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SUMMARY 

 This dissertation work explores three questions related to some of the challenges 

present in the ongoing electrification of transportation. Specifically, I target issues related 

to electric vehicle charging at the workplace, micromobility as a growing urban 

transportation mode, and the cost reductions observed in lithium-ion batteries during the 

last decade. Each chapter relies on novel data and quantitative methods to contribute new 

understanding about the direction that public and private decision makers can follow to 

achieve a faster and more effective transition to electric mobility. 

 The first chapter examines two deterrence mechanisms used at a large workplace 

charging program implemented in the U.S. Using high frequency data, we separately 

identify the effects of price and behavioral incentives that encourage workplace charging 

norms and resource sharing. Our findings provide new evidence that group norms can play 

an important role in driving behavioral compliance when setting EV access policies. We 

also find that workplace norms are complements to dynamic pricing policies. We discuss 

the implications of this data discovery for the effective management of common pool 

resources in the context of workplace charging and space-constrained environments.  

 The second chapter aims at determining the impact of the City of Atlanta’s 

nighttime shared scooters and e-bikes ban on travel times in urban areas. We use high-

resolution data from Uber Movement to analyze a policy experiment in the City of Atlanta 

in which shared e-scooter and e-bike mobility was banned daily during evening hours of 

9:00pm-4:00am with near perfect compliance. We find that the policy had an unintended 

effect on commuter travel times. Although the ban addressed public safety concerns about 



 ix 

scooter use, it also resulted in unintended economic damages related to the value of time 

spent in traffic. 

 The third chapter evaluates the causes of cost decrease in lithium-ion batteries 

during the 2012-2020 period. The analysis includes modeling the cost components per kWh 

of lithium-ion battery packs used in automotive commercial applications in 2012, 2015, 

and 2020. Mechanisms of cost reductions including R&D, learning-by-doing, and 

economies of scale are used to explain the changes in cost. We find that most of the cost 

change can be attributed to R&D investments made both by the public and private sectors. 
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CHAPTER 1. A FIELD EXPERIMENT IN WORKPLACE 

ELECTRIC VEHICLE CHARGING BEHAVIOR   

1.1 Introduction 

 Governments and organizations around the world are trying to make urban systems 

more sustainable by embracing digital technologies and leveraging real-time data to more 

efficiently share resources. For example, in transportation and mobility, individual users 

can schedule and pay for shared rides (Chen et al., 2019; Cramer & Krueger, 2016), order 

goods and services (Murray & Chu, 2015), and locate or optimize last-mile travel options 

in a range of ride-sharing, transit, and micro-mobility apps (Shaheen et al., 2020). These 

digital platforms represent two-sided markets that can activate under-utilized capacity in 

the economy (Rochet & Tirole, 2003; Rysman, 2009). For research evaluation, digital 

platforms also generate real-time data that can be used to determine the environmental 

impacts of such activities (Ghali, et al., 2016; Horner et al., 2016; Wu et al. 2019). These 

real-time digital data can enable more rapid analysis of economic or behavioral decisions, 

especially when compared with previous approaches that rely on self-reported surveys or 

simulations, which are slower to yield insights and often rely on strong behavioral 

assumptions about consumption decisions. However, despite these benefits, data 

aggregated on digital platforms is often difficult to access due its proprietary nature and 

the lack of incentives for firms to share these data innovations broadly. In this paper, we 

demonstrate how the use of high-resolution data can reveal hard-to-discover patterns of 

resource use. 
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 In electric vehicle (EV) mobility, little is known about how consumers respond in 

real-time to incentives designed to efficiently share common pool resources. EV mobility 

highlights a typical problem for industrial ecology where there are inherent tradeoffs 

between limited charging resources and sustainable consumption (Dietz et al., 2003; 

Socolow & Thomas, 2008). This is important because behavioral approaches for EV 

adoption and use are critical components of policies to address climate change by 

increasing EV miles traveled in daily commutes (Hawkins et al., 2012; McCollum et al., 

2018; Yoeli et al., 2017). Because of the extended residence times required to re-charge 

EVs (Majeau-Bettez, et al., 2011), bottlenecks have already begun to emerge in 

commercial and industrial settings such as office parks, corporate campuses, and 

manufacturing centers where there are typically not enough stations to meet employee 

demand (Oda et al., 2018). For example, survey evidence shows that 38% of EV drivers 

experience congestion at the workplace at least once per week (Nicholas & Tal, 2013). This 

has created a new set of challenges related to congestion management for network 

operators, who are increasingly forced to employ novel deterrence strategies to guarantee 

that stations are accessible when needed by employees. In addition to local host 

management issues, there are also distribution-level issues such as when uncoordinated 

vehicle charging can shift peak electricity loads if systems are not managed effectively 

(Gan et al., 2013; Santoyo et al., 2020). Thus, there is a critical need for more sophisticated 

approaches to mitigate problems of overconsumption in space-constrained EV 

environments.  

 With the introduction of new information streams from mobile platforms, it has 

become possible to test behavioral theories of resource sharing with real-time data. This 
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has catalyzed many data innovations in industrial ecology and related fields by capturing 

essential features of human behavioral dynamics with higher resolution data formats 

(Axtell et al., 2008; Pauliuk et al., 2019; Xu et al., 2015). For example, these new data 

sources should allow scholars to simplify the assumptions used in models by relying on 

real-world parameters (Thomas et al., 2003). In this paper, we use digital data to study both 

price-based and non-priced based incentives for resource sharing in a field experiment at 

one of the largest multi-site workplace charging programs in the United States. We show 

that non-price strategies related to workplace norms and charging etiquette can be 

important complements to more conventional deterrence mechanisms based on marginal 

pricing policies.  

 The electric vehicle supply equipment (EVSE) industry is projected to exceed $27 

billion USD by 2027 (Markets and Markets, 2019), with an estimated demand of 1.2 

million charging ports to be installed in the U.S. by 2030 (Wood Mackenzie, 2018). 

Understanding the efficacy of pricing and behavioral mechanisms in workplace charging 

locations will become increasingly important, as the demand for EV charging services in 

both large and small organizations will continue to exceed the supply of available charging 

station infrastructure. We provide needed experimental evidence about congestion 

deterrence with real market behavior. 

 This paper is organized as follows. First, we describe theoretical motivations for 

both price and non-price-based deterrence strategies. We then introduce the workplace 

charging program and describe the details of the experiment. We estimate treatment effects 

with a dynamic regression discontinuity design, which allows us to distinguish between 

the effects of pricing and behavioral mechanisms over time. We then close with 



 4 

recommendations on the applicability of these digital data innovations for large-scale 

implementation in the workplace and other user communities.  

1.2.Deterrence Mechanisms 

 In the organizational context, we posit that 2 alternative mechanisms can provide 

deterrence effects for users to curb excess charging consumption. The first mechanism 

relies on dynamic price signals to discourage users from monopolizing a shared charging 

resource. Under standard economic reasoning, users facing higher marginal costs after a 

given amount of time are expected to adjust quantities consumed. There is a substantial 

experimental literature on the use of tiered or marginal pricing in behavioral experiments 

related to energy use (Allcott, 2011; Faruqui & Sergici, 2010; Ito, 2014; Joskow & 

Wolfram, 2012). However, in workplace or organizational contexts, station managers may 

not have the ability to set market rates or dynamically adjust prices on employees. It 

remains unclear if price schemes that are intentionally set well below market rates to 

discourage overuse rather than induce economically efficient consumption can produce 

meaningful deterrence in consumers. As we posit that prices for workplace EV charging 

influence behavior at work, this leads to our Hypothesis 1 that,  

H1: In the organizational context, marginal price signals will lead to greater resource 

sharing by reducing excess charging demand. 

 Prior research has shown that the use of real-time information feedback does not 

always produce the intended behavioral changes. For example, in a meta-analysis of 

experimental energy conservation studies, Delmas, Fischlein and Asensio (2013) found 

that across 42 years of peer-reviewed field experiments, monetary incentives and 



 5 

information did not produce lasting behavioral changes. In many cases, consumption 

increased in response to small price signals. We are therefore also interested in exploring 

non-price deterrence mechanisms that activate behavioral insights to encourage greater 

resource sharing. A growing body of work has shown that non-price motivations such as 

normative social influence can produce meaningful changes in behavior (Allcott 2011; 

Ariely et al., 2009; Asensio & Delmas; 2015; Hallsworth et al., 2017; Harding & Hsiaw, 

2014; Ito et al., 2018; Yoeli et al., 2017). These information strategies use insights from 

psychology and behavioral economics to activate social nudges that aim to increase social 

welfare through non-compulsory choice architecture (Thaler & Sunstein, 2009). The use 

of nudge-style interventions to increase behavioral compliance has already been deployed 

by businesses and governments in over 20 countries (Benartzi et al., 2017; Halpern & 

Sanders, 2016). Applications have ranged from promoting retirement savings at work 

(Benartzi & Thaler, 2007; Carroll et al., 2009), to increasing college enrollment by low-

income students (Bettinger et al., 2012), and influenza vaccine use (Milkman et al., 2011). 

However, the use of behavioral nudges as a scalable policy intervention in EV charger 

resource sharing and sustainable transportation has not been previously tested. 

 We have robust evidence that social comparisons can be powerful motivators to 

influence individual behavior (Cialdini et al., 1990; Cialdini & Goldstein, 2004). For 

example, seminal work by Cialdini and colleagues have demonstrated the effects of 

normative social influence in areas such as energy and water conservation (Goldstein et al., 

2008; Nolan et al., 2008; Schultz et al., 2007), littering and theft prevention (Cialdini et al., 

1990; Cialdini et al., 2006). Like these previous studies, we distinguish theoretically 
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between descriptive and injunctive norms where descriptive norms inform individuals of 

what is typically done, while injunctive norms signal what is a socially accepted behavior. 

 In the workplace charging context, our priors are that although descriptive norms 

tend to predict antecedents of behavior change, messages based on injunctive norms will 

have the greatest motivating effect on behavior. Therefore, in our context, we expect that 

injunctive messages that highlight the need for the organization to encourage resource 

sharing in limited EV charging stations will be effective at activating group norms and 

driving pro-environmental behavior. In this study, we test efficacy of injunctive workplace 

norms, but we do not test descriptive workplace norms. For a review on overcoming 

barriers to pro-environmental behavior in the workplace, see Yuriev et al. (2018). This 

leads to our second hypothesis: 

H2: In the organizational context, injunctive normative messages regularly sent to 

employees about charging etiquette will lead to greater resource sharing by reducing 

excess charging demand. 

1.3.Methods 

1.3.1. Experimental Design and Data  

 This study analyzes 3,340 charging sessions observed between November 2014 and 

October 2015 at 105 charging stations located across 25 different facilities at corporate 

locations of a large firm participating in the U.S. Department of Energy’s Workplace 

Charging Challenge (U.S. Department of Energy, 2017). Charging stations are located at 

different types of facilities, including research and innovation centers, manufacturing 
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facilities, testing facilities, and headquarter office buildings. A total of 84 employees used 

the employer-provided charging stations over this time period. Charging stations were 

installed at a rate of approximately 2 per week. Following these initial installations, we 

observe 3 months of a testing period to provide a baseline usage and approximately 9 

months of an analysis period. In addition to announcements of pricing policies in an 

internal corporate website, station managers also sent out periodic communications. 

Registered EV driving employees also had the ability to communicate with each other.  

 One unique advantage of this field experiment is that many of the key variables that 

impact charging usage are controlled by design (see Table 1). All transactions are logged 

with the same free mobile app, are subject to the same pricing scheme, use only a single 

charger type with a standardized EV plug, and are provided by a single large manufacturer. 

In addition, although we do not have complete driver characteristics due to privacy 

restrictions, a key benefit is that there are only three dominant makes and models of 

vehicles in our data. This contrasts with many other observational studies, which can be 

confounded by observable factors related to the vehicle, technology, or network access 

(McCollum et al., 2018). This substantially mitigates measurement variation due to 

different charging rates and battery capacities that can occur across both charger types and 

vehicle types. In this experiment, we are not able to observe availability of home charging 

or specific commute distances. There are also no access restrictions besides user 

registration for the mobile platform. Parking at each location is free for all employees.  
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Table 1 - Experimental controls by design 

Variables  

Point of interest Workplace 

Workplace type Large manufacturer 

Region Midwest 

Utility Investor owned  

Network 

Manufacturer 

Charger type 

Station host 

Access type 

EV plug 

 

GE Watt Station 

Level II 

Employer 

Restricted (employees and visitors only) 

SAE J1772 standard 

Platform 

Mobile app 

Payment method 

 

Free 

Mobile pay 

Pricing 

Pricing type 

Revenue model 

Parking cost 

 

Time based 

Variable pricing – free for 4 hours, $1/hr. thereafter 

Free 

 Though the need to recover capital costs was a consideration while designing the 

workplace charging program, the electricity service fees that accrue starting at 4 hours of 

charge time serve primarily as a nominal fee to discourage overconsumption and reduce 

congestion. As with any space-constrained problem, guaranteeing that a station would be 

available to all employees was a necessity to achieve sustainability goals. 

1.3.1.1.Pricing Strategy 

 The primary strategy to limit congestion or space constraints involves a tiered price 

structure. Employees can use the charging station for free up to 4 hours. After this time, 

there is a constant marginal price or $1.00 per hour that includes a nominal transaction fee 
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of $0.50 (see Figure 1). The objective of the tiered price strategy was not to provide free 

charging for the entire workday, but rather to cover the majority of employees’ daily 

commute. This non-linear price schedule is consistent with the setting of utility rates that 

aim to discourage free riding behavior (Borenstein et al., 2002). 

 

Figure 1 - Non-linear price schedule. The program’s price policy allows for free 
charging for 4 hours. For sessions lasting more than 4 hours, a $1.00 per hour fee, 
which includes a $0.50 transaction fee to the mobile app, is assessed. 

1.3.1.2.Behavioral Strategy 

Given the space constraints, station administrators implemented a series of 

normative communications that encouraged users to promptly move their vehicle to free 

up a space for a fellow employee. These communications activated injunctive workplace 

norms that urge users to unplug and move their vehicles, particularly at times when there 

was no economic incentive to do so. There are reasons why it may be unlikely for someone 

to interrupt their workday to promptly move their car. This is because the typical charge 

time to cover electricity demand from the daily commute is approximately 2 hours and the 

fee-based charging rate does not go into effect until 4 hours of charge time. Thus, without 
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normative pressure, employees have no direct economic incentive to engage in pro-social 

behavior.   

To reinforce the workplace norm, the sample messages periodically sent out in the 

closing of emails to registered EV drivers can be summarized as follows: ‘Please continue 

to be great ambassadors for the Firm by being courteous to other charging stations users… 

Please be considerate to your fellow employees and visitors by unplugging your vehicle 

when charging is completed or after 4 hours, whichever occurs first. This messaging 

strategy appeals to the creation of a corporate culture that values charging etiquette at the 

workplace and sharing of common pool resources. 

