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SUMMARY

The flow and load planning problem is to determine freight flows through a network and to

schedule containerized dispatches to accommodate these flows. The problem is perhaps the core

decision problem faced by parcel express companies, LTL carriers, and large online retailers that

operate private consolidation networks. Cost minimization is achieved by consolidating goods into

common trailers along their journey. Goods are released to the network at specified times and must

be delivered before their due date. Goods are typically grouped into sets with common origin,

release time, destination, and due date; such a group is referred to as a commodity. The scale of

the problems faced in industry can involve thousands of locations and millions of commodities;

however, most approaches in the literature are exact and are only able to solve instances with

hundreds of commodities. The work in this thesis focuses on developing heuristic approaches that

can solve industry-scale instances.

In Chapter 2, we provide a sequential marginal cost path based approach to solve the flow

and load planning problem. Commodities are sequentially pathed on a partially time-expanded

network with optimistically mapped arcs. Heuristic dynamic discretization discovery (DDD) is

used to detect when consolidations are not possible due to mapping error and to specify which time

points must be added to prevent the infeasibility. Several improvements are made to the shortest

path algorithm to exploit the repeated structure of the time-expanded network. Computational

experiments show that the approach has an optimality gap of 4-18% on instances which can be

solved with exact methods (∼300 commodities). Further experiments show that the approach

outperforms a commonly used slope scaling heuristic by 16-34% on both small and realistic sized

(∼100k commodities) instances.

In Chapter 3, we develop a different sequential marginal cost path approach that removes the

requirement for maintaining and altering a time-expanded network. The approach maintains a set

of dispatches currently in the solution, and a time window associated with each dispatch represent-

xiii



ing when it can depart. At each iteration, a shortest path algorithm on an expanded state space is

solved to determine for a commodity a collection of new or existing dispatches which deliver it

from its origin to its destination within its delivery window. Then the set of existing dispatches is

updated, and the optimal set of dispatch windows is determined. We prove that finding the optimal

set of dispatch windows is equivalent to solving a minimum mean cost path on a dispatch depen-

dency graph. We use the Bellman-Ford algorithm to solve this problem and use a creative way

to maintain labels between iterations to improve the efficiency of the approach. Computational

experiments were performed and demonstrate that this approach outperforms the approach from

the first chapter in plan cost by up to 10% with approximately one tenth of the solution time.

Finally, in Chapter 4, we incorporate many practical constraints into the model. In the literature,

most works either ignore the structure of flow plans or force them to adhere to in-tree structures

where each flow class has exactly one next stop. In practice, more general structures are used where

flow classes can have multiple possible next stops. We present a model for generating flow and

load plans where commodities are aggregated into flow classes that may be independently directed

at every building. Our model produces plans that guarantee each package will be delivered on time

despite the aggregated level of control. We give a general heuristic template that we prove can

preserve the flow-rule feasibility of solutions. We give four possible implementations adhering to

this template. One of these heuristics was shown to produce cost savings of up to 3.4% and savings

in trailer-miles of up to 8.5% on large-scale industry instances in under one hour.

xiv



CHAPTER 1

INTRODUCTION

1.1 Problem and Motivation

This work is focused on the development and evaluation of approaches for large-scale flow and load

planning. This operational problem is faced by every large parcel express company, E-retailer, and

LTL trucking company. It can comprise a large proportion of operating costs with huge potential

for savings. Furthermore, the decisions made during flow and load planning have a significant

impact on downstream decisions such as trip planning and driver scheduling.

The problem is concerned with determining flows through time and space to deliver goods from

their origins to their destinations, respecting delivery windows, and simultaneously determining

timed trailer loads having discrete capacity to accommodate all flows. A cost is incurred for every

trailer, and a handling cost is incurred every time goods flow through hubs in the logistics network.

Inherent in this problem is the transportation vs handling cost trade off: fewer loads over a smaller

distance may be achieved if goods meet at some intermediate point to be consolidated. Common

metrics of interest of solutions to this problem include the total cost, the average trailer utilization,

the total number of trailer-miles allocated, the total volume handled at every hub, metrics of early

delivery, and the distribution of the number of stops a good makes along its journey. Decisions that

are not included in the problem include how the loads are strung together into routes, how drivers

are assigned to routes, and empty-trailer re-balancing.

The focus here is particularly on the large instances faced in industry. These instances are

orders of magnitude larger than those that can be addressed by most existing approaches in the

literature. For such practically sized instances, the deployment of automated planning or recom-

mendation software in industry is also limited. Most plans were largely developed over years of
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operational decisions and tweaked by human planners. This work demonstrates that simple-but-

fast heuristics can perform well. There are many practical insights on algorithmic efficiency in

order to keep solution times reasonable for industry deployment. Table 1.1 contains some metrics

for the industry instances we attempt to solve.

The methods introduced in this work can all be incorporated into some form of local search.

This is driven by the desired industry application of making changes to some base operational plan

given up-to-date demand forecasts and capacity information. Large companies should not operate

completely different plans every calendar day; there is some benefit to operational regularity. The

methodology herein, particularly that in Chapter 4, was used to develop prototypes of decision

support tools for a large package express company.

Table 1.1: Industry instances

Instance Number of Buildings Number of Commodities

South China 69 100,281

6/12-South 527 366,525

6/12-East 1,373 2,490,498

6/19-South 527 366,303

6/19-East 1,373 2,495,337

6/26-South 527 365,707

6/26-East 1,373 2,499,377

The value of the ability to adjust plans using automated or recommendation software has be-

come apparent in light of the recent pandemic. Between December 2020 and August 2021, the

number of job openings in the transportation, warehousing, and utilities section had doubled [1].

The number of employed truckers dropped significantly during the pandemic, and the demand

for goods to be transported changed dramatically between April 2020 and February 2021. [1].

Changes in demand as well as human resources render plans based on average historical opera-
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tions incredibly inefficient.

1.2 Background

This section aims to provide a very high level introduction of the core background topics that are

used in all subsequent chapters of this work.

Although flow and load planning involves some aspect of time, one can view the service net-

work design problem as the underlying problem [2]. This problem is concerned with flowing

commodities on a network and allocating discrete capacity on the arcs of the network to accom-

modate the flows. The objective is to minimize the cost of the discrete capacity and a linear flow

cost on the arcs. It has a notoriously bad LP bound.

Flow and load planning can be solved using discrete units of time or with continuous time.

When solving using discrete units of time, time expanded networks are typically used to model

the problem. In these networks, each node in the geographical logistic network is duplicated for

each time point in the horizon. Arcs are then added, each of which represents a movement in time

and space. The difference in time between the ends of the arc should approximate the travel time

between the locations at the ends of the arc. If one wishes to solve flow and load planning on a

fixed time discretization (as opposed to continuous time) one can model the flow and load planning

problem as a service network design problem on a time expanded network.

If the discretization is fine enough, the time difference along an arc will equal the travel time;

however, this comes at the cost of increased solution time. Some approaches use a coarse dis-

cretization. A decision is made whether to map arcs such that they arrive earlier than the travel

time (called optimistic mapping) or later than the travel time (called pessimistic mapping). An op-

timal flow and load planning solution on an optimistically mapped network yields a lower bound

on the optimal solution to the problem. There exist approaches in the literature that solve the con-

tinuous time service network design problem by finding lower bounds on the coarse discretization

and either converting the solution into a feasible continuous time solutions or detecting a mapping
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error and refining the coarse network by adding new nodes locally [3].

In every chapter, we present methods that can be incorporated into a local search procedure.

These procedures begin with an initial feasible solution. There is a set of neighbouring solutions

that can be reached by taking an action on the current solution. An example of this from Chapter 2

is that we can remove all commodities on one particular arc and re-optimize only those flows. The

set of solutions that can be reached by doing this to any arc is the neighbourhood of the current

solution. Local search moves between neighbouring solutions until a time limit or a local optimum

is reached.

Many methods presented contain a marginal cost path finding subroutine. This subroutine

is a shortest path algorithm to find a path for some commodity. The costs on the arcs are the

marginal cost of adding the commodity’s weight to the arc. In many cases this is zero if there is

sufficient allocated capacity, or the cost of adding an additional discrete unit of capacity. Since

coarsely discretized time expanded networks can not be guaranteed to be acyclic, we use a variant

of Dijkstra’s algorithm [4]. The regular structure of the time expanded network allows us to provide

additional pruning strategies to improve the solution.

1.3 Outline and Contributions

In Chapter 2, we show that a simple and easily implementable heuristic can perform well on ex-

tremely large instances. Most strategies to tackle such instances were designed to decompose

them into smaller problems capable of being handled by a MIP-based local search method; how-

ever, having methods to work on the full instance is beneficial. The marginal cost path heuristic

presented in this chapter has reasonable performance on small instances that can be solved ex-

actly and outperforms slope scaling, another known heuristic, on large instances by 16-34%. In

the development of the marginal cost path heuristic, we demonstrate that specialized algorithmic

enhancements made for the special structure of time expanded networks can dramatically affect

overall performance.
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In Chapter 3, we provide a sequential greedy approach that does not rely on a fixed discretiza-

tion. In such an approach, one does not need to store the entire time expanded network; only

dispatches used by at least one commodity are stored. Furthermore, the approach allows dispatch

departure times to shift or move within a known time interval, allowing consolidations that are not

possible in sequential pathing on a fixed discretization. We provide an in-depth analysis on the

properties and methods of updating two types of departure intervals, each having its own bene-

fits and trade offs. This type of interval modelling and updating can be applied to other domains

where intervals are fixed during and updated after some planning iteration. For example, this work

could be applied to some kind of sequential time-based route cover problem. We demonstrate that

the modelling and algorithms are capable of outperforming the best known heuristics for large-

scale flow and load planning. The approach outperforms MCPH from Chapter 2 on industry scale

instances by up to 10.48% in one tenth of the solution time.

In Chapter 4, we incorporate the practical constraints necessary for solutions to be directly op-

erable. In the work of Chapter 2 and Chapter 3, we assume each commodity can be independently

directed at every building; however, in practice, there is not sufficient automation present at each

building to distinguish among commodities. In the package express setting, packages are typically

directed to an outbound trailer based only on their final destination and service class. Existing ap-

proaches in the literature consider the case where flow belonging to any particular destination and

service class has a unique next stop from each building. They model this using “in-tree” constraints

which derive their name from the fact that flow into any destination forms a tree for each service

class. In actual operations, packages having the same final destination and service class might

have two or more possible next stops. For example, if there is 1.1 trailer loads of flow sharing the

same final destination and service class, decision makers typically send 1 trailer direct to the final

destination and send the remaining 0.1 trailer load to some intermediate building to consolidate

with other flow. In this case, flow will not adhere to in-tree constraints, but packages are still di-

rected based only on their final destination and service class. We aggregate commodities into flow
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classes that can be directed through the network by flow rules. We provide a model that determines

flow rules and timed loads such that all commodities can be delivered on time even though they

are not individually corrected. We give a general scheme for developing improvement heuristics

that produce flow-rule-feasible plans, and we provide four possible implementations. One of these

heuristics, Alt, was shown to produce cost savings of up to 3.4% and savings in trailer-miles of up

to 8.5% on large-scale industry instances in under one hour.
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CHAPTER 2

SEQUENTIAL MARGINAL COST PATH APPROACH

2.1 Introduction

Flow and load planning is an operational problem faced by every large parcel express company,

E-retailer, and LTL trucking company. It is concerned with determining paths in time and space

through which every good in the system is delivered from their origin to their destination. Along

each leg of these paths, discrete units of capacity, for example trailers, are allocated and an asso-

ciated cost is incurred; goods can share this capacity. The goal is to efficiently consolidate goods

into common trailers to achieve minimum cost. Goods sharing common characteristics, such as

origin, destination, origination time, and due time, are typically aggregated into groups called

commodities.

The problem is a combination of the flow planning problem and the load planning problem

which have traditionally been solved sequentially. The flow planning problem is to determine for

each commodity a spatial path, a sequence of locations independent of time, from its origin to its

destination. Additional tree-like structure is often imposed on the flow plan to simplify manual

sort operations. Once the flow planning problem is solved, each commodity is restricted to travel

along its path in the flow planning solution, and the load planning problem is solved to determine

which commodities are consolidated into common vehicles so that they can be delivered along

their predefined routes while their release and due times are respected.

This work focuses on a particular application of flow and load planning for a large Chinese par-

cel delivery company. Recently, the demand for one-day and even same-day delivery has increased

dramatically, leading to extremely tight delivery windows. This makes the sequential solution ap-

proach of solving the flow problem first and then the load planning problem too restrictive.
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Existing approaches to solve the flow and load planning problem tend to model the problem as

a service network design problem on a time-expanded network. They typically incorporate inter-

programming (IP) based local search heuristics. However, the time sensitivity of the parcel delivery

setting requires a very detailed time expanded network. The problem is complicated even further

by the multitude of parcels of different service classes. This can lead to hundreds of thousands of

commodities. These factors make the problem too large for the application of IP methods.

The marginal cost path approach proposed in this work produces a solution on a partially

expanded time-space network. Down-to-the-minute modelling is required for the application of

interest; therefore, operating on a fully time-expanded network is not possible. Arcs in the network

are mapped optimistically: if the exact arrival time does not exist in the partial network, the head

of the arc is selected to be the latest node occurring before the actual arrival time. This means that

solutions on the partial network might not convert to a time feasible schedule, and solutions on the

partial network are a lower bound on the actual problem.

The approach sequentially adds one commodity at a time to a partial solution by finding a single

path on a partially expanded network. This can be performed by solving a shortest path problem

having non-negative costs equal to the marginal cost of adding the commodity to an arc. Even

on extremely large networks with hundreds of thousand of commodities, this can be completed

quickly. This sequential procedure can be used as a construction heuristic to generate an initial

solution or as a component of a local search heuristic.

If the error induced by the mapping and coarse discretization has the potential to make a path

time-infeasible (as in the case where a commodity departs a location in the network before it arrives

in real time), a time-refinement procedure adds additional nodes to the time-expanded network to

locally remove the mapping error. This is a simplification of the MIP based refinement used in the

Dynamic Discretization Discovery (DDD) literature, which is used due to the scale of the problem.

The approach continues alternating between solving shortest paths and performing time-refinement

until all commodities have a time-feasible path in the network. The efficiency of the approach
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comes from the fact that the most difficult subproblem solved is a shortest path problem.

We demonstrate through a computational study that this simple and easily implementable

heuristic can generate high quality solutions on extremely large instances quickly. Approaches

currently in the literature decompose large instances into smaller problems and use MIP-based lo-

cal search to solve them. Having methods that can globally alter large plans in a useful way can

be a valuable component of large scale flow and load planning software. In the development of

the marginal cost path heuristic, we demonstrate that specialized algorithmic enhancements made

for the special structure of time expanded networks can dramatically affect overall performance.

The computational experiments show that our heuristic has a gap of 5-18% on instances that can

be solved exactly (those with∼300 commodities); however, it generates these solutions in seconds

while a MIP solver takes up to an hour to prove the bounds on these solutions. We benchmark

against slope scaling on realistically sized instances with up to 100,000 commodities. Our heuris-

tic outperforms slope scaling on every instance by 16-33%.

2.2 Literature Review

For an overview of motor carrier service network design, and methods for flow and load planning,

see [5]

As mentioned in the introduction, some existing approaches solve the service network design

problem on a fully time expanded network. In the freight transportation context, typical modelling

of service network design yields a class of mixed-integer network optimization problems which

cannot be solved efficiently with known optimization methods [2]. [6] explore several classes of

valid inequalities for fixed-charge network design, focusing on the effects on models with particular

commodity representations. [7] review fundamental techniques for deriving valid inequalities for

multi-commodity service network design.

Preceding the more recent work on time-expanded network models, work focusing on the tim-

ing of aircraft and vehicles routes in the express shipment setting can be found in [8], [9], [10], and
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[11]. These works focus on integer programming formulations and traditional solution approaches

such as column generation.

Slope scaling is a heuristic approach for solving fixed-charge flow problems by solving a se-

quence of linear programming problems and updating costs [12].The application of slope scaling

to multi-commodity service network design is also presented in [13].

[14] uses a time-expanded network approach for LTL flow planning incorporating many of the

constraints addressed by this work. They introduce a time-space node for each weekday, model a

series of integer programming problems, and explore the application of slope scaling heuristics in

their solution methodology. Their problem is more difficult, because they enforce in-tree structure

on their flow plan.

[15] and [16] approach the flow and load planning problem using IP-based local search heuris-

tics to solve a multi-commodity fixed charge flow problem on a time expanded network.

Given a solution to the flow and load planning problem, [17] develop an approach to generate

operation driver schedules and routes.

[3] propose an exact algorithm for solving the continuous time service network design problem

using partially time expanded networks. This approach uses the idea of optimistically mapping

arcs in a partially expanded time-space network, and iterating between solving a network design

problem on this network and refining the network until the solution to the network design problem

can be converted into a time-feasible solution to the overall problem. However, the network design

problem, and the method of identifying how to refine the network involve solving optimization

problems that are not tractable for the scale in which we are interested.

[18] extend the work in [3] by associating time windows with the departure times of dispatches.

They use a structure they call the solution graph which provides an efficient way for determining

whether a solution on the partially discretized network can be converted to a feasible schedule. Fur-

thermore, if the solution cannot be converted, the structure provides an efficient way of determin-

ing how the network must be refined to remove the mapping error inducing the time-infeasibility.

10



However, the approach still relies on solving IPs that are too large in our setting.

2.3 Problem Description

The spatial geography of the logistics network can be represented as a graph F = (L,A), which

will be referred to as the flat network; each vertex is a hub location, and each directed arc represents

the ability to travel and deliver freight from the hub represented by the tail of the arc to the hub

represented by the head of the arc. Typically, for each arc a ∈ A, there is an associated set of

vehicles Va which can deliver freight along the arc. The vehicle sets are arc dependent, because the

docks required for every vehicle type are typically not present at every hub in a logistics network.

Let V =
⋃

a∈A Va be all vehicle types. Each vehicle v ∈ V has a capacity Qv > 0 corresponding

to the mass or volume limits of the vehicle. Each arc a ∈ A has an associated travel time τa. For

each arc a ∈ A, and each vehicle type available on that arc v ∈ Va, there is a cost Cav > 0 of

scheduling one vehicle of that type on that arc.

Let T denote the time horizon: the set of time points; it contains all times at which vehicles can

depart from and arrive at any location, as well as all time points at which supplies and demands

arrive to the system. Since we assume that there is no cost of holding, we can enumerate T in

a discrete manner by propagating arrival and departure times from every commodity origin and

destination. All other time points would be redundant. This set is not continuous; however it

grows rapidly in the size of F and the time-span of the commodity demand and supplies.

We denote by K the set of commodities. Each element k ∈ K represents a group of goods that

can be individually directed through time and space in the system. We assume the commodities are

aggregations of goods sharing common origin, destination, release time, and due time. Note that if

release and due times are modelled on a minute-level granularity, directing each individual package

would require significant automation: a package due at 4:00am might be sent on a different vehicle

than an identical package that is due instead at 4:05am.

Let qk denote a commodity’s weight or volume in the same units as Qv for vehicles. Let
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ok ∈ L denote the location in which commodity k originates and ek ∈ T denote the time at which

it becomes available for shipping. Let dk ∈ L denote the the destination of commodity k, and

lk ∈ T denote the time at which it is due at the destination. We have assumed each k ∈ K has

unique ok, ek, dk, and lk.

Let

δtik =


−1 if i = ok, t = ek

1 if i = dk, t = lk

0 otherwise

for i ∈ L, k ∈ K, t ∈ T .

Let xt
ak denote the proportion of commodity k ∈ K dispatched on the arc a ∈ A at time t ∈ T .

Then 0 ≤ xt
ak ≤ 1. For each sequential t1 < t2 ∈ T and each i ∈ L, let xt1t2

ik denote the proportion

of commodity k that remains in location i for the period of time [t1, t2). For t ∈ T , we refer to

the time point immediately preceding t as t−, and the time point immediately after t as t+. Let ytav

denote the number of vehicles of type v ∈ Va dispatched on arc a ∈ A at time t ∈ T . Then the

flow and load planning problem can be represented as

min
∑
a∈A

∑
v∈Va

Cav

∑
t∈T

ytav

s.t.
∑

a∈δ−(i)

xt−τa
ak −

∑
a∈δ+(i)

xt
ak + xt−t

ik − xtt+

ik = δtik ∀i ∈ L, k ∈ K, t ∈ T (2.1)

∑
k∈K

qkx
t
ak ≤

∑
v∈Va

Qvy
t
av ∀a ∈ A, t ∈ T (2.2)

ytav ∈ Z+ ∀t ∈ T, v ∈ Va, a ∈ A

xt
ak ∈ {0, 1} ∀a ∈ A, k ∈ K, t ∈ T

xt1t2
ik ∈ {0, 1} ∀i ∈ L, k ∈ K, t1 < t2 ∈ T
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In different applications, one may desire that commodities be splitable, in that the entire weight

of the commodity need not flow together through the system. In this model this corresponds to

whether or not the x variables should be restricted to be binary. We proceed with non-splitable

commodities based on our application of interest in parcel delivery.

Constraints (2.1) ensure flow balance for every commodity, and constraints (2.2) ensure that

commodities can only be dispatched along arc a at time t if sufficient vehicle capacity has been

scheduled along that link at that time.

One can also view the above problem on a time expanded network NT = (LT , AT ), where,

given the same set of time points T , a vertex is created for each vertex in the flat network F =

(L,A) at each time point. That is LT = L × T . For each (u, t) ∈ LT , we add an arc at =

((u, t), (v, t + τa) for every a = (u, v) ∈ A to AT , along with arcs ((u, t), (u, t′)) for t < t′ ∈ T .

Then the problem described above can be viewed as as a minimum cost multicommodity flow

problem with discrete variable capacities on the network NT . This problem description is notation-

wise simpler and shown below.

min
∑
a∈AT

∑
v∈Va

Cavyav

s.t.
∑

a∈δ−(i)

xak −
∑

a∈δ+(i)

xak = δik ∀i ∈ LT , k ∈ K

∑
k∈K

qkxak ≤
∑
v∈Va

Qvyav ∀a ∈ AT

yav ∈ Z+ ∀v ∈ Va, a ∈ AT

xak ∈ {0, 1} ∀a ∈ At, k ∈ K
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2.4 Marginal Cost Path Approach

Since T becomes prohibitively large for problems of practical size, one cannot hope to solve the

flow and load planning problem exactly. We adopt an approach which optimizes over a time

space network which contains a subset of the nodes of the complete time space network. This

approach constructs a solution from scratch and then attempts to improve the solution using local

search heuristics. Both the construction and improvement procedures rely on sequentially adding

commodities to the solution by assigning them to their minimum marginal cost path. The heuristic

operates on a partially time expanded network; solutions on this network may not be time feasible.

Therefore, the approach contains a procedure to refine the network until the current solution is

guaranteed to be time feasible.

There are four key stages to our approach for the flow planning problem:

1. Initialization of a coarse partially time expanded network

2. Sequential pathing of commodities on this network

3. Refinement of this network by adding additional time points

4. Local improvement of the paths on the network

2.4.1 Initialization of a Coarse Time Expanded Network

Notation-wise, we refer to the full discretization as T , and the fully time expanded network as NT .

For some partial discretization T ′ constructed by us, we refer to the partial expanded network on

this discretization as NT ′ = (LT ′ , AT ′) where LT ′ = L × T ′. For all (l1, t) ∈ LT ′ and (l1, l2) ∈

δoutA (l1) there exists an arc ((l1, t), (l2, t
′)) ∈ AT ′ having t′ ≤ t+ τl1l2 . Furthermore, for sequential

nodes at the same location, e.g. (l1, t) and (l1, t
′), we assume there is a hold arc ((l1, t), (l1, t

′)) ∈

AT ′ .
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We initialize a network as follows: Given an initial discretization ∆ (e.g. 30 minutes), and

a finite time horizon τ = max {t− s : t, s ∈ T}, we create a node every ∆ time units at each

location l. That is, let the initial set of time points be T ′ = {0 ≤ t ≤ τ : t = i∆, i ∈ N}, then the

initial set of nodes is LT ′ = L× T ′, where L is the set of locations from the flat network. We will

add additional time points to T ′ during the refinement procedure.

Between vertices at a given location which are consecutive in time, we add a wait arc, which

models waiting at the location during that time interval. That is, we add ((l, t), (l, t + ∆)) to the

set of arcs AT ′ for each location l and time t ∈ T ′ where t + ∆ ∈ T ′. We denote the set of wait

arcs a WT ′ ⊆ AT ′ .

Next, for each arc a = (l1, l2) ∈ A of the flat network, we add for every node (l1, t) ∈ LT ′

a dispatch arc, an arc representing this travel in the time space network. However, using this

construction, there is no guarantee that LT ′ contains every endpoint of a travel arc. In order to

overcome this obstacle, we map the head of this arc to a vertex in LT ′ . If the vertex (l2,max{t′ ∈

T ′ : t′ ≤ t + τa}) is chosen, we call the mapping optimistic, since entities using this arc in the

network will arrive earlier in time than physically possible. Similarly, if the vertex (l2,min{t′ ∈

T : t′ ≥ t+ τa}), we refer to the mapping as pessimistic. This concept is presented in Figure 2.1.
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Figure 2.1: Possible mappings of a travel arc from l1 to l2 originating at time t

We use an optimistically mapped network, because we can always find a solution. If that

solution happens to be time-infeasible, we can insert additional nodes to prevent the infeasibility

from reoccurring. If we used a pessimistically mapped network instead, there is no guarantee that

a solution could be found on the network. Determining which nodes to add to the network in this

scenario is more difficult. Furthermore, even with a feasible solution, profitable consolidations

may be prevented by a coarse pessimistic mapping. Identifying these would become an additional

component to the improvement routines, rather than simply requiring method to find good new

flows.

An optimal solution to the problem on the coarse network with arcs mapped optimistically

yields a lower bound on the optimal solution to the original problem. The approach in [3] is to find

exact solutions on the coarse network and then attempt to convert this to a solution to the original

problem. If this is not possible, the network is refined, and another exact solution on the refined

network is found. The approach in this work is similar except that we find heuristic solutions on
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the partially expanded network using a sequential marginal cost pathing algorithm.

2.4.2 Marginal Cost Path-Finding

Given a set of commodities K, we find a path for each commodity from its origin to its destination

satisfying the release time and due time constraints. We do this by processing the commodities

sequentially in some order, mapping their origins and destinations to nodes in the network, and

solving a sequence of shortest path problems. The cost for a commodity k to use an arc a in the

network is the marginal cost of accommodating the weight qk on that arc. We assume that all wait

arcs (moving between two time points at the same location) have a marginal cost of 0.

If there are no trucks scheduled on a, then the cost would be given by the cheapest truck which

can accommodate qk. However, if there exist commodities using a already, and there is room for qk

more units of weight on the trucks scheduled on a, then the cost would be 0. Finally if there exists

a truck scheduled on a, but it does not have sufficient capacity to accommodate qk more unit of

weight, but this truck can be replaced by a larger truck, the cost is given by the cost of the upgrade.

Suppose we are finding a path for commodity c. Let Ka denote the set of commodities who

have already been pathed and whose path contains a, for each arc a of the partially time expanded

network. Let

Ca(q) =


0 if a ∈ W

min
y∈Z|Va|

+
{
∑

v∈Va
Cavyv :

∑
v∈Va

Qvyv ≥ q} otherwise

Then the marginal cost on arc a for commodity c is

C̄a(qc) = Ca

(
qc +

∑
k∈Ka

qk

)
− Ca

(∑
k∈Ka

qk

)

.

For every arc a, we can pre-compute and tabulate the cost Ca(·) above as a function of the total
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weight assigned to the arc using a dynamic program. Pseudocode for such an algorithm is given in

Appendix A.1. Thus, we can access the marginal costs on the arcs in constant time.

When pathing a commodity k which originates at location ok at the time ek and is due at

location dk at lk, we do not assume that (ok, ek) or (dk, lk) are vertices in the partially time expanded

network. We map the release and due points of the commodity to vertices. We say the commodity

is mapped optimistically if the source node is chosen to be (ok,max{t ∈ T ′ : t <= ek}) and the

destination node is chosen to be (dk,min{t ∈ T ′ : t >= lk}). Similarly, if the source node is

chosen to be (ok,min{t ∈ T ′ : t >= ek}) and the destination node is chosen to be (dk,max{t ∈

T ′ : t <= lk}), the mapping is said to be pessimistic.

