
ON MULTISTAGE STOCHASTIC AND DISTRIBUTIONALLY ROBUST
OPTIMIZATION:

NEW ALGORITHMS, COMPLEXITY ANALYSIS, AND PERFORMANCE
COMPARISON

A Dissertation
Presented to

The Academic Faculty

By

Shixuan Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2022

© Shixuan Zhang 2022

ON MULTISTAGE STOCHASTIC AND DISTRIBUTIONALLY ROBUST
OPTIMIZATION:

NEW ALGORITHMS, COMPLEXITY ANALYSIS, AND PERFORMANCE
COMPARISON

Thesis committee:

Dr. Xu Andy Sun (Advisor)
School of Management
Massachusetts Institute of Technology

Dr. Santanu S. Dey
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Daniel Molzahn
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Arkadi Nemirovski
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Alexander Shapiro
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Wolfram Wiesemann
Department of Computing
Imperial College London

Date approved: July 14, 2022

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Dr. Xu Andy Sun, who has led

me into this wonderful area of research. He has been very generous with his time spent

on discussions with me, on both research topics and any of my academic career questions.

Whenever I felt frustrated or less confident about myself, he always sends me his encour-

agement and recognition for my achievements. I am very grateful to him for all of his

immeasurable help in the past five years.

I would also like to thank other members on my dissertation committee, Dr. Santanu

Dey, Dr. Daniel Molzahn, Dr. Arkadi Nemirovski, Dr. Alexander Shapiro, and Dr. Wolfram

Wiesemann, for their kindhearted support and insightful comments. They have been of

great assistance not only for my dissertation, but also for many other things about my

research or my academic career.

Besides the professors on my dissertation committee, I would like to thank Dr. Greg

Blekherman for his fascinating teaching, the subject of which has now become one of the

most exciting future research directions for me, and for his kindly serving as my mentor

for my upcoming postdoctoral work. I would also like to thank the late professor, Dr.

Shabbir Ahmed, who taught me my first course in this school and brought the motivational

conjecture of this dissertation to my attention.

I would like to thank my collaborator and friend, Dr. Sheng Liu, for his support and

advice. I will try my best to be a nice collaborator and friend to other people, as he has

been to me.

I would like to thank my friends, cohorts, and GMI-GO teammates, Dr. Amin Gholami

and Dr. Kaizhao Sun. It has been most enjoyable for me to talk to them, to work with

them, and to learn from them. I would also like to thank my friend Dr. Bai Cui, who

has helped me greatly in both my research and my personal life. I am thankful to all of

my other friends and colleagues for all the interesting conversations and experiences with

iii

me, among whom I send my special thanks to Dr. Jiaming Liang, Dr. Rui Peng Liu, Dr.

Sebastian Perez-Salazar, Zhe Zhang, Jana Boerger, and Jaewoo Jung.

I would like to express my deepest gratitude and love to my parents, Yiqing Zhou and

Changfeng Zhang. Since my childhood, they always encourage me to explore my own

interest and provide their best care to me. Without their support, I could not imagine that I

would ever start my PhD program and finish this dissertation.

Finally, I would like to send my greatest appreciation and love to my partner and my

best friend, Dr. Wensi Chen. You have made our journey, from Beijing to Atlanta in the

past seven years, most joyful and fun, on which we have picked up our lovely feline kids,

Stripey and Peeps. With all of you, I have found a way of life that is worth living. I will

always support you and love you.

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

Summary . x

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Contributions . 5

Chapter 2: Iteration Complexity of DDP Algorithms on Mixed-integer Nonlin-
ear MSO . 9

2.1 Problem Formulations . 9

2.1.1 Extensive and Recursive Formulation 9

2.1.2 Continuity and Convexity of Value Functions 11

2.1.3 Regularization and Penalty Reformulation 14

2.1.4 Problem Classes with Exact Penalization 19

2.1.5 Generalized Conjugacy Cuts and Value Function Approximation . . 28

2.2 Nested Decomposition and Dual Dynamic Programming Algorithms 32

v

2.2.1 Subproblem Oracles . 32

2.2.2 Under- and Over-Approximations of Cost-to-go Functions 33

2.2.3 A Nested Decomposition Algorithm for General Trees 38

2.2.4 A Deterministic Dual Dynamic Programming Algorithm 40

2.2.5 A Stochastic Dual Dynamic Programming Algorithm 41

2.3 Upper Bounds on Iteration Complexity of Proposed Algorithms 43

2.3.1 Upper Bound Analysis on Iteration Complexity of Algorithm 1 . . . 45

2.3.2 Upper Bound Analysis on Iteration Complexity of Algorithm 2 . . . 49

2.3.3 Upper Bound Analysis on Iteration Complexity of Algorithm 3 . . . 52

2.4 Lower Bounds on Iteration Complexity of Proposed Algorithms 56

2.4.1 General Lipschitz Continuous Problems 57

2.4.2 Convex Lipschitz Continuous Problems 62

Chapter 3: DDP Algorithms for Convex MDRO with Complexity Analysis . . . 72

3.1 Formulations and Recursive Approximation 72

3.1.1 Problem Formulations . 72

3.1.2 Approximation of Recursions . 79

3.1.3 Regularization and Its Exactness 83

3.2 Algorithms and Complexity Analysis . 92

3.2.1 Single Stage Subproblem Oracles 93

3.2.2 Dual Dynamic Programming Algorithms 96

3.2.3 Complexity Upper Bounds . 100

3.2.4 Complexity Lower Bound . 104

vi

3.3 Numerical Experiments . 108

3.3.1 Multi-Commodity Inventory Problem 109

3.3.2 Hydro-Thermal Power Planning Problem 112

Chapter 4: Data-driven Convex MDRO Models and Their Performance 117

4.1 Data-driven Model and Properties . 117

4.1.1 Data-driven Model Formulation 117

4.1.2 Finite Dimensional Dual Recursion 120

4.1.3 Out-of-Sample Performance Guarantee 127

4.1.4 Adjustable In-Sample Conservatism 129

4.2 Dual Dynamic Programming Algorithm 132

4.2.1 Recursive Approximations and Regularization 133

4.2.2 Subproblem Oracles: Concave Uncertain Cost Functions 135

4.2.3 Subproblem Oracles: Convex Uncertain Cost Functions 141

4.3 Numerical Experiments . 147

4.3.1 Baseline Models and Experiment Settings 147

4.3.2 Multi-commodity Inventory Problems 150

4.3.3 Inventory Problems with Uncertain Demands 151

4.3.4 Inventory Problems with Uncertain Prices 156

Chapter 5: Conclusion . 160

References . 163

vii

LIST OF TABLES

3.1 Comparison of NDDP with and without regularization 111

3.2 Comparison of CDDP with different regularization factors and ambiguity
radii . 115

viii

LIST OF FIGURES

2.1 Value functions in Examples 2.1 and 2.2. 18

4.1 Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test
Run No. 1 . 153

4.2 Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test
Run No. 2 . 153

4.3 Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test
Run No. 3 . 154

4.4 Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 1 . 155

4.5 Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 2 . 155

4.6 Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 3 . 156

4.7 Comparison of In-sample and Out-of-sample Costs, Test Run No. 1 157

4.8 Comparison of In-sample and Out-of-sample Costs, Test Run No. 2 158

4.9 Comparison of In-sample and Out-of-sample Costs, Test Run No. 3 158

ix

SUMMARY

Multistage optimization under uncertainty refers to sequential decision-making with the

presence of uncertainty information that is revealed partially until the end of planning hori-

zon. Depending on the uncertainty model, it is often studied as multistage stochastic op-

timization (MSO), where one seeks optimal decisions with minimum mean objective with

respect to a certain probabilistic uncertainty model; or more generally multistage distribu-

tionally robust optimization (MDRO), where one seeks optimal decisions with respect to a

worst-case probability distribution over a candidate set of distributions. Both approaches

have found ubiquitous applications such as in energy system and inventory planning.

First, we focus on MSO with possibly integer variables and nonlinear constraints. We

develop dual dynamic programming (DDP) type algorithms with nested decomposition,

deterministic sampling, and stochastic sampling. Several interesting classes of MSO prob-

lems are identified, where the new algorithms are guaranteed to obtain the global optimum

without the assumption of complete recourse. We also characterize the iteration complexity

of the proposed algorithms, which reveals that the iteration complexity depends polynomi-

ally on the number of stages. We further show that the iteration complexity depends linearly

on the number of stages T , if all the state spaces are finite sets, or if we allow the optimal-

ity gap to scale with T . This complexity study resolves an open question on the iteration

complexity of DDP-type algorithms.

Second, we propose a new class of algorithms for solving convex MDRO problems,

namely a consecutive dual dynamic programming (DDP) algorithm and a nonconsecutive

version. The new algorithms generalize and strengthen existing DDP-type algorithms by

introducing an important technique of regularization that enables the algorithms to handle

much broader classes of MDRO problems. We then define single stage subproblem ora-

cles (SSSO) and provide a thorough complexity analysis of the new algorithms, proving

both upper complexity bounds and a matching lower bound. Numerical examples on in-

x

ventory problems and hydrothermal power system planning problems are given to show the

effectiveness of the proposed regularization technique.

Third, we consider convex MDRO with Wasserstein ambiguity sets constructed from

stagewise independent empirical distributions. We show that these data-driven MDRO

models have favorable out-of-sample performance guarantees and adjustable levels of in-

sample conservatism. Then we extend the DDP algorithms to the data-driven MDRO by

proposing two SSSO realizations that are able to handle the Wasserstein ambiguity sets, ex-

ploiting either convexity or concavity of the uncertain cost functions, which happens when

the uncertainty only appears in the right-hand-side of the constraints or in the objective

function. Extensive numerical experiments on inventory problems are then conducted to

compare these data-driven MDRO models with the widely used risk-neutral and risk-averse

empirical MSO models.

xi

CHAPTER 1

INTRODUCTION

1.1 Background

A multistage stochastic optimization (MSO) is a sequential decision making problem un-

der uncertainty modelled by random vectors in each stage. We allow both continuous

and integer decisions and nonconvex nonlinear objective function and constraints for MSO

problems, which provides an extremely powerful modeling framework. Special classes of

MSO, such as multistage stochastic linear optimization (MSLO) and mixed-integer linear

optimization (MSMILO), have already found a wide range of applications in diverse fields

such as electric power system scheduling and expansion planning [1, 2, 3, 4], portfolio

optimization under risk [5, 6, 7], and production and capacity planning problems [8, 9, 10,

11], just to name a few.

More generally, multistage distributionally robust optimization (MDRO) is an MSO

where the probability distributions of the random vectors are not known precisely so we

seek an optimal decision considering the worst-case probability distributions in a given

ambiguity set in each stage. MDRO provides a unified framework for studying decision-

making under uncertainty, which encompasses both MSO and multistage robust optimiza-

tion (MRO), where in the latter all atomic probability distributions are included in the am-

biguity sets. Thus MDRO finds ubiquitous applications in addition to the areas mentioned

above (see e.g. [12, 13]).

Distributionally robust optimization (DRO) has received significant research attention,

especially in the context of single-stage or two-stage settings. Common choices of the

ambiguity sets include the moment-based ambiguity sets [14, 15, 16, 17], discrepancy or

distance-based ambiguity sets [18, 19, 20, 21], and others [22, 23]. In particular, DRO con-

1

structed from Wasserstein distance [24] has both out-of-sample performance guarantee and

finite-dimensional tractable reformulation that does not require any approximation, if it is

centered at the empirical distributions of the data [25, 26, 27]. Moreover, empirical success

has been observed on the data-driven Wasserstein MDRO problems, under the assumption

of finite uncertainty supports [28]. In this dissertation, we aim to further study the perfor-

mance of data-driven Wasserstein MDRO that are solved by algorithms with guaranteed

convergence, and have a general uncertainty support set.

In the literature for stochastic optimization, classical algorithmic approaches to tackle

two-stage stochastic linear optimization (2SLO) include Benders decomposition [29], Dantzig-

Wolfe decomposition [30], and the L-shaped method [31]. Nested decomposition proce-

dures for deterministic models are developed in [32, 33]. Louveaux [34] first generalized

the two-stage L-shaped method to multistage quadratic problems. Nested Benders decom-

position for MSLO was first proposed in Birge [35] and Pereira and Pinto [36]. However, it

is known that multistage problems (MSO and MDRO) are in general extremely challenging

to solve, due to the exponentially fast growth of the number of decisions with respect to

the number of decision stages [37, 38, 39]. Meanwhile, real-world problems are often en-

dowed with special structures in the uncertainty. In particular, the uncertainty may exhibit

stagewise independence (SI), i.e., the uncertainty in different stages are independent from

each other. Many uncertainty structures, such as autoregressive stochastic models, can be

reformulated to satisfy SI [40]. This versatile modeling capability of SI has great implica-

tions on computation. It allows recursive formulation of a cost-to-go function in each stage

of an MDRO to be independent of the outcomes in its previous stages, thus making efficient

approximations of the cost-to-go functions possible. Therefore, SI has been successfully

exploited by various dual dynamic programming (DDP) algorithms, in solving MSO and

MRO [40, 41, 39, 42, 43, 44, 45, 46, 47, 42].

Dual dynamic programming (DDP) is a class of recursive cutting plane algorithms that

originate from nested Benders decomposition for multistage stochastic linear optimiza-

2

tion [35, 36]. The earliest form of DDP for MSLO using stochastic sampling method

was proposed in [48], known as stochastic dual dynamic programming (SDDP), where in

each iteration the scenarios are sampled randomly and solved sequentially before updat-

ing the cost-to-go functions recursively. Then the DDP algorithm has been extended to

multistage stochastic convex optimization (MSCO) and has been widely adopted in areas

such as energy systems scheduling [49, 50, 51]. The deterministic over-approximation was

also proposed for an upper bound on the policy value [52], and later incorporated into a

deterministic sampling version of the DDP algorithm [43, 44].

Recently, DDP has been further extended to MDRO with promising out-of-sample per-

formance [53, 54, 55, 28]. In particular, [55] uses ambiguity sets defined by the χ2-distance.

In [28], the ambiguity sets are taken to be finitely supported Wasserstein metric balls cen-

tered at the empirical distributions, and the algorithm is shown to converge asymptotically

with stochastic sampling methods. We comment that many of the above variants of DDP

algorithms rely on the assumption of relatively complete recourse, while it is indeed pos-

sible to have MSCO without such assumption [56]. Another important constituent of DDP

algorithms is known as the robust dual dynamic programming (RDDP), which is proposed

for multistage robust linear optimization (MRLO) [39]. Due to its intrinsic difficulty, the

uncertainty sets are assumed to be polytopes such that the subproblem in each stage can be

solved via a vertex enumeration technique over the uncertainty set. Similar to the determin-

istic DDP, RDDP constructs both over- and under-approximations to select the worst-case

outcome. Moreover, it has the advantage of being able to terminate the algorithm with a

guaranteed optimal first stage solution, in contrast to the commonly used decision rules [57,

58, 59], and to handle problems without relatively complete recourse.

Besides the success in MSCO and MRLO, the DDP algorithm class has been extended

recently to nonconvex settings [46]. It is observed that the cuts generated from Lagrangian

relaxation of the nodal problems in an MSMILO are always tight at the given parent node’s

state, as long as all the state variables only take binary values and have complete recourse.

3

From this fact, the algorithm, known as the stochastic dual dynamic integer programming

(SDDiP), is proved to find an exact optimal solution in finitely many iterations with proba-

bility one. In this way, the SDDiP algorithm makes it possible to solve nonconvex mixed-

integer linear MSO problems through binarization of the state variables [3, 60]. In addition,

when the value functions of MSMILO with general integer state variables are assumed to be

Lipschitz continuous, augmented Lagrangian cuts with an additional reverse norm term to

the linear part obtained via augmented Lagrangian duality are proposed in [45]. Despite the

rapid development, it remains challenging to generalize DDP to most general MSO because

there is no general cutting plane mechanism for generating exact under-approximation of

nonconvex, discontinuous, or non-Lipschitzian value functions.

The convergence analysis of the DDP algorithms begins with the MSLO [41, 40, 61,

62, 63], where almost sure finite convergence is established based on the polyhedral nodal

problem structures. For MSCO, if the value functions are Lipschitz continuous and the

state space is compact, asymptotic convergence of the under-approximation of the value

functions leads to asymptotic convergence of the optimal value and optimal solutions [64,

65]. By constructing over-approximations of value functions, the DDP with a deterministic

sampling method is proved to converge asymptotically for the MSCO in [43]. There is

a recent, independent work [66, 67], which proves iteration complexity upper bounds for

MSCO under the assumption that all the value functions and their under-approximations are

all Lipschitz continuous. It is shown that for discounted problems, the iteration complexity

depends linearly on the number of stages. However, it is not clear whether the proposed

iteration complexity bound is sharp, or whether the Lipschitz constants are determined by

the problem data or affected by algorithmic choices. This dissertation aims to resolve these

issues, as well as extending the complexity results of DDP algorithms to both mixed-integer

nonlinear MSO, and convex MDRO.

4

1.2 Contributions

One motivational conjecture was suggested to us by the late Prof. Shabbir Ahmed.

Conjecture 1.1. The number of iterations needed for SDDP/SDDiP to find an optimal

first-stage solution grows linearly in terms of the number of stages T , while it may depend

nonlinearly on other parameters such as the diameter D and the dimension d of the state

space.

In Chapter 2, our study resolves this conjecture by giving a full picture of the iteration

complexity of DDP algorithms in the general setting of MSO. In particular, the chapter

contains the following contributions to the literature.

1. We provide simple examples to illustrate that the value function of a two-stage stochas-

tic program with complete recourse could be non-Lipschitzian or discontinuous. Ex-

isting DDP algorithms and complexity analyses cannot handle such situations. We

propose a regularization approach to provide a surrogate of the original problem such

that the value functions become Lipschitz continuous. In many cases, the regularized

problem preserves the set of optimal solutions.

2. We use the theory of generalized conjugacy to develop a cut generation scheme,

referred to as generalized conjugacy cuts, that are valid for value functions of MSO.

Moreover, generalized conjugacy cuts are shown to be tight to the regularized value

functions. The generalized conjugacy cuts can be replaced by linear cuts without

compromising such tightness when the problem is convex.

3. With the regularization and the generalized conjugacy cuts, we propose three algo-

rithms for MSO based on nested decomposition for general scenario trees, DDP with

random sampling as well as deterministic sampling similar to [43] for the convex

case and random sampling, both for stagewise independent scenario trees.

5

4. We obtain upper and lower bounds on the iteration complexity for the proposed

SDDP with both sampling methods for MSO problems. The complexity bounds

show that in general, Conjecture 1.1 holds if only we seek a (Tε)-optimal solution,

instead of an ε-optimal first-stage solution for a (T + 1)-stage problem, or when all

the state spaces are finite sets.

In Chapter 3, we extend the DDP algorithm framework to MDRO, with convexity as-

sumed for simplicity, together with the complexity analysis based on single stage sub-

problem oracles. Due to the distributional uncertainty in the model, the commonly used

statistical upper bound for the policy evaluation in the MSCO literature (e.g., [40, 46]) is

no longer valid for the MDRO problems. As a result, the current computational implemen-

tations in [55] and [28] choose to terminate at a fixed number of iterations or cuts, without

a good guarantee of the solution quality. To overcome the lack of statistical upper bound,

we further explore the deterministic upper bound approximations, similar to the one stud-

ied for MSO in Chapter 2 and [43], and the one in RDDP [39]. In particular, the chapter

contains the following contributions to the literature.

