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To all those who have paved the way.



“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt”

Translated from German: “The limits of my language mean the limits of my world”

(Wittgenstein, 1921)
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SUMMARY

Interaction between individuals is especially crucial for innovation as it enables the

exchange and recombination of knowledge necessary to create new or improve existing

technologies, processes, or products. In my dissertation, I examine the impact of inter-

personal exchange on innovation in three different contexts: neighborhoods, co-working

spaces, and university laboratories. On the neighborhood-level, I analyze how the physical

layout of cities affects innovation by influencing the organization of knowledge exchange.

Here, I exploit a novel data set covering all Census Block Groups in the contiguous United

States with information on innovation outcomes, street infrastructure, as well as population

and workforce characteristics. My results suggest that variation in street network density

may explain regional innovation differentials beyond the traditional location externalities

found in the literature. In the second chapter (co-authored), I examine the interplay between

physical proximity and other proximity dimensions in predicting technology adoption de-

cisions at one of the largest technology co-working spaces in the United States deriving

important implications for firm performance. I discuss the role of balancing physical and

other proximity dimensions in promoting the diffusion of ideas within a fast-changing

entrepreneurial ecosystem through organizing personal interactions. Finally, in the third

chapter, I analyze the impact of exposure to an entrepreneurial lab head on the innovative

output of their PhD students. Using a unique matched sample of advisors and advisees in

computer sciences and engineering at a top US research university, my findings indicate

important hidden costs to academic entrepreneurship that fall largely on the shoulders of

PhD students. Overall, this dissertation takes an important step towards understanding how

the environments of knowledge producers impact innovation via the extent to which they

enable or inhibit interpersonal exchange and influence the types of interactions that occur

among individuals.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

In a very literal sense, this dissertation is taking innovation from being up “in the air”

(Marshall, 1890) to concrete features of neighborhoods, co-working spaces, and university

laboratories that facilitate (or impede) interaction between individuals and thereby impact

innovative outcomes. I examine the role of street infrastructure, proximity dimensions and

activities of direct supervisors on innovation using three unique datasets and contexts. In the

three chapters of this dissertation, I provide evidence that these features predict innovative

outcomes via their influence on the type and extent to which interpersonal exchange can

take place.

In general, the diffusion of ideas has been found to be highly localized (Allen, 1977;

Arzaghi and Henderson, 2008) and, in theory, the assumption pervades that knowledge

(especially more tacit and complex know-how) transfers via face-to-face interaction between

individuals (Gaspar and Glaeser, 1998; Jacobs, 1969; Moretti, 2004; Rosenthal and Strange,

2001). Such interaction between individuals is especially crucial for innovation as it enables

the exchange and recombination of knowledge necessary to create new or improve existing

technologies, processes, or products (Fleming and Sorenson, 2004; Gaspar and Glaeser,

1998; Hargadon, 1998; Simonton, 2003). Moreover, over the past decades, knowledge

production has increasingly become a team process involving multiple individuals and

requiring the frequent transfer of complex ideas (Wuchty et al., 2007). This makes it ever

more important to understand what structures best support collaboration especially provided

that the individuals involved in knowledge production operate in different physical and social

environments that are organized in distinct ways. The specific features of these environments

and the manner that they are organized may impede or facilitate interpersonal exchange.

In this regard, an established literature has demonstrated the importance of features like

1



physical proximity in explaining information flows between individuals. Results indicate

that these distances can be as little as a few hundred meters in certain circumstances (Catalini,

2017; Cowgill et al., 2009; Kerr and Kominers, 2015; Reagans et al., 2005). A further stream

of work provides evidence for the importance of other features such as social proximity in

governing exchange between actors (Granovetter, 1973; McPherson and Smith-Lovin, 1987;

Singh, 2005; Reagans, 2011; Carrell et al, 2013; Ingram and Morris, 2007; Kato and Shu,

2016) and more recent studies push even further suggesting that prior ties may affect the

extent to which individuals are receptive to peer effects in the first place (Hasan and Koning,

2019). Moreover, the observation that peers – in other words entities that interact with each

other – influence performance outcomes (Chan et al., 2014b, a; Mas and Moretti, 2009;

Hwang, Liberti and Sturgess, 2018; Sacerdote, 2001; Oettl, 2012; Catalini, 2017) renders

this a fundamental topic for the field of strategy.

In this dissertation, I build on prior research by examining different features of en-

vironments that influence innovative outcomes and performance via their impact on the

extent to which and what type of interpersonal exchange takes place. I do so using three

unique data sets covering three novel settings that I compiled over the course of my PhD

program. My findings suggest that a) the physical street structure of neighborhoods can

explain innovation differentials, b) both social and product-market proximity may serve as

substitutes for physical proximity, and some knowledge space proximity bolsters and too

much reduces the impact of physical distance on technology adoption decisions, and that c)

students experience a reduction in their scientific productivity when they are exposed to an

entrepreneurial lab head.

In the first chapter, Taking Interactions and Innovation to the Neighborhood: The Role

of Physical Structures, I analyze how the physical layout of cities affects innovation by influ-

encing the organization of knowledge exchange. Here, I exploit a novel data set covering all

Census Block Groups in the contiguous United States with information on innovation out-

comes, street infrastructure, as well as population and workforce characteristics. The results

2



suggest that variation in street network density may explain regional innovation differentials

beyond the traditional location externalities found in the literature. As such, this chapter

makes two main contributions to the empirical literature on geography and innovation. First,

I use a unique dataset covering the entire contiguous USA on the smallest geographic entity

for which information on street infrastructure is available. Previous research has not been

able to apply such a micro-geographic lens to assess innovation outcomes. Second, I go

beyond the traditional location externalities examined in the empirical literature and test how

physical features of a neighborhood can affect innovation outcomes. This type of structural

difference on this level of analysis has not been considered before in empirical work and has

potentially far-reaching consequences for cities, organizations, and individuals.

In the second chapter (co-authored), Taking Interactions and Innovation to Co-Working

Spaces: The Interplay of Different Proximity Dimensions, I focus on the interplay between

physical and other proximity dimensions on technology adoption decisions at one of the

largest technology co-working hubs in the United States. I further discuss implications for

startup performance and the design of entrepreneurial ecosystems. Using floor plans to

measure physical proximity, I find that close proximity greatly influences the likelihood

of adopting an upstream (production) technology also used by a peer firm. This effect,

however, quickly decays with distance where startup firms that are more than 20 meters

away are no longer influenced by each other. The results suggest that both social and

product-market proximity may serve as substitutes for physical proximity, some knowledge

space proximity bolsters and too much reduces the impact of physical distance on technology

adoption decisions. My findings further indicate that too much technology adoption may

not necessarily improve startup performance. This goes in line with previous research

suggesting limits to the amount and frequency of technology adoption (Swank and Visser,

2015; Hassan and Mertens, 2017) and indicating that observational learning is error prone

(Bikhchandani et al., 1998). Overall, this chapter provides fundamental insights for the

design of communities that support knowledge production, entrepreneurship, and innovation.
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In my third chapter, Taking Interactions and Innovation to the Lab: Exposure to an

Entrepreneurial Advisor, I examine the impact of exposure to an advisor engaged in en-

trepreneurship on the innovative output of their advisees. Using a unique sample of advisors

and advisees in computer sciences and engineering at a top US research university from 2000

- 2013, I assess variation in PhD students’ innovative and career outcomes before and after

research faculty transitions into entrepreneurship. I do so by applying rich, restricted-access

data on over 4,500 PhD students and over 800 professors. I address concerns associated

with sorting using both student and professor fixed effects models and by examining fac-

tors determining an advisor-advisee match. To control for the potential endogeneity of

entrepreneurial activity, I construct an instrument using the amount of venture capital in-

vestments by field-year capturing demand for commercial entrepreneurship. My results

suggest that although starting a company only slightly impacts a lab head’s own productivity,

exposure to a lab head engaged in entrepreneurship has a substantial negative influence on

PhD student publication during and after completion of the PhD program. Further, I find

that exposed students are more likely to become entrepreneurs upon graduation, less likely

to have their first position at a prestigious firm, and less likely to hold faculty positions.

I provide evidence that these results are unlikely to be driven by selection on observable

quality characteristics or reduced mentoring, but more likely a result of managerial changes.

Overall, this chapter takes an important step towards understanding the consequences of

entrepreneurship for scientific productivity and the development of human capital providing

broader implications for the organization of science and management research.

Taken together, the findings of the chapters of this dissertation are relevant for our

understanding of what urban structures best support local innovation, how other structural

and social features interact with physical proximity in predicting technology adoption,

as well as the consequences of exposure to an entrepreneurial lab head on lab member

productivity. As such, they highlight both benefits to increasing the potential for individuals

to interact, but also the possible costs of interaction (e.g., with an entrepreneurial lab head) in
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terms of performance outcomes. Much more work on understanding this balance is needed,

and I must acknowledge that my dissertation sheds but a small light on features that can

aid in organizing environments that support knowledge production, entrepreneurship, and

innovation.
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CHAPTER 2

TAKING INTERACTIONS AND INNOVATION TO THE NEIGHBORHOOD:

THE ROLE OF STREET INFRASTRUCTURE

“Streets and their sidewalks, the main public places of a city, are its most

vital organs” (Jacobs 1969: 29).

2.1 Introduction

The geographic concentration of innovation in metropolitan areas across space is well

documented in the literature (Acs et al., 2002; Carlino and Kerr, 2014; Jaffe et al., 1993;

Rosenthal and Strange, 2003) and a wide stream of research identifies the importance of

geographic environments in organizing and supporting innovation (Porter, 1996; Saxenian,

1996; Scott and Storper, 2003). But not all geographic environments such as cities, and the

neighborhoods within, are equally equipped to do so. Cities and their neighborhoods vary

in size and scope, in their density of activities and amenities, as well as in the manner they

facilitate or impede the movement of individuals.

In order to understand the roots of innovation differentials across cities, much work

has focused on modeling the innovative output from cities as a function of agglomeration

economies and, more specifically, urban size and density. The empirical evidence suggests

that by facilitating exchange, urban density helps knowledge spread (Arzaghi and Henderson,

2008; Carlino et al., 2007; Kantor and Whalley, 2014; Lin, 2011; Rosenthal and Strange,

2008). However, it remains puzzling that regions with similar population and even inventor

density differ so starkly in innovation output (Agrawal et al., 2014).

A further stream of research suggests that urban efficiencies are not only a function of

agglomeration economies, but can also be attributed to non-agglomeration channels. Early

research points out that these efficiencies may depend on the nature of urban exchange
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(Chinitz, 1961; Jacobs, 1969) that is partially determined by social structures and industrial

practices (Saxenian, 1996). More recent findings highlight the importance of physical

structures for growth and innovation within a region. For instance, by supporting the

circulation of local knowledge, regional transportation infrastructure has been found to

increase patenting output (Agrawal et al., 2017).

In this paper I introduce an additional factor that has received little attention in the

innovation literature thus far, but may have important implications for innovation: the

physical layout of neighborhoods. I specifically examine the effect of neighborhoods’

street infrastructure on innovation. My main notion is that a more physically connected

infrastructure, as determined by its street network, positively affects the extent to which

interpersonal exchange can take place and is organized. For one, within a strongly connected

environment the number of potential contacts is high, thereby increasing the likelihood of

more serendipitous knowledge exchange. For another, a strongly connected environment

enables more efficient time allocation between travel and planned interpersonal knowledge

exchange. For instance, shorter travel distance between economic partners, to formal

knowledge centers, and to places where social activity is hosted both reduces the costs

associated with interpersonal knowledge exchange and increases the available amount of

time for interaction.

Providing more potential contacts and higher levels of interaction efficiency are important

for innovation given that interpersonal exchange facilitates the recombination of existing

knowledge and creation of new knowledge (Fleming and Sorenson, 2004; Hargadon, 1998;

Simonton, 2003; Singh and Fleming, 2010). Moreover, knowledge production is increasingly

a collaborative endeavor between multiple individuals (Wuchty et al., 2007). This is

why I expect any physical infrastructure that more efficiently organizes the circulation

of individuals to also positively affect innovation.

The data for the analyses come from various publicly available data sources that I have

collected on the neighborhood level. My definition of a neighborhood encompasses the
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most micro-geographic unit of analysis available for street infrastructure: the Census Block

Group (hereinafter BG). In this paper, I measure the physical connectivity of a BG using

street network density and proxy innovation with the number of US patents applied for in

a BG. I only retain those patents where assignees are located and inventors reside within

the same larger metropolitan area. In doing so, I ensure that the location of each patent

indeed reflects the place where the creation of the underlying idea most likely took place.

To control for traditional location externalities, I include measures that capture both historic

and contemporaneous employment and population density, as well as characteristics of the

workforce employed in a BG.

The decision where to locate entails a long term commitment. As such, individuals and

organizations pay particular attention to the features of a place when deciding where to

settle down. Consequently, location choices are likely endogenous to economic outcomes

making it difficult, from an empirical standpoint, to identify causal relationships (Hanson,

2001). To address endogeneity concerns, I apply a fixed effects and instrumental variable

approach. One aggregate geographic boundary I use for the fixed effects estimation is the

commuting zone. The commuting zone is a natural boundary definition determined by

places of residence and work of employees. Access to amenities, fiscal policies, exposure

to a certain culture or life style and other unobservable features will be similar within

the commuting zone boundaries. By holding this type of general environment constant, I

can exploit within commuting zone variation. To deal with concerns about simultaneity,

I construct instruments based on historic city planning. The instruments I use are the

percent of housing units built prior to 1940 and 1940-49, which (conditional on controls)

should have little effect on innovation today other than through their effect on street layout.

First stage results show that both instruments together strongly predict contemporary street

infrastructure. The second stage results from the instrumental variable estimation reveal a

positive causal relationship between physical connectivity and innovation.

In order to provide more insight into the mechanisms that might be driving my results,
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I first analyze citation patterns on the neighborhood level. Here, the results indicate that

physical connectivity does, to some extent, influence local inter-organizational knowledge

exchange within a neighborhood. Next, I interact physical connectivity with measures for

social activity finding that the physical layout of neighborhoods bolsters the impact of social

factors on innovation. Taken together, these results provide suggestive evidence that higher

physical connectivity has a positive impact on innovation by increasing local knowledge

circulation in a neighborhood.

My findings are relevant to our understanding of what urban structures best support

local innovation offering useful insights for the (micro-)geography of innovation literature,

organizations faced with the decision where to locate, and regional policy makers wishing

to influence local conditions. The geography of innovation literature has shown mixed

results with regard to proximity and innovation outcomes. For example, empirical studies

find that large corporate plants are relatively isolated from knowledge externalities whereas

small, single plant firms are those that seem to benefit most from proximity (Beardsell and

Henderson, 1999). Based on the evidence I provide in this paper, this could possibly be

explained by the fact that certain organizations select into places where local infrastructure

is not as conducive to facilitating inter-organizational knowledge flows. My findings are also

informative for organizations faced with location choice that should be aware of how their

most immediate environment may influence knowledge flows (Moretti, 2004). Like industry

structure, local infrastructure presents a factor that can either promote, or prevent knowledge

from spilling over. Similarly, I highlight that street infrastructure may represent an important

asset policy makers and regions can leverage as a source of competitive advantage.

The paper is structured as follows. In the next section, I develop the basic theoretical

framework to guide empirical predictions and interpretations of the findings. The third

section describes the empirical estimation strategy. Section four provides an overview of

how the data were constructed, followed by the main results. I conclude this paper with a

discussion of the results, including limitations, implications and opportunities for future
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research.

2.2 A Physical Environment that Connects

Agglomeration economies, and especially knowledge spillovers, until now have mainly

been viewed as a function of urban size or density (Arzaghi and Henderson, 2008; Glaeser

et al., 1992; Lin, 2011). The empirical evidence suggests that by facilitating exchange, urban

density helps knowledge spread (Carlino et al., 2007). In light of these findings, it remains a

puzzle that regions with similar population and even inventor density are found to differ in

innovation output (Agrawal et al., 2014).

More recently, as an explanation for these disparities, the impact of transportation

infrastructure on innovation has been receiving attention. The evidence provides valuable

insights into the implications transportation infrastructure has for reducing costs associated

with knowledge exchange. One example is Agrawal et al. (2017), who exploit interstate

highway system plans, railroads, and exploration maps as instruments to study the impact of

highways on patenting.1

In this paper, I combine previous findings on both the effects of urban density and

inter-urban transportation infrastructure on innovation and highlight a novel dimension that

goes in line with these findings. Moving from regional to neighborhood-level infrastructure,

I analyze the impact of physical connectivity on innovation via its effect on increasing

both the potential for and efficiency of interaction. Interaction between individuals is

especially crucial for innovation as it enables the exchange and recombination of existing

knowledge necessary to create new or improve existing technologies, processes, or products

(Fleming and Sorenson, 2004; Gaspar and Glaeser, 1998; Hargadon, 1998; Simonton, 2003).

Moreover, over the past decades, knowledge production has increasingly become a team

process involving multiple individuals (Wuchty et al., 2007) making it ever more important
1Similarly, in most recent work, Davis and Dingel (2019), propose a system of cities model with costly

knowledge exchange as the primary agglomeration force. The authors thereby stress the important role
transportation infrastructure plays in determining at what frequency interactions can feasibly occur in the first
place.
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to understand what structures best support collaboration.

The individuals involved in knowledge production operate in different physical environ-

ments that are organized in distinct ways. Research has shown that the physical structure

of the environment has strong implications for the frequency and likelihood of interaction

(Allen, 1977; Estabrook and Sommer, 1972; Festinger et al., 1950). One aspect of the

physical environment influencing the frequency and likelihood of interaction between actors

is street network structure (Levinson, 2012). Street network structure thereby determines

the physical connectivity within a given area. Most importantly, denser street networks

have been found to be strongly correlated with lower car usage, increased non-auto travel,

and more direct trips (Parthasarathi, 2014); factors that make trips both shorter and faster.

Generally, we are more likely to find elevated levels of street density in metropolitan areas

rather than rural areas. But even within metropolitan areas not all street networks are created

equally, there being much heterogeneity between and within regions and agglomerations.

A more strongly physically connected environment creates greater potential for inter-

personal encounters and enables a more efficient organization of interaction. This should

positively affect the extent to which interpersonal knowledge exchange occurs since both

the number of contacts and the amount of time spent with partners relative to the time

spent traveling increase with higher physical connectivity. In other words, higher physical

connectivity should reduce both execution costs (e.g., the cost of face-to-face meetings,

coordination costs, monitoring costs, and costs incurred for the transfer of tacit knowledge)

and search costs (e.g., finding collaborators, suitable technologies, and identifying facilities

that provide certain instruments) associated with knowledge production (Agrawal et al.,

2006; Catalini, 2018; Mors, 2010). This difference in organization could translate into

important innovation differentials found between cities, neighborhoods within a city, and the

organizations located there. From this, and capturing physical connectivity through street

network density, I expect that with increasing street network density, innovative output will

rise.
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2.3 Estimation Strategy

2.3.1 The Unit of Analysis

The unit of analysis for this study is the neighborhood, which represents the natural

boundary of most individuals’ daily work activities and routines (excluding the commute to

work). In this paper, I define a neighborhood as a Census Block Group (BG) and use it to

probe deeper into the impact of the immediate environment on innovative outcomes. I base

my definition on prior literature providing evidence that social interactions are notably local

in nature. Studies in this body of research suggest that localization effects may, indeed, be

strongest within 500 meters or less (Arzaghi and Henderson, 2008) and decay rapidly with

distance (Rice et al., 2006; Rosenthal and Strange, 2003, 2008). Considering that a standard

Block in Manhattan is 200x500 feet (roughly 61x152 meters), walking along the one or the

other Block side, 500 meters is the equivalent of three to eight Blocks. This is slightly less

than the amount of Blocks in the average Manhattan BG.2

2.3.2 Threats to Identification

What would be the best way to measure the effect of physical connectivity on innovation?

In an Utopian world, a neighborhood would be randomly assigned to one of two groups with

different conditions. The two possible conditions would be a) having high or b) having low

street network density. Through randomization, neighborhoods would not chose different

street infrastructure based on their characteristics, nor would simultaneously occurring

events influence this decision allowing the researcher to cleanly estimate the effect of street

network density on innovation. Although, a randomized trial solves this type of identification

problem, it is, evidently, not possible and extremely impractical in the real world given

an array of associated economic and social costs. Nonetheless, this thought-experiment

2Until recently, applying this level of analysis has not been possible without sacrificing geographic scope
or depth. Please refer to the Appendix, Section A1, for a description of US geographic boundaries, and how
their documentation has improved over time.
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highlights two major threats to identification that I must be aware of and address as far as

possible: omitted variable bias and selection.

With regard to omitted variable bias, urban growth, economic activity and infrastructure

may be simultaneously determined and regions that were developed earlier may have

attracted more people and created more employment than younger regions. In the case of

innovation, many amenities such as laboratories or even a scientific culture take time to

establish. As such, it is likely that amenities necessary for innovation are found in older

neighborhoods and locations. These locations may then have also continuously attracted

more people who need access to such amenities - inventors. Additionally, it is feasible

that some areas may have historically been more suitable for development than others even

within one commuting zone. These factors may still persist today and affect both street

infrastructure and other infrastructure that supports innovation. For example, a reason why a

place may have been or remains more suitable for development could be access to water

(Duranton and Turner, 2012).

With regard to selection, firms may choose and/or be forced to locate in certain areas

because of their characteristics. Especially large firms might find it difficult to acquire

or rent enough space to house their operations within denser metropolitan areas given

geographic boundaries or restrictions imposed by the built environment. It is also feasible

that the most innovative firms move to areas with high levels of connectivity because they

value connectivity more than less innovative firms who do not rely on knowledge exchange.

Alternatively, the most innovative firms could locate in less densely connected areas to avoid

outward knowledge spillovers (Alcácer and Chung, 2007). In either case, selection poses a

threat to identifying the actual effect physical connectivity has on innovation.

2.3.3 Addressing Threats to Identification

To best address issues of omitted variable bias, I apply a fixed effects approach on the

commuting zone level (c). Commuting zones are clusters of counties that are characterized
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by strong commuting ties within commuting zones, and weak commuting ties across

commuting zones (Autor et al., 2013; Tolbert and Sizer, 1996).3 Using commuting zone

fixed effects I can keep unobservable features of a place, such as culture, or access to

amenities constant since individuals located within the same work place and residential

boundaries should be equally affected by these unobservable factors. The equation I estimate

on the BG level is displayed below:

Ic,b =αConnectivityc,b,2010

+η(SocialActivityCONTROLSc,b)

+θ(FormalKnowledgeCONTROLSc,b)

+β(HumanCapitalCONTROLSc,b)

+δ(Socio−DemographicCONTROLSc,b)

+γ(PhysicalGeographyCONTROLSc,b) + fc + εc,b

(1.1)

In the equation, fc represents the commuting zone fixed effects, εc,b is the error term

and standard errors are clustered on the commuting zone level to account for intra-group

correlation.

The measure for innovation (Ic,b) is the amount of granted patents the assignees located

in a BG applied for from 2011 to 2013. By using patent application dates, I measure as

much as possible the timing of innovation produced in a BG and by counting only patents

that were granted from such applications, I condition on valuable technologies (Conti and

Graham, Forthcoming).4

The main independent variable of interest is Connectivity, which I measure using street

density in every BG (b) within a commuting zone (c). This variable includes those streets

where pedestrians and automobiles are both permitted (as of 2010), and other modes of street

transportation are possible. An important feature of these streets is that they are inclusive

3Please refer to the Appendix, Section A2, for a closer description of how commuting zones boundaries
are determined.

4An exact description of how all variables were constructed and what restrictions apply will follow in the
next section.
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to distinct forms of movement and extend prior findings on the effect of automobiles and

highways to other means of transportation and contact.

I control for components that may both influence the gains from higher physical connec-

tivity and innovation. The SocialActivityCONTROLS include the number of bars, restaurants,

and hotels in a BG. This is in line with the Saxenian argument that establishments where

social interaction takes place, such as the much acclaimed Wagon Wheel bar in Silicon Val-

ley, contribute to informal transfer of knowledge (Saxenian, 1996). Similarly, the exposure

to relevant social events, and thus the locations they take place, has been found to reduce

the costs of building social ties, which in turn affect collaboration and innovation (Agrawal,

2006). I include an indicator equal to one if the BG has a postsecondary education campus

(FormalKnowledgeCONTROLS) given that a) campuses are usually designed to have dense

street structures, and b) proximity to universities and other formal knowledge centers have

been found to have a profound effect on the rate and direction of local research activity

(Belenzon and Schankerman, 2013; Kantor and Whalley, 2014). The HumanCaptialCON-

TROLS consist of historic inventor counts from 2000, and 2005 as well as employment

levels for 2005 and 2010, the amount of college degree holders in 2000 and 2010 (by work

location), and the amount of working age population that is within a 45 minute commute

from a focal BG (in 2010). By holding these factors constant in the main specification, I

can determine if the effect of physical connectivity persists beyond traditional measures

of human capital density (Arzaghi and Henderson, 2008; Glaeser et al., 1992; Lin, 2011;

Rosenthal and Strange, 2008). Similarly, I include Socio-DemographicCONTROLS to

account for an explanation that could be linked to a pure agglomeration of people regardless

of infrastructure (Carlino et al., 2007). These controls are population counts for 2000 and

2010.5 I further include PhysicalGeographyCONTROLS to ensure that the effect of physical

connectivity on innovation is not based on natural geographic conditions (Duranton and

5Please note, that population refers to the place of an individual’s residence and employment refers to an
individual’s place of work. Given that in most metropolitan areas across the USA workers live in different
places than they work and either employment or residential areas can vary from purely employment/residential
to mixed use, I control for both.
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Turner, 2012; Hoxby, 2000). These are the area covered by water, the area of developable

land, and total land area.

In addition to the standard OLS model with fixed effects described in equation (1), I

apply an instrumental variable estimation approach (hereafter referred to as IV) to address

endogeneity concerns (Angrist and Pischke, 2008). In this case, an appropriate instrument to

detect the causal relationship between street layout and innovation would have to be strongly

related to current street networks, but have little influence on today’s innovative activity

other than through its effect on street layout.6

The main instrumental variable I use for the IV estimation is the percentage of housing

units in a given BG that were built before 1940 (I additionally use the the percentage of

housing units built between 1940 and 1949 to test my model specification). A typical

feature of neighborhoods built in the first half of the twentieth century is a grid-like street

network structure that was constructed under the intention to grant city dwellers access to

the main means of public transportation – the street car (Montgomery, 2013; Wells, 2013).

Though built over 100 hundred years ago, street car lines still have a profound effect on the

local circulation of people and information given the major impact street cars had on urban

street network development (Kenneth, 1985). Historically, street car lines were built and

run by private companies anticipating short and medium term profits. These lines initially

led to recreational sites or largely undeveloped land (Young, 2016). So called “Street Car

Neighborhoods” were developed around the lines; usually by the same companies that ran

them. The goal was to make the street car accessible within a short walk from all points in

the neighborhood leading to the construction of many side and connecting streets (Wells,

2013). A typical feature of districts built in the early twentieth century was, therefore, the

high density of streets oriented towards transit and pedestrian traffic (Montgomery, 2013).

After the World Wars and with the introduction of affordable privately owned fuel driven

vehicles, automobiles, also came the demise of the street car in the USA and a drastic
6Similar instruments used in the urban economics literature that are related to transportation infrastructure

are railway lines, rivers and highways (Agrawal et al., 2017; Duranton and Turner, 2012; Hoxby, 2000).

16



shift in street network design. By the mid-twentieth century most of the original street

car companies had shut down their operations for good and streets built in the time after

were no longer devised for pedestrian travel, nor street cars or other transit but primarily to

accommodate cars (Wells, 2013).

Taking the percentage of housing units built before 1940 in a BG as an instrument, and

including relevant controls, the IV estimation can be written as follows:

First stage:
Connectivityc,b,2010 =θ(HUpre1940c,b,2010)

+η(SocialActivityCONTROLSc,b)

+θ(FormalKnowledgeCONTROLSc,b)

+β(HumanCapitalCONTROLSc,b)

+δ(Socio−DemographicCONTROLSc,b)

+γ(PhysicalGeographyCONTROLSc,b)

+fc + ωc,b

(1.2)

With εc,b from equation (1.1), only identified if:

θ 6= 0 (c.1)

and

Cov(HUpre1940, εc,b) = 0 (c.2)

In equation (1.2), fc represents the commuting zone (c) fixed effects and εc,b is the error

term. Condition (c.1) requires that, conditional on controls, the instrument predicts the

endogenous dependent variable (relevance condition). Condition (c.2) denotes the exclusion

restriction. In this case, the exclusion restriction entails that the percentage of housing units

built prior to 1940 does not directly affect innovative output today.

The IV estimation approach is only credible if I can make a plausible argument that

Condition (c.2) is not violated. One reason I believe the exclusion restriction is valid is based

on the changes in and spatial movement of economic and innovative activity the USA has
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experienced over the past century (Agrawal et al., 2017; Carlino and Kerr, 2014). Especially,

in the Post-WWII period many cities throughout the USA experienced major population

shifts as well as technology booms and busts (Klepper, 2010). In the case of individual

neighborhoods, these types of trends are arguably even more volatile. What was considered

a great neighborhood to live, work or innovate in in the early twentieth century is unlikely

to be so in the present day.

Another reason I the exclusion restriction should hold is that the percentage of housing

units built prior to the 1940s is unlikely to have a direct effect on innovation other than

through the indirect channels (social activity, formal knowledge, human capital, socio-

demography, and physical geography) I control for. It is important to note that the exclusion

restriction requires orthogonality of innovation and the percentage of housing units built

before 1940 conditional on these control variables and not unconditional orthogonality

(Duranton and Turner, 2012). In other words, conditional on controls (as laid out in the

section on Addressing Threats to Identification) the instrument should only affect innovation

today through its effect on the street network.7

2.4 Dataset Construction

The data I use in this paper come from various sources. They can be divided into two

main components: Location and Innovation. For a description of all the variables used for

estimation, and their original source, please refer to Appendix Table A1.1.

7For example, some areas may have historically been more suitable for development than others even
within one commuting zone. This raises concerns that the percent of housing units pre-1940 and street network
density both depend on an omitted variable. For example, areas with water access were often developed earlier
than those without (Duranton and Turner, 2012). If this type of omitted variable is important to my estimation
I would detect that including such observable physical characteristics strongly affect the results. The IV results
remain qualitatively unchanged when I include or exclude water access.
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2.4.1 Measuring Features of a Location

To construct the variables measuring location efficiency, I use the Smart Location

Database (SLD) provided by the US Environmental Protection Agency (EPA).8 This database

was developed as a tool to consistently compare the attributes of locations across the USA.

The SLD includes demographic, employment, and built environment measures for every BG

in the United States for 2010. These variables were constructed using BG boundaries from

the 2010 Census TIGER shapefiles (Topologically Integrated Geographic Encoding and

Referencing), data from the US Census, the American Community Survey (ACS) and the

US Census Longitudinal Employer-Household Dynamics (LEHD) Statistics.9 The spatially

derived variables, such as street network density, were built using the NAVTEQ (now

part of the HERE Group) NAVSTREETS dataset. This US-wide street network includes

information such as pedestrian restrictions and accessibility metrics. In order to determine

the amount of land that is protected from development, information from the US Geological

Survey (USGS) on the protection status of public lands was included in the SLD as well as

additional NAVTEQ geographic information system (GIS) layers that include water features

and land use layers (Ramsey and Bell, 2014).

Connectivity is constructed using the total miles of multimodal streets in a BG, in 2010,

divided by total BG area (in sq.miles).10 Following the SLD, multimodal streets are roads

that can be accessed by at least two different modes of transportation (e.g., pedestrians and

automobiles; hereinafter referred to as Streets). I use this category of streets since it most

closely reflects the features I expect to support knowledge exchange on the micro-geographic

level. These are a) being inclusive to pedestrian travel, and b) enabling auto travel that is

sufficiently fast and unobstructed. The other mutually exclusive road categories are those

intended primarily for pedestrian travel (hereinafter referred to as Pathways and Trails) and

8This dataset can be found under: www.epa.gov/smartgrowth/smart-location-mapping.
9Information for the 2005 employment variable used in this paper was similarly collected from the LEHD

Statistics (US Census Bureau, 2017b). Some data coverage restrictions apply.
10Please refer to Table A1.2 in the Appendix for correlations of the Connectivity measure used in this paper

with other network measures.
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where only auto travel (hereinafter referred to as Auto Only Roads) is permitted.11 In Figure

1.1, I provide a visual example of how Connectivity (=Street Miles/Total Area) is constructed

using a snapshot from New York County, New York. I provide each BG’s corresponding

Connectivity value in the table placed under the map and shade the BG according to these

values.

<Insert Figure 1.1 here>

An important pre-condition for the inclusion of commuting zone fixed effects is within

commuting zone variation in Connectivity. Figure 1.2 depicts the 99th percentile, the 90th

percentile, median, and 10th percentile for Connectivity within all commuting zones (rank

ordered from the lowest to highest value of the 99th Connectivity percentile). As displayed,

I can identify substantial variation within commuting zones in terms of street network

density. The range of values by percentile are relatively uniformly distributed among most

commuting zones, though there are strong differences between the lowest 50 and upper 40

commuting zones with regard to the values representing the local 90th and 99th percentiles.12

<Insert Figure 1.2 here>

I further use the variable Accessibility provided by the SLD that captures the amount of

working age population that is within a 45 minute commute from the focal BG. To measure

attributes of the physical geography of a BG, I use variables provided by the SLD that

measure the area of developable land and the area covered by water. I exclude very large

rural areas following the transportation literature that proposes to use a ceiling of one sq.mile

(640 acres or 2.6 km2), the size of a large superblock, when analyzing street networks, since

11To construct Connectivity, I use those streets classified as multimodal in the SLD. For all of these streets,
automobile and pedestrian travel must be allowed. Amongst others, these streets are arterial or local streets
where car travel is permitted in both directions and the speed limit is between 41 and 54 mph, arterial or local
streets with a speed limit between 31 and 40 mph, as well as arterial or local streets with a speed limit between
21 and 30 mph and car travel is restricted to one way traffic. Please refer to Appendix, Section A3, for a further
description of how street categories are determined and measured.

12The results remain robust when excluding the upper 40 commuting zones.
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huge rural tracts are unrepresentative of the places most residents live and work and can

distort averages (Ewing et al., 2003).

To construct the variable equal to one if the BG has a postsecondary education campus,

Campus, I geolocate all campuses listed on the US Department of Education’s database of

accredited postsecondary institutions and programs in 2010 (U.S. Department of Education,

2018). In the first step I search for their geo-coordinates via the Google Maps Geocoding API

and then join them with 2010 Census TIGER shapefiles in order to assign the corresponding

BG.

I collect data from the US Census County Business Pattern series to construct a variable

measuring the number of bars, restaurants, and hotels (NAICS 72) in a BG, and to create

firm size measures (US Census Bureau, 2017a). The lowest level of geography provided

is the ZIP Code level. Using crosswalks provided by the Missouri Census Data Center via

the Geographic Correspondence Engine and the Census Bureau ZIP Code Tabulation Area

(ZCTA) Relationship files (Missouri Census Data Center, 2012), I map ZIP Codes to the

BG level and weight accordingly since ZIP Codes and BGs do not correspond perfectly. A

BG boundary may encompass entire ZIP Codes, and in turn, a ZIP Code may cross multiple

BGs. Due to inconsistencies in the ZIP Code boundaries, I am missing information for

historic employment and number of bars, restaurants, and hotels for some BGs.

I further include data from the Integrated Public Use Microdata Series (IPUMS) Census

Demographics on the age of housing structures in a given BG, the instrument in the IV

estimation approach. From IPUMS, I also collect historic decennial population counts for

every BG and the level of educational attainment for workers. At the time the data was

collected and assembled, information on educational attainment was only publicly available

on the census tract level (Manson et al., 2017) and is missing for some BGs.
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2.4.2 Measuring Innovation

The measure for innovation is the amount of US granted patents located in a BG that

were applied for 2011-2013. To construct this variable, I use the Morrison et al. (2017)

disambiguated patent data set, a data set containing geo-coordinates of all patent assignees

and inventors registered in the USPTO, WIPO, and EP patent databases, from 1975-2013.

The information for this dataset are sourced from Harvard’s Dataverse Project for USPTO

patents and from both the RegPat and Citation databases of the OECD. By joining the

geo-coordinates of both assignees and inventors with 2010 Census TIGER Shapefiles of

USA Block Group Boundaries13 in ArcGIS, I am able to obtain the corresponding BGs for

every inventor’s and assignee’s location.

In the next step I identify, as far as possible, where the creation of an idea took place.

Since inventors may use their residential address and assignees may use one central address

handling all intellectual property, I do not know for certain from the data where the idea

actually originated. I apply a conservative approach to determine the most likely set of

patents that were created in a specific place. To do so, I take both the location of all inventors

and all assignees of a patent and determine their corresponding commuting zone (Autor

et al., 2013). If all inventors are in the same commuting zone as an assignee, I include that

patent in the sample and link it to the matched assignees’ location.14

The Morrison et al. (2017) disambiguated patent data set locates assignees and inventors

using the Yahoo Geocoding API and is missing exact street level information for a number

of assignees. To increase the sample of patents from inventors and assignees in the same

commuting zone, I conduct a further search for the assignees which had not been successfully

located on the exact street level in the original dataset. Using the Google Maps Geocoding

13This data can be found under: https://www.census.gov/geo/maps-data/data/tiger.html.
14I follow the same procedure using looser constraints. In the Appendix, Table A1.3, I report the main

results using all patents where at least one inventor is in the same commuting zone as the assignee and locating
them in the BG of the assignee. The point estimate and standard errors are slightly larger. In the subsequent
analysis, I use the stricter approach described in the main text. In the case that there are multiple assignees, I
keep the assignee which matches all inventors on the commuting zone. Please refer to the Appendix, Figure
A1.1, for a stylized depiction of the approach just described.
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API, I query the geo-coordinates of the assignees by specifically searching for the assignee

name, conditional on being in the specific state and county code listed in the Morrison et al.

(2017) disambiguated patent dataset. This search approach only returns coordinates if the

name queried is found within the strict geographic boundary conditions provided. The end

sample consists of 42,259 assignees located on the exact street address for 2011-2013.

From the Morrison et al. (2017) dataset, I further attain information on the number

of inventors, and citations. From this information, I construct variables that capture the

number of historic inventors in a BG for 2000, and 2005. These are determined using the

exact geo-coordinates of all inventors and matching these to TIGER Census Boundaries in

ArcGIS.

<Insert Table 1.1 here>

Table 1.1 displays summary statistics of all variables for the 122,899 BGs in the end

sample. The number of aggregate patents in a BG is highly skewed with an average of 0.18

and a maximum value of 1,025. Of the BGs in the sample, 4,916 applied for at least one

patent between 2011 and 2013. Similarly, the physical network structure of BGs across

the USA also varies strongly, with an average of 2.83 miles of streets, to a maximum of

466.98 miles of streets divided by BG area (the next highest value is 144.72). The average

percentage of housing units that were built before 1940 is 20. I also report key descriptives

for all the control variables.15

15Please refer to Figure A1.2 in the Appendix for a visual depiction of the relationship between patenting
and Connectivity where I label outliers across the USA. I further provide separate plots for California and
Massachusetts to a) provide more evidence that the main results are not driven by one state/region alone and
to b) support the choice of the BG level given extreme within-city variation (which is especially visible for
Boston, MA and San Francisio/Bay Area, CA).
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2.5 Results

2.5.1 OLS Regression Results

As laid out in an earlier section, threats to identification are a serious concern, a reason

why the OLS results serve primarily as a description of the relationship between Connectivity

and patenting output with no claims to causality. I first estimate equation (1) with commuting

zone fixed effects (and with county fixed effects for robustness). The dependent variable is

the amount of granted patents applied for by assignees located in a BG. In order to estimate

the OLS fixed effects model, I log transform the dependent variable.