As a result of the optimistic mapping of the arcs, there exist paths in the coarse network that

are not time-feasible in the sense that a path may use the sequence ((l1, t), (l2, t′)), ((l2, t′), (l3, t′′))

where t′ < t+τl1,l2 . That is, a truck may depart from an intermediate location in the network before

it can actually arrive to that intermediate location in real time. Figure 2.2 displays such a scenario,

where the path {a, a1} is time-infeasible. However, the path {a, wait, a2} is time-feasible, because

the entity using the path is available at location l2 before it departs in real time.

Note that this notion of time feasibility/infeasibility is more strict than declaring a path time-

feasible if it can be converted into a solution to the original problem. If only one commodity is

using the path {a, a1}, it may be the case that this path can be converted to a solution by shifting

the departure time of a1 to t + τa. However, identifying the ability to convert the solution would

require maintaining a structure like the solution graph of [18], which we opted not to in the sake

of efficiency.
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Figure 2.2: A subnetwork containing a single time-feasible l1− l3 path and a single time-infeasible
l1 − l3 path.

We assume that all commodities can be delivered on time. This is true if and only if there is a

shortest time path in the flat network F between the origin and destination of each commodity of

duration at most the length of the delivery window for that commodity. Therefore, any commodi-

ties not meeting this criteria can be identified and removed from the instance before beginning this

procedure.

Once we have mapped the commodity to a source and destination node, we solve a shortest

path problem on the network using the marginal costs of the weight of the commodity. If there

exists a path between the source and destination, then it may or may not be time-feasible. When

all the arcs of the network are mapped optimistically, the commodity release and due points are

mapped optimistically, and the commodity is deliverable, then there must exist a path in the net-

work between the mapped source node and the mapped sink node. Therefore, we need not consider
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the possibility that the shortest path problem is infeasible.

Algorithm 1 Marginal Cost Pathing
1: procedure PATHCOMMODITIES(List of commodities K, Partially time expanded network

N = (LT ′ , AT ′))
2: for k ∈ K do
3: o← (ok,max{t′ : (ok, t′) ∈ LT ′ , t′ ≤ ek})
4: d← (dk,min{t′ : (dk, t′) ∈ LT ′ , t′ ≥ l})
5: P ←ShortestPath(o, d, qk) ▷ Solve shortest o, d path problem on N with costs C̄a(qk)
6: if IsTimeFeasible(k, P ) then
7: FeasiblePaths[k]← P
8: else
9: InfeasiblePaths[k]← P

10: for a ∈ P do
11: Ka ← Ka ∪ k ▷ Update the marginal cost function C̄a(·) of each arc in P

12: function ISTIMEFEASIBLE(Commodity k, Path P )
13: a− = ((l−1 , t

−
1 ), (l

−
2 , t

−
2 ))← P [0]

14: if t−1 < ek then ▷ If commodity leaves origin before its release time
15: return false

16: for i ∈ 1, ...|P | − 2 do ▷ Iterate over consecutive arcs a−, a in P
17: a = ((l1, t1), (l2, t2))← P [i]
18: if t1 < t−1 + τ(l−1 ,l−2 ) then ▷ If commodity departs on a before a− arrives in real time
19: return false

a− ← a
20: if t−1 + τ(l−1 ,l−2 ) > lk then ▷ If commodity arrives to destination after its due time
21: return false

22: return true

Algorithm 1 gives the pseudo-code for the marginal cost path procedure. The procedure iterates

over the set of all commodities, maps the origin and destination of the commodity to vertices in the

network optimistically, solves a shortest path problem, records the resulting path as time-feasible

or not time-feasible, and updates the marginal cost functions of arcs along the path. Note during

this procedure, the structure of the network remains the same. Once this procedure is completed,

a portion of the commodities may have paths that are time-infeasible. The next section details

how the network is refined by adding time points in order to remove time-infeasible paths from the

network.
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2.4.3 Time Refinement

The marginal cost pathing approach involves sequentially finding a path for each commodity. If

a path is found to be time-infeasible, then nodes are added to the network to remove the mapping

error along arcs used in the path. In the case of Figure 2.2, if a commodity used the path a, a1, then

inserting the node (l2, t+ τa) and remapping a to the new node would remove this time-infeasible

path from the set of feasible paths in the network.

High level psedueocode for the time refinement procedure is given in Algorithm 2, and detailed

pseudocode is provided in Appendix A.2. Given a commodity path which is time-infeasible, the

algorithm first determines which vertices should be inserted into the network to prevent any com-

modity from using this path in the future. Once a new node (l, t) is added to the network, every

arc in the forward star of l in the flat network is added originating from (l, t) and optimistically

mapped. Finally, existing arcs in the locality of the new node are examined and remapped to the

new node if this reduces the mapping error. The reconfiguration exhibited in Figure 2.3, where

vnew = (l2, t + τa) is inserted, and every arc incoming to (l2, t) is checked to see if it should be

remapped to vnew. During this reconfiguration process, paths using arcs which are remapped may

become dis-contiguous. Thus we repath affected commodities on the refined network. Which

commodities are chosen to be repathed is a design decision discussed later.
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Figure 2.3: The insertion of a new node to the network.

Algorithm 2 Time Refinement
1: procedure TIMEREFINEMENT

2: while There exists an infeasible path do
3: Select an infeasible path p = ((l1, t1), (l2, t2), ..., (lm, tm)) and corresponding com-

modity k
4: Remove (k, p) from the solution

5: Nnew ←


{(ok, ek)} if t1 < ek

{(li, ti)} if ∃ i : ti−1 + τli−1li > ti i = 2, ...,m− 1

{(lm, tm), (dk, lk)} otherwise
6: Insert nodes in Nnew along with their forward stars
7: Reconfigure arcs which can be remapped to a node in Nnew with reduced mapping

error
8: Repath commodities affected by the arc remapping

2.4.4 Local Improvement

After all commodities have been pathed and time refinement is complete, the algorithm has yielded

a feasible solution. This section concerns two local improvement strategies. The first involves

iteratively removing paths from the network and repathing them. The second involves selecting an

arc, removing all commodities using the arc from the network, and repathing those commodities.

One hope is that these methods remove the bias from the order in which the commodities were
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pathed. These local improvement neighbourhoods are simple when contrasted with those used in

IP-based local search work; the simplicity of the neighbourhood structure was motivated by the

need for computational efficiency.

Single Path Neighbourhood

The first improvement strategy simply iterates over the set of commodities, removes each commod-

ity’s path from the network and repaths it. The pseudocode for this procedure is given in Algorithm

3. Despite the fact that it is very simple, this method works well in practice, which indicates that

the sequence in which the commodities are pathed can significantly impact the solution which is

generated.

Algorithm 3 Path Improvement
1: procedure PATHIMPROVEMENTPASS

2: for k ∈ K do
3: Remove k and its path from FeasiblePaths or InfeasiblePaths
4: PathCommodities({k})
5: TimeRefinement()

Arc Neighbourhood

The path improvement procedure was found to work well; however, due to the simplistic structure

of the neighbourhood, the procedures becomes stuck in a local optimum after a few passes over

the set of commodities. Therefore, a second improvement procedure with a richer neighbourhood

structure was developed. Pseudocode for this improvement procedure is given in Algorithm 4.

The inspiration for this approach is to find low utilization dispatches, remove all commodities

using the dispatch or neighbouring dispatches, and find new paths for these commodities. The

hope is that they wont reintroduce the low utilization dispatch. Such an improvement can not

be found using the path neighbourhood, because it requires multiple commodities to be removed

simultaneously.
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Algorithm 4 Arc Improvement
1: procedure ARCIMPROVEMENTITERATION

2: R← ∅
3: a←FindArcToImprove()
4: for (k, p) ∈ a.PathsUsingArc() do
5: R← R ∪ {k}
6: for a′ ∈ p do
7: a′.DeAssign(k)
8: PathCommodities(R)

This procedure is relatively straightforward once one has decided on an implementation of the

“FindArcToImprove” function. We experiment with various implementations. Each implementa-

tion requires a measure of the cost change induced by improving a particular arc. To obtain the

exact cost change, we perform the improvement, compute the cost change along each affected arc,

sum the cost differences between solutions, and then undo the improvement. The details of this

approach are given in Appendix A.3, but note that it is very computationally expensive.

The first routine we consider is to iterate over arcs which are used by at least one commodity

in an arbitrary order, evaluate the cost change induced by improving each arc, and commit to

improving the first arc which results in a reduction in the cost of the solution. This is given in

Algorithm 5. In the implementation of Algorithm 5, we order the arcs to be considered in ascending

order of utilization.

Algorithm 5 First Improving Arc
1: function FINDFIRSTIMPROVINGARC

2: for a ∈ AT such that a commodity path uses a do
3: ∆C ← EvaluateArcImprovement(a)
4: if ∆C < 0 then
5: return a
6: return ∅ ▷ No improving arc

The second method for finding an arc to improve is to exhaustively evaluate the benefit of

improving every dispatch in the network, and to commit to improving the arc yielding the most

improvement. This approach is very expensive and is given in Algorithm 6.
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Algorithm 6 Best Improving Arc
1: function FINDBESTIMPROVINGARC

2: ∆C∗ ← 0
3: for a ∈ AT such that a commodity path uses a do
4: ∆C ← EvaluateArcImprovement(a)
5: if ∆C < ∆C∗ then
6: ∆C∗ ← ∆C
7: a∗ ← a
8: if ∆C∗ then
9: return a∗

10: else
11: return ∅ ▷ No improving arc

2.4.5 Design Decisions

Withing this framework, we address specific algorithmic design decisions made to improve ef-

ficiency and solution quality, Namely, improved pruning in the shortest path algorithm, altering

which commodities get repathed when arcs are reconfigured during refinement, and how frequently

refinement should be performed.

Improved Shortest Path Algorithm

The framework requires repeatedly solving shortest path problems. Therefore, we would like an

extremely efficient shortest path algorithm. The time space network maintains a special structure.

However, we cannot guarantee that it is acyclic. When using a uniform initial discretization, we

can guarantee that all strongly connected components are composed of nodes having the same

time. This nearly acyclic property of the network can no longer be guaranteed after the insertion

of new nodes.

Therefore, we require efficient shortest path algorithms suitable for graphs with non-negative

costs containing directed cycles. We therefore use a variant of Dijkstra’s algorithm ([4]). However,

we can make several adjustments to a standard implementation of Dijkstra’s algorithm to improve

performance. Pseudo-code for the standard implementation of Dijkstra’s algorithm is given in
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Algorithm 7.

Algorithm 7 Dijkstra’s Algorithm
1: function DIJKSTRA(Node s, Node t)
2: U ← {s}
3: C[n]←∞ ∀ n ∈ N
4: while U ̸= ∅ do
5: u← argminn∈U C[n]
6: U ← U \ {u}
7: if u == t then
8: return (P,C)

9: for v ∈ δout(u) do
10: if C[u] + cuv < C[v] then
11: C[v]← C[u] + cuv
12: P [v]← u

The first adjustment is to maintain the length of the shortest time path between each pair of

vertices in the flat network (each pair of locations) τ̃l1,l2 . With this information, one can prune any

time space node (l, t) from consideration if t + τ̃l,d(k) > lk. That is, if a commodity cannot visit

that node and subsequently visit its destination location before the due time of the commodity.

The second adjustment harnesses the fact that, typically, the flat network is nearly complete.

Then for most commodities, there exists a direct arc from their origin location to their destination

location during their delivery window. The marginal cost of the cheapest such arc is an upper

bound on the optimal marginal cost path. Therefore, any node whose cost to visit is larger than

this upper-bound need not be added to the ordered frontier. This reduces the amount of time spent

managing the frontier, because U is implemented as an ordered set. During the course of execution,

we may further reduce this upper-bound threshold: it can be assigned the minimum marginal cost

to visit any node at the destination location.
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Algorithm 8 Improved Dijkstra’s Algorithm

1: function IMPROVEDDIJKSTRA(Node (lo, to), Node (ld, td))
2: U ← {(lo, to)}
3: C[n]←∞ ∀ n ∈ N
4: if ld ∈ δout

F (lo) then ▷ If there exist directs from l(s) to l(t)
5: d = (u, v) ← argmin{ca : a = ((l1, t1), (l2, t2) ∈ AT , t1 ≥ to, l1 = lo, t2 ≤ td, l2 =

ld} ▷ Find cheapest direct during time frame
6: UB ← cd
7: C[(ld, td)]← UB
8: P [(ld, td)]← v
9: C[v]← UB

10: P [v]← u
11: C[u]← 0
12: P [u]← (lo, to)

13: while U ̸= ∅ do
14: u = (l1, t1)← argminu∈U C[u]
15: U ← U \ {u}
16: if l1 == ld and t1 ≤ td then
17: return (P,C)

18: for v = (l2, t2) ∈ δout(u) do
19: if t2 + τ̃l2ld ≤ td then ▷ Only explore nodes for which there exists a path to (ld, td)
20: if C[u] + cuv < C[v] and C[u] + cuv ≤ UB then ▷ Only include nodes of cost

at most the upper bound
21: C[v]← C[u] + cuv
22: P [v]← u
23: U ← U ∪ {v}
24: if l2 == ldandC[v] < UB then ▷ If we can improve upper bound
25: UB ← C[v]
26: C[t]← C[v]
27: P [t]← v

These improvements are particularly effective due to the structure of the network. There are

many duplicated nodes minutes away in time which, if added to the frontier, result in a lot of time

wasted sorting.
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Repathing Strategy

This section describes different ways to determine which are those “affected commodities” named

in Algorithm 2. During the insertion of a new node vnew = (l2, t) into the network, we may

remap existing arcs to it. That is, for an arc a = ((l1, t1), (l2, t2)), we will replace this arc with

anew = ((l1, t1)(l2, t)) if t2 < t ≤ t1 + τl1l2 . For any commodity-path using a, we also replace a

with anew. However, the resulting collection of arcs may no longer be a path. Specifically if a path

departs l2 strictly earlier in time than t. One approach to solving this problem would be to re-path

every commodity whose path is destroyed as such. This approach is given the name Economic

Repathing and is given in Algorithm 9.

A downside of the economic repathing approach arises from the fact that other paths (those that

use a, but remain paths when a → anew) may have had the incentive to use a with the assumption

that there would exist the benefits of consolidation with the existing commodities. However, we

have no guarantee that the new paths found during economic repathing will use anew. Hence,

another sensible approach is to repath every commodity using a, regardless of whether or not it

remains a path during the remapping. This approach is given in Standard Repathing in Algorithm

9.

Finally, we explore a more aggressive approach which extends the argument above to a one arc

look-ahead in each of the paths using a: the approach repaths every commodity a, and if a is not

the last arc on any of these paths, it repaths all commodities using the arc subsequent to a on the

individual paths. This approach is titled Aggressive Repathing and is given in Algorithm 9.
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Algorithm 9 Methods of Repathing
1: function ECONOMICREPATHING(Arc a, Arc anew)
2: R← ∅ ▷ The set of commodities which will be repathed
3: for k ∈ Ka do
4: Pk ← CurrentPathOf(k)
5: Pk.Replace(a, anew)
6: Ka ← Ka \ {k}
7: Kanew ← Kanew ∪ {k}
8: if not IsPath(Pk) then
9: R← R ∪ {k}

10: return R
11: function STANDARDREPATHING(Arc a, Arc anew)
12: R← ∅ ▷ The set of commodities which will be repathed
13: for k ∈ Ka do
14: Pk ← CurrentPathOf(k)
15: Pk.Replace(a, anew)
16: Ka ← Ka \ {k}
17: Kanew ← Kanew ∪ {k}
18: R← R ∪ {k}
19: return R
20: function AGGRESSIVEREPATHING(Arc a, Arc anew)
21: R← ∅ ▷ The set of commodities which will be repathed
22: for k ∈ Ka do
23: Pk ← CurrentPathOf(k)
24: Pk.Replace(a, anew)
25: Ka ← Ka \ {k}
26: Kanew ← Kanew ∪ {k}
27: R← R ∪ {k}
28: if anew ̸= p.LastArc() then
29: a′ ← Pk.NextArc(anew)
30: R← R ∪Ka′

31: return R

Refinement Frequency

Should the network be refined any time a commodity is assigned to a time-infeasible path? On

one hand, leaving the commodity on a path that has error, one that it may not be able to use

after refinement, could bias new paths to consolidate when the benefits wont be available. On

the other hand, by delaying refinement, other commodities, later in the sequence, may provide
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better consolidation opportunities for this particular commodity if it requires repathing. We explore

different refinement frequencies ranging from refining every path to refining after all commodities

are assigned a path.

2.5 Computational Experiments

Computation experiments were performed to determine the efficacy of the approach on a real world

instance, as well as randomly generated instances. We first provide some experiments demonstrat-

ing the impact of the proposed algorithmic enhancements. Then we test the best implementation

of the approach on a variety of instances. We have broken the set of test instances we consider

into two categories: small and large. The small instances can be solved exactly using a MIP solver

and our approach can be benchmarked against the bounds generated by the solver. The large in-

stances are on the scale typically seen in industry, and finding an optimal solution using a solver is

hopeless. We benchmark only against slope scaling for the large instances.

2.5.1 Slope Scaling as a Benchmark

In order to evaluate the approach, we need a suitable benchmark. The problem can only be solved

exactly for very small instances. On the large instances we address in this work, we have chosen

to compare against a slope scaling procedure. Slope scaling has been shown to work well on large

scale service network design problems. Since slope scaling has no built-in method for DDD, we

can not adapt it to a continuous time scenario. We therefore perform slope scaling on instances with

horizons of multiple days, and use a fully-time-expanded network with a one minute discretization.

Given a time expanded network, the slope scaling algorithm is given in Algorithm 10. In the

implementation of this algorithm, at each iteration, we find the shortest paths for all k ∈ K in

parallel.
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Algorithm 10 Slope Scaling

1: function SLOPESCALING(Fully time expanded network N = (LT , AT ), commodities K)
2: ρa ← Ca(ϵ)

Qa(ϵ)
∀ a ∈ AT ▷ Initial costs

3: C∗ ←∞
4: while Time remains and solution does not repeat do
5: for k ∈ K do ▷ Implemented in parallel
6: xk ← ShortestPath(k, ρ) ▷ Find shortest path from (ok, ek) to (dk, lk) with arc

costs ρ
7: ya ← Qa(

∑
k x

k
a)

8: ρa ← Ca(
∑

k xk
a∑

k xk
a

9: C ←
∑

a

∑
v Cavy

a
v

10: if C < C∗ then
11: x∗ ← x, y∗ ← y, C∗ ← C

2.5.2 Industry Instance Characteristics

Random Instance Generator

An instance generator was developed to test the performance of the algorithm on instances of

different sizes. The main parameters of the instances are

1. The earliest date and time at which commodities can arrive to the system t

2. The latest date and time at which commodities can arrive to the system t

3. The number of vehicle types nV

4. The dimensions of the rectangular map on which terminals are placed

5. The number of regions in the map

6. The number of terminals in the map

7. The number of hubs in each region

8. The number of commodities
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The topology of the flat network was developed as follows. Each terminal was assigned random

coordinates following a uniform distribution across the entire rectangular map. The terminals were

then clustered into regions using k-means, with k being the given number of regions. Terminals

were randomly chosen to be hubs, with weights proportional to the inverse of the distance between

the terminal and the mean of the coordinates of all terminals. This was done to bias hubs towards

connecting regions. The terminals are the nodes of the flat network. The set of arcs consists of the

union of all pairs of terminals in the same region and all pairs of hubs. That is, the hubs induce a

complete graph and all terminals in any region induce a complete graph. The travel time between

terminals u and v was set to be τuv = ⌈10duv⌉minutes, where duv is the euclidean distance between

the coordinates of u and v.

Given the number of vehicles nV , we set V = [nV ], Qv = 50 + 50v, and Cav =
√
Qvτa ∀

a ∈ A, v ∈ V .

The origin and destination of every commodity were chosen randomly with equal probability

for any terminal. The weight of every commodity qk was chosen random according to a Unif [1, 20]

distribution. The earliest release time of each commodity, ek, was chosen uniformly in [t, t]. Let

τ̃okdk represent the minimum travel time between the origin and destination of commodity k. The

due time of every commodity was set to be lk ← ek + τ̃okdk(1 + Unif [0.05, 0.25]).

2.5.3 Impact of Improved Dijkstra’s Pruning

To demonstrate the significant impact of the improvements made to the shortest path algorithm,

we compared a default implementation of Dijkstra’s algorithm (pseudo-code in Algorithm 7) to

the enhanced version (pseudo-code in Algorithm 8). The two algorithms were used to construct a

solution for various instances (without performing any refinement). Table 2.1 gives the construc-

tion time in seconds on synthetic instances for the improved Dijkstra’s (column Enh.) and the

default implementation (column Reg.). Table 2.2 gives similar results on the industry instance.
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Table 2.1: Default vs improved Dijkstra’s construction times: synthetic instances

nR |L| nH |K| Enh. Reg.

3 25 3 10,000 4.054 18.91

3 25 3 25,000 10.686 49.45

3 25 3 50,000 19.249 95.566

3 25 3 100,000 41.235 190.54

5 50 3 10,000 15.443 78.564

5 50 3 25,000 32.791 180.695

5 50 3 50,000 58.35 352.374

5 50 3 100,000 124.1 658.43

Table 2.2: Default vs improved Dijkstra’s construction times: South China instance

|K| Enh. Reg.

100,281 257.057 1140.549

The results demonstrate that some simple exploitation of the repeated structure of time ex-

panded networks can provide huge benefits in terms of reduced solution time. We proceed in the

experiments with the shortest path algorithm fixed as the enhanced version.

2.5.4 Impact of Design Decisions

In order to determine the best refinement frequency and repathing strategy, the following exper-

iment was run using the South China instance. For each repathing strategy and each refinement

frequency, a feasible solution was generated to the problem. No improvement was performed.

The refinement frequencies chosen were 1,5%,10%,25%, and 50%, where 1 is to refine after every

commodity, and x% is to refine after every x% of the commodities have been pathed.
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Table 2.3: Refinement frequency and repathing strategy results

Aggressive Repathing Freq Time(s) Plan Cost |LT ′ | |AT ′ | Avg. Utilization

1 1,608.11 4,764,980 18,314 831,669 0.706

5% 2,399.30 4,693,760 19,529 892,716 0.710

10% 2,617.50 4,682,360 19,336 880,319 0.707

25% 4,715.85 4,696,900 20,564 938,866 0.707

50% 9,587.15 4,723,940 22,406 1,025,378 0.696

Standard Repathing 1 520.84 4,864,990 15,747 704,618 0.716

5% 660.8 4,830,050 16,766 755,317 0.719

10% 793.32 4,754,930 17,097 772,360 0.718

25% 927.54 4,820,470 18,091 818,396 0.704

50% 1,443.42 5,058,440 19,165 866,501 0.673

Economic Repathing 1 414.4 4,980,140 14,848 661,390 0.711

5% 516.68 5,015,670 15,422 689,167 0.703

10% 533.03 5,120,310 15,390 686,079 0.693

25% 537.69 5,360,820 15,527 690,575 0.655

50% 631.23 6,234,190 15,531 687,160 0.565

The results are somewhat counter-intuitive, since the amount of time spent refining, and the

number of nodes added to the graph increases as the refinement frequency decreases. Aggressive

pathing yields the best plans, but takes substantially longer. However, the solution times are not

unreasonable for problems of this size. We proceed in the computational experiments using an

implementation with aggressive repathing and refinement after every path.
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2.5.5 Results on Small Instances

The full results for all small instances are given in Table 2.7. In the results, we use MCPH to refer

to the marginal cost path heuristic approach presented in this work. Slp Sc refers to slope scaling.

The MIP solver was given an hour to optimize. For some instances, it was not able to reach or

prove optimality during this time, so we provide both bounds and benchmark against the lower

bound.

A summary of the performance across all instance classes is given in Table 2.4 for MCPH and

Table 2.5 for slope scaling. Average solution times for both methods across classes are given in

Table 2.6.

Table 2.4: MCPH gap on small instances

MCPH Gap

nR |L| nH |K| min avg max

3 25 3 100 6.56 10.91 13.24

3 25 3 200 10.07 12.71 15.18

3 25 3 300 9.59 13.21 17.97

3 25 3 400 4.95 8.40 11.37

5 50 3 100 9.69 10.99 12.52

5 50 3 200 9.70 11.30 12.86

5 50 3 300 8.46 11.73 14.34
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Table 2.5: Slope scaling gap on small instances

Slp Sc Gap

nR |L| nH |K| min avg max

3 25 3 100 19.12 23.66 26.40

3 25 3 200 24.00 25.94 28.27

3 25 3 300 22.64 27.74 30.08

3 25 3 400 21.49 27.01 29.18

5 50 3 100 15.98 19.11 22.79

5 50 3 200 21.27 24.34 25.73

5 50 3 300 23.08 24.44 28.46

Table 2.6: Small instance solution times

nR |L| nH |K| MCPH Avg Time (s) Slp Sc Avg Time (s)

3 25 3 100 0.0746 42.53

3 25 3 200 0.1858 78.34

3 25 3 300 0.316 123.62

3 25 3 400 0.9336 120.60

5 50 3 100 0.1742 283.18

5 50 3 200 0.473 382.72

5 50 3 300 0.9104 435.39

There is no instance for which slope scaling outperforms MCPH in either solution time or solu-

tion cost. The solution time of slope scaling is significantly larger than MCPH. At each iteration of

slope scaling, a shortest path must be found for each commodity. This computation time, although

performed in parallel, is equivalent to the entire construction phase of MCPH.
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Table 2.7: Small instance results

nR |L| nH |K| Replication MCPH Obj MCPH Time(s) Slp Sc Obj Slp Sc Time(s) FullMIP LB FullMIP UB FullMIP Time(s)

3 25 3 100 1 504,250 0.066 567,850 28.58 447,920 447,920 266.425

3 25 3 100 2 412,980 0.079 491,380 19.946 367,250 367,250 130.948

3 25 3 100 3 519,120 0.065 611,900 88.272 450,410 450,410 322.887

3 25 3 100 4 456,890 0.083 543,250 34.198 399,850 399,850 344.503

3 25 3 100 5 461,290 0.08 532,890 41.653 431,020 431,020 367.826

3 25 3 200 1 826,830 0.229 968,610 61.818 728,530 728,530 1367.04

3 25 3 200 2 773,230 0.183 926,420 91.463 661,130 664,490 3609.52

3 25 3 200 3 738,550 0.163 873,940 66.876 664,210 664,210 888.219

3 25 3 200 4 807,720 0.119 949,240 80.712 685,100 685,100 1512.43

3 25 3 200 5 760,040 0.235 885,640 90.832 666,000 666,000 792.449

3 25 3 300 1 1,049,381 0.379 1,288,520 113.804 812,752 925,300 3607.53

3 25 3 300 2 979,840 0.151 1,188,780 56.459 839,183 841,290 3608.25

3 25 3 300 3 1,061,441 0.269 1,200,337 191.876 853,564 928,547 3608.31

3 25 3 300 4 977,734 0.164 1,147,112 80.426 739,477 802,034 3624.92

3 25 3 300 5 987,951 0.617 1,250,576 175.524 755,632 893,190 3608.1

3 25 3 400 1 1,292,249 0.726 1,609,331 124.03 870,417 1,186,730 3609.54

3 25 3 400 2 1,164,010 1.091 1,465,300 159.369 837,592 1,037,690 3610.39

3 25 3 400 3 1,227,800 0.237 1,459,839 176.473 852,590 1,146,060 3609.88

3 25 3 400 4 1,286,780 1.124 1,608,514 69.512 919,492 1,140,520 3609.19

3 25 3 400 5 1,279,200 1.49 1,712,932 73.623 963,470 1,215,860 3610.12

5 50 3 100 1 514,160 0.183 557,760 133.963 464,350 464,350 399.548

5 50 3 100 2 546,250 0.22 573,070 209.336 481,480 481,480 1161

5 50 3 100 3 524,990 0.193 590,620 755.104 473,080 473,080 1197.06

5 50 3 100 4 480,120 0.14 553,550 88.851 427,410 427,410 1305.58

5 50 3 100 5 504,360 0.135 552,530 228.634 441,220 441,220 970.974

5 50 3 200 1 902,540 0.605 1,024,080 239.194 806,250 806,250 2628.76

5 50 3 200 2 884,990 0.438 1,071,860 391.395 799,130 799,130 2301.04

5 50 3 200 3 887,077 0.205 1,024,280 525.802 714,806 772,990 3616.34

5 50 3 200 4 825,950 0.394 974,370 325.272 732,455 733,700 3613.94

5 50 3 200 5 821,430 0.723 972,029 431.935 721,950 721,950 2551.97

5 50 3 300 1 1,280,410 0.371 1,427,460 269.435 1,095,780 1,096,780 3643.83

5 50 3 300 2 1,208,800 1.393 1,414,570 390.518 937,077 1,085,890 3622.22

5 50 3 300 3 1,133,830 1.412 1,349,410 344.08 892,467 1,037,900 3625.51

5 50 3 300 4 1,189,090 0.408 1,436,040 753.099 920,944 1,027,330 3634.13

5 50 3 300 5 1,158,480 0.968 1,344,760 419.796 906,712 1,018,820 3620.48

5 50 3 400 1 1,464,810 2.183 1,871,571 388.173 990,059 1,404,270 3639.06

5 50 3 400 2 1,369,150 2.951 1,700,030 920.753 953,110 1,297,680 3635.89
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2.5.6 Results on Large Instances

For the large instances, the size of the set of commodities ranges from 10,000 to 100,000. An

optimal solution can not be found currently in a reasonable amount of time. Therefore, we compare

only to slope scaling. Table 2.11 shows the results on all large instances. Similar to the small

instances, MCPH outperforms slope scaling in terms of cost on every instance. However, for the

largest instances, MCPH begins reaching the time limit of one hour before quitting. A summary

of the cost improvement of MCPH over slope scaling across instance classes is given in Table 2.8.