1.3.2. Regression Discontinuity Design  

We use the fact that high-resolution data allows us to observe charging sessions to 

the nearest second, which allows us to estimate treatment effects for both behavioral and 

pricing mechanisms. We can separately identify the effects of normative messages by 

evaluating the transactions in a window around 2 hours and the effects of the price policy 

by evaluating transactions in a window around 4 hours with a regression discontinuity (RD) 

design. Our identification strategy exploits the discontinuity in the price schedule by 

comparing transactions just before and after the price change in cases where employees 

have imperfect control over the plug out times. Under relatively weak identification 

assumptions, e.g. local randomization and continuity conditions, the average treatment 

effect τ, of a non-linear price schedule for observed outcomes Yi, and running variable Zi 

can be determined around a given cutpoint threshold c between price tiers as follows: 
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 𝜏 = lim
!↓#

𝐸[𝑌$|𝑍$ 	 = 𝑐 + 𝜀] − lim
!↑#

𝐸[𝑌$|𝑍$ 	 = 𝑐 + 𝜀] (1) 

Our continuity assumption is reasonable given the high sampling frequency and 

density of user transactions near the cutpoints as seen in Figure 2. Although the price 

schedule may be known in advance, in this field setting, there are many reasons for a user’s 

inability to perfectly sort around the price discontinuity. For example, in the workplace, 

employee meetings, variable tasks and other responsibilities or commitments can vary day-

to-day, which adds uncertainty to being able to unplug and move the car at a specific time. 

Additionally, variance in arrival times and charge state of the battery at the beginning of 

each workday make it difficult to know exactly when the battery will be full and what the 

precise time for plug-out will be on a day-to-day basis. This suggests that users do not have 

the ability to sort precisely around the cutpoint. We can therefore identify local treatment 

effects with RD even under imperfect endogenous self-selection into treatment (Lee, 2008; 

Lee & Lemieux, 2010). Using procedures described in McCrary (2008), we provide 

evidence of imprecise sorting behavior in Figure 3. 
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(a) 4 hour cutpoint. (b) 2 hour cutpoint. 

Figure 2 - Observations around the cutpoints. We observe a high density of 
observations around both the 4 and 2-hour marks and a clear, negative treatment 
effect at both marks. The shaded areas represent upper and lower 95% confidence 
intervals. 

 

(a) Density test at 4 hours for all users. (b) Density test at 2 hours for all users. 

Figure 3 - McCrary test. The solid line plotted in each panel correspond to the 
estimated density function for the running variable before and after the cutpoint, 
indicated by the bolded vertical line at 4 or 2 hours for all users. In both cases we 
observe overlap in the density functions within the upper and lower 95% confidence 
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intervals, which indicates imprecise sorting behavior or manipulation at the point of 
use. We discuss reasons for imperfect sorting in Section 1.2. The shaded areas 
represent upper and lower 95% confidence intervals. 

1.3.2.1.Sharp Regression Discontinuity 

We estimate the effect of the behavioral and price mechanisms at the 2- and 4-hour 

cutpoints, respectively with local linear regression according to Equation 2. 

 ∆𝐿𝑛(𝑌$&,()*) = 𝜏𝐷$( + 𝝀𝑾𝒕 + 𝑢&( (2) 

For a given user i, at a location j, and transaction number t, the outcome variable is 

the change in the natural log of the electricity consumption 𝑌$&(, measured in kWh for N 

future transactions with respect to a user’s previous transaction. Let the treatment 

assignment be denoted by the indicator variable 𝐷$( ∈ {0,1}, such as 𝐷$( = 1 if 𝑍$( ≥ 𝑐 and 

𝐷$( = 0 if 𝑍$( < 𝑐, where 𝑍$( is the running variable in charging session time. Feasible 

cutpoints 𝑐 = {2,4} correspond to the behavioral and price strategies, respectively. Wt 

represents day-of-the-week fixed effects and the residual error is captured in ujt. Given the 

possible sensitivity of the RD coefficients to higher order polynomials, we estimate the 

empirical equation by local linear regression (Gelman & Imbens, 2018; Imbens & 

Lemieux, 2008). We cluster the standard errors at the facility level j to account for 

commonalities observed in different buildings of the firm’s campus. To calculate the 

optimal bandwidth, we use algorithmic bandwidth optimization Imbens and Kalyanaraman 

(2012).  
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1.3.2.2.Optimal Bandwidth Selection 

To determine the bandwidth choice for the regression discontinuity estimator 

above, we use the algorithmic mean square error (MSE) optimization method proposed by 

Imbens and Kalyanaraman (2012) which allows for fully data-driven, automatic bandwidth 

selection. Algorithmic bandwidth selection procedures for regression discontinuity designs 

remove researcher discretion in statistical selection procedures and the need for stronger 

functional form assumptions. The Imbens-Kalyanaraman method suggests an optimal 

bandwidth choice b calculated by minimizing the mean squared error 𝑀𝑆𝐸(𝑏) =

𝔼[(�̂� − 𝜏),] where τ represents the treatment effect in a sharp RD. The optimal bandwidth 

b* is calculated by minimizing the MSE, as represented in Equation 3. In Figure 2, we 

report the sensitivity of the RD estimates to different bandwidth choices around b* as a 

percentage of the optimal bandwidth. 

 𝑏∗ = argmin
.

𝑀𝑆𝐸(𝑏) (3) 

1.3.2.3.Dynamic Regression Discontinuity 

We extended the conventional RD models to identify dynamic treatment effects 

using a similar approach to that described in Cellini et al. (2010). Given the high temporal 

resolution of the data, we generated dynamic regression discontinuity estimates for both 

deterrence mechanisms after the start of the program. To do this, we estimate the treatment 

effect τ h defined over an expanding window of analysis from ℎ = {0,… , 𝑣} that begins 

after the testing and ends on the last day of the program v as represented in Equation 4. 
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 ∆𝐿𝑛(𝑌$&,()*) = 𝜏/𝐷$( + 𝑃.(𝑍$() + 𝝀𝑾𝒕 + 𝑢&(																			∀	𝑡 ∈ [0, ℎ] (4) 

Following Cellini et al. (2010), we approximate the conditional expectation of the 

unobserved determinants of the outcome given the charging session time 𝐸[𝑢&(|𝑍$(] by a 

polynomial of order 𝑏, 𝑃.(𝑍$(). Then, the error term 𝑢&( may be asymptotically 

uncorrelated with 𝑍$( and 𝐷$(. The regression of our outcome of interest on the treatment 

assignment variable Dit, and a flexible (cubic) polynomial spline, leads to a consistent 

estimation of 𝜏/. We also considered alternative dynamic RD specifications using 

recursive coefficients. However, these yielded quantitatively similar results analogous to 

results in Cellini et al. (2010), so we used the one-step process as defined above. 

1.4.Results 

1.4.1. Descriptive Statistics 

In Table 2, we provide descriptive statistics related to user characteristics and transactions 

for the 320 days of the experiment. The average number of repeat charging sessions per 

user is 39.8 over the duration of the experiment, which ranges from as few as 1 session to 

as many as 191 sessions, as presented in Figure 4. This indicates that some users plug in 

multiple times per day while others plug in just once per week or less. The average daily 

commute distance for participating employees is 18.7 miles. In addition, the average total 

distance commuted per user is 689.8 miles — roughly the distance from Atlanta to 

Chicago. Of the 84 users who logged at least one session, 63% had one or more sessions 

lasting at least 4 hours and thus received the price treatment. These users contributed over 

87% of all observations in this study, or 2,832 individual transactions.  
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Figure 4 - Histogram of users of the EV charging stations according to the number of 
transactions observed in the Nov 2014 - Oct 2015 period. 

Table 2 - Descriptive statistics. 

 Mean SD Min Max Total 

sessions 

Duration of charging session (hours) 2.88 1.48 0.02 55.24 3,340 

Total consumption (kWh) 5.91 2.82 0.01 23.68 3,340 

Repeat transactions per user (count) 39.8 44.2 1.0 191.0 3,340 

Session revenue ($) 1.06 1.08 0.50 7.50 378 

Estimated daily commute distance, one way (mi) 18.7 11.4 0.9 43.1 2,351 

Electric vehicle miles traveled per user (mi) 689.8 1,053.6 1.5 6,286.8 2,351 

Note: Session revenue excludes free transactions (less than 4 hours of charge). 

We provide a comparison of kWh usage in this field setting to an external sample 

of charging stations in Figure 5. The average charging session lasted 2.88 hours, with a 

standard deviation of 1.48 hours. This suggests heterogeneity in charging habits by 

employees. Based on the estimated commuting distances and typical battery capacities for 

all employees, we estimate that about 40% of users are relying on the workplace charging 

beyond the needs for their daily commute. Although the revenues are modest (max $7.50), 
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the price strategy is designed to reduce congestion as opposed to aggressively recouping 

station installation costs. Costs are low to provide workplace charging as a perk rather than 

a cost-recovery strategy. In the next section, we present the estimates of both static and 

dynamic RD models for behavioral and price strategies. 

 

(a) Plug-in and plug-out times for the 

3,340 charging sessions considered in the 

study. 

 

(b) Plug-in and plug-out times for an 

external sample of 3,241 charging 

sessions from public charging stations in 

the U.S. 

Figure 5 - Histograms of charging session duration versus an external U.S. sample of 
observations. Plug-in and plug-out times are represented in light gold and grey, 
respectively. 

1.4.2. RD Results 

Given the high temporal resolution of the data, we are able to separately estimate 

the effects of pricing at 4 hours, which is the charging time that users begin to incur costs, 

and the effects of normative messaging at 2 hours, which is the charging time needed to 

cover the daily commute.  
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In Table 3, we present the sharp RD results and the optimal bandwidths. We find 

that the price strategy generates a statistically significant conservation effect of –14.7 

percent. We also evaluated whether the normative strategy could have an additional 

conservation effect as a complement to the price policy. Although there is no direct 

economic incentive for users to unplug their vehicle at 2 hours when their battery is fully 

charged, interestingly we find a comparable, statistically significant treatment effect of -

18.9 percent as a result of normative messaging. These results are consistent with 

analogous studies that use behavioral messaging to reduce energy consumption (Asensio 

& Delmas, 2016; Allcott & Rogers, 2014). 

We also evaluated a subpopulation of managers by identifying users who drove a 

specific vehicle used primarily by managers and above because of a corporate incentive 

program. We know that in many corporate social responsibility (CSR) activities, motivated 

managers can drive change in the workplace by leveraging organizational norms to drive 

the success of environmental initiatives (Howard-Greenville & Hoffman, 2003; Amores-

Salvadó et al., 2014). In this experiment, the normative treatment effect at 2 hours for the 

group of managers was an impressive -24.7 percent, which indicates that managers were 

particularly responsive to normative messages, a behavior that set an example for fellow 

employees. Not surprisingly, we found the opposite effect at 4 hours revealing that 

managers were the least responsive to the price signal (Table 3).  
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Table 3 - Main results. 

Mechanism Cutpoint Population Optimal  

bandwidth 

RD estimate 

(SE) 

Total 

sessions 

Price effect 4 hours All users 0.987 -0.1468*** 3,256 

    (0.0386)  

  Managers 1.191 -0.0811 1,943 

    (0.0839)  

Behavioral effect 2 hours All users 0.871 -0.1885*** 3,256 

    (0.0340)  

  Managers 0.841 -0.2472*** 1,943 

    (0.0765)  

Placebo test 3 hours All users 0.882 0.0327 3,256 

    (0.0415)  

Note: One observation per user (84 total) was lost when calculating lag due to edge effects. Standard errors 

are clustered at the facility type level. 

*p < .1; **p < .05; ***p < .01 

To validate these results, we checked the stability of the RD coefficients. The 

bandwidth curves in Figure 6 plot the changes in the coefficients as a function of the 

Imbens-Kalyanaraman (I-K) optimal bandwidth used in our main specifications. We show 

that the estimates are robust to the bandwidth choice. We provide additional robustness 

checks in Table 4. 
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(a) 4 hour cutpoint (b) 2 hour cutpoint 

Figure 6 - RD bandwidth sensitivity. Panels (a) and (b) describe the sensitivity of the 
RD coefficients at 4 hour and 2 hours, respectively, as a percent of the Imbens-
Kalyanaraman (I-K) Optimal Bandwidth. With the exception of smaller bandwidths 
less than 50% of the optimal bandwidth for cutpoint 2 that is attributable to smaller 
sample sizes near the cutpoint, the coefficient estimates from both sensitivity curves 
are stable and robust to a wide range of bandwidth choices. The shaded areas 
represent upper and lower 95% confidence intervals. 
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Table 4 - Alternative RD specifications. 

 
(1) (2) (3) (4) (5) (6) 

Cutpoint 4 hours 

- Sharp 

-0.1568** -0.1411* -0.1435* -0.1411*** -0.1411** -0.1411* 

(0.0749) (0.0728) (0.0735) (0.0391) (0.0598) (0.0746) 

Cutpoint 4 hours 

Sharp - Managers 

-0.0938 -0.0612 -0.0624 -0.0612 -0.0612 -0.0612 

(0.0880) (0.0868) (0.0872) (0.0659) (0.0717) (0.0851) 

Cutpoint 2 hours 

Sharp 

-0.1910* -0.1871* -0.1692 -0.1871*** -0.1871*** -0.1871** 

(0.1118) (0.1094) (0.1095) (0.0231) (0.0694) (0.0914) 

Cutpoint 2 hours 

Sharp - Managers 

-0.2720* -0.2383 -0.2063 -0.2383*** -0.2383** -0.2383** 

(0.1552) (0.1497) (0.1495) (0.0663) (0.1142) (0.1142) 

Cutpoint 3 hours 

Sharp - Placebo 

0.0342 0.0309 0.0381 0.0309 0.0309 0.0309 

(0.0665) (0.0651) (0.0658) (0.0459) (0.0754) (0.0719) 

Time dummies 

(day-of-the-week 

and monthly) 

No Yes Yes Yes Yes Yes 

Cubic 

polynomial  

No No Yes No No No 

Clustering at 

facility type 

No No No Yes No No 

Clustering at 

location ID 

No No No No Yes No 

Clustering at 

station ID 

No No No No No Yes 

Note: The estimates above are generated by independent runs. 

*p < .1; **p < .05; ***p < .01 

We investigated treatment effects over time by evaluating observations in an 

expanding window of analysis at 4 and 2 hours with dynamic RD. To do this, we considered 

observations after the baseline period of 3 months for the results provided in Table 5. In 

Figure 7, we plot the dynamic RD estimates for the analysis period starting at 22 weeks, at 

which point the measurement noise reached a steady state after allowing sufficient time to 



 22 

build an established user base and install charging stations (see Figure 4 for information on 

user growth). In Figure 7(a), we show evidence of significant price effects that persist from 

approximately week 39 of the program until the end of the analysis period at week 46 

(months 10-12). These significant, but delayed price effects can be attributed to the fact 

that, in the earlier weeks of the program (i.e. months 5-9), the user base was initially 

dominated by low repeat users (e.g. fewer than 20 transactions), whereas the latter months 

of the experiment were dominated by high repeat users (e.g. greater than 20 transactions). 

We find that the delay in significant price effects can be partially explained by 

measurement issues related to the relatively low share of transactions above 4 hours in the 

earlier weeks of the experiment, and not by differences in price sensitivity between high 

and low-repeat users. Our main result of the dynamic RD estimation at 4 hours is that the 

pricing strategy is effective and lasts for at least 8 weeks in the analysis period. 