<Insert Table 1.2 here>

Table 1.2 presents the results of the regressions predicting the change in log patenting as

a function of physical connectivity (Connectivity), social activity, formal knowledge, human

capital, socio-demographic, and physical geography controls.16 The reported standard errors

are robust and clustered on the commuting zone (county) level. Column 1 reports the

relationship of patenting with Connectivity only, Column 2 includes the number of bars,

restaurants, and hotels in a BG. Column 3 presents the results with an indicator equal to one

if the BG encompasses a postsecondary education campus. Column 4 presents regression

results with employment in 2005 and 2010. Column 5 includes population controls as

measured in 2010, and 2000. The results reported in Column 6 display the relationship

between Connectivity and patent output including a measure for the number of workers

who live within 45 minute driving distance from a focal BG (Accessibility).17 Column 7

presents the relationship with historic inventor counts and the number of workers by work

location with an undergraduate college degree or higher. The model in Column 8 consists

of Connectivity and the physical geography control variables and Column 9 shows the full

16Note that the number of observations vary depending on the variables included in the regression model.
This is due to missing data for the variable Number Bars (short form of the measure for number of bars,
restaurants and hotels in a BG) and College, as described earlier. In addition, I run the models only using those
commuting zone where there was at least one patent to insure comparability across models.

17Given that the accessibility coefficient is very small, I exclude this variable in the IV estimation models to
increase degrees of freedom.

24



model with all controls. Column 10 reports the results of the full model using county fixed

effects.18 Overall, there is little change to any of the coefficients comparing the commuting

zone and county fixed effects models. The coefficient on Connectivity in the full model

suggests that a one percent increase in Connectivity is associated with a 0.004 percent

increase in patenting.19 The results indicate that all of the included types of controls explain

some of the relationship of Connectivity and patent output.20 Individually, the strongest

control variable is contemporaneous employment. Including employment measures (2010,

2005) quarters the Connectivity coefficient.21

In a next step I analyze if the relationship between physical connectivity is linear or

could possibly be driven by a few outliers. To do so, I run the full model using deciles of the

connectivity measure as the main independent variable of interest. Figure 1.3 presents the

results from this estimation displaying the coefficients of the connectivity measure by decile.

The figure clearly illustrates a non-linear trend and highlights that most of the effect seems

to be driven by the upper two deciles. The BGs in these deciles are not concentrated in one

state, but in fact, dispersed amongst all states. The ten states with the highest number of

BGs in the top decile are, in descending order, California, New York, Texas, Massachusetts,

Pennsylvania, New Jersey, Illinois, Florida, Maryland, and Tennessee.

< Insert Figure 1.3 here >

I further examine the relationship between Connectivity and patenting using an indicator
18Note that in the model with county fixed effects, additional singleton observations are dropped. As such,

the sample is slightly different leading to distinct point estimates.
19I run the full model using different time spans of the dependent variable and patents from the USPTO

only. The results remain robust. I further use a Fixed Effects Poisson Model (see Appendix Table A1.4) and
count data to view if the directionality and statistical significance hold. Both models confirm the findings of
the OLS estimation.

20In Figure A1.3 of the Appendix, I report the relationship between Connectivity and all continuous controls
together as well as the individual relationship between Connectivity and the control variables used in the fully
specified model. Note that here I can identify that the employment measures and Connectivity are the most
strongly correlated of all controls.

21In the Appendix, Table A1.5, I provide the results from estimating Columns 1, 8 and 9 using alternative
measures of Connectivity. These alternative measures are: a) Pathway and Trail Density, b) Connectivity
including pathways and trails, c) Intersection Density, and d) Transit Frequency. With the exception of a), the
full model holds using these alternative measures. A likely reason is that areas with many pathways and trails
are parks/recreational areas with no or little economic activity.
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equal to one if a BG had at least one patent and zero otherwise. The results reported in

Table 1.3 show similar magnitudes of the coefficients as compared to Table 1.2 where I

use the natural log amount of patenting as the dependent variable. Column 1 shows the

reduced model without any controls, columns 2 and 3 present the fully saturated model

with commuting zone and county fixed effects. Together, these results provide suggestive

evidence that, albeit small in magnitude, there is a robust relationship between physical

connectivity and innovation.

<Insert Table 1.3 here>

Theoretically, I may have expected the increase in patenting to be larger on the intensive

margin than on the extensive margin. Although, a comparison of the results from Table 1.2

and 3 may suggest a larger effect on the extensive margin of patenting, it is still plausible

that my theoretical argument holds. One possible scenario is that by increasing knowledge

exchange, physical connectivity leads to more ideas or induces latent ideas to improve in

quality, and this, in turn, makes it more likely that ideas cross the threshold of patentability.

2.5.2 IV Results

Next, I estimate equation (2). First stage results as presented in Table 1.4 indicate

that the instrument, the percentage of housing units built pre-1940 (HUpre1940) taken

alone, is strong with F-statistics of over 50 in the model including all controls. Table 1.4

further presents the second stage results obtained from estimating equation (1) instrumenting

Connectivity with HUpre1940. I apply commuting zone fixed effects and report robust

standard errors. Like in the OLS regressions, I log transform the dependent variable. Column

1 displays the IV estimation results without controls except PhysicalGeographyCONTROLS,

Column 2 presents the results adding SocialActivityCONTROLS, and an indicator equal

to one if the BG encompasses a postsecondary education campus, Column 3 adds Socio-

Demogr.CONTROLS to the equation, and Column 4 excludes Socio-Demogr.CONTROLS,
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but adds HumanCapitalCONTROLS to the equation. Including all controls (Column 5)

almost halves the magnitude of the Connectivity coefficient in comparison to the results in

Column 1. These results suggest that the IV estimation is highly sensitive to the inclusion of

distinct controls. In order to provide more support that my model is correctly specified, I

include a further instrument in Column 6 - the percentage of housing units built between

1940 and 1949 (HU1940-1949). Using two instruments allows us to apply a Hansen J test

evaluating overidentification assumptions. Although I cannot test the exclusion restriction

directly, a non-statistically significant Hansen J-Statistic gives us more confidence in the

validity of the model. It is, however, important to point out that this approach only tests

overidentifying assumptions conditional on having one correctly identified instrument. The

first stage F-statistics remain strong, albeit slightly weaker than in the model with one

instrument. Taken together, the results of the full model (Column 6) can be interpreted such

that, conditional on controls, a one percent increase in Connectivity causes a 0.04 percent

increase in patenting output.22, 23, 24

<Insert Table 1.4 here>

At this point, a reconciliation of my results with those provided by previous research is

useful. Note, however, that to date most studies examining the relationship between urban

features and patenting have largely been on the MSA level. One example is Agarwal et

al. (2017), who find that a 10 percent increase in highways leads to a 1.7 percent increase

in patenting over 5 years on the MSA level. Similarly, Carlino et al. (2007) find that a 10

percent increase in employment density results in a 2 percent increase in patent intensity

22To confirm the choice of the age categories used in the IV estimation, I run the full IV model with all
possible age categories. The results are presented in the Appendix, Table A1.6. Note, that more recent Housing
Age Categories are a) far more likely to violate the exclusion restriction (closer in time), and b) to negatively
affect street density given the rise of automobile transportation post-1950s.

23In the Appendix, Table A1.7, I report the IV results including pathways and trails in my measure of
Connectivity. The results remain robust, with slightly smaller point estimates.

24I report the results from implementing a control function approach (CF), using a poisson model in the
second stage in the Appendix, Table A1.8. The outcome I report is the number of patents in a BG and the
coefficients represent incidence rate ratios. A special feature of the CF is that it enables us to study the nature
of self-selection (Wooldridge, 2015). As reported, the residuals suggest that there is negative selection into
places with high levels of Connectivity. Coefficients smaller than one indicate a lower incidence rate ratio (the
equivalent of a negative sign in the OLS regressions).
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(patents per capita) over a 10 year period.

In addition, over the past years, there has been much research effort put into applying a

more micro-geographic lens on the foundations of agglomerations. For instance, Rosenthal

and Strange (2008) determine their unit of analysis based on concentric rings, finding strong

evidence of an urban wage premium. Their results suggest that the elasticity of wage to the

number of workers within five miles is about 4.5 percent. Also using distance rings, Arzaghi

and Henderson (2008) find that a one unit increase in the number of neighboring advertising

agencies within 250 meters results in an increase of new establishment births by 2 percent.

In comparison to these studies, my estimates are smaller. This is not unexpected since

the time period I examine is shorter, and the unit of analysis is at a very micro-level. Larger

geographic areas tend to conflate direct responses and are, therefore, likely to overstate the

size of local point estimates. I find that a 10 percent increase in Connectivity is associated

with a 0.05 – 0.2 percent increase in patenting in the OLS model and results in a 0.4 – 0.96

percent increase in the IV model. Using IV estimates from the fully saturated model, an

increase from the 25th percentile of Connectivity (0.86) to the 95th percentile (7.94), would

roughly translate into a 35 percent increase in patenting.

The magnitude of the coefficient on Connectivity is larger in the IV than in the OLS

model. Three possible reasons why this is the case are that a) the exclusion restriction is

violated, b) there may be reverse causation, or that c) the results reflect a much larger local

average treatment effect than an average treatment effect (e.g., through negative selection).

I cannot, empirically, rule out that the exclusion restriction is violated and my estimation

relies heavily on the assumption that the percentage of housing units built before 1940

(and 1940-1949) only affects innovation via its effect on the street network conditional

on controls. However, the results from the Hansen J overidentification test, provide some

support that my model is correctly specified. With regard to reverse causation, it may be

that BGs which experienced negative shocks to innovation, conditional on controls, also

experience positive shocks to the amount of streets. Since my data only include details on
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street infrastructure from 2010, I cannot test this hypothesis. Viewing the third explanation,

it is possible that the IV is shifting the “behavior” of a subgroup of BGs for which the returns

to Connectivity are larger than average, such as central business districts and those BGs in

the upper quintile of Connectivity. If the local average treatment effect is larger than the

average treatment effect, it is very plausible that IV estimates are larger than OLS estimates

because of heterogeneity in the sample I am analyzing.

As discussed earlier, one manifestation of selection - in this case negative selection -

could be that large firms are opting out of locating in areas with high levels of Connectivity.

Compared to smaller firms, it is likely that large firms would benefit less from physical

connectivity in the first place (which could explain differences between average and local

average treatment effects). I base this on the assumption that larger firms already have access

to an abundance of skills and knowledge sources in-house and may, therefore, not rely on

external exchange as much.25

2.5.3 Is There Any Knowledge Exchange?

The main set of results provide evidence that physical connectivity increases innovation.

The question remains if increased knowledge exchange is a possible channel through

which denser street networks affect innovation. One way to test if Connectivity indeed

affects innovation via its effect on knowledge exchange, is to examine knowledge flows

of actors in a BG. A conservative approach to measuring such knowledge flows is using

patent citations (Belenzon and Schankerman, 2013; Jaffe et al., 1993; Thompson, 2006).

Naturally, not all citations represent knowledge flows, but studies comparing citation data

with surveys of inventors have detected a strong correlation between patent citations and

knowledge flows (Duguet and MacGarvie, 2005; Hall et al., 2005). In order to examine

the relationship between physical connectivity and knowledge flows, I create a) a count of

25For further discussion of this potential explanation based on BG heterogeneity in firm size composition,
please refer the Appendix Section A4. Heterogeneity in firm size composition. Results displayed in Figure
A1.4 and Table A1.9 of the Appendix provide support for this explanation.
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citation pairs in a BG, excluding self-citations, and b) a count of self-citation pairs within

a BG. I construct citation pairs using patents that were applied for between 2010 - 2013,

the patents these cite, and counting only those patent pairs whose assignees are in the same

BG. Connectivity should have a positive effect on a) to support the notion that Connectivity

increases knowledge exchange between inventors. In the case of self-citations, a positive

effect of Connectivity on innovation could also be attributed to other factors. For example,

more self-citations could imply that Connectivity increases competitive pressures pushing

organizations to patent strategically (Singh, 2005) and/or create patent thickets (Shapiro,

2000).

<Insert Table 1.5 here>

Table 1.5 presents the results for the two citation outcomes I estimate using equation

(1) and (2) instrumenting Connectivity with the percentage of housing units that were built

before 1940 and 1940-1949, and including the number of patents applied for 2011-2013

in a given BG as a control. Column 1 presents the main effect of Connectivity on non-

self citations within a BG (mean of 0.002) only including PhysicalGeographyCONTROLS.

Column 2 reports the results for non-self citations using the full model, Column 3 presents

the IV model with all controls and Column 4 includes the log number of patents as a further

control. Columns 5-8 present the corresponding models using self citations (mean of 0.03)

as the outcome variable. Connectivity positively predicts the number of non-self citations

across all models, whereas in the IV model examining self citations the coefficient is negative

and no longer statistically significant.26

Together, these findings suggest that strategic patenting is unlikely to be driving the

relationship between physical connectivity and patenting I detect in the previous set of

results, and that knowledge exchange is a feasible channel. The findings indicate that

actors use relatively more local external knowledge sources in BGs with denser street

networks. Besides the specific type of technical knowledge exchange, which occurs and
26The results for Table 1.5 including Pathways and Trails in my measure for physical connectivity can be

found in the Appendix, Table A1.10.
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is captured by patent citations, it is likely that at least some of the innovation productivity

advantage found in the earlier set of results is also related to the exchange of other types of

knowledge and/or increased interaction efficiency. Higher productivity could, for example,

stem from knowledge on how to better organize a lab that individuals learn about via

informal conversations (e.g., at bars), or shorter distances to exchange partners.

2.5.4 Interactions Between the Physical and Social Space

As mentioned earlier, previous research has provided evidence for the importance of

social factors, such as population and employment density as well as local meeting points in

explaining regional innovation differences. The main channel underlying the relationship

between these social factors and inventive activity are similar to what I propose in this paper:

density influences interpersonal exchange. As such, examining the interaction of social

factors with physical connectivity, could provide more insight on the role of interpersonal

exchange as a channel driving the main results.

To do so, I run OLS regressions including interaction terms of the physical and social

space. The corresponding results are reported in Table 1.6. In Columns 1-2, I interact

Connectivity with an indicator equal to one if population is over 1,650, and equal to zero

otherwise. In Columns 3-4 I use an indicator equal to one if the number of bars, restaurants

or hotels is over 5, and is zero otherwise interacting this with Connectivity. Columns 5

and 6 report the results from including the interaction between physical connectivity and

an indicator equal to one if employment is over 950, and is zero otherwise. The even

numbered columns present the estimates only including PhysicalGeographyCONTROLS

and the uneven numbered columns display the results using the full model with all controls.

<Insert Table 1.6 here>

The main effect of Connectivity remains statistically significant and is positive across all

models (meaning when population is equal or below 1,650, employment is equal or under

950, and there are 5 or fewer bars, there is still an effect of Connectivity). Overall, there seems
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to be a positive interaction relationship between high levels of population and Connectivity,

although, the main effect of High Population is negative. The results further indicate a

positive interaction relationship between high levels of employment and Connectivity. In

the case of High Employment, the main effect is also positive and statistically significant

meaning that with no Connectivity, having a high level of employment has a positive impact

on innovative output. The interaction between High No.Bars and Connectivity is positive

and statistically significant. However, the main effect of High No.Bars no longer holds when

including the interaction term. This suggests that without Connectivity there may be no

additional effect of elevated numbers of bars, restaurants and hotels in a BG on patenting.27

Taken together, these findings indicate that high levels of population, employment, as

well as bars, restaurants, and hotels may be complementary to physical connectivity. This

backs the idea that the physical layout of a place quite plausibly affects innovation by

facilitating exchange among individuals.

2.5.5 Limitations

There are several limitations to this study. One is that patents are not the ideal measure

of innovation given that not all types of innovation are patentable. In fact, in some industries,

inventors rarely seek patent protection, but resort to other mechanisms such as secrecy or

first-to-market advantages instead (Cohen et al., 2000). A reason why inventors do not seek

patent protection are the high costs associated with patent filing (Graham et al., 2009). From

this, it could be that I am measuring a specific type of innovation only, or it could be that

I am possibly capturing a BG culture of patenting/propensity to patent. For example, it

is plausible that the patenting behavior of one or more actors in close proximity make it

necessary for all actors to patent.

In addition, I only include those patents where I locate inventors and assignees in the

27To add more transparency about the data and to show that outliers are not driving the results, I also
present the interactions with high levels of population, employment and bars in visual form (please refer to the
Appendix, Figure A1.5).
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same commuting zone. It is possible that this sample selection approach introduces a

bias that goes towards underestimating the patenting output of large corporations. Large

corporations may tend to centrally organize the handling of their intellectual property at

established headquarters. Consequently, it could be that the assignees in my sample are,

on average, smaller than the general population of firms. Though possible, my robustness

checks do not indicate a large systematic size bias.28

A further limitation to this study is that I can only proxy knowledge exchange and

do not directly measure it. Capturing actual interaction between actors is a tedious and

difficult endeavor. Not only does it require very micro-level data, but also close observation

of the behavior of individuals. There have been advances in tracking the possible ways

that interaction takes place within larger human agglomeration, such as in Williams and

Currid-Halkett (2014). Over two weeks, the authors tracked 77 fashion designers working in

the Garment District and the larger New York region. Using cellphone data and social-media

tools they captured geographical movements and documented exact real-time data. A similar

approach covering a larger geographic area may be possible in the future but does not seem

feasible today.

Another limitation is that I base my analysis on cross-sectional data. To get closer to

understanding actual selection processes, I would need a panel data set. Although most of

the variables in this current data set are available for multiple years, I only have access to

information on infrastructure for 2010.

2.6 Discussion and Conclusion

In a very literal sense, this paper is taking innovation from being up “in the air” (Mar-

shall, 1890) to the streets and makes two main contributions to the empirical literature

on geography and innovation. First, I use a unique dataset covering the entire contiguous

USA on the smallest geographic entity for which information on street infrastructure is
28Please refer to Appendix, Figure A1.6, for the results from comparing kernel density distributions of

assignee size (determined by the amount of patents) for the sample and full dataset.
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available. Previous research has not been able to apply such a micro-geographic lens to

assess innovation outcomes. Second, I go beyond the traditional location externalities

examined in the empirical literature and test how physical features of a neighborhood can

affect innovation outcomes. This type of structural difference on this level of analysis has

not been considered before in empirical work and has potentially far-reaching consequences

for cities, organizations, and individuals.

I identify a causal relationship between physical connectivity, as measured through local

street network density, and innovation. I further examine the relationship between physical

connectivity and citation flows identifying a non-negligible link. In addition, I provide

evidence that physical connectivity may bolster the impact of population, social activity, and

employment on innovation. Together, my findings are in line with the theoretical argument

that physical connectivity is likely to affect innovation through a more local and more

efficient organization of knowledge exchange. Moreover, my results can be viewed as

support for the idea that the actual physical capacity to connect people and ideas may, in

fact, be one reason why cities, and some neighborhoods are more conducive for innovation

than others (Glaeser et al., 1992).

My findings have important policy implications for regional and city planners designing

places that are aimed to foster innovation. The results of this paper highlight that a dense

local infrastructure represents a crucial component for innovation. Especially in light of

initiatives such as the “Smart City”, the importance of spaces for social interaction and

connectivity between people should be stressed. As such, street infrastructure can be viewed

as an important input and source of competitive advantage for metropolitan areas and for

firms located there.

This article opens several promising avenues for research. First, my study highlights that

less obvious (and largely unintentional) aspects of urban infrastructure have the potential to

explain regional variation in innovation beyond the traditional location externalities found in

the literature. For example, including city layout may help understand why certain regions
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and/or firms can exploit diverse or specialized knowledge better than others. Second, it

would be interesting to assess the effect of physical connectivity on other measures of

innovation such as trademarks. Third, in order to make recommendations for firm location

choice, it would also be relevant to better comprehend who benefits (and loses) from

proximity and the capacity of a place for connecting people.

In 1922, Henry Ford stated that “[t]he modern city is probably the most unlovely and

artificial site this planet affords. The ultimate solution is to abandon it (. . . ). We shall solve

the City Problem by leaving the city” (in Wells 2013: 63). About 100 years later, this

statement stands corrected. Leaving the dense street network the city provides is hardly the

solution – at least not for innovation.
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Figure 1.1: Example for Differences in Connectivity: New York County, New York
Notes: This figure is a snapshot of an area in Harlem, New York. The white, bold lines represent BG boundaries (with
corresponding numbers in black surrounded by white). The thin black lines represent all roads and streets with no further
special characteristics. Trails are not displayed. Major roads/freeways, secondary roads, connecting and important local
roads are identified as shown in the legend (bottom left). The corresponding map scale can be found in the bottom
right corner of the image. Each BG’s Connectivity level for the census tracts that appear fully in the image are reported
in the table below. Connectivity is calculated using the total amount of street miles in a BG that are oriented to both
pedestrian and automobile use (Street Miles; other mutually exclusive facility categories are auto-only oriented roads and
pedestrian-only oriented pathways and trails) divided by total block group area (in sq.miles). As a reference, the last
column displays the total miles of all types of roads (All Road Types; including auto-only roads, streets, pathways and
trails). The color shading of each BG reflects the Connectivity value of the corresponding BG (= Street Miles/Total Area).
Image source: created by authors in ArcGIS using Census TIGER shapefiles and values from the EPA SLD.

Census Tract #, Block Group # Street Miles Total Area Connectivity All Road Types
(miles) (sq.miles) (miles/sq.miles) (miles)

Census Tract 190, Block Group 1 0.20 0.040 5.00 1.00
Census Tract 194, Block Group 1 0.01 0.026 0.31 0.70
Census Tract 194, Block Group 2 0.00 0.014 0.00 0.46
Census Tract 194, Block Group 3 0.00 0.014 0.00 0.40
Census Tract 194, Block Group 4 0.00 0.014 0.00 0.50
Census Tract 196, Block Group 1 0.10 0.010 10.1 0.30
Census Tract 196, Block Group 2 0.10 0.024 4.10 0.86
Census Tract 196, Block Group 3 0.15 0.035 4.40 1.00
Census Tract 198, Block Group 1 0.35 0.050 7.00 1.80
Census Tract 198, Block Group 2 0.00 0.040 0.00 2.50
Census Tract 200, Block Group 1 0.10 0.015 6.70 0.35
Census Tract 200, Block Group 2 0.25 0.035 7.10 0.93
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Figure 1.2: Distribution of Connectivity (log) by Commuting Zone using within Commuting
Zone Cutoffs

Notes: This figure presents the distribution of Connectivity (log) by commuting zone. The commuting zones appear in
rank order from lowest to highest value of the 99th Connectivity percentile. The figure displays variation within commuting
zones in terms of Connectivity and across with regard to what constitutes a Connectivity value in the local 99th, 90th, 50th,
and 10th percentile.
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Figure 1.3: Connectivity (log) Coefficient by Decile
Notes: This figure displays the coefficients from estimating equation (1) by decile of the Connectivity measure. The
horizontal line marks the value zero, the dots represent the point estimates by decile, and the vertical lines mark the 95
percent confidence intervals of the estimate.
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Table 1.1: Summary Statistics on the Census Block Group Level

Census Block Group Level min p25 mean p50 p95 max

Innovation:
Number of Patents (2011-2013) 0.00 0.00 0.61 0.00 2.00 1025.00
Patent (= 0/1) 0.00 0.00 0.04 0.00 0.00 1.00

Knowledge Exchange:
Total Same BG Citations 0.00 0.00 0.03 0.00 0.00 612.00
Self Same BG Citations 0.00 0.00 0.03 0.00 0.00 607.00
Non-self Same BG Citations 0.00 0.00 0.002 0.00 0.00 33.00

Physical Network Structure (*in miles/sq.mile):
Connectivity* 0.00 0.86 2.83 2.20 7.94 144.72
HUpre1940 0.00 0.00 0.20 0.06 0.73 1.00
HU1940-1949 0.00 0.00 0.08 0.04 0.31 1.00

Social Activity:
Number of Bars, Restaurants, and Hotels 0.00 1.00 2.54 2.00 6.00 143.00

Formal Knowledge:
Campus 0.00 0.00 0.01 0.00 0.00 1.00

Human Capital (*in thousands)
Accessibility* 0.00 97.74 292.91 194.05 1039.11 1598.20
Employment 2010* 0.00 0.05 0.55 0.16 2.03 232.46
Employment 2005* 0.00 0.00 0.42 0.07 1.70 167.37
Inventors 2005 0.00 0.00 0.02 0.00 0.00 18.00
Inventors 2000 0.00 0.00 0.02 0.00 0.00 10.00

Socio-Demographic (in thousands)
Population 2010 0.00 0.88 1.32 1.19 2.48 19.51
Population 2000 0.00 0.88 1.28 1.17 2.33 12.78

Physical Geography (in hundred acres)
Area Water 0.00 0.00 0.05 0.00 0.23 5.47
Area Developable Land 0.00 0.73 1.79 1.38 4.85 6.40
Area Land 0.004 0.77 1.86 1.45 5.02 6.40
Observations 122,899
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Table 1.2: Patenting and Connectivity - OLS Regressions

OLS Models

DV: Number of Patents (log) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Connectivity (log) 0.0164∗∗∗ 0.0149∗∗∗ 0.0158∗∗∗ 0.00426∗∗ 0.0174∗∗∗ 0.0154∗∗∗ 0.0151∗∗∗ 0.0203∗∗∗ 0.00452∗∗∗ 0.00425∗∗∗

(0.00289) (0.00243) (0.00281) (0.00184) (0.00305) (0.00260) (0.00257) (0.00342) (0.00129) (0.00140)

No. Bars 0.0120∗∗∗ 0.00361∗∗∗ 0.00381∗∗∗

(0.00132) (0.00107) (0.00103)

Campus 0.224∗∗∗ 0.0982∗∗∗ 0.0996∗∗∗

(0.0394) (0.0227) (0.0227)

Employment 2005 0.00214 0.00417 0.00400
(0.00707) (0.00617) (0.00517)

Employment 2010 0.0393∗∗∗ 0.0369∗∗∗ 0.0368∗∗∗

(0.00696) (0.00551) (0.00492)

Population 2000 -0.0277∗∗∗ -0.0227∗∗∗ -0.0235∗∗∗

(0.00688) (0.00717) (0.00697)

Population 2010 0.0389∗∗∗ 0.0133∗∗ 0.0121∗

(0.00695) (0.00602) (0.00618)

Accessibility 0.0000336∗ 0.0000346∗∗ 0.0000246
(0.0000195) (0.0000159) (0.0000218)

Inventors 2000 -0.00224 -0.00498 -0.00437
(0.00324) (0.00327) (0.00377)

Inventors 2005 -0.000939 -0.000153 0.00107
(0.00344) (0.00333) (0.00344)

College Degree 2000 -0.0282∗∗∗ -0.00384 -0.00716
(0.00878) (0.00657) (0.00745)

College Degree 2010 0.0500∗∗∗ 0.0200∗∗∗ 0.0182∗∗∗

(0.00903) (0.00662) (0.00656)

Area Water 0.0191∗∗∗ 0.0139∗∗∗ 0.0163∗∗∗

(0.00386) (0.00488) (0.00414)

Area Developable Land 0.0132∗∗∗ 0.00632 0.00882∗∗

(0.00315) (0.00384) (0.00390)

Area Land 0.00415 0.00360 0.00282
(0.00299) (0.00316) (0.00335)

Observations 121398 119159 121398 121398 121398 121398 96973 121398 95294 95207
R-squared 0.00183 0.0198 0.00715 0.0938 0.00485 0.00224 0.00840 0.00996 0.0996 0.0970
Fixed Effects czone czone czone czone czone czone czone czone czone county
Number of Groups 261 257 261 261 261 261 257 261 253 972

Notes: Employment and population measures are in thousands. Geographic area variables are in hundreds. Please refer to Table A1 in the Appendix for a definition of the variables included in the models.
No.of Bars is the written short form in the above table for the Number of Bars, Restaurants, and Hotels in a BG. Standard errors (in parentheses) are clustered at the commuting zone (Column 1 - 9) and county
(Column 10) level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗p < 0.01.
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Table 1.3: The Likelihood of Having a Patent or Not

OLS Models

DV: Patent (= 0/1) (1) (2) (3)

Connectivity (log) 0.0108∗∗∗ 0.00492∗∗∗ 0.00466∗∗∗

(0.00179) (0.00115) (0.00104)

Social Activity Controls No Yes Yes

Formal Knowledge Controls No Yes Yes

Human Capital Controls No Yes Yes

Socio-Demogr. Controls No Yes Yes

Phys. Geography Controls No Yes Yes

Observations 121398 95294 95207
R-Sq. 0.00148 0.0760 0.0756
Fixed Effects czone czone county
Number of Groups 261 253 972
Std. Errors Robust Robust Robust
Log Likelihood 30061.2 27711.2 28274.2
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from estimating the relationship between Con-
nectivity and patenting. The outcome variable is an indicator equal to one if the BG has a
patent and zero otherwise. Column 1 shows the reduced model without any controls. Columns
2 and 3 present the fully saturated model with commuting zone and county fixed effects. The
SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG. Formal-
KnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary education
campus. The HumanCaptialCONTROLS consist of historic inventor counts from 2000, and
2005 as well as employment levels for 2005 and 2010, the amount of college degree holders
in 2000 and 2010 (by work location), as well as the amount of working age population that is
within a 45 minute commute from a focal BG. Socio-DemographicCONTROLS are population
counts for 2000 and 2010. PhysicalGeographyCONTROLS are the area covered by water, the
area of developable land, and total land area. Standard errors (in parentheses) are clustered at
the commuting zone (column 1 and 2) and county (column 3) level.
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Table 1.4: Instrumental Variable Estimation

2SLS Models
DV: Number of Patents (log) (1) (2) (3) (4) (5) (6)

Second Stage
Connectivity (log) 0.0965∗∗∗ 0.0915∗∗∗ 0.0799∗∗∗ 0.0517∗∗∗ 0.0504∗∗∗ 0.0426∗∗

(0.0183) (0.0176) (0.0163) (0.0195) (0.0192) (0.0188)
Social Activity Controls No Yes Yes Yes Yes Yes
Formal Knowledge Controls No Yes Yes Yes Yes Yes
Human Capital Controls No No No Yes Yes Yes
Socio-Demogr. Controls No No Yes No Yes Yes
Phys. Geography Controls Yes Yes Yes Yes Yes Yes

First Stage
HUpre1940 0.2928∗∗∗ 0.2926∗∗∗ 0.2874∗∗∗ 0.2168∗∗∗ 0.2146∗∗∗ 0.2467∗∗∗

(0.0359) (0.0367) (0.0362) (0.0393) (0.0392) (0.0331)
HU1940-1949 0.1872∗∗∗

(0.0486)
Social Activity Controls No Yes Yes Yes Yes Yes
Formal Knowledge Controls No Yes Yes Yes Yes Yes
Human Capital Controls No No No Yes Yes Yes
Socio-Demogr. Controls No No Yes No Yes Yes
Phys. Geography Controls Yes Yes Yes Yes Yes Yes
Observations 120926 118838 118838 95097 95097 95097
First Stage F-stats 66.71 63.22 62.92 51.43 52.09 32.80
Hansen J Stat.P-value 0.212
Fixed Effects czone czone czone czone czone czone
Number of Groups 260 256 256 252 252 252
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from instrumenting Connectivity with HUpre1940 (column 1-6) and HU1940-1949 (column 6). In the
Second Stage, the outcome variable is the log amount of U.S. granted patents applied for between 2011-2013 in a BG. In the First Stage, the outcome
variable is Connectivity (log). HUpre1940, is the percentage of housing units built before 1940 and HU1940-1949, is the percentage of housing units
built between 1940-1949. The SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG. FormalKnowledgeCONTROLS
is an indicator equal to one if the BG has a postsecondary education campus. The HumanCaptialCONTROLS consist of historic inventor counts from
2000, and 2005 as well as employment levels for 2005, and 2010, and the amount of college degree holders in 2000, and 2010 (by work location).
Socio-DemographicCONTROLS are population counts for 2000, and 2010. PhysicalGeographyCONTROLS are the area covered by water, the area
of developable land, and total land area. Variation in the number of observations depending on the included controls is due to missing values for the
number of bars, restaurants, and hotels, as well as college education. We report First Stage F-statistics in all columns and the p-value obtained from
the Hansen J Statistic, which tests the validity of the overidentifying restrictions in column 6. Standard errors (in parentheses) are clustered at the
commuting zone level.
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Table 1.5: Patent Citation Patterns

Non-self Self

DV: Number Citations (log) (1) (2) (3) (4) (5) (6) (7) (8)

Connectivity (log) 0.000540∗∗∗ 0.000213∗∗ 0.00421∗∗ 0.00377∗∗ 0.00316∗∗∗ 0.000759∗ -0.000241 -0.00549
(0.000152) (0.000103) (0.00210) (0.00187) (0.000796) (0.000417) (0.00961) (0.00747)

Number of Patents (log) 0.0220∗∗∗ 0.214∗∗∗
(0.00484) (0.0203)

Social Activity Controls No Yes Yes Yes No Yes Yes Yes

Formal Knowledge Controls No Yes Yes Yes No Yes Yes Yes

Human Capital Controls No Yes Yes Yes No Yes Yes Yes

Socio-Demogr. Controls No Yes Yes Yes No Yes Yes Yes

Phys. Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes

Model OLS OLS IV IV OLS OLS IV IV

First Stage First Stage

HUpre1940 0.189∗∗∗ 0.189∗∗∗ 0.189∗∗∗ 0.189∗∗∗
(0.033) (0.033) (0.033) (0.033)

HU 1940-1949 0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗
(0.044) (0.044) (0.044) (0.044)

Number of Patents (log) No Yes No Yes

Other Controls Yes Yes Yes Yes

First Stage F-stats 25.42 25.53 25.42 25.53

Hansen J Stat.P-value 0.901 0.624 0.658 0.743

Observations 121398 119142 95097 95097 121398 119142 95097 95097
R-Sq. 0.000470 0.00322 -0.00606 0.0350 0.00141 0.00815 0.00798 0.297
Fixed Effects czone czone czone czone czone czone czone czone
Number of Groups 261 257 252 252 261 257 252 252
Std. Errors Robust Robust Robust Robust Robust Robust Robust Robust
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from estimating the relationship between Connectivity and citation patterns. The outcome
variable in columns 1-4 is the log amount of same-BG citation pairs between distinct assignees (Non-self Citations). The outcome variable in
columns 5-8 is the log amount of same-BG citation pairs between the same assignee (Self Citations). Columns 1, 2, 5, and 6 report the results
estimating the OLS model. Columns 3, 4, 7, and 8 report the results using an instrumental variable approach where we use HUpre1940
and HU1940-1949 as instruments for Connectivity. For the IV models, we report First Stage F-statistics and the p-value obtained from the
Hansen J Statistic, which tests the validity of the overidentifying restrictions. Columns 1 and 5, represent the overall effect without controls
(but incl. geographic controls). The other columns present the fully saturated model. SocialActivityCONTROLS include the number of bars,
restaurants, and hotels in a BG. FormalKnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary education campus.
The HumanCaptialCONTROLS consist of historic inventor counts from 2000, and 2005 as well as the natural log of employment for 2010,
and the amount of college degree holders in 2010 (by work location) in a focal BG. Socio-DemographicCONTROLS include the natural log
of population for 2010. PhysicalGeographyCONTROLS are the area covered by water, the area of developable land, and total land area.
Standard errors (in parentheses) are clustered at the commuting zone level.
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Table 1.6: Interaction of Connectivity with Population, Employment, No.of Bars

DV: Number of Patents (log) (1) (2) (3) (4) (5) (6)

Connectivity (log) 0.0163∗∗∗ 0.00357∗∗ 0.00336∗∗∗ 0.00187∗ 0.0124∗∗∗ 0.00239∗
(0.00292) (0.00146) (0.000940) (0.00106) (0.00217) (0.00123)

High Population=1 -0.0202∗∗∗ -0.00525
(0.00548) (0.00420)

High Population =1 × Connectivity (log) 0.0209∗∗∗ 0.00881∗∗
(0.00522) (0.00411)

High Employment =1 0.0911∗∗∗ 0.0611∗∗∗
(0.0172) (0.0172)

High Employment =1 × Connectivity (log) 0.0590∗∗∗ 0.0274∗∗
(0.0139) (0.0129)

High No.Bars =1 -0.00619 -0.00299
(0.0174) (0.00778)

High No.Bars =1 × Connectivity (log) 0.0813∗∗∗ 0.0360∗∗∗
(0.0150) (0.00835)

Other Social Activity Controls No Yes No Yes No No

Formal Knowledge Controls No Yes No Yes No Yes

Other Human Capital Controls No Yes No Yes No Yes

Other Socio-Demogr. Controls No Yes No Yes No Yes

Phys. Geography Yes Yes Yes Yes Yes Yes

Observations 121398 95294 121398 95294 119159 95294
R-squared 0.0105 0.0991 0.0551 0.0855 0.0217 0.0999
Fixed Effects czone czone czone czone czone czone
Number of Groups 261 253 261 253 257 253
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table presents results from interacting Connectivity with a variable indicating High Population (population>1,650), High Employment (employment>950),
and high numbers of bars, restaurants, and hotels in a BG (High No.Bars; bars>5) (all as measured in 2010). The outcome variable is the amount of U.S. granted
patents applied for between 2011-2013 in a BG. The columns with uneven numbers represent the overall effect without controls (but incl. PhysicalGeographyCON-
TROLS). The columns with even numbers present the fully saturated model. The SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG.
FormalKnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary education campus. The HumanCaptialCONTROLS consist of historic inventor
counts from 2000, and 2005 as well as employment levels for 2005, and 2010, and the amount of college degree holders in 2000, and 2010 (by work location). Socio-
DemographicCONTROLS are population counts for 2000, and 2010. Other denotes that the coefficients of the corresponding controls are not already displayed in the
table. Standard errors (in parentheses) are clustered at the commuting zone level.
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CHAPTER 3

TAKING INTERACTIONS AND INNOVATION TO CO-WORKING SPACES:

THE IMPACT OF PROXIMITY ON TECHNOLOGY ADOPTION AND STARTUP

PERFORMANCE OUTCOMES

(with Alexander Oettl and Christian Catalini)

3.1 Introduction

“Space is the ‘body language’ of the organization. (...) [S]pace design has

its own grammar that can be tweaked to bolster desirable habits.”

(Doorley and Witthoft 2012:38)

Over the past 30 years, the average startup size has decreased to about two founders for

technology ventures (Ewens and Marx, 2017; Kaplan et al., 2009). Smaller firms imply

greater external dependence both on resources and environments that provide support as well

as on production inputs (e.g., computing/labor platforms, etc.). Perhaps in response to this

greater external dependence, startups have been increasingly setting up shop in co-working

spaces, often referred to as hubs, in metropolitan areas around the world (e.g., Social Impact

Hub, WeWork). These co-working spaces aim to accommodate the needs of small firms

and startups by creating a place that provides physically proximate access to support and

production inputs, thereby serving as a potential way to expand the traditional boundaries of

the firm (Argote et al., 2003).

The importance of place for innovation, entrepreneurship and firm performance has been

the focus of a long-standing literature examining agglomeration spillovers and economic

geography (e.g., Rosenthal and Strange 2004; Michelacci and Silva 2007; Samila and

Sorenson 2011; Glaeser et al. 2015). Depending on the industry in question, and primarily
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focusing on state, city, or neighborhood variation, findings indicate that cluster effects decay

rapidly with distance (Rice et al., 2006; Rosenthal and Strange, 2003, 2008) and may, indeed,

be strongest within as little as 500 meters (Arzaghi and Henderson, 2008). In this paper,

we propose that spatial distances at which these agglomeration externalities activate may

be even shorter than has been detected thus far and that especially knowledge diffusion -

a fundamental source of competitive advantage for firms (Argote and Ingram, 2000) - is

influenced at very micro-geographic levels and in more immediate environments.

