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On sera frappé de la complexité de cette figure, que je ne cherche même pas à tracer. Rien

n’est plus propre à nous donner un idée de la complication du problème des trois corps et

en général de tous les problèmes de Dynamique où il n’y a pas d’intégrale uniforme

Henri Poincaré, ”Les méthodes nouvelles de la mécanique céleste”, 1892
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SUMMARY

Many proposed interplanetary space missions, including Europa Lander and Dragonfly,

involve trajectory design in environments where multiple large bodies exert gravitational

influence on the spacecraft, such as the Jovian and Saturnian systems as well as cislu-

nar space. In these contexts, an analysis based on the mathematical theory of dynamical

systems provides both better insight as well as new tools to use for the mission design

compared to classic two-body Keplerian methods. Indeed, a rich variety of dynamical phe-

nomena manifest themselves in such systems, including libration point dynamics, stable

and unstable mean-motion resonances, and chaos. To understand the previously mentioned

dynamical behaviors, invariant manifolds such as periodic orbits, quasi-periodic invariant

tori, and stable/unstable manifolds are the major objects whose interactions govern the local

and global dynamics of relevant celestial systems.

This work is focused on the development of numerical methodologies for computing

such invariant manifolds and investigating their interactions. In Chapter 2, after a study

of persistence of mean-motion resonances in the planar circular restricted 3-body prob-

lem (PCRTBP), techniques for computing the stable/unstable manifolds attached to reso-

nant periodic orbits and heteroclinics corresponding to resonance transitions are presented.

Chapter 3 focuses on the development of accurate and efficient parameterization methods

for numerical calculation of whiskered quasi-periodic tori and their attached stable/unstable

manifolds, for periodically-forced PCRTBP models. As part of this, a method for Levi-

Civita regularization of such periodically-forced systems is introduced. Finally, Chapter 4

presents methods for combining the previously mentioned parameterizations with knowl-

edge of the objects’ internal dynamics, collision detection algorithms, and GPU computing

to very rapidly compute propellant-free heteroclinic connecting trajectories between them,

even in higher dimensional models. Such heteroclinics are key to the generation of chaos

and large scale transport in astrodynamical systems.

xiv



CHAPTER 1

INTRODUCTION AND BACKGROUND

“One is struck by the complexity of this figure, which I will not even try to

draw. Nothing is better to give us an idea of the complication of the problem

of three bodies and, in general, of all the problems of dynamics where there is

not a uniform integral.” [1]

(Henri Poincaré, “Les méthodes nouvelles de la mécanique céleste”, 1892)

As the 19th century was coming to a close, Henri Poincaré’s research into the 3-body

problem [1] led to the beginnings of the modern mathematical theory of dynamical systems.

Yet, though the roots of the field lie in its applications to celestial mechanics 130 years

ago, it is only in relatively recent years that increases in computing power, as well as new

research and algorithms, have led to methods from dynamical systems theory seeing wider

acceptance and interest for applications to space mission trajectory design. At a broad

level, this work aims to to deepen and advance this encouraging trend, by investigating and

adapting recent results and computational techniques from dynamical systems to unlock

new capabilities for practical multi-body space mission design.

Since the beginning of the space age, the majority of mission trajectory design has been

done using patched conic approximations, where the spacecraft motion is approximated

as a series of two-body problems with the influencing central gravitational body changing

depending on the spacecraft position; these classical methods are described in many text-

books, for instance [2]. However, such methodologies fail to take advantage of the chaotic

nature of multi-body celestial mechanics; indeed, the spacecraft dynamics can be extremely

sensitive to initial conditions when influenced by multiple large bodies. This “butterfly ef-

fect” can in turn be used to move large distances with no or minimal fuel consumption, a

very desirable outcome given the limited fuel capacity of deep-space probes.
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The Genesis mission [3], launched in 2001, is an example of a real-life mission which

used tools from dynamical systems theory for its mission design. In particular, Genesis was

able to move between Sun-Earth L1 and Sun-Earth L2 without the use of any deterministic

thrusting maneuvers. To accomplish this, the spacecraft leveraged heteroclinic connections

between unstable periodic orbits near those libration points. These connections correspond

to intersections of stable and unstable manifolds of periodic orbits, a phenomenon which

generates a chaotic “tangle” leading to trajectories with wildly different itineraries starting

arbitrarily close to each other. Indeed, this chaotic tangle is precisely the figure which

Poincaré would not dare to draw, described in the quote at the start of this chapter.

Given the previous discussion, as well as other results on large-scale chaotic motions

such as the Chirikov resonance overlap criterion [4], it is clear that stable and unstable

manifolds, and their intersections, are key to understanding the dynamics of multi-body

astrodynamical systems. These stable/unstable manifolds are themselves attached to either

periodic orbits, as in the Genesis case, or to higher dimensional analogues of periodic orbits

called quasi-periodic orbits, also known as invariant tori. The periodic/quasi-periodic orbits

along with their stable/unstable manifolds and any heteroclinic connections form a kind of

skeleton organizing the major dynamical behaviors present in the system. Hence, their

study is of utmost importance, but to accomplish this, we need to be able to compute all of

these objects in a computationally accurate and fast manner. This requirement is the focus

of the work which will be presented in this dissertation.

1.1 Models and Equations of Motion

1.1.1 The Planar Circular Restricted 3-body Problem

The simplest dynamical model which still captures many of the interesting phenomena

present in multi-body astrodynamics is the well-known planar circular restricted 3-body

problem (PCRTBP). In the PCRTBP, one considers the motion of an infinitesimally small

particle (thought of as a spacecraft) under the gravitational influence of two large bodies

2



Figure 1.1: Diagram of Circular Restricted 3-Body Problem in Synodic Coordinate Frame
[6]

of masses m1 and m2, collectively referred to as the primaries. It is assumed that m1 and

m2 revolve about their common center of mass in a circular Keplerian orbit. Units are

also normalized so that the distance between the two primaries becomes 1, G(m1 + m2)

becomes 1, and their period of revolution becomes 2π. We define a mass ratio µ = m2

m1+m2
,

and unless otherwise specified, use a synodic, rotating non-inertial cartesian coordinate

system centered at the barycenter of the primaries such that the two primaries are always

on the x-axis. Due to the normalized units, the primary body will be at x = −µ, and the

secondary will be at x = 1− µ.

In the planar case we are studying here, we also assume that the spacecraft moves in

the same orbit plane as the primaries. In this case, and in this synodic coordinate system,

the equations of motion become [5]

ẍ− 2ẏ = x− (1− µ)
x+ µ

r31
− µ

x− 1 + µ

r32
(1.1)

ÿ + 2ẋ = y − (1− µ)
y

r31
− µ

y

r32
(1.2)

where r1 =
√

(x+ µ)2 + y2 is the distance from the spacecraft to m1 and r2 =
√
(x− 1 + µ)2 + y2

is the distance to m2. Fig. 1.1 is a diagram of the model, except for in our analysis we re-

strict ourselves to the case of z = 0.
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There are two important properties of Eq. (1.1) and (1.2) to note. First of all, changing

to position-momentum coordinates using px = ẋ − y and py = ẏ + x, the equations of

motion are Hamiltonian with form

ẋ =
∂H0

∂px
ẏ =

∂H0

∂py
ṗx = −∂H0

∂x
ṗy = −

∂H0

∂y
(1.3)

H0(x, y, px, py) =
p2x + p2y

2
+ pxy − pyx−

1− µ

r1
− µ

r2
(1.4)

Since the Hamiltonian in Eq. (1.4) is autonomous, it is an integral of motion. Hence,

trajectories in the PCRTBP are restricted to 3-dimensional energy submanifolds of the state

space satisfying H0(x, y, px, py) = constant. The Jacobi integral C, which is commonly

encountered in the literature, is related to the Hamiltonian by C = −2H0.

The second property to note is that the equations of motion have a time-reversal sym-

metry. Namely, if (x(t), y(t), t) is a solution of Eq. (1.1) and (1.2) for t > 0, then

(x(−t),−y(−t), t) is a solution for t < 0.

1.1.2 Periodic Perturbations of the PCRTBP

The PCRTBP model exhibits many of the important dynamical phenomena present in

multi-body celestial systems. However, there are many effects which are not included

in the PCRTBP; many of these other influences on the spacecraft motion act in an approxi-

mately time-periodic manner, while preserving the Hamiltonian nature of the system. Here

we will study dynamical models where one such periodic forcing effect is considered in

addition to the PCRTBP. The equations of motion in this case are given by Eq. (1.5) along

with time-periodic Hamiltonian (1.6)

ẋ =
∂Hε

∂px
ẏ =

∂Hε

∂py
ṗx = −∂Hε

∂x
ṗy = −

∂Hε

∂y
θ̇p = Ωp (1.5)

Hε(x, y, px, py, θp) = H0(x, y, px, py) +H1(x, y, px, py, θp; ε) (1.6)

4



where θp ∈ T is an angle, H0 is the PCRTBP Hamiltonian given by Eq. (1.4), H1 is

the perturbation by the time-periodic effect and satisfies H1(x, y, px, py, θp; 0) = 0, and

ε > 0 and Ωp are the perturbation parameter and perturbation frequency, respectively. ε

signifies the strength of the perturbation, ε = 0 being the unperturbed PCRTBP, and Ωp is

a known constant frequency. The perturbation from H1 is 2π/Ωp periodic, with θp being

the perturbation phase angle. In general, the Hamiltonian in Eq. (1.6) is not an integral of

motion when ε ̸= 0.

There are many different Hamiltonian periodically perturbed PCRTBP models of inter-

est for applications. A common perturbation added to the PCRTBP is that of a third large

body revolving in a circle (or approximate circle) around m1 or m2. Examples of these

restricted 4-body models include the bicircular problem [7], the coherent quasi-bicircular

problem [8], and the Hill restricted 4-body problem [9]. Another common periodically-

perturbed PCRTBP model is the planar elliptic RTBP (PERTBP).

1.1.3 The Planar Elliptic Restricted 3-body Problem

The tools we develop in Chapters 3 and 4 of this dissertation are applicable to a wide variety

of Hamiltonian periodic perturbations as discussed in the previous section. However, in

this dissertation, we use the PERTBP for numerical demonstration of their usage. In the

PERTBP, m1 and m2 revolve around their barycenter in an elliptical Keplerian orbit of

nonzero eccentricity ε > 0. All other assumptions are the same as the PCRTBP. The length

unit is normalized such that the m1-m2 orbit semi-major axis is 1, and the period of the

primaries’ orbit remains 2π. This implies that the perturbation frequency Ωp = 1; hence,

we can take θp = t modulo 2π.

The PERTBP model we use is essentially the same as that used by [10], except for a

transformation from position-velocity to position-momentum coordinates and a restriction

to the xy-plane. The coordinate system is again such that m1 and m2 are always on the

x-axis with the origin at their barycenter. However, the distance between them is now
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time-periodic, with periapse at t = 0; this is different from the pulsating coordinates used

by [11]. The equations of motion are Eq. (1.5) with time-periodic Hamiltonian

Hε(x, y, px, py, t) =
p2x + p2y

2
+ n(t)(pxy − pyx)−

1− µ

r1
− µ

r2
(1.7)

where we have n(t) =
√
1−ε2

(1−ε cosE(t))2
, r1 =

√
(x+ µ(1− ε cosE(t)))2 + y2 and r2 =√

(x− (1− µ)(1− ε cosE(t)))2 + y2. E(t) is the 2π-periodic eccentric anomaly of the

elliptical m1-m2 orbit, and can be computed by solving the well-known Kepler’s equation

M = E − ε sinE using methods such as those in [2]. n(t) is the time derivative of the

m1-m2 true anomaly. From Eq. (1.5) and (1.7), we have px = ẋ−n(t)y and py = ẏ+n(t)x.

1.2 The Parameterization Method for Invariant Manifolds

The parameterization method is a general technique for the computation of many kinds

of invariant objects in dynamical systems, including invariant tori as well as stable and

unstable manifolds of fixed points, periodic orbits, and tori. It works in both Hamiltonian

as well as in non-Hamiltonian systems, although as we will see in Chapter 3, it is often

possible to take advantage of the special properties of the Hamiltonian case to enhance the

implementation. Haro et al. [12] describe several applications of this method. The essential

idea is that given a map F : M → M where M is some manifold, if we know that there

is an F -invariant object diffeomorphic to some model manifoldM, then we can solve for

an injective immersion W :M → M and a diffeomorphism f :M → M such that the

invariance equation

F (W (s)) = W (f(s)) (1.8)

holds for all s ∈ M. W is referred to as the parameterization of the invariant manifold,

and f as the internal dynamics on the model manifoldM. Eq. (1.8) means that F maps

the image W (M) into itself, so that W (M) is the invariant object in the full ambient space

M . In this dissertation, we will always have M = R4.
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1.3 Organization of this Dissertation

This thesis is based on a series of joint works with Dr. Rodney Anderson and Prof. Rafael

de la Llave. In Chapter 2, which is based on the paper [13], after investigating the per-

sistence of resonant periodic orbits in the PCRTBP, we leverage parameterization meth-

ods for accurate computation of their stable/unstable manifolds and heteroclinic connec-

tions. Chapter 3, based on [14], then considers the higher dimensional and more complex

case of periodically-forced PCRTBP models, developing methods for efficiently computing

whiskered tori (which unstable PCRTBP periodic orbits persist as) along with their center,

stable, and unstable bundles and stable/unstable manifolds. Finally, Chapter 4 presents

new algorithms for using manifold parameterizations and modern GPU-computing hard-

ware for very fast searches and accurate computation of heteroclinic connections between

tori, in spite of the high dimensionality involved. Most of Chapter 4 is based on [15].
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CHAPTER 2

HIGH-ORDER RESONANT ORBIT MANIFOLD EXPANSIONS FOR MISSION

DESIGN IN THE PCRTBP

2.1 Introduction

In recent years, resonant periodic orbits and their stable and unstable manifolds have seen

significant interest and use as a tool for trajectory design in multi-body systems. For in-

stance, Anderson and Lo [16] demonstrated that a planar version of a Europa Orbiter tra-

jectory designed in 1999 at JPL closely followed stable and unstable manifolds of unsta-

ble resonant periodic orbits during resonance transition. They also demonstrated [17] the

development of new trajectories using homoclinic and heteroclinic connections between

resonances. Resonant orbit manifold arcs were also used by Vaquero and Howell [18] to

design transfers from LEO to Earth-Moon libration point orbits. More recently, out of the

nine Titan-to-Titan encounters made by Cassini between July 2013 and June 2014, eight of

the nine resulting transfers involved resonances [19]. And even more recently, the baseline

mission design for the Europa Lander mission concept made profitable use of these mech-

anisms for the final approach to the surface of Europa [20]. For many other examples of

applications of resonant orbits, see Anderson, Campagnola, and Lantoine [21].

However, the methods used in the previously mentioned studies, as well as in others,

rely on using eigenvectors of the linearized dynamics as local approximations of the man-

ifolds. Since such approximations are not accurate except very close to the base invariant

object, this requires large amounts of numerical integration to globalize the manifolds and

locate intersections, which can decrease accuracy as integration errors add up over longer

integration times.

In this chapter, we study hyperbolic resonant periodic orbits in the planar circular re-
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stricted 3-body problem, and develop methods for accurately computing their manifolds

and transfer trajectories between them. We first use the standard Melnikov method [22]

to find Keplerian periodic orbits which survive for small values of the mass parameter µ.

This perturbative analysis is followed by numerical continuation to compute the orbits for

physically relevant µ values. We then implement the parameterization method [23, 12]

to compute high order polynomial approximations of the stable and unstable manifolds.

Finally, we develop an efficient method which combines the previously computed polyno-

mials with a Poincaré section and bisection to compute heteroclinic connections. We also

demonstrate application of these tools to the problem of transferring between resonances

in the Jupiter-Europa system.

2.1.1 Delaunay and Synodic Delaunay Coordinates

The PCRTBP model described in Section 1.1 admits a change of coordinates from (x, y, ẋ, ẏ)

to action angle coordinates,, which will be required for the first-order Melnikov analysis

carried out in Section 2.2 (all other computations in this study will be done in the synodic

cartesian coordinate frame). We summarize Celletti [5] here. Consider an inertial reference

frame centered at the primary body m1, and let m2 = 0. Recall that the planar two-body

problem in this coordinate frame can be expressed in Delaunay coordinates (L0, G0, ℓ0, g0),

which are closely related to the classical orbital elements. For a two-body orbit, angle ℓ0 is

the mean anomaly, angle g0 is the longitude of periapsis, and actions L0 and G0 are related

to the semi-major axis a and eccentricity e as follows:

L0 =
√
a G0 = L0

√
1− e2 (2.1)

Other texts generally write L0 =
√
Gm1a; however with our normalized units, Gm1 =

1 in the 2-body problem. In these coordinates, it can be shown that the evolution of
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(L0, G0, ℓ0, g0) is Hamiltonian with Hamiltonian function

H(L0, G0, ℓ0, g0) = −
1

2L2
0

(2.2)

and satisfies Hamilton’s equations of motion

dL0

dt
= −∂H

∂ℓ0
= 0

dG0

dt
= −∂H

∂g0
= 0 (2.3)

dℓ0
dt

=
∂H

∂L0

dg0
dt

=
∂H

∂G0

(2.4)

As expected, the actions are constant along trajectories, while only the angles (in fact,

only ℓ0) vary. If one now introduces a second large body of Gm2 = µ, then the system

Hamiltonian Eq. (2.2) becomes

H(L0, G0, ℓ0, g0) = −
1

2L2
0

+ µH1(L0, G0, ℓ0, g0, t) (2.5)

where the perturbation H1(L0, G0, ℓ0, g0, t) is

H1(L0, G0, ℓ0, g0, t) =
r1 cos(θ − t)

ρ22
− 1√

ρ22 + r21 − 2ρ2r1 cos(θ − t)
(2.6)

The quantity ρ2 is the constant distance from m2 to m1; with our normalized units, ρ2 = 1.

r1 as defined earlier is the distance from the spacecraft to m1. θ = g0 + f is the longitude

of the spacecraft, where f is the spacecraft instantaneous true anomaly. Note that r1 and f

are functions of L0, G0, and ℓ0.

Now, make a time-varying canonical change of variables (L,G, ℓ, g) = (L0, G0, ℓ0, g0−

t); the new variable g is the instantaneous longitude of periapsis of the spacecraft orbit

relative to the x-axis of the the synodic cartesian coordinate frame. Then, the Hamiltonian
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function from Eq. 2.5 and 2.6 becomes

H(L,G, ℓ, g) = − 1

2L2
−G+ µH1(L,G, ℓ, g) (2.7)

H1(L,G, ℓ, g) =
r1 cos(g + f)

ρ22
− 1√

ρ22 + r21 − 2ρ2r1 cos(g + f)
(2.8)

which is no longer time-varying. We henceforth refer to these new coordinates as synodic

Delaunay coordinates. Note that in these coordinates, for µ = 0, the actions L and G are

constant on trajectories, but

dℓ

dt
=

∂H

∂L
=

1

L3
= a−3/2 dg

dt
=

∂H

∂G
= −1 (2.9)

Since both angles are varying with time, even for µ = 0 (m2 infinitesimal, the two-body

problem), not all orbits are periodic in these synodic Delaunay coordinates. Only orbits

such that k1a−3/2 + k2(−1) = 0 for some k1, k2 ∈ Z will be periodic, with period 2πk1.

Note that a−3/2 is the mean motion of the spacecraft, and 1 is the mean motion of m2.

Hence, for µ = 0, an orbit in these coordinates is periodic if and only if the mean motions

of the spacecraft and m2 are rational multiples of each other. This is equivalent to there

being n,m ∈ Z such that in the inertial reference frame, the spacecraft makes n revolutions

around m1 in the time that m2 makes m revolutions around m1. In the two-body problem

(µ = 0), such orbits are defined as n : m resonant periodic orbits.

2.2 Persistence of Resonant Periodic Orbits

As described in Section 2.1.1, for µ = 0, in synodic Delaunay coordinates, the only peri-

odic orbits are n : m resonant periodic orbits, n,m ∈ Z. We are now interested in seeing

which of these periodic orbits survive the perturbation when µ > 0. For this, the pertur-

bative method of Melnikov [22] is useful here. Without going into a full derivation, the

essential theory is that given a periodic orbit x0(t) in the µ = 0 system, we can express
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solutions of the µ-dependent equations of motion (with initial condition xµ(0) = x0(0)) as

an expansion in powers of µ

xµ(t) = x0(t) + µx1(t) +O(µ2) (2.10)

where xµ(t) = (L(t, µ), G(t, µ), ℓ(t, µ), g(t, µ)) .

Denote the period of x0(t) by T = 2πm. The main conclusion of the Melnikov theory

is that if an initial condition x0(0) = (Li, Gi, ℓi, gi) can be found such that x1(T ) = x1(0)

in the perturbative expansion Eq. (2.10), then a true periodic orbit can be found near x0(0)

for µ small enough. This means that we can expect to be able to continue the µ = 0

periodic orbit x0(t) into µ > 0. Furthermore, if one fixes Li and Gi, and also (without loss

of generality) sets ℓi = 0, it can be shown that x1(T ) = x1(0) if and only if the Melnikov

function

M(gi) =

∫ 2πm

0

(
∂H0

∂ℓ

∂H1

∂L
− ∂H0

∂L

∂H1

∂ℓ

)
(Li, Gi,Ω(Li)t, gi − t) dt (2.11)

=

∫ 2πm

0

− 1

L3
0

∂H1

∂ℓ
(Li, Gi,

1

L3
i

t, gi − t) dt (2.12)

has simple zeros. If one of those zeros is at gi = gi,z, then we know that the periodic orbit

with initial condition x0(0) = (Li, Gi, 0, gi,z) persists in a perturbed form for µ > 0, albeit

with a possibly slightly different period. Hence, one studies the Melnikov function M(gi)

given in Eq. (2.11). Note that in the integral for M(gi), the integration of ∂H1

∂ℓ
occurs only

along the original, unperturbed periodic orbit.

One property of M(gi) is that it is an odd function, M(gi) = −M(−gi). To show this,

first note that

H1(L,G, ℓ, g) = H1(L,G,−ℓ,−g) (2.13)
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which then implies that

∂H1

∂ℓ
(L,G, ℓ, g) =

∂

∂ℓ
[H1(L,G,−ℓ,−g)]

= −∂H1

∂ℓ
(L,G,−ℓ,−g)

(2.14)

Hence, we find that (using s = −t below)

M(gi) =

∫ 2πm

0

− 1

L3
0

∂H1

∂ℓ
(Li, Gi,

1

L3
i

t, gi − t) dt

=

∫ −2πm

0

1

L3
0

∂H1

∂ℓ
(Li, Gi,−

1

L3
i

s, gi + s) ds

=

∫ 0

−2πm

− 1

L3
0

∂H1

∂ℓ
(Li, Gi,−

1

L3
i

s, gi + s) ds

(∗) =
∫ 2πm

0

− 1

L3
0

∂H1

∂ℓ
(Li, Gi,−

1

L3
i

s, gi + s) ds

(∗∗) =
∫ 2πm

0

1

L3
0

∂H1

∂ℓ
(Li, Gi,

1

L3
i

s,−gi − s) ds

= −M(−gi)

(2.15)

where line (∗) is because (Li, Gi,− 1
L3
i
s, gi + s) is a 2πm-periodic orbit, and the line (∗∗)

follows from Eq. (2.14). Hence, we have proven that M(gi) is odd, and therefore has a

zero at gi = 0.

We plotted M(gi) for several different resonances n : m. An example of such a plot

is shown in Fig. 2.1 for n = 3, m = 4, (a 3:4 resonant periodic orbit) with eccentricity

e = 0.5.

One thing to note is that M(gi) is 2π/n periodic when we take n,m coprime. This

periodicity is always present, as for an n : m resonant orbit the mean anomaly ℓ = 1
L3
i
t

is 2πm/n periodic. So, evolving the point (Li, Gi, ℓ = 0, gi) from t = 0 to t = 2πm/n

gives the point (Li, Gi, ℓ = 0, gi− 2πm
n
). Both points lie on the same periodic orbit, and so

integrating ∂H1

∂ℓ
from t = 0 to 2πm along the orbit starting from either point gives the same

final result. Integrating starting from the former point corresponds to M(gi), while starting
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Figure 2.1: Plot of M(gi) for 3:4 resonance, e = 0.5

from the latter corresponds to M(gi − 2πm
n
); hence M(gi) = M(gi − 2πm

n
). Since n,m

are coprime, this implies M(gi) = M(gi +
2π
n
).

However, as is clear from the previous explanation, this periodicity gives us no ad-

ditional useful zeros of M(gi); zeros differing by the quantity 2π/n are merely different

points on the same orbit, and therefore do not correspond to different persistent resonant

orbits. Hence, one can restrict the search for M(gi) = 0 to the interval gi ∈ [0, 2π/n).

Across many different values of n and m, apart from gi = 0, the only other zero found for

all tested cases was gi = π
n

. We have not analytically proven that M(π/n) = 0 for arbitrary

m,n, but the numerical evidence is strong.

In summary, we have found that the two relevant zeros of M(gi) for an n : m reso-

nant periodic orbit are gi = 0 and gi = π
n

. Hence, for µ > 0 small enough, it should

be possible to find periodic orbits close to the Keplerian orbits with initial conditions

(Li, Gi, ℓ = 0, g = 0) and (Li, Gi, ℓ = 0, g = π/n), where Li =
√
a should be chosen so

that the corresponding Keplerian orbit period satisfies the n : m resonance condition; Gi

should satisfy 0 < Gi < Li. Furthermore, as a consequence of the Poincaré-Birkhoff fixed

point theorem [24], one of these two orbits will have elliptic stability type and the other

should have hyperbolic stability. Intuitively, one expects the orbit corresponding to initial

conditions (Li, Gi, ℓ = 0, g = 0) to be the unstable, hyperbolic orbit, as this corresponds
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to the initial argument of periapse being aligned with a close flyby of m2. It is on resonant

orbits of this type that we concentrate now.

2.3 Computation of Resonant Periodic Orbits

With the persisting Keplerian resonant periodic orbits found, we next compute these surviv-

ing orbits and their periods for the full PCRTBP with physically relevant values of µ > 0.

Namely, for the Jupiter-Europa system we use µE = 2.5266448850435028 × 10−5, and

for Earth-Moon we used µM = 1.2150584270571545 × 10−2. To this end, a continuation

method was used, whereby the periodic orbits computed for smaller values of µ are used to

find an initial guess for the periodic orbit and period corresponding to a larger value of µ.

We start with a value of µ for which we wish to compute an n : m resonant orbit. We

set µ0 = 0, µ1 = µ/N , . . . , µk = kµ/N , . . . , µN = µ. We then seek to compute periodic

points xµk
and periods Tsc,µk

corresponding to the PCRTBP periodic orbit for mass ratio

value µk. xµ0 and Tsc,µ0 = 2πm are known from the Melnikov analysis; to simplify the

computations, we convert the initial condition xµ0 = (Li, Gi, ℓ = 0, g = 0) back to the

synodic cartesian coordinate frame (xi, yi, ẋi, ẏi) and carry out subsequent computations in

that frame.

