM emanation measurement can contain millions of samples per second due to the

large bandwidth needed to capture the alternating frequency and harmonics of excited com-

ponents. To reduce noise, reduce the dimensionality of the inputs, and generate several

training samples per measurement, we employ the procedure outlined in Algorithm Al-

gorithm 1. EM side-channel signals exhibit significant phase noise, resulting in jittery

measurements and a visible spread in the frequencies of the carrier and excitation signals

[67]. We designed the preprocessing Algorithm Algorithm 1 to amplify the prominence of

frequency spikes and carrier shape above the noise floor, mainly by averaging frequency-

25

domain subsamples captured over time and converting them to decibel scale. This feature

selection allows us to generate robust input features to our model from the set of experi-

mental devices available to us.

We subsample each measurement to increase the number of training samples available,

reduce the dimensionality of the inputs, and capture potential random time-variability of

the signal. From each measurement x with total length N , we subsample non-overlapping

windows z(i) of length L. This results in a total of M = floor(N
L
) segments each corre-

sponding to TS = L
fs

seconds of the measurement, where fs is the sampling frequency of the

measurement device. The resulting measurement matrix Z ∈ RM×L holds each subsample

as a row. To reduce the effect of discontinuities at each end of the subsamples, a Hamming

window wh of length L is applied to each of those subsamples. When measuring EM em-

anations while executing repeating code patterns, we expect signal structure to be revealed

best in the frequency domain, so each subsample is converted to the frequency domain with

a Short-Time Fourier Transform (STFT). We transform each complex-valued subsample to

its frequency magnitude and ignore phase information. We then perform a small circular

shift of the frequency magnitude to center its maximum value which we assume to be the

device’s clock frequency. Doing so allows our network to focus more on the locations or

magnitude of features without requiring potentially difficult training to learn shift-invariant

features. Next we convert the signal to decibels to increase the influence of weak signal

components like the excitations and their harmonics over the random fluctuations of the

noise floor. Non-overlapping groups of length NG of the M subsamples are averaged to

reduce random noise power, resulting in MG = ceiling(M
NG

) subsamples per measurement

arranged into a matrix G ∈ RMG×L. Finally, we scale each subsample to have a mean of

zero and variance of one to ensure that the model is fed samples with features in a consistent

range.

26

Algorithm 1 Measurement preprocessing algorithm

1: Inputs: Measurement x ∈ RN

2: Allocate: Subsamples Z ∈ RM×L

Processed samples G ∈ RMG×L

3: for i = 1 to M do
4: Zi,∗ ← [x(i·L), . . . ,x((i+1)·L)]
5: Zi,∗ ← Zi,∗ ⊙wh

6: Zi,∗ ← STFT (Zi,∗)
7: Zi,∗ ←

√
ℜ(Zi,∗)2 + ℑ(Zi,∗)2

8: Zi,∗ ← circshift(Zi,∗)
9: Zi,∗ ← 20 log10(Zi,∗)

10: end for
11: for j = 1 to MG do

12: Gj,∗ ← 1
NG

NG∑
n=1

Z((j−1)·MG+n),∗

13: Gj,∗ ← Gj,∗ −mean(Gj,∗)

14: Gj,∗ ← Gj,∗
std(Gj,∗)

15: end for

Figure 3.4: High-level schematic of the CNN architecture depicting the convolution blocks
(left) and fully-connected blocks (right).

27

3.3.2 CNN Architecture

While a host of classification algorithms and models exist, few of them are designed to han-

dle high-dimensional inputs with few training samples to learn from, each of which has a

sparse set of distinguishing features. Even if other machine learning models prove effective

at distinguishing EM emanations when their relevant features are known, CNNs and their

variety of trainable and deterministic layers can learn features on-the-fly and allow nearly

unlimited model flexibility, all while retaining a level of interpretability. The lightweight

convolutional neural network architecture we design here is developed to strike a balance

of fast training and inference times while maintaining interpretability and performance on

a varied set of component classes and excitations. The architecture is made up of two con-

volution blocks and three fully-connected blocks as depicted in Figure 3.4 and described

next.

Each convolution block uses a one-dimensional convolution with kernel size K = 3,

stride length S = 3, and padding P = 1 to significantly downsample their inputs while

learning features that are robust to slight jitters of the input frequency spikes. The output of

each convolution is fed to a ReLU activation [68] and then a max pooling layer with both

kernel size and stride length of four for non-linear representation and more downsampling.

The result of the strided convolution and pooling in this block is a downsampling of twelve

times in the length of samples fed through the layer. The first convolution block takes as

input a univariate subsample of length 4096 and learns three single-channel filters. This

multivariate output is passed to the second convolution block with the same basic architec-

ture. This block differs with the addition of a dropout layer [69] randomly zeroing out five

percent of its filter weights in order to encourage robustness to sparse noise sources that

may be present in the inputs. Additionally, this block differs by learning five separate three-

channel filters instead of three separate one-channel filters like the first layer. Between the

downsampling due to strided convolutions and pooling in addition to the larger represen-

tation power from the increasing numbers of filters, the convolution layers perform a total

28

Table 3.1: Component models and counts across different device types and component
classes. Blank boxes indicate that the device does not have that component. All devices
come from the OLinuXino line of development boards and all processors are in the ARM
Cortex line. Memory and ethernet chips are abbreviated to the first eight characters for
space.

Device Type Processor Memory Power Ethernet
A10-LIME [70] A8 K4B4G1646 AXP209 RTL8201C

A13 [71] A8 H5TQ2G83 AXP209 —–
A13-MICRO [72] A8 H5TQ2G63 —– —–

A20-LIME [73] A7 MT41K256 AXP209 LAN8710A
A20-LIME2 [74] A7 MT41K256 AXP209 KSZ9031R

A20-MICRO [75] A7 MT41K256 AXP209 LAN8710A
A33 [76] A7 MEM4G08D AXP223 —–

Number of Classes (O) 2 5 2 3

effective downsampling of the input feature space of approximately 144-to-5 while only

requiring pconv = 62 parameters to be learned. The five-channel output of the convolution

layers is flattened to a single vector of length 140 to be fed to the linear layers.

The first two fully-connected blocks follow the same structure as each other, differing

only in the number of input features per layer. Both blocks learn linear transformations

of their input with M = 50 neurons, before a dropout layer of 30% and ReLU activation

layer. The final linear layer has O neurons, where O is the number of output classes for

the specific component classification problem (given in Table Table 3.1). The linear layers

require more weights to train than the convolutions; learning plinear = 9600 + 51 · O pa-

rameters. The entire network thus learns p = pconv + plinear = 9662 + 51 · O parameters to

classify inputs between O classes.

3.4 Experimental design

To measure the ability of our CNN to classify different components on an IoT device,

we test an array of different component classes all cross-validated with the same CNN

architecture. In this section, we detail the hierarchy of different components tested, the

29

measurements capturing EM emanations from the components, and the training and cross-

validation parameters used to obtain the results we present.

3.4.1 Device hierarchy

We use a large set of open source hardware IoT devices manufactured by Olimex to test

classification problems for a variety of components. This set of devices spans several

copies of each of the D = 7 device types: A10-OLinuXino-LIME, A13-OLinuXino, A13-

OLinuXino-MICRO, A20-OLinuXino-LIME, A20-OLinuXino-LIME2, A20-OLinuXino-

MICRO, and A33-OLinuXino. We classify the component models within each of four

classes of components: processors, memory chips, power management ICs, and ethernet

transceivers. Though there are seven device types, some of them share the same compo-

nents, and not all device types have components from each class. The component models

on each device type are listed in Table Table 3.1. For each of the four component classes

we measure and classify between O = 2 and 5 component models.

3.4.2 Cross-validation

An essential piece of developing any machine learning model is a rigorous separation of

training, validation, and test samples. As depicted in Figure Figure 3.5, we set aside a

group of devices called the training/validation set that are used to select models with the

best ability to generalize to unseen data. The remaining devices, called the test set, are

used for evaluating performance against a baseline classifier. In our problem scenario, we

have several copies each of a variety of different types of IoT devices available to measure.

Although the copies each have the same components, measuring multiple copies allows

us to train a model that is more robust to manufacturing variabilities of the components

or motherboards. To make sure each type of IoT device is represented evenly across the

training/validation and test sets, we partition the copies of each device type into groups of

Ctrain/val, and Ctest devices. With D different types of devices, each type with C copies, this

30

Figure 3.5: Data breakdown and preprocessing pipeline. Device copies are broken into
training (blue), validation (green), and test (magenta) groups for preprocessing and finally
aggregated together with all other copies of their respective sets.

31

yields training/validation and test sets of size D · Ctrain/val, and D · Ctest respectively.

With just the training/validation set, we use a random bootstrap sampling method to

settle on the best-generalized model and the training devices that yielded it. The follow-

ing procedure is repeated R times to cross-validate the model training. For each device

type, we randomly separate the Ctrain/val device copies into Ctrain training and Cval valida-

tion devices. Some devices have multiple of the same components (specifically, multiple

of the same memory chips), which we group together on each device to maintain consis-

tent set split sizes. The measurements of each device’s components are preprocessed into

subsamples as detailed in Algorithm Algorithm 1. Then, the D · Ctrain ·MG subsampled

measurement matrices across all training devices are aggregated together into the matrix

Xtrain ∈ R(D·Ctrain·MG)×L. We then train the supervised model on the data in Xtrain with its

corresponding component labels ytrain ∈ R(D·Ctrain·MG), and evaluate the model performance

on a similarly aggregated validation set Xval ∈ R(D·Cval·MG)×L and its labels. For the pur-

pose of comparing model performance, we use accuracy defined as the proportion of cor-

rectly classified samples (True Positives + True Negatives) out of all samples. The model

that achieves the best validation accuracy across the R different random training/validation

combinations is saved and evaluated on the test set to measure its overall performance.

The value of R can be chosen to strike a balance between computation time and finding

the model’s best possible validation performance. Given D · Ctrain/val devices partitioned

in this manner, the number of possible combinations of training and validation devices is

given in Equation 3.1.

combinations =
(
Ctrain/val

Ctrain

)D

(3.1)

32

Figure 3.6: Measurement setup for capturing EM emanations from components on moth-
erboards.

3.4.3 Measurements

To capture the EM emanations from each of the components, we measure with the probe

setup depicted in Figure Figure 3.6. A handmade circular coil probe with 1 mm spot radius

[58] is fixed in place just above the component with the motorized EM Probe Station from

Riscure [77]. The probe connects to the Keysight M9391A PXIe Vector Signal Analyzer to

record the signal in an In-Phase/Quadrature representation [78]. We isolate signals coming

from the processor, memory, and other components by taking advantage of the fact that

the different classes of components have different clock frequencies. Knowing the general

range of the clock frequency for each component type allows us to isolate them from others

by measuring the carrier and any signals modulated onto them in the expected frequency

range.

Each component is measured separately while the IoT device is in an idle or excited

state as detailed in Section subsection 3.2.1. The excited state consists of a code alternating

between addition and load operations at 10 kHz and 50% duty cycle. Each measurement

is captured for approximately ten seconds at a sampling rate of 281,600 samples per sec-

ond for a total measurement length of 2,816,027 samples. Measurements are band limited

33

to a 220 kHz range surrounding the device’s carrier frequency as determined by [79] or

manually. Each measurement is preprocessed according to Algorithm Algorithm 1 using

subsequences of length L = 4096 and groupings of NG = 50 subsamples. This results in

each ten-second measurement being converted into fourteen subsamples that each represent

up to 0.73 seconds of the measurement.

3.4.4 Anomaly Detection

We also test the ability of our model to flag counterfeit IC models on which the network

was not trained through an anomaly detection procedure. We perform these tests on mem-

ory components since we have the greatest diversity of memory components across device

types and training our CNN requires at least two classes to build class-discriminating fea-

tures. For each of our five tests, we train the CNN with one memory component model held

out of the training and validation sets. This component serves as the “unknown” compo-

nent. The CNN is then trained with only four output neurons now representing the “known”

four memory component models. After using the same cross-validation setup as presented

in Section subsection 3.4.2, we reintroduce the unknown component model to the testing

set along with examples of the four known models. We pass the side channel emanations of

the test set consisting of emanations from all five models through our network and use the

output activations as the input to the anomaly detection procedure detailed next and similar

to those presented in [80] and [81]. We then perform the same test holding out each of the

remaining four memory component models from training in turn.

Intuitively, a known component’s emanations will have strong correlation with one of

the trained components’ emanations and consequently produce a strong activation at its

corresponding output neuron. A component on which the model was not trained should

produce weaker activations across the output neurons due to its low correlation with the

emanations of the trained components. We measure the strength of the maximum class

output activation relative to the other output neurons as a metric for the CNN’s classification

34

confidence. We expect this difference to be large for known components that the CNN

classifies confidently, and small for unknown components that have EM emanations unlike

any of the known components on which the CNN was trained.

We train a simple generative classifier for anomaly detection with the statistics (µconf ,

σconf) of the CNN’s classification confidence for the training samples. We define the clas-

sification confidence for a particular sample as the average difference between the maxi-

mally activated output neuron and the remaining output neuron activations. Test samples

with classification confidence below µconf −σconfF−1(p) are classified as unknown, where

F−1(p) is the quantile function of a standard gaussian distribution and p ∈ [0, 1] is the

chosen quantile. The choice of p can be made as a trade-off between the rate of com-

ponents being flagged as potential counterfeits versus being classified as the most similar

component model on which the CNN was trained. We choose p = 0.99 in our experiments.

3.4.5 Training parameters

We train our CNN in PyTorch [82] using the adapted ADAM optimizer with adjusted

weight decay from [83] and default learning rate and weight decay parameters. Weights

are randomly initialized by default in PyTorch from a uniform distribution scaled based on

the layer type and size. We train with random batches of 50 subsamples without replace-

ment and a maximum of 500 epochs. We implement an early-stopping procedure to reduce

training time for iterations that do not converge or show poor generalization performance.

To do so, we compute the validation loss every 10 batches and halt training if the loss

does not improve after 500 batches. This training procedure yields training times for a sin-

gle component, excitation type, and cross-validation fold of between 3 and 20 seconds, or

more than 18 hours of total training and cross-validation time on our machine with an Intel

i7-9800X CPU with 64GB memory and NVIDIA Quadro P400 GPU with 2GB memory.

For each classification problem, we perform the random bootstrapping method outlined

in Section subsection 3.4.2 with R = 50 training sequences and random training and vali-

35

dation sets for each device type. We have nine or ten copies of each device type, resulting

in a total of 273 distinct components measured across the processor, memory, power, and

ethernet models with which we employ a 10% / 30% / 60% training/validation/testing set

split. We use groups of Ctrain/val = 4 device copies for each type. We train on Ctrain = 1

randomly selected device then validate the model’s performance on the remaining Cval = 3

devices. The restricted set of training devices and much larger set of testing devices al-

lows us to demonstrate the robustness of our method, while noting that it could be im-

proved with larger sets of devices. From Equation 3.1, we compute that there are between

256 and 16,384 possible sampling combinations depending on the number of device types

with that component class. With this many possible combinations, we achieve significant

computation savings in the training process by choosing the best validated model across

only R = 50 random combinations. Then, for each of the eight component classification

problems (four component classes with two types of excitation each) we repeat the entire

classification pipeline ten times to determine how consistently the CNN performs with so

many random factors.

Finally, we train a k-NN classifier with the same preprocessing and cross-validation

pipeline to use as a baseline for accuracy comparison. To select the best value of k, for

each of the R random bootstrap samples, we train and choose the best performing model

across k = {1, . . . , 10} predicted classes.

3.5 Results and Interpretability

We present the results of our classification experiments based on ten trials each of four

component classes in two excitation modes, for a total of eighty classification trials or

4000 rounds of training for cross-validation.

36

Table 3.2: Number of component measurements across all device types in the training,
validation, and test sets for each component class. These constitute an approximate 10%,
30%, 60% split for the training, validation, and test sets respectively with a total of 273
distinct components.

Number of Measurements Processor Memory Power Ethernet
Training Set 7 11 6 4

Validation Set 21 33 18 12
Test Set 40 63 35 23

Total 68 107 59 39

3.5.1 Classification results

We compute the prediction accuracy on the five or six test set copies available for each of

the device types. As stated in Section subsection 3.3.1, each measurement is preprocessed

into a set of fourteen subsamples which are used to generate a majority-rule prediction for

each component measurement. Prediction accuracies here correspond to the exact fraction

of components predicted correctly in the test set for each component class. The size of

these test sets in each scenario are shown in Table Table 3.2. This number of components

varies for each component class due to some device types not having a certain component

class (namely, power and ethernet) and other device types having multiples of individual

components (memory chips) on a single board. As an example, a memory classification

accuracy of 0.952 corresponds to 60 of the 63 test set components being predicted correctly

and three predicted incorrectly. A very similar accuracy of 0.957 for ethernet transceivers

corresponds to 22 of 23 components predicted correctly and that only one was predicted

incorrectly.