One such micro-geographic environment is the workplace, which has been found to play

an important role in influencing entrepreneurial entry decisions (Dobrev and Barnett, 2005;

Elfenbein et al., 2010; Parker, 2009; Sørenson, 2007). In addition, the workplace may also

have an especially strong impact on entrepreneurial learning given that it is a) the location

where working-aged individuals spend most of their time, and b) individuals only have

limited discretion over who their interaction partners are. As such, the workplace represents

a setting for unexpected influences, and for the serendipitous flow of information and ideas.

The literature has pointed out that proximity is a crucial source of influence on individual

decision-making in the workplace (Allen, 1977; Cowgill et al., 2009; Blau, 1977). Proximity

can thereby be classified along an array of characteristics, including along, a) physical

(Allen, 1977; Cowgill et al., 2009; Agrawal et al., 2017; Roche, Forthcoming), b) social

(Blau, 1977; McPherson and Smith-Lovin, 1987), c) knowledge-space (Cohen and Levinthal,

1990; Lee, 2019), and d) product-market dimensions (Wang and Zhao, 2018; Alcácer et al.,

2015; Saxenian, 1996). However, our understanding about the strength of these different

dimensions and how they interact with each other is still limited. Particularly in light of more

recent work stressing the importance of taking such factors into account when engineering

peer effects (Carrell et al., 2013; Hasan and Koning, 2019), we suggest that these dynamics

have crucial implications for designing communities that support knowledge production,

and as such entrepreneurship and innovation.

In this study, we first examine the influence of micro-geographic proximity on new (to
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the entrepreneur) technology adoption decisions at one of the largest technology co-working

spaces in the United States. The building consists of five floors, covering 9,300 m2 (100,000

sq.ft.). To deal with endogenous geographic clustering, we rely on the random assignment of

office space to the hub’s 251 startups. Using floor plans to measure geographic distance, we

find that close physical proximity greatly influences the likelihood of adopting an upstream

(production) technology also used by a neighboring firm. This effect, however, quickly

decays with distance where startup firms that are more than 20 meters (66 feet) away are

no longer influenced by each other. In addition, we find that when firms overlap with

common areas at the hub (e.g., kitchens), the distance of influence increases, revealing

the important role that these spatial features play in extending geographic reach and in

promoting knowledge exchange.

We further exploit individual characteristics of the startups in the co-working space to

examine the interplay between physical proximity and a) social proximity, b) knowledge-

space proximity, and c) product-market proximity. This approach allows us to extend our

understanding of the established importance of micro-geography for knowledge diffusion

to include other non-geographic features of the workplace. We thereby detect important

nuances in terms of how the interplay with other proximity dimensions impacts the relation-

ship between physical proximity and technology adoption. Our results suggest that both

social and product-market proximity may serve as a substitute for physical proximity, and

that some knowledge-space proximity bolsters and too much reduces the impact of physical

distance on technology adoption decisions.

The observation that peers affect performance has been demonstrated in a host of envi-

ronments such as retail (Chan et al., 2014b,a; Mas and Moretti, 2009), finance (Hwang et al.,

2019), education (Sacerdote, 2001), and science (Catalini, 2018; Oettl, 2012). Further, these

peer effects have been found to manifest themselves through a variety of channels including

knowledge sharing, helping (co-production), and effort exertion/setting expectations (e.g.,

Mas and Moretti 2009; Housman and Minor 2016; Herbst and Mas 2015). Building off
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this research, we examine to what extent interaction between peers is a viable mechanism

driving entrepreneurial learning and how such peer learning, which we measure through

firm-level technology adoption decisions, influences startup performance outcomes.

This paper contributes to previous research in three important ways. First, we provide

insight into a fundamental decision early stage, high tech ventures face: technology adoption.

Especially in our context (of predominately software startups), the adoption of upstream tech-

nologies may be considered very similar to supplier adoption in more traditional industries -

a crucial decision, which tends to imply significant path dependency (Arthur, 1994; Murray

and Tripsas, 2004). Second, where previous research has emphasized formal, structural

features of the workplace such as firm size, age and prior social ties for the entrepreneurial

process (Elfenbein et al., 2010; Hasan and Koning, 2019), our analyses show that we can

better understand firm-level variation in rates of entrepreneurial technology adoption choices

by attending to multiple distinct classifications of proximity as well as to competitive pres-

sures and their interplay with each other. We highlight that understanding which firms and

how they respond to their peer firms matters for designing effective environments for early

stage startups. Unlike related work examining these dynamics, notably Hasan and Koning

(2019), we focus on proximity to other firms and not individual team members or co-workers.

Third, we speak to the literature examining accelerators, bootcamps, incubators and other

interventions targeted at early stage entrepreneurs (e.g., Hassan and Mertens 2017; Cohen

et al. 2019; Lyons and Zhang 2018) by introducing an additional type of entrepreneurial

environment yet to be examined in more detail: the co-working hub.

In a more broader sense, our results are relevant to the literature on regional variation in

entrepreneurship, which examines the role of distinct channels (e.g., entrepreneurial culture

and knowledge spillovers) in establishing and reinforcing clusters of economic activity

(Saxenian, 1996; Sorenson and Audia, 2000; Fallick et al., 2006; Giannetti and Simonov,

2009). Whereas this literature has generally relied on aggregate city- or state-level data with

information on labor flows and entrepreneurship, we provide evidence from fine-grained
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micro-geographic data that highlight important nuances guiding our understanding of the

role of physical proximity. Most importantly, our findings suggest that other structural,

social, knowledge-based, and competition-related features can substitute for or reinforce the

impact of physical proximity - even on the micro-geographic level/one floor - and thereby

impact an organization’s ability to leverage co-location to improve performance. These

findings carry fundamental implications for the design of work spaces for innovation and

entrepreneurial communities.

3.2 Conceptual Framework

3.2.1 Physical Proximity

The diffusion of ideas has been found to be highly localized (Allen, 1977; Arzaghi

and Henderson, 2008). In theory, the assumption pervades that knowledge (especially

more tacit know-how) transfers via face-to-face interaction between individuals (Gaspar

and Glaeser, 1998; Jacobs, 1969; Moretti, 2004; Rosenthal and Strange, 2001). Empirical

research supports this idea with results indicating that the extent to which physical proximity

explains information flows between individuals can depend on as little as a few hundred

meters in certain circumstances (Catalini, 2018; Cowgill et al., 2009; Kerr and Kominers,

2015; Reagans et al., 2005).

One important environment where many interactions occur and information exchange

takes place on a daily basis is the workplace. As such, the workplace represents a setting

for unexpected influences, and for the serendipitous flow of information and ideas. With

regard to the physical layout of the workplace, early research dating back to Allen (1977),

has established the fundamental role of proximity in determining and shaping workplace

interactions. Studies have tested this in the context of, e.g., science (Boudreau et al., 2017;

Catalini, 2018), options exchange (Baker, 1984), technology companies (Cowgill et al.,

2009), and e-commerce (Lee, 2019) finding that physical proximity strongly influences

collaboration patterns and the transmission of information.
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The importance of (work)place for knowledge diffusion also has strong implications

for entrepreneurs and, especially, for entrepreneurial learning. Generally, entrepreneurs

learn from a variety of sources, though one particularly important channel is learning from

fellow entrepreneurs (Nanda and Sørensen, 2010; Lerner and Malmendier, 2013). This is

provided that entrepreneurs predominately operate in fast-paced and uncertain environments,

making local search (Cyert et al., 1963) based on experimentation and frequent adjustments

(Lippman and McCall, 1976; Gavetti and Levinthal, 2000; Gans et al., 2019) a crucial

component in the early stages of a venture. Simply being close to other entrepreneurs

facing similar problems may reduce the costs of accessing relevant information, for example,

through direct observation of successful techniques and/or teaching (Chan et al., 2014b).

Since individual decision-making depends on an individual’s stock of knowledge and

available information (Simon, 1955), we expect that physical proximity influences a startup’s

decision to adopt new (to the focal startup) technologies already used by other startups.

Another feature of the physical layout of office spaces are common areas many workers

pass through on a regular basis. These spaces, such as kitchens, elevators or the “watercooler”

provide opportunities for individuals to see and meet each other and facilitate informal, and

unplanned interactions (Fayard and Weeks, 2007). We propose that common areas operate

similarly to physical proximity by reducing frictions associated with information access. In

addition, it is possible that such central meeting places connect firms that otherwise would

be too distant to exert an influence on each other’s technology adoption decisions. From

this, we expect that common areas serve as substitutes for geographic proximity and may,

furthermore, extend the reach of physical proximity.

3.2.2 The Interplay of Physical Proximity with Other Dimensions of Proximity

Besides physical proximity, other dimensions of proximity have been found to impact

knowledge transfer. The three types which we will focus on in this paper are, as displayed in

Figure 2.1, a) the social (Blau, 1977; McPherson and Smith-Lovin, 1987), b) the knowledge-
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space (Cohen and Levinthal, 1990), and c) the product-market dimensions (Wang and

Zhao, 2018; Alcácer et al., 2015; Saxenian, 1996). Although most recent research has

pushed on extending our knowledge as to the consequences of the interplay with prior

social ties (Hasan and Koning, 2019), we have yet to understand how other features interact

with physical proximity and whether these dynamics between peer firms promote startup

performance. This becomes especially pressing as incomplete understanding may incur

misleading recommendations (Carrell et al., 2013) as for the design of entrepreneurial

workplaces. In what follows, we hone in on the interplay between these three dimensions

and physical proximity thereby assessing the role of social-, information- and competition-

based dynamics.

<Insert Figure 2.1 here>

Social proximity

A large literature has demonstrated the importance of social proximity in governing

exchange between actors (Granovetter, 1973; McPherson and Smith-Lovin, 1987; Singh,

2005). For example, in the context of education (Reagans, 2011; Carrell et al., 2013),

social mixers (Ingram and Morris, 2007), and manufacturing (Kato and Shu, 2016), social

proximity has been found to impact network formation, interaction patterns, and reference

groups. More recent studies push further and suggest that prior ties may impact the extent to

which individuals are receptive to peer effects in the first place (Hasan and Koning, 2019;

Aral and Nicolaides, 2017). Overall, social proximity, similar to physical proximity, seems

to govern the flow of knowledge and with whom information is exchanged. We, therefore,

expect that physical proximity and social proximity are substitutes for predicting technology

adoption decisions.
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Knowledge proximity

Beyond geographic proximity, knowledge-space proximity has been shown to influence

idea exchange (Cohen and Levinthal, 1990). One early example for this line of research

is Jaffe (1986) who finds that knowledge-space proximity of firms has spillover effects

on patenting behavior. More recent work supports these findings and further suggests

that knowledge-space proximity has important implications for both market value, and

productivity of a firm (Bloom et al., 2013). However, the relationship between physical

proximity and knowledge-space proximity is likely nuanced. As proposed by previous

research, this relationship depends on both the ability of a peer to absorb (Cohen and

Levinthal, 1990) and the amount of non-redundant and relevant information available

between two peers (Azoulay et al., 2019; Burt, 2004; Oh et al., 2006). In other words, both

peers with a low and high degree of knowledge overlap are unlikely to learn from each

other. In turn, peers with a medium degree of knowledge overlap are those most capable of

absorbing knowledge shared between physically proximate peers. As such, we expect that

the interaction between physical and knowledge-space proximity has a non-linear impact

on new technology adoption decisions.

Product-market proximity

In conjunction with physical proximity, proximity in product-market space may have

implications for the amount and type of information shared amongst peers (Wang and Zhao,

2018). Two peers in the same or similar product-market space may not share information,

and exercise heightened secrecy precisely because they are co-located competitors (barriers

to knowledge exchange). As peers become more distant in product-market space the

likelihood to share information with proximate neighbors may increase (Jacobs, 1969). If

this is the case, then the interaction between physical proximity and product-market space

proximity should be negative with regard to technology adoption.

Alternatively, two peers in the same or similar product-market space may only then
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share information if they are both close in product-market and physical space. Being

closer may reduce barriers for knowledge spillovers to occur (Marshall, 1890; Stefano

et al., 2017; Saxenian, 1996). As peers become more distant in product-market space

the likelihood to share information with proximate neighbors may decrease given that the

available information from one peer is too different to be useful for the other peer. If

this is the case, then the interaction between physical proximity and product-market space

proximity should be positive with regard to technology adoption.

3.3 Empirical Strategy and Data

3.3.1 Estimation Strategy

Estimating the role of physical proximity on a startup’s decision to adopt a new tech-

nology not only requires data at a highly granular geographic level, but is also likely to

yield biased estimates of the effect size. Specifically, as has been well documented in the

context of peer learning by Manski (1993), these biases may be driven by issues of endoge-

nous sorting, contextual effects, and other correlated effects. On the one hand, technology

adoption could be a function of characteristics of the group (e.g., industry type) where firms

that would use similar technologies like to locate close to each other. On the other hand,

firms that are in physical proximity often experience similar social phenomena which could

drive technology exposure. To deal with such endogenous geographic clustering, we rely

on the random assignment of office space to the hub’s 251 startups, while to deal with

contextual contaminants we specifically examine firm i’s adoption decisions of technologies

that have already been adopted by firm j. Table 2.1 shows that pairwise characteristics do

not correlate with physical proximity, serving as a robustness check of our random room

assignment assumption (and confirmed by multiple senior staff at the co-working space).

<Insert Table 2.1 here>

Cognisant of the potential bias evoked by unobservable firm characteristics, we include
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firm fixed effects. This allows us to keep individual firm characteristics constant while

examining the treatment effect of distance (distanceij) on a) the count of technologies

firmi adopts that firmj has already adopted, and b) the probability that firmi adopts a

technology that firmj has already adopted. Applying the unique firm dyad as our unit of

analysis, we estimate the following specification using OLS:

Yij = βln(distanceij) +Xij + θi + φj + η (2.1)

where Yij represents the count of adopted technologies/probability of adoption, Xij is a

vector of dyad-specific controls θi and φj are Roomi × Firmi and Roomj × Firmj fixed

effects, respectively. Standard errors are two-way clustered at the firmi and firmj level.

We extend our analysis by interacting variables with distanceij . In these instances we

de-mean distanceij so that its level can be interpreted as the effect size at its mean.

In alternate explanations we estimate the following specification:

Yij = γCloseij +Xij + θi + φj + η (2.2)

where Closeij is equal to 1 if firms i and j are in the first quartile of the distanceij

distribution and 0 otherwise.

3.3.2 Data Sources and Construction

The data for our study were collected at one of the five largest technology co-working

spaces in the United States (in 2016). Designated as a startup hub where new ventures work

side by side, the building consists of five floors, 9,300 m2 (100,000 sq.ft.) and 207 rooms.

The data covers a period of 30 months from August 2014 – January 2017, during which 251

unique startups had rented a room in the co-working space. Approximately 35 percent of the

startups ceased operations or left the co-working space each year. For our analyses, we only

examine interactions between firms on the same floor resulting in 10,840 unique firm dyads.
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According to senior administrators at the co-working space, typically the reason why

startups leave is either because they fail, grow out of the space, or occasionally fall stagnant

and do not want to pay for an office when they can work from home. The vacant office

spaces are then assigned to startups based off a wait-list. Firms on the wait-list are prioritize

as follows: tech startups over service providers, and local vs. non local startups. During

the time we examine, only eight startups moved out because they outgrew their offices. At

the co-working hub, these successful startups are considered to have “graduated” from the

building.

The layout of the floors we examine (floors two - five), is depicted in Figure 2.2.1 We

measure the distance between rooms from available floor plans using space syntax software

(Bafna, 2003).2 One useful feature of space syntax software is that it calculates distances

between rooms as people would walk rather than the shortest euclidian distance on a plane

or “as the crow files.” For each room dyad we calculate the shortest walking distance. The

variable Close is an indicator equal to one if the shortest distance between firmi and firmj

located on the same floor is within 20 meters; the 25th percentile of pair-wise distances

between all rooms).3 The variable Distant equals to one if firmi and firmj are located

further than 44 meters (the 75th percentile of pair-wise distance between all rooms) from

each other on the same floor. We further flag dyads for whom the shortest paths between

rooms directly pass through a common area (Common Area). Common areas are the kitchens

and zones in front of the elevator on each floor as well as the open sitting space on the

second floor.

<Insert Figure 2.2 here>

Our main outcome variable of interest is new technology adoption. To construct this

variable, we exploit a novel data set, covering over 25,000 Internet technologies (e.g., ana-

1We exclude the ground level since the work space on this floor is a) open space and b) the work stations
are allocated to individuals and not complete firm entities (so called “hotdesks”).

2Using this software, distance is measured by steps. One step is the equivalent of roughly 1.42m.
3For a summary and description of all variables, please refer to Table A2.1 of the Appendix.
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lytics, advertising, hosting, and CMS) that tracks how technology usage of firms change on

a weekly basis (builtwith.com). From this website we collect information on the technology

input of the startups in our sample, including the exact date of implementation and aban-

donment. We construct two measures for technology adoption. The first is the number of

technologies firmi adopts from firmj (ln(AdoptCountij + 1)). An adopted technology

is a technology used by firmi in the focal period that firmi had not implemented in any

previous period, but firmj had already put to use. The second measure is 1(AdoptTechij),

which equals one if firmi adopts a technology from firmj . The control variable Pre-period

Technology Overlap corresponds to the percentage of technologies firmi has adopted from

firmj before both of the two firms are active at the co-working hub.

For each of the startups, we conducted extensive web-searches to find detailed infor-

mation regarding startups’ characteristics, such as industry and business models. For

industry classification, we follow the industry categories found on AngelList (angel-

list.com) and BuiltWith. The individual industries are Administration&Management,

Data, Design&Development, Digital, Education, Energy&Construction, Entertainment,

Finance&Legal, Healthcare, Marketing&PR, Real Estate, Retail, Science&Technology,

Security, and Software&Hardware. For our analyses we use each venture’s primary industry

(the most prominent on their websites), since many operate in more than one. The variable

Same Industry equals to one if firmi and firmj operate in the same primary industry.

Similarly, the variables Both B2B Companies and Both B2C Companies indicate if firmi’s

and firmj’s main customers are other businesses (B2B) or individual consumers (B2C).

We additionally identified the firm age at the co-working hub and gender composition of

the startups using information provided by the co-working space. As derived from the entry

date into the co-working space, |agei-agej| reflects the absolute value of the age difference

between firmi and firmj . The variable Both Majority Female flags firm dyads where team

members in both firmi and firmj are predominately female (over 50 percent female).

To capture differences in the quality of startups, we further identify those ventures that
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have received an award from the Technology Association of the local state. Judged by a

panel of industry leaders on a yearly basis, these ventures are regarded as the top 40 most

innovative technology startups in the state in a given year. In addition, we use two startup

performance measures provided by the co-working space. One is raising financial capital

in excess of $10 million (Seven Figure Club), and the other, identifies startups that have a

minimum of $100,000 in trailing 12 month revenue or have received $100,000 in funding

(Village Verified certificate). We also identify startups that have raised a seed round or have

ever raised VC seed investment from information provided on AngelList. Taken together,

we classify startups that have received a state award, have received the Village Verified

certificate, are Seven Figure Club members, have raised a seed round or have ever raised a

VC seed investment as Successful.

Each member of the co-working space enters and exits the building, rooms, elevators

and amenities provided by the co-working space using a unique key-card. For a selected

period of time (October 2015 - February 2016, and May 2016 - July 2016) and from the

exact time stamps of entry into these spaces we identify those firms who make use of the

roof patio, the mailroom and gym. The variables Both Use Roof, Both Use Mail, and Both

Use Gym equal to one if at least one member on both startups has ever used the respective

amenity and zero otherwise.

We further exploit a joint-event hosted at the co-working space on a weekly basis to

analyze the impact of proximity on the propensity of the entrepreneurs in our sample to

interact. This joint event is a lunch (open to the public) organized by the co-working space

every Friday at noon. The average number of people who attend the lunch is approximately

250 every week. The price for non-members is $10. This shared meal is intended to

give members the opportunity to “network with other startups” and to “meet, greet and

chowdown.” The co-working space keeps track of the exact order individuals (both members

and non-members) enter to attend the lunch. For a period of time (January 2016 - December

2016), we identify the number of lunches hosted at the co-working space that at least one
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team member of firmi and firmj both attend (# Event Bothij Attend). We further exploit

the order of entry to create an indicator equal to one if at least one team member of firmi

and firmj appear within 1, 2, 5, 10, or 25 people in line for the lunch (1(Ever within X

people in line)). Similarly ln(min line distanceij) reflects the log distance of entry between

members of firmi and firmj .

3.3.3 Descriptive Statistics

On average, each firm is at risk of learning from 53 other firms. The average distance

between room dyads is approximately 32m and the average room size is ca. 27 m2 (288

sq.feet). Twenty-eight percent of the rooms (by floor) are located close to each other and

38 percent of the shortest paths between two rooms pass through a common area. Of the

251 startups, 12 percent are predominately female and 24 percent are considered to be

successful startups. On average, the startups in our sample have been at the co-working

space for approximately one year. The use of web technologies is highly skewed, ranging

from a minimum of 0 to a maximum of 255. In Table 2.2, the variable Min. Technology

Usage (Max. Technology Usage) displays the minimum (maximum) amount of technologies

a startup ever hosted while at the co-working space. Over time, the startups in our sample

adopt about 7.33 technologies on average, 53 percent adopt at least one new technology.

<Insert Table 2.2 here>

The main focus of our analyses is on startup dyads. A key component is thereby the

characteristics both startups have in common. Of the startup-dyads in the co-working hub, 11

percent operate in the same industry, 48 and 11 percent both have a B2B and B2C business

model respectively. The percentage of startup-dyads where the majority of team members

are female is 1.3 percent (N = 138), 47 percent of the startup-dyads consist of firms that are

both located in small rooms, and eight percent of the startup-dyads are considered successful.

The average age difference between startups in a dyad is 7.30 months. We identify that 20
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percent, 19 percent, and four percent of the startup-dyads both used the mail room, the gym

and accessed the roof patio respectively.

3.4 Results

In this section we turn to the results following the estimation strategy we laid out in

an earlier section. For the purpose of this study, we operationalize the distinct proximity

dimensions as displayed in Table 2.3.4 Physical Proximity is measured using the geographic

distance (in meters) between rooms on one floor. Social Proximity captures when both firms

possess a salient characteristic that only a minority of the firms in the co-working space have.

We identify socially proximate firms as those where both startups are a) majority female,

and b) successful. We measure Knowledge-Space Proximity using the mean pre-period

technology overlap between focal firmi and all other close firms. We break this measure

into quintiles. In this paper, Product-Market Proximity captures when the consumers of two

firms’ products are similar. We measure product-market proximity by using a combination

of two firm characteristics: a) industry, and b) business model. Two firms are proximate in

their product-market if they either operate in the same industry or have the same business

model.

<Insert Table 2.3 here>

3.4.1 Baseline Results: Physical Proximity

Average effects of distance

Table 2.4 presents the results from estimating the effect of distance on peer technology

adoption (ln(AdoptCountij + 1)) using a standard OLS model. In the full model using

firm-x-room fixed effects and controlling for industry, business model, gender, age and

pre-period technology overlap, we find that distance reduces the amount of peer technology

4We go into more detail on the rationale behind each measure in the following subsections.
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adoption ( = - 0.035, cluster-robust standard errors 0.014). The magnitude and statistical

significance of the effect remains robust to including different covariates. As displayed in

Table 2.5, the results from a linear probability model confirm the findings from the OLS

model indicating that distance is negatively associated with the likelihood of peer technology

adoption ( = - 0.017, cluster-robust standard errors 0.006 in the full model, column 6). Here

also, the magnitude and statistical significance of the effect remains robust to including

different covariates.

<Insert Tables 2.4 and 2.5 here>

To get a better understanding of the precise spatial distances that predict technology

adoption, we further distinguish between dyads located within 20 meters of each other

(Close), between 20-44 meters and those located more than 45 meters apart (Distant).

In Table 2.6, we display the results from estimating equation 1 using this more nuanced

classification of distance. The results in columns 1-3 indicate that close proximity positively

influences the likelihood of adopting an upstream (production) technology also used by a

peer firm. Including all spatial distance categories (column 3) we find that being in close

proximity is associated with a two percentage point higher probability of adopting a peer

technology ( = 0.019, cluster-robust standard errors 0.006). This finding remains robust

to including different covariates. As displayed in columns 4-6, applying an OLS model

and estimating the count of adopted peer technologies (ln(AdoptCountij + 1)) provides a

similar result. In the full model (column 6), the point estimate on the coefficient for close

proximity is 0.045 (cluster-robust standard errors 0.017). Switching to a room in close

proximity would translate into a five percent increase in the number of peer technologies

adopted from the mean.

<Insert Table 2.6 here>

The results from a quartile regression (Figure 2.3) provide further evidence that startup

firms that are less than 20 meters away are most influenced by each other and that the
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proximity effect is non-linear. The effect of distance more than halves in the 2nd quartile

compared to the 1st and goes toward zero in the 3rd quartile when comparing to the most

distant rooms (omitted category).

<Insert Figure 2.3 here>

Another feature of the physical layout of the office space are common areas provided by

the co-working space, such as the kitchens on each floor. In the regressions presented in

Table 2.7 we include a variable equal to one that indicates if the shortest path between firmi

and firmj is across a common area (Common Area). As shown in Table 2.7, column 1,

common area overlap is associated with a higher likelihood of technology adoption (= 0.018,

robust standard errors 0.010). Interacting common area overlap with an indicator equal to

one if startups are located within 20 meters from each other (Close), we find that common

area overlap may, in fact, substitute for being located in close proximity. In order to get a

deeper understanding of the precise spatial distances this applies to, we break our distance

measure into quartiles (recall that Close corresponds to the first quartile) and interact these

quartiles with the CommonArea dummy (using CommonArea× 4th distance quartile as

the omitted category). The results are displayed in Figure 2.4, which reveals two things. First,

being close (first quartile of distance) to a firm increases technology adoption likelihood

independent of whether or not the two firms pass through a common area. Second, and

more interestingly, the likelihood of technology adoption for a peer in the second quartile

(between 21 and 30 meters apart) also is greater but this effect only activates for firm dyads

that pass through a common area. In other words, it appears that these common areas extend

the co-location premium to firms that are more distant from one another.

<Insert Table 2.7 and Figure 2.4 here>

We next examine the extent to which physical proximity to other firms and offices may

reduce the benefits of dyadic proximity. We do so by constructing a remoteness variable as
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follows: remotenessi = 1
N

∑N
j=1 distanceij for all pairwise distances between the room of

firm i and firm j on the same floor. We next construct a dummy variable, CentralLocation

equal to 1 if remotenessi is in the first quartile (the most central office locations) and

0 otherwise. Because CentralLocation does not vary within our Firmi × Room Fixed

Effects we are only able to estimate its interaction with ln(distanceij) or Close. As shown

across a number of specifications in Table 2.8, firms with more central office locations suffer

from less of a distance penalty. Conversely, the proximity premium we have empirically

demonstrated across various specifications matters much more for firms that are not centrally

located. In line with the common area results shown in Table 2.7, firms that are more isolated

are influenced to a greater degree by proximate firms.

<Insert Table 2.8 here>

3.4.2 Interaction Results: Physical and Other Proximity Dimensions

We now turn to the results on the interplay between physical proximity and a) social, b)

knowledge-space, and c) product-market proximity.

Interplay with social proximity

Regarding social proximity, we first examine how the gender composition of the firm

dyads may influence the effect of physical proximity on peer technology adoption. In the case

of our setting, female startups represent a minority group. As suggested by Reagans (2011),

demographic characteristics that define minority status are more likely to be salient. Salience

is important because individuals are more likely to identify with a salient characteristic, and

identification with a characteristic generates positive affect for in-group members (Hogg and

Turner, 1985; Grieve and Hogg, 1999). As shown in Table 2.9, we find that dyads where

both startups are predominately female overcome the distance discount suggesting that these

startups rely on alternate mechanisms to overcome the negative effects of distance or, as a
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minority within the co-working space, may have different networking behavior (Kerr and

Kerr, 2018).

<Insert Table 2.9 here>

Another salient characteristic of startups is success. Similar to demographic character-

istics, success is a characteristic that is a) easily identifiable, and b) likely to generate a

positive affect for in-group members. Table 2.10, displays the results from examining how

quality differences impact the effect of physical proximity. In the full model (column 4), we

find that both main effects on being close and both startups being successful are positively

associated with technology adoption. In addition, the interaction between being close and

both successful is negative suggesting that success and proximity may be substitutes.

<Insert Table 2.10 here>

Interplay with knowledge-space proximity

In Figure 2.5, we present the results including an interaction of physical proximity and

our knowledge-space overlap measure. As predicted, the results indicate that the interaction

between knowledge-space overlap and physical proximity have a non-linear relationship

with predicting peer technology adoption. Our findings suggest that the strongest interaction

is between being physically close and in the 2nd quintile in terms on knowledge-space

proximity. The size of the interaction coefficient almost halve from the 2nd to 3rd, more than

halves from the 3rd to 4th, and is close to zero for the 1st and 5th quintiles. Put differently,

firms do not learn from firms in close proximity that have very little or very much knowledge

overlap.
<Insert Figure 2.5 here>

Interplay with product-market proximity

In Table 2.11, we present the results including an interaction of physical and product-

market proximity. The interaction between product-market and physical proximity is
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negative, thereby indicating that product-market proximity may be a substitute for physical

proximity. In addition, the main effect of physical proximity remains positive and statistically

significant on a level of p<0.01 across all specifications, whereas in the fully specified model

(column 4) the main effect of product-market proximity does not. This implies that physical

and product-market proximity are possible substitutes. Being physically close and in the

same product-market may thereby act as a barrier to knowledge exchange.

<Insert Table 2.11 here>

3.4.3 Could physical proximity be shaping interaction?

One plausible mechanism that could explain our previous set of results is that physical

proximity shapes the interactions individuals engage in (Hasan and Bagde, 2015). To explore

the extent to which this is the case in the startup hub context, we further exploit a joint event -

a lunch - hosted at the co-working space on a weekly basis. Table 2.12, columns 1-3, present

the results using the number of lunches hosted at the co-working space that at least one team

member of firmi and firmj both attend (# Event Bothij Attend). As shown in column 3,

startup dyads that are within 20 meters attend 0.26 more lunches together than those located

20-44 meters from each other (omitted category), whereas dyads that are located more than

45 meters apart do not differ from the omitted category. The results using an indicator equal

to one if at least one team member of firmi and firmj both attend (1(Bothij Attend)) as

the dependent variable (columns 4-6) confirm the results in columns 1-3.

<Insert Table 2.12 here>

We further exploit the order of entry to calculate the log distance of entry between

members of firmi and firmj (ln(min line distanceij)) and to create an indicator equal to

one if at least one team member of firmi and firmj appear within 1, 2, 5, 10, or 25 people

in line for the lunch (1(Ever within X people in line)). In Table 2.13, we present the results

from estimating the effect of room proximity on check-in line proximity, conditional on
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jointly attending the event. The results indicate that close room proximity (within 20 meters)

only increases check-in line proximity for the group of people within 1-5 individuals from

each other at check-in and not for those individuals further away in line. Together, these

results suggest that social groups - in other words, the set of individuals who have a high

propensity to chat with each other - are also partially induced by geographic location where

spatial distances as short as 20 meters seem to matter most.

<Insert Table 2.13 here>

Similarly to joint events, we would expect a positive relationship between joint amenity

use and peer technology adoption if interaction between individuals were a viable mechanism

explaining our prior results. The idea here is that in places such as roof-top patios and

mailrooms, individuals have a heightened propensity to chat with other individuals using

the space. In Table 2.14, we report the results from estimating the relationship between

amenity use and the likelihood of technology adoption. As displayed, we find heterogeneous

results in terms of joint amenity usage and the likelihood of technology adoption. When

both startups have at least one member who uses the roof-top patio or mailroom, these

dyads are more likely to adopt technologies from each other. This, however, is not the

case for gym-use where neither gym-usage without proximity nor the interaction with close

proximity is statistically significant. We interpret the results for gym usage as a placebo

given that the roof-top patio and mailroom are places where individuals are more likely to

interact, hence have a higher propensity to chat, than at the gym where individuals tend to

focus on their workout activity.

<Insert Table 2.14 here>

3.4.4 Performance

Via their impact on technology adoption decisions, physical and other proximity dimen-

sions may also shape startup performance outcomes. Spatial design - by means of “...its own
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grammar that can be tweaked to bolster desirable habits” (Doorley and Witthoft, 2012) - may

thereby impact performance by determining the set of immediate peers (potential interaction

partners) a startup has in the first place. The notion that peers drive performance has been

demonstrated in a host of different environments such as retail (Mas and Moretti, 2009;

Chan, Li and Pierce, 2014a,b), finance (Hwang, Liberti and Sturgess, 2018) and science

(Oettl, 2012; Catalini, 2017). The idea being that by sharing knowledge, helping, and setting

expectations (e.g., Mas and Moretti, 2009; Herbst and Mas, 2015; Housman and Minor,

2016), performance is enhanced.

To examine the potential performance implications of proximity and peer technology

similarity at the firm-level, we estimate the probability of achieving two important startup

performance milestones as a function of the technology characteristics of firms within

20 meters of the focal firm. These two startup outcomes, which have been used in prior

literature as measures for new venture financial performance (e.g., Hochberg et al. 2007;

Nanda and Rhodes-Kropf 2013), are raising either a seed round (Figure 2.6) or $1MM

(Figure 2.7). We further control for firm characteristics such as industries, age and size. As

Figures 2.6 and 2.7 display, falling into the third quintile of mean technology similarity to

close firms positively predicts both outcomes. In line with previous research (Swank and

Visser, 2015; Hassan and Mertens, 2017; Bikhchandani et al., 1998), our findings indicate

that both too little, but also too much (or frequent) technology similarity does not aid startup

performance. This suggests that there may be important limits to promoting interaction and

resulting entrepreneurial peer learning for new venture performance.

<Insert Figures 2.6 and 2.7 here>

3.5 Discussion

We contribute to the discussion on workplace design for knowledge workers and en-

trepreneurs as well as the micro-geography of technology diffusion in four important ways.

First, our findings indicate that distance matters for entrepreneurial learning, and more
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specifically, for technology adoption. We show that in one of the largest entrepreneurial

co-working spaces in the US, startups are influenced by peer startups that are within a

distance of 20 meters and no longer at greater distances.

Second, we contribute to the literature examining proximity and knowledge spillovers,

by combining multiple dimensions of proximity and analyzing their interdependencies. We

thereby provide evidence for heterogeneity in the effect of physical distance on technol-

ogy adoption depending on other types of proximity. Here, our results provide suggestive

evidence that socially proximate peers may be able to overcome the distance discount

given stronger within-group ties (and presumably more planned interactions). However,

precisely this way of sharing knowledge may be reinforcing divides between groups since

new information may not be dispersed equally. Further, we find that some knowledge-space

proximity bolsters and too much reduces the impact of physical proximity, providing sugges-

tive evidence that the extent to which different startups respond to information is nuanced

and relies both on social and informational processes. In addition, our results indicate that

the interaction between product-market and physical proximity has a negative impact on

technology adoption decisions. This implies that competitive pressures in the context of the

co-working hub may be creating non-negligible barriers to knowledge exchange.

Third, the micro-geographic perspective we apply, presents a possible avenue to recon-

cile Marshall-Arrow-Romer specialization externalities (Romer, 1986) and Jacobs’ type

diversification externalities (Jacobs, 1969). It is plausible that both types of externalities

may be operating at different geographic levels (Beaudry and Schiffauerova, 2009) or -

given our results indicating that more isolated firms are influenced to a greater degree by

proximate firms than centrally located ones - depend on how remote/central a firm’s location

is. Understanding this balance between concentration and diversity has important implica-

tions, especially, for promoting the diffusion of ideas within a fast-changing entrepreneurial

ecosystem.

Fourth, we provide insight on the implications of technology adoption for startup
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performance. Our findings seem to indicate that a moderate amount of technology adoption

contributes to achieving important startup performance milestones. This goes in line with

previous research highlighting limits to technology adoption (Swank and Visser, 2015;

Hassan and Mertens, 2017) and suggests that there are important trade-offs associated with

the amount of and frequency at which new (to the firm) technologies are incorporated.

We acknowledge that our paper is not without limitations. For one, we restrict our

analysis to only one co-working space. In this case we are trading-off a higher level of

generalizability for richer data. Given the large sample of heterogeneous startups both in

terms of technology sophistication and industries, the findings we present should nonetheless

be fairly representative for the population of startups working in similar co-working spaces

around the world. Furthermore, we restrict our focus to one type of decision entrepreneurs

make: technology adoption. We use this measure since, on the one hand, choices regarding

the technology of a firm are especially fundamental for startups (Murray and Tripsas,

2004), and on the other hand, because we can clearly identify the time these changes were

implemented.

Taken together, our findings provide fundamental insights for the design of communi-

ties that support knowledge production, entrepreneurship, and innovation. We highlight

important trade-offs and stress that understanding which firms and how they respond to their

peers matters for creating effective environments for early stage ventures. Where physical

structure may lay the groundwork for exchange to take place, other factors may determine

how firms actually enact on presented opportunities.
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Figure 2.1: Conceptual Approach
Notes: This figure stylistically displays our conceptual approach. Each symbol represents our prediction as elaborated in
the main text.
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Figure 2.3: Physical Proximity Quartile Plots
Notes: This figure displays the results from estimating equation (1) using a quartile regression. We thereby split our
distance measure into quartiles instead of using a continuous measure of distance. The omitted category is the 4th quartile,
representing the furthest distance.
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Figure 2.4: Common Area Quartile Plots
Notes: This figure displays the results from estimating equation (1) using a quartile regression and including an interaction
with the CommonArea dummy. We thereby use CommonArea× 4th distance quartile as the omitted category.
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Figure 2.5: Adoption by Technology Overlap Quintiles
Notes: This figure presents the results from estimating equation (1) and including the interaction of physical proximity
and knowledge-space overlap. We measure knowledge space proximity using the mean pre-period technology overlap
between focal firmi and all other close firms and break this measure into quintiles (omitted category is not close).
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Figure 2.6: Probability of Raising a Seed Round by Technology Overlap Quintile of
Proximate Firms

Notes: This figure displays the results from estimating the probability of raising a seed round as a function of the
technology characteristics of firms within 20m of the focal firm. We thereby control for firm characteristics such as
industries, age and size. Mean Technological Similarity to Close Firms is the average technology overlap of firmi

technologies with other firms within 20m distance, which we break into quintiles is this figure. The 1st quintile is the
omitted category and 95% confidence intervals are displayed.
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Figure 2.7: Probability of Raising $1MM by Technology Overlap Quintile of Proximate
Firms

Notes: This figure displays the results from estimating the probability of raising $1MM as a function of the technology
characteristics of firms within 20m of the focal firm. We thereby control for firm characteristics such as industries, age
and size. Mean Technological Similarity to Close Firms is the average technology overlap of firmi technologies with
other firms within 20m distance, which we break into quintiles is this figure. The 1st quintile is the omitted category and
95% confidence intervals are displayed.
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Table 2.1: Summary Statistics on the Firm and Dyad Level

Firm level (N = 251) mean sd min p25 p50 p75 max

Age (in months) 12.24 9.59 0 3 11 20 29
Room size (in sq.feet) 288.28 327.69 50 134 143 255 1878
Room size (in m2) 27.78 30.44 4.64 12.45 13.29 23.70 174.50
Female (= 0/1) 0.12 0.32 0 0 0 0 1
B2B (= 0/1) 0.74 0.44 0 0 1 1 1
B2C (= 0/1) 0.39 0.49 0 0 0 1 1
Successful (= 0/1) 0.24 0.43 0 0 0 0 1
Min. Technology Usage 33.15 33.15 0 0 28 54 168
Max. Technology Usage 51.06 49.70 0 0 43 79 255
Use Mail 0.37 0.48 0 0 0 1 1
Use Gym 0.37 0.48 0 0 0 1 1
Use Roof 0.17 0.38 0 0 0 0 1

Dyad level (N = 10840) mean sd min p25 p50 p75 max

Adopted a Technology (= 0/1) 0.53 0.50 0 0 1 1 1
Number of Adopted Technologies 7.33 10.49 0 0 2 12 76
Distance 32 15.20 4.30 20 30 44 77
Close (= 0/1) 0.28 0.45 0 0 0 1 1
Common Area (= 0/1) 0.38 0.48 0 0 0 1 1
Pre-period Technology Overlap (%) 0.14 0.18 0 0 0 0.27 0.85
Same Industry (= 0/1) 0.11 0.31 0 0 0 0 1
Both B2B (= 0/1) 0.48 0.50 0 0 0 1 1
Both B2C (= 0/1) 0.11 0.31 0 0 0 0 1
Both Majority Female(= 0/1) 0.013 0.11 0 0 0 0 1
Age Difference 7.30 7.28 0 1 5 12 29
Both Small Room (= 0/1) 0.47 0.50 0 0 0 1 1
Both Successful (= 0/1) 0.08 0.27 0 0 0 0 1
Both Use Mail (= 0/1) 0.20 0.40 0 0 0 0 1
Both Use Gym (= 0/1) 0.19 0.39 0 0 0 0 1
Both Use Roof (= 0/1) 0.04 0.19 0 0 0 0 1
Notes: This table displays summary statistics for the startups operating at the co-working space we examine. We report summary statistics

both on the firm and dyad level.
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Table 2.2: Operationalization of Proximity Dimensions

Dimension Operationalization
Physical Proximity Geographic distance (in meters) between rooms on one floor.
Social Proximity Both firms possess a salient characteristic that only a minority of

the firms in the co-working space have. We apply two measures to
identify socially proximate firms: those where both startups are a)
majority female, and b) successful.