1. We provide a unified framework for studying convex MDRO under SI assumption.

For finitely supported convex MDRO in this framework, we construct a novel exam-

ple to show that the traditional cutting plane method can easily cause the Lipschitz

constants of the stage problem to grow with respect to the number of stages. Moti-

vated by this phenomenon, we introduce an important algorithmic technique of reg-

ularization to DDP, which can effectively control the growth of Lipschitz constraints

and can dispense with the relatively complete recourse assumption.

2. A new class of consecutive DDP algorithms (CDDP) and its nonconsecutive version

(NDDP) based on regularization is proposed for solving MDRO Complexity upper

bounds based on single stage subproblem oracles are proved for both CDDP and

NDDP for the first time.

6

3. We construct a class of multistage robust convex problems to obtain a complexity

lower bound for the new algorithms for the first time, which shows the complexity

upper bounds are essentially tight. The complexity bounds can be applied to more

general MDRO problems with continuous distributions.

4. Numerical results on a multi-commodity inventory problem and a hydro-thermal

power planning problem are given to illustrate the two effects of regularization: ca-

pability to solve problems without relatively complete recourse and reduction in the

computation time and number of subproblem oracle evaluations.

In Chapter 4, we turn our attention to data-driven MDRO models using Wasserstein

ambiguity sets, to address the practical challenge of lacking big data in many MDRO ap-

plications. Using the DDP algorithm developed in Chapter 3, we then compare the out-of-

sample performance of the Wasserstein MDRO models against the commonly used MSO

and MRO models. In particular, the chapter contains the following contributions to the

literature.

1. We review the out-of-sample performance guarantee of Wasserstein DRO models and

extend it to the multistage settings. We derive the finite dimensional dual recursive

formulation for Wasserstein MDRO models under a verifiable assumption, and prove

that the in-sample conservatism of Wasserstein MDRO is adjustable given Lipschitz

continuity of the value functions.

2. We develop two SSSO implementations by exploiting either the concavity or the

convexity of the uncertain local cost functions. Consequently, the DDP algorithms

proposed in Chapter 3 can be applied on Wasserstein MDRO models with valid com-

plexity bounds.

3. Extensive numerical experiments on multi-commodity inventory problems are con-

ducted to compare the Wasserstein MDRO models against the nominal risk-neutral

7

MSO model, the conditional value-at-risk (CVaR) risk-averse MSO models, and the

standard MRO model. The numerical results suggest that for the Wasserstein MDRO

models are particularly favorable for small data sizes.

The contents in Chapter 2 come from our manuscript [68], which has received honor-

able mention for the INFORMS Optimization Society Best Student Paper Prize 2021. The

contents in Chapter 3 come from our manuscript [69], and the contents in Chapter 4 come

from our manuscript [70].

8

CHAPTER 2

ITERATION COMPLEXITY OF DDP ALGORITHMS ON MIXED-INTEGER

NONLINEAR MSO

2.1 Problem Formulations

In this section, we first present the extensive and recursive formulations of multistage op-

timization. Then we characterize the properties of the value functions, with examples to

show that they may fail to be Lipschitz continuous even when the constraints are all convex

and Lipschitz continuous. With this motivation in mind, we propose a penalty reformula-

tion of the multistage problem through regularization of value functions and show that it is

equivalent to the original formulation for a broad class of problems. Finally, we propose

generalized conjugacy cuts for under-approximation of value functions.

2.1.1 Extensive and Recursive Formulation

For a multistage stochastic optimization (MSO), let T = (N , E) be the scenario tree, where

N is the set of nodes and E is the set of edges. For each node n ∈ N , let a(n) denote the

parent node of n, C(n) denote the set of child nodes of n, and T (n) denote the subtree

starting from the node n. Given a node n ∈ N , let t(n) denote the stage that the node n is

in and let T := maxn∈N t(n) denote the last stage of the tree T . A node in the last stage

is called a leaf node, otherwise a non-leaf node. The set of nodes in stage t is denoted as

N (t) := {n ∈ N : t(n) = t}. We use the convention that the root node of the tree is

denoted as r ∈ N with t(r) = 0 so the total number of stages is T + 1. The parent node of

the root node is denoted as a(r), which is a dummy node for ease of notation.

For every node n ∈ N , let Fn denote the feasibility set in some Euclidean space of

decision variables (xn, yn) of the nodal problem at node n. We refer to xn as the state

9

variable and yn as the internal variable of node n. Denote the image of the projection of

Fn onto the subspace of the variable xn as Xn, which is referred to as the state space. Let

xa(r) = 0 serve as a dummy parameter and thus Xa(r) = {0}. The nonnegative nodal cost

function of the problem at node n is denoted as fn(xa(n), yn, xn) and is defined on the set

Xa(n) × ςnFn = {(z, y, x) : z ∈ Xa(n), (x, y) ∈ Fn}, where ςn(xn, yn) := (yn, xn) is

the swap map. We allow fn to take the value +∞ so indicator functions can be modeled

as part of the cost. Let pn > 0 for all n ∈ N denote the probability that node n on the

scenario tree is realized. For the root node, pr = 1. The transition probability that node m

is realized conditional on its parent node n being realized is given by pnm := pm/pn for all

edges (n,m) ∈ E .

The MSO considered in this chapter is defined in the following extensive form:

vprim := min
(xn,yn)∈Fn,
∀n∈N

∑
n∈N

pnfn(xa(n), yn, xn). (2.1)

The recursive formulation of the MSO (2.1) is defined as

Qn(xa(n)) := min
(xn,yn)∈Fn

{
fn(xa(n), yn, xn) +

∑
m∈C(n)

pnmQm(xn)

}
, (2.2)

where n ∈ T is a non-leaf node and Qn(xa(n)) is the value function of node n. At a leaf

node, the sum in (2.2) reduces to zero, as the child node C(n) = ∅. The problem on the

right-hand side of (2.2) is called the nodal problem of node n. Its objective function consists

of the nodal cost function fn and the expected cost-to-go function, which is denoted as Qn

for future reference, i.e.

Qn(xn) :=
∑

m∈C(n)

pnmQm(xn). (2.3)

To ensure that the minimum in problem (2.1) is well defined and finite, we make the

following very general assumption on fn and Fn throughout the chapter.

Assumption 2.1. For every node n ∈ N , the feasibility set Fn is compact, and the nodal

10

cost function fn is lower semicontinuous (lsc). The sum
∑

n∈N pnfn is a proper function,

i.e., there exists (xn, yn) ∈ Fn for all nodes n ∈ N such that
∑

n∈N pnfn(xa(n), yn, xn) <

+∞.

Note that the state variable xa(n) only appears in the objective function fn of node n,

not in the constraints. Perhaps the more common way is to allow xa(n) to appear in the

constraints of node n. It is easy to see that any such constraint can be modeled by an

indicator function of (xa(n), xn, yn) in the objective fn.

We next characterize some important continuity properties of the value function.

2.1.2 Continuity and Convexity of Value Functions

The following proposition presents some basic properties of the value function Qn under

Assumption 2.1.

Proposition 2.1. Under Assumption 2.1, the value function Qn is lower semicontinuous

(lsc) for all n ∈ N . Moreover, for any node n ∈ N ,

1. if fn(z, y, x) is Lipschitz continuous in the first variable z with constant ln, i.e.

|fn(z, y, x) − fn(z′, y, x)| ≤ ln‖z − z′‖ for any z, z′ ∈ Xa(n) and any (x, y) ∈ Fn,

then Qn is also Lipschitz continuous with constant ln;

2. if Xa(n) and Fn are convex sets, and fn andQn are convex functions, then Qn is also

convex.

Proof. We show that Qn is lsc by showing the lower level sets leva(Qn) = {z ∈ Xa(n) :

Qn(z) ≤ a} are closed for all a ∈ R. At any leaf node n, the expected cost-to-go function

Qn(xn) is zero, thus z is in leva(Qn) if and only if z is in the projection of the following set

{(z, y, x) : (x, y) ∈ Fn, fn(z, y, x) ≤ a}. Since fn is defined on a compact set {(z, y, x) :

z ∈ Xa(n), (x, y) ∈ Fn} and lsc by Assumption 2.1, we know that the set {(z, y, x) :

fn(z, y, x) ≤ a} is compact. Moreover, since the projection (z, y, x) 7→ z is continuous,

11

the image leva(Qn) is still compact, hence closed.

At any non-leaf node n, suppose Qm is lsc for all its child nodes m ∈ C(n). Then, Qn

is lsc since Qn is defined in (2.3) and pnm > 0 for all m. A point z ∈ leva(Qn) if and

only if z is in the projection of the set {(z, y, x) : (y, x) ∈ Fn, fn(z, y, x) +Qn(x) ≤ a}.

Similarly, this shows levaQn is closed since fn,Qn are lsc and the projection (z, y, x) 7→ z

is continuous. We thus conclude Qn is lsc for every node n in the scenario tree.

To show claims 1 and 2 in the proposition, take any two points z1, z2 ∈ Xa(n). Suppose

(x1, y1), (x2, y2) ∈ Fn are the corresponding minimizers in the definition (2.2). Therefore,

Qn(z1) = fn(z1, y1, x1) +Qn(x1) and Qn(z2) = fn(z2, y2, x2) +Qn(x2). If fn is Lipschitz

continuous in the first variable, then we have

Qn(z1)−Qn(z2) = fn(z1, y1, x1) +Qn(x1)− fn(z2, y2, x2)−Qn(x2)

≤ fn(z1, y2, x2) +Qn(x2)− fn(z2, y2, x2)−Qn(x2)

≤ fn(z1, y2, x2)− fn(z2, y2, x2) ≤ ln ‖z1 − z2‖ .

Likewise, by exchanging z1 and z2, we know that Qn(z2) − Qn(z1) ≤ ln ‖z1 − z2‖. This

proves that Qn is Lipschitz continuous with the constant ln.

To show that Qn is convex, take any t ∈ [0, 1]. Since Xa(n) is convex, Qn is defined at

tz1 + (1− t)z2. Thus,

Qn(tz1 + (1− t)z2)

≤ fn(tz1 + (1− t)z2, ty1 + (1− t)y2, tx1 + (1− t)x2) +Qn(tx1 + (1− t)x2)

≤ tfn(z1, y1, x1) + (1− t)fn(z2, y2, x2) + tQn(x1) + (1− t)Qn(x2)

= tQn(z1) + (1− t)Qn(z2).

The first inequality follows from the definition (2.2), while the second inequality follows

from the convexity of fn and Qn. This shows Qn is convex.

12

When Qm is lsc for all m ∈ C(n), the sum
∑

m∈C(n) pnmQm is lsc. Therefore, the

minimum in the definition (2.2) is well define, since Fn is assumed to be compact.

If the objective function fn(xa(n), yn, xn) is not Lipschitz, e.g., when it involves an

indicator function of xa(n), or equivalently when xa(n) appears in the constraint of the nodal

problem of Qn(xa(n)), then the value function Qn may not be Lipschitz continuous, as is

shown by the following examples.

Example 2.1. Consider a deterministic convex problem

v∗ := min
x,z,w

{
x+ z : (z − 1)2 + w2 ≤ 1, w = x, x ∈ [0, 1]

}
.

The objective function and all constraints are Lipschitz continuous. The optimal objective

value v∗ = 0, and the unique optimal solution is (x∗, z∗, w∗) = (0, 0, 0). At the optimal

solution, the inequality constraint is active. Note that the problem can be equivalently

written in two-stage formulation as v∗ = min0≤x≤1 x + Q(x), where Q(x) is defined on

[0, 1] as Q(x) := min
{
z : ∃w ∈ R, s.t. (z − 1)2 + w2 ≤ 1, w = x

}
= 1 −

√
1− x2,

which is not locally Lipschitz continuous at the boundary point x = 1. Therefore, Q(x) is

not Lipschitz continuous on [0, 1].

Example 2.2. Consider a deterministic mixed-integer linear problem

v∗ := min

{
1− 2x+ z : z ≥ x, x ∈ [0, 1], z ∈ {0, 1}

}
.

The optimal objective value is v∗ = 0, and the unique optimal solution is (x∗, z∗) = (1, 1).

Note that the problem can be equivalently written in a two-stage formulation as v∗ =

min{1 − 2x + Q(x) : 0 ≤ x ≤ 1}, where the function Q(x) is defined on [0, 1] as

Q(x) := min{z ∈ {0, 1} : z ≥ x}, which equals 0 if x = 0, and 1 for all 0 < x ≤ 1, i.e.

Q(x) is discontinuous at x = 0, therefore, it is not Lipschitz continuous on [0, 1].

These examples show a major issue with the introduction of value functionsQn, namely

13

Qn may fail to be Lipschitz continuous even when the original problem only has constraints

defined by Lipschitz continuous functions. This could lead to failure of algorithms based on

approximation of the value functions, such as the nested Benders decomposition algorithms

or the mixed-integer dynamic approximation scheme (MIDAS) [42]. In the next section, we

will discuss how to circumvent this issue without compromise of feasibility or optimality

for a wide range of problems.

2.1.3 Regularization and Penalty Reformulation

The main idea of avoiding failure of cutting plane algorithms in multistage dynamic pro-

gramming is to use some Lipschitz continuous envelope functions to replace the original

value functions. We refer to these Lipschitz continuous envelope functions as regularized

value functions. We derive the form of regularization and discuss its exactness by connect-

ing it to the penalty reformulation of the original problem.

We say a function ψ : Rd → R+ is a penalty function, if ψ(x) = 0 if and only if

x = 0, and the diameter of its level set leva(ψ) := {x ∈ Rd : ψ(x) ≤ α} approaches 0

when a → 0. In this dissertation, we focus on penalty functions that are locally Lipschitz

continuous, the reason for which will be clear from Proposition 2.2.

For each node n, we introduce a new variable zn as a local variable of node n and

impose the duplicating constraint xa(n) = zn. This is a standard approach for obtaining

dual variables through relaxation (e.g. [46]). The objective function can then be written as

fn(zn, yn, xn). Let ψn be a penalty function for node n ∈ N . The new coupling constraint

is relaxed and penalized in the objective function by σnψn(xa(n) − zn) for some σn > 0.

Then the DP recursion with penalization becomes

QR
n (xa(n)) := min

(xn,yn)∈Fn,
zn∈Xa(n)

{
fn(zn, yn, xn) +σnψn(xa(n)− zn) +

∑
m∈C(n)

pnmQ
R
m(xn)

}
, (2.4)

for all n ∈ N , and QR
n is referred to as the regularized value function. By convention,

14

Xa(r) = {xa(r)} = {0} and therefore, penalization ψr(xa(r) − zr) ≡ 0 for any zr ∈ Xa(r).

Since the state spaces are compact, without loss of generality, we can scale the penalty

functions ψn such that the Lipschitz constant of ψn on Xa(n) − Xa(n) is 1. The following

proposition shows that QR
n is a Lipschitz continuous envelope function of Qn for all nodes

n.

Proposition 2.2. Suppose ψn is a 1-Lipschitz continuous penalty function on the compact

set Xa(n) − Xa(n) for all n ∈ N . Then QR
n (x) ≤ Qn(x) for all x ∈ Xa(n) and QR

n (x) is

σn-Lipschitz continuous on Xa(n). Moreover, if the original problem (2.2) is convex and ψn

are convex penalty functions, then QR
n (x) is also convex.

Proof. First we show that the partial inf-convolution

fn2(σnψn)(xa(n), yn, xn) := min
z∈Xa(n)

fn(zn, yn, xn) + σnψn(xa(n) − zn)

is σn-Lipschitz continuous in the first variable xa(n). Note that the minimum is well-

defined since Xa(n) is compact and the functions fn, σnψn are lsc. Besides, since z =

xa(n) is a feasible solution in the minimization, we know that fn2(σnψn)(xa(n), yn, xn) ≤

fn(xa(n), yn, xn) for all xa(n) ∈ Xa(n) and (xn, yn) ∈ Fn. Pick any x1, x2 ∈ Xa(n),

(x, y) ∈ Fn, and let z1, z2 ∈ Xa(n) be the corresponding minimizers in the definition of

fn2(σnψn)(x1, y, x) and fn2(σnψn)(x2, y, x), respectively. By definition,

fn2(σnψn)(x1, y, x)− fn2(σnψn)(x2, y, x)

= fn(z1, y, x) + ψ(x1 − z1)− fn(z2, y, x)− ψ(x2 − z2)

≤ fn(z2, y, x) + ψ(x1 − z2)− fn(z2, y, x)− ψ(x2 − z2)

≤ σn ‖x1 − x2‖ .

Similarly, we can get fn2(σnψn)(x2) − fn2(σnψn)(x1) ≤ σn ‖x1 − x2‖ by exchanging

x1, x2 and z1, z2 in the above inequality. Therefore, fn2(σnψn) is σn-Lipschitz continuous

15

in the first variable xa(n).

The regularized problem (2.4) can be viewed as replacing the nodal objective function

fn with the inf-convolution fn2(σnψn). Then by Proposition 2.1, QR
n (x) is σn-Lipschitz

continuous on Xa(n). Moreover, if the original problem (2.2) is convex and ψn are convex

penalty functions, then fn2(σnψn) is also convex. Proposition 2.1 ensures QR
n (x) is also

convex on Xa(n).

The optimal value of the regularized root nodal problem

vreg := min
(xr,yr)∈Fr

{
fr(xa(r), yr, xr) +

∑
m∈C(r)

prmQ
R
m(xr)

}
(2.5)

is thus an underestimation of vprim, i.e. vreg ≤ vprim. For notational convenience, we also

define the regularized expected cost-to-go function for each node n as:

QR
n (xn) :=

∑
m∈C(n)

pnmQ
R
m(xn). (2.6)

Definition 2.1. For any ε > 0, a feasible root node solution (xr, yr) ∈ Fr is said to be ε-

optimal to the regularized problem (2.4) if it satisfies fr(xa(r), yr, xr) +QR
r (xr) ≤ vreg + ε.

Next we discuss conditions under which vreg = vprim and any optimal solution (xn, yn)n∈N

to the regularized problem (2.4) is feasible and hence optimal to the original problem (2.2).

Note that by expanding QR
m in the regularized problem (2.4) for all nodes, we obtain the

extensive formulation for the regularized problem:

vreg = min
(xn,yn)∈Fn,n∈N

zn∈Xa(n)

∑
n∈N

pn
(
fn(zn, yn, xn) + σnψn(xa(n) − zn)

)
. (2.7)

We refer to problem (2.7) as the penalty reformulation and make the following assumption

on its exactness.

16

Assumption 2.2. We assume that the penalty reformulation (2.7) is exact, i.e., there exist

finite penalty parameters σn > 0 for all n ∈ N such that any optimal solution of (2.7)

satisfies zn = xa(n) for all n ∈ N .

Assumption 2.2 guarantees the solution of the regularized extensive formulation (2.7)

is feasible for the original problem (2.1), then by the fact that vreg ≤ vprim, is also optimal

to the original problem, we have vreg = vprim. In this sense, regularized value functions

serve as a surrogate of the original value function, without compromise of feasibility of its

optimal solutions.

An important fact following Assumption 2.2 is that the original and regularized value

functions coincide at all optimal solutions, as stated in the following lemma.

Lemma 2.1. Under Assumption 2.2, any optimal solution (xn, yn)n∈N to problem (2.1)

satisfies QR
n (xa(n)) = Qn(xa(n)) for all n 6= r.

Proof. By definition, we have QR
n (xn) ≤ Qn(xn) for all n ∈ N , n 6= r. We show the

other direction by contradiction. Suppose there exists a node n ∈ N such that QR
n (xa(n)) <

Qn(xa(n)). By definition, there exist z′m ∈ Xa(m) and (x′m, y
′
m) ∈ Fm for all nodes in the

subtree m ∈ T (n), such that

QR
n (xa(n)) =

1

pn

∑
m∈T (n)

pm

[
fm(z′m, y

′
m, x

′
m) + σmψm(x′a(m) − z′m)

]
.

