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Abstract

This dissertation focuses on methods development for "third-generation"

(long-read) sequencing technologies. With an emphasis on nanopore sequenc-

ing, this work discusses strategies and applications for targeted sequencing

of select genomic loci. The methods described here make extensive use of

the CRISPR/Cas9 system for target enrichment, adapting these tools to ligate

sequencing adaptors at desired loci. We use this approach to evaluate at

numerous features salient to human neoplasia: DNA methylation, structural

variation, point mutations, and chromatin accessibility. The methods are then

applied to cell lines and primary patient tissue; and these genomic features

are evaluated and compared.
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Chapter 1

Introduction

DNA is a data storage system, packaged within the nucleus of every living

cell that carries the blueprints for how to make all the machinery and infras-

tructure required for the cell to operate. To perform different tasks or take

on specialized functions (especially in the case of multicellular organisms),

cells will utilize different parts of their genomic blueprints. The DNA (and

associated histone proteins) is organized into a condensed form termed chro-

matin, and different regions of chromatin are "open" or "closed" to meet the

functional needs of the cell. This organizational and regulatory system can

broadly be described under the umbrella term "epigenetics". In the present era

we recognize that epigenetics takes a number of forms with varying amounts

of plasticity (Figure 1.1). One key mechanism controlling chromatin state

is the nucleosome, which describes the octamer of histone proteins and the

147nt of DNA wrapped around it (Klemm, Shipony, and Greenleaf, 2019).

The arrangement of histone proteins, as well as post-translational modifica-

tions to these proteins help to control DNA accessibility through numerous

mechanisms including steric hindrance of transcription factor binding and
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initiation of chromatin remodeling (Allis and Jenuwein, 2016). Another crucial

epigenetic feature is that of DNA methylation. In mammalian systems, this

occurs at cytosine nucleotides, specifically those directly preceding a guanine

(CpG dinucleotide). The default status of CpGs in the genome appears to be

methylated, with demethylation occurring at the start of genes as a regulatory

mechanism. This is supported by the observation that many genes possess a

region of increased CpG density around gene start sites (CpG islands) (Bird

et al., 1985). It has long been understood that CpG methylation is associ-

ated with transcriptional silencing (Razin and Riggs, 1980), but where DNA

methylation sits in the hierarchy of epigenetic control has become a point

of debate. Recent studies have suggested that DNA methylation is not the

primary mechanism of gene silencing; it was observed that the presence of

nucleosomes (without activation marks) is required for DNA methylation

to occur (Ooi et al., 2007). This suggests that DNA methylation may be a

less plastic and more stable form of epigenetic modification. Our ability to

explore these features in the context of an organism’s full genome has been

richly enhanced by technological developments in the area of nucleic acid

sequencing.

The last four decades have seen rapid advancements in tools to sequence

nucleotides (determine the order of A,C,T,G). These tools have become crit-

ical parts of the arsenal of both science and medicine. In the mid 1970s, the

first wave of DNA sequencing strategies were presented. This included a

method described by Sanger and Coulson which involved DNA synthesis

with the use of chain-terminating nucleotides (“Sanger sequencing”) (Sanger,
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Figure 1.1: DNA in a cell Illustration showing layers of DNA organization. (Bot-
tom Left): Cell nucleus showing regional domains of chromatin. (Bottom Right):
Topologically-associated Domains (TADs) and chromatin looping. (Top Right): Car-
toon showing histone post-translational modifications and CpG methylation in both
active (euchromatin) and inactive (heterochromatin) states. The cell image was
taken from the wikipedia commons. Public Domain, contributed by TenOfAllTrades
https://commons.wikimedia.org/w/index.php?curid=1583880
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Nicklen, and Coulson, 1977) and a method from Maxam and Gilbert using

chemicals to induce nucleotide-specific partial cleavage (Maxam and Gilbert,

1977). In both cases, separate reactions were used for each of the four bases,

and terminally radio-labelled DNA were size-separated using electrophoresis,

allowing researchers to determine the order of nucleotides based on the re-

sultant fragment sizes. By the late 1980s, automated instrumentation existed

that were performing fluorescence-based Sanger sequencing, and capable of

generating 1000nt /day (Smith et al., 1986). 1990 saw the official launch of

the human genome project (HGP), which employed Sanger-based sequencing

systems as the workhorse. Throughout the 1990s, sequencing the human

genome was occurring at a number of academic genome centres, churning out

tens of millions of nucleotides per day (Shendure et al., 2017). The spirit of

competition was also a driving force in this process as both private companies

and government-funded institutions worked to generate the human genome.

This culminated with the first draft of the human genome released in 2001,

and a completed sequence released in 2004 (International Human Genome

Sequencing Consortium, 2004) .

During the execution of the HGP, newer strategies for nucleotide sequenc-

ing were developed in both the public and private sectors. This led to the

development of massively parallel “Next Generation” (NextGen) sequencing

(NGS), providing alternative approaches to the electrophoretic separation

strategies that underlie Sanger sequencing. The key change that enabled

massively parallel sequencing is the ability to multiplex large numbers of

sequencing reads in the same reaction (> 1 billion for the Illumina® HiSeq).

4



This multiplexing of sequencing reactions is achieved by immobilizing DNA

strands on a 2D surface, which allows the same volume of reagents to be used

for all sequencing reactions. Further, NGS methods no longer rely on size

separation of DNA by size, but instead detect the incorporation of nucleotides

during in vitro DNA strand replication. Three strategies that have persisted

to present day for identifying nucleotide incorporation with NGS. The first

detects the pyrophosphate molecule released during nucleotide incorporation

through a luciferase reaction (pyrosqeuencing) (Ronaghi et al., 1996), and a

similar method came more than a decade later which detects the release of hy-

drogen ions during this reaction (ion semiconductor sequencing) (Toumazou

and Purushothaman, 2010). Both of these methods require separate addition

of the four nucleotides sequentially to detect nucleotide incorporation. A

third method works through the detection of fluorescently labeled nucleotides

(Braslavsky et al., 2003; Mitra et al., 2003), and a big advancement was the

introduction of reversible “terminators” (Ruparel et al., 2005; Seo et al., 2005)

to ensure only only single nucleotides incorporated at a time– enabling si-

multaneous detection of all four fluorescently-labeled nucleotides. This last

approach laid the foundation for the company Solexa, founded in 1998 and

purchased by Illumina in 2007, which has become the sequencing industry’s

dominating player. As a result of the rapid development and market competi-

tion, the cost of sequencing has fallen dramatically. Generating whole-genome

sequencing data for an individual human- a project that in recent memory took

more than a decade and cost nearly 3 billion dollars, is now done routinely in

a few days for a few thousand dollars. This vastly increased the accessibility

of sequencing, leading the methods to be adopted by academic and private
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institutions worldwide.

NGS has become a critical component of modern science, but innovation

in DNA sequencing has not ceased. NGS methods rely on PCR amplification

in order to generate DNA “clusters”, such that hundreds of identical copies

of DNA are being measured simultaneously. This amplifies the sequencing

signal, but requires the DNA to be broken into small pieces, and leads to a

destruction of any modified nucleotides that were present. Further, the num-

ber of nucleotides in a row that can be evaluated (the “read length”) by these

clusters are limited to a few hundred, as the signal becomes unreliable beyond

these lengths as the DNA clusters become out of sync. The newer technologies

that have arisen to overcome these challenges are the so-called “long-read se-

quencing” strategies. At the crest of the current wave of long-read sequencing

technologies (sometimes called “third-generation”) are nanopore sequencing

from Oxford Nanopore Technologies and single-molecule real-time (SMRT)

sequencing from Pacific Biosciences (PacBio) (Figure 1.2) . Nanopore sequenc-

ing functions by collecting electrical data as DNA is cranked through DNA

through a protein pore in an electric field (Jain et al., 2016). In contrast, PacBio

operates by performing DNA synthesis within a nano-sizedwell (termed a

“zero mode waveguide”), which has optical properties that permit detection of

the sequential incorporation of fluorescent nucleotides at the single molecule

scale (Travers et al., 2010). Long-read methods which can produce reads 30-

50kb for hi-fidelity SMRT sequencing (consensus circular sequencing or CCS)

(Amarasinghe et al., 2020), and have been reported at lengths greater than 2

megabases for nanopore sequencing reads (Payne et al., 2019).
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Figure 1.2: Long Read Sequencing Methods Top: Portrayal of how DNA passes
through a protein pore in an electric field and the collection of electrical data which is
converted into DNA sequence. Bottom: Portrayal of PacBio SMRT sequencing, where
a tethered DNA polymerase copies DNA at bottom of nano-sized well and detection
of sequential fluorescent nucleotides

Long-read methods enable the sequencing of single molecules of na-

tive DNA. By entirely avoiding PCR amplification, modified nucleotides

are preserved– which are able to be detected in sequencing data from both

nanopore (Simpson et al., 2017) and SMRT (Flusberg et al., 2010) sequencing.

DNA methylation can be determined with NGS, but requires deamination of

unmodified CpGs with chemicals or enzymatic treatments, which reduces the

complexity of the nucleotide alphabet. Another advancement resulting of long-

read sequencing is the increased ease of interrogating hard to map regions;

enhancing our understanding of structural variation in the human genome

(Chaisson et al., 2018; Audano et al., 2019) and improving our ability to in-

terrogate hard-to-map regions such as repetitive elements and centromeres

(Miga et al., 2020).
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One field that has been dramatically affected through the advancement of

sequencing strategies is the study of human cancers. Cancer is an inherently

heterogenous disease with a variety underlying causative mechanisms. A

number of unifying features of cancers have been identified, termed the

“hallmarks of cancer”. One such hallmark is instability of the genome, as

cancer cells lose their ability recognize genomic insult and cease proliferation

(Hanahan and Weinberg, 2011). This instability is often reflected directly

in the coding sequence, (e.g. inactivating mutations in a tumor suppressor

gene (Knudson et al., 1976)), and is also reflected in the epigenome (e.g.

hypermethylation leading to silencing of tumor suppressor genes (Feinberg

and Tycko, 2004)). The high-accessibility of sequencing in the current era has

spurred efforts to characterize patient tumors and to cultivate databases of

cancer-associated mutations (Ainscough et al., 2016). Further, sequencing

offers exquisitely sensitive tools which can be used to detect cancer initiation

or surveil for recurrence (Cohen et al., 2018). Long read strategies have

been beneficial in the cancer realm as well, helping to decipher the structural

variation landscape of human neoplasia (Dixon et al., 2018).

This sets the stage for the next chapter where we begin to focus not on

whole-genome or whole-transcriptome sequencing, but rather methods to only

sequence smaller regions e.g. single genes or sets of genes. In the subsequent

chapters I describe method development and application of targeted strategies

with for long-read sequencing (primarily nanopore sequencing). This work

largely centers on applications to the study of human cancer, with sections

decribing our work on breast cancer as well as thyroid cancer. Finally, there

8



is also a section describing ongoing development work to use these tools for

interrogating large hotspots for cancer-causing deletions, applications in the

bio-pharmaceutical to locate insertion sites of transgenes, and a method for

evaluating chromatin state from nanopore sequencing data. Together this

work builds on our existing repertoire of sequencing strategies to offer new

tools and computational approaches for investigating features of the genome.
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Chapter 2

History of Targeted Sequencing

2.1 Introduction

Targeted sequencing is an important strategy for examining only select ge-

nomic loci; as it avoids some of the costs of generating, storing, and analyzing

whole-genome sequencing data. The burgeoning era of long-read sequencing

has prompted the development of new enrichment strategies compatible with

long-read technologies (Pham et al., 2016; Gabrieli et al., 2018; Giesselmann et

al., 2019; Gilpatrick et al., 2020; Tsai et al., 2017). This chapter provides a brief

and highly abridged history of target-enrichment strategies, with a focus on

amplification-free long-read sequencing. The chapter concludes with a deeper

delve into nanopore sequencing with sequencing adaptors ligated directly

to DNA ends made by Cas9 endonuclease cleavage (Gilpatrick et al., 2020),

which is the centerpoint strategy underlying much of the work presented in

this dissertation.
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2.2 NextGen Targeted Sequencing

For NextGen sequencing, target enrichment is typically achieved by capture

with hybridization probes or via selective amplification with targeted primers

(Figure 2.1) (Kozarewa et al., 2015). Hybridization capture uses oligonu-

cleotides (matrix-bound or solution phase) to pull-down desired target se-

quences) (Tewhey et al., 2009). Hybridization has been shown to work with

long-read technologies (Eckert et al., 2016; Hybridization-capture for nanopore

sequencing v1 (protocols.io.zxyf7pw)), but this approach typically involves shear-

ing the DNA (Eckert et al., 2016; Hybridization-capture for nanopore sequencing

v1 (protocols.io.zxyf7pw)) causing a limit on the read-length (typically about

10kb) and therefore not fully capitalizing on the long-reads. And although

PCR amplification is commonly used for some long-read applications, it not

only limits read lengths, but also obliterates modified nucleotides losing infor-

mation that could be gleaned from long-read sequencing data (Simpson et al.,

2017; Flusberg et al., 2010).