Table Table 3.3 shows that our CNN achieves equal or better median accuracy over

the baseline k-NN classifier in every test scenario. As shown in Figure Figure 3.7, our

CNN architecture achieves a median classification accuracy over 95% in all cases except

when classifying power management ICs in the excited mode. In all but that same case,

the excited mode produces equal or better results respectively for each of the minimum,

median, and maximum accuracies obtained with the idle state measurements.

37

Table 3.3: Absolute difference of median CNN prediction accuracy over k-NN accuracy
across all component classes and excitation states. Positive values mean the CNN outper-
formed the k-NN baseline.

Idle Excited
Processor 0.000 0.025
Memory 0.175 0.000
Power 0.086 0.029

Ethernet 0.043 0.087

1
.0
0
0

0
.9
5
2

1
.0
0
0

0
.9
5
7

1
.0
0
0

1
.0
0
0

0
.8
7
1

0
.9
5
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processor Memory Power Ethernet

Idle Excited

Figure 3.7: Classification accuracy distributions across all four component classes in two
excitation states each. Bar heights and inlaid number represent the median prediction ac-
curacy across 10 trials, with bottom and top black markings representing the minimum and
maximum accuracies respectively.

38

As shown in Figure Figure 3.7, the processor model is most consistently predicted

correctly, followed by the memory, ethernet, then power ICs. These results follow intuition,

since EM emanations related to program activity should be most present near the CPU.

Even without these excitations, processor classification results in idle state are still nearly

perfect due to the subtle but consistent spread of sideband activity, seen in the top left of

Figure Figure 3.1.

The memory chips nearby the processor are spuriously active in the idle state, but

consistently active for most classes when the processor is actively transferring data in

the excited state. This discrepancy could explain the difference between the two excita-

tion modes’ prediction accuracy. We note that the MEM4G08D3EABG-125 memory chip

seems to use spread frequency clocking, which results in no visible carrier frequency or

modulated excitation in the excited state.

Since both the idle and excited state emanations of ethernet components look nearly

identical as we see in Figure Figure 3.1, we expect the network to perform similarly on

both. Indeed, we find small differences in the minimum prediction accuracies across the

ten trials which we may attribute to the random cross-validation sampling; though overall

they share the same median accuracy.

We find that prediction performance suffers when predicting power management ICs in

the excited state due to the virtually identical emanations. Since we only had one device

type representing the AXP223 power management IC, versus five types with the AXP209,

the large class imbalance proved difficult to overcome for the model. There exist many

techniques to deal with class imbalances, such as class-weighted sampling or loss functions

[84], but we did not test them here so that all processing schema remain the same. The

distinct emanation signatures of the different power management ICs in the idle state yield

much better prediction accuracy when their emanation signatures differ significantly.

As displayed in Table Table 3.4, we find the highest False Positive or False Negative

rates for component models with the fewest overall measurements taken, especially when

39

Table 3.4: Classification metrics averaged across 10 trials for each component model and
excitation type. Shown is the number of ICs of each component model in the test set,
True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and False
Negative Rate (FNR) for both excitation states. Component types are group by row and
model names are abbreviated where necessary.

Idle Excited
Model # ICs TPR TNR FPR FNR TPR TNR FPR FNR
A7 23 1.00 1.00 0.00 0.00 1.00 0.97 0.04 0.00
A8 17 1.00 1.00 0.00 0.00 0.97 1.00 0.00 0.04

H5TQ2G63 5 0.82 0.99 0.01 0.18 0.98 1.00 0.00 0.02
H5TQ2G83 12 0.93 0.97 0.03 0.07 1.00 1.00 0.00 0.00
K4B4G164 6 1.00 0.99 0.01 0.00 1.00 1.00 0.00 0.00
MEM4G08 12 0.93 0.99 0.01 0.07 1.00 1.00 0.00 0.00
MT41K256 28 0.92 0.95 0.05 0.08 1.00 1.00 0.00 0.00

AXP223 6 0.77 1.00 0.00 0.23 0.40 0.96 0.04 0.60
AXP209 29 1.00 0.77 0.23 0.00 0.96 0.40 0.60 0.04

KSZ9031R 5 0.80 1.00 0.00 0.20 0.80 0.99 0.01 0.20
LAN8710A 12 0.99 0.85 0.16 0.01 0.96 0.86 0.15 0.04
RTL8201C 6 0.88 0.99 0.01 0.12 0.90 0.98 0.02 0.10

they exhibit virtually identical spectra to another model. We note that these error rates

are most pronounced when we were only able to train on a single IC of a certain model,

while other models were common enough across multiple device types to allow several

measurements. This was most pronounced for the H5TQ2G63BFR memory IC, AXP223

power IC, and KSZ9031RNXCC-TR and RTL8201CP Ethernet ICs which each had only

one training example in our cross-validation setup.

Our anomaly detection results presented in Table Table 3.5 show that our method is able

to detect unknown ICs on which the CNN was never trained in many cases. Each group of

five rows depicts the results of a test with one memory component held out from training

and treated as unknown. Our method yields the lowest accuracy when detecting an anoma-

lous memory IC model which has EM emanations similar to a model with which the CNN

was trained. When the CNN is trained on all models directly, it learns feature embeddings

that adequately distinguish each IC model. Without training on all IC models, the network

40

relies on feature embeddings whose activations may not differentiate all unknown ICs from

known ICs.

3.5.2 Interpreting results

Although we did not extract hand-crafted features for use by our model, a careful inspection

of the inputs as they pass through the network can give an indication of what our CNN

deemed important for component classification. Figure 3.8 shows how the distribution of

training subsamples for the processors in idle state look as they enter the network (top) and

exit the convolution layers (bottom). Although the the inputs for each class look similar,

we note subtle differences in the height of the carrier peak, presence of small modulated

excitations, slope of the sidebands, and sharpness of the trail-off at the outer edges of the

measured bandwidth. After passing through the convolution layers of the network, we see

that the five filter channels extracted these distinct features from the input. To the naked eye,

these outputs can be hypothesized to represent the sideband slopes (blue), carrier strength

and sideband slopes (orange), carrier versus excitation peak differences (green), overall

sideband decay shape (red), and sideband trail-off (purple). The network learns to extract

and emphasize many of the same subtle differences between the inputs that we see with the

naked eye.

To add evidence to our interpretation hypotheses, we pass the inputs one layer further

in the network to analyze how the convolution layer outputs shown in Figure Figure 3.8

are modified by the first linear layer in what we call its feature activation mapping. As

seen in the top of Figure 3.9, each of the 50 neurons’ weights (each row of W ∈ R50×140)

show distinct differences in weight magnitude corresponding to the channels of the con-

volution layers’ output. To understand how these weights affect their inputs, we analyze

how the weights of an “average neuron” wave =
∑50

i=1Wi,∗ align with the input. We com-

pute the element-wise weighting of the convolution layer outputs with the average neuron

and overlay it with the same convolution layer outputs from Figure 3.8. We note in the

41

Table 3.5: Classification metrics for anomaly detection averaged across 10 trials for mem-
ory ICs in an excited state. Each group of five rows represents an individual memory IC
model being removed from training and treated as unknown. Shown are the True/False
Positive/Negative rates and per-model classification accuracy.

Models TPR TNR FPR FNR Accuracy
Unknown 0.980 0.974 0.026 0.020 0.975

H5TQ2G83BFR 1.000 1.000 0.000 0.000 1.000
K4B4G1646Q-HYK0 0.967 1.000 0.000 0.033 0.997

MEM4G08D3EABG-125 0.908 0.998 0.002 0.092 0.981
MT41K256M16HA-125:E 0.993 1.000 0.000 0.007 0.997

H5TQ2G63BFR 0.780 1.000 0.000 0.220 0.983
Unknown 0.492 0.951 0.049 0.508 0.863

K4B4G1646Q-HYK0 1.000 1.000 0.000 0.000 1.000
MEM4G08D3EABG-125 0.883 1.000 0.000 0.117 0.978

MT41K256M16HA-125:E 1.000 0.826 0.174 0.000 0.903

H5TQ2G63BFR 0.840 1.000 0.000 0.160 0.987
H5TQ2G83BFR 1.000 1.000 0.000 0.000 1.000

Unknown 0.350 0.958 0.042 0.650 0.900
MEM4G08D3EABG-125 0.867 1.000 0.000 0.133 0.975

MT41K256M16HA-125:E 1.000 0.889 0.111 0.000 0.938

H5TQ2G63BFR 0.820 1.000 0.000 0.180 0.986
H5TQ2G83BFR 0.983 1.000 0.000 0.017 0.997

K4B4G1646Q-HYK0 1.000 1.000 0.000 0.000 1.000
Unknown 1.000 0.973 0.027 0.000 0.978

MT41K256M16HA-125:E 0.989 1.000 0.000 0.011 0.995

H5TQ2G63BFR 0.920 1.000 0.000 0.080 0.994
H5TQ2G83BFR 1.000 0.876 0.124 0.000 0.900

K4B4G1646Q-HYK0 1.000 1.000 0.000 0.000 1.000
MEM4G08D3EABG-125 0.925 1.000 0.000 0.075 0.986

Unknown 0.775 0.963 0.037 0.225 0.879

42

Figure 3.8: Median of training set subsamples for processors in the idle state, scaled to
dB and subtracted to zero-mean for each component model with shading below and above
corresponding to the 10% and 90% quantiles respectively (top). The flattened output of the
same median and shaded quantiles after passing through all convolution layers, just before
entering linear layers (bottom).

figures where wave has strong correlation with the input of each class. Without looking at

the individual tendencies of each neuron in this layer, we argue that this average neuron

highlights which part of its input that most of the 50 neurons emphasize to discriminate

between classes. These peaks correspond to the carrier frequency peak magnitudes and the

outer edges of the sideband trail-off. Nuanced features like sideband slope or carrier versus

excitation peak differences may be differentiated by individual neurons, but the average

neuron seems to look at these highlighted features as the most important general features.

Although this analysis strays from theoretical bases and likely suffers from some level

of hindsight bias, it is worth noting that a similar analysis is entirely impossible with many

common classifiers such as the k-NN classifier. When we have a decent idea of important

discriminative features from prior work or visual inspection of the input signals, it is useful

to compare our intuitions with the features extracted by such a general model. In cases

where features are not visually discriminative, this model-guided analysis can be useful to

yield insights about the data.

43

Figure 3.9: First linear layer weightsW with black vertical lines separating the weights that
correspond to the convolution output channels as color-coded in Figure Figure 3.8 (top).
Comparison of the inputs of each component model weighted by the sum of neuron weights
(blue), overlaying the inputs (magenta) to the first linear layer (bottom). Weighted inputs
with strong correlation (or anti-correlation) to inputs circled in green.

3.6 Conclusions

This work, published in [34], develops a lightweight CNN to classify a broad range of

motherboard components in idle and excited states based on their EM emanations. Our

robust preprocessing and cross-validation pipeline allows us to train models with strong

classification accuracy across a range of component classes. We outperform a k-Nearest

Neighbors classifier baseline in all tested cases. We show that a simple anomaly detection

procedure can be used with our CNN to detect counterfeit ICs on which the CNN was

not trained. While our network performs well across a variety of component classification

problems, there is room for improvement with future work. We use a simple anomaly

detection procedure based solely off of the CNN’s output activations, whereas the state-

of-the-art in that domain takes cues from all layers in the CNN. Although our network

was intentionally designed for these types of signals, we do not claim to have made a

comprehensive architecture search and it is likely that architecture tweaks could improve

performance further. This is especially likely to be the case with individual models tuned to

44

the traits of each of the eight individual component identification problems. To emphasize

the utility of this end-to-end trained method, we provide an in-depth analysis of signals

as they pass through our model. This process allows us to understand the discriminative

features of different components when they may not be visually apparent. Our results

demonstrate that a lightweight CNN can classify the diverse EM emanations accurately

while generating insights about their discriminative features for individual integrated circuit

components on an assembled motherboard.

45

CHAPTER 4

FEATURE SELECTION FOR NON-DESTRUCTIVE DETECTION OF

HARDWARE TROJANS USING HYPERSPECTRAL SCANNING

4.1 Overview

While large-scale differences between integrated circuits can be detected through the elec-

tromagnetic side channel, small intrusions like hardware Trojans are much more difficult

to detect; especially when dormant. Prior work has demonstrated the ability to detect hard-

ware trojans either after activation [85], [4] or only recently for large dormant Trojans [25].

For Trojans designed to be stealthy, minimizing circuit resource usage compared to the rest

of a circuit and only activating under rare circumstances can help avoid detection in most

routine functional testing scenarios [19]. While destructive testing methods can potentially

detect these small dormant Trojans, testing a significant portion of manufactured devices

would require significant time and effort and necessarily lead to significant losses by de-

stroying chips. Thus, it is crucial to develop non-destructive methods that can be used to

validate hardware security at high throughput before the devices are deployed.

To overcome the shortcomings of existing non-destructive HT detection methods and

approach the reliable detection performance of destructive methods, we develop a novel

approach that detects dormant HTs by informed sampling of a hyperspectral backscatter-

ing EM side-channel measurement space. The impedance-based backscattering EM side

channel has shown promise for detecting dormant HTs when scanned at a single chip lo-

cation, so we take advantage of spatial variation of the side channel to capture more in-

formation that may expose a covert Trojan. Using a high-resolution probe, we spatially

scan the IC across space and frequency to generate point-scanned hyperspectral images of

the backscattered EM signal. We develop novel filtering and active learning techniques to

46

sift through the large hyperspectral feature space to selectively capture the most reliable

measurements that improve HT detection robustness while significantly reducing scanning

overhead at test time. We evaluate our new techniques with three benchmark circuits featur-

ing distinct Trojan designs and validate across multiple hardware instances to demonstrate

the robustness of our novel measurement and analysis techniques. We show that our se-

lective scanning method is used to detect dormant hardware Trojans as small as 0.03% of

the circuit; which is 14 times smaller than prior work. This point-scanning hyperspectral

measurement methodology shows promise for future efforts improving detection accuracy

and speed.

4.2 Dormant Hardware Trojan Detection

4.2.1 Hardware Trojan Threat Model

Hardware Trojans present on a device represent a significantly more serious risk than sim-

ple design errors, natural runtime errors, or random bit-flip errors. While random errors

may be accounted for with error correction code, HTs act covertly and adversarially which

can have unforeseen effects on otherwise secure software. There has been much work to

understand the threat that HTs pose [40], [21], [41] while also further understanding and

characterizing their implementation [42], [43], [44], [45]. A device designer cannot trust

the origins of its devices blindly due to the ever-increasing number of entities involved in

their development and manufacture. A fabricated IC is vulnerable to potentially malicious

actors across the design, fabrication, testing, packaging, and other stages. Since all of these

steps are typically completed by separate specialized entities, perhaps even spread across

different countries, ICs fabricated in the most robust supply chains may still be vulnera-

ble to HT injection by bad individual, corporate, or political actors. A typical HT threat

might modify the design of an application-specific integrated circuit (ASIC), digital signal

processor, microprocessor, or other hardware at an untrusted foundry [20]. Even when a

trusted designer securely develops circuit modules and generate their layouts using trusted

47

design tools, sending the layouts to an untrusted foundry for manufacture leaves a window

for potential modification of the circuit layouts [46], [20]. Thus, it is necessary to perform

final design verification of the functional IC before deploying it to detect the presence of

HTs that may be added somewhere in the device manufacturing supply chain.

The recent prevalence of field programmable gate arrays (FPGAs) for prototyping or

other specialized critical applications also presents a risk for malicious Trojans inserted as

firmware modifications through the FPGA’s bitstream [23], [24]. Even if an FPGA’s con-

figurable logic blocks and programmable interconnects are not maliciously modified at the

hardware level, the addition of covert Trojans into the bitstream can implement malicious

logic independent of the hardware platform [24]. Though the performance gap between

FPGAs and ASICs is reducing, FPGAs do not necessarily have the same circuit properties

as ICs and further investigation of HTs inserted into ASICs is necessary to validate detec-

tion techniques [23]. However, the path length and resulting impedance changes caused by

an inserted Trojan that our HT detection technique relies on could still be present whether

in FPGA or ASIC [23], [41]. The Trojans analyzed in this work are implemented on FPGA

platforms versus custom ASICs for reasons of practicality.