Knowledge Space Proximity We measure knowledge space proximity using the mean pre-period
technology overlap between focal firmi and all other close firms.
We break this measure into quintiles.

Product Market Proximity The consumers of two firms’ products are similar. We measure
product market proximity by using a combination of two firm
characteristics: a) industry, and b) business model. Two firms are
proximate in their product market if they either operate in the same
industry or have the same business model.

Notes: This table displays how we operationalize the various proximity dimensions used in this paper for the purpose of our empirical analyses.
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Table 2.3: Pairwise characteristics do not predict geographic proximity - OLS Regressions

(1) (2)
Unit of Analysis Firmi-Firmj Dyad

Dependent Variable ln(distanceij)
Same Industry 0.000 0.001

(0.019) (0.019)

Both B2B Companies 0.029 0.030
(0.040) (0.040)

Both B2C Companies 0.031 0.030
(0.021) (0.020)

Both Majority Female 0.014 0.014
(0.026) (0.028)

|agei-agej| 0.001 0.001
(0.001) (0.001)

Pre-period Technology Overlap −0.073
(0.070)

Firmi X Room Fixed Effects X X
Firmj X Room Fixed Effects X X

Observations 10840 10840
R2 0.12 0.12

Notes: Robust standard errors 2-way clustered at the firmi and firmj level are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.7: Common-area overlap increases technology adoption and substitutes for proximity
- LPM Regressions

Unit of Analysis Firmi-Firmj Dyad

Dependent Variable 1(AdoptTechij)
mean 0.531

(1) (2) (3) (4)

ln(distanceij) −0.027∗∗∗ −0.024∗∗∗
(0.009) (0.009)

Common Areaij 0.018∗ 0.034∗∗ 0.010 0.011
(0.010) (0.013) (0.008) (0.009)

Common Areaij × ln(distanceij) −0.035
(0.023)

Close 0.029∗∗∗ 0.032∗∗∗

(0.009) (0.009)

Close × Common Areaij −0.036∗
(0.019)

Firmi X Room Fixed Effects X X X X
Firmj X Room Fixed Effects X X X X

Observations 10840 10840 10840 10840
R2 0.79 0.79 0.79 0.79

Notes: The variable ln(distanceij) is mean centered. Robust standard errors 2-way clustered at the firmi and
firmj level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.8: Centrally-located rooms substitute for proximity - LPM Regressions

Unit of Analysis Firmi-Firmj Dyad

Dependent Variable 1(AdoptTechij)
mean 0.531

(1) (2) (3) (4)

ln(distanceij) −0.025∗∗∗ −0.021∗∗∗
(0.009) (0.007)

ln(distanceij) × Central Location 0.038∗∗ 0.030∗∗

(0.015) (0.014)

Close 0.034∗∗∗ 0.028∗∗∗

(0.010) (0.009)

Close × Central Location −0.040∗∗ −0.026∗
(0.016) (0.014)

Pre-period Technology overlap 1.007∗∗∗ 1.006∗∗∗

(0.095) (0.095)

Same Industry −0.011 −0.011
(0.008) (0.008)

Both B2B companies −0.005 −0.005
(0.013) (0.013)

Both B2C companies 0.004 0.004
(0.011) (0.011)

Both Female CEOs 0.016 0.016
(0.041) (0.041)

|age i-age j| −0.001∗∗ −0.001∗∗
(0.001) (0.001)

Firmi X Room Fixed Effects X X X X
Firmj X Room Fixed Effects X X X X

Observations 10840 10840 10840 10840
R2 0.79 0.79 0.79 0.79

Notes: The variable ln(distanceij) is mean centered. Robust standard errors 2-way clustered at the firmi and
firmj level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.9: Female-firm dyads overcome the distance discount - LPM Regressions

Unit of Analysis Firmi-Firmj Dyad

Dependent Variable 1(AdoptTechij)
mean 0.531

(1) (2) (3) (4)

Close 0.024∗∗∗ 0.019∗∗∗

(0.007) (0.007)

Both Majority Female 0.018∗∗∗ −0.026∗ 0.007 −0.009
(0.006) (0.014) (0.005) (0.011)

Close × Both Majority Female −0.088∗∗∗ −0.078∗∗∗
(0.024) (0.027)

Pre-period Technology overlap 1.006∗∗∗ 1.007∗∗∗ 1.006∗∗∗ 1.005∗∗∗

(0.095) (0.096) (0.095) (0.095)

Distant −0.020∗∗ −0.011
(0.009) (0.008)

Distant × Both Majority Female 0.059∗∗∗ 0.023
(0.021) (0.021)

ln(distanceij) −0.018∗∗∗
(0.007)

ln(distanceij)× Both Majority Female 0.053∗∗∗

(0.018)

Firmi X Room Fixed Effects X X X X
Firmj X Room Fixed Effects X X X X

Observations 10840 10840 10840 10840
R2 0.83 0.83 0.83 0.83

Notes: The variable ln(distanceij) is mean centered. Robust standard errors 2-way clustered at the firmi and
firmj level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.10: Successful-dyads are more likely to adopt technologies from each other and
success substitutes for proximity - LPM Regressions

Unit of Analysis Firmi-Firmj Dyad

Dependent Variable 1(AdoptTechij)
mean 0.531

(1) (2) (3) (4)

Close 0.033∗∗∗ 0.029∗∗∗ 0.027∗∗∗ 0.025∗∗∗

(0.010) (0.010) (0.009) (0.007)

Close × Successfuli −0.030∗∗
(0.015)

Close × Successfulj −0.012
(0.014)

Both Successfulij 0.041∗∗∗ 0.025∗∗

(0.015) (0.011)

Close × Both Successfulij −0.029∗ −0.036∗∗
(0.017) (0.015)

Pre-period Technology Overlap 1.006∗∗∗

(0.095)

Same Industry 0.005
(0.010)

Both B2B Companies −0.007
(0.013)

Both B2C Companies 0.004
(0.011)

Both Majority Female 0.013
(0.041)

|agei−agej | −0.001∗∗
(0.001)

Firmi X Room Fixed Effects X X X X
Firmj X Room Fixed Effects X X X X

Observations 10840 10840 10840 10840
R2 0.79 0.79 0.79 0.83

Notes: Robust standard errors 2-way clustered at the firmi and firmj level are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 2.11: Product-market proximity substitutes for geography - LPM Regressions

Unit of Analysis Firmi-Firmj Dyad

Dependent Variable 1(AdoptTechij)
mean 0.531

(1) (2) (3) (4)

Close 0.044∗∗∗ 0.037∗∗∗ 0.041∗∗∗ 0.033∗∗∗

(0.011) (0.009) (0.010) (0.008)

Same Industry/Business Modelij 0.020∗ 0.013 0.018∗ 0.014
(0.011) (0.009) (0.010) (0.009)

Close × Same Industry/Business Modelij −0.031∗∗∗ −0.023∗∗∗ −0.029∗∗∗ −0.024∗∗∗
(0.009) (0.009) (0.010) (0.009)

Distant −0.008 −0.008
(0.013) (0.012)

Distant × Same Industry/Business Modelij 0.003 −0.003
(0.011) (0.011)

Both Majority Female 0.013 0.014
(0.041) (0.041)

|agei−agej | −0.001∗∗ −0.001∗∗
(0.001) (0.001)

Pre-period Technology overlap 1.005∗∗∗ 1.006∗∗∗

(0.095) (0.095)

Firmi X Room Fixed Effects X X X X
Firmj X Room Fixed Effects X X X X

Observations 10840 10840 10840 10840
R2 0.79 0.83 0.79 0.83
F 6.03 21.58 3.96 16.31

Notes: Robust standard errors 2-way clustered at the firmi and firmj level are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 2.14: Shared resources predict technology adoption - LPM Regressions

(1) (2) (3)

Close 0.022∗∗∗ 0.019∗∗ 0.022∗∗∗

(0.007) (0.008) (0.008)

Both Use Roof 0.034∗

(0.018)

Close x Both Use Roof 0.010
(0.022)

Pre-period Technology Overlap 1.293∗∗∗ 1.294∗∗∗ 1.293∗∗∗

(0.122) (0.122) (0.122)

Both Use Gym 0.015
(0.012)

Close x Both Use Gym 0.016
(0.011)

Both Use Mail 0.025∗

(0.014)

Close x Both Use Roof 0.003
(0.011)

Firmi X Room Fixed Effects X X X
Firmj X Room Fixed Effects X X X

Observations 10840 10840 10840
R2 0.84 0.84 0.84

Notes: The variable ln(distanceij) is mean centered. Robust standard errors 2-way clustered at the firmi and
firmj level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

89



CHAPTER 4

TAKING INTERACTIONS AND INNOVATION TO THE LAB: EXPOSURE TO

AN ENTREPRENEURIAL ADVISOR

“The [PhD] students do the research, I’m (...) the director and they’re like

the actors, actresses.”

(from interviews with Mechanical Engineering professors).

4.1 Introduction

Entrepreneurship is widely perceived as a fundamental engine for overall economic

growth and welfare and, as such, has been increasingly receiving attention and (financial)

support from the public and policy makers alike. However, particularly in the case of

employee entrepreneurship, incentives for entrepreneurial engagement may also interfere

with incentives for core employment tasks thereby potentially leading to underinvestment in

innovation and/or the execution of main job responsibilities (Hellmann, 2007). This may

become especially pronounced for supervisors whose tasks, which include responsibilities

such as human resource management (e.g., recruitment, mentoring), work allocation, as

well as monitoring (e.g., quality control), have crucial implications for their own and other

employees’ productivity (Bloom, 2013).

In this paper, I ask: Does a supervisor’s engagement in entrepreneurship affect their

subordinates’ innovative productivity? I empirically test this research question in the

context of academia and further highlight possible consequences for subordinates’ career

trajectories. Academia represents a suitable setting to examine this question given that

conflicting demands and goals both exist and are detectable, multiple stakeholders are

involved, fine-grained proxies for individuals’ ability and information on innovative activity

is available, and provided the important implications the findings may have for management
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and policy research (Fini et al., 2019).

Over the past few decades, the university has broadened its role of knowledge producer

to include the commercialization of academic discoveries (Hsu et al., 2007). In response to

opportunities, policy initiatives1 and organizational changes, universities (and researchers)

have become much more proactive in their efforts to commercialize scientific discoveries

(Crespi et al., 2011; Mowery et al., 2004). In fact, since the late 1990s, over 80,000 US

patents have been issued to academic institutions, and over 11,000 startups have been formed

out of universities (AUTM, 2017). Yet, commercial involvement goes against the traditional

norms that regulate the university, especially the norm that scientific findings are a common

good (Arrow, 1971; Dasgupta and David, 1994; Merton, 1973). As such, the resulting

conflicting demands of science and business could carry important consequences for the

overall production of knowledge both within and outside of the university.

Thus far, the existing literature provides some evidence on the implications of academics’

involvement in commercialization for knowledge production. However, in this line of re-

search most efforts are focused on examining the impact of commercialization on professors’

own publication output and provide mixed results. For example, although Thursby and

Thursby (2011) find that commercial activities have no significant effect on the production

of scientific publications, Murray and Stern (2007) document a drop in citation rates to

scientific publications once they receive formal IP protection. Moreover, whereas findings

by Agrawal and Henderson (2002) as well as Fabrizio and Di Minin (2008) indicate possible

complementarities between patenting and publishing activity, Crespi et al. (2011) suggest

that patenting, in fact, may crowd out publication efforts.

What has been left largely unexplored in this body of research is how professors’

commercial activity, particularly their active engagement in entrepreneurship, impacts their

subordinates, and more specifically, their PhD students. Not only do PhD students constitute

a fundamental vehicle for the transfer of knowledge, but they also represent one of the major

1One example is the Innovation Corps (I-Corps) program introduced by the National Science Foundation
(NSF) with the goal to train students for careers in entrepreneurship (Roach, 2017).
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players involved in the production of knowledge within and, upon graduation, outside of

the university. Therefore, in this study, I specifically examine how professors’ engagement

in entrepreneurship affects the innovative output and career trajectories of their advisees.

To do so, I track professors and their PhD students at a top-ranked US research university

from 2000-2013, assessing variation in student outcomes before and after research faculty

transitions into entrepreneurship.

I focus my analyses on the fields of computer sciences and engineering. The data

underlying this study come from a host of sources consisting of both restricted administrative

and publicly available information. These data encompass, amongst others, information on

professors’ nationality, gender, ethnicity, age, yearly amount of federal funding, teaching

evaluations, the number and quality of professors’ publications, as well as information

on their patenting output and the number of startups they establish. I complement these

data by matching professors to their PhD students, based on information provided by

the Office of Enrollment at the examined institution. For PhD students, I have access to

detailed information on their nationality, gender, ethnicity, age, year of admission and

graduation, major, GRE scores, GPAs, as well as their previous degree-granting institutions.

I additionally collect data on students’ careers before and after graduation, as well as on

their publications, patents and respective citations.

My baseline findings provide suggestive evidence that exposure to an entrepreneurial

advisor is associated with a decrease in the yearly total amount and number of highly-cited

publications PhD students produce. Conversely, exposure does not seem to impact patenting

output. These results, however, may be driven by a host of alternative explanations, which I

address in this paper step-by-step using different estimation techniques.

For one, there is concern of potential omitted variable bias regarding professors. Conse-

quently, rather than identifying a treatment effect of exposure to an entrepreneurial professor,

the results I find could be driven by specific features of the advisors that the econometrician

cannot observe. For example, those professors who transition into entrepreneurship may
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be different from other professors along certain dimensions such as ability, personal traits

(e.g., related to taking initiative and exercising leadership (Feldman et al., 2019)) and social

skills (that could give them a competitive edge in fundraising, or networking). To address

this concern, I apply professor fixed effects to my estimation models.

A further challenge to identifying the impact of exposure to an advisor engaged in

entrepreneurship on PhD students’ innovative output lies in possible changes to the compo-

sition of incoming PhD cohorts. For example, entrepreneurial professors could deliberately

pick students based on their suitability for commercial activity. These students may then

already be relatively less oriented towards academia before starting their PhDs. This could

explain any negative outcomes in relation to publishing activity or academic career paths

I find. In turn, students with relatively “lower academic quality” or more commercial

orientation could pick entrepreneurial professors over other more academically orientated

professors thereby biasing the results with regard to commercially oriented output such as

patents upward.

To address this, I examine what factors determine the match between PhDs and their

specific advisors using all professors present at entry of a student in the advisor’s department

as the group of potential advisors. Here, I apply both student and professor fixed effects

and interact a professor’s entrepreneurial experience prior to a student’s entry with a host of

student characteristics. The findings suggest that a student’s academic quality, nationality,

and prior work experience does not determine the match with an entrepreneurial professor.

In addition to compositional changes, the timing of a professor’s entrepreneurial activity

may be confounding the main results. To control for the potential endogeneity of a profes-

sor’s transition into entrepreneurship, I apply an instrumental variable approach (IV). The

instrument I use is the cumulative likelihood that a professor becomes a founder, which

I predict using the amount of venture capital (VC) investments by field-year. Following

this approach, the instrument should only influence the publication output of professors’

students through its effect on commercialization while addressing the empirical context of
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this study. The results I ontain from the IV estimation provide suggestive evidence for a

causal relationship between exposure to an advisor engaged in entrepreneurship and student

publication output.

My findings indicating a negative impact of exposure to an advisor engaged in en-

trepreneurship on students’ traditional academic output also carry implications for PhDs’

long-term productivity and careers. Notably, the negative relationship I find during the

PhD program persists and becomes stronger after graduation. Similarly to the results for

productivity during the PhD program, I do not find a consistent effect of exposure to an

entrepreneurial advisor on the patenting output of students. In addition, PhD students

exposed to an advisor engaged in entrepreneurship are less likely to work at a prestigious

company and more likely to become founders themselves upon graduation. This effect

does not hold in the long-run. In turn, in the short run, PhD students exposed to an advisor

engaged in entrepreneurship are more likely to pursue a postdoc, but ultimately less likely

to ever become professors.

In this paper, I further explore several possible mechanisms that could explain my main

findings. One potential avenue could be that professors’ own productivity goes down as a

result of entrepreneurial engagement. A further possible explanation for the results I find

could be that the type (or intensity) of training students receive once their advisors transition

into entrepreneurship changes and shifts away from traditional output channels. It is also

feasible that students exposed to entrepreneurial professors are less productive during the

PhD program because of organizational changes made to the lab. Taken together, the results

I present suggest that the latter is more likely the case. For one, examining professors’

publication and patenting output I find only a slight decrease in the publication output of

professors’ several years after they start their companies and an increase in patenting in

the years around the time of founding.2 Second, publication output and long-run academic

2I can also confirm previous findings that professor-founders are among the more productive in their
respective departments (Agrawal and Henderson, 2002; Zucker et al., 1998, 2002; Toole and Czarnitzki, 2010;
Higgins et al., 2011).
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career trajectories are most affected by exposure to an advisor engaged in entrepreneurship,

whereas patenting output is not. Third, I do not detect changes in advisors’ mentoring scores,

but instead find some indication for managerial changes by exploring possible boundary

conditions. I thereby contrast the main results from the fields of computer sciences and

engineering with the context of more basic sciences. Students in the basic sciences tend to

be more autonomous and rely less on the overall management of their corresponding labs

for the production of output throughout the PhD process. Therefore, if managerial changes

are indeed plausibly driving the results, I would expect an advisor’s impact on student’s

productivity to be weaker. My findings support this explanation.

In sum, this paper takes an important step towards understanding how advisors engaged

in commercial entrepreneurship affect their advisees innovative productivity and provides

insights on implications for advisees’ career outcomes. Given the empirical setting, I specif-

ically highlight potential consequences of academic entrepreneurship affecting innovative

output from universities and the productivity of future innovators. These findings may also

be extended to similar situations outside of academia where employees are faced with a

conflicting multi-task incentive regime (Hellmann, 2007). As such, this study speaks both to

the literature at the intersection of academic science and commercial activity (Dasgupta and

David, 1994; Owen-Smith and Powell, 2001; Stuart and Ding, 2006; Shane, 2004; Murray,

2010; Azoulay et al., 2017; Rothaermel et al., 2007; Zucker et al., 2002), as well as to the

body of research examining human capital development and the subsequent implications for

the rate and direction of inventive activity (Agrawal and Henderson, 2002; Lerner and Stern,

2014; Nelson, 2015).

This paper is structured as follows. In the next section, I provide a brief overview of the

existing literature. Section three describes the data sources. The fourth section lays out the

empirical estimation strategy and main results. I then discuss potential mechanisms and

limitations concluding with a section where I deliberate implications and opportunities for

future research.
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4.2 Background

Besides the widely recognized positive aspects of entrepreneurship, important trade-offs

with regard to entrepreneurial engagement exist that may carry negative consequences for

overall productivity and innovation (Campbell et al., 2012). For example, incentives for

entrepreneurship could be in conflict with employees’ incentives to complete core job tasks

(Hellmann, 2007). This situation could then possibly lead to underinvestment in innovation

and/or the execution of employees’ main responsibilities. In the case of supervisors, the

execution of their core responsibilities has been found to have strong implications for

their own and their subordinates’ productivity (Bloom, 2013). These tasks include human

resource management (e.g., recruitment, mentoring, training), work allocation, as well as

monitoring (e.g., quality control), which could be impacted by a supervisor’s engagement

in entrepreneurship and may, therefore, potentially entail important changes to the output

produced by both supervisors and subordinates.

One context that provides a suitable setting to examine if and how a supervisor’s

engagement in entrepreneurship may affect their subordinates innovative productivity is

academia. This is provided that within academia conflicting demands and goals exist,

multiple stakeholders are involved, and fine-grained proxies for individuals’ ability as well

as information on innovative activity is available (Fini et al., 2019). In what follows I focus

on presenting more background on the relevant literature for the context of this study.

4.2.1 Commercialization and Academia

In the case of academia, a long standing stream of literature has provided evidence

for the impact of the inventive output from academic research on productivity growth in

the economy and its role for stimulating greater private sector R&D through knowledge

spillovers (Jaffe, 1986; Lach and Schankerman, 2008; Audretsch et al., 2006; Shane, 2004).

Predominately, inventive output from academia is transferred to the public domain via
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publications. However, over the past decades, the traditional scope of academia has expanded

to include more commercially oriented channels, such as patents and new ventures, which

have increased dramatically in number ever since (Acs and Audretsch, 1990; AUTM, 2017).

To date, most research examining faculty engagement in commercialization has focused

on understanding why professors get involved in commercial activity, the characteristics of

those professors who do and what the implications of commercialization are for professors’

own innovative output. This body of literature points out that the participation of aca-

demic professors in commercial activity is partially a response to university organizational

mechanisms and public policies that shape incentives (Mowery et al., 2004; Toole and

Czarnitzki, 2010; Lach and Schankerman, 2004) as well as other individual-level motives

(Cohen et al., 2018). Moreover, the empirical evidence suggests that the most productive

academic life scientists are those involved in commercialization (Agrawal and Henderson,

2002). Specifically in the case of biotechnology, an influential stream of research points

to the fundamental role “star” scientists play in transferring new academic knowledge to

industry (Zucker et al., 1998, 2002; Toole and Czarnitzki, 2009; Higgins et al., 2011). In

addition, prior findings indicate that both publication and patent counts are positively related

to the precise timing of when life scientists start (or join) new ventures (Stuart and Ding,

2006).

Extant research has investigated the impact of the adoption of commercial attitudes and

behaviors by academic life science researchers on a number of outcomes (Louis et al., 1989;

Dasgupta and David, 1994; Powell and Owen-Smith, 1998; Etzkowitz, 2003; Stephan, 2012;

Stuart and Ding, 2006). These include the amount, direction and quality of publications.

Some express concerns about commercial engagement of academic scientists and its po-

tentially detrimental impact on academic research. For one, involvement in commercial

activities could cause a shift in the content of scientific research and induce academic scien-

tists to exit to industry (Azoulay et al., 2009). For another, and since faculty participation is

critical to successful commercialization, this incurs significant costs straining professors’
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available time, energy, and other resources (Zucker et al., 1998; Jensen and Thursby, 2001;

Shane, 2004; Agrawal et al., 2006; Lach and Schankerman, 2004). Others are less concerned,

finding that commercialization enhances traditional scholarship (Goldfarb et al., 2009) and

does not seem to detract from university knowledge production (Thursby and Thursby,

2007).

Nonetheless, what we know so far only paints a partial picture of the possible rami-

fications of commercial activity in academia. At this point, we must acknowledge that

within academia, professors are not the only producers of knowledge, but rely heavily on

their lab members. This reliance on lab members is especially pronounced in more applied

fields of research. Here, in most cases, professors head their own laboratories as principal

investigators (PIs) with PhD students representing the majority of their lab members.3 Given

their role as lab heads, professors largely determine the everyday tasks of their students and,

given their roles as educators, also largely determine what their students learn. Professors

frequently interact and work together closely with their PhD students in day-to-day activities

thereby strongly influencing the research trajectories of their advisees.4

Although substantial interest has been paid to professors’ publication and patenting

output, the literature on the impact of faculty engagement in entrepreneurship on their

PhD students remains sparse. Intuitively, there are likely to be heterogeneous effects both

positively and negatively impacting student outcomes. For example, as pointed out by

Powell and Owen-Smith (1998), entrepreneurial engagement could weaken the traditional

academic and education mission of professors thereby negatively impacting the academic

training students receive. Exposure to an advisor engaged in entrepreneurship could also

bolster students’ outcomes, especially their future ability to commercialize knowledge

3Working as research assistants in labs is the predominant way PhDs fund their graduate studies in
Computer Sciences and Engineering. In fact, taking numbers from the 2016 Survey of Earned Doctorates,
roughly 80 percent of all doctoral recipients in engineering were funded by a research assistance or research
grants (National Science Board, 2018). The remaining 20 percent were teaching assistants or relied on other
sources of funding.

4In contrast to the relationship PIs have with their postdocs, the relationship with PhD students is far more
developmental requiring larger investments from the advising professor.
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and career prospects in industry. But, it is also possible that a professor’s engagement in

entrepreneurship does not affect students at all if the additional task of starting a company

does not take away resources that would have been spent training students (Thursby and

Thursby, 2007) or change a professor’s direction or quality of research. From this, it is not

clear ex-ante to what extent professors alter the inventive output and career prospects of their

graduate students both in academia and industry by starting entrepreneurial ventures. As

such, the main guiding question of this study can be stated as: Does exposure to an advisor

engaged in entrepreneurship affect advisees’ innovative output and career trajectories?

Besides getting a better understanding of if exposure to an advisor engaged in en-

trepreneurship affects students’ innovative output, and more specifically what type of output

it affects, it is crucial to shed light on the possible channels through which this could occur.

For one, it could be that advisors change their own direction of research and amount of

output as a function of entrepreneurial activity. As members of the lab and co-authors,

students may then too experience a reduction in their output. Another potential way an

advisor’s engagement in entrepreneurial activity could affect their students, is via a change

in the type (and intensity) of training students receive once their advisors transition into en-

trepreneurship. These differences in training could have long-term implications for students’

innovative outcomes and career trajectories. Recent studies highlight that young scientists

adopt their advisors’ orientations toward commercial science (Azoulay et al., 2017) and that

the commercial orientation of the institution an individual was trained at determines the

likelihood of an individual’s future adoption of technology transfer practices (Bercovitz and

Feldman, 2007). If this explanation is driving the results, then we should perceive that expo-

sure to an entrepreneurial professor increases patenting persistently, industry employment,

and a student’s likelihood of becoming a founder.

An additional channel through which an advisor’s engagement in entrepreneurial activity

could affect their students, is via adjustments to the organizational structure of a professor’s

lab resulting in changes to the quality and stock of innovative output students produce during
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the PhD program. Especially in engineering, students rely heavily on the distribution of

work by their advisors and their output is, therefore, strongly linked to their advisors’ lab

management. Consequently, changes in, e.g., the size of the lab could explain differences in

student productivity.

Either explanation could have a persistent impact on students’ post-PhD productivity

and lead to fundamental alterations in a student’s starting conditions when entering the job

market, such as the characteristics of the first position they can secure. These differences

could then translate into important changes in long-term job characteristics and research

productivity of recently minted PhDs. As suggested by research examining the starting

conditions of students entering the job market, both the quality and type of an individual’s

first job have a causal effect on long-term job characteristics. For instance, using data on

economics PhDs, Oyer (2006) finds that better initial placement increases long-term research

productivity. Exploiting an extensive university-employer-employee dataset, Oreopoulos

et al. (2012) provide evidence that the effects of negative starting conditions persist up to

ten years. As such, any productivity differences detected during the PhD program should

persist or even become stronger over time.

4.3 Data Construction

To address the research question, I compiled a unique data set using rich administrative

information from various sources. The core information on the sample underlying this

study is based off confidential data provided to us by the research university examined. The

research design was approved by the university’s Institutional Review Board. Consent of

subjects was not required by the IRB and records of all subjects were anonymized prior to

analysis.

For the purpose of this study, I focus on the colleges of computer sciences and engineer-

ing covering a total of eight distinct fields. Aerospace Engineering (AERO), Biomedical

Engineering (BIOMED), Chemical & Biomolecular Engineering (CHEME), Civil Engi-
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neering (CIVIL), Electrical and Computer Engineering (ECE), Computer Sciences (CS),

Mechanical Engineering (ME), and Materials Science and Engineering (MATERIALS).

Three reasons why I select these areas are, a) to exploit across-field diversity, b) because

these areas produce the majority of doctoral recipients (with the strongest upward growth

trend (National Science Board, 2018)), and c) provided that most entrepreneurial activity

that is based on scientific discoveries and is research intensive originate from these fields

(Agrawal and Henderson, 2002; Goldfarb et al., 2009).

In what follows, I will describe the precise data sources accessed to construct the

dataset and the extent of coverage I was able to attain. I base the sample of professors

from information provided to us by the Office of Faculty Affairs. The initial sample

consists of 1,053 professors who were faculty at the focal research university between 2001

and 2017. For all of these professors I have access to detailed demographic information

including age, nationality, gender, ethnicity, as well as, department affiliations, and tenure

milestones. In addition, I collect data on professors’ publication output from Scopus

(scopus.com), and retrieve information on patenting from the USPTO Patentsview Patent

Database (patentsview.org). I further gather information on professors’ amount of NSF

and NIH funding from each foundation’s/institution’s respective website. Details on the

entrepreneurial activity of professors’ was provided by the university’s business outreach

organization. I was also granted access to professors’ teaching evaluation scores from the

institute.

The base sample of PhD students (5,722) was provided to us by the university’s Office

of Enrollment. For all of these students, I have access to detailed demographic information

including age, nationality, gender, ethnicity, as well as, department affiliations, majors,

year of admission, graduation, their prior degree granting institutions, level of degree

attainment as well as standardized test scores and incoming GPAs. Of these students,

2,980 completed the PhD program. Based on the official advisor recorded at the Office of

Enrollment, I match students to their advisors. As I proceeded with professors, I also collect
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information on each student’s publication output from Scopus (scopus.com), and retrieve

data pertaining to patents from the USPTO Patentsview Patent Database (patentsview.org).5

I additionally classify students’ previous degree granting institutions based on the World

Academic Ranking of Universities (shanghairanking.com) where I denote a university as

high quality if it is under the top 50 in a student’s field of enrollment. I restrict the sample

that I analyze to those students entering the PhD program between 2001- 2013 in order to

track post-PhD career outcomes and to ensure comparability of the results across models.

In order to address my research question, I further search for students’ CVs on LinkedIn.

For those who do not have a LinkedIn profile, I conduct extensive searches on the web

using secondary sources such as university and company websites, publication and patent

affiliations, CrunchBase and Bloomberg. Overall, I was able to attain career information for

82 percent of these students.

<Insert Table 3.1 here>

In Table 3.1 I report key descriptives for PhD students of entrepreneurial advisors only,

encompassing a total of 615 students with 81 entrepreneurial advisors.6 Of these students, 64

percent were exposed to an entrepreneurial advisor during their PhD program. The average

length of exposure is 2.5 years and goes up to a maximum of 9 years. I further report the

GPA and GRE scores at entry into the program. The variation in terms of GPAs is larger

given that over 60 percent of the students are foreigners and GPAs outside of the US do not

correspond directly to those in the US. With regard to the GRE scores, however, variation is

more limited, the median quantitative score being close to the maximum attainable score.

The range of students’ publication and patenting output during the PhD program is wide, a

reason why I log transform (log(X+1)) these variables in my subsequent analyses. I was

able to find CV records for over 85 percent of entrepreneurial advisors’ students.
5I define publications as highly-cited if the citation count of a publication (including articles and conference

proceedings) is above the median of the type of publication published at the same department in the same year.
6Please refer to Appendix A1, for a comparison of students by type of advisor and to A2, for summary

statistics of all professors and all professors with at least one patent or who are founders. Looking at the means,
students of advisors who ever become founders have better performance on average.
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Figure 3.1 displays the innovative output of professors at the research institute I examine

(the square denotes the mean). Over time, although there has been variation in the range

of publication and patenting output of individual professors, the university average has

remained stable. Note that the university I examine has consistently ranked nationally

among the top 5 most innovative public (top 20 overall) research universities.7

<Insert Figure 3.1 here>

Figure 3.2 depicts the number of faculty founders at the research university by year

from 2001 - 2017. There is strong variation in the amount of startups created in each year.

Overall, there are 100 unique founders who founded 128 startups.

<Insert Figure 3.2 here>

In Figure 3.3, I display the innovative output of professors at the research institute

I examine, contrasting entrepreneurial and non-entrepreneurial professors. As shown,

entrepreneurial professors tend to produce more patents, citation-weighted patents, publica-

tions, and highly-cited publications.8

<Insert Figure 3.3 here>

4.4 Estimation Strategy and Results

4.4.1 The Ideal Experiment

What would be the best way to examine the effect of exposure to an entrepreneurial

professor on students’ innovative outcomes? At this stage, a thought-experiment may

be useful to highlight potential threats to identification. Ideally, in order to analyze the

effect of advisors’ entrepreneurial activity on their PhD students’ innovative and career

7https://www.reuters.com/article/us-amers-reuters-ranking-innovative-univ/reuters-top-100-the-worlds-
most-innovative-universities-2017-idUSKCN1C209R

8In the Appendix, Figure A3.1, I report the distribution of number of startups per founder.

103



outcomes I would run a randomized control trial (RCT). This would entail the random

assignment of entrepreneurial activity to professors as well as the random assignment

of students to professors. As such, professors would not select into entrepreneurship

based on their characteristics, nor would simultaneously occurring events influence this

decision. The random assignment of students further ensures that the composition of

student characteristics within a lab following the transition to entrepreneurship does not

change allowing the researcher to cleanly estimate the effect of exposure to entrepreneurship

on student outcomes. Although, a RCT would solve this type of identification problem,

it is infeasible to implement given this would strongly interfere with individuals’ lives.

Nonetheless, this thought-experiment highlights several major threats to identification:

omitted variable bias, and selection.

4.4.2 Threats to Identification

In terms of the first threat, omitted variable bias, any results I find could be driven by

specific features of the advisors (or students) that the econometrician cannot observe. For

example, those professors who transition into entrepreneurship may be different from other

professors along certain dimensions such as ability, personal traits (e.g., related to taking

initiative and exercising leadership (Feldman et al., 2019)) and social skills (that could give

them a competitive edge in fundraising, or networking). If these traits also induce latent

entrepreneurial professors to be different advisors (e.g., in terms of training quality) than

those professors who never transition into entrepreneurship, these traits may mask the true

impact engagement in entrepreneurial activity has on students.

The second major challenge to identification relates to possible changes in the compo-

sition of PhD students professors advise once they transition into entrepreneurship. For

example, entrepreneurial professors could deliberately pick students that fit the demands of

their startup/commercial interests and may already be relatively less suited for academia

104



before starting their PhDs.9 In turn, students less interested in an academic career or who

are more commercially orientated could pick entrepreneurial professors over other more

academically orientated ones. If this is the case, then there may be a negative relationship

between exposure to an advisor engaged in entrepreneurship and innovative output transmit-

ted through traditional “academic” channels (publications) and careers as well as a positive

effect on more commercially oriented output (patents) and careers (industry) given the initial

advisor-advisee selection rather than treatment.

4.4.3 Addressing Threats to Identification and Results

Given that running the ideal experiment laid out earlier is not a feasible option, I take

a step-by-step approach towards addressing the major threats to identification. In what

follows, I first describe each step, then display and discuss the results.

Student-level Outcomes During the PhD Program

In this section, I turn my focus to the student-level and examine students’ aggregate

innovative and career outcomes produced during the PhD program. To deal with concerns of

omitted variable bias, I implement a professor fixed effects approach (and include professor-

year trends). Doing so, enables me to keep unobservable features of individual advisors, such

as ability and social skills constant. Advisors’ advisees should be equally affected by these

unobservable factors. In order to focus the analyses on the relevant population of professors,

I restrict the sample to those professors who are potentially at risk of becoming entrepreneurs.

These are professors who have either ever applied for a patent, are founders, or both. The

equation I estimate on the student level (s) is displayed below, where fp represents advisor

fixed effects, ft represent start-year fixed effects, fp,t captures professor-year trends (the

year used is a student’s year of entry), fm stands for a student’s major, and εs,p,t,m is the

error term. Standard errors are clustered on the advisor level to account for intra-group

9Anecdotal evidence from interviews suggests that these are not factors advisors consider when selecting
students.
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correlation.

Is,p,m,t = αEXPOSUREs,p + fp + ft + fp,t + fm + εs,p,t,m (3.1)

In equation (3.1), EXPOSUREs,p is the main independent variable of interest which I

measure in different ways: a) using an indicator equal to one denoting if a student was

ever exposed, b) using the number of years exposed to an entrepreneurial professor, and c)

using the number of years exposed to an entrepreneurial professor divided by the duration

of the PhD program. The outcome variable Is,p,m,t refers to the innovative output of a

student s during the PhD program.10 These outcomes are the total amount of patents,

citation-weighted patents, publications, and highly-cited publications.11

<Insert Table 3.2 here>

Table 3.2 displays the results from estimating equation (3.1). In Panel A, I report student

outcomes using an indicator equal to one if a student was ever exposed to an entrepreneurial

advisor during the PhD. In Panel B, I report student outcomes using a continuous measure

of years exposed to an entrepreneurial advisor. Panel C, displays outcomes using relative

exposure (continuous measure of exposure divided by PhD duration). Over all specifications,

I find that exposure to an advisor engaged in entrepreneurship is associated with negative

publication outcomes, and do not find a consistent impact on patenting outcomes.12,13 Taking

10I measure PhD student outcomes using a five year time window from entering the PhD program, which
represents the average and median PhD duration and accounts for publication time-lags. I provide a graph in
the Appendix, Figure A3.2, displaying the average duration of a PhD.

11In the Appendix, Table A3.3, I report outcomes from estimating a model without professor-year trends,
but including student and professor controls. These are a professor’s publication stock in the five years prior
to entry, the number of student in a lab at entry of student, rank and age (log) to control for time-varying
characteristics of a professor (ProfessorCONTROLSs,t). The StudentCONTROLSs I include are
gender, ethnicity, nationality, GRE scores, and indicators for students’ previous degree level. Table A3.4
reports the results from estimating equation (3.1) but log transforming the outcome variables using the inverse
hyperbolic sine (IHS) transformation of each outcome (ln(Is,p,m,t + ((Is,p,m,t

2 +1)0.5))). Similarly, Table
A3.5 reports the results from Table A3.3, but with IHS transformation.

12In the Appendix, Table A3.6, I report the results for the amount of first-authored publications produced by
students.

13In the Appendix Figure A3.3, I report the results from estimating the model including professor fixed
effects and professor-year trends using binned scatterplots. To generate a binned scatterplot, the x-axis variable
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the coefficients reported in Panel A, the results suggest that exposure is associated with

a decrease from the median of slightly more than two publications and one highly-cited

publication during the PhD program. For further robustness, I estimate the same equation,

but excluding those students always or never exposed. The results, as displayed in the

Appendix, Table A3.7, remain similar.

Next, I examine differences in PhD students by estimating their aggregate outcomes

depending on students’ precise graduation date. In Figure 3.4, I visually depict the rela-

tionship between exposure (the x-axis indicates how many years of exposure; negative

values indicate how many years before founding a student graduated from the program)

and students’ inventive output (y-axis; all outcomes in log).14 The omitted category is a

graduation date 7 or more years prior to founding, the values -6 and 6 capture students

who graduated 6 years before and 6 or more years after the founding date. The results are

obtained using professor and year fixed effects, professor-year trends as well as controlling

for a student’s major and program duration.15 I cluster standard errors on the advisor level.