2.3 Long-read Targeted Sequencing

In order to achieve enrichment while avoiding PCR amplification and main-

taining large DNA fragments, new strategies have been described for use with

long-read technologies. Several of these strategies employ the CRISPR/Cas9

system, a bacterial endonuclease (Cas9) that uses a guideRNA to introduce

double strand breaks (DSBs) at specific loci (Sternberg et al., 2014). The first

application of Cas9 cleavage for long-read target enrichment was described
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Figure 2.1: NextGen Target Enrichment Images showing the general principles
behind hybridization capture and targeted amplification
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for SMRT sequencing (Tsai et al., 2017), and used ends made by Cas9 cleavage

sites to ligate adaptors for magnetic bead capture (Figure 2.2). For nanopore

sequencing, early iterations of Cas9 enrichment used two cuts to excise a

region, and removed the background DNA by size selection (“CATCH-seq”,

Figure 2.2) (Gabrieli et al., 2018). The CATCH-seq strategy worked well for

small genomes, but for large genomes such as homo sapiens, amplification

was necessary to achieve significant on-target enrichment. Further iterations

of targeted enrichment took advantage of the fact that the Cas9/guideRNA

complex remains tightly bound to target DNA after cleavage, and employed

affinity handles (e.g. biotin or 6xHis) on the guideRNA/Cas9 complex to pull

out the associated DNA via bead capture (Figure 2.2). The on-target coverage

from these Cas9 pull-down strategies was still lower than desired (50-100X

local coverage in the human genome from 3ug of input DNA – Gilpatrick,

unpublished results), motivating the continuing development of enrichment

methods. This led to “Cas9-targeted sequencing” (CATS), wherein sequenc-

ing adaptors are ligated directly to ends created by CRISPR/Cas9 cleavage

(Gilpatrick et al., 2020) (Figure 2.2, 2.3). This strategy exploits the 5’ phos-

phorylated ends created by Cas9 cleavage for unique ligation of sequencing

adaptors. This approach can be applied to either mode of long-read sequenc-

ing, but this thesis centers on its use with nanopore sequencing (nCATS).

In addition to molecular biology strategies for regional enrichment, it is

worth noting recent publications describing computational-based methods

for target enrichment with nanopore sequencing, sometimes referred to as

“adaptive sequencing” (Kovaka et al., 2020; Payne et al., 2020). Computational
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Figure 2.2: Long-read Target Enrichment Summary of target enrichment meth-
ods using Cas9 for long-read sequencing (1) Method described in (Tsai et al., 2017)
(2) Method described in (Gabrieli et al., 2018) (3) Enrichment using affinity tag on
guideRNA (Gilpatrick, unpublished) (4) Method described in (Gilpatrick et al., 2020)
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enrichment is done by aligning the nanopore signal while the nucleic acid

strand is still translocating through the pore, and deciding either (a) to con-

tinue sequencing the strand if it represents desired sequence or (b) reverse

the current in the pore and eject the DNA, permitting another molecule to

be sequenced. There are some potential advantages to computational enrich-

ment These include (1) no DSBs are introduced, creating less of a restriction

in the size of the molecules that can be sequenced and (2) computational

enrichment avoids the designing, ordering and testing of guideRNAs, which

can be iterative, labor intensive, and expensive. Despite these drawbacks,

the nCATS molecular method is still outperforming adaptive sequencing at

present, generating about an order of magnitude more coverage (>400X versus

20-30X).

The Cas9 method has been demonstrated to generate coverage greater

than 400X at each of 10 sites with sizes ranging from 12 to 24kb (Gilpatrick

et al., 2020), and can be used to target up to a 100 sites simultaneously without

affecting performance. Enrichment for even larger fragments can be achieved

through Cas9 enrichment (we tested up to 84kb), but these larger fragment

sizes show a significant drop in coverage, especially at the center of the region

due to read drop-off. There have already been numerous applications for this

method described including for the study of repeat expansions (Giesselmann

et al., 2019), DNA methylation (Giesselmann et al., 2019; Gilpatrick et al.,

2020), single nucleotide changes (Gilpatrick et al., 2020), structural variation

(Gilpatrick et al., 2020; Watson et al., 2020), and to study off-target cutting

activity of Cas9 (Höijer et al., 2020).
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2.4 Nanopore Cas9 Targeted Sequencing (nCATS)

A more detailed image of how nCATS this strategy works is shown in (Figure

2.3). This method employs the “Sequencing by Ligation” kits from ONT

(e.g. the current kit LSK-109), wherein sequencing adaptors are attached to

DNA ends via ‘TA-ligation’. In this process a 3’ (dA) overhang on DNA

hybridizes to a 3’ (dT) overhang on sequencing adaptors– allowing for a

DNA ligase to form phosphodiester bonds between 3’ hydroxyl groups and

5’ phosphates. With the standard (genomic) sequencing workflow, all DNA

ends are bestowed with phosphorylated 5’ ends and 3’ (dA) overhangs during

DNA “end-prep” permitting widespread ligation with the 3’ (dT) on adaptors.

Critically, in the nCATS approach, all 5’ phosphate ends are first removed with

a phosphatase, preventing widespread adapter ligation. Next, Cas9 cleavage

is used to introduce double strand breaks adjacent to regions of interest. After

the universal addition of 3’(dA) tails, this reaction yields sites properly end-

prepped for adapter ligation (3’(dA) overhangs and with 5’ phosphorylation).

Sites of Cas9 cleavage are enriched among these properly end-prepped sites,

yielding approximately 5% of sequencing reads originating at sites of Cas9

cleavage.

The CRISPR/Cas9 system natively uses two separate RNA species for

targeting DNA in order to introduce a double-strand break (DSB). The DNA-

targeting component is called the CRISPR-RNA (crRNA, 40nt), which con-

tains a 20 nucleotide sequence complementary to the target DNA. Another

RNA, termed the trans-activating CRISPR RNA (tracrRNA, 75nt) binds to

the crRNA, forming a two-RNA “hybrid”. The resulting crRNA:tracrRNA
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Figure 2.3: Schematic of Cas9-targeted sequencing (nCATS)
Detailed cartoon demonstrating the steps of nCATS enrichment. (1)

Dephosphorylation of all 5’ ends (2) Introduction of DSB at select loci using
CRISPR/Cas9 (3) 3’(dA) tailing (4) Ligation of sequencing adaptors and

motor protein to DNA ends (5) DNA sequencing (5’ to 3’)
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hybrid has come to be known as the ‘guideRNA’. The guideRNA forms a

secondary structure that is recognized by the Cas9 enzyme, forming the ri-

bonucleoprotein complex (RNP). In order for Cas9 to introduce DSBs at the

desired targets, there must also be an adjacent 3’ nucleotide motif, the so-called

“protospacer-adjacent motif” (PAM). For Cas9, this motif is two sequential

guanine nucleotides preceded by any nucleotide (NGG). Without this obligate

PAM recognition the Cas9-RNA RNP is unable to interrogate the DNA for

crRNA complementarity (Sternberg et al., 2014).

During cleavage with the CRISPR/Cas9 system, the Cas9 protein remains

bound to the 5’ side of the gRNA after DNA cleavage (Sternberg et al., 2014),

resulting in preferential ligation of adaptors onto the 3’ side of the cut. This

means that the orientation of the guideRNA relvant to the target site is im-

portant, as nanopore DNA sequencing commences in the 5’ > 3’ direction

(Figure 2.3). To sequence both strands of DNA, We therefore flank the target

region on both sides with guideRNAs oriented towards the region of inter-

est, ensuring coverage on both DNA strands. We found the coverage could

be greatly enhanced by using multiple guideRNAs at each cut site. Having

multiple cuts not only increased the chances of having a high-performing

guideRNA, but also was observed to have a synergistic cooperation of using

multiple RNPs simultaneously cutting within a few hundred nucleotides of

one another (Gilpatrick et al., 2020). It is not however, strictly necessary, as

we found we were able to enrich to 50X coverage even with a single cut from

a single guideRNA. Once targeted studies using the nCATS method were

performing consistently, we next executed a number of validation studies to
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explore how the data compared with existing data generated both by whole-

genome nanopore and NextGen sequencing. In the chapters that follow we

delve into the biological insight that was uncovered by the application of

this approach, including applications to both clinical diagnostics as well as

fundamental research into DNA biology.
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Chapter 3

Targeted Sequencing in Breast
Cancer

3.1 Introduction

The Cas9-based targeted nanopore sequencing strategy described in the previ-

ous chapter was first validated and tested by comparing enrichment data to

existing data on the GM12878 cell line. The GM12878 lymphoblast cell line

has been extensively characterized for numerous features, saliently including

annotated variants (Eberle et al., 2016; Zook et al., 2016) and whole-genome

bisulfite methylation data (ENCODE Project Consortium, 2012).

We then applied these strategies to assess genetic and epigenetic changes in

breast cell lines, a breast cancer cell line xenograft, and primary patient tissue.

For cell lines, we used three breast epithelial cell lines: the non-tumorigenic

MCF-10A, the ER(+) line MCF-7, and the triple-negative breast cell line MDA-

MB-231. We selected three aberrations known to occur in neoplasia for further

investigation: changes in DNA methylation, point mutations, and structural

variations. We targeted ten genomic loci in our initial panel, with sizes ranging
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from 12-24kb (Table 3.1). For evaluating single nucleotide mutations we se-

lected three cancer-associated genes (TP53, KRAS, and BRAF) with annotated

mutations in the MDA-MB-231 cell line (Forbes et al., 2017). Five regions

for methylation studies (KRT19, SLC12A4, GSTP1, TPM2, and GPX1) were

selected by identifying sites with differential methylation (Lee et al., 2018) in

these breast cell lines. The whole-genome nanopore data (Lee et al., 2018) was

also used to identify two candidate large deletions (6-8kb) for study. An 11th

region, the BRCA1 locus, was included in later sequencing runs (GM12878,

and primary patient samples) to test our ability to capture larger regions

(>80kb), and to evaluate this method for sequencing highly repetitive regions

(Welcsh and King, 2001).

Location/Gene - [Aberration] size(kb)
GPX1 - [DNA methylation] 13.6

GSTP1 - [DNA methylation] 17.8
KRT19 - [DNA methylation] 18.1

SLC12A4 - [DNA methylation] 24.4
TPM2 - [DNA methylation] 19.6

chr5 deletion - [Structural variant] 18.7
chr7 deletion - [Structural variant] 20.0

BRAF - [Single Nucleotide Variant] 12.3
KRAS - [Single Nucleotide Variant] 16.7
TP53 - [Single Nucleotide Variant] 16.1

Table 3.1: Regions for Breast Cancer Studies Type of aberration and size for the
initial panel of 10 loci targeted

3.2 Results

In our initial experiments, we used a single guideRNA flanking each site in

each of the four cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231).
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Targeted libraries were prepared from 3ug of starting DNA and each sam-

ple run on a separate minION flow cell. This resulted in coverage ranging

from 18X to 846X (Supplementary Table 3.2). We attributed this highly vari-

able coverage between regions to differing on-target cutting efficiency and

off-target binding of the guideRNAs. Subsequently, we experimented with

a combination of multiple guideRNAs flanking each locus and found this

significantly improved median coverage. For example, at the KRT19 locus,

with multiple guides the coverage increased to 407X versus 47X with single

guides (Figure 3.1). Using multiple guides at all loci yielded a median regional

coverage of 680X (Figure 3.1), and greater than 400X at all sites when using

cell line DNA (Supplementary Table 3.2).