To compute the xµk
and Tsc,µk

, we

1. Form an initial guess for (xµk
, Tsc,µk

) as

(xµk
, Tsc,µk

)guess = (xµk−1
, Tsc,µk−1

) + [(xµk−1
, Tsc,µk−1

)− (xµk−2
, Tsc,µk−2

)] (2.16)

except if k = 1, (xµ1 , Tsc,µ1)guess = (xµ0 , Tsc,µ0).

2. Solve for (xµk
, Tsc,µk

) using initial guess and the MATLAB function fsolve on the

equation

ΦTsc,µk
(xµk

)− xµk
= 0 (2.17)
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Figure 2.2: Continuation of 3:4, e = 0.3, g0 = 0 resonant orbit from µ = 0 (blue) to
µ = µM (red) with orbits for intermediate µ values shown in green.

where ΦTsc,µk
(xµk

) denotes the flow of xµk
by the equations of motion 1.1 and 1.2

by time Tsc,µk
.

3. Increase k by 1, and return to step 1 until k = N .

Note that Tsc,µk
must be allowed to vary in order to find periodic orbits for µ > 0. Also,

the solution of Eq. (2.17) is not unique for a given µk, as the value of the Hamiltonian

(Eq. (1.4)) is not fixed, nor is there a condition added to fix the phasing of the point on

a given periodic orbit. Nevertheless, the continuation was successful in continuing 100

different Keplerian resonant periodic orbits to µ = µE , and 32 different orbits to µ = µM .

We conjecture that for a given resonance n : m (and hence fixed semi-major axis a),

continuation of orbits with different values of eccentricity e yields final orbits at different

values of the Jacobi constant which can be computed from each other through continuation

by energy. Additionally, do note that there exist resonant periodic orbits for µ > 0 which

are not continuations of µ = 0 orbits [21].

An example of the continuation of a 3:4 resonant orbit with e = 0.3 in the Earth-Moon

system is shown in Fig. 2.2. The blue curve is the original Keplerian periodic orbit. The red

curve is the final computed periodic orbit for µ = µM , and the green curves are computed

orbits for some intermediate µ values.
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2.4 Parameterization of Invariant Manifolds

With the resonant periodic orbits and their periods computed for physically relevant values

of µ, we next turn our attention to accurate computation of the orbits’ stable and unstable

invariant manifolds. As mentioned in the introduction, generally current studies using man-

ifolds use linear approximations of invariant manifolds found by computing eigenvectors

of the monodromy matrix of the periodic orbit. However, in our case, we compute high or-

der (degree 25 to 50) Taylor polynomials which approximate the manifolds very accurately

within some domain of validity.

Consider a hyperbolic resonant periodic orbit in the PCRTBP containing periodic point

xµ and of period Tsc,µ. To simplify computations, instead of considering the equations of

motion 1.1 and 1.2, we instead consider the map F : R4 → R4 defined as the time-Tsc,µ

mapping by the equations of motion; using the notation established in the previous section,

this simply means F (x) = ΦTsc,µ(x).

We know that xµ is a fixed point of the map F , and hence the monodromy matrix

DF (xµ) represents the linearized dynamics around xµ. Since we are looking at a hyper-

bolic periodic orbit, DF (xµ) has one stable and one unstable eigenvalue, in addition to

two expected unit eigenvalues. Hence, we know that the stable and unstable manifolds of

the fixed point xµ of the full nonlinear map F will also be 1-dimensional. Note that if we

consider the full continuous-time flow and the periodic orbit, rather than the map F and its

fixed point xµ, the stable and unstable manifolds of the periodic orbit are 2-D. Specifically,

they are cylinders corresponding to the well-known “tube dynamics” [25]. The stable and

unstable manifolds of xµ under F will just be non-closed curves contained on the surface

of these cylinders; by integrating points from these curves by the equations of motion, one

can compute all the points on the cylindrical manifolds of the periodic orbit.

Remember that motion in our system is restricted to 3-D submanifolds of the state space

corresponding to energy level sets; hence, a given periodic orbit and its stable and unstable
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manifolds will all be contained within a 3-D submanifold. If we have two periodic orbits at

the same energy level, then the 2-D unstable manifold of the first orbit and the 2-D stable

manifold of the second orbit will also be contained within a 3-D submanifold. Hence, if

the manifolds intersect, they will generically intersect along a curve corresponding to a

heteroclinic trajectory. Our final goal is to compute these heteroclinic connections between

orbits.

However, computing 2-D manifolds of periodic orbits and their intersections requires

significantly more computational tools and power than for 1-D manifolds of fixed points.

Hence, we reduce the dimensionality of our problem through two steps. First of all, we

compute 1-D stable and unstable manifolds of the fixed point xµ of the map F , rather than

2-D manifolds of orbits. Second, we take a Poincaré surface of section (a 2-D submanifold

of the 3-D energy submanifold) passing through xµ and compute the 1-D intersection of

the 2-D stable and unstable manifolds with the surface of section; this is simply done by

propagating points from the 1-D manifolds of the fixed point xµ until their closest inter-

section with the section. These 1-D intersections of the periodic orbit manifolds with the

surface of section simply correspond to stable and unstable manifolds of the fixed point xµ

under the Poincaré return map.

2.4.1 The Parameterization Method for Invariant Manifolds

The parameterization method, as described in Section 1.2, is a general technique in dynam-

ical systems useful for the computation of several types of invariant geometric structures.

In this case, we seek to parametrize the 1-dimensional stable and unstable manifolds of

the fixed point xµ of F . Hence, continuing in the framework of Section 1.2, the ambient

manifold M = R4, the model manifoldM = R, and furthermore we can take f(s) = λs,

where λ is the stable or unstable eigenvalue of DF (xµ), depending on which manifold we
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are trying to compute. Thus, the equation to solve for the parameterization W (s) is

F (W (s))−W (λs) = 0 (2.18)

where s ∈ R. We express W as a Taylor series

W (s) = xµ +
∑
k≥1

Wk(s) (2.19)

where Wk(s) is a monomial of degree k in s. The constant term in W is xµ, and the

linear terms will be the stable or unstable eigenvector of DF (xµ) (we take unit length

eigenvectors). Hence we need to solve for the higher-order terms Wk(s), k ≥ 2.

Denote W<k(s) = xµ +
∑k−1

j=1 Wj(s). Assume that we have solved for all Wj(s) for

j < k, so that F (W<k(s))−W<k(λs) has only sk and higher order terms. Then, the method

to solve for Wk(s) is:

1. Find Ek(s) = [F (W<k(s))−W<k(λs)]k, where [·]k denotes the sk term of the RHS.

2. Solve for the sk term Wk(s) which when added to W<k(s) cancels Ek(s) in Eq.

(2.18).

−Ek(s) = DF (xµ)Wk(s)−Wk(λs)

=
[
DF (xµ)− λkI

]
Wk(s)

(2.20)

3. Set W<k+1(s) = W<k(s) +Wk(s) and return to step 1 until satisfied with the degree

of W

We start with k = 2 and proceed. We elaborate on the computation of the degree k mono-

mial Ek(s) from step 1 in Section 2.4.2. Eq. (2.20) can be derived from the requirement

[F (W<k(s) +Wk(s))− (W<k(λs) +Wk(λs))]k = 0 (2.21)
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where as before [·]k denotes taking the sk term of the quantity inside brackets. Expanding

the LHS in Taylor series and discarding terms of polynomial degree greater than k gives

[F (W<k(s))+DF (W<k(s))Wk(s)− (W<k(λs) +Wk(λs))]k (2.22)

= Ek(s) + [DF (W<k(s))Wk(s)−Wk(λs)]k (2.23)

= Ek(s) +DF (xµ)Wk(s)−Wk(λs) = 0 (2.24)

where the last line follows from the preceding one because one can divide sk out from

Ek(s), Wk(s), and Wk(λs), and then take s→ 0.

2.4.2 Computing Ek(s): Automatic Differentiation and Jet Transport

In step 1 of the parameterization method algorithm, we computed the quantity

Ek(s) = [F (W<k(s))−W<k(λs)]k (2.25)

W<k(s) is a degree k− 1 polynomial and λ is a constant, so the degree k term of W<k(λs)

is just 0. However, F is the nonlinear time-Tsc,µ mapping of phase space points by the

equations of motion 1.1 and 1.2; hence, computing F (W<k(s)) as a polynomial is not a

trivial matter. For this, the tools of automatic differentiation [12] and jet transport [26] are

useful.

Automatic differentiation is a technique which allows for rapid recursive evaluation

of operations on polynomials. For instance, given two polynomials f(x) and g(x), sup-

pose we wish to compute d(x) = f(x)/g(x) as a polynomial. We know that d(x) =

f(x)/g(x) ⇐⇒ f(x) = d(x)g(x); hence, using subscript j to denote the degree j coeffi-
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cient,

fk(x) =
k∑

j=0

dj(x)gk−j(x)

=
k−1∑
j=0

dj(x)gk−j(x) + dk(x)g0(x)

(2.26)

∴ dk(x) =
1

g0

(
fk(x)−

k−1∑
j=0

dj(x)gk−j(x)

)
(2.27)

We know that d0 = f0/g0, and using Eq. (2.27) with the known coefficients of f and g,

can recursively find dk(x), k ≥ 1. Similar recursive formulas exist for f(x)α as well as

many other functions [12]. The key property of all automatic differentiation formulas is

that the sk coefficient of the output depends only on the sk and lower order coefficients of

the operands. Hence, truncation of Taylor series for the purpose of implementation on a

computer does not affect the accuracy of the computed coefficients.

The utility of automatic differentiation is that it allows us to substitute polynomials such

as W<k(s) for (x, y, ẋ, ẏ) in the equations of motion 1.1 and 1.2 to get polynomials in s

for (ẋ, ẏ, ẍ, ÿ). In particular, let V (s, t) =
∑∞

i=0 Vi(t)s
i : R2 → R4 be a Taylor series-

valued function of time, with time-varying coefficients Vi(t). Denote the x, y, ẋ, and ẏ

components of V (s, t) as Vx(s, t), Vy(s, t), Vẋ(s, t), and Vẏ(s, t). Substituting V in the

equations of motion, we get the system of differential equations

d

dt
Vx(s, t) = Vẋ(s, t) (2.28)

d

dt
Vy(s, t) = Vẏ(s, t) (2.29)

d

dt
Vẋ(s, t) = 2Vẏ(s, t) + Vx(s, t)− (1− µ)

Vx(s, t) + µ

r1(s, t)3
− µ

Vx(s, t)− 1 + µ

r2(s, t)3
(2.30)
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d

dt
Vẏ(s, t) = −2Vẋ(s, t) + Vy(s, t)− (1− µ)

Vy(s, t)

r1(s, t)3
− µ

Vy(s, t)

r2(s, t)3
(2.31)

where r1(s, t) =
√

(Vx + µ)2 + V 2
y and r2(s, t) =

√
(Vx − 1 + µ)2 + V 2

y . For a given t,

the RHS of each equation can be simplified to a polynomial using automatic differentiation.

Hence, this can be interpreted as a differential equation for the polynomial coefficients of

each component of V (s, t); for each equation, one simply sets the time derivative of the

sm coefficient on the LHS to the sm coefficient on the RHS. Solving this equation with

initial condition V (s, 0) = W<k(s), we have that V (s, Tsc,µ) = F (W<k(s)), which is the

polynomial we need.

Hence, by treating the coefficients of W<k(s) as real parameters to be integrated from 0

to Tsc,µ, we can numerically integrate W<k(s) coefficient by coefficient to find F (W<k(s)).

This method of integrating a polynomial curve is known as jet transport; for more details,

see Perez-Palau [26]. The essential idea is to overload algebraic operations and numerical

integration routines with the ability to accept arrays of polynomial coefficients rather than

only floating point numbers. We can use truncated Taylor series in this algorithm since the

automatic differentiation formulas used for the evaluation of time derivatives are valid for

truncated series. Note that if we have an n-dimensional state (n = 4 in our case) and a

degree-d truncated series, then the integration required is n(d+ 1) dimensional.

2.4.3 Notes About Computation of Manifolds

The parameterization method, automatic differentiation, and jet transport described in the

preceding sections were implemented in programs written in C using the GSL library [27]

for the computation of stable and unstable manifolds. Fig. 2.3 gives an example of part of

the program output; in the order k step of the program, first Ek(s) = F (W<k(s))−W<k(λs)

is computed using the GSL rk8pd integrator for jet transport (denoted RK in Fig. 2.3).

Printing Ek(s) to the terminal, we see that the coefficients of order less than k are zero

as expected in each step. The final d degree polynomial W≤d(s) satisfies F (W≤d(s)) −
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j p l . n a s a . g o v

Example program output

Parametrizing Invariant Manifolds

"14

-----------------------------------------------------------------------------
Order 2 started
RK starting for order 2...RK done for order 2

Error polynomial R(s) = F(W(s)) - W(lambda*s) = 

0.000000+-0.000000*s^1+-14.018072*s^2

0.000000+-0.000000*s^1+-350.343947*s^2

-0.000000+-0.000000*s^1+-119.177120*s^2

-0.000000+0.000000*s^1+9.558964*s^2

-----------------------------------------------------------------------------
Order 3 started
RK starting for order 3...RK done for order 3

Error polynomial R(s) = F(W(s)) - W(lambda*s) = 

0.000000+-0.000000*s^1+0.000000*s^2+33.905013*s^3

0.000000+-0.000000*s^1+0.000000*s^2+783.828070*s^3

-0.000000+-0.000000*s^1+0.000000*s^2+347.191371*s^3

-0.000000+0.000000*s^1+-0.000000*s^2+-28.726170*s^3

Figure 2.3: Program Output
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W≤d(λs) = 0 up to polynomial terms of order d.

To optimize computational time and storage requirements, at the order k step, we only

store polynomial coefficients up to degree k in the automatic differentiation and jet trans-

port steps. This allows the jet transport to run much more quickly than it did when we

stored additional unnecessary terms. Also, note that if W (s) solves Eq. (1.8), then so does

W (αs) where α is an arbitrary constant. Hence, if the jet transport integration is struggling

to converge due to fast-growing coefficients of W (s), it helps to scale W (s) to W (αs)

by multiplying the eigenvector W1(s) by α < 1 and then restarting the parameterization

method algorithm from Section 2.4.1.

Finally, one last remark is that if one takes the original periodic point xµ to be on the

hyperplane y = 0, then using the time-reversal symmetry mentioned in Section 1.1.1, we

can see that the unstable manifold W u(s) can be found from the stable manifold W s(s)

simply by setting W u(s) = W s(s) and then multiplying the y and ẋ components of W u(s)

by −1. This enables us to save half of the computation time that computing both W s and

W u would have taken. Henceforth, we always take xµ on y = 0, and always use this

symmetry to compute the unstable manifolds.

2.4.4 Fundamental Domains of Parameterizations

Though the d degree polynomial parameterizations W≤d(s) of the stable and unstable man-

ifolds of xµ are expected to be much more accurate than their linear approximations, they

are still inexact and subject to some error. In addition, even if the polynomials could be

fully and exactly computed, they still will only be valid within some radius of convergence.

Hence, one must determine for which values of s ∈ R the polynomial W≤d(s) is an accurate

representation of the invariant manifold.

To do this, we fix an error tolerance, such as say Etol = 10−5 or 10−6. We then seek to

find what is referred to as the fundamental domain of W≤d(s). The fundamental domain is

defined as the maximum magnitude of s such that the error in invariance Eq. (1.8) is less
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than Etol. To be precise, we want a D ∈ R such that for all s such that |s| ≤ D,

∥F (W≤d(s))−W≤d(λs)∥ < Etol (2.32)

By computing the fundamental domains for over 60 resonant orbit stable manifolds, we

observed orders of magnitude improvement in fundamental domains for d = 25 compared

to d = 1. For linear parameterizations (d = 1), the domains of all test cases were on the

order of 10−4 at best, generally 10−5. However, for the degree-25 polynomial parameteri-

zations Wd≤25(s), most domains were on the order of 0.1 or even 1.

Note that if one scales Wd≤25(s) to W≤25(αs) with α < 1, then the fundamental domain

increases by a factor of α−1. Hence, whenever we compare domains between parameteriza-

tions, we always multiply the domain by any scale factor α used, so that valid comparisons

can be made.

2.4.5 Globalization and Visualization

With the fundamental domains computed, we now seek to use the manifold parameteri-

zation W (s) to find heteroclinic connections between different resonant periodic orbits.

Before we can accomplish this, it is useful to plot the intersection of the periodic orbits’

invariant manifolds with a Poincaré section. Additionally, we need to compute the mani-

fold W (s) for s values outside the fundamental domain, referred to as globalization. We

do these two tasks simultaneously.

In our case, the Poincaré section we use is a y = 0, x < 0 section; recall that the

Jacobi constant C is a constant of motion, so fixing the values of C and y restricts us to

a 2-D surface of section. We know that the curve W (s) computed earlier is an invariant

manifold for the F -fixed point xµ. The curve W (s) lies on the 2-D invariant manifold of

the resonant periodic orbit passing through xµ. Hence, if we seek to find the intersection

of this 2-D invariant manifold with the 2-D surface of section in the 3-D energy level
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submanifold, this will be a 1-dimensional curve which can be found by propagating points

from the curve W (s) to the section. As we are taking xµ to be on y = 0, only a short

forwards or backwards integration should be required at each point W (s).

Denote the point found by propagating W (s) to the surface of section as Wp(s). Hence-

forth, denote the forwards and backwards Poincaré maps by P+ and P−, respectively. Since

F (W (s)) = W (λs) (at least within Etol), we have that P+(Wp(s)) = Wp(λs), and that

Wp(s) is a curve representing the invariant manifold for the fixed point xµ under P+. In

practice, we take a discrete grid of s-values {si} from −D to D (the fundamental domain

value), and compute and store Wp(si) for each si. For each Wp(si), we plot the values

(x, ẋ) since given C and y = 0, this is sufficient to determine ẏ.

Note that we no longer have a polynomial representing the manifold on the Poincaré

section. Instead, we have an accurate grid of points of the manifold Wp(s). Computing

the polynomial representation of the manifold Wp(s) on the Poincaré section requires ex-

pansion of each coefficient of W (s) as a Taylor series in time under jet transport, followed

by the computation of the Poincaré return time as a polynomial in s and the composition

of the two polynomials, as is described by Perez-Palau [28]. Rather than carrying out this

complicated procedure, we chose to simply propagate a fine grid of points to the section.

Next, we compute the manifold Wp(s) for s values outside the fundamental domain.

For this, we now follow the usual process of globalization of invariant manifolds, which

is to propagate the fundamental domain [12]. Namely, we take the points Wp(si), and

propagate them to define Wp(s) at larger s-values using the equations

Wp(λs) = P+(Wp(s)) if λ > 1 (2.33)

Wp(s/λ) = P−(Wp(s)) if λ < 1 (2.34)

We then store the points of Wp(s) found and their corresponding s-values in a data file.

In practice, it is helpful to only count intersections such that ẏ has the same sign as ẏ at xµ.
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Figure 2.4: 3:4 W u (red) and 5:6 W s (blue) Poincaré Section for Jacobi Constant C =
3.0024

An example Poincaré section after globalization, with stable and unstable manifolds of 5:6

and 3:4 resonant orbits, respectively, is given in Fig. 2.4.

2.5 Computation of Heteroclinic Connections

With the stable and unstable manifolds of the PCRTBP resonant periodic orbits accurately

parametrized, globalized, and plotted on the Poincaré section, we now demonstrate how to

use the results of the previous computations to find heteroclinic connections between orbits.

From now on, denote W u
1 (su) and W s

2 (ss) as the intersections with the Poincaré section of

the stable and unstable manifolds of periodic orbits 1 and 2, respectively. Heteroclinic

connections from orbit 1 to orbit 2 correspond to intersections of the curves W u
1 and W s

2 .

We have the values of W u
1 (su) and W s

2 (ss) on the Poincaré section on a discrete grid of

su and ss values, say {su,i} and {ss,j}. W u
1 (su) and W s

2 (ss) are hence stored as sequences

of consecutive points {W u
1 (su,i)} and {W s

2 (ss,j)} whose (x, ẋ) values are plotted in the

Poincaré section. We seek to find su and ss such that W u
1 (su) = W s

2 (ss). To accomplish

this numerically, the first part of the algorithm is to:

1. Connect all consecutive (x, ẋ) points W u
1 (su,i) and W u

1 (su,i+1) by line segments
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Figure 2.5: False intersection (circled) removed upon refinement

(similarly for all W s
2 (ss,j) and W s

2 (ss,j+1))

2. Remove all line segments corresponding to discontinuities.

3. For each segment between points of W u
1 check for intersections with all segments of

W s
2

Step 2 is somewhat heuristic; to detect discontinuities, we checked if the quantity W u
1 (su,i+1)−

W u
1 (su,i) had large values, or if it was much larger in magnitude than W u

1 (su,i)−W u
1 (su,i−1)

(similar for W s
2 ). Also note that step 3 is easily parallelizable, and indeed benefits signifi-

cantly from doing so.

With the first part of the algorithm serving to find intersecting segments of points from

W u
1 and W s

2 , as well as the su and ss values corresponding to the endpoints, the next

part of the algorithm refines the estimate for su and ss satisfying W u
1 (su) = W s

2 (ss).

In particular, if an intersection is detected between the {W u
1 (a1),W

u
1 (b1)} segment and

{W s
2 (a2),W

s
2 (b2)} segment:

1. Find W u
1 (

a1+b1
2

) = P k
+(W

u
1 (λ

−k
u

a1+b1
2

)) where k is such that λ−k
u

a1+b1
2

is in the fun-

damental domain of the polynomial from which W u
1 was computed

2. Find W s
2 (

a2+b2
2

) = Pm
− (W s

2 (λ
m
s

a2+b2
2

)) where m is such that λm
s

a2+b2
2

is in the fun-

damental domain of the polynomial from which W s
2 was computed
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3. Form the segments {W u
1 (a1),W

u
1 (

a1+b1
2

)}, {W u
1 (

a1+b1
2

),W u
1 (b1)} and {W s

2 (a2),W
s
2 (

a2+b2
2

)},

{W s
2 (

a2+b2
2

),W s
2 (b2)}

4. Check for intersections between new segments. If found, return to step 1 with new

segment endpoints replacing old ones.

5. If no intersection found, check for intersections between new segments and other

segments on the same continuous curves in W u
1 and W s

2 . If found, return to step 1.

6. End bisection when |a1 − b1| and |a2 − b2| are small enough.

In steps 1 and 2, recall that W u
1 (λ

−k
u

a1+b1
2

) and W s
2 (λ

m
s

a2+b2
2

) are not given directly by

the polynomials computed using the parameterization method; however, they are found by

integrating points from the polynomials a short distance to the surface of section. Step 5 is

necessary because sometimes, when the segments are refined into two segments, intersec-

tions that previously existed can break. An example of how this can occur is shown in Fig.

2.5, where the manifolds shown are the same C = 3.0024 3:4 W u and 5:6 W s from Fig.

2.4.

2.6 Example Application to Resonance Transfer in the Jupiter-Europa System

The methodology described in previous sections is general, and can be applied to systems

with a variety of mass ratios µ. In particular, we successfully applied the parameteriza-

tion method, automatic differentiation, and jet transport to the computation of Taylor series

expansions of manifolds in both the Earth-Moon and Jupiter-Europa PCRTBP systems.

For the computation of heteroclinic connections, however, we focused our efforts on the

Jupiter-Europa system due to the variety of missions currently being planned for that sys-

tem, such as Europa Clipper [29], Europa Lander [20], and Jupiter Icy Moons Explorer

[30].

We used the tools developed in the previous sections for the computation of a 3:4 to

5:6 resonance transfer trajectory in the PCRTBP at the Jacobi constant value 3.0024. The
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Table 2.1: Initial conditions, periods, and eigenvalues for 3:4 and 5:6 resonant periodic
orbits at C = 3.0024.

5 : 6 3 : 4
x -1.231240907544348 -1.391929713356257
y 0.000000000000000 1.4178538082815e-18
ẋ 0.000000000000000 -2.9260154691618e-14
ẏ 0.371411618064504 0.609863420586548

Tsc 38.328135171743014 25.338526603095760
λs 0.001256465177783 0.011341070996024
λu 795.8835769446018 88.175093899915780

initial conditions, periods Tsc, and monodromy matrix eigenvalues corresponding to each

periodic orbit are given in Table 2.1.

Using the parameterization method described in Section 2.4.1, we obtained degree 50

Taylor polynomial expansions representing the stable manifolds of the points in Table 2.1

under the time Tsc map by the equations of motion. By the PCRTBP time-reversal sym-

metry, we also obtain the unstable manifolds. Next, upon computation of the fundamental

domains of these polynomials (using Etol = 10−5), we found that the domain for the 5:6

orbit polynomial was approximately 0.9904, while that for the 3:4 orbit was approximately

0.7146. The globalization and Poincaré section visualization routine described in Section

2.4.5 was then applied to the computed polynomials. Globalization is necessary as the man-

ifold parameterizations, when propagated to the Poincaré section, do not intersect within

the fundamental domain values of the parameters.

As before, we denote W u
3:4 and W s

5:6 as being the unstable and stable manifolds of the

Poincaré map fixed points corresponding to the 3:4 and 5:6 orbit points from Table 2.1.

The computed Poincaré section with W u
3:4 and W s

5:6 was shown earlier in Fig. 2.4. With the

Poincaré section points computed and stored for both W u
3:4 and W s

5:6, we then proceeded to

compute heteroclinic connections using the bisection method described in Section 2.5.

6 intersections between segments of consecutive stored W u
3:4 and W s

5:6 points were ini-

tially detected; however, upon refining the segments through the algorithm from Section

2.5, 3 preliminary intersections were found to be spurious. The coordinates of the 3 com-

30



Table 2.2: Computed Heteroclinic Connection Points and corresponding ss, su Values

1 2 3
x -1.2265598 -1.2230160 -1.1110838
y -4.101840e-14 -1.989706e-14 5.780044e-15
ẋ -0.060806259 -0.063340619 -0.10187786
ẏ 0.35908692 0.35309042 0.14762036
ss -301.609248 -295.877551 14.24735921
su -3785.98948 -3706.35853 -3874.28227

puted actual connections are given in Table 2.2. Fig. 2.6 shows how the program refined

the Poincaré section in the neighborhood of each computed intersection in order to pre-

cisely compute the heteroclinic connection point. Finally, Fig. 2.7 shows the trajectory

corresponding to the third heteroclinic connection point from Table 2.2, with the start 3:4

periodic orbit shown in red and the destination 5:6 periodic orbit shown in blue.

Note that our approach of using high order parameterizations of invariant manifolds

to compute heteroclinic connections bears some similarity with prior studies; for instance,

James and Murray [31] parameterized manifolds of periodic orbits using high order Chebyeshev-

Taylor series, using the resulting 2D parameterizations to find connecting orbits. However,

our study avoids dealing with 2D manifolds by using a Poincaré section to reduce the di-

mensionality of the problem, without sacrificing the accuracy which comes from using high

order manifold expansions.

2.7 Conclusions

In this chapter, we studied the persistence of resonant periodic orbits in the PCRTBP, and

subsequently demonstrated the application of the parameterization method for the compu-

tation of high-order expansions of resonant orbit invariant manifolds. We also then demon-

strated how to use the resulting polynomials to calculate useful heteroclinic connections.