We can extend (x′m, y
′
m, z

′
m)m∈T (n) to a feasible solution (z′m, y

′
m, x

′
m)m∈N of the regular-

17

ized problem by setting z′m = xa(m), y′m = ym, and x′m = xm for all m /∈ T (n). Thus

vreg ≤
∑

m∈T (n)

pmfm(z′m, y
′
m, x

′
m) +

∑
m/∈T (n)

pmfm(z′m, y
′
m, x

′
m)

= pnQ
R
n (xa(n)) +

∑
m/∈T (n)

pmfm(xa(m), ym, xm)

< pnQn(xa(n)) +
∑

m/∈T (n)

pmfm(xa(m), ym, xm)

=
∑

m∈T (n)

pmfm(xa(m), ym, xm) +
∑

m/∈T (n)

pmfm(xa(m), ym, xm) = vprim.

This leads to a contradiction with the assumption that vreg = vprim. Therefore, we conclude

that QR
n (xa(n)) = Qn(xa(n)) for all n ∈ N , n 6= r.

We illustrate the regularization on the examples through Figures 2.1a and 2.1b. In

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Q(x)

QR(x)

(a) Value Functions in Example 2.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Q(x)

QR(x)

(b) Value Functions in Example 2.2

Figure 2.1: Value functions in Examples 2.1 and 2.2.

Figure 2.1a, the value function Q(x) derived in Example 2.1 is not Lipschitz continuous

at x = 1 (plotted with the dashed line). With ψ(x) = ‖x‖ and σ = 4/3, we obtain

the regularized value function (plotted in the solid line), which coincides with the original

one on [0, 0.8] and is Lipschitz continuous on the entire interval [0, 1]. In Figure 2.1b, the

value function Q(x) derived in Example 2.1 is not continuous at x = 0 (plotted with the

18

dashed line). With ψ(x) = ‖x‖, σ = 5, we obtain the regularized value function (plotted

in the solid line), which coincides with the primal one on {0} ∪ [0.2, 1] and is Lipschitz

continuous on the entire interval [0, 1]. In both examples, it can be easily verified that the

penalty reformulation is exact and thus preserves optimal solution.

We comment that Assumption 2.2 holds in various mixed-integer nonlinear optimiza-

tion problems, including

• convex problems with interior feasible solutions,

• problems with finite state spaces,

• problems defined by mixed-integer linear functions, and

• problems defined by continuously differentiable functions,

if certain constraint qualification is satisfied and proper penalty functions are chosen.

2.1.4 Problem Classes with Exact Penalization

In this section, we discuss the problem classes that allows exact penalty reformulation, as

stated in Assumption 2.2. In this section, a penalty function ψ : Rd → R+ is said to be

sharp, if ψ(x) ≥ c ‖x‖ for all x ∈ V ⊂ Rd, for some open neighborhood V 3 0 and some

positive scalar c > 0.

Convex problems with interior points

Recall the problem (2.1) is convex if all the feasible sets Fn and functions fn are convex for

all n ∈ N . The Slater condition states that the intersection of the domain dom (
∑

n∈N fn)

and the feasible sets Πn∈NFn has a non-empty interior. Then we have the following propo-

sition on the exactness.

Proposition 2.3. If the problem (2.1) is convex and satisfies the Slater condition, and more-

over the penalty functions ψn are sharp, then there exist σn > 0 such that the penalty

reformulation is exact.

19

Proof. Consider a perturbation vector w = (wn)n∈N such that wn ∈ Xa(n)−Xa(n) for each

n ∈ N , and define the perturbation function

τ(w) := min
(zn,xn,yn)∈Xa(n)×Fn

{∑
n∈N

pnfn(zn, yn, xn)

∣∣∣∣ wn = xa(n) − zn, ∀n ∈ N
}
.

The function τ is convex and vprim = τ(0) by definition. By the Slater condition, 0 ∈

int(dom (τ)) and hence there exists a vector λ ∈ R|N | such that τ(w) ≥ τ(0) + 〈λ,w〉 for

all perturbation w. Since ψn are sharp, there exist σn > 0 such that
∑

n∈N σnψn(wn) +

〈λ,w〉 > 0 for all w 6= 0. Consequently the penalty reformulation is exact since vreg =

minw τ(w) +
∑

n∈N σnψn(wn) and all optimal solutions must satisfy wn = xa(n)− zn = 0

for all n ∈ N .

Problems with finite state spaces

We say a problem (2.2) has finite state spaces if the state spaces Xn are finite sets for all

nodes n. Such problems appear in multistage integer programming [46], or when the origi-

nal state spaces can be approximated through finite ones [3, 60]. The following proposition

shows the penalty reformulation is exact whenever the state spaces are finite.

Proposition 2.4. For any penalty functions ψn, n ∈ N , if the state spaces are finite, then

there exists a finite σn > 0 such that the penalty reformulation (2.7) is exact.

Proof. Let dn := minx 6=z∈Xa(n)

∣∣ψn(x− z)
∣∣ for each n ∈ N . Since ψn is a penalty function

and the state space Xn is finite, we know dn > 0. Define c as

c := min
(zn,yn,xn)∈Xa(n)×Fn

∑
n∈N

pnfn(zn, yn, xn). (2.8)

Since (2.8) is a relaxation of the original problem (2.1) by ignoring coupling constraint

zn = xa(n), then c ≤ vprim. We choose σn = 1 + (vprim − c)/(pndn) for all n ∈ N .

Now let (xn, yn, zn)n∈N be an optimal solution to the regularized problem (2.4). Then

20

if there exists xa(m) 6= zm for some m 6= r, then pmσmψm(xa(m) − zm) > vprim − c.

Consequently,

vreg ≥ c+
∑
n∈N

pnσnψn(xa(n) − zn)

≥ c+ pmσmψm(xa(m) − zm)

> c+ vprim − c

= vprim.

This is a contradiction since vreg ≤ vprim. Therefore, any optimal solution to the reformu-

lation (2.7) must have xa(n) = zn for all n 6= r, which means the penalty reformulation is

exact.

Problems defined by mixed-integer linear functions

The problem (2.1) is said to be defined by mixed-integer linear functions, if all the feasible

sets Fn and the epigraphs epifn are representable by mixed-integer variables and non-strict

linear inequalities with rational coefficients. Recall that by Assumption 2.1, the primal

problem is feasible, vprim > −∞. We have the following proposition on the exact penalty

reformulation.

Proposition 2.5 ([71], Theorem 5). If problem (2.1) is defined by mixed-integer linear

functions and the penalty functions ψn are sharp for all n ∈ N , then there exist σn > 0,

such that the penalty reformulation is exact.

21

Problems defined by C1-functions

The problem (2.1) is said to be defined by C1-functions if it is defined by functional con-

straints using indicator functions in each node n ∈ N :

fn(xa(n), yn, xn) =


fn,0(xa(n), yn, xn), if gn,i(xa(n), yn, xn) ≤ 0, i = 1, . . . , In,

+∞ otherwise.

with all fn,0, gn,i, i = 1, . . . , In being continuously differentiable. The Karush-Kuhn-

Tucker condition at a feasible point (xn, yn)n∈N of (2.1) says that there exist multipliers

µn,i ≥ 0, i = 1, . . . , In, such that

∇xn,yn

∑
n∈N

(fn,0(xa(n), yn, xn)− µn,ign,i(xa(n), yn, xn)

 = 0,

µn,ign,i(xa(n), yn, xn) = 0, i = 1, . . . , In.

We have the following proposition on the exactness.

Proposition 2.6. Suppose the problem (2.1) is defined by C1-functions and the Karush-

Kuhn-Tucker condition holds for every local minimum solution of (2.1). If the penalty

functions ψn are sharp for all n ∈ N , then there exist σn > 0 such that the penalty

reformulation is exact.

We give the proof of Proposition 2.6 below.

22

Proof for Proposition 2.6

We begin by stating a general exact penalization result for problems defined byC1-functions.

Consider the following perturbation function

p(u) := min
x∈Rd

f(x, u) (2.9)

s.t. gi(x, u) ≤ 0, i = 1, . . . , I,

hj(x, u) = 0, j = 1, . . . , J,

Here u is the perturbation vector and u = 0 corresponds to the original primal problem.

Let ψ be a penalty function on Rd and σ > 0 a penalty factor. A penalization of the original

primal problem p(0) is given by

min
x∈Rd

f(x, u) + σψ(u) (2.10)

s.t. gi(x, u) ≤ 0, i = 1, . . . , I,

hj(x, u) = 0, j = 1, . . . , J.

Naturally we could impose some bound on the perturbation as ‖u‖ ≤ Ru. We assume that

f, gi, hj are continuously differentiable in x and u for all i, j. Moreover, the compactness

in Assumption 2.1 implies that the feasible region prescribed by the inequality constraints

gi(x, u) ≤ 0 are compact in x for any u, i.e., X = {x ∈ Rd : ∃u, ‖u‖ ≤ Ru, s.t.gi(x, u) ≤

0, i = 1, . . . , J} is compact. For example, some of the inequalities are bounds on the

variables, ‖x‖∞ ≤ 1. We will show that there exists a penalty factor σ > 0 such that any

optimal solution to (2.10) is feasible to (2.9).

We first characterize the property of the perturbation function p(u).

Lemma 2.2. The perturbation function p(u) is lower semicontinuous.

Proof. Let X(u) ⊂ X denote the feasible set in x dependent on u. The minimum in the

23

definition is well defined for every u due to the compactness of X(u).

We show that p(u) is lower semicontinuous (lsc) by showing lim infv→u p(v) ≥ p(u) for

any u. Assume for contradiction that for any ε > 0, there exists a sequence {vk}∞k=1

such that vk → u and p(vk) ≤ p(u) − ε. Let xk ∈ arg min f(x, vk) and thus p(vk) =

f(x, vk). Since X is compact, there exists a subsequence xkj and z ∈ X such that xkj → z

as j → ∞. Then by continuity of f , f(z, u) = limj→∞ f(xkj , vkj) ≤ p(u) − ε. This

contradicts with the definition of p(u), since p(u) = minx∈X(u) f(x, u) ≤ f(z, u) ≤ p(u)−

ε. Therefore p(u) is lsc.

Now we give the theorem of exact penalization for problems defined by C1-functions.

Proposition 2.7. If the Karush-Kuhn-Tucker condition is satisfied at every local minimum

solution of (2.9), then the penalty reformulation (2.10) is exact for some finite σ > 0.

Proof. Let X(u) denote the feasible region of x defined by constraints gi(x, u) ≤ 0, i =

1, . . . , I and hj(x, u) = 0, j = 1, . . . , J . ThenX(u) is compact for any u by the continuity

of the constraint functions. We show that for every optimal solution x0 ∈ X(0), there exists

a neighborhood V (x0) 3 x0 in the x space, U(x0) 3 u = 0 in the u space, and constant

L(x0) > 0, such that for all x ∈ V (x0) and u ∈ U(x0), we have

f(x, u) ≥ f(x0, 0)− L(x0) · ‖u‖ .

Then we use this fact together with compactness of X(0) to show the existence of exact

penalization. In this proof, the little-o is used to simplify notation, i.e., o(‖a‖) denotes a

function b(a) such that

lim
a→0

∣∣b(a)
∣∣

‖a‖
= 0.

Pick any optimal solution x0 ∈ X(0). By definition, it is also a local minimum solution.

Due to constraint qualification, the KKT condition is satisfied at x0, that is, there exist

24

λi ∈ R, i = 1, . . . , I, and µj ≥ 0, j = 1, . . . , J such that

∇xf(x0, 0) +
I∑
i=1

λi∇xgi(x0, 0) +
J∑
j=1

µj∇xhj(x0, 0) = 0, (2.11)

hj(x0, 0) = 0, j = 1, . . . , J,

gi(x0, 0) ≤ 0, λi · gi(x0, 0) = 0, i = 1, . . . , I.

Since hj’s are continuously differentiable and hj(x0, 0) = 0, we have

〈
∇xhj(x0, 0), x− x0

〉
+
〈
∇uhj(x0, 0), u

〉
+o(‖x− x0‖+‖u‖) = 0, j = 1, . . . , J. (2.12)

Let A ⊂ I denote the set of active inequality constraints. Then similarly we have

〈
∇xgi(x0, 0), x− x0

〉
+
〈
∇ugi(x0, 0), u

〉
+ o(‖x− x0‖+ ‖u‖) ≤ 0, i ∈ A. (2.13)

For any i /∈ A, by the continuity of gi, there exist neighborhoods Wi of x0 and U ′i of u = 0

such that for any (x, u) ∈ Wi×U ′i , gi(x, u) < 0 remains inactive. Now, from (2.11), (2.12),

25

(2.13), and f being continuously differentiable, we have

f(x, u)− f(x0, 0)

=
〈
∇xf(x0, 0), x− x0

〉
+
〈
∇uf(x0, 0), u

〉
+ o(‖x− x0‖+ ‖u‖)

=

〈
−

I∑
i=1

λi∇xgi(x0, 0)−
J∑
j=1

µj∇xhj(x0, 0), x− x0

〉

+
〈
∇uf(x0, 0), u

〉
+ o(‖x− x0‖+ ‖u‖)

=

〈
−
∑
i∈A

λi∇xgi(x0, 0)−
J∑
j=1

µj∇xhj(x0, 0), x− x0

〉

+
〈
∇uf(x0, 0), u

〉
+ o(‖x− x0‖+ ‖u‖)

≥

〈
∇uf(x0, 0) +

∑
i∈A

λi∇ugi(x0, 0) +
J∑
j=1

µj∇uhj(x0, 0), u

〉
+ o(‖x− x0‖+ ‖u‖)

> −L(x0) · ‖u‖+ o(‖x− x0‖+ ‖u‖),

where L(x0) :=
∥∥∥∇uf(x0, 0) +

∑
i∈A λi∇ugi(x0, 0) +

∑J
j=1 µj∇uhj(x0, 0)

∥∥∥+ 1 > 0. By

the definition of the little-o notation, there exists a neighborhood V (x0) ⊂ ∩i/∈AWi, x0 ∈

V (x0) and U(x0) ⊂ ∩i/∈AUi, 0 ∈ U(x0) such that

f(x, u)− f(x0, 0) ≥ −L(x0) · ‖u‖ , ∀ (x, u) ∈ V (x0)× U(x0).

Now, let Xopt(0) denote the set of optimal solutions of x when u = 0. Note that

Xopt(0) ⊂ X(0) is closed due to the continuity of f, hi, gj , hence compact. The collection

of open sets {V (x)}x∈Xopt(0) covers Xopt(0). By compactness, there exists a finite subcol-

lection {V (xk)}Kk=1 such that Xopt(0) ⊂ ∪Kk=1V (xk) =: V . Let L := maxk=1,...,K L(xk)

and U = ∩Kk=1U(xk). Let f ∗ denote the optimal value for u = 0. Then we have

f(x, u) ≥ f ∗ − L · ‖u‖ , ∀ (x, u) ∈ V × U.

26

To show the inequality for x /∈ V , define

p̃(u) = min
x∈X(u)\V

f(x, u).

Note that p̃(0) > f ∗ by the definition of Xopt(0). Then by Lemma 2.2, p(u) is lower

semicontinuous, and we know that there exists a neighborhood U ′ of 0 such that p̃(u) > f ∗

for all u ∈ U ′. Therefore, for all u ∈ U ∩ U ′, we have

f(x, u) ≥ f ∗ − L · ‖u‖ .

Finally, we can show that the penalization is exact. Since ψ is sharp, there exist an open set

Ũ ⊂ U ∩ U ′, and positive constants c > 0 such that

ψ(u) ≥ c ‖u‖ on Ũ .

Let M = minu∈B̄Ru (0)\Ũ p̃(u) > f ∗, m = minu∈B̄Ru (0)\Ũ ψ(u) > 0 because ψ is a penalty

function. Let σ = (M − f ∗)/m+ 1. We have

f(x, u) ≥ f ∗ − σ · ‖u‖ , ∀u ∈ B̄Ru(0) \ {0}, x ∈ ∪uX(u).

As a result, any optimal solution to the penalization (2.10) would satisfy u = 0.

Note that our problem (2.7) can be written into the form (2.10) by letting u = (xa(n), zn)n∈N ,

and including the constraints

zn − xa(n) = 0, ∀n 6= r ∈ N

in the equality constraints hj(x, u) = 0. And other constraints gi(x, u) ≤ 0 correspond to

the functional constraints in the problem (2.1). Since ψn are sharp, the aggregate penalty

27

function defined by

ψ(u) =
∑
n∈N

pnψn(xa(n) − zn),

is also sharp. Let σ denote the penalty factor in Proposition 2.7. Proposition 2.6 follows

from this by letting σn = σ/pn for all n ∈ N .

2.1.5 Generalized Conjugacy Cuts and Value Function Approximation

In this part, we first introduce generalized conjugacy cuts for nonconvex functions and then

apply it to the under-approximation of value functions of mixed-integer nonlinear MSO.

Generalized Conjugacy Cuts

Let Q : X → R+ ∪ {+∞} be a proper, lsc function defined on a compact set X ⊆ Rd. Let

U be a non-empty set for parameters. Given a continuous function Φ : X × U → R, the

Φ-conjugate of Q (see e.g., Chapter 11-L in [72]) is defined as

QΦ(u) = max
x∈X

{
Φ(x, u)−Q(x)

}
. (2.14)

The following generalized Fenchel-Young inequality holds by definition for any x ∈ X

and u ∈ U ,

Q(x) +QΦ(u) ≥ Φ(x, u).

For any û ∈ U and an associated maximizer x̂ in (2.14), we define

CΦ(x | û, v̂) := v̂ + Φ(x, û) (2.15)

where v̂ := −QΦ(û). Then, the following inequality, derived from the generalized Fenchel-

Young inequality, is valid for any x ∈ X ,

Q(x) ≥ CΦ(x | û, v̂), (2.16)

28

which we call a generalized conjugacy cut for the target function Q.

Value Function Approximation

For a nodal problem n ∈ N , n 6= r and a point x̄ ∈ Xa(n), define Φx̄
n(x, u) := −〈λ, x̄− x〉−

ρψn(x̄ − x), where u := (λ, ρ) ∈ Rdn+1 are parameters. Consider a compact set of pa-

rameters Un = {(λ, ρ) : ‖λ‖∗ ≤ ln,λ, 0 ≤ ρ ≤ ln,ρ} with nonnegative bounds ln,λ and ln,ρ,

where ‖·‖∗ is the dual norm of ‖·‖. Consider the following dual problem

v̂n := max
(λ,ρ)∈Un

{
min

z∈Xa(n)

[
Qn(z) + 〈λ, x̄− z〉+ ρψn(x̄− z)

]}
. (2.17)

Denote ẑn and (λ̂n, ρ̂n) as an optimal primal-dual solution of (2.17). The dual problem

(2.17) can be viewed as choosing (λ̂n, ρ̂n) as the value of û in (2.15), which makes the

constant term−QΦ(û) as large as possible, thus makes the generalized conjugacy cut (2.16)

as tight as possible. With this choice of the parameters, a generalized conjugacy cut for Qn

at x̄ is given by

Qn(x) ≥ CΦx̄n
n (x | λ̂n, ρ̂n, v̂n) (2.18)

= −
〈
λ̂n, x̄− x

〉
− ρ̂nψn(x̄− x) + v̂n, ∀x ∈ Xa(n).

Proposition 2.8. Given the above definition of (2.17)-(2.18), if (x̄n, ȳn)n∈N is an opti-

mal solution to problem (2.1) and the bound ln,ρ satisfies ln,ρ ≥ σn for all nodes n, then

for every node n, the generalized conjugacy cut (2.18) is tight at x̄n, i.e. Qn(x̄n) =

CΦx̄nn
n (x̄n | λ̂n, ρ̂n, v̂n).