From GM12878 MinION data, the percentage of ‘on-target’ reads, was

1.8% with a single guideRNA cut flanking each site per site and 4.6% with

the multi-guideRNA panel (Figure 3.1). Genome-wide coverage analysis

found the off-target reads to be distributed randomly across the genome,

indicating they result primarily from ligation of nanopore adaptors to random

breakage points. For example, in the GM12878 cell line with single guideRNAs

flanking each site, after quality filtering alignments (MAPQ > 30) there were

only 2 genomic sites outside target regions where coverage reached 25X.

Both of these are at repetitive peri-centromeric sites and contain reads with

lower mapping quality (MAPQ 30-50), suggesting the increased coverage to

result from alignment errors in these poorly mappable regions. We did note

the occurrence of some off-target cleaving with the inclusion of guideRNAs

designed to flank the BRCA1 locus (Supplementary Table 3.3), which we
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Figure 3.1: On-target Performance Summary A. Local coverage at the KRT19 gene
using both single and multiple cuts in GM12878 cell line DNA, and using multiple
cuts in primary patient tissue derived DNA. B. Total reads and on-target rate for the
same samples described in (A).

attribute to the abundance of repetitive regions (Welcsh and King, 2001) at this

locus resulting in increased homology with other genomic loci. Investigation

of one off-target site found it highly resembled one of the BRCA1 guideRNAs

(Supplementary Figure 3.5).

With this panel of guides in hand, we tested the assay’s performance in

tissue samples: normal human breast tissue, a breast cancer cell-line-derived

xenograft, and a human breast tumor/normal pair. In tissue from a reduction

mammoplasty (normal) and cell-line-derived mouse xenograft we measured a

median coverage of 162X/312X; and from the paired primary tumor/normal

sample with limited input we achieved median coverage of 93X/70X (Figure

3.1, and Supplementary Table 3.2).
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3.2.1 Single Nucleotide Variant Detection

Nanopore sequencing still has intrinsically high error rates ( 5-10%) due to the

inability of the basecaller to distinguish between some k-mers and the diffi-

culty in discriminating signal events in repetitive regions (e.g. homopolymers).

We applied the high-coverage data achieved through the nCATS protocol to

explore how this affected the ability to call variants from nanopore data. To

simplify analysis, we limited this to the evaluation of single nucleotide sub-

stitutions. There are numerous tools that currently exist for calling variants,

and we selected four for comparison: (1) the Samtools/Bcftools package (Li,

2011), which generates genotype likelihoods from alignment data (2) Clair

(Luo et al., 2019), which uses a deep neural network for variant calling from

alignment data, (3) Medaka(ONT), a tool from Oxford Nanopore which also

uses a neural network algorithm, and (4) Nanopolish (Simpson et al., 2017),

which uses a hidden Markov model to interrogate the raw electrical data as

well as alignment data.

For initial validation, we used the GM12878 cell line and the platinum

genome dataset (Eberle et al., 2016) as ground truth for single nucleotide

variants (SNVs). We benchmarked SNVs over the 8 enriched loci without

large deletions (total size of 140kb) wherein a total of 174 annotated SNVs

are annotated in GM12878. To explore the relationship between coverage and

variant calling efficiency, we subsampled the aligned data to coverage of 300X,

200X, 100X, 50X and 25X (see methods). During filtering we selected for reads

spanning the region, and maintained balanced coverage between both DNA

strands.
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We found that at lower coverage data (25X and 50X) Clair had the great-

est sensitivity (0.98). However, the current model for Clair was trained and

assessed on whole genome data only up to 100X coverage; and above this

coverage it no longer functioned. Medaka showed peak sensitivity of 0.93

at both 50X and 100X coverage, with sensitivity remaining robust at higher

coverage. Samtools variant calling and Nanopolish variant calling both in-

creased in sensitivity up to 200X coverage, at which point they plateaued with

sensitivities of 0.97 and 0.98, respectively (Figure 3.2).

One important caveat of the raw output of these variant caller pipelines

is the persistence of false positives, limiting the use of this method for de

novo SNV discovery. On inspection, we noted many false positives to occur

on only one strand (Supplementary Figure 3.6), suggesting the basecaller

having systematic issues with the sequence of k-mers on one strand but

not on the other. Thus, we implemented a filter requiring variants to be

supported by reads from both strands(“dual-strand filter”). This filter caused

a decrease in sensitivity, especially at lower coverage. But strikingly this filter

eliminated nearly all false positive variant calls (Figure 3.2), yielding a set of

high-confidence variants. The dual-strand filter performed best with 200X

coverage using nanopolish variant calling (Sensitivity: 0.96, F1score: 0.97),

with the sole false positive variant existing in a thymidine-dense homopolymer

region (Supplementary Figure 3.7). We then applied WhatsHap (Patterson

et al., 2015), a weighted haplotype assembler that uses statistical information

as well as coverage depth to assign reads into parental haplotypes using

SNVs detected in long-read data. A graphical depiction of detected variants is
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Figure 3.2: Single Nucleotide Variants (A) Plot of sensitivity versus coverage using
four tools to call single nucleotide variants from enrichment data in GM12878 for
a 140kb region containing 174 annotated SNVs (B) Visual representation of high-
confidence variants detected by nanopolish in the MinION data from GM12878 for the
captured region around TP53, reads phased into homologous alleles using WhatsHap.
(C) High-confidence variants identified in primary tissue from a tumor/normal pair,
red arrows used to demarcate tumor-specific variants.
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shown in Figure 3.2B, highlighting the identification and phasing of variants

in the captured region of TP53 in GM12878. All 17 of the annotated SNVs were

detected in this region with no false positives. We then applied this variant

caller pipeline to our data from the MDA-MB-231 cell line to detect cancer-

associated mutations. Across the captured regions of three cancer-associated

genes (BRAF, KRAS, and TP53) nanopolish called 42 high-confidence SNVs

(Supplementary Table 3.4), including 2 of the 3 annotated in the COSMIC

database for MDA-MB-231 (Tate et al., 2019) (the third variant was detected,

but at a lower frequency in this aneuploid line and thereby did not pass

dual-strand filtering). We applied this variant calling pipeline to a paired

tumor/normal breast tissue sample, and phased the reads into haplotypes

with WhatsHap (Patterson et al., 2015). We noted the presence of tumor-

specific variants that were identified through this approach, as well as strong

variation in the number of reads per haplotype in the TP53 region implying

an imbalanced copy number in tumor cells (Figure 3.2C). We captured two

other regions on the same chromosome and observed similar chromosomal

imbalance with additional mutations in the tumor sample (Supplementary

Figure 3.8).

3.2.2 CpG Methylation

We next evaluated CpG methylation, which can be measured from the elec-

trical data produced by nanopore sequencing (Simpson et al., 2017). As

previously mentioned, for all of the sites studied for methylation, there was

pre-existing data suggesting either differential methylation in the breast cell
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lines being studied (Lee et al., 2018). Differentially methylated regions were

prioritized if there was evidence of changes in transcript levels in existing

RNA-seq data (Messier et al., 2016), and further filtered to select genes with

prognostic implications in human cancer (Kabir, Rönnstrand, and Kazi, 2014;

Martignano et al., 2016; Wang et al., 2018).

One way to visualize the methylation data while maintaining the single-

read-level information is to use read-level plots. Methylation data for one

locus (KRT19) is shown in Figure 3.3A, with four additional genes (GSTP1,

GPX1, SLC12A4, and TPM2) plotted in Supplementary Figure 3.9. We com-

pared nanopore methylation patterns with existing whole genome bisulfite

sequencing (WGBS) data in GM12878 (ENCODE Project Consortium, 2012) us-

ing smoothed (loess) line plots (Figure 3.3B, and Supplementary Figure 3.9).

Directly comparing per-CpG methylation Supplementary Figure 3.9C at each

locus, we observed per-CpG methylation largely clustered at points reflecting

completely methylated or unmethylated sites, with an aggregate per-CpG cor-

relation of 0.81 (Pearson). We applied this strategy to our data from breast cell

lines, looking for regions with differential methylation. One gene that showed

clear differences is the keratin family member gene: KRT19. KRT19 is known

to be upregulated in breast cancer (Kabir, Rönnstrand, and Kazi, 2014), and

detection of KRT19 mRNA has been used to identify micrometastasis of breast

cancer to lymph nodes (Noguchi et al., 1996) and to detect circulating tumor

cells (Wang et al., 2018). We observed that KRT19 remains largely methylated

in the non-tumorigenic MCF-10A cell line, but becomes hypomethylated in

both of the transformed cell lines, MCF-7 and MDA-MB-231 (Supplementary
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Figure 3.10). This is correlated with the observed increased transcript level

for KRT19 in the transformed cell lines (Supplementary Figure 3.11, GEO:

GSE75168). Further, we note the pattern of methylation in MDA-MB-231 is

largely maintained in mouse xenografts that are derived from this cell line

(Supplementary Figure 3.10 and Supplementary Figure 3.12). One unantici-

pated result was in our evaluation of the paired tumor/normal patient sample,

where we found that the primary patient tumor had a dramatic allele-specific

hypomethylation of KRT19 on the haplotype with increased copy number

(Figure 3.3C, and Supplementary Figure 3.12). This suggests a possible mech-

anism for the increased expression in tumor cells (Kabir, Rönnstrand, and

Kazi, 2014; Noguchi et al., 1996; Wang et al., 2018), and highlights a benefit of

this approach as allele-specific methylation would have been difficult to eval-

uate without the enhanced ability to phase haplotypes provided by long-read

sequencing.

3.2.3 Structural Variants

We next applied this method to evaluate structural variations by confirming

the presence of candidate deletions identified in whole genome nanopore

sequencing data (Lee et al., 2018). We selected two deletions present in the

MDA-MB-231 and MCF-7 breast cancer lines and absent in the MCF-10A cell

line, and designed guideRNAs to flank breakpoints by 5kb. Plotting reads in

IGV showed both deletions as heterozygous in MDA-MB-231 and homozy-

gous in MCF-7 (Figure 3.4A and Supplementary Figure 3.13). The alignment

data was passed to the "Sniffles" variant caller (Sedlazeck et al., 2018), which
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Figure 3.3: Methylation Analysis (A) Read-level plots showing methylation patterns
in GM12878 from minION data at the KRT19 locus. (B) Methylation calls (points) and
line plots at the same locus as in (A) showing smoothed (loess) methylation calls from
whole genome bisulfite sequencing on the Illumina platform (GEO: GSE86765), com-
pared with methylation calls from minION and flongle targeted nanopore sequencing.
(C) Haplotype phased methylation calls in primary patient tissue and paired tumor
at the KRT19 locus.
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identified the breakpoints and zygosity of both deletions (Supplementary

Table 3.5). We also performed methylation studies on these regions but did

not note any difference in methylation patterns between the deleted and

not-deleted allele. To explore the use of this method for targeting larger frag-

ments of DNA, we enriched for regions harboring large (>70kb) heterozygous

chromosomal deletions. We identified three large heterozygous deletions in

GM12878 from available 10X Genomics data through the Genome In a Bottle

(GIAB) Consortium project (Zook et al., 2016). Two heterozygous deletions

with sizes of 70kb and one 155kb. GuideRNAs were designed to flank the

deletion breakpoints by 5kb, resulting in reads of 10 kb on the deleted allele,

and spanning the region between cut sites (80kb/165kb) on the non-deleted al-

lele. We phased the reads into parental alleles using WhatsHap (Whatshap: fast

and accurate read-based phasing. bioRxiv. 2016) and compared read lengths and

read counts achieved from each allele. Interestingly, we found that the allele

containing the deletion, with the correspondingly shorter distance between

the cut sites, demonstrated an order of magnitude higher number of reads

(Figure 3.4B and Supplementary Figure 3.14). This reflects a bias against

achieving reads >50kb, likely introduced during DNA purification, library

preparation, or delivery to the pore. To confirm this size-bias, we performed

similar parental-allele segregation on sites without SVs and did not observe

bias towards either parental allele. The alignment data for GM12878 was

passed to the Sniffles variant caller (Sedlazeck et al., 2018), which identified all

3 of the deletions within 10nt from the annotated breakpoints in existing GIAB

data (Supplementary Table 3.6). We adjusted Sniffles parameters to call SVs

as heterozygous if an allele was supported by even a very low amount (0.1%)
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Figure 3.4: Structural Variation (A) Reads around an 8kb deletion in chromosome 7
present in MCF-7 and MDA-MB-231, and absent in MCF-10A. (B) Coverage on each
parental allele in the region of a large (155kb) heterozygous deletion in GM12878.
(C) Top: Coverage at the BRCA1 locus from DNA extracted using Circulomics CBB
kit. Middle: LINE and SINE components identified by RepeatMasker on each of
the BRCA1 allele assemblies. Bottom: Three indels discovered between BRCA1
assemblies not annotated in platinum genome data set for GM12878.

of reads, as the imbalance of reads from the two alleles caused the software to

initially identify these deletions as homozygous (see Methods).