We were able to develop tools to find polynomial approximations of resonant orbit stable

and unstable manifolds of degree 25 or even higher; these expansions resulted in a 1000x

improvement in the domains of accuracy of the manifold representations as compared to
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Figure 2.6: Examples of Approximate Intersections (Left) and Computed Heteroclinic
Connections (Right, Circled) for 3:4 to 5:6 Resonance Transfer at Jacobi Constant C =
3.0024 (W u

3:4 red and W s
5:6 blue)

32



-1.5 -1 -0.5 0 0.5 1 1.5
x (dimensionless)

-1.5

-1

-0.5

0

0.5

1

1.5

y 
(d

im
en

si
on

le
ss

)

Europa

Jupiter

Figure 2.7: Trajectory Corresponding to Heteroclinic Connection 3 from Table 2.2

just using linear approximations.

The tools developed were tested in the Jupiter-Europa system, with the calculations of

the manifolds and connections taking only a few minutes on a laptop for a given pair of

resonances. The manifold polynomials were used to successfully compute several con-

nections corresponding to 3:4 to 5:6 resonance transition, demonstrating the usefulness of

these parameterizations for mission design.
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CHAPTER 3

RAPID AND ACCURATE METHODS FOR COMPUTING WHISKERED TORI

AND THEIR MANIFOLDS IN PERIODICALLY PERTURBED PCRTBP

MODELS

3.1 Introduction

Numerous studies have been carried out in recent years where quasi-periodic orbits of var-

ious restricted 3 or 4-body models have been computed and used for applications to space

mission design. For instance, [32] studied periodic and quasi-periodic orbits in the phase

space of the Augmented Hill 3-Body problem near the L1 and L2 libration points. [33]

applied collocation methods to the computation of invariant tori near L1 and L2 in both

spatial circular restricted 3-body problem (CRTBP) as well as periodically-perturbed pla-

nar CRTBP models. And looking further in the past, the book series of [34] presented

many other computational methods and applications for quasi-periodic orbits near libration

points. However, all of these studies, as well as almost all other prior research, use meth-

ods of computing tori which require solving large-dimensional linear systems of equations

at each step of the differential correction. Furthermore, while the quasi-periodic orbits

are computed successfully using those methods, stability information including stable and

unstable directions must be computed separately. Also, in most prior work, these linear

stable/unstable directions are directly used as approximate local stable/unstable manifolds

for the tori, neglecting higher order terms and thus losing accuracy.

Another characteristic of the vast majority of prior research, including the previously

mentioned studies, is that the analysis focuses on tori associated with the libration points,

such as Lissajous or quasi-halo orbits. [35] did compute invariant tori near stable resonant

periodic orbits in the planar circular restricted 3-body problem (PCRTBP), but the tori
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computed are stable, without stable or unstable manifolds. Unstable resonant periodic

orbits and their stable and unstable manifolds are known to be important mechanisms of

dynamical transport in the interior and exterior realms of the CRTBP [36], and these orbits

have seen significant interest and use as a tool for trajectory design in multi-body systems.

For example, out of the nine Titan-to-Titan encounters made by Cassini between July 2013

and June 2014, eight of the nine resulting transfers involved resonances [19]. More recently,

the baseline mission design for the Europa Lander mission concept made profitable use of

these mechanisms for the final approach to the surface of Europa [20]. For further examples

and more background on resonant orbits, see [21].

In this study, we develop efficient algorithms which enable simultaneous computation

of not only unstable invariant tori, but also of their center, stable, and unstable bundles (di-

rections) in periodically perturbed PCRTBP models. Solving for bundles alongside the tori

actually allows us to avoid solving large linear systems, thus improving the algorithmic ef-

ficiency of our method compared to tori-only methods used in previous investigations. We

apply our tools to the computation of unstable tori and bundles near PCRTBP resonances,

using the Jupiter-Europa planar elliptic RTBP as the dynamical model for demonstration

and a solution tolerance of 10−7. Next, we use the results of the preceding step to start a

recursive parameterization method [23, 37, 12] for the computation of high order Fourier-

Taylor approximations of the stable and unstable manifolds of the tori. We demonstrate

improvements in manifold accuracy as compared with the linear manifold approximations

used in other studies; these parameterizations can also be differentiated, which is useful for

computing intersections of manifolds. Finally, we develop a Levi-Civita regularization for

the equations of motion, which is used to globalize the parameterized manifolds even when

they pass through singularities of the equations of motion.
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3.2 Resonant Periodic Orbits

Before starting on the development of our algorithms, we reiterate some properties of res-

onant orbits, discussed in Chapter 2, which are relevant for the discussion to follow. Mean-

motion resonances are PCRTBP periodic orbits which, by definition, persist from elliptical

orbits of the Kepler problem, and hence are not in the center manifold of any of the libration

points. Their main characteristic is that their orbital periods are nearly rational multiples

of 2π, the period of m1-m2 motion (the periods become exact rational multiples of 2π as

µ→ 0). A family of resonant periodic orbits is characterized by a ratio m : n, m,n ∈ Z+.

This notation means that in an inertial reference frame, the spacecraft makes approximately

m revolutions about m1 in the time that m1 and m2 revolve n times around their barycenter.

For a given resonance m : n in the PCRTBP with µ > 0, there typically exist one stable

and one unstable resonant periodic orbit inside the submanifold H0(x, y, px, py) = E, for

each fixed value of E in some interval of energy values [Emin, Emax] [13]. This gives us

continuous families of stable and unstable resonant periodic orbits; the periods of the orbits

within a given family vary with E. The unstable resonant periodic orbits have monodromy

(Floquet) matrix eigenvalues 1, 1, λs, and λu = λ−1
s , where |λs| < 1. Thus, there are

2D stable and unstable manifolds attached to the unstable resonant periodic orbits. These

manifolds serve as low-energy pathways to and from these periodic orbits. Furthermore,

the manifolds of different resonances at the same energy level can intersect in the PCRTBP,

giving heteroclinic connections which allow for propellant-free resonance transitions.

3.3 Normally Hyperbolic Invariant Manifolds and Existence of Tori

As discussed in Section 3.2, for each value of E in some interval of energy values [Emin, Emax],

there exists one unstable m : n resonant periodic orbit in the PCRTBP. Each of these pe-

riodic orbits is diffeomorphic to a circle T. Now, consider the union of all the unstable

m : n resonant periodic orbits for all values of E ∈ [Emin, Emax]. The resulting set is a 2D
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manifold Ξ diffeomorphic to T × [0, 1] in the 4D PCRTBP phase space. Furthermore, at

each point of Ξ, there are stable and unstable directions transverse to the manifold, which

come from the stable and unstable eigenvectors of the periodic orbits which make up this

manifold. Since the phase space is 4D and Ξ is 2D, at any point of Ξ, the stable and unstable

directions together with the 2D manifold tangent space span the entire phase space. This

means that Ξ is a normally hyperbolic invariant manifold (NHIM) of the PCRTBP flow; in

fact, any family of unstable PCRTBP periodic orbits forms such a NHIM. For a rigorous

definition of NHIMs for flows, see [38].

NHIMs are important because they persist under sufficiently small perturbations of the

equations of motion [38]; as our numerical results later in this chapter will demonstrate,

the perturbations we study are indeed “sufficiently small”. However, to apply this NHIM

persistence result to our case of time-periodic perturbations, the original and perturbed

systems must be defined on the same phase space. Hence, we take the PCRTBP from

its original 4D phase space (x, y, px, py) to the 5D extended phase space (x, y, px, py, θp),

θp ∈ T. We define θ̇p = Ωp for the unperturbed PCRTBP in extended phase space, while

x, y, px, and py still follow Equations (1.3) and (1.4). Hence, periodic orbits of period T1

from the original 4D PCRTBP phase space become 2D quasi-periodic orbits in the PCRTBP

defined on the extended phase space, with one of the frequencies being Ω1 = 2π/T1 and

the other being Ωp, unless Ω1/Ωp is rational. The NHIM Ξ from the original phase space

becomes the NHIM Ξ̄ = Ξ× T in the extended phase space due to the extra angle. Hence,

Ξ̄ is diffeomorphic to T2 × [0, 1].

Now, since the PCRTBP and its NHIM have been transferred to the same extended

phase space as the periodically-perturbed models, we can conclude that for ε > 0 suffi-

ciently small, Ξ̄ will persist as a NHIM Ξ̄ε of the perturbed equations of motion (1.5) and

(1.6). Ξ̄ε will be diffeomorphic to Ξ̄ and hence also to T2× [0, 1]. Furthermore, note that Ξ̄

in the extended phase space PCRTBP is foliated by 2D invariant tori, since Ξ was foliated

by periodic orbits. From KAM theory [39], we can expect that inside Ξ̄ε, the invariant tori
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from Ξ̄ with sufficiently non-resonant frequencies Ω1 and Ωp will also persist after pertur-

bation with only small gaps between them. Hence, we will focus this study on these 2D

tori in the periodically-perturbed PCRTBP models.

3.3.1 Stroboscopic Maps, NHIMs, and Invariant Circles

Any 2D invariant torus in the periodically-perturbed PCRTBP extended phase space can be

parameterized as the image of a function of two angles K2 : T2 → R4×T. A quasi-periodic

trajectory x(t) lying on this torus can be expressed as

x(t) = K2(θ, θp) θ = θ0 + Ω1t, θp = θp,0 + Ωpt (3.1)

where θ0 and θp,0 are determined from the initial condition x(0), and Ω1 = 2π/T1, where

T1 is the period of the PCRTBP periodic orbit associated with the torus. θp is the same

perturbation phase angle defined in Section 1.1.2, so one of the two torus frequencies will

be Ωp. We can then define the stroboscopic map Fε : R4×T→ R4×T as the time-2π/Ωp

mapping of extended phase space points by the equations of motion (1.5) and (1.6) with

perturbation parameter ε. We find that

Fε(K2(θ, θp)) = K2(θ + ω, θp), where ω = 2πΩ1/Ωp (3.2)

since the angle θp advances by 2π in the time 2π/Ωp and is therefore invariant under Fε.

Hence, we can fix θp (for our PERTBP test case we choose θp = 0), and then define

K(θ) = K2(θ, θp). Then, Eq. (3.2) becomes

Fε(K(θ)) = K(θ + ω) (3.3)

By ignoring the last fixed θp component of the extended phase space and a slight abuse of

notation, we can consider Fε : R4 → R4 and K : T→ R4.

38



Eq. (3.3) implies that K parameterizes an invariant 1D torus of the map Fε. It is

significantly more computationally efficient to compute 1D invariant tori (invariant circles)

K of the map Fε in 4D phase space than 2D tori K2 of the flow in the 5D extended phase

space. The reason for this is that the reduction in the dimension of the torus helps mitigate

the curse of dimensionality (see remark 3.3.1). Hence, from this point onwards, we will

consider the map Fε and its invariant circles and manifolds, rather than invariant objects of

the continuous time flow. Similar approaches are also used by [40] and [41]. Note that the

computation of Fε is just the integration of an ODE.

As a final note, the stroboscopic map allows us to use the theory of NHIMs of maps

[38, 42] to understand the presence of invariant circles in periodically-perturbed PCRTBP

models. In particular, note that unstable periodic orbits of the unperturbed PCRTBP are

also unstable invariant circles of the map Fε=0. Hence, the PCRTBP flow NHIM Ξ defined

at the beginning of Section 3.3 is also a NHIM of the map Fε=0. Just as in the case of

flows, the theory shows that NHIMs of maps persist under sufficiently small perturbations

of the map. Hence, for sufficiently small ε > 0, Ξ will persist as a NHIM Ξε of Fε, with

Ξε diffeomorphic to Ξ and hence also to T × [0, 1]. Furthermore, since Ξ is foliated by

invariant circles whose rotation numbers satisfy a twist condition, KAM theory [39] tells

us that that the invariant circles with sufficiently irrational rotation number ω persist inside

Ξε for ε > 0.

Remark. The evaluation of Fε can be computationally expensive. Hence, one may won-

der if the dimension reduction actually helps the computation efficiency or not. However,

the problems of propagating in time and computing the tori are numerically very different;

while numerical integration remains very feasible for all the values of ε, tori can break

down for larger values of the parameter. Hence, the flow torus parameterization K2 has

very anisotropic regularity and behavior. It remains extremely smooth in the flow direc-

tion, but in the transversal direction, it may lose differentiability. Using algorithms that

recognize this effect is advantageous.
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Also, the problem of integrating ODE’s has been extensively studied over many years

and there are many efficient algorithms that can be tried, including adaptive algorithms

that use smaller step sizes on small spots where the equation is stiff. However, computing

the 2D torus parameterization K2 requires a uniform grid discretizing T2, which would

result in unnecessarily large numbers of discretization points throughout the trajectory. For

our algorithm, the operation count is close to linear in the number of grid points, so the

cost of adding one more dimension would be significant. Finally, also note that numerically

integrating a grid of points is very readily parallelizable by assigning each trajectory to a

thread.

3.4 A Parameterization Method for Computing Invariant Tori and Bundles

In this section, we develop and implement a parameterization method for the simultaneous

computation of unstable invariant tori as well as their center, stable, and unstable directions,

also known as bundles, for stroboscopic maps of periodically-perturbed PCRTBP models.

The method works both for tori with cylindrical stable/unstable bundles as well as for those

whose bundles are Möbius strips (see Section 3.4.8). We present the analytical details and

derivation of the method, as well as the considerations required for its discretization and

numerical implementation in a computer program. Our method is broadly inspired by those

of [12], except for the additional presence of a center bundle which is not considered by

them and requires extra calculations. A different but conceptually related method can also

be found in the work of [43].

3.4.1 Equations for Parameterization Method for Invariant Tori and Bundles

For notational convenience, denote the stroboscopic map Fε from Section 3.3.1 as F from

now on. Assume we are computing an ε > 0 invariant circle corresponding to a PCRTBP

periodic orbit of known period T1; this fixes the rotation number ω = 2πΩ1/Ωp since

Ω1 = 2π/T1. As given in Eq. (3.3), we wish to find a parameterization K : T→ R4 of the
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F -invariant circle satisfying the torus invariance equation

F (K(θ)) = K(θ + ω) (3.4)

Eq. (3.4) is equivalent to the framework of Section 1.2 with M = R4, M = T, and

f(s) = s + ω. In addition, for our quasi-Newton method, we will add another equation to

be solved for matrix-valued periodic functions P (θ), Λ(θ) : T→ R4×4 such that

DF (K(θ))P (θ) = P (θ + ω)Λ(θ) (3.5)

Furthermore, we mandate that Λ(θ) has the form

Λ(θ) =



1 T (θ) 0 0

0 1 0 0

0 0 λs(θ) 0

0 0 0 λu(θ)


(3.6)

for some functions T (θ), λs(θ), λu(θ) : T → R to be solved for. The form of Eq. (3.6) is

motivated by geometric considerations that we will detail in Section 3.4.2.

As will be explained at the end of Section 3.4.4, solving simultaneously for K, P , and

Λ is actually more efficient than solving for K alone; the quasi-Newton method we will

present for solving Eq. (3.4)-(3.5) uses the near-diagonal form of Λ to decouple the linear

system of equations we get in each differential correction step. The method will require

only algebraic operations, phase shifts, and the solving of 1D equations for scalar-valued

functions.

3.4.2 Understanding the P and Λ Matrices

In addition to their numerical utility, P and Λ have a geometric significance which will be

useful when computing stable and unstable manifolds later on. Since K is contained in
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the 2D normally hyperbolic invariant manifold Ξε defined at the end of Section (3.3.1), we

know that there are tangent, center, stable, and unstable directions to the torus at each point

K(θ). The columns of P will be these four vector bundles, with λs(θ) and λu(θ) set to the

stable and unstable multipliers for the corresponding bundles. To see why, consider Eq.

(3.5) column by column.

Let vt(θ),vc(θ), vs(θ), and vu(θ) denote the first, second, third, and fourth columns of

P (θ), respectively. Then, Equations (3.5) and (3.6) are equivalent to

DF (K(θ))vt(θ) = vt(θ + ω) (3.7)

DF (K(θ))vc(θ) = T (θ)DK(θ + ω) + vc(θ + ω) (3.8)

DF (K(θ))vs(θ) = λs(θ)vs(θ + ω) (3.9)

DF (K(θ))vu(θ) = λu(θ)vu(θ + ω) (3.10)

First of all, note that Eq. (3.9)-(3.10) are the definition of stable and unstable bundles vs(θ)

and vu(θ) and multipliers λs(θ) and λu(θ) for the torus K. Hence, the third and fourth

columns of P satisfy Eq. (3.5) if and only if they are torus stable and unstable bundles,

respectively. Also, differentiating Eq. (3.4) gives

DF (K(θ))DK(θ) = DK(θ + ω) (3.11)

which shows that vt(θ) = DK(θ) solves Eq. (3.7). As a result, the first column of P can

be set as the torus tangent bundle DK(θ); in fact, if Eq. (3.5) has a solution, it is easy to

show that column 1 of P must be αDK(θ) for some α ∈ R.

Finally, since F is a Hamiltonian flow map and hence is symplectic, given K(θ), vs(θ),

and vu(θ), we can find vc(θ) solving Eq. (3.8) for some function T : T→ R; we postpone

the description and proof of how to compute such a vc(θ) to Section 3.4.8 where the method

will be used. Any such vc(θ) is known as a symplectic conjugate to DK(θ), and is a

42



center direction to the torus K [44]. Hence, column 2 of P satisfies Eq. (3.5) if and only

if it is a symplectic conjugate center bundle. We should note that Eq. (3.5) is actually

underdetermined; symplectic conjugates are not unique, and we can change the scales of

the stable and unstable bundles at each θ; we will take advantage of this in Section 3.4.7 to

make Λ constant.

3.4.3 Summary of Steps for Quasi Newton-Method for Tori and Bundles

We will now develop our quasi-Newton method for solving Eq. (3.4) and (3.5). Before

presenting the details of the method, we give a brief overview. Assume we have an approx-

imate solution (K,P,Λ) for Eq. (3.4)-(3.5). Then, we will

1. Compute E(θ) = F (K(θ))−K(θ+ω), Ered(θ) = P−1(θ+ω)DF (K(θ))P (θ)−Λ(θ)

2. Solve −P−1(θ + ω)E(θ) = Λ(θ)ξ(θ) − ξ(θ + ω) for ξ : T → R4 using Eq. (3.17)-

(3.20) and set K(θ) equal to K(θ) + P (θ)ξ(θ) (details given in Section 3.4.4).

3. Set column 1 of P (θ) to DK(θ). Recompute DF (K(θ)) and Ered(θ).

4. Solve −Ered(θ) = Λ(θ)Q(θ) − Q(θ + ω)Λ(θ) − ∆Λ(θ) for Q : T → R4×4 and

∆Λ using Eq. (3.32)-(3.43). Set P (θ) equal to P (θ) + P (θ)Q(θ) and Λ(θ) equal to

Λ(θ) + ∆Λ(θ) (details given in Section 3.4.5).

5. Return to step 1 and repeat correction until E and Ered are within tolerance.

3.4.4 Quasi-Newton Step for Correcting K

We seek to solve Eq. (3.4) and (3.5) for K, P , and Λ. All the entries of Λ are fixed as 0 or

1 as shown in Eq. (3.6) except for T (θ), λs(θ), and λu(θ). We will now derive an iterative

step that, given an approximate solution (K,P,Λ) of Eq. (3.4) and (3.5), produces a much

more accurate one. Define the errors

E(θ) = F (K(θ))−K(θ + ω) (3.12)
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Ered(θ) = P−1(θ + ω)DF (K(θ))P (θ)− Λ(θ) (3.13)

We then need to find corrections ∆K, ∆P , and ∆Λ to cancel E and Ered. We start with

∆K; write ∆K(θ) = P (θ)ξ(θ). We will solve for ξ : T→ R4 satisfying

η(θ)
def
= −P−1(θ + ω)E(θ) = Λ(θ)ξ(θ)− ξ(θ + ω) (3.14)

Claim. For ω sufficiently irrational and E and Ered sufficiently small, if ξ solves Eq. (3.14),

then adding ∆K = Pξ to K reduces the error E quadratically.

Remark. We use the phrase “sufficiently irrational” when describing conditions on ω that

ensure the validity of our quasi-Newton method. For those aware of KAM theory, what we

mean by this is that ω is Diophantine, as most numbers are [45]. This condition is useful

due to the classic small-divisors problem when solving cohomological equations (see Eq.

(3.24)).

Proof. Substitute K(θ) + ∆K(θ) into the RHS of Eq. (3.12). Assuming that ∆K is small

enough (true for E sufficiently small and ω sufficiently irrational), we can expand Eq.

(3.12) in Taylor series to get

Enew(θ) = F (K(θ) + ∆K(θ))− [K(θ + ω) + ∆K(θ + ω)]

=F (K(θ)) +DF (K(θ))∆K(θ) +O(∆K(θ)2)− [K(θ + ω) + ∆K(θ + ω)]

=E(θ) +DF (K(θ))∆K(θ)−∆K(θ + ω) +O(∆K(θ)2)

(3.15)

∆K = Pξ, and Eq. (3.13) implies DF (K(θ))P (θ) = P (θ + ω) [Λ(θ) + Ered(θ)]. Thus,

Enew(θ) = E(θ) +DF (K(θ))P (θ)ξ(θ)− P (θ + ω)ξ(θ + ω) +O(ξ(θ)2)

= E(θ) + P (θ + ω) [Λ(θ)ξ(θ) + Ered(θ)ξ(θ)− ξ(θ + ω)] +O(ξ(θ)2)

= P (θ + ω)Ered(θ)ξ(θ) +O(ξ(θ)2)

(3.16)

where the last line follows from Eq. (3.14). For ω sufficiently irrational, ξ will be similar
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in magnitude to E, so Ered(θ)ξ(θ) will be quadratically small, comparable to Ered(θ)E(θ).

Hence, as long as E (and hence ξ and ∆K) are small enough that the Taylor expansion in

Eq. (3.15) is valid, and the O(ξ2) terms of the Taylor expansion are small, the new error

Enew will be quadratically smaller than E.

To solve Eq. (3.14), let ξ(θ) =
[
ξ1 ξ2 ξ3 ξ4

]T
and η(θ) =

[
η1 η2 η3 η4

]T
. As

Λ is nearly diagonal, we can write Eq. (3.14) component-wise as

η1(θ)− T (θ)ξ2(θ) = ξ1(θ)− ξ1(θ + ω) (3.17)

η2(θ) = ξ2(θ)− ξ2(θ + ω) (3.18)

η3(θ) = λs(θ)ξ3(θ)− ξ3(θ + ω) (3.19)

η4(θ) = λu(θ)ξ4(θ)− ξ4(θ + ω) (3.20)

Fixed-Point Iteration: Solving for ξ3 and ξ4

To solve for ξ3 and ξ4, rewrite Equations (3.19) and (3.20) in the form

ξ3(θ) = λs(θ − ω)ξ3(θ − ω)− η3(θ − ω)
def
= [A(ξ3)](θ) (3.21)

ξ4(θ) = λ−1
u (θ) [η4(θ) + ξ4(θ + ω)]

def
= [B(ξ4)](θ) (3.22)

We define A as a map from functions to functions, which sends any f(θ) : T → R to

the new function [A(f)](θ) = λs(θ − ω)f(θ − ω) − η3(θ − ω); B is defined similarly

using Eq. (3.22). To find ξ3 and ξ4, let ξ3,0 = ξ4,0 = 0 and iterate ξ3,n+1 = A(ξ3,n) and

ξ4,n+1 = B(ξ4,n) repeatedly, starting at n = 0. The iterations will converge to the desired

solutions ξ3 and ξ4 of Eq. (3.21) and (3.22). We now explain why.

Lemma 1. A, B are contraction maps, hence the iterations ξ3,n+1 = A(ξ3,n), ξ4,n+1 =

B(ξ4,n) uniformly converge exponentially fast as n→∞ to the solutions ξ3 and ξ4.

Proof. Note that |λs(θ)| < 1 and |λ−1
u (θ)| < 1 for all θ ∈ T. Let f1, f2 : T → R be two
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continuous functions, and define C = maxθ∈T |λs(θ)| < 1. We have that

max
θ∈T
∥[A(f1)](θ)− [A(f2)](θ)∥

= max
θ∈T
∥λs(θ − ω)f1(θ − ω)− λs(θ − ω)f2(θ − ω)∥

≤ Cmax
θ∈T
∥f1(θ − ω)− f2(θ − ω)∥ = Cmax

θ∈T
∥f1(θ)− f2(θ)∥

(3.23)

As C < 1, A is a contraction map under the uniform norm; the same can be shown for

B very similarly. The contraction mapping theorem [46] tells us that every such map has

a unique fixed point; furthermore, the fixed point can be found by iterating any value in

the domain of the map forwards until convergence. The solutions of Equations (3.21) and

(3.22) are by definition the fixed points of contraction maps A and B. Hence, the iterations

converge to ξ3 and ξ4.

Remark. If λs and λu are constant, Fourier methods (see Section 3.4.4) can also be used to

solve Eq. (3.19)-(3.20). This is useful if λs, λu ≈ 1. When using the quasi-Newton method

for continuation, one can ensure constant λs, λu throughout the correction by applying

the procedure of Section 3.4.7 to the solution K,P,Λ used for continuation initialization,

and following the instructions in Remark 3.4.5 when correcting P,Λ during each quasi-

Newton step. We did not ensure constant λs, λu in our algorithm implementation, and used

fixed-point iteration instead.

Cohomological Equations: Solving for ξ1 and ξ2

We next solve Eq. (3.18) for ξ2, which is then used in the LHS of Eq. (3.17) to solve for

ξ1. In both cases, we must solve cohomological equations of form

b(θ) = a(θ)− a(θ + ω) (3.24)
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where b is known and a is not. This can easily be solved by Fourier series; let â(k) and

b̂(k) be the kth Fourier coefficients of a and b. Then, Eq. (3.24) becomes

∑
k∈Z

b̂(k)ejkθ =
∑
k∈Z

â(k)ejkθ −
∑
k∈Z

â(k)ejk(θ+ω) =
∑
k∈Z

â(k)(1− ejkω)ejkθ (3.25)

where j =
√
−1. Then, setting â(k) = b̂(k)(1− ejkω)−1 allows us to compute a(θ) except

for â(0); the formal series for a thus defined will converge on T for ω sufficiently irrational

[47]. Observe that a necessary condition for the existence of a solution is b̂(0) = 0; in the

k = 0 case, â(0) cancels out on the right hand side of Eq. (3.24) and can hence take any

value, making the solution a non-unique. â(0) and b̂(0) are simply the averages of a and b

on T.

We first solve Eq. (3.18) for ξ̂2(k), k ̸= 0, using the Fourier series method. To set ξ̂2(0),

first find the average α of η1− T × [ξ2− ξ̂2(0)]. Then, choose ξ̂2(0) = α/T̂ (0); this makes

the LHS of Eq. (3.17) have zero average when solving for ξ1, since

∫ 2π

0

η1 − Tξ2 dθ =

∫ 2π

0

η1 − T
[
ξ2 − ξ̂2(0)

]
dθ − ξ̂2(0)

∫ 2π

0

T dθ

= α− ξ̂2(0)T̂ (0) = 0

(3.26)

With ξ2 fully solved, we then solve Eq. (3.17) for ξ̂1(k), k ̸= 0 and arbitrarily choose

ξ̂1(0) = 0. Finally, with all four components of ξ solved, we set K(θ) equal to K(θ) +

P (θ)ξ(θ), concluding the K correction part of the quasi-Newton step.