Proof. If ln,ρ ≥ σn, then (λ, ρ) = (0, σn) is contained in Un, and therefore, is a dual feasible

29

solution for (2.17). Thus, we have

Qn(x̄n) ≥ CΦx̄nn
n (x̄n | λ̂n, ρ̂n, v̂n) = v̂n (2.19)

≥ min
z∈Xa(n)

{Qn(z) + σnψn(x̄n − z)} = QR
n (x̄n) = Qn(x̄n),

where the first inequality is the validity of the generalized conjugacy cut (2.16) and the

second and the last equality are due to Lemma 2.1 for (x̄n, ȳn)n∈N being an optimal solution

to problem (2.1). This completes the proof.

The proposition guarantees that, under Assumption 2.2, the generalized conjugacy cuts

are able to approximate the value functions exactly at any state associated to an optimal

solution.

In the special case where problem (2.2) is convex and ψn(x) = ‖x‖ for all n ∈ N , the

exactness of the generalized conjugacy cut holds even if we set ln,ρ = 0, i.e. the conjugacy

cut is linear. To be precise, we begin with the following lemma.

Lemma 2.3. Let X ⊂ Rd be a convex, compact set. Given a convex, proper, lsc function

Q : X → R ∪ {+∞}, for any x ∈ X , the inf-convolution satisfies

Q2(σ ‖·‖)(x) := min
z∈X
{Q(z) + σ ‖x− z‖} = max

‖λ‖∗≤σ
min
z∈X
{Q(z) + 〈λ, x− z〉}. (2.20)

Proof. The minimums in (2.20) are well-defined because of the compactness of X and

lower semicontinuity of Q. Take any x ∈ X . Since both the primal set X and the dual set

{λ ∈ Rd : ‖λ‖∗ ≤ σ} are bounded, by strong duality (cf. Theorem 3.1.30 in [73]), we have

max
‖λ‖∗≤σ

min
z∈X
{Q(z) + 〈λ, x− z〉} = min

z∈X
max
‖λ‖∗≤σ

{Q(z) + 〈λ, x− z〉}

= min
z∈X
{Q(z) + σ ‖x− z‖},

which completes the proof.

30

Next we show the tightness in the convex case similar to Proposition 2.8.

Proposition 2.9. Suppose (2.2) is convex and ψn(x) = ‖x‖ for all nodes n. Given the

above definition of (2.17)-(2.18), if (x̄n, ȳn)n∈N is an optimal solution to problem (2.1)

and the bounds satisfy ln,λ ≥ σn, ln,ρ = 0 for all nodes n, then for every node n, the

generalized conjugacy cut (2.18) is exact at x̄n, i.e. Qn(x̄n) = CΦx̄nn
n (x̄n | λ̂n, ρ̂n, v̂n).

Proof. By definition, QR
n (x) = Qn2(σnψn)(x). Since ψn(x) = ‖x‖ is convex, by Proposi-

tion 2.2, QR
n (x) is convex. Then by Lemma 2.3, we have

QR
n (x) = max

‖λ‖∗≤σn
min

z∈Xa(n)

{
Qn(z) + 〈λ, x− z〉

}
.

Therefore,

CΦx̄nn
n (x̄n | λ̂n, ρ̂n, v̂n) = v̂n = max

‖λ‖∗≤ln,λ
min

z∈Xa(n)

{
Qn(z) + 〈λ, x̄n − z〉

}
≥ max
‖λ‖∗≤σn

min
z∈Xa(n)

{
Qn(z) + 〈λ, x̄n − z〉

}
= QR

n (x̄n).

By Lemma 2.1, QR
n (x̄n) = Qn(x̄n) if (x̄n, ȳn)n∈N is an optimal solution to problem (2.1).

Therefore, we conclude that CΦx̄nn
n (x̄n | λ̂n, ρ̂n, v̂n) = Qn(x̄n) due to the validness of CΦx̄nn

n

by (2.16).

In this case, the generalized conjugacy reduces to the usual conjugacy for convex func-

tions and the generalized conjugacy cut is indeed linear. This enables approximation of the

value function that preserves convexity.

Remark. This proposition can be generalized to special nonconvex problems where Q can

be extended to a convex function defined on the convex hull convX . This is true if X

is contained in the set of extreme points of a convex set, e.g., {0, 1}d. From the above

discussion, this provides an alternative explanation of the exactness of the Lagrangian cuts

in SDDiP [46] when the relatively complete recourse is assumed.

31

2.2 Nested Decomposition and Dual Dynamic Programming Algorithms

In this section, we introduce a nested decomposition algorithm for general scenario trees,

and two dual dynamic programming algorithms for stagewise independent scenario trees.

Since the size of the scenario tree could be large, we focus our attention to finding an ε-

optimal root node solution x∗r (see definition (2.5)), rather than an optimal solution {x∗n}n∈T

for the entire tree.

2.2.1 Subproblem Oracles

Before we propose the new algorithms, we first define subproblem oracles, which we will

use to describe the algorithms and conduct complexity analysis. A subproblem oracle is an

oracle that takes subproblem information together with the current algorithm information

to produce a solution to the subproblem. With subproblem oracles, we can describe the

algorithms consistently regardless of the problem being convex or not.

We assume three different subproblem oracles in this chapter, corresponding to the for-

ward steps and backward steps of non-root nodes, and the root node step in the algorithms.

For non-root nodes, we assume the following two subproblem oracles.

Definition 2.2 (Forward Step Subproblem Oracle for Non-Root Nodes). Consider the fol-

lowing subproblem for a non-root node n,

min
(x,y)∈Fn,
z∈Xa(n)

{
fn(z, y, x) + σnψn(xa(n) − z) + Θn(x)

}
. (F)

where the parent node’s state variable xa(n) ∈ Xa(n) is a given parameter and Θn : Xn → R̄

is a lsc function, representing an under-approximation of the expected cost-to-go function

Qn(x) defined in (2.3). The forward step subproblem oracle finds an optimal solution of (F)

given xa(n) and Θn, that is, we denote this oracle as a mapping OF
n that takes (xa(n),Θn)

as input and outputs an optimal solution (xn, yn, zn) of (F) for n 6= r.

32

Definition 2.3 (Backward Step Subproblem Oracles for Non-Root Nodes). Consider the

following subproblem for a non-root node n,

max
(λ,ρ)∈Un

min
(x,y)∈Fn,
z∈Xa(n)

{
fn(z, y, x) +

〈
λ, xa(n) − z

〉
+ ρψn(xa(n) − z) + Θn(x)

}
, (B)

where the parent node’s state variable xa(n) ∈ Xa(n) is a given parameter and Θn : Xn → R̄

is a lsc function, representing an under-approximation of the expected cost-to-go function.

The backward step subproblem oracle finds an optimal solution of (B) for the given xa(n)

and Θn. Similarly, we denote this oracle as a mapping OB
n that takes (xa(n),Θn) as input

and outputs an optimal solution (xn, yn, zn;λn, ρn) of (B) for n 6= r.

For the root node, we assume the following subproblem oracle.

Definition 2.4 (Subproblem Oracle for the Root Node). Consider the following subproblem

for the root node r ∈ N ,

min
(x,y)∈Fr

{
fr(xa(r), y, x) + Θr(x)

}
, (R)

where Θr : Xr → R̄ is a lsc function, representing an under-approximation of the expected

cost-to-go function. The subproblem oracle for the root node is denoted as Or that takes

Θr as input and outputs an optimal solution (xr, yr) of (R) for the given function Θr.

All of the subproblem oracles may return any optimal solution to the corresponding

nodal subproblem. For numerical implementation, the above defined subproblem oracles

are usually handled by subroutines or external solvers.

2.2.2 Under- and Over-Approximations of Cost-to-go Functions

We first show how to iteratively construct under-approximation of expected cost-to-go

functions using the generalized conjugacy cuts developed in Section 2.1.5. The under-

approximation serves as a surrogate of the true cost-to-go function in the algorithm. Let

33

i ∈ N be the iteration index of an algorithm. Assume (xin, y
i
n)n∈N are feasible solutions to

the regularized nodal problem (2.4) in the i-th iteration. Then the under-approximation of

the expected cost-to-go function is defined recursively from leaf nodes to the child nodes

of the root node, and inductively for i ∈ N as

Qi
n
(x) := max

Qi−1
n

(x),
∑

m∈C(n)

pnmC
i
m(x | λ̂im, ρ̂im, vim)

 , ∀x ∈ Xn, (2.21)

where Q0
n
≡ 0 on Xn. In the definition (2.21), Ci

m is the generalized conjugacy cut for Qm

at i-th iteration and Φ
xin
m (x, λ, ρ) = −

〈
λ, xin − x

〉
− ρψn(xin − x) (cf. (2.17)-(2.18)), that

is,

Ci
m(x | λ̂im, ρ̂im, vim) := −

〈
λ̂im, x

i
n − x

〉
− ρ̂imψm(xin − x) + vim, (2.22)

where (x̂im, ŷ
i
mẑ

i
m; λ̂im, ρ̂

i
m) = OB

m(xin,Qim), and vim satisfies

vim = fm(ẑim, ŷ
i
m, x̂

i
m) +

〈
λ̂im, x

i
n − ẑim

〉
+ ρ̂imψm(xin − ẑim) +Qi

m
(x̂im). (2.23)

The next proposition shows that Qi
n

is indeed an under-approximation of Qn.

Proposition 2.10. For any n ∈ N , and i ∈ N, Qi
n
(x) is (

∑
m∈C(n) pnm(lm,λ + lm,ρ))-

Lipschitz continuous and

Qn(x) ≥ Qi
n
(x), ∀x ∈ Xn.

Proof. Let Ln :=
∑

m∈C(n) pnm(lm,λ + lm,ρ) for simplicity. We prove the proposition re-

cursively for nodes n ∈ N , and inductively for iteration indices i ∈ N. For leaf nodes and

the first iteration, it holds obviously because Qi
n
(x) = 0 for any leaf node n ∈ N with

C(n) = ∅, and Q0
n
(x) = 0 from the definition (2.21). Now suppose for some n ∈ N ,

and i ∈ N, it holds for all m ∈ C(n) that Qi
m

(x) ≤ Qm(x), Qi−1
n

(x) ≤ Qn(x), and

that Qi−1
n

(x) is Ln-Lipschitz continuous. Then it follows from (2.18), (2.23), and (B) that

34

Ci
m(x | λ̂im, ρ̂im, vim) ≤ Qm(x) for all m ∈ C(n). Moreover, by (2.22), Ci

m is (lm,λ + lm,ρ)-

Lipschitz continuous so
∑

m∈C(n) pnmC
i
m is Ln-Lipschitz continuous. Thus the pointwise

maximum of Qi−1
n

(x) and
∑

m∈C(n) pnmC
i
m(x | λ̂in, ρ̂in, vin) (cf. (2.21)) is still dominated by

Qn(x) and Ln-Lipschitz continuous.

Now, we propose the following over-approximation of the regularized expected cost-

to-go functions, which is used in the sampling and termination of the proposed nested

decomposition and dual dynamic programming algorithms. For i ∈ N, at root node r, let

(xir, y
i
r) = Or(Qi−1

r
), and, at each non-root node n, let (xin, y

i
n, z

i
n) = OF

n (xia(n),Q
i−1
n

).

Then the over-approximation of the regularized expected cost-to-go function is defined

recursively, from leaf nodes to the child nodes of the root node, and inductively for i ∈ N

by

Qin(x) :=


conv

Qi−1

n (x),
∑

m∈C(n)

pnm

(
v̄im + σm

∥∥∥x− xin∥∥∥)
 , if (2.4) is convex,

min

Qi−1

n (x),
∑

m∈C(n)

pnm

(
v̄im + σm

∥∥∥x− xin∥∥∥)
 , otherwise,

(2.24)

where Q0

n ≡ +∞ for any non-leaf node n ∈ N , Qin ≡ 0 for any iteration i ∈ N and any

leaf node n, and v̄im satisfies

v̄im = fm(zim, y
i
m, x

i
m) + σmψm(xin − zim) +Qim(xim). (2.25)

Here, the operation conv{f, g} forms the convex hull of the union of the epigraphs of

any continuous functions f and g defined on the space Rd. More precisely using convex

35

conjugacy, we define

conv{f, g}(x) :=
(
min{f(x), g(x)}

)∗∗ (2.26)

= sup
λ∈Rd

inf
z∈Rd

{
min{f(z), g(z)}+ 〈λ, x− z〉

}
.

The key idea behind the upper bound function (2.24) is to exploit the Lipschitz continuity

of the regularized value function QR
m(x). In particular, it would follow from induction that

v̄im is an upper bound on QR
m(xin), and then, by the σm-Lipschitz continuity of QR

m(x), we

have v̄im + σm‖x − xin‖ ≥ QR
m(xin) + σm‖x − xin‖ ≥ QR

m(x) for all x ∈ Xn. The next

proposition summarizes this property.

Proposition 2.11. For any non-root node n ∈ N and i ≥ 1, Qin(x) is (
∑

m∈C(n) pnmσm)-

Lipschitz continuous. Moreover, we have v̄im ≥ QR
m(xin) for any node m ∈ C(n) and thus

Qin(x) ≥ QR
n (x), ∀x ∈ Xn.

Proof. Let Ln =
∑

m∈C(n) pnmσm for simplicity in this proof. We prove the statement by

induction on the number of iterations i. When i = 1,Q1

n(x) = min{+∞,
∑

m∈C(n) pnm(v̄im+

σm
∥∥x− xin∥∥)} =

∑
m∈C(n) pnm(v̄im +σm

∥∥x− xin∥∥) which is clearly Ln-Lipschitz contin-

uous. For any leaf node n, Q1

n ≡ 0 = QR
n by definition. Going recursively from leaf nodes

to the root node, suppose Q1

m ≥ QR
m for all m ∈ C(n) for some node n, then we have

v̄1
m = fm(z1

m, y
1
m, x

1
m) + σmψm(x1

n − z1
m) +Q1

m(x1
m) (2.27)

≥ min{fm(z, y, x) + σmψm(x1
n − z) +Q1

m(x) : (x, y) ∈ Fm, z ∈ Xn}

≥ min{fm(z, y, x) + σmψm(x1
n − z) +QR

m(x) : (x, y) ∈ Fm, z ∈ Xn}

= QR
m(x1

n).

Thus Q1

n(x) =
∑

m∈C(n) pnm(v̄1
m + σm

∥∥x− x1
n

∥∥) ≥ QR
n (x) for all x ∈ Xn by the σm-

36

Lipschitz continuity of the regularized value functions QR
m(x) for all m ∈ C(n) shown in

Proposition 2.2.

Now assume that the statement holds for all iterations up to i − 1. For any leaf node

n, Qin ≡ 0 = QR
n still holds by definition. For any non-leaf node n, suppose Qim ≥ QR

m

for all m ∈ C(n). Then by the same argument (2.27), we know that v̄im ≥ QR
m(xin). By

induction hypothesis,Qi−1

n (x) ≥ QR
n (x) for all x ∈ Xn. So for the cases without convexity,

Qin(x) = min{Qi−1

n (x),
∑

m∈C(n) pnm(v̄im+σm
∥∥x− xin∥∥)} isLn-Lipschitz continuous and

satisfiesQin(x) ≥ QR
n (x) since

∑
m∈C(n) pnm(v̄im + σm

∥∥x− xin∥∥) ≥ QR
n (x) for all x ∈ Xn

following Proposition 2.2.

It remains to show that in the convex case Qin(x) is still Ln-Lipschitz continuous and

satisfies Qin(x) ≥ QR
n (x) for any x ∈ Xn. Note that QR

n (x) can be naturally extended to

the entire space Rdn ⊃ Xn since QR
n2(Ln ‖·‖)(x) = QR

n (x) for any x ∈ Xn by the Ln-

Lipschitz continuity of QR
n . The above argument of the base case i = 1 for the nonconvex

case can be directly applied to the convex case over x ∈ Rdn . Now assume that Qi−1

n (x)

is Ln-Lipschitz continuous on Rdn and Qi−1

n (x) ≥ QR
n (x) for x ∈ Rdn up to i − 1. Since

Q′n(x) := min{Qi−1

n (x),
∑

m∈C(n) pnm(v̄im +σm
∥∥x− xin∥∥)} is Ln-Lipschitz continuous in

x ∈ Rdn , we claim that the supremum in the definition (2.26) can be attained within the

dual norm ball B∗(Ln) := {λ ∈ Rdn : ‖λ‖∗ ≤ Ln}. In fact, for any λ /∈ B∗(Ln), the

infimum

inf
z∈Rdn

{Q′n(z) + 〈λ, z − x〉} ≤ inf
z∈Rdn

{Q′n(x) + Ln ‖z − x‖+ 〈λ, z − x〉} = −∞.

As a result, Qin(x) is a supremum of Ln-Lipschitz linear functions (of the forms l(x) :=

Qin(ẑ) + 〈λ̂, ẑ − x〉 where λ̂ ∈ B∗(Ln) and ẑ ∈ Xn) and thus is also an Ln-Lipschitz

continuous function. Therefore, Q′n(x) ≥ QR
n (x) for all x ∈ Rdn . By (2.26), Qin(x) =

(Q′n)∗∗(x) ≥ (QR
n)∗∗(x) = QR

n (x) for all x ∈ Rdn . This completes the proof.

37

2.2.3 A Nested Decomposition Algorithm for General Trees

We propose a nested decomposition algorithm in Algorithm 1 for a general scenario tree,

i.e. without any stagewise independence assumption on the underlying stochastic process.

In each iteration i, Algorithm 1 carries out a forward step, a backward step, and a

root node update step. In the forward step, the algorithm proceeds from t = 1 to T by

solving all the nodal subproblems with the current under-approximation of their cost-to-go

functions in stage t. After all the state variables xin are obtained for nodes n ∈ N , the

backward step goes from t = T back to 1. At each node n in stage t, it first updates the

under-approximation of the expected cost-to-go function. Next it solves the dual problem

to obtain an optimal primal-dual solution pair (x̂in, ŷ
i
n, ẑ

i
n; λ̂in, ρ̂

i
n), which is used to con-

struct a generalized conjugacy cut using (2.22), together with values vin and v̄in calculated

with (2.23) and (2.25). Finally the algorithm updates the root node solution using the up-

dated under-approximation of the cost-to-go function, and determines the new lower and

upper bounds.

Algorithm 1 solves the regularized problem (2.4) for an ε-optimal root node solution.

To justify the ε-optimality of the output of the algorithm, we have the following proposition.

Proposition 2.12. Given any ε > 0, if UPPERBOUND − LOWERBOUND ≤ ε, then

the returned solution (x∗r, y
∗
r) is an ε-optimal root node solution to the regularized prob-

lem (2.4). In particular, if Qir(xi+1
r) − Qi

r
(xi+1

r) ≤ ε for some iteration index i, then

UPPERBOUND − LOWERBOUND ≤ ε and Algorithm 1 terminates after the i-th iteration.

Proof. From the definition of vreg and Proposition 2.11,

vreg ≤ fr(xa(r), y
∗
r , x

∗
r) +QR

r (x∗r) ≤ fr(xa(r), y
∗
r , x

∗
r) +Qir(x∗r) ≤ UPPERBOUND.

Since UPPERBOUND − LOWERBOUND ≤ ε, we have

fr(xa(r), y
∗
r , x

∗
r) +Qir(x∗r) ≤ fr(xa(r), y

i+1
r , xi+1

r) +Qi
r
(xi+1

r) + ε.