Finally, we targeted the BRCA1 gene, because of the well-documented

association of this gene with familial breast cancer (Welcsh and King, 2001).

BRCA1 is also an attractive target for long-read sequencing because of the

abundance of hard to map repetitive Alu elements (Deininger, 2011). To cap-

ture the entire BRCA1 gene (distance between flanking guideRNAs: 84kb)

further adjustments to DNA extraction were needed. Initial MinION sequenc-

ing runs from 3ug extracted GM12878 gDNA resulted in only 10 sequencing

reads spanning the entire region with many smaller fragments (Supplemen-

tary Figure 3.15). We found that using the Circulomics NanoBind kit for DNA

39



extraction resulted in an increase to nearly 30 reads completely spanning the

BRCA1 gene, with coverage between guideRNAs ranging between 100X and

200X (Figure 3.4C and Supplementary Figure 3.15). We phased the BRCA1

reads into two alleles using WhatsHap (Whatshap: fast and accurate read-based

phasing. bioRxiv. 2016) with de novo called high-confidence variants found with

nanopolish. We then built an assembly for each of the two alleles using the

Flye assembler (Kolmogorov et al., 2019) and polished the assemblies using

Racon (Vaser et al., 2017) and Medaka(ONT) (see Methods). This resulted in

full length assemblies for each of the two alleles, within which we identified

the presence of SINEs (e.g. Alu-elements) and LINEs using RepeatMasker (Re-

peatMasker Open-4.0). We compared the two assemblies for variants differing

between alleles and found numerous indels and single nucleotide changes

(Supplementary Table 3.7) using the minimap2 suite (Li, 2018). After filtering

for homopolymer regions (which nanopore sequencing is known to still have

difficulty resolving (Simpson et al., 2017)), we found 10 indels of at least 3

nucleotides between the two assemblies (Supplementary Table 3.7). Seven

of these ten were annotated in the platinum genome data set for GM12878

(Eberle et al., 2016). The remaining three not-annotated indels are within large

repetitive regions (Figure 3.4C), making it difficult to map reads from conven-

tional short read sequencing. To validate these indels, we compared against

recently released whole genome PacBio data for GM12878 (SRA: SRR9001768-

SRR9001773) (Zook et al., 2016) which confirmed each of these three small

unannotated indels between alleles (Supplementary Figure 3.16).
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3.3 Discussion

Because of the low cost to entry and small footprint of the instrument, and

the ability to sequence targeted regions of the genome with long-reads, this

assay has the potential to be widely utilized as a tool for identifying single

nucleotide changes, evaluating DNA methylation, and studying structural

variation. We were even able to apply this to clinical tissue despite the rel-

atively high DNA input requirements (3 micrograms). We show that single

nucleotide variants in regions of interest can be queried with the nCATS pro-

tocol, although there are persisting limitations, as evinced by the few SNVs

not detected by this approach. We found that by using only high-confidence

variants, we were able to phase nanopore sequencing reads into parental

alleles using WhatsHap (Whatshap: fast and accurate read-based phasing. bioRxiv.

2016), permitting haplotype resolution of high-coverage nanopore data. As

basecalling and variant-calling algorithms continue to improve we anticipate

higher future performance for surveillance and identification of mutations.

We also highlight the use of nCATS to detect and validate structural variants.

It is only with the advent of long-read sequencing that the great diversity of

structural variation in human genomes has been appreciated (Audano et al.,

2019; Chaisson et al., 2018), and this method provides a dynamic approach

to evaluate genomic rearrangements, including large structural variants and

hard-to-map repetitive regions (Dixon et al., 2018). Importantly, because

nanopore sequencing interrogates the DNA strand rather than sequencing

”by-synthesis”, we can simultaneously profile methylation in these loci, pro-

viding biological as well as diagnostic insight into the epigenome, which is
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commonly disrupted in human neoplasia (Timp and Feinberg, 2013). The high

sequencing depth granted by this method is especially useful to characterize

genetically and epigenetically heterogeneous samples typically obtained from

clinical samples; giving us insight into the frequency of different mutations

and epigenetic changes present.

3.4 Methods

3.4.1 Cell culture and DNA prep

Cell lines were obtained from ATCC: MCF10A (CRL-10317), MCF7 (HTB-22),

MDA-MB-231 (HTB-26); or Coriell institute: CEPH/UTAH Pedigree 1463

(GM12878). Cells were cultured according to recommended protocols. Briefly,

all cell lines were maintained at 37°C in 5% CO2. The GM12878 cell line was

grown in high-glucose RPMI media supplemented with 10% fetal calf serum

(FCS), penicillin-streptomycin antibiotics (pen-strep), and L-glutamine. MCF-

7 and MDA-MB-231 were grown hi-glucose DMEM media supplemented

with 10% FCS, pen-strep, and L-glutamine. MCF-10A cells were grown in

hi-glucose DMEM media supplemented with 5% horse serum, pen-strep,

L-glutamine, epidermal growth factor, insulin, hydrocortisone, and cholera

toxin. DNA was extracted from cells, using either the MasterPure kit (Lucigen,

MC85200), or the Nanobind kit (Circulomics, NB-900-001-01) and stored at

4°C until use. DNA was quantified using the Qubit fluorometer (Thermo)

immediately before performing the assay.
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3.4.2 Patient Tissue and Mouse Xenograft

All human samples were collected with appropriate approval from the Johns

Hopkins institutional review board. The primary breast tumor was identified

as ER/PR+ by immunohistochemistry and snap frozen. Mouse experiments

were conducted with prior approval from JH-IACUC. Mouse xenografts were

generated by injecting 106 ER/PR/HER2-negative MDA-MB-231 breast cancer

cells into the mammary fat pad of athymic mice. Tumors were collected 6-

8 weeks later and frozen immediately as small chunks. The snap frozen

tissue was ground under liquid nitrogen using a CryoMill (Retch) and DNA

extracted using MasterPure kit (Lucigen, MC85200).

3.4.3 GuideRNA design

Guide RNAs were assembled as a duplex from synthetic crRNAs (IDT, custom

designed) and tracrRNAs (IDT, 1072532). Sequences are provided in Sup-

plementary Table 3.8. The crRNAs were designed using IDT’s design tool

and selected for the highest predicted on-target performance with minimal

off-target activity. The gRNA duplex was designed to introduce cuts on com-

plementary strands flanking the region of interest. For methylation studies

and SNV studies, the target size between gRNAs was 12-24 kb; for deletions,

the gRNAs were designed to flank the suspected breakpoints by 5kb.

3.4.4 Ribonucleoprotein Complex Assembly

Prior to guide RNA assembly, all crRNAs were pooled into an equimolar

mix, with a total concentration of 100uM. The crRNA mix and tracrRNA were
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then combined such that the tracrRNA concentration and total crRNA concen-

tration were both 10uM. The gRNA duplexes were formed by denaturation

for 5 minutes at 95°C, then allowed to cool to room temp for 5 minutes on a

benchtop. Ribonucleoprotein complexes (RNPs) were constructed by combin-

ing 10pmol of gRNA duplexes with 10pmol of HiFi Cas9 Nuclease V3 (IDT,

1081060) in 1X CutSmart Buffer (NEB, B7204) at a final volume of 30uL (conc:

333nM), incubated 20 minutes at room temperature, then stored at 4°C until

use, up to 2 days.

3.4.5 Cas9 Cleavage and Library Prep

3ug of input DNA was resuspended in 30uL of 1X CutSmart buffer (NEB,

B7204), and dephosphorylated with 3uL of Quick CIP enzyme (NEB, M0508)

for 10 min at 37C, followed by heating for 2 minutes at 80C for CIP enzyme

inactivation. After allowing the sample to return to room temp, 10uL of the

pre-assembled 333nM Cas9/gRNA complex was added to the sample. In

the same tube, 1uL of 10mM dATP (Zymo, D1005) and 1uL of Taq DNA

polymerase (NEB, M0267) were added for A-tailing of DNA ends. The sample

was then incubated at 37C for 20min for Cas9 cleavage followed by 5 minutes

at 72C for A-tailing. Sequencing adaptors and ligation buffer from the Oxford

Nanopore Ligation Sequencing Kit (ONT, LSK109) were ligated to DNA ends

using Quick Ligase (NEB, M2200) for 10 min at room temp. The sample was

cleaned up using 0.3X Ampure XP beads (Beckman Coulter, A63881), washing

twice on a magnetic rack with the long-fragment buffer (ONT, LSK109) before

eluting in 15uL of elution buffer (ONT, LSK109). Sequencing libraries were
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prepared by adding the following to the eluate: 25uL sequencing buffer (ONT,

LSK109), 9.5uL loading beads (ONT, LSK109), and 0.5uL sequencing tether

(ONT, LSK109). A detailed step-wise description of the enrichment method is

available on protocols.io (https://www.protocols.io/view/cas9-enrichment-

for-nanopore-sequencing-68ihhue)

3.4.6 Sequencing

Samples were run on a MinION (ver 9.4.1) flow cell or Flongle flow cell (ver

9.4.1 pore), using the MK1B or GridION sequencer.

3.4.7 Data Analysis

Code and pipelines used in data analysis is available online at

https://github.com/timplab/Cas9Enrichment

Basecalling was performed using the GUPPY algorithm (Version 3.0.3) to

generate FASTQ sequencing reads from electrical data. Reads were aligned

to the human reference genome (Hg38) using Minimap2 (Li, 2018). Per-

nucleotide coverage was determined using samtools, and clustered using the

‘bincov’ script of the SURVIVOR software package (Jeffares et al., 2017). On-

target reads were defined as those which aligned within 20kb of a guideRNA

site. Average coverage per region is the average of coverage of all bases

between the innermost guideRNA sites, using coverage found by samtools.

De novo variant calling was performed using samtools (Li, 2011), Clair (Luo

et al., 2019), Medaka (medaka: Sequence correction provided by ONT Research) or

nanopolish (Simpson et al., 2017). For validation, we compared SNV calls to
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those annotated for GM12878 as part of the platinum genome dataset (Eberle

et al., 2016). To achieve different coverage values for validation of GM12878

data, each region was subsampled at random using samtools to achieve 300X

coverage with reads balanced on each strand. The reads were then further

subsampled to achieve the lower coverage values of 200X, 100X, 50X and 25X.

Sensitivity was calculated as correctly called SNVs (true positives) out of all

true SNVs (true positives plus false negatives). The F1 score is included as a

measure of overall test accuracy, calculated as the harmonic mean of precision

and recall. High-confidence variants were generated by an additional filter

requiring variants to be supported by reads from both strands. Bam alignment

files were split into reads aligning to forward strand and reverse strand,

and variant calls performed were performed on each set of reads separately.

Variants were only included in the high-confidence set if they were called in

forward strand reads alone, reverse strand reads alone, and the complete data

set. Segregation of reads into parental alleles was performed with WhatsHap

(Patterson et al., 2015), using only de novo called high-confidence variants.

For patient tumor tissue, reads phased into haplotypes using only the variants

identified from paired normal tissue. CpG methylation calling on nanopore

data was performed using nanopolish (Simpson et al., 2017). Methylation

calling on existing WGBS GM12878 data (GEO: GSE86765) (ENCODE Project

Consortium, 2012) was performed using the bismark software tool (Krueger

and Andrews, 2011). The bismark output files were processed using the bsseq

R package (Hansen, Langmead, and Irizarry, 2012), and Pearson correlation

coefficient was calculated using base R. RNA-seq data of MCF-10A, MCF-7,

and MDA-MB-231 were downloaded from GEO (Accession: GSE75168) in
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the form of RNA counts. Deletions were called using the structural variant

caller Sniffles (Sedlazeck et al., 2018), set to find deletions with a minimum

size of 100bp. In the instance of the very large (>70kb) heterozygous deletions

in GM12878, the allelic size bias caused the ploidy to be incorrectly called as

homozygous. To correct this, we used the option

“--min_homo_af”

set to 99.9, which ensured a deletion was called as heterozygous if supporting

reads for an allele were present at a rate as low as one in one thousand.