95 percent confidence intervals are displayed.16

<Insert Figure 3.4 here>

The results support the previous findings that exposure to an entrepreneurial advisor has

a negative impact on PhD students overall publication and highly-cited publication output,

but does not seem to impact their patenting productivity as much until the cohort graduating

6 or more years post-founding year. With regard to publication output there is a perceivable

is first grouped into equal-sized bins. Next, the mean of the x- and y-axis variables within each bin is calculated.
These data points are then displayed in a scatterplot, the so called binned scatterplot. I obtain the linear fit line
using OLS and additionally include a control for the student’s major.

14In the Appendix, Figure A3.4, I stylistically depict this approach for a student’s yearly overall publication
and highly-cited publication output. In Figure A3.5 of the Appendix, I report the corresponding outcomes of
Figure A3.4 using indicators equal to one if a student had any patent, any citation-weighted patent, publication,
or highly-cited publication in a given year and zero otherwise. The results remain unchanged and are similar
to those using the aggregate measures over the PhD.

15In the Appendix Table A3.8, I present coefficients obtained from using this approach but using students’
yearly outcomes. I report the outcomes for patenting using an indicator equal to one if a student had a) a patent,
or b) a citation-weighted patent given that there is little difference to the total amount. Publication outcomes
are reported in log.

16I report the equivalent graph for first-authored publications in the Appendix, Figure A3.6.

107



drop starting three years prior to the founding date. The results do not seem to differ from

the omitted category - seven or more years prior to founding - six, five, and four years prior

to founding.17

Professor-Student Matching

The previous set of results I report deal with certain issues pertaining to omitted variable

bias on the side of professors. Nonetheless, the concern still remains that the type of students

joining an advisor’s lab could be changing as a function of professors’ entrepreneurial

activity. To address this type of sorting, I first collect information from the PhD program

coordinators of Mechanical Engineering and Chemical & Biomolecular Engineering on how

their schools organize the matching process. In the time-span I examine (there have been

changes in more recent years), students centrally apply to the program and not to a specific

advisor. PhD applicants are then accepted to the school based on faculty’s assessment of an

applicant’s grades, test scores (GRE, GPAs, and TOEFL for foreign students), and overall

application package. Once admitted to the program, PhD students rotate among labs with

available funding for a student in order to identify the research projects and professors

that they are most interested in working on and with. Typically, before the end of the first

semester, PhDs and professors have established a match.

Based on this information, I further empirically examine if the characteristics of students

change with an advisor’s entrepreneurial engagement. I thereby use all professors present at

entry of a student in the advisor’s department as the group of potential advisors. I include all

students entering a PhD program regardless if they finish or not leading to an overall sample

of 4,902 graduate students and 829 professors. The characteristics of students’ I examine

are the quality of a student’s previous degree granting institution, a student’s incoming GPA,

GRE scores (log), nationality (equal to one if the student is a US citizen), and previous work

experience, which I interact with an indicator equal to one if a professor started a company

17In Appendix Section A1 and Table A3.9, I describe an inverse probability of treatment approach, which
serves as robustness check to the main findings. The results are similar.
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in the five years prior to a student’s entry.18 To control for the individual characteristics of

both professors and students, I apply professor and student fixed effects. The results are

displayed in Table 3.3.19 As shown, the interaction of having founded a company in the five

years prior to entry of a student with the different measures for student characteristics does

not predict a match (on a statistically significant level of p-value<0.08).

<Insert Table 3.3 here>

Next, I visually examine if there are any changes in the academic quality, nationality, and

prior work experience of students before and after a professor becomes an entrepreneur. To

determine this, I again use GRE Scores, previous GPAs, the quality of a student’s previous

degree granting institution, US citizenship, and previous work experience as proxies for

incoming students quality and characteristics. Here, I restrict the analyses to students of

entrepreneurial advisors only. As depicted in Figure 3.5, there is no evidence that students

differ in terms of their GRE scores, previous GPAs, quality of previous degree granting

institution, US citizenship, or previous work experience before or after an advisor transitions

into entrepreneurship. I obtain Figure 3.5 by including professor fixed effects, department

fixed effects, year fixed effects and department-year trends, as well as controlling for a

student’s major. Standard errors are clustered on the advisor level to account for intra-group

correlation.

<Insert Figure 3.5 here>

Instrumental Variable Approach

Given the previous analyses, I can reasonably rule out that sorting on available and

observable quality characteristics is driving the main results. However, keeping in mind

18I further examine what characteristics of students most strongly predict their future publication and
patenting output. The results are reported in the Appendix Table A3.10. There are differences with regard
to which factors predict higher publishing and patenting productivity, the strongest being GRE scores and
previous work experience.

19The corresponding figure can be found in the Appendix, Figure A3.7.
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that the previous analyses suggest changes may already be taking place approximately

three years prior to founding, the earlier results may be biased if latent characteristics of

entrepreneurial advisors that induce them to start companies also make them less productive

advisors as measured by their students’ output. To address such potential endogeneity

concerns, I apply an instrumental variable estimation approach (hereafter referred to as

IV; Angrist and Pischke (2008)) on the professor-year level. In this case, an appropriate

instrument to detect the causal relationship between founding and average student outcomes

would have to be strongly related to founding, but have little impact on a professor’s average

student outcomes.

The instrument I identify for the purpose of the analyses is the number of VC investments

(V Cd,t) into a professor’s field by year (Goldfarb et al., 2009). The rationale is that year by

year changes in VC flows should reflect changes in the perceived relative returns to starting

a company. Albeit, individual scientists are unlikely to be aware of the precise amount of

VC investment made in a year, the amount of VC investment is plausibly correlated with the

information flows that influence beliefs about the potential returns to starting a company.

Given that when new and promising areas appear, VC flows towards it (Gompers and Lerner,

2004), the amount of VC investment is likely to capture demand for commercial innovation.

Other than through shaping individuals’ beliefs about returns to entrepreneurial investment

it should not affect the publication output of an advisor’s students.20

The analyses, however, require a further step than traditional IV approaches given that,

although transitioning into entrepreneurship is time-variant, the regime of entrepreneurial

activity I have identified is a step function. In other words, I am contrasting outcomes

before and after an advisor becomes entrepreneurial (step-function), but the identified in-

strument can only help us predict the timing of founding and not necessarily the impact

in the years once turned entrepreneurial. To address this potential issue, I instead use the

20Since VC investment may impact patenting behavior similarly to entrepreneurial behavior, the exclusion
restriction with regard to patenting output is likely violated, which is why I exclude patenting as an outcome
from the analyses.
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initial instrument - the amount of VC funding in the year prior - to predict the likelihood

that an individual founded in time t. Following Goldfarb et al. (2009), I collect informa-

tion on the total amount of VC funding by field and year using PWC’s Moneytree report

(pwc.com/us/en/industries/technology/moneytree.html) to construct this measure. I then

estimate the likelihood of founding in a given time t applying professor, year and depart-

ment fixed effects. Taking the rolling sum of these predicted values, I create a measure

capturing the cumulative likelihood of founding a company in each year and use this value

as the instrument in the first stage.21 Following this approach, the constructed instrument

(Cuml.likelihood of founding) should predict the post founding period (found), but should

not be correlated with the error term in the second stage. From this, the first stage I estimate

is as follows:

Foundp,t =α Cuml.likelihood of foundingd,t + fp + ft + ωp,t (3.2)

Where ωp,t is the error term, Foundp,t is an indicator equal to one denoting the post-

founding period, fp are professor fixed effects, and ft year fixed effects.22 I cluster standard

errors on the professor-level.23

I instrument the predicted value of FOUNDp,t
̂(Foundp,t) from the first stage in the

following equation:

AvIp,t = αFOUNDp,t + fp + ft + εp,t (3.3)

where εp,t is the error term, and FOUNDp,t is an indicator equal to one denoting the

post-founding period. I further include year fixed effects (fd) and cluster standard errors on

the professor level. The results from the IV approach are estimated on the professor-year

21Similar to Sampat and Williams (2019), I use a different sample - restricting to founders and patenters
only - in the IV estimation model.

22Department/field fixed effects are captured by professor fixed effects
23In the Appendix, Figure A3.8, I display the relationships exploited for the instrumental variable approach

using binned scatterplots (20 bins, mean average): the likelihood of founding in a given year as a function of
the amount of VC investment (log) in a professor’s field one year prior, and the relationship between founding
and the cumulative likelihood of founding.
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level using each advisor’s students’ average innovative output produced within a 5 year

time window from t (AvIp,t,d) as the outcome variable. These outcomes are the average

publications, and highly-cited publications their students have.

Each step taken in this estimation approach and the corresponding results are displayed

in Table 3.4. Generally, the instrument passes the rule of thumb for a sufficiently strong

instrument with F-statistics of over 18. Compared to the OLS results displayed in columns

1 and 2, the IV results in columns 3 and 4 are roughly four times the size.

<Insert Table 3.4 here>

Three possible reasons why the magnitude of the coefficient on 1(Foundp,t) is larger

in the IV than in the OLS model are that a) the exclusion restriction is violated, b) there

may be reverse causation, or that c) the results reflect a much larger local average treatment

effect than an average treatment effect. I cannot, empirically, rule out that the exclusion

restriction is violated and the estimation relies heavily on the assumption that the amount of

VC funding only affects publishing output via its effect on founding. With regard to reverse

causation, it may be that the findings are driven by changes in the behavior of students and

not their advisors. This type of reverse causality would imply an effect of entrepreneurial

students on their advisors’ innovative outcome rather than an effect of professors on their

students.24 Viewing the third explanation, it is possible that the IV is shifting the “behavior”

of a subgroup of students for which the negative impact of their advisor’s engagement in

entrepreneurship are larger than average. If the local average treatment effect is larger than

the average treatment effect, it is plausible that IV estimates are larger than OLS estimates

because of heterogeneity in the sample I am analyzing. One type of heterogeneity could be,

24In the Appendix, Table A3.11 and Figure A3.9 I provide robustness checks to address the concern that
life-cycle effects could be driving the results. I first provide OLS results where I interact an indicator equal
to one for post-founding period with an indicator equal to one if the professor was 50 years old or older at
founding (the 43 is the mean age at founding). The results are displayed in Table A3.11. The main effect
remains unchanged although the interaction coefficient seems to indicate that older professors can mitigate
the negative main effect. Figure A3.9 in the Appendix, displays the results from estimating the hazard of
becoming a founder by age using a Cox Proportional Hazard Model. From these results, it seems that there is
no clear age that predicts founding a company.

112



for example, lab size. As shown in Table 3.5, when I interact lab size (proxied using the

number of students in a given lab in a given year) with the post-founding period (Found),

the magnitude of the main effect more than doubles (the main effect of lab size is negative).

This may indicate heterogeneous effects of founding depending on the size of a lab.

<Insert Table 3.5 here>

Student-level Outcomes After Graduation

Starting conditions at entry into the labor force have been found to have long-term

consequences for individuals’ careers and scientific output (Oyer, 2006; Oreopolous et al.,

2012). In this section, I examine if and to what extent being exposed to an entrepreneurial

advisor has similar persistent effects on students’ post-graduation productivity and their

subsequent careers. The outcomes I examine are the amount of patents, publications, and

highly-cited publications a student has within 1-5 years from graduation. I estimate equation

(3.1), including indicators for the type of first job (academia and lab, industry is the omitted

category) since this may have consequences for the type of output produced, and include

professor, and start-year fixed effects as well as professor-year trends and control for the

student’s major.

<Insert Table 3.6 here>

Table 3.6, Panel A, displays the results for post-graduation outcomes. As shown in

columns 2 and 3 exposure to an advisor engaged in entrepreneurship during the PhD is

associated with a stronger negative effect on overall amount and quality of publication

output after graduation than during the PhD. Conversely, as reported in column 1, there

does not seem to be a persistent effect on patenting output. In Panel B, I estimate the

same models and add the amount of publications and patents (both log) students produce

during the PhD program to gauge how much of the post-PhD program effect could be

driven by students’ productivity during the PhD. Across all specifications, the magnitude

of the exposure coefficients is smaller (maximum change is a 32 percent decrease) and the
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R-squared is much larger in Panel B (maximum change is roughly 55 percent), suggesting

that productivity during the PhD has a relevant impact on post-PhD productivity.

Next, I examine if and to what extent being exposed to an advisor engaged in en-

trepreneurship affects the type and characteristics of a student’s first position. Before

describing the estimation approach, a brief overview of the possible career paths available

for PhD students in Computer Sciences (CS) and Engineering is warranted. Upon grad-

uation PhDs have three broad choices of employment type: academia, industry, national

labs/government. The positions they pursue include from working as a R&D scientist

or as consultants in industry, or as faculty, research technicians or postdocs in academia.

Typically the postdoc is viewed as a necessary step towards becoming faculty in Science &

Engineering areas (although there are important field differences and starting as faculty is

possible) and can be completed at a host of different research institutions including national

labs. Taking numbers from the 2016 Survey of Earned Doctorates, roughly 14 percent

of Engineering graduates (30 percent CS and Mathematics graduates) who had plans to

stay in the US post-graduation reported definite non-postdoctoral academic employment

commitments, whereas 35 percent (30 percent CS and Mathematics graduates) reported

commitments to pursue a postdoc (National Science Board, 2018). The type of position a

PhD obtains also has important implications for their salaries. Again using information from

the 2016 Survey of Earned Doctorates, the median basic annual salary of a newly minted

PhD graduate in Engineering (CS) was around US$100,000 (US$122,000) in industry,

approximately US$80,000 (US$70,000) in academia, and in the vicinity of US$47,000

(US$59,000) as a postdoc (National Science Board, 2018).

To provide insight on the impact of engagement in entrepreneurship on students’ career

outcomes, I estimate an OLS model applying professor, major, and start-year fixed effects

and relate these to the likelihood of finding a first position in Academia/Lab, Industry

or as a Founder. The sample includes students of professors who ever were founders or

patent-holders. As displayed in the uneven-numbered columns of Table 3.7, the results
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suggest a reduction in the likelihood to find a first position in industry (24 percent decrease

from the mean) and an increase in the likelihood of becoming a founder (over 400 percent

increase from the mean). Academic careers do not seem to be impacted by exposure to an

entrepreneurial advisor indicating that preferences to pursue an academic career may not

be changing. In the even-numbered columns I include measures capturing the amount of

highly-cited publications and patents (both log) a student produced during the PhD program

and also include their Quantiative GRE scores as well as start-year, major and professor fixed

effects. Including these variables does not greatly change the magnitude of the coefficients.

However, these results suggest that publication output during the PhD predicts finding first

employment in Academia/Lab, and is negatively associated with finding first employment in

Industry.25

<Insert Table 3.7 here>

Next, I examine if there are differences in the types of positions students obtain post-

graduation using the same approach as in Table 3.7. The positions I distinguish are pursuing

a postdoc (Postdoc), becoming a professor (Professor), other positions in Academia/Labs

(Other), working at a prestigious company (Prestigious; as listed in LinkedIn’s Top 50 Com-

panies in 2018: linkedin.com/pulse/linkedin-top-companies-2018-where-us-wants-work-

now-daniel-roth/ ) or other industry employment (Other). All models are obtained using

OLS. The results reported in the even-numbered columns present the full model including

the amount of highly-cited publications and patents (both log) students produced during

their PhDs, as well as their Quantitative GRE scores. I include Quantitative GRE scores

since they are a relevant factor in determining students’ productivity (see Table A3.10 of the

Appendix). The results are presented in Table 3.8. Here, I find that exposure to an advisor

engaged in entrepreneurship is positively associated with pursuing a postdoc (columns 1 and

2) and negatively associated with working in at a prestigious company (columns 7 and 8).26

25In Section A2 of the Appendix, I present an alternative estimation approach using a multinomial logit
model. Figures A10 and A11 of the Appendix display the results from this estimation.

26In order to detect further nuances in the quality characteristics of the positions students pursue upon
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<Insert Table 3.8 here>

In addition, I examine the extent to which a student is exposed to an entrepreneurial

advisor impacts the likelihood that a PhD student ever becomes a professor, ever works at

a prestigious firm or ever becomes a founder controlling for the type of her first position.

Table 3.9 displays the OLS models I estimate using the sample of students whose advisors

ever were founders or patent-holders as well as including professor, start-year and major

fixed effects. In the models reported in the even-numbered columns, I include the amount of

highly-cited publications (log) and the amount of patents (log) a student produced during

the PhD.

<Insert Table 3.9 here>

The results presented in Table 3.9 suggest that PhDs’ likelihood of ever becoming a

professor decreases by 11 percentage points for those exposed to an entrepreneurial advisor

(73 percent from the mean). Conversely, exposure does not seem to have a statistically sig-

nificant impact on ever working at a prestigious firm, or ever becoming a founder. Although

including productivity controls does alter the magnitudes of each effect, the directionality

remains the same and the statistical significance of the results are robust. Highly-cited

publications, as expected, are correlated with academic career outcomes, whereas patenting

output predicts long-term entrepreneurial career outcomes and Quantitative GRE scores

predict working at prestigious firms.27

graduation, I estimate the likelihood that students find their first position post-PhD at a top university, or other
university as a function of having been exposed to an entrepreneurial advisor. My results suggest that exposure
to an advisor engaged in entrepreneurship does not impact the likelihood that students find their first position
post-PhD at a top university.

27At this point it is difficult to evaluate if these changes in the distribution of students’ careers is desirable
or not from an overall welfare perspective. Based on previous research finding that startups founded by newly
minted PhD students are also those most likely to fail (Conti and Roche, 2018; Roche et al., 2019 - WP),
the overall impact could be negative given the associated loss of income/personal bankruptcies. However,
experiencing failure and hands-on entrepreneurial experience could represent valuable knowledge for students’
future careers. In addition, startups are considered important drivers of economic growth (Samila and Sorenson,
2011; Glaeser et al., 2015). As such, gauging the net effect requires a much more detailed analysis, which is
beyond the scope of this paper.
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4.5 Potential Mechanisms

In the previous set of results, I find that an advisor’s engagement in entrepreneurial

activity negatively affects their students’ academic productivity during the PhD and seems to

have persistent effects on post-PhD productivity as well as on job outcomes. What remains

an open question is through which mechanisms this negative effect operates. In what follows,

I explore several possible mechanisms.

4.5.1 Professor-Level Innovation Outcomes

One possible channel could be that advisors change their own direction of research and

amount of output as a function of entrepreneurial activity. As members of the lab and co-

authors, students may too experience a reduction in their output. To examine this potential

explanation, I turn my attention to entrepreneurial professors and their respective research

outcomes relative to non-entrepreneurial professors. The basic descriptives I provide in

the data section, indicate that professor-founders are more productive than non-founder

professors. From these graphs, however, I do not know how the time of founding relates to

these outcomes. In order to shed light on this, I estimate the following:

Ip,t,d = αFromFoundingp,t + fd,t + εp,t,d (3.4)

In equation (3.4), fd,t represents the department-year (d,t) fixed effects and εp,t,d is the

error term. Standard errors are clustered on the department level to account for intra-group

correlation. FromFoundingp,t denotes the time to or after founding a company. The

outcome variable Ip,t,d refers to the innovative output of professor p in a given year. In this

paper, I use the total number of patents, the total number of citation-weighted patents, the

total number of publications, and the total number of highly-cited publications a professor

has in a given year as measures for innovative output. Each of these outcome variables is

log transformed (ln(Ip,t,d+1)).
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<Insert Figure 3.6 here>

Figure 3.6 displays the results from estimating equation (3.4) in the top row, and

additionally estimating equation (3.4) using professor fixed effects in addition to department-

year fixed effects in the bottom row (standard errors are clustered on the professor-level). By

including individual fixed effects, I can keep unobservable features of individual professors,

such as ability and social skills constant. The x-axis denotes the time FromFoundingp,t,

meaning that -2 indicates outcomes measured two years before, and 2 indicates outcomes

two years after the founding date. The category 5 denotes all years five or more post-

founding date. The omitted category is six or more years prior to start-up. A comparison

of the coefficients from both models highlights that entrepreneurial professors tend to be

more productive than non-entrepreneurial professors, and that their own relative publication

productivity changes slightly as a function of transitioning into entrepreneurship. In the case

of the total amount of publications, the drop becomes detectable four years after founding,

for highly-cited publications this occurs three years after founding. This represents a roughly

20 percent decrease (approximately one publication and half a highly-cited publication),

which is less than the impact on students’ output. Professor’s own patenting output, however,

increases in the two years prior to founding until three years post-founding. Additionally,

professors’ citation-weighted patents increase three years prior to startup and experience

a relative drop in the 4th year post-founding. The differences in outcomes depending

on the fixed effects applied, for one, suggest that using professor fixed effects is indeed

more suitable for identifying the effect of exposure to an entrepreneurial professor. This

is provided that a fixed effects approach allows us to compare within professor changes,

keeping all other unobservable features of a professor constant. For another, the results

in the department-year fixed effects model suggest that adverse selection with regard to

founding and the timing of startup is unlikely given that, relative to other professors in their

department, professor-founders’ performance stays stable.
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4.5.2 Training and Mentoring

Another potential channel is based on differences in the type of training students receive

once their advisors transition into entrepreneurship. Given that I do not perceive changes in

the patenting output of PhD students both during the PhD and in the long-run, it is unlikely

that there is a shift in training at least in terms of this specific outcome.28 However, it is

plausible that there are changes towards more entrepreneurial training given the short-term

career results I present. To provide more insight on possible changes in training and/or

mentorship, I further examine the quality of professors’ mentoring before and after they

transition into entrepreneurship. To do so, I measure mentor quality using professors’

graduate-level teaching evaluation scores applying both professor and year fixed effects. As

displayed in Table A3.10, founding does not seem to impact mentor quality, not the number

of students taught. There does, however, seems to be a negative impact on the number of

graduate-level classes taught.

<Insert Table 3.10 here>

4.5.3 Organizational Changes

A further potential explanation could be that rather than receiving more commercially

oriented training, the entrepreneurial engagement of a professor leads to organizational

changes in the lab. These changes could then impact a professor’s labs’ and, therefore,

each lab members’ overall amount and quality of innovative output. To examine this

explanation, I first analyze variation in the number of students professors advise as a

function of transitioning into entrepreneurship since this could serve as one indicator for

organizational change. As displayed earlier in Table 3.5, lab size does not seem to change

as a function of exposure to an entrepreneurial advisor, but including this variable does

28In results left unreported, there do not seem to be any changes in the number of patents students apply for
with their advisors suggesting that “strategic omission” of students from patents is unlikely to be driving my
results.
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increase the magnitude of the negative effect by over a factor of 2.29

Another way I may be able to infer other types of organizational changes, such as

task assignment and monitoring is by exploring boundary conditions. To do so, I examine

if and how the results from the fields of computer science and engineering differ in the

context of more basic sciences. Qualitative interviews I conducted with PhD students in

Mechanical Engineering revealed that most students are assigned their respective projects

by their advisors and rarely pursue research projects independently. In contrast, students

in the basic sciences tend to be more autonomous throughout the PhD process (Stephan,

2012). As such, I would expect an advisor’s impact to be weaker if an advisor’s reduced

management of a lab are indeed driving the results.

To do so, I increase my initial sample of students and professors (additional 167 students

and 24 professors) to include those advised by professors in the institute’s biology or chem-

istry departments (basic sciences). In Figure 3.7, I report the results from binned scatterplots

(15 bin, mean) distinguishing between students majoring in biology or chemistry (Auton=1)

and those students in the main sample. Supporting my conjecture that organizational changes

may constitute an important factor in explaining performance changes, the effect of exposure

to an advisor engaged in entrepreneurship is weaker in the more autonomous fields (or even

flips direction).30

<Insert Figure 3.7 here>

An additional aspect of how organizational changes can manifest themselves is in the

funding structure of a lab. Given limited availability of information on funding from industry

(and military), I examine federal funding (NIH and NSF) only. As displayed in Table A3.11

of the Appendix, I find that transitioning into entrepreneurship is associated with an increase

in the amount of federal funding a lab receives. One possible explanation could be that once
29In the Appendix, Figure A3.12, I present the coefficients from estimating the number of incoming students

as a function of time from founding. I obtain the graphs by including professor and year fixed effects. As
displayed, there seems to be a slight drop (not statistically significant) in the number of incoming students
starting in the third year prior to founding, which remains stable thereafter.

30In Figure A3.13, we report the corresponding results for PhD students’ first-authored publications.
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an entrepreneur, PIs reduce their funding ties to industry and, instead, apply for more federal

funds given possible conflicts of interest or to avoid spillovers to competitors. Another

explanation could be that federal funding is linked to the commercial activity of advisors.

This is plausible given that one merit review criteria of the NSF, namely Benefits to Society,

specifically evaluates the commercial potential of a proposed project. When awarding grants,

it is possible that the successful commercialization of research in the form of patents or

startups may thereby serve as an important signal to funding agencies increasing an advisor’s

likelihood of receiving federal grants.31 Overall, federal funding (2001-2013 time-frame)

does not seem to substantially change the magnitude of the negative effect of transitioning

into entrepreneurship.

4.6 Limitations

The strongest limitation to this study is likely the generalizability of the findings I present

since the data come from one research university only and are restricted to the university

setting. There are, however, several reasons I believe this context, though unique in some

ways, can apply to other similar research institutions.

For one, the sample I am studying is part of the relevant population. Over the period I

examine, the focal university has consistently been ranked as one of the leading research

universities and public colleges in the USA. Every year, the institute provides education to

more than 25,000 undergraduate and graduate students in fields ranging from engineering,

computing, and sciences, to business, design, and liberal arts. Given its high standing as an

innovative top research institution, this school is a likely destination for students who want

to be research active. Second, within the university itself there is a lot of variation in terms of

department quality within the different colleges. Some of these are small, others among the

largest in their field worldwide. Program rankings also vary strongly from number one to top

50 in the nation. Third, the school’s business incubators are ranked within the top 20 in the
31The NSF i-Corps Program did not take off until the very end of the period I examine and as such only few

professors had received this federal grant type by then.
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USA, one of which is among the oldest in the country. This existing support system should,

if anything make transitioning into entrepreneurship easier and reduce professors’ resource

constraints relative to other universities (rankings and numbers from university website).

Fourth, the number of professor founders and startups emanating from the university are

comparable to similarly ranked public universities (sources: Crunchbase and private VC

information).

4.7 Discussion and Conclusion

This study highlights the trade-off between two different channels of knowledge transfer

from universities to private firms. One is through the creation of university spinoffs, while the

other is embodied by students. Incentives for faculty engagement in entrepreneurship may

be shifting the attention of those professors who train the most successful future innovators

away from the educational and academic mission of the university towards commercial

activity. Whether this is desirable from the university’s or society’s perspective as a whole

remains an open question.

In this paper, I focus on the effect of a professor’s entrepreneurial engagement on their

PhD students. Using rich administrative data, and applying multiple estimation techniques,

I provide suggestive evidence that exposure to an advisor engaged in entrepreneurship may

cause lower student productivity in traditional academic output channels. A likely reason for

this finding is that entrepreneurial engagement of a professor is associated with managerial

changes reducing lab member’s overall amount and quality of innovative output. The lower

productivity of students during their PhD programs seem to impact the type of jobs they

can secure upon graduation and their subsequent innovative output. It may be that students

are losing their competitive advantage traditionally based on a relatively more established

academic track record prior to entering the workforce.

In addition to the academic setting, this paper carries implications for broader man-

agement research. As suggested by classical organizational theory, supervisors play an
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important role in coordinating, training, and monitoring their subordinates leading to im-

portant gains in overall productivity (Taylor, 1911). Applying these concepts to the context

of science, I provide suggestive evidence that when supervisors are faced with conflicting

demands and pursue multiple tasks those who seem to be affected most in terms of their

productivity may be subordinates.

This article also opens several promising avenues for research. First, this study extends

prior research on the potential side-effects of entrepreneurship/commercial activity by

examining how this affects PhD students. To get a better understanding of if incentives to

promote academic entrepreneurship are warranted, more research on examining these trade-

offs is needed. Second, since entrepreneurial professors are generally those professors who

perform best, this also opens up further questions with regard to the role of entrepreneurial

ability in explaining a successful academic career. Third, related to this research, it is

fundamental to understand if allowing and providing professors incentives to engage in

entrepreneurship is necessary for personnel retention. It may well be that without this type of

freedom, the most productive professors will leave academia altogether lured, for example,

by higher pay or new challenges (Toole and Czarnitzki, 2010). Especially in “hot” fields

where human capital is in high demand, university professors may become more susceptible

to joining the private sector, which has been suggested to have an important negative impact

on innovation (Gofman and Jin, 2019). One prominent example is the case of Uber and

the National Robotics Engineering Centre at Carnegie Mellon University. In 2015, 40 of

the center’s 140 staff, left to join the taxi-hailing company (The Economist, 2016). Fourth,

since I only examine one research university in this paper, future research which extends

these findings to other institutions, settings, or countries may provide additional important

insights.
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Figure 3.1: Innovative Output of Professors Over Time
Notes: This figure displays the range of patents (blue bar) and publications (gray
line) produced by individual professors at the examined university by year. The
gray box indicates the average for publications, the average for patents is below
one in every year.
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Figure 3.2: Number of Founders by Year
Notes: This figure depicts the amount of faculty founders (not unique founders)
at the research university by year from 2001 - 2017.
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Figure 3.3: Innovative Output of Professors - By Founder or Not
Notes: This figure displays the distribution of yearly patents (top), and publications (lower) produce by all non-founder
professors (blue) vs. professor-founders (green).
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Figure 3.4: Yearly Outcomes for Students by Time of Graduation from Founding
Notes: In this figure, I visually depict the yearly outcomes of PhD students (the x-axis indicates the time a student
graduated relative to the time of founding; negative values indicate how many years before founding a student graduated
from the program) and students’ inventive output (y-axis represent coefficients; all outcomes in log). The omitted category
is 7 or more years prior to founding, the values -6 and 8 capture students who graduated 6 years before and 8 or more years
after the founding date. The results are obtained using professor fixed effects, start-year fixed effects and professor-year
trends as well as controlling for a student’s major. The dashed vertical lines indicate the time of founding. I cluster
standard errors on the advisor level. 95 percent confidence intervals are displayed.

126



-20-1001020

-5
-4

-3
-2

-1
0

1
2

3
4

5

Q
ua

nt
.G

R
E 

fro
m

 T
im

e 
of

 F
ou

nd
in

g

-20-1001020

-5
-4

-3
-2

-1
0

1
2

3
4

5

Ve
rb

.G
R

E 
fro

m
 T

im
e 

of
 F

ou
nd

in
g

-1-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

H
Q

 C
ol

le
ge

 fr
om

 T
im

e 
of

 F
ou

nd
in

g

-1-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

Pr
ev

.G
PA

 fr
om

 T
im

e 
of

 F
ou

nd
in

g
-1-.50.511.5

-5
-4

-3
-2

-1
0

1
2

3
4

5

U
S 

St
ud

en
t f

ro
m

 T
im

e 
of

 F
ou

nd
in

g

-1-.50.511.5

-5
-4

-3
-2

-1
0

1
2

3
4

5

Jo
b 

Ex
pe

rie
nc

e 
fro

m
 T

im
e 

of
 F

ou
nd

in
g

Fi
gu

re
3.

5:
B

ef
or

e
an

d
A

ft
er

Fo
un

di
ng

Y
ea

r-
St

ud
en

tC
ha

ra
ct

er
is

tic
s

N
ot

es
:

T
hi

s
fig

ur
e

di
sp

la
ys

th
e

co
ef

fic
ie

nt
s

fr
om

es
tim

at
in

g
th

e
re

la
tio

ns
hi

p
be

tw
ee

n
in

co
m

in
g

st
ud

en
tc

ha
ra

ct
er

is
tic

s
an

d
tim

e
fr

om
fo

un
di

ng
.T

he
ch

ar
ac

te
ri

st
ic

s
Ie

xa
m

in
e

ar
e

G
R

E
Sc

or
es

,t
he

qu
al

ity
of

a
st

ud
en

t’s
pr

ev
io

us
de

gr
ee

gr
an

tin
g

in
st

itu
tio

n,
pr

ev
io

us
G

PA
s,

U
S

ci
tiz

en
sh

ip
,a

nd
pr

ev
io

us
w

or
k

ex
pe

ri
en

ce
.I

ob
ta

in
th

e
fig

ur
es

by
in

cl
ud

in
g

pr
of

es
so

rfi
xe

d
ef

fe
ct

s,
fie

ld
fix

ed
ef

fe
ct

s,
ye

ar
fix

ed
ef

fe
ct

s,
fie

ld
-y

ea
rt

re
nd

s,
an

d
co

nt
ro

lli
ng

fo
ra

st
ud

en
t’s

m
aj

or
.

T
he

da
sh

ed
ve

rt
ic

al
lin

es
in

di
ca

te
th

e
tim

e
of

fo
un

di
ng

.
St

an
da

rd
er

ro
rs

ar
e

cl
us

te
re

d
on

th
e

ad
vi

so
rl

ev
el

to
ac

co
un

tf
or

in
tr

a-
gr

ou
p

co
rr

el
at

io
n.

95
pe

rc
en

tc
on

fid
en

ce
in

te
rv

al
s

ar
e

di
sp

la
ye

d.

127



Pa
ne

lA
:D

ep
ar

tm
en

t-
Ye

ar
F

E

-.8-.40.4.81.2

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

Pa
ts

 (l
og

)

N
o.

 P
at

en
ts

 (l
og

) f
ro

m
 T

im
e 

of
 F

ou
nd

in
g

-.8-.40.4.81.2

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

C
ita

tio
n-

W
ei

gh
te

d 
Pa

ts
 (l

og
)

N
o.

 C
ita

tio
n-

W
ei

gh
te

d 
Pa

te
nt

s 
(lo

g)
 fr

om
 T

im
e 

of
 F

ou
nd

in
g

-.8-.40.4.81.2

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

Pu
bs

 (l
og

)

N
o.

 P
ub

lic
at

io
ns

 (l
og

) f
ro

m
 T

im
e 

of
 F

ou
nd

in
g

-.8-.40.4.81.2

-5
-4

-3
-2

-1
0

1
2

3
4

5

H
ig

hl
y-

C
it.

 P
ub

s 
(lo

g)

N
o.

 H
ig

hl
y-

C
ite

d 
Pu

bl
ic

at
io

ns
 (l

og
) f

ro
m

 T
im

e 
of

 F
ou

nd
in

g

Pa
ne

lB
:P

ro
fe

ss
or

F
E

-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

Pa
ts

 (l
og

)

N
o.

 P
at

en
ts

 (l
og

) f
ro

m
 T

im
e 

of
 F

ou
nd

in
g

-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

C
ita

tio
n-

W
ei

gh
te

d 
Pa

ts
 (l

og
)

N
o.

 C
ita

tio
n-

W
ei

gh
te

d 
Pa

te
nt

s 
(lo

g)
 fr

om
 T

im
e 

of
 F

ou
nd

in
g

-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

N
o.

Pu
bs

 (l
og

)

N
o.

 P
ub

lic
at

io
ns

 (l
og

) f
ro

m
 T

im
e 

of
 F

ou
nd

in
g

-.50.51

-5
-4

-3
-2

-1
0

1
2

3
4

5

H
ig

hl
y-

C
it.

 P
ub

s 
(lo

g)

N
o.

 H
ig

hl
y-

C
ite

d 
Pu

bl
ic

at
io

ns
 (l

og
) f

ro
m

 T
im

e 
of

 F
ou

nd
in

g

Fi
gu

re
3.

6:
Pr

of
es

so
rO

ut
co

m
es

as
a

Fu
nc

tio
n

of
Fo

un
di

ng
a

C
om

pa
ny

us
in

g
D

ep
ar

tm
en

t-
Y

ea
rv

s.
Pr

of
es

so
rF

E
N

ot
es

:
T

hi
s

fig
ur

e
di

sp
la

ys
th

e
re

la
tio

ns
hi

p
be

tw
ee

n
fo

un
di

ng
(x

-a
xi

s
in

di
ca

te
s

th
e

tim
e

fr
om

st
ar

tu
p

ye
ar

)a
nd

pr
of

es
so

rs
’i

nv
en

tiv
e

ou
tp

ut
(y

-a
xi

s;
al

lo
ut

co
m

es
in

lo
g)

.T
he

re
su

lts
ar

e
ob

ta
in

ed
es

tim
at

in
g

eq
ua

tio
n

(3
.1

)u
si

ng
de

pa
rt

m
en

t-
ye

ar
fix

ed
ef

fe
ct

s
(t

op
)a

nd
ad

di
ng

pr
of

es
so

rfi
xe

d
ef

fe
ct

s
(b

ot
to

m
).

T
he

ca
te

go
ry

5
de

no
te

s
al

ly
ea

rs
fiv

e
or

m
or

e
po

st
-f

ou
nd

in
g

da
te

.
T

he
om

itt
ed

ca
te

go
ry

is
si

x
or

m
or

e
ye

ar
s

pr
io

rt
o

st
ar

t-
up

.T
he

da
sh

ed
ve

rt
ic

al
lin

e
in

di
ca

te
s

tim
e

of
fo

un
di

ng
an

d
th

e
co

nfi
de

nc
e

in
te

rv
al

s
di

sp
la

ye
d

ar
e

at
th

e
95

pe
rc

en
t-

le
ve

l.