The average solution time of both methods is given in Table 2.10 for each instance class.

Table 2.8: Large instance summary

Imp.

nR |L| nH |K| min avg max

3 25 3 10,000 27.5 29.9 33.9

5 50 3 10,000 22.6 25.3 29.5

3 25 3 25,000 25.9 29.4 30.6

5 50 3 25,000 25.4 27.3 28.4

3 25 3 50,000 20.9 22.5 24.3

5 50 3 50,000 24.7 26.1 26.6

3 25 3 100,000 16.1 18.1 19.5

5 50 3 100,000 22.5 23.7 25.3
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Table 2.9: Large instance times

nR |L| nH |K| MCPH Avg Time Slp Sc Avg Time

3 25 3 10,000 1090.6 3600.8

5 50 3 10,000 918.9 3601.3

3 25 3 25,000 2364.0 3602.1

5 50 3 25,000 2433.8 3603.4

3 25 3 50,000 3429.0 3604.8

5 50 3 50,000 3383.0 3606.0

3 25 3 100,000 3351.5 3605.0

5 50 3 100,000 3602.9 3625.2

Table 2.10: Large instance times
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Table 2.11: Large instance results

nR |L| nH |K| Replication MCPH Obj MCPH Time(s) Slp Sc Obj Slp Sc Time(s) Imp.

3 25 3 10000 1 7,807,562 772.231 11,313,854 3600.74 30.99

3 25 3 10000 2 8,498,513 359.989 11,858,786 3601.14 28.34

3 25 3 10000 3 7,979,189 505.49 11,199,462 3601.32 28.75

3 25 3 10000 4 8,121,972 213.818 11,207,124 3600.39 27.53

3 25 3 10000 5 7,862,328 3601.53 11,901,673 3600.18 33.94

5 50 3 10000 1 11,832,865 36.747 15,304,486 3600.56 22.68

5 50 3 10000 2 10,287,658 3602.76 14,582,272 3602.62 29.45

5 50 3 10000 3 11,010,285 685.307 15,045,394 3602.12 26.82

5 50 3 10000 4 12,175,055 150.953 16,195,680 3600.52 24.83

5 50 3 10000 5 10,860,157 118.753 14,036,197 3600.53 22.63

3 25 3 25000 1 14,452,109 2233.3 20,462,194 3603.38 29.37

3 25 3 25000 2 14,566,572 349.419 19,653,122 3600.63 25.88

3 25 3 25000 3 13,634,433 2031.49 19,606,250 3602.06 30.46

3 25 3 25000 4 14,870,115 3603.8 21,377,883 3603.47 30.44

3 25 3 25000 5 14,957,126 3602.15 21,551,921 3601.04 30.60

5 50 3 25000 1 17,795,391 3600.11 24,814,660 3604.02 28.29

5 50 3 25000 2 18,518,142 1863.56 25,607,409 3603.36 27.68

5 50 3 25000 3 17,976,947 180.045 24,088,497 3603.55 25.37

5 50 3 25000 4 17,732,359 2923.83 24,771,584 3602.08 28.42

5 50 3 25000 5 19,020,463 3601.52 26,014,358 3604.01 26.88

3 25 3 50000 1 23,577,490 2735.78 31,139,236 3602.77 24.28

3 25 3 50000 2 24,443,618 3601.42 31,332,086 3601.1 21.99

3 25 3 50000 3 24,397,782 3600.14 31,203,711 3609.17 21.81

3 25 3 50000 4 29,615,640 3604.13 37,422,178 3602.17 20.86

3 25 3 50000 5 24,662,085 3603.73 32,305,600 3608.72 23.66

5 50 3 50000 1 28,298,059 3603.13 38,552,407 3607.19 26.60

5 50 3 50000 2 26,316,825 2508.85 35,830,681 3604.31 26.55

5 50 3 50000 3 28,797,424 3600.16 39,248,722 3603.44 26.63

5 50 3 50000 4 30,771,044 3602.26 40,872,615 3609.03 24.71

5 50 3 50000 5 29,764,983 3600.39 40,214,342 3606.15 25.98

3 25 3 100000 1 43,487,232 2350.77 51,843,528 3600.3 16.12

3 25 3 100000 2 42,248,895 3602.83 51,583,270 3604.56 18.10

3 25 3 100000 3 37,729,193 3600.73 46,652,340 3603.69 19.13

3 25 3 100000 4 44,286,305 3602.3 55,046,102 3609.24 19.55

3 25 3 100000 5 40,549,522 3600.72 49,347,055 3607.02 17.83

5 50 3 100000 1 53,723,102 3602.34 71,946,463 3622.77 25.33

5 50 3 100000 2 53,364,022 3603.44 69,371,534 3623.65 23.08

5 50 3 100000 3 50,479,254 3604.82 66,385,200 3611.9 23.96

5 50 3 100000 4 50,309,632 3600.41 65,856,738 3626.87 23.61

5 50 3 100000 5 55,764,440 3603.25 71,931,742 3640.73 22.48

Table 2.12 shows the results of the two heuristics on an industry instance. Note that it took

both methods over one hour to produce a solution. Therefore, the solution produced by MCPH
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had no improvement time, and the solution produced by slope scaling is equivalent to rounding up

the optimal solution to the LP-relaxation of the problem. This may not be a fair comparison of

the heuristics, but demonstrates that MCPH can produce good solutions in a reasonable amount of

time.

Table 2.12: Industry instance results

Instance MCPH Obj MCPH Time(s) Slp Sc Obj Slp Sc Time(s) Imp.

South China 4,632,395.45 4016.47 71,802,412.77 4426.55 93.55

Gauging the quality of the solution produced by MCPH is difficult, because we can not bench-

mark against an optimal solution. However, we can investigate some properties of the plan such

as trailer utilization. Figure 2.4 shows the distribution of trailer utilization for the plans produced

by each heuristic, and Table 2.13 shows some statistics for these distributions. With an average

utilization of 75%, we can conclude that the plan produced by MCPH is a high quality plan.

Figure 2.4: Utilization distributions MCPH(blue) vs Slope Scaling(grey): South China instance

Table 2.13: Utilization summary MCPH vs Slope Scaling: South China instance

Method Min. Util. Avg. Util. Max Util.

MCPH 1.4E-04 0.751 1.000

SlpSc 1.4E-05 0.074 1.000
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2.6 Conclusion

The main contribution of this work is demonstrating that sequential marginal cost pathing and

heuristic dynamic discretization discovery can produce high quality solutions to the flow and load

planning problem. We have demonstrated that the heuristic can produce solutions to industry-scale

instances in under two hours. Furthermore, we have shown that algorithmic enhancements that

exploit the specific structure of time expanded networks can have dramatic effects on the efficiency

of the heuristics.

On small instances which can be solved optimally (those having fewer than 400 commodities),

the heuristic produced solutions within 6-18% of the optimal solution. On large instances, con-

taining up to 100,000 commodities, the heuristic dramatically outperformed another well known

heuristic, slope scaling, by 16-34%. Finally, we showed that the heuristic can produce a plan with

75% trailer utilization for an industry instance in under two hours.

Most approaches currently in the literature focus on solving instances we categorize as small.

They involve solving MIPs that when proportionally scaled with the instance, become intractable

for instances faced by industry. Furthermore, as more planning adjustments are being made in

real time due to weather events and demand shocks, the need for quick solutions in industry is

increasing. This approach can be incorporated to quickly adjust plans or to entire produce plans

from scratch, providing immense value to parcel express companies and E-retailers facing this

difficult problem.
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CHAPTER 3

SEQUENTIAL DISCRETIZATIONLESS APPROACH

3.1 Introduction

Flow and load planning is a service network design problem faced in the planning of freight trans-

portation consolidation networks. This problem is to determine freight flows through a network

and to schedule containerized dispatches to accommodate these flows. The problem is perhaps the

core consolidation decision problem faced by parcel express companies, LTL carriers, and large

online retailers that operate private consolidation networks; its solution determines where and when

shipments will be consolidated into trailers and containers to best take advantage of transportation

cost scale economies. Solutions to the problem are day-differentiated schedules of container dis-

patches between all terminals and a load plan specifying which shipments are loaded onto which

trailers. Freight flow routing through a consolidation network creates handling and sorting for

shipments that move through intermediate terminals, so the problem often includes models for the

costs and capacities for freight sorting and transfer. Lastly, it is typical that the problem is solved

as a prerequisite to detailed transportation scheduling decisions for moving the loads.

Flow and load planning is a scheduled service network design problem, and exact approaches

for optimization tend to be limited to solving small instances. There is a lack of specialized heuris-

tics for solving the problem on realistic-sized instances, with only a few types proposed in the

research literature. One of the difficulties is that typical modelling of these problems involves

solving a variant of a service network design mixed-integer linear program on a time-expanded

network, see [5].

Earlier work on flow and load planning focused on the LTL industry. Here, freight sorting

operations were modeled relatively simply. Predefined sort schedules allowed modeling terminals
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with at most five time-expanded network layers per day. Furthermore, smaller LTL carriers operate

a smaller network of terminals and the resulting smaller number of origin-destination demand pairs

means that problem instances could be modeled with relatively few flow commodities. For such

problems, exact solution approaches can be developed on a full time-expanded network.

This work addresses the need to develop more detailed plans. The LTL industry has evolved to

focus on services that move freight quickly and offer time guarantees. Package transportation com-

panies offer such services (such as two-day and next-day guarantees) and also operate much larger

terminal networks. Finally, the largest online retailers are building private middle-mile consolida-

tion networks and also promise fast transit times to purchasers. In such systems, it is important to

know precisely when loads arrive for sorting; those arriving 30 minutes later than modelled can

lead to many parcels not making service.

This demand for more detailed plans has led to work on partially time-expanded networks

and the continuous time service network design problem; modelling the problem on a fully time-

expanded network with a fine time discretization leads to intractable models. [3] introduce Dy-

namic discretization discovery (DDD), an exact solution approach that has been applied to flow

and load planning mixed-integer programs with relatively small networks and numbers of com-

modities. However, package transportation companies face truly massive instances that cannot be

solved exactly. There exist few specialized heuristics addressing large-scale flow and load plan-

ning. Work on sequential marginal cost pathing with heuristic DDD has shown promise. However,

there is a significant drawback in dynamic discretization approaches especially when used within

such sequential flow pathing approaches: load dispatches are fixed to occur at a specific time in

each candidate solution. In later iterations, there may exist shipments that could consolidate with

those already planned if load dispatches could be shifted in time. Exact DDD approaches have

been proposed which associate a time interval with each time-expanded node, rather than a partic-

ular time (DDDI), see [18]. Again, however, these approaches are not capable yet of addressing

large instances.
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Our work proposes a heuristic which constructs a solution by sequential marginal cost pathing.

However, instead of using time-expanded network, the path finding algorithm is a dynamic pro-

gram which decides whether to use existing dispatches in the solution or introduce new ones where

each dispatch can occur within a time window. A dispatch precedence graph similar to the solution

graph of DDDI is used to encode dependencies between commodities and dispatches. At each

iteration, we find a path for some commodity not yet in the solution and update the dispatch prece-

dence graph. Next, we solve optimization problems, equivalent to shortest path problems, on the

solution graph to determine time intervals for each dispatch in the current solution. These time

intervals are used in the path-finding algorithm in the next iteration.

We show that the choice of how the dispatch time intervals are modelled is important. We

provide two types of intervals: flexible and rigid. Flexible intervals are easy to update, but do

not necessarily yield a feasible path using our proposed dynamic program. We thus also propose

rigid intervals, which always yield a feasible path using our proposed dynamic program. We show

that finding an optimal set of rigid intervals under the max-min objective is equivalent to finding

a minimum mean cost path on the precedence graph, which can be performed in polynomial time.

Finally, we conduct a computational study that shows that our approach dramatically outperforms

sequential marginal cost pathing approaches on a time-expanded network in both solution quality

and required computation time.

The remainder of this work is structured as follows. In Section 3.2 we provide a brief literature

review. We formally define the problem in Section 3.3. Section 3.4 outlines the discretizationless

solution approach, providing theoretical results on the correctness of the algorithms for maintaining

dispatch time intervals. Section 3.5 contains extensive computational experiments benchmarking

the approach against other known heuristics. It also contains insights into algorithmic enhance-

ments that dramatically improve the efficiency of the approach. Finally, concluding remarks are

given in Section 3.6.
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3.2 Literature Review

[5] provide a recent comprehensive overview of service network design and flow and load plan-

ning for the trucking industry. [19] provide a review of formulations and a comparison of solution

frameworks for service network design. [20] provides an overview of freight transportation mod-

elling.

Flow and load planning has historically been decomposed into sequential subproblems similar

to the field of airline crew scheduling. Methods in this field could lend well. [8], [9], [10], and [11]

provide work in this area. These works focus on integer programming formulations and traditional

solution approaches such as column generation. [21] explain the hierarchy of decision making in

air crew scheduling and also model the problem where the departure time of flights can vary within

time windows.

For traditional modelling and solution approaches for service network design on LTL networks

see [22], [23], [2], and [13]. Note [13] outlines a heuristic we benchmark against in the compu-

tational results section. There is extensive work on network design for graphs that are not time

expanded, which in itself is difficult. Problems take the form of multicommodity fixed-charge flow

problems. [24], [25], [26], [27] provide heuristics to solve these problems. [28] gives an IP local

search approach for these problems.

Some works on flow and load planning enforce in-tree constraints. These constraints are help-

ful for designing a practically operable plan, because they direct commodities through the system

based on final destination, rather than all characteristics of the commodity such as release time.

[14] provides a model and solution approach for this problem that can work on instances with hun-

dreds of commodities using tree-based variables. They model in-tree constraints and solve using

a slope scaling and tree generation heuristic. They generate a set of geographic freight flow paths

for each commodity in advance and use these to construct solutions. They maintain the same tree

flow plan for each day of the week. They note that, even in the LTL setting, moving to a weekly

46



regenerated plan achieves significant cost savings.

The time sensitivity of flow and load planning in the parcel express setting is discussed in

earlier works such as [11]. More recently, work on general scheduled service network design

optimization models have recognized the need to develop more detailed plans that better account

for time constraints. Along these lines, [15] and [16] use heuristic solution approaches to solve

problems on more detailed time-space networks.

Some research has also focused on exact solution methods for these more detailed problems.

Since modelling these problems on a fully time-expanded network, with layers occurring every

minute, leads to intractable models, researchers have investigated partially time-expanded net-

works and the continuous time service network design problem. [3] propose Dynamic Discretiza-

tion Discovery, an exact solution approach, was proposed which solves sequences of small mixed

integer programs (MIPs) to dynamically expand a time-expanded network. Such a network only

contains nodes used by a candidate solution in the solution sequence, and leaves unused regions

of the network unexpanded. These exact approaches work well on problems faced by LTL car-

riers who can collapse their demand-volume onto a small set of commodities (∼500). However,

parcel express companies face instances with tens of thousands to millions of commodities. Such

instances can not be solved using DDD, and are unlikely to be successfully addressed by any

methodology relying on solving multi-commodity service network design MIPs.

[3] propose the Continuous Time Service Network Design problem, where loads can be sched-

uled on a continuous time axis. In this approach, a time interval is associated with each time-

expanded node, rather than a particular time and a solution graph is used to encode the depen-

dencies between commodities and dispatches to recover feasible departure time intervals for every

trailer dispatch in the current solution. The paper proposes an exact solution methodology, DDD,

which maintains a partially time expanded network having optimistically mapped arcs, and at each

iteration solves a service network design MIP on this network. If the solution can be converted

into a time feasible solution, it is the optimal solution; otherwise, nodes are selected to insert into
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the network, and the process continues. This approach allows precise timing, but can only handle

instances with ∼500 commodities. [29] provide several enhancements for DDD applied to LTL

load planning. The work bases some enhancements on the structure of time expanded networks.

They note that a path formulation with a scheme for generating timed-paths in a DDD scheme

would be an interesting extension of their work.

[18] extend the work of [3] by associating intervals with dispatch departures rather than a fixed

time. However, their solution approach is exact and is only tested on instances having fewer than

1000 commodities.

Sequential marginal cost pathing has seen application in service network design and flow and

load planning. It has been explored or used in [30] and [17] where it was performed on a time

expanded network with a fixed discretization. [30] propose a heuristic DDD scheme that pro-

duces feasible solutions, but induces lots of solution time spent refining the network and repathing

commodities.

3.3 Problem Statement

The flow and load planning problem to be addressed in this work is to simultaneously determine the

flow of parcels through a logistics network in space and time and schedule trailers to accommodate

them along each leg of their journey. A solution to the problem specifies a timed path for each

parcel that moves it from its origin to its destination respecting its due time constraint. We assume

that parcels originate at consolidation terminals at particular times, referred to as the release times.

Each parcel is due at a particular terminal at a particular time, referred to as the due time. The origin

and destination terminals are not a choice in the model, and pickup and delivery routing at the

origins and destinations is outside of this problem scope. A solution to the problem also specifies a

schedule of trailers moving between terminals with sufficient capacity to carry all parcels along

their timed-paths. We group all parcels with a common origin terminal, destination terminal,

release time, and due time into a single aggregate flow class that is referred to as a commodity.
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We restrict the problem further by requiring that all parcels belonging to a commodity must take

the same timed-path.

Let F = (B,A) be a directed graph representing the geography of the logistics network. Each

element in B represents a consolidation terminal building, and each tuple (u, v) ∈ A represents

an option to send trailers from u to v. Let Va represent the set of trailer types or vehicles able to

operate on link a ∈ A. For any arc a, every vehicle v ∈ Va has a capacity Qv and a cost per vehicle

Cav.

Let T be the set of time points in the planning horizon. We assume the horizon contains every

time at which a vehicle can be dispatched or arrive to any terminal, as well as any commodity

release or due times there. Let K be the set of commodities. Each commodity has an origin

terminal ok ∈ B, a destination terminal dk ∈ B, a release time ek ∈ T , a due time lk ∈ T by which

it must be delivered to its destination, and a size qk which occupies vehicle capacity.

Let

δtik =


−1 if i = ok, t = ek

1 if i = dk, t = lk

0 otherwise

indicate when k is released or due at time-space tuple (i, t) for i ∈ B, k ∈ K, t ∈ T .

To model the flows of commodities through space and time, let the variable 0 ≤ xt
ak ≤ 1

represent the proportion of commodity k ∈ K that is scheduled to depart on arc a ∈ A at time

t ∈ T .

Commodities may also remain at the same terminal for some period of time; let xt1t2
ik denote

the proportion of commodity k ∈ K which remains at terminal i ∈ B for the interval [t1, t2) for

t1, t2 ∈ T .

Let the variable ytav denote the number of vehicles of type v ∈ Va scheduled to staff arc a ∈ A

departing at time t ∈ T .

49



The problem we wish to address is

min
∑
a∈A

∑
v∈Va

Cav

∑
t∈T

ytav

s.t.
∑

a∈δ−(i)

xt−τa
ak −

∑
a∈δ+(i)

xt
ak + xt−t

ik − xtt+

ik = δtik ∀i ∈ B, k ∈ K, t ∈ T (3.1)

∑
k∈K

qkx
t
ak ≤

∑
v∈Va

Qvy
t
av ∀a ∈ A, t ∈ T (3.2)

ytav ∈ Z+ ∀t ∈ T, v ∈ Va, a ∈ A

xt
ak ∈ {0, 1} ∀a ∈ A, k ∈ K, t ∈ T

xt1t2
ik ∈ {0, 1} ∀i ∈ B, k ∈ K, t1 < t2 ∈ T

. The objective function is to minimize the total cost of scheduling any vehicle at any time. Con-

straints 3.1 ensure flow balance on any time space tuple (i, t) for every commodity k. Constraints

3.2 ensure that enough vehicle capacity has been scheduled to accommodate commodities traveling

on arc a at time t.

We note here that there is no cost of holding flow at any terminal in this problem. We exploit

this in the algorithms we develop where there is a natural trade-off between arriving earlier and the

cost to reach a building. We prune states that arrive later at an equal or more expensive cost.

3.4 Methodology

We propose a heuristic methodology which constructs solutions to the problem above by sequen-

tially adding commodities individually to the current solution. The current solution consists of a set

of commodities K̃ each of which has a path represented by a tuple of dispatches (d1, d2, ..., dnk
)k

which deliver it from its origin to its destination. These dispatches do not have fixed departure

times, we simply maintain the property that at the end of each iteration, there exists a feasible

set of departure times for the dispatches that deliver every commodity in K̃ within their delivery
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window.

At each iteration, a commodity not present in the current solution is selected, and a dynamic

program finds a path for the commodity which minimizes the marginal cost of adding the commod-

ity. Then, an optimization problem is solved to find a dispatch time interval for every dispatch in

the current solution. These intervals are provided to the path finding algorithm in the next iteration.

During the execution of the algorithm, a list D, of existing dispatches (those used by at least one

commodity) is maintained. Recall the flat network is represented as a directed graph F = (B,A).

The relevant data that is maintained for each dispatch d ∈ D is an origin terminal ud ∈ B, a

destination terminal vd ∈ B, an earliest departure time αd, a latest departure time βd, and the total

allocated weight Qd to be shipped on the dispatch in the current solution.

3.4.1 Path Finding Algorithm

Given a partial solution, and an unpathed commodity k, we find a path for k that minimizes the

cost of the additional vehicles required to accommodate k. We are provided with a list of existing

trailer dispatches in the current solution, their available capacity, and for each existing dispatch

a time interval specifying when the trailer can depart and still make service for each commodity

assigned to it. The dynamic program presented here finds a sequence of new and existing dis-

patches which delivery the unpathed commodity k from its origin to its destination respecting the

time constraints of the commodity, such that each existing dispatch in the path can depart within

its provided time interval. During the execution of the algorithm, the dispatch intervals for existing

dispatches remain fixed. We provide a discussion on modelling dispatch intervals for this purpose,

and the possible suboptimality of this algorithm in a later section.

The dynamic program is a labelling algorithm on states (u, e, c) where u ∈ B is a terminal, e

is a time, and c is a cost. e represents the earliest time at which u can be visited at the cost c. We

are provided with a list of existing dispatches with data (ud, vd, ad, bd, Qd)d∈D where (ud, vd) ∈ A

is the arc along which the dispatch travels, [ad, bd] is the time interval in which the dispatch must

51



depart, and Qd is the total volume assigned to the dispatch in the current solution. Let the frontier

U be those states which have yet to be reached from. We begin with U = {(ok, ek, 0)}. At each

iteration, a state is selected removed from U , removed from U , and is reached from. The algorithm

can reach by either using an existing dispatch d ∈ D or by introducing a new dispatch to D.

When reaching, we use a marginal cost function to generate costs. Let

Ca(q) =


0 if a ∈ W

min
y∈Z|Va|

+
{
∑

v∈Va
Cavyv :

∑
v∈Va

Qvyv ≥ q} otherwise

The marginal cost function is defined at

Cu,vd,Qd
(qk) = Cuvd (qk +Qd)− Cuvd (Qd)

.

For a state (u, e, c), we first consider reaching via existing dispatches (ud, vd, ad, bd, Qd)d∈D

where u = ud and bd ≥ e. Each of these dispatches generates a new candidate state (v,max{e, ad}+

τuvd , c + Cu,vd,Qd
(qk)), where Cu,vd,Qd

(qk) is the marginal cost of adding qk weight to the existing

dispatch. We check to see if this candidate state is dominated by an existing state, and if not, up-

date the set of non-dominated states and add the state to the frontier. A candidate state (u, e, c) is

dominated if there exists a state (u, e′, c′) already visited where e′ ≤ e and c′ ≤ c. Pseudocode for

dominance checking is presented as well in Algorithm 11.

Once we have considered all such existing dispatches, we consider introducing new dispatches.

For every outbound location v from u, we consider the new state (v, e+ τuv, c+Cu,v,0(qk)), where

Cu,v,0(qk) is the cost of creating a new dispatch with capacity at least qk. We check to see if this

candidate state is dominated by an existing state, and if not, update the set of non-dominated states

and add the state to the frontier.

If we order the frontier in ascending order of c, then we can terminate when we select a state
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(dk, e, c) with e ≤ lk to reach from. Furthermore, whenever we consider a candidate state (dk, e, c)

with e ≤ lk, we can conclude that c is an upper-bound on the cheapest marginal cost path, and only

insert states having c′ < c into the frontier.

Algorithm 11 Path Finding Algorithm
1: function FINDPATH(Commodity k)
2: AddState(ok, ek, 0)
3: U ← {(ok, ek, 0)}
4: while U ̸= ∅ do
5: Take (l, e, c) ∈ argmin(l′,a′,c′)∈U{c′}
6: U ← U \ (l, e, c)
7: if l = dk and a ≤ lk then
8: return BackTrack(l, e, c)
9: D̃ ← {(u, v, a, b, Q) ∈ D : u = l, e ≤ b}

10: for (u, v, a, b, Q) ∈ D̃ do
11: c̃← Cuv(Q+ qk)− Cuv(qk)
12: ã← max{e, a}
13: if Not IsDominated(v, ã+ τuv, c̃+ c) then
14: AddState(v, ã+ τuv, c̃+ c)
15: U ← U ∪ (v, ã+ τuv, c̃+ c)

16: for (u, v) ∈ δF (l) do
17: c̃← Cuv(qk)
18: if Not IsDominated(v, e+ τuv, c̃+ c) then
19: AddState(v, e+ τuv, c̃+ c)
20: U ← U ∪ (v, e+ τuv, c̃+ c)

21: function ISDOMINATED((l̃, ã, c̃))
22: if ã < min(a′,c′)∈Sl̃

{a′} then
23: return false
24: (a, c)← argmax(a′,c′)∈Sl̃

{a′ : a′ ≤ ã}
25: if c ≥ c̃ then
26: return true
27: else
28: return false
29: function ADDSTATE((l̃, ã, c̃))
30: Sl̃ ← Sl̃ \ {(a′, c′) ∈ Sl̃ : a

′ ≥ ã, c′ ≥ c̃}
31: U ← U \ {(l̃, a′, c′) : (a′, c′) ∈ Sl̃, a

′ ≥ ã, c′ ≥ c̃}
32: Sl̃ ← Sl̃ ∪ (ã, c̃)

During the execution of the algorithm, we maintain a set of non-dominated states. Let Su =
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(a, c) represent a set of non-dominated states at terminal u where a is the earliest arrival time at cost

c. Since we assume there are no waiting costs, and a commodity can wait at a terminal indefinitely,

the set of non-dominated states Su = {(a, c)} ordered by ascending a must be decreasing in c. This

makes checking whether a new state is dominated easy, and updating the set of non-dominated

states easy.