For assembly of the BRCA1 region, reads were first split into haplotypes

with WhatsHap (Patterson et al., 2015). A draft assembly for each allele was

built using the Flye assembly tool (Kolmogorov et al., 2019), with default

parameters for nanopore reads. Draft assemblies were then corrected by using

four iterative rounds of polishing with the Racon error-correction software

(Vaser et al., 2017), with the score for matching bases (“-m”) increased to 8

and the score for mismatching bases (“-x”) decreased to -6. A final round

of polishing was performed using the Medaka consensus tool (ONT) with

default parameters. The assemblies were surveilled for indels using the

paftools helper script of the Minimap2 suite (Li, 2018).

3.5 Supplementary Material
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Figure 3.5: Example Off-Target Cleaving from BRCA1 guideRNA (Top) Off-target
coverage/reads. (Bottom) pairwise alignment between guideRNA and off-target site.
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Figure 3.6: Stranded Information (Top) Example of two false positive variants
resulting from a sequencing error on only one strand. (Bottom) Two real variants
which are supported by data on both strands.
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Table 3.2: Coverage Summary Top: Coverage at 10 loci in GM12878, MCF-10A,
MCF-7 and MDA-MB-231 using single cut on each side of region of interest. Bottom:
Coverage at 10 loci in GM12878 and primary tissue samples (Normal breast, Xenograft,
and Tumor/Normal paired) with multiples cuts on each side of region of interest.
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Table 3.3: Off-target Analysis Off-target analysis for the GM12878 sequencing run
using multiple guideRNAs flanking each site, using the bincov tool from SURVIVOR
(Jeffares, D. C. et al. Nat. Commun. 8, 14061 (2017). On-target loci are colored orange.
Max coverage shows the highest coverage reached in the specific locus.
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Figure 3.7: Persisting False Positive SNV The single false positive variant from high-
coverage sequencing data that passes dual-strand filtering. This variant is present in
a highly thymidine-dense region. Note this variant falls within a repetitive region of
the genome masked by RepeatMasker, thus the lowercase reference.
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Table 3.4: MDA-MB-231 Single Nucleotide Variants Variants identified de novo
using nanopolish from nanopore data at three loci (TP53, BRAF, KRAS.) The red
boxes show the mutations annotated in COSMIC database, blue shows the five
variants removed by dual-strand filtering
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Figure 3.8: Tumor Loss of Heterozygosity Single nucleotide high-confidence variant
calls (nanopolish passing dual strand filter) at two other enriched sites on chr17
(KRT19 and 30kb piece of BRCA1). Reads were phased to show only variants passing
dual-strand filter using the ‘phase-reads’ module of nanopolish. Tumor reads were
phased into haplotypes using only variants from the corresponding normal sample.
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Figure 3.9: Comparison of nCATS methylation Data with WGBS data (A) Line and
dot plot of methylation calls made by bismark (WGBS Illumina data: GEO: GSE86765)
and nanopolish (Cas9-targeted nanopore data) at all CpGs in the targeted regions.
Gene models plotted below for orientation. (B) Read-level methylation plots for
five loci in GM12878. (C) Per-CpG scatter plot comparing methylation calls made
by bismark (WGBS Illumina data: GEO: GSE86765) and nanopolish (Cas9-targeted
nanopore data) at all CpGs in the targeted regions. r=0.81 across all 5 sites.
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Figure 3.10: Breast cell line methylation Read-level methylation plots for all
methylation-associated loci in three breast cell lines (MCF-10A, MDA-MB-231, MCF-7)

Figure 3.11: Transcript level comparison in breast cell lines Normalized expression
data (read counts) for three breast cell lines (MCF-10A, MDA-MB-231, MCF-7) from
existing RNA-seq data (GEO: GSE75168).
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Figure 3.12: Primary tissue methylation Read-level methylation plots for five cap-
tured loci in fresh breast tissue (reduction mammoplasty, cell-line-derived xenograft,
paired tumor/normal). Tumor/normal samples are segregated into haplotypes using
only variants from the normal sample.
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Figure 3.13: Chromosome 5 deletion in breast cell lines Reads at a small (< 10kb)
common structural variant on chromosome 5 from breast cell line nanopore enrich-
ment data (deletion at chromosome 7 is included as Figure 3.4A).
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Table 3.5: Sniffles calls in breast cell lines Indels called at deletion locations in breast
cell lines

Table 3.6: Sniffles calls in GM12878 Indels called at large heterozygous deletions in
GM12878
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Figure 3.14: Per-allele coverage around large deletions Coverage plots around two
large heterozygous deletions in GM12878. Yellow triangles show points of Cas9
cleavage. Blue lines show coverage of reads assigned to paternal haplotype and red
lines show coverage of reads assigned to maternal haplotype. (In both cases, the
distance between cuts on the deleted allele is 10kb and distance between cuts on
non-deleted allele is 80kb).

Table 3.7: Comparing BRCA1 alleles in GM12878 Indels greater than or equal to
three nucleotides between assemblies, removing indels from homopolymer length
differences

60



Figure 3.15: Reads at the BRCA1 locus for GM12878 Left: Reads from BRCA1
enrichment with DNA extracted using the Masterpure kit (Lucigen, Cat MC85200)
Right: Reads from BRCA1 enrichment run with DNA extracted using the Nanobind
kit (Circulomics, Cat NB-900-001-0)
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Figure 3.16: Validation of novel BRCA1 indels (A) Showing whole genome PacBio
data around BRCA1 in GM12878 from publicly available data (SRA: SRR9001768 -
SRR9001773) (B) Comparison of the three not annotated heterozygous indels found in
GM12878 between Cas9-nanopore enrichment data (top) and whole-genome PacBio
data (bottom).
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Table 3.8: Breast Cancer GuideRNAs Sequences, binding locations(Hg38) and direc-
tionality for guideRNAs used in breast cancer studies
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Chapter 4

TERT Sequencing in Thyroid
Cancer

4.1 Introduction

‘Telomerase’ refers to the ribonucleoprotein complex that functions to main-

tains the ends of chromosomes (telomeres). Telomeres become shortened

during DNA replication due to the lack of a priming site for the lagging strand

(Muraki et al., 2012), a conundrum for all linear chromosomes that has been

termed the “end replication problem”. Telomerase activity is maintained in

human stem cells and germ line cells, but expression in healthy somatic cells

is normally absent or occurring at very low levels (Muraki et al., 2012). Con-

versely, reactivation of telomerase is a very common feature of neoplasia, and

occurs in over 90% of human cancers (Koziel et al., 2011). This re-activation of

telomerase results in maintained telomere length through cell division, sus-

taining the cell proliferation of malignant cells. The core protein component

of telomerase is the telomerase reverse transcriptase (TERT) catalytic subunit.
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Expression of TERT has been found to be a good proxy for studying telom-

erase levels and activity (Yi, Shay, and Wright, 2001). Relevantly, changes

in TERT expression have been linked to alterations in the epigenetic milieu

around the TERT promoter, to include changes in chromatin accessibility, and

in CpG methylation patterns (Castelo-Branco et al., 2013). Regulation of TERT

by CpG methylation is somewhat unique in that methylation of specific loci

within the TERT promoter region is associated with increased transcriptional

activity (Devereux et al., 1999). This non-conventional change in methylation

may partly be explained that normal cells are devoid of CpG methylation

at the TERT locus (indicating that the gene is suppressed though alternative

mechanisms). In cancer transformation, cells often alter patterns of methy-

lation around the TERT promoter, presumably in response to changes in the

signaling pathways and changes in the transcription factors occupying the

TERT promoter. In cases of mutations on only one single TERT allele, there

is evidence of increased widespread CpG methylation and recruitment of

epigenetic silencing machinery (PRC2) on the inactive (non-mutated) allele

(Stern et al., 2017).

We studied changes in CpG methylation at the TERT promoter specifically

in the context of thyroid cancer, using normal thyroid tissue and thyroid-

carcinoma-derived cell lines (McKelvey et al., 2020; Avin et al., 2019). TERT

promoter mutations have been described in many human cancers, including

thyroid cancer (Liu et al., 2013). The mutation profile at the TERT promoter

has been characterized for the thyroid cell lines used in these studies (Table

4.1) . These mutations alter transcription factor binding which can directly
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lead to this dysregulation of TERT repression. Some distinct mutations that

alter transcription factor binding have been characterized: two especially com-

mon TERT promoter mutations, (C228T and C250T, named based on Hg19

coordinates) are positioned 124nt and 146 nt upstream of the start codon (Liu

et al., 2013). Both of these mutations give rise to an 11-mer consensus binding

sequence for GABPA/B1 (ETS transcription factor family). In vitro transcrip-

tion experiments have shown that this leads to increased transcription levels

(Huang et al., 2013), and is linked to changes in the histone signature to reflect

a more active state (Stern et al., 2017). We studied specifically the effects of

TERT promoter mutations in thyroid cancer, examining how these correlated

with changes in CpG methylation patterns and transcriptional activity. The

long reads of targeted nanopore sequencing bring a unique advantage, al-

lowing us to phase point mutations to methylation patterns at sites tens of

kilobases away (including at other regulatory regions). Anther advantage of

nanopore sequencing for this application, is that the TERT region is high-GC

density and low-complexity, making it challenging to map short sequencing

reads, especially after bisulfite conversion. Bisulfite conversion is especially

confounding for this C>T mutation in that it not only (1) reduces genome

complexity, but also (2) obliterates the allele-specific C>T mutation, hindering

allele-specific study of methylation.

71



4.2 Results

4.2.1 CpG Methylation Studies

For initial studies of methylation patterns of the TERT promoter, we used

bisulfite amplicons (Supplementary Table 4.2). In order to query the en-

tire minimal TERT promoter (1100nt) three tiled amplicons were used to

query the region (Figure 4.1). This system was used to compare methylation

patterns in normal thyroid tissue versus two papillary thyroid carcinoma

(PTC) cell lines and two follicular thyroid carcinoma cell lines (FTC). For PTC

cell lines, we used the BCPAP and TPC-1 cell lines. (TPC-1 is considered

a well-differentiated PTC, whereas BCPAP is considered a model poorly-

differentiated PTC) (Saiselet et al., 2012).

Our results were in in agreement line with previous observations that trans-

formed cells often carry foci of increased methylation of the TERT promoter.

The increase in methylation versus the normal control was most evident in

the proximal gene body, adjacent to a CTCF binding motif. Additionally, for

the TPC-1 cell line, the region just upstream of the TSS showed a very dra-

matic bimodal spike in methylation versus the normal line massive increase

in methylation, the poorly differentiated BCPAP showed much more muted

Table 4.1: TERT mutations in cell lines TERT Mutation status and cellular sub-
type/description in four thyroid cell lines
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changes in methylation in this region

We also applied this strategy to examine methylation patterns in the follic-

ular thyroid carcinoma (FTC) cell lines; FTC-133 and FTC-238. Interestingly,

both of these cell lines originate from the same thyroid cancer patient. The

FTC-133 cell line was isolated from an early regional LN metastasis and the

FTC-238 cell line from a late distal metastasis. Both of these FTC lines showed

methylation increases within the proximal gene body (as was seen with the

PTC lines). Conversely, the FTC lines showed no increase in methylation

in the region just proximal to the TSS, but rather maintained low levels of

methylation in that region similar to the levels in the normal samples (Figure

4.1).