128



Figure 3.7: Phd Student Outcomes and Exposure by Field of Research Type
Notes: This graph reports the results from estimating the relationship between exposure (continuous) and student outcomes
using binned scatter plots (15 bins, mean average) by type of major (autonomous=1 if students are enrolled in biology or
chemistry) and including professor and year fixed effects. I obtain the linear fit line using OLS.
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Table 3.1: Summary Statistics - Students of Entrepreneurial Advisors

min mean p50 max

Students:

Exposure (continuous) 0.00 2.46 2.00 9.00
Exposure (=0/1) 0.00 0.64 1.00 1.00
Duration of PhD 1.00 4.92 5.00 11.00

Gender:
- Female 0.00 0.20 0.00 1.00

Departments:
- AERO 0.00 0.03 0.00 1.00
- BIOMED 0.00 0.09 0.00 1.00
- CHEME 0.00 0.14 0.00 1.00
- CIVIL 0.00 0.02 0.00 1.00
- CS 0.00 0.09 0.00 1.00
- ECE 0.00 0.35 0.00 1.00
- MATERIALS 0.00 0.11 0.00 1.00
- ME 0.00 0.16 0.00 1.00

Ethnicity:
- Asian 0.00 0.59 1.00 1.00
- Black 0.00 0.02 0.00 1.00
- Hispanic 0.00 0.03 0.00 1.00
- Two Or More 0.00 0.02 0.00 1.00
- White 0.00 0.34 0.00 1.00

Other Characteristics:
- US citizen 0.00 0.37 0.00 1.00
- Previous GPA 2.31 3.62 3.66 4.00
- Verbal GRE 131.00 155.07 156.00 170.00
- Quant. GRE 144.00 163.01 164.00 170.00
- CV Record 0.00 0.85 1.00 1.00

Outcomes During PhD:
- Patents 0.00 0.35 0.00 17.00
- Citation-Weighted Patents 0.00 2.02 0.00 95.00
- Publications 0.00 7.25 5.00 61.00
- Highly-Cited Publications 0.00 3.43 2.00 51.00

First Job:
- Academia 0.00 0.37 0.00 1.00
- Industry 0.00 0.57 0.00 1.00
- Gov./Nat. Lab 0.00 0.04 0.00 1.00
- Founder 0.00 0.02 0.00 1.00

Advisor Characteristics at Entry of Student:

Female 0.00 0.06 0.00 1.00
Age at time 25.00 44.31 42.00 72.00
Full Professor 0.00 0.54 1.00 1.00
Size of Cohort (by year) 1.00 2.47 2.00 8.00

Outcomes in 5-Years prior:
- Publications 1.00 49.50 34.00 270.00
- Highly-Cited Publications 1.00 25.41 18.00 199.00
- Patents 0.00 3.89 2.00 32.00
- Amount Federal Funding (in $million) 0.00 0.74 0.10 10.74
Observations 615

Notes: This table displays summary statistics for the students of professor-founders only and their
respective advisors. The values displayed reflect the characteristics of the advisors at the time of entry
of the student.
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Table 3.2: PhD Patenting and Publishing during the PhD Program

Patents Publications
during PhD (in log) amount cit.-weighted amount highly-cited

(1) (2) (3) (4)
Panel A
Exposure (=0/1) -0.0150 -0.0481 -0.483∗∗ -0.472∗∗∗

(0.0794) (0.143) (0.192) (0.166)
Major FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
R-squared 0.165 0.227 0.181 0.198
Panel B
Exposure (cont.) -0.0349∗ -0.0318 -0.167∗∗∗ -0.144∗∗∗

(0.0179) (0.0369) (0.0373) (0.0316)
Major FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
R-squared 0.169 0.228 0.193 0.206
Panel C
Exposure/PhD Dur. -0.279 -0.367 -0.914∗∗∗ -0.996∗∗∗

(0.178) (0.371) (0.294) (0.260)
Major FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
R-squared 0.169 0.229 0.182 0.201
Observations 1248 1248 1248 1248
Number of Professors 186 186 186 186
Notes: This table displays the results from estimating equation (2). Panel A reports student outcomes

using an indicator equal to one if a student was ever exposed to an entrepreneurial advisor during the PhD.
Panel B reports student outcomes using a continuous measure of years exposed to an entrepreneurial
advisor. Panel C, displays outcomes using relative exposure (continuous measure of exposure divided
by PhD duration). Standard errors are reported in parentheses and are clustered on the advisor-level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.3: Interaction of Student Quality Indicators with Professors’ Prior Founding Experi-
ence

1(Matchs,p,d)
Founder x HQ College 0.00838

(0.00656)
Founder x Prev.GPA (log) 0.0152

(0.0168)
Founder x GRE Quant (log) -0.00554

(0.0260)
Founder x GRE Verb (log) 0.00125

(0.0264)
Founder x St.US -0.00642∗

(0.00354)
Founder x Prev. Job Exp. 0.00181

(0.00364)
Professor FE Yes
Student FE Yes
Observations 304565
R-squared 0.0326
Notes: This figure displays the interaction coefficients between

a professor having founded in the 5 years prior to a student’s en-
try and student quality indicators. The characteristics examined
are the quality of a student’s previous degree granting institution,
previous GPAs, GRE Scores, US citizenship, and previous work
experience as proxies for incoming students quality and charac-
teristics. The model used includes both student and professor
fixed effects. Standard errors are reported in parentheses and are
clustered on the advisor-level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.4: IV Estimation Approach

Step 1: Likelihood of Founding

1(Foundedp,t)

Amount VCt−1 0.0264∗∗
(0.007)

Professor FE Yes
Year FE Yes
Observations 1730
R-squared 0.1029
F-stat 13.98

Step 2: First Stage
1(Foundp,t)

Cum.likelihood of foundingp,t 0.612∗∗∗

=
∑
1 ̂(Foundedp,t) (0.141)

Professor FE Yes
Year FE Yes
Observations 1081
First Stage F-stat 18.06

Step 3: Second Stage
Advisor’s Average amount highly-cited amount highly-cited
PhD Publ. (5y log) (1) (2) (3) (4)

1(Foundp,t) -0.252∗∗∗ -0.210∗∗∗
(0.0737) (0.0581)

1 ̂(Foundp,t) -0.972∗∗ -0.858∗∗
(0.462) (0.367)

Professor FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Model OLS OLS IV IV
incl. Instrument∑
1 ̂(Foundedp,t) Yes Yes

Observations 1081 1081 1081 1081
R-squared 0.442 0.487 -0.0583 -0.0762
First Stage F-stats 18.60 18.60
Notes: This table displays the results from estimating the Instrumental Variable Model described in equation (3). The

table includes the results from estimating the likelihood of founding in a given time t applying professor, year and
department fixed effects including all professors at risk of starting a company (Step 1). Taking the rolling sum of
these predicted values, I create a measure capturing the cumulative likelihood of founding a company in each year and
use this value as our instrument in the first stage (Step 2). Following Sampat and Williams (2019), I use a different
sample - restricting to founders only - in the IV model. Columns 1 and 2 report the results obtained from the OLS
model, columns 3 and 4 display the results using the cumulative likelihood of founding a company as the instrument.
Standard errors are reported in parentheses and clustered on the professor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3.5: PhD Patenting and Publishing during the PhD Program including Lab Size
Interaction

Lab Size Average PhD Output (5y log)
(Mean = 3.91) Patents Publications

amount amount highly-cited
(1) (2) (3) (4)

1(Foundp,t) 0.334 -0.217∗∗∗ -0.475∗∗ -0.516∗∗∗
(0.336) (0.0790) (0.203) (0.165)

Lab Size -0.00878 -0.0257∗∗ -0.0268∗∗
(0.00624) (0.0126) (0.0119)

1(Foundp,t) × Lab Size 0.0249 0.0647 0.0752∗
(0.0188) (0.0443) (0.0398)

Professor FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1044 1044 1044 1044
R-squared 0.626 0.395 0.477 0.503
Notes: This table displays the results from estimating an advisor’s average PhD publication (5 year window in

log) including a continuous measure for lab size (Lab Size), which is proxied using the number of PhD students
in a lab in a given year. Standard errors are reported in parentheses and clustered on the advisor-level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.6: Productivity 1-5 Years Post-PhD

Patents Publications
1-5 years from graduation (in log) amount cit.-weighted amount highly-cited

(1) (2) (3) (4)
Panel A: Excluding Productivity During the PhD

Exposure (=0/1) 0.00253 -0.0531 -0.619∗∗ -0.614∗∗∗
(0.153) (0.219) (0.244) (0.216)

Job Academia -0.0897∗ -0.118 0.841∗∗∗ 0.643∗∗∗
(0.0503) (0.0867) (0.103) (0.0919)

Job Lab -0.126 -0.0674 0.652∗∗∗ 0.579∗∗∗
(0.118) (0.145) (0.207) (0.165)

Prof-X-Year Trends Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
R-squared 0.268 0.297 0.344 0.325

Panel B: Including Productivity During the PhD
Exposure (=0/1) 0.0168 -0.0446 -0.423∗ -0.470∗∗

(0.141) (0.201) (0.215) (0.199)
Publications during PhD (log) 0.0537∗ 0.0377 0.620∗∗∗ 0.459∗∗∗

(0.0321) (0.0450) (0.0427) (0.0362)
Patents during PhD (log) 0.443∗∗∗ 0.540∗∗∗ 0.157 0.195∗∗

(0.0814) (0.122) (0.0954) (0.0876)
Prof-X-Year Trends Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
First Job Type FE Yes Yes Yes Yes
Observations 866 866 866 866
R-squared 0.352 0.360 0.535 0.472
Number of Professors 173 173 173 173
Notes: This table displays the results from estimating equation (2) predicting student patenting and publishing output

within 1-5 years after completing their PhDs. Panel B includes the amount of patents and publications a student produced
during the PhD program. The models include professor fixed effects, professor-year trends, start-year fixed effects, major
fixed effects and indicators for the type of first job (academia and lab, industry is the omitted category; in Panel B these
are included in First Job Type FE). Standard errors are reported in parentheses and are clustered on the advisor-level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.7: Employment Type

First Job
Academia or Lab Industry Founder

(1) (2) (3) (4) (5) (6)
Exposure (=0/1) 0.0974 0.106 -0.146∗∗ -0.154∗∗ 0.0488∗ 0.0477∗

(0.0748) (0.0737) (0.0738) (0.0732) (0.0251) (0.0245)
Highly-Cited Publ. during PhD (log) 0.0527∗∗∗ -0.0508∗∗∗ -0.00187

(0.0184) (0.0187) (0.00373)
Patents during PhD (log) 0.00374 -0.0227 0.0189

(0.0449) (0.0457) (0.0117)
Quant. GRE -0.00255 0.00279 -0.000236

(0.00490) (0.00489) (0.000954)
Start-Year FE Yes Yes Yes Yes Yes Yes
Major FE Yes Yes Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes Yes Yes
Mean 0.37 0.37 0.62 0.62 0.01 0.01
Observations 932 932 932 932 932 932
R.squared 0.0585 0.0671 0.0597 0.0683 0.0509 0.0561

Notes: This table displays the results from estimating the likelihood that students find their first position
post-PhD in Academia/Government or a National Lab (columns 1 and 2), in Industry (columns 3 and 4), or as
a founder (columns 5 and 6) as a function of having been exposed to an entrepreneurial advisor. The results
displayed are obtained using OLS and the sample includes all students of professors who ever were founders
or patent-holders. The even-numbered models report the full model including the amount of highly-cited
publications and patents (both log) students produced during their PhDs, as well as their Quantitative GRE
scores. Robust standard errors are clustered at the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.8: First Position by Employment Type

First Job in Academia or Lab First Job in Industry
Postdoc Professor Other Prestigious Other

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Exposure (=0/1) 0.131∗∗ 0.131∗∗ -0.0411 -0.0376 -0.0152 -0.0108 -0.0822∗∗ -0.0874∗∗ -0.0640 -0.0667

(0.0648) (0.0649) (0.0496) (0.0494) (0.0352) (0.0357) (0.0362) (0.0377) (0.0737) (0.0728)
Highly-Cited Publ. during PhD (log) 0.00565 0.0198∗ 0.0249∗∗ -0.0265∗ -0.0243

(0.0156) (0.0115) (0.0119) (0.0138) (0.0228)
Patents during PhD (log) 0.0215 -0.000274 0.00512 0.00438 -0.0270

(0.0295) (0.0290) (0.0253) (0.0246) (0.0443)
Quant. GRE 0.00110 -0.00115 -0.00233 0.00328 -0.000491

(0.00419) (0.00272) (0.00306) (0.00207) (0.00459)
Start-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean of overall sample 0.22 0.22 0.08 0.08 0.10 0.10 0.08 0.08 0.55 0.55
Observations 932 932 932 932 932 932 932 932 932 932
R-sq. 0.0367 0.0376 0.0558 0.0599 0.0395 0.0452 0.0401 0.0483 0.0433 0.0457

Notes: This table displays the results from estimating the likelihood that students find their first position post-PhD as a Postdoc (columns 1 and 2),
Professor (columns 3 and 4) or in another Academic/Government or National Lab position (columns 5 and 6) as a function of having been exposed to an
entrepreneurial advisor. Columns 7 and 8 display the results for working at a prestigious firm, and columns 9 and 10 report the respective results for all
other industry positions. All models are obtained using OLS and the sample includes all students of professors who ever were founders or patent-holders.
The results reported in the even-numbered columns present the full model including the amount of highly-cited publications and patents (both log) students
produced during their PhDs, as well as their Quantitative GRE scores. Robust standard errors are clustered at the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3.9: Long Term Employment Outcomes

Ever

Professor Prestigious Founder

(1) (2) (3) (4) (5) (6)

Exposure (=0/1) -0.113∗∗ -0.110∗∗ -0.0366 -0.0392 0.0423 0.0388
(0.0442) (0.0445) (0.0413) (0.0420) (0.0421) (0.0408)

Highly-Cited Publ. during PhD (log) 0.0256∗ -0.00900 -0.00205
(0.0142) (0.0130) (0.00874)

Patents during PhD (log) 0.0264 0.0302 0.0579∗∗
(0.0270) (0.0296) (0.0234)

Quant. GRE -0.00232 0.00444∗∗ -0.00175
(0.00320) (0.00211) (0.00189)

Start-Year FE Yes Yes Yes Yes Yes Yes

Major FE Yes Yes Yes Yes Yes Yes

Professor FE Yes Yes Yes Yes Yes Yes

First Job Type FE Yes Yes Yes Yes Yes Yes

Mean 0.15 0.15 0.10 0.10 0.01 0.01
Observations 1034 1034 1034 1034 1034 1034
R-Squared 0.211 0.216 0.0701 0.0758 0.0325 0.0470

Notes: This table displays the results from estimating the likelihood that students ever work as a
professor (columns 1 and 2), ever work at a prestigious firm (LinkedIN50, columns 3 and 4), or as
a founder (columns 5 and 6) as a function of having been exposed to an entrepreneurial advisor.
All models are obtained using OLS and the sample includes students of professors who ever were
founders or patent-holders. The results reported in the even-numbered columns present the full
model including the amount of highly-cited publications and patents (both log) students produced
during their PhDs, as well as their Quantitative GRE scores. Robust standard errors are clustered at
the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3.10: Mentorship Quality

Graduate Level Teaching Score Number

>95th >90th >Median Classes Students
Unit of Analysis: Professor-Year (1) (2) (3) (4) (5)

1(Foundp,t) -0.0622 -0.0599 0.0426 -0.117∗ -0.101
(0.0530) (0.0503) (0.0581) (0.0600) (0.123)

Professor FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 1226 1226 1226 1226 1226
R-squared 0.479 0.480 0.440 0.526 0.442
Number of Professors 212 212 212 212 212
Notes: This table displays the relationship between a professor’s graduate level teaching evaluation scores and transition-

ing into entrepreneurship. Column 1 displays the results for the likelihood of being among the top 95th percent of the
distribution, column 2 for the top 90th, and column 3 for above the median. Standard errors are reported in parentheses and
clustered on the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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APPENDIX A

TAKING INTERACTIONS AND INNOVATION TO THE NEIGHBORHOOD

A.0.1 Geographic Hierarchy and Boundaries

To better understand the advantages of using Census Block Groups, I will provide a

brief introduction to the hierarchy of established geographic entities and their respective

boundaries.

There are numerous geographic entities for which the US Census Bureau collects

data. All of these geographic entities can be classified into two larger categories: legal

and administrative entities and statistical entities. The former originate from e.g., legal

actions, statutes, or historic treaties and are mainly used to meet data demands of authorities.

The Nation, States, Counties, Divisions and Voting Districts are considered legal units,

school districts and ZIP codes are administrative units. Statistical units are, for example,

Census Designated Places (CDPs), Metropolitan Statistical Areas (MSAs), Census Tracts,

Block Groups (BGs) and Blocks. They were developed from practice and need. The

criteria for the delineation of the respective boundaries were established by the US Census

Bureau. In contrast to administrative and legal geographic boundaries, the boundaries for

statistical entities were officially instated nationwide following standardized criteria. Since

1990, the geographic hierarchy of units has been consistently applied to decennial census

data collection efforts (with few boundary changes) (US Census Bureau, Department of

Commerce, 1994).

The geographic hierarchy corresponds to the following structure. The highest entity is

the Nation, which consists of 4 Regions (Northeast, Midwest, South and West), 6 Divisions

(New England, Mid-Atlantic, East North Central, West North Central, South Atlantic, East

South Central, West South Central, Mountain and Pacific) and 57 States and territories

(including outlying areas). Within each State there are Counties, within each County there
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are numerous Census Tracts and within these Census Tracts are nested Block Groups that

consist of Blocks. Down to every Census Block, a location can be identified via a unique

Federal Information Processing Standards (FIPS) Code. MSAs, ZIP codes and Urban Area

(UA) distinctions transcend these boundaries and as such do not form part of the traditional

geographic hierarchy as they do not correspond completely to the established State-Block

boundaries. MSA, ZIP codes and UA boundaries also tend to change over time as they are

closely tied to the population and economic growth in an area. Unlike Census Block Group

boundaries, which are determined by visible features, such as natural barriers that only very

rarely change over time.

Census Tracts were first established as geographic entities for the 1910 Census in the

then eight largest US cities. Over time, other large municipalities gradually adopted the

Census Tract program. However, it was not until the 1990 US Census that all areas of the

USA were assigned a Census Tract number. The size of most Census Tracts was determined

based on the 1990 population in a given area, where the objective was to have an initial

population size of between 2500 and 8000 residents in a Census Tract. A Census Block

Group (hereafter referred to as BG) consists of all blocks that begin with the same digit

in a given Census Tract. It is the lowest level of geography for which the US Census has

consistently tabulated data in the 1990, 2000 and 2010 census. In the years before 1990,

similar to the Census Tract, coverage did not span the entirety of the USA. The Block itself

is the smallest entity for which data are collected. Patterns, sizes, and shapes of Census

Blocks vary within and between overarching entities. Factors that influence the overall

configuration of Census Blocks include topography, such as the type of boundary feature

(streets and natural boundaries), the presence of governmental boundaries such as state

boundaries and density of urban and rural development. The assignment of Census Block

boundaries was automated as far as possible by the US Census Bureau for the 1990 census.

The minimum size of a Census Block is 30,000 square feet for areas bounded by roads, and

40,000 square feet for other areas. There is no maximum size for a Census Block, which is
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why I find strong variation in the size of Census Blocks. For example, the standard block

size in Manhattan is 200x500 feet (2.30 acres or 9308 sq. meters) and in Portland 200x200

feet (0.92 acres or 3723 sq.meters) (US Census Bureau, Department of Commerce, 1994).

A.0.2 A Different Approach to Grouping Observations

A widespread approach in the Geography of Innovation literature has been to group

observations using the MSA level. An alternative approach is the commuting zone (CZ).

The following equation shows how a commuting zone is calculated where ri is the number

of all workers residing in county i and cij is the number of workers who reside in county

i but work in county j. Tij (the commuting tie statistic) divides the flow of workers who

commute in either direction between counties i and j by the workers who live in the smaller

county. The threshold for inclusion lies at 0.02 (Autor et al., 2013).

Tij = (cij + cji)/argmin(ri, rj)

In the USA, 741 CZ were determined using 1990 National Household Travel Survey (NHTS)

data. CZs in general, cover a smaller geographic area than the corresponding MSA.

A.0.3 Measuring Street Networks

In the SLD the street network measures are calculated using HERE Streets and Zlevels

layers to determine facility orientation of each street network feature. The HERE Streets

layer displays network links and includes attributes such as functional class, speed category,

direction of travel (one-way or two-way), auto or pedestrian restrictions, and tags ramps,

tunnels, and bridges. The Zlevels layer displays all points of articulation on the network and

elevation fields. Zlevels are vertical coordinates that specify a vertical map space similar to

floors of a building. Node features are stacked with each feature representing an endpoint of

a specific link in the HERE Streets layer. The street network metrics were derived using
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several steps. First, streets were grouped into facility categories: auto-oriented, multi-modal,

and pedestrian-oriented. These facility categories were then summarized to obtain total

facility miles by type for each BG. As taken from the SLD manual, the EPA uses the

following criteria to categorize streets (Ramsey and Bell, 2014: 22):

“Auto Oriented facilities:

• Any controlled access highway, tollway, highway ramp, or other facility on which
automobiles are allowed but pedestrians are restricted

• Any arterial street having a speed category value of 3 or lower (speeds are 55 mph or
higher)

• Any arterial street having a speed category value of 4 (between 41 and 54 mph) where
car travel is restricted to one-way traffic

• Any arterial street having four or more lanes of travel in a single direction (implied
eight lanes bi-directional – turn lanes and other auxiliary lanes are not counted)

• For all of the above, ferries and parking lot roads were excluded

Multi-modal facilities:

• Any arterial or local street having a speed category of 4 (between 41 and 54 mph)
where car travel is permitted in both directions

• Any arterial or local street having a speed category of 5 (between 31 and 40 mph)

• Any arterial or local street having a speed category of 6 (between 21 and 30 mph)
where car travel is restricted to one-way traffic

• For all of the above, autos and pedestrians must be permitted on the link

• For all of the above, controlled access highways, tollways, highway ramps, ferries,

parking lot roads, tunnels, and facilities having four or more lanes of travel in a single

direction (implied eight lanes bi-directional) are excluded

Pedestrian-oriented facilities:

• Any arterial or local street having a speed category of 6 (between 21 and 30 mph)
where car travel is permitted in both directions
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• Any arterial or local street having a speed category of 7 or higher (less than 21 mph)

• Any local street having a speed category of 6 (between 21 and 30 mph)

• Any pathway or trail on which automobile travel is not permitted (speed category 8)

• For all of the above, pedestrians must be permitted on the link

• For all of the above, controlled access highways, tollways, highway ramps, ferries,

parking lot roads, tunnels, and facilities having four or more lanes of travel in a single

direction (implied eight lanes bi-directional) are excluded”

A.0.4 Heterogeneity in Firm Size Composition

With regard to heterogeneity, a reason why I observe larger IV than OLS estimates could

be that not all types of firms benefit equally from high levels of Connectivity. Moreover,

those firms opting out of locating in physically highly connected environments could also

be those that would benefit less from physical connectivity in the first place.

Intuitively, smaller firms should be those with most to gain from physical connectivity

because they may not, e.g., have all necessary skills in-house or fewer internal knowledge

sources. As such, smaller firms are likely to have greater need to access information from

outside the firm and may, therefore, engage in more inter-firm communication (Allen et al.,

2010). In addition, it is difficult for large firms to locate in areas with more highly connected

streets given their size, and large firms’ benefits from being in highly connected areas may

outweigh their costs of rent and/or land.

To gain more insight on this potential explanation, I create two measures for small firm

size and plot these visually. I base one of my measures for firm size on data from County

Business Pattern (CBP) information and categorize firms as small if they have nine or fewer

employees. Note that the CBP data does not provide information on what these firms do.

It could well be that some of the small firms are restaurants, cafes, or bars. The other

size measure is based on the number of inventors an assignee had between 2005-2010. I

define small firms as those with fewer than ten inventors. The graphs I present are binned
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scatterplots. To generate a binned scatterplot, the x-axis variable is first grouped into equal-

sized bins. Next, the mean of the x- and y-axis variables within each bin is calculated. These

data points are then displayed in a scatterplot, the so called binned scatterplot. I obtain

the linear fit line using OLS and include the same controls as in the fully saturated model

presented in Table 1.2. The resulting coefficients and the corresponding p-values for each

linear fit plot are displayed in the bottom left corner under each graph.

The results as displayed in Figure A1.4, indicate that in BGs with no small firms, the

relationship between Connectivity and patenting is not statistically significant, and most

of the effect is driven by places with at least one small firm. Similarly, the Connectivity

effect is not statistically significant in BGs with less than 50 percent small firms using either

approach. However, when examining the relationship by BGs with all small firms (=1) the

results indicate that the positive relationship between Connectivity and patenting may be

primarily driven by those BGs with a mix of firms size. Taken together, and with much

caution given endogenous location choice, this could be interpreted such that BGs with a

representation of at least 50 percent of small firms, but not all small firms “benefit” most

from higher levels of Connectivity. These patterns are also in line with previous findings,

such as Agrawal et al. (2014), who find that innovation output is higher in regions with both

small firms and large laboratories.

To further support these findings, I run the OLS regressions from Table 2 in the main

manuscript including interactions between firm size and physical connectivity. The results

are reported in the Appendix, Table A1.9. I thereby categorize firm size, using historic

inventor data and distinguish between very small (<5 inventors), small (5-9 inventors),

medium (10-49 inventors), and large assignees (<50 inventors). In the fully saturated model,

it appears that the share of small and medium sized assignees in a BG bolsters the impact of

Connectivity.

However, as per my prior discussion, I cannot definitively disentangle if and how much

of the effect can be attributed to smaller firms truly benefiting more from a physically
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connected environment or smaller firms’ higher probability of locating in BGs with elevated

Connectivity levels. Either reason could explain why the OLS estimates are biased downward

in comparison to the results obtained in the IV model.
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Figure A1.1: Depiction of Sample Selection using CZ 9100 (Atlanta, GA) as an Example
Notes: This image is a stylized depiction of how the sample of patents was selected. I retain only those patents where both
assignees (box) and all inventors (circles) are within the same commuting zone (commuting tie is the arrow line). Image
created by the authors.
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Figure A1.2: Scatterplot of the Relationship between Connectivity and Patents
Notes: The top figure plots the relationship between Connectivity (y-axis) and Number of Patents (x-axis) for the entire
sample (with the restriction that there is at least one patent). Both variables are log transformed. The labels list the
county and state of the corresponding BGs. Suffolk County, MA and Middlesex County, MA are two major counties in
the Boston/Cambridge area, Alameda County, CA covers the Oakland - Fremont area, Hamilton County, OH forms part
of the Cincinnati area, Cook County, IL is one of Chicago’s main counties. Steuben County and Monroe County, New
York belong to the Rochester commuting zone, Schenectady County, New York forms part of the Troy/Albany area, Shelby
County, TN is one of the main counties in Memphis. The remaining counties are named after the cities they lie in. The
bottom left plot is for California only, and the bottom right plot displays the relationship for BGs in Massachusetts only.
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Figure A1.3: The Relationship between Connectivity and Controls
Notes: Each scatter plot represents the relationship between Connectivity and the variable specified on the x-axis with
exception of the top left scatter plot. The top left scatter plot displays the relationship between the residuals obtained from
regressing all controls on Connectivity (log) and the log No.of Patents in a BG. The graphs presenting the relationship
between Connectivity (log) and employment are without the top 99th percentile. No.Bars is the short form of the measure
for number of bars, restaurants and hotels in a BG.
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Figure A1.4: Connectivity by Percentage of Small Firms
Notes: This figure displays the relationship between the number of patents in a BG (y-axis) and Connectivity (x-axis) by
the percentage of small firms in a BG. All plots are binned scatterplots with the same controls as in the full OLS model,
Table 2 (20 bins, mean average). In the left column, firm size is measured in 2010 using CBP data. The top left captures
the outcome using an indicator equal to one if there are no small firms, and is zero otherwise. The middle left plot, captures
the outcome using an indicator equal to one if the percentage of small firms is over 50 percent, and is zero otherwise.
The bottom left figure captures the outcome using an indicator equal to one if all firms are small, and is zero otherwise.
The right column displays results using firm size measures constructed from historic inventor counts by assignee location
(2005-2010). Here, I additionally control for the number of assignees in order to obtain graphs comparable to the left
column. The top right reports the results by an indicator capturing if there are no (=0) or any small firms (=1), the middle
right if the share of small assignees is larger than 50 percent (=1), and the bottom right displays the results by a small firm
ratio equal to one. I report the point estimates and corresponding p-values in the bottom left corner of each graph.
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Figure A1.5: Interaction of Connectivity (log) with Population, Employment, and No. Bars
Notes: This figure displays the relationship between the number of patents in a BG (y-axis) and Connectivity (x-axis) by
high levels of population, number of bars, restaurants, and hotels in a BG as well as employment (all measured in 2010).
All plots are binned scatterplots (20 bins, mean average). The top left captures the outcome using an indicator equal to
one if population is larger than 1,650, and is zero otherwise. The top right figure represents the outcome using an indicator
equal to one if the number of bars, restaurants or hotels in a BG exceeds 5, and is zero otherwise. The bottom figure
captures the outcome using an indicator equal to one if employment is larger than 950, and is zero otherwise. The controls
in each plot correspond to those used in Table 6.
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Figure A1.6: Kernel Density Distribution of Assignee Size in the Sample and in Full Data
Set

Notes: This figure plots the kernel density distribution of assignee size by those patents that are included in the sample
against those in the raw data set (only where a precise location was available). Size is determined by the number of patents
an assignee has (ln(No.Patents +1)). The bandwidth used is 1.
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Table A1.1: Variable Description

Variable Description Source

Innovation

Number of Patents (2011-
2013)

The amount of US granted patents located in a BG that
had been applied for 2011 - 2013.

Morrison et al. (2017), Disam-
biguated Patent Data Set (DPDS);
TIGER Census Boundaries

Patent An indicator equal to one if there is at least one patent
located in a BG that had been applied for 2011 - 2013.

Morrison et al. (2017), DPDS;
TIGER Census Boundaries

Knowledge Exchange

Total Citations The amount of same BG patent citation pairs in a BG for
patents that had been applied for 2011 - 2013.

Morrison et al. (2017), DPDS;
TIGER Census Boundaries

Self Citations The amount of same BG patent self-citations in a BG for
patents that had been applied for 2011 - 2013.

Morrison et al. (2017), DPDS;
TIGER Census Boundaries

Non-self Citations The amount of same BG patent citations in a BG excluding
self-citations for patents that had been applied for 2011 -
2013.

Morrison et al. (2017), DPDS;
TIGER Census Boundaries

Physical Network Structure

Connectivity The total miles of streets oriented towards both car and
pedestrian travel (multimodal) in a BG, normalized by to-
tal BG area, measured in 2010.

EPA, Smart Location Data-base
(SLD)

HUpre1940 The percent of housing units built in a BG before 1940. IPUMS, Census Demographics
HU1940-1949 The percent of housing units built in a BG between 1940

and 1949.
IPUMS, Census Demographics

Social Activity

Number of Bars, Restaurants,
and Hotels

The number of bars, restaurants, and hotels in a BG. US Census, County Business Pat-
tern (CBP)

Formal Knowledge

Campus Indicator equal to one if the BG has a postsecondary edu-
cation campus.

US Department of Education,
Database of Accredited Postsec-
ondary Institutions and Programs

Human Capital (by work location)

Accessibility The number of working age population that is within a 45
minute commute from a focal BG (2010).

EPA, SLD

College 2000/2010 The number of college degree holders in 2000/2010.
These values were only available on the census tract level

IPUMS, Census Demographics

Employment 2010/2005 The number of employees in 2010/2005. US Census, CBP; EPA, SLD
Inventors 2005/2000 The number of inventors in 2005/2000. Morrison et al. (2017), DPDS;

TIGER Census Boundaries

Socio-Demographic

Population 2010/2000 Population in a BG according to the 2010/2000 US census. IPUMS Census Demographics;
EPA, SLD

Physical Geography

Area Water The amount of BG area covered by water. EPA, SLD
Area Developable Land The amount of BG area that can be used for development. EPA, SLD
Area Land The total amount of land in a BG. EPA, SLD
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Table A1.2: Correlation of Distinct Density Measures with Connectivity

Connectivity

Pathway and Trail Density (miles/sq.miles) 0.0278
Auto-Only Road Density (miles/sq.miles) -0.0024
Intersection Density (all) 0.0504
Transit Frequency (h/sq.miles) 0.0473
Residential Density (HU/acre) 0.121
Population Density (people/acre) 0.126
Employment Density (jobs/acre) 0.112
Regional Centrality Index 0.136
Accessibility (workers w/in 45min commute) 0.194

Notes: This table presents the correlation matrix of Connec-
tivity with other density measures and accessibility measures.
These measures are a) the density of Pathways and Trails
(constructed using the total amount of pathways and trails di-
vided by total land area), b) the density of Auto-Only roads
(total amount of automobile only roads divided by total land
area), c) Intersection Density (using all types of intersections,
see SLD for exact calculation), d) Transit Frequency (calcu-
lated using the transit frequency per square mile of land area,
only available for participating GTFS transit service areas),
e) Residential Density (housing units divided by area of un-
protected land), f) Population Density, g) Employment Den-
sity (both divided by area of unprotected land), as well as,
h) the Regional Centrality Index (Accessibility of a BG rela-
tive to the maximum in the CBSA), and i) Accessibility (the
number of working age population that is within a 45 minute
commute from a focal BG).
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Table A1.3: Different Dependent Variable Construction

All Inventors in CZ One Inventor in CZ Inventor Location
(assignee location) (assignee location) (by no.of inventors)

DV: Number of Patents (log) (1) (2) (3)

Connectivity (log) 0.00452∗∗∗ 0.00585∗∗∗ 0.0108∗

(0.00129) (0.00155) (0.00576)

Social Activity Controls Yes Yes Yes

Formal Knowledge Controls Yes Yes Yes

Human Capital Controls Yes Yes Yes

Socio-Demogr. Controls Yes Yes Yes

Phys. Geography Controls Yes Yes Yes

Observations 95294 95294 95294
R-squared 0.0996 0.112 0.0689
Fixed Effects czone czone czone
Number of Groups 253 253 253
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from using alternative sample selection ap-
proaches. The outcome variable is the amount of U.S. granted patents applied for between
2011-2013 in a BG. Column 1 presents the results from the main paper. In Column 2 the
sample was obtained including those patents where at least one inventor was in the same com-
muting zone as the assignee. The location of these patents is the BG of the assignee. The
end sample of BGs with at least one patent increases to 5,350 following this approach. In
Column 3 the sample was obtained taking the location of each inventor. Before aggregating,
each patent was weighted by the number of inventors on a focal patent (e.g., for 2 inven-
tors of the same patent, but in different BGs, the patent count is 0.5 for each inventor-BG).
The end sample of BGs with at least one patent increases to 16,272 following this approach.
The SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG.
FormalKnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary
education campus. The HumanCaptialCONTROLS consist of historic inventor counts from
2000, and 2005 as well as employment levels for 2005 and 2010, and the amount of college
degree holders in 2000, and 2010 (by work location). Socio-DemographicCONTROLS are
population counts for 2000 and 2010. PhysicalGeographyCONTROLS are the area covered
by water, the area of developable land, and total land area. Standard errors (in parentheses)
are clustered at the commuting zone level.
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Table A1.4: Conditional Fixed-Effects Poisson Model

Poisson Models

DV: Number of Patents (1) (2) (3)

Incidence Rate Ratios

Connectivity 1.010∗∗∗ 1.053∗∗∗ 1.055∗∗∗

(0.00220) (0.0115) (0.0100)

Social Activity Controls No Yes Yes

Formal Knowledge Controls No Yes Yes

Human Capital Controls No Yes Yes

Socio-Demogr. Controls No Yes Yes

Phys. Geography Controls No Yes Yes

Observations 119937 93074 84273
Fixed Effects czone czone county
Number of Groups 249 219 410
Std. Errors Robust Robust Robust
LogLikelihood -23269.6 -16547.5 -15570.2
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from estimating equation (1) using a con-
ditional fixed-effects poisson model. The outcome variable is the amount of U.S. granted
patents applied for between 2011-2013 in a BG (we exclude the top 1 percentile to ensure
that outliers are not driving the results). Reported coefficients are incidence rate ratios. Co-
efficients greater (smaller) than one indicate that exposure to the independent variable is
associated with higher (lower) incidence rate ratio. Columns 1 presents the reduced model
without controls. Columns 2 and 3 present the fully saturated model with all controls. The
SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG. For-
malKnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary educa-
tion campus. The HumanCaptialCONTROLS consist of historic inventor counts from 2000,
and 2005 as well as employment levels for 2005 and 2010, the amount of college degree
holders in 2000, and 2010 (by work location), and the amount of working age population
that is within a 45 minute commute from a focal BG. Socio-DemographicCONTROLS are
population counts for 2000 and 2010. PhysicalGeographyCONTROLS are the area covered
by water, the area of developable land, and total land area. Standard errors (in parentheses)
are clustered at the commuting zone (columns 1, and 2) and county (column 3) level.
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Table A1.5: OLS - Different Measures of Connectivity

OLS Models

DV: Number of Patents (log) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Pathways (log) -0.0277∗∗∗ 0.00188 0.00400
(0.00531) (0.00337) (0.00324)

Connectivity incl. Pathways (log) -0.0193∗∗∗ 0.0293∗∗∗ 0.0106∗∗

(0.00537) (0.00672) (0.00422)

Street Intersection Density -0.00598∗∗ 0.0117∗∗ 0.00521∗∗

(0.00257) (0.00562) (0.00215)

Transit Frequency (log) 0.00354∗∗∗ 0.00995∗∗∗ 0.00333∗∗∗

(0.000985) (0.00123) (0.000885)

Social Activity Controls No No Yes No No Yes No No Yes No No Yes

Formal Knowledge Controls No No Yes No No Yes No No Yes No No Yes

Human Capital Controls No No Yes No No Yes No No Yes No No Yes

Socio-Demogr. Controls No No Yes No No Yes No No Yes No No Yes

Phys. Geography Controls No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Observations 121398 121398 95294 121398 121398 95294 121398 121398 95294 93866 93866 73369
R-squared 0.00190 0.00721 0.0788 0.000712 0.00821 0.0789 0.000214 0.00787 0.0996 0.00111 0.0155 0.108
Fixed Effects czone czone czone czone czone czone czone czone czone czone czone czone
Number of Groups 261 261 253 261 261 253 261 261 253 116 116 113
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from using alternative measures of Connectivity. These alternative measures are a) the density of
pathways and trails (log transformed and constructed using the total amount of pathways and trails divided by total land area), b) the density of
streets including pathways and trails (log transformed and divided by total land area), c) Intersection Density (log transformed, using all types of
intersections, see SLD for exact calculation), and d) Transit Frequency (log transformed, calculated using the transit frequency per square mile
of land area, only available for participating GTFS transit service areas). The outcome variable is the amount of U.S. granted patents applied
for between 2011-2013 in a BG. Columns 1, 4, 7, and 10 represent the overall effect without controls. In columns 2, 5, 8, and 11 I include
PhysicalGeographyCONTROLS. Columns 3, 6, 9, and 12 present the fully saturated model. The SocialActivityCONTROLS include the number of
bars, restaurants, and hotels in a BG. FormalKnowledgeCONTROLS is an indicator equal to one if the BG has a postsecondary education campus.
The HumanCaptialCONTROLS consist of historic inventor counts from 2000, and 2005 as well as employment levels for 2005 and 2010, the
amount of college degree holders in 2000, and 2010 (by work location), and the amount of working age population that is within a 45 minute
commute from a focal BG. Socio-DemographicCONTROLS are population counts for 2000 and 2010. PhysicalGeographyCONTROLS are the
area covered by water, the area of developable land, and total land area. Standard errors (in parentheses) are clustered at the commuting zone level.
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Table A1.6: 2SLS Using Different Housing Ages as Instruments

(1) (2) (3) (4)
DV: Number of Patents (log) (1950-59) (1960-69) (1970-79) (1980-89)

Connectivity (log) (= HU19XX) 0.313 0.142∗∗∗ 0.068 -0.037
(0.2957) (0.0445) (0.0475) (0.0346)

Social Activity Controls Yes Yes Yes Yes

Formal Knowledge Controls Yes Yes Yes Yes

Human Capital Controls Yes Yes Yes Yes

Socio-Demogr. Controls Yes Yes Yes Yes

Phys. Geography Controls Yes Yes Yes Yes

First Stage Coef. -0.061 -0.144∗∗∗ -0.151∗∗∗ -0.231∗∗∗

(0.0495) (0.0291) (0.0293) (0.0384)

Observations 95097 95097 95097 95097
First Stage Fstats 1.53 24.46 26.53 36.02
Fixed Effects czone czone czone czone
Number of Groups 252 252 252 252
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from instrumenting Connectivity with the percentage of housing
units built in different time periods HU19XX. In column 1 Connectivity is instrumented using the percentage of
housing units built in the 1950s. The instrument in columns 2, 3, and 4 are the housing units built in the 1960s,
the 1970s, and the 1980s. The outcome variable is the log amount of U.S. granted patents applied for between
2011-2013 in a BG. The SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG.
HigherEducationCONTROLS is an indicator equal to one if the BG has a postsecondary education campus. The
HumanCaptialCONTROLS consist of historic inventor counts from 2000, and 2005 as well as employment levels
for 2005, and 2010, as well as the amount of college degree holders in 2000, and 2010 (by work location). Socio-
DemographicCONTROLS are population counts for 2000, and 2010. PhysicalGeographyCONTROLS are the area
covered by water, the area of developable land, and total land area. Standard errors (in parentheses) are clustered at
the commuting zone level.
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Table A1.7: Instrumental Variable Estimation - Including Pathways and Trails

2SLS Models
DV: Number of Patents (log) (1) (2) (3) (4) (5) (6)

Second Stage
Connectivity incl. Pathways (log)0.0928∗∗∗0.0870∗∗∗0.0701∗∗∗0.0466∗∗∗0.0428∗∗∗ 0.0324∗∗

(0.0159) (0.0153) (0.0135) (0.0170) (0.0159) (0.0156)
Social Activity Controls No Yes Yes Yes Yes Yes
Formal Knowledge Controls No Yes Yes Yes Yes Yes
Human Capital Controls No No No Yes Yes Yes
Socio-Demogr. Controls No No Yes No Yes Yes
Phys. Geography Controls Yes Yes Yes Yes Yes Yes