In practice, when solving Eq. (3.18) for ξ2, we find that the average of η2(θ), the left

hand side of Eq. (3.18), is not exactly zero; we ignore this nonzero average and solve for

the ξ̂2(k) anyways as described earlier. η̂2(0) decreases to zero with each quasi-Newton

step as the method converges, so we are able to solve Eq. (3.18) more and more exactly;

this is a result of the vanishing lemma of [43], which is applicable since F is an exact

symplectic map due to being the fixed-time map of a Hamiltonian system on R4 [48].

Also, for those familiar with the parameterization method for invariant tori, note that the
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choice of ξ̂1(0) = 0 takes care of the translation non-uniqueness of solutions of Eq. (3.4)

without requiring extra constraint equations.

Remark. There are methods of numerically solving for ∆K without using P or Λ, includ-

ing single-shooting [32] and collocation [33]. These methods effectively discretize θ on a

grid of N points and solve a linearized version of Eq. (3.15) directly for ∆K at those θ

values. This requires solving at least a 4N dimensional linear system at each correction

step. Gaussian elimination applied to this will hence have a computational complexity of

O(N3) and require O(N2) storage. However, by using P and the nearly diagonal Λ, we

decouple the equations and avoid this large dimensional system. The complexity of our

quasi-Newton method is O(N logN) (as some steps use FFT), with O(N) required stor-

age. Furthermore, our method gives not just K, but also the bundle and Floquet matrices

P and Λ. The most expensive step in our method is the computation (using numerical in-

tegration) of F and DF on the grid of N different values of θ, which is easy to parallelize

on the computer.

3.4.5 Quasi-Newton Step for Correcting P and Λ

Using the newly computed K(θ), we set the first column of P (θ) to DK(θ), and then

recompute DF (K(θ)) and Ered(θ) using Eq. (3.13). Finding ∆P (θ) and ∆Λ(θ) to cancel

Ered then follows similar methodology as ∆K. Let ∆P (θ) = P (θ)Q(θ); we will solve for

Q and ∆Λ : T→ R4×4 satisfying

−Ered(θ) = Λ(θ)Q(θ)−Q(θ + ω)Λ(θ)−∆Λ(θ) (3.27)

Claim. For ω sufficiently irrational and Ered sufficiently small, if Q and ∆Λ solve Eq.

(3.27), then adding ∆P = PQ to P and ∆Λ to Λ reduces Ered quadratically.
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Proof. Substitute P + PQ and Λ +∆Λ into Eq. (3.5) to define

E(θ) = DF (K(θ))[P (θ) + P (θ)Q(θ)]

− [P (θ + ω) + P (θ + ω)Q(θ + ω)][Λ(θ) + ∆Λ(θ)]

(3.28)

Using Ered(θ) = P−1(θ + ω)DF (K(θ))P (θ)− Λ(θ), we then find that

P (θ + ω)−1E(θ) = Ered(θ) + P (θ + ω)−1DF (K(θ))P (θ)Q(θ)

−Q(θ + ω)[Λ(θ) + ∆Λ(θ)]−∆Λ(θ)

= Ered(θ) + [Λ(θ) + Ered(θ)]Q(θ)−Q(θ + ω)[Λ(θ) + ∆Λ(θ)]−∆Λ(θ)

= Ered(θ)Q(θ)−Q(θ + ω)∆Λ(θ)

(3.29)

where the last line follows due to Eq. (3.27). Evaluating Eq. (3.13) with P + PQ and

Λ +∆Λ in place of P and Λ and denoting the result as Ered,new, we have

Ered,new(θ) = [P (θ + ω) + P (θ + ω)Q(θ + ω)]−1E(θ)

= [I +Q(θ + ω)]−1P (θ + ω)−1E(θ)

= [I +Q(θ + ω)]−1[Ered(θ)Q(θ)−Q(θ + ω)∆Λ(θ)]

(3.30)

Now, for ω sufficiently irrational, Q and ∆Λ will be similar in magnitude to Ered. Hence,

if Ered is small, then Ered,new will be quadratically smaller like E2
red.

Since Λ is nearly diagonal, the equations for the different entries of Q and ∆Λ following
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from Eq. (3.27) are almost completely decoupled from each other. Write

Ered(θ) =



ELL(θ) ELC(θ) ELS(θ) ELU(θ)

ECL(θ) ECC(θ) ECS(θ) ECU(θ)

ESL(θ) ESC(θ) ESS(θ) ESU(θ)

EUL(θ) EUC(θ) EUS(θ) EUU(θ)



Q(θ) =



0 QLC(θ) QLS(θ) QLU(θ)

0 QCC(θ) QCS(θ) QCU(θ)

0 QSC(θ) QSS(θ) QSU(θ)

0 QUC(θ) QUS(θ) QUU(θ)


∆Λ(θ) =



0 ∆T (θ) 0 0

0 0 0 0

0 0 ∆λs(θ) 0

0 0 0 ∆λu(θ)


(3.31)

As the first column of P (θ) is fixed to be DK(θ), we fix the first column of Q(θ) to be zero

so that the first column of ∆P is zero as well. We can then write columns 2-4 of Eq. (3.27)
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entry by entry to get 12 scalar equations

−ELC(θ)− T (θ)QCC(θ) = QLC(θ)−QLC(θ + ω)−∆T (θ) (3.32)

−ELS(θ)− T (θ)QCS(θ) = QLS(θ)− λs(θ)QLS(θ + ω) (3.33)

−ELU(θ)− T (θ)QCU(θ) = QLU(θ)− λu(θ)QLU(θ + ω) (3.34)

−ECC(θ) = QCC(θ)−QCC(θ + ω) (3.35)

−ECS(θ) = QCS(θ)− λs(θ)QCS(θ + ω) (3.36)

−ECU(θ) = QCU(θ)− λu(θ)QCU(θ + ω) (3.37)

−ESC(θ) = λs(θ)QSC(θ)−QSC(θ + ω) (3.38)

−ESS(θ) = λs(θ)QSS(θ)− λs(θ)QSS(θ + ω)−∆λs(θ) (3.39)

−ESU(θ) = λs(θ)QSU(θ)− λu(θ)QSU(θ + ω) (3.40)

−EUC(θ) = λu(θ)QUC(θ)−QUC(θ + ω) (3.41)

−EUS(θ) = λu(θ)QUS(θ)− λs(θ)QUS(θ + ω) (3.42)

−EUU(θ) = λu(θ)QUU(θ)− λu(θ)QUU(θ + ω)−∆λu(θ) (3.43)

First, we solve Equations (3.36), (3.37), (3.38), (3.40), (3.41), and (3.42), followed by

Eq. (3.33) and (3.34) (after back substitution), using the exact same method that was used

to solve Eq. (3.19) and (3.20); rearrange each equation so that its solution is the fixed

point of an appropriately defined contraction map, which is then iterated to convergence.

Such maps always multiply their input by either λs or λ−1
u , or both. Eq. (3.35) is solved

using the Fourier method of Section 3.4.4; we arbitrarily choose Q̂CC(0) = 0. We ignore

the nonzero average of ECC , which goes to zero with each quasi-Newton step without

affecting method convergence due to F being symplectic (see Appendix A for the proof

of this result). Finally, the solutions to Eq. (3.32), (3.39), and (3.43) are non-unique; we

choose QLC = QSS = QUU = 0, so that we have ∆T (θ) = ELC(θ) + T (θ)QCC(θ),

∆λs(θ) = ESS(θ), and ∆λu(θ) = EUU(θ).
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Once Q and ∆Λ are known, we set P (θ) equal to P (θ) + P (θ)Q(θ), Λ(θ) equal to

Λ(θ) +∆Λ(θ), and then recompute E(θ) and Ered(θ) using Eq. (3.12) and (3.13). Finally,

we go back to the quasi-Newton step for correcting the torus parameterization K(θ) and

repeat the entire method until E and Ered are within tolerance.

Remark. If T , λs, and λu are constant, we can choose the non-unique solutions of Eq.

(3.32), (3.39), and (3.43) such that they remain constant. In particular, choose ∆T , ∆λs,

and ∆λu as the (constant) averages of ELC , ESS and EUU , respectively, and solve for QLC ,

QSS , and QUU using Fourier methods. Our experience was that this choice of solution

negatively affected the numerical stability of our method, however; thus, we did not keep

T , λs, and λu constant in our implementation.

3.4.6 A Remark on Convergence

The focus of this chapter is to specify the algorithms, provide details of implementation,

and give practical results of the implementation in physical problems. Nevertheless, we

wish to mention that there are results which rigorously prove that our algorithm converges

when given initial K,P,Λ with small enough error (depending on some condition num-

bers). Due to the practical focus of this chapter, we will not go into detail, but we want to

give a flavor of the argument. For readers interested primarily in applications, this section

can be skipped.

The convergence is due to the so-called Kolmogorov-Arnold-Moser (KAM) theory,

which is a very far reaching generalization of the Newton method. In particular, we take

advantage of the recent developments in a-posteriori versions of KAM theory [43], which

does not require an integrable system, only approximate solutions of functional equations.

We present some salient features. For any analytic function of an angle u : T→ Cn, define

∥u∥ρ = sup| Im z|≤ρ |u(z)|. It is possible to show [47] that the solutions of (3.24) satisfy

∥a∥ρ−δ ≤ C1δ
−τ∥b∥ρ for some C1, τ > 0. That is, if the right hand side is analytic in a

certain complex domain, the solution is analytic in a slightly smaller complex domain, and
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we have estimates of the size in terms of the domain lost; note that both domains contain

all real angles from 0 to 2π, which is what we are actually interested in. The well known

Cauchy estimates [49] for derivatives of a function in a slightly smaller domain have the

same form.

The formal procedure we have given indeed reduces E and Ered, to something quadrat-

ically smaller, but, performing the estimates with care, only in a slightly smaller complex

domain. Denoting the invariance error and the reducibility errors after one quasi-Newton

step by Enew and Ered,new, we have that

∥Enew∥ρ−δ + ∥Ered,new∥ρ−δ ≤ C2δ
−2τ−2 (∥E∥ρ + ∥Ered∥ρ)2 (3.44)

for some C2 > 0. There are standard arguments in KAM theory (“hard implicit function

theorems”, see [45]) which show that, given an algorithm satisfying Eq. (3.44) and a

sufficiently small initial error, the algorithm step can be iterated infinitely many times to

convergence in a domain slightly smaller than the original. These estimates also show that

the final answer is close to the initial approximation of K,P,Λ if the initial error is small

enough.

3.4.7 Modifying P for Constant Λ

Let K, P , and Λ be a solution to Eq. (3.4)-(3.5). For purposes of numerical stability as

well as stable/unstable manifold computation (see Section 3.5), it can be useful to modify

columns 2, 3, and 4 of P in such a way that Λ = P−1(θ + ω)DF (K(θ))P (θ) becomes

a constant matrix of the form in Eq. (3.6), i.e. T (θ), λs(θ), and λu(θ) become constant.

This can also enable the usage of Fourier methods instead of fixed point iteration during

the quasi-Newton method (see Remarks 3.4.4 and 3.4.5).

For columns 3 and 4 of P , the stable and unstable bundles vs(θ) and vu(θ) respectively,

just a simple rescaling is needed to make λs(θ) and λu(θ) constant. Let λ̄s, λ̄u ∈ R and
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as, au : T→ R be the solutions to

log(λs(θ))− log(λ̄s) = log(as(θ + ω))− log(as(θ)) (3.45)

log(λu(θ))− log(λ̄u) = log(au(θ + ω))− log(au(θ)) (3.46)

We choose λ̄s = exp
[

1
2π

∫ 2π

0
log(λs(θ)) dθ

]
so the LHS of Eq. (3.45) has zero average.

Letting u(θ) = log(as(θ)), Eq. (3.45) becomes a cohomological equation of form Eq.

(3.24) which can be solved for u by the Fourier series method; we choose û(0) = 0. This

gives as(θ) = eu(θ). We can solve Eq. (3.46) for au(θ) in the exact same manner. Finally,

one can replace columns 3 and 4 of P by as(θ)vs(θ) and au(θ)vu(θ), and replace λs(θ)

and λu(θ) in Λ by λ̄s and λ̄u. We prove that this works now.

Lemma 2. If vs(θ) and vu(θ) satisfy Eq. (3.9)-(3.10), and as(θ) and au(θ) satisfy Eq.

(3.45)-(3.46), then vs,new(θ) = as(θ)vs(θ) and vu,new(θ) = au(θ)vu(θ) satisfy

DF (K(θ))vs,new(θ) = λ̄svs,new(θ + ω) (3.47)

DF (K(θ))vu,new(θ) = λ̄uvu,new(θ + ω) (3.48)

Proof. We prove the result for vs,new; the case of vu,new can be proven in the exact same

manner. Since vs(θ) satisfies Eq. (3.9), we have

DF (K(θ))vs,new(θ) = DF (K(θ))as(θ)vs(θ) = as(θ)λs(θ)vs(θ + ω)

= as(θ + ω)λ̄svs(θ + ω) = λ̄svs,new(θ + ω)

(3.49)

where as(θ)λs(θ) = as(θ + ω)λ̄s follows from exponentiating Eq. (3.45).

We can also modify the second column of P , the symplectic conjugate center direction

vc(θ), to make T (θ) constant. This is possible because as mentioned in Section 3.4.2, the

symplectic conjugate is not unique; given a : T → R and vc(θ) satisfying Eq. (3.8), the
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function vc(θ) + a(θ)DK(θ) also solves Eq. (3.8) except with a change in T (θ) (which

was anyways arbitrary). Hence, we choose a(θ) which kills all variation of T (θ) about its

average T̂ (0). The equation for this is:

−(T (θ)− T̂ (0)) = a(θ)− a(θ + ω) (3.50)

which can be solved using the Fourier series method given for Eq. (3.24). Then, one simply

adds a(θ)DK(θ) to column 2 of P and replaces T (θ) with T̂ (0) in Λ. Note that the LHS

of Eq. (3.50) has average zero, so a solution a(θ) can be found.

Lemma 3. If vc(θ) and a(θ) satisfy Eq. (3.8) and (3.50), respectively, then the function

vc,new(θ) = vc(θ) + a(θ)DK(θ) is also a symplectic conjugate and satisfies

DF (K(θ))vc,new(θ) = T̂ (0)DK(θ + ω) + vc,new(θ + ω) (3.51)

Proof. Since vc(θ) satisfies Eq. (3.8) and DK(θ) satisfies Eq. (3.11), we have

DF (K(θ))vc,new(θ) = DF (K(θ)) [vc(θ) + a(θ)DK(θ)]

= [T (θ) + a(θ)]DK(θ + ω) + vc(θ + ω)

=
[
T̂ (0) + a(θ + ω)

]
DK(θ + ω) + vc(θ + ω)

= T̂ (0)DK(θ + ω) + vc,new(θ + ω)

(3.52)

where the relation T (θ) + a(θ) = T̂ (0) + a(θ + ω) follows from Eq. (3.50).

3.4.8 Initialization for Continuation by ε

To compute invariant circles and bundles of stroboscopic maps in periodically-perturbed

PCRTBP models with some desired perturbation parameter εf > 0, we start from periodic

orbits and their bundles in the unperturbed PCRTBP (ε = 0) and continue by ε until the

torus and bundles for ε = εf are found. Our quasi-Newton method-based continuation
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follows the standard procedure; choose a number of continuation steps n, take an invariant

circle and bundles from the ε = 0 system, and use them as an initial guess for the quasi-

Newton method to solve for the circle and bundles in the ε = εf/n system. Similarly, for

i = 0, . . . , n− 1, use the solution from the εf i/n system as an initial guess for the solution

in the εf (i+ 1)/n system. Once i = n− 1, we have the torus and bundles for ε = εf . We

need to find the ε = 0 solution to initialize the continuation, however.

To get K(θ), P (θ), and Λ(θ) solving Eq. (3.4) and (3.5) for the ε = 0 PCRTBP case,

one needs to first choose a periodic orbit which is to be continued (recall that PCRTBP

periodic orbits are also invariant circles of the stroboscopic map F = Fε=0, unless the orbit

period is resonant with 2π/Ωp). From this periodic orbit, we get its period T1 and hence

the rotation number ω = 4π2/(T1Ωp), as well as a point x0 lying on the orbit. Let ϕ(x, t)

denote the time-t map of the point x ∈ R4 by the PCRTBP equations of motion. Then, we

can take K(θ) = ϕ(x0, T1
θ
2π
) if the periodic orbit monodromy matrix stable and unstable

eigenvalues are positive. If they are negative, though, the “double covering” trick of [50]

needs be used so that P (θ) can be continuously defined (as the stable/unstable bundles are

Möbius strips in this case). For this, set K(θ) = ϕ(x0, 2T1
θ
2π
) and ω = 2π2/(T1Ωp) so that

K sweeps over the periodic orbit twice as θ goes from 0 to 2π. In either case, it is easy to

verify that K(θ) satisfies Eq. (3.4).

Next, set the first column of P (θ) to be DK(θ), and set the third and fourth columns of

P (θ) as the stable and unstable unit eigenvectors of the periodic orbit monodromy matrix at

the point K(θ). Denote these stable and unstable eigenvectors as vs(θ) and vu(θ), respec-

tively. One needs to make sure that the directions of vs(θ) and vu(θ) at each point K(θ)

are chosen such that they are continuously oriented functions of θ; this is always possible

if K is defined as previously described. Finally, finding the second column of P requires

some extra calculations.

As mentioned in Section 3.4.2, the second column of P represents the symplectic con-

jugate direction to DK(θ) and is part of the center bundle. The first step in its computation
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is to compute λs(θ) and λu(θ) : T→ R such that

DF (K(θ))vs(θ) = λs(θ)vs(θ + ω) (3.53)

DF (K(θ))vu(θ) = λu(θ)vu(θ + ω) (3.54)

which can be done since DF (K(θ)) maps the stable and unstable bundles into themselves.

Next, find functions A(θ), B(θ), C(θ), and D(θ) : T→ R such that

DF (K(θ))
J−1DK(θ)

∥DK(θ)∥2
= A(θ)DK(θ + ω) +B(θ)

J−1DK(θ + ω)

∥DK(θ + ω)∥2

+ C(θ)vs(θ + ω) +D(θ)vu(θ + ω)

(3.55)

where J =

 02×2 I2×2

−I2×2 02×2

 is the 4×4 matrix of the symplectic form in the usual Euclidean

metric on R4. All the quantities in (3.55) are known except for A,B,C, and D. We can

therefore consider Eq. (3.55) as a system of linear equations for A,B,C, and D which can

be solved. One will find that B(θ) = 1; this occurs as a result of symplectic geometric

considerations (see Eq. (3.64)). After this, we solve for functions f1(θ), f2(θ) : T → R

such that

C(θ) = f1(θ + ω)− λs(θ)f1(θ) (3.56)

D(θ) = f2(θ + ω)− λu(θ)f2(θ) (3.57)

which can be done using the same contraction map iteration method used to solve Equations

(3.19) and (3.20) in Section 3.4.4. Finally, we can express the second column of P (θ), the

symplectic conjugate direction vc(θ), as

vc(θ) =
J−1DK(θ)

∥DK(θ)∥2
+ f1(θ)vs(θ) + f2(θ)vu(θ) (3.58)

With P (θ) known, to find Λ one can simply use Λ(θ) = P−1(θ+ ω)DF (K(θ))P (θ), after

57



which we can start the continuation. As long as the previous steps were followed correctly,

Λ will be of the form given in Eq. (3.6). To see this, recall the discussion in Section 3.4.2,

and note that the first, third, and fourth columns of P satisfy Equations (3.7), (3.9), and

(3.10). Hence, we just need to show that the second column of P satisfies Eq. (3.8). We

prove this now.

Lemma 4. For some T : T→ R. the function vc(θ) defined in Eq. (3.58) satisfies

DF (K(θ))vc(θ) = T (θ)DK(θ + ω) + vc(θ + ω) (3.59)

Proof. Applying Eq. (3.58) and then Equations (3.53), (3.54), and (3.55), we have

DF (K(θ))vc(θ) = DF (K(θ))

(
J−1DK(θ)

∥DK(θ)∥2
+ f1(θ)vs(θ) + f2(θ)vu(θ)

)
=A(θ)DK(θ + ω) +B(θ)

J−1DK(θ + ω)

∥DK(θ + ω)∥2

+ (C(θ) + λs(θ)f1(θ))vs(θ + ω) + (D(θ) + λu(θ)f2(θ))vu(θ + ω)

(3.60)

Recalling Equations (3.56) and (3.57), we thus have that

DF (K(θ))vc(θ) =A(θ)DK(θ + ω) +B(θ)
J−1DK(θ + ω)

∥DK(θ + ω)∥2

+ f1(θ + ω)vs(θ + ω) + f2(θ + ω)vu(θ + ω)

(3.61)

Flow maps of Hamiltonian systems are symplectic [51]. Hence, F satisfies Ω(v1,v2) =

Ω(DF (K(θ))v1, DF (K(θ))v2) for all v1, v2 ∈ R4, where Ω is the bilinear symplectic

form defined on Euclidean R4 as Ω(v1,v2) = vT
1 Jv2. It is easy to see that Ω(v1,v1) = 0

for any v1 ∈ R4. Furthermore, defining L = maxθ∈T |λs(θ)| < 1 and recalling equations
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(3.11) and (3.53), we have that

max
θ∈T
|Ω(DK(θ),vs(θ))| = max

θ∈T
|Ω (DF (K(θ))DK(θ), DF (K(θ))vs(θ))|

= max
θ∈T
|Ω (DK(θ + ω), λs(θ)vs(θ + ω))|

= max
θ∈T
|λs(θ)| |Ω (DK(θ + ω),vs(θ + ω))|

≤ Lmax
θ∈T
|Ω (DK(θ + ω),vs(θ + ω))| = Lmax

θ∈T
|Ω (DK(θ),vs(θ))|

(3.62)

which implies that maxθ∈T |Ω (DK(θ),vs(θ))| = 0 since 0 < L < 1. Thus, for all θ ∈ T,

Ω (DK(θ),vs(θ)) = 0 . We can also show that Ω (DK(θ),vu(θ)) = 0 in a very similar

manner to Eq. (3.62). Hence, using Eq. (3.58) for vc, we find

Ω(DK(θ),vc(θ)) = Ω

(
DK(θ),

J−1DK(θ)

∥DK(θ)∥2
+ f1(θ)vs(θ) + f2(θ)vu(θ)

)
= Ω

(
DK(θ),

J−1DK(θ)

∥DK(θ)∥2

)
= DK(θ)TJ

J−1DK(θ)

∥DK(θ)∥2
=

DK(θ)TDK(θ)

∥DK(θ)∥2
= 1

(3.63)

Since F is a symplectic map, using Eq. (3.61) we have that

1 = Ω(DK(θ),vc(θ))

= Ω (DF (K(θ))DK(θ), DF (K(θ))vc(θ))

= Ω

(
DK(θ + ω), A(θ)DK(θ + ω) +B(θ)

J−1DK(θ + ω)

∥DK(θ + ω)∥2

+f1(θ + ω)vs(θ + ω) + f2(θ + ω)vu(θ + ω)

)
= Ω

(
DK(θ + ω), B(θ)

J−1DK(θ + ω)

∥DK(θ + ω)∥2

)
= B(θ)DK(θ + ω)TJ

J−1DK(θ + ω)

∥DK(θ + ω)∥2
= B(θ)

(3.64)
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proving that B(θ) = 1. Therefore, substituting this into Eq. (3.61) gives

DF (K(θ))vc(θ) =A(θ)DK(θ + ω) +
J−1DK(θ + ω)

∥DK(θ + ω)∥2

+ f1(θ + ω)vs(θ + ω) + f2(θ + ω)vu(θ + ω)

(3.65)

Finally, we see from Eq. (3.58) that the last 3 terms on the RHS of Eq. (3.65) are precisely

vc(θ + ω). Letting T (θ) = A(θ), we hence conclude that

DF (K(θ))vc(θ) = T (θ)DK(θ + ω) + vc(θ + ω) (3.66)

which is what we sought to prove.

3.4.9 Computing Families of Tori: Continuation by ω

The continuation by ε described in Section 3.4.8 is carried out with ω fixed. However, in the

PCRTBP, periodic orbits occur in one-parameter families, with varying rotation numbers

ω under Fε=0. The same is true of invariant circles of Fε for ε = εf > 0 as well. To

compute the family of Fεf -invariant tori corresponding to a PCRTBP periodic orbit family,

one option is to continue several different periodic orbits from that family (corresponding

to different ω values) by ε. However, this is inefficient, as the tori and bundles computed

for ε < εf are not of interest. Instead, it is better to first compute just one invariant circle of

Fεf , along with its bundles, at some rotation number ω = ω0 using continuation by ε. After

this, one can continue the ω0 circle/bundles by ω, with ε = εf fixed. The continuation by

ω is quite similar to the continuation by ε; given a known exact solution to Eq. (3.4) and

(3.5) for ω = ωi, i ∈ Z, one uses this to form an initial guess for the quasi-Newton method

to compute the torus/bundles for ω = ωi+1 = ωi +∆ωi. This recursively gives us tori for a

range of ω values. The ∆ωi are called the continuation step sizes.

One can use the torus and bundles for ω = ωi directly as an initial guess for ω =

ωi + ∆ωi. However, it is extremely easy to use K, P , and Λ from ωi to compute a better
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initial guess for the ωi + ∆ωi torus, which aids in quasi-Newton method convergence.

Assume that Λ has constant T (θ) = T (apply the procedure from Section 3.4.7 to P and Λ

if necessary). Then, using vc(θ) to denote column 2 of P , the initial guess for the ωi+∆ωi

torus parameterization should be Knew(θ) = K(θ) + (∆ωi/T )vc(θ). We justify this now.

Claim. If K, P , and Λ (with Λ constant) solve Eq. (3.4)-(3.5) for ω = ωi, then Knew(θ) =

K(θ) + (∆ωi/T )vc(θ) solves Eq. (3.4) for ω = ωi +∆ωi up to O(∆ω2
i ).

Proof. For notational convenience, write ω and ∆ω in place of ωi and ∆ωi, respectively.

Then, evaluating F (Knew(θ))−Knew(θ + ω +∆ω), we find this equals

F

(
K(θ) +

∆ω

T
vc(θ)

)
−
[
K(θ + ω +∆ω) +

∆ω

T
vc(θ + ω +∆ω)

]
= F (K(θ))+DF (K(θ))

∆ω

T
vc(θ) +O(∆ω2)

−
[
K(θ + ω) + ∆ωDK(θ + ω) +

∆ω

T
vc(θ + ω) +O(∆ω2)

]
=

∆ω

T
[DF (K(θ))vc(θ)− T DK(θ + ω)− vc(θ + ω)] +O(∆ω2) = O(∆ω2)

(3.67)

where the last equality follows from Eq. (3.8).

Remark. Using the Poincaré-Lindstedt method, it is possible to get higher order expan-

sions in ∆ωi for Knew than the linear approximation K(θ) + (∆ωi/T )vc(θ). This requires

significant extra computations which we decided not to carry out.

There is one more difference between continuation by ω and continuation by ε. The

continuation by ε uses a fixed step size εf/n. However, for continuation by ω, the step size

∆ωi must be varied due to quasi-Newton method divergence for insufficiently irrational ω.