The internally-activated, condition-based HTs we investigate in this paper are designed

to take up very little circuit resources and be activated under very rare circumstances to

avoid detection by common testing methods. This type of HT typically consists of a trig-

ger and normally-dormant payload circuit as seen in Figure 2.2, where the trigger circuit

monitors the main circuit for a specific combination or sequence of inputs, state, or other

conditions before activating the payload circuit when those conditions are met [19], [20].

The payload circuit draws negligible current while dormant, which is its main defense to

avoid detection by traditional HT detection methods. As shown in Figure 4.1, a small trig-

ger circuit makes the entire Trojan incredibly difficult to detect; with statistically significant

differences showing up in as little as 0.2% of features across space and frequency. Once

activated, the HT initiates its malicious purpose which may be functional or non-functional.

48

128 64 32 16 8 4 2 1
Trigger Size (bits)

0.0

0.1

0.2

0.3

0.4
0.3

60

0.2
22

0.0
96

0.0
44

0.0
09

0.0
08

0.0
05

0.0
02

Proportion of Features
Distinct from Control

Figure 4.1: Proportion of total hyperspectral features showing statistically significant dif-
ference between uninfected and infected AES-T1800 circuit.

A functional HT might change the value of the main circuit’s outputs or communicate se-

cure information externally while a non-functional HT may cause rapid battery drain or

leak sensitive information through a side channel, among many other possibilities. Since

the effects of an activated Trojan can be so devastating, it is critical to detect their presence

before activation or, ideally, before the device is even deployed.

4.2.2 Backscattering EM Side Channel

As noted in chapter 2, EM side-channel signals are emissions due to changes in current

in the ICs and conductive traces on electronic devices [10], [47]. These emissions tend to

show up as sharp spikes with harmonics in the frequency domain due to consistent tran-

sistor switching from a clock signal or looping program activity [9]. The authors of [25]

developed the backscattering EM side channel to reduce issues with noise and interference

with the original EM side channel while improving the ability to detect dormant HTs that

cannot be found with current-based side channels. In that work, a 3.031 GHz continu-

49

ous wave sinusoid is transmitted toward the IC and the reflected (backscattered) signal is

measured with a probe. That work draws inspiration from the way that RFID tags can

transmit information by switching between two antennas with different impedance [49].

The RFID reader’s transmitted signal at frequency ft acts as a carrier for the impedance

of the tag that alternates at fc, resulting in an amplitude-modulated signal returning bits

of information back to the reader. Similarly, the backscattering EM side channel is cap-

tured by transmitting a signal which is modulated depending on the state of an IC. The

backscattered signal reflects back differently depending on the transistors’ states, which

have different impedance when connected to a voltage source versus being grounded [50].

The majority of transistor switching occurs at the IC’s clock frequency fc; picked up by

a probe as modulated spikes in the frequency domain at ft ± fc,±2fc, . . . as shown for

the real circuit activity in Figure 2.3. Variations of these spikes occur depending on the

specific circuit architecture and the transistor activity in the region of the probe. These

variations may flag the presence of a Trojan in the circuit when compared against a refer-

ence signal. Circuits infected with dormant condition-based HTs may be detected through

the backscattering EM side channel because their distinct transistor architecture reflects

EM signals differently than their uninfected circuit counterparts. While we do not test

other types of internally-activated HTs here, the addition of any Trojan that modifies the

IC layout could potentially affect the backscattered signal enough to be detectable. The

backscattering EM side channel has the main advantages over the original EM side channel

of being impedance-based to detect inactive Trojans and being adjustable to allow the user

to avoid frequency bands with significant interference.

4.2.3 Hyperspectral Imaging

Hyperspectral imaging (HSI) typically refers to the collection of many two-dimensional

images at different frequency bands in the visible or near-visible light spectrum [86], [56].

While normal color photos are represented in 3-dimensional space with two spatial dimen-

50

sions and one frequency dimension for the red, green, and blue channels, HSI captures tens

or hundreds of frequencies in a 3-dimensional hypercube of data per image. While visible

light HSI is typically used in fields such as geoscience [51] and biomedicine [52], [53],

some HSI techniques have been used to analyze the quality and composition of printed

circuit boards [54], [55] for electronics recycling. While these traditional visible light HSI

methods do not penetrate an IC’s packaging, the backscattering EM side channel reflects

differently based on the underlying architecture. Prior work spatially scanned the EM side

channel to detect large HTs, but did not explicitly target frequency information [87]. Point

scanning HSI repeatedly captures the backscattered signal at individual spatio-spectral lo-

cations until the entire hyperspectral space is measured [53].

The unique transistor activity for specific ICs and different programs will yield side-

channel emanations that vary across the chip area and frequency. The authors of [25]

used this knowledge to manually position a probe at a single location above an FPGA chip

to maximize the SNR of the received signal across a range of frequencies and detect the

presence of HTs. While this approach produces carriers and sideband harmonics with good

SNR, it is not always true that locations with high SNR correlate to those that best reveal

HTs as demonstrated in Subsection 4.2.4. The unique transistor architecture and activity

across the chip area will result in different spectral characteristics, as seen in Figure 4.2, so

it is important to capture that variability to detect elusive Trojans. Without knowledge of a

specific Trojan threat, it is impossible to know where an HT may present itself on the chip.

4.2.4 HT Detection Baselines

To demonstrate the importance of hyperspectral scanning and informed feature selection,

we present four baseline HT detection methods. The first method is designed to exemplify

why scanning multiple frequencies but at only one chip location as in [25] can be unre-

liable for detecting Trojans. The second shows that even naı̈vely scanning the entire IC

outperforms single-location scanning. The third baseline demonstrates a straightforward

51

Figure 4.2: Average backscattered EM side-channel power across an FPGA with two points
of equal power marked (left). Corresponding power across a 700 MHz span for the same
points on the IC, showing unique spectral characteristics (right).

averaging approach to reduce signal noise across the hyperspectral measurement space.

And finally, the fourth demonstrates that smaller Trojans may be hidden within the noise

of the entire hyperspectral scan, motivating an informed feature selection method. Each

baseline is evaluated by clustering real measured data samples between an HT-infected

and uninfected AES-T1800 benchmark circuit, further described in Subsection 4.4.1, for

a range of Trojan trigger sizes. The performance of each baseline averaged across 100

random trials is presented in Figure 4.3 which demonstrates that Trojans with small trig-

gers are difficult to reliably detect without hyperspectral scanning and feature selection that

reduces the full measurement space.

The first baseline (“Max Power” in Figure 4.3) acts as a counterintuitive example to

demonstrate why manual probe placement is unreliable without knowing the location of

Trojan circuitry on the IC. Here we test the seemingly-reasonable hypothesis that mea-

suring only the location with highest SNR would provide the best ability to distinguish a

control and Trojan. To do so, we measure an uninfected device at all hyperspectral loca-

tions and select the physical location with the greatest average received power across all

harmonic frequencies to measure at test time. Like in prior work using the backscattering

side channel [25], we then compare measurements taken across frequency at a single lo-

52

128 64 32 16 8 4 2 1
Trigger Size (bits)

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 R
an

d
In

de
x

HT Detection Accuracy per Baseline
Max Power
All Features
All Features Ave.
Best Location

Figure 4.3: Clustering performance (adjusted rand index ∈ [−1, 1]) between an uninfected
and infected AES circuit for a range of trigger sizes with the four baseline HT detection
methods. Scanning at the maximum power location was uninformative for HT detection,
using all hyperspectral features detects HTs smaller than prior work [25], averaging scans
provides negligible improvement, and the best possible location can unveil even smaller
Trojans.

53

cation on a test device to those of an uninfected circuit. The poor clustering performance

demonstrates clearly that high SNR measurements do not necessarily correlate to locations

of good discriminability between an uninfected and infected circuit. Without knowing the

location(s) on the IC which will best differentiate an uninfected from an infected circuit, it

is necessary to sample across the entire hyperspectral space.

Without knowing where on the chip that Trojans might reveal themselves, the second

baseline (“All Features”) naı̈vely uses the features of the entire hyperspectral space to com-

pare test measurements to the control. Simply using all information from these full-chip

scans allows us to detect triggers down to 16 bits, whereas prior work scanning one loca-

tion was only able to detect down to 64 bits without false positives [25]. This improvement

shows that hyperspectral scanning is necessary to detect smaller Trojans, but the smallest

Trojans are still obscured by the sheer number of features in the hyperspectral space. A

simple test shown in Figure 4.4 confirms that the smallest Trojans are undetectable without

significantly reducing the feature set. In that test, we remove features in order from least

to greatest statistical distinction of the test samples from the uninfected control samples.

While not perfectly monotonic, the results there show that some sort of feature selection

may be necessary to detect the smallest trojans; even thought hyperspectral scanning al-

ready improves detection performance significantly.

The third baseline (“All Features Ave.”) averages groups of three full-chip scans to re-

duce noise power [88]. This method slightly improves the ability to detect some triggers

below 16 bits, but the small differences in the backscattered EM side channel caused by

these triggers are still masked by the large feature space and noise variation of a full hyper-

spectral scan. Moreover, the increased sampling cost (tripling the number of scans, in this

case) is hardly worth the mild performance increase when sampling is so time-intensive.

As demonstrated by the second baseline, it is apparent that the smallest Trojans still remain

hidden in the large hyperspectral measurement space.

A final baseline (“Best Location”) further motivates a feature selection strategy to re-

54

0.0 0.2 0.4 0.6 0.8 1.0
Sampling Saved

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
r S

co
re

 (A
RI

)

Cluster Accuracy when Removing X,Y,H Features

128-bit
64-bit
32-bit
16-bit
8-bit
4-bit
2-bit
1-bit

Figure 4.4: HT detection accuracy when clustering as the number of features filtered out
from the sampling set increases (resulting in less sampling from left to right), for Trojans
with triggers of different sizes on the AES circuit.

55

duce the ability of noisy data that obscures covert Trojans which are only revealed at a

sparse set of hyperspectral points. This baseline emulates the best case scenario where the

user, by chance, happens to measure the exact single location on the IC where the harmon-

ics are most different between the control and test sets. While it is impossible to know

which location that is without knowing the Trojan and circuit characteristics, this shows

better performance than a full-chip scan by being the only baseline presented here to con-

sistently discern the 8-bit trigger. These baselines demonstrate not only the importance of

hyperspectral scanning from multiple IC locations, but also the utility of informed feature

selection to improve HT detection for the smallest and consequently most stealthy HTs. To

that end, we investigate a point scanning approach to find the reduced set of spatio-spectral

points that indicate the presence of HTs while avoiding measuring the points that simply

contribute irrelevant information or noise.

4.3 A Novel Feature Selection Strategy for Hardware Trojan Detection using Hyper-

spectral Scanning

To capture the full spatial variation of the backscattering EM side-channel emanations, we

might traditionally raster scan the chip area while measuring a range of frequencies at each

step to develop hyperspectral images. At each x, y location on an uninfected chip, we

measure the peak height of the harmonics that show up due to the amplitude modulation

between the transmitted signal and the IC’s clock frequency. These harmonics are spaced at

frequencies ft + hfc with h ∈ 1 . . . H for the H harmonics measured. Each hyperspectral

scan s ∈ 1 . . . S thus takes the shape Zs ∈ RX×Y×H where X and Y are the number

of scan locations in the horizontal and vertical directions. While point-scanning HSI in

this scenario allows us complete flexibility of which locations or frequencies to measure, it

also heavily increases the measurements, and therefore time, needed to scan a single chip.

Additionally, we do not know which hyperspectral features might best differentiate between

infected and uninfected circuits, so our HT detection algorithm must take into account all

56

reliable measurements we can capture. The rest of this section details the two parts making

up a novel sampling and filtering method to reduce measurement cost while more robustly

detecting smaller Trojans. Finally we present our Trojan detection algorithm.

4.3.1 Feature Pre-Filtering

While capturing the backscattered signals across the entire chip surface may uncover more

features that highlight certain Trojans, not all these data are useful for detecting each Tro-

jan. The sparse set of distinguishing features for stealthy Trojans may be occluded by the

large proportion of features that are irrelevant for this detection task. Ideally, one would

only measure the set of features that reliably signal the presence of a Trojan, but this unpre-

dictable set of features will differ based on the type, size, and location of the Trojan. For

this reason, we first learn which features are most unreliable or noisy from the training set

of uninfected circuit data.

In a different scenario where repeated sampling is fast and cheap, we might use a dimen-

sionality reduction technique like Principal Component Analysis (PCA) or an autoencoder

neural network to reduce the feature dimensionality. In our scenario however, data capture

is time-intensive and allows many fewer measurements captured than the dimensionality

of the feature space. As detailed further in Section 4.4, we capture up to 10 measurements

per IC of the entire hyperspectral space which can have more than 1700 features; rendering

traditional dimensionality reduction methods unusable. Rather than using these techniques

that require extensive data to learn a reduced feature space, we design a feature filtering

method that still retains an explicit correspondence between the full and reduced feature

sets. Specifically, we rank the features based on their standard deviation across measure-

ments in the training set and filter features out by starting with those having highest de-

viation. As seen in Figure 4.5, manufacturing variability between ICs accounts for much

higher variations than measurement noise alone. For each of the X·Y ·H hyperspectral

points measured on a single FPGA, interference and measurement noise generally account

57

for less than 1 dB of the measurement’s variation. Measuring the same hyperspectral points

across a variety of FPGAs shows that manufacturing variability can account for up to 10

dB of variation per point. The large spread in the measurements of these features, even

between known uninfected circuits, would mask the small differences that HTs make on

the backscattered signal.

As a simple confirmation that this feature filtering is useful, we compute the corre-

lation between random control and test samples for the same benchmark Trojan circuit

as in Subsection 4.2.4. With the full data, control samples have a correlation factor of

0.797 with other control samples and 0.785 with test samples from a 4-bit Trojan; a differ-

ence of 0.012. With half of the features removed, this difference in correlation increases

with control-control correlating at 0.756 and control-test at 0.721; an improved difference

of 0.035. While control samples look slightly more different from one another with this

feature filtering, the Trojan samples are significantly more distinct than before. Thus, re-

moving those highly-variant features should allow the smaller differences caused by HTs

to be detected. At the same time, this allows the use of information learned from modeling

a known set of uninfected ICs at training time to then significantly reduce the hyperspectral

space needing to be measured at test time.

4.3.2 Active Sampling

While noise or interference are significantly reduced compared to the original EM side

channel, these variations in the backscattering EM side channel of a device under test

(DUT) still leads to some amount of measurement uncertainty. A common way to re-

duce noise power of a steady state signal is to average samples captured in windows over

time [88] as tested in the “All Features Ave.” baseline in Figure 4.3. While this averaging

increases the SNR of the steady state signal over noise and any other transient circuit activ-

ity, it comes at the cost of heavily increased sampling requirements. Rather than capturing

a set number of samples over time at every point in the hyperspectral space, we devise a

58

10 1 100 101

Standard Deviation (dB)

0

20

40

60

80

100
Fr

eq
ue

nc
y

Per-Feature Measurement Spread
 across DE0-CV Boards

All Boards Combined
Per-Board Average

Figure 4.5: Distribution of measured received power for hyperspectral point across all
measured FPGA boards (blue) and averaged per board (orange).

sampling method to reduce wasted sampling when measurements exhibit minimal varia-

tion. Since the natural variation over time of each feature in the hyperspectral space may

be significantly different due to the local differences in trace architecture, we cannot sim-

ply set a variation threshold under which we say the measurements are reliable. Instead,

we compare the distribution of samples of a given hyperspectral point on the DUT to the

distribution of the same point’s samples on the control devices.

This idea lends naturally to an active sampling method which can significantly reduce

the number of samples we capture at each hyperspectral point (x, y, h). At each point,

we have a set of control measurements Zc(:, x, y, h) ∈ RN ·S with some variation due to

noise, interference, manufacturing variabilities, etc. Using a statistical test, we can check if

samples Zt(:, x, y, h) ∈ RSxyh of the DUT match the distribution of those from the control

devices. Here we use the two-sample Kolmogorov-Smirnov test in Equation 4.1 measuring

the distance between two cumulative distribution functions to evaluate the hypothesis that

the test and control distributions are the same. Another test option may be the F test which

59

specifically tests if two distributions have the same mean but requires the assumption that

the samples follow a Normal distribution. To avoid making more strict assumptions, we

use the KS test here but find negligible differences in performance using other statistical

tests. These tests yield a p-value, where p near 0 implies that the distributions are different

and p near 1 implies that they are the same. Our active method samples each feature on the

DUT until those samples either significantly match or diverge from the control distribution,

i.e. pxyh < plow ∨ pxyh > phigh, given some p-value thresholds plow and phigh. Intuitively, this

method continues sampling only if we are unsure whether the feature matches the control

distribution or not and stops sampling once we can confidently match with or distinguish

from the control distribution. This method allows us to spend the most measurement effort

on only those features that do not obviously match or diverge from the control distribution.