First Stage
HUpre1940 0.3045∗∗∗0.3077∗∗∗0.3274∗∗∗0.2748∗∗∗0.2909∗∗∗0.2908∗∗∗

(0.0272) (0.0279) (0.0309) (0.0256) (0.0283) (0.0259)
HU1940-1949 0.2961∗∗∗

(0.0285)
Social Activity Controls No Yes Yes Yes Yes Yes
Formal Knowledge Controls No Yes Yes Yes Yes Yes
Human Capital Controls No No No Yes Yes Yes
Socio-Demogr. Controls No No Yes No Yes Yes
Phys. Geography Controls Yes Yes Yes Yes Yes Yes
Observations 120926 118838 118838 95097 95097 95097
First Stage Fstats 125.5 120.9 111.7 115.1 105.6 77.65
Hansen J Stat. P-val 0.100
Fixed Effects czone czone czone czone czone czone
Number of Groups 260 256 256 252 252 252
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from instrumenting Connectivity including pathways and trails with HUpre1940 (column
1-6) and HU1940-1949 (column 6). In the Second Stage, the outcome variable is the log amount of U.S. granted patents applied for
between 2011-2013 in a BG. In the First Stage, the outcome variable is Connectivity (log) including pathways and trails. HUpre1940, is
the percentage of housing units built before 1940 and HU1940-1949, is the percentage of housing units built between 1940-1949. The
SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG. FormalKnowledgeCONTROLS is an indicator equal
to one if the BG has a postsecondary education campus. The HumanCaptialCONTROLS consist of historic inventor counts from 2000,
and 2005 as well as employment levels for 2005, and 2010, and the amount of college degree holders in 2000, and 2010 (by work location).
Socio-DemographicCONTROLS are population counts for 2000, and 2010. PhysicalGeographyCONTROLS are the area covered by water,
the area of developable land, and total land area. Variation in the number of observations depending on the included controls is due to
missing values for the number of bars, restaurants, and hotels, as well as college education. First Stage F-statistics are reported in all
columns and the p-value obtained from the Hansen J Statistic, which tests the validity of the overidentifying restrictions in column 6.
Standard errors (in parentheses) are clustered at the commuting zone level.
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Table A1.8: Control Function Approach Using FE Poisson in the Second Stage

DV: Number of Patents (1) (2)
Incidence Rate Ratios

Connectivity 1.528∗∗∗ 1.480∗∗∗
(0.177) (0.177)

Residuals 0.681∗∗∗ 0.704∗∗∗
(0.0801) (0.0851)

Quadratic Residuals Yes Yes
Social Activity Controls Yes Yes
Higher Ed. Controls Yes Yes
Human Capital Controls Yes Yes
Socio-Demogr. Controls Yes Yes
Phys. Geography Controls Yes Yes
First Stage includes HUpre1940 HUpre1940

HU1940-1949
Observations 92866 92866
Fixed Effects czone czone
Number of Groups 218 218
Std. Errors Bootstrap Bootstrap
Log Likelihood -16381.2 -16382.9
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from estimating a control function
approach. In the first step I predict the endogenous variable Connectivity includ-
ing HUpre1940 with the full set of controls (in column 2 I also include HU1940-
1949). I save the residuals and insert them into a conditional fixed-effects pois-
son model in the second stage. Reported coefficients are incidence rate ratios.
Coefficients greater (smaller) than one indicate that exposure to the independent
variable is associated with higher (lower) incidence rate ratio. In the first step
I predict the endogenous variable Connectivity including HUpre1940 with the
full set of controls (in column 2 I also include HU1940-1949). The outcome
variable is the number of U.S. granted patent that were applied for between
2011-2013 in a BG (I exclude the top 1 percentile to ensure that outliers are
not driving the results). I include the quadratic expansion of the residuals. The
residuals without change to the functional form are displayed in the table. The
SocialActivityCONTROLS include the number of bars, restaurants, and hotels
in a BG. FormalKnowledgeCONTROLS is an indicator equal to one if the BG
has a postsecondary education campus. The HumanCaptialCONTROLS consist
of historic inventor counts from 2000, and 2005 as well as employment levels
for 2005, and 2010, the amount of college degree holders in 2000, and 2010
(by work location), and the amount of working age population that is within a
45 minute commute from a focal BG. Socio-DemographicCONTROLS are pop-
ulation counts for 2000, and 2010. PhysicalGeographyCONTROLS are the area
covered by water, the area of developable land, and total land area. Standard
errors (in parentheses) are clustered at the commuting zone level.
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Table A1.9: Interaction of Connectivity with Assignee Size

Number of Patents (log) (1) (2) (3) (4) (5) (6) (7) (8)

Connectivity (log) 0.0105∗∗∗ 0.00192∗ 0.0172∗∗∗0.00328∗∗∗0.0166∗∗∗0.00314∗∗∗0.0166∗∗∗0.00332∗∗∗
(0.00208) (0.00110) (0.00281) (0.00104) (0.00278) (0.00104) (0.00285) (0.00114)

Share Very Small 0.0950∗∗∗0.0969∗∗∗
(0.0127) (0.0113)

Connectivity × Share Very Small0.0606∗∗∗ 0.0115
(0.00997) (0.00744)

Share Small 0.348∗∗∗ 0.296∗∗∗
(0.0556) (0.0560)

Connectivity × Share Small 0.146∗∗∗ 0.0978∗∗
(0.0440) (0.0400)

Share Medium 0.722∗∗∗ 0.728∗∗∗
(0.0984) (0.103)

Connectivity × Share Medium 0.230∗∗∗ 0.132∗
(0.0705) (0.0698)

Share Large 2.143∗∗∗ 2.136∗∗∗
(0.319) (0.336)

Connectivity × Share Large 0.551∗∗ 0.402
(0.241) (0.264)

Social Activity Controls No Yes No Yes No Yes No Yes

Formal Knowledge Controls No Yes No Yes No Yes No Yes

Human Capital Controls No Yes No Yes No Yes No Yes

Socio-Demogr. Controls No Yes No Yes No Yes No Yes

Phys. Geography Yes Yes Yes Yes Yes Yes Yes Yes

Observations 121398 95294 121398 95294 121398 95294 121398 95294
R-squared 0.0466 0.114 0.0395 0.118 0.0756 0.149 0.154 0.226
Fixed Effects czone czone czone czone czone czone czone czone
Number of Groups 261 253 261 253 261 253 261 253
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: This table presents results from interacting Connectivity with the share of very small, small, medium, and large assignees in a BG. These values were derived

using the sum of inventors of an assignee between 2005-2010. Very small firms have fewer than 5 inventors, small have 5-9 inventors, medium have 10-49 inventors,
and large are all firms with 50 or more inventors. The outcome variable is the amount of U.S. granted patents applied for between 2011-2013 in a BG. The columns
with uneven numbers represent the overall effect without controls (but incl. PhysicalGeographyCONTROLS). The columns with even numbers present the fully
saturated model. Please refer to previous tables for a description of the controls. Standard errors (in parentheses) are clustered at the commuting zone level.
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Table A1.10: Patent Citation Patterns - Including Pathways and Trails

Non-self Self

DV: Number Citations (log) (1) (2) (3) (4) (5) (6) (7) (8)

Streets incl. Pathways (log) 0.00147∗∗∗0.00133∗∗∗0.00271∗∗0.00236∗∗0.00469∗∗∗0.00389∗∗∗-0.0000612 -0.00351
(0.000550) (0.000481) (0.00130) (0.00114) (0.00166) (0.00144) (0.00619) (0.00482)

Number of Patents (log) 0.0221∗∗∗ 0.214∗∗∗
(0.00486) (0.0203)

Social Activity Controls No Yes Yes Yes No Yes Yes Yes

Higher Ed. Controls No Yes Yes Yes No Yes Yes Yes

Human Capital Controls No Yes Yes Yes No Yes Yes Yes

Socio-Demogr. Controls No Yes Yes Yes No Yes Yes Yes

Phys. Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes

Model OLS OLS IV IV OLS OLS IV IV

First Stage First Stage

HUpre1940 0.299∗∗∗ 0.299∗∗∗ 0.299∗∗∗ 0.299∗∗∗
(0.027) (0.027) (0.027) (0.027)

HU 1940-1949 0.294∗∗∗ 0.294∗∗∗ 0.294∗∗∗ 0.294∗∗∗
(0.028) (0.028) (0.028) (0.028)

Number of Patents (log) No Yes No Yes

Other Controls Yes Yes Yes Yes

Firststage Fstats 74.65 74.81 74.65 74.81

Hansen J Stat. P-val 0.815 0.549 0.658 0.777

Observations 121398 119159 95097 95097 121398 119159 95097 95097
R-Sq. 0.000509 0.00331 0.00322 0.0416 0.00114 0.00821 0.00812 0.298
Fixed Effects czone czone czone czone czone czone czone czone
Number of Groups 261 257 252 252 261 257 252 252
Std. Errors Robust Robust Robust Robust Robust Robust Robust Robust
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports the results obtained from estimating the relationship between Connectivity (including path-
ways and trails) and citation patterns. The outcome variable in columns 1-4 is the log amount of same-BG citation pairs
between distinct assignees (Non-self Citations). The outcome variable in columns 5-8 is the log amount of same-BG
citation pairs between the same assignee (Self Citations). Columns 1, 2, 5, and 6 report the results estimating the OLS
model. Columns 3, 4, 7, and 8 report the results using an instrumental variable approach where we use HUpre1940 and
HU1940-1949 as instruments for Connectivity. For the IV models, we report First Stage F-statistics and the p-value
obtained from the Hansen J Statistic, which tests the validity of the overidentifying restrictions. Columns 1 and 5, rep-
resent the overall effect without controls (but incl. geographic controls). The other columns present the fully saturated
model. SocialActivityCONTROLS include the number of bars, restaurants, and hotels in a BG. FormalKnowledgeCON-
TROLS is an indicator equal to one if the BG has a postsecondary education campus. The HumanCaptialCONTROLS
consist of historic inventor counts from 2000, and 2005 as well as the natural log of employment for 2010, and the
amount of college degree holders in 2010 (by work location) in a focal BG. Socio-DemographicCONTROLS include
the natural log of population for 2010. PhysicalGeographyCONTROLS are the area covered by water, the area of
developable land, and total land area. Standard errors (in parentheses) are clustered at the commuting zone level.
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APPENDIX B

TAKING INTERACTIONS AND INNOVATION TO CO-WORKING SPACES
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Figure A2.1: Heterogeneous Effects of Physical Proximity: Social Proximity
Notes: This figure displays the results from estimating the interaction between social proximity and physical proximity
using binned scatterplots (20 bins, mean average).
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Figure A2.2: Heterogeneous Effects of Physical Proximity: Product-market Proximity
Notes: This figure displays the results from estimating the interaction between product-market proximity and physical
proximity using binned scatterplots (20 bins, mean average).
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Table A2.1: Variable Description

Variable Description

Outcome Variables

ln(Distanceij ) The distance between firmi and firmj in steps (log transformed). One step corre-
sponds to 1.8 meters.

ln(AdoptCountij + 1) The number of technologies firmi adopts from firmj (log transformed and normal-
ized). An adopted technology is a technology used by firmi in the focal period that
firmi had not implemented in any previous period, but firmj had.

1(AdoptTechij ): Equals one if firmi adopts a technology from firmj .
# Event Bothij Attend The number of events hosted at the co-working space at least one person working for of

firmi and firmj both attend.
1(Ever within X people in line) Equals one if at least one team member of firmi and firmj appear within X (1, 2, 5,

10, 25) people in line for an event hosted at the co-working space.
ln(min line distanceij ) Captures the log distance of entry between members of firmi and firmj at the event

hosted by the co-working hub.

Independent Variables

Close Equals to one if firmi and firmj are located within 25 meters (14 steps; the 25th

percentile of pair-wise distances between all rooms) of each other on the same floor.
Distant Equals to one if firmi and firmj are located further than 56 meters (31 steps; the 75th

percentile of pair-wise distance between all rooms) from each other on the same floor.
Common Area Equals one if the shortest path between firmi and firmj passes through a common

area. Common areas are the kitchens and zone in front of the elevator on each floor as
well as the open sitting space provided on the second floor. Please refer to Figure 1 for a
visual depiction of the location of these areas.

Same Industry Equals to one if firmi and firmj operate in the same industry. We follow the clas-
sification of industries provided by AngelList and BuiltWith. The individual industries
are Administration&Management, Data, Design&Development, Digital, Education, En-
ergy&Construction, Entertainment, Finance&Legal Healthcare, Marketing&PR, Real Es-
tate, Retail, Science&Technology, Security, Software&Hardware. For our analyses we
use each firm’s primary industry, since many operate in more than one. We determined
this by conducting extensive web searches on the startups in our sample.

Pre-period Technology Overlap Percentage of same technologies firmi and firmj used in the period prior to the focal
period.

Both Predominately Female Equals to one if the team members in both firmi and firmj are predomi-
nately female (over 50 percent). We determined the gender of founders con-
ducting extensive web searches on the startups as well as by comparing first
names with lists provided by the US Census for most common names by sex
(https://www2.census.gov/topics/genealogy/1990surnames).

Both B2B Companies Equals to one if firmi’s and firmj ’s main customers are other businesses.
Both B2C Companies Equals to one if firmi’s and firmj ’s main customers are individual consumers.
Small (Big) Room Equals to one if a room is smaller or equal to (larger) than the median room size.
Both Successful Equals to one if firmi and firmj have received a TAG40 award, have received the

Village Verified certificate, have raised a seed round or have ever raised a VC seed invest-
ment.

|agei-agej | The age difference between firmi and firmj (derived from date of entry at the co-
working space).

Both Use Roof/Mail/Gym Equal to one if at least one person working for firmi and one person working for firmj

has ever accessed the roof/mailroom/gym and zero otherwise. We determine each firm’s
use of these amenities using information from individual’s key-cards for a selected period
of time (October 2015 - February 2016, and May 2016 - July 2016).

Mean Technological Similarity to Close FirmsThis measure is constructed using the average technology overlap of firmi technologies
with other firms within 20m distance.
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APPENDIX C

TAKING INTERACTIONS AND INNOVATION TO THE LAB

C.0.1 Inverse Probability of Treatment Approach

For robustness, I further apply an inverse probability of treatment approach following

Azoulay et al. (2017). The inverse probability weighting estimator can be used to demon-

strate causality when a controlled experiment is not feasible but fine-grained data is available

to model selection. Since treatment to an entrepreneurial advisor may not be randomly

assigned, the goal is to estimate the counterfactual or potential outcome if all subjects in the

population were assigned either treatment.

Inverse probability weighting refers to weighting the outcome measures by the inverse

of the probability of the individual with a given set of covariates being assigned to their

treatment (propensity score). In short, the goal is to estimate the potential outcome, that

would be observed if a student were assigned treatment to an entrepreneurial advisor and

then compare the mean outcome if all students in the population were assigned treatment

(Angrist and Pischke, 2008). The equation I estimate is presented below:

ωs =
1

PROB(Ts = p|Xp
s )

In the above equation, the denominator of ωs is the conditional probability that a student

was assigned her advisor p. Assuming that all relevant factors determining matches are

observed and included in X, then, weighting by ωs effectively creates a pseudo-population

of students in which X no longer predicts assignment.

<Insert Table A3.9 here>

I present the results from estimating the above equation in Table A3.9. Column 1 shows
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the results for patenting outcome, column 2 for overall publication output and columns 3

for highly-cited publications. All outcomes are in log. Overall, the results confirm earlier

findings. The estimates in column 3, for example, suggest that exposure to an entrepreneurial

professor causes students’ highly-cited publications to be reduced by an average of 0.3

from the average of 1.3 for students’ who are not exposed. This represents a decrease by

one highly-cited publication within five years from starting the PhD. Post-estimation tests

indicate that the overlap assumption is not violated.

C.0.2 Student Career Outcomes - Multinomial Logit Approach

To assess if exposure to an entrepreneurial advisor impacts students’ career outcomes, I

further estimate a multinomial logit model that relates the probability that a student s obtains

her first position in employment category j to exposure to an entrepreneurial advisor. The

equation I estimate is:

Pr(ys = j|xsxsxs) =
exp(xsβjxsβjxsβj)∑M
j=1 exp(xsβjxsβjxsβj)

where j=1,2,3,...,k...,M, Pr(ys = j|xsxsxs) is the probability that a student s obtains her first

position in employment category j, given xsxsxs, xsxsxs is a vector of characteristics and fixed effects

related to s, and βjβjβj is the vector of coefficients pertaining to a student’s employment category

j. In the model presented in Figure 10 and 11, I include student and professor controls, as

well as start-year and department fixed effects. Note that I cannot include professor fixed

effects in this model given issues with convergence.

Figure A3.10, displays the point estimates from estimating equation (6) with the corre-

sponding 95 percent confidence intervals. Ratios greater than one imply that being exposed

to an entrepreneurial advisor leads to a higher probability that a student obtains her first

position in a given category j over the reference outcome (in this case industry), with the

opposite for ratios less than one. As displayed in Figure 10, students of professor-founders

are relatively more likely to find their first position in academia and as founders compared
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to an industry position.

In Figure A3.11, I display the average marginal effects from estimating the above equa-

tion with the respective 95 percent confidence intervals. As shown, having an entrepreneurial

advisor leads to an increase in the likelihood that a student finds her first position in academia

by 6 percentage points (p-value = 0.001) and finds her first position as a founder by 1.3

percentage points (p-value = 0.007), respectively.

As mentioned, using the multinomial logit model, I am not able to apply professor

fixed effects. Consequently, the results presented in Figure A3.10 and 11 may merely be

picking up differences in entrepreneurial professors’ propensity to train students for certain

career paths. From this, I interpret my findings such that students of professor-founders are

more likely to find their first position in academia and as founders in relation to students of

non-founders and not necessarily as a function of engagement in entrepreneurial activity.

<Insert Figures A3.10 and A3.11 here>
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Figure A3.1: Number of Startups per Professor-Founder

Figure A3.2: Duration of the PhD Program

Figure A3.3: Binscatter Plots - Student Outcomes and Exposure
Notes: This graph reports the results from estimating the relationship between exposure (continuous) and student outcomes
including professor fixed effects, start-year fixed effects, professor-year trends, and student major fixed effects using
binned scatterplots (15 bins, mean average). I obtain the linear fit line using OLS.
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Figure A3.4: Yearly Outcomes for Students by Time of Graduation from Founding - Stylized
Approach

Notes: This figure stylistically depicts my empirical approach described in the main text and reports the corresponding
coefficients from estimating the model for the likelihood that a student has a publication (top) and a highly-cited
publication (bottom) in a given year. The coefficients correspond to those in Figure A5 (C and D).
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Figure A3.5: Yearly Outcomes for Students by Time of Graduation from Founding
Notes: In this figure, I visually depict the yearly outcomes of PhD students (the x-axis indicates the time a student
graduated relative to the time of founding; negative values indicate how many years before founding a student graduated
the program) and students’ inventive output (y-axis represent coefficients; all outcomes 0 or 1). The omitted category is 7
or more years prior to founding, the values -6 and 8 capture students who graduated 6 years before and 8 or more years
after the founding date. The results are obtained using professor and start-year fixed effects and professor-year trends as
well as controlling for a student’s major. I cluster standard errors on the advisor level. 95 percent confidence intervals are
displayed.
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Figure A3.6: First-Authored Publications
Notes: This graph is the equivalent of Figure A5 for students’ amount of first-authored
publications (log).
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Figure A3.7: Interaction of Student Quality Indicators with Professors’ Prior Founding
Experience

Notes: This figure displays the interaction coefficients between a professor having founded in the 5 years
prior to a student’s entry and student quality indicators. The characteristics I examine are the quality of a
student’s previous degree granting institution, previous GPAs, GRE Scores, US citizenship, and previous
work experience as proxies for incoming students quality and characteristics. The model used includes both
student and professor fixed effects. 95 percent confidence intervals are displayed.
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Figure A3.8: Binscatters First Stage(s) IV
Notes: This figure displays the relationships exploited for the instrumental variable approach. All plots
are binned scatterplots (20 bins, mean average) including the fixed effects described in Table 4. The top
figure presents the likelihood of founding in a given year as a function of the amount of VC investment (log)
in a professor’s field one year prior. The bottom figure depicts the relationship between founding and the
cumulative likelihood of founding.
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Figure A3.9: Cumulative Hazard of Founding a Company by Professor Age
Notes: This figure displays the results from estimating the hazard of becoming a founder by
age using a Cox Proportional Hazard Model.
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Figure A3.10: Point Estimates of the Effect of Founding on Student Job Outcomes
Notes: This figure displays the relative risk ratios obtained from estimating the multinomial logit approach
described in equation (3). In this model, I include student and professor controls, as well as start-year and
department fixed effects. Ratios greater than one imply that being exposed to an entrepreneurial advisor
leads to a higher probability that a student finds first employment in a given category over the reference
outcome (in this case industry), with the opposite for ratios less than one. I report the corresponding 95
percent confidence intervals.
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Figure A3.11: Average Marginal Effects of Founding on Student Job Outcomes
Notes: This figure displays results from estimating the average marginal effect of founding on student job
outcomes. I report the corresponding 95 percent confidence intervals. These results are obtained running a
multinomial logit model including student and professor controls, as well as start-year and department fixed
effects.

-1
-.5

0
.5

1
C

oe
ffi

ci
en

t

-5 -4 -3 -2 -1 0 1 2 3 4 5
from Time of Founding

Number of Incoming Students from Time of Founding

Figure A3.12: Number of Incoming Students from Time of Founding
Notes: This figure displays the coefficients (y-axis) from estimating the relationship between the number of incoming
students in a lab and time from founding (x-axis). The unit of analysis is the professor-year level. I obtain the
graphs by including professor and year fixed effects. The dashed vertical line indicates the time of founding. Standard
errors are clustered on the advisor level to account for intra-group correlation. 95 percent confidence intervals are displayed.
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Figure A3.13: First-authored Publications and Exposure by Field of Research Type
Notes: This graph reports the results from estimating the relationship between exposure (continuous) and PhD students’
first-authored publications using binned scatter plots (15 bins, mean average) by type of major (autonomous=1 if students
are enrolled in biology or chemistry) and including professor and year fixed effects. I obtain the linear fit line using OLS.

178



Table A3.1: Summary Statistics - By Advisor Type

Founder Founder or All
Patent-holderAdvisors

Student Averages
(1) (2) (3)

Exposure (cont.) 2.46 1.12 0.60
Exposure (=0/1) 0.65 0.29 0.16
Duration of PhD 4.92 4.89 4.90
Departments:
- AERO 0.03 0.04 0.08
- BIOMED 0.09 0.06 0.07
- CHEME 0.14 0.19 0.14
- CIVIL 0.02 0.03 0.08
- CS 0.09 0.11 0.12
- ECE 0.35 0.33 0.25
- MATERIALS 0.11 0.09 0.09
- ME 0.16 0.15 0.17
Ethnicity:
- Asian 0.59 0.58 0.54
- Black 0.02 0.03 0.04
- Hispanic 0.03 0.02 0.03
- Two Or More 0.02 0.01 0.01
- White 0.34 0.35 0.39
Other Characteristics:
- Female 0.20 0.21 0.21
- US citizen 0.37 0.38 0.40
- Previous GPA 3.62 3.61 3.60
- Verbal GRE 155.05 154.55 154.40
- Quant. GRE 163.01 162.69 162.49
- CV Record 0.85 0.82 0.82
First Job:
- Academia 0.37 0.32 0.35
- Industry 0.57 0.62 0.57
- Gov./Nat. Lab 0.04 0.05 0.07
- Founder 0.02 0.01 0.01
Outcomes During PhD:
- Patents 0.35 0.33 0.25
- Citation-Weighted Patents 2.02 2.08 1.90
- Publications 7.25 6.44 5.51
- Highly-Cited Publications 3.42 3.13 2.57
Advisor Founder or Patent-holder 1.00 1.00 0.54
Observations 615 1358 2510
Notes: This table displays averages for student characteristics by different types of advisors.

Column 1 displays averages for students of advisors who are ever founders, column 2 for those
of advisors who are ever founders or patent-holders, and column 3 present averages for students
of all advisors.
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Table A3.2: Summary Statistics - All Advisors

Professor-Year Level min mean p50 max

All Professors
Female 0.00 0.15 0.00 1.00
Age at time 25.00 47.61 47.00 88.00
Assistant Professor 0.00 0.22 0.00 1.00
Patents 0.00 0.38 0.00 35.00
Citation-Weighted Patents 0.00 1.82 0.00 698.00
Publications 0.00 5.35 4.00 90.00
Highly-Cited Publications 0.00 2.53 1.00 71.00
Amount Federal Funding (in $million) 0.00 0.09 0.00 20.32
Founder or Patent-holder 0.00 0.44 0.00 1.00
Observations 9661

Founder or Patent-holder Professors
Female 0.00 0.12 0.00 1.00
Age at time 25.00 48.03 47.00 82.00
Assistant Professor 0.00 0.18 0.00 1.00
Patents 0.00 0.48 0.00 35.00
Citation-Weighted Patents 0.00 3.85 0.00 698.00
Publications 0.00 7.24 5.00 90.00
Highly-Cited Publications 0.00 3.54 2.00 71.00
Amount Federal Funding (in $million) 0.00 0.12 0.00 20.32
Observations 4195
Notes: This table displays summary statistics for all professors (All Professors) and those professors

who ever founded a company or had at least one patent (Founder or Patent-holder Professors). The
values displayed reflect the characteristics of the advisors by year.
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Table A3.3: Robustness: PhD Outcomes Including Student and Professor Controls

Patents Publications
during PhD (in log) amount cit.-weighted amount highly-cited

(1) (2) (3) (4)
Panel A
Exposure (=0/1) 0.0881 0.259∗ -0.221∗∗ -0.272∗∗∗

(0.0607) (0.133) (0.0959) (0.0970)
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0381 0.0670 0.0777 0.0685
Panel B
Exposure (cont.) -0.00878 0.0212 -0.0822∗∗∗ -0.0816∗∗∗

(0.0109) (0.0265) (0.0233) (0.0202)
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0359 0.0623 0.0848 0.0738
Panel C
Exposure/PhD Dur. 0.000764 0.199 -0.256∗ -0.306∗∗

(0.0715) (0.174) (0.140) (0.138)
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0353 0.0634 0.0767 0.0667
Observations 1248 1248 1248 1248
Number of Professors 183 183 183 183
Notes: This table displays the results from estimating equation (2) without professor-year trends, but includ-

ing student and professor controls. These are a professor’s publication stock in the five years prior to entry,
the number of student in a lab at entry of student, rank and age (log) (ProfessorCONTROLSs,t). The
StudentCONTROLSs we include are gender, ethnicity, nationality, GRE scores, and previous degree
level. Panel A reports student outcomes using an indicator equal to one if a student was ever exposed to an
entrepreneurial advisor during the PhD. Panel B reports student outcomes using a continuous measure of
years exposed to an entrepreneurial advisor. Panel C, displays outcomes using relative exposure (continuous
measure of exposure divided by PhD duration). Standard errors are reported in parentheses and are clustered
on the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.4: Robustness: PhD Outcomes Using IHS Transformation

Patents Publications
during PhD amount cit.-weighted amount highly-cited
(using IHS transformation) (1) (2) (3) (4)
Panel A
Exposure (=0/1) -0.0182 -0.0586 -0.572∗∗ -0.592∗∗∗

(0.102) (0.173) (0.236) (0.208)
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
R-squared 0.165 0.222 0.181 0.198
Panel B
Exposure (cont.) -0.0454∗ -0.0362 -0.199∗∗∗ -0.181∗∗∗

(0.0231) (0.0454) (0.0463) (0.0399)
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
R-squared 0.169 0.222 0.192 0.206
Panel C
Exposure/PhD Dur. -0.358 -0.432 -1.079∗∗∗ -1.237∗∗∗

(0.229) (0.447) (0.355) (0.316)
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes
R-squared 0.169 0.223 0.181 0.201
Observations 1248 1248 1248 1248
Number of Professors 186 186 186 186
Notes: This table displays the results from estimating equation (2). Panel A reports student outcomes

using an indicator equal to one if a student was ever exposed to an entrepreneurial advisor during the
PhD. Panel B reports student outcomes using a continuous measure of years exposed to an entrepreneurial
advisor. Panel C, displays outcomes using relative exposure (continuous measure of exposure divided
by PhD duration). Standard errors are reported in parentheses and are clustered on the advisor-level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.5: Robustness: PhD Outcomes Using IHS Transformation
- Including Individual Controls

Patents Publications
during PhD amount cit.-weighted amount highly-cited
(using IHS transformation) (1) (2) (3) (4)
Panel A
Exposure (=0/1) 0.113 0.305∗ -0.260∗∗ -0.345∗∗∗

(0.0774) (0.158) (0.117) (0.122)
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0385 0.0661 0.0778 0.0696
Panel B
Exposure (cont.) -0.0116 0.0254 -0.0982∗∗∗ -0.103∗∗∗

(0.0140) (0.0318) (0.0284) (0.0253)
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0359 0.0623 0.0848 0.0738
Panel C
Exposure/PhD Dur. -0.000194 0.234 -0.305∗ -0.391∗∗

(0.0917) (0.206) (0.169) (0.172)
Start-Year FE Yes Yes Yes Yes
Major FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
StudentCONTROLS Yes Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes Yes
R-squared 0.0357 0.0627 0.0769 0.0678
Observations 1248 1248 1248 1248
Number of Professors 183 183 183 183
Notes: This table displays the results from estimating equation (2) without professor-year trends, but including

student and professor controls. These are a professor’s publication stock in the five years prior to entry, the
number of student in a lab at entry of student, rank and age (log) (ProfessorCONTROLSs,t). The
StudentCONTROLSs we include are gender, ethnicity, nationality, GRE scores, and previous degree
level. Student outcomes are log transformed using a inverse hyperbolic sine (IHS) transformation. Panel A
reports student outcomes using an indicator equal to one if a student was ever exposed to an entrepreneurial
advisor during the PhD. Panel B reports student outcomes using a continuous measure of years exposed to an
entrepreneurial advisor. Panel C, displays outcomes using relative exposure (continuous measure of exposure
divided by PhD duration). Standard errors are reported in parentheses and are clustered on the advisor-level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.6: First-Authored Publications

First-Authored Publications

during PhD (in log) (1) (2) (3)
Panel A
Exposure (=0/1) -0.474∗∗∗

(0.164)
Exposure (cont.) -0.151∗∗∗

(0.0371)
Exposure/Dur. PhD -0.777∗∗∗

(0.291)
Major FE Yes Yes Yes
Start-Year FE Yes Yes Yes
Professor FE Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes
R-squared 0.221 0.232 0.220
Panel B
Exposure (=0/1) -0.218∗∗∗

(0.0814)
Exposure (cont.) -0.0760∗∗∗

(0.0198)
Exposure/Dur. PhD -0.186

(0.124)
Major FE Yes Yes Yes
Start-Year FE Yes Yes Yes
Professor FE Yes Yes Yes
StudentCONTROLS Yes Yes Yes
ProfessorCONTROLS Yes Yes Yes
R-squared 0.203 0.210 0.200
Observations 1248 1248 1248
Number of Professors 183 183 183
Notes: This table displays the results from estimating equation (2) with stu-

dent’s first-authored publications as the outcome variable including professor-
year trends (Panel A) and without professor-year trends, but including stu-
dent and professor controls (Panel B). These are a professor’s publication
stock in the five years prior to entry, the number of student in a lab at en-
try of student, rank and age (log) (ProfessorCONTROLSs,t). The
StudentCONTROLSs included are gender, ethnicity, nationality, GRE
scores, and previous degree level. Standard errors are reported in parenthe-
ses and are clustered on the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A3.7: Robustness: PhD Student Outcomes - Excluding Students that were never and
always exposed

Patents Publications
amount highly-cited

during PhD (in log) (1) (2) (3) (4) (5) (6)
Exposure (=0/1) -0.0348 -0.528∗∗ -0.482∗∗

(0.0885) (0.228) (0.191)
Exposure (continuous) -0.0521 -0.233∗∗∗ -0.245∗∗∗

(0.0503) (0.0801) (0.0913)
Major FE Yes Yes Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes Yes Yes
Start-Year FE Yes Yes Yes Yes Yes Yes
Prof-X-Year Trends Yes Yes Yes Yes Yes Yes
Observations 1061 179 1061 179 1061 179
R-squared 0.185 0.496 0.207 0.614 0.230 0.584
Number of Professors 180 61 180 61 180 61
Sample Excluding Always Always Always Always Always Always

and Never and Never and Never
Notes: This table displays the results from Table 2, but excluding those students always or never exposed. Standard

errors are in parentheses and clustered on the professor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.8: PhD Student Outcomes by Year of Graduation

PhD Student-Year Level 1(Patents,t) ln(Publications,t + 1)

all cit.-weighted all highly-cited

(1) (2) (3) (4)

Omitted Group:
Graduated 7y or more pre-founding
Graduated 6y pre-founding -0.0286 -0.0264 -0.0163 -0.0753

(0.0436) (0.0474) (0.142) (0.111)

Graduated 5y pre-founding -0.0855∗∗ -0.0444∗ 0.0836 0.0689
(0.0391) (0.0244) (0.314) (0.203)

Graduated 4y pre-founding -0.0792∗∗ -0.0561 -0.113 -0.0288
(0.0334) (0.0358) (0.170) (0.132)

Graduated 3y pre-founding -0.0841∗∗ -0.0672∗ -0.288∗ -0.253∗
(0.0403) (0.0397) (0.165) (0.129)

Graduated 2y pre-founding -0.102∗∗∗ -0.0744∗ -0.276 -0.209
(0.0378) (0.0405) (0.175) (0.135)

Graduated 1y pre-founding -0.0796∗∗ -0.0439 -0.224 -0.167
(0.0357) (0.0382) (0.162) (0.139)

Graduated year of founding -0.0686∗ -0.0469 -0.199 -0.111
(0.0352) (0.0374) (0.163) (0.137)

Graduated 1y post-founding -0.0583 -0.0495 -0.283∗ -0.205
(0.0386) (0.0366) (0.155) (0.135)

Graduated 2y post-founding -0.0394 -0.00951 -0.416∗∗∗ -0.256∗
(0.0389) (0.0409) (0.156) (0.131)

Graduated 3y post-founding -0.0610 -0.0397 -0.343∗∗ -0.244∗
(0.0377) (0.0393) (0.169) (0.133)

Graduated 4y post-founding -0.0685∗ -0.0393 -0.482∗∗∗ -0.341∗∗
(0.0408) (0.0414) (0.173) (0.145)

Graduated 5y post-founding -0.109∗∗∗ -0.0779∗ -0.507∗∗∗ -0.373∗∗
(0.0397) (0.0400) (0.180) (0.145)

Graduated 6y post-founding -0.103∗∗ -0.0926∗∗ -0.444∗∗ -0.317∗∗
(0.0397) (0.0402) (0.177) (0.140)

Graduated 7y post-founding -0.116∗∗∗ -0.0818∗∗ -0.557∗∗∗ -0.317∗∗
(0.0400) (0.0409) (0.178) (0.141)

Year FE Yes Yes Yes Yes

Major FE Yes Yes Yes Yes

Professor FE Yes Yes Yes Yes

PhD Duration Yes Yes Yes Yes

Observations 8676 8676 8676 8676
R-squared 0.0211 0.0184 0.143 0.0811
Mean 0.04 0.03 1.13 0.52

Notes: This table displays the results from estimating the likelihood that a PhD student has a patent, a
citation-weighted patent, and the amount of publications, and highly-cited publications a student has in a
given year. The variables Graduated Xy pre-/post-founding indicate a PhD student’s time of graduation,
where the omitted group is represented by those students who graduated 7 or more years prior to their
advisor’s transition into entrepreneurship (pre-founding). Standard errors are reported in parentheses and
are clustered on the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.9: Robustness: Inverse Probability of Treatment

Patents Publications
during PhD (in log) amount highly-cited

(1) (2) (3)
1 vs 0.Exposure (=0/1) 0.0686 -0.324∗∗∗ -0.300∗∗∗

(0.0577) (0.0567) (0.0722)
POmean

1 vs 0.Exposure (=0/1) 0.170∗∗∗ 1.963∗∗∗ 1.310∗∗∗
(0.0414) (0.125) (0.104)

Stud.-Prof Overlap Yes Yes Yes
Major Yes Yes Yes
Start-Year FE Yes Yes Yes
Department FE Yes Yes Yes
Observations 564 564 564
Cluster Variable pdpt pdpt pdpt
Reported Statistic ate ate ate
Number of Treated 380 380 380
Notes: This table presents the results from estimating the inverse probability of

treatment approach described in equation (5). Column 1 shows the results for patent-
ing outcome, column 2 for overall publication output and column 3 for highly-cited
publications. Standard errors are reported in parentheses and are clustered on the
advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.10: What predicts PhD Student Outcomes?

during PhD (in log) Patents Publications

amount cit.-weighted amount highly-cited 1stauthored
(1) (2) (3) (4) (5)

GRE Verbal -0.00178∗ -0.00358∗∗ -0.00322 -0.00281 -0.00310
(0.000830) (0.00160) (0.00192) (0.00254) (0.00177)

GRE Quant 0.00475∗∗∗ 0.00744∗ 0.0172∗∗∗ 0.0116∗∗∗ 0.0128∗∗∗
(0.00149) (0.00379) (0.00320) (0.00281) (0.00361)

Prev GPA 0.0275 0.0275 0.126 0.0495 0.136
(0.0170) (0.0349) (0.0906) (0.0805) (0.0764)

Job in 5y before PhD 0.0418∗∗ 0.0861∗∗∗ -0.0362 -0.00861 -0.00341
(0.0155) (0.0257) (0.0606) (0.0520) (0.0394)

Prev. Degree from Top Univ. 0.0176 0.0766 0.0967 0.101 0.0272
(0.0284) (0.0720) (0.0754) (0.0697) (0.0512)

Master’s Pre-PhD -0.0114 -0.0377 0.0370 0.0402 0.0282
(0.0223) (0.0370) (0.0410) (0.0415) (0.0286)

Omitted Major: Algorithms, Combinatorics, and Optimization (ACO)

Aerospace Engineering (AE) 0.0232 0.0811 -0.0277 -0.0498 0.278∗
(0.0509) (0.0491) (0.179) (0.154) (0.137)

Bioinformatics (BINF) -0.0143 0.116∗∗ -0.539∗∗ -0.697∗∗∗ -0.305
(0.0441) (0.0474) (0.197) (0.151) (0.318)

Bioengineering (BIOE) 0.0335 0.122∗ -0.177 -0.193 -0.0332
(0.0494) (0.0665) (0.177) (0.162) (0.115)

Biology (BIOL) 0.0365 0.132 -0.640∗ -0.211 -0.460∗∗∗
(0.0344) (0.0931) (0.351) (0.325) (0.140)

Biomedical Engineering (BMED) 0.0758∗ 0.182∗∗∗ -0.400∗∗ -0.240 -0.172
(0.0387) (0.0496) (0.154) (0.167) (0.118)

Biomedical Engineering - Joint with Med. School (BMEJ) 0.0151 0.140∗∗ 0.206 0.368 -0.165
(0.0457) (0.0527) (0.385) (0.326) (0.207)

Computer Engineering (CE) 0.00446 0.0890∗ -0.301 -0.220 0.0313
(0.0424) (0.0408) (0.170) (0.154) (0.123)

Chemical Engineering (CHE) 0.0558 0.126∗∗ 0.00531 -0.0636 0.253∗
(0.0472) (0.0449) (0.168) (0.184) (0.138)

Chemistry (CHEM) 0.0476 0.0716 0.340 0.437 0.287
(0.0581) (0.0404) (0.444) (0.405) (0.239)

Computer Science (CS) 0.222∗∗∗ 0.465∗∗∗ 0.331∗ 0.290∗ 0.513∗∗∗
(0.0415) (0.0593) (0.170) (0.136) (0.142)

Computational Science and Engineering (CSE) 0.0681 0.288∗ 0.121 0.108 0.569∗
(0.0766) (0.135) (0.364) (0.380) (0.289)

Electrical and Computer Engineering (ECE) 0.186∗∗∗ 0.393∗∗∗ 0.611∗∗∗ 0.487∗∗ 0.694∗∗∗
(0.0359) (0.0630) (0.174) (0.169) (0.144)

Environmental Engineering (ENVE) -0.0232 0.0260 -0.236 -0.199 0.00382
(0.0428) (0.0384) (0.255) (0.215) (0.180)

Human-Centered Computing (HCC) 0.0168 0.272∗∗ 0.501 0.428 0.788∗∗∗
(0.0403) (0.116) (0.279) (0.275) (0.237)

Industrial Engineering (IE) -0.0355 0.0367 -0.958∗∗∗ -0.567∗∗ -0.704∗∗∗
(0.0493) (0.0820) (0.189) (0.247) (0.131)

Mechanical Engineering (ME) 0.0545 0.155∗∗∗ 0.159 0.129 0.476∗∗∗
(0.0478) (0.0466) (0.171) (0.152) (0.134)

Materials Science and Engineering (MSE) 0.165∗∗∗ 0.276∗∗∗ 0.404∗∗ 0.293∗ 0.444∗∗∗
(0.0495) (0.0593) (0.170) (0.147) (0.111)

Nuclear Engineering (NE) -0.0124 0.0853 -0.00983 -0.155 0.407∗∗
(0.0407) (0.0836) (0.207) (0.184) (0.139)

Nuclear and Radiological Engineering (NRE) -0.00586 0.315 -0.0123 -0.277 0.295∗
(0.0481) (0.250) (0.189) (0.155) (0.143)

Paper Science and Engineering (PSE) -0.0283 0.0278 -0.218 -0.444∗∗ 0.0898
(0.0412) (0.0444) (0.232) (0.196) (0.180)

Polymer, Textile and Fiber Engineering (PTFE) -0.00498 0.110∗∗ 0.338∗ 0.221 0.357∗∗
(0.0399) (0.0410) (0.179) (0.249) (0.147)

Robotics (ROBO) 0.0462 0.107∗∗ 0.675∗∗∗ 0.529∗∗ 0.941∗∗∗
(0.0698) (0.0444) (0.188) (0.175) (0.227)

Textile Engineering (TE) 0.0723 0.206 -0.126 -0.171 0.114
(0.0643) (0.155) (0.205) (0.198) (0.176)

Observations 2254 2254 2254 2254 2254
R-squared 0.0627 0.0478 0.133 0.108 0.138
Fixed Effects year year year year year
Number of Groups 12 12 12 12 12

Notes: This table displays the results from estimating what student characteristics predict the amount of patents, citation-weighted
patents, publications and highly-cited publications a student produces within 5 years from starting the PhD. Standard errors are
reported in parentheses and are clustered on the year-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.11: Average Student Productivity - Interaction with Age at Founding

Advisor’s Students’ Patents Publications
in 5-year window (log) amount highly-cited

(1) (2) (3)
1(Foundp,t) -0.123∗∗ -0.264∗∗∗ -0.231∗∗∗

(0.0486) (0.0949) (0.0798)
Age at Founding>49 × 1(Foundp,t)=1 0.127∗∗∗ 0.426∗∗ 0.385∗∗∗

(0.0488) (0.175) (0.129)
Professor FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1630 1630 1630
R-squared 0.427 0.517 0.539

Notes: This table presents the results from estimating equation (5) where
the outcomes are a professor’s students average patents, publications and
top publications within a 5 year time window. In the model, we include the
interaction between an indicator equal to one for post-founding period and an
indicator equal to one for an age of 50 and older at founding (including all
professors). Standard errors are reported in parentheses and are clustered on
the advisor-level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.12: Average Student Productivity - Interaction With Federal Funding

Average Student Output (5y)
Advisor’s Fed. Funding Patents Publications

amount highly-cited
(log) (log) (log) (log)
(1) (2) (3) (4)

1(Foundp,t)=1 1.760∗∗ -0.113∗∗ -0.201∗∗ -0.160∗∗
(0.740) (0.0480) (0.0995) (0.0813)

Fed.Funding>90th=1 -0.0188 0.0269 0.0211
(0.0201) (0.0608) (0.0479)

Fed.Funding>90th=1 × 1(Foundp,t)=1 0.0313 -0.0568 0.0160
(0.0452) (0.132) (0.0950)

Professor FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1630 1630 1630 1630
R-squared 0.431 0.426 0.514 0.536
Notes: This table displays the amount of federal funding a professor received (log) as a function of transitioning into entrepreneur-

ship (column 1). Columns 2-4 present the results from predicting a professor’s students average outcomes within 5 years including
the interaction with an indicator equal to one for the period after a professor transitions into entrepreneurship and an indicator equal
to one for federal funding above the 90th percentile. Standard errors are reported in parentheses and clustered on the advisor-level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Alcácer, J., Dezső, C. and Zhao, M. (2015), ‘Location choices under strategic interactions’,
Strategic Management Journal 36(2), 197–215.