In Figure 7(b), we find a statistically significant behavioral effect of normative 

workplace messaging earlier in the experiment beginning at week 28 (month 7). The 

normative effects of the repeated intervention also appear to have greater durability during 

the analysis period. Our main result of the dynamic RD estimation at 2 hours is that the 

behavioral strategy is effective and lasts for at least 18 weeks in the analysis period. Our 

dynamic analysis reveals that for both the price and behavioral strategies, the magnitudes 

of the coefficients are generally stable with high reliability, particularly at the end of the 

study. Detailed point estimates are provided in Table 5. 
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(a) 4-hour cutpoint (b) 2-hour cutpoint 

Figure 7 - Dynamic RD estimates with daily sampling window. In panel (a) the pricing 
strategy produces significant treatment effects later than the behavioral strategy 
during months 10 to 12, which coincides with the growth of high repeat users. In panel 
(b), the behavioral strategy produces significant treatment effects during month 7, 
which persist for approximately 6 months. The three-month initial testing period not 
shown. The baseline and testing periods prior to 22 weeks are not shown. The shaded 
areas represent upper and lower 95% confidence intervals. 
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Table 5 - Dynamic RD results. 

Study period Behavioral strategy (2 hr. cutpoint) Price strategy (4 hr. cutpoint) 

 (1) (2) (3) (4) (5) (6) 

Testing period -- -- -- -- -- -- 

Month 4 1.092 0.827 1.221** -0.288 -0.273 -0.212 

 (0.947) (0.645) (0.575) (0.337) (0.340) (0.376) 

Month 5 0.029 -0.073 0.693 -0.152 -0.134 -0.135 

 (0.258) (0.194) (0.450) (0.262) (0.274) (0.292) 

Month 6 -0.134 -0.135 0.041 -0.094 -0.129 -0.101 

 (0.27) (0.225) (0.275) (0.241) (0.22) (0.22) 

Month 7 -0.229* -0.201 -0.139 -0.067 -0.060 -0.053 

 (0.123) (0.125) (0.159) (0.19) (0.187) (0.185) 

Month 8 -0.223* -0.220* -0.146 -0.034 -0.028 -0.041 

 (0.130) (0.126) (0.152) (0.154) (0.149) (0.149) 

Month 9 -0.262*** -0.270*** -0.229** -0.018 -0.013 -0.018 

 (0.099) (0.098) (0.111) (0.108) (0.111) (0.109) 

Month 10 -0.200** -0.208*** -0.188** -0.186** -0.172** -0.173** 

 (0.08) (0.075) (0.083) (0.08) (0.086) (0.086) 

Month 11 -0.233*** -0.232*** -0.211** -0.149*** -0.130** -0.136** 

 (0.072) (0.073) (0.085) (0.055) (0.058) (0.060) 

Month 12 -0.191*** -0.189*** -0.176** -0.157*** -0.147** -0.149** 

 (0.07) (0.072) (0.08) (0.059) (0.06) (0.061) 

Day of the week 

dummies 

No Yes Yes No Yes Yes 

Cubic in charge 

time 

No No Yes No No Yes 

*p < .1; **p < .05; ***p < .01 

Note: Standard errors are clustered at the location ID level. 
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1.5.Discussion 

1.5.1. Behavioral strategies as complements to price policies 

Using high-resolution data, we identify 2 distinct mechanisms of behavior change: 

one based on pricing that is primarily concerned with private costs, and the other is non-

priced based that is primarily concerned with social benefits. Consistent with our 

hypotheses, we find that both strategies are effective and complementary to encourage 

greater resource sharing. The evidence suggests that these strategies are non-rival, 

particularly as employees could still be perceived as good coworkers if they respond to the 

price incentive. This result that a nonprice strategy could have an additive effect to 

encourage employees to promptly move their car is surprising because there is no direct 

economic incentive as it is costless to occupy the resource before the price penalty. Further, 

given that these interventions occur simultaneously, we might predict from crowding 

theory that the monetary incentive to unplug the EV at 4 hours might backfire or reduce 

the intrinsic motivation to unplug the EV at 2 hours to act pro-socially (Gneezy & 

Rustichini, 2000; Gneezy et al., 2010; Gneezy et al., 2011).  Because we do not observe 

this crowding out effect, it is likely that the nominal fee imposed at 4 hours is not enough 

to shift the decision framing to unplug one’s vehicle from a social to an economic one 

(Gneezy et al., 2011). If charging rates are large enough, even managers might eventually 

be more price sensitive (Gneezy & Rustichini, 2000). 

To further understand the divergence from crowding theory, we focus on the 

subpopulation of managers, who illustrate that image motivations and establishment of 

workplace norms can override small monetary rewards. To managers in particular, the 
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imposition of such a small monetary cost for charging did not decrease the image-related 

utility they received from pro-environmental behavior. This is because managers did not 

respond to the price policy at 4 hours. This is in line with workplace dynamics about 

expected behavior from people in leadership positions (Brown et al., 2005; Robertson & 

Barling, 2013). Our experiment contributes evidence to the related organizational behavior 

literature, which has theorized that when leaders are focused on encouraging pro-

environmental initiatives, they can affect employees’ pro-environmental behaviors 

(Robertson & Barling, 2013). We find quantitative evidence that managers are a key driver 

of the successful implementation of the injunctive norm strategy, which helps to simplify 

assumptions about prosocial behavior in organizational contexts. This is consistent with 

related literature on the use of voluntary programs and collaborative approaches for 

environmental governance that are often easier to implement than command-and-control 

strategies (Darnall & Carmin, 2005; Delmas & Montes-Sancho, 2007; den Hond, 2000; 

Lyon & Maxwell, 2003; Lyon & Maxwell, 2007; Potoski & Prakash, 2005; Prakash & 

Potoski, 2012; Thomas et al., 2003). More recently, Allcott & Kessler (2019) have 

demonstrated the potential to enhance social welfare by targeting normative interventions 

to subpopulations. In our field setting, we find that welfare improvements could be 

achieved by targeting subpopulations of influential corporate managers. This approach of 

using normative information strategies compliment market-based incentives such as 

marginal pricing. 

1.5.2. Behavioral plasticity and equivalent prices 

Consistent with our priors, we find that marginal pricing is effective in EV charging 

behavior. This contributes to a debate in electricity markets where, due to information 
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problems, consumers respond to average and marginal prices (Ito, 2014). Using our 

experimental estimates, the implied price elasticities of demand for EV charging range 

from –0.04 to –0.13. This range is less price elastic than those obtained from non-

experimental studies outlined in the meta-analysis by Labandeira et al. (2017). This 

suggests that EV drivers at work are less responsive to price changes than the typical 

electricity consumer. However, in comparison with other experimental studies, our implied 

price elasticities are in line with published results from randomized experiments in the 

residential electricity sector, which typically range from –0.03 to -0.39 (Allcott, 2011; 

Borenstein, 2009; Burkhardt et al., 2019; Ito, 2014; Reiss & White, 2005). A meta-analysis 

by Brons et al. (2008) found that the long-run price elasticity of gasoline is approximately 

-0.84. Consequently, we conclude that EV charging behavior is more comparable to 

consumption behavior in residential electricity markets than conventional transportation 

re-fueling markets.  

We find that adaptations to price, although effective, would require significant price 

increases to produce meaningful conservation. For example, to obtain the equivalent 

reductions in electricity consumption associated with the behavioral intervention, station 

managers would have to raise prices at 4 hours from somewhere between 151% and 512%. 

To provide a practical example of this in another workplace setting, 3 Embarcadero Center 

in San Francisco, currently charges its resident employees $2.00 for the first 4 hours and 

then $6.00 per hour thereafter. Without the complementary behavioral norm, station 

managers at this location would need to raise prices somewhere between $15.06 and $36.72 

per hour at the higher price tier to achieve a similar conservation effect. 
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Evidence from recent EV experiments suggest that consumers might be willing to 

engage in tariff switching such as with emails and digital messaging (Nicolson et al., 2017). 

Here we provide behavioral evidence that a nonlinear price scheme can prompt EV drivers 

in the workplace to meaningfully adjust energy consumption in a way that is advantageous 

to both congestion relief while providing resource efficiency benefits. However, even with 

dramatic price increases, we observe that the congestion rents from these nominal price 

structures may or may not be enough to recover the fixed cost of charging station 

installation or to meet space sharing goals (Kirschen & Strbac, 2019; Savelli & Morstyn, 

2020). 

1.5.3. Evidence of treatment durability 

The strong durability of both treatments greater than 60 days suggest that these 

approaches could be scaled accordingly when setting EV access policies in space-

constrained environments. The 18-week durability of the behavioral treatment confirms 

that normative messaging is effective to prompt people to change their daily EV charging 

habits. An emerging body of literature similarly finds that normative messaging also 

produces long lasting, but decaying effects. For example, in Ito et al. (2018) the use of 

moral suasion as a nonprice mechanism had a significant but decreasing effect on 

electricity consumption. In Asensio & Delmas (2015, 2016), the health-based motivations 

outperformed small monetary incentives for conservation. The non-price-based effect 

lasted for a period of about 100 days while the cost savings effect decayed more quickly. 

Allcott and Rogers (2014) found that consumers were slow to habituate to normative 

messaging but that the magnitude of the effects decrease in time. Normative messaging 

was effective for a period of about 2 years, including a remarkable persistence period of up 
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to 3 years after information treatments ceased, but decaying at a rate of about 10-20% per 

year. We note that these effects may not be purely behavioral, as the authors cannot rule 

out the possibility that these conservation effects include a mix of both behavioral changes 

and capital upgrades.  

Although it is encouraging that we do not find evidence of decaying effects during 

the year for which we have data, we cannot exclude the possibility of the effects tapering 

off over longer study periods.  

1.6.Policy Recommendations 

Large organizations are increasingly using free or subsidized EV charging stations 

in response to employee demand, competitive pressure, corporate sustainability goals and 

as a recruitment and retention tool. However, as EV miles traveled rises with increased 

adoption of EV, preventing congestion from strong demand while increasing supply of 

stations remains a sizeable challenge. We make four recommendations. First, in order to 

properly evaluate demand growth and charging capacity at workplace locations, we argue 

that digital data sharing between station managers, charging networks, and utility 

jurisdictions are necessary. This is important because stations managers often do not have 

access to sub-metered usage data when setting price policies. Further, lack of data sharing 

does not allow for large-scale aggregation across multiple firms and power systems 

optimization (Alvaro-Hermana et al., 2016; Gan et al., 2013; Santoyo et al., 2020). We find 

that it is possible to design more effective EV charging incentives if high-resolution data 

is made available to all relevant parties.  
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Second, the mechanisms tested here may generalize to many other workplace 

charging contexts. These mechanisms are relevant for the more than 750 large corporate 

employers who initially adopted EV charging as part of the U.S. Department of Energy’s 

Workplace Charging Challenge (U.S. Department of Energy, 2017). Although resource 

sharing strategies are effective in the workplace, they are unlikely to have the same effects 

at other locations such as retail where there are no established community norms or is 

insufficient image motivation associated with resource sharing behavior. In such cases, 

complimentary price policies will be needed.  

Third, we find that technology standards are also critical. In this field setting, we 

had a highly controlled environment where the charger type, network, and pricing were all 

the same. However, in less controlled settings, employers will need to make decisions 

about which technologies they support as there is currently no universal charging standard 

across vehicle makes and models. Currently there are over 5 different plug types and about 

15 distinct charging networks in the U.S. alone. For example, Nissan only recently 

announced that it would begin producing vehicles compatible with CCS charging after 

years of being one of few producers of CHAdeMO-reliant cars (Halvorson, 2020). 

Meanwhile, electric vehicle giant Tesla remains committed to keeping its own proprietary, 

brand-specific Supercharger plugs just for Tesla EV drivers. The lack of universal charging 

standards complicates investment decisions for workplaces and serves to increase search 

and transactions costs. 

Fourth, for employees who are fortunate to have access to charging points at work, 

these programs greatly increase reliability and consumer confidence. However, given the 

high capital costs to install EV charging points, it is likely that many small or medium size 
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employers may not be able to deploy charging infrastructure, leaving employees to incur 

the cost of installing costly home charging and potentially propagating misperceptions 

about energy costs (Asensio, 2019). Prior work has shown the prevalence of negative 

consumer experiences in public EV charging infrastructure, with issues such as lack of 

station availability and functionality, particularly in the urban centers (Asensio et al., 

2020). In such cases where there are investment gaps by small and medium businesses, 

targeted state and local policies can serve an important function to promote access to public 

and private charging points at the workplace. 

Providing equitable charging access, particularly for communities who may be 

under-served in access to public charging points is a challenge that has been set as a priority 

by several local governments. A promising example is the $750 million multi-year 

announcement by the State of New York in July 2020 on an investment program to expand 

the state’s electric vehicle charging infrastructure (New York State, 2020) 

In summary, we show that pro-environmental behavior through normative social 

influence can become ingrained as a social institution inside the organization (Hoffman, 

1999) in ways that benefit environmental protection through a softer, voluntary channel—

as opposed to mandated corporate action. These behavioral approaches to resource sharing 

are altogether complementary to price-based policies. With new forms of data, it becomes 

possible to measure performance of programs aimed at resource use optimization and 

engage in continuous improvement of industrial systems. 

 

 



 32 

 

  



 33 

CHAPTER 2. SHARED MICROMOBILITY REDUCES URBAN 

TRAFFIC: EVIDENCE FROM A NATURAL EXPERIMENT WITH 

MOBILE APP GEOFENCING 

2.1 Introduction 

Shared micromobility, such as electric scooters and electric bikes, have rapidly 

flooded cities, offering cheap and convenient first/last-mile solutions for urban contexts. 

Some advocates claim that shared micromobility (distance 0-5 miles) can ease traffic 

congestion by displacing cars for last-mile transit. However, others argue that scooters 

mostly substitute trips that would have been made by walking/public transit and seldom 

affect the number of cars on the road or provide sustainability benefits. Using a policy 

intervention and high-resolution data from Uber Movement, we provide new evidence that 

micromobility bans, originally intended to enhance public safety, generate unintended 

congestion for daily commuting and special events. Displacing cars for personal travel, 

micromobility can be effective strategies for short-run emissions reductions. 