To ensure no feature is sampled indefinitely, we set a maximum sampling budget S per

hyperspectral point.

DKS = sup |Fcontrol,L − Ftest,M | (4.1)

4.3.3 Hyperspectral Dormant HT Detection Algorithm

Finally, we design our novel HT detection algorithm with two main constraints in mind.

The first constraint is that we cannot assume which hyperspectral features may best high-

light differences between an infected and uninfected circuit. Prior work showed that a

Trojan’s presence has unique effects on the backscattering EM side channel depending on

both the circuit and Trojan’s architecture and location [25], so our algorithm cannot be

biased toward certain features without a priori knowledge of the circuit and potential Tro-

jans. The second constraint is that we may not sample all features an equal number of

times. As detailed previously in Subsection 4.3.2, we sample individual hyperspectral fea-

tures an undetermined number of times until we meet some threshold of confidence about

60

the measurement. Some features may only be sampled once and others may be sampled

the maximum S times. These two design considerations lead us to develop a simple metric

with which we mark the specific we are measuring on a DUT as infected or not. Given a set

of up to S measurements per feature of a known uninfected set of ICs, {Z1,Z2, . . . ,ZN},

we aggregate them into one set of control measurements Zc ∈ R(N ·S)×X×Y×H . The corre-

sponding measurements of the IC on a DUT are labeled Zt ∈ RS×X×Y×H where the feature

at location (x, y, h) is sampled Sxyh ∈ [0, S] times. We use these data to measure the total

distance between the average control and test measurements with the L1 norm, as shown in

Equation 4.2. A threshold on this distance metric is set based on the distribution of the dis-

tance from individual known-uninfected ICs to the average of all other known-uninfected

IC measurements. If a given DUT differs from the average control measurements by more

than that threshold for a designated confidence level, it is marked as infected with an HT.

D(Zt,Zc) =

∑
x,y,h

∣∣∣∣∣∣ 1

Sxyh

Sxyh∑
s=1

Zt(s, x, y, h)−
1

S

S∑
s=1

Zc(s, x, y, h)

∣∣∣∣∣∣ (4.2)

4.4 Trojan Design and Hyperspectral Measurement Setup

Care is taken throughout the experimental design to ensure that Trojans are tested in as

stealthy a scenario as possible while also being completely removed for the uninfected

circuit designs. Our measurement setup also ensures consistent data capture to offer as

repeatable an implementation as possible. An overview of the experimental process flow is

depicted in Figure 4.6.

61

Uninfected &
Infected Layouts

Hyperspectral
ScanningUninfected

Layout

Filter Out
High-Variance

Features

Actively Sampling
Filtered Hyperspectral

Features

Compare Test
Samples with

Uninfected
Samples

Training
FPGAs

Trojan Removal

Test
FPGA

Classify as Safe or
Infected with Trojan

Figure 4.6: Process flow diagram depicting the experimental setup, methodology, and val-
idation of the methods in this chapter.

4.4.1 Circuit Designs

We test our HT detection method using circuits implemented FPGAs to allow us to test

different circuit and Trojan architectures without reasonably being able to source Trojan-

infected circuits or fabricate a variety of hard-wired ASICs. The size of the trigger circuitry

was shown in [25] to be one of the major factors that affected success of detecting Trojans.

Using FPGAs also allows us to test multiple trigger sizes for each Trojan as seen for the

AES-T1800 circuit in Figure 4.7. The relative size of the Trojan’s trigger circuitry is cal-

culated using the number of adaptive logic modules (ALMs) making up the circuit module

as shown in Equation 4.3, which are the basic blocks used by these FPGAs with their us-

age statistics output by the bitstream compilation report [89]. We use the terasIC DE0-CV

hardware design platform [90] which employs an Altera Cyclone V FPGA IC (specifically,

the 5CEBA4F23C7N) [91] at its core. For the purposes of our research, we assume we

have at least one uninfected device so that we can fairly compare our HT detection results

with those of prior work.

HT Size (%) = 100
ALMs of trigger

ALMs of uninfected circuit
(4.3)

62

Figure 4.7: FPGA allocation of adaptive logic modules for different size triggers. The 4-,
2-, and 1-bit triggers have minute differences that are not visible at this scale.

63

Table 4.1: Relative size of trigger circuitry versus the uninfected circuit, measured by the
number of adaptive logic modules.

Trigger Size
(bits)

AES-T1800
(%)

AES-T1600
(%)

RS232-T500
(%)

128 0.701 1.298 n/a
64 0.364 0.805 n/a
32 0.182 0.493 0.600
16 0.104 0.415 0.300
8 0.052 0.260 0.150
4 0.026 0.208 0.100
2 0.026 0.130 0.050
1 0.026 0.026 0.025

Payload 0.571 2.129 1.650

We test three different circuit designs implemented on these FPGAs from the set of

HT benchmarks available from TrustHub [92], [45]. Details of each circuit and Trojan are

described below and relevant statistics about each are detailed in Table 4.1:

• AES-T1800: The uninfected circuit implements a cryptographic processor design

that performs the 10 stages of the Advanced Encryption Standard (AES) on a 128-

bit block. This circuit is infected with the T1800 Trojan whose activated payload is

designed to continuously shift a cyclic shift register to consequently increase power

consumption and quickly drain a battery that the device may be using. The T1800

payload is triggered by a combinatorial logic circuit that activates upon finding a

specific 128-bit input to the AES circuit. We also test the same circuit with smaller

trigger circuitry that monitors only 64, 32, 16, 8, 4, 2, and 1 of the least significant

bits of the AES input. This circuit’s combined payload and trigger circuitry make up

between about 0.6% to 1.3% of the main circuit area depending on the trigger size,

making them the smallest (and therefore most difficult) HTs to detect that we test.

• AES-T1600: The circuit implements the same AES circuit as above, but is injected

with the T1600 Trojan. The T1600 payload is designed to leak the processor’s en-

cryption key by modulating activity on an unused output pin of the IC. The modulated

64

activity takes advantage of the EM side channel to leak the security key through bits

of information. This Trojan is activated by a trigger circuit that monitors the input for

a specific sequence of three 128-bit values, rather than just one specific input as the

T1800 does. We again test triggers that monitor 128-bit down to 1-bit inputs. This

circuit’s larger payload and complex trigger circuitry make up between about 2.2%

to 3.4% of the main circuit area for different trigger sizes, making them the largest

HTs that we test.

• RS232-T500: The Recommended Standard 232 (RS232) is a design standard for

serial data transmission. Here, the uninfected RS232 circuit is a universal asyn-

chronous receiver and transmitter core. The transmitter module takes 128-bit words

and outputs them serially according to the RS232 standard, with the receiver doing

the opposite. The T500 Trojan payload causes the transmitter to never flag when its

transmission is completed, resulting in a failed transmission. The trigger monitors

a 32-bit counter and activates the Trojan when the counter reaches a specific 32-bit

value. We test triggers that monitor between only 32 down to 1 bit of the counter

unlike the previous two Trojan circuits. The RS232-T500 circuit’s payload and trig-

ger circuitry accounts for between 1.7% to 2.3% of the main circuit area for different

trigger sizes.

For each HT-infected circuit design, we compiled Verilog design source code using

Altera’s Quartus Prime software suite which automatically places and routes all circuit

modules and connections to optimize their layout. Each circuit design is composed of a

few source code modules which, when compiled into an optimized circuit layout in Quar-

tus, allow us to view and edit specific logic cells or registers for each of the different circuit

modules. For example, the infected AES-T1800 circuit is composed of four modules in-

cluding an input feed, the main AES encryption circuit, Trojan trigger, and Trojan payload

that can be highlighted separately within the optimized layout in the Quartus Chip Plan-

ner tool as shown in Figure 2.2. From this infected circuit layout, we use the Engineering

65

Change Order tool to remove only the connections and circuitry related to the Trojan and

its trigger to generate the uninfected circuit which performs its task as intended. If we

were to compile an uninfected and infected design separately, the software’s automated

placement and routing optimization would create unique designs that are potentially easily

distinguished. Instead, the process of removing the specific Trojan components from the

infected circuit ensures that the only differences between the uninfected and infected circuit

designs are the presence of the Trojan circuitry and both circuits operate identically when

the Trojan is dormant. This process allows us to emulate the addition of a covert Trojan

designed to evade detection.

4.4.2 Backscattering Measurement Setup

To measure the backscattering EM side channel of the IC, we use a near-field high res-

olution probe [58]. The probe is fixed with a stationary 3D positioning clamp at a po-

sition close to the IC without touching it (approximately 0.5 mm about the IC, as tested

in [58]) and is not moved between any measurement. The probe emits a 15 dBm sinu-

soid produced by a Keysight E8257D PSG Analog Signal Generator at ft = 3.031 GHz

to avoid interference sources in the nearby spectrum. The emitted signal reflects off the

chip and is picked up by the probe’s coil with 1 mm spot size, amplified by a Pasternack

PE15A1010 40 dBm Low Noise Amplifier, and measured with a Keysight PXA N9030B

Signal Analyzer at H = 35 harmonics that are multiples of the circuit’s fc = 20 MHz

clock frequency, i.e. 3.051, 3.071, 3.091, . . . , 3.731 GHz. Since minor variability in the

IC’s clock frequency causes linearly increasing differences between the harmonic’s actual

and expected frequencies, we record the maximum power within 10 KHz windows sur-

rounding each of the expected harmonic locations. This windowed capture ensure that we

find the correct harmonic peak even if clock frequency jitter has moved it from its expected

frequency. To capture measurements across the chip face area, we secured the DUT with

four standoff screws onto a pair of Zaber X-LSQ150B stages for X-Y movement control

66

Figure 4.8: Hyperspectral scanning measurement setup with DE0-CV board and high-
resolution probe (left), X-Y movement stages (middle), and FPGA IC die dimensions
(right).

[93]. These move the center 6 mm× 6 mm of the chip area under the probe in 1 mm incre-

ments (X, Y = 7), with 50 µm accuracy and 3 µm repeatability. The measurement setup

and scanning grid scale are shown in Figure 4.8. We aim to produce as repeatable mea-

surements as possible by using high-precision movement control, affixing each DUT to the

movement stages, and fixing the measurement probe at a stationary position throughout all

tests.

We capture our measurements with a specific routine to ensure each measurement is

captured at the same time in the circuit’s operation and reduce the effect of changing chip

temperature across long measurement runs. At each x, y scanning location, we first pro-

gram the FPGA to run a control (uninfected) circuit and measure the signal strength at each

of the H harmonics in succession. Then the FPGA is reset and programmed to run the

same circuit with additional Trojan and trigger circuitry. We automatically move the IC to

align the probe with the next x, y position; raster scanning across the chip in rows. This

procedure results in measurements of size Z ∈ RS×X×Y×H for each circuit programmed

onto that FPGA before moving to the next copy of the FPGA board. In our tests, we cap-

ture the maximum sampling budget S = 10 samples at each hyperspectral point for each

control circuit and Sxyh for each test circuit. Each hyperspectral point takes on average 1.6

seconds to capture, resulting in 7 hours or more to scan a single circuit S times for the

entire measurement space.

67

4.4.3 Preprocessing of Measured Data

Given the measured backscattering EM side-channel data, we follow a simple two-step

preprocessing procedure before analyzing our test circuit data. The first step is to convert

data captured at harmonics into harmonic ratios between frequency-neighboring harmon-

ics. This helps to mitigate the SNR differences of our measurements that may arise when

vertically positioning the probe as close to the FPGA as possible. Since the data are cap-

tured as received power measurements in decibels per milliwatt, this operation is simply

the difference of neighboring harmonics Zpreprocessed = Z(:, :, :, 2:H)− Z(:, :, :, 1:H − 1).

The second step is to standardize each feature to the mean and standard deviation of the

control samples to allow the filtering and clustering methods we test to treat every feature

equally. The resulting features are centered to zero-mean and unit-variance as seen for the

frequency measurements of one x, y location in Figure 4.9.

4.5 Validation

Since prior work has shown that detecting dormant Trojans with gets more difficult as the

trigger circuitry shrinks [25], we focus our experimental evaluation on scenarios with re-

duced trigger sizes to test the limits of our hyperspectral scanning and feature selection

approaches. We first evaluate our method when trained and tested on the same board to

ensure the validity of our approach. We then cross validate our method using randomly

sampled measurements from ten separate DE0-CV training boards to demonstrate its ro-

bustness to manufacturing variation between copies of the same FPGA development board.

Finally, we evaluate the performance of our method with tighter measurement budgets to

understand the trade-offs between scanning complexity and HT detection performance.

68

3.2 3.4 3.6
Frequency (GHz)

100

90

80

70

60

50

40

R
e
ce

iv
e
d
 P

o
w

e
r

(d
B

m
)

Received Power

Infected

Uninfected

0 10 20 30
Harmonic Ratio #

30

20

10

0

10

20

30

H
a
rm

o
n
ic

 R
a
ti

o
 (

d
B

)

Harmonic Ratios

Infected

Uninfected

0 10 20 30
Harmonic Ratio #

20

10

0

10

20

30

40

50

S
ta

n
d
a
rd

iz
e
d
 H

a
rm

o
n
ic

 R
a
ti

o

Standardized Harmonic Ratios

Infected

Uninfected

Figure 4.9: Effect of preprocessing steps on ten scans of real measurement data from the
AES-T1800 circuit with 128-bit trigger, starting from the measured power for an unin-
fected and infected circuit across several frequencies at a single physical location on the
chip (top), to power differences between neighboring frequencies (middle), to standardized
power differences (bottom).

69

4.5.1 Single Board Performance

As a proof of concept, we first evaluate our method without taking into account manufac-

turing variability between copies of the same IC. We train our method using measurements

of the uninfected circuits on a single board and test with separate measurements from the

same board. We test each circuit 20 times while randomly swapping the order of the test

scans to ensure that the results would not vary significantly over time due to transient ef-

fects such as the FPGA chip increasing temperature or other transient interference. The

active learning portion of our method uses the F-test with plow = 1 − phigh = 0.1 as confi-

dence thresholds of when to decide that the test distribution matches or diverges from the

control distribution to determine when to stop sampling.

Results are presented in Table 4.2 as the area under the receiver operating characteris-

tic curve (AUC ∈ [0, 1]) to concisely demonstrate the ability of our method to distinguish

uninfected from infected circuits with minimal false positives. Our method virtually per-

fectly detects HTs with a trigger size down to two bits for the AES-T1800 circuit, which

is about four times smaller than the best baseline from Subsection 4.2.4 was able to detect.

Additionally, our method detected triggers down to one bit for both the AES-T1600 and

RS232-T500 circuits which correspond to about 0.03% of each circuit’s area. The RS232-

T500 circuit was only tested with 32-bit triggers and smaller because the trigger monitors a

32-bit counter circuit, unlike the two other circuits which monitor 128-bit states. These re-

sults clearly demonstrate that the combination of hyperspectral scanning, pre-filtering, and

active learning methods is highly effective for detecting covert HTs through the backscat-

tering EM side channel on a single DE0-CV board. To evaluate the robustness of this

performance, we must also confirm that our method can detect HTs in the difficult setting

that takes into account manufacturing variability across DE0-CV boards.

70

Table 4.2: HT detection performance as the area under the receiver operating characteristic
curve (AUC) on a single DE0-CV board for each circuit with the HT trigger monitoring a
given number of bits. The HT RS232-T500 monitors a 32-bit counter, so it is not tested
for larger triggers. HTs are detected nearly perfectly for all Trojan types and trigger sizes,
except for the smallest AES-T1800 1-bit Trojan.

Trigger Size
(bits)

AES-T1800
(AUC)

AES-T1600
(AUC)

RS232-T500
(AUC)

128 1.000 1.000 n/a
64 1.000 0.999 n/a
32 1.000 0.996 1.000
16 1.000 0.992 1.000
8 0.988 1.000 1.000
4 0.991 1.000 0.997
2 0.997 1.000 1.000
1 0.845 1.000 0.995

4.5.2 Multi-Board Performance

While the differences between an uninfected and infected circuit are detectable at almost

any tested trigger size for a single board, the manufacturing variations between copies of

the DE0-CV boards are larger as seen in Figure 4.5 and may obscure smaller Trojans. Here

we train across nine copies of the DE0-CV board loaded with the uninfected circuit before

testing a corresponding circuit on a tenth board. This tenth board is then loaded with

either the uninfected or infected circuit and is tested against the distribution of training

boards using the distance metric in Equation 4.2. Each circuit was again tested 20 times

with random swapping of the scan order and plow = 1 − phigh = 0.1 for the measurement

confidence stopping criteria in the active learning method.