At such ω values, the PCRTBP invariant circle breaks down after the perturbation ε = εf ,

leading to a gap between tori at smaller and larger rotation numbers. Our continuation

needs to “jump” over this gap. Suppose we have a torus and bundles for ω = ωi, and let φi

denote the largest of ∆ωi−1,∆ωi−2, . . . ,∆ωi−5. It is natural to try ∆ωi = φi. If the quasi-

Newton method diverges for ω = ωi + φi, however, then instead one can try ∆ωi = φi/2;
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Figure 3.1: Schematic of crossing gaps during ω continuation (consider the θ = 0 and
θ = 2π lines to be glued together to form a cylinder)

if this still does not work, try ∆ωi = φi/2
2, and so on until we find a ∆ωi that works. Once

we have the circle/bundles for ωi+1 = ωi +∆ωi, we repeat the process.

In this procedure, it is possible for ∆ωi+1 to be larger than ∆ωi, which is what allows

us to “jump” over gaps in the tori. For example, suppose that ∆ωi−1 through ∆ωi−5 are all

equal to ϕ = 1+
√
5

2
× 10−4, so φi = ϕ. Then, it can happen that the quasi-Newton method

diverges for ω = ωi+ϕ, but converges for ω = ωi+ϕ/2 = ωi+1, so ∆ωi = ϕ/2. However,

φi+1 will still equal ϕ, so we try ∆ωi+1 = ϕ. If the quasi-Newton method converges for

ω = ωi+1 + ϕ = ωi + 3ϕ/2, then we will have crossed the torus gap encountered earlier at

ω = ωi+ϕ. This is schematically illustrated in Fig. 3.1; we draw the tori on a projection of

the 2D cylindrical NHIM Ξε defined in Section 3.3.1 (we let (θ, I) be coordinates on Ξε).

3.4.10 Discretization and Implementation

When implementing the previously-described methods on a computer, it is necessary to

discretize all the functions used as well as the operations on them. We represent K, P ,

Λ, and other functions of θ as arrays of their values on a discrete grid of N evenly spaced

θ values θi = 2πi/N , i = 0, . . . , N − 1. Many operations on functions can be carried

out element-wise on these arrays; such operations include basic scalar arithmetic, matrix

multiplication, and matrix inversion. For instance, given arrays of values P (θi) and ξ(θi),

we can calculate a new array of N values ∆K(θi) = P (θi)ξ(θi) (note that the ∆K array
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will actually contain 4N floating point numbers, since each ∆K(θi) ∈ R4).

Other operations are more efficiently carried out using Fourier coefficients. For in-

stance, given an array of function values a(θi) for some a : T→ R, we can use

a(θi) =
1

N

N−1∑
k=0

â(k)ejkθi → a(θi + ω) =
1

N

N−1∑
k=0

[â(k)ejkω]ejkθi (3.68)

a(θi) =
1

N

N−1∑
k=0

â(k)ejkθi → Da(θi) =
1

N

N−1∑
k=0

[jkâ(k)]ejkθi (3.69)

to translate or differentiate a. We use the fast Fourier transform (FFT) to get N Fourier

coefficients â(k), multiply each â(k) by ejkω (translation) or jk (differentiation), and then

take the inverse FFT to get an array of values a(θi + ω) or Da(θi). Solving cohomological

equations like (3.24) also requires working with Fourier coefficients as described in Section

3.4.4.

A few numerical problems were experienced due to the discretization of continuous

functions on the computer. Let Transω(a(θi)) represent the array of a(θi +ω) values found

by applying the algorithm of Eq. (3.68) to the array of a(θi) values. The first problem

was that Transω(F (θi)G(θi)) ̸= Transω(F (θi)) × Transω(G(θi)); multiplying two arrays

and then translating the result gives a different result than first translating the two arrays

and then multiplying the results. Also, F (θi) ̸= Trans−ω(Trans+ω(F (θi))) when N is even

and real-to-complex FFT is used (for real data). These issues can prevent quasi-Newton

method convergence.

Both inequalities are most pronounced when the high-frequency discrete Fourier trans-

form coefficients of F or G are large in magnitude. It is not expected that the tori or bundles

we compute should have significant high-frequency oscillations as a function of θ. Hence,

a solution to these two problems was to run K(θi) and P (θi) through a lowpass filter dur-

ing the first two or three quasi-Newton steps, as well as when the quasi-Newton method

would start diverging; note that this is somewhat reminiscent of Arnold’s use of truncated

Fourier series with successively increasing cutoff frequencies in his proof of the KAM the-
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ory [45]. We also found that modifying P between continuation steps to make Λ constant,

as described in Section 3.4.7, greatly mitigates these numerical issues as well. Finally, if

the high-frequency Fourier coefficients keep becoming large after each quasi-Newton step

despite filtering and constant Λ, we increase the number of Fourier modes used (equivalent

to increasing N ).

One phenomenon we noticed during the implementation of our quasi-Newton method-

based continuation was that generally, the torus parameterization K(θ) converges to within

a given error tolerance before the bundle and Floquet matrices P (θ) and Λ(θ). We can use

this to further improve the numerical stability of our quasi-Newton method, by using the

converged K(θ) to directly compute the full P and Λ matrices. To do this, as mentioned

earlier, the first column of P is simply DK(θ). The third and fourth columns of P (the sta-

ble and unstable bundles vs and vu) can be found using the “power method”, as is described

by [52]. For this, first set vs,0(θ) and vu,0(θ) equal to the unit-length normalized third and

fourth columns of P (θ) (the unconverged, approximate stable and unstable bundles). This

is then followed by the iteration

vs,i+1(θ) =
DF (K(θ))−1vs,i(θ + ω)

∥DF (K(θ))−1vs,i(θ + ω)∥
(3.70)

vu,i+1(θ) =
DF (K(θ − ω))vu,i(θ − ω)

∥DF (K(θ − ω))vu,i(θ − ω)∥
(3.71)

which should converge after a few iterations (in practice, we also run each vs,i(θ), vu,i(θ)

through a lowpass filter after its computation). Once the iterations have converged, we use

the methods of Section 3.4.7 to rescale vs and vu to ensure constant λs and λu. Finally, we

can use the exact same method presented in Section 3.4.8 to compute the second column

of P from the known DK, vs, and vu (see Eq. (3.55)-(3.58)); the method of Section 3.4.7

is then applied to make T constant. This gives us the final P and Λ matrices which in

our experience not only usually satisfy Eq. (3.5) to within tolerance (sometimes one last

quasi-Newton correction step is required), but also have smaller high-order Fourier coeffi-
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cients than the earlier approximate P and Λ; this further improves our method’s numerical

stability.

3.4.11 Numerical Results in the PERTBP

We implemented and successfully applied the methods described in the previous sections

to the computation of invariant circles and their bundles for the Jupiter-Europa PERTBP

stroboscopic map. We used a tolerance of 10−7 in Eq. (3.4)-(3.5). The circles and bundles

were found by first continuing Jupiter-Europa PCRTBP unstable resonant periodic orbits

by eccentricity ε to ε = 0.0094 (the real value) for fixed ω, and then continuing the circles

and bundles by ω while fixing ε = 0.0094.

Both 3:4 as well as 5:6 resonant tori were computed. Fig. 3.2 shows the continuation

by eccentricity of a 5:6 resonant periodic orbit from the PCRTBP to an invariant circle of

the PERTBP stroboscopic map; for this, we used N = 2048 discretization θi values. The

plot on the right zooms into the region near Europa; the leftmost curve there corresponds

to ε = 0.0094, which is to be expected as Europa’s periapsis moves leftwards as ε in-

creases. Fig. 3.3 shows the continuation of a 3:4 resonant torus in the physical ε = 0.0094

Jupiter-Europa PERTBP by ω, which yields a family of resonant tori in the system for

ω ∈ [1.536217, 1.567314]; N ranged from 1024 to 32768, with larger N required for tori

passing close to the singularity in the equations of motion at Europa. Fig. 3.4 shows a

family of Jupiter-Europa PERTBP 5:6 resonant tori, also generated using continuation by

ω. This family, like the PCRTBP 5:6 resonant orbit family, does not have monotonically

increasing or decreasing rotation numbers; ω starts at 1.035166 for the leftmost torus in the

zoomed-in plot, decreases to 1.027137, and then increases to 1.040911 for the rightmost

torus. Thus, we first continued two different PCRTBP 5:6 resonant orbits by ε to get two

PERTBP tori, one in each of the two sections of tori with monotone ω. These two tori were

then continued by ω to sweep out the tori in their corresponding sections. For this case, N

ranged from 1024 to 4096.
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Figure 3.2: Continuation of 5:6 Jupiter-Europa PERTBP resonant torus from ε = 0 to
0.0094

Figure 3.3: Continuation of ε = 0.0094 Jupiter-Europa PERTBP 3:4 resonant tori by ω
(Europa surface shown as red circle)
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5:6 Unstable Resonant Tori Family (Jupiter-Europa system e = 0.0094)

Figure 3.4: Continuation of ε = 0.0094 Jupiter-Europa PERTBP 5:6 resonant tori by ω
(Europa surface shown as red circle)

After computing tori in the physical Jupiter-Europa PERTBP with ε = 0.0094, we also

tested our quasi-Newton method to see if it would work for larger ε. Fig. 3.5 shows selected

tori from the continuation of a 3:4 resonant periodic orbit from the PCRTBP to an invariant

circle of the PERTBP with Jupiter-Europa mass ratio µ, but ε = 0.206. This eccentricity is

larger than that of the Sun-Mercury system, which has one of the most eccentric two-body

orbits of any pair of large solar system bodies. We used N = 1024 and a continuation

step size of ∆ε = 0.0005 (the quasi-Newton method failed to converge for larger step

sizes); every 20th torus is shown in the figure. As can be seen, our method was robust even

for large values of the perturbation ε. On a 2017-era quad-core i7 laptop CPU, our Julia

program took only about 230 seconds for the entire continuation to ε = 0.206, and less

than 10 s for continuation to the physical value ε = 0.0094.

3.5 Parameterization Method for Stable and Unstable Manifolds

With the invariant circles and their stable and unstable bundles computed, we next turn

our attention to accurate computation of torus stable and unstable manifolds. Many studies

using manifolds, such as [33], use linear approximations of invariant manifolds found by

adding small vectors in the stable or unstable directions to the points of the torus, and
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Figure 3.5: Selected tori from 3:4 Jupiter-Europa PERTBP continuation from ε = 0 to
0.206

then integrating backwards or forwards. However, we compute high order Fourier-Taylor

polynomials which approximate the manifolds very accurately in some domain of validity.

The algorithm used here bears many similarities with the method used in Section 2.4.1 for

computation of 1D manifolds of period-maps for periodic orbits in the PCRTBP. A different

version of this algorithm was also used by [40] in a lower-dimensional setting.

Since our F -invariant circles are 1D and have one stable and one unstable direction at

each point, the circles’ stable and unstable manifolds will be 2D and diffeomorphic to either

an infinite cylinder or a Möbius strip. A cylinder can be continuously parameterized using

an angle θ and a real number s; this actually is also possible for a Möbius strip, as long as

the parameterization is non-injective and wraps around the strip twice as θ goes from 0 to

2π (the “double covering” trick we used in Section 3.4.8). In the framework of Section 1.2,

we have M = R4, M = T × R, and f(θ, s) = (θ + ω, λs), where λ is the stable λs or

unstable λu entry of Λ, depending on which manifold we are trying to compute. Without

loss of generality, we assume that λs and λu are constant (see Section 3.4.7). With this,

the equation to solve for the parameterization W : T× R → R4 of the stable or unstable

manifold is

F (W (θ, s))−W (θ + ω, λs) = 0, (θ, s) ∈ T× R (3.72)
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3.5.1 Order-by-Order Method to find W

We express W as a Fourier-Taylor series of form

W (θ, s) =
∑
k≥0

Wk(θ)s
k = K(θ) +

∑
k≥1

Wk(θ)s
k (3.73)

where s = 0 corresponds to the invariant circle K(θ) whose manifold we are trying to

compute. The s0 term of W is K(θ), and the linear term W1(θ) is the stable vs(θ) or

unstable vu(θ) bundle known from the third or fourth column of P . Hence we need to

solve for the higher-order “coefficients” Wk(θ) : T→ R4, k ≥ 2.

Denote W<k(θ, s) = K(θ) +
∑k−1

j=1 Wj(θ)s
j . Assume we have solved for all Wj(θ) for

j < k, so that F (W<k(θ, s))−W<k(θ + ω, λs) has only sk and higher order terms. Then,

starting with k = 2, the recursive method to solve for Wk(θ) is:

1. Find Ek(θ) = [F (W<k(θ, s))−W<k(θ+ω, λs)]k, where [·]k denotes the sk coefficient

of the term inside brackets. We show how to do this in Section 3.5.2.

2. Find Wk(θ) such that W<k(θ, s) + Wk(θ)s
k cancels Ek(θ)s

k in Eq. (3.72), thus

satisfying Eq. (3.72) up to order sk. The equation to solve for Wk(θ) is

DF (K(θ))Wk(θ)− λkWk(θ + ω) = −Ek(θ) (3.74)

To solve this, let Wk,0 = 0 and iterate the following sequence to convergence:

Wk,i+1(θ) =

λkDF (K(θ))−1Wk,i(θ + ω)−DF (K(θ))−1Ek(θ) if |λ| < 1

λ−kDF (K(θ − ω))Wk,i(θ − ω) + λ−kEk(θ − ω) if |λ| > 1

(3.75)

(Fourier methods are an alternate method of solving Eq. (3.74); see Remark 3.5.1)

3. Set W<k+1(θ, s) = W<k(θ, s) +Wk(θ)s
k and return to step 1.
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The recursion is stopped when we are satisfied with the degree k of W . We now prove that

the equations and method described in Step 2 to find Wk are valid.

Claim. If Wk solves Eq. (3.74), then for j ≤ k (using the [·]k notation defined earlier),

[
F (W<k(θ, s) +Wk(θ)s

k)−
(
W<k(θ + ω, λs) +Wk(θ + ω)(λs)k

)]
j
= 0 (3.76)

Proof. Recall that F (W<k(θ, s))−W<k(θ+ω, λs) = Ek(θ)s
k +O(sk+1). Expanding Eq.

(3.76) in Taylor series and keeping only sk and lower order terms gives

[
F (W<k(θ, s)) +DF (W<k(θ, s))Wk(θ)s

k−(
W<k(θ + ω, λs) +Wk(θ + ω)(λs)k

)]
j

=[Ek(θ)s
k +DF (W<k(θ, s))Wk(θ)s

k − λkWk(θ + ω)sk]j

=


0 if j < k,

Ek(θ) +DF (K(θ))Wk(θ)− λkWk(θ + ω) = 0 if j = k

(3.77)

where the j = k case of the last line follows from the preceding line by dividing sk out

from the quantity inside [.]j , and then taking s→ 0.

Claim. The sequence {Wk,i}i∈N defined by Wk,0 = 0 and Eq. (3.75) converges to Wk.

Wk,i+1(θ) =

λkDF (K(θ))−1Wk,i(θ + ω)−DF (K(θ))−1Ek(θ) if |λ| < 1

λ−kDF (K(θ − ω))Wk,i(θ − ω) + λ−kEk(θ − ω) if |λ| > 1
(3.78)

Proof. Let P,Λ be the bundle and Floquet matrices for K(θ). We assume that Λ is constant

(as the procedure from Section 3.4.7 gives). Then, it is easy to show that

Wk,i(θ) =

−P (θ)
∑i−1

j=0 λ
kjΛ−j−1[P−1(θ + (j + 1)ω)Ek(θ + jω)] if |λ| < 1

P (θ)
∑i−1

j=0 λ
−k(j+1)Λj[P−1(θ − jω)Ek(θ − (j + 1)ω)] if |λ| > 1

(3.79)
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solves Eq. (3.75) with Wk,0 = 0; simply substitute Eq. (3.79) for Wk,i in Eq. (3.75) and use

DF (K(θ − ω))P (θ − ω) = P (θ)Λ and DF (K(θ))−1 = P (θ)Λ−1P−1(θ + ω) to simplify

the RHS of the resulting equation.

Now, we will show that Wk(θ) = limi→∞Wk,i(θ). First of all, note that

λj
sΛ

−j =



λj
s −jλj

sT 0 0

0 λj
s 0 0

0 0 1 0

0 0 0 λj
sλ

−j
u


λ−j
u Λj =



λ−j
u jλ−j

u T 0 0

0 λ−j
u 0 0

0 0 λj
sλ

−j
u 0

0 0 0 1


(3.80)

for all j ∈ N, where Λ is of the form given in Eq. (3.6) and has constant T , λs, and λu as

assumed earlier. Since |λs| < 1 and |λu| > 1, λj
sΛ

−j and λ−j
u Λj are hence bounded for all

j ∈ N. Now, define Γs(θ) = Λ−1P−1(θ + ω)Ek(θ) and Γu(θ) = λ−kP−1(θ)Ek(θ − ω);

also, recall that |λ| < 1 means λ = λs and |λ| > 1 means λ = λu. We can use all this to

rewrite Eq. (3.79) as

Wk,i(θ) =

−P (θ)
∑i−1

j=0 λ
(k−1)j
s [λj

sΛ
−jΓs(θ + jω)] if |λ| < 1

P (θ)
∑i−1

j=0 λ
−(k−1)j
u [λ−j

u ΛjΓu(θ − jω)] if |λ| > 1
(3.81)

In both |λ| < 1 and |λ| > 1 cases of Eq. (3.81), the quantities in square brackets are

bounded for all θ ∈ T and j ∈ N. As k ≥ 2, λk−1
s < 1 and λ

−(k−1)
u < 1; hence, if i→∞,

the sum in Eq. (3.81) is absolutely uniformly convergent. Hence L(θ) = limi→∞ Wk,i(θ)

exists. Letting i→∞ on both sides of Eq. (3.75) gives

L(θ) =

λkDF (K(θ))−1L(θ + ω)−DF (K(θ))−1Ek(θ) if |λ| < 1

λ−kDF (K(θ − ω))L(θ − ω) + λ−kEk(θ − ω) if |λ| > 1
(3.82)

which for both |λ| < 1 and |λ| > 1 is equivalent to Eq. (3.74) with Wk = L.

Remark. Given P and Λ satisfying Eq. (3.5), substituting Wk = PVk into Eq. (3.74)
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and rearranging gives ΛVk(θ)− λkVk(θ + ω) = −P (θ + ω)−1Ek(θ), which can be solved

for Vk component by component using the Fourier methods from Section 3.4.4. We used

the iteration method of Eq. (3.75) instead, to avoid any possible multiplication-translation

numerical discretization issues (see Section 3.4.10).

3.5.2 Computing Ek(θ): Automatic Differentiation and Jet Transport

In step 1 of the order-by-order method to find W , we compute the sk coefficient

Ek(θ) = [F (W<k(θ, s))−W<k(θ + ω, λs)]k (3.83)

In Eq. (3.83), the sk term of W<k(θ+ω, λs) is 0, since W<k(θ, s) is a Fourier-Taylor series

up to order sk−1 and λ is constant. However, computing the Fourier-Taylor expansion

of F (W<k(θ, s)) is more complicated, as F is a nonlinear stroboscopic map defined by

integrating points for a fixed time 2π/Ωp by the equations of motion (1.5) and (1.6). We

will need the tools of automatic differentiation [12] and jet transport [26] for this. Note

that some researchers [53, 54] use the term differential algebra to refer to what we call

automatic differentiation.

Automatic differentiation is an efficient and recursive technique for evaluating oper-

ations on Taylor series. For instance, let f(s) and g(s), s ∈ R, be two series; we can

use their known coefficients to compute d(s) = f(s)/g(s) as a Taylor series as well.

Let subscript j denote the sj coefficient of a series; since f(s) = d(s)g(s), we find that

fi =
∑i

j=0 djgi−j =
(∑i−1

j=0 djgi−j(s)
)
+ dig0, which implies that

di =
1

g0

(
fi −

i−1∑
j=0

djgi−j

)
(3.84)

Starting with d0 = f0/g0, Eq. (3.84) allows us to recursively compute di, i ≥ 1. Simi-

lar formulas also exist for recursively evaluating many other functions and operations on
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Taylor series, including f(s)α, α ∈ R; see [12] for more examples. Most importantly, in

all automatic differentiation formulas, the output series si coefficient is a function of only

the si and lower order coefficients of the input series. Hence, we can use truncated Taylor

series with these algorithms when implementing them in computer programs.

Recall from Section 3.4.10 that on the computer, we represent all functions of θ, includ-

ing the Wj(θ), as arrays of function values on an evenly spaced grid of θ values θi = 2πi/N ,

i = 0, . . . , N − 1. Note that for fixed θi, W<k(θi, s) is a Taylor series (not Fourier-Taylor)

with coefficients Wj(θi) ∈ R4. Using automatic differentiation, we can substitute Taylor

series such as W<k(θi, s) for (x, y, px, py) in the equations of motion (1.5), which gives

us series in s for (ẋ, ẏ, ṗx, ṗy). In terms of computer programming, this means that after

overloading the required operators (usually arithmetic and power) to accept Taylor series

arguments, we can use numerical integration routines with the series as well.

To be more clear, consider a Taylor series-valued function of time V (s, t) =
∑∞

j=0 Vj(t)s
j :

R2 → R4, where Vj(t) are its time-varying Taylor coefficients. Write Vx(s, t), Vy(s, t),

Vpx(s, t), and Vpy(s, t) for the x, y, px, and py components of V (s, t); similarly write

Vj,x(t), Vj,y(t), Vj,px(t), and Vj,py(t) for the components of Vj(t). Substituting V in Eq.

(1.5) yields a system of differential equations

d

dt
Vx(s, t) =

∞∑
j=0

V̇j,x(t)s
j =

∂Hε

∂px

(
Vx(s, t), Vy(s, t), Vpx(s, t), Vpy(s, t), θp

)
(3.85)

d

dt
Vy(s, t) =

∞∑
j=0

V̇j,y(t)s
j =

∂Hε

∂py

(
Vx(s, t), Vy(s, t), Vpx(s, t), Vpy(s, t), θp

)
(3.86)

d

dt
Vpx(s, t) =

∞∑
j=0

V̇j,px(t)s
j = −∂Hε

∂x

(
Vx(s, t), Vy(s, t), Vpx(s, t), Vpy(s, t), θp

)
(3.87)

d

dt
Vpy(s, t) =

∞∑
j=0

V̇j,py(t)s
j = −∂Hε

∂y

(
Vx(s, t), Vy(s, t), Vpx(s, t), Vpy(s, t), θp

)
(3.88)

θ̇p = Ωp (3.89)
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Hε and its partials are algebraic functions that are suitable for use with automatic differ-

entiation techniques; see, for instance, the PERTBP Hamiltonian Eq. (1.7). Hence, if the

Vj,x(t), Vj,y(t), Vj,px(t), Vj,py(t), and θp are known for j ∈ N and some t ∈ R, auto-

matic differentiation allows us to simplify the RHS of each of Eq. (3.85)-(3.88) to a series

in s. Then, for each of Eq. (3.85)-(3.88) and j ∈ N, the sj coefficient V̇j,x(t), V̇j,y(t),

V̇j,px(t), or V̇j,py(t) from the LHS must be equal to the sj coefficient of the RHS. In other

words, V̇j,x(t), V̇j,y(t), V̇j,px(t), and V̇j,py(t), j ∈ N, are functions of θp, Vj,x(t), Vj,y(t),

Vj,px(t), and Vj,py(t), j ∈ N. This is effectively a system of differential equations for the

time-varying Taylor coefficients of V (s, t). Solving Eq. (3.85)-(3.89) with initial condi-

tion V (s, 0) = W<k(θi, s) and initial θp equal to the value fixed in Section 3.3.1, we can

compute F (W<k(θi, s)) = V (s, 2π/Ωp).

In summary, we consider the Taylor coefficients of W<k(θi, s) as initial state variables

to be numerically integrated coefficient by coefficient; propagating by time 2π/Ωp, we get

the Taylor coefficients of F (W<k(θi, s)). Doing this for each i = 0, . . . , N − 1 is enough

to represent the Fourier-Taylor coefficients of F (W<k(θ, s)) on the computer, up to order

k; the sk coefficient of this gives us Ek(θ). This approach for numerical integration of

Taylor series is called jet transport; see [26] for more details. Truncated Taylor series can

be used with jet transport, since the automatic differentiation techniques used to evaluate

time derivatives work with truncated series. Note that for an n-dimensional state (n = 4

in our case) and degree-d truncated series, there are n(d + 1) coefficients, which is the

required dimension for the numerical integration.

3.5.3 Notes About Numerical Computation of Manifolds

We implemented the parameterization method, automatic differentiation, and jet transport

of Sections 3.5.1 and 3.5.2 in a C program for computation of stable and unstable mani-

folds. For numerical integration, including jet transport, we used the Runge-Kutta Prince-

Dormand (8,9) integrator from the GSL library [55]; integrations were parallelized using
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OpenMP with one thread for each θi value. We tested our tools by computing manifolds

of some of the 3:4 and 5:6 Jupiter-Europa PERTBP tori shown in Fig. 3.2 and 3.3, with

N ranging from 1024 to 2048. On a quad-core Intel i7 laptop CPU, the program took less

than 10 seconds for the computation of s5-order parameterizations.

Note that in each step of order k, when F (W<k(θi, s)) − W<k(θi + ω, λs) is com-

puted in order to find Ek(θi), the sj coefficients for j < k should be zero (to compute

the W<k(θi + ω, λs) coefficients, use the translation algorithm from Section 3.4.10 on the

arrays of Wj(θi) values, and then multiply Wj(θi + ω) by λj). This behavior was indeed

observed when running the program, serving as a check on the accuracy of the compu-

tation. The final sd-degree truncated series W≤d(θ, s) = K(θ) +
∑d

j=1 Wj(θ)s
j satisfies

F (W≤d(θi, s))−W≤d(θi + ω, λs) = 0 up to terms of order sd, for each i = 0, . . . , N − 1.

In the Wk(θ) step, we truncate all series at sk for the automatic differentiation and jet

transport steps; this optimizes computational time and storage requirements. Also, note that

given W (θ, s) solving Eq. (3.72), W (θ, αs) is also a solution for any α ∈ R. Sometimes,

the jet transport integration may struggle to converge as a result of fast-growing coefficients

Wj(θ) of W (θ, s); in this case, scaling W (θ, s) to W (θ, αs) with α < 1 can help. To

do this, simply multiply W1(θ) by α and then restart the order-by-order parameterization

method algorithm.

As a final remark, note that in certain systems, such as the PERTBP with θp = 0 at

t = 0, the equations of motion have the same time-reversal symmetry as the PCRTBP.

In this case, knowledge of the stable manifold W s(θ, s) gives us the unstable manifold

W u(θ, s) simply by setting W u(θ, s) = MW s(2π − θ, s) where M is the diagonal matrix

with diagonal entries 1,−1,−1, and 1. By doing this, we save half the computation time

as compared to computing both W s and W u.
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3.5.4 Fundamental Domains of Parameterizations

The d degree Fourier-Taylor parameterization W≤d(θ, s) of the manifolds of K(θ) will be

more accurate than linear approximation by the stable or unstable direction at each point

K(θ), However, due to series truncation error, W≤d(θ, s) is not exact. Furthermore, even

the exact infinite series W (θ, s) satisfying Eq. (3.72) would only be valid for s within some

radius of convergence. Thus, we must determine the values of s ∈ R for which W≤d(θ, s)

accurately represents the invariant manifold.