2.2 Background  

2.2.1 Travel Mode Choices 

Shared micromobility, such as electric scooters and electric bikes, have rapidly 

flooded cities, offering cheap and convenient first/last-mile solutions for urban visitors in 

over 100 U.S. metropolitan areas and is projected to be a $300 billion market globally by 

2030 (Heineke et al., 2020; NACTO 2019). When electric scooters and electric bikes 

displace internal combustion engine vehicles, life cycle assessments indicate net reductions 



 34 

in emissions and environmental impacts (Hollingsworth et al., 2019). E-scooters and e-

bikes are thought to substitute active modes of transport that include both commuting and 

recreational use (Grahn et al., 2021; Ward et al., 2019), but evidence that shared 

micromobility can ease traffic congestion or provide sustainability benefits through 

substitution of travel modes has been controversial (National Academies, 2021). Many 

cities have banned shared micromobility citing personal safety or other concerns, while 

other cities have allowed its proliferation largely without changes in urban infrastructure 

needed for widespread adoption. A fundamental challenge to learn whether micromobility 

is a complement or a substitute for vehicle choice is largely behavioral. Causal evidence 

on the impacts of micromobility on sustainability outcomes has to date been relatively 

weak, relying on self-reported data from survey questionnaires, which is subject to 

hypothetical, hindsight or recency bias. Other evidence on travel mode choice has typically 

relied on conditional correlations from data simulations, which presents modeling 

challenges related to endogeneity concerns and population sampling. As a result, 

behavioral evidence on whether micromobility options displace cars has generated 

contradictory claims. For example, self-reported data from scooter providers in French 

cities have produced claims that e-scooter adoption decreased 1.2 million and about 4% of 

car trips in Paris and Lyon, respectively (Lime, 2019a; Lime, 2019b). By contrast, other 

studies from New York and Atlanta have generated claims that e-scooters and shared 

micromobility riders do not always displace cars, but often substitute for public transit and 

walking (Campbell & Brakewood, 2017; Department of Transportation, 2019). Given the 

mixed evidence and lack of reliable data, the effects of shared micromobility policies on 

urban traffic congestion remain unclear.  
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2.2.2 Digital Platform Data 

  Mobile platform data is revolutionizing digital infrastructure and incentives for 

electric mobility (Asensio et al., 2020; Asensio et al., 2021; Diao et al., 2021). These data 

innovations help travelers connect to electric mobility options in three ways. First, digital 

data provides real or near real-time information about travel options and costs with 

geolocation and GPS tracking (National Academies, 2021). Second, digital platforms 

provide convenient mobile payment at the point of use, simplifying the process of 

arranging multiple ways of getting around. Third, data interoperability across travel modes 

(i.e. personal vehicles, scooters) could in principle allow for more effective public 

management of transportation services across jurisdictions. However, in practice, regional 

micromobility data has been hard for cities, policy makers and researchers to access. This 

is because micromobility data is proprietary and controlled by private entities with closed 

ecosystems and data restrictions. In a step towards open data partnerships with cities, Uber 

Movement released Travel Times—the largest spatially resolved transportation dataset, 

which contains anonymized data from over 10 billion trips worldwide (Uber Movement, 

2021). In this paper, we show that when real-time mobility data is more widely available, 

it is possible to evaluate behavioral decisions about travel mode choice at higher resolution 

when compared with conventional data sources and methods. Importantly, we leverage this 

massive data to evaluate the unintended effects of micromobility policies.  

In this study, we provide credible causal evidence of the effects of mass e-scooter 

and e-bike use on traffic congestion. We use high-resolution data from Uber Movement to 

analyze a policy intervention in the City of Atlanta in which shared e-scooter and e-bike 

mobility was banned daily during evening hours of 9:00pm-4:00am with geofencing and 
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near perfect compliance (Mayor’s Office of Communications, 2019). During the hours of 

the ban, micromobility devices from all city providers are automatically disabled from 

multiple mobile apps to create a No Ride Zone with geofencing and near perfect 

compliance. We take advantage of an unexpected ban on micromobility as a plausibly 

exogenous identification strategy. This is important because prior reports about 

substitution between micromobility and alternative transit modes have suffered from 

various empirical challenges related to the lack of granular data, self-reported information, 

and confounding variables that limit causal interpretations. We conduct 3 quasi-

experiments to evaluate policy impacts on both recurring mobility (e.g. daily commuting 

patterns) as well as event-based mobility (e.g. travel for special events). Atlanta is an 

important field site for analysis because it was one of the early mass adopters of 

micromobility with already over 4 million e-scooter and e-bike trips in 2019 and numerous 

competing providers (16). Atlanta has also piloted policies to re-design streets for 

micromobility (17).  

2.2.3 Habit Discontinuity Hypothesis 

What do people do when scooters are not available? Theories of behavior change 

indicate that, when habits are disrupted, people reconsider their options in the context of 

their attitudes and values. Under the habit discontinuity hypothesis, if one holds 

proenvironmental attitudes and values, theory predicts that sustainable behaviors are more 

likely to occur (Verplanken et at., 2008; Verplanken et al., 2021). Therefore, under a 

micromobility ban, commuters would substitute micromobility transit with other 

environmentally friendly alternatives such as public transport or walking, thereby limiting 

effectiveness for traffic and emissions reductions. Limited evidence from cities points in 
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this direction (Campbell & Brakewood, 2017; Department of Transportation, 2019). We 

test two opposing mechanisms. If the substitution effect dominates, where individuals 

would revert to personal vehicles in lieu of micromobility, then we expect to find that the 

policy ban should increase traffic for both daily commuting and special events. However, 

if another form of substitution dominates, where people chose not to revert to personal 

vehicles and instead chose the more proenvironmental option such as public transit or 

walking, then we expect to find no significant effects or weak effects on traffic congestion.  

2.3 Methods 

2.3.1 Experimental Design 

The maps in Figure 8 show the three implemented quasi experimental designs used 

to evaluate the effects of the micromobility policy ban in the City of Atlanta, represented 

in grey as the policy zone. The counterfactual analyses in Figure 8A,  Midtown Experiment, 

and Figure 8B, MARTA Experiment, measure the effects of the policy intervention on 

recurring mobility, such as daily commuting. The counterfactual analysis in Figure 8C, 

Mercedes Benz Experiment, measures the effects of the policy intervention on event-based 

mobility, such as sporting events. In panel A, the blue area represents the treatment area of 

interest in the city center where scooters are available but are banned during evening hours. 

Travel times are then compared to various counterfactuals with and without scooter 

availability, as well as inside and outside the policy zone in purple, orange, and green. In 

panel B, we target treatment areas near MARTA subway stations in blue. These are then 

compared to counterfactual MARTA subway stations outside the policy zone in orange. In 

panel C, we compare travel times before and after the implementation of the policy ban 
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from a site for large events, in pink, to nearby destinations, in yellow. We find significant 

effects of the policy ban in traffic congestion in all three designs. 

 

Figure 8 - Experimental designs for recurring mobility and event-based mobility. 

To analyze the effects of the policy intervention, we implemented various 

counterfactuals chosen carefully to mitigate the observable bias between treatment and 

control areas. For example, in the Midtown experiment, Cumberland areas were chosen as 

counterfactual because of statistically similar observable characteristics including median 

age, median income, race distribution, and education level. Other counterfactuals that we 

tested include Sandy Springs and Buckhead (see Figure 8A). Although these are similar in 

socio economic characteristics, we did find significant differences in vehicle ownership as 

measured in the American Community Survey provided by the U.S. Census (2015). For 

this reason, we included vehicle density per tract as described above. In the MARTA 

experiment, subway stations outside the policy zone and within the same train system were 

chosen as a counterfactual because of similarities on transit services and amenities 

provided to commuters (see Figure 8B). For example, banks, pharmacies, hospital, and 
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gyms are all typically within 10 minutes or less walking distance from a station, as well as 

a common set of intermodal transit alternatives. In the Mercedes Benz experiment, we 

study travel times per mile from the Mercedes Benz stadium to destination tracts in nearby 

areas permitted for scooter use (see Figure 8C).  

2.3.2 Policy Ban 

The micromobility ban was implemented in the City of Atlanta on August 9, 2019. 

We use high-resolution data from Uber Movement to measure changes in evening travel 

times between 7:00pm and midnight, pre and post policy implementation. We designed 3 

quasi-experiments to evaluate both recurring mobility (e.g. daily community patterns) and 

event-based mobility (e.g. travel for special events). The policy zone covers a total land 

area of 136.8 sq. miles (354.3 sq. km.) as shown in Figure 8. Unlike other interventions 

such as fines or usage rules that might discourage but do not eliminate scooter riding, we 

are able to observe treatment effects with near perfect compliance. This is because the 

mobile apps digitally shut off access to all devices during non-operating hours 

automatically between 9:00pm and 4:00am with mobile geofencing.    

2.3.3 Data 

In this study, we use high-resolution data on travel times from Uber Movement, the 

largest spatially resolved transportation dataset (Uber Movement, 2021), which contains 

anonymized data from over 10 billion trips worldwide. This new source of information 

allows for insights on policy-data interactions about travel behavior for evidence-based 

policy making (Verhulst et al., 2019). For the empirical analysis in this paper, we leverage 

2.43 million observations from the greater Atlanta metropolitan statistical area. This 
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includes travel times between 831 US census tracts (e.g. county subdivisions containing 

between 1,200 and 8,000 people) from July 12, 2019 to September 6, 2019. This allows for 

a window of analysis of 30 days pre and post policy implementation.  

The travel times data, as provided by Uber Movement, is derived from anonymized 

and aggregated trip location data that is spatially resolved to the nearest census tract. 

Although sub-hourly data may be available from the platform owner, we downloaded intra-

day travel times at the highest granularity publicly available, which updates every 24 hours, 

for the time interval between 7 pm and midnight. Because the travel distance for every tract 

may differ, we normalized the travel times data by the distance between origin and 

destination tracts. This allows for direct comparisons between trips to different parts of the 

city. The dependent variable for analysis in the Midtown and MARTA experiments is 

therefore the daily evening travel time per mile. In the Mercedes Benz experiment, we 

normalize the travel time per mile by the number of attendees to each event during July 

and August. In this way, we mitigate the possibility that during post-ban dates there could 

be more people at the stadium than before. 

The independent variables include location-based statistical controls such as census 

tract characteristics, proxy variables for number of transit alternatives, and measures for 

common time trends that could impact travel times including daily precipitation, and time 

dummies. The census tract characteristics are variables that impact traffic congestion in the 

area include the number of vehicles owned per tract, which measures residential density. 

Because the ban was implemented coincident with the academic school year, we include 

school enrollment per tract as a control for differential impacts on traffic due to school size. 

The transit alternative variables impact travel mode choices made by commuters and 
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include the number of transit routes, Walk Score, and number of bike share hubs. We also 

considered other transit alternative variables such as the Transit Score, but these could not 

be used in the analysis due to high correlation with other features. Because on rainy days 

it is more likely that people would drive, we also include a daily precipitation dummy to 

indicate rainy days. To merge precipitation data with the tract-level observations, we found 

the nearest weather station to each tract, using published data from NOAA (2021). It is 

possible that there could be different congestion effects on weekdays and weekends. 

Additionally, general traffic congestion could increase during the summer months such as 

mass gatherings during summer events. To capture this and other unobserved time varying 

factors, we include monthly and day-of-the-week dummies.   

2.3.4 Econometric Analyses 

2.3.4.1 Triple Differences Estimator 

For the econometric analyses in the Midtown experiment, we implement a 

difference-in-differences estimator that compares mean travel times per mile for the policy 

zone and counterfactual pre and post policy. To provide more robust quantitative estimates, 

we also implement a triple differences (DDD) estimator with secondary counterfactuals, as 

DDD models can reduce bias relative to a difference-in-differences approach, especially in 

the presence of any omitted variables (Berck & Villas-Boas, 2015). The unit of analysis is 

at the tract level. Each mean travel time per mile, Y, is calculated for a given time period 

and area of the city. Equation 5 describes the DDD estimator below.           

𝐷𝐷𝐷 = #$𝑌!_#
$%&' − 𝑌!_#

$()' − (𝑌*!_#
$%&' − 𝑌*!_#

$() )* − #$𝑌!_*#
$%&' − 𝑌!_*#

$() ' − (𝑌*!_*#
$%&' − 𝑌*!_*#

$() )* (5) 
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To designate the policy zone, P represents the areas affected by the policy ban and 

NP represents the area not affected by the ban. To designate scooter service areas, S 

represents areas where micromobility services are available and NS represents areas where 

micromobility services are not available. Given the unexpected nature of the policy ban 

and its timing, our identification strategy allows us to estimate treatment effects during 

evening hours. We are not able to estimate congestion effects during other hours of the 

day. 

2.4 Results 

2.4.1 Descriptive Statistics 

We study the variations in the travel times per mile in urban areas of the Atlanta 

metropolitan area. Table 6 describes the dependent variable for treatment and 

counterfactual areas in the three experiments. We note that the travel times per mile in the 

Mercedes Benz experiment have been normalized to incorporate the potential effects of 

attendance to each game in traffic congestion.  

Table 6 - Descriptive statistics for the dependent variable. 

Travel times per mile (7:00pm-midnight) Mean S.D. Min Max Observations 
Recurring mobility       
    Midtown experiment Midtown tracts  5.60 1.42 1.70 13.75 2,394 

Cumberland tracts 2.37 0.96 0.89 8.00 1,679 
Buckhead tracts 3.00 0.64 1.39 5.71 1,710 
Sandy Springs tracts 2.34 0.96 0.62 13.97 17,347 

    MARTA experiment Policy zone subway tracts 4.91 2.35 1.16 29.25 10,735 
No-policy zone subway tracts 4.02 1.79 1.16 21.12 2,758 

Event-based mobility       
    Mercedes Benz experiment Stadium tract 7.60 2.72 2.43 13.35 120 
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Table 7 describes demographic, transit characteristics and school enrollment per 

tract for the treatment and counterfactual areas in the Midtown experiment. The Midtown 

and counterfactual areas are statistically similar in population size, median age, median 

income, vehicles owned per person, total school enrollment, and college enrollment. The 

Midtown area includes 7 census tracts. The counterfactual areas include Cumberland (6 

tracts), Buckhead (6 tracts), and Sandy Springs (21 tracts), which were chosen as adjacent 

urbanized areas with and without scooter deployment (see Figure 1). Demographics and 

school enrollment are from the 2015 American Community Survey and the transit 

characteristics are collected from publicly available data provided by transit agencies, 

available at AllTransitTM.  

Table 7 - Descriptive statistics for Midtown and counterfactual tracts. 

 Midtown tracts Counterfactual tracts 

p-value  Mean S.D. Min Max Mean S.D. Min Max 

Demographics          

     Population  3,966 1,188.7 1,910 5,317 4,920 1,536 1920 7768 0.09 

     Median age 34.0 5.7 26.0 44.6 38.1 7.7 27.9 55.5 0.14 

     Median income 53,333 16,797 30,290 84,593 51,673 14,158 29,051 83,800 0.81 

     Vehicles owned/person 0.4 0.1 0.3 0.5 0.5 0.1 0.3 0.7 0.19 

Transit Characteristics          

     Transit score [1-10] 9.3 0.3 8.9 9.6 5.5 2.1 2.0 9.0 0.00 

     No. of transit routes 41.9 16.2 11.0 61.0 3.7 2.9 1.0 11.0 0.00 

     Walk score [1-100] 82.9 11.0 62.0 91.0 28.7 21.4 0.0 73.0 0.00 

     No. bike share hubs 4.6 1.9 2.0 7.0 0.6 1.8 0.0 9.0 0.00 

School enrollment          

     Total 866.3 456.7 347.0 1,498.0 1020.0 392.3 243.0 1644.0 0.43 

     K-12 229.4 197.0 62.0 606.0 625.3 341.6 51.0 1393.0 0.00 

     College 605.7 419.7 178.0 1436.0 320.4 203.8 29.0 966.0 0.13 
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Similarly, Error! Reference source not found. describes demographic, transit c

haracteristics and school enrollment per tract for the treatment and counterfactual tracts in 

the MARTA experiment. The policy and no-policy zone are statistically similar in 

population size, median age, number vehicles owned, total school enrollment, K-12 

enrollment, and college enrollment. The policy zone includes 19 census tracts, and the no-

policy zone includes 12 census tracts, which were chosen as adjacent to MARTA subway 

stations inside and outside the policy zone.  