For each terminal u, we can store the set of non-dominated states Su = {(a, c)} in ascending

order of a. To check whether a candidate state (u, a′, c′) is dominated, we simply need to find

(ā, c̄) = argmax(a,c)∈Su{a : a ≤ a′} which can be done in O(log |Su|) time. Then the candidate

state is dominated if and only if c̄ ≤ c′.

Once a non-dominated state (u, a′, c′) is found, Su can be revised to include it. Let Su ←

{(a′, c′)}∪ (Su \{(ā, c̄) : ā ≥ a′, c̄ ≥ c′}). Since Su ordered in ascending values of a is decreasing

in c, we simply need to start with value a′ and continue deleting states until we find a state having

c < c′.

3.4.2 Dispatch Departure Intervals

When a path is found for a commodity, it is composed of new and existing dispatches. Due to the

release and due time constraints of the commodity, the feasible dispatch time intervals may change

(e.g. shrink). We face the problem of updating these intervals. We would like them to be as wide

as possible so that commodities in subsequent iterations can find paths using them. The problem of

updating the dispatch departure intervals can be modelled as an optimization problem on a graph

encoding precedence relations between commodities and dispatches. If commodity k uses the path

(d1, d2) where d1 and d2 are dispatches, then d1 cannot depart before k is released, d2 cannot depart

before d1 arrives, and d2 must arrive before k is due. These types of relations govern the dispatch

departure windows.
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Dispatch Precedence Graph Structure

We construct and maintain a graph G, which we call the dispatch precedence graph, to encode the

precedence relations among commodities and dispatches. The vertices of G, V (G) = E ⊔ VD ⊔ L

consist of three distinct types. There exists a vertex vd ∈ VD for every existing dispatch d ∈ D

in the current solution. For each commodity k ∈ K̃ which has been assigned a path, there exists

an origin vertex nk ∈ E and a destination vertex n′
k ∈ L. We let kn denote the commodity

corresponding to the vertex n ∈ E ∪ L.

For any two dispatches d1, d2 ∈ VD, the arc (d1, d2) belongs to G if and only if some commodity

uses dispatch d1 and d2 in succession on its path. This encodes the information that the earliest

departure time of d2 depends on the earliest departure time of d1. It also encodes the information

that the latest departure time of d1 depends on that of d2.

Table 3.1: Example partial solution

Commodity Path

1 (d1, d2)

2 (d3, d2)

3 (d3, d4, d5)

n1 d1 d2 n′
1

n2 d3 n′
2

n3 d4 d5 n′
3

Figure 3.1: Precedence graph corresponding to partial solution
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Every origin vertex n ∈ E has indegree 0 and outdegree 1. The arc (n, vd) for vd ∈ VD belongs

to the graph if and only if d is the first dispatch on the path selected for the commodity kn. This

signifies that the earliest departure time of d depends on the release time of kn. Every destination

vertex n ∈ L has indegree 1 and outdegree 0. The arc (vd, n) for vd ∈ VD belongs to the graph if

and only if d is the last dispatch on the path select for commodity kn. This signifies that the latest

departure time depends on the due time of kn. There are no arcs among vertices in E, and there

are no arcs among vertices in L.

This representation of a solution is useful in several ways. Fast labelling algorithms can be

applied on the graph to determine departure windows for all of the dispatches. Furthermore, it

encodes the dependency structure of the solution.

The components of this graph are exactly those “clusters” defined by [31]. In their work, they

present a set partitioning formulation with a binary variable for each cluster and suggest a column

generation approach to determine which clusters should be included in the solution. They generate

high quality solutions using simple cluster templates where few commodities and dispatches are

contained in the same component. This suggests that other graph algorithms could be applied on

the precedence graph to analyze or improve solutions.

Dispatch Interval Modelling

We consider two possible options for modelling dispatch intervals on the precedence graph which

we refer to as rigid windows and flexible windows. We will loosely use [ad, bd]d∈D when referring

to rigid windows and [αd, βd]d∈D when referring to flexible windows. A set of rigid windows
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[a, b]d∈D is a solution to the system

bu + τu ≤ av ∀(u, v) ∈ A[VD] (3.3)

au ≤ bu ∀u ∈ VD (3.4)

ekn ≤ au ∀(n, u) ∈ δ(E) (3.5)

bu + τu ≤ lkn ∀(u, n) ∈ δ(L) (3.6)

whereas a set of flexible windows [α, β]d∈D is a solution to

αu + τu ≤ αv ∀(u, v) ∈ A[VD] (3.7)

βu + τu ≤ βv ∀(u, v) ∈ A[VD] (3.8)

αu ≤ βu ∀u ∈ VD (3.9)

ekn ≤ αu ∀(n, u) ∈ δ(E) (3.10)

βu + τu ≤ lkn ∀(u, n) ∈ δ(L) (3.11)

.

We will provide a small example and a few results to provide intuition regarding the difference

between the two types of intervals. Consider an example where the commodities given in Table

3.2 have been pathed so far. Suppose commodity k1 traveled from A to B via terminal C using

dispatches d1 and d2 in succession, and that commodity k2 traveled from D to B via terminal C

using dispatches d3 and d2 in succession. That is, k1 and k2 meet at terminal B and travel together

in dispatch d2 to C. Assume τdi = 1 for i = 1, 2, 3. The dispatch precedence graph for this solution

is given in Figure 3.2.
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Table 3.2: Interval modelling example data

k ok dk ek lk

1 A B 0 4

2 D B 0 4

n1 d1 d2 n′
1

n2 d3 n′
2

Figure 3.2: Interval modelling example graph

We desire dispatch intervals as wide as possible, so that commodities in later iterations may

consolidate to find cheaper paths. Two obvious objective functions to consider are

max
∑
u∈Vd

bd − ad (3.12)

which we refer to as the max-sum objective, and

maxmin
u∈Vd

bd − ad (3.13)

which we call the max-min objective. Optimal intervals for the max-sum objective are shown in

Figure 3.3, while optimal intervals for the max-min objective are shown in Figure 3.4.
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A

C

D

Rigid
0

ad1

2

bd1

3

ad2 = bd2

0

ad3

2

bd3

A

C

D

Flexible
0

αd1

2

βd1

1

αd2

3

βd2

0

αd3

2

βd3

Figure 3.3: Optimal dispatch intervals under max-sum objective

A

C

D

Rigid
0

ad1

1

bd1

2

ad2

3

bd2

0

ad3

1

bd3

A

C

D

Flexible
0

αd1

2

βd1

1

αd2

3

βd2

0

αd3

2

βd3

Figure 3.4: Optimal dispatch intervals under max-min objective

There are several properties of these intervals to point out. The first is that the optimal flexible

windows are the same for both objective functions, while the optimal rigid windows are different.

Furthermore, all of the flexible window widths take the same value, 2. There is a property that the

two sets of rigid windows have in common: the sum of the window widths along any E − L path

in G is the same under either objective: 2. This is a first glance at the main difference between the

two models of intervals. Along E − L paths in G there is some inherent slack time. Each E − L

path (n1, n2, ..., nm) has an earliest release time corresponding to ekn1
for the first node n1 in the

path and a due time lknm
for the last node nm in the path. The internal vertices of an E − L path

must lie in Vd. We denote the travel time of the dispatch dni
corresponding to the node ni as simply

τdi .

The slack represents how much time the dispatches along the path can delay departing while

enforcing the path is completed in [ekn1
, llkm ]. Imprecisely, flexible window widths take the value

of this slack, while rigid windows are a partition this slack. First formally define the slack of an
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E − L path p = (n1, n2, ..., nm) as

γp := lknm
− ekn1

−
m−1∑
i=2

τdi (3.14)

. Note that γp = 2 for all E−L paths p in our example. We provide the following results to further

develop this intuition.

Proposition 1. Consider the case where G is an E − L path p = (n1, n2, ..., nm).

(a) The flexible window widths for every dispatch will take the value γp under either objective.

That is,

β∗
d − α∗

d = γp∀d ∈ Vd

(b) The rigid windows under either the max-sum or the max-min objective will satisfy

m−1∑
i=2

bni
− ani

= γp

(c) Under the max-min objective, the rigid windows will satisfy

bd − ad =
γp

m− 2
=

γp
|Vd|
∀d ∈ Vd

Proof. (a) Taking αni
= ekn1

+
∑i−1

j=1 τdj and βni
= lknm

−
∑m

j=i+1 τdj yields feasible windows all

having width γp.

Aggregating constraints 3.8 and 3.11 yields βdi ≤ lknm
−
∑m

j=i τdj for i = 2, ...,m − 1.

Aggregating constraints 3.7 and 3.10 yields−αdi ≤ −ekn1
−
∑i−1

j=1 τdj for i = 2, ...,m−1. Hence,

βdi − αdi ≤ lknm
− ekn1

−
m−1∑
i=2

τdi = γp

.
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(b) A similar aggregation of constraints yields

ekn1
+

m−1∑
i=2

(bdi − adi) +
m−1∑
i=2

τdi ≤ lk

, so
∑m−1

i=2 (bdi − adi) ≤ γp. Taking ad2 = ekn1
and bd2 = ad2 + γp and adi = bdi = ekn1

+ γp

yields a feasible solution achieving this bound.

(c) The bound
∑m−1

i=2 (bdi − adi) ≤ γp from (b) holds. Take adi = ekn1
+ (i − 2) γp

m−2
and

bdi = adi +
γp

m−2
for i = 2, ...,m− 1. This solution is feasible and has bd − ad =

γp
m−2
∀ d ∈ Vd.

The result follows from the property that any maxmini=2,...,m−1{xi} satisfying xi ≥ 0 i =

2, ...,m and
∑m−1

i=2 si ≤ γp will take value γp
m−2

.

Extending these results to general G is more complicated; however, one can show the follow-

ing:

Claim 1. For a general precedence graph G,

(a) Let PEL denote the set of all E − L paths in G. The optimal flexible windows under the

max-sum objective will satisfy

β∗
u − α∗

u = min
p∈PEL:p∋u

γp

(b) For any optimal set of rigid windows under either the max-sum or the max-min objective,

there will exist an E − L path p = (n1, n2, ..., nm) such that

m−1∑
i=2

bni
− ani

= γp

We prove a more general version of (b) in Proposition 3. We leave (a) as a claim but a construc-

tion similar to the proof of Proposition 1 (a) taking the maximum of incoming paths for α and the
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minimum across outgoing paths for β should yield this result. These results reinforce the intuition

that finding optimal rigid windows involves partitioning slack across dispatches in the precedence

graph.

Another difference between the two models of dispatch departure intervals regards the sets of

schedules that adhere to the windows. We use the term schedule to refer to the assignment of a

specific departure time to every dispatch in the solution. For some sets of optimal rigid windows,

there exist feasible schedules where dispatches depart outside of the windows. This is shown in

Figure 3.5 where the optimal rigid windows under the max-min objective from the earlier example

fail to accommodate the time feasible dispatch schedule shown in blue. Dispatches d1 and d3

depart outside of their optimal rigid windows, but the schedule is still time feasible.

A

C

D

B

Rigid

0

ad1

1

bd1

2

ad2

3

bd2

0

ad3

1

bd3

1.6

1.8

4

Figure 3.5: A feasible schedule not captured by optimal rigid windows

This is a concern, because our pathing algorithm assumes all dispatches must depart within

their provided interval. Using rigid windows in the pathing algorithm can yield sub-optimal solu-

tions to the marginal cost pathing problem, because we are not considering all feasible consolida-

tions. For example, suppose we have an instance with two commodities, each with the same origin

and destination. The release and due times of the commodities are given in Table 3.3. Suppose we

first path commodity 1 and it takes a path using two dispatches, each of travel time 1 unit. Then,

in Figure 3.6, the optimal flexible windows under the max-sum objective are given in blue, and

the rigid windows for the max-min objective are given in red. We can see that the rigid windows

prevent commodity 2 from being consolidated with commodity 1, even though this consolidation
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is time feasible.

We can relate planning on a time expanded network with any discretization to planning with

rigid windows of width zero where the set of possible dispatches must depart at a point in the time

discretization. When a commodity uses a time expanded arc, it is assumed to depart in a window of

width zero. Therefore, using windows generalizes sequential heuristic planning on time expanded

networks.

On the other hand, the flexible windows under the max-sum objective have the property that

dispatches depart in the optimal windows for any feasible schedule. In the example, commodities

1 and 2 can consolidate by having d1 depart at 3 and d2 depart at 4. Since flexible windows can

accommodate all feasible schedules, we would like to use them whenever possible.

Table 3.3: Example of rigid window suboptimal path finding: commodity data

k ek lk

1 0 6

2 3 6

n1 d1

[0, 4]

[0, 2]

d2

[1, 5]

[3, 5]

n′
1

Figure 3.6: Example of rigid window suboptimal path finding: precedence graph and dispatch
intervals

The final difference between the two models which we will consider is how feasible schedules

can be constructed from the windows. Rigid windows have the following property

Property 1. For a set of rigid windows [ad, bd]d∈D, jointly fixing departure times {td}d∈D such that

td ∈ [ad, bd] ∀ d ∈ D will always yield a feasible schedule.
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This is useful, because the path finding algorithm used in our approach leaves the dispatch

intervals fixed during the execution of the algorithm. Flexible windows do not have this property.

Figure 3.7 shows a schedule in blue, corresponding to the solution graph in Figure 3.2, where

every dispatch departs within the flexible windows, but it is not time feasible, because dispatch d2

departs before d1 and d3 arrive.

A

C

D

B

Flexible

0

αd1

2

βd1

1

αd2

3

βd2

0

αd3

2

βd3

2

Figure 3.7: An infeasible schedule captured by optimal flexible windows

Flexible windows have the weaker property:

Property 2. Let [αd, βd]d∈D be a set of flexible windows. Choose any d̃ ∈ D and fix td̃ ∈ [αd̃, βd̃].

Then there will exist some td ∈ [αd, βd] ∀ d ∈ D \ {d̃} such that {td}d∈D is a feasible schedule.

This weaker property says that we can generate a feasible schedule by sequentially fixing a

dispatch departure time and updating the windows in every iteration. However, our path finding

algorithm does not update the intervals during the execution of the algorithm. If the path finding

algorithm is provided flexible windows, there exist instances where the algorithm will return a

time infeasible path. To illustrate this phenomenon we provide the following more complicated

example. The geography of the logistics network F is shown in Figure 3.8; assume all travel times

are 1, all vehicle costs are 1, and all vehicle capacities are 1.
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A B

C

D E

Figure 3.8: Example logistics network

The commodity data is given in Table 3.4. Assume that the commodities are to be pathed in

order of k. In the first iteration, commodity 1 will take a direct from B to C at a cost of 1. Call

this dispatch d2. In the second iteration, commodity 2 will take a direct from C to D at a cost of 1.

Call this dispatch d3. In the third iteration, commodity 3 will travel from A to B on a new dispatch

d1, consolidate with commodity 1 to C on d2, consolidate with commodity 2 to D on d3, and travel

from D to E on a new dispatch d4 for a total marginal cost of 2.

Table 3.4: Example commodity data

k ok dk ek lk qk

1 B C 0 100 0.5

2 C D 0 100 0.5

3 A E 0 100 0.5

4 A E 1 4 0.5

After iteration 3, the existing dispatches are shown in Figure 3.9, and the precedence graph

with this solution is shown in Figure 3.10 with optimal flexible dispatch windows shown in blue.

A B

C

D E
d1

d 2
d
3

d4

Figure 3.9: Logistics network and existing dispatches after iteration 3
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n3 d1

n1 d2

n2 d3

d4

n′
1

n′
2

n′
3

[0, 96]

[1, 97]

[2, 98]

[3, 99]

Figure 3.10: Precedence graph and optimal flexible windows after iteration 3

If the path finding algorithm is provided the windows in Figure 3.10, it will return a path

(d1, d5, d4) for commodity 4 where d1 can depart at 1, d5 is a new dispatch which can depart at

2, and d4 can depart at 3. Note: the existing dispatches used in this path, d1 and d4, can depart

within their optimal flexible windows provided in Figure 3.10; however, assigning commodity

4 to this path yields a time infeasible solution. Updating the precedence graph and finding the

new optimal flexible windows yields Figure 3.11. These windows are due to the undirected cycle

d1, d2, d3, d4, d5, d1. Commodity 4 shifted the window of dispatch d1 ahead to have an earliest

release of 1, and shifted the window of dispatch d4 to have a latest departure of 3. When these

changes are propagated through the network, one obtains nonsensical departure intervals.
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n3 d1

n1 d2

n2 d3

d4

n′
1

n′
2

n′
3

n4

d5

n′
4

[1, 0]

[2, 1]

[3, 2]

[4, 3]

[2, 2]

Figure 3.11: Precedence graph and flexible windows after iteration 4

Therefore, to guarantee the path finding algorithm will return a time-feasible path, it must be

provided with rigid windows. One could develop an algorithm that updates flexible windows after

each reach of the labelling algorithm; however, window updates require solving their own shortest

path problems resulting in time inefficiency. Furthermore, a set of windows would need to be

maintained for each leaf in the solution tree which could be memory inefficient. Given the heuristic

aspect of the approach, we decided to leave the intervals fixed in the path finding algorithm.

Finding optimal dispatch intervals

Based on the results and intuition presented in the previous section, we chose to use the max-sum

objective for finding flexible windows, and the max-min objective for rigid windows. Max-sum

optimal solutions for the flexible window problem dominate solutions to the max-min problem;
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however, for rigid windows, many optimal solutions to the max-sum objective have dispatches with

0-width-intervals. Indeed this is shown in the earlier example in Figure 3.3, and we prefer having

the slack partitioned more equally since we can not predict in future iterations which consolidations

are more beneficial.

Assuming that there exists a time feasible solution, optimal flexible windows are solutions to

max
∑
u∈VD

βu − αu

s.t.

αu + τu ≤ αv ∀(u, v) ∈ A[VD]

βu + τu ≤ βv ∀(u, v) ∈ A[VD]

ekn ≤ αu ∀(n, u) ∈ δ(E)

βu + τu ≤ lkn ∀(u, n) ∈ δ(L)

. This problem is dual to the intersection of two shortest path problems; α and β are dual labels

for independent shortest path problems. Therefore we can solve for windows using a shortest path

algorithm on G.

At each iteration, we add an E−L path p = (n1, ..., nm) (containing new and existing vertices

and arcs) to G. We do not need to solve the above problem from scratch at every iteration. For

the release vertex n1 ∈ E, we initialize the window to [ekn1
,∞] where ekn1

is the release time

of the commodity corresponding to n1. For a commodity destination vertex nm, we initialize the

window to [−∞, lknm
] where lknm

is the due time of the commodity corresponding to nm. Finally,

for dispatch vertices, we initialize the window to [−∞,∞]. We initialize the frontier to the set of

nodes in the new path, and propagate the labels changes. Algorithm 12 gives this procedure.
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Algorithm 12 α, β Updates (Constructive)

1: procedure α-UPDATE(New E − L path p = (n1, ..., nm))
2: U ← p
3: while U ̸= ∅ do
4: u← U .pop()
5: for v ∈ δ+(u) do
6: if αv < αu + τu then
7: αv ← αu + τu
8: U .push(v)
9: procedure β-UPDATE(New E − L path p = (n1, ..., nm))

10: U ← p
11: while U ̸= ∅ do
12: v ← U .pop()
13: for u ∈ δ−(v) do
14: if βu + τu > βv then
15: βu ← βv − τu
16: U .push(u)

Finding optimal rigid windows is not as simple. Again, assuming there exists a time feasible

solution, optimal rigid windows are solutions to

max z

s.t.

z ≤ bu − au ∀u ∈ VD

bu + τu ≤ av ∀(u, v) ∈ A[VD]

ekn ≤ au ∀(n, u) ∈ δ(E)

bu + τu ≤ lkn ∀(u, n) ∈ δ(L)

.

Define γu = bu − au to be the dispatch interval width for u ∈ VD. We rewrite with variables

au and γu, because, with these variables, it is easier to see why the dual is equivalent to solving a
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minimum mean cost E − L path problem.

maxz

s.t. au + γu + τu ≤ av ∀(u, v) ∈ A[VD] (3.15)

ekn ≤ au ∀(n, u) ∈ δ(E) (3.16)

au + γu + τu ≤ lkn ∀(u, n) ∈ δ(L) (3.17)

z ≤ γu ∀u ∈ VD (3.18)

γu ≥ 0 ∀u ∈ VD

Associating dual variables x with constraints 3.15, q with 3.16, r with 3.17, and y with 3.18,

the dual problem is:

min
∑

(n,u)∈δ(E)

(−ekn)qnu +
∑

(u,v)∈A[VD]

(−τu)xuv +
∑

(u,n)∈δ(L)

(lkn − τu)run

s.t
∑
u∈VD

yu = 1 (3.19)

−
∑

(n,u)∈δ−E−VD
(u)

qnu −
∑

(v,u)∈δ−VD (u)

xvu +
∑

(u,v)∈δ+VD (u)

xuv +
∑

(u,n)∈δ+VD−L(u)

run = 0 ∀u ∈ VD

(3.20)

− yu +
∑

(u,v)∈δ+VD (u)

xuv +
∑

(u,n)∈δ+VD−L(u)

run ≥ 0 ∀u ∈ VD

(3.21)

x, q, r, y ≥ 0

The x, q, and r variables act as flow variables; q and r are just flow variables leaving E and

entering L respectively. One can view the y variables as supplying the network with one unit of
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supply, which can be propagated on a node’s forward star according to 3.21. Constraints 3.20 act

as flow balance, but only on VD. Any nodes u having yu > 0 must push the flow in its forward

star and reverse star until the flow is absorbed by nodes in E and L. Any node u with flow on its

forward star must also have yu > 0.

Therefore, we intuit that extreme points of this feasible region will have an E − L path p =

(n1, ..., nm) with yu = 1
m−2
∀ u ∈ P ∩VD, and hence the x, q, and r variables for the arcs of p will

also take the value 1
m−2

. It appears that the problem is to find the E − L path of minimum mean

cost according to the dual objective. Furthermore, from complementary slackness we know that

yu > 0 ⇔ z = γu, so the vertices on such a path could be precisely those whose window widths

are equal to the max-min objective. This intuition agrees with the idea that finding optimal rigid

windows is to find an optimal partition of slack along a path. The objective function of the dual

is accumulating the slack γp (see equation 3.14) along an E − L path p, and finds the path whose

slack, when partitioned evenly among the dispatches in the path, is minimized.

We begin by proving the following

Proposition 2. In any optimal solution to the primal, there will exist an E−L path p̃ = (n1, ..., nm)

having

z∗ = b∗ni
− a∗ni

i = 2, ...,m− 1

en1 = a∗n2

lnm = b∗nm−1
+ τnm−1

a∗ni+1 = b∗ni
+ τni

i = 2, ...,m− 2

To prove this we give the following lemma:

Lemma 1. Take an optimal solution such that M = {u ∈ VD : b∗u − a∗u = z∗} is minimal.

(a) For every u ∈M there exists (u, v) ∈ δ+(u) such that either v ∈M or v ∈ L.
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(b) For every u ∈M there exists (v, u) ∈ δ−(u) such that either v ∈M or v ∈ E.

(c) There exists an E − L path (n1, ..., nm) having

ni ∈M i = 2, ..., n− 1 (3.22)

en1 = a∗n2
(3.23)

lnm = b∗nm−1
+ τnm−1 (3.24)

a∗ni+1 = b∗ni
+ τni

i = 2, ...,m− 2 (3.25)

Proof. (a) Suppose for contradiction there exists a vertex u ∈ M such that ∀ (u, v) ∈ δ+(u)

v ̸∈ M and v ̸∈ L. Then ∀ (u, v) ∈ δ+(u) v ∈ VD and bv − av > bu − au. Let δ =

min(u,v)∈δ+(u){bv − av} − (bu − au).

Taking

a′n =


an +

δ
2
∀n : ∃(u, n) ∈ δ+(u)

an otherwise

and

b′n =


bn +

δ
2

if n = u

bn otherwise

yields a feasible solution with b′u − a′u > z∗ and b′v − a′v > z∗ ∀ (u, v) ∈ δ+(u). In the

case where u was the single vertex achieving the optimal, we have increased the optimal

objective by δ
2
, a contradiction. Otherwise, we have reduced the number of vertices in M ,

contradicting our assumption that M is minimal.

(b) Similar to (a).

(c) The existence of an E − L path (n1, ..., nm) having ni ∈ M for i = 2, ..,m − 1 follows

from (a) and (b). If there are multiple such paths, let (n1, ..., nm) be the path such that n2
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has no upstream neighbour in M and nm−1 has no downstream neighbour in M . That is,

∄(u, n2) ∈ δ−(n2) : u ∈M and ∄(nm−1, v) ∈ δ+(nm−1) : v ∈M .

Since nm−1 has no downstream neighbour in M , if it does not have a neighbour v ∈ L such

that lv = b∗nm−1
+ τnm−1 , then its interval width can be extended contradicting the minimality

of M as in the proof of (a). Relabel nm to be this vertex v if necessary. Similarly, since n2

has no upstream neighbour in M , it must have an upstream neighbour u ∈ E with eu = a∗n2
.

We have shown that there exists an E − L path (n1, ..., nm) satisfying 3.22-3.24. Suppose

for contradiction that no path satisfying 3.22-3.24 also satisfies 3.25. Take an E − L path

(n1, ..., nm) satisfying 3.22-3.24. Starting at n ← n2, move to neighbours in n′ ∈ δout(n)

where n′ ∈ L and ln′ = bn + τn or n′ ∈M and an′ = bn + τn until no such neighbour exists.

If we reach n ∈ L we have produced a path satisfying 3.22-3.25. If we have not, we have a

node n ∈ M such that there exists δ > 0 such that an′ ≥ bn + τn + δ ∀ (n, n′) ∈ δout(n) :

n′ ∈ M and ln′ ≥ bn + τn + δ ∀ (n, n′) ∈ δout(n) : n′ ∈ L, and bn′ − an′ − δ ≥ z∗ ∀

(n, n′) ∈ δout(n) : n′ ̸∈ M,n′ ̸∈ L. It follows that we can extend the interval of n as above

contradicting the minimality of M .

Proposition 2 follows from Lemma 1, because such a path is contained in the set M for every

minimal set M . Expanding M by adding new vertices preserves the existence of the path.

Proposition 3. Consider an optimal solution to the primal, and let p̃ = (n1, n2, ..., nm) be an

E − L path having the properties from Proposition 2. Recall the slack of p̃ is

γP̃ = (lnm − en1)−
m−1∑
i=2

τni

.
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Then

b∗ni
− a∗ni

=
γp̃

m− 2
, i = 2, ..,m− 1

Proof.

m−1∑
i=2

b∗ni
− a∗ni

= (m− 2)(b∗nj
− a∗nj

) j = 2, ..,m− 1

Then for j = 2, ...,m− 1

(m− 2)(b∗nj
− a∗nj

) =
m−1∑
i=2

b∗ni
− a∗ni

(3.26)

=
m−2∑
i=2

b∗ni
+ lnm − τnm−1 −

m−1∑
i=3

a∗ni
− en1 (3.27)

= lnm − en1 − τnm−1 −
m−2∑
i=2

(a∗ni+1
− b∗ni

) (3.28)

= (lnm − en1)−
m−1∑
i=2

τni
(3.29)

We have shown that, in any optimal solution, the max-min rigid window width is achieved at

each node along some E − L path p̃, and that the optimal solution value is equivalent to the slack

of the path averaged over the dispatch vertices in the path. We have not shown that the path p̃ is

the minimum mean cost path with costs accumulating slack (as in the dual problem); however, we

guess that this is the case, propose an algorithm for finding the minimum mean cost path, then

prove the algorithm is correct.

Since the precedence graph G is directed acyclic, we can adapt labelling algorithms for finding

minimum mean cost cycles [32] to solve our problem. We define costs on the arcs of the precedence
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graph that accumulate slack:

Cuv =


−eku if (u, v) ∈ δ(E)

−τu if u ∈ A[D]

−τu + lkv if (u, v) ∈ δ(L)

.