38

Algorithm 1 A Nested Decomposition Algorithm for a General Tree

Require: scenario tree T = (N , E) with subproblem oracles Or,OF
n ,O

B
n , n 6= r

Require: optimality gap threshold ε > 0
Ensure: an ε-optimal root node solution (x∗r, y

∗
r) to the regularized problem (2.4)

1: Initialize: i← 1; Q0
n
← 0, Q0

n ← +∞∀n : C(n) 6= ∅ and Q0

n ← 0∀n : C(n) = ∅
2: Evaluate (x1

r, y
1
r) = Or(0)

3: Set LOWERBOUND ← fr(xa(r), y
1
r , x

1
r), UPPERBOUND ← +∞

4: while UPPERBOUND − LOWERBOUND > ε do
5: for t = 1, . . . , T − 1 do . i-th forward step
6: for n ∈ N (t) do
7: Evaluate (xin, y

i
n, z

i
n) = OF

n (xia(n),Q
i−1
n

)
8: end for
9: end for

10: for t = T, . . . , 1 do . i-th backward step
11: for n ∈ N (t) do
12: Update Qi

n
and Qin using (2.21) and (2.24)

13: Evaluate (x̂in, ŷ
i
n, ẑ

i
n; λ̂in, ρ̂

i
n) = OB

n (xia(n),Q
i
n
)

14: Calculate Ci
n, v

i
n, and v̄in using (2.22), (2.23), and (2.25)

15: end for
16: end for
17: Update Qi

r
and Qir using (2.21) and (2.24) . root node update

18: Evaluate (xi+1
r , yi+1

r) = Or(Qir)
19: Update LOWERBOUND ← fr(xa(r), y

i+1
r , xi+1

r) +Qi
r
(xi+1

r)

20: if UPPERBOUND > fr(xa(r), y
i+1
r , xi+1

r) +Qir(xi+1
r) then

21: Update UPPERBOUND ← fr(xa(r), y
i+1
r , xi+1

r) +Qir(xi+1
r)

22: Set (x∗r, y
∗
r) = (xi+1

r , yi+1
r)

23: end if
24: i← i+ 1
25: end while

39

Then, using the optimality of (xi+1
r , yi+1

r) given by Or(Qir) and the fact that Qi
r
(x) ≤

Qr(x), we see that

fr(xa(r), y
i+1
r , xi+1

r) +Qi
r
(xi+1

r) ≤ min
(x,y)∈Fr

{
fr(xa(r), y, x) +Qr(x)

}
= vprim.

Under Assumption 2.2, vreg = vprim. Therefore, combining all the above inequalities, we

have shown that

vreg ≤ fr(xa(r), y
∗
r , x

∗
r) +Qir(x∗r) ≤ vreg + ε,

which means (x∗r, y
∗
r) is an ε-optimal root node solution to the regularized problem (2.4).

Now supposeQir(xi+1
r)−Qi

r
(xi+1

r) ≤ ε for some iteration index i. Since UPPERBOUND ≤

fr(xa(r), y
i+1
r , xi+1

r) +Qir(xi+1
r), we have

UPPERBOUND − LOWERBOUND

≤ fr(xa(r), y
i+1
r , xi+1

r) +Qir(xi+1
r)− (fr(xa(r), y

i+1
r , xi+1

r) +Qi
r
(xi+1

r))

= Qir(xi+1
r)−Qi

r
(xi+1

r)

≤ ε.

Therefore the algorithm terminates after the i-th iteration.

2.2.4 A Deterministic Dual Dynamic Programming Algorithm

Starting from this subsection, we focus on the nested decomposition algorithm applied to

stagewise independent stochastic problems, which is defined in the following stagewise

independence assumption.

Assumption 2.3. For any t = 1, . . . , T − 1 and any n, n′ ∈ N (t), the state space, the

transition probabilities, as well as the data associated with the child nodes C(n) and C(n′)

are identical. In particular, this implies Qn(x) = Qn′(x) =: Qt(x) for all x ∈ Xn =

Xn′ =: Xt ⊆ Rdt .

40

We denote n ∼ n′ for n, n′ ∈ N (t) for some t = 1, . . . , T − 1, if the nodes n, n′ are

defined by identical data. We then use Ñ (t) := N (t)/ ∼ to denote the set of nodes with

size Nt := |Ñ (t)| that are defined by distinct data in stage t for all t = 1, . . . , T − 1, i.e.

Ñ := ∪Tt=0Ñ (t) forms a recombining scenario tree [3]. For each node m ∈ Ñ (t), we

denote pt−1,m := pnm for any n ∈ Ñ (t − 1) since pn,m = pn′,m for any n, n′ ∈ Ñ (t − 1).

Due to stagewise independence, it suffices to keep track of the state of each stage in the

algorithm, instead of the state of each node. To be consistent, we also denote the root node

solution as (xi0, y
i
0) for i ∈ N. We present the algorithm in Algorithm 2.

Similar to Algorithm 1, each iteration in Algorithm 2 consists of a forward step, a

backward step, and a root node update step. The name “deterministic dual dynamic pro-

gramming” refers to the deterministic sampling procedure in the forward step. In particular,

at a node n ∈ Ñ (t) with t < T , the forward step proceeds to a child node m ∈ Ñ (t + 1),

where the approximation gap γim := Qi−1

t (xim) − Qi−1
t

(xim) is among the largest of all

the approximation gaps of states xim′ of nodes m′ ∈ Ñ (t + 1). Then the state variable of

node m is considered the state variable of stage t(m) in the iteration i. Due to stagewise

independence, the backward step at each stage t only need to generate cuts for the nodes in

the recombining tree Ñ . The optimality of the returned solution (x∗0, y
∗
0) is guaranteed by

Proposition 2.12.

2.2.5 A Stochastic Dual Dynamic Programming Algorithm

Now we present a stochastic dual dynamic programming algorithm, which uses stochastic

sampling rather than deterministic sampling. So, instead of traversing the scenario tree

and finding a path with the largest approximation gap, the stochastic sampling algorithm

generates M scenario paths before an iteration begins for some M ≥ 1. To be precise,

we introduce the following notations. Let P =
∏T

t=1 Ñ (t) denote all possible scenario

paths from stage 1 to stage T . A scenario path is denoted as a T -element sequence P =

(n1, . . . , nT) ∈ P , where nt ∈ Ñ (t) for each t = 1, . . . , T . In the i-th iteration, we sample

41

Algorithm 2 Deterministic Sampling Dual Dynamic Programming Algorithm

Require: recombining scenario tree Ñ with subproblem oracles Or,OF
n ,O

B
n , n 6= r

Require: optimality gap threshold ε > 0
Ensure: an ε-optimal root node solution (x∗0, y

∗
0) to the regularized problem (2.4)

1: Initialize: i← 1; Q0
t
← 0, ∀ t, Q0

t ,← +∞∀ t ≤ T − 1 and Q0

T ← 0
2: Evaluate (x1

0, y
1
0) = Or(0)

3: Set LOWERBOUND ← fr(xa(r), y
1
0, x

1
0), UPPERBOUND ← +∞

4: while UPPERBOUND − LOWERBOUND > ε do
5: for t = 1, . . . , T − 1 do . i-th forward step
6: for n ∈ Ñ (t) do
7: Evaluate (xin, y

i
n, z

i
n) = OF

n (xit−1,Qi−1
t

)

8: Calculate the gap γin = Qi−1

t (xin)−Qi−1
t

(xin)
9: end for

10: Select any n∗(t) ∈ {n ∈ N (t) : γin ≥ γin′ , ∀n′ ∈ Ñ (t)}, and let xit ← xin∗(t)
11: end for
12: for t = T, . . . , 1 do . i-th backward step
13: Update Qi

t
and Qit using (2.21) and (2.24)

14: for n ∈ Ñ (t) do
15: Evaluate (x̂in, ŷ

i
n, ẑ

i
n; λ̂in, ρ̂

i
n) = OB

n (xit−1,Qit)
16: Calculate Ci

n, v
i
n, v̄

i
n using (2.22), (2.23), and (2.25)

17: end for
18: end for
19: Update Qi

0
and Qi0 using (2.21) and (2.24) . root node update

20: Evaluate (xi+1
0 , yi+1

0) = Or(Qi0)
21: Update LOWERBOUND ← fr(xa(r), y

i+1
0 , xi+1

0) +Qi
0
(xi+1

0)

22: if UPPERBOUND > fr(xa(r), y
i+1
0 , xi+1

0) +Qi0(xi+1
0) then

23: Update UPPERBOUND ← fr(xa(r), y
i+1
0 , xi+1

0) +Qi0(xi+1
0)

24: Set (x∗0, y
∗
0) = (xi+1

0 , yi+1
0)

25: end if
26: i← i+ 1
27: end while

42

M independent scenario paths P i = {P i,1, . . . , P i,M}, and we use P i,j
t to denote the t-th

node in the scenario path P i,j , i.e., the node in the t-th stage of the j-th scenario path in

the i-th iteration, for 1 ≤ j ≤ M and 1 ≤ t ≤ T . Since in each iteration, the solutions

and the approximations depend on the scenario path P i,j , we use two superscripts i and j

for solutions and cuts, where a single superscript i is used in the deterministic sampling

algorithm. In addition, for every node n ∈ Ñ (t) for some stage t, the under-approximation

of the expected cost-to-go function is updated over all scenario path index j = 1, . . . ,M ,

i.e.,

Qi
t
(x) := max

{
Qi−1
t

(x),
∑

m∈Ñ (t+1)

ptmC
i,j
m (x | λ̂i,jm , ρ̂i,jm , vi,jm), j = 1, . . . ,M

}
, (2.28)

whereCi,j
m is the generalized conjugacy cut generated with (x̂i,jm , ŷ

i,j
m , ẑ

i,j
m ; λ̂i,jm , ρ̂

i,j
m) = OB

m(xi,jn ,Qit+1
)

using formula (2.22). With these notations, the algorithm is displayed in Algorithm 3.

Unlike the preceding two algorithms, Algorithm 3 does not need to construct the over-

approximation of the regularized value functions for selecting the child node to proceed

with. Instead, it determines the scenario paths before the forward step starts. In the forward

step, each nodal problem in the sampled scenario path is solved. Then in the backward

step, the dual problems are solved at the nodes that are defined by distinct data, dependent

on the parent node’s state variable obtained in the forward step. The termination criterion

is flexible. In the existing literature [40, 46], statistical upper bounds based on the sampled

scenario paths are often used together with the lower bound for terminating the algorithm.

2.3 Upper Bounds on Iteration Complexity of Proposed Algorithms

In this section, we derive upper bounds on the iteration complexity of the three proposed

algorithms, i.e. the bound on the iteration index when the algorithm terminates. These

upper bounds on the iteration complexity imply convergence of the algorithm to an ε-

optimal root node solution for any ε > 0.

43

Algorithm 3 Stochastic Sampling Dual Dynamic Programming Algorithm

Require: recombining scenario tree Ñ with subproblem oracles Or,OF
n ,O

B
n , n 6= r

1: Initialize: i← 1; Q0
t
← 0, ∀ t

2: Evaluate (x1
0, y

1
0) = Or(0)

3: while some stopping criterion is not satisfied do
4: Sample M scenario paths P i = {P i,1, . . . , P i,M}
5: for j = 1, . . . ,M do . i-th forward step
6: for t = 1, . . . , T − 1 do
7: Evaluate (xi,jt , y

i,j
t , z

i,j
t) = OF

n (xi,jt−1,Qi−1
t

)
8: end for
9: end for

10: for t = T, . . . , 1 do . i-th backward step
11: Update Qi

t
using (2.28)

12: for j = 1, . . . ,M do
13: for n ∈ N (t)/ ∼ do
14: Evaluate (x̂i,jn , ŷ

i,j
n , ẑ

i,j
n ; λ̂i,jn , ρ̂

i,j
n) = OB

n (xi,jt−1,Qit)
15: Calculate Ci,j

n and vi,jn using (2.22) and (2.23)
16: end for
17: end for
18: end for
19: Update Qi

0
using (2.28) . root node update

20: Evaluate Or(Qi0) = (xi+1
0 , yi+1

0)
21: i← i+ 1
22: end while

44

2.3.1 Upper Bound Analysis on Iteration Complexity of Algorithm 1

In this section, we discuss the iteration complexity of Algorithm 1. We begin with the

definition of a set of parameters used in the convergence analysis. Let ε denote the desired

root-node optimality gap ε in Algorithm 1. Let δ = (δn)n∈N ,C(n)6=∅ be a set of positive

numbers such that ε =
∑

n∈N ,C(n)6=∅ pnδn. Since ε > 0, such δn’s clearly exist. Then, we

define recursively for each non-leaf node n

γn(δ) := δn +
∑

m∈C(n)

pnmγm(δ), (2.29)

and γn(δ) = 0 for leaf nodes n. For i ∈ N, recall the approximation gap γin = Qi−1

n (xin)−

Qi−1
n

(xin) for n ∈ N . For leaf nodes, γin ≡ 0 by definition for all i ∈ N. In addition, we

define the sets of indices In(δ) for each n ∈ N as

In(δ) :=
{
i ∈ N : γin > γn(δ) and γim ≤ γm(δ),∀m ∈ C(n)

}
. (2.30)

Intuitively, the index set In(δ) consists of the iteration indices when all the child nodes of n

have good approximation of the expected cost-to-go function at the forward step solution,

while the node n itself does not. We show by the following lemma that the backward

step for node n in the iteration i ∈ In(δ) will reduce the expected cost-to-go function

approximation gap at node n to be no more than γn(δ).

Lemma 2.4. If an iteration index i ∈ In(δ), i.e., Qi−1

n (xin) − Qi−1
n

(xin) > γn(δ) and

Qi−1

m (xim)−Qi−1
m

(xim) ≤ γm(δ) for all m ∈ C(n), then

Qin(x)−Qi
n
(x) ≤ γn(δ), ∀x ∈ Xn, ‖x− xin‖ ≤

δn
2Ln

, (2.31)

where Ln :=
∑

m∈C(n) pnm max{σm, lm,λ + lm,ρ}.

Proof. By definition (2.21), Qi
m

(x) ≥ Qi−1
m

(x) on Xm for all m ∈ C(n). Therefore,

45

by definition (2.23) and the fact that (λ, ρ) = (0, σn) is a dual feasible solution for the

problem (B), we have

vim = max
(λ,ρ)∈Um

min
(x,y)∈Fm,
z∈Xn

{
fm(z, y, x) +

〈
λ, xin − z

〉
+ ρψn(xin − z) +Qi

m
(x)

}

≥ min
(x,y)∈Fm,
z∈Xn

{
fm(z, y, x) + σnψn(xin − z) +Qi

m
(x)
}

≥ min
(x,y)∈Fm,
z∈Xn

{
fm(z, y, x) + σnψn(xin − z) +Qi−1

m
(x)
}

= fm(zim, y
i
m, x

i
m) + σnψn(xin − zim) +Qi−1

m
(xim)

for allm ∈ C(n). The last equality is due to the forward step subproblem oracle OF
m(xin,Qi−1

m
)

in the algorithm. Meanwhile, note thatQim(x) ≤ Qi−1

m (x) for x ∈ Xm. By definition (2.25),

we have

v̄im = fm(zim, y
i
m, x

i
m) + σnψn(xin − zim) +Qim(xim)

≤ fm(zim, y
i
m, x

i
m) + σnψn(xin − zim) +Qi−1

m (xim)

for all m ∈ C(n). Note that by definition (2.24), Qin(xin) ≤
∑

m∈C(n) pnmv̄
i
m and by defini-

tions (2.21) and (2.22), Qi
n
(xin) ≥

∑
m∈C(n) pnmC

i
m(xin | λ̂im, ρ̂im, vim) =

∑
m∈C(n) pnmv

i
m.

Therefore,

Qin(xin)−Qi
n
(xin) ≤

∑
m∈C(n)

pnm(v̄im − vim)

≤
∑

m∈C(n)

pnm[Qi−1

m (xim)−Qi−1
m

(xim)]

≤
∑

m∈C(n)

pnmγm(δ).

Note thatQin(x) is
(∑

m∈C(n) pnmσm
)
-Lipschitz continuous by Proposition 2.11, andQi

m
(x)

is
[∑

m∈C(n) pnm(ln,λ+ln,ρ)
]
-Lipschitz continuous onXn by Proposition 2.10. ThusQin(x)

46

and Qi
n
(x) are both Ln-Lipschitz continuous. Therefore, for any x ∈ Xn, ‖x − xin‖ ≤

δn/(2Ln), we have

Qin(x)−Qi
n
(x) ≤ Qin(xin)−Qi

n
(xin) + 2Ln‖x− xin‖

≤
∑

m∈C(n)

pnmγm(δ) + δn = γn(δ).

This completes the proof.

In other words, each i ∈ In would carve out a ball of radius δn/(2Ln) in the state space

Xn such that no point in the ball can be the forward step solution of some iteration i in In.

This implies that we could bound the cardinality |In| of In by the size of the corresponding

state space Xn. Since Xn can be nonconvex, we consider finite covers of Xn by norm balls

and provide the bound in terms of the number and sizes of the balls. This is made more

precise in the following lemma.

Lemma 2.5. Let B = {Bn,k ⊂ Rdn}1≤k≤Kn,n∈N be a collection of balls, each with diam-

eter Dn,k ≥ 0, such that Xn ⊆
⋃Kn
k=1 Bn,k. Then,

∣∣In(δ)
∣∣ ≤ Kn∑

k=1

(
1 +

2LnDn,k

δn

)dn
.

Proof. We claim that for any i, j ∈ In, i 6= j, then ‖xin − xjn‖ > δn/(2Ln). Assume for

contradiction that ‖xin−xjn‖ ≤ δn/(2Ln) for some i < j and i, j ∈ In(δ). By the definition

of In(δ), γim ≤ γm(δ) for all m ∈ C(n). By Lemma 2.4, Qin(x) − Qi
n
(x) ≤ γn(δ) for all

x ∈ Xn, ‖x − xin‖ ≤ δn/(2Ln). Since j > i and ‖xin − xjn‖ ≤ δn/(2Ln), this implies

γjn = Qjn(xjn)−Qj
n
(xjn) ≤ γn(δ), which is a contradiction with j ∈ In(δ). Hence we prove

the claim.

Let B(R),B(R, x) ⊆ Rd denote the closed balls with radius R ≥ 0, centered at 0 and

x, respectively. It follows from the claim that the closed balls B(δn/(4Ln), xin) are non-

overlapping for all i ∈ In(δ), each with the volume VolB(δn/(4Ln)). Thus the sum of

47

the volumes of these balls is
∣∣In(δ)

∣∣VolB(δn/(4Ln)). Note that for each index i ∈ In(δ),

xin ∈ Xn and hence xin ∈ Bn,k for some k. The closed ball B(δn/(4Ln), xin) ⊆ Bn,k +

B(δn/(4Ln)), and therefore

⋃
i∈In(δ)

B(δn/(4Ln), xin) ⊆
Kn⋃
k=1

(Bn,k + B(δn/(4Ln))).

It follows that

Vol

 ⋃
i∈In(δ)

B(δn/(4Ln), xin)

 =
∣∣In(δ)

∣∣ · VolB(δn/(4Ln))

≤ Vol

Kn⋃
k=1

(Bn,k + B(δn/(4Ln))


≤

Kn∑
k=1

Vol
(
Bn,k + B(δn/(4Ln))

)
.

Therefore,

∣∣In(δ)
∣∣ ≤ Kn∑

k=1

Vol
(
Bn,k + B(δn/(4Ln))

)
VolB(δn/(4Ln))

=
Kn∑
k=1

(
1 +

2LnDn,k

δn

)dn
.

Now we present an upper bound on the iteration complexity of Algorithm 1.