Allen, T. J. (1977), Managing the flow of technology: Technology transfer and the dissem-
ination of technological information within the R&D organization, Cambridge: MIT
Press.

Angrist, J. D. and Pischke, J.-S. (2008), Mostly Harmless Econometrics: An Empiricist’s
Companion, Princeton: Princeton University Press.

Aral, S. and Nicolaides, C. (2017), ‘Exercise Contagion in a Global Social Network’, Nature
Communications 8(1), 1–8.

Argote, L. and Ingram, P. (2000), ‘Knowledge Transfer: A Basis for Competitive Advantage
in Firms’, Organizational Behavior and Human Decision Processes 82(1), 150 – 169.

Argote, L., McEvily, B. and Reagans, R. (2003), ‘Managing Knowledge in Organizations:
An Integrative Framework and Review of Emerging Themes’, Management Science
49(4), 571–582.

Arrow, K. (1971), ‘The Economic Implications of Learning by Doing’, Readings in the
theory of growth: a selection of papers from the ’Review of Economic Studies’ p. 155–173.

Arthur, W. B. (1994), Increasing Returns and Path Dependence in the Economy, University
of Michigan Press.

Arzaghi, M. and Henderson, J. V. (2008), ‘Networking off Madison Avenue’, Review of
Economic Studies 75(4), 1011–1038.

Audretsch, D. B., Keilbach, M. C. and Lehmann, E. E. (2006), Entrepreneurship and
Economic Growth, Oxford: Oxford University Press.

AUTM (2017), AUTM US Licensing Activity Survey: FY2016, Association of University
Technology Managers.

Autor, D. H., Dorn, D. and Hanson, G. H. (2013), ‘The China Syndrome: Local Labor
Market Effects of Import Competition in the United States’, American Economic Review

191



103(6), 2121–68.
Azoulay, P., Ding, W. and Stuart, T. (2009), ‘The Impact of Academic Patenting on the Rate,

Quality and Direction of (Public) Research Output’, The Journal of Industrial Economics
57(4), 637–676.

Azoulay, P., Fons-Rosen, C. and Graff Zivin, J. S. (2019), ‘Does science advance one funeral
at a time?’, American Economic Review 109(8), 2889–2920.

Azoulay, P., Liu, C. C. and Stuart, T. E. (2017), ‘Social Influence Given (Partially) Deliberate
Matching: Career Imprints in the Creation of Academic Entrepreneurs’, American Journal
of Sociology 122(4), 1223–1271.

Bafna, S. (2003), ‘Space Syntax: A Brief Introduction to Its Logic and Analytical Tech-
niques’, Environment and Behavior 35(1), 17–29.

Baker, W. E. (1984), ‘The social structure of a national securities market’, American Journal
of Sociology 89(4), 775–811.

Beardsell, M. and Henderson, V. (1999), ‘Spatial Evolution of the Computer Industry in the
USA’, European Economic Review 43(2), 431–456.

Beaudry, C. and Schiffauerova, A. (2009), ‘Who’s right, Marshall or Jacobs? The Localiza-
tion versus Urbanization Debate’, Research Policy 38(2), 318–337.

Belenzon, S. and Schankerman, M. (2013), ‘Spreading the Word: Geography, Policy, and
Knowledge Spillovers’, Review of Economics and Statistics 95(3), 884–903.

Bercovitz, J. E. and Feldman, M. P. (2007), ‘Fishing Upstream: Firm Innovation Strategy
and University Research Alliances’, Research Policy 36(7), 930–948.

Bikhchandani, S., Hirshleifer, D. and Welch, I. (1998), ‘Learning from the Behavior of
Others: Conformity, Fads, and Informational Cascades’, Journal of Economic Perspectives
12(3), 151–170.

Blau, P. M. (1977), ‘A Macrosociological Theory of Social Structure’, American Journal of
Sociology 83(1), 26–54.

Bloom, N., Schankerman, M. and Van Reenen, J. (2013), ‘Identifying technology spillovers
and product market rivalry’, Econometrica 81(4), 1347–1393.

Bloom, Nicholas, E. B. M. A. M. D. R. J. (2013), ‘Does Management Matter? Evidence
from India’, The Quarterly Journal of Economics 128(1), 1–51.

Boudreau, K. J., Brady, T., Ganguli, I., Gaule, P., Guinan, E., Hollenberg, A. and Lakhani,
K. R. (2017), ‘A Field Experiment on Search Costs and the Formation of Scientific
Collaborations’, The Review of Economics and Statistics 99(4), 565–576.

Burt, R. S. (2004), ‘Structural Holes and Good Ideas’, American Journal of Sociology
110(2), 349–399.

Campbell, B. A., Ganco, M., Franco, A. M. and Agarwal, R. (2012), ‘Who leaves, where
to, and why worry? Employee Mobility, Entrepreneurship and Effects on Source Firm
Performance’, Strategic Management Journal 33(1), 65–87.

Carlino, G. A., Chatterjee, S. and Hunt, R. M. (2007), ‘Urban Density and the Rate of
Invention’, Journal of Urban Economics 61(3), 389–419.

Carlino, G. and Kerr, W. R. (2014), Agglomeration and Innovation, Working Paper 20367,
National Bureau of Economic Research.

Carrell, S. E., Sacerdote, B. I. and West, J. E. (2013), ‘From Natural Variation to Optimal
Policy? The Importance of Endogenous Peer Group Formation’, Econometrica 81(3), 855–
882.

192



Catalini, C. (2018), ‘Microgeography and the Direction of Inventive Activity’, Management
Science 64(9), 4348–4364.

Chan, T. Y., Li, J. and Pierce, L. (2014a), ‘Compensation and Peer Effects in Competing
Sales Teams’, Management Science 60(8), 1965–1984.

Chan, T. Y., Li, J. and Pierce, L. (2014b), ‘Learning from Peers: Knowledge Transfer and
Sales Force Productivity Growth’, Marketing Science 33(4), 463–484.

Chinitz, B. (1961), ‘Contrasts in Agglomeration: New York and Pittsburgh’, American
Economic Review 51(2), 279–289.

Cohen, S. L., Bingham, C. B. and Hallen, B. L. (2019), ‘The Role of Accelerator Designs
in Mitigating Bounded Rationality in New Ventures’, Administrative Science Quarterly
64(4), 810–854.

Cohen, W. M. and Levinthal, D. A. (1990), ‘Absorptive Capacity: A New Perspective on
Learning and Innovation’, Administrative Science Quarterly pp. 128–152.

Cohen, W. M., Nelson, R. and Walsh, J. P. (2000), Protecting Their Intellectual Assets:
Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not), Working
Paper 7552, National Bureau of Economic Research.

Cohen, W. M., Sauermann, H. and Stephan, P. (2018), ‘Academics’ Motives, Opportunity
Costs and Commercial Activities Across Fields’, National Bureau of Economic Research
(24769).

Conti, A. and Graham, S. J. (Forthcoming), ‘Valuable Choices: Prominent Venture Capi-
talists’ Influence on Startup CEO Replacement and Performance’, Management Science
pp. 1–26.

Conti, A. and Roche, M. (2018), ‘When Push Comes to Shove: External Conditions,
Necessity Entrepreneurship, and Startup Outcomes’, SSRN (3303988).

Cowgill, B., Wolfers, J. and Zitzewitz, E. (2009), Using Prediction Markets to Track Infor-
mation Flows: Evidence from Google, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 3–3.

Crespi, G., D’Este, P., Fontana, R. and Geuna, A. (2011), ‘The Impact of Academic Patenting
on University Research and its Transfer’, Research Policy 40(1), 55–68.

Cyert, R. M., March, J. G. et al. (1963), ‘A behavioral theory of the firm’, Englewood Cliffs,
NJ 2(4), 169–187.

Dasgupta, P. and David, P. A. (1994), ‘Toward a New Economics of Science’, Research
Policy 23(5), 487–521.

Davis, D. R. and Dingel, J. I. (2019), ‘A Spatial Knowledge Economy’, American Economic
Review 109(1), 153–70.

Dobrev, S. D. and Barnett, W. P. (2005), ‘Organizational roles and transition to entrepreneur-
ship’, Academy of Management Journal 48(3), 433–449.

Doorley, S. and Witthoft, S. (2012), Make Space: How to set the stage for creative collabo-
ration, Hoboken: John Wiley & Sons.

Duguet, E. and MacGarvie, M. (2005), ‘How well do patent citations measure flows of
technology? Evidence from French Innovation Surveys’, Economics of Innovation and
New Technology 14(5), 375–393.

Duranton, G. and Turner, M. (2012), ‘Urban Growth and Transportation’, Review of Eco-
nomic Studies 79(4), 1407–1440.

Elfenbein, D. W., Hamilton, B. H. and Zenger, T. R. (2010), ‘The Small Firm Effect

193



and the Entrepreneurial Spawning of Scientists and Engineers’, Management Science
56(4), 659–681.

Estabrook, M. and Sommer, R. (1972), Social rank and acquaintanceship in two academic
buildings, in W. Graham and K. Roberts, eds, ‘Comparative Studies in Organizational
Behavior’, New York: Holt, pp. 122–128.

Etzkowitz, H. (2003), ‘Research Groups as ‘Quasi-firms’: The Invention of the En-
trepreneurial University’, Research Policy 32(1), 109–121.

Ewens, M. and Marx, M. (2017), ‘Founder Replacement and Startup Performance’, SSRN .
Ewing, R., Pendall, R. and Chen, D. (2003), ‘Measuring Sprawl and its Transportation

Impacts’, Transportation Research Record: Journal of the Transportation Research Board
1831, 175–183.

Fabrizio, K. R. and Di Minin, A. (2008), ‘Commercializing the Laboratory: Faculty Patent-
ing and the Open Science Environment’, Research Policy 37(5), 914–931.

Fallick, B., Fleischman, C. and Rebitzer, J. (2006), ‘Job-Hopping in Silicon Valley: Some
Evidence Concerning the Microfoundations of a High-Technology Cluster’, The Review
of Economics and Statistics 88(3), 472–481.

Fayard, A.-L. and Weeks, J. (2007), ‘Photocopiers and Water-coolers: The Affordances of
Informal Interaction’, Organization Studies 28(5), 605–634.

Feldman, M. P., Ozcan, S. and Reichstein, T. (2019), ‘Falling Not Far from the Tree:
Entrepreneurs and Organizational Heritage’, Organization Science 30(2), 337–360.

Festinger, L., Schachter, S. and Back, K. (1950), Social Pressures in Informal Groups; A
Study of Human Factors in Housing, Oxford, England: Harper.

Fini, R., Rasmussen, E., Wiklund, J. and Wright, M. (2019), ‘Theories from the lab: How
research on Science Commercialization can contribute to Management Studies’, Journal
of Management Studies 56(5), 865–894.

Fleming, L. and Sorenson, O. (2004), ‘Science as a Map in Technological Search’, Strategic
Management Journal 25(8-9), 909–928.

Gans, J. S., Stern, S. and Wu, J. (2019), ‘Foundations of Entrepreneurial Strategy’, Strategic
Management Journal 40(5), 736–756.

Gaspar, J. and Glaeser, E. L. (1998), ‘Information Technology and the Future of Cities’,
Journal of Urban Economics 43(1), 136–156.

Gavetti, G. and Levinthal, D. (2000), ‘Looking Forward and Looking Backward: Cognitive
and Experiential Search’, Administrative Science Quarterly 45(1), 113–137.

Giannetti, M. and Simonov, A. (2009), ‘Social Interactions and Entrepreneurial Activity’,
Journal of Economics & Management Strategy 18(3), 665–709.

Glaeser, E. L., Kallal, H. D., Scheinkman, J. A. and Shleifer, A. (1992), ‘Growth in Cities’,
Journal of Political Economy 100(6), 1126–1152.

Glaeser, E. L., Kerr, S. P. and Kerr, W. R. (2015), ‘Entrepreneurship and Urban Growth: An
Empirical Assessment with Historical Mines’, The Review of Economics and Statistics
97(2), 498–520.

Gofman, M. and Jin, Z. (2019), ‘Artificial Intelligence, Human Capital, and Innovation’.
Working paper, last accessed 8 September 2019.

Goldfarb, B., Marschke, G. and Smith, A. (2009), ‘Scholarship and Inventive Activity in the
University: Complements or Substitutes?’, Economics of Innovation and New Technology
18(8), 743–756.

194



Gompers, P. A. and Lerner, J. (2004), The Venture Capital Cycle, Cambridge: MIT Press.
Graham, S. J., Merges, R. P., Samuelson, P. and Sichelman, T. M. (2009), ‘High Technology

Entrepreneurs and the Patent System: Results of the 2008 Berkeley Patent Survey’,
Berkeley Technology Law Journal 24(4), 255–327.

Granovetter, M. S. (1973), ‘The Strength of Weak Ties’, American Journal of Sociology
78(6), 1360–1380.

Grieve, P. G. and Hogg, M. A. (1999), ‘Subjective Uncertainty and Intergroup Discrimination
in the Minimal Group Situation’, Personality and Social Psychology Bulletin 25(8), 926–
940.

Hall, B., Jaffe, A. and Trajtenberg, M. (2005), ‘Market Value and Patent Citations’, RAND
Journal of Economics 36(1), 16–38.

Hanson, G. H. (2001), ‘Scale Economies and the Geographic Concentration of Industry’,
Journal of Economic Geography 1(3), 255–276.

Hargadon, A. B. (1998), ‘Firms as Knowledge Brokers: Lessons in Pursuing Continuous
Innovation’, California Management Review 40(3), 209–227.

Hasan, S. and Bagde, S. (2015), ‘Peers and Network Growth: Evidence from a Natural
Experiment’, Management Science 61(10), 2536–2547.

Hasan, S. and Koning, R. (2019), ‘Prior Ties and the Limits of Peer Effects on Startup Team
Performance’, Strategic Management Journal 40(9), 1394–1416.

Hassan, T. A. and Mertens, T. M. (2017), ‘The Social Cost of Near-Rational Investment’,
American Economic Review 107(4), 1059–1103.

Hellmann, T. (2007), ‘When do employees become entrepreneurs?’, Management Science
53(6), 919–933.

Herbst, D. and Mas, A. (2015), ‘Peer effects on worker output in the laboratory generalize
to the field’, Science 350(6260), 545–549.

Higgins, M., Stephan, P. and Thursby, J. (2011), ‘Conveying Quality and Value in Emerging
Industries: Star Scientists and the Role of Signals in Biotechnology’, Research Policy
40(4), 605–617.

Hochberg, Y. V., Ljungqvist, A. and Lu, Y. (2007), ‘Whom You Know Matters: Venture
Capital Networks and Investment Performance’, The Journal of Finance 62(1), 251–301.

Hogg, M. A. and Turner, J. C. (1985), ‘Interpersonal attraction, social identification and
psychological group formation’, European Journal of Social Psychology 15(1), 51–66.

Housman, M. and Minor, D. B. (2016), Workplace Design: The Good, the Bad and the
Productive, Technical report, Harvard Business School.

Hoxby, C. M. (2000), ‘Does Competition Among Public Schools Benefit Students and
Taxpayers?’, American Economic Review 90(5), 1209–1238.

Hsu, D. H., Roberts, E. B. and Eesley, C. E. (2007), ‘Entrepreneurs from Technology-based
Universities: Evidence from MIT’, Research Policy 36(5), 768–788.

Hwang, B.-H., Liberti, J. M. and Sturgess, J. (2019), ‘Information Sharing and Spillovers:
Evidence from Financial Analysts’, Management Science 65(8), 3624–3636.

Ingram, P. and Morris, M. W. (2007), ‘Do People Mix at Mixers? Structure, Homophily,
and the “Life of the Party”’, Administrative Science Quarterly 52(4), 558–585.

Jacobs, J. (1969), The Economy of Cities, New York: Vintage Books.
Jaffe, A. B. (1986), ‘Technological Opportunity and Spillovers of R&D: Evidence from

Firms’ Patents, Profits, and Market Value’, The American Economic Review 76(5), 984–

195



1001.
Jaffe, A. B., Trajtenberg, M. and Hall, B. (1993), ‘Geographic Localization of Knowledge

Spillovers as Evidenced by Patent Citations’, Quarterly Journal of Economics 108(3), 577–
598.

Jensen, R. and Thursby, M. (2001), ‘Proofs and Prototypes for Sale: The Licensing of
University Inventions’, American Economic Review 91(1), 240–259.

Kantor, S. and Whalley, A. (2014), ‘Knowledge Spillovers from Research Universities:
Evidence from Endowment Value Shocks’, Review of Economics and Statistics 96(1), 171–
188.

Kaplan, S. N., Sensoy, B. A. and Stromberg, P. E. R. (2009), ‘Should Investors Bet on the
Jockey or the Horse? Evidence from the Evolution of Firms from Early Business Plans to
Public Companies’, The Journal of Finance 64(1), 75–115.

Kato, T. and Shu, P. (2016), ‘Competition and social identity in the workplace: Evidence
from a Chinese textile firm’, Journal of Economic Behavior Organization 131(PA), 37–
50.

Kenneth, J. (1985), Crabgrass Frontier: The Suburbanization of the United States, New
York: Oxford University Press.

Kerr, S. P. and Kerr, W. R. (2018), Immigrant Networking and Collaboration: Survey
Evidence from CIC, Chicago: University of Chicago Press.

Kerr, W. R. and Kominers, S. D. (2015), ‘Agglomerative forces and cluster shapes’, Review
of Economics and Statistics 97(4), 877–899.

Klepper, S. (2010), ‘The Origin and Growth of Industry Clusters: The Making of Silicon
Valley and Detroit’, Journal of Urban Economics 67(1), 15–32.

Lach, S. and Schankerman, M. (2004), ‘Royalty Sharing and Technology Licensing in
Universities’, Journal of the European Economic Association 2(2-3), 252–264.

Lach, S. and Schankerman, M. (2008), ‘Incentives and Invention in Universities’, The RAND
Journal of Economics 39(2), 403–433.

Lee, S. (2019), ‘Learning-by-Moving: Can Reconfiguring Spatial Proximity Between
Organizational Members Promote Individual-level Exploration?’, Organization Science
30(3), 467–488.

Lerner, J. and Malmendier, U. (2013), ‘With a little help from my (random) friends: Success
and failure in post-business school entrepreneurship’, The Review of Financial Studies
26(10), 2411–2452.

Lerner, J. and Stern, S. (2014), Innovation Policy and the Economy 2013, Vol. 14, Chicago:
University of Chicago Press.

Levinson, D. (2012), ‘Network Structure and City Size’, PloS One 7(1), e29721.
Lin, J. (2011), ‘Technology Adaptation, Cities, and New Work’, Review of Economics and

Statistics 93(2), 554–574.
Lippman, S. A. and McCall, J. J. (1976), ‘The Economics of Job Search: A Survey’,

Economic inquiry 14(2), 155–189.
Louis, K. S., Blumenthal, D., Gluck, M. E. and Stoto, M. A. (1989), ‘Entrepreneurs in

Academe: An Exploration of Behaviors Among Life Scientists’, Administrative Science
Quarterly 34(1), 110–131.

Lyons, E. and Zhang, L. (2018), ‘Who does (not) benefit from entrepreneurship programs?’,
Strategic Management Journal 39(1), 85–112.

196



Manski, C. F. (1993), ‘Identification of Endogenous Social Effects: The Reflection Problem’,
The Review of Economic Studies 60(3), 531–542.

Manson, S., Schroeder, J., Van Riper, D. and Ruggles, S. (2017), ‘IPUMS National Histori-
cal Geographic Information System’, http://doi.org/10.18128/D050.V12.0.
Last accessed 8 July 2017.

Marshall, A. (1890), Principles of Economics, London: Macmillan.
Mas, A. and Moretti, E. (2009), ‘Peers at Work’, American Economic Review 99(1), 112–45.
McPherson, J. M. and Smith-Lovin, L. (1987), ‘Homophily in Voluntary Organizations:

Status Distance and the Composition of Face-to-Face Groups’, American Sociological
Review 52(3), 370–379.

Merton, R. K. (1973), The Sociology of Science: Theoretical and Empirical Investigations,
Chicago: University of Chicago Press.

Michelacci, C. and Silva, O. (2007), ‘Why so many local entrepreneurs?’, The Review of
Economics and Statistics 89(4), 615–633.

Missouri Census Data Center (2012), ‘Mable/geocorr12’, http://mcdc.missouri.
edu/websasgeocorr12.html. Last accessed 8 August 2017.

Montgomery, C. (2013), Happy City: Transforming Our Lives Through Urban Design, New
York: Macmillan.

Moretti, E. (2004), ‘Workers’ Education, Spillovers, and Productivity: Evidence from
Plant-level Production Functions’, American Economic Review 94(3), 656–690.

Morrison, G., Riccaboni, M. and Pammolli, F. (2017), ‘Disambiguation of Patent Inventors
and Assignees Using High-resolution Geolocation Data’, Scientific Data 4(170064).

Mors, M. L. (2010), ‘Innovation in a Global Consulting Firm: When the Problem is Too
Much Diversity’, Strategic Management Journal 31(8), 841–872.

Mowery, D. C., Nelson, R. R., Sampat, B. and Ziedonis, A. (2004), Ivory Tower and
Industrial Innovation, Palo Alto: Stanford Business Books.

Murray, F. (2010), ‘The Oncomouse That Roared: Hybrid Exchange Strategies as a Source of
Distinction at the Boundary of Overlapping Institutions’, American Journal of Sociology
116(2), 341–388.

Murray, F. and Stern, S. (2007), ‘Do formal intellectual property rights hinder the free flow
of scientific knowledge?: An Empirical Test of the Anti-commons Hypothesis’, Journal
of Economic Behavior & Organization 63(4), 648–687.

Murray, F. and Tripsas, M. (2004), ‘The Exploratory Processes of Entrepreneurial Firms:
The Role of Purposeful Experimentation’, Advances in Strategic Management 21, 45–76.

Nanda, R. and Rhodes-Kropf, M. (2013), ‘Investment Cycles and Startup Innovation’,
Journal of Financial Economics 110(2), 403–418.

Nanda, R. and Sørensen, J. B. (2010), ‘Workplace Peers and Entrepreneurship’, Management
Science 56(7), 1116–1126.

National Science Board (2018), Science and Engineering Indicators 2016, Arlington, VA:
National Science Foundation.

Nelson, R. R. (2015), The Rate and Direction of Inventive Activity: Economic and Social
Factors, Princeton: Princeton University Press.

Oettl, A. (2012), ‘Reconceptualizing stars: Scientist helpfulness and peer performance’,
Management Science 58(6), 1122–1140.

Oh, H., Labianca, G. and Chung, M.-H. (2006), ‘A multilevel model of group social capital’,

197

http://doi.org/10.18128/D050.V12.0
http://mcdc.missouri.edu/websas geocorr12.html
http://mcdc.missouri.edu/websas geocorr12.html


The Academy of Management Review 31(3), 569–582.
Oreopoulos, P., von Wachter, T. and Heisz, A. (2012), ‘The Short-and Long-Term Career

Effects of Graduating in a Recession’, American Economic Journal: Applied Economics
4(1), 1–29.

Owen-Smith, J. and Powell, W. W. (2001), ‘To Patent or Not: Faculty Decisions and
Institutional Success at Technology Transfer’, The Journal of Technology Transfer 26(1-
2), 99–114.

Oyer, P. (2006), ‘Initial Labor Market Conditions and Long-Term Outcomes for Economists’,
Journal of Economic Perspectives 20(3), 143–160.

Parker, S. C. (2009), The Economics of Entrepreneurship, Cambridge: Cambridge University
Press.

Parthasarathi, P. (2014), ‘Network Structure and Metropolitan Mobility’, Journal of Trans-
port and Land Use 7(2), 153–170.

Porter, M. E. (1996), ‘Competitive Advantage, Agglomeration Economies, and Regional
Policy’, International Regional Science Review 19(1-2), 85–90.

Powell, W. W. and Owen-Smith, J. (1998), ‘Universities and the Market for Intellectual
Property in the Life Sciences’, Journal of Policy Analysis and Management 17(2), 253–
277.

Ramsey, K. and Bell, A. (2014), ‘The Smart Location Database: A Nationwide Data
Resource Characterizing the Built Environment and Destination Accessibility at the
Neighborhood Scale’, Cityscape 16(2), 145–164.

Reagans, R. (2011), ‘Close encounters: Analyzing how social similarity and propinquity
contribute to strong network connections’, Organization Science 22(4), 835–849.

Reagans, R., Argote, L. and Brooks, D. (2005), ‘Individual experience and experience
working together: Predicting learning rates from knowing who knows what and knowing
how to work together’, Management Science 51(6), 869–881.

Rice, P., Venables, A. and Patacchini, E. (2006), ‘Spatial Determinants of Productivity:
Analysis for the Regions of Great Britain’, Regional Science and Urban Economics
36, 727–752.

Roach, M. (2017), ‘Encouraging Entrepreneurship in University Labs: Research activities,
Research Outputs, and Early Doctorate Careers’, PLOS ONE 12(2), 1–17.

Roche, M. P. (Forthcoming), ‘Taking Innovation to the Streets: Microgeography, Physical
Structure and Innovation’, The Review of Economics and Statistics pp. 1–47.

Romer, P. M. (1986), ‘Increasing returns and long-run growth’, Journal of Political Economy
94(5), 1002–1037.

Rosenthal, S. S. and Strange, W. C. (2001), ‘The Determinants of Agglomeration’, Journal
of urban economics 50(2), 191–229.

Rosenthal, S. S. and Strange, W. C. (2003), ‘Geography, Industrial Organization, and
Agglomeration’, Review of Economics and Statistics 85(2), 377–393.

Rosenthal, S. S. and Strange, W. C. (2004), Chapter 49 - Evidence on the Nature and
Sources of Agglomeration Economies, in J. V. Henderson and J.-F. Thisse, eds, ‘Cities and
Geography’, Vol. 4 of Handbook of Regional and Urban Economics, Elsevier, pp. 2119 –
2171.

Rosenthal, S. S. and Strange, W. C. (2008), ‘The Attenuation of Human Capital Spillovers’,
Journal of Urban Economics 64(2), 373–389.

198



Rothaermel, F. T., Agung, S. D. and Jiang, L. (2007), ‘University Entrepreneurship: A
Taxonomy of the Literature’, Industrial and Corporate Change 16(4), 691–791.

Sacerdote, B. (2001), ‘Peer Effects with Random Assignment: Results for Dartmouth
Roommates’, The Quarterly Journal of Economics 116(2), 681–704.

Samila, S. and Sorenson, O. (2011), ‘Venture Capital, Entrepreneurship, and Economic
Growth’, The Review of Economics and Statistics 93(1), 338–349.

Sampat, B. and Williams, H. L. (2019), ‘How Do Patents Affect Follow-On Innovation?
Evidence from the Human Genome’, American Economic Review 109(1), 203–236.

Saxenian, A. (1996), Regional Advantage, Cambridge: Harvard University Press.
Scott, A. and Storper, M. (2003), ‘Regions, Globalization, Development’, Regional Studies

37(6-7), 579–593.
Shane, S. A. (2004), Academic Entrepreneurship: University Spinoffs and Wealth Creation,

Cheltenham: Edward Elgar Publishing.
Shapiro, C. (2000), ‘Navigating the Patent Thicket: Cross Licenses, Patent Pools, and

Standard Setting’, Innovation Policy and the Economy 1, 119–150.
Simon, H. A. (1955), ‘A Behavioral Model of Rational Choice’, The Quarterly Journal of

Economics .
Simonton, D. K. (2003), ‘Scientific Creativity as Constrained Stochastic Behavior: The Inte-

gration of Product, Person, and Process Perspectives’, Psychological Bulletin 129(4), 475–
494.

Singh, J. (2005), ‘Collaborative Networks as Determinants of Knowledge Diffusion Patterns’,
Management Science 51(5), 756–770.

Singh, J. and Fleming, L. (2010), ‘Lone Inventors as Sources of Breakthroughs: Myth or
Reality?’, Management Science 56(1), 41–56.

Sorenson, O. and Audia, P. G. (2000), ‘The Social Structure of Entrepreneurial Activity:
Geographic Concentration of Footwear Production in the United States, 1940–1989’,
American Journal of Sociology 106(2), 424–462.

Stefano, G., King, A. and Verona, G. (2017), Too Many Cooks Spoil the Broth? Geographic
Concentration, Social Norms, and Knowledge Transfer, Vol. 36 of Advances in Strategic
Management, Emerald Publishing Limited, pp. 267–308.

Stephan, P. E. (2012), How Economics Shapes Science, Vol. 1, Cambridge: Harvard Univer-
sity Press.

Stuart, T. and Ding, W. (2006), ‘When Do Scientists Become Entrepreneurs? The Social
Structural Antecedents of Commercial Activity in the Academic Life Sciences’, American
Journal of Sociology 112(1), 97–144.

Swank, O. H. and Visser, B. (2015), ‘Learning from others? decision rights, strategic com-
munication, and reputational concerns’, American Economic Journal: Microeconomics
7(4), 109–49.

Sørenson, M. (2007), ‘How Smart Is Smart Money? A Two-Sided Matching Model of
Venture Capital’, The Journal of Finance 62(6), 2725–2762.

Taylor, F. W. (1911), The Principles of Scientific Management, New York: The Norton
Library.

The Economist (2016), ‘Million-dollar babies: As Silicon Valley fights for talent, universities
struggle to hold on to their stars’, economist.com/business/2016/04/02/
million-dollar-babies. Last accessed 8 September 2019.

199

economist.com/business/2016/04/02/million-dollar-babies
economist.com/business/2016/04/02/million-dollar-babies


Thompson, P. (2006), ‘Patent Citations and the Geography of Knowledge Spillovers: Evi-
dence from Inventor- and Examiner-added Citations’, Review of Economics and Statistics
88(2), 383–388.

Thursby, J. G. and Thursby, M. C. (2007), ‘University Licensing’, Oxford Review of Eco-
nomic Policy 23(4), 620–639.

Thursby, J. G. and Thursby, M. C. (2011), ‘Has the Bayh-Dole Act compromised basic
research?’, Research Policy 40(8), 1077–1083.

Tolbert, C. M. and Sizer, M. (1996), U.S. Commuting Zones and Labor Market Areas: A
1990 Update, Report, Economic Research Service, Rural Economy Division.

Toole, A. A. and Czarnitzki, D. (2009), ‘Exploring the relationship between scientist human
capital and firm performance: The Case of Biomedical Academic Entrepreneurs in the
SBIR Program’, Management Science 55(1), 101–114.

Toole, A. A. and Czarnitzki, D. (2010), ‘Commercializing Science: Is there a university
“brain drain” from academic entrepreneurship?’, Management Science 56(9), 1599–1614.

US Census Bureau (2017a), ‘County Business Patterns: ZIP Code Business Statistics
(2010)’, https://factfinder.census.gov. Last accessed 1 July 2017.

US Census Bureau (2017b), ‘LEHD Origin-Destination Employment Statistics Data (2002-
2015).’, https://lehd.ces.census.gov/data/#lodes. Last accessed 1 July
2017.

US Census Bureau, Department of Commerce (1994), ‘Geographic Reference Manual’,
https://www.census.gov/geo/reference/garm.html. Last accessed 1
June 2017.

U.S. Department of Education (2018), ‘Database of Accredited Postsecondary Institutions
and Programs’, http://ope.ed.gov/accreditation/GetDownLoadFile.
aspx. Last accessed 8 February 2018.

Wang, S. and Zhao, M. (2018), ‘A Tale of Two Distances: A Study of Technological
Distance, Geographic Distance and Multilocation Firms’, Journal of Economic Geography
18(5), 1091–1120.

Wells, C. W. (2013), Car Country: An Environmental History, Seattle: University of
Washington Press.

Williams, S. and Currid-Halkett, E. (2014), ‘Industry in Motion: Using smart phones
to explore the spatial network of the garment industry in New York City’, PloS One
9(2), e86165.

Wooldridge, J. M. (2015), ‘Control Function Methods in Applied Econometrics’, Journal of
Human Resources 50(2), 420–445.

Wuchty, S., Jones, B. F. and Uzzi, B. (2007), ‘The Increasing Dominance of Teams in
Production of Knowledge’, Science 316(5827), 1036–1039.

Young, J. (2016), ‘Infrastructure: Mass Transit in 19th-and 20th-Century Urban America’,
Oxford Research Encyclopedia of American History 3.

Zucker, L. G., Darby, M. R. and Armstrong, J. S. (2002), ‘Commercializing Knowledge:
University Science, Knowledge Capture, and Firm Performance in Biotechnology’, Man-
agement Science 48(1), 138–153.

Zucker, L. G., Darby, M. R. and Brewer, M. B. (1998), ‘Intellectual Human Capital and the
Birth of U.S. Biotechnology Enterprises’, The American Economic Review 88(1), 290–
306.

200

https://factfinder.census.gov
https://lehd.ces.census.gov/data/#lodes
https://www.census.gov/geo/reference/garm.html
http://ope.ed.gov/accreditation/GetDownLoadFile.aspx
http://ope.ed.gov/accreditation/GetDownLoadFile.aspx

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Taking Interactions and Innovation to the Neighborhood: The Role of Street Infrastructure
	Introduction
	A Physical Environment that Connects
	Estimation Strategy
	The Unit of Analysis
	Threats to Identification
	Addressing Threats to Identification

	Dataset Construction
	Measuring Features of a Location
	Measuring Innovation

	Results
	OLS Regression Results
	IV Results
	Is There Any Knowledge Exchange?
	Interactions Between the Physical and Social Space
	Limitations

	Discussion and Conclusion

	Taking Interactions and Innovation to Co-Working Spaces: The Impact of Proximity on Technology Adoption and Startup Performance Outcomes 
	Introduction
	Conceptual Framework
	Physical Proximity
	The Interplay of Physical Proximity with Other Dimensions of Proximity

	Empirical Strategy and Data
	Estimation Strategy
	Data Sources and Construction
	Descriptive Statistics

	Results
	Baseline Results: Physical Proximity
	Interaction Results: Physical and Other Proximity Dimensions
	Could physical proximity be shaping interaction?
	Performance

	Discussion

	Taking Interactions and Innovation to the Lab: Exposure to an Entrepreneurial Advisor
	Introduction
	Background
	Commercialization and Academia

	Data Construction
	Estimation Strategy and Results
	The Ideal Experiment
	Threats to Identification
	Addressing Threats to Identification and Results

	Potential Mechanisms
	Professor-Level Innovation Outcomes
	Training and Mentoring
	Organizational Changes

	Limitations
	Discussion and Conclusion

	Taking Interactions and Innovation to the Neighborhood
	Geographic Hierarchy and Boundaries
	A Different Approach to Grouping Observations
	Measuring Street Networks
	Heterogeneity in Firm Size Composition


	Taking Interactions and Innovation to Co-Working Spaces
	Taking Interactions and Innovation to the Lab
	Inverse Probability of Treatment Approach
	Student Career Outcomes - Multinomial Logit Approach


	References