For any E − L path p̃ ∑
a∈A[p̃]

Ca = γp̃

.

We use a Bellman-Ford style algorithm to find labels di(u) representing the minimum cost E−

u path containing exactly i arcs. For an overview of the Bellman-Ford algorithm with correctness

and complexity results see [33]. Then the minimum mean cost E−L path can be found by finding

the label achieving minv∈L,m∈{1,...,n}{dm(v)
m−1
}. Note m − 1 is in the denominator, because for an

E − L path having m arcs, there are m − 1 vertices in the path that lie in Vd which slack must be

allocated over.

Algorithm 13 Window Labeling

1: function GENERATELABELS(G = (V,A = E ⊔D ⊔ L))

2: d0(u)←

{
0 if u ∈ E

∞ otherwise
∀ u ∈ V

3: for i = 1, ..., |V | do
4: for v ∈ V do

5: di(v)←

{
∞ if di−1(u) =∞∀(u, v) ∈ A

min(u,v)∈A{di−1(u) + Cuv} otherwise

6: Opt← minv∈L,m∈{1,...,n}{dm(v)
m−1
}

7: return {di(v)}v∈V,i=1,...,|V |

From the shortest path labels, there is a convenient way to recover feasible windows for all

vertices, not just those on the path having the optimal window width. Suppose for some u ∈ VD

75



we have already fixed the value bu. The value dm(u) + bu represents the minimum slack of any

E − u path containing exactly m arcs. Then the value minm=1,2,..,n{dm(u)+bu
m

} is the minimum

mean slack of any E − u path for any u ∈ Vd. Note the denominator is m, because for any E − u

path with u ∈ Vd having m arcs, there are m vertices on the path that lie in Vd. We assign γu, the

width of the interval of u, this value. Algorithm 14 works by considering nodes whose downstream

neighbours have their windows fixed (i.e. their downstream neighbours are contained in F ), and

working backwards along G. Once all downstream neighbours of a vertex u have fixed windows,

the latest departure time bu is known. We assign γu, fix au = bu− γu, add u to F and update the bx

for x in the reverse start of u. Note that it may be possible to extend the widths of intervals of some

dispatches, but we show the algorithm is correct and produces an optimal solution to the max-min

rigid window problem.

Algorithm 14 Recover Feasible Windows
1: procedure RECOVERWINDOWS

2: bu ←∞ ∀ u ∈ V [P ]
3: bu ← lu ∀ u ∈ L
4: U ← L
5: F ← ∅
6: while U ̸= ∅ do
7: Take u ∈ U
8: U ← U \ u

9: γu ←

{
minm=1,2,..,n{dm(u)+bu

m
} if u ∈ V [D]

0 otherwise
10: au ← bu − γu
11: F ← F ∪ u
12: for (x, u) ∈ δin(u) do
13: bx ← min{bx, au − τx}
14: if N out(x) ⊆ F ] then
15: U ← U ∪ x
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Proposition 4. Algorithm 14 yields {(au, γu, bu)}u∈VD
satisfying

au + γu + τu ≤ av ∀(u, v) ∈ A[VD] (3.30)

bu + τu ≤ lk ∀(u, k) ∈ δ(L) (3.31)

ek ≤ au ∀(k, u) ∈ δ(E) (3.32)

Proof. Constraints 3.30 hold since line 13 of Algorithm 14 guarantees

bu = min
(u,v)∈δ+(u)

{av − τu}

.

Constraints 3.31 hold since, for all k ∈ L, ak = lk, thus line 13 guarantees

bu = min
(u,k)∈δ+(u)∩δ(L)

{lk − τu}

.

Consider any node u ∈ VD. γu is chosen such that, for any E−u path p = (n1, n2, ..., nm, nm+1 =

u)

γu ≤
bu − en1 −

∑m
i=2 τi

m

. Rearranging,

en1 ≤ bu −mγu −
m∑
i=2

τi

Then restricting to paths that consist of a single arc we have

ek ≤ bu − γu = au
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Proposition 5. Let γ∗ be optimal objective of the minimum mean cost path problem. Then Algo-

rithm 14 yields {γu}u∈VD
satisfying

γu ≥ γ∗ ∀u ∈ VD

Lemma 2. For any (u, v) ∈ A[VD], after Algorithm 14 terminates, if bu = av − τu, then γu ≥ γv.

Proof. Fix v ∈ VD. Note that for some particular m∗, the algorithm assigns γv as γv = dm∗ (v)+bv
m∗

for m∗ ∈ {1, 2, ..., |V [G]|}.

Note that for any m ∈ 1, ..., |V [G]|

dm+1(v) ≤ dm(u)− τu

and

γv ≤
dm(v) + bv

m
∀m ∈ {1, 2, .., |V [G]|} ⇒ dm+1(v) + bv ≥ (m+ 1)γv ∀m ∈ {1, .., |V [G]| − 1}

Assume bu = av − τu = bv − γv − τu. For any m = 1, 2, .., |V [G]| − 1 we have

dm(u) + bu
m

=
dm(u) + bv − γv − τu

m

≥ dm+1(v) + bv − γv
m

≥ (m+ 1)γv − γv
m

= γv

Hence since γu is achieved at some m ∈ {1, 2, .., |V [G]| − 1}, γu ≥ γv.

The following is a proof of Proposition 5:

Proof. From any node u ∈ VD there is a path (n1 = u, n2, .., nm) with nm ∈ L and bni
= ani+1

−τni

78



for i = 1, ..,m− 1. Then applying Lemma 2 we have γu ≥ γn2 ≥ ... ≥ γnk
. Since γx ≥ γ∗ for all

x ∈ L, we conclude that γu ≥ γ∗ for all u ∈ VD.

At this point, we have shown that our algorithm produces a feasible solution to the rigid window

problem. The next result proves this solution is also optimal.

Proposition 6. Let z∗ be the optimal solution to the max-min rigid window problem. Then Algo-

rithm 14 yields {γu}u∈VD
satisfying

γu ≥ z∗ ∀u ∈ VD

Proof. For any E − L path (n1, n2, ..., nm), aggregating constraints in the max-min rigid window

problem yields

ekn1
+

m−1∑
i=2

γni
+

m−1∑
i=2

τni
≤ lknm

. For the minimum mean cost path (n1, n2, ..., nm) we have, by construction,

ekn1
+

m−1∑
i=2

γni
+

m−1∑
i=2

τni
= ekn1

+ (m− 2)γ∗ +
m−1∑
i=2

τni

= lknm

Suppose for contradiction that z∗ > γ∗, then

ekn1
+

m−1∑
i=2

γni
+

m−1∑
i=2

τni
≥ ekn1

+ (m− 2)z∗ +
m−1∑
i=2

τni

> ekn1
+ (m− 2)γ∗ +

m−1∑
i=2

τni

= lknm

Then there is no feasible solution. So z∗ ≤ γ∗. The result follows from Proposition 5: Algorithm

79



14 produces solutions with γu ≥ γ∗ ≥ z∗ ∀ u ∈ VD.

3.5 Computational Results

3.5.1 Synthetic Instance Generation

An instance generator was developed to test the performance of the algorithm on instances of

different sizes. The main parameters of the instances are

1. The earliest date and time at which commodities can arrive to the system t

2. The latest date and time at which commodities can arrive to the system t

3. The number of vehicle types nV

4. The dimensions of the rectangular map on which terminals are placed

5. The number of regions in the map

6. The number of terminals in the map

7. The number of hubs in each region

8. The number of commodities

The topology of the flat network was developed as follows. Each terminal was assigned random

coordinates following a uniform distribution across the entire rectangular map. The terminals were

then clustered into regions using k-means, with k being the given number of regions. Terminals

were randomly chosen to be hubs, with weights proportional to the inverse of the distance between

the terminal and the mean of the coordinates of all terminals. This was done to bias hubs towards

connecting regions. The terminals are the nodes of the flat network. The set of arcs consists of the

union of all pairs of terminals in the same region and all pairs of hubs. That is, the hubs induce a

complete graph and all terminals in any region induce a complete graph. The travel time between
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terminals u and v was set to be τuv = ⌈10duv⌉minutes, where duv is the euclidean distance between

the coordinates of u and v.

Given the number of vehicles nV , we set V = [nV ], Qv = 50 + 50v, and Cav =
√
Qvτa ∀

a ∈ A, v ∈ V .

The origin and destination of every commodity were chosen randomly with equal probability

for any terminal. The weight of every commodity qk was chosen random according to a Unif [1, 20]

distribution. The earliest release time of each commodity, ek, was chosen uniformly in [t, t]. Let

τ̃okdk represent the minimum travel time between the origin and destination of commodity k. The

due time of every commodity was set to be lk ← ek + τ̃okdk(1 + Unif [0.05, 0.25]).

Comparison to industry instance

The structure of instances can be effectively manipulated to exaggerate the performance of certain

approaches. Therefore, we demonstrate that our synthetically generated instances are comparable

to our industry instance across a variety of metrics. To do this, we compare the industry instance

to a synthetic instance of similar size. The high level characteristics of these instances are shown

in Table 3.5.

Table 3.5: Instance properties

Property Industry Synthetic

Num. Commodities 100,281 100,000

Total Weight 19,549,964 1,051,715

Number of Locations 69 70

Number of Lanes 2,507 2,078

We first show in Figure 3.12 that the economies of scale in vehicle pricing has the desired

structure. Instances having larger vehicles that are less cost efficient are easier to solve, because

the larger vehicles will never be used and hence could be excluded from the problem.
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Figure 3.12: Cost per unit capacity for industry (left) and synthetic (right) instances

Intuitively, an instance having fewer timed paths available for each commodity will be easier

to solve. One metric affecting this is the commodity slack, taking value lk − ek − τ k where τ k is

the duration of the minimum travel time path from ok to dk. As commodity slack decreases, fewer

time feasible paths exist and the instance becomes easier to solve. Similarly, if the degree of the

flat network F = (B,A) is reduced, the problem becomes easier. Combining the effects of slack

time a geographic degree, we can also measure and compare the number of buildings b ∈ B that

each commodity can visit during [ek, lk] and still make service. These metrics are shown in Table

3.6 for the industry instance and Table 3.7 for the synthetic instance. Among the properties we

believe impact difficulty, the instances are sufficiently similar for comparison.

Table 3.6: Industry instance metrics

Metric Min Avg Max

Commodity Weight 0.1 194.95 18021.5

Commodity Slack 0 395.43 4,205

Arc Travel Time 0 311.83 1,284

Out-Degree of F 0 36.33 56

Shortest Path Time (τ k) 0 286.18 1,686

Originating Flow 0 283,332.80 1,812,445.43

Num. Buildings Reachable 2 33.14 66
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Table 3.7: Synthetic instance metrics

Metric Min Avg Max

Commodity Weight 1 10.52 20

Commodity Slack 1 452.02 3,649

Arc Travel Time 5 425.56 1,230

Out-Degree of F 8 29.69 69

Shortest Path Time (τ k) 5 573.15 1,226

Originating Flow 0 15,024.50 16,149

Num. Buildings Reachable 2 29.64 70

3.5.2 Rigid-Only Results

To guarantee we obtain a time-feasible path, we can not exclusively rely on flexible windows.

A simple first implementation is to exclusively use rigid intervals and ignore flexible intervals

entirely. Although this excludes feasible consolidations from being considered and although the

algorithm for updating rigid windows takes longer, we are guaranteed to be provided with a time-

feasible path. An initial construction algorithm was implemented using only the rigid windows.

The pseudocode is given in Algorithm 15. Note this implementation solves for the rigid windows

from scratch at each iteration. It does not save Bellman labels from the previous iteration.
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Algorithm 15 Initial Test Algorithm
1: procedure RIGIDONLY(K)
2: G← ∅ ▷ Precedence Graph
3: L ← ∅ ▷ Labels
4: W ← ∅ ▷ Windows
5: for k ∈ K do
6: p←FindPath(k,W )
7: AddPath(G, p)
8: L ← ∅
9: L ←GenerateLabels(G)

10: W ← ∅
11: W ←RecoverWindows(L, G)

Table 3.8: Discretized vs Discretizationless construction performance

|R|, |B|, |H|, |K| Discless Cost Discless Time (s) Discretized Cost Discretized Time (s) Cost Imp %

3,25,3,5000 5,935,030 49.77 6,795,270 0.77 12.66

5,50,3,5000 7,134,320 66.19 7,807,630 1.81 8.62

3,25,3,10000 8,805,150 237.50 10,008,400 1.76 12.02

5,50,3,10000 11,226,900 318.46 12,412,100 3.32 9.55

3,25,3,15000 9,174,220 615.41 10,124,300 3.51 9.38

5,50,3,15000 14,380,600 791.29 15,570,000 5.46 7.64

3,25,3,30000 17,133,200 2,548.02 18,311,000 7.10 6.43

5,50,3,30000 19,639,600 3,733.90 20,977,400 15.15 6.38

3,25,3,50000 22,882,500 7,598.26 24,111,800 12.82 5.10

5,50,3,50000 28,256,700 11,045.30 30,059,400 35.29 6.00

We denote the rigid-only algorithm as “Discless”. We benchmark against a sequential marginal

cost path heuristic on a fixed time discretization with heuristic dynamic discretization discovery,

denoted “Discretized”. From a solution perspective, such an approach is equivalent to planning

with rigid windows of width zero, but avoids the expanded state space in the path finding algorithm

and avoids spending time updating windows. However, it requires dynamically inserting new time

points if the mapping error yields a time infeasibility. Here we are comparing only the construction
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phase of the approaches; no local search improvement is performed.

Figure 3.13: Cost vs iteration for the 5,50,3,50000 instance

We can see that the rigid window approach outperforms MCPH in terms of solution quality,

but the solution time is orders of magnitude larger than MCPH. Furthermore, this solution time

gap grows rapidly with |K|.
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Figure 3.14: Number of dispatches vs iteration for the 5,50,3,50000 instance

Examining the progress over iterations, we see the bulk of the gains in solution cost were made

early in the execution, suggesting that MCPH could be suffering from a lack of flexibility, and that

this downside dwindles as the entire network is populated with commodities.

Figure 3.15: Average window width vs iteration for the 5,50,3,50000 instance
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We see the average window width grows for a time before tailing off. The commodities are

added in ascending order of slack time, so this behaviour makes sense. Later on, commodities

squeeze in where they can, driving windows smaller as they add additional timing constraints.

3.5.3 Enhancing the Algorithm

Because the solution time of the discretizationless approach is so poor, we consider two improve-

ments designed to boost efficiency. The first aims to use flexible windows wherever possible and

use rigid windows only when necessary. The second aims to reduce the time spent finding rigid

windows by preserving Bellman labels between path iterations. Based on the structural changes of

the precedence graph, only a subset of the Bellman labels change between path finding iterations.

Defaulting to Flexible Windows

We would like to drive the solution time lower. Updating flexible windows is much more time

efficient. We can attempt to find a minimum marginal cost path using the flexible windows. If

adding it to the current solution is feasible, we do so; otherwise, we find a minimum marginal cost

path using the rigid windows.

The method of detecting feasibility of the solution can work as follows: we maintain two

sets of windows, new and old. While updating the new windows, if we find some window has

βnew
d < αnew

d , we declare the solution infeasible, revert to the old windows, and find a path using

the rigid windows. The algorithmic changes are shown in Algorithm 16.
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Algorithm 16 New Flexible Window Update
1: procedure α-UPDATE(List of precedence vertices of the new path X)
2: U ← X
3: while U ̸= ∅ do
4: u← U .pop()
5: for v ∈ δ+(u) do
6: if αnew

v < αnew
u + τu then

7: αnew
v ← αnew

u + τu
8: U .push(v)
9: function β-UPDATE(List of precedence vertices of the new path X)

10: U ← X
11: while U ̸= ∅ do
12: v ← U .pop()
13: for u ∈ δ−(v) do
14: if βnew

u + τu > βnew
v then

15: βnew
u ← βnew

v − τu
16: U .push(u)
17: if βnew

u < αnew
u then

18: return False ▷ Adding this path is not feasible
19: return True ▷ Adding this path is feasible
20: procedure FLEXWITHRIGID(K)
21: G← ∅ ▷ Precedence Graph
22: L ← ∅ ▷ Labels
23: W ← ∅ ▷ Rigid Windows
24: for k ∈ K do
25: p←FindPath(k, αold, βold)
26: AddPath(G, p)
27: α-Update(p)
28: Feas← β-Update(p)
29: if Feas then
30: (αold, βold)← (αnew, βnew)
31: else
32: (αnew, βnew)← (αold, βold)
33: RemovePath(G, p)
34: L ← ∅
35: L ←GenerateLabels(G)
36: W ← ∅
37: W ←RecoverWindows(L, G)
38: p←FindPath(k,W )
39: AddPath(G, p)
40: α-Update(p)
41: β-Update(p)
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Maintaining Rigid Window Labels Between Iterations

Suppose we would like to reduce the amount of computation spent generating rigid windows by

maintaining as much of the label table as possible between iterations. We maintain a set of queues

Q0, Q1, .., Q|V | which will denote vertices from which we must reach to update the labels. The

subscript i of Qi denotes the column of the label table from which we are reaching. In ascending

order of i, we will process nodes in u ∈ Qi by checking if di(u) + Cuv < di+1(v) for v ∈ δout(u).

If so then we update di+1(v) and insert v into Qi+1.

We must initialize {Qi} with the nodes being added. Let V new denote the set of new vertices

in the precedence graph, and V new
E denote the new vertices in E. We initialize Q0 ← V new

E .

Let Anew denote the set of new arcs. We claim that we need only insert, into the appropriate

{Qi}, tail vertices of Anew which are also contained in V old. If the tail u of (u, v) ∈ Anew is in V new

we will eventually consider the reach updates along (u, v), because there is either an V new
E −u path

comprised of all new vertices, or there is a x− u path with x ∈ V old having all internal vertices in

V new.

Thus we consider vertices in X = {u ∈ V old : ∃(u, v) ∈ Anew}. We initialize Qi ← {x ∈ X :

di(x) ̸=∞} for i = 1, ..., |V |, from which we proceed with the label update described above. The

algorithm is shown in Algorithm 17.

Improved Results

To measure the effects of the algorithmic enhancements, we compare four possible configurations

of the discretizationless approach, along with the construction phase of MCPH. We compare these

configurations on both the industry and synthetic instances described in Section 3.5.1.

The first configuration, denoted “Rigid Only” has none of the enhancements. The “Efficient

Rigid Only” implementation has the improved Bellman label updates from Algorithm 17. The

“Flex with Rigid” implementation defaults to using flexible windows, but if necessary uses regu-
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Algorithm 17 Window Labeling

1: function UPDATELABELS(G = (V old ∪ V new, Aold ∪ Anew), {di(u)|u ∈ V old, i =
0, 1, ..., |V old|})

2: d0(u)←

{
0 if u ∈ E

∞ otherwise
∀ u ∈ V new

3: Q0 ← V new ∩ E
4: X = {u ∈ V old : ∃(u, v) ∈ Anew}
5: Qi ← {x ∈ X : di(x) ̸=∞} for i = 1, ..., |V old|
6: Qi ← ∅ for i = |V old|+ 1, ..., |V old|+ |V new|
7: for i = 0, ..., |V | do
8: for u ∈ Qi do
9: for v ∈ δout(u) do

10: if di(u) + Cuv < di+1(v) then
11: di+1(v)← di(u) + Cuv

12: Qi+1 ← Qi+1 ∪ {v}
13: Opt← minv∈L,k∈{2,...,n}{dk(v)k

}
14: return {di(v)}v∈V,i=1,...,|V |

lar rigid window updates as described in Algorithm 16. Finally, the “Flex with Efficient Rigid”

configuration has both enhancements.

Table 3.9 shows a comparison of the implementations on the synthetic instance, and Table 3.10

shows the results for the industry instance. We observe that both enhancements provide signifi-

cant improvements in solution time. Furthermore, defaulting to flexible windows has a noticeable

beneficial impact on the plan cost. We proceed in the experiments using the “Flex with Efficient

Rigid” implementation of the discretizationless approach.
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Table 3.9: Synthetic instance results

Method Solution Time (s) Plan Cost

Discretized - 15 mins 7,271.31 47,681,261.84

Rigid Only 72,487.46 46,164,844.28

Efficient Rigid Only 15,773.47 46,231,170.34

Flex With Rigid 647.92 45,676,587.93

Flex With Efficient Rigid 518.69 45,624,297.36

Table 3.10: Industry instance results

Method Solution Time (s) Plan Cost

Discretized - 15 mins 3,198.98 4,583,283.36

Rigid Only 258,309.00 4,301,214.81

Efficient Rigid Only 13,432.40 4,294,044.50

Flex with Rigid 307.06 4,149,184.26

Flex with Efficient Rigid 249.29 4,140,846.12

3.5.4 Enhanced Algorithm Results

In this section, we provide an extensive computational study to benchmark the discretizationless

approach using all enhancements described earlier. We compare the approach to four other solution

approaches. The first, denoted MCPH, is a marginal cost pathing approach on a fixed discretization

containing both a construction phase and improvement phases. The second approach, denoted

LPRound, is to solve the linear programming relaxation of the problem on a fully time expanded

network and round up to the cheapest integral capacities that accommodate this flow. The third

alternative approach, denoted SlpSc, is to use a slope scaling heuristic. Note that the first iteration

of SlpSc is equivalent to LPRound. The final alternative approach we consider is to solve the
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problem exactly using a mixed integer programming formulation on a fully time expanded network.

This approach is denoted FullMIP.

Since practically sized instances are intractable for FullMIP, we divide the set of test instances

into small (400 or fewer commodities) and large (10,000-100,000 commodities) categories. We

give each approach a time limit of one hour to begin their final improvement iteration on any

instance. We provide FullMIP results only for small instances. We investigate the solution time,

plan cost, and planned number of dispatches for each approach. Furthermore, we provide metrics

on the utilization and path length distributions of the plans produced by each method.

Results on Small Instances

We provide results for all five solution approaches, including the exact approach FullMIP, for in-

stances having 400 or fewer commodities. FullMIP was only able to produce and certify optimality

for the instances with 100 commodities. For other instances, we use the best solution found by the

solver during one hour. Table 3.11 shows the solution time in seconds, as well as the cost and

number of dispatches of the plans produced by each method. We can see that MCPH, LPRound,

and Discless are dominant in terms of solution time. The plans produced by LPRound and SlpSc

are consistently worse than MCPH and Discless.
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Table 3.11: Cost, solution time, and number of dispatches for small instances

Instance
Method Cost Time

Number of

Type nR |L| nH |K| Dispatches

Synthetic 3 25 3 100 FullMIP 373,220.00 252.03 128

Synthetic 3 25 3 100 LPRound 581,590.00 0.84 161

Synthetic 3 25 3 100 Discless 396,300.00 0.01 121

Synthetic 3 25 3 100 MCPH 425,580.00 0.09 126

Synthetic 3 25 3 100 SlpSc 494,910.00 33.94 149

Synthetic 5 50 3 100 FullMIP 455,570.00 520.59 182

Synthetic 5 50 3 100 LPRound 662,280.00 2.37 221

Synthetic 5 50 3 100 Discless 475,970.00 0.01 178

Synthetic 5 50 3 100 MCPH 499,760.00 0.17 184

Synthetic 5 50 3 100 SlpSc 548,940.00 123.88 199

Synthetic 3 25 3 200 FullMIP 573,840.00 1433.52 224

Synthetic 3 25 3 200 LPRound 1,200,810.00 0.86 376

Synthetic 3 25 3 200 Discless 618,340.00 0.02 224

Synthetic 3 25 3 200 MCPH 654,010.00 0.54 230

Synthetic 3 25 3 200 SlpSc 816,940.00 43.70 287

Synthetic 5 50 3 200 FullMIP 698,310.00 3615.30 334

Synthetic 5 50 3 200 LPRound 1,238,310.00 2.19 420

Synthetic 5 50 3 200 Discless 777,890.00 0.03 317

Synthetic 5 50 3 200 MCPH 786,260.00 0.75 315

Synthetic 5 50 3 200 SlpSc 971,520.00 128.18 373

Synthetic 3 25 3 300 FullMIP 814,540.00 3609.98 319

Synthetic 3 25 3 300 LPRound 1,954,810.00 1.16 548

Synthetic 3 25 3 300 Discless 927,509.39 0.03 323

Synthetic 3 25 3 300 MCPH 903,800.00 1.96 309

Synthetic 3 25 3 300 SlpSc 1,236,616.19 116.17 398

Synthetic 5 50 3 300 FullMIP 895,440.00 3625.23 501

Synthetic 5 50 3 300 LPRound 1,639,160.00 3.16 609

Synthetic 5 50 3 300 Discless 937,440.00 0.05 441

Synthetic 5 50 3 300 MCPH 918,209.18 3.94 430

Synthetic 5 50 3 300 SlpSc 1,103,453.08 438.09 517

Synthetic 3 25 3 400 FullMIP 1,068,858.49 3610.20 436

Synthetic 3 25 3 400 LPRound 2,497,570.00 1.02 753

Synthetic 3 25 3 400 Discless 1,075,903.55 0.04 393

Synthetic 3 25 3 400 MCPH 1,072,573.93 3.53 382

Synthetic 3 25 3 400 SlpSc 1,408,734.74 83.42 504

Synthetic 5 50 3 400 FullMIP 1,256,124.03 3633.34 645

Synthetic 5 50 3 400 LPRound 2,431,420.00 2.98 852

Synthetic 5 50 3 400 Discless 1,273,300.00 0.07 566

Synthetic 5 50 3 400 MCPH 1,293,690.00 4.03 563

Synthetic 5 50 3 400 SlpSc 1,631,618.16 759.15 679

Table 3.12 shows the linear programming lower bound, the bounds produced by FullMIP, and

the plan costs for MCPH and Discless for each instance. One observes that the LP bound is
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consistently weak.

Table 3.12: MCPH vs Discless comparison with bounds

Type nR |L| nH |K| LP Bound MIP LB MIP UB MCPH Discless

Synthetic 3 25 3 100 5,860.90 373,220.00 373,220.00 425,580.00 396,300.00

Synthetic 5 50 3 100 6,622.80 455,540.00 455,570.00 499,760.00 475,970.00

Synthetic 3 25 3 200 12,085.20 573,785.00 573,840.00 654,010.00 618,340.00

Synthetic 5 50 3 200 12,383.10 695,060.00 698,310.00 786,260.00 777,890.00

Synthetic 3 25 3 300 19,704.60 712,963.00 814,540.00 903,800.00 927,509.39

Synthetic 5 50 3 300 16,391.60 650,470.00 895,440.00 918,209.18 937,440.00

Synthetic 3 25 3 400 25,057.10 699,275.00 1,068,860.00 1,072,573.93 1,075,903.55

Synthetic 5 50 3 400 24,352.90 837,096.00 1,256,120.00 1,293,690.00 1,273,300.00

Table 3.13 outlines the gap of the MCPH and Discless approaches. Because we could not

produce an optimal solution for every instance, we provide gap calculated with the FullMIP lower

bound, as well as gap calculated with the average of the two FullMIP bounds.

Table 3.13: MCPH vs Discless gap

To MIP LB To Avg MIP Bound

Type nR |L| nH |K| MCPH Gap Discless Gap MCPH Gap Discless Gap

Synthetic 3 25 3 100 12.30 5.82 12.30 5.82

Synthetic 5 50 3 100 8.85 4.29 8.85 4.29

Synthetic 3 25 3 200 12.27 7.21 12.26 7.20

Synthetic 5 50 3 200 11.60 10.65 11.39 10.44

Synthetic 3 25 3 300 21.11 23.13 15.50 17.66

Synthetic 5 50 3 300 29.16 30.61 15.82 17.55

Synthetic 3 25 3 400 34.80 35.01 17.58 17.83

Synthetic 5 50 3 400 35.29 34.26 19.10 17.80
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We note that Discless produces plans between 4-18% worse than the average bound, and

MCPH produces plans between 8-19% worse than the average bound. Discless produces the best

plan of the non-exact methods on 5/8 instances, while MCPH produces the best plan on the re-

maining 3/8 instances. We attribute this to the fact that MCPH has an improvement phase, while

Discless is a pure construction heuristic. Furthermore, Discless produces a plan faster than MCPH

on every instance.