Table 8 - Descriptive statistics for MARTA and counterfactual tracts. 

 Policy Zone No-Policy Zone p-value 

 Mean S.D. Min Max Mean S.D. Min Max 

Demographics          

     Population 3,691.4 1,616.5 1,195.0 7,010.0 4,707.8 1,886.1 2,306.0 7,438.0 0.14 

     Median age 35.7 6.3 21.9 49.0 35.8 5.4 26.6 48.0 0.98 

     Median income 26,811 17,120 11,458 62,728 46,339 19,181 16,653 75,668 0.01 

Transit 
Characteristics 

         

     Number of vehicles  1,217.1 849.5 185.0 2,925.0 1,696.3 767.2 525.0 2,665.0 0.12 

     Transit score [1-10] 9.1 0.6 7.5 9.8 8.4 0.6 7.6 9.1 0.00 

     Transit routes 23.3 23.3 3.0 74.0 9.4 2.5 5.0 15.0 0.02 

     Walk score [1-100] 69.7 21.3 24.0 96.0 52.3 23.1 14.0 95.0 0.03 

     No. bike share hubs 2.5 3.2 0.0 11.0 0.3 0.9 0.0 3.0 0.01 

School Enrollment          

     Total 879.9 662.6 347.0 3135.0 1067.8 526.3 476.0 2264.0 0.39 

     K-12 388.4 354.1 9.0 1564.0 695.9 372.5 311.0 1544.0 0.03 

     College 463.4 683.7 67.0 3038.0 243.3 183.6 10.0 575.0 0.20 

 

2.4.2 Effects of the Ban on Traffic Congestion 

For recurring mobility, we find evidence of a congestion effect due to the policy 

ban of 0.212 (s.e. 0.038) minutes per mile in the Midtown experiment, which measures 
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travel behavior in the urban center. For an average commute in Fulton County, this 

translates to an estimated increase in evening commute times of 1.9 to 3.8 minutes per trip. 

To calculate the estimated increase in travel times for a typical commute in the City of 

Atlanta, we multiply the mean congestion effect from our experiments by the average 

distance of a typical commute in the city. The Atlanta Regional Commission estimates that, 

on average, a resident of Fulton County drives 13.4 miles to work, each way (20). This 

result indicates that when scooters are not available, a statistically significant substitution 

between micromobility and personal vehicles is occurring. Similarly, for the MARTA 

experiment which measures travel decisions around transit hubs, we find evidence of a 

congestion effect due to the policy ban of 0.290 (s.e. 0.054) minutes per mile. This 

translates to an estimated increase in evening commute times of 2.5 to 5.3 minutes per trip. 

Given that the 95% confidence intervals overlap for both experiments, we report 

quantitatively similar effects for evening travel. For event-based mobility, we analyze 

nearby travel times pre and post policy for days of major sporting events at the Mercedes 

Benz Stadium. The timing of the ban was coincident with Major League Soccer season. 

Given the increased use of all travel modes for sporting events, we expect to find a larger 

congestion effect from the policy ban, as compared to our recurring mobility estimates. 

Consistent with this hypothesis, we find an increase in travel times of 0.886 (s.e. 0.169) 

minutes per mile during soccer game days. For example, for a suburban resident who lives 

an average of 13 miles away from the city, the policy ban produces an increase in travel 

time of 11.9 minutes in returning home from the soccer game. The results are summarized 

in Table 9. These effects could be very significant considering the value of time. Although 

a 2 to 5-minute delay for daily commuting and a 12-minute delay for special events may 
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seem manageable for an individual trip, this unexpected cost quickly adds up when 

aggregating across large populations of commuters. Next, we discuss the implications of 

these results in the context of potential economic impacts, sustainability outcomes, and 

data sharing policies. 

 

Table 9 - Estimated travel time increases. 

 I II III IV 
  Mean congestion effect (min/mile) [Lower 95% CI, Upper 

95% CI] (min/mile) 
[Range of travel time 

increase (min)] †   Diff-in-diff/ FE Triple differences 
Recurring Mobility          
     Midtown experiment ‡  0.219***  0.212***      [ 0.138, 0.286].                  [1.85, 3.83]   
         (0.020)        (0.038)     
     MARTA experiment  0.290***               -       [0.185, 0.395]                      [2.48, 5.29]  

         (0.054)             -     
Event-Based Mobility          
     Mercedes Benz experiment §  0.886***                -      [0.554, 1.218]                  [7.43, 16.32]  

         (0.169)             -     

† For this calculation, we use the average commute distance of 13.4 miles for Fulton County published by the Atlanta 
Regional Commission (2020). 
‡ The upper and lower 95% CI and the range of travel time increase are based on the triple-differences estimator. 
§ This estimate is based on the fixed effects estimator. 

 

2.4.3 Robustness Checks 

As robustness checks, we also tested several additional control variables that could 

also impact travel times per mile. For example, in the Mercedes Benz experiment, we tested 

dummies for the existence of large co-events (e.g. State Farm Arena, Suntrust Park, large 

concerts, etc.), and additional time dummies (such as weekly) as covariates in the 

regression models. For robustness, we also tested alternative specifications and validated 

parallel time trends pre-policy (see Figure 9). To test for the presence of possible 

unobservable factors, we estimated the results with fixed effects estimators and achieved 

similar results. For example, in the Midtown experiment, the mean congestion effect using 
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a fixed effects estimator is 0.220 versus the DD estimator of 0.219 or the DDD estimator 

of 0.212. Because our results are most conservative with the DDD estimator, we also report 

the DDD result in Table 1. In the MARTA experiment, we found that the fixed effects 

estimate of 0.254 was comparable to the DD estimate of 0.290 (see Table 9). This indicates 

that our set of statistical controls and time dummies are generally appropriate and 

conservative. It is possible that there could be differences in the magnitude of the effects 

on weekdays versus weekends due to differences in use patterns and rider preferences. We 

conducted supplemental analyses to generate congestion estimates for weekends and found 

quantitatively similar effects. We also conducted a series of placebo tests by estimating 

treatment effects in the MARTA and Midtown experiments with data from the pre-policy 

period where effects are logically impossible. As expected, these placebo tests revealed 

treatment effects not statistically different from zero.  
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Figure 9 - Test of parallel time trends assumption. The figure shows evening travel 
times per mile for 30 days pre and post policy. The shaded bands represent 95% 
confidence intervals for the treatment and control areas and provide evidence of 
parallel time trends during the baseline period for (A), Midtown experiment and (B), 
MARTA experiment. The Mercedes Benz experiment is not shown because the 
estimates are based on the fixed effects estimator. See Fig. 1 for additional details. 
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Although there have been significant impacts of COVID-19 on travel patterns, the 

results derived in this study are not affected by the pandemic response because the time 

period analyzed in the study occurs at least 6 months prior to the restrictions implemented 

in the city. 

2.5 Discussion 

2.5.1 Economic Impacts 

Given the increased congestion as an unintended effect of the policy, we evaluate 

the potential economic impacts for commuters. To calculate the economic damages from 

increased congestion, we use the Value of Time (VOT) estimates for personal travel in the 

U.S., which is $13.60 USD per hour spent in traffic, according to the U.S. Department of 

Transportation (Office of the Secretary of Transportation, 2016). To get the total number 

of trips, we referenced the number of daily commutes in Fulton County (534 sq mi) and 

linearly scaled it by land area for Atlanta (137 sq mi) and share of evening commutes 

(approximately 11%) to get a more precise estimate (Federal Highway Administration, 

2017). For example, for the Midtown experiment the estimated congestion effect of 0.212 

minutes per mile is multiplied by the average commute distance of 13.4 miles, which 

results in a value of 2.84 minutes per trip. To get the economic impact, we multiply this 

number by the VOT of $13.60 USD which gives an impact of $0.64 USD per trip. Based 

on the best available information, the total number of evening trips per year in Atlanta is 

3.50 million. The derived economic impact in this example is $2.25M USD per year. The 

ranges of $1.9M to $5.5M USD reflect the upper and lower 95% confidence intervals on 

the congestion estimates. These estimates reflect only the direct effects of the VOT and do 
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not include other indirect effects, as described in the main text. To contextualize these 

program impacts, the city raised about half a million dollars in permitting and device fees 

across 10,500 dispatched devices during the year the ban was enacted. Although these 

economic costs were internalized by citizens, the unintended damages are equivalent to 

approximately 4 years of the city’s micromobility operating revenues (Office of Mobility 

Planning, 2019). We also calculated economic impacts using the Value of Reliability 

estimates and found quantitatively similar results. A limitation of the impact estimates is 

that we reflect only the direct value of time and do not consider indirect factors from 

increased traffic congestion. For example, indirect costs may also include health risks from 

increased emissions, extra fuel costs due to idling, increased traffic accidents and fatalities, 

which would increase the cascading negative effects. Although out of scope in the current 

study, the welfare effects of these micromobility bans are important future work. We note 

that we only measure the short-run effects of the policy ban. It would also be interesting to 

see if these effects continue over more time or if they can persist in other locations and 

geographies.  

2.5.2 Sustainability Benefits 

Critics of micromobility solutions point to the fact that scooters may not displace 

cars and hence do not achieve sustainability co-benefits (Campbell & Brakewood, 2017). 

Contrary to this view, we find that commuters significantly revert to car-based travel (e.g. 

personal vehicles, ride sharing or ride hailing) once micromobility devices are not 

available, which results in statistically significant increases in travel times not intended by 

the original policy. We find that the dominant behavioral response is to substitute 

micromobility with cars. Under the habit discontinuity hypothesis, the results suggest that 
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environmental considerations may not drive behavioral decisions for many micromobility 

users. This is important because as consumer preferences are shifting towards longer trip 

distances (Heineke et al., 2020), there is an increasing opportunity for emissions reductions 

from a broader set of consumers who are not necessarily environmentally conscious.  

2.6 Policy Recommendations 

The availability of new digital data streams can allow governments and policy 

makers to address service provision and potential inequities for new mobility. Given the 

value of this type of data, platform owners have few incentives to share, causing known 

issues of poor data interoperability. Interoperability is the ability to access and process data 

from multiple sources that links records for mapping, visualization, and other forms of 

analysis (United Nations, 2018). Several global organizations, such as the UN’s Economic 

and Social Council, and World Data Forum, have called for governance mechanisms and 

partnerships to support the implementation of disaggregated, high-quality data for 

sustainable development (World Data Forum, 2021). Despite these national and 

international efforts, many practical challenges remain and we suggest the following local 

and regional policies. First, disclosure policies need to be developed so that city partners 

have a process for anonymizing and aggregating records that are granular enough for a 

wide range of analyses, while ensuring privacy protections for personal data.  Second, 

ensuring continuity and consistency in archival data access will be necessary, particularly 

when smaller data owners exit the market or services are otherwise interrupted. Third, data 

standards are needed at a regional scale to enable interoperability at different levels of 

aggregation and time periods. The Uber Movement releases provide a path forward. For a 

review of data-related sustainable development issues, see the World Data Forum (2021). 
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Decisions that shape our cities can lead to unexpected effects. Cities around the 

world, such as Singapore, Montreal, West Hollywood, and Winston-Salem, have instituted 

bans and other restrictions on shared micromobility, causing larger than expected economic 

damages. We have established that, when scooters and e-bikes are banned, there is a 

significant increase in traffic congestion in the city center, both in daily commuting and 

special events. This comes with an economic cost of increased time travel. It remains 

unclear whether greater public awareness of these unintended congestion effects could shift 

public pressure on micromobility bans. As an early adopter of micromobility, the 

metropolitan areas of Atlanta were divided by the policy in meaningful ways that allow for 

causal interpretations and analysis of spatial behaviors. To accelerate adoption of 

micromobility and achieve its associated sustainability benefits, we argue that cities will 

have to make additional investments in both physical infrastructure and digital 

infrastructure. For physical infrastructure, land use and space allocation will require longer 

term planning such as converting lanes usually reserved for cars into bike lanes that can be 

used for micromobility. We are already seeing evidence of this in cities like Milan, 

Brussels, Seattle, and Montreal (Heineke et al., 2020). For digital infrastructure, data 

disclosure rules and interoperability standards will be critical in the short run. 
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CHAPTER 3. CAUSES OF COST REDUCTIONS IN LITHIUM-

ION BATTERIES 

3.1 Introduction 

Is the future of transportation electric? This important question has been explored 

in research from a variety of perspectives including technical, economic, environmental, 

and policy. The success of public and private programs in deploying electric vehicles (EV) 

suggests that the future of passenger transportation is likely to be electric. However, electric 

powertrain technologies are still facing barriers and challenges. This study examines one 

of the main challenges for the adoption of electric transportation, the cost of lithium-ion 

batteries (Nykvist & Nilsson, 2015; Tran et al., 2012). 

In this work, we analyze the decrease in cost of batteries for automotive 

applications observed during the past decade and determine the causes of the cost 

reduction. To achieve this goal, we model the cost of lithium-ion batteries used in battery 

EV and determine which variables of the cost are responsible for the decrease in cost in the 

2012-2015 and 2015-2019 periods, using the BatPaC model developed by Argonne 

National Laboratory (2020). Then, we assign these cost reductions to mechanisms 

including learning-by-doing, economies of scale, and research and development. Finally, 

we analyze which policy instruments and programs are likely to have contributed to the 

cost reductions observed from the data. The main research question of this study is the 

following: 
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Which factors have contributed to the reduction in cost of lithium-ion batteries during 

the 2012-2010 period? 

Previous studies have dealt with this question; however, none has exploited the 

details of the battery cost components. This chapter is organized as follows. First, the 

background section describes the current EV market in the US, the types of lithium-ion 

batteries used in commercial vehicles, and the causes of cost decrease of batteries and other 

technologies available in the literature. Second, the methods section details the cost model 

for battery packs and describes the approach used to estimate which variables are 

responsible for the cost reduction in the time windows considered in the study. 

3.2 Background 

3.2.1 Market for EV in the US 

In recent years, the transportation sector has become the main source of carbon 

dioxide (CO2) emissions in the US (U.S. Energy Information Administration, 2019). 

Previous studies have shown that the adoption of alternative fuel vehicles (AFVs), 

including EV, and increased technological learning can decrease carbon dioxide emissions 

from freight and passenger transport (Lee and Thomas 2017; Lee et al. 2013; Choi et al 

2013; Pasaoglu, Honselaar, & Thiel, 2012). The sales of hybrid electric vehicles (HEV), 

plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV) in the US 

have certainly increased during the last decade (Alternative Fuels Data Center, 2021). 

However, a larger deployment is required to achieve CO2 emissions targets established by 

states and cities around the country. Figure 10 shows the sales of different BEV models 
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from 2011 to 2019. It is evident from this table that the introduction of Tesla Model 3 had 

a large impact in the increase of sales of BEV after 2017. 

 

Figure 10 - Sales of BEV car model during the 2011-2019 period (Argonne National 
Laboratory, 2019). 