While slightly worse than when testing with a single DE0-CV board as expected, the re-

sults in Table 4.3 demonstrate that our hyperspectral scanning and feature selection method

can detect HTs even when taking into account some manufacturing variability between

boards. Our method virtually perfectly detects HTs with a trigger size down to four bits

for the AES-T1800 circuit, which is two times smaller than the best baseline from Sub-

section 4.2.4 as well as about 14 times smaller than prior work was able to detect when

71

Table 4.3: HT detection performance (AUC) trained on multiple DE0-CV boards for each
circuit with the HT trigger monitoring a given number of bits. HTs are detected more
consistently than prior work [25] for the majority of tested circuits, but expectedly less
well than when trained on a single board.

Trigger Size
(bits)

AES-T1800
(AUC)

AES-T1600
(AUC)

RS232-T500
(AUC)

128 1.000 0.998 n/a
64 1.000 0.995 n/a
32 1.000 1.000 1.000
16 1.000 0.989 0.973
8 0.983 0.998 0.993
4 1.000 1.000 0.940
2 0.873 1.000 1.000
1 0.498 1.000 0.891

scanning at a single location. While prior work did not test versions of the AES-T1600 and

RS232-T500 circuits with smaller triggers, we show here that we can detect triggers down

to 2 bits in the AES-T1600 circuit and down to 1 bit in the RS232-T500 circuit. Although

this peak performance greatly improves on the results of previous work, our method of

hyperspectral scanning requires more scanning time.

4.5.3 Sampling Reduction

Finally, we test the performance of our method across a range in the number of point-

scanned measurements for a sample to analyze the trade-offs between reduced sampling

and HT detection for the different circuits and trigger sizes. It is important to note that three

factors affect the total number of measurements captured for a specific circuit. The first is

the number of features that are pre-filtered out by their ranking from highest to lowest

standard deviation in the training set, according to the method in Subsection 4.3.1. By

removing a specific number of features from the set to be scanned, we have a deterministic

way to reduce the feature set’s size.

The second factor that affects the number of measurements taken is the confidence

threshold used for the active learning portion of our method. Varying plow and phigh has a

72

Figure 4.10: HT detection performance for three tested circuits as the number of features
filtered out from the sampling set increases (resulting in less sampling from left to right).

73

relative effect on the reduction of the feature set size. For instance, a very small plow or

very large phigh imply the need for greater confidence in the measurement difference from,

or similarity to, the control measurement’s distribution, respectively. To achieve greater

confidence, more measurements must be taken at a single hyperspectral point and con-

sequently requires more scanning across the whole hyperspectral space to be statistically

confident at all locations. Conversely, choosing loose bounds on these thresholds (where

plow and phigh approach 0.5 from below and above, respectively) allows our method to scan

a single time at each hyperspectral point before moving to another. Unlike the first factor,

this is a relative factor and will affect the number of scans depending on the actual cir-

cuits, measurements, etc. Specifically, we find in our tests that HTs with larger triggers are

classified with the fewest samples because they differ from the control measurements most

confidently.

The third factor is the scanning budget S which can directly affect the number of scans

performed, particularly when plow and phigh are chosen to require great confidence in the

measurement’s difference or similarity with the control. With tight confidence thresh-

olds, it is possible that all features in the hyperspectral space will be scanned indefinitely.

Therefore S bounds the maximum number of total scans across the hyperspectral space to

S·X·Y ·H , or simply S at each location.

Understanding those three factors, we test the performance of our method across a range

of total samples captured. For simplicity, we again analyze the case where plow = 1−phigh =

0.1. We choose S = 10 because we find it is large enough to not restrict sampling before

most measurements can be confidently classified. With these two factors set, we vary the

number of features filtered out from the sampling set to analyze the performance versus

sampling savings trade-off. Here we scale the sampling savings to the range [0, 1), where

zero represents sampling the entire hyperspectral space S separate times and one represents

no sampling at all. Results for each circuit and trigger size are presented in Figure 4.10.

As can be seen for almost every circuit and trigger size, an optimal level of sampling

74

occurs when around 60 to 75% of potential sampling is saved. We find some agreement

with our hypothesis that scanning the entire hyperspectral space can add unnecessary noise

that distracts from detecting the minute signal differences caused by the presence of a Tro-

jan. This is most apparent for the AES circuits which improve detection as the sampling

savings increases. However, detection performance begins to suffer in most cases with-

out sufficient sampling, as can be seen by the dip in AUC when approaching a sampling

savings of one. This phenomenon tells us that our method of removing features as ranked

by their standard deviation across training samples as in Subsection 4.3.1 matches well

with the ideal performance when removing features known not to distinguish Trojans as in

Figure 4.10 for modest sampling reduction.

4.6 Conclusions

This work, published in [29], established a novel non-destructive method of detecting hard-

ware Trojans in ICs up to 14 times smaller than prior work by selectively measuring the

backscattered EM side-channel signal across space and frequency. We develop four base-

lines of standard or idealized strategies for Trojan detection in this setup against which we

compare our validated results favorably. Our feature selection method significantly outper-

forms the results obtained from simply measuring the entire hyperspectral space or a noise-

reduced version of it, and even surpasses the best possible results achieved when sampling

all frequencies at a single chip location. This paper demonstrates the need to measure a

selected subset of features distributed across the hyperspectral space to detect Trojans as

small as 0.03% of the circuit size that are normally obscured by noise, interference, and

manufacturing variabilities between ICs.

The strong performance of the methods developed in this work motivates further in-

vestigation into feature selection methods and hyperspectral scanning of the backscattering

EM side channel for hardware Trojan detection. Future work is needed to demonstrate the

success of these methods for other Trojan and trigger varieties that do not scale in size

75

like the internally-activated, condition-based HTs we tested here. Additional study would

be useful to analyze the robustness to manufacturing variabilities for other ICs, especially

for ASICs or those with higher transistor density. Further maturation of these methods to

reduce hyperspectral sampling time allowing higher testing throughput is an open area of

research. While this work assumes the possession of at least one uninfected device, an

extension of this work may demonstrate these methods without that assumption by using

circuit simulations, one class classification, anomaly detection, or other methods.

76

CHAPTER 5

HYPERSPECTRAL IMAGE RECOVERY VIA RELIABILITY-WEIGHTED

COMPRESSED SENSING FOR HARDWARE TROJAN DETECTION

5.1 Overview

With the recent attention focused on detection of dormant hardware Trojans [94], [25], [29],

it is important to keep in mind the real-world application of these strategies. Destructive

techniques, although thorough and robust for detecting hidden Trojans, require large time

and human capital investments to validate a small proportion of manufactured devices or

the integrated circuits on them. Non-destructive methods until recently were only viable for

detecting active Trojans but could be performed at higher throughput since they could be

more easily automated. The ability to non-destructively detect dormant Trojans remained

elusive until the work of [25] whose impedance-based electromagnetic side channel method

could detect large dormant Trojans. Significant improvements were made in [29] using hy-

perspectral measurements of the same side-channel signals to detect much smaller Trojans

than had previously been achieved. In doing so, that work traded a much more significant

measurement time to lead to state-of-the-art detection performance in terms of Trojan size

detected non-destructively. While this method no longer requires destroying the device un-

der test, its measurement times put it on a similar scale of testing throughput as destructive

methods.

To improve upon the performance of backscattering EM side-channel techniques for

non-destructive Trojan detection while heavily reducing the measurement requirements

for hyperspectral scans necessary to do so, we develop a compressed sensing strategy to

quickly recover hyperspectral images of an IC for efficient and robust HT detection. Our

novel strategy weights random sampling of the hyperspectral space toward features that

77

are known to be less consistent across a training set of ICs. Focusing on these unreliable

features allows our reconstruction to quickly account for the peculiarities of a specific IC

with few measurements to reconstruct the full hyperspectral images more accurately and

consequently improve HT detection. We evaluate this novel sampling method as compared

to prior work on a benchmark circuit infected with a Trojan. We test our method against

traditional uniform sampling across three different reconstruction bases and show that we

can uncover dormant hardware Trojans with state-of-the-art accuracy and as little as one

tenth of the measurements of previous work.

5.2 Dormant Hardware Trojan Detection

5.2.1 Compressed Sensing

A popular way of reducing measurement costs is to reconstruct images from very few

measurements in a compressed sensing framework. Unlike iteratively selecting individual

measurements as in an active sampling or reinforcement learning regime, CS takes ad-

vantage of an assumed underlying structure in the data’s domain to allow sparse random

sampling for reconstruction. Many works used basis functions like the Fourier transform

or discrete cosine transform (DCT) to approximate the smoothness and continuity of the

data’s domain. For better reconstruction of natural images, other bases were developed

that incorporated piece-wise smooth properties like various wavelet functions [60]. Fur-

ther work showed that an overcomplete dictionary of bases learned from images similar

to those being reconstructed often outperformed any of the former bases for which closed

form analytical expressions exist [61], [62].

As introduced in Section 2.5, the CS framework can be represented with the standard

linear model y ≈ Ax where y ∈ RM is a vector of measurements, A ∈ RM×N is a

measurement sampling matrix and x ∈ RN is a set of learned coefficients that represent

the reconstructed image. Assuming x can be sparsely represented by some set of D basis

vectors Ψ ∈ RN×D, then this problem can be rewritten as y = Ax = AΨs where s ∈ RD

78

is the sparse coefficient vector reconstructing x in that basis, meaning x = Ψs. To ensure

that the solution can be stably recovered, A and Ψ should be incoherent, meaning they

cannot sparsely represent the other. In practice, Ψ could be the Fourier, Wavelet, learned

dictionary, or any other bases that are sparsifying for the signals to be reconstructed. A is

then incoherent with Ψ if it is structured for uniformly-random sampling. This binary ma-

trix A is used in this context to measure a sparse random set of pixels which are then used

to reconstruct the entire hyperspectral image image. In the standard setting where M > N ,

this problem can be solved with least squares and has a unique minimum. However, in

the heavily underdetermined setting where the number of samples is far fewer than the di-

mensionality of the data (M ≪ N), the sparse recovery problem shown in Equation 2.1

is required to be used. Although not as simply proven, recent work has shown that the

solution to this problem is still unique and can be solved with a standard LASSO solver

[63], [64].

Hyperspectral imaging has received significant attention as an application of com-

pressed sensing due to the measurement time required to acquire hundreds of images across

a range of frequencies. As noted in [29], point-scanning to capture hyperspectral images

further lengthens the full image capture time. Point-scanning traditionally entails raster-

scanning a measuring device spatially in two dimensions while measuring the response at

specific frequencies, one at a time, and can potentially take hours per scan depending on the

resolution and dimensions of the desired scan. Since antenna arrays that can capture high

resolution spatial information of the electromagnetic side channel all at once do not exist,

this point-scanning approach is unavoidable. To reduce scanning time in the point-scanning

HSI regime, we turn to the compressed sensing. Here we utilize the CS framework to effi-

ciently recover hyperspectral images through the backscattering EM side channel without

having to measure every single hyperspectral location.

79

5.2.2 Backscattering EM Side Channel

The standard electromagnetic side channel arises as a leakage of information caused by

variations in the current running through conductive traces on or within devices and the

integrated circuits placed on them [10], [47]. As stated previously, EM side-channel sig-

nals show up as spikes in the frequency domain due to the device’s clock signal or other

repetitive activity. Like the power side channel that is sometimes used to monitor integrated

circuits, the EM side channel is current-based so it varies depending on program and cir-

cuity activity on the IC [9]. To find hidden malicious circuitry that may not draw enough

electrical current to be detected with other side-channel methods, the authors of [25] intro-

duced the backscattering EM side channel. The backscattering EM side channel is created

by transmitting a continuous wave sinusoid toward an IC and measuring the backscattered

signal. This reflected signal is modulated depending on the state of underlying transistors

and yields information about the IC’s architecture based on the impedance state of those

transistors [50].

When a signal with frequency ft is transmitted toward the IC, transistors switching at

the device’s clock frequency fc modulate the incoming signal and the resulting backscat-

tered signal can be seen as spikes and harmonics in the frequency domain at ft ± fc, ft ±

2fc, . . . as shown in Figure 2.3. Since EM side-channel signals will naturally vary across

the face of an IC due to its architecture, it is crucial to probe the spatial area of the IC to find

hidden malicious hardware modifications. Demonstrating the importance of measuring sig-

nals across the IC, the authors of [29] used full, point-scanned hyperspectral measurements

to uncover dormant HTs up to 14 times smaller at the cost of a significant increases in

measurement time. In this work, we use the flexibility of the hyperspectral point-scanning

approach to capture a much sparser set of measurements than previous work which can then

be used within the CS framework to reconstruct full hyperspectral images of the backscat-

tered EM side-channel signal. With the reconstructed hyperspectral images we detect the

same hidden malicious circuitry injected into an IC known as hardware Trojans.

80

3.051 GHz 3.071 GHz 3.091 GHz 3.111 GHz 3.131 GHz 3.151 GHz 3.171 GHz 3.191 GHz

3.211 GHz 3.231 GHz 3.251 GHz 3.271 GHz 3.291 GHz 3.311 GHz 3.331 GHz 3.351 GHz

3.371 GHz 3.391 GHz 3.411 GHz 3.431 GHz 3.451 GHz 3.471 GHz 3.491 GHz 3.511 GHz

Figure 5.1: Normalized spatial measurements of the backscattered EM side-channel signal
for the first 24 harmonics above the incident 3.031 GHz signal. Harmonics generally exhibit
smooth spatial variation. Variation between between frequencies is generally less smooth
at higher harmonics.

5.3 HT Detection with Compressive Hyperspectral Scanning

Chapter 4 demonstrated a novel method to capture hyperspectral images of backscatter-

ing EM side-channel emanations by raster-scanning a probe across the face of an IC with

automatically controlled movement stages to improve hardware Trojan detection accuracy

greatly [29]. While we do not necessarily measure emanations at every spatio-spectral lo-

cation in this work, we follow a similar setup by measuring the peak received power at

hyperspectral points defined by their physical location on the chip (x, y) and harmonic in-

dex (h) above the backscattered center frequency. However, rather than raster-scanning at

all chip locations, we instead save significant measurement time and improve robustness

by selectively point-scanning the hyperspectral space with our novel reliability-weighted

CS methodology as detailed in this section.

5.3.1 Hyperspectral Image Recovery with Reliability-Weighted Sampling

Prior work has shown relatively smooth variation of the backscattered EM side-channel

signal spatially across the face of an IC [29], but that is not necessarily the case across

81

the frequency dimension as shown in Figure 5.1. While many harmonics exhibit smooth

transitions across space and frequency, several harmonics seem to sporadically differ signif-

icantly from their spectrally-neighboring counterparts, such as at 3.051 GHz, 3.291 GHz,

and 3.491 GHz in the figure. For this reason, we break the reconstruction problem up

into H separate 2D image reconstruction problems yh ≈ Ahxh where H is the number of

harmonics that are measured. When capturing a total ofM samples across the entire hyper-

spectral space, we sampleMh points at each frequency and only reconstruct an image when

Mh ≥ 2 so the problem is well posed. Sampling Mh points results in the measurements

yh and measurement matrix Ah ∈ RM×X·Y where X, Y are the number of horizontal and

vertical positions we can scan on the IC, even though not all of them may be scanned. The

measurement matrix Ah is formed so each column is zero everywhere except with a one at

the position corresponding to the vectorized index x, y of that sample. For sufficiently large

M , we may sample the same point more than once in which case we update our existing

measurement in yh to the mean of the repeated measurements at that point.

To choose the locations on the IC and their corresponding frequencies that are mea-

sured, we sample from the three-dimensional discrete distribution p(x, y, h). For standard

uniformly-random sampling of the hyperspectral space, each consecutive sample is chosen

from the uniform distribution puniform(x, y, h) =
1

X·Y ·H . Here we sample with replacement

because it can be useful to have multiple samples of the same point when those points have

high noise or large variance between ICs. On average, sampling uniformly will yield the

same number of samples per harmonic so each reconstruction problem will be relatively

similar in terms of complexity.

Prior work has shown that the backscattering EM side channel may vary significantly

between copies of the same IC [25], [29]. While some regions in the hyperspectral space

may look similar across all ICs, the regions that look different can hold information that

may reveal whether the IC is infected with an HT or simply varies due to the natural imper-

fections of the manufacturing process. The hyperspectral locations that reliably show sta-

82

tistically significant differences between an uninfected and infected IC may be very sparse

for small Trojans. This can be as few as 0.2% of locations for small, dormant Trojans as

shown in Chapter 4. If we simply capture samples uniformly at random as is the stan-

dard approach to compressed sensing problems of this type, these locations are likely to go

undiscovered. To maintain the advantages of a randomized sampling routine required for

CS reconstruction while also discerning distinguishing features of the hyperspectral space,

we develop a reliability-weighted sampling strategy.