Table 3.14 shows the minimum, average, and maximum trailer utilization of the plans produced

by each method. The average plan utilization roughly tracks the plan cost as expected.

Table 3.15 shows the minimum, average, and maximum length of a commodity’s path measured

in number of dispatches. Longer average path lengths can result in higher consolidation, but plans

containing longer paths may be more difficult to operate in practice and may be more susceptible to

later deliveries from random delays or weather shutdowns. As expected, LPRound produces plans

with the lowest average path length. This is because the LP relaxation can be solved by putting

commodities independently on their minimum cost paths where the arc-costs are the cost per unit

capacity of vehicles. The LP relaxation decomposes by commodity, and there is no incentive for

consolidation. We also note that FullMIP produced the best solution on every instance and also

has the largest average path length on every instance.
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Table 3.14: Plan utilization for small instances

Instance

Type nR |L| nH |K| Method MinUtil AvgUtil MaxUtil

Synthetic 3 25 3 100 FullMIP 0.010 0.163 0.580

Synthetic 3 25 3 100 LPRound 0.010 0.103 0.310

Synthetic 3 25 3 100 Discless 0.010 0.155 0.580

Synthetic 3 25 3 100 MCPH 0.010 0.147 0.580

Synthetic 3 25 3 100 SlpSc 0.010 0.126 0.430

Synthetic 5 50 3 100 FullMIP 0.010 0.153 0.530

Synthetic 5 50 3 100 LPRound 0.010 0.105 0.200

Synthetic 5 50 3 100 Discless 0.010 0.150 0.530

Synthetic 5 50 3 100 MCPH 0.010 0.138 0.430

Synthetic 5 50 3 100 SlpSc 0.010 0.132 0.710

Synthetic 3 25 3 200 FullMIP 0.010 0.217 0.980

Synthetic 3 25 3 200 LPRound 0.010 0.105 0.390

Synthetic 3 25 3 200 Discless 0.010 0.192 0.890

Synthetic 3 25 3 200 MCPH 0.010 0.193 0.900

Synthetic 3 25 3 200 SlpSc 0.010 0.157 0.890

Synthetic 5 50 3 200 FullMIP 0.010 0.192 0.900

Synthetic 5 50 3 200 LPRound 0.010 0.110 0.200

Synthetic 5 50 3 200 Discless 0.010 0.173 0.900

Synthetic 5 50 3 200 MCPH 0.010 0.171 0.690

Synthetic 5 50 3 200 SlpSc 0.010 0.141 0.980

Synthetic 3 25 3 300 FullMIP 0.010 0.240 1.000

Synthetic 3 25 3 300 LPRound 0.010 0.103 0.250

Synthetic 3 25 3 300 Discless 0.010 0.215 1.000

Synthetic 3 25 3 300 MCPH 0.010 0.221 0.930

Synthetic 3 25 3 300 SlpSc 0.010 0.170 0.887

Synthetic 5 50 3 300 FullMIP 0.010 0.194 0.900

Synthetic 5 50 3 300 LPRound 0.010 0.104 0.200

Synthetic 5 50 3 300 Discless 0.010 0.182 0.810

Synthetic 5 50 3 300 MCPH 0.010 0.196 0.950

Synthetic 5 50 3 300 SlpSc 0.010 0.166 0.980

Synthetic 3 25 3 400 FullMIP 0.010 0.222 1.000

Synthetic 3 25 3 400 LPRound 0.010 0.099 0.200

Synthetic 3 25 3 400 Discless 0.010 0.222 1.000

Synthetic 3 25 3 400 MCPH 0.010 0.227 0.980

Synthetic 3 25 3 400 SlpSc 0.010 0.171 0.940

Synthetic 5 50 3 400 FullMIP 0.010 0.205 0.910

Synthetic 5 50 3 400 LPRound 0.010 0.105 0.200

Synthetic 5 50 3 400 Discless 0.010 0.201 0.880

Synthetic 5 50 3 400 MCPH 0.010 0.201 0.990

Synthetic 5 50 3 400 SlpSc 0.010 0.164 0.920
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Table 3.15: Plan path lengths for small instances

Instance

Type nR |L| nH |K| Method MinPathLength AvgPathLength MaxPathLength

Synthetic 3 25 3 100 FullMIP 1 2.02 5

Synthetic 3 25 3 100 LPRound 1 1.63 3

Synthetic 3 25 3 100 Discless 1 1.83 5

Synthetic 3 25 3 100 MCPH 1 1.82 4

Synthetic 3 25 3 100 SlpSc 1 1.86 5

Synthetic 5 50 3 100 FullMIP 1 2.62 6

Synthetic 5 50 3 100 LPRound 1 2.21 3

Synthetic 5 50 3 100 Discless 1 2.49 5

Synthetic 5 50 3 100 MCPH 1 2.41 5

Synthetic 5 50 3 100 SlpSc 1 2.45 5

Synthetic 3 25 3 200 FullMIP 1 2.32 6

Synthetic 3 25 3 200 LPRound 1 1.89 3

Synthetic 3 25 3 200 Discless 1 2.10 6

Synthetic 3 25 3 200 MCPH 1 2.12 5

Synthetic 3 25 3 200 SlpSc 1 2.17 6

Synthetic 5 50 3 200 FullMIP 1 2.90 6

Synthetic 5 50 3 200 LPRound 1 2.10 3

Synthetic 5 50 3 200 Discless 1 2.52 5

Synthetic 5 50 3 200 MCPH 1 2.45 5

Synthetic 5 50 3 200 SlpSc 1 2.41 6

Synthetic 3 25 3 300 FullMIP 1 2.46 7

Synthetic 3 25 3 300 LPRound 1 1.84 4

Synthetic 3 25 3 300 Discless 1 2.25 6

Synthetic 3 25 3 300 MCPH 1 2.19 6

Synthetic 3 25 3 300 SlpSc 1 2.22 6

Synthetic 5 50 3 300 FullMIP 1 3.08 8

Synthetic 5 50 3 300 LPRound 1 2.03 3

Synthetic 5 50 3 300 Discless 1 2.56 6

Synthetic 5 50 3 300 MCPH 1 2.69 8

Synthetic 5 50 3 300 SlpSc 1 2.73 7

Synthetic 3 25 3 400 FullMIP 1 2.51 6

Synthetic 3 25 3 400 LPRound 1 1.89 3

Synthetic 3 25 3 400 Discless 1 2.23 5

Synthetic 3 25 3 400 MCPH 1 2.20 5

Synthetic 3 25 3 400 SlpSc 1 2.26 5

Synthetic 5 50 3 400 FullMIP 1 3.14 8

Synthetic 5 50 3 400 LPRound 1 2.14 4

Synthetic 5 50 3 400 Discless 1 2.68 7

Synthetic 5 50 3 400 MCPH 1 2.64 6

Synthetic 5 50 3 400 SlpSc 1 2.64 9
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Results on Large Instances

In this section, we test the approaches on instances having 10,000 - 100,000 commodities. For

these instances, FullMIP can not produce helpful bounds in under an hour, so we exclude it. We

give each method a time limit of one hour to begin its final improvement iteration. Some methods

took much longer than one hour to produce any solution, but we still list these results.

Table 3.16 shows the solution time in seconds and the cost and number of dispatches of the

plan produced by each method. Similar to the small instances, MCPH and Discless are producing

the best plans among the non-exact methods. However, for these large instances, MCPH is using

the entire hour without finding a local optimum.
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Table 3.16: Cost, solution time, and number of dispatches for large instances

Instance
Method Cost Time

Number of

Type nR |L| nH |K| Dispatches

Synthetic 3 25 3 10,000 LPRound 54,333,270.00 172.55 13,917

Synthetic 3 25 3 10,000 Discless 5,771,684.34 5.35 1,889

Synthetic 3 25 3 10,000 MCPH 6,247,893.28 3,611.17 2,098

Synthetic 3 25 3 10,000 SlpSc 13,782,760.44 3,626.50 3,770

Synthetic 5 50 3 10,000 LPRound 57,201,570.00 524.83 15,950

Synthetic 5 50 3 10,000 Discless 7,172,489.00 9.80 3,116

Synthetic 5 50 3 10,000 MCPH 8,012,073.80 3,601.40 3,461

Synthetic 5 50 3 10,000 SlpSc 21,311,544.19 3,706.10 6,181

Synthetic 3 25 3 25,000 LPRound 127,436,850.00 473.61 31,990

Synthetic 3 25 3 25,000 Discless 11,772,327.72 21.50 3,064

Synthetic 3 25 3 25,000 MCPH 12,415,424.16 3,746.13 3,501

Synthetic 3 25 3 25,000 SlpSc 24,850,067.27 3,662.22 5,826

Synthetic 5 50 3 25,000 LPRound 134,086,370.00 1,296.06 38,726

Synthetic 5 50 3 25,000 Discless 13,309,596.68 41.69 5,235

Synthetic 5 50 3 25,000 MCPH 14,622,307.66 3,657.94 5,936

Synthetic 5 50 3 25,000 SlpSc 36,401,429.04 3,642.84 10,441

Synthetic 3 25 3 50,000 LPRound 240,469,557.64 944.25 55,656

Synthetic 3 25 3 50,000 Discless 22,223,570.96 58.76 4,088

Synthetic 3 25 3 50,000 MCPH 22,910,389.80 3938.46 4,835

Synthetic 3 25 3 50,000 SlpSc 38,784,586.82 3676.10 7,090

Synthetic 5 50 3 50,000 LPRound 257,378,460.00 2753.55 73,127

Synthetic 5 50 3 50,000 Discless 23,307,341.66 121.87 7,747

Synthetic 5 50 3 50,000 MCPH 24,805,878.60 3752.34 8,959

Synthetic 5 50 3 50,000 SlpSc 59,833,330.36 4081.40 16,631

Synthetic 3 25 3 100,000 LPRound 386,973,917.94 1750.89 92,702

Synthetic 3 25 3 100,000 Discless 40,802,297.05 168.70 5,803

Synthetic 3 25 3 100,000 MCPH 40,637,138.35 3627.67 6,842

Synthetic 3 25 3 100,000 SlpSc 62,330,476.18 3623.98 9,914

Synthetic 5 50 3 100,000 LPRound 411,962,356.66 4861.10 127,450

Synthetic 5 50 3 100,000 Discless 39,746,801.24 358.24 10,988

Synthetic 5 50 3 100,000 MCPH 41,320,338.04 3642.30 12,840

Synthetic 5 50 3 100,000 SlpSc 283,162,039.85 3751.25 81,285

South China N/A 69 N/A 100,281 LPRound 71,802,412.77 8,166.92 64,479

South China N/A 69 N/A 100,281 Discless 4,155,073.91 246.15 6,841

South China N/A 69 N/A 100,281 MCPH 4,632,395.45 4,016.47 8,286

South China N/A 69 N/A 100,281 SlpSc 71,802,412.77 4,426.55 64,479

Table 3.17 shows a comparison of MCPH and Discless. Despite having no improvement phase,

Discless produces the best solution on all but one instance. The improvement over MCPH rangers
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from -0.41% to 10.48%. Furthermore, its solution time is orders of magnitude smaller than that of

MCPH.

Table 3.17: MCPH vs Discless on large instances

MCPH Discless % Better

Type nR |L| nH |K| Cost Time Cost Time Cost Time

Synthetic 3 25 3 10000 6,247,893.28 3611.17 5,771,684.34 5.35 7.62 99.85

Synthetic 5 50 3 10000 8,012,073.80 3601.40 7,172,489.00 9.80 10.48 99.73

Synthetic 3 25 3 25000 12,415,424.16 3746.13 11,772,327.72 21.50 5.18 99.43

Synthetic 5 50 3 25000 14,622,307.66 3657.94 13,309,596.68 41.69 8.98 98.86

Synthetic 3 25 3 50000 22,910,389.80 3938.46 22,223,570.96 58.76 3.00 98.51

Synthetic 5 50 3 50000 24,805,878.60 3752.34 23,307,341.66 121.87 6.04 96.75

Synthetic 3 25 3 100000 40,637,138.35 3627.67 40,802,297.05 168.70 -0.41 95.35

Synthetic 5 50 3 100000 41,320,338.04 3642.30 39,746,801.24 358.24 3.81 90.16

South China N/A 69 N/A 100,281 4,632,395.45 4016.47 4,155,073.91 246.15 10.30 93.87

Table 3.18 shows the LP bound and the best solution found for each instance. Similar to the

small instances, the LP bound is weak.
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Table 3.18: LP bound on large instances

Instance

Type nR |L| nH |K| LP Bound Best Solution

Synthetic 3 25 3 10,000 571,154.00 5,771,684.34

Synthetic 5 50 3 10,000 585,525.00 7,172,489.00

Synthetic 3 25 3 25,000 1,454,760.00 11,772,327.72

Synthetic 5 50 3 25,000 1,417,230.00 13,309,596.68

Synthetic 3 25 3 50,000 3,094,360.00 22,223,570.96

Synthetic 5 50 3 50,000 2,861,080.00 23,307,341.66

Synthetic 3 25 3 100,000 5,816,920.00 40,637,138.35

Synthetic 5 50 3 100,000 5,275,080.00 39,746,801.24

South China N/A 69 N/A 100,281 26,546.80 4,155,073.91

Table 3.19 shows the minimum, average, and maximum trailer utilization of the plans produced

by each method. The average utilization roughly tracks the efficiency of the plan. For the South

China instance, SlpSc was only able to perform one iteration, resulting in it producing a plan

equivalent to LPRound.

Table 3.20 shows the minimum, average, and maximum length of each commodity’s path mea-

sured in number of dispatches. Again, the average path length is a proxy for the level of consoli-

dation. We see the maximum path length achieving numbers unlikely to be useful in any practical

plan, suggesting that in practice companies should add penalties or constrain such solutions from

being produced.
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Table 3.19: Plan utilization for large instances

Instance

Type nR |L| nH |K| Method MinUtil AvgUtil MaxUtil

Synthetic 3 25 3 10,000 LPRound 0.010 0.112 0.500

Synthetic 3 25 3 10,000 Discless 0.010 0.848 1.000

Synthetic 3 25 3 10,000 MCPH 0.010 0.801 1.000

Synthetic 3 25 3 10,000 SlpSc 0.010 0.243 1.000

Synthetic 5 50 3 10,000 LPRound 0.010 0.108 0.570

Synthetic 5 50 3 10,000 Discless 0.010 0.735 1.000

Synthetic 5 50 3 10,000 MCPH 0.010 0.709 1.000

Synthetic 5 50 3 10,000 SlpSc 0.010 0.194 1.000

Synthetic 3 25 3 25,000 LPRound 0.010 0.122 0.790

Synthetic 3 25 3 25,000 Discless 0.010 0.934 1.000

Synthetic 3 25 3 25,000 MCPH 0.010 0.911 1.000

Synthetic 3 25 3 25,000 SlpSc 0.010 0.257 1.000

Synthetic 5 50 3 25,000 LPRound 0.010 0.114 0.730

Synthetic 5 50 3 25,000 Discless 0.010 0.870 1.000

Synthetic 5 50 3 25,000 MCPH 0.010 0.849 1.000

Synthetic 5 50 3 25,000 SlpSc 0.010 0.213 1.000

Synthetic 3 25 3 50,000 LPRound 0.010 0.142 1.000

Synthetic 3 25 3 50,000 Discless 0.060 0.983 1.000

Synthetic 3 25 3 50,000 MCPH 0.100 0.967 1.000

Synthetic 3 25 3 50,000 SlpSc 0.010 0.296 1.000

Synthetic 5 50 3 50,000 LPRound 0.010 0.122 0.800

Synthetic 5 50 3 50,000 Discless 0.010 0.926 1.000

Synthetic 5 50 3 50,000 MCPH 0.010 0.908 1.000

Synthetic 5 50 3 50,000 SlpSc 0.010 0.223 1.000

Synthetic 3 25 3 100,000 LPRound 0.010 0.169 1.000

Synthetic 3 25 3 100,000 Discless 0.200 0.993 1.000

Synthetic 3 25 3 100,000 MCPH 0.080 0.980 1.000

Synthetic 3 25 3 100,000 SlpSc 0.010 0.308 1.000

Synthetic 5 50 3 100,000 LPRound 0.010 0.142 1.000

Synthetic 5 50 3 100,000 Discless 0.040 0.972 1.000

Synthetic 5 50 3 100,000 MCPH 0.010 0.946 1.000

Synthetic 5 50 3 100,000 SlpSc 0.010 0.191 1.000

South China N/A 69 N/A 100,281 LPRound 1.4E-05 0.074 1.000

South China N/A 69 N/A 100,281 Discless 1.4E-04 0.776 1.000

South China N/A 69 N/A 100,281 MCPH 1.4E-04 0.751 1.000

South China N/A 69 N/A 100,281 SlpSc 1.4E-05 0.074 1.000
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Table 3.20: Plan path lengths for large instances

Instance

Type nR |L| nH |K| Method MinPathLength AvgPathLength MaxPathLength

Synthetic 3 25 3 10,000 LPRound 1 1.48 3

Synthetic 3 25 3 10,000 Discless 1 2.43 11

Synthetic 3 25 3 10,000 MCPH 1 2.37 10

Synthetic 3 25 3 10,000 SlpSc 1 2.28 7

Synthetic 5 50 3 10,000 LPRound 1 1.65 3

Synthetic 5 50 3 10,000 Discless 1 2.89 13

Synthetic 5 50 3 10,000 MCPH 1 2.91 11

Synthetic 5 50 3 10,000 SlpSc 1 2.62 8

Synthetic 3 25 3 25,000 LPRound 1 1.49 3

Synthetic 3 25 3 25,000 Discless 1 2.59 11

Synthetic 3 25 3 25,000 MCPH 1 2.34 11

Synthetic 3 25 3 25,000 SlpSc 1 2.14 7

Synthetic 5 50 3 25,000 LPRound 1 1.68 3

Synthetic 5 50 3 25,000 Discless 1 3.16 15

Synthetic 5 50 3 25,000 MCPH 1 3.04 15

Synthetic 5 50 3 25,000 SlpSc 1 2.62 8

Synthetic 3 25 3 50,000 LPRound 1 1.50 3

Synthetic 3 25 3 50,000 Discless 1 3.02 14

Synthetic 3 25 3 50,000 MCPH 1 2.63 22

Synthetic 3 25 3 50,000 SlpSc 1 2.15 6

Synthetic 5 50 3 50,000 LPRound 1 1.70 5

Synthetic 5 50 3 50,000 Discless 1 3.46 15

Synthetic 5 50 3 50,000 MCPH 1 3.20 18

Synthetic 5 50 3 50,000 SlpSc 1 2.39 7

Synthetic 3 25 3 100,000 LPRound 1 1.49 3

Synthetic 3 25 3 100,000 Discless 1 3.01 12

Synthetic 3 25 3 100,000 MCPH 1 2.59 26

Synthetic 3 25 3 100,000 SlpSc 1 1.99 7

Synthetic 5 50 3 100,000 LPRound 1 1.72 4

Synthetic 5 50 3 100,000 Discless 1 3.60 20

Synthetic 5 50 3 100,000 MCPH 1 3.25 21

Synthetic 5 50 3 100,000 SlpSc 1 1.74 5

South China N/A 69 N/A 100,281 LPRound 1 1.93 6

South China N/A 69 N/A 100,281 Discless 1 2.79 14

South China N/A 69 N/A 100,281 MCPH 1 3.64 21

South China N/A 69 N/A 100,281 SlpSc 1 1.93 6

To investigate further into the types of plans produced by each method, we plot the utilization

distributions in Figure 3.16 and the path length distributions in Figure 3.17 for the plans produced
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for the South China instance. Table 3.21 gives the path length distributions for the plans pro-

duced by each method on the South China instance. Despite being a better plan, the path length

distribution produced by Discless is more practical than that of MCPH. We note that the SlpSc

plan, equivalent to the LPRound plan since it was only able to perform one iteration, has a terrible

utilization distribution, but the most realistic path length distribution.

Figure 3.16: Utilization distributions for South China instance: MCPH(blue), Discless(orange),
SlpSc(grey)

Figure 3.17: Path length distributions: South China instance
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Table 3.21: Path lengths: South China instance

Number of Paths

Path Length MCPH Discless SlpSc

1 15,969 19,853 39,524

2 21,524 29,925 35,205

3 19,462 24,226 19,674

4 14,648 13,800 5,217

5 10,164 6,708 597

6 6,988 3,229 64

7 4,623 1,535 0

8 2,876 643 0

9 1,787 229 0

10 984 102 0

11 558 22 0

12 330 7 0

13 169 1 0

14 85 1 0

15 49 0 0

16 33 0 0

17 16 0 0

18 9 0 0

19 5 0 0

21 2 0 0

In Figure 3.18, we show the distribution of the flexible window widths for the Discless so-

lution to the South China instance. We observe that the plan is incredibly constrained with the
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most frequent window width (comprising over 2000 dispatches) being 0 minutes. Fewer than 250

dispatches have a departure interval longer than 30 minutes. This demonstrates both the time sen-

sitivity of the problem, but also the potential fragility of the solution. In practice, it may be wise to

enforce a minimum dispatch interval width to generate more practical plans.

Figure 3.18: Dispatch window widths: South China instance

3.6 Conclusion

We provide a sequential greedy approach that does not rely on a fixed discretization. In such an

approach, one does not need to store the entire time expanded network; only the dispatches used

by some commodity are stored. Furthermore, the approach allows dispatch departure times to shift

or move within a known time interval allowing consolidations that are not possible in sequential

pathing on a fixed discretization.

We provide an in-depth analysis on the properties and methods of updating two types of de-

parture intervals, each having its own benefits and trade offs. This type of interval modelling and

updating can be applied to other domains where intervals are fixed during and updated after some

planning iteration. For example, this work could be applied to some kind of sequential time-based

route cover problem.

We demonstrate that the modelling and algorithms are capable of outperforming the best known

heuristics for large scale flow and load planning. The approach outperforms a marginal cost path

heuristic on industry scale instances in terms of cost and solution time.
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On small instances, the discretizationless construction heuristic was able to produce solutions

4-35% worse than the best lower bound produced, and 4-18% worse than the average of the bounds

produced by an exact approach. On the instances solved to near optimality, the gap was only 4-

11%. The discretizationless approach was able to produce these solutions in less than one second.

On practically sized instances, the discretizationless approach produced the best solution on 8/9

instances with -0.41 to 10.48% improvement in solution cost over a marginal cost path heuristic de-

spite not having an improvement phase. The discretizationless approach produced these solutions

in under 360 seconds while MCPH used an hour to construct and improve each solution.

Having dispatch windows of positive width in sequential pathing will dominate a fixed dis-

cretization approach, because once a commodity is assigned to an arc, the departure time of that

arc can not change. Therefore, another commodity originating one minute later will not be able

to consider consolidating on this arc, because the departure time of the earlier commodity cannot

shift later. However, departure intervals allow time shifts as described to be considered.

One can view the use of rigid departure intervals as having a similar effect to pessimistic

mapping error in fixed discretization approaches. The dispatch time being constrained more than

necessary is similar in effect to the assumption that the travel time is longer than it truly is.

One way to eliminate all interval/mapping error entirely would be to dynamically update the

flexible windows after each reach in the path finding algorithm. This would come at the cost of an

exponential increase in memory and solution time due to the copying required at each branch of

the solution tree.

Future work on this topic should include the development of a local search improvement

scheme. We have also motivated a method of constraining the maximum path length and a mini-

mum dispatch interval width in order to enhance the practicality of the solutions to this problem.
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CHAPTER 4

THE FLOW RULE PROBLEM

4.1 Introduction

This work focuses on modelling and solution approaches for joint flow and load planning at a

major parcel express company. Consider the operations of a parcel delivery company. There exists

a set of packages which must be delivered within their individual time constraints. They can be

transported to their destinations sharing common vehicles. They can stop at intermediate locations

at which they accrue a sort cost and occupy some sort capacity.

We concern ourselves in this work with a particular method of sort operations. Sort operations

occur in shifts throughout the day. We refer to any particular shift as a sort. When a trailer arrives

to a building during a sort, it is unloaded, and the contents of the trailer are inducted into the sort

process. The sort process directs each package from the unloaded trailer to some outbound door.

In the actual operations of many parcel express companies, packages are directed to an outbound

door based on their destination terminal and service class. A flow rule specifies that flow currently

at building b1 at sort s1 destined for building bdest of class c may be sent next to building b2 at sort

s2. Historically, the determination of all flow rules was called flow planning and this process was

performed before load planning which referred to determining the departure times and contents of

trailers following the flow plan. The flow plan specifies sequences of building sort pairs, which we

call sort paths, that can carry packages to their destination, while the load plan specifies a specific

timed-path that adheres to the flow plan that carries packages to their destinations.

Note that there may be multiple flow rules that apply to packages at building b1 at sort s1

destined for building bdest of class c; however, there will always be at least one. At each building

b1 and sort s1, one particular rule for each destination and service class is singled out as the default
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mode of operation and referred to as the primary flow rule. Each package has a unique sort path to

its destination comprised only of primary flow rules, which we call a primary sort path.

Typically, at the flow and load planning stage, the granularity at which the operations are mod-

elled can be coarse. Planning tools built on this modelling yield plans that are not implementable

and need post-processing or manual adjustment. In particular, many models assume each package,

or any group of packages (however defined), can be individually directed through the logistics

network.

However, package express companies may have only a subset of their buildings sufficiently

automated to accomplish this. Many buildings, particularly those with insufficient volume to justify

full automation, operate via human beings who direct packages to an outbound loading door based

on readable criteria on the package label: for instance the final destination and service class of the

package. In a fully automated facility, each individual package could be assigned a specific door.

However, in industry sort processes do not direct packages in this way. Such sort processes were

designed for humans to be able to direct packages. Humans can not read a package ID of several

digits and recognize which door it was assigned to. Instead, packages are typically directed to a

door based on only their final destination and service class. On many parcel labels, the data in the

largest font will be an indicator of the final destination and the service class, so that a human can

quickly recognize this information and direct it to an outbound door.

Existing approaches in the literature have used in-tree constraints to model the case where each

destination and service class have exactly one applicable flow rule at each sort. When generalizing

to more than one rule, a particular challenge arises when enforcing that each package must be

delivered before its due date; we refer to this as the time feasibility of the solution. For any

particular destination and service class, there may exist several outbound doors available. However,

for any particular package, one can not control which outbound door it is directed to. Even though

two arriving packages have the same destination and service class, they may be due on different

days. This leads to a particular phenomenon not addressed by existing models in the literature: all
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outbound door selections must be time feasible for any arriving package. Not only this, but at all

subsequent stops, the available outbound doors must be time feasible for any package that could

have arrived there.

In this operational context, models which can direct packages on other criteria, such as their

due date, can make considerably cheaper non-implementable plans by ignoring such constraints.

This work will model flow and loading planning where predefined flow classes (e.g. those sharing

a common final destination and service class) must directed jointly at each sort in such a way that

any particular package belonging to the class is guaranteed to be delivered on time.

Smooth operations during a sort are a highly desirable trait in a plan. Extending a sort shift

can be expensive or impossible; however, this situation is faced when too much volume arrives late

in the sort. Thus incorporating some aspect of time-based sort capacity is necessary to generate

practically implementable plans. This work proposes a model where the sorts are discretized into

time intervals, each containing a specified sort capacity.

The output of a flow and loading planning model is a set of timed loads and a list specifying

how much of each flow class must be loaded into each load. In operations, volume is inducted into

a sort when trailers are unloaded at unload doors. The sort then directs the volume to a loading

door where it is immediately loaded into a trailer. In order to guarantee a plan is implementable,

flow must depart every sort in the same order it was inducted.

In Section 4.3 we mathematically define the problem and model the practical constraints. In

Section 4.4 we provide a general scheme for developing improvement heuristics that maintain time-

feasibility, sort-feasibility, and FIFO-feasibility, and outline specific implementations. Section 4.5

contains computational experiments to gauge the performance of the improvement heuristics on

large scale industry instances. Finally, Section 4.6 contains concluding remarks.
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4.2 Literature Review

[5] provide a recent comprehensive overview of service network design and flow and load planning.

[19] and [20] provide an overviews of service network design freight transportation modelling.

[34] provides an early overview of various problems arising in network design. They detail various

solution approaches including optimization-based approaches and heuristics.