Theorem 2.1. Given ε > 0, choose values δ = (δn)n∈N ,C(n)6=∅ such that δn > 0 and∑
n∈N ,C(n) 6=∅ pnδn = ε. Let B = {Bn,k}1≤k≤Kn,n∈N be a collection of balls, each with

diameter Dn,k ≥ 0, such that Xn ⊆
⋃Kn
k=1 Bn,k for n ∈ N . If Algorithm 1 terminates with

an ε-optimal root node solution (x∗r, y
∗
r) at the end of i-th iteration, then

i ≤
∑
n∈N ,
C(n)6=∅

Kn∑
k=1

(
1 +

2LnDn,k

δn

)dn
.

48

Proof. After the i-th iteration, at least one of the following two situations must happen:

i. At the root node, it holds that Qir(xi+1
r) −Qi

r
(xi+1

r) ≤ γr(δ), where γr is defined in

(2.29).

ii. There exists a node n ∈ N such that Qin(xi+1
n) − Qi

n
(xi+1

n) > γn(δ), but all of its

child nodes satisfy Qim(xi+1
m) − Qi

m
(xi+1

m) ≤ γm(δ), ∀m ∈ C(n). In other words,

i+ 1 ∈ In(δ).

Note that γr(δ) = δr +
∑

m∈C(r) prmγm(δ) = · · · =
∑

n∈N ,C(n)6=∅ pnδn. If case i happens,

then by Proposition 2.12, (xi+1
r , yi+1

r) is an ε-optimal root node solution. Note that case ii

can only happen at most
∑

n∈N

∣∣In(δ)
∣∣ times by Lemma 2.5. Therefore, we have that

i ≤
∑
n∈N
C(n)6=∅

Kn∑
k=1

(
1 +

2LnDn,k

δn

)dn
,

when the algorithm terminates.

Theorem 2.1 implies the ε-convergence of the algorithm for any ε > 0. We remark

that the form of the upper bound depends on the values δ and the covering balls Bn,k, and

therefore the right-hand-side can be tightened to the infimum over all possible choices.

While it may be difficult to find the best bound in general, in the next section we take

some specific choices of δ and B and simplify the complexity upper bound, based on the

stagewise independence assumption.

2.3.2 Upper Bound Analysis on Iteration Complexity of Algorithm 2

Before giving the iteration complexity bound for the deterministic sampling dual dynamic

programming algorithm, we slightly adapt the notations in the previous section to the stage-

wise independent scenario tree. We take the values δ = (δn)n∈Ñ ,C(n) 6=∅ such that δn = δn′

for all n, n′ ∈ Ñ (t) for some t = 1, . . . , T . Thus we denote δt = δn for any n ∈ Ñ (t), and

49

δ0 = δr. The vector of γt(δ) is defined recursively for non-leaf nodes as

γt(δ) := γt+1(δ) + δt, if t ≤ T − 1, (2.32)

and γT (δ) = 0. Let γit := Qi−1

t (xit) − Qi−1
t

(xit) and recall that γi0 := γir for each index i.

The sets of indices It(δ) are defined for t = 0, . . . , T − 1 as

It(δ) :=
{
i ∈ N : γit > γt(δ) and γit+1 ≤ γt+1(δ)

}
. (2.33)

Note that γit = maxn∈Ñ (t) γ
i
n (line 10 in Algorithm 2). By Lemma 2.4, an iteration i ∈ It(δ)

impliesQit(x)−Qi
t
(x) ≤ γt(δ) for all x ∈ Xn with ‖x−xit‖ ≤ δt/(2Lt), where Lt = Ln for

any n ∈ Ñ (t). Moreover, since Xn = Xt for n ∈ Ñ (t), for any covering balls Bt,k ⊂ Rdt

with diameters Dt,k ≥ 0, such that Xt ⊆ ∪Ktk=1Bt,k, by the same argument of Lemma 2.5,

we know that ∣∣It(δ)∣∣ ≤ Kt∑
k=1

(
1 +

2LtDt,k

δt

)dt
. (2.34)

We summarize the upper bound on the iteration complexity of Algorithm 2 in the next

theorem, and omit the proof since it is almost a word-for-word repetition with the notation

adapted as above.

Theorem 2.2. Given any ε > 0, choose values δ = (δt)
T−1
t=0 such that δt > 0 and

∑T−1
t=0 δt =

ε. Let B = {Bt,k ⊂ Rdt}1≤k≤Kt,0≤t≤T−1 be a collection of balls, each with diameter

Dt,k ≥ 0, such that Xt ⊆
⋃Kt
k=1 Bt,k for 0 ≤ t ≤ T − 1. If Algorithm 2 terminates with an

ε-optimal root node solution (x∗0, y
∗
0) in i iterations, then

i ≤
T−1∑
t=0

Kt∑
k=1

(
1 +

2LtDt,k

δt

)dt
.

We next discuss some special choices of the values δ and the covering ball collections

B. First, since Xt are compact, suppose Bt is the smallest ball containing Xt. Then we

50

have diamXt ≤ Dt ≤ 2diamXt where Dt = diamBt. Moreover, suppose Lt ≤ L for

some L > 0 and dt ≤ d for some d > 0. Then by taking δt = ε/T for all 0 ≤ t ≤ T − 1,

we have the following bound.

Corollary 2.1. If Algorithm 2 terminates with an ε-optimal root node solution (x∗0, y
∗
0),

then the iteration index is bounded by

i ≤ T

(
1 +

2LDT

ε

)d
,

where L, d,D are the upper bounds for Lt, dt, and Dt, 0 ≤ t ≤ T − 1, respectively.

Proof. Take δt = ε/T for all 0 ≤ t ≤ T − 1 and apply Theorem 2.2.

Note that the iteration complexity bound in Corollary 2.1 grows asymptoticallyO(T d+1)

as T → ∞. Naturally such bound is not satisfactory since it is nonlinear in T with possi-

bly very high degree d. However, by changing the optimality criterion, we next derive an

iteration complexity bound that grows linearly in T .

Corollary 2.2. If Algorithm 2 terminates with a (Tε)-optimal root node solution (x∗0, y
∗
0),

then the iteration index is bounded by

i ≤ T

(
1 +

2LD

ε

)d
,

where L, d,D are the upper bounds for Lt, dt, and Dt, 0 ≤ t ≤ T − 1, respectively.

Proof. Take δt = ε for all 0 ≤ t ≤ T − 1 and apply Theorem 2.2.

The optimality criterion in Corollary 2.2 is reasonable, since practical problems are

usually solved in a relative scale with respect to the number of stages. Last, we consider a

special case where Xt are finite for all 0 ≤ t ≤ T − 1.

51

Corollary 2.3. Suppose the cardinality |Xt| ≤ K < ∞ for all 0 ≤ t ≤ T − 1, for some

positive integer K. In this case, if Algorithm 2 terminates with an ε-optimal root node

solution (x∗0, y
∗
0), then the iteration index is bounded by

i ≤ TK.

Proof. Note that when Xt is finite, it can be covered by degenerate balls B0(x), x ∈ Xt.

Thus Dt,k = 0 for k = 1, . . . , Kt and Kt ≤ K by assumption. Apply Theorem 2.2, we get

i ≤
∑T−1

t=0

∑Kt
k=1 1 ≤ TK.

The bound in Corollary 2.3 grows linearly in T and does not depend on the value of

ε. In other words, we are able to obtain exact solutions to the regularized problem (2.4)

assuming the subproblem oracles.

Remark. All the iteration complexity bounds in Theorem 2.2, Corollary 2.1, Corollary 2.2,

and Corollary 2.3 are independent of the size of the scenario tree in each stage Nt, 1 ≤ t ≤

T . This can be explained by the fact that Algorithm 2 evaluates 1 +NT + 2
∑T−1

t=1 Nt times

of the subproblem oracles in each iteration.

2.3.3 Upper Bound Analysis on Iteration Complexity of Algorithm 3

In the following we study the iteration complexity of Algorithm 3. For clarity, we model the

subproblem oracles OF
n and OB

n as random functions, that are Σoracle
i -measurable in each

iteration i ∈ N, for any node n 6= r, where {Σoracle
i }∞i=0 is a filtration of σ-algebras in the

probability space. Intuitively, this model says that the information given by Σoracle
i could

be used to predict the outcome of the subproblem oracles. We now make the following

assumption on the sampling step.

Assumption 2.4. In each iteration i, the M scenario paths are sampled uniformly with

replacement, independent from each other and the outcomes of the subproblem oracles.

That is, the conditional probability of the j-th sample P i,j taking any scenario nt ∈ Ñ (t)

52

in stage t is almost surely

Prob(P i,j
t = nt | Σoracle

∞ , σ{P i′,j′

t′ }(i′,j′,t′)6=(i,j,t)) =
1

Nt

, (2.35)

where Σoracle
∞ := ∪∞i=1Σoracle

i , and σ{P i′,j′

t′ }(i′,j′,t′)6=(i,j,t) is the σ-algebra generated by sce-

nario samples other than the j-th sample in stage t of iteration i.

In the sampling step in the i-th iteration, let γi,jt := QR
t (xi,jt) − Qi−1

t
(xi,jt) for any t ≤

T −1, which is well defined by Assumption 2.3, and let γ̃i,jt := max{QR
t (xn)−Qi−1

t
(xn) :

(xn, yn, zn) = OF
n (xi,jt−1,Qi−1

n
), n ∈ Ñ (t)} for each scenario path index 1 ≤ j ≤ M .

Note that by definition, we have γi,jt ≤ γ̃i,jt for any t = 1, . . . , T − 1, everywhere in the

probability space. We define the sets of indices It(δ) for each t = 0, . . . , T − 1, similar to

those in the deterministic sampling case, as

It(δ) :=
M⋃
j=1

{
i ∈ N : γi,jt > γt(δ) and γ̃i,jt+1 ≤ γt+1(δ)

}
. (2.36)

With the same argument, we know that the upper bound (2.34) on the sizes of It(δ) holds

everywhere for each t = 0, . . . , T − 1. However, since the nodes in the forward steps are

sampled randomly, we do not necessarily have i ∈ ∪T−1
t=0 It(δ) for each iteration index i ∈ N

before Algorithm 3 first finds an ε-optimal root node solution. Instead, we define an event

Ai(δ) := {i ∈ ∪T−1
t=0 It(δ)}

⋃
∪Mj=1{γ

i−1,j
0 ≤ γ0(δ) = ε} for each iteration i, that means ei-

ther some approximation is improved in iteration i or the algorithm has found an ε-optimal

root node solution in iteration i− 1. The next lemma estimates the conditional probability

of Ai(δ) given any oracles outcomes and samplings up to iteration i. For simplicity, we

define two σ-algebras Σsample
i := σ{P i′,j′}i′≤i,j′=1,...,M and Σi := σ(Σoracle

i ,Σsample
i) for

each i.

53

Lemma 2.6. Fix any ε =
∑T−1

t=0 δt. Then the conditional probability inequality

Prob(Ai(δ) |Σi−1) ≥ ν := 1− (1− 1/N)M ,

holds almost surely, where N :=
∏T−1

t=1 Nt if T ≥ 2 and N := 1 otherwise.

Proof. For each iteration i ∈ N, the event ∪Mj=1{γ
i−1,j
0 ≤ γ0(δ) = ε} is Σi−1-measurable,

so it suffices to prove this inequality for its complement in Ai(δ). Note that

Prob{γi,jt = γ̃i,jt |Σi−1} ≥ Prob{P i,j
t = n(γ̃i,jt) |Σi−1},

where n(γ̃i,jt) is the smallest node index n ∈ Ñ (t) such thatQR
t (xn)−Qi−1

t
(xn) = γ̃i,jt for

(xn, yn, zn) = OF
n (xi,jt−1,Qi−1

n
), which is determined given Σi−1. Using the same argument

as in the proof of Theorem 2.1, Lemma 2.4 shows that the event ∩T−1
t=1 {γ

i,j
t = γ̃i,jt } implies

the event {i ∈ ∪T−1
t=0 It(δ)} and hence the event Ai(δ) for each j = 1, . . . ,M . There-

fore, since Σi−1 is contained in σ(Σoracle
∞ , σ{P i′,j′}(i′,j′)6=(i,j)), by the independent, uniform

sampling (Assumption 2.4), we have

Prob(Ai(δ) |Σi−1)

≥ Prob

(M⋃
j=1

T−1⋂
t=1

{γi,jt = γ̃i,jt }
∣∣∣∣ Σi−1

)

≥ Prob

(M⋃
j=1

T−1⋂
t=1

{γi,jt = n(γ̃i,jt)}
∣∣∣∣ Σi−1

)

= 1−
(

1− Prob

(T−1⋂
t=1

{γi,jt = n(γ̃i,jt)}
∣∣∣∣ Σi−1

))M
= 1− (1− 1/N)M .

Here, the last step follows from Prob(
⋂T−1
t=1 {γ

i,j
t = n(γ̃i,jt)} | Σi−1) =

∏T−1
t=1 Prob({γi,jt =

n(γ̃i,jt)} | Σi−1) =
∏T−1

t=1 (1/Nt) = N .

Now we are ready to present the probabilistic complexity bound of Algorithm 3.

54

Theorem 2.3. Let I = I(δ,B) denote the iteration complexity bound in Theorem 2.2,

determined by the vector δ and the collection of state space covering balls B, and ν denote

the probability bound proposed in Lemma 2.6. Moreover, let ι be the random variable of

the smallest index such that the root node solution (xι+1
0 , yι+1

0) is ε-optimal in Algorithm 3.

Then for any real number κ > 1, the probability

Prob

(
ι ≥ 1 +

κI

ν

)
≤ exp

(
−Iν(κ− 1)2

16κ

)
.

Proof. Let ai := 1Ai denote the indicator of the event Ai for i ∈ N, and Si :=
∑i

i′=1 ai.

Note that the event {ι ≥ i} implies the event {Si ≤ I}, so we want to bound probability of

the latter for sufficiently large indices i.

By Lemma 2.6, we see that the adapted sequence {Si − iν}∞i=1 is a submartingale with

respect to the filtration {Σi}∞i=1, because

E(Si − iν | Σi−1) = Si−1 − (i− 1)ν + (E(ai | Σi−1)− ν) ≥ Si−1 − (i− 1)ν.

Moreover, it has a bounded difference as Si + iν − (Si−1 + (i− 1)ν) = ai + ν ≤ 2 almost

surely. Now apply the one-sided Azuma-Hoeffding inequality and we get for any k > 0

that

Prob(Si ≤ iν − k) ≤ exp

(
−k

2

8i

)
.

For any κ > 1, take the smallest iteration index i such that iν ≥ κI , and set k := (κ− 1)I .

Since I ≥ iν
2κ

, the probability bound can be then written as

Prob(ι ≥ i) ≤ Prob(Si ≤ I) ≤ exp

(
−(κ− 1)2I2

8i

)
≤ exp

(
−(κ− 1)2Iν

16κ

)

Substitute the left-hand-side with Prob(ι ≥ 1 + κI
ν

) using the definition of i and we have

obtained the desired inequality.

55

Remark. Theorem 2.3 shows that for a fixed problem (such that I = I(δ,B) and N =

N1 · · ·NT−1 are fixed), given any probability threshold q ∈ (0, 1), the number of iterations

needed for Algorithm 3 to find an ε-optimal root node solution with probability greater

than 1 − q is O(− ln q/ν2), which does not depend on I . In particular, if we set M = 1,

then the number of iterations needed is O(−N2 ln q), which is exponential in the number

of stage T if Nt ≥ 2 for all t = 1, . . . , T −1. It remains unknown to us whether there exists

a complexity bound for Algorithm 3 that is polynomial in T in general.

2.4 Lower Bounds on Iteration Complexity of Proposed Algorithms

In this section, we discuss the sharpness of the iteration complexity bound of Algorithm 2

given in Section 2.3. In particular, we are interested in the question whether it is possible

that the iteration needed for Algorithm 2 to find an ε-optimal root node solution grows

linearly in T when the state spaces are infinite sets. We will see that in general it is not

possible, with or without the assumption of convexity. The following lemma simplifies the

discussion in this section.

Lemma 2.7. Suppose fn(z, y, x) is ln-Lipschitz continuous in z with for each n ∈ N . If

we choose ψn(x) = ‖x‖ and σn ≥ ln, then QR
n (x) = Qn(x) on Xa(n) for all non-root nodes

n ∈ N .

Proof. We prove the lemma recursively starting from the leaf nodes. For leaf nodes n ∈ N ,

C(n) = ∅, QR
n (x) = minz∈Xa(n)

Qn(z) + σnψn(x − z) ≥ minz∈Xa(n)
Qn(z) + ln ‖x− z‖.

Since Qn is ln-Lipschitz continuous, Qn(z) ≥ Qn(x) − ln ‖x− z‖. Therefore, QR
n (x) ≥

Qn(x) and by Proposition 2.2, we know QR
n (x) = Qn(x) for all x ∈ Xa(n).

Now suppose for a node n ∈ N , we know that all of its child nodes satisfy QR
m(x) =

Qm(x),∀x ∈ Xn, for all m ∈ C(n). Then by definition,

QR
n (xa(n)) = min

(x,y)∈Fn,z∈Xa(n)

fn(z, y, x) + σnψn(xa(n) − z) +QR
n (x).

56

By assumption, we know that QR
n (x) = Qn(x) for all x ∈ Xn. Therefore, QR

n (xa(n)) =

minz∈Xa(n)
Qn(z) + σnψn(xa(n) − z) ≥ minz∈Xa(n)

Qn(z) + ln‖xa(n) − z‖. Then again by

ln-Lipschitz continuity of fn, we conclude that QR
n (x) = Qn(x) for all x ∈ Xa(n).

This lemma shows that for problems that already have Lipschitz continuous value func-

tions, the regularization does not change the function value at any point. Thus the examples

in the rest of this section serve the discussion not only for Algorithm 2, but for more general

algorithms including SDDP and SDDiP.

2.4.1 General Lipschitz Continuous Problems

We discuss the general Lipschitz continuous case, i.e., the nodal objective functions fn(z, y, x)

are ln-Lipschitz continuous in z but not necessarily convex. In this case we choose to ap-

proximate the value function using ψn(x) = ‖x‖ and assume that ln,ρ ≥ ln. We can set

ln,λ = 0 for all n ∈ N , without loss of exactness of the approximation by inequality (2.19).

We begin with the following lemma on the complexity of such approximation.

Lemma 2.8. Consider a norm ball X = {x ∈ Rd : ‖x‖ ≤ D/2} and a finite set of points

W = {wk}Kk=1 ⊂ X . Suppose that there is β > 0 and an L-Lipschitz continuous function

f : X → R+ such that β < f(wk) < 2β for k = 1, . . . , K. Define

• Q(x) := max
k=1,...,K

{0, f(wk)− L ‖x− wk‖} and

• Q(x) := min
k=1,...,K

{f(wk) + L ‖x− wk‖}.

If K <
(
DL
4β

)d
, then min

x∈X
Q(x) = 0 and min

x∈X
Q(x) > β.

Proof. We claim that ifK <
(
DL
4β

)d
, then there exists a point x̂ ∈ X such that ‖x̂− wk‖ ≥

2β
L

for all k = 1, . . . , K. We prove the claim by contradiction. Suppose such a point

does not exist, or equivalently, for any point x ∈ X , there exists wk ∈ W such that

‖x− wk‖ < 2β
L

. This implies that the balls B(2β/L,wk) cover the set X , which leads

57

to

VolX ≤ Vol

 K⋃
k=1

B(2β/L,wk)

 ≤ K∑
k=1

VolB(2β/L,wk) = K · VolB(2β/L).

Therefore, it must hold that K ≥ VolX/VolB(2β/L) =
(
DL
4β

)d
, hence a contradiction.