We next followed up these studies by evaluating the methylation pattern

in these cell lines using the nCATS targeted enrichment strategy described

in the previous chapters. This allowed us to study methylation patterns

for the entire proximal regulatory region on both the mutant and wildtype

alleles (Figure 4.2A). In cell lines with heterozygous mutations, we observed

the TERT TSS was demethylated specifically on the mutant allele. Another

common feature of the heterozygous cell lines was a demethylation of the

upstream MYC binding site on the mutated allele. We also note that at the site

of the mutation (the GABPA binding site) that there are only slight differences

in methylation, with a slight increase in methylation on the wildtype allele

for the papillary cell lines (BCPAP and TPC-1) at this site. As mentioned in

the previous chapter, this data can also be visualized at the single molecule

level, which makes it possible to appreciate the heterogeneity of methylation
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Figure 4.1: Tert Methylation with Bisulfite Amplicons Comparison of methylation
patterns in thyroid cell lines and normal primary thyroid tissue. (Top) Methylation
of normal thyroid tissue compared with two papillary thyroid carcinoma cell lines:
BCPAP and TPC-1. (Bottom) Methylation of normal thyroid tissue compared with
two follicular thyroid carcinoma cell lines: FTC-133 and FTC-238. The black arrow
indicates the TERT transcriptional start site. Binding sites for CTCF, ETS, and MYC
are shown along the X-axis of the methylation plots.
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Figure 4.2: TERT methylation with nCATS Data (A) Methylation patterns on each
of the alleles for (top) papillary thyroid carcinoma and (bottom) follicular thyroid
carcinoma cell lines. (B) Read-level methylation plots of nCATS data from both
normal thyroid tissue and the FTC-238 cell line.

patterns. For example in the FTC-238 cell line we see some mutant alleles with

wide regions of demethylation around the TSS, while other mutant alleles

showing higher levels of methylation and patterns that more closely mirror

that seen on the wildtype allele (Figure 4.2B).

4.2.2 Chromatin Immunoprecipitation

We continued this investigation of TERT biology with chromatin immunopre-

cipitation (ChIP) studies to see if DNA methylated changes were correlated

with increased presence of DNA binding proteins (namely, GABPA, CTCF,

and MYC) in these transformed cell lines. We observed increases in binding

of GABPA as well as CTCF binding relative to normal thyroid tissue (Figure

4.3A). Conversely, Myc appears to be associated with the upstream promoter
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at decreased levels in thyroid cancer cell lines relative to normal thyroid tis-

sue, which is at least partially explained by the increased methylation at the

Myc binding site in the cancer cell lines. In order to interrogate which allele

these DNA-binding proteins were associated to in heterozygous cell lines,

we followed up the initial ChIP-qPCR studies with ChIP-Sanger sequencing.

Here I highlight the results for the two cell lines with heteozygous single base

changes: TPC-1 and FTC238. For both of these cell lines we observe that both

Myc as well as GABPA appear to be binding nearly exclusively to the mutated

allele (Figure 4.3B). Following up these studies with ChIP using antibodies

directed against modified histones, we observed the repressive chromatin

mark of lysine 27 trimethylation (H3K27me3) to be enriched at the wildtype

TERT allele, contrasting with the H3K4me3 activation histone mod which was

much more enriched in the mutated allele (Supplementary Figure 4.5).

4.2.3 TERT Transcriptional Analysis

We also compared levels of the TERT transcript in both the cell lines as well as

healthy normal thyroid tissue. As anticipated, we found that transcript levels

of TERT were elevated in all of the transformed lines (Figure 4.4). Levels for

TERT appeared to be higher in the more aggressive cell lines. This was true in

the case of both papillary thyroid carcinoma (the poorly differentiated BCPAP

versus the well-differentiated TPC-1), as well as follicular thyroid carcinoma

(the locally metastatic FTC-133 versus hematogenously spread FTC238). To

show a direct link between the mutation, protein-binding, and transcription,

we identified variants within the coding region for the heterozygous cell
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Figure 4.3: Chromatin Immunoprecipitation in Thyroid Cell lines (Left) ChIP-
qPCR to comparing total binding of CTCF, Myc, and GABPA in thyroid cancer cell
lines and normal thyroid. Enrichment is given relative to 5% input. (Right) ChIP-
Sanger for Myc and GAPBA in the thyroid cell lines with a heterozygous single
nucleotide change (TPC-1 and FTC-238)
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Figure 4.4: TERT Transcript Analysis (A) TERT relative transcript levels measured
by qPCR. Values normalized to GAPDH. (B) Sanger sequencing of genomic DNA and
transcript-derived cDNA in the TPC-1 and FTC-238 cell lines.

lines. For TPC-1, the variant used is a G>A mutation in Exon2. Both FTC-

238 as well as the BCPAP cell lines contained a mutation in the 3’ UTR of

C>T. Sanger sequencing of amplicons generated either from genomic DNA or

transcript-derived cDNA showed that only one of the alleles is giving near

exclusive rise of the transcripts. This is shown for TPC-1 and FTC-238 cell lines

in (Figure 4.4) and the data for BCPAP is shown in (Supplementary Figure

4.6). Further, because we have the long read data, we were able to phase the

transcript mutation with the distal promoter mutations. This confirmed that

the mutated promoter to be present on the same allele giving rise to the more

abundant transcript.
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4.3 Discussion

For this work we characterized changes in transcription factor binding at

the TERT promoter in thyroid cancer and linked those changes to mutation,

methylation patterns and transcriptional activity. Features of the TERT pro-

moter methylome have already been used in clinical studies, as increased

upstream methylation is linked to poor clinical outcomes and is used as a

biomarker for cancer diagnosis in melanoma as well as some brain cancers

(Lee, Borah, and Bahrami, 2017). It was previously understood that select

methylation of the TERT promoter is correlated with increased transcription

(Lopatina et al., 2003), and this work helps to highlight the complexity of the

relationship between DNA methylation and TERT expression, and provide

some potential mechanistic insight.

For instance, Comparing for instance the early and late stage cell lines

FTC-133 and FTC-238, we see that the later stage has higher levels of TERT

expression associated with increased methylation, specifically on the non-

mutated allele. This implies that the cell may have activated suppresive

signaling (i.e. DNA methylation) in response to TERT overexpression as an

attempt to quell the aberration and return the cell to homeostasis.

The ChIP analysis, paired with transcriptional studies and allele specific

methylation help to paint a clearer picture of how dysregulation may occur

in these cell lines. The TPC-1, FTC-238, and FTC-133 cell lines (having mu-

tations that create the consensus sequence for GAPBA binding), all showed

dramatically increased amounts GAPBA binding. BCPAP demonstrated a

much more modest increase in GAPBA binding, which can be attributed to
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the unique mutation in this cell line which does not create the perfect con-

sensus sequence and therefore a a decreased affinity for this transcription

factor is anticipated. It is also possible that the poorly differentiated BCPAP

cell line has developed alternative activation mechanisms for TERT and is

no longer GAPBA-dependent. Interestingly, the observed increase in TERT

expression appears to be inversely correlated with the amount of GABPA

binding, implying that this might be an early mechanism of initiation of TERT

activity.

This work confirmed that there is increased binding of GABPA to the mu-

tant TERT promoter in thyroid cancer cell lines, as seen previously with other

cancer types (Stern et al., 2017). This work added the new layer of information

that Myc also can bind in an allele-specific manner. It had previously been

understood that Myc was an activator of TERT (Wu et al., 1999), but its bind-

ing activity in the context of heterozygous mutations had not been observed

previously. In fact, this work contradicts some previous work which claimed

that Myc bound to the TERT promoter in a mutation-agnostic fashion (Liu

et al., 2018). We believe this discrepancy to be the result of their experimental

system which employed MYC knockdown and therefore has the potential

to be confounded by changing non-local activity of this master transcription

factor.

Finally, we linked the study of TERT regulation together with the transcrip-

tional studies. By employing coding mutations we identified mono-allelic

expression, and by connecting this with long-read data we confirmed the ex-

pression to be occurring from the mutated allele, providing direct evidence of
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the TERT transcripts’ allele-of-origin. Together this offers new insight into the

mechanisms that regulate TERT expression in transformed cells, suggesting

that the cells tend towards a state of monoallelic expression in the instance

heterozygously mutated cell lines.

4.4 Methods

4.4.1 Cell lines, culture conditions, and TERT mutation sta-
tus

Papillary [TPC-1, BCPAP ] and follicular thyroid cancer cell lines [FTC-133,

FTC-238] were kindly provided to the Umbricht lab by Dr. Motoyasu Saji

(The Ohio State University Wexner Medical Center, Columbus, OH). All cell

lines were authenticated using short tandem repeat profiling. The BCPAP cell

line was grown in Roswell Park Memorial Institute-1640 (RPMI-1640; Sigma-

Aldrich, St. Louis, Missouri) medium with 10% heat-inactivated fetal bovine

serum (FBS) (GE Healthcare Life Sciences, Marlborough, Massachusetts),

while TPC-1, FTC-133, and FTC-238 were grown in HyClone Dulbecco’s

Modified Eagle Medium (DMEM) (GE Healthcare Life Sciences) with 10%

FBS. All cultures were supplemented with 1x antibiotic antimycotic solution

(Sigma-Aldrich), 2 mM L-glutamine (Life Technologies, Carlsbad, California),

and 1x MEM-Non-Essential Amino Acids (Quality Biological, Gaithersburg,

Maryland) and maintained at 37°C and 5% CO2. For primary patient tissue

(true normal fresh tissue), six frozen thyroid tissue samples were selected from

our thyroid tissue bank, which has been approved by Institutional Review

Board at Johns Hopkins Medical Institutions. Samples were immediately
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placed on ice, resected and reviewed in the Department of Pathology, snap

frozen in liquid nitrogen, and stored at -80degC until use. Five micrometre

Cryostat H&E sections were obtained to dissect pathology from adjacent

normal thyroid tissue.

4.4.2 DNA Isolation and Bisulfite Modification

Genomic DNA from cell lines and patient tissue was isolated by utilizing

Proteinase K digestion, phenol/chloroform extraction, and ethanol precip-

itation. DNA was diluted in 1x Low-EDTA TE pH 8 (Quality Biological).

Isolated DNA (100 ng) was used for bisulfite treatment using the EZ DNA

Methylation-Lightning Kit, according to manufacturer’s guidelines (Zymo

Research, Irvine, California).

4.4.3 Bisulfite Sequencing PCR of TERT Promoter

Bisulfite modified DNA was amplified with three separate tiled primer sets

listed in (Supplementary Table 4.2), amplifying the region -662 to +174 rela-

tive to the TERT TSS. The 50 uL PCR amplification reaction contained 5uL of

bisulfite-treated DNA, 300nM of forward and reverse tile primers, and 25uL

KAPA HiFi HotStart Uracil+ ReadyMix (2X) (KAPA Biosystems, Wilmington,

Massachusetts) using the ProFlex PCR System (Applied Biosystems, Foster

City, California) [2 minutes 95degC, 35 cycles × (20 seconds 98degC, 20 sec-

onds (T1 58degC/T2 54degC/T3 54degC), 40 seconds 72degC), 2 minutes

72degC].
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4.4.4 Bisulfite Library Preparation and Sequencing

PCR products from the bisulfite-treated TERT tiles were purified with Agen-

court AMPure XP beads, using 1.8x beads (Beckman Coulter Life Sciences,

Indianapolis, Indiana) and quantified using the Qubit dsDNA HS Assay Kit

(ThermoFisher Scientific, Waltham, Massachusetts). The NEBNext Ultra DNA

Library Prep Kit for Illumina (New England Biolabs, Ipswich, Massachusetts)

protocol was followed for library preparation. Because of the variance in

on-target fraction in the PCR products, the amplicons were pooled with DNA

input amounts of 20, 40 and 200 ng of, T1, T2, and T3, respectively. Library

concentration and size distribution were quantified with the High Sensitiv-

ity DNA kit on the 2100 Bioanalyzer (Agilent, Santa Clara, California) and

KAPA Library Quantification Kit for Illumina Platforms (KAPA). A 12 pM

sample library for promoter bisulfite sequencing with 30% PhiX control was

paired-end sequenced on the MiSeq v3 600 PE system (Illumina, San Diego,

California) for a targeted minimum of 10,000 reads per amplicon.

4.4.5 Data Processing for Methylation

TERT promoter methylation status was analyzed with the Bismark (Krueger

and Andrews, 2011) software package. Bisulfite conversion and mapping to

the Human Genome Reference Consortium build 37 (GRCh37) was performed

on trimmed reads (Trim Galore) (Krueger, 2015). Sequencing coverage for

each CpG was analyzed with bsseq (Hansen, Langmead, and Irizarry, 2012).

A CpG site was included in the analysis if the sequencing coverage was over

60 and present in more than two cell lines.
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4.4.6 Chromatin Immunoprecipitation (ChIP) Analysis

For ChIP analysis, DTC cells were grown to 85% confluency in 15 cm plates.