The root of many solution approaches for flow and load planning or service network design

lies in work done to solve multicommodity fixed charge flow. Approaches combining optimization

and heuristics to solve this problem include [35] and [28].

[36] describe the postal and express shipment setting describing the interplay between auto-

mated and user planning for multi modal shipment planning.

[37] give a load planning formulation with practical constraints. They enforce that their solu-

tions form in-trees; that is, each flow class can only have one rule to follow along each step of its

path. [14] use a solution approach containing tree-based variables that can solve instances with

hundreds of commodities. They pre-generate sets of geographic flow paths that are used to con-

struct solutions. They make use of a slope scaling heuristic and column generation to introduce

new variables.

The incorporation of practical constraints and downstream decisions has been observed in a

variety of applications. [21] explain the hierarchy of decision making in air crew scheduling and

also model the problem where the departure time of flights can vary within time windows.

[31] consider the problem of simultaneously performing load-matching and routing with equip-

ment balancing. They define load-matching and routing as determining the timed-paths each load

will take on the movement leg network and determining which pairs of trailers will be pulled by a

common tractor. They decompose the problem into two sub-problems; the first determines which

loads and empties are matched, and their physical routes. The second determines the scheduling

of the loads. They define a cluster as a group of loads that interact by using common tractors and
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trailers on their paths to their final destination. They present a set partitioning formulation with a

binary variable for each cluster to determine whether or not it is included in the solution.

[38] integrate the timing of local pickup and delivery into a SND model which produces de-

livery routes. Customers are assigned a-priori to origin and destination terminals. Customer ship-

ments are sent direct to their origin terminal, and vehicle routes are generated from their destina-

tion terminal. The approach incorporates the synchronization of the pickup, transshipment, and

delivery route timings into a single model. The output of their approach is a flow and load plan

along with a set of delivery routes to deliver shipments from their destination terminal to the final

customer location. They provided a route based model and an arc based model and use DDD to

accommodate a fine time granulation. In the route based model, they enumerate all delivery routes

beforehand and add a virtual node for each route to the time-space network. They then connect the

route nodes to commodity destination nodes which they can cover.

[39] use time expanded network modelling to develop several heuristics for decision support

tools to perform dynamic loadplanning.

A recent work exploring plans containing multiple alts, rather than in-tree plans, is given in

[40]. They consider p-alt plans, where p is a vector indexed by each (i, d) building-destination

pair indicating the number of possible next stops for a commodity at building i destined for d.

Typical load planning with in-tree constraints is the case of a 1-alt plan. They examine a two stage

problem where in the first stage, the number of trailers moving between buildings is specified, and

the specific pid alternates for each building-destination pair (i, d) are chosen. In the second stage,

random commodity sizes are realized, and commodities are routed through the network on paths

adhering to the capacities set in the first stage and the p-alt structure specified in the first stage.

The authors show that significant cost savings can be achieved by allowing 2-alt operations. They

also note that creating a 2-alt plan makes the solution less sensitive to demand uncertainty.

112



4.3 Problem Description

The logistics system we wish to plan for is built upon a geographic network F = (B,A), some-

times referred to as the flat network, where every b ∈ B is a building in the consolidation network

and an arc (u, v) ∈ A represents the ability to send vehicles and packages from u to v.

We want to determine the flows and loads on this network over a planning interval T . Buildings

are not able to accept, sort, and dispatch volume during the entire planning interval. Instead, each

building b ∈ B operates its own set of sort shifts, which we denote Sb. Every sort s ∈ Sb has a start

time es and and end time ls during which packages can originate in the building, packages can be

transshipped through the building, and vehicles can arrive or depart from the building. We assume

[es, ls]s∈Sb
are disjoint for every b ∈ B. Let S = ∪b∈BSb.

All volume that arrives to a sort shift must be sorted during that shift, but may be held in a

trailer and dispatched at a later shift. Each sort shift s ∈ S can process at most rs units of volume

per unit time.

As in the typical service network design setting, packages originate at a particular time, and

must be delivered to some other building by a due date. We aggregate packages into sets which

have common origin, destination, release (available) time, due time, and service class. For each

commodity k ∈ K, we denote the origin ok ∈ B, destination dk ∈ B, release time ek ∈ T , due

time lk ∈ T , service class λk, and the weight qk equal to the sum of the weights of all packages

composing the commodity. Commodities travel through time and space from their origins to their

destinations.

In reality, packages can originate and be due at homes, private businesses, and small pickup

locations. However, we only plan the flow of volume from the time it arrives at its pre-specified

origin sortation building to its pre-specified destination sortation building. The choice of origin or

destination building, sometimes included in other works on service network design, is not included

in this model.
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In a typical service network design approach, we would assume that each commodity k ∈ K

could be directed independently through the network. That is, putting each commodity k ∈ K

on a time-feasible path to its destination would yield a feasible solution, and that coordination in

the planning of the commodities is performed only to increase consolidation and drive down cost.

However, in the operations of many sortation hubs, particularly manual ones, commodities may not

necessarily be distinguishable. A human worker may not be able to read ok, dk, ek, lk and quickly

recall the outbound door assignment for such packages, for every k ∈ K that flows through the

particular sort shift.

Therefore, we aggregate commodities further into flow classes. Each commodity k ∈ K be-

longs to a flow class ck ∈ C. In practice, every c ∈ C is the set of commodities sharing a common

final destination and service class. In operations, each flow class can be assigned to one or more

outbound doors at a sort shift; however, which constituents of the class get sent to which door can

not be controlled.

The crux of the problem is that the constituents of a flow class at a particular sort may have

different due dates, but we may not control which path any constituent actually takes. If there

are two possible outbound door assignments for a particular class at a particular sort, we can not

assume that the commodities with earlier due dates will be assigned to the door that will result in

an earlier delivery. Therefore, every possible downstream path a commodity could possibly take

must be time-feasible.

In practice, there exist a set of rules that specifies a default next sort s2 ∈ S for every sort

s1 ∈ S and every flow class c ∈ C. This is called a primary flow rule. The flow rules have been

constructed such that if every class follows primary flow rules from its origin sort, it will arrive

on-time to its destination. Therefore, they can be used to construct initial feasible solutions, and

also to provide possible local changes for improvement heuristics.

Besides determining the possible flow between sorts, we must also specify departure times and

arrival times of loads to move between those sorts, and specify how much of each flow class is to
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be loaded into each load. Oftentimes, if a load departs at the end of its origin sort, it will arrive

during its destination sort. If there are capacity issues at the destination sort, then the optimal

solution may have the load departing early from the origin sort. Incorporating these decisions into

the model is essential for making practically implementable plans.

4.3.1 Time Expanded Modelling

From the geographic network and the sort schedule, we construct a time-expanded network. At

each sort, there are a set of induction nodes and dispatch nodes occurring at a regular interval,

called the time discretization, and denoted ∆. Packages originating in the sort appear at induction

nodes. Induction nodes are connected to dispatch nodes via sort arcs, which are used to model the

sort capacity. Dispatch nodes are connected to induction nodes at other sorts via travel arcs, which

are used to model the transportation of packages in vehicles.

i1 i2 i3 i4

d1 d2 d3 d4

es es +∆ es + 2∆ es + 3∆ ls

Figure 4.1: Time-space representation of a sort

Figure 4.2: Connections between sorts
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Figure 4.3: Hold arcs

The main benefit of this model over a model that uses a single node for induction and dispatch is

that this modelling allows control over the maximum holding time to be represented in the structure

of the network. It also allows a visual interpretation of FIFO violations which occur when crossing

sort arcs contain the same flow class.

Each commodity can be delivered to its destination at a variety of times before its due time.

We denote the set of candidate destination nodes for commodity k as V k. A typical flow and load

planning model that ignores the practical constraints we introduce in this work is given below.

min
∑
s∈S

[
∑

a∈Adisp
s

caya + hs

∑
a∈Asort

s

∑
k∈K

fk
a ]

s.t.
∑

a∈δout(v)

fk
a −

∑
a∈δin

fk
a = δkv ∀v ∈ V \ V k, k ∈ K

∑
k∈K

qkf
k
a ≤ Qya ∀a ∈ Adisp

s , s ∈ S

0 ≤ fk
a ≤ 1 ∀a ∈ AT , k ∈ K

ya ∈ Z+ ∀a ∈ Adisp
s , s ∈ S

4.3.2 Modelling Flow Rules

The practical application which we wish to model is a system where parcels are directed only by

their final destination and service class. We model this more generally by declaring that every

commodity k ∈ K belongs to some flow class ck ∈ C that can be directed.
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At any sort, packages are directed to a next stop based on their flow class. For every sort

s1 ∈ S, let

zcs1s2 =


1 if packages of class c may travel to sort s2 as a next stop

0 otherwise.

This can be enforced through constraints

fk
uv ≤ zcksusv ∀k ∈ K, (u, v) ∈ Adisp

Suppose zcs,s1 = 1 and zcs,s2 = 1 in some solution. We can not control which packages of class

c are directed to s1 and which are directed to s2. This is concerning, because packages of class

c may have different due dates, depending on how they arrived at s. We model the problem so

that any possible assignment of c-flow to s1 and s2 must be time-feasible. We assume that we can

control the proportion of c-flow sent to each door, but not the specific packages.

We want a necessary and sufficient condition for any possible flow to be time feasible for a

given set of flow rules. In order to present this condition, we introduce two additional quantities.

For any sort s, let αc
s represent the minimum due date of class c that could flow through s. Then

αc
s2
≤ αc

s1
zcs1s2 ∀(s1, s2) ∈ Aconn, c ∈ C

αck
s ≤ lk ∀k ∈ K : sok = s, s ∈ S

.These constraints take the minimum due times at the origin of every commodity and propagates

this minimum value to downstream sorts that can be reached by active flow rules.

Similarly, for any sort s and any flow class c, let βc
s be the latest arrival time of any path of flow
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class c that contains s. Then

βc
s1
≥ βc

s2
zcs1s2 ∀(s1, s2) ∈ Aconn

βc
s ≥ ls ∀s ∈ S

We claim that any flow following the flow rules must be time feasible if and only if we can find

α and β satisfying the above and

βc
s ≤ αc

s ∀s ∈ S, c ∈ C

4.3.3 Modelling FIFO Loading

A practically implementable solution must admit a suitable trailer-loading procedure. If two pack-

ages x1 and x2 arrive at times t1 and t2, respectively, with t1 < t2, and are both to be loaded to

the same next destination, then x2 should never depart strictly earlier than x1. We constrain our

solutions in order to preserve this property by adding conflict constrains for sets of sort arcs.

For any sort s ∈ S, and any sort arc (u, v) ∈ Asort
s , let

Aconflict
uv = {(x, y) ∈ Asort

s : tx < tu, ty > tv} ∪ {(x, y) ∈ Asort
s : tx > tu, ty < tv}

If flow to the same next sort is simultaneously present on a and any arc in Aconflict
a then there

is a FIFO loading violation.

For a sort arc (u, v) ∈ Asort
s , let

gs2uv =


1 if v has a dispatch to sort s2

0 otherwise
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Then we can enforce FIFO loading by adding constraints

gsa +
∑

a′∈Aconflict
a

gsa′ ≤ 1 ∀a ∈ Asort
s , s ∈ S (4.1)

Mgs2uv ≥
∑
c∈C

∑
(v,w)∈δout(v):sw=s2

1{f c
uv > 0, f c

vw > 0} ∀(u, v) ∈ Asort
s1

, (s1, s2) ∈ Aconn (4.2)

4.3.4 Modelling Sort Capacity

In order to develop practically implementable plans for package express, the sorting operations

must be modelled carefully. Sorts are typically 4-6 hours long, during which vehicles arrive over

time and are unloaded. The contents are then loaded onto different outbound vehicles, or onto

package cars for local delivery. If not enough vehicles have arrived at the beginning of the sort,

then the staff in the building are idle, and the capacity is lost.

∑
k∈K

∑
(x,y)∈Asort

s :ty≤tv ,tx≥tu

qkf
k
xy ≤ rs(tv − tu) ∀(u, v) ∈ Asort

s , s ∈ S

Any sort arc (u, v) ∈ Asort
s can represent the time interval [tu, tv]. On the left-hand-side of

the constraints above, there is the total volume both inducted and dispatched during the interval

[tu, tv]. The right-hand-side is the sort capacity during the interval.

Since the flow rule modelling guarantees that all flow arrives on time, we can move from flow

variables defined on K to flow variables defined on C. Because K contains all origin, release

time, destination, and due time based commodities, it is typically much larger that the set C which

usually is the product of the set of final destinations with the set of service offerings. An arc based

formulation of the problem is given below.
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min
∑
s∈S

[
∑

a∈Adisp
s

caya + hs

∑
a∈Asort

s

∑
c∈C

f c
a]

s.t.
∑

a∈δout(v)

f c
a −

∑
a∈δin

f c
a = δcv ∀v ∈ V \ V c, c ∈ C

∑
c∈C

f c
a ≤ Qya ∀a ∈ Adisp

s , s ∈ S

f c
uv ≤M1

uvcz
c
susv ∀c ∈ C, (u, v) ∈ Adisp

αc
s1
≥ αc

s2
−M2(1− zcs1s2) ∀(s1, s2) ∈ Aconn, c ∈ C

αc
s ≤ lcs ∀c ∈ C, s ∈ S

βc
s1
≥ βc

s2
−M2(1− zcs1s2) ∀(s1, s2) ∈ Aconn, c ∈ C

βc
s ≥ ls ∀s ∈ S

βc
s ≤ αc

s ∀s ∈ S, c ∈ C

gsa +
∑

a′∈Aconflict
a

gsa′ ≤ 1 ∀a ∈ Asort
s , s ∈ S

M3
v g

s2
uv ≥

∑
c∈C

∑
(v,w)∈δout(v):sw=s2

1{f c
uv > 0, f c

vw > 0} ∀(u, v) ∈ Asort
s1

, (s1, s2) ∈ Aconn

∑
c∈C

∑
(x,y)∈Asort

s :ty≤tv ,tx≥tu

f c
xy ≤ rs(tv − tu) ∀(u, v) ∈ Asort

s , s ∈ S

f c
a ≥ 0 ∀a ∈ AT , c ∈ C

ya ∈ Z+ ∀a ∈ Adisp
s , s ∈ S

αc
s, β

c
s ∈ R+ ∀s ∈ S, c ∈ C

zcs1s2 ∈ {0, 1} ∀(s1, s2) ∈ Aconn, c ∈ C

gsa ∈ {0, 1} ∀a ∈ Asort
s , s ∈ S
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M1
uvc = min{Qc, rsu(lsu − esu), rsv(lsv − esv)}

M2 = |T |

M3
v = |C||δout(v)|

Note that this model contains the difficulties of service network design which is known to be

difficult on instances having 500 or more commodities. In addition, this model contains several

more binary variables to model flow rules and FIFO. Therefore, we can conclude that we will not

be able to solve this problem exactly using a MIP solver for practically sized instances.

4.4 Improvement Heuristics

Every improvement heuristic we present has local improvement iterations following the same gen-

eral template:

1. Randomly select a sort s̃ ∈ S

2. Select some subset C̃ of the flow classes processed in s̃

3. For each n ∈ V induct
s̃ , remove flow belonging to C̃ from s̃ and downstream sorts by using

Algorithm 18. Record the weight of the flow of class c removed downstream from n as ocn.

4. Find a new n→ V c flow of size ocn for each n ∈ V induct
s̃ , c ∈ C̃

5. (If Required) Run FIFOFix procedure to locally resolve FIFO violations, and reject improve-

ment if it violations sort capacity constraints.

6. If the cost increased during iteration, reject improvement.
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Algorithm 18 Remove Downstream Flow

1: function REMOVEFLOW(s̃, C̃)
2: ocn ← 0 ∀ n ∈ V induct

s̃ , c ∈ C̃ ▷ Flow source after removal
3: for n ∈ V induct

s̃ do
4: for a ∈ δout(n) do
5: for c ∈ C̃ do
6: ocn ← ocn + f c

a

7: RemoveFlowRecurse(a, c, f c
a)

8: return ocn ∀ n ∈ V induct
s̃ , c ∈ C̃

9: procedure REMOVEFLOWRECURSE(Time-Space Arc (u, v), Flow-Class c, Amount-To-
Remove x)

10: f c
uv ← f c

uv − x
11: if v ∈ V c then ▷ If v is a destination node for c
12: return
13: r ← 0
14: for (v, w) ∈ δout(v) do
15: z ← min{f c

vw, x− r}
16: RemoveFlowRecurse((v, w), c, z)
17: r ← r + z
18: if r = x then
19: return

A time-feasible primary solution can be constructed by sending every package along a primary

sort path from it’s origin to it’s destination. During this process, the only possible sources of

infeasibility are FIFO violations and sort capacity violations. To address the former, we will outline

a process that can mend a FIFO violation. To address the latter, it may possible to penalize sort

capacity violations in the objective function. However, we assume that we are provided a fully

feasible initial solution.

In order to discuss the heuristics, the following additional notation is useful:

• C(a) := {c ∈ C : f c
a > 0} ∀ a ∈ AT

• Sout(n) := {s ∈ S : ∃(u, v) ∈ δout(n) : sv = s, ∃c ∈ C : f c
uv > 0} ∀ n ∈ V disp

• Sin(n) := {s ∈ S : ∃(u, v) ∈ δin(n) : su = s,∃c ∈ C : f c
uv > 0} ∀ n ∈ V induct
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• Sout((u, v)) := {s ∈ S : ∃(v, w) ∈ δout(v) : sw = s,∃c ∈ C : f c
uv > 0, f c

vw > 0} ∀

(u, v) ∈ Asort

• Sout(s) = ∪n∈V disp
s

Sout(n) ∀ s ∈ S

• Sin(s) = ∪n∈V induct
s

Sin(n) ∀ s ∈ S

C(a) represents the set of flow classes with positive flow on a. The notation Sout(·) in general

represents the set of sorts that the argument builds to. In the case of a node argument n, Sout(n)

represents the set of sorts that n dispatches a positive amount of flow to. In the case of a sort

arc argument a, Sout(a) represents the set of sorts that a could be building to. For any sort arc a,

gsa = 0 is feasible in our model if and only if s ̸∈ Sout(a).

We assume that the network has been constructed such that the following property holds

Property 3. For any dispatch node n ∈ V disp and any sort s ∈ S(n), there exists exactly one arc

a = (n, x) having x ∈ V induct
s .

Each improvement heuristic avoids binary modelling for flow rule feasibility and FIFO feasi-

bility. Feasible values of g and z depend not on the quantity flowed, but on which arcs the flow is

positive. We have the following useful property for maintaining flow rule feasibility.

Proposition 7. Fix feasible values α̃ and β̃ at their bounds. Adding c-flow to a timed-path p =

(n1, ..., n2m+1) following a sort path psort = (s1, ..., sm) will be flow rule feasible if and only if

minj=1,...,i{α̃sj
c} ≥ β̃si

c
for i = 1, ...,m.

Proof. (⇐) Suppose minj=1,...,i{α̃sj
c} < β̃si

c
for some i. Adding flow cannot increase α or de-

crease β. Then αc
si
≤ minj=1,...,i{α̃sj

c} < β̃si

c ≤ βc
si

.

(⇒) After adding the flow we will have αc
si
= minj=1,2,..,i{α̃sj

c} and βc
si
= maxj=i,i+1,...,m{β̃sj

c}.

It remains to show that

min
j=1,...,i

{α̃sj
c} ≥ β̃si

c ⇒ min
j=1,...,i

{α̃sj
c} ≥ max

j=i,i+1,...,m
{β̃sj

c}
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i = 1, ...,m to prove the vertices along the path are flow rule feasible. Take any i ∈ {1, ...,m− 1}

and k ∈ {i+ 1, ...,m}. Then

min
j=1,...,i

{α̃sj
c} ≥ min

j=1,...,k
{α̃sj

c} ≥ β̃sk

c

from which the above follows.

Using this, we may add flows one path at a time, and guarantee that the result will adhere to

flow-rule constraints.

Knowing beforehand whether adding c-flow to a new timed path p will violate FIFO is possible,

but difficult to describe in adequate notation. Some of the proposed heuristics opt to allow but track

FIFO violations, and locally fix the violations using a provided procedure.

4.4.1 Maintaining α and β Labels

The heuristics we introduce use feasible αc
s and βc

s values to determine the feasibility of resulting

flow. Whenever flow is added or removed from travel arcs, an update to these labels may be neces-

sary. If f c
uv moves from 0 to a positive value, αc

sv may need to become smaller. This change would

then propagate to Sout(sv) and so on. Similarly, βc
su may need to increase, and this change would

propagate to Sin(su) and so on. The reverse updates may be required if f c
uv moves from a positive

value to 0. Algorithm 19 contains pseudocode for how these updates could be implemented.
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Algorithm 19 α, β updates
1: procedure UPDATEALPHA(Sort s, Flow class c)
2: α̃← min{lcs,mins′∈Sin(s){αc

s′}}
3: if αc

s = α̃ then
4: return
5: αc

s ← α̃
6: for s′ ∈ Sout(s) do
7: UpdateAlpha(s′, c)
8: procedure UPDATEBETA(Sort s, Flow class c)
9: β̃ ← max{ls,maxs′∈Sout(s){βc

s′}}
10: if βc

s = β̃ then
11: return
12: βc

s ← β̃
13: for s′ ∈ Sin(s) do
14: UpdateBeta(s′, c)

4.4.2 Maintaining gsa labels

Similarly, in order to detect FIFO violations so that they may be fixed, the improvement heuristics

presented may make use of a feasible set of gsa, a ∈ Asort
s , s ∈ S values. The value of gsa depends

not only on the flows on a = (u, v), but also on the arc (v, w) where sw = s. Whenever flow

moves from zero to positive, or vice versa, on any arc (sort, travel, or hold), the values of g may

need to be updated. We outline the updates for each case below.

• If f c
a moves from zero to positive and a is a sort arc, then gsa should be set to 1 for all s where

there exists an arc (v, w) with sw = s and f c
vw > 0.

• If f c
a moves from zero to positive and a = (v, w) is a travel arc, then for all a′ = (u, v) ∈

Asort
sv where f c

a′ > 0, gsva′ should be set to 1.

• If f c
a moves from positive to zero and a = (u, v) is a sort arc, then consider all s where

gsa = 1. Consider the unique arc a′ = (v, w) where sw = s. If C(a) ∩ C(a′) ̸= ∅ set gsa = 0.

• If f c
a moves from positive to zero and a = (v, w) is a dispatch arc, then consider all a′ =

(u, v) where gswa′ = 1. If C(a) ∩ C(a′) = ∅, set gswa′ = 0.
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4.4.3 FIFOFix Procedure

Consider a general FIFO violation from arcs a1, a2 ∈ Asort
s1

where a2 ∈ Aconflict
a1

and gs2a1 = gs2a2 = 1.

The situation is depicted in Figure 4.4. For clarity note that the arcs d1 and d2 are the only travel

arcs, they connect s1 to s2, and that u1, u2, u3 ∈ V induct
s1

, v1, v2 ∈ V disp
s1

, w1, w2 ∈ V induct
s2

, and

x1, x2, x3 ∈ V disp
s2

. Note that according to Property 3, d2 is the only arc connecting v2 to s2. Thus,

we know C(a2) ∩ C(d2) ̸= ∅. If we alter the flow such that C(a2) ∩ C(d2) = ∅, then gs2a2 = 0

would be feasible. The FIFOFix procedure takes flow of a class in C(a2) ∩ C(d2) traveling on the

subpath (a2, d2, yi), and moves it to the subpath (a3, d1, y
′
i). Note the origin and destination nodes

of these subpaths are identical. The procedure continues moving flow until C(a2) ∩ C(d2) = ∅.

u2 u1 u3

v1 v2

w1 w2

x1 x2 x3

a
3

a
2

a
1

d
1

d
2

y ′
1

y ′
2

y ′
3 y

1

y
2

y3

Figure 4.4: Resolving FIFO violations with FIFOFix: flow moves from red to green subpaths
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Algorithm 20 FIFO Fix Procedure

1: procedure FIFOFIX(Sort arcs violating FIFO a1 = (u1, v1), a2 = (u2, v2)) ▷ Assume
WLOG tv2 > tv1

2: for s ∈ Sout(a1) ∩ Sout(a2) do
3: FIFOFixSort(a1, a2, s)
4: procedure FIFOFIXSORT(Sort arcs violating FIFO a1 = (u1, v1), a2 = (u2, v2), sort s)
5: Let d1 = (v1, w1) denote the unique v1 − s arc
6: Let d2 = (v2, w2) denote the unique v2 − s arc
7: Let a3 = (u2, v1)
8: for c ∈ C(a2) ∩ C(d2) do
9: F ← min{f c

a2
, f c

d2
}

10: f c
a2
← f c

a2
− F

11: f c
d2
← f c

d2
− F

12: f c
a3
← f c

a3
+ F

13: f c
d1
← f c

d1
+ F

14: r ← 0 ▷ Tracks flow removed downstream from w2

15: for y ∈ δout(w2) : C(y) ∋ c do
16: Let x denote the head of y
17: Let y′ = (w1, x)
18: f ← min{F − r, f c

y}
19: f c

y ← f c
y − f

20: f c
y′ ← f c

y′ + f
21: r ← r + f

Proposition 8. After the procedure FIFOFix, gsa2 = 0 is feasible for all s ∈ Sout(a1).

Proof. After the procedure FIFOFixSort, C(a2) ∩ C(d2) = ∅. Then Sout(a2) ̸∋ s, because d2 is

the unique arc connecting v2 to s. Since this is performed for all s ∈ Sout(a1) ∩ Sout(a2), we can

conclude that Sout(a1) ∩ Sout(a2) = ∅ after FIFOFix.

Proposition 9. After finitely many iterations of FIFOFix, performed in arbitrary order, the solution

will contain no FIFO violations.

Proof. FIFOFix pairwise moves positive quantities of flow from subpaths (a2, d2, yi) to subpaths

(a1, d1, yi) where the end nodes are identical, but the internal nodes of the subpath (a1, d1, yi) are

strictly early than the internal nodes of (a2, d2, yi). Thus, FIFOFix could not run for an infinite
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amount of iterations, because all flow would eventually be allocated to the earliest sort arcs reach-

able by a flow source, and such a solution is guaranteed to be FIFO feasible.

4.4.4 Alt

This heuristic is implemented as follows: For step (2) of the generic local improvement procedure,

this heuristic randomly selects a destination sort s′ ∈ Sout(s̃) and chooses C̃ to be the set of classes

having positive flow on any arc connecting s̃ to s′. To add this flow back, the algorithm iterates

over c ∈ C̃, and then iterates over any possible s′′ that s̃ could build to. It then records a sort

path psort = (s̃, s′′, s1, s2, .., sm) where (s′′, s1, s2, ..., sm) is the primary sort path from s′′ to V c.