The existence of x̂ guarantees that f(wk) − L‖x̂ − wk‖ ≤ f(wk) − 2β < 0 for each

k = 1, 2, . . . , K. Therefore, 0 ≤ minx∈X Q(x) ≤ Q(x̂) = max1≤k≤K{0, f(wk) − L‖x̂ −

wk‖} = 0. From compactness of X and the continuity of Q(x), we have the inequality

minx∈X Q(x) ≥ min1≤k≤K Q(wk) = min1≤k≤K f(wk) > β, which completes the proof.

The lemma shows that if the number of points inW is too small, i.e., K < (DL/2β)d,

then the difference between the upper and lower bounds could be big, i.e.,Q(x̄)−Q(x̄) > β

for some x̄. In other words, in order to have a small gap between the upper and lower

bounds, we need sufficient number of sample points. This lemma is directly used to provide

a lower bound on the complexity of Algorithm 2.

Now we construct a Lipschitz continuous multistage problem defined on a chain, i.e., a

scenario tree, where each stage has a single node, N(t) = 1 for t = 1, . . . , T . The problem

is given by the value functions in each stage as,



Qr = min
x0∈Xr

Q1(x0),

Qt(xt−1) = min
xt∈Xt

{
ft(xt−1) +Qt+1(xt)

}
, 1 ≤ t ≤ T − 1,

QT (xT−1) = fT (xT−1).

(2.37)

Here for all t = 1, . . . , T , ft : Xt → R+ is an L-Lipschitz continuous function that satisfies

β < ft(x) < 2β for all x ∈ Xt with β := ε/T , the number of stages T ≥ 1, and ε > 0

is a fixed constant. The state space Xt := Bd(D/2) ⊂ Rd is a ball with radius D/2 > 0.

We remark that ε will be the optimality gap in Theorem 2.4. So for a fixed optimality gap

58

ε, we construct an instance of multistage problem (2.37) that will prove to be difficult for

Algorithm 2 to solve.

Also (2.37) is constructed such that there is no constraint coupling the state variables

xt in different stages.

By Lemma 2.7, if we choose ψn(x) = ‖x‖ for all n ∈ N and ln,ρ = L for the prob-

lem (2.37), then we have QR
t (x) = Qt(x) for all t = 1, . . . , T . The next theorem shows

a lower bound on the iteration complexity of problem (2.37) with this choice of penalty

functions.

Theorem 2.4. For any optimality gap ε > 0, there exists a problem of the form (2.37) with

subproblem oracles OF
n ,O

B
n , n ∈ N , and Or, such that if Algorithm 2 gives UPPERBOUND−

LOWERBOUND ≤ ε in the i-th iteration, then

i ≥
(
DLT

4ε

)d
.

Proof. Let us define the forward subproblem oracle OF
n in iteration i and stage t as mapping

(xit−1, Q
i−1

t+1
) to an optimal solution (xit, z

i
t) of the forward subproblem

min
xt,zt∈Xt

{
ft(zt) + L‖xit−1 − zt‖+Qi−1

t+1
(xt)

}
,

and the backward subproblem oracle OB
n in iteration i and stage t as mapping (xit−1, Q

i

t+1
)

to an optimal solution (x̂it, ẑ
i
t; λ̂

i
t = 0, ρ̂it = L) of the backward subproblem

max
λ=0

0≤ρ≤L

min
xt,zt∈Xt

{
ft(zt) + ρ‖xit−1 − zt‖+Qi

t+1
(xt)

}
. (2.38)

Note that in the backward subproblem (2.38), we choose that ln,λ = 0 and ln,ρ = L. It is

observed that the objective function in (2.38) is nondecreasing in ρ. Therefore, ρ̂it = L is

always an optimal solution for the outer maximization in (2.38). The root-node oracle Or

in iteration i simply solves minx0∈X Q
i

1
(x0) and outputs xi+1

0 .

59

In the backward step (Algorithm 2, step 16) and c.f. the definition (2.22), the new

generalized conjugacy cut in iteration k ≤ i is generated by

Ck
t (x | 0, L, vkt) = vkt − L‖x− xkt−1‖ = vkt − L‖x− xkt−1‖,

for node t ≥ 1, where vkt is computed and upper bounded as

vkt = ft(ẑ
k
t) + L‖xkt−1 − ẑkt ‖+ min

xt∈Xt
Qk

t+1
(xt),

≤ ft(x
k
t−1) + min

xt∈Xt
Qk

t+1
(xt),

≤ ft(x
k
t−1) + min

xt∈Xt
Qi

t+1
(xt),

where the first inequality directly follows from (2.38), as z = xit−1 is a feasible solution

of the inner minimization problem, and the second inequality is due to the monotonicity

Qk

t+1
(x) ≤ Qi

t+1
(x) for k ≤ i. Therefore,

Qi

t
(x) = max

k=1,...,i

{
0, Ck

t (x | 0, L, vkt)
}
, (by (2.21)),

= max
k=1,...,i

{
0, vkt − L‖x− xkt−1‖

}
,

≤ max
k=1,...,i

{
0, ft(x

k
t−1)− L‖x− xkt−1‖

}
+ min

xt∈Xt
Qi

t+1
(xt). (2.39)

Similarly, by (2.25), the upper approximation of the value function is computed and lower

bounded as

v̄kt = ft(z
k
t) + L‖zkt − xkt−1‖+Q

k

t+1(xkt),

≥ ft(x
k
t−1) +Q

k

t+1(xkt),

≥ ft(x
k
t−1) + min

xt∈Xt
Q
k

t+1(xt),

≥ ft(x
k
t−1) + min

xt∈Xt
Q
i

t+1(xt),

60

where X̂ k
t := arg minxt∈Xt Q

k−1

t+1
(xt). Therefore, the over-approximation satisfies

Q
i

t(x) = min
k=1,...,i

{
v̄kt + L‖x− xkt−1‖

}
, (by (2.24)),

≥ min
k=1,...,i

{
ft(x

k
t−1) + L

∥∥∥x− xkt−1

∥∥∥}+ min
xt∈Xt

Q
i

t+1(xt),

>
ε

T
+ min

xt∈Xt
Q
i

t+1(xt), (2.40)

where (2.40) follows from the construction that ft(x) > ε/T for all x ∈ Xt.

Now using (2.39) and (2.40), we can prove the statement of the theorem. Suppose the

iteration index i <
(
DLT

4ε

)d. Denote wk := xkt−1 for k = 1, . . . , i. Since ε/T < ft(wk) <

2ε/T by construction, applying Lemma 2.8, we get

min
xt∈Xt

{
max
k=1,...,i

{
0, ft(x

k
t−1)− L‖xt − xkt−1‖

}}
= 0.

By (2.39), minxt−1∈Xt−1 Q
i

t
(xt−1) ≤ minxt∈Xt Q

i

t+1
(xt) for t = 1, . . . , T . Note at stage

T , Qi

T+1
≡ 0. Therefore, minxt−1∈Xt−1 Q

i

t
(xt−1) ≤ 0 for all t = 1, . . . , T . But since

Qi

t
(x) ≥ 0 for all x ∈ Xt−1, we have minx∈Xt−1 Q

i

t
(x) = 0 for all 1 ≤ t ≤ T . Hence we

see that LOWERBOUND = minx0∈X0 Q
i

1
(x0) = 0 in iteration i.

Since Xt is a norm ball, it is compact. So by (2.40), we have

min
xt−1∈Xt−1

Q
i

t(xt−1) > ε/T + min
xt∈Xt

Q
i

t+1(xt), ∀1 ≤ t ≤ T.

This recursion implies that minx0∈X0 Q
i

1(x0) > T (ε/T) = ε. According to Algorithm 2,

Steps 22-23, we have that in iteration i,

UPPERBOUND = min
k=1,...,i

{Qk

1(xk+1
0)} ≥ min

k=1,...,i
{Qi

1(xk+1
0)} ≥ min

x0∈X0

Q
i

1(x0) > ε.

Combining the above analysis, we have UPPERBOUND− LOWERBOUND > ε in iteration

i. Therefore, we conclude that if UPPERBOUND−LOWERBOUND ≤ ε at the i-th iteration,

61

then we have i ≥
(
DLT

4ε

)d.
The theorem shows that in general Algorithm 2 needs at least O(T d) iterations before

termination. We comment that this is due to the fact that the approximation using general-

ized conjugacy is tight only locally. Without convexity, one may need to visit many states

to cover the state space to achieve tight approximations of the value functions before the

algorithm is guaranteed to find an ε-optimal solution.

2.4.2 Convex Lipschitz Continuous Problems

In the above example for general Lipschitz continuous problem, we see that the complexity

of Algorithm 2 grows at a rate of O(T d). It remains to answer whether convexity could

help us avoid this possibly undesirable growth rate in terms of T . We will show that even

by using linear cuts, rather than generalized conjugacy cuts, for convex value functions, the

complexity lower bound of the proposed algorithms could not be substantially improved.

We begin our discussion on the convex case with a definition.

Definition 2.5. Given a d-sphere Sd(R) = {x ∈ Rd+1 : ‖x‖2 = R} with radius R > 0, a

spherical cap with depth β > 0 centered at a point x ∈ Sd(R) is the set

Sdβ(R, x) := {y ∈ Sd(R) : 〈y − x, x〉 ≥ −βR}.

The next lemma shows that we can put many spherical caps on a sphere, the center of

each is not contained in any other spherical cap.

Lemma 2.9. Given a d-sphere Sd(R), d ≥ 2 and depth β < (1−
√

2
2

)R, there exists a finite

set of pointsW with

|W| ≥ (d2 − 1)
√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
R

2β

)(d−1)/2

,

such that, for any w ∈ W , Sdβ(R,w) ∩W = {w}.

62

Proof. Let vd denote the d-volume for a d-dimensional unit ball. Recall that the d-volume

of Sd(R) is given by Vold(Sd(R)) = (d + 1)vd+1R
d =

(d+ 1)π(d+1)/2

Γ(d+1
2

+ 1)
Rd. We next

estimate the d-volume for the spherical cap Sdβ(R, x). Let α ∈ (0, π/2) denote the central

angle for the spherical cap, i.e., cosα = 1 − β/R. Since β < (1 −
√

2
2

)R, we know that

α < π/4. Then for any x ∈ Sd(R), the d-volume of the spherical cap can be calculated

through

Vold(Sdβ(R, x)) =

∫ α

0

Vold−1(Sd−1(R sin θ))R dθ = dvdR
d

∫ α

0

(sin θ)d−1 dθ.

Note that when θ ∈ (0, α), sin θ > 0 and cos θ/ sin θ > 1. Therefore, since d ≥ 2,

Vold(Sdβ(R, x)) ≤ dvdR
d

∫ α

0

(sin θ)d−1 cos θ

sin θ
dθ = dvdR

d · (sinα)d−1

d− 1
.

By substituting sinα =
√

1− (1− β/R)2, we have that

Vold(Sdβ(R, x))

Vold(Sd(R))
≤ d

d2 − 1

vd
vd+1

(sinα)d−1,

=
d

d2 − 1

vd
vd+1

(
1−

(
1− β

R

)2
)(d−1)/2

,

≤ d

d2 − 1

vd
vd+1

(
2β

R

)(d−1)/2

.

Now supposeW = {wi}Kk=1 is a maximal set satisfying the assumption, that is, for any w ∈

Sd(R), w /∈ W , there exists wk ∈ W such that w ∈ Sdβ(R,wk). Then,
⋃K
k=1 Sdβ(R,wk) ⊇

Sd(R), therefore

Vold(Sd(R)) ≤
K∑
k=1

Vold(Sdβ(R,wk)) = |W|Vold(Sdβ(R,w1)).

63

Therefore we have

|W| ≥ Vold(Sd(R))

Vold(Sdβ(R,w1))
≥

[
d

d2 − 1

vd
vd+1

(
2β

R

)(d−1)/2
]−1

=
(d2 − 1)

√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
R

2β

)(d−1)/2

.

Hereafter, we denote a set of points that satisfies Lemma 2.9 asWd
β(R) ⊂ Sd(R). Next

we construct an L-Lipschitz convex function for any L > 0, ε > 0 that satisfies certain

properties onWd
ε/L(R).

Lemma 2.10. Given positive constants ε > 0, L > 0 and a set Wd
ε/L(R). Let K :=

|Wd
ε/L(R)|. For any values vk ∈ (ε/2, ε), k = 1, . . . , K, define a function F : Bd+1(R)→

R as F (x) = maxk=1,...,K{0, vk + L
R
〈wk, x− wk〉}. Then F satisfies the following proper-

ties:

1. F is an L-Lipschitz convex function;

2. F (wk) = vk for all wk ∈ Wd
ε/L(R);

3. F is differentiable at all wk, with vk +
〈
∇F (wk), wl − wk

〉
< 0 for all l 6= k;

4. For any wl ∈ Wd
ε/L(R), Q

l
(x) := maxk 6=l{0, vk+

〈
∇F (wk), x− wk

〉
} andQl(x) :=

convk 6=l{vk + L ‖x− wk‖} satisfy

Ql(wl)−Ql
(wl) >

3ε

2
.

Proof. 1. By construction, F is a convex piecewise linear function. Since each linear

piece has a Lipschitz constant (L/R)‖wk‖ = L, as ‖wk‖ = R. Thus, F , as the

maximum of these linear functions, is also an L-Lipschitz function.

64

2. Since wk /∈ Sdε/L(wl) for l 6= k, 〈wl, wk − wl〉 < −εR/L. Hence,

vl + L/R 〈wl, wk − wl〉 < vl − ε < 0.

Therefore, F (wk) = max{0, vk} = vk.

3. Notice that the above maximum for F (wk) is achieved at a unique linear piece, which

implies that F is differentiable at wk for all k. The gradient ∇F (wk) = (L/R)wk.

This gives the inequality in property 3 from the proof of property 2.

4. The inequality of property 3 also implies that Q
l
(wl) = 0. Now we show Ql(wl) >

3ε/2. Since wl /∈ Sdε/L(wk) for any k 6= l, then ‖wl−wk‖ > ε/L by the Pythagorean

theorem. Also vk > ε/2. So qk := vk + L‖wl − wk‖ > 3ε/2. Since Ql(wl) is the

convex combination of qk’s, we have Ql(wl) > 3ε/2. This completes the proof.

Now we present the multistage convex dual dynamic programming example based on

the following parameters: T ≥ 2 (number of stages), L > 0 (Lipschitz constant), d ≥ 3

(state space dimension), D = 2R > 0 (state space diameter), and ε > 0 (optimality gap).

Choose any L1, . . . , LT such that L/2 ≤ LT < LT−1 < · · · < L1 ≤ L, and then construct

finite setsWt := Wd−1
ε/((T−1)Lt+1)(R) = {wt,k}Ktk=1, Kt = |Wt| as defined in Lemma 2.9 for

t = 1, . . . , T − 1. Moreover, define convex Lt+1-Lipschitz continuous functions Ft for

some values vt,k ∈ (ε/(2T − 2), ε/(T − 1)), k = 1, . . . , Kt, and the finite sets Wt. By

Assumption 2.3, we define the stagewise independent scenario tree as follows. There are

Kt distinct nodes in each stage t = 1, . . . , T−1, which can be denoted by an index pair n =

(t, k) for k = 1, . . . , Kt, and all nodes are defined by the same data in the last stage T . Then

we define our problem by specifying the nodal cost functions fr ≡ 0, f1,k(x0, y1, x1) :=

L1‖x1 − w1,k‖ for k = 1, . . . , K1, ft,k(xt−1, yt, xt) := Ft−1(xt−1) + Lt‖xt − wt,k‖ for

k = 1, . . . , Kt and t = 2, . . . , T − 1, and fT,1(xT−1, yT , xT) := FT−1(xT−1), and state

65

spaces Xt = X = Bd+1(R). Consequently, the value functions can be written as



Qr = Qr,

Q1,k = min
x1∈X

{
L1

∥∥x1 − w1,k

∥∥+Q1(x1)
}
, ∀k ≤ K1,

Qt,k(xt−1) = min
xt∈X

{
Ft−1(xt−1) + Lt

∥∥xt − wt,k∥∥+Qt(xt)
}
,∀k ≤ Kt,

QT,1(xT−1) = FT−1(xT−1),

(2.41)

where the third equation is defined for all 2 ≤ t ≤ T − 1, and the expected cost-to-go

functions as

Qt(xt) :=
1

Kt

Kt∑
k=1

Qt+1,k(xt), t = 0, . . . , T − 1.

By Lemma 2.9,

Kt ≥
((d− 1)2 − 1)

√
π

d− 1

Γ((d− 1)/2 + 1)

Γ((d− 1)/2 + 3/2)

(
RLt(T − 1)

2ε

)(d−2)/2

,

≥ d(d− 2)
√
π

d− 1

Γ((d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 1)

8ε

)(d−2)/2

.

Since for each value function Qt,k is Lt-Lipschitz continuous, we choose σn = Lt with

ψn(x) = ‖x‖ for any n = (t, k) ∈ Ñ (t) and t = 1, . . . , T such that by Lemma 2.7 we

have Qt,k(x) = QR
t,k(x) for all x ∈ X . Moreover, due to convexity, we set ln,ρ = 0 for

all n ∈ N and ln,λ = Lt for each n ∈ Ñ (t) and t = 1, . . . , T , i.e., the cuts are linear.

Following the argument of Proposition 2.9, we know that such linear cuts are capable of

tight approximations. With such a choice of regularization we have the following theorem

on the complexity of Algorithm 2.

Theorem 2.5. For any optimality gap ε > 0, there exists a multistage stochastic convex

problem of the form (2.41) such that, if Algorithm 2 gives UPPERBOUND−LOWERBOUND <

66

ε at i-th iteration, then

i >
1

3

d(d− 2)
√
π

d− 1

Γ(d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 1)

8ε

)(d−2)/2

.

Proof. First we claim that in any iteration i, for any nodal problem k in stage t, the op-

timal solution in the forward step (Algorithm 2 line 7) must be xit = wt,k. To see this,

recall that we set ln,λ = Lt and ln,ρ = 0 for all n ∈ Ñ (t), so by Proposition 2.10, the

under-approximation of the cost-to-go function Qi
t
(x) is Lt+1-Lipschitz continuous for all

iteration i ∈ N. So consider the forward step subproblem for node n = (t, k) with t ≥ 2 in

iteration i

min
xt∈X
{Ft(xit−1) + Lt

∥∥xt − wt,k∥∥+Qi
t
(xt)} = Ft(x

i
t−1) + min

xt∈X
{Lt

∥∥xt − wt,k∥∥+Qi
t
(xt)}.

(2.42)

Note that by the Lt+1-Lipschitz continuity of Qi
t
,

Lt
∥∥xt − wt,k∥∥+Qi

t
(xt) ≥ Qit(wt,k) + (Lt − Lt+1)

∥∥xt − wt,k∥∥ ,
which, alongside with the fact that Lt+1 < Lt, implies that xt = wt,k is the unique optimal

solution to the forward step problem (2.42). The above argument also works for any node in

the stage t = 1 by simply removing the constant term Ft(x
i
t−1) in the nodal problem (2.42).

Now we define over- and under-approximations of the value functions for the purpose

of this proof. For node n = (t, k), let

Qi

t,k
(x) := max

1≤j≤i
{0, Cj

t,k(x | λ̂
j
t,k, 0, v

j
t,k)},

and

Q
i

t,k(x) := conv1≤j≤i{v̄jt,k + Lt‖xjt−1 − x‖},

67

where for each j, by formula (2.23),

vjt,k := max
‖λ‖≤Lt

min
z,x∈X

{Ft−1(z) + 〈λ, xjt−1 − z〉+ Lt
∥∥x− wt,k∥∥+Qj

t
(x)},

= max
‖λ‖≤Lt

min
z∈X
{Ft−1(z) + 〈λ, xjt−1 − z〉}+ min

x∈X
{Lt

∥∥x− wt,k∥∥+Qj
t
(x)}

= Ft−1(xjt−1) +Qj
t
(wt,k)

with −λ̂jt,k ∈ ∂Ft−1(xjt−1) being an optimal solution to the outer maximization problem,

and by formula (2.25)

v̄jt,k := Ft−1(zjt,k) + Lt‖xjt−1 − z
j
t,k‖+Qjt(x

j
t,k)

= Ft−1(xjt−1) +Qjt(x
j
t,k).