To study the decrease in cost during the last decade, we select the batteries used by 

some of the most popular cars sold each year of the analysis. Table 10 shows the five most 

popular BEV makes and models during 2012, 2015, and 2019, the kWh available in the 

battery pack of the vehicle, and the material used in the cathode of the battery cells. For 

2019, we present 5 models due to the larger number of alternatives available in the market. 
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Table 10 - Most popular car makes and models, according to sales (Argonne National 
Lab, 2019). 

Year Car make and model Energy (kWh) Cathode material 

2012 Nissan Leaf 24 LMO 

 Tesla Model S 60,100 NCA 

2015 Tesla Model S 60,100 NCA 

 Nissan Leaf 30 LMO 

2019 Tesla Model 3 54/62/75 NCA 

 Tesla Model X 75/100 NCA 

 Chevy Bolt 60 NMC 622 

 Tesla Model S 75/100 NCA 

 Nissan Leaf 62 NMC 622 

2021 Tesla Model 3 (China) 55 LFP 

 

To execute the analysis, we compare the battery available in a Nissan Leaf EV in 

2012, 2015, and 2019. The Nissan Leaf has the advantage of being available during the 

entire time of the study and of being placed among the most popular EV in the US. Also, 

it is interesting to study the consequences of the change in cathode material between the 

2015 and 2019 models, as shown in Figure 11. Next section describes, in general terms, 

the operation of a battery and the cell chemistries available in battery packs used in 

commercial EV. 
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Figure 11 - Battery chemistry and structure in LEAF generations (Nissan, 2021). 

3.2.2 Policies 

Industrialized nations around the world have established strong commitments to 

reduce or eliminate the number of internal combustion engines on the streets. For example, 

the United Kingdom and China have decided to ban sales of conventional fossil fuel 

vehicles by 2030 and 2035, respectively (Fleming, 2020; Sperling & Hardman, 2021). To 

achieve these goals, government have attempted to take leadership in LIBs development 

and deployment through the implementation of a variety of initiatives. The results of these 

initiatives have been mixed. Regarding research and development, Asian countries have a 

relatively clear dominance since they host the largest LIBs manufacturing firms by market 

share and installed production capacity (Statista, 2018b; Bloomberg NEF, 2017). 

Regarding deployment, Europe has established a clear leadership in plug-in EV adoption 

with countries like Norway, Iceland, and the Netherlands having a market share for EVs at 

least 3 times larger than in the U.S. or China (International Energy Agency, 2019). Table 
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11 summarizes the initiatives available in China, US, UK, and Japan that support the 

demand and supply of EVs. 

Table 11 - Comparison of EV policies in major markets. 

 

Source: CSIS, 2018. 

The US has a long trajectory of seeking leadership in the development of LIBs and 

other technologies. Initiatives led by public or private entities in the country are oriented 

at supporting LIBs at different stages of development. The US DOE Vehicle Technologies 
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Office (VTO) supports R&D and deployment of transportation technologies, including 

LIBs. This entity has supported a number of breakthroughs in battery technologies during 

the last decade, focusing establishing partnerships with industry leaders. For example, 

hybrid vehicles from BMW and Mercedes Benz are currently lithium-ion technologies 

developed under VTO-supported projects (VTO, 2021). These partnerships provide 

evidence of collaboration between organizations located in different countries that pursue 

a common goal. Other partnerships established with the support of the US government, 

have focused on strengthen the domestic technology and industrial base for batteries. 

Examples of these collaborations are the US Council for Automotive Research LLC 

(USCAR), funded in 1992 by Chrysler, Ford, and General Motors, and the Federal 

Consortium for Advances batteries (FCAB), established in 2020 to secure domestic 

production of batteries (US DOE Office of Energy Efficiency and Renewable Energy, 

2020; USCAR, 2021).  

The European Union has also set the goal of building a strong European battery 

industry to capture part of these growing market. The Horizon 2020 initiative has made 

available more than $550M USD to batteries programs between 2014 and 2020 (European 

Commission, 2018). Funding is available to support projects along the entire value chain, 

including raw materials, advanced manufacturing, and recycling. In 2021, the European 

Union approved the European Battery Innovation program, $3.5B USD initiative to support 

the development and processes that go beyond current technology (Lambert, 2021). Firms 

such as Tesla and BMW will be subsidized under this program to produce batteries in 

Europe and contribute to decreasing battery imports.   
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The efforts from the Chinese government are certainly among the most ambitious 

worldwide. According to the Center for Strategic & International Studies (CSIS), China 

has over-invested in government priority sectors (Kennedy & Rosen, 2019). Manufacturers 

are scaling up their operations while beyond what makes economic sense due to the support 

signals sent by the Chinese government. Currently, this applies to high tech sectors 

including solar panels, wind turbines, robotics, and EVs. For example, in 2019, China 

accounted for more than 450 EVs producers who shared a market of 1.8 million cars. On 

average, each firm could sell 4,000 vehicles in that market, which is undoubtedly not 

enough to pay for investment and operational costs of an EVs manufacturing plant (CSIS, 

2019; Washington Post, 2020). Also, subsidies from the Chinese government are large. 

CSIS estimates that, between 2009 and 2017, the Chinese government provided subsidies 

worth a 40% of the EV sales registered between 2007 and 2017 (CSIS, 2019). In 2021, 

China reduced the subsidies for EVs by 20% (Fortune, 2021). 

3.2.3 Batteries for Automotive Applications 

As of 2016, the battery pack represents 75% of the EV powertrain cost (Wolfram 

& Lutsey, 2016). Therefore, cost reductions in batteries leads to a significant decrease in 

the cost of electric vehicles. EV models available in the market during the last decade vary 

in the materials used and design of the battery cells. In this section, I focus on describing 

the advantages and disadvantages of cell materials. In this chapter, I do not consider the 

cost differences of cell designs because other studies have found that the exact design of a 

cell does not have a significant impact on the cost of the cell (Argonne National Laboratory, 

2019). 
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3.2.3.1 Battery Operation 

The operation of a battery cell can be summarized as follows. The cost model 

focuses on the four main components of the cell: a negative electrode called the anode, a 

positive electrode called the cathode, an electrolyte, and a separator. The separator is a fine 

sheet of a polymer that prevents the electrodes from making contact and creating a short 

circuit. During the charging process, the battery is connected to a power source and 

electrons and positively charged lithium ions move from the cathode to the anode 

(Gopalakrishnan et al., 2017). Then, during discharge, electrons leave the anode as 

electricity and lithium ions travel back from the anode to the cathode through the 

electrolyte (Gopalakrishnan et al., 2017). A simple schematic of this process can be found 

in Figure 12. 

 

Figure 12 - Working mechanisms of a lithium-ion battery (Xu et al., 2014). 

In the early 1900s, lead-acid batteries started being deployed in EVs 

commercialized in the US. However, due to their low energy content and efficiency, this 

type of chemistry was used almost exclusively for starting, lightning, and ignition 



 62 

applications in vehicles for the rest of the century (Schmuch et al., 2018; Scrosati et al., 

2015). During the last decade, lithium-ion batteries have demonstrated a wide range of 

advantages with respect to other storage technologies for automotive applications. These 

advantages include a higher energy content (260 Wh/kg compared to 40 Wh/kg for lead-

acid cells), higher efficiency, and long cycle life (Ding et al., 2019; Omar et al., 2021; 

Schmuch et al., 2018; Zubi et al., 2018). 

3.2.3.2 Anode and Cathode Chemistries 

In this section, we focus on describing the advances observed during the last decade 

in cathode and anode materials considering that both electrodes represent more than half 

of the manufacturing cost of a battery pack (Berckmans et al., 2017). The material used in 

the negative electrode in the majority of commercial EV is graphite (Scrosati et al., 2015). 

This material has been used in automotive applications for the past two decades and its 

advantages include low cost, good electrochemical performance, low volume expansion 

during charging and discharging, and abundance (Nitta et al., 2015). Lithium titanate (LTO, 

Li4Ti5O12) is a promising candidate to replace graphite as the anode active material for 

EV applications due to its advantages of fast charging/discharging capabilities, superior 

safety performance, longer cycle lifetime, and capability to work at high- and low-

temperature conditions (Ding et al., 2019; Jung et al., 2011; Wang et al., 2012). 

Cathode materials have been identified as the bottleneck with regard to increasing 

the energy capacity of a battery pack. The four most common active materials used in 

cathodes for EV applications are lithium nickel manganese cobalt oxide (NMC), lithium 

nickel cobalt aluminum oxide (NCA), lithium manganese oxide (LMO), and lithium iron 
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phosphate (LFP). Each one of these cathode chemistries presents advantages and 

disadvantages. As a result, current battery pack manufacturers have chosen different 

alternatives for their battery cells (Ding et al., 2019). NMC is one of the more broadly used 

chemistries in commercial EVs (Zubi et al., 2018). The cathode active material is 

LiNiMnCoO2 with different proportions of nickel, manganese, and cobalt producing a cell 

with different characteristics. Higher nickel content leads to higher energy capacity 

(Schmuch et al., 2018); however, it also produces a battery with shorter life and lower 

thermal stability (Berckmans et al., 2017; Myung et al., 2017). NCA cathodes 

(LiNiCoAlO2) are the technology currently used by Tesla. These battery cells have very 

high energy density but are known for being potentially thermally unstable (Berckmans et 

al., 2017; Zubi et al., 2018).  

Both NMC and NCA cathodes contain cobalt. LMO (LiMn2O4) is a cobalt-free 

chemistry characterized by low energy content, a limited cycle life, and a low cost 

(Berckmans et al., 2017). LMO is the oldest cathode chemistry used in EV applications, 

however, in new models they are only used combined with NCA and NMC chemistries. 

Finally, LFP cathodes (LiFePO4) have a marginal role in EV applications due to their low 

energy content (Zubi et al., 2018). 

Scientists have studied the use of nickel oxides in cathode chemistries for lithium-

ion batteries since the early 1990s (Dahn et al., 1990; Ohzuky et al., 1993; Schipper & 

Aurbach, 2016). Then, partial substitutions of nickel with manganese and cobalt were 

studied (Kang et al., 2006; Rossen et al., 1992). On one side, studies found that an 

increasing content of manganese reduces the capacity of the battery (Schipper & Aurbach, 

2016). On the other side, researchers found that adding more cobalt to the cathode active 
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material improves the cycling behavior of the battery (Delmas & Saadoune, 1992). This 

work culminated in mixing both alternatives in the NMC cathode at the end of the 1990s 

(Liu et al., 1999). 

3.2.3.3 Materials 

The challenges associated with the raw materials needed for LIB manufacturing 

depend on the global availability and location of each material. As shown in Figure 13  

panel A, the most demanded material for LIB manufacturing is graphite which is a 

relatively abundant material. The largest producer and consumer of natural and synthetic 

graphite is currently China (U.S. Geological Survey, 2017). 

The lithium, which is the second most demanded material for LIB production, is 

characterized by having an oligopolistic market structure, with 5 mining firms having a 

75% of the market share, as shown in Figure 13 panel B. Lithium is the key raw material 

used in LIBs and therefore it is expected that its demand increases significantly during the 

next decade. For example, Ganfeng, a Chinese firm with operations in several countries, 

expects to double its capacity from 100,000 in 2020 to 200,000 metric tons in 2025 

(Palandrani, 2020). Long-term contracts with major battery producers such as Panasonic, 

LG Chem, and Samsung, contribute to secure the returns of these investments. 

The third most demanded LIB raw material, according to Figure 13 panel A, is 

Nickel. The growing prevalence of nickel-rich cathode chemistries (NMC) will lead, in the 

next decade, to an increasing demand for this material. Livent, a US based firm that focuses 

on next generation LIBs, estimates that nickel-rich batteries should increase their market 

share from 25% to 75% by the end of the decade (Palandrani, 2020). Livent’s multi-year 
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agreement with Tesla, the largest EV manufacturer with NMC cathodes in its battery packs, 

is expected to contribute to the growth of Nickel demand.  

Cobalt is the fourth most demanded and with the highest supply risk material for 

LIBs manufacturing, according to the DOE’s Office of Energy Efficiency and Renewable 

Energy (DOE, 2019). The demand of cobalt is expected to increase significantly as the 

demand for EVs grows in the next decade. Consumer electronics such as cellphones or 

laptops contain 5-20g of cobalt while LIBs use 5-30kg of the material, depending on the 

battery chemistry and capacity. The DOE aims to reduce the amount of cobalt from 19kg 

in a 100kWh NMC622 battery to 0-5kg in the next decade (DOE,2019). As shown in Figure 

13 panel C, the majority of the world’s cobalt is sourced from the Democratic Republic of 

Congo. Cobalt mining in the DRC has been questioned due to political instability, child 

labor, and environmental damages from the production of the material (Schmuch, 2018; 

Imasiku and Thomas, 2020). In addition to the direct human and environmental impacts, 

use of cobalt produces uncertainty around the price of cobalt and therefore the price of 

battery packs. 
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Figure 13 – Lithium-ion batteries raw materials statistics. (A) Global demand of key 
battery raw materials in 2018 (in 1,000 metric tons) (Statista, 2018a). (B) Market 
structure of current lithium supply (Palandrani, 2020). (C) Major countries in 
worldwide cobalt mine production from 2010 to 2020 (in metric tons) (Statista, 
2020c). 

A 

B 
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3.2.4 Mechanisms for Batteries Cost Reduction 

Previous research shows that the cost of automotive battery packs has been 

significantly decreasing during the last decade (Nykvist & Nilsson, 2015; Schmidt et al., 

2017). The last estimate published by Bloomberg New Energy Finance indicated that the 

average price of a battery pack in 2020 is $137/kWh which represents a 79% decrease from 

2013 (2020). The clean energy transition, powered by the adoption of cost competitive 

green technologies, requires a mix of innovation, investment, and deployment strategies 

for emergent technologies such as EVs. The causes of the cost reduction discussed in the 

literature can be classified in three main components: research and development, learning-

by-doing, and economies of scale. 

3.2.4.1 Research and Development 

Research and development have the potential to drive down the cost of energy 

technologies by facilitating experimentation (Nemet & Kammen, 2007). The amount of 

alternative cell materials used in LIBs presents a significant opportunity for R&D that can 

lead to further decrease the cost of battery packs for automotive applications. A relevant 

difference between R&D and the other mechanisms of LIBs cost reduction is that the effect 

of R&D in the price of a technology might only be observed decades later. A battery 

chemistry that is first demonstrated in a laboratory might only be deployed in vehicles 15-

25 years later (Element Energy, 2012). Notably, despite LIBs first being proposed in 1973, 

the first commercial lithium-ion battery was released by Sony in 1991. Other research 

developments may be implemented in a shorter time frame.  
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We analyze the amount of R&D in the field of LIBs from two perspectives. First, 

we summarize the investments in LIBs R&D declared by some of the leading countries in 

this technology. Second, we discuss the growing interest in LIBs by showing the number 

of patents and publications in the area.  

Governmental research agencies around the globe have declared their interest for 

contributing to the development of low cost and high energy density batteries. Table 12 

summarizes the declared investments made by the United States, Japan, China, and 

Germany during the last decade in LIBs R&D. 

Table 12 - Declared contribution of the United States, Japan, China, and Germany to 
lithium-ion batteries R&D. 