If this sort path is feasible according to the conditions of Proposition 7 it continues; otherwise,

the algorithm skips to the next possible s′′. Next, the algorithm iterates over n where ocn > 0 and

finds a cheapest cost path of capacity at least ocn following the sort path psort, records this path as

pncs′′ , adds the flow to this path, and continues. The algorithm uses the sum of the costs of these

flow paths as the joint price of alting to s′′, removes the flow from the candidate paths pncs′′ , and

records this cost as cs′′ . The algorithm then chooses s∗ ∈ argmins′′{cs′′}, and re-adds ocn units of

c-flow to the paths pncs′′ . The practicality of this approach is that it adds at most |C̃| new flow rules,

simplifying the changes required to operate the new plan.
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Algorithm 21 Alt Heuristic

1: procedure ALTHEURISTIC(Sort s̃, Flow classes C̃, Flow source ocn for n ∈ V induct
s̃ , c ∈ C̃)

2: for c ∈ C̃ do
3: for (s̃, s′′) ∈ δoutsort(s̃ do
4: (s′′, s1, s2, ..., sm)←PrimarySortPath(s′′, c)
5: psorts′′ ← (s̃, s′′, s1, s2, ..., sm)
6: if αc

s̃ ≥ βc
s′′ and min{αc

s̃, α
c
s′′ ,minj=1,...,i{αc

si
}} ≥ βc

si
for i = 1, ...,m then

7: cost← CurrentPlanCost()
8: for n ∈ V induct

s̃ : ocn > 0 do
9: pncs′′ ←FindMinCostPathFollowingSortPath(n, ocn, p

sort
s′′ , c)

10: for a ∈ pncs′′ do
11: f c

a ← f c
a + ocn

12: ∆Cs′′ ←CurrentPlanCost() −cost
13: for n ∈ V induct

s̃ : ocn > 0 do
14: for a ∈ pncs′′ do
15: f c

a ← f c
a − ocn

16: else
17: ∆Cs′′ ←∞
18: Take s∗ ∈ argmins′′{∆Cs′′}
19: for n ∈ V induct

s̃ : ocn > 0 do
20: for a ∈ pncs∗ do
21: f c

a ← f c
a + ocn
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22: function FINDMINCOSTPATHFOLLOWINGSORTPATH(Origin node o ∈ VT , Flow Quantity
ocn, Sort Path psorts′′ = (s1, s2, ..., sm), Flow Class c)

23: Next(si+1)← si for i = 1, 2, ...,m− 1
24: l(n)←∞ ∀ n ∈ VT

25: l(o)← 0
26: U ← {o}
27: while U ̸= ∅ do
28: Take u ∈ argminu∈U{l(u)}
29: U ← U \ {u}
30: if u ∈ V disp

sm then
31: return BackTrack(parent, u, o)
32: if u ∈ V induct

su then
33: snext ← su
34: else
35: snext ←Next(su)
36: for (u, v) ∈ δout(u) : sv − snext do
37: cost←MarginalCost ((u, v), ocn, c)
38: if l(u) + cost < l(v) then
39: parent(v)← u
40: l(v)← l(u) + cost
41: U ← U ∪ {v}

4.4.5 Reflow

We propose another local improvement heuristic for this problem that also avoids incorporating

the zdcuv variables into the model. At each iteration, a building b, sort s ∈ Sb, and a subset of the

destination-service classes with positive flow through s, denoted C̃, are somehow chosen. All flow

belonging to a class in C̃ moving through s is removed at the current sort s and from all arcs

downstream from s. The pseudo-code for flow removal is shown in Algorithm 18.

Once the flow is removed, the goal is to find a new flow that is flow rule feasible, sort feasible,

loads vehicles in FIFO order, and delivers each flow class on time. We rely on a heuristic procedure

to add flow back iteratively, class by class. We specify a minimum-splitable-quantity q. For each

class, we find minimum marginal cost path that can accommodate at least q and respects due times,

FIFO, and flow rule feasibility. We then saturate this path, and continue finding more if necessary.
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The pseudocode for this is given in Algorithm 22.

Algorithm 22 Reflow Loop
1: function FLOWLOOP(TimeSpaceNode v, Flow-Class c, Amount-To-Path q)
2: flowed← 0
3: while flowed ̸= q do

4: q′ ←

{
q − flowed if (q − flowed) < 2q′

q′ otherwise
5: p←FINDPATH(v, c, q′)
6: y ← minimum available capacity on p
7: if y ≥ q − flowed then
8: f ← q − flowed
9: else

10: r ← q − flowed− y
11: if r < q′ then
12: f ← y − (q′ − r)
13: else
14: f ← y

15: Add f units of flow to p
16: flowed← flowed+ f

We can find the minimum marginal cost path satisfying the conditions of Proposition 7 by

solving a shortest path problem on an expanded state space. Then we can saturate the path, update

α, β, and the marginal costs and repeat until the entire flow-class has been added back.

Finding a path satisfying the conditions of Proposition 7 can be accomplished by a labelling

algorithm on a state space of (b, a, α, c), where b is a building, a is an arrival time, α is the due time

of the flow, and c is the cost at which this state can be reached. When moving from one state to

another, the arrival time and cost increase, and the due time of the flow decreases. The pseudocode

for this algorithm is given in Algorithm 23.

At each iteration, a single flow class c is removed from the solution and re-flowed. When

the flow class is removed, the values α and β are updated. Our heuristic works by sequentially

introducing paths satisfying this property to the flow basis, and updating the α and β.

131



Algorithm 23 Path Finding Algorithm
1: function FINDPATH(TimeSpaceNode v, Flow-Class k, Amount-To-Path q)
2: U ← {(bv, tv, 0)}
3: while U ̸= ∅ do
4: Take (u, α, c) ∈ argmin(b′,a′,c′)∈U{c′}
5: if u = (dk, t) : t ≥ α then
6: return BackTrack(u, α, c)
7: U ← U \ {(u, α, c)}
8: for (u, v) ∈ δout(u) do
9: ᾱ← min{αk

sv , α}
10: c̄← c+MarginalCost((u, v), q, k)
11: if ᾱ ≥ βk

sv then ▷ If state is flow rule feasible
12: U ← U ∪ {(v, ᾱ, c̄)}
13: function MARGINALCOST(TimeSpaceArc (u, v), Quantity q, Flow-Class k)
14: c← 0
15: if (u, v) ∈ Asort

su then
16: c← c+ hq
17: o←SortViolation((u, v), q)
18: if o > 0 then
19: c← c+M

20: if ∃k ∈ K, a ∈ Aconflict
(u,v) : fk

a > 0 then
21: c← c+M

22: else
23: c← c+

24: return 0
25: function SORTVIOLATION(TimeSpaceArc (µ, ν), Quantity q)
26: o← 0
27: for (u, v) ∈ Asort

µ do

28: quv ←

{
q if tu ≤ tµ and tv ≥ tν

0 otherwise
29: o← o+max{quv +

∑
k∈K

∑
(x,y)∈Asort

s :ty≤tv ,tx≥tu
qkf

k
xy − rs(tv − tu), 0}

30: return o

4.4.6 MIP-Based Heuristics

The bulk of the computational difficulty of using mixed integer programming to find feasible paths

arises from the variables z and g used to model flow rule feasibility and FIFO feasibility. However,

we have demonstrated and used Proposition 7 to maintain flow rule feasibility in other heuristics.
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The core idea of the proposed MIP-based heuristics is to construct path sets P̃ c for c ∈ C̃

connecting s̃ to V c, the destination vertices for c. The set of paths P̃ c will be “jointly” flow rule

feasible and FIFO feasible. That is, even if there was positive flow added to every path in P̃ c, the

resulting plan would be flow rule feasible and FIFO feasible. Furthermore, if we guarantee P̃ c

contains every path from which flow was removed in step 3 of the general improvement heuristic

template, we can guarantee that a path-based MIP using variables restricted to P̃ c could recover

the initial feasible solution.

Optimizing on such a restricted set of paths (those that are jointly flow rule and FIFO feasible)

can limit the possible improvement at each iteration, but allows us to model the problem as the

MIP below. This MIP completely avoids the difficult variables and constraints. In the instances we

solve, Gurobi can solve this MIP to optimality for reasonable sized C̃ in seconds.

min
∑
s∈S

[
∑

a∈Adisp
s

caya + hs

∑
a∈Asort

s

∑
c∈C

∑
p∈P̃ c:p∋a

f c
p ]

s.t.
∑

p∈P̃ c:p=(i,n2,n3,...,nm)

f c
p = δci ∀i ∈ N, c ∈ C

Qya ≥
∑
c∈C

∑
p∈P̃ c:p∋a

f c
p ∀a ∈ Adisp

s , s ∈ S

∑
c∈C

∑
(x,y)∈Asort

s

∑
p∈P̃ c:p∋xy :ty≤tv ,tx≥tu

f c
p ≤ rs(tv − tu) ∀(u, v) ∈ Asort

s , s ∈ S

f c
p ≥ 0 ∀p ∈ P̃ c, c ∈ C

ya ∈ Z+ ∀a ∈ Adisp
s , s ∈ S

Key to the success or failure of this approach is the method of constructing P̃ c. We provide

two possible implementations for testing, but the design of better methods may be warranted. Both
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implementations initialize P̃ c to the set of paths from which flow is removed in Step 3 of the general

improvement heuristic template. They then use temporary α, β, and g values to sequentially add

paths to P̃ c that are guaranteed to be flow rule and FIFO feasible. To do this, one can assume there

is positive flow on every path in P̃ c and set the temporary α, β, and g accordingly, and sequentially

add paths satisfying the conditions of Proposition 7 and Equations 4.1 and 4.2.

The first implementation, denoted AltMIP, runs the entire alt heuristic, undoes the changes,

and sequentially attempts to add every path pncs∗ to P̃ c. The second implementation, denoted Re-

flowMIP, runs the entire Reflow heuristic, undoes the changes, and sequentially attempts to add

every path generated by the heuristic to P̃ c. These implementations will take strictly more time

than using the underlying heuristics; however, the hope is that larger cost savings will accrue by

allowing the optimization problem to encompass joint allocation of flow across multiple paths in-

stead of greedily adding flow a single path at a time. They also have the benefit that they are

guaranteed to produce a FIFO and sort feasible solution at each iteration. For Alt and Reflow,

we must check for violations at each iteration and run FIFOFix or reject the solution if there are

violations.

4.5 Computational Experiments

In order to test the effectiveness of the proposed solution approaches, we use several industry

instances outline in Table 4.1. These instances contain actual demand from a large parcel express

company for three different weeks. To create the instances, all packages originating and due within

a pre-specified region are included. We consider two regions: South and East. South contains all

states roughly bounded by Alabama, North Carolina, and Florida. East includes all states roughly

bounded by Louisiana, Kentucky, Michigan, Maine, and Florida. The number of commodities,

flow classes, and buildings contained in each instance is shown in the table. The time horizon is

induced by the earliest time a package originates until the latest time at which a package is due.

Each instance contains one week of package originations.
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Table 4.1: Instance characteristics

Week Scope |K| |C| |B| Horizon Start Horizon End Primary Flow Rules

6/12 South 366,525 1,060 527 6/6 6/21 85,740

6/12 East 2,490,498 2,919 1,373 6/6 7/23 281,917

6/19 South 366,303 1,063 527 6/13 6/28 85,740

6/19 East 2,495,337 2,914 1,373 6/13 7/30 281,917

6/26 South 365,707 1,058 527 6/20 7/6 85,740

6/26 East 2,499,377 2,913 1,373 6/20 8/6 281,917

For these instances, we construct a baseline solution by sending each commodity on a minimum

marginal cost path following the primary sort path of its flow class. Each improvement heuristic

begins with this common plan as initial solution and is given one hour to improve it.

Because the Reflow heuristic contains a minimum-splitable-quantity parameter, we first present

results of varying this parameter. We then fix this parameter and explore varying the distribution

of the flow classes chosen to re-optimize in Reflow and ReflowMIP. We compare these plans with

the plans produced by Alt and AltMIP.

4.5.1 Varying Minimum-Splitable-Quantity

We first vary the minimum-splitable-quantity parameter of Reflow among {200, 500, 1000, 2500}.

A minimum-splitable-quantity of 1000 means that Reflow will only split flow across two or more

flow paths if each flow path contains at least 1000 cubic inches of flow.

Table 4.2 shows the cost, trailer miles, and sortation savings after an hour of improvement

with each parameter setting on each instance. We first note that the value of the parameter has

a negligible impact of the savings. Table 4.3 shows the value of the parameter that produced the

cheapest plan on each instance. We postpone a general discussion of the results to the next section

and fix the parameter value to 1000 in all future experiments.
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Table 4.2: Varying minimum splitable quantity

Instance week Instance Scope MinSplitQuant Num. Iter. Cost Savings Trailer Miles Savings Volume Sorted Savings

6/12 East 200 385 0.069% 0.132% 0.003%

6/12 East 500 424 0.101% 0.208% -0.009%

6/12 East 1000 398 0.102% 0.200% 0.002%

6/12 East 2500 382 0.094% 0.180% 0.002%

6/12 South 200 2732 1.517% 3.069% -0.007%

6/12 South 500 2826 1.737% 3.558% -0.044%

6/12 South 1000 2760 1.625% 3.292% -0.004%

6/12 South 2500 2793 1.673% 3.398% -0.014%

6/19 East 200 403 0.059% 0.116% -0.002%

6/19 East 500 396 0.083% 0.159% 0.000%

6/19 East 1000 410 0.098% 0.187% 0.002%

6/19 East 2500 401 0.082% 0.158% 0.001%

6/19 South 200 2810 1.488% 2.978% -0.003%

6/19 South 500 2821 1.636% 3.252% 0.017%

6/19 South 1000 2779 1.557% 3.109% 0.007%

6/19 South 2500 2726 1.562% 3.136% 0.009%

6/26 East 200 367 0.076% 0.149% 0.001%

6/26 East 500 394 0.096% 0.191% -0.001%

6/26 East 1000 382 0.053% 0.098% 0.003%

6/26 East 2500 397 0.086% 0.168% 0.002%

6/26 South 200 2753 1.615% 3.333% -0.027%

6/26 South 500 2800 1.502% 3.065% -0.008%

6/26 South 1000 2808 1.775% 3.641% -0.030%

6/26 South 2500 2806 1.552% 3.161% 0.022%
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Table 4.3: Best splitable quantity

Instance week Instance Scope Best Splitable Quantity

6/12 East 1000

6/12 South 500

6/19 East 1000

6/19 South 500

6/26 East 500

6/26 South 1000

4.5.2 Varying Distribution of Classes to Reflow

At each iteration, Reflow and ReflowMIP select a sort, s̃, and a subset of the flow classes present

at s̃, C̃. The heuristics re-optimize the flow of all classes belong to C̃ downstream from s̃.

We generate C̃ as follows. Let Cs̃ be the set of flow classes present at s̃. We specify a parameter

Nmax, draw a random integer N uniformly from {1, 2, ...,min{Nmax, |Cs̃|}} and select C̃ to be

N random elements of Cs̃ chosen with equal probability. We vary the value of Nmax among

{50, 150, 500} and compare against the plans produced by Alt and AltMIP.

Table 4.4 shows the number of iterations performed, as well as the cost, trailer-miles, and

sortation savings for the plans produced by each method on each instance. We first note that as

Nmax is increased, the number of iterations completed during an hour reduces. This indicates that

the time to complete each improvement iteration increases with Nmax. Despite this, there does not

appear to be a clear relationship between Nmax and the overall cost savings. There is some benefit

to using larger Nmax for Reflow on the South region instances, but this does not hold for the East

region.
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Table 4.4: Varying distribution of classes to reflow

Instance Week Instance Scope Method Nmax Num. Iter. Cost Savings Trailer Miles Savings Volume Sorted Savings

6/12 East Reflow 50 297 0.122% 0.238% -0.001%

6/12 East ReflowMIP 50 412 0.047% 0.080% 0.005%

6/12 East Reflow 150 131 0.081% 0.152% 0.005%

6/12 East ReflowMIP 150 157 0.074% 0.141% 0.006%

6/12 East Reflow 500 55 0.081% 0.160% 0.001%

6/12 East ReflowMIP 500 66 0.082% 0.156% 0.006%

6/12 East Alt NA 742 0.263% 0.601% -0.064%

6/12 East Alt MIP NA 5092 0.355% 0.619% 0.089%

6/12 South Reflow 50 1989 1.708% 3.487% -0.027%

6/12 South ReflowMIP 50 2819 0.927% 1.763% 0.096%

6/12 South Reflow 150 859 1.966% 4.236% -0.211%

6/12 South ReflowMIP 150 996 1.071% 2.060% 0.094%

6/12 South Reflow 500 357 2.601% 5.960% -0.580%

6/12 South ReflowMIP 500 404 0.566% 1.097% 0.066%

6/12 South Alt NA 5406 3.218% 7.978% -1.225%

6/12 South Alt MIP NA 18317 0.934% 1.528% 0.368%

6/19 East Reflow 50 303 0.099% 0.193% -0.003%

6/19 East ReflowMIP 50 392 0.034% 0.057% 0.006%

6/19 East Reflow 150 147 0.110% 0.214% 0.000%

6/19 East ReflowMIP 150 189 0.048% 0.084% 0.007%

6/19 East Reflow 500 60 0.088% 0.171% -0.002%

6/19 East ReflowMIP 500 56 0.042% 0.079% 0.004%

6/19 East Alt NA 755 0.286% 0.635% -0.064%

6/19 East Alt MIP NA 5323 0.246% 0.432% 0.055%

6/19 South Reflow 50 1983 1.858% 3.755% -0.014%

6/19 South ReflowMIP 50 2794 1.060% 2.009% 0.091%

6/19 South Reflow 150 911 2.428% 5.112% -0.204%

6/19 South ReflowMIP 150 1050 0.841% 1.597% 0.074%

6/19 South Reflow 500 368 2.364% 5.285% -0.436%

6/19 South ReflowMIP 500 407 0.782% 1.525% 0.067%

6/19 South Alt NA 5379 3.445% 8.588% -1.445%

6/19 South Alt MIP NA 18539 1.013% 1.696% 0.356%

6/26 East Reflow 50 235 0.081% 0.158% 0.000%

6/26 East ReflowMIP 50 415 0.057% 0.103% 0.006%

6/26 East Reflow 150 133 0.105% 0.209% 0.000%

6/26 East ReflowMIP 150 159 0.056% 0.105% 0.006%

6/26 East Reflow 500 61 0.087% 0.174% 0.001%

6/26 East ReflowMIP 500 64 0.017% 0.026% 0.007%

6/26 East Alt NA 735 0.236% 0.545% -0.065%

6/26 East Alt MIP NA 5217 0.255% 0.438% 0.073%

6/26 South Reflow 50 2008 1.878% 3.869% -0.040%

6/26 South ReflowMIP 50 2851 0.854% 1.638% 0.082%

6/26 South Reflow 150 884 2.126% 4.572% -0.212%

6/26 South ReflowMIP 150 1024 0.646% 1.234% 0.079%

6/26 South Reflow 500 348 2.668% 6.136% -0.575%

6/26 South ReflowMIP 500 393 0.901% 1.819% 0.047%

6/26 South Alt NA 5372 3.321% 8.310% -1.298%

6/26 South Alt MIP NA 18696 0.831% 1.411% 0.296%

One result at first glance appears to be counter intuitive: the MIP-based methods are performing

more iterations in under one hour than the non-MIP methods. This is due to the fact that the MIP-
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based methods can not produce a FIFO or sort infeasible improvement. In the implementation of

the non-MIP methods, there is an expensive check after each iteration to verify that the changes

are feasible. If the changes are infeasible, another step reverts to the solution at the beginning of

the iteration.

Next, we consider the performance of each method in general. The best performing heuristics

are Alt and AltMIP. There could be various causes of this. The first is that these methods free up

all flow classes moving between a pair of sorts, potentially increasing the likelihood that a trailer

can be removed from the solution; Reflow and ReflowMIP can choose C̃ such that each trailer

contains some element in C \ C̃. A second potential factor is that Alt and AltMIP generate paths

following the primary sort path of each flow class downstream from a chosen next sort. It may

be that this restriction can guide the heuristic to better plans given that primary sort paths were

designed manually for this purpose over many years.

In general, we see the savings are proportionally better on the smaller instances. This disap-

pointing result is likely due to the fact that the improvement is local, leading to some constant

rate of savings over time. Despite this, Alt can produce 3.218%-3.445% cost savings and 7.987%-

8.588% trailer miles savings on the South instances in under one hour. This is very good perfor-

mance considering the scale of the instances being solved.

We now consider the performance gap between AltMIP and ReflowMIP. As we have already

stated, the performance gap could be attributed to the choice of C̃ or the restriction of the flows

generated. However, there are other differences among these methods. Figure 4.5 shows the

distribution of the number of new paths added to the restricted path set and this number plotted

against |C̃| for ReflowMIP with Nmax = 500 on the 6/19 South instance. Figure 4.6 shows the

same for AltMIP. We see that at each iteration, ReflowMIP is adding significantly more paths to the

restricted path set compared to AltMIP. This, combined with the fact that Alt is faster than Reflow,

allows AltMIP to complete significantly more improvement iterations in an hour than ReflowMIP.
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Figure 4.5: Paths added to flow basis: ReflowMIP

Figure 4.6: Paths added to flow basis: AltMIP

4.6 Conclusion

There is a great need for fast automated planning and decision support tools in the parcel express

and E-retail industries. Plans need to be adjusted quickly in the scenarios of weather shutdowns

or demand shocks. However, many solution approaches for flow and loadplanning ignore prac-

tical constrains like sort capacity and FIFO loading, or assume sufficient automation exists in

every building to direct each commodity independently. In industry instances containing thou-

sands of buildings, millions of commodities, and tens of millions of packages, many buildings

are not equipped with such automation, and thus plans output by existing tools are not directly

implementable.

In this work, we have presented a model for generating flow and load plans where commodities

are aggregated into flow classes that may be independently directed at every building. Our model
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produces plans that guarantee each package will be delivered on time despite the aggregated level

of control. This model is too unwieldy for realistically sized instances, and no known heuristics can

be adapted to this environment. Therefore, we propose and compare four improvement heuristics

capable of preserving the feasibility and desired practicality of the plans. All four heuristics rely on

a key property we point out that allows flow to be added one path at a time to a solution in such a

way that flow-rule-feasibility is preserved. One of these heuristics, Alt, was shown to produce cost

savings of up to 3.4% and savings in trailer-miles of up to 8.5% on large scale industry instances

in under one hour.
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APPENDIX A

MARGINAL COST PATHING APPENDIX

A.1 Capacity Table Dynamic Program

Algorithm 24 Capacity Table Construction
1: function BUILDCAPACITYTABLE

2: for a ∈ A do
3: ya ← 0 ∈ Z|Va|

4: Ya ← {}
5: Recurse(Qmax

a , ya, Ya)

6: return {Ya}a∈A
7: procedure RECURSE(Qmax

a , y, Y )
8: Q←

∑
v∈Va

Qvyv
9: c←

∑
v∈Va

Cavyv
10: for v ∈ Va do
11: c′ ← C + Cav

12: Q′ ← Q+Qv

13: evi ←

{
1 if v = i

0 otherwise
∀i ∈ Va

14: y′ ← y + ev
15: if Q′ > max{Q̃ : (Q̃, ỹ) ∈ Y } then
16: RemoveDominated((Q′, y′), Y ′)
17: Y.insert((Q′, y′))
18: if Q′ < Qmax

a then
19: Recurse(Qmax

a , y′, Y ′)

20: else
21: (Q̃, ỹ)← argmin(Q̃,ỹ)∈Y {Q̃ : Q̃ ≥ Q′}
22: C̃ ←

∑
v∈Va

Cavỹv
23: if C ′ < C̃ then
24: RemoveDominated((Q′, y′), Y ′)
25: Y.insert((Q′, y′))
26: if Q′ < Qmax

a then
27: Recurse(Qmax

a , y′, Y ′)
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28: procedure REMOVEDOMINATED((Q, y), Y )
29: C ←

∑
v∈Va

Cavyv
30: (Q′, y′)← argmax(Q̃,ỹ)∈Y {Q̃ : Q̃ ≤ Q}
31: if (Q′, y′) = ∅ then
32: return
33: C ′ ←

∑
v∈Va

Cavy
′
v

34: while C ′ > C do
35: Y.remove(Q′, y′)
36: (Q′, y′)← argmax(Q̃,ỹ)∈Y {Q̃ : Q̃ ≤ Q}
37: if (Q′, y′) = ∅ then
38: return
39: C ′ ←

∑
v∈Va

Cavy
′
v

40: return
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A.2 Detailed Time Refinement

Algorithm 25 Detailed Time Refinement
1: procedure TIMEREFINEMENT

2: while InfeasiblePaths ̸= ∅ do
3: R← ∅ ▷ Initialize the set of commodities to repath
4: (k, P )← InfeasiblePaths.top()
5: InfeasiblePaths← InfeasiblePaths \ {(k, P )}
6: I ← FindVerticesToInsert(k, P ) ▷ Find vertices to insert to remove mapping error
7: for a ∈ P do
8: Ka ← Ka \ {k} ▷ Remove the commodity from the infeasible path
9: for (l, t) ∈ I do

10: R′ ←InsertNewNode(l, t) ▷ Record which paths are ‘broken’ during vertex
insertion

11: R← R ∪R′

12: for (k′, P ′) ∈ R do ▷ Remove paths from the network which were ‘broken’ during
insertion

13: for a ∈ P ′ do
14: Ka ← Ka \ {k′}
15: K ′ ← {k′ : (k′, P ′) ∈ R} ∪ {k} ▷ K ′ contains commodities whose path was removed
16: PathCommodities(K ′)
17: function FINDVERTICESTOINSERT(Commodity k, Path P )
18: a− = ((l−1 , t

−
1 ), (l

−
2 , t

−
2 ))← P [0]

19: if t−1 < ek then ▷ If commodity leaves origin before its release time
20: return {(l−1 , ek)} ▷ Insert the exact release time of the commodity
21: for i ∈ 1, ...|P | − 2 do ▷ Iterate over consecutive arcs a−, a in P
22: a = ((l1, t1), (l2, t2))← P [i]
23: if t1 < t−1 + τ(l−1 ,l−2 ) then ▷ If commodity departs on a before a− arrives in real time
24: return {(l−2 , t−1 + τ(l−1 ,l−2 ))} ▷ Insert the actual arrival time of a−

a− ← a
25: if t−1 + τ(l−1 ,l−2 ) > lk then ▷ If commodity arrives to destination after its due time
26: return {(l−2 , t−1 + τ(l−1 ,l−2 )), (l

−
2 , lk)} ▷ Insert the actual arrive of the last arc, and the

due time of the commodity
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27: function INSERTNEWNODE(Location l, double t)
28: R← ∅ ▷ Initialize set of paths which are ‘broken’ during insertion
29: T ′ ← T ′ ∪ {t}
30: LT ′ ← LT ′ ∪ {(l, t)} ▷ Add the new point as a vertex
31: n1 ← (l,max{t′ : (l, t′) ∈ LT ′ , t′ < t}) ▷ Find vertex at l immediately preceding (l, t) in

time
32: for (l, l′) ∈ δ+F (l) do ▷ Iterate over forward star of l in the flat network
33: n′ ← (l′,max{t′ : (l′, t′) ∈ LT ′ , t′ < t+ τll′} ▷ Map arrival of dispatch to a vertex in

LT ′

34: AT ′ ← AT ′ ∪ {((l, t), n′)} ▷ Add new timed arc to the network
35: for a = ((l′, t′), n1) ∈ δ−NT ′ (n1) do ▷ Iterate over reverse star of n1 in the time space

network
36: if t′ + τl′l ≥ t then ▷ If this arc can be optimistically mapped to the new node
37: anew ← ((l′, t′), (l, t)) ▷ Replace this arc with a new one mapped to the new node
38: AT ′ ← (AT ′ \ {a}) ∪ {anew}
39: R← R∪ ReplaceArc(a, anew)
40: return R
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A.3 Arc Improvement Evaluation Details

Algorithm 26 EvaluateArcImprovement
1: function EVALUATEARCIMPROVEMENT(Arc a)
2: R← ∅
3: for k ∈ Ka do
4: R← R ∪ {k}
5: Pk ← CurrentPathOf(k)
6: for a′ ∈ Pk do
7: if Cprev[a

′] = ∅ then
8: Cprev[a

′]← a′.Cost() ▷ Record cost of arc before improvement
9: A′ ← A′ ∪ {a′}

10: Ka′ ← Ka′ \ {k}
11: Cnew[a

′]← a′.Cost() ▷ Record cost of arc after removal
12: for k ∈ R do
13: o← (ok,max{t′ : (ok, t′) ∈ LT ′ , t′ ≤ ek})
14: d← (dk,min{t′ : (dk, t′) ∈ LT ′ , t′ ≥ l})
15: P new

k ←ShortestPath(o, d, qk) ▷ Solve shortest o, d path problem on N with costs
C̄a(qk)

16: for a′ ∈ P new
k do

17: if Cprev[a
′] = ∅ then

18: Cprev[a
′]← a′.Cost() ▷ Record cost of arc before improvement

19: A′ ← A′ ∪ {a′}
20: Ka′ ← Ka′ ∪ {k}
21: Cnew[a

′]← a′.Cost() ▷ Record cost of arc after improvement
22: for k ∈ R do ▷ Restore original state
23: for a′ ∈ P new

k do Ka′ ← Ka′ \ {k}
24: for a′ ∈ Pk do Ka′ ← Ka′ ∪ {k}
25: ∆C ← 0 ▷ Calculate cost change between states
26: for a′ ∈ A′ do
27: ∆C ← ∆C − Cprev[a

′] + Cnew[a
′]

28: return ∆C
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