For ChIP analysis in normal thyroid tissue, the Novus Biologicals protocol was

followed (Cat NBP1-71709). Cells were fixed for 8 minutes in 1% formalde-

hyde. Chromatin was sheared by sonication for 2x [4x 20s on/20s off] using the

Bioruptor Pico (Diagenode, Denville, NJ). The following antibodies were used

(10 ug per ChIP): anti-MYC (No. 9402; Cell Signaling Technology, Danvers,

MA), anti-GABPA (No. 27795; Thermo Fisher, Waltham, MA), anti-H3K4me3

(No. 9727; Cell Signaling Technology), anti-H3K27me3 (No. 9733; Cell Signal-

ing Technology). Antibodies were bound to proteinG Dynabeads (Thermo,

10003D). DNA was purified by MinElute PCR Purification Kit (Qiagen). ChIP

and input DNA were analyzed by qPCR with SYBR Green and melt curve

analysis. qPCR reactions were carried out in triplicate, with two biological

replicates, and positive and negative control regions for each antibody. Factor

binding was determined by the percentage of input normalization method,

normalizing binding at locations surrounding the TERT promoter mutation

and transcription start site (TSS). For Sanger analysis immunoprecipitated

DNA and input DNA were amplified by PCR surrounding the TERT -124 C

> T mutation and Sanger sequenced. Primer details are included in Supple-

mentary Table 4.2.

4.4.7 TERT Expression qRT-PCR

RNA from the cell lines was extracted by Trizol isolation (ThermoFisher,

15596026). RNA from normal thyroid tissue was extracted using the Highpure
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RNA kit (Roche, Basel, Switzerland) following the manufacturer’s protocol.

RNA was reverse transcribed to cDNA using SuperScript III Reverse Tran-

scriptase (ThermoFisher) according to manufacturer instructions. Quantitative

PCR was performed with SYBR Green PCR Master Mix (ThermoFisher), with

primers designed to detect the full-length TERT transcript levels (Rao et al.,

2005). The expression level of TERT was normalized to GAPDH .

4.4.8 Nanopore Cas9 targeted sequencing

Nanopore Cas9 targeted sequencing (nCATS) was conducted as described

in the previous chapter. The target region had a size of 7.8 kb surrounding

the TERT promoter at chr5:1,288,699–1,296,505. The guideRNA sequences

used were: Forward “AAGGCTTAGGGATCACTAAG” and Reverse “AGCG-

GCAGGTGCCCAGAATA.” Each sample was sequenced on a nanopore flow

cell (version 9.4.1) using the GridION sequencer (Oxford Nanopore Technolo-

gies, Oxford, UK).

4.4.9 Data processing for methylation from nanopore data

Base calling to generate FASTQ reads was performed by the GUPPY algorithm.

The resulting reads were aligned to the human genome, hg19, by Minimap2.

CpG methylation calling was conducted using nanopolish. Reads were phased

into wild-type or mutant allele by identifying the promoter motif in FASTQ

reads.
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4.4.10 Allele-specific transcription characterization

SNPs in the thyroid cancer cell lines were identified by Sanger sequencing of

genomic DNA in the TERT 3’ untranslated region (UTR) and by integrative

genome viewer examination of the nCATS data in the TERT 5’ UTR and exons

1 and 2. Isolated RNA from the cell lines was DNase I treated and reverse

transcribed as above, then amplified at the SNP location (Supplementary

Table 4.2) and Sanger sequenced utilizing the forward primer to determine

the genotype.

4.5 Supplementary Materials

Table 4.2: Primers for TERT Analysis Sequences for the primers used for ChIP-
qPCR, ChIP-Sanger, and cDNA-Sanger sequencing of TERT
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Figure 4.5: ChIP-Sanger for Histone Modifications ChIP-Sanger for H3K4me3 and
H3K27me3 in the thyroid cell lines with a heterozygous single nucleotide change
(TPC-1 and FTC-238).
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Figure 4.6: Sanger sequencing of BCPAP cDNA Exon 2 sequencing of TERT cDNA,
containing a heterozygous mutation in BCPAP.
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Chapter 5

Additional Applications and Future
Directions of Targeted Sequencing

5.1 Introduction

There are additional ways that strategies using Cas9 targeted sequencing

can be applied to explore features of DNA. This chapter will discuss several

avenues of additional study that we have begun to apply. This will focus on

three extensions of this method: (1) locating sites of random gene integration

(2) generating targeted chromatin accessibility data and (3)using panels of tiled

guideRNAs to query large genomic regions for structural variant discovery.

It is worth noting that the 2020 outbreak of coronavirus led to a limitation in

our ability to complete some benchwork experiments, and therefore all of the

projects in this chapter have future planned work to be carried forward at a

later time either by myself or others members of the Timp lab.
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5.2 Gene Localization

5.2.1 Background

The insertion of genes into expression systems is a commonly used technique

in the biopharmaceutical industry (Romanova and Noll, 2018). When pro-

teins are produced in a mammalian system, the expression vector of choice

is largely the Chinese Hampster Ovary (CHO) epithelial cell (Stolfa et al.,

2018). Conventionally, an expression vector containing the transgene and

associated promoter elements is delivered to the cells and randomly integrates

into the CHO genome. Single-cell clones are selected from this transfection,

followed by a largely empirical process to identify clones that are expressing

the protein of interest (Stolfa et al., 2018). Often it can be difficult to identify

the precise location of these inserts, making it challenging to characterize the

epigenomic landscape of the gene insertion. This is further complicated by

the potential for the transgene to concatamerize during integration, leading to

tangential repeats of the insert. Often the insertions can be unstable, leading

to inconsistent gene expression and loss of productivity over time. The ability

to characterize the insert would be valuable in understanding this variation

and the propensity of inserts to inactivate.

This project was carried out with industry collaborators to express anti-

bodies in the CHO cell line. Due to proprietary limitations, some details of the

data can not be publicly divulged. For this reason, locations of the inserted

genes are censored from this thesis. Our industry collaborators also declined

to offer us the the full sequence of the expression vector, and we therefore had
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to decipher this on our own. What we were provided with was the sequence

of the light chain and heavy chain genes for this antibody. We received DNA

from clonal CHO cell lines with varying expression levels, with randomly

inserted plasmid(s) containing the light chain and heavy chain genes.

5.2.2 Results

As before, guideRNAs were designed to create cuts in the sequence of interest.

Only this time, the guides were directed “outwards” to generate sequencing

information out into the plasmid sequence, with the hopes that some reads

would further extend into the CHO genomic sequence (Figure 5.1). This was

performed on four cell lines. Two of these clones were characterized as ‘stable’

in their expression the transgene, and two others were described as ‘unstable’.

The four cell lines were sequencing in a single MinION flow cell run, each

sample barcoded using Oxford Nanopore’s native barcoding kit. This resulted

in 2000-4000 total sequencing reads per sample (Table 5.1).

Table 5.1: Read Counts for CHO insertions CHO clone identifier and total sequenc-
ing reads for the corresponding sample in a multiplexed MinION sequencing run

The first challenge was to reconstruct the sequence of the plasmid using
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the targeted sequencing data. If, as anticipated the plasmid contatamerized

during insertion into the the CHO genome, it is expected that many sequenc-

ing reads containing only vector (Figure 5.1). Also, because the plasmid can

be orientated either forwards or backwards during this process, smaller frag-

ments that contain only parietal sequences can result from Cas9 cleavage. To

determine the vector sequence, we first pulled out only the reads which con-

tained the sequence of the known gene insert. For this step, we used the data

from the “Stable3” clone, where we identified 407 reads (10.0%) containing the

transgene sequence. Looking at the read length distribution lengths showed a

main peak around 12kb and other smaller peaks at 7kb and 20kb. We fed the

data to the Flye assembly tool (Kolmogorov et al., 2019), resulting in multi-

ple assemblies of varying length. We evaluated the different assemblies for

completeness of the two transgenes (heavy chain and light chain). Because of

plasmid discontiguity or incomplete/duplicated gene inserts, we identified

the assembly most likely to represent the original vector. By adding back in

the missing piece of the heavy chain gene, we arrived at an assembly 11.5 kb

in size. Additional software tools Racon (Vaser et al., 2017) and Medaka (ONT)

were further applied to polish this draft of the assembly sequence (Figure 5.2)

(see Methods).

Once we had the sequence for the plasmid in hand, the next steps were to

identify locations where this gene insertion had occurred. To identify reads

potentially informative about insert location, we mapped the plasmid against

the ‘on-target’ reads, and identified reads which contained non-plasmid se-

quence at their 3’ end (we set a cut-off of at least 50nt of non-vector sequence
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Figure 5.1: Cas9 Targeted Sequencing for Insert Localization Cartoon showing the
strategy and resulting reads using targeted cleavage to locate insertion points
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Figure 5.2: Expression Vector Map Map showing the genes and regulatory elements
in the assembled expression vector sequence
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in the read). This led to a substantial attrition in the sequencing reads, leading

to potentially informative read counts of 6 (Stable2), 5 (Stable3), 4 (Unsta-

ble2) and 2(Unstable3). The non-plasmid sequence from these reads was then

aligned back to the CHO genome. These alignments were few enough that

we were able to manually inspect each mapping site. We identified that low-

quality mapping to the CHO genome often reflecting artefacts of sequence

homology and were able to eliminate those. This resulted in the identification

of two sites of genomic integration into the CHO genome. Interestingly, the

two insertion sites were common between all four clones. As an additional

complication, the insertion sites were identified to be highly repetitive re-

gions. Fortunately, we had enough reads extending into less repetitive regions,

allowing unambiguous identification of insertion sites.

5.2.3 Discussion

The positioning of the genes within these low-complexity regions, underscores

the challenging task of finding insertion locations with short-read sequencing.

With conventional sequencing methods, the rare short reads that would con-

tain both plasmid and genomic sequence would not extend far enough out

into the genome to enable precise mapping of the insert location.

Now that we have identified sites of gene insertion, next steps for this

project are to sequence inwards from the insertion points. The goal is that

this will (1) enable us to get information about the insertion concatemer, full

characterizing its structure and (2) allow us to compare methylation patterns

both between the insertion sites and between different copies of the gene at
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one insertion site. This will help us to understand the role that methylation

plays in gene insertion, and could prove a valuable tool in the biopharma

industry for evaluating and selecting transfected CHO clones.

5.3 Targeted NanoNOME

5.3.1 Background

As our understanding of DNA regulation develops, many approaches have

been created that explore how a chromosomes are organized in the nucleus.

Existing assays look at many features of the DNA including nucleosome

occupancy, chromatin accessibility, CpG methylation, and transcription factor

binding. One such method, NOME-seq (Kelly et al., 2012), uses an exogenous

GpC methyltransferase (M. CviPI) to label regions of the genome with a

modification not normally present in mammallian cells. When paired with

bisulfite conversion, this permits detection of nucleosome-free regions of the

genome, as only accessible regions will be GpC labeled. My colleague Isac Lee

performed extensive work to adapt the NOME-seq work flow to the nanopore

sequencing platform, a strategy that we now call “nanoNOME” (Figure 5.3)

(Lee et al., 2019). There were a number of technical hurtles to overcome for

this analysis. Importantly, although detection of cytosine methylation had

already been validated by our lab in the CpG context, a model was needed

for validation of the GpC context. The building of this model this led to the

development of a kernel-smoothing method, which helped to deal with the

noisy GpC methylation data, making it much possible for the first time to

identify nucleosomal occupancy directly on nanopore sequencing reads(Lee
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Figure 5.3: NanoNOME Schematic Acccessible regions of the DNA are labeled with
exogenous modification (methyl-GpC) when incubated with a methyltransferase (M.
CviPI) and methyl donor group (SAM)

et al., 2019).

This avenue offers another useful application for targeted sequencing

studies, as there is currently a paucity of methods for studying chromatin

accessibility at select loci. To perform initial testing and validation of the Cas9

targeted sequencing approach in conjunction with the nanoNOME pipeline,

we applied the same set of guideRNAs that had been used for the breast

cancer studies. We then compared methylation and accessibility patterns with
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whole-genome NanoNOME data, and explored the interplay between CpG

methylation and DNA accessibility at enriched genes.