Instead of capturing samples with even likelihood across space and frequency, our

reliability-weighted sampling strategy focuses measurement effort where we expect to

quickly discern the distinct features of an individual IC. We do so by weighting our ran-

dom sampling distribution toward the hyperspectral locations that vary significantly across

ICs. This follows the hypothesis that locations in the hyperspectral space that consistently

reflect EM signals similarly across a variety of ICs (reliable features) will be unlikely to

distinguish the minute variations caused by the presence of a Trojan. Conversely, we expect

that the locations that commonly differ between ICs (unreliable features) are more likely

to display distinguishing features when an IC is infected with a Trojan and may require

multiple measurements to distinguish confidently. For those reasons, we use the reliability

of measurements as a metric with which we can weight sampling the sampling distribution

more heavily toward locations that are expected to be unreliable and potentially tell us the

most information about the presence of a Trojan. Of course, with the wide variety of cir-

cuits and Trojans that exist and their unknown backscattering effects, we do not completely

halt measurements of reliable locations. All locations in the hyperspectral space have a

sampling probability greater than zero in our weighted sampling strategy to account for

this.

To measure the reliability of individual features in the hyperspectral space, we compare

the spread of samples across different known-uninfected ICs against the spread of samples

for individual uninfected ICs. Given hyperspectral measurements Yj ∀j ∈ {1, 2, . . . J}

83

of each uninfected IC j, we compute a reliability ratio E ∈ RX×Y×H , where each point is

Exyh =
V ar({Y1,xyh,Y2,xyh, . . .YJ,xyh})

1
J

∑J
j=1 V ar(Yj,xyh)

, (5.1)

and large values indicate that samples of a specific location x, y, h are highly variant

across ICs (unreliable) but minimally variant for individual ICs. Small values indicate

the most reliable locations which would have an approximately equal variance across the

measurements of different ICs as they do for the measurement variance for the individual

ICs. We convert that ratio to our reliability-weighted sampling distribution by scaling the

values to sum to one, i.e.

preliability(x, y, h) =
Exyh∑
xyhExyh

. (5.2)

The discrete sampling distribution generated by computing the reliability of our hy-

perspectral backscattered EM side-channel measurements is pictured in Figure 5.2. Com-

paring with the measurements themselves in Figure 5.1, we can see that features tend to

be the least reliable (and thus sampled with greatest likelihood) at local minima for each

scanned frequency. This is exemplified especially by the first five harmonics (3.051 - 3.131

GHz) in Figure 5.2 which have a sparse set of the least reliable features across the entire

hyperspectral space. In contrast, a few frequencies such as 3.151, 3.191, and 3.391 GHz

exhibit relatively reliable features across the spatial dimension, while others such as 3.311

and 3.411 GHz are generally unreliable overall.

5.3.2 CS Recovery Bases

Traditional compressed sensing as it was designed used orthonormal bases Ψ like the

Fourier or Wavelet bases that have closed form analytical expressions to develop a hierar-

84

3.051 GHz 3.071 GHz 3.091 GHz 3.111 GHz 3.131 GHz 3.151 GHz 3.171 GHz 3.191 GHz

3.211 GHz 3.231 GHz 3.251 GHz 3.271 GHz 3.291 GHz 3.311 GHz 3.331 GHz 3.351 GHz

3.371 GHz 3.391 GHz 3.411 GHz 3.431 GHz 3.451 GHz 3.471 GHz 3.491 GHz 3.511 GHz

Figure 5.2: Reliability-weighted sampling distribution preliability(x, y, h) of the backscattered
EM side-channel signals for the first 24 frequencies above the incident 3.031 GHz signal.
Larger values correspond to hyperspectral locations that will be sampled with greater likeli-
hood due to the features’ lower reliability across ICs there. Sampling emphasis is generally
focused toward local minima of the backscattered EM signal for each frequency.

chy of basis functions [59]. These bases allowed nice theoretical properties that in certain

situations could yield probabilistic guarantees on recovery error bounds. More recent work

showed the value of using learned overcomplete dictionaries for image recovery [61], [62].

While these dictionaries lost the hierarchical structure of the aforementioned orthonormal

bases, their recovery performance warranted the tradeoff. Here we test image recovery with

both the two-dimensional orthonormal discrete cosine transform basis functions and also

dictionaries of 2D bases learned from the measured signals of uninfected ICs.

The two-dimensional DCT basis we use here is specifically the DCT-II basis which is

commonly used for JPEG image compression [95]. The definition for the first D = K2

two-dimensional DCT basis functions is given in Equation 5.3) where ⊗ is the Kronecker

product of two vectors and the leading coefficients make the DCT an orthogonal set of

bases. Here we use K = 7 to generate 49 DCT bases that correspond to the size of our

measurement grid, unlike the traditional 8× 8 bases used for JPEG compression.

85

ψk1,k2(x, y) =
2ηk1ηk2
K

cos

(
πk1(x+ 1

2
)

K

)
⊗ cos

(
πk1(x+ 1

2
)

K

)
(5.3)

∀k1, k2 ∈ {1, 2, . . . , K}

ηk =

1√
2
, k = 0

1, otherwise

Unlike the DCT bases, a learned dictionary can have an arbitrary number of D basis

functions as determined by the user. The learned dictionary bases are generated from the

sparse optimization problem given in Equation 5.4 where U is the matrix that combines the

learned dictionary basis functions Ψ to approximate the training data Y. The Frobenius

norm “Fro” is the element-wise L2 norm of a matrix that forces the encoding matrix and

dictionary to approximate the training data, while the element-wise L1 norm is used to en-

sure the dictionary can sparsely encode the data by approximately minimizing the number

of nonzero elements in U. The optimization problem is solved with an alternating mini-

mization scheme, where the optimizer alternates between updating the dictionary Ψ with

a fixed sparse code matrix U and fixing the sparse code while updating the dictionary. In

this case, the training data is the entire set of spatial measurements of the backscattered EM

signal across all frequencies for known-uninfected ICs. Examples of the DCT and learned

dictionary basis functions are in Figure 5.3.

min
U,Ψ
∥Y −UΨ∥2Fro + α∥U∥1 (5.4)

subject to ∥Ψd∥2 ≤ 1 ∀d ∈ {1, 2, . . . , D}

86

(a) (b)

Figure 5.3: Example 7x7 two-dimensional basis functions for the (a) DCT and (b) dictio-
nary bases learned from spatial slices of hyperspectral backscattering side-channel images
captured of uninfected ICs.

5.3.3 Dormant Trojan Detection

As outlined in Chapter 4, it is possible that less than 0.2% of features in the hyperspectral

backscattered EM measurement space may show a difference between an uninfected and

infected circuit for certain Trojans. With such small differences, the sparse set of features

that signal the presence of a Trojan may easily be hidden by the overwhelming majority of

features that do not. Without knowing the location of an HT a priori, we follow the same

feature filtering process and HT detection algorithm as [29] to decrease the dimensionality

of the feature space and reduce the amount of noise present overall in the hyperspectral

measurements. Since we do not know which features will be most likely to distinguish

an infected IC from an uninfected one, we use an unbiased metric to measure the distance

between the ICs’ measurements. Given the real hyperspectral measurements of all the

known-uninfected ICs in a control set {Y1,Y2, . . .YJ}, we measure the total L1 distance

between the average control measurements and the reconstructed hyperspectral image from

measurements of a device under test (DUT). To detect an infected IC, we first generate a

distribution of the distance from one control sample to the average of the rest of the control

ICs. Then, if the distance of a DUT’s reconstruction to the average control samples differs

87

Uninfected &
Infected Layouts

Full
Scanning

Uninfected
Layout

Compare
Reconstructed
Test Samples

with Uninfected
Samples

Training
FPGAs

Trojan Removal

Test
FPGA

Classify as Safe or
Infected with Trojan

Random
Scanning

Reconstruct
from Basis

Optimal
Scanning &

Reconstruction
Parameters

Random Scanning
& Reconstruction

Full Uninfected Scans

Figure 5.4: Flow diagram depicting the circuit layout design, random hyperspectral sam-
pling, image reconstruction, and Trojan detection process in this chapter.

by more than some threshold for a designated confidence level, it is predicted to be infected.

5.4 Trojan Design and Hyperspectral Measurement Setup

We design our experiments to test the performance of our methods for detecting dormant

Trojans while also reducing measurement costs. First, we design the test circuits to have

as minimal a difference between infected and uninfected circuits as possible to simulate

a stealthy Trojan. Next, we develop a measurement setup for repeatable and consistent

measurements of the hyperspectral space. Finally, we build a CS framework incorporating

validation with multiple reconstruction bases to ensure the robustness of our analysis. The

entire sampling and reconstruction process is depicted in Figure 5.4.

5.4.1 Circuit Design

We develop the uninfected and infected circuits as circuit logic modules to be loaded onto

FPGAs to allow testing without requiring the fabrication of customized ICs. This also

allows us to test a variety of Trojan sizes by simply loading a new bitstream to the FPGA.

To generate the circuit bitstream, we compile Verilog source code in Altera’s Quartus

Prime software suite that automatically routes all circuit modules and connections into a

88

Table 5.1: Relative size of trigger circuitry compared to the resources used by the full
uninfected circuit, measured as the number of adaptive logic modules.

Trigger Size
(bits)

AES-T1800
Circuit Size

(%)

128 0.701
64 0.364
32 0.182
16 0.104
8 0.052
4 0.026
2 0.026
1 0.026

Payload 0.571

resource-optimize layout. The circuit design is composed of circuit modules which can

be edited down to the scale of individual logic cells, connections, or registers. Given an

infected circuit layout, we again use the Engineering Change Order tool to remove the in-

dividual circuit cells containing the Trojan and trigger. This allows us to generate a clean

circuit which simply performs AES encryption as expected in normal operation. This Tro-

jan removal ensures that the only differences between the Trojan-infected and uninfected

circuits are the Trojan circuitry.

We test our methods on the benchmark AES-T1800 crytopographic processor design

from TrustHub [92], [45]. As detailed in Chapter 4, this circuit’s intended design is to

perform the 10 stages of 128-bit encryption with the Advanced Encryption Standard (AES).

This layout is infected with the T1800 Trojan which is designed to make continuous cyclic

shifts in a register to heavily increase power consumption and quickly drain a connected

battery. The overall circuit contains four modules: an input feed, encryption blocks, Trojan

trigger, and Trojan payload. That Trojan is activated by a logic circuit which monitors

to find a specific 128-bit input to the circuit. We test this circuit with trigger circuitry of

reduced sizes to directly compare with prior work [29], [25] which found that reduced

trigger sizes were what made HT detection most difficult. These reduced triggers monitor

89

only 64, 32, 16, 8, 4, and 2 of the least significant bits of the input instead of the full 128

bits originally designed. This circuit’s trigger circuitry makes up between about 0.02% to

0.7% of the AES circuit area for different trigger sizes as seen in Table 5.1. These sizes are

measured using the number of basic logic blocks in the FPGA platform, known as adaptive

logic modules according to the FPGA’s documentation [89].

Finally, we use ten copies of the terasIC DE0-CV FPGA platform [90] with an Altera

Cyclone V IC (5CEBA4F23C7N) [91]. We assume that our FPGA platforms have iden-

tical IC models that are uninfected with physical Trojans so that we may implement the

Trojans ourselves through the FPGA bitstream. We expect that the ICs have some physical

differences so we put forth significant effort to ensure these methods hold in the presence

of significant manufacturing variabilities of the hardware.

5.4.2 Measurement Setup

We follow a very similar measurement setup as is used in Chapter 4 to be able to compare

results directly. Shown in Figure 4.8, we use the same high resolution near-field probe [58]

to emit and measure the backscattering EM side-channel signals. The probe is fixed with a

stationary clamp about 0.5mm above the face of the FPGA IC and is not moved throughout

any of the tests. The probe tip emits a 15 dBm sinusoid at ft = 3.031 GHz which is pro-

duced by a Keysight E8257D PSG Analog Signal Generator. The emitted signal backscat-

ters after contacting the chip and is received by the probe coil within an approximately 1

mm spot size. The received signal is then amplified by a Pasternack PE15A1010 40 dBm

Low Noise Amplifier and measured with a Keysight PXA N9030B Signal Analyzer.

For each measurement of a random hyperspectral location to be taken, we use the de-

sired x, y, h coordinates to scan an individual location in the hyperspectral space. To scan

a specific x, y location, we move the device under the probe to the specified point with

two Zaber X-LSQ150B stages [93]. The device is securely fixed to the stages with standoff

screws at each corner to be repeatable within the error tolerances of the board’s manufactur-

90

ing and minimal stage adjustment errors. The stages handle precise X-Y movement control

to center the probe onto one of 49 points (X, Y = 7 with 1 mm increments) on the center

6 mm × 6 mm of the chip area. To scan a specific frequency when there may be some

amount of frequency jitter for the harmonics, we measure a 10 KHz frequency window

surrounding one of the H = 35 harmonics at multiples of the FPGA device’s fc = 20 MHz

clock frequency above the probe’s emitted frequency. The maximum power within that fre-

quency window is recorded as the measurement Xxyh for the DUT. Those measurements

are then combined in the CS framework to reconstruct full hyperspectral images.

5.5 Experimental Validation

We validate our method for HT detection performance with thorough randomized testing

and also analyze the effect of our weighted sampling method for compressed sensing im-

age reconstruction. First, we demonstrate the ability of our CS approach to heavily reduce

measurement requirements while matching or improving upon HT detection results of prior

work. We then analyze the CS reconstruction performance of our weighted sampling strat-

egy compared with standard uniform sampling for the DCT and learned dictionary bases.

5.5.1 HT Detection Performance

We use measurements from ten separate DE0-CV devices to account for manufacturing

variabilities between ICs with our reliability-weighted sampling method. For each of these

devices, we measure ten scans of the entire hyperspectral space to use as our uninfected

control set. From these samples, we devise a simple reconstruction problem to find optimal

hyperparameters for reconstructing a hyperspectral image at test time. For each of the J

training devices, we set up the same reconstruction problem mins ∥AΨs − yj∥2 + α∥s∥1

where yj =
1
10

∑10
i=1Yj,i. Instead of reconstructing individual samples directly, we recon-

struct the average of all ten samples Yj,1:10 for that device across 21 log-scaled values for

the range of the sparsity parameter α ∈ [10−4, 100]. Assuming that the average of samples

91

is a better approximation of the underlying signal without noise, reconstructing the sample

average allows us to choose model parameters that best approximate a noise-free version

of the samples, rather than fitting to individual noisy samples. We choose the α with lowest

average reconstruction error across 50 random trials; each reconstructing samples from the

10 devices and yielding 500 total trials. We also test with the number of random measure-

ments ranging between 100 and 5000 in increments of 100. The upper limit of 5000 is

approximately the number of measurements used to obtain the results in prior work [29].

We similarly choose the best number of measurements to reconstruct the training samples

across the same 500 random trials. Finally, the reconstruction parameters are trained in

this way for three unique sets of bases. These are the 49 DCT basis functions pictured

in Figure 5.3a, and two sets of learned dictionary bases. The first dictionary of 50 basis

functions is learned from the 3500 two-dimensional slices of the training device samples

(35 harmonics × 10 devices × 10 samples). The second dictionary has 100 basis functions

of the same size learned from the same training data.

Trojan detection results are presented in Table 5.2 as the area under the receiver oper-

ating characteristic curve (AUC ∈ [0, 1]). An AUC of one signifies the ability to perfectly

distinguish all samples between uninfected and infected DUTs and 0.5 means the DUTs

are indistinguishable. The result in the table were obtained from 50 random reconstruction

trials of each trigger size and basis type, reconstructing with the parameters trained as de-

scribed previously in this section. As seen in the table, our weighted sampling strategy for

reconstructing hyperspectral images matches or improves upon HT detection performance

of prior work in all cases with a 1% margin of error. This performance is achieved by recon-

structing noise-reduced versions of the hyperspectral images directly by training on sample

averages. While reconstructions with the DCT basis still required approximately just as

many measurements as prior work to achieve its results, both learned dictionary bases al-

lowed much fewer measurements to achieve their results. The best performance overall was

achieved with the larger dictionary containing D = 100 bases, which yielded perfect Tro-

92

Table 5.2: HT detection performance for each reconstruction basis, compared against prior
results on the AES-T1800 circuit with trigger monitoring a given number of bits.