Fix an error tolerance, say Etol = 10−5 or 10−6. We now find what [12] call the

fundamental domain of W≤d(θ, s); this is the largest set T × (−D,D) such that for all

(θ, s) ∈ T× (−D,D), the error in invariance Eq. (3.72) is less than Etol. That is, we seek

the largest D ∈ R+ such that for all s satisfying |s| < D,

max
θ∈T
∥F (W≤d(θ, s))−W≤d(θ + ω, λs)∥ < Etol (3.90)

In practice, since we know K(θ) and Wj(θ), j = 1, . . . , d, at the values θi, i = 0, . . . , N−1,

we search for the largest D ∈ R+ such that for all s with |s| < D,

max
i=0,...,N−1

∥F (W≤d(θi, s))−W≤d(θi + ω, λs)∥ < Etol (3.91)

The simplest way of finding D is to first use bisection to find the largest Di such that

∥F (W≤d(θi, s))−W≤d(θi + ω, λs)∥ < Etol for all s ∈ (−Di, Di). After doing this for

i = 0, . . . , N − 1, D will be the minimum of all the Di.

We computed the fundamental domains of validity for 5 different 3:4 and 5:6 PERTBP

resonant torus manifold parameterizations. We found that the domains for d = 5 were

50-200 times larger than those for d = 1. For linear parameterizations (d = 1), the domain

size D of all test cases was on the order of 10−4 at best, generally 10−5. However, for

the degree-5 parameterizations Wd≤5(θ, s), D was on the order of 10−3 or 0.01. Higher
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degree parameterizations may improve even further. Note that a larger fundamental domain

means that less numerical integration is required for manifold globalization, reducing the

computation time.

3.6 Globalization, Regularization, and Visualization

At this point, we have accurate local representations of stable and unstable manifolds of

our stroboscopic map invariant circles. Given a manifold’s Fourier-Taylor parameterization

Wp(θ, s) and its fundamental domainD = T×(−D,D), the image Wp(D) gives us a piece

of the manifold in the map phase space R4. However, this subset of the manifold will be

close to its base invariant circle K(θ); generally, it is motions on the manifold further away

from the torus that are of interest for applications. Hence, we need to extend our Fourier-

Taylor parameterization Wp : D → R4 to a function W : T× R→ R4 parameterizing the

entire manifold, with W = Wp on D. This is referred to as globalization.

Recall from Eq. (3.72) that W must satisfy F (W (θ, s)) = W (θ+ω, λs). Applying this

repeatedly, we have that F k(W (θ, s)) = W (θ + kω, λks), where the superscript k ∈ Z+

refers to function composition. We can rewrite this as

W (θ, s) = F k(W (θ − kω, λ−ks)) (3.92)

W (θ, s) = F−k(W (θ + kω, λks)) (3.93)

Eq. (3.92)-(3.93) allow us to define W (θ, s) for all (θ, s) ∈ T × R. If W is an unstable

manifold with |λ| > 1, choose k ≥ 0 such that |λ−ks| < D and use Wp to evaluate

Eq. (3.92); if W is a stable manifold with |λ| < 1, take k ≥ 0 such that |λks| < D

and evaluate Eq. (3.93). The map F k (or F−k) is just a time 2πk/Ωp (or −2πk/Ωp)

numerical integration. W (θ, s) thus defined satisfies F (W (θ, s)) = W (θ + ω, λs) for all

(θ, s) ∈ T × R, so the image W (T × R) is F -invariant. Hence, Eq. (3.92)-(3.93) give

us a global representation of the entire stable or unstable manifold. Note that W can be
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differentiated easily with respect to θ and s to get the tangent vectors to the manifold,

as DF±k is a state transition matrix and DWp only requires polynomial or Fourier series

differentiation. This will be used in Section ?? of the following chapter for differential

correction of approximate heteroclinic connections.

3.6.1 Mesh Representations of Globalized Manifolds

For visualization, we often want to calculate a mesh of many points on the manifold, rather

than just a few W (θ, s) values. To do this, we first take an evenly-spaced grid of L s-

values {sj} from −D to D, in addition to our grid of N θ values θi, and then directly

evaluate the Fourier-Taylor parameterization to compute W (θi, sj) for each i = 0, . . . , N−

1, j = 1, . . . , L. Next, we repeatedly apply F or F−1 to the W (θi, sj) to get the points

W (θi + kω, λksj) = F k(W (θi, sj)) if |λ| > 1 or W (θi − kω, λ−ksj) = F−k(W (θi, sj)) if

|λ| < 1, for k = 0, 1, 2, . . . up to some kmax ∈ Z+. The numerical integrations required

in this step may require use of regularized equations of motion, which we will discuss in

Section 3.6.2. Finally, we use the translation algorithm given in Eq. (3.68) to find the points

W (θi, λ
ksj) if |λ| > 1 or W (θi, λ

−ksj) if |λ| < 1; we need all points to be at the same set

of N θi values when trying to create a manifold mesh that can be plotted.

By following this procedure, we get a discretized, plottable representation of the man-

ifold subset {W (θ, s) : (θ, s) ∈ T × [−M,M ]}, where M = λkmaxD if |λ| > 1 and

M = λ−kmaxD if |λ| < 1. Note that the numerical integrations can be parallelized across

θi values, which we took advantage of. A 3D projection of an example globalized stable

manifold mesh (denoted W s) of a 3:4 Jupiter-Europa PERTBP invariant circle is given in

Fig. 3.6, with N = 1024, L = 101, kmax = 6.

3.6.2 The Need for Regularization: An Extension of Levi-Civita to the PERTBP

In the equations of motion for the PERTBP and other periodically-perturbed PCRTBP mod-

els, the positions of the two large masses m1 and m2 are singularities. However, when

78



Figure 3.6: (x, y, px) projection of Jupiter-Europa PERTBP 3:4 W s for ω = 1.559620297

numerically integrating points forwards or backwards during the manifold mesh computa-

tion described in Section 3.6.1, it is possible for some points’ trajectories to pass extremely

close to the singularity at m2. Moreover, this can indicate that the manifold being computed

actually passes through the m2 singularity. Such behavior was observed, for example, dur-

ing computation of manifold meshes for 5:6 Jupiter-Europa PERTBP tori. These close

approaches to m2 can result in numerical issues, including lack of integrator convergence.

In the PCRTBP, the Levi-Civita regularization is very commonly used to compute tra-

jectories which pass near or through a singularity; see [5] for full details. First, a canonical

coordinate transformation is applied to the PCRTBP Hamiltonian H0 from Eq. (1.4). This

is followed by the addition of a pair of action-angle variables to the transformed Hamil-

tonian; the new action’s value is set to −H0, which has a constant value along the trajec-

tory. This finally allows a time-rescaling to be used which cancels the singularity. This

method, however, relies on the fact that H0 is constant along PCRTBP trajectories. For our

periodically-perturbed models, this is not the case. Hence, some modification is required.

For the PERTBP, the singularity corresponding to m2 is the time-varying point (x, y) =

((1 − µ)(1 − ε cosE(t)), 0). We now present the derivation of the modified Levi-Civita

regularization of m2 for the PERTBP; we expect very similar methods to apply for other
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periodically-perturbed PCRTBP models as well. Readers primarily interested in using the

final regularized equations for numerical integration should skip to Section 3.6.2. The

following is heavily inspired by [5].

First, take the PERTBP Hamiltonian Hε from Eq. (1.7) and add a momentum variable

pt conjugated to t. The Hamiltonian and equations of motion become

H̄ε(px, py, pt, x, y, t) = pt +
p2x + p2y

2
+ n(t)(pxy − pyx)−

1− µ

r1
− µ

r2
(3.94)

ẋ =
∂H̄ε

∂px
ẏ =

∂H̄ε

∂py
ṫ =

∂H̄ε

∂pt
ṗx = −∂H̄ε

∂x
ṗy = −

∂H̄ε

∂y
ṗt = −

∂H̄ε

∂t
(3.95)

where r1 =
√(

x+ µ(1 + χ(t))
)2

+ y2, r2 =
√(

x− (1− µ)(1 + χ(t))
)2

+ y2, and χ(t) =

−ε cosE(t). Note that adding pt does not change the values of ẋ, ẏ, ṗx, ṗy, and ṫ =

∂H̄ε/∂pt = 1 as compared to using Eq. (1.7). However, unlike Hε, the new Hamiltonian

H̄ε does remain constant along trajectories in (px, py, pt, x, y, t) space. Also, given an ini-

tial condition (x, y, px, py, t) to be propagated, the initial value of pt should be set so that

H̄ε = 0; this will be important later on.

Now, we perform a canonical coordinate transformation. This is required in order to

“straighten out” certain trajectories passing through the singularity which make sharp bends

in physical space [56]. Define a generating function

W (px, py, pt, X, Y, T ) = px
(
X2 − Y 2 + (1− µ)(1 + χ(T ))

)
+ p2(2XY ) + ptT (3.96)

which is a function of the old momenta and new configuration space coordinates. Then, this

defines a transformation between the old (px, py, pt, x, y, t) variables and new (PX , PY , PT , X, Y, T )
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variables through the relations [51]

x =
∂W

∂px
= X2 − Y 2 + (1− µ)(1 + χ(T )) y =

∂W

∂py
= 2XY

PX =
∂W

∂X
= 2pxX + 2pyY PY =

∂W

∂Y
= −2pxY + 2pyX

t =
∂W

∂pt
= T PT =

∂W

∂T
= (1− µ)px

dχ

dt
(T ) + pt

(3.97)

Eq. (3.97) gives us x, y, and t in terms of the new variables. We can also solve for px and

py to get px = 2
R
(PXX −PY Y ) and py =

2
R
(PXY +PYX), where R = 4(X2 + Y 2). This

then gives us pt = PT − 2
R
(1 − µ)(PXX − PY Y )dχ

dt
(T ). Note that in the new variables,

r2 =
√

(X2 − Y 2)2 + (2XY )2 = R/4.

Substituting the previous expressions for (px, py, pt, x, y, t) into Eq. (3.94) gives

Hε(PX ,PY , PT , X, Y, T ) =

PT −
2

R
(1− µ)(PXX − PY Y )

dχ

dt
(T ) +

P 2
X + P 2

Y

2R

+ 2n(T )

[
1

4
(PXX − PY Y )− (1− µ)

R
(1 + χ(T ))(PXY + PYX)

]
− 1− µ√

(X2 + Y 2)2 + (1 + χ(T ))2 + 2(X2 − Y 2)(1 + χ(T ))
− 4µ

R

(3.98)

The m2 singularity is now at (X, Y ) = (0, 0), where R = 4r2 = 0. Since this was a

canonical transformation, the equations of motion in the new coordinates will be

Ẋ =
∂Hε

∂PX

Ẏ =
∂Hε

∂PY

Ṫ =
∂Hε

∂PT

ṖX = −∂Hε

∂X
ṖY = −∂Hε

∂Y
ṖT = −∂Hε

∂T
(3.99)

To regularize the singularity at R = 0, we want to be able to use RHε instead of Hε. For

this, define a rescaled time s such that dt = Rds. Then, we have that d
ds

= d
dt

dt
ds

= R d
dt

.
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Thus, letting prime (′) denote d/ds,

X ′ = R
∂Hε

∂PX

Y ′ = R
∂Hε

∂PY

T ′ = R
∂Hε

∂PT

P ′
X = −R∂Hε

∂X
P ′
Y = −R∂Hε

∂Y
P ′
T = −R∂Hε

∂T

(3.100)

Since R is a function of only X and Y , it is immediate that X ′ = ∂[RHε]
∂PX

, Y ′ = ∂[RHε]
∂PY

,

T ′ = ∂[RHε]
∂PT

, and P ′
T = −∂[RHε]

∂T
. Furthermore, since pt was chosen earlier to ensure

H̄ε = 0, we also will have Hε = 0 along the trajectory in (PX , PY , PT , X, Y, T ) space.

Hence, we find that ∂[RHε]
∂X

= R∂Hε

∂X
+ Hε

∂R
∂X

= R∂Hε

∂X
. This yields P ′

X = −∂[RHε]
∂X

; we

similarly find P ′
Y = −∂[RHε]

∂Y
. As RHε has no singularity at R = 0, we thus obtain the

m2-regularized time-s equations of motion

X ′ =
∂[RHε]

∂PX

Y ′ =
∂[RHε]

∂PY

T ′ =
∂[RHε]

∂PT

P ′
X = −∂[RHε]

∂X
P ′
Y = −∂[RHε]

∂Y
P ′
T = −∂[RHε]

∂T

(3.101)

Usage of Regularized PERTBP Equations of Motion

Let (xi, yi, pix, p
i
y) be an initial state we wish to integrate from t = ti to tf in the PERTBP.

Recall Hε from Eq. (1.7), and H̄ε from Eq. (3.94), with χ(t) = −ε cosE(t). To use the

m2-regularized equations of motion for this integration, we:

1. Set pit = −Hε(p
i
x, p

i
y, x

i, yi, ti), so that H̄ε(p
i
x, p

i
y, p

i
t, x

i, yi, ti) = 0.

2. Compute initial (P i
X , P

i
Y , P

i
T , X

i, Y i, T i) using the equations (where j =
√
−1)

X + jY =
(
x− (1− µ)(1 + χ(t)) + jy

)1/2
PX =2pxX + 2pyY PY = −2pxY + 2pyX

T = t PT = (1− µ)px
dχ

dt
(t) + pt

(3.102)

The sign chosen during the complex square root for X + jY does not matter.
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3. Integrate the initial condition (P i
X , P

i
Y , P

i
T , X

i, Y i, T i) using Eq. (3.101), where R =

4(X2 + Y 2) and Hε is given by Eq. (3.98). Only stop the integration when T = tf ;

do not stop before this occurs, even if the integration time reaches tf .

4. Transform the resulting final state back to (px, py, pt, x, y, t) coordinates using

x = X2 − Y 2 + (1− µ)(1 + χ(T )) y = 2XY

px =
2

R
(PXX − PY Y ) py =

2

R
(PXY + PYX)

t = T = tf pt = PT −
2

R
(1− µ)(PXX − PY Y )

dχ

dt
(T )

(3.103)

The first line of Eq. (3.102) should be interpreted as two real equations corresponding

to setting real and imaginary parts of both sides equal. It follows from the first line of

Eq. (3.97) combined with the relation (X + jY )2 = X2 − Y 2 + j(2XY ). Also, for

step 3 above, the requirement to stop integration when T = tf can be implemented using

the “events” functionality of MATLAB’s ODE solvers, or the callback features in Julia’s

DifferentialEquations.jl library.

The partial derivatives of RHε appearing in the equations of motion Eq. (3.101) are

straightforward to compute but lengthy, so we do not write them here. Throughout the

steps listed above, as well as for computing the partial derivatives, we need the quantities

dχ
dt

, d2χ
dt2

, and dn
dt

. These are given by the equations

dχ

dt
=

ε sinE

1− ε cosE

d2χ

dt2
=

ε cosE − ε2

(1− ε cosE)3
dn

dt
=
−2ε
√
1− ε2

(1− ε cosE)4
sinE

which can be derived from χ(t) = −ε cosE(t), n(t) =
√
1−ε2

(1−ε cosE(t))2
, and the relation dE

dt
=

1
1−ε cosE

(which in turn follows from taking the time derivative of the standard Kepler’s

equation M = E − ε sinE; see [2]).
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Figure 3.7: (x, y) projection of Jupiter-Europa PERTBP 5:6 W s for ω = 1.030011437

Computational Results

In Fig. 3.7, we show a 2D projection of an example globalized stable manifold mesh for

a 5:6 Jupiter-Europa PERTBP invariant circle. This was computed using the regularized

PERTBP equations of motion to evaluate F−k in the procedure described in Section 3.6.1;

in this case, N = 2048, L = 101, kmax = 6. We have filtered the computed mesh points

so as to only plot those which did not result in a very “visually discontinuous” mesh; this

filtering is needed during visualization, since close flybys of m2 can send points which

started close together in extremely different directions. Nevertheless, even after discarding

some mesh points, it is clearly visible in the figure that the manifold passes through the

singularity at m2 (Europa, marked as a red circle). Using the regularized equations, we

experienced no warnings of integrator divergence during program runtime, which were

encountered when using the unregularized equations.

We also used the regularized equations of motion to recompute the 3:4 W s manifold

mesh shown earlier in Fig. 3.6. The results matched those which were obtained earlier

when using Eq. (1.5) and (1.7) for the numerical integrations, thus verifying the correct-
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ness of the regularization procedure. We carried out this computation in Julia, using the

DP5 integrator and parallelizing across θi with the EnsembleProblem feature of Differ-

entialEquations.jl [57]; the computation of the 3:4 manifold with N = 1024, L = 101,

kmax = 15 took approximately 250 seconds on the same quad core i7 laptop CPU used

earlier.

3.7 Conclusion

In this chapter, we first developed a quasi-Newton method for the simultaneous computa-

tion of unstable invariant circles and their symplectic conjugate center, stable, and unstable

bundles for stroboscopic maps of periodically-perturbed PCRTBP models. Our method im-

proves the computational complexity of the torus calculation to O(N logN) as compared

to O(N3) for the methods used in almost all the existing astrodynamics literature, in addi-

tion to giving useful information on the torus stable and unstable directions. Our method

also extends the O(N logN) method of [52] and [12] to unstable tori with center direc-

tions, as is the case for the vast majority of celestial mechanics applications. We used this

quasi-Newton method for continuation of tori and bundles by both perturbation parameter

and rotation number, and described how to initialize the continuation from PCRTBP peri-

odic orbits. We also gave a set of numerical best practices to aid in quasi-Newton method

convergence.

After finding the tori and bundles, we used the results of the continuation to start an

order-by-order method for the computation of Fourier-Taylor series parameterizations of

stable and unstable manifolds for the invariant circles. We found significant improvements

in accuracy and fundamental domain size compared to linear manifold approximations. Fi-

nally, we were able to extend the parameterizations to compute points of the manifolds out-

side the fundamental domain, with the aid of a modified Levi-Civita regularization which

we derived for the PERTBP. We expect that similar methods can be used to regularize other

periodically-perturbed PCRTBP models as well.
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The tools developed were tested in the Jupiter-Europa PERTBP, with the calculations of

the circles, bundles, and manifold parameterizations taking just a few seconds on a 2017-

era laptop with a quad-core Intel i7 CPU. Our Julia program for computation of meshes

of globalized manifold points took a few minutes for each manifold, due to the large num-

ber of numerical integrations involved. As we describe in the following chapter (based on

the paper [15]), with the help of modern computer graphics processing units, these man-

ifold parameterizations and meshes can be used to very rapidly search for and accurately

compute intersections of stable and unstable manifolds leading to heteroclinic connections.

The methods presented in this chapter can form an important component for low-energy

mission design and transfer trajectories in such periodically-perturbed PCRTBP models.
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CHAPTER 4

USING GPUS AND THE PARAMETERIZATION METHOD FOR RAPID

SEARCH AND REFINEMENT OF CONNECTIONS BETWEEN TORI IN

PERIODICALLY PERTURBED PCRTBP MODELS

4.1 Introduction

Numerous prior studies have used the stable and unstable manifolds of unstable planar

periodic orbits, both around libration points as well as at resonances, as an efficient tool

for multi-body mission design in the planar circular restricted 3-body problem (PCRTBP).

For instance, Anderson and Lo [16, 17] studied intersections of the manifolds of resonant

periodic orbits in the Jupiter-Europa system as a mechanism of resonance transitions. The

book of Koon et al. [36] describes the Poincaré section method of finding intersections

of manifolds between L1 and L2 libration point orbits, and shows how to use the resulting

regions to construct trajectories with arbitrary itineraries between the different realms of the

PCRTBP model. As the phase space is 4-dimensional, fixing an energy level restricts the

dynamics to a 3D submanifold, and the Poincaré section further reduces the dimensionality

of the system to 2D. Since the manifolds of the periodic orbits are 2D cylinders in the

full phase space, taking the Poincaré section reduces the manifolds to 1D curves in the

section, so the problem of finding connections between periodic orbits reduces to finding

the intersection of two 1D manifold curves in a 2D plane (for example, see Chapter 2).

While this method of intersecting 1D curves is useful in the 4-dimensional phase space

of the PCRTBP, it is not applicable to systems with higher dimensional phase spaces. For

instance, in the 6D phase space of the spatial CRTBP, fixing an energy level and taking a

Poincaré section still results in a 5D energy level and 4D section to be explored. In the

case of a time-varying periodic perturbation of the PCRTBP, the phase space becomes 5-
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dimensional, considering the perturbation phase as an angular state variable. As energy is

no longer conserved in non-autonomous systems, taking a Poincaré section again leaves us

with a 4D space to be explored. Furthermore, in these systems, unstable periodic orbits are

no longer the main dynamical structures of interest, as 2D manifolds of periodic orbits do

not generically intersect each other in a 5D phase space or energy level; instead, unstable

quasi-periodic orbits and their manifolds are the objects of sufficient dimensionality such

that one can expect intersections.

In Chapter 3, we described how most PCRTBP unstable periodic orbits will persist as

2D unstable quasi-periodic orbits in the 5D phase space of periodically-perturbed PCRTBP

models. By considering stroboscopic maps instead of the continuous-time flow, we reduced

the dimensionality of the system by 1 so that these quasi-periodic orbits become invariant

1D tori (circles) in the 4D stroboscopic map phase space (x, y, px, py); these invariant cir-

cles have 2D cylindrical stable and unstable manifolds as the PCRTBP unstable periodic

orbits did. However, due to the absence of an energy integral, manifold intersections in

the perturbed system will occur at isolated points, rather than along continuous trajectory

curves. Hence, a different method of computing homoclinic and heteroclinic connections

in the full 4D phase space is required. The purpose of this study is to develop new and

computationally fast methods and tools for this problem.

In this chapter, we start with a brief overview of graphics processing unit (GPU) com-

puting capabilities and paradigms, as well as some background on collision detection meth-

ods from computer graphics, both of which are used in this study. Next, we describe the

method of layers for restricting the homoclinic and heteroclinic connection search to ap-

propriate subsets of the two manifolds of interest. Once these subsets are identified, we

can computationally represent each manifold as a 2D mesh of points in the 4D strobo-

scopic map phase space. With these meshes representing the manifolds, we next develop

a heavily parallel algorithm for detecting and computing intersections of these meshes in

4D space; we then describe how to implement this method using the Julia programming
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language and OpenCL, taking advantage of the capabilities of modern GPUs to massively

speed up the algorithm execution time. Finally, we take the approximate intersections of

manifolds computed from the mesh intersection search, and show how to use our mani-

fold parameterizations to refine the intersections to high precision. We demonstrate the

use of our methods by applying them to the search for heteroclinic connections between

resonances in the Jupiter-Europa planar elliptic RTBP.

4.2 Background

4.2.1 An Overview of GPU Computing

Graphics processing units (GPUs) are special-purpose computer processors originally de-

signed for executing computations required for 3D graphics [58]. More recently, as the

capabilities of GPUs have grown, it has become possible to use GPUs for many other com-

putational tasks as well. GPUs excel at tasks with large and highly parallel computational

requirements, as the GPU processes blocks of many elements in parallel using the same

program. While a single-program multiple-data (SPMD) programming model is supported

on GPUs, due to the lock-step execution of the program on multiple data elements, it is

necessary to evaluate both sides of any code branches for all elements in a block of data.

Hence, GPUs are best suited to straight-line programs which are mostly written in a single-

instruction, multiple data (SIMD) style. Flow control should be kept to a minimum.

There are two main toolkits used for programming GPUs directly. The most commonly

used is Nvidia CUDA [59], which works only with Nvidia GPUs. The other is OpenCL,

[60] which is an open standard which provides a programming language and APIs that can

be used with a variety of SIMD-capable devices, including both AMD and Nvidia GPUs as

well as CPUs. OpenCL implementations exist for many different platforms, including Win-

dows, MacOS, and Linux x64. The basic programming concepts of CUDA and OpenCL

are very similar; as we used OpenCL in this study, we briefly go over the OpenCL model

here, covering the concepts used in this work.
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In OpenCL, the fundamental task is the programming of kernels. A kernel is a pro-

gram which executes on the OpenCL device, like a GPU. When a kernel is submitted for

execution, a 1D, 2D, or 3D space of indices is defined, called an NDRange (we only use a

1D NDRange in this study); each index corresponds to a separate execution of the kernel.

These kernel instances are referred to as work items, with each work item identified by

a unique global ID (a nonnegative integer if NDRange is 1D) corresponding to an index

in NDRange. Each work item executes the same kernel, but can access different data in

memory. Work items are grouped into work groups; all work items in a work group ex-

ecute concurrently. Finally, the work groups taken together form the NDRange. The key

advantage of GPUs is the massive number of threads they have, usually on the order of

thousands, which allows them to execute large numbers of work items in parallel.

The OpenCL memory model has various categories of memory stored on the device,

accessible to different parts of the program. Private memory is accessible only to a single

work item, and local memory is accessible to all work items in the same work group. We

do not use local memory in the programs written for this study. Finally, global memory

is accessible to all work items. The use of global memory can be a problem if two work

items try to access the same memory location at the same time; it is for this purpose that

atomic functions are useful. These functions receive a pointer to a 32 bit integer or floating

point number stored in global or local memory, modify the value there, and return the old

value. The key is that atomic functions execute so that when one work item is carrying out

an atomic operation at a pointer location, the other threads must wait for that work item to

complete the operation. Some such functions are atomic add, subtract, increment, min, and

max.

An example of a simple OpenCL kernel is given in Fig. 4.1. This program takes as

input an array of zeros and ones (denoted as in array) and finds the in array entries which

have a value of 1, saving their indices in the array true idxs. It also takes a pointer curr idx

to an integer which is initialized to 0 before the kernel is run. The first line after the kernel
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__kernel void findall(__global const char *in_array, __global uint 
*true_idxs, __global int *curr_idx)

    {
        unsigned int gid = get_global_id(0);

        if (in_array[gid] == 1){
            uint old_val = atomic_inc( curr_idx );
            true_idxs[old_val] = gid+1;
        }

    }

Figure 4.1: Example of OpenCL findall kernel

declaration stores the work item global ID as gid. Then, the kernel checks if the gid entry

of in array is 1, so that each work item checks a different entry of in array. If the gid

entry is true, an atomic increment is applied to curr idx, with the pre-increment value of

curr idx stored in old val; each work item stores its value of old val in private memory,

separately from all other work items. curr idx is in global memory, so it is shared between

all work items. Hence, the first work item to apply atomic inc sets its private old val to 0

and the shared curr idx to 1, the next work item to apply atomic inc sets its old val to 1

and curr idx to 2, and so on. This way, each work item with in array[gid] equal to 1 gets

a unique consecutive value of old idx. Finally, the gid values with in array[gid] equal to 1

are stored in the true idxs array at the indices old idx by the corresponding work items (we

add 1 to gid since we later use the true idxs array in Julia, which has one-based indexing).

4.2.2 Collision Detection

Given two sets A and B, each containing some finite number of geometric objects, the

problem of collision detection simply is that of determining whether any object from A

intersects any object(s) from B, and if so, which pairs of objects intersect and where they

do so. Computational methods for collision detection are used in a variety of applica-

tions, including video game development, animation, robotics, computer aided design, and

physics simulations [61, 62]. Indeed, as will be shown in Section 4.4, such methods are
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also applicable to the problem of finding heteroclinic connections in dynamical systems.