Country/Organization Goal Funding 
USA – Vehicle 
Technology Office, 
DOE 

Reduce the cost of LIBs to 
$80/kWh. 

~$100M a year for advanced battery 
materials and advances battery cells 
research. 

Japan – New Energy 
and Industrial 
Technology 
Development 
Organization (NEDO) 

Develop innovative technologies 
with cost competitiveness. 

~$30M a year for rechargeable 
batteries and energy storage systems 
research. 

China – Ministry of 
Science and Technology 

The energy density should be 
larger than 300Wh/kg for mass 
production and 400-500Wh/kg by 
2020. 

~217M between 2016 and 2018 for 24 
projects aimed at supporting research 
on high energy density lithium 
batteries. 

Germany – Federal 
Ministry of Education 
and Research. 

The Strategic Energy Technology 
(SET) plan aims at becoming 
competitive in the battery sector 
for e-mobility and stationary 
storage applications. 

~$717M for batteries R&D between 
2007 and 2018. 

Sources: DOE, 2017; Bresser et al., 2018. 

During the past couple of decades, public R&D expenditure did not keep up with 

private R&D expenditure and the level of innovation in the energy sector (Kittner et al., 

2017). For example, Panasonic, one of the largest LIBs manufacturers, invested more than 
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$4 billion in R&D per year between 2009 and 2020 (Statista, 2021d). Furthermore, DOE 

R&D expenditure decreased from 0.21% to 0.09% of GDP between 1990 and 2019 

(AAAS, 2020). The role of policy makers is crucial to achieve decarbonization goals in a 

cost-effective way. Policy makers can stabilize declining public R&D and facilitate venture 

capitalists’ investments in clean energy.  

The interest and efforts dedicated to LIBs technologies can also be measured by 

analyzing the number of academic publications and patents related to the field during the 

last few decades. First, battery-related literature increased 260% from 2010 to 2018 which 

represents 4.5 times more than research across all fields (Li et al., 2018). Second, the 

increasing efforts in the academic research community for developing LIBs are evident 

from the growth in the number of related scientific publications from 2000 to 2019, as 

shown in Figure 14. 

 

Figure 14 - Number of publications related to lithium-io batteries topics (Marinaro, 
2020). 
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It is evident that the two measures of research quantity are related to each other. 

The number of related scientific publications and patents filed is directly influenced by the 

R&D funding available to the researchers. A study found that the number of patents filed 

in China is correlated to the implementation of the New Energy Vehicles plan which 

increased the amount of funding available to researchers in the field (Zhang et al., 2017). 

3.2.4.2 Learning-by-doing 

The second mechanism of LIBs cost reduction is learning-by-doing. The cost of a 

manufacturing process can be improved through learning-by-doing if the change is a result 

of repetition in the process. The advantage that LIBs have with respect to other 

technologies is that this type of batteries are also used in other electronics applications, 

such as laptops or cellphones. Generally, a new battery chemistry has been used in smaller 

consumer electronics years before entering the more demanding EV batteries market 

(Element Energy, 2012). Projections of EV adoption indicate that, in the next decade, the 

demand for batteries for EV applications will grow significantly more than the demand for 

consumer electronics and energy storage, as shown in Figure 15. 
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Figure 15 - Expected global battery demand between 2018 and 2030, by application 
(Statista, 2021e). 

The learning-by-doing phenomena applied to batteries and other technologies have 

been studied in the literature using learning curves and experience curve models (Farmer 

& Lafond, 2016; Kittner et al., 2017; Matteson & Williams, 2015; Neij, 2008; Schmidt et 

al., 2017; Schoots et al., 2008). Previous research specific to batteries for EV applications 

found that the learning rate, the cost reduction following a cumulative doubling of 

production, is between 6% and 9% (Nykvist & Nilsson, 2015). 

3.2.4.3 Economies of Scale 

The last mechanism of cost reduction is economies of scale which contributes to 

manufacturing cost reductions from two sources. First, an increase in the volume of 

material processed can lead to a reduction in the unit price of the material. Second, and 

increase in the size of the manufacturing plant can lead to a decrease of the share of fixed 

costs, such as utilities or sales and administration, per unit produced. The relatively 

concentrated market structure of LIBs manufacturers suggests that this production process 

does benefit from economies of scale. In fact, the main 5 manufacturers by market share, 
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Panasonic, CATL, BYD, LG Chem, and Samsung, concentrate more than 62% of the 

global market share of LIBs (Statista, 2018b). 

3.3 Methodology 

3.3.1 BatPac Model 

We use the detailed information provided by the BatPaC Battery Manufacturing 

Cost Estimation tool to model the component of the cost of lithium-ion batteries for 

automotive applications (Argonne National Laboratory, 2020). This model is presented as 

a spreadsheet that describes the cost components and characteristics of multiple chemistries 

for types lithium-ion batteries. This includes the most common battery chemistries 

available in commercial EVs such as NMC622-G, NCA-G, and LMO-G. We use versions 

2.1, 3.0, and 4.0 of the BatPaC model, created in 2012, 2015, and 2020, respectively, to 

estimate the changes in cost over time. We select the most popular EV each year by sales 

to select the battery types that are included in the analysis. 

3.3.2 General Battery Pack Cost Model 

This section describes the cost equations used to model the cost of a lithium-ion 

battery pack manufactured for automotive applications. The BatPac model considers the 

following cost components (Argonne National Laboratory, 2019): 

• Total cost of materials: Includes the cost of materials used in the anode, cathode, 

separator, electrolyte, and current collectors of the battery cells.  
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• Total cost of purchased items: Hardware items included in the battery can be 

used at the cell, module of battery jacket level.  

• Additions to AC for thermal management: The power and life of lithium-ion 

batteries are negatively affected of the temperature exceeds of falls below the operation 

range. Thermal management alternatives included in battery packs include liquids and air 

extracted from the cabin. 

• Pack integration: Components necessary to integrate the battery pack into the 

vehicle’s electric drive system including the battery management system (BMS) and safety 

disconnects.  

• Total cost of direct labor: Labor costs for operations and immediate supervision 

of the manufacturing process. This cost is calculated based on the labor required for each 

processing step adjusted according to the rate of battery production. 

• Cost of variable overhead: Cost of indirect materials and labor, utilities and plan 

maintenance. It is calculated as 40% of direct labor and 20% of depreciation.  

• Cost of general, sales, and administration (GSA): Cost of the firm offices, taxes 

on income and property, cost of sales, and insurance. It is calculated as a 25% of variable 

overhead and depreciation.  

• Cost of research and development: Investment in on-going research and 

development to guarantee the competitiveness of the firm in the battery packs market. It is 

calculated as the 40% of the cost of depreciation, assuming that a larger plan would require 

more research and development activities. 
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• Cost of depreciation: Necessary investment to replace current equipment and 

infrastructure. The model considers that equipment and infrastructure need to be replaced 

every 6 and 20 years, respectively. 

• Per unit profit: return on investment for the firm calculated as a 5% of initial 

investment.  

• Warranty: resource available to reimburse customers in case of battery pack 

failure. It is calculated as a 5.6% of expected payments to the manufacturer.  

The total cost of a battery pack is calculated as the sum of the costs described in the 

previous list. It is important to notice that variable overhead, general, GSA, research and 

development, profit, and warranty are calculated as a percentage of other components of 

the cost. We focus the first part of the analysis on the costs that are not dependent of other 

cost factors (materials, purchased items, direct labor, depreciation, additions to AC for 

thermal management, and pack integration. In the following section, we describe the 

equations that describe each cost component per kWh according to the BatPac model 

(Argonne National Laboratory, 2020). 

3.3.2.1 Cost of Materials 

The cost of materials in the battery cells include the active materials for the anode 

and cathode, separator, electrolyte, and current collectors. For materials from 1 to n, we 

calculate the total cost of materials as described in Equation 6. 
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 (6) 

Where 𝑄0 is the quantity of material m used in each cell and 𝑃01  is the current price 

of the material in $ per kg or L. The current price of material m depends on the volume of 

material needed at the manufacturing plant in the current year, 𝑉01, as described in Equation 

7. 

 
𝑃01 = 𝑃0. ∙ Y

𝑉0.

𝑉01
]
234!

 (7) 

In this case, 𝑃0.  and 𝑉0. correspond to the baseline price and volume of material 

used in the manufacturing plant as specified by the BatPac model. Also, 𝑠𝑚 is the scale 

factor for material m. Equation 7 shows that, as the volume of material used in the 

manufacturing process increases, the price per unit (in $ per kg or L) decreases. 

3.3.2.2 Cost of Purchased Items 

The cost of purchased items includes hardware components included at the cell, 

module, and battery jacket level. In general, the cost of each hardware item is calculated as 

a fixed cost plus a variable cost that depends on the weight of the item. Equation 8 described 

the calculation the cost of purchased items, given that i corresponds to each hardware item 

at the cell, module, or battery pack level. 

 
𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑	𝑖𝑡𝑒𝑚𝑠	 Y

$
𝑝𝑎𝑐𝑘] =_(𝑃$ ∙ 𝑄$ + 𝐹𝐶$)

$

 (8) 
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In this case, 𝑃$ is the variable price per kg for item i, 𝑄$ is the mass of item i, and 

𝐹𝐶$ corresponds to the fix cost for each purchased item. 

3.3.2.3 Labor Costs 

Each step of the manufacturing process requires of a number of hours of labor per 

battery pack. For each step of the process p, this model calculates the cost of labor per 

battery pack as described in Equation 9. 

 
𝐿𝑎𝑏𝑜𝑟	 Y

$
𝑝𝑎𝑐𝑘] =

𝐿𝐶
𝐵 _𝐻61

6

 (9) 

In Equation 9, LC is the cost of labor in terms of dollars per hour of labor. We 

assume that labor has the same cost across the manufacturing process. Also, B corresponds 

to the number of battery pack manufactured per year in the plant and 𝐻𝑝𝑐  is the current 

number of hours of labor required per year in process p. Analogous to the price of materials, 

the number of hours of labor required in process p per battery back decreases as the volume 

of material processed increases (Equation 10). 

 
𝐻61 = 𝐻6. ∙ Y

𝑉61

𝑉6.
]
4"#

 (10) 

In Equation 10, 𝐻6. is the number of hours required in process p in a baseline 

manufacturing plant, 𝑉6. is the baseline volume of material processed in process p, and 𝑉61 

is the volume of material used in the current year. Also, 𝑠𝑝 corresponds to the labor hours 

scale factor for process p. From this expression, we can observe that, as the volume of 
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material processed increases, the total number of hours required in process p also increases. 

However, the growth rate is lower than 1, which implies that less hours per battery back 

are required as more material flows through the manufacturing processes. 

3.3.2.4 Depreciation 

The cost of depreciation included in the manufacturing of each battery pack 

includes the cost of building new plant infrastructure and replacing manufacturing 

equipment after a certain number of years. The model assumes that new infrastructure is 

built every 20 years and that manufacturing equipment needs to be replaced every 6 years. 

Then, the depreciation cost per battery pack is calculated as described in Equation 11. 
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B (11) 

𝐸𝑞𝑢𝑖𝑝6. and 𝐴𝑟𝑒𝑎𝑝𝑏 are the baseline equipment investment and plant area, 

respectively. Also, C corresponds to the infrastructure cost per square meter. This cost is 

the same for every manufacturing process p. Finally, we can notice that the quotient +𝑉𝑝
𝑐

𝑉𝑝𝑏
, 

comparing current and baseline production volumes is the same for the calculation of the 

cost of labor, infrastructure, and equipment. We denote the quotient +𝑉𝑝
𝑐

𝑉𝑝𝑏
, as R. However, 

the scale factors 𝑠$ are different for each type of cost. 

3.3.2.5 Total Cost 

We can combine equations 6-11 to summarize the manufacturing cost of a battery 

pack including, materials, purchased items, direct labor, and depreciation. Also, we divide 



 78 

by the number of kWh per battery pack to calculate the cost per kWh of energy stored. This 

summary expression is described in Equation 12. 
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(12) 

This summary equation is used for the analysis conducted in the rest of the study. 

The following section describes the methodology used to separate the causes of the 

decrease in the cost of battery packs over time given the discrete nature of the data 

available. 

3.3.3 Causes of Cost Reduction 

This section explains the methodology used to assign the causes of battery cost 

reduction to the different cost components identified in the previous section. In this study, 

we use the approach proposed by Kavlak et al. (2018) which characterizes the causes of 

cost reduction in photovoltaics modules. This approach allows to estimate the contribution 

of each component of the cost equation to the reduction in cost between two or more 

discrete points in time.  

Equation 9 describes the cost of a battery pack per kWh as a function of the set of 

variables 𝒙 = (𝑥2, 𝑥,, … , 𝑥;). Changes in x lead to changes in the cost of the battery pack. 

The total change in C(x) can be calculated as the total differential or the sum of partial 

differentials over x as shown in equation 13. 
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 (13) 

Then, the contribution of each variable in x to the change in cost can be determined 

by equation 14. 
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Equation 14 shows that the contribution of xi to the cost change depends on how 

much the cost C(x) changes with variations in xi r<=<>)s and on how much the variable xi 

changes over time r?>)
?(
s. This approach allows to determine the contribution of each 

variable in x to a change in C(x) in cases where the values of x and C(x) are continuous. In 

this study, we rely on discrete observations over time, therefore an extension of this 

approach is required.  

As shown in equation 9, the cost per kWh of a battery pack can be broken into a 

sum of cost components Ci, where 𝐶 = ∑ 𝐶$$ . Then, each cost component can be described 

using functions of the variables x (equation 15). 

 𝐶(𝒙) =_𝐶$#

𝒊

v𝑔$;(𝑥;)
;

 (15) 

Where 𝐶$# corresponds to a constant specific to each cost component and 𝑔$A(𝑟;) 

represents the relationship between cost component i and variable xz. The contribution of 

each cost variable xz to the variation in cost C can be calculated as the partial derivative of 
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equation 13 with respect to xz. Now, the total contribution of variable xz between t1 and t2 

can be estimated by substituting <=
<>*

 in equation 14. 
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In equation 16,  𝐶$(𝑡) represents the value of cost component 𝐶$ in a given moment 

t. We use 𝐶Bx  as an approximation of the value of  𝐶$(𝑡) between t1 and t2 calculated as 𝐶Bx =

∆=)
∆ DE =)

. Since 𝐶Bx  is a constant, it can be taken out of the integral. The final expression used 

to calculate the contribution of variable xz to changes in C(x) between t1 and t2 is described 

in equation 17. 
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In equation 17, 𝑔$;2  and 𝑔$;,  correspond to the value of component 𝑔$; that is part of 

cost component i and is a function of variable xz, evaluated in times t1 and t2, respectively. 

The expression in equation 17 can be interpreted as the sum of contributions of variables 

xz to the change in each cost component i. Each of these contributions is calculated as the 
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product of the value of the cost component in the time interval (𝐶Bx) and the rate of change 

in 𝐶𝑖 induced by variable xz. 

3.3.4 Causes of cost reduction 

The last part of the methodology involves establishing a relationship between the 

cost components identified in the cost equation for battery packs and the high-level 

mechanisms and policies included in the analysis. In this case, we study the three high-

level mechanisms previously described: R&D, learning-by-doing, and economies of scale. 