Trigger Size
(bits)

Prior Work
(AUC)

DCT Basis
D = 49
(AUC)

Dict.
D = 50
(AUC)

Dict.
D = 100
(AUC)

128 1.000 1.000 0.990 1.000
64 1.000 1.000 1.000 1.000
32 1.000 1.000 0.990 1.000
16 1.000 1.000 0.990 1.000
8 0.983 0.991 0.990 1.000
4 1.000 0.992 0.990 1.000
2 0.873 0.994 0.990 1.000

Sampling
required

vs. prior work

100%
(5000)

98%
(4900)

36%
(1800)

10%
(500)

jan detection performance while requiring only 500 measurements or approximately 10%

of those required in previous work. These results indicate that larger dictionaries would

match performance smaller dictionaries at the least, and significantly reduce measurement

requirements at the best. To robustly learn larger dictionaries would require more data to

avoid simply memorizing the training data. Overall, these results demonstrate that bases

closely tied to the type of measurements captured can not only improve HT detection, but

also significantly reduce measurement requirements to do so. The backscattering EM hy-

perspectral images captured to non-destructively detection dormant hardware Trojans are

well represented by compressed measurements when reconstructing with a learned dictio-

nary of that data as expected.

5.5.2 Reconstruction Analysis

To further demonstrate the effect of our reconstruction strategy, we analyze the reconstruc-

tion accuracy for each of the bases tested and for both a uniform and our weighted sampling

approaches to sampling in the compressed sensing framework. For each device we use for

training, we first generate a set of reconstructed images from an initial set of 100 measure-

ments. We then repeat the reconstruction with 100 more random measurements, and repeat

93

0 1000 2000 3000 4000 5000
Number of Measurements

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Re
co

ns
tru

ct
io

n
Er

ro
r

of
 R

ec
ei

ve
d

Po
we

r (
dB

m
)

DCT - Uniform
DCT - Weighted

(a)

0 1000 2000 3000 4000 5000
Number of Measurements

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Re
co

ns
tru

ct
io

n
Er

ro
r

of
 R

ec
ei

ve
d

Po
we

r (
dB

m
)

Dict. 50 - Uniform
Dict. 50 - Weighted

(b)

0 1000 2000 3000 4000 5000
Number of Measurements

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Re
co

ns
tru

ct
io

n
Er

ro
r

of
 R

ec
ei

ve
d

Po
we

r (
dB

m
)

Dict. 100 - Uniform
Dict. 100 - Weighted

(c)

Figure 5.5: Image reconstruction error for uniform random sampling compared to our
reliability-weighted sampling method for the DCT bases (a), learned dictionary with 50
bases (b), and learned dictionary with 100 bases (c).

94

until we capture 5000 measurements which is approximately the number of measurements

used in Chapter 4. For each of these reconstructions, we compare the result with the average

measurements from that device. For each of the DCT, 50-length dictionary, and 100-length

dictionary we use the best value for α selected as described in Subsection 5.5.1 for the

learned dictionary of 100 bases to ensure each of the bases is given equal comparison for

the two sampling methods sampling methods. We reconstruct the full hyperspectral image

from five unique trials of random measurements for each increment of 100 measurements.

As seen in Figure 5.5, our reliability-weighted random sampling method generally re-

sults in less reconstruction error for each of the CS bases we tested here. The difference in

performance between sampling methods is greatest at moderately-low sampling rates and

is confirmation of our hypothesis that weighting sampling toward unreliable measurements

can more quickly approximate the hyperspectral backscattered EM side-channel signals.

Reconstruction errors for both sampling methods are largest when the fewest samples are

captured. Nonetheless, the uniform sampling method slightly outperforms our weighted

sampling method with extremely low sampling rates. The difference in reconstruction

performance between the sampling methods decreases as the number of measurements in-

creases which can be expected as each of the random sampling methods begins to cover

the entire hyperspectral space with greater probability. We also find that the lowest recon-

struction error occurs at lower sampling rates for the learned dictionary bases compared to

the DCT bases. This follows intuition because we can expect that our data-driven bases

allow for more accurate reconstruction with fewer samples of these hyperspectral images

than the data-agnostic approach using the DCT basis.

It may counter intuition that reconstruction error increases with more measurements

as seen in the figure. However, we note that these results are presented when using a

single reconstruction sparsity parameter α which leads to optimal HT detection perfor-

mance. That α does not necessarily lead to optimal reconstruction performance. It can be

expected that reconstruction with α → 0 would provide the optimal reconstruction perfor-

95

mance and a monotonically non-increasing graph of reconstruction error versus number of

measurements. In accordance with the Trojan detection results presented in the previous

Subsection 5.5.1, these results show that the reconstruction error is lowest for the learned

dictionary with 100 bases. Since we are measuring reconstruction error against the average

measurements of the entire hyperspectral space, we can conclude that significantly better

reconstruction error of noise-free measurements leads to better Trojan detection perfor-

mance.

5.6 Conclusions

This work, submitted to [35], established a novel compressed sensing strategy for recon-

structing hyperspectral images from reliability-weighted random samples. The methods

presented improve hardware Trojan detection performance versus prior work and do so

with up to ten times fewer measurements. That performance is achieved by biasing random

sampling toward hyperspectral locations which are known to have more variation in the

backscattered EM side-channel signal; meaning they are unreliable locations across differ-

ent integrated circuits. We test random trials of our methods across a range of sampling

rates and sparsity levels in addition to three separate reconstruction bases. We find that

data-driven bases allow for much sparser sampling to achieve similar reconstruction error

and HT detection performance. We also show that our weighted random sampling strategy

is able to recover images with lower error than standard compressed sensing with uniform

random sampling.

The performance of the compressed sensing and weighted sampling approaches devel-

oped in this work motivates further research into sparse scanning methods to reconstruct

hyperspectral images of backscattering EM side-channel images. Future trials are needed

to demonstrate the robustness of these methods to a variety of circuits and Trojan types in

addition to manufacturing variabilities for other ICs. This work makes significant progress

toward realizing high-throughput IC validation, but further work is required to implement

96

these methods in real time. Additionally, it remains to be seen if other bases may further

reduce sampling requirements or improve detection.

97

CHAPTER 6

RESEARCH CONTRIBUTIONS AND FUTURE WORK

6.1 Research Contributions

As designers increasingly choose to outsource their device fabrication to untrusted enti-

ties, validating hardware before sending to customers becomes crucial to ensure the safety

and security of those devices. Malicious tampering with the security of integrated circuits

could come in the form of counterfeit components, injection of a hardware Trojan, or other

covert interference changing their expected form and function. Being able to detect these

intrusions non-destructively and at high throughput is essential to ensure the security of

all devices produced. This research addresses these needs by developing machine learning

methods to fingerprint components based on their electromagnetic side-channel emanations

or reflections and detect counterfeits or covert hardware Trojans. The contributions of this

research are summarized below:

• We develop a method for device designers to non-destructively validate the identity

of several types of components on already-assembled devices. Monitoring the side

channel emanations of devices has been shown to uncover anomalous software ac-

tivity occurring on a device. The electromagnetic side channel has been shown to

leak information from these devices with much higher bandwidth than other side

channels like temperature, power, or acoustic side channels. By measuring these

information-rich emanations, we learn component type- and model-specific finger-

prints that are used to classify unknown components as known models or uncover

unseen counterfeits. We obtain robust results when identifying several component

models of processor, memory, ethernet, and power management integrated circuits

in two different usage scenarios. The first scenario emulates a device designer testing

98

components on a newly-manufactured device that has just been powered on for final

testing before it is deployed. The second scenario uses repeating program activity to

test an actively-deployed device that is already in use. Our results demonstrate that

this method is effective for a wide variety of component models and usage scenarios

so that it may feasibly be employed in real world test environments.

• To detect component models robustly, we designed a novel deep learning architec-

ture, pre-processing, and validation strategy to accommodate the high-dimensional,

data-scarce scenario using electromagnetic side-channel signals. This novel convo-

lutional architecture employs a unique combination of pooling, kernel stride, and

weight dropout to heavily reduce the dimensionality of input signals while main-

taining the visible and obscure spectral features that distinguish the electromagnetic

emanations of different integrated circuit models. With feasible measurement times

making it difficult to capture sufficient samples to train normal convolutional neural

networks, this architecture is lightweight, can be trained quickly, and could be used

for real-time inference for automating counterfeit detection.

• This work also defines a new model analysis tool called a feature activation map

which we use to compare discriminative features learned by the deep network with

conventional hand-crafted spectral features. By analyzing the intermediate represen-

tation of the inputs after passing through the convolution layers, we demonstrate how

hand-crafted features correspond with model-learned features at a coarse level. We

then analyze the average neuron weights in the first linear layer as compared to the

activation of those intermediate outputs when passing to the first linear layer to un-

derstand which of those model-learned features are most important when classifying

individual component models. This model meta analysis lends greater interpretabil-

ity to a class of models which traditionally is seen as a “black box.”

• We design a non-destructive measurement methodology for capturing point-scanned

99

hyperspectral images of the backscattering electromagnetic side channel to measure

circuit fingerprints. This non-traditional imaging methodology captures measure-

ments across space and frequency by physically scanning a high resolution probe in

two dimensions across the face of an integrated circuit. The method uses the probe tip

to emit a carrier signal toward the board and the probe coil to measure the backscat-

tered signal that is modulated by the device’s clock frequency. At a specific location

on the circuit, we measure a small bandwidth around the expected location of each

of the modulated clock frequency harmonics and record the maximum power which

corresponds to the frequency spike of that harmonic. By aggregated these recordings

across space and a set of harmonics, we generate a hypercube of measurements that

can be used to fingerprint the architecture and transistor state variations across the

circuit.

• This research designs a method to capture hyperspectral images which may exhibit

significant noise variability, but without needing to repeat full scans of the entire hy-

perspectral space. We develop an active learning and feature selection approach for

capturing and comparing hyperspectral images of the backscattering EM side chan-

nel. Our active sampling approach only repeats sampling to reduce measurement

error when the distribution of samples do not closely match or significantly devi-

ate from expected scans. Then, we only compare measurements at hyperspectral

locations which are known to be more reliable across multiple copies of the same

integrated circuit. Comparing the sparse set of locations increases how distinguish-

able different circuits are by eliminating noise-ridden features that do not contribute

meaningfully to the classification task.

• Additional research efforts into hyperspectral scanning of the backscattering electro-

magnetic side channel resulted in a novel technique for recovering these images with

heavily reduced measurement cost. We design a reliability-weighted compressed

100

sensing technique which non-uniformly randomly samples hyperspectral points be-

fore they are recovered with traditional compressed sensing optimization. Our novel

technique to measure feature reliability compares the spread of measurements across

different copies of the same circuit with the average spread of measurements for in-

dividual circuits. Sampling with the strategy reduces measurement costs up to ten

times below previous work and reconstructs hyperspectral images more accurately

and with fewer measurements than a uniform random sampling approach.

• These hyperspectral scanning approaches lead to state-of-the-art non-destructive de-

tection of hardware Trojans. Where prior work struggled to detect Trojans less than

about 0.35% of the size of the of the circuit they infect, our research achieved robust

detection for Trojans down to 0.03% of the circuit size. While we make a trade-off of

increased sampling time, our methods reduce the detectable size of Trojans by about

14 times. The unique sampling methods we develop make significant progress to-

ward making these hardware Trojan detection techniques operate at high throughput.

6.2 Future Research Directions

While the learning and measurement methods developed over the course of this research

have shown significant improvements over existing methods, much work still remains for

these to be implemented in real-world scenarios. Our component identification and coun-

terfeit detection methods demonstrate good performance for a variety of test scenarios and

component types. First, we use a simple anomaly detection procedure based solely off of

the CNN’s output activations, whereas the state-of-the-art in that domain takes cues from

all layers in the CNN and could be significantly improved. We do not claim to have made

a comprehensive architecture search for the deep learning model and it is likely that addi-

tional architecture tweaks could improve performance for each test case. Individual model

architectures tuned to each of the component types or testing scenarios could better match

the peculiarities of each problem, since the features that distinguish processors are not nec-

101

essarily the same as those that distinguish power management integrated circuits. As with

any deep learning problem, larger source datasets could further demonstrate the robustness

of our methods and data augmentation could be one way of making strides in that direction.

The strong performance of the methods developed for detecting dormant hardware Tro-

jans work motivates further investigation into the problem. Feature selection methods and

hyperspectral scanning of the backscattering EM side channel for hardware Trojan detec-

tion enabled detection of much smaller Trojans than had previously been achieved. Future

work is still needed to demonstrate the success of these methods for other Trojan and trig-

ger varieties that do not scale in size like the internally-activated, condition-based HTs we

tested here. Additional study would be useful to analyze the robustness to manufactur-

ing variabilities for other ICs, especially for ASICs or those with higher transistor density.

Further maturing the active sampling methods to reduce hyperspectral sampling time for

higher testing throughput is an open area of research. While the research presented in this

thesis assumes the possession of at least one uninfected device, an extension of this work

may demonstrate these methods without that assumption by using circuit simulations, one

class classification, anomaly detection, or other methods.

Our initial study into compressed sensing techniques has yielded great results in re-

ducing measurement time for hyperspectral scans. While we only scanned a small 7 × 7

grid of locations on the chip, it is likely that sampling of a greater area would lend itself

better to the image reconstruction methods we test here. It is even possible that more dense

sampling or super-resolution reconstructions could be achieved with compressed sensing

or deep learning models. It remains to be seen whether sampling larger areas of chips or

scanning at higher density would be worth the trade-off in scanning time for more robust

or smaller Trojan detection. These tests were performed on a relatively small set of device

copies and simply spending the time to measure many more devices could yield much more

confident statistics about the reliability of our methods. Further validation is necessary to

determine whether our most fine-grained Trojan detection results can be achieved at scale

102

and with what confidence those classifications can be made. An ideal non-destructive Tro-

jan detection strategy would be entirely automated and performed at high throughput; both

of which are left as an exercise for the reader.

In addition to the aforementioned extensions to our existing work, a more general open

problem remains to understand how backscattered electromagnetic side-channel signals

correspond to the underlying physical characteristics of an integrated circuit. Previous

work and ours has shown that small differences in the underlying trace architecture of an

IC will result in changes to the backscattered signal. While that fact has allowed us to un-

cover the presence of anomalies, a more general understanding of the relationship between

specific architecture changes and backscattered signal could be very useful. With a direct

relationship between trace architecture and expected backscattered signals, one could con-

ceivably reverse engineer not only if, but what changes had been made to a circuit solely

from analyzing the side channel. Having a thorough correspondence between netlist lay-

out, high resolution physical layout (from destructive imagery methods), and side-channel

emanations or reflections could improve the feasibility of non-destructively characterizing

IC modifications.

103

REFERENCES

[1] N. Kae-Nune and S. Pesseguier, “Qualification and testing process to implement
anti-counterfeiting technologies into ic packages,” in Proc. 2013 Des. Autom. Test
Eur. Conf. Exhib. (DATE), 2013, pp. 1131–1136.

[2] M. Pecht and S. Tiku, “Bogus: Electronic manufacturing and consumers confront
a rising tide of counterfeit electronics,” IEEE Spectrum, vol. 43, no. 5, pp. 37–46,
2006.

[3] E. Menzel and E. Kubalek, “Fundamentals of electron beam testing of integrated
circuits,” Scanning, vol. 5, no. 3, pp. 103–122, 1983.

[4] Y. Jin, D. Maliuk, and Y. Makris, “Hardware trojan detection in analog/rf integrated
circuits,” 2016.

[5] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, “Acoustic side-
channel attacks on printers,” in Proc. 19th USENIX Conf. Secur., 2010, p. 20.

[6] M. Hutter and J.-M. Schmidt, “The temperature side-channel and heating fault at-
tacks,” in Smart Card Research and Advanced Applications: 12th Int. Conf. (CARDIS),
vol. 8419, Nov. 2013.

[7] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryp-
tology (CRYPTO), vol. 1666, Dec. 1999.

[8] W. van Eck, “Electromagnetic radiation from video display units: An eavesdropping
risk?” Computers & Security, vol. 4, no. 4, pp. 269–286, 1985.

[9] R. Callan, A. Zajić, and M. Prvulovic, “A practical methodology for measure the
side-channel signal available to the attacker for instruction level events,” IEEE MI-
CRO, vol. 14, pp. 1–12, 2013.

[10] D. Agrawal and B. Archambeult, “The EM side-channel(s),” Proc. Crypto. HW and
Emb. Sys. (CHES), pp. 29–45, 2002.

[11] B. B. Yilmaz, A. Zajić, and M. Prvulovic, “Capacity of EM side channel created
by instruction executions in a processor,” Processings of IEEE IEMCON, pp. 1–5,
2019.

[12] M. Kuhn, “Compromising emanations: Eavesdropping risks of computer displays,”
Computer Laboratory, University of Cambridge, Tech. Rep., Apr. 2004.