If one were to solve the collision detection problem by checking each object in A

against each object in B for an exact determination of whether/where they intersect, this

would require |A||B| tests; even if A = B as is often the case in computer graphics, though

not in this chapter, there would still be |A|(|A|−1)
2

pairwise intersection tests required. Ei-

ther way, the cost of such a collision detection algorithm is quadratic, which can quickly

become infeasible if |A| and |B| are large (as will be the case later in this chapter) and the

pairwise intersection test itself is not extremely computationally cheap. However, unless

the objects of A and B are all very simple (e.g. spheres), the exact pairwise intersection

test is generally expensive.

It is hence necessary to find a way to reduce the number of exact pairwise tests done. To

this end, most collision detection algorithms are comprised of two phases: a broad phase

and a narrow phase [62]. In practice, most pairs of objects do not intersect; hence, the broad

phase uses very cheap computations to eliminate most of these non-intersecting pairs from

consideration. Usually this involves dividing objects into groups such that only objects

within the same group can intersect, and/or putting pairs of objects through a very simple

test which, if failed, verifies non-intersection. The broad phase outputs a set of potentially

colliding pairs of objects, to which the narrow phase then applies the more costly exact

intersection test.

4.3 The Method of Layers for Restricting the Connection Search

After using the methods of Chapter 3 to compute the stable/unstable manifolds of unstable

invariant tori (invariant circles) for a periodically-perturbed PCRTBP stroboscopic map, we

wish to search for heteroclinic connections between them. Henceforth, let W u
1 (θu, su) and

W s
2 (θs, ss) be functions parameterizing the unstable and stable manifolds of stroboscopic

map-invariant circles 1 and 2, respectively, in the same vein as Sections 3.5-3.6. Hetero-

clinic connections from circle 1 to circle 2 occur when the images of W u
1 and W s

2 intersect
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in (x, y, px, py) space. This means we need to find (θu, su) and (θs, ss) such that

W u
1 (θu, su) = W s

2 (θs, ss) (4.1)

In order to solve Eq. (4.1), it would help to be able to restrict our solution search to only

certain regions of the (θu, su, θs, ss) space. To this end, we define the concept of layers.

Let λu and λs be the multipliers for the internal dynamics on W u
1 and W s

2 , respectively.

Let T×(−Du, Du) and T×(−Ds, Ds) be the fundamental domains of the parameterizations

of W u
1 and W s

2 , respectively. Now, define subsets U+
n , U−

n and S+
n , S−

n of W u
1 and W s

2 as

follows:

U+
n = {W u

1 (θ, s) : (θ, s) ∈ T× [Duλ
n−1
u , Duλ

n
u]} (4.2)

U−
n = {W u

1 (θ, s) : (θ, s) ∈ T× [−Duλ
n−1
u ,−Duλ

n
u]} (4.3)

S+
n = {W s

2 (θ, s) : (θ, s) ∈ T× [Ds/λ
n−1
s , Ds/λ

n
s ]} (4.4)

S−
n = {W s

2 (θ, s) : (θ, s) ∈ T× [−Ds/λ
n−1
s ,−Ds/λ

n
s ]} (4.5)

where n ∈ Z. Finally, define Un = U+
n ∪ U−

n and Sn = S+
n ∪ S−

n . We refer to the subsets

Un and Sn as layers, and to U+
n , S+

n and U−
n , S−

n as positive and negative half-layers,

respectively. In our experience, W u
1 (θu, su) and W s

2 (θs, ss) do not intersect for |su| < Du

and |ss| < Ds; this can usually be seen from plotting the projections of the manifolds

for these s-values in (x, y, px) space. Hence, if W u
1 and W s

2 intersect, it must be that Un1

intersects Sn2 for some n1, n2 ∈ Z+.

The most important property of these layers is that F (Un) = Un+1 and F (Sn) = Sn−1;

more generally, F k(Un) = Un+k and F k(Sn) = Sn−k for all k ∈ Z. This allows us to

restrict our heteroclinic connection search to only certain pairs of layers of W u
1 and W s

2 . To

see this, suppose we are searching for a heteroclinic connection which comes from layer

Un1 intersecting layer Sn2 at x ∈ R4. Then, since F (Un) = Un+1 and F (Sn) = Sn−1, we

have that F (x) is in the intersection of Un1+1 and Sn2−1. More generally, for all k ∈ Z, we
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have that

F k(x) ∈ Un1+k ∩ Sn2−k (4.6)

Now, if n1 and n2 are both odd or both even, using k = n2−n1

2
in Eq. (4.6) gives us

F k(x) ∈ Uñ∩Sñ, where ñ def
= n1+n2

2
. On the other hand, if n1 and n2 are of opposite parity,

setting k = n2−n1+1
2

in Eq. (4.6) gives us F k(x) ∈ Uñ ∩ Sñ−1, where ñ
def
= n1+n2+1

2
.

When searching for the heteroclinic trajectory which arises due to the manifolds’ in-

tersection at x, it is enough to find any point on the orbit of x under the map F , including

F k(x) from the preceding analysis. Based on the above discussion, it is clear that we will

find the point F k(x) if we look for intersections of pairs of layers of form (Un, Sn) or

(Un, Sn−1) for n ∈ Z+ (as mentioned earlier, our experience is that the manifolds do not

intersect for |su| < Du and |ss| < Ds, so we only consider positive n). Since x was an

arbitrary heteroclinic point, if we search for intersections of pairs of layers of the form just

presented above, we will find all possible heteroclinic trajectories.

As a final note, it is easy to see that if Un1 intersects Sn2 , this implies that the time

of flight of the resulting heteroclinic connection from the fundamental domain of one torus

manifold to the other is 2π(n1+n2)/Ωp; this is because n1+n2 mappings by F are required.

Hence, the layer indices can be thought of as a proxy for the connection trajectory time of

flight.

4.4 Rapid GPU-Assisted Search for Manifold Intersections

With methods of computing manifolds and restricting the connection search to certain layer

pairs now developed, we now seek to develop computationally fast methods of finding

intersections of the manifold layers. The manifolds being dealt with are geometric objects

in 4D space, so by discretizing the manifolds and applying methods inspired by those from

computer graphics collision detection algorithms, we are able to very rapidly search a pair

of manifolds for intersections. The algorithms are massively sped up by taking advantage
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of the huge number of threads available on modern graphics processing units (GPUs). We

start this section a with description of the manifold discretization. After this we give the

full explanation and demonstration of our intersection search algorithm.

4.4.1 Discrete Mesh Representation of Manifolds

In Chapter 3, we described how it is possible to compute Fourier-Taylor parameterizations

W (θ, s) of the stable and unstable manifolds of stroboscopic map invariant circles. We

also gave Equations (3.92) and (3.93) demonstrating how to use the parameterizations to

compute W (θ, s) for s-values outside the fundamental domain T × (−D,D). From this,

we were able to find a mesh representation of the globalized manifold using the method of

Section 3.6.1, which was useful for visualization and plotting. However, this same discrete

manifold mesh can also be used for computations and analysis.

The procedure of Section 3.6.1 involved computing the manifold points W (θi, λ
nsk)

if |λ| > 1 or W (θi, λ
−nsk) if |λ| < 1, where θi = 2πi/N , i = 0, 1, . . . , N − 1, the

set {sk}Lk=1 is an evenly spaced grid of L s-values from −D to D, and n ranges from 0

up to some nmax ∈ Z+. This yields a discretized representation of the manifold subset

{W (θ, s) : (θ, s) ∈ T × [−σ, σ]}, where σ = λnmaxD if |λ| > 1 and σ = λ−nmaxD if

|λ| < 1. Now define the set S = {λnsk} (for |λ| > 1) or S = {λ−nsk} (for |λ| < 1), n =

0, 1, . . . , nmax, k = 1, . . . , L. The set S contains all s values for the computed manifold

points, and is an unevenly spaced set of real numbers ranging from s = −σ to σ. Note that

since s1 = −D and sL = D, the s-values of the Un layer boundaries (s = ±λnD) or Sn

layer boundaries (s = ±λ−nD) will be contained in S; this fact will be useful later.

For later notational convenience, redefine the sequence {sk} now to be S, sorted in

ascending order, where now k = 1, . . . ,M , M = |S|. With this redefinition, each point

computed on the globalized manifold can now be written as W (θi, sk), indexed using the

two integers i between 0 and N − 1 and k between 1 and M . In our case, we stored the

x, y, px, and py values of the computed manifold points in 4 separate 2D N ×M arrays on
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(θi, sk+1)	  (θi+1, sk+1)


(θi, sk)	  	  (θi+1, sk)

(θi, sk+1)	  (θi+1, sk+1)


(θi, sk)	  	  (θi+1, sk)

Figure 4.2: Schematic of Quadrilateral (Quad) and Triangular Mesh Construction

the computer, so that the (i + 1, k) entry of each array is the x, y, px, or py coordinate of

W (θi, sk). Moving down a column of each array corresponds to increasing θ and constant

s, and moving across a row corresponds to constant θ and increasing s.

With manifold points computed on a discrete grid of (θ, s) ordered pairs and appropri-

ate notation defined, we have everything required in order to define the mesh representation

of the manifold. We have the values of W (θ, s) at the points {(θi, sk)} for i = 0, . . . , N−1,

k = 1, . . . ,M . Consider the index i to be modulo N , so that θN = θ0 and θ−1 = θN−1.

To form the manifold mesh, connect W (θi, sk) with W (θi−1, sk), W (θi+1, sk), W (θi, sk−1),

and W (θi, sk+1) using line segments. If k−1 or k+1 is outside the range of allowed indices

1, . . . ,M (which is true if k = 1 or k = M , respectively), then omit the corresponding seg-

ment from the mesh. This yields a quadrilateral mesh representation of W , as is schemati-

cally illustrated on the left of Fig. 4.2. We denote the (i, k) quadrilateral, or quad for short,

to be that with vertex set Qik = {W (θi, sk),W (θi+1, sk),W (θi, sk+1),W (θi+1, sk+1)},

where i = 0, . . . , N − 1, k = 1, . . . ,M − 1 enumerate the N(M − 1) quads in the mesh.

As the vertices of a quad in 4D do not determine a plane, it is necessary to consider

each quad as being composed of two triangles for later computational purposes. We split

the (i, k) quad into two triangles by connecting the vertex W (θi, sk) with W (θi+1, sk+1).

Hence, for each ordered pair (i, k), i = 0, . . . , N − 1, k = 1, . . . ,M − 1, we have two

triangles. This gives a triangular mesh for W . The right of Fig. 4.2 shows a schematic
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Figure 4.3: (x, y, px) projection of 3:4 W s in Jupiter-Europa PERTBP for ω =
1.559620297

representation of the mesh construction, illustrating all the points which are connected to

each other.

A 3D projection of an example globalized stable manifold (denoted W s) of a 3:4

Jupiter-Europa PERTBP invariant circle is given in Fig. 4.3 (same as Fig. 3.6, repeated

here for convenience); the figure was generated using MATLAB’s mesh function, which

generates a quad mesh similar to the one described here.

4.4.2 GPU-Accelerated Manifold Mesh Intersection Search

Now that we have described how to construct and define the quadrilateral and triangular

mesh representations of the manifolds, we start searching for heteroclinic connections. As

defined earlier, let W u
1 (θu, su) and W s

2 (θs, ss) represent the unstable and stable manifolds of

stroboscopic map invariant circles 1 and 2, respectively. Let λu and λs be the multipliers for

the internal dynamics and T× (−Du, Du) and T× (−Ds, Ds) be the fundamental domains

of the parameterizations for W u
1 and W s

2 , respectively. After computing and storing the

vertices of the meshes for W u
1 and W s

2 , the problem of finding heteroclinic connections

becomes that of finding intersections of these two meshes in 4D space.

From Section 4.3, we know that we can restrict our attention to finding intersections

of only certain layers of the manifolds; using the notation from earlier, we seek to find
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intersections of pairs of layers of the form (Un, Sn) or (Un, Sn−1). Equivalently, we need

to check if U+
n or U−

n intersect any of S+
n , S−

n , S+
n−1, or S−

n−1, for n ∈ Z+. Recalling

that the s-values generated during manifold globalization include those for the boundaries

of these layers and half-layers, it turns out that the half-layers just correspond to easily

identified subsets of the manifold meshes. For U+
n , one simply takes the W u

1 mesh vertices

which satisfy su ∈ [Duλ
n−1
u , Duλ

n
u]. For S+

n , take vertices of the W s
2 mesh with ss ∈

[Ds/λ
n−1
s , Ds/λ

n
s ]. The negative half-layers are the same except for a change in the signs

of Du and Ds. If the manifold coordinates are stored in four 2D arrays as described earlier,

with each column containing the coordinates of all points for a given s value, then the vertex

set of a half-layer mesh is just comprised of points from a contiguous set of columns.

With the meshes for the half-layers identified, we finally arrive at the problem of search-

ing for intersections of two half-layer meshes. Let us say that the mesh vertices correspond-

ing to an unstable half-layer are W u
1 (θu,i, su,k), i = 0, . . . , N1 − 1, k = 1, . . . ,M1; for the

stable half-layer mesh let the vertices be W s
2 (θs,j, ss,ℓ), j = 0, . . . , N2 − 1, ℓ = 1, . . . ,M2.

As was done in the previous section, define the quad vertex sets

Qu
ik = {W u

1 (θu,i, su,k),W
u
1 (θu,i+1, su,k),W

u
1 (θu,i, su,k+1),W

u
1 (θu,i+1, su,k+1)} (4.7)

Qs
jℓ = {W s

2 (θs,j, ss,ℓ),W
s
2 (θs,j+1, ss,ℓ),W

s
2 (θs,j, ss,ℓ+1),W

s
2 (θs,j+1, ss,ℓ+1)} (4.8)

where i = 0, . . . , N1 − 1; j = 0, . . . , N2 − 1; k = 1, . . . ,M1 − 1; and ℓ = 1, . . . ,M2 − 1

(again consider the indices i and j to be modulo N1 and N2, respectively).

For notational convenience, we also use Qu
ik and Qs

jℓ to refer to the quads formed by

the vertices contained therein. As described earlier, we consider each Qu
ik and Qs

jℓ to be

comprised of two triangles, defined by vertex sets

T u1
ik = {W u

1 (θu,i, su,k),W
u
1 (θu,i+1, su,k),W

u
1 (θu,i, su,k+1)} (4.9)
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T u2
ik = {W u

1 (θu,i+1, su,k),W
u
1 (θu,i, su,k+1),W

u
1 (θu,i+1, su,k+1)} (4.10)

T s1
jℓ = {W s

2 (θs,j, ss,ℓ),W
s
2 (θs,j+1, ss,ℓ),W

s
2 (θs,j, ss,ℓ+1)} (4.11)

T s2
jℓ = {W s

2 (θs,j+1, ss,ℓ),W
s
2 (θs,j, ss,ℓ+1),W

s
2 (θs,j+1, ss,ℓ+1)} (4.12)

Again for ease of notation, we also use T u1
ik , T u2

ik , T s1
jℓ , and T s2

jℓ to refer to the plane triangles

formed by the vertices contained therein. We have that Qu
ik = T u1

ik ∪ T u2
ik and Qs

jℓ =

T s1
jℓ ∪ T s2

jℓ .

Now, the problem of searching for intersections between the half-layers can be solved

by checking whether any quad Qu
ik intersects any quad Qs

jℓ; we say that Qu
ik intersects Qs

jℓ

if any of the triangles T u1
ik or T u2

ik intersect either of T s1
jℓ or T s2

jℓ . This is just the collision

detection problem described in Section 4.2.2 with A as the set of all Qu
ik and B being the

set of all Qs
jℓ. There are N1(M1 − 1) quads in the unstable manifold half-layer mesh, and

N2(M2 − 1) in the stable manifold half-layer mesh; hence, N1N2(M1 − 1)(M2 − 1) pairs

of quads must be checked for intersection. For an example computation in the PERTBP

computing intersections between manifolds of 3:4 and 5:6 resonant invariant circles, we

had N1 = 1024, N2 = 2048, and M1 = M2 = 35, for a total of 2,424,307,712 pairs

of quads; each quad pair intersection test involves 4 triangle-triangle checks, which gives

9,697,230,848 pairs of triangles to check for our example. Given the massive number of

identical checks to be done, it is clear that a GPU will be well suited to this application.

It is possible to exactly determine whether two 2D triangles intersect in 4D by solving

a 4× 4 system of linear equations and checking whether the solution satisfies certain con-

ditions, to be described in more detail later (see Section 4.4.2); 4 such tests are required

in each quad-quad intersection test. However, solving a different 4 × 4 system for each

of billions of triangle pairs would be extremely computationally expensive, in addition to

not being a suitable algorithm to implement on a GPU. Fortunately, as is the expectation in

practical collision detection problems, the vast majority of pairs of quads will not intersect

when checking two manifold half-layer meshes for intersection. Hence, as described in
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Section 4.2.2, it is necessary to first have a computationally cheap broad phase algorithm

which can reject most of the non-intersecting quad pairs. For this, we first implement a

simple method of grouping quads such that only quads from the same group can possibly

intersect; this is then followed by two common broad phase non-intersection tests, both of

which can be run on the GPU.

Broad Phase: Uniform Grid Spatial Partitioning

The first step of the broad phase algorithm is aimed at excluding pairs of quads which are

in completely different regions of phase space. The main idea [61] is to partition a finite

“world” which contains all our objects into a uniform grid of boxes. Then, it is clear that

only objects (in our case, quads) overlapping a common box can possibly intersect. Thus,

for each box one can make two lists, one of the Qu
ik and another list of the Qs

jℓ which overlap

that box; by taking all the pairs of quads having one quad from each list, one gets the set of

quad pairs which potentially intersect in that box. Their union over all boxes forms the set

of all potentially intersecting quad pairs.

As long as the grid was not too coarse, one will end up with a significantly smaller list

of quad pairs after this procedure. This is schematically illustrated in 2D in Figure 4.4 with

polygons instead of quads, and A = B (in the framework of Section 4.2.2); here, there

are 8 objects, so 28 pairs of objects in the world. The world is partitioned into a uniform

grid of 6 boxes, each identified by two grid indices ranging from 1 to 3 in x and 1 to 2 in

y. After this, there are only 3 potentially intersecting pairs of objects, one from each of

the boxes 12, 13, and 23. Other than cutting the number of quad pairs to check, the key

advantage to the spatial partitioning procedure is that finding the lists of quads in each box

has complexity O(|A| + |B|) rather than O(|A||B|). To see this, we briefly describe the

steps involved.

First of all, we define a finite “world” as a large box containing all the quads, and

a uniform grid. The world’s minimum and maximum x-bounds can simply be taken as
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Figure 4.4: Illustration [63] of uniform grid spatial partitioning in 2D space

the minimum xmin and maximum xmax of x over all the two manifolds’ half-layer points

W u
1 (θu,i, su,k) and W s

2 (θs,j, ss,ℓ). The grid size in x can then be set as ∆x = xmax−xmin

Nx

for some Nx ∈ Z+; one should choose Nx so that ∆x is greater than the largest x-width

of all quads. y, px, and py world and grid sizes are done similarly. Then, for each quad,

one calculates its overlapped grid indices in each coordinate; for example, given Qu
ik with

minimum and maximum x-coordinates xmin,ik and xmax,ik, the overlapped x grid indices

are ⌈xmin,ik−xmin

∆x
⌉ and ⌈xmax,ik−xmin

∆x
⌉. The same can be done with the Qs

jℓ as well as with

the y, px, and py grid indices.

Once the overlapped grid indices in x, y, px, and py have been found for all quads, one

forms the lists of Qu
ik and Qs

jℓ overlapping each box. For this, one can simply iterate over

all boxes, each of which corresponds to a combination of grid indices, and find all Qu
ik and

Qs
jℓ overlapping that same combination of indices. Functions such as MATLAB’s find or

Julia’s findall, which return all true indices of an array, can be useful for this step. It is

clear that at no point of this algorithm does one consider pairs of quads; all computations

involve only one quad at a time, hence the O(|A|+ |B|) complexity rather than O(|A||B|).

Finally, from these lists one finds all potentially intersecting quad pairs in each box and in

the world as a whole.
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Figure 4.5: Illustration of bounding box test in 2D space

Broad Phase: Bounding Box Test

The next step of the broad phase is a simple axis-aligned bounding box test[61], applied

to each of the potentially intersecting pairs of quads from the previous step. This test is

generally used with geometric objects in 3D space, but the concept works the same in 4D.

The basic idea is to consider each quad to be enclosed by a minimal 4D box (the bounding

box) having its edges parallel to the x, y, px, and py axes. Then, to check whether two

quads Qu
ik and Qs

jℓ might intersect, simply check whether their corresponding bounding

boxes intersect. If they do not, then we can reject the possibility of the quads intersecting;

if the boxes do intersect, then additional testing is required. Figure 4.5 illustrates how this

test works in 2D. The test is equivalent to checking whether the maximum x coordinate of

the 4 vertices of Qu
ik is less than the minimum x coordinate of the 4 vertices of Qs

jℓ; we also

reverse the roles of Qu
ik and Qs

jℓ and repeat the check. The same is also done for the y, px,

and py coordinates; if any of the checks are true, then the quads cannot intersect.

Broad Phase: Möller Quick Test

Even after the spatial grid partitioning and bounding box tests have excluded most of the

non-intersecting quad pairs, there are still often a fair number of pairs left. Hence, we run a

second broad phase test on the remaining pairs which is due to Möller [64]. The full Möller
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test is a two-part triangle-triangle intersection test developed for applications in 3D graph-

ics; we use only the first part of this test, which is for quick rejection of non-intersecting

pairs of triangles. Given two triangles in 3D space, the quick test checks whether all the

vertices of one triangle are on the same side of the plane formed by the other; if so, the pair

of triangles cannot intersect. In our case, since our objects are in 4D (x, y, px, py) space, we

project the quads and their constituent triangles onto 3D (x, y, px) space in order to carry

out the test. Of course, if the 3D projected quads and triangles do not intersect, then neither

will the full quads and triangles in 4D space.

Denote the projected quads in (x, y, px) space as Q̃u
ik and Q̃s

jℓ, and their constituent

projected triangles as T̃ u1
ik , T̃ u2

ik and T̃ s1
jℓ , T̃ s2

jℓ . Then, the first step in the Möller quick test is

to see whether all four vertices of Q̃s
jℓ are (1) on the same side of T̃ u1

ik , and (2) on the same

side of T̃ u2
ik . Both statements (1) and (2) must be true in order to rule out an intersection

with Q̃u
ik. To check (1), we first need the equation of the plane in which T̃ u1

ik lies. This can

be found using standard techniques; the plane will be comprised of all points X ∈ R3 such

that

fu1
ik (X)

def
= Nu1

ik · (X− W̃ u
1 (θu,i, su,k)) = 0 (4.13)

Nu1
ik =

[
W̃ u

1 (θu,i+1, su,k)− W̃ u
1 (θu,i, su,k)

]
×
[
W̃ u

1 (θu,i, su,k+1)− W̃ u
1 (θu,i, su,k)

]
where W̃ u

1 (θu, su) denotes the projection of the point W u
1 (θu, su) into (x, y, px) space. With

the equation (4.13) of the plane of T̃ u1
ik found, we can determine whether all vertices of Q̃s

jℓ

are on the same side of T̃ u1
ik by simply evaluating fu1

ik (X) at the four vertices and seeing if

the resulting four values all have the same sign. If they do, then (1) is true, otherwise it is

not.

To check (2), we do the same procedure, but using the vertices of T̃ u2
ik instead of those

of T̃ u1
ik . If both (1) and (2) are true, then we reject the possibility of Qs

jℓ intersecting Qu
ik.

Otherwise, we carry out the same test as above, but with the roles of Qs
jℓ and Q̃u

ik swapped

so that we check whether all four vertices of Q̃u
ik are (1) on the same side of T̃ s1

jℓ , and (2) on
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the same side of T̃ s2
jℓ . If both of these statements are true, then we conclude that Qs

jℓ cannot

intersect Qu
ik; otherwise, we move on to the final, precise test.

Narrow Phase

As described in Section 4.2.2, the broad phase of collision detection is followed by the

narrow phase. Thankfully, after the broad phase algorithm is run on the quad pairs gener-

ated from two half-layer meshes, the number of potentially intersecting quad pairs left to

test is usually quite small. For our earlier example with 2,424,307,712 pairs of quads to

be checked for each pair of half-layers, after the broad phase, there would only be at very

most a few tens of thousands of cases left to test, and usually far less. In fact, for pairs

of half-layers with smaller indices (such as U+
2 , S+

2 ), our experience is that the bounding

box test alone rejects all of the quad pairs! For those few pairs of quads which have not

been rejected in the broad phase, we now need to run a more computationally heavy narrow

phase test to check for intersections, as well as computing the intersection if it exists.

Suppose that Qu
ik and Qs

jℓ are such a pair of quads which passed the broad phase. At this

stage, we start dealing exclusively with their constituent triangles; we check whether any

of T u1
ik or T u2

ik intersect either of T s1
jℓ or T s2

jℓ . For this, we need an algorithm to determine

whether (and if so, where) two triangles intersect each other in 4D space. Let T1 and T2

be two triangles with vertices x1,x2,x3 ∈ R4 and y1,y2,y3 ∈ R4, respectively. Then, to

determine whether T1 and T2 intersect, the first step is to find the intersection of the planes

containing these two triangles. The equation to solve to help find this is

x2 + (x1 − x2)a+ (x3 − x2)b = y2 + (y1 − y2)c+ (y3 − y2)d (4.14)

where a, b, c, d ∈ R are the quantities to be solved for. Equation (4.14) is a 4D linear

equation with 4 unknowns, so it generically admits a unique solution. After solving for

a, b, c, and d, it is easy to see that the LHS and RHS of equation (4.14) are themselves equal
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to the intersection point of the planes containing the two triangles; the values of a, b, c, and

d determine whether this intersection point lies on each triangle itself. The conditions for

the intersection to be in T1 and T2 are simple; we just need a, b, c, d ≥ 0, a + b ≤ 1, and

c+ d ≤ 1.

If the three conditions just given are not all satisfied, then it is confirmed that T1 and T2

do not intersect. If they are all satisfied, then the triangles do intersect and the intersection

point is given by either side of Equation (4.14). Furthermore, if T1 and T2 are T u1
ik or T u2

ik

and T s1
jℓ or T s2

jℓ , respectively, we can actually use the values of a, b, c, and d to estimate a

solution for the equation

W u
1 (θu, su) = W s

2 (θs, ss) (4.15)

If, for instance, T1 = T u1
ik with x1 = W u

1 (θu,i+1, su,k), x2 = W u
1 (θu,i, su,k), x3 = W u

1 (θu,i, su,k+1);

and T2 = T s1
jℓ with y1 = W s

2 (θs,j+1, ss,ℓ), y2 = W s
2 (θs,j, ss,ℓ), y3 = W s

2 (θs,j, ss,ℓ+1), we

have

(θu, su) ≈ ((1− a)θu,i + aθu,i+1, (1− b)su,k + bsu,k+1) (4.16)

(θs, ss) ≈ ((1− c)θs,j + cθs,j+1, (1− d)ss,ℓ + dss,ℓ+1) (4.17)

We store these approximate solutions of equation (4.15) along with the mesh intersection

points.