5.3.2 Results

The nanoNOME protocol is sensitive to input DNA amounts. To account

for this, we used only 1ug of input DNA, less than the 3ug usually used for

Cas9 targeted nanopore sequencing. Despite this reduction in input DNA

amounts, we found that we were still able to generate significant enrichment

over background DNA using this method. Through this method we achieved

average on-target max coverage of 52X. This corresponded to an ‘on-target’

rate of 9.0% from the 10,000 reads achieved (Table 5.2).

Table 5.2: Targeted NanoNOME, regional coverage The max coverage achieved
within the targeted for the respective gene

To evaluate whether the methylation calls were maintained during this
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targeting study, we compared the calls for methylation and accessibility to

whole genome data nanoNOME data for the GM12878 cell line (Lee et al.,

2019). We found that the accessibility calls as well as the CpG methylation calls

agreed strikingly well between targeted nanoNOME data and whole-genome

nanoNOME data. Line plots for all regions are shown in (Supplementary

Figure 5.7). Some regions queried demonstrated a clear inverse relationship

between the CpG methylation calls and chromatin accessibility. Two example

genes demonstrating this phenomena are shown in (Figure 5.4), where we see

increased accessibility and decreased CpG methylation at the transcription

start site for KRAS and GPX1.

GpC accessibility is inherently noisy, a feature which is further exacerbated

by the error profile of nanopore sequencing data. In order to better visualize

the accessibility data, we applied the kernel smoothing function developed for

nanoNOME data (Lee et al., 2019). This greatly aids in our ability to appreciate

the data at the single molecule level while evaluating for protein occupancy.

We specifically applied this to the enrichment data at the KRAS locus (Figure

5.5), where we see evidence of nucleosome depletion at the highly accessible

transcriptional start site, in addition to being able to assess the diversity of

accessibility patterns on the sequencing reads.

5.3.3 Discussion

This work combining accessibility studies with targeted sequencing provides

a range of new opportunities to evaluate accessibility with high coverage. This

provides a facile way to simultaneously study DNA accessibility and CpG
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Figure 5.4: NanoNOME Data at KRAS and GPX1 CpG methylation and accessibility
(nanoNOME) at the KRAS and GPX1 genes in the GM12878 cell line
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Figure 5.5: Kernel-Smoothed NanoNOME Read-level CpG methylation and kernel-
smoothed accessibility data at the KRAS promoter
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methylation, this has the potential to greatly reduce the cost for performing

accessibility studies, which are usually performed genome-wide. Future ap-

plications of planned for this application is to monitor changes in accessibility

during cell fate transition (e.g. differentiation) or during response to exter-

nal stimuli (e.g. hormones or small molecules). By monitoring accessibility

changes at the single-molecule level we can appreciate within-sample hetero-

geneity and monitor how accessibility changes over time, providing deeper

insight into chromatin regulatory mechanisms.

5.4 In vitro transcribed guideRNAs

5.4.1 Background

In the study of breast cancer in earlier chapters, we used targeted sequencing

to investigate for the presence of structural variants with a priori knowledge

of deletion breakpoint locations. Often, when investigating structural varia-

tion, the goal is to discover breakpoint locations de novo. Commonly, these

breakpoints will occur in locations known to be "hotspots" for chromosomal

abnormalities. This is true in pancreatic ductal adenocarcinoma (PDAC),

wherein we sought to investigate two tumor suppressor genes affected by

this mechanism: p16 (Cdkn2a) (Caldas et al., 1994) and SMAD4 (Hahn et al.,

1996). Commonly, these genes lose function in PDAC as a result of structural

variation (deletions, insertions, translocations, inversions, etc). The ability to

rapidly identify precise locations of patients’ structural abnormalities makes

it possible to design personalized assays that can surveil at high sensitiv-

ity for the rearrangement, and detect cancer recurrence. Pursuing that goal,
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this section seeks to extend the targeting sequencing strategy to discovery of

structural abnormalities in large genomic "hotspot" regions.

In PDAC, the locations of chromosomal breakpoints around p16 and

SMAD4 is known to occur over many megabases. To increase the chances of

having reads on both sides potential breakpoints, we enriched for an area with

a total size of 14 megabases (9Mb flanking p16 and 5Mb flanking SMAD4).

We tiled guideRNAs across the regions, spacing one guideRNA about every

10kb. To avoid the costs of synthesizing individual guideRNAs, we generated

the guide RNAs using in vitro transcription (IVT). Through a collaboration

with Agilent Technoloies, we designed a pool of 1100 guideRNA templates

tiled across the 14Mb. After amplification of the guideRNA templates, in vitro

transcription of the 1100 guideRNAs was performed in a single reaction for

use with the Cas9 targeted nanopore sequencing assay.

5.4.2 Results

We performed initial experimentation with IVT-guideRNAs using the GM12878

cell line. After some optimization, an initial sequencing run using 5ug of DNA

generated 670,000 reads, with greater than 200,000 ’on-target’ (30.7%). As

discussed previously in chapter 3, guideRNAs have varying performance due

to intrinsic sequence properties as well as uniqueness of the target sequence.

This was evinced again in the data using in vitro transcribed guideRNAs,

which showed highly variable coverage over the enriched areas. For example,

in the 500kb window surrounding the target genes, on-target coverage ranged

from a few reads to >700X coverage (Figure 5.6).
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Figure 5.6: In vitro transcribed guideRNA panel Coverage and reads for a 500kb
enriched region around genes commonly harboring deletions in pancreatic ductal
adenocarcinoma (PDAC)
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5.4.3 Discussion

Our studies with a panel of IVT guides demonstrate that with continued

improvement this strategy could interrogate large regions for chromosomal

aberrations. This IVT-guideRNA approach could also be adapted for a rapid

in vitro screening test to evaluate guideRNA cutting efficiency. We note that in

transformed PDAC cells annotated breakpoints frequently reside within repet-

itive regions. This again underscores the advantage provided by long-reads;

which increase the chances that sequencing reads will extend into uniquely

mapping genomic fragments. Future work in the Timp lab is implementation

of this pipeline to with PDAC-derived DNA and development of analysis

workflows for rapid structural variant identification.

5.5 Methods

5.5.1 Sequencing

Sequencing libraries were prepared as discussed in previous chapter with the

following modifications. For the CHO gene-insertion sequencing, multiple

samples were multiplexed using Oxford’s native barcoding kit (ONT, NBD-

104). For targeted nanoNOME studies the samples were first treated with GpC

methyltransferase as detailed below. And for in vitro transcription studies,

the guideRNAs were produced in house as described below. Samples were

run on a MinION (ver 9.4.1) flow cell, using the MK1B or GridION sequencer.
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5.5.2 Locating Gene Insertions

GuideRNAs were placed within the sequence of the antibody heavy-chain

transgene. Reads were aligned to the transgene sequence using minimap2

(Li, 2018) and the paf format output was parsed using custom python scripts

to identify reads containing vector sequence. The expression vector was was

assembled using the Flye tool (Kolmogorov et al., 2019) and polished using

Racon (Vaser et al., 2017) and Medaka (ONT), as described in the previous

chapters. The plasmid sequence was next aligned to sequencing reads using

minimap2 to identify reads that contained non-vector sequence at their 3’ end.

This 3’ non-vector sequence was aligned to reference CHO genome using

minimap2.

5.5.3 GpC methyltransferase treatment for targeted nanoNOME

GM12878 suspension cells were snap frozen in 1.5mL tubes (roughly 1 million

cells per tube). Cells were thawed into resuspension buffer (100 mM Tris-Cl,

pH 7.4, 100 mM NaCl, 30 mM MgCl2) with 0.25 % NP-40 for 5 minutes on ice.

Intact nuclei were collected by centrifugation for 5 minutes at 500xg at 4degC.

The nuclei were treated with a solution of 1x M. CviPI Reaction Buffer (NEB),

300 mM sucrose, 96 uM S-adenosylmethionine (SAM; New England Biolabs,

NEB), and 200 U M. CviPI (NEB) in 500 uL volume per 500,000 nuclei. The

reaction mixture was incubated at 37degC with shaking on a thermomixer at

1,000 rpm for 15 minutes. S-adenosyl methionine (SAM) was replenished at 96

uM at 7.5 minutes into the reaction. The reaction was stopped by the addition

of an equal volume of stop solution (20 mM Tris-Cl, pH 7.9, 600 mM NaCl,
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1% SDS, 10 mM disodium EDTA). Samples were treated with proteinase K

(NEB) at 55degC for > 2 hours, and DNA was extracted via phenol:chloroform

extraction and ethanol precipitation.

5.5.4 Generating in vitro transcribed guideRNAs

The panel of guideRNAs was delivered as a DNA library with a T7 binding

site for in vitro transcription. The library was amplified using Kapa Hifi

ReadyMix (Roche, KK2501). The PCR product was cleaned up using a MinE-

lute kit (Qiagen, 28004). The in vitro transcription was performed using a

kit from New England Biolabs (NEB, E2050S). This reaction was cleaned up

using the Monarch RNA CleanUp kit (NEB, T2040S). GuideRNAs were used

immediately or frozen at -80degC.

5.6 Supplementary Material

110



Figure 5.7: Targeted versus whole-genome nanoNOME Comparing CpG methyla-
tion and GpC methylation calls between targeted and whole-genome nanoNOME
data
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Chapter 6

Discussion and Conclusion

This thesis summarizes much of the work done in the Timp Lab during my

pre-doctoral training. This work has sought to explore new applications for

long-read sequencing – finding ways that these tools can be applied to gain

increased insight into molecular biology.

This work focused on the use of a targeting strategy with CRISPR/Cas9

(Gilpatrick et al., 2020) to achieve greater coverage at desired loci with native

DNA nanopore sequencing. I described applications of this strategy applied

to query loci relevant to neoplasia (Gilpatrick et al., 2020; McKelvey et al.,

2020; Avin et al., 2019). In detailing that work, I discuss several features of the

cancer genome that we explored – including CpG methylation, mutations, and

structural variations. Notably, the work in breast cancer also provided full-

length unamplified sequencing reads of the BRCA1 gene, which is commonly

disrupted in breast cancer, and difficult to interrogate with short-read methods

(Welcsh and King, 2001). The work in thyroid cancer was focused on the

study of the TERT gene. Targeted genomic sequencing of TERT was paired

with chromatin immunoprecipitation and transcript studies to show that the

114



alterations observed in the genome and epigenome of these cells was reflected

directly into changes in protein binding and transcriptional activity. Both of

these studies also unveiled the prevalence of allele-specific methylation and

near-exclusive use of one allele in transformed cells.

I also discussed several future and ongoing applications of targeted long-

read sequencing being done in the Timp Lab. The targeted sequencing ap-

proach has myriad applications to clinical medical, scientific industry and

basic science research. I discussed how we identified insertion sites of a trans-

gene in mammalian cells for biopharma production. This could be applied

in the industry to streamline the identification and selection of clones for the

production of biological therapeutics. I talked about combining targeted se-

quencing with the study of chromatin accessibility, adapting the nanoNOME

strategy developed by my colleague Isac Lee (Lee et al., 2019). This offers a

rapid protocol for generating targeted accessibility data, making it possible for

researchers to explore chromatin state without generating whole-genome data.

As the repertoire of modifications that can be distinguished from nanopore

signal continues to grow, there could even be more potential future layers

added on to this data (e.g. information about nuclear localization or protein

binding). Having all these layers of information on a single sequencing read

will help provide new mechanistic insight into how these features are working

in concert to regulate chromatin biology.

Another future direction I discuss is the combination of large numbers

of guideRNAs (>1100) to investigate wide regions for DNA rearrangements.
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There remain a large number of regions that are difficult to assembly with-

out long-read data (e.g. BRCA1 and MHC), and a method to generate reads

throughout these regions would aid both investigators and clinicians in under-

standing the diversity of chromosomal aberrations present in such challenging

and repetitive regions.

In summary, the ability to achieve high-sequencing depth (such as with

the targeted methods described herein) is advantageous in the new genomic

insight offered, and the new questions that can be asked. The high coverage

data is especially useful when trying to identify rare events, build assemblies

from noisy sequencing data, or identify mutations by consensus. The applica-

tions of these strategies are of course not limited to those described here, as

future iterations and development will continue to expand both the depth of

coverage and the number of the features that we are able to interrogate via

targeted nanopore sequencing.
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