The cost components identified in Equation 9 will be assigned to a high-level mechanism 

depending on its type of contribution to the cost. For example, a decrease in the number of 

hours of labor used to produce a battery pack is assigned to learning-by-doing since we 

assume that the reduction is caused by a learning process at the employee or manufacturing 

plant level.  

 Finally, we review the set of public and private policies and programs that 

have been aimed at supporting each one of the thee high-level mechanisms. This review 

will provide insights about what instruments have been useful in supporting the lithium-

ion batteries cost decrease in the past and what type of initiative can be more effective in 

the future. 

3.4 Results 

3.4.1 Total Cost 

In this study, we conduct an analysis of the decrease in cost of LIBs during the 

2012-2020 period by focusing on the costs of materials, labor, equipment, and building 
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infrastructure. As shown in Figure 16 panel A, the cost of LIBs per kWh has decreased 

between 2012-2015 and 2015-2020. This is aligned with the results of other studies 

(Nykvist & Nilsson, 2015; Schmidt et al., 2017).  In Figure 16 panel A, we can see that the 

cost of LIBs decreased from $206.48 per kWh in 2012 to $168.76 per kWh in 2015 and 

$112.77 per kWh in 2020. This represents a cost decrease of 42% between 2012 and 2020.  

As described in the methodology section, several of the cost components shown in 

Figure 16 panel A are calculated as percentages of other cost components. This group 

includes the variable overhead, general, sales and administration, research and 

development, profit, and the warranty. These cost components depend exclusively on the 

value of the cost of materials, cost of purchased items, cost of labor, and depreciation. For 

this reason, we exclude this group of cost components from the analysis of the drivers of 

cost decrease. We focus the following analysis in the cost components shown in Figure 16 

panel B.  

The largest component of the cost of LIBs is the cost of raw materials used to 

produce the cells included in the battery pack. The cost of raw materials is also the cost 

component that decreased the most during the period of study by declining from $114.34 

per kWh in 2012 to $85.57 per kWh in 2015 and $62.56 per kWh in 2020. This translates 

to a decrease of 45% in this cost component between 2012 and 2020. This change in the 

cost of materials also contributed to 26% of the decrease in the total cost of LIBs per kWh 

in this period. The cost of purchased items, observed at the cell, module, and battery pack 

level, did not change significantly between 2012 and 2020, with a decrease of only 4%. 

The cost of labor, despite representing only 4% of the total cost in 2012, did vary 

significantly between the years in the study. Between 2012 and 2020, Figure 16 panel B 
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shows a decrease of 42% of the cost of labor to produce a kWh in a battery pack. Finally, 

the depreciation cost, including the cost of equipment and of building infrastructure, 

present the largest percentual decrease in the period of study. This cost decreased from 

$17.22 per kWh in 2012 to $14.73 per kWh in 2015 and $6.67 per kWh in 2020. This 

translates to a decrease of 61% of the cost of depreciation per kWh between 2012 and 2020. 

 

 

Figure 16 - Total cost of lithium-ion batteries for automotive applications in 2012, 
2015, and 2020. (A) Total cost per kWh. (B) Relevant cost for the study in kWh. 

 

A 

B 
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3.4.1.1 Cost of Materials 

Next, we take a closer look at the cost of raw materials needed to manufacture each 

of the components of a battery cell. As shown in Figure 17, the three largest components 

of the total cost of raw materials are the positive active material, negative active material, 

and the cost of separators. The total cost of the positive active material, or the material used 

in the cathode of each cell, has increased over time, both in magnitude and as a percentage 

of the total cost of raw materials. In 2012, the cost of the positive active material was 

$27.16 per kWh and represented a 24% of the total cost of raw materials. In 2020, the cost 

of the positive active material increased to $35.11 per kWh which represents a 56% of the 

total cost of raw materials. In the 2012-2015 period, we do observe a decrease in the cost 

of the positive active material driven by a small decrease in the cost per kg of the LMO 

ion. The large cost decrease is observed in the 2015-2020 period, driven by the change in 

the material used in the cathode from LMO to NMC. This change had two consequences. 

First, given the higher energy density of NMC, the amount of material used per cell 

decreased from 910 grams per cell in 2015 to 442 grams per cell in 2020. Second, the price 

of the cathode active material significantly increased from $8.5 per kg in 2015 to $20.5 per 

kg in 2020. These changes lead to the increase in the cost per kWh of the positive active 

material previously described.  

The second largest cost component shown in Figure 17 is the cost of the negative 

active material. The type of material used in the anode of the battery cell has not changed 

during the 2012-2020 period. The total cost of the negative active material has decreased 

from $20.48 per kWh in 2012 to $13.52 per kWh in 2015 and $12.26 per kWh in 2020. 

This translates to a decrease of 40% during the period of study.  
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The third largest component of the total cost of raw materials is the cost of 

separators. This component is a porous membrane based on polypropylene and 

polyethylene that separates the cathode and anode in the battery cell. The cost of separators 

has decreased dramatically during the last decade from $25.54 per kWh in 2012 to $17.44 

per kWh in 2015 and $5.10 per kWh in 2020. This decrease represents a drop of 80% of 

the cost of separators over this period. The causes for this cost decrease can be attributed 

to both the price and the quantity of the material used per cell. The price of separators 

dropped a 45% between 2012 and 2020. Furthermore, the quantity of material used in the 

separators decreased a 63% between 2012 and 2020.  

 

Figure 17 - Cost of raw materials in 2012, 2015, and 2020. 

3.4.1.2 Cost of Labor 

. The cost of labor represents only 4% of the total cost per kWh in lithium-ion 

batteries. This percentage remains constant across the period of study. The largest 

component of the cost of labor is the cost during the electrode processing, the first step of 

the battery manufacturing process, as shown in Figure 18. The cost of labor for the 
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electrode processing step is relatively constant between 2012 and 2015. This is partially 

because the hourly cost of labor is treated as constant during this period. However, Figure 

18 shows a large decrease in the cost of labor in electrode processing from $2.64 per kWh 

in 2015 to $1.00 per kWh in 2020. The main cause for this decrease is the 53% decrease, 

between 2015 and 2020, in the number of hours needed per pack for electrode processing.  

 

Figure 18 - Cost of labor in 2012, 2015, and 2020. 

3.4.1.3 Cost of Depreciation 

Figure 19 shows the cost of depreciation during the period of study, divided into 

the cost of equipment and building construction per kWh. Both cost components did not 

change significantly between 2012 and 2015 but dramatically decreased between 2015 and 

2020. The cost of equipment decreased from $13.21 per kWh in 2015 to $6.10 per kWh in 

2020, which translates to a decrease of 54%. The cost of building construction decreased 

from $1.52 per kWh in 2015 to $0.57 per kWh in 2020. The decrease in these costs is due 

mainly to the increase in the number of kWh contained in a single battery pack. 



 87 

 

Figure 19 - Cost of depreciation in 2012, 2015, and 2020. Panel A shows the cost 
equipment per kWh and panel B shows the cost of building construction per kWh. 

3.4.2 Causes of Cost Reduction 

Next, we identify the causes of the decrease in the cost of the cost components 

described in the previous section. 
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3.4.2.1 Cost of Materials 

As mentioned in the methodology section, the total cost of raw materials depends 

on three variables shown in Figure 20. These variables are the price of the raw materials 

used in the battery cells, the number of cells required per kWh in the battery pack, and the 

quantity of raw material used per cell. According to Figure 20, the materials price and the 

number of cells per kWh were responsible for the drop in cost between 2012 and 2015. In 

contrast, the quantity of material was responsible for the drop in cost between 2015 and 

2020. 

 

Figure 20 - Causes of changes in the total cost of raw materials. 

3.4.2.2 Cost of Labor 
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The cost of labor can be calculated as the product of three variables, as shown in 

Figure 21. These variables are the cost of labor, the number of kWh per pack, and the 

number of labor hours required to manufacture a battery pack. Figure 21 shows that the 

cost drop between 2012 and 2015 was caused by the increase in the number of kWh per 

pack. In contrast, the cost drop between 2015 and 2020 was driven by the increase in kWh 

per pack and the decrease in the number of hours needed to manufacture a battery pack. 

 

Figure 21 - Causes of changes in the total cost of labor. 

3.4.2.3 Cost of Depreciation 

The cost of depreciation per kWh is calculated from the number of kWh per battery 

pack, the total equipment investment for a manufacturing plant, and the surface in sq. 

meters for the manufacturing plan. Figure 22 shows that only the increase in kWh per 
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battery pack is responsible for the decrease in cost between 2012 and 2015. However, all 

three variables contributed to the decrease in cost between 2015 and 2020, with the increase 

in kWh per battery pack contributing the most to this cost decrease. 

 

Figure 22 - Causes of changes in the total cost of depreciation. 

3.4.3 Mechanisms of Cost Reduction 

The variables responsible for the cost reductions described in the previous section 

are now attributed to the mechanisms for cost reduction: research and development, 

learning-by-doing, and economies of scale. Table 13 summarizes the variables that have 

been assigned to each mechanism of cost reduction. First, two types of variables are 

assigned to research and development. The increase of number of kWh per battery pack or 

per cell is achieved through experimentation on different cell designs and chemistries. For 
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this reason, the number of cells per kWh and the number of kWh per pack are attributed to 

research and development activities. Similarly, changes in the quantity of raw material used 

per cell is also attributed to research and development. Second, improvements through 

learning-by-doing correspond to those achieved through repetition in the manufacturing 

process. The only variable in the study that is assigned to the learning-by-doing mechanism 

is the number of labor hours needed to manufacture a battery pack. Third, cost changes 

achieved due to the size of a manufacturing operation are attributed to economies of scale. 

In this case, changes related to investments in equipment and building infrastructure are 

assigned to the economies of scale mechanism. Also, cost changes related to the price of 

raw materials are considered to be a consequence of economies of scale. However, we 

acknowledge that raw material price changes could also or partially be a consequence of 

market conditions each year. 

Table 13 - Cost variables attributed to mechanisms of cost reduction. 

  R&D 
Learning-by-

doing 
Economies of 

scale 
2012-2015 

($) 
2015-2020 

($) 

Materials 

Material price X  X -30.94 26.12/-3.19* 
Cells/kWh X   -22.10 13.46 

Material quantity X   24.27 -59.41 

Labor 

Cost of labor    0.00 2.57 
kWh/pack X   -1.50 -3.66 
Hours/pack  X  0.47 -0.90 

Depreciation 

kWh/pack X   -3.54 -7.23 
$equip   X 0.86 -0.56 

m2/plant   X 0.19 -0.27 

*Note: the first value is assigned to R&D activities because it corresponds to changes in the active cathode material that 

changed between 2015 and 2020. The second value corresponds to the rest of the materials in the battery cell and it is 

assigned to economies of scale. 

Finally, we can assign the overall cost changes, driven by each cost variables, to 

the mechanisms of cost reduction, as shown in Figure 23. The figure shows that, between 



 92 

2012 and 2015, the biggest cost decrease can be assigned to economies of scale, which is 

mostly driven by a decrease in the cost of raw materials during this period. In contrast, 

between 2015 and 2020, most of the cost decrease comes from the research and 

development mechanism, corresponding to the change in cathode material during this 

period. 

  

Figure 23 - Mechanisms of cost reduction for lithium-ion batteries per kWh. 

3.5 Discussion 

3.5.1 Mechanisms of Cost Reduction 

In this study, we found that the decrease in the cost of lithium-ion batteries per kWh 

can be attributed to more than one mechanism. In the first period studied, between 2012 
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and 2015, we found that the price of raw materials used to manufacture battery cells had 

the largest impact in the cost decrease observed. In this case, the changes in the price of 

materials had a positive effect in the total cost of LIBs per kWh. However, as discussed 

previously in this study, some of raw materials used in LIBs manufacturing, such as cobalt, 

are known for having unstable markets and supple chains. Drastic changes in the price of 

one or more of the raw materials used for in the manufacturing process can cause large 

variations in the price of the final battery pack. 

The second finding of this study is that, between 2015 and 2020, research and 

innovation activities were responsible for the most part of the cost decrease of LIBs. There 

are two main consequences of R&D that contributed to the drop in price, both related to 

the change in cathode chemistry that occurred in this period. First, the NMC cathode used 

in 2020 required a much lower quantity of positive active material than the LMO cathode 

used in 2015. Second, the use of a cathode material with higher energy density led to 

considerably increasing the number of kWh in a battery pack in this period. These two 

changes are a result of experimentation done either at the private or public level. 

Experimentation or research and development facilitate the adoption of new materials that 

improve the characteristics of interest for LIBs such as energy density, safety, or weight.  

Another aspect that can have a significant impact on the cost of LIBs is the amount 

of labor that is required to produce a battery pack. We found that the specialization of this 

type of manufacturing job led to an increase in the hourly cost of labor over the years, 

however, process improvements and repetition led to a decrease in the number of labor 

hours that are required to produce a battery pack.  
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3.5.2 Policy Insights 

This study analyses the causes and mechanisms that led to LIB cost decreases over 

the past decade. The effect of different past mechanisms and initiatives can provide insight 

for future decision making in both the private and public sectors. This section analyses the 

implications of our findings for the ongoing debate on the effect of market-stimulating 

policies in private R&D and the cost of technologies. 

 The debate regarding the effect of market-based policies on R&D activities and the 

price of technologies has two aspects. On the one side, the weak Porter Hypothesis 

proposes that environmental regulation may trigger innovation by signaling market 

inefficiencies and reducing investment uncertainties (Porter & van der Linde, 1995; Newell 

et al., 1999). For example, Hoppmann et al. found that deployment policies serve as a 

catalyst for research and innovation activities in the solar PV industry as they raise investor 

interest in the industry and create opportunities for young ventures (2013). In this case, the 

weak Porter Hypothesis implies that the deployment policies for electric vehicles have 

spurred innovation in LIBs technologies. The results from this study provide support this 

hypothesis in the case of automotive LIBs. We find that policies that have supported the 

deployment of electric vehicles in the U.S. and around the world may have facilitated 

research and development activities, with results seen especially in the 2015-2020 period, 

when most of the cost decrease came from a cathode material change. 

On the other side of the debate, some researchers have suggested that deployment 

policies benefit firms pursuing more mature technologies and worsen the position of firms 

working on early-stage technologies (Nemet, 2009; Sandén 2005). The reason for this is 
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that firms working in technologies ready to be deployed can focus on searching for 

opportunities to benefit from learning-by-doing and economies of scale while these is 

disincentive to invest resources in alternative early-stage technologies (Nemet, 2009). 

Focusing on exploiting improvements in the manufacturing process of existing 

technologies can lead to a technology lock-in (Sanden, 2005). In the case of this study, we 

find partial evidence to support the findings in previous studies. First, we find evidence of 

manufacturing improvements driven by learning-by-doing and economies of scale, 

especially in the 2012-2015 period. This suggests that market-based policy instruments 

could have triggered private firms to exploit opportunities for improvements in their 

processes. Second, we find no evidence of a technology lock-in since we do observe 

technology change in the materials used for LIB manufacturing during the last decade. 

Also, there is evidence that vehicle manufacturers, such as Nissan and Tesla, have chosen 

cathode materials that are different from their competition and that have evolved during 

the past decade. 
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