104

[13] M. Alam et al., “One&done: A single-decryption em-based attack on openssl’s constant-
time blinded rsa,” in Proc. 27th USENIX Secur. Symp., Aug. 2018.

[14] X. Dong et al., “Detection and identification of vehicles based on their unintended
electromagnetic emissions,” IEEE Trans. Electromagn. Compat., vol. 48, no. 4, pp. 752–
759, 2006.

[15] H. Göksu, D. Wunsch, X. Dong, A. Kökce, and D. Beetner, “Detection and identifi-
cation of vehicles based on their spark-free unintended electromagnetic emissions,”
IEEE Trans. Electromagn. Compat., vol. 60, pp. 1594–1597, Oct. 2018.

[16] M. M. Ahmed et al., “Authentication of microcontroller board using non-invasive
em emission technique,” in 2018 IEEE 3rd Int. Verif. Secur. Workshop (IVSW), 2018,
pp. 25–30.

[17] B. B. Yilmaz, E. Mert Ugurlu, A. Zajić, and M. Prvulovic, “Cell-phone classifi-
cation: A convolutional neural network approach exploiting electromagnetic em-
anations,” in Proc. 2020 IEEE Int. Conf. Acoust. Speech Signal Process., 2020,
pp. 2862–2866.

[18] W. E. Cobb, “Exploitation of unintentional information leakage from integrated cir-
cuits,” Ph.D. dissertation, Air Force Institute of Technology, 2017.

[19] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious inclusions in
secure hardware: Challenges and solutions,” in 2008 IEEE International Workshop
on Hardware-Oriented Security and Trust, 2008, pp. 15–19.

[20] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[21] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:
Threat analysis and countermeasures,” Proc. IEEE, vol. 102, no. 8, pp. 1229–1247,
2014.

[22] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware tro-
jans: Lessons learned after one decade of research,” ACM Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, May 2016.

[23] M. Tehranipoor et al., “Trustworthy hardware: Trojan detection and design-for-trust
challenges,” Computer, vol. 44, no. 7, pp. 66–74, 2011.

[24] S. Mal-Sarkar, R. Karam, S. Narasimhan, A. Ghosh, A. Krishna, and S. Bhunia, “De-
sign and validation for fpga trust under hardware trojan attacks,” IEEE Transactions
on Multi-Scale Computing Systems, vol. 2, no. 3, pp. 186–198, 2016.

105

[25] L. N. Nguyen, C.-L. Cheng, M. Prvulovic, and A. Zajić, “Creating a backscattering
side channel to enable detection of dormant hardware trojans,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 7, pp. 1561–1574, 2019.

[26] J. Landt, “The history of rfid,” IEEE Potentials, vol. 24, no. 4, pp. 8–11, 2005.

[27] C. Boyer and S. Roy, “— invited paper — backscatter communication and rfid: Cod-
ing, energy, and mimo analysis,” IEEE Transactions on Communications, vol. 62,
no. 3, pp. 770–785, 2014.

[28] H. Dogan, D. Forte, and M. M. Tehranipoor, “Aging analysis for recycled fpga de-
tection,” in 2014 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2014, pp. 171–176.

[29] E. J. Jorgensen, A. Kacmarcik, M. Prvulovic, and A. Zajić, “Novel feature selec-
tion for non-destructive detection of hardware trojans using hyperspectral scanning,”
Journal of Hardware and Systems Security, vol. 6, to appear, 2022.

[30] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, 1949.

[31] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information,” IEEE Trans. Inf. The-
ory, vol. 52, no. 2, pp. 489–509, 2006.

[32] M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compres-
sive spectral imaging with a dual-disperser architecture,” Optics express, vol. 15,
pp. 14 013–27, Nov. 2007.

[33] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for
coded aperture snapshot spectral imaging,” Applied optics, vol. 47, B44–51, May
2008.

[34] E. Jorgensen, F. Werner, M. Prvulovic, and A. Zajic, “Deep learning classification
of motherboard components by leveraging em side-channel signals,” J. Hardw. Syst.
Secur., vol. 5, Jun. 2021.

[35] E. J. Jorgensen, A. Kacmarcik, M. Prvulovic, and A. Zajić, “Hyperspectral image
recovery via reliability-weighted compressed sensing for hardware trojan detection,”
in press.

[36] U. Guin, D. Dimase, and M. Tehranipoor, “Counterfeit integrated circuits: Detection,
avoidance, and the challenges ahead,” J. Electron. Test.: Theory Appl., vol. 30, pp. 9–
23, Feb. 2014.

106

[37] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[38] Sparkfun, Dear on semiconductor, https://www.sparkfun.com/news/384 (2022/6/26),
Jun. 2010.

[39] F. T. Werner, B. B. Yilmaz, M. Prvulovic, and A. Zajić, “Leveraging em side-channels
for recognizing components on a motherboard,” IEEE Transactions on Electromag-
netic Compatibility, pp. 1–14, 2020.

[40] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan: Threats and
emerging solutions,” in 2009 IEEE International High Level Design Validation and
Test Workshop, 2009, pp. 166–171.

[41] V. Venugopalan and C. D. Patterson, “Surveying the hardware trojan threat landscape
for the internet-of-things,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 131–141, 2018.

[42] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design and imple-
mentation,” in 2009 IEEE International Workshop on Hardware-Oriented Security
and Trust, 2009, pp. 50–57.

[43] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46,
2010.

[44] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust verification with
stealthy implicitly-triggered hardware trojans,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’14, Scotts-
dale, Arizona, USA: Association for Computing Machinery, 2014, pp. 153–166,
ISBN: 9781450329576.

[45] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Bench-
marking of hardware trojans and maliciously affected circuits,” J. Hardw. Syst. Se-
cur., vol. 1, Mar. 2017.

[46] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining trust in vlsi design: Design-
for-trust techniques,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1266–1282, 2014.

[47] P. Rohatgi, “Electromagnetic attacks and countermeasures,” in Nov. 2008, pp. 407–
430, ISBN: 978-0-387-71816-3.

[48] T. Komolafe, W. Tian, G. T. Purdy, M. Albakri, P. Tarazaga, and J. Camelio, “Re-
peatable part authentication using impedance based analysis for side-channel moni-
toring,” Journal of Manufacturing Systems, vol. 51, pp. 42–51, 2019.

107

[49] P. Nikitin and K. Rao, “Theory and measurement of backscattering from rfid tags,”
IEEE Antennas and Propagation Magazine, vol. 48, no. 6, pp. 212–218, 2006.

[50] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated circuits. Pren-
tice hall Englewood Cliffs, 2002, vol. 2.

[51] A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal
view,” Remote Sensing of Environment, vol. 113, S5–S16, 2009.

[52] O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging
applied to medical diagnoses and food safety,” in Geo-Spatial and Temporal Image
and Data Exploitation III, International Society for Optics and Photonics, vol. 5097,
2003, pp. 215–221.

[53] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical
Optics, vol. 19, no. 1, pp. 1–24, 2014.

[54] R. R. Carvalho, J. A. Coelho, J. M. Santos, F. W. Aquino, R. L. Carneiro, and E. R.
Pereira-Filho, “Laser-induced breakdown spectroscopy (LIBS) combined with hy-
perspectral imaging for the evaluation of printed circuit board composition,” Talanta,
vol. 134, pp. 278–283, 2015.

[55] R. Palmieri, G. Bonifazi, and S. Serranti, “Recycling-oriented characterization of
plastic frames and printed circuit boards from mobile phones by electronic and
chemical imaging,” Waste Management, vol. 34, no. 11, pp. 2120–2130, 2014.

[56] H. Grahn and P. Geladi, Techniques and applications of hyperspectral image analy-
sis. John Wiley & Sons, 2007.

[57] N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technolo-
gies,” Optical Engineering, vol. 52, no. 9, pp. 1–23, 2013.

[58] S. Adibelli, P. Juyal, L. N. Nguyen, M. Prvulovic, and A. Zajić, “Near-field backscattering-
based sensing for hardware trojan detection,” IEEE Transactions on Antennas and
Propagation, vol. 68, no. 12, pp. 8082–8090, 2020.

[59] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[60] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen, “Wavelet algorithms for high-resolution
image reconstruction,” SIAM Journal on Scientific Computing, vol. 24, no. 4, pp. 1408–
1432, 2003.

108

[61] H. Rauhut, K. Schnass, and P. Vandergheynst, “Compressed sensing and redundant
dictionaries,” IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 2210–
2219, 2008.

[62] E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with co-
herent and redundant dictionaries,” Applied and Computational Harmonic Analysis,
vol. 31, no. 1, pp. 59–73, 2011.

[63] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[64] R. J. Tibshirani, “The lasso problem and uniqueness,” Electronic Journal of statis-
tics, vol. 7, pp. 1456–1490, 2013.

[65] R. Taylor, Compressed Sensing in Python, Available at http://www.pyrunner.com/
weblog/2016/05/26/compressed-sensing-python/ (2022/6/29), 2016.

[66] F. Werner, D. A. Chu, A. R. Djordjević, D. I. Olćan, M. Prvulovic, and A. Zajić, “A
method for efficient localization of magnetic field sources excited by execution of
instructions in a processor,” IEEE Transactions on Electromagnetic Compatibility,
vol. 60, no. 3, pp. 613–622, 2018.

[67] R. Rubino, “Wireless device identification from a phase noise prospective,” M.S.
thesis, University of Padova, Italy, 2010.

[68] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, G. Gordon, D. Dunson, and M. Dudı́k, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 15, Fort Lauderdale, FL, USA: PMLR, Apr. 2011,
pp. 315–323.

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine
Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[70] Olimex, A10-olinuxino-lime, Available at https : / / www . olimex . com / Products /
OLinuXino/A10/A10-OLinuXino-LIME-n4GB/open-source-hardware (2020/05/08).

[71] Olimex, A13-olinuxino, Available at https://www.olimex.com/Products/OLinuXino/
A13/A13-OLinuXino/open-source-hardware (2020/05/08).

[72] Olimex, A13-olinuxino-micro, Available at https : / / www. olimex . com / Products /
OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware (2020/05/08).

109

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME-n4GB/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME-n4GB/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware

[73] Olimex, A20-olinuxino-lime, Available at https : / / www . olimex . com / Products /
OLinuXino/A20/A20-OLinuXino-LIME/open-source-hardware (2020/05/08).

[74] Olimex, A20-olinuxino-lime2, Available at https : / / www. olimex . com / Products /
OLinuXino/A20/A20-OLinuXino-LIME2/open-source-hardware (2020/05/08).

[75] Olimex, A20-olinuxino-micro, Available at https : / / www. olimex . com / Products /
OLinuXino/A20/A20-OLinuXino-MICRO/open-source-hardware (2020/05/08).

[76] Olimex, A20-olinuxino, Available at https://www.olimex.com/Products/OLinuXino/
A33/A33-OLinuXino/open-source-hardware (2020/05/08).

[77] Riscure, Em probe station, Available at https : / / getquote . riscure . com / en / quote /
2101064/em-probe-station.htm (2020/05/08).

[78] K. Technologies, M9391a pxie vector signal analyzer: 6 ghz, Available at https :
//www.keysight.com/en/pd-2317933-pn-M9391A/pxie-vector-signal-analyzer-1-
mhz-to-3-ghz-or-6-ghz?&cc=US&lc=eng (2020/05/08).

[79] M. Prvulovic, A. Zajić, R. L. Callan, and C. J. Wang, “A method for finding frequency-
modulated and amplitude-modulated electromagnetic emanations in computer sys-
tems,” IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 1, pp. 34–
42, 2017.

[80] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-
of-distribution samples and adversarial attacks,” in Advances in Neural Information
Processing Systems, vol. 31, Curran Associates, Inc., 2018, pp. 7167–7177.

[81] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, M. Prvulovic, and A. Zajić, “Mal-
ware detection in embedded systems using neural network model for electromag-
netic side-channel signals,” Journal of Hardware and Systems Security, vol. 3, no. 4,
pp. 305–318, 2019.

[82] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, Curran Asso-
ciates, Inc., 2019, pp. 8024–8035.

[83] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in ICLR,
2019.

[84] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, Class-balanced loss based on
effective number of samples, 2019. arXiv: 1901.05555 [cs.CV].

110

https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-LIME/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-LIME/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-LIME2/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-LIME2/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A20/A20-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A33/A33-OLinuXino/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A33/A33-OLinuXino/open-source-hardware
https://getquote.riscure.com/en/quote/2101064/em-probe-station.htm
https://getquote.riscure.com/en/quote/2101064/em-probe-station.htm
https://www.keysight.com/en/pd-2317933-pn-M9391A/pxie-vector-signal-analyzer-1-mhz-to-3-ghz-or-6-ghz?&cc=US&lc=eng
https://www.keysight.com/en/pd-2317933-pn-M9391A/pxie-vector-signal-analyzer-1-mhz-to-3-ghz-or-6-ghz?&cc=US&lc=eng
https://www.keysight.com/en/pd-2317933-pn-M9391A/pxie-vector-signal-analyzer-1-mhz-to-3-ghz-or-6-ghz?&cc=US&lc=eng
https://arxiv.org/abs/1901.05555

[85] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to hardware tro-
jans using power supply transient signals,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 3–7.

[86] C.-I. Chang, Hyperspectral imaging: techniques for spectral detection and classifi-
cation. Springer Science & Business Media, 2003, vol. 1.

[87] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit fingerprints
for hardware trojan detection,” in 2015 IEEE International Symposium on Electro-
magnetic Compatibility (EMC), 2015, pp. 246–251.

[88] M. Cerna and A. F. Harvey, “The fundamentals of fft-based signal analysis and mea-
surement,” Application Note 041, National Instruments, Tech. Rep., 2000.

[89] Intel, Glossary, Available at https://www.intel.com/content/www/us/en/programmable/
quartushelp/17.0/reference/glossary/glosslist.htm# (2022/04/28).

[90] terasIC, De0-cv board, Available at https : / /www. terasic . com. tw/cgi - bin /page /
archive.pl?Language=English&CategoryNo=163&No=921 (2022/02/16).

[91] Intel, Cyclone v device overview, Available at https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv 51001.pdf (2021/05/27).

[92] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis and
trust benchmarks development,” in Proc. 31st IEEE Int. Conf. Comput. Des., 2013,
pp. 471–474.

[93] Zaber, X-lsq150b specifications, Available at https : / / www. zaber. com / products /
linear-stages/X-LSQ/specs?part=X-LSQ150B (2022/05/2).

[94] R. Wilson, H. Lu, M. Zhu, D. Forte, and D. L. Woodard, “Refics: Assimilating data-
driven paradigms into reverse engineering and hardware assurance on integrated cir-
cuits,” IEEE Access, vol. 9, pp. 131 955–131 976, 2021.

[95] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” IEEE Transac-
tions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.

111

https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glossary/glosslist.htm#
https://www.intel.com/content/www/us/en/programmable/quartushelp/17.0/reference/glossary/glosslist.htm#
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=163&No=921
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=163&No=921
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.zaber.com/products/linear-stages/X-LSQ/specs?part=X-LSQ150B
https://www.zaber.com/products/linear-stages/X-LSQ/specs?part=X-LSQ150B

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Motivation
	Deep Learning Classification of Motherboard Components by Leveraging EM Side‑Channel Signals
	Feature Selection for Non-Destructive Detection of Hardware Trojans using Hyperspectral Scanning
	Hyperspectral Image Recovery via Reliability-Weighted Compressed Sensing for Hardware Trojan Detection
	Research Contributions
	Thesis Outline

	2 | Background
	Counterfeit Components
	Hardware Trojans
	Electromagnetic Side Channel
	Hyperspectral Imaging
	Compressed Sensing

	3 | Deep Learning Classification of Motherboard Components by Leveraging EM Side‑Channel Signals
	Overview
	Structured signals
	Preprocessing and model architecture
	Experimental design
	Results and Interpretability
	Conclusions

	4 | Feature Selection for Non-Destructive Detection of Hardware Trojans using Hyperspectral Scanning
	Overview
	Dormant Hardware Trojan Detection
	A Novel Feature Selection Strategy for Hardware Trojan Detection using Hyperspectral Scanning
	Trojan Design and Hyperspectral Measurement Setup
	Validation
	Conclusions

	5 | Hyperspectral Image Recovery via Reliability-Weighted Compressed Sensing for Hardware Trojan Detection
	Overview
	Dormant Hardware Trojan Detection
	HT Detection with Compressive Hyperspectral Scanning
	Trojan Design and Hyperspectral Measurement Setup
	Experimental Validation
	Conclusions

	6 | Research Contributions and Future Work
	Research Contributions
	Future Research Directions

	References