One thing to note about this search for manifold intersections is that we represent the

manifolds using planar meshes, since the mesh faces are triangles. The true manifolds lie

close to these triangular faces, but the manifolds are curved rather than planar. Hence,

any intersection found from this search will be subject to some error, on the order of the

squares of a, b, c, and d. We will describe how to refine these manifold intersections to

higher accuracy later in Section 4.5.
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4.4.3 Computational Implementation

With the various steps of our mesh intersection algorithm explained, we now describe the

implementation of our manifold mesh intersection method in a computer program. Our

programs were written using the Julia programming language [65], a relatively new high-

level language which has gained significant interest in recent years due to its excellent

performance, ease of use, multiple-dispatch features, and variety of high-quality packages

(many of which work seamlessly with each other, thanks to multiple dispatch). There is

a Julia package called OpenCL.jl [66] which allows one to transfer data to and from an

OpenCL device and run OpenCL kernels from Julia programs; the C code for the kernel is

simply passed as a large string to an OpenCL.jl function, which generates a kernel which

can be run from within Julia. Identification of manifold mesh vertices belonging to a certain

half-layer is just a matter of careful indexing; most of the computations occur in trying to

detect intersections of two half-layers, so it is this part of the method we focus on here.

As was defined earlier, let W u
1 (θu,i, su,k), i = 0, . . . , N1 − 1, k = 1, . . . ,M1 and

W s
2 (θs,j, ss,ℓ), j = 0, . . . , N2 − 1, ℓ = 1, . . . ,M2 be the vertices of the unstable and stable

manifold half-layer meshes being considered, respectively. We store the vertex coordinates

of each manifold half-layer mesh in four 2D arrays, one for each of x, y, px, and py; us-

ing the convention of 1-based indexing as in MATLAB and Julia, the (i + 1, k) entries of

the four N1 ×M1 arrays containing unstable half-layer coordinates are the x, y, px, and py

coordinates of W u
1 (θu,i, su,k). Similarly, the (j+1, ℓ) entries of the four N2×M2 arrays con-

taining stable half-layer coordinates are the x, y, px, and py coordinates of W s
2 (θu,j, su,ℓ).

These eight 2D coordinate arrays are provided as inputs to our mesh intersection function,

which starts by applying the spatial partitioning scheme of Section 4.4.2 to determine the

world, grid, and lists of Qu
ik and Qs

jℓ overlapping each grid box; we store the lists of quads

in two arrays of arrays. The mth element of each array of arrays is a 1D array of 0-based

linear indices (i+ (k − 1)N1 for Qu
ik or j + (ℓ− 1)N2 for Qs

jℓ) identifying the quads over-

lapping the mth grid box. Note that a box cannot contain a potentially intersecting pair of
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quads if no Qu
ik or no Qs

jℓ overlaps it; hence, we discard all elements of the arrays of arrays

corresponding to such boxes.

The spatial partitioning, since it does not involve pairs and is thus linear in the number

of quads, is done on the CPU. However, the remaining broad phase tests apply to the

potentially intersecting quad pairs identified by the partitioning; the number of such pairs

can still be a fairly large number. Thus the bounding box and quick Möller tests of Sections

4.4.2-4.4.2 are done on the GPU using OpenCL.jl. However, some versions of OpenCL C,

including the one for MacOS, do not support arrays of arrays (pointers to pointers). Hence,

we first convert the two arrays of 1D arrays of Qu
ik, Qs

jℓ linear indices into two large 1D

arrays of quad indices idxs quads 1,2 by simply concatenating the quad index arrays

over all grid boxes. The idxs quads 1,2 arrays are supplemented by auxiliary arrays

grid box nums 1,2, whose mth entries are the number of Qu
ik, Qs

jℓ overlapping the mth

box. We also compute the cumulative sum arrays of grid box nums 1,2, to the results

of which we then prepend a 0. The mth entry of the resulting two arrays will be the 0-based

starting index in idxs quads 1,2 of the mth box’s Qu
ik, Qs

jℓ indices list; we thus denote

these two arrays by box start idxs 1,2.

The array box start idxs 1,2 will allow the OpenCL kernel to identify the ele-

ments of idxs quads 1,2 corresponding to a given box. However, we still need a way

of determining which box a given thread should investigate. For this we first compute the

element-wise product of grid box nums 1 and grid box nums 2, which gives an ar-

ray whose mth entry is the number of potentially intersecting quad pairs in the mth box.

Again taking its cumulative sum, we store the end result as an array box gid idxs; we

will be able to use this to assign a box to each OpenCL work item (see lines 3-5 of Algo-

rithm 1). Its last entry gives the total number Ntotal of potentially intersecting quad pairs

to be considered. Finally, we transfer the manifold half-layer coordinate arrays as well as

idxs quads 1,2, box start idxs 1,2, and box gid idxs to the GPU. We also

allocate an output buffer out of Ntotal 32-bit unsigned integers on the GPU, where we will
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store identifiers for quad pairs which pass all broad phase tests. We also supply the GPU

with a pointer num passed to an integer initialized to zero, which will serve as a counter

for how many quad pairs are not rejected.

Once the data is transferred to the GPU and buffers allocated, we execute our bounding

box and quick Möller kernel (recall that the narrow phase in this case is unsuitable for GPU

implementation). We need a way to determine which two quads Qu
ik and Qs

jℓ each work

item should test. Hence, the first few steps of the kernel involve extracting the indices of

these quads from idxs quads 1,2. As OpenCL kernels are written in a version of C, the

2D indexing used in Julia does not apply here when reading from the arrays of half-layer

coordinates; this is the reason that we stored linear indices in the idxs quads 1,2 arrays

earlier. Each work item applies the broad phase tests to a different pair of quads. The entire

kernel is too long to include in this dissertation, but the essential steps are summarized in

Algorithm 1.

Once the broad phase kernel has finished, we read the num passed counter value

Npass to find out how many potentially intersecting quad pair identifiers there are in the

out GPU buffer. We then transfer the first Npass entries from out to the host computer

memory, after which we convert each pair identifier pid back to a pair of linear quad

indices by inverting the expression for out[out idx] from line 19 of Algorithm 1; this

yields idx 1 = pid%(N1∗M1) (for Qu
ik) and idx 2 = pid/(N1∗M1) (for Qs

jℓ). Finally,

using these indices to find the relevant quads’ vertex coordinates, we apply the narrow

phase test to each potentially intersecting pair of quads listed in out. This test is carried

out on the CPU, and the resulting intersections are saved as well as the corresponding

approximate solutions (θu, θs, su, ss) to Equation (4.15).

4.4.4 Computational Results

The Julia program implementing the previous algorithms was tested on three different

consumer-grade machines. Device 1 was a 2017-era laptop with a 2.9GHz quad core Intel
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Algorithm 1 Broad phase OpenCL kernel
1: int gid← work item global ID (will range from 0 to Ntotal − 1)
2: int bid← 0
3: while box gid idxs[bid] ≤ gid do
4: bid++ (loop determines which box each gid is working with, while making sure

enough work items are assigned to each box to process all quad pairs in that box)
5: end while
6: Find starting index in idxs quads 1,2 for box bid’s overlapping Qu

ik, Qs
jℓ indices

list: box start idx 1,2← box start idxs 1,2[bid]
7: Find number of quads Qu

ik, Qs
jℓ overlapping box bid:

box num quads 1,2← box start idxs 1,2[bid+1]-box start idx 1,2
8: Find a linear identifier for which pair of quads in box bid this work item will test:
pid box← gid - box gid idxs[bid]

9: Convert the linear identifier pid box to a pair of quad list indices for box bid. Read
the quad lists at those indices to find the corresponding quads’ coordinate array linear
indices:
idx 1 ← idxs quads 1[box start idx 1 + (pid box
%box num quads 1)]
idx 2← idxs quads 2[box start idx 2 + (pid box / box num quads 1)]

10: Read the coordinates of the Qu
ik and Qs

jℓ vertices from the coordinate arrays us-
ing idx 1 and idx 2. Three vertices of Qu

ik will be stored at idx 1, idx 1+1,
and idx 1+N1. The fourth will be at idx 1+N1+1 if idx 1%N1 ̸= −1, else at
idx 1−N1+1. Similar for Qs

jℓ.
11: Use fmin/fmax to find smallest/largest x, y, px, py coordinates of vertices of Qu

ik and
Qs

jℓ. Carry out bounding box test; store 0 in val if intersection is rejected, otherwise
1.

12: if val == 1 then
13: Compute normals Nu1

ik and Nu2
ik . Carry out quick Möller test to check if Q̃s

jℓ vertices
are all on the same side of T̃ u1

ik and T̃ u2
ik (OpenCL has functions for cross and dot

products). If intersection is rejected, val← 0.
14: end if
15: if val == 1 then
16: Repeat step 13 with roles of Q̃u

ik and Q̃s
jℓ reversed. If intersection is rejected, val

← 0.
17: end if
18: if val == 1 then
19: Each thread with val true gets a unique consecutive value of out idx. Store an

identifier for the potentially intersecting quad pair Qu
ik, Qs

jℓ in the out idx entry of
out.
out idx← atomic inc(num passed)
out[out idx]← idx 1 + N1*M1*idx 2

20: end if
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Table 4.1: Benchmarks for GPU-enabled Manifold Intersection Code (all time values in s)

Device 1 Device 2 Device 3
Total program runtime 25.93 10.52 12.57
Mean kernel GPU runtime 0.14278 0.02964 0.04160
Kernel time % of total 61.68% 37.07% 31.60%

Table 4.2: Benchmarks for CPU-only Manifold Intersection Code (all time values in s)

Device 1 Device 2 Device 3
Total program runtime 97.12 60.96 85.90
Mean kernel CPU runtime 0.79743 0.49271 0.70800
Kernel time % of total 91.96% 90.53% 92.31 %

i7-7820HQ CPU and an AMD Radeon Pro 560 GPU with 4GB VRAM. Device 2 was a

2019-era laptop with a 2.6GHz six core Intel i7-9750H CPU and an AMD Radeon Pro

5300M GPU with 4GB VRAM. Device 3 was a desktop tower with a 2011-era 3.33GHz

six core Intel Xeon W3680 CPU and a 2016-era Radeon RX 480 GPU with 8GB VRAM.

The application used for benchmarking the algorithm was the computation of connections

between 3:4 W u and 5:6 W s manifolds in the Jupiter-Europa PERTBP, globalized until

layers U14 and S14. We had N1 = 1024, N2 = 2048, and M1 = M2 = 35.

We timed the Julia program runtime for this application on all three devices. The pro-

gram carries out checks up to layer 14, with 8 pairs of half-layers checked per layer, for a

total of 112 half-layer pairs checked for intersection during the entire program execution.

Each pair of half-layers in turn corresponds to 2,424,307,712 pairs of quads. The resulting

program runtimes are given in Table 4.1; already, we can see excellent performance on the

2019-era laptop and the older desktop, with the entire manifold meshes and hundreds of

billions of quad pairs being checked for intersection in just over 10 seconds. Even device

1, the older laptop, has reasonable performance as well. As described in Section 4.4.3,

the OpenCL kernel is run once for each pair of half-layers being checked for intersections.

Thus, the OpenCL kernel is run 112 times throughout the program execution; we timed all

of these kernel runs, and give the mean runtimes in Table 4.1 as well.

Although computationally suboptimal, we can force OpenCL.jl to use the CPU for
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kernel execution instead of the GPU. For the sake of comparison, the results of doing so

are given in Table 4.2. From this, we see that the use of the GPU speeds up kernel execution

by a factor of 5.6x for device 1, 16.6x for device 2, and 17x for device 3. For the CPU-only

program, the kernel executions make up over 90 percent of the overall program runtime;

hence, the kernel speedup achieved through GPU usage results in a large speedup of the

program as well. The GPU-enabled program is 3.75x faster on device 1, 5.8x faster on

device 2, and 6.8x faster on device 3 than the CPU-only program.

As a final note, it is instructive to compare the aforementioned results with those of

some of our previous work. The first version [67] of these algorithms for finding manifold

intersections was a MATLAB program whose broad phase only consisted of the bounding

box test, written as a CPU-only vectorized (and thus parallel) 4D array operation applied to

all pairs of quads without any prior grid-based pruning. Running the MATLAB program on

device 1, for the same benchmark presented at the beginning of this section, the bounding

box test took 8 seconds for each pair of half-layers. The program runtime was thus close to

1000 s.

The second version [15] was a Julia program using OpenCL.jl and GPUs, which did

the bounding box and quick Möller tests on the GPU but also did not include the spatial

partitioning step in its broad phase. Thus again, the bounding box test was applied to all

pairs of quads. In this second study, we had access to the JPL DGX High Performance

Computing platform, from which Julia had could use 16 CPU threads and an Nvidia Tesla

V100 GPU with 16GB VRAM; this is far more powerful than any of devices 1, 2, or 3.

Nevertheless, the same benchmark from earlier in this section took 16 seconds on DGX,

which is worse than both devices 2 and 3! This very clearly illustrates the importance of

the spatial partitioning for achieving good algorithm performance.

Finally, we show some manifold mesh intersections output by this test application in

Figure 4.6; the plot on the left is the zoomed-in projection onto (x, y, px) space of the

intersections, shown as yellow circles. The plot on the right is the projection onto (x, y, py)
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Figure 4.6: 3:4 W u (red) and 5:6 W s (blue) heteroclinic connections (yellow circles) of
resonant tori in Jupiter-Europa PERTBP

space of the same intersections. These figures are repeated from our previous study [67];

since the benchmark (and the numerical results) in this study are the same as the previous

ones, newly generated plots of the mesh intersections found using Julia look exactly the

same.

4.5 Refinement of Approximate Manifold Intersections

We have shown how to represent the unstable and stable manifolds W u
1 and W s

2 as meshes,

and have also given fast methods for finding intersections of these meshes in 4D space.

However, these meshes are made of triangles, which linearly interpolate points between

their vertices. Of course, this interpolation has error, so an intersection of the meshes is

not an exact heteroclinic connection. We now seek to correct the approximate heteroclinic

connections found in the mesh-based search from the previous section. We wish to find

solutions x = (θu, su, θs, ss) of the equation

f(x) = f(θu, su, θs, ss)
def
= W u

1 (θu, su)−W s
2 (θs, ss) = 0 (4.18)

As discussed during the description of the precise triangle intersection test, we already will

have decent initial guesses for (θu, su, θs, ss) from the mesh search. Hence, we can use
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differential correction to solve Eq. (4.18), but to do that we must be able to differentiate its

LHS.

Denote ∂θ = ∂
∂θ

and ∂s =
∂
∂s

. To differentiate the LHS of Eq. (4.18), we need the partial

derivatives ∂θW u
1 , ∂sW u

1 , ∂θW s
2 , and ∂sW

u
1 evaluated at (θu, su, θs, ss). If su /∈ [−Du, Du]

or ss /∈ [−Ds, Ds], we cannot just differentiate the Fourier-Taylor parameterizations of the

manifolds and evaluate the result at (θu, su, θs, ss). However, the parameterizations are still

of use. Applying Eq. (3.92) to W u
1 and Eq. (3.93) to W s

2 , we have

W u
1 (θ, s) = Fm(W u

1 (θ −mω1, λ
−m
u s)) (4.19)

W s
2 (θ, s) = F−n(W s

2 (θ + nω2, λ
n
s s)) (4.20)

where ω1, ω2 are the rotation numbers of W u
1 and W s

2 . Differentiating equations (4.19) and

(4.20) gives

∂θW
u
1 (θ, s) = DFm(W u

1 (θ −mω1, λ
−m
u s)) ∂θW

u
1 (θ −mω1, λ

−m
u s) (4.21)

∂sW
u
1 (θ, s) = λ−m

u DFm(W u
1 (θ −mω1, λ

−m
u s)) ∂sW

u
1 (θ −mω1, λ

−m
u s) (4.22)

∂θW
s
2 (θ, s) = DF−n(W s

2 (θ + nω2, λ
n
s s)) ∂θW

s
2 (θ + nω2, λ

n
s s) (4.23)

∂sW
s
2 (θ, s) = λn

sDF−n(W s
2 (θ + nω2, λ

n
s s)) ∂sW

s
2 (θ + nω2, λ

n
s s) (4.24)

Now, if we choose m and n large enough such that |λ−m
u su| < Du and |λn

s ss| < Ds, then

one can use equations (4.21)-(4.24) to compute the partials at any (θu, su, θs, ss). Since W u
1

has a Fourier-Taylor series parameterization valid for |s| < Du, we can directly evaluate

W u
1 (θu − mω1, λ

−m
u su). We can also differentiate the parameterization with respect to θ

and s to get Fourier-Taylor series for ∂θW u
1 and ∂sW

u
1 , which can then both be evaluated

at (θ, s) = (θu −mω1, λ
−m
u su). Finally, the DFm from equations (4.21) and (4.22) is just

a state transition matrix, found by time-2πm/Ωp numerical integration of the variational
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equations starting around W u
1 (θu−mω1, λ

−m
u su). All this allows us to compute the partials

of W u
1 ; the partials of W s

2 are done very similarly.

We now describe how to compute the various quantities on the RHS of equations (4.21)-

(4.24). Without loss of generality, we describe the process for W u
1 ; W s

2 is done in the same

way. Recall from Eq. (3.73) that our Fourier-Taylor parameterization W u
1 is of the form

W u
1 (θ, s) =

∑
k≥0

W u
1,k(θ)s

k (4.25)

The coefficients W u
1,k(θ) are stored as arrays of their values at N evenly spaced θ values

θu,i = 2πi/N , i = 0, 1, . . . , N−1. Hence, given (θu, su), we first evaluate W u
1 (θu,i, λ

−m
u su)

at all the θu,i using Eq. (4.25) and the known coefficients W u
1,k(θu,i). This is followed by

a trigonometric interpolation [68] to find the value of W u
1 (θu − mω1, λ

−m
u su) needed in

equations (4.21) and (4.22), which is used to start the numerical integration of the state

transition matrix DFm.

For the RHS of Eq. (4.21), ∂θW u
1 (θu−mω1, λ

−m
u su) can be found by first using all the

W u
1 (θu,i, λ

−m
u su) values found earlier to compute ∂θW u

1 (θu,i, λ
−m
u su) at all the θu,i; this can

be done from knowledge of W u
1 (θu,i, λ

−m
u su) using the general FFT based differentiation

technique described by Eq. (3.69) in Section 3.4.10. This is then followed by a trigono-

metric interpolation to get the value at θ = θu −mω1, which completes the tools required

to find ∂θW
u
1 (θu −mω1, λ

−m
u su).

For the RHS of Eq. (4.22), one can find ∂sW
u
1 (θu−mω1, λ

−m
u su) by first differentiating

Eq. (4.25) at each fixed θu,i grid value with respect to s. This gives us N polynomials in s

∂sW
u
1 (θu,i, s) =

∑
k≥0

(k + 1)W u
1,k+1(θu,i)s

k (4.26)

with known coefficients. Next, the ∂sW
u
1 (θu,i, s) series can be evaluated at s = λ−m

u su for

all the θu,i, finally followed by trigonometric interpolation to find ∂sW
u
1 (θu−mω1, λ

−m
u su).

With all quantities from the RHS of equations (4.21) and (4.22) found, we can now com-
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pute the desired partials at (θu, su). As mentioned earlier, the partials of W s
2 can be found

in the exact same manner, after which we can solve Eq. (4.18). With x = (θu, su, θs, ss)

and letting x0 be the initial guess found earlier for x solving Eq. (4.18), we use the damped

Newton method

xk+1 = xk − αDf−1(xk)f(xk) (4.27)

to differentially correct x until we have a solution to Eq. (4.18) within tolerance. Here,

Df = [∂θuf ∂suf ∂θsf ∂ssf ], and 0 < α < 1. Trial and error is used to find a value of α

such that the iteration converges. We have used α values anywhere from 0.5 to 0.01 in our

computations.

Using the damped Newton method, we have been able to differentially correct several of

the approximate intersections (θu, su, θs, ss) found in the mesh search benchmark described

in the previous section, from an error of 0.01 in Eq. (4.18) to errors of less than 10−7. An

example differential correction is displayed in Fig. 4.7, for one of the connections shown

in Fig. 4.6. The initial guess in Fig. 4.7 is shown in green, the iterates in yellow, and

the final converged solution in cyan. We changed the value of α at one point during the

iteration, hence the uneven spacing of the iterates. Also, note that the damped Newton

iterates move a large distance away from the initial guess found in the mesh search. This is

not unexpected; the derivative of the LHS of Eq. (4.18) is almost singular, since PCRTBP

manifold intersections (and hence solutions to Eq. (4.18) in the PCRTBP case) occur along

1D curves rather than at isolated points. In the PCRTBP case, this implies that the derivative

at a solution of the equation would actually be singular. The perturbation in the Jupiter-

Europa PERTBP is quite weak, so near-singularity is reasonable to expect. It is because of

this that the damped Newton method is necessary.

In addition, we found that all of the manifold intersections shown in Fig. 4.6, upon

differential correction, actually converged to the same refined solution (the green circle in

Fig. 4.7)! This is despite all of the solutions from Fig. 4.6 satisfying Eq. (4.18) with

an error of 0.01 or less. Hence, we see that intersecting the discrete mesh representations
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Figure 4.7: 3D projections of iterates of damped Newton method for refinement of an
approximate connection found from mesh search

of the manifolds may actually find mostly intersections which correspond to near-misses

rather than true intersections of the manifolds, especially when the periodic perturbation

is weak. This, as well as the distance between the initial guess and the refined solution in

Fig. 4.7, demonstrates the importance of carrying out the differential correction in order to

find the true intersections. The mesh-based search is necessary in order to quickly narrow

down potential points of interest, but the few final accurate intersections must be found by

solving Eq. (4.18) directly using methods such as those described here.

4.6 Conclusions

In this chapter, we presented a suite of concepts, methods, and tools for finding hetero-

clinic connections between unstable invariant tori in periodically-perturbed PCRTBP mod-

els. Using the idea of layers, we can restrict the connection search to only certain subsets

of the manifolds. By generating a discrete mesh of points from the manifolds during glob-

alization, one can bring to bear the massively parallel computing power of modern GPUs

for the purpose of rapidly detecting and computing intersections of the meshes. Finally,

we showed how to refine the solutions found from the mesh search for greater accuracy,

using the manifold parameterizations to enable the application of a differential correction
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algorithm.

Testing our GPU assisted mesh intersection tools, we saw speedups by a factor of over

30 as compared to CPU-only tools. Using an HPC system with a more powerful GPU

allows for the checking of 14 layers of two manifolds for intersection in just a matter

of seconds. These tools are suitable for exploring many different periodically-perturbed

PCRTBP models, as well as the spatial CRTBP, which are areas of ongoing and future

work.
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APPENDIX A

PROOF OF VANISHING ECC AVERAGE

In Section 3.4.5, it was mentioned that the average of ECC(θ) goes to zero with each

quasi-Newton step. We can prove this using a method somewhat inspired by the vanishing

lemma proof of [43]. For ease of notation, denote this average as λc = ÊCC(0), and

ẼCC(θ) = ECC(θ)− λc, so that ẼCC has zero average. Also write e2 = [0 1 0 0]T .

Proof. Let vc(θ) denote the second column of P , and define EC(θ) =
[
ELC ẼCC ESC EUC

]T
;

note that EC(θ) + λce2 is simply the second column of Ered(θ). Left multiplying the defi-

nition of Ered (Eq. (3.13)) by P (θ + ω) and taking column 2 of the result gives

P (θ + ω) (EC(θ) + λce2) = DF (K(θ))vc(θ)− vc(θ + ω)− T (θ)DK(θ + ω) (A.1)

Define EC(θ) = P (θ + ω)EC(θ), and note that P (θ + ω)e2 = vc(θ + ω). Thus, Eq. (A.1)

gives

DF (K(θ))vc(θ) = (1 + λc)vc(θ + ω) + T (θ)DK(θ + ω) + EC(θ) (A.2)

Now, differentiating Eq. (3.12) yields DF (K(θ))DK(θ) = DK(θ+ω)+DE(θ). As men-

tioned in the proof of Lemma 4, F satisfies Ω(v1,v2) = Ω(DF (K(θ))v1, DF (K(θ))v2)

for all v1, v2 ∈ R4, where Ω is the symplectic form defined by Ω(v1,v2) = vT
1 Jv2. Thus,

Ω(vc(θ),DK(θ)) = Ω(DF (K(θ))vc(θ), DF (K(θ))DK(θ))

= Ω
(
(1 + λc)vc(θ + ω) + T (θ)DK(θ + ω) + EC(θ), DK(θ + ω) +DE(θ)

)
= (1 + λc)Ω

(
vc(θ + ω), DK(θ + ω)

)
+O(DE(θ)) +O(EC(θ))

(A.3)
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where we use Ω(DK(θ + ω), DK(θ + ω)) = 0 to get the last line. This yields

∫ 2π

0

Ω(vc(θ), DK(θ)) dθ = (1 + λc)

∫ 2π

0

Ω
(
vc(θ + ω), DK(θ + ω)

)
dθ

+O(DE(θ)) +O(EC(θ))

(A.4)

Recognizing that
∫ 2π

0
Ω(vc(θ), DK(θ)) dθ =

∫ 2π

0
Ω(vc(θ + ω), DK(θ + ω)) dθ, we have

λc

∫ 2π

0

Ω(vc(θ), DK(θ)) dθ = O(DE(θ)) +O(EC(θ)) (A.5)

Now, for E and Ered small enough, vc(θ) is an approximate symplectic conjugate to

DK(θ). This means that Ω(vc(θ), DK(θ)) ≈ 1 (see Eq. (3.63)), so
∫ 2π

0
Ω(vc(θ), DK(θ)) dθ =

O(1). Hence, it must be that λc = O(DE(θ)) + O(EC(θ)), so that as the quasi-Newton

method reduces DE(θ) and EC(θ) (and thus also EC(θ)) to zero, λc goes to zero as

well.

When carrying out the quasi-Newton step of Section 3.4.5 for correcting P and Λ, Eqs.

(3.32), (3.38), and (3.41) can be solved exactly (including for non-zero averages on the

LHS), which quadratically reduces the ELC , ESC , and EUC components of EC(θ) (using

the definitions given in the above proof). On the other hand, Eq. (3.35) for ECC can be

written as

−ECC(θ) = −ẼCC(θ)− λc = QCC(θ)−QCC(θ + ω) (A.6)

As mentioned near the end of Section 3.4.5, we ignore the nonzero LHS average −λc =

−ÊCC(0) when solving for QCC . Thus, what happens is that the zero-average part ẼCC(θ)

is quadratically reduced by the quasi-Newton step, but λc may initially remain in Ered.

However, the quadratic reductions in ELC , ẼCC(θ), ESC , and EUC , and subsequently also

in E(θ) during the following K-correction step, quadratically reduce EC(θ) and DE(θ).

This necessitates a reduction in λc as described at the end of the above proof.
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[32] A. Farrés, À. Jorba, and J.-M. Mondelo, “Numerical study of the geometry of the
phase space of the augmented Hill three-body problem,” Celestial Mechanics and
Dynamical Astronomy, vol. 129, no. 1, pp. 25–55, 2017.

[33] Z. P. Olikara, “Computation of quasi-periodic tori and heteroclinic connections in
astrodynamics using collocation techniques,” Ph.D. dissertation, University of Col-
orado Boulder, 2016.
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