The last equalities of vjt,k and v̄jt,k are due to the Lt-Lipschitz continuity of Ft−1. So we

have by the monotonicity of the under- and over-approximations that for each j ≤ i,

Qi

t,k
(x) = max

1≤j≤i
{0, Ft−1(xjt−1) + 〈λ̂jt,k, x

j
t−1 − x〉+Qj

t
(wt,k)}

≤ max
1≤j≤i

{0, Ft−1(xjt−1) + 〈λ̂jt,k, x
j
t−1 − x〉}+Qi

t
(wt,k),

and

Q
i

t,k(x) = conv1≤j≤i{Ft−1(xjt−1) + Lt‖xjt−1 − x‖+Qjt(wt,k)}

≥ conv1≤j≤i{Ft−1(xjt−1) + Lt‖xjt−1 − x‖}+Qit(wt,k).

68

Therefore,

Q
i

t,k(x)−Qi

t,k
(x) ≥ Qit(wt,k)−Qit(wt,k) (2.43)

+ conv1≤j≤i{Ft−1(xjt−1) + Lt‖xjt−1 − x‖}

− max
1≤j≤i

{0, Ft−1(xjt−1) + 〈λ̂jt,k, x
j
t−1 − x〉}.

Thus we haveQ
i

t,k(wt−1,k′)−Qi

t,k
(wt−1,k′) ≥ Q

i

t(wt,k)−Qit(wt,k) for any k′ = 1, . . . , Kt−1,

since the last two terms on the right hand side of (2.43) are over- and under-approximations

of the function Ft−1, respectively. Moreover, note that xjt−1 = wt−1,k′ for some k′ =

1, . . . , Kt−1 as it is the unique solution in the forward step. By Lemma 2.10, whenever the

node n′ = (t− 1, k′) is never sampled up to iteration i, we further have

Q
i

t,k(wt−1,k′)−Qi

t,k
(wt−1,k′) >

3ε

2(T − 1)
+Qit(wt,k)−Qit(wt,k).

Recall the definitions (2.21) and (2.24), for any x ∈ X ,

Qi
t−1

(x) = max
1≤j≤i

0,
1

Kt

Kt∑
k=1

Cj
t,k(x | λ̂

j
t,k, 0, v

j
t,k)

 ≤ 1

Kt

Kt∑
k=1

Qi

t,k
(x),

and

Qit−1(x) = conv1≤j≤i

 1

Kt

Kt∑
k=1

(v̄jt,k + Lt‖xjt−1 − x‖)

 ≥ 1

Kt

Kt∑
k=1

Q
i

t,k(x).

Consequently, for any k′ = 1, . . . , Kt−1,

Qit−1(wt−1,k′)−Qit−1
(wt−1,k′) ≥

1

Kt

Kt∑
k=1

[Qit(wt,k)−Qit(wt,k)],

69

and in addition, for any node n′ = (t− 1, k′) not sampled up to iteration i,

Qit−1(wt−1,k′)−Qit−1
(wt−1,k′) >

3ε

2(T − 1)
+

1

Kt

Kt∑
k=1

[Qit(wt,k)−Qit(wt,k)].

Therefore, for any iteration index i ≤ 1
3
|Wt|, t = 1, . . . , T−1, then there areKt−i ≥ 2

3
|Wt|

nodes not sampled in stage t, which implies

1

Kt−1

Kt−1∑
k′=1

[Qit−1(wt−1,k′)−Qit−1
(wt−1,k′)] >

ε

T − 1
+

1

Kt

Kt∑
k=1

[Qit(wt,k)−Qit(wt,k)].

Consequently,Qir−Qir > (T−1)· ε

T − 1
= ε. Therefore, if UPPERBOUND−LOWERBOUND =

Qir −Qir ≤ ε in the iteration i, then

i >
1

3
min

t=1,...,T−1
|Wt| ≥

1

3

d(d− 2)
√
π

d− 1

Γ(d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 1)

8ε

)(d−2)/2

.

This completes the proof.

The theorem implies that, even if problem (2.2) is convex and has Lipschitz continuous

value functions, the minimum iteration for Algorithm 2 to get a guaranteed ε-optimal root

node solution grows as a polynomial of the ratio T/ε, with the degree being d/2− 1.

We remark that Theorems 2.4 and 2.5 correspond to two different challenges of the

SDDP type algorithms. The first challenge is that the backward step subproblem oracle may

not give cuts that provide the desired approximation in the largest neighborhood, which

could happen when the value functions are nonconvex or nonsmooth. Theorem 2.4 results

from the worst case that the backward step subproblem oracle is giving the dual variables

that approximate the value function in the smallest neighborhood.

The second challenge is that different nodes, or more generally, different scenario paths

give different states in each stage, so sampling and solving the nodal problem on one sce-

nario path provides little information to the nodal problem on another scenario path. In

70

example (2.41), the linear cut obtained in each iteration does not provide any informa-

tion on the subsequent iteration states (unless the same node is sampled again). From

this perspective, we believe that unless some special structure of the problem is exploited,

any algorithm that relies on local approximation of value functions will face the “curse

of dimensionality,” i.e., the growth rate of the iteration complexity is exponential in the

dimension of the state spaces.

71

CHAPTER 3

DDP ALGORITHMS FOR CONVEX MDRO WITH COMPLEXITY ANALYSIS

3.1 Formulations and Recursive Approximation

In this section, we introduce formulations of convex multistage distributionally robust op-

timization (MDRO). In the case where the MDRO has finite support, we build approxima-

tions of the value functions using recursions. We then discuss the regularization technique

and its exactness that is used for complexity analysis in Section 3.2.

3.1.1 Problem Formulations

We review the definitions of MSCO and MRCO, before we proceed to the general defi-

nition of MDRO. Then we show that MDRO with finite support is a sufficiently general

framework to encompass most MSCO and MRCO in the existing literature ([64] and [39]).

Multistage Stochastic Convex Optimization

We first briefly review the definition of multistage stochastic convex optimization under

the assumption of stagewise independence (SI). The SI assumption is necessary for effi-

cient algorithmic development and we refer any interested reader to [12] for more general

settings.

Let T := {1, 2, . . . , T} denote the set of stage indices. For each t ∈ T , the decision

variable in stage t is denoted as xt and constrained in a compact convex set Xt ⊂ Rdt

with dimension dt ∈ Z≥0. The uncertainty in stage t is modeled as a random vector ξt

with its support set denoted as Ξt. In particular, we use x0 and ξ1 to denote determin-

istic parameters, known as the initial condition. The cost incurred by the decisions and

uncertainty in stage t is modeled by a nonnegative, lower semicontinuous, proper convex

72

function ft(xt−1, xt; ξt), that is allowed to take +∞ for infeasibility. For example, given a

real-valued cost function f<∞t (xt−1, xt; ξt), to model any (continuous) functional feasibil-

ity constraints gt(xt−1, yt, xt; ξt) ≤ 0 with an auxiliary decision vector yt in stage t, we can

define Ft := {(xt−1, xt, ξt) ∈ Xt−1 ×Xt × Ξt : ∃ yt s.t. gt(xt−1, yt, xt, ξt) ≤ 0} and set the

extended real-valued cost function as

ft(xt−1, xt; ξt) =


f<∞t (xt−1, xt; ξt), if (xt−1, xt, ξt) ∈ Ft,

+∞, otherwise.

The SI assumption says that the random variables ξ1, . . . , ξT are mutually independent, and

allows the following nested formulation for the MSCO:

min
x1∈X1

f1(x0, x1; ξ1) +Eξ2 min
x2∈X2

[
f2(x1, x2; ξ2)+ (3.1)

+ Eξ3 min
x3∈X3

[
f3(x2, x3; ξ3) + · · ·

+ EξT min
xT∈XT

fT (xT−1, xT ; ξT)

]]
.

Here, we use the notation Eξt to represent the expectation (with the subscript ξt emphasiz-

ing that the function is ξt-measurable) for each t ∈ T . Alternatively, we can rewrite the

MSCO (3.1) as a recursion using the (expected) cost-to-go function defined as follows:

Qt−1(xt−1) := Eξt
(

min
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt)
)
, (3.2)

where by convention QT (xT) ≡ 0 for any xT ∈ XT . Then the optimal value and optimal

first stage decision can be obtained by solving the deterministic problem

min
x1∈X1

f1(x0, x1; ξ1) +Q1(x1). (3.3)

If the random vector ξt has a finite support set, say Ξt = {ξ̂t,1, . . . , ξ̂t,Nt}, each with the

73

realization probability pn > 0 for n ∈ N (t) := {1, . . . , Nt}, then we can define the cost

function associated with the n-th realization in stage t as fn(xt−1, xt) := ft(xt−1, xt; ξ̂t,n).

Moreover, the disjoint union of these index sets N := tt∈TN (t) can be viewed as the

node set of a recombining scenario tree (see the definition and discussion in Section 2.2.4

or [46]).

In this case, the MSCO can be simplified as

min
x1∈X1

f1(x0, x1; ξ1) +
∑

n2∈N (2)

pn2 · min
x2∈X2

[
fn2(x1, x2)+ (3.4)

+
∑

n3∈N (3)

pn3 · min
x3∈X3

[
fn3(x2, x3) + · · ·

+
∑

nT∈N (T)

pnT · min
xT∈XT

fnT (xT−1, xT)

]]
.

Further, the expected cost-to-go function becomes a finite sum of minimization value func-

tions

Qt−1(xt−1) =
∑

n∈N (t)

pnQn(xt−1), with Qn(xt−1) := min
xt∈Xt

fn(xt−1, xt)+Qt(xt), n ∈ N (t),

(3.5)

for any stage t ∈ T \{1}. We remark that although the problem (3.4) is only a special case

of (3.1), it is actually widely used in sample average approximation methods for solving

(3.1) and can be solved by the well-studied stochastic dual dynamic programming (SDDP)

algorithm [40].

Multistage Robust Convex Optimization

Another important source of our formulation is the multistage robust convex optimization

(MRCO) problems with stagewise independent (a.k.a., rectangular) uncertainty sets. With

the same notation of decision variables xt ∈ Xt and uncertainty vectors ξt ∈ Ξt (which is

74

not necessarily a random vector in this case), such MRCO can be written as

min
x1∈X1

f1(x0, x1; ξ1) + sup
ξ2∈Ξ2

min
x1∈X2

[
f2(x1, x2; ξ2) (3.6)

+ sup
ξ3∈Ξ3

min
x3∈X3

[
f3(x2, x3; ξ3) + · · ·

+ sup
ξT∈ΞT

min
xT∈XT

fT (xT−1, xT ; ξT)

]]
.

Analogous to (3.2), we can define the (worst-case) cost-to-go functions in a recursive fash-

ion.

Qt−1(xt−1) := sup
ξt∈Ξt

min
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt), (3.7)

whereQT (xT) ≡ 0 for any xT ∈ XT . Similarly, the goal of the MRCO is to find a first stage

optimal solution in the sense of (3.3). We remark that the recursion (3.7) is in general very

challenging to solve because it involves finding the supremum over a usually nonconcave

function in the uncertainty vectors ξt. However, when the cost function ft is polyhedrally

representable and both the uncertainty set Ξt and the state space Xt are polytopes, the

MRCO (3.6) has witnessed successful algorithmic applications in [39].

Distributionally Robust Multistage Stochastic Convex Optimization

While MSCO (3.1) and MRCO (3.6) appear different, they can be unified in the framework

of MDRO using the same set of notation. Let Pt denote a set of Borel probability measures

on the uncertainty set Ξt, which is known as the ambiguity set, for each stage t ∈ T \ {1}.

75

Now we can define the MDRO as follows.

min
x1∈X1

f1(x0, x1; ξ1) + sup
p2∈P2

Eξ2∼p2 min
x2∈X2

[
f2(x1, x2; ξ2)+ (3.8)

+ sup
p3∈P3

Eξ3∼p3 min
x3∈X3

[
f3(x2, x3; ξ3) + · · ·

+ sup
pT∈PT

EξT∼pT min
xT∈XT

fT (xT−1, xT ; ξT)

]]
.

Here, each expectation Eξt∼pt is taken with respect to the given probability measure pt ∈

Pt. The (worst-case expected) cost-to-go functions are defined recursively from t = T to

t = 2 as:

Qt−1(xt−1) := sup
pt∈Pt

Eξt∼pt min
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt), (3.9)

with QT (xT) ≡ 0 for any xT ∈ XT . Similar to MSCO (3.1) and MRCO (3.6), the goal

is to find an optimal first stage solution in the sense of (3.3). It is well-known that if the

ambiguity set Pt consists of only one probability measure, then the supremum is redundant

and hence MDRO (3.8) reduces to MSCO (3.1); if the ambiguity set Pt contains all atomic

probability measures (i.e., measures δξ̂ for all ξ̂ ∈ Ξt such that Eξt∼δξ̂g(ξ) = g(ξ̂) for any

Borel measurable function g : Ξt → R∪{+∞}), then MDRO (3.8) reduces to MRCO (3.6).

The following proposition checks that minimizations in MDRO (3.8) (and thus also in

MSCO and MRCO) are convex and well-defined.

Proposition 3.1. Suppose the state spacesXt are compact convex and the nonnegative cost

functions ft are lower semicontinuous (lsc) and convex for all t ∈ T . Then the cost-to-go

functions Qt are lsc and convex for all t ∈ T .

Proof. We prove by recursion from t = T to t = 1. By definition, QT ≡ 0 is lsc and

convex. Now assumeQt is lsc and convex for some t ∈ T . Then the sum ft+Qt is also lsc

and convex. SinceXt is compact, we haveQt(xt−1; ξt) := minxt∈Xt ft(xt−1, xt; ξt)+Qt(xt)

is lsc (see e.g., Lemma 1.30 in [74]) and convex. Now fix any Borel probability measure

pt ∈ Pt and take any sequence {xi} ⊂ Xt−1 with limi→∞ x
i = xt−1. Note that Qt is

76

nonnegative by definition, so by Fatou’s lemma (see e.g., Lemma 1.28 in [75]) we have

lim inf
i→∞

Eξt∼ptQt(x
i; ξt) ≥

∫
Ξt

lim inf
i→∞

Qt(x
i; ξt) dpt(ξt) ≥

∫
Ξt

Qt(xt−1; ξt) dpt(ξt).

The expectation and the integrals are well-defined since Qt is lsc, hence Borel measurable.

This inequality shows that the function Eξt∼ptQt(xt−1; ξt) is lsc. It is also convex by the

linearity and monotonicity of expectations. Finally, the epigraph ofQt−1 is the intersection

of epigraphs of Eξt∼ptQt(xt−1; ξt) for all pt ∈ Pt, which shows thatQt−1 is lsc and convex.

If the uncertainty set Ξt = {ξ̂t,1, . . . , ξ̂t,Nt} is finite, then the ambiguity set is a subset

of a Euclidean space Pt ⊆ ∆Nt := {pt ∈ RNt
≥0 :

∑Nt
n=1 pt,n = 1}. With fn(xt−1, xt) :=

ft(xt−1, xt; ξ̂t,n) for any n ∈ N (t) := {1, . . . , Nt} and t ∈ T , the MDRO (3.8) can be

written as

min
x1∈X1

f1(x0, y1, x1) + sup
p2∈P2

∑
n2∈N (2)

p2,n2 · min
x2∈X2

[
fn2(x1, x2)+ (3.10)

+ sup
p3∈P3

∑
n3∈N (3)

p3,n3 · min
x3∈X3

[
fn3(x2, x3) + · · ·

+ sup
pT∈PT

∑
nT∈N (T)

pT,nT · min
xT∈XT

fnT (xT−1, xnT)

]]
,

and the worst-case expected cost-to-go functions recursively as

Qt−1(xt−1) := sup
pt∈Pt

∑
n∈N (t)

pt,nQn(xt−1), (3.11)

with QT (xT) ≡ 0 and the value functions

Qn(xt−1) := min
xt∈Xt

fn(xt−1, xt) +Qt(xt), for n ∈ N (t). (3.12)

77

While it is clear that the finitely supported MDRO (3.10) includes the finitely supported

MSCO (3.4) as a special case, we show by the following proposition that it encompasses

an important class of MRCO as well.

Proposition 3.2. LetQt denote the worst-case cost-to-go functions defined in (3.7), where

we assume that the uncertainty sets Ξt are polytopes for all t ∈ T . Then let ext Ξt :=

{ξ̂t,1, . . . , ξ̂t,Nt} denote the finite set of extreme points of Ξt+1 andN (t) := {1, . . . , Nt} the

index set. We have

Qt−1(xt−1) = max
pt∈∆Nt

∑
n∈N (t)

pt,n

(
min
xt∈Xt

ft(xt−1, xt; ξ̂t,n) +Qt(xt)
)
.

Proof. By Proposition 3.1, each worst-case cost-to-go functionQt is convex for any t ∈ T .

The minimization value functionQt(xt−1; ξt) := minxt∈Xt{ft(xt−1, xt; ξt)+Qt(xt)} is thus

also convex. Consequently, we have

Qt−1(xt−1) = sup
ξt∈Ξt

Qt(xt−1; ξt) = sup
ξt∈ext Ξt

Qt(xt−1, ξt) = max
pt∈∆Nt

∑
n∈N (t)

pt,nQt(xt−1; ξ̂t,n),

due to the linearity of the right-most maximization.

Motivated by Proposition 3.2, we decide to make the following assumption to restrict

our attention in this chapter mainly to a simple yet useful special class of MDRO.

Assumption 3.1. For each stage t ∈ T \ {1}, the uncertainty set Ξt = {ξ̂t,1, . . . , ξ̂t,Nt} is

finite. Moreover, the ambiguity set Pt ⊆ ∆Nt in (3.10) is assumed to be closed and convex.

We remark that the assumption on the closedness and convexity of the ambiguity sets

can be made without loss of generality when the MDRO (3.10) has complete recourse, i.e.,

Qn(xt−1) <∞ for any xt−1 ∈ Xt−1 for any n ∈ N (t) in (3.11). This can be seen from the

linearity of the maximization in the probability vector pt, whence we know the supremum

over Pt equals the maximum over the closed convex hull of Pt.

78

3.1.2 Approximation of Recursions

We now discuss the approximation of functionsQt andQn in the recursion equations (3.11)

and (3.12). Recall the relation Qt(xt) = maxpt+1∈Pt+1

∑
n∈N (t+1) pt+1,nQn(xt). The fol-

lowing lemma relates the Lipschitz continuity of the value functions Qn for n ∈ N (t + 1)

and that of the cost-to-go function Qt.

Lemma 3.1. For each stage t < T , if Qn is ln-Lipschitz continuous on Xt for each n ∈

N (t+ 1), then Qt is Lt-Lipschitz continuous on Xt where Lt := maxn∈N (t+1) ln.

Proof. Take any two points xi ∈ Xt for i = 1, 2. Let

pit+1 ∈ arg max
pt+1∈Pt+1

∑
n∈N (t+1)

pt+1,nQn(xi)

denote corresponding maximizers for i = 1, 2. We haveQt(xi) =
∑

n∈N (t+1) p
i
t+1,nQn(xi),

where pit+1,n ≥ 0 and
∑

n∈N (t+1) p
i
t+1,n = 1 for each i = 1, 2. Therefore,

Qt(x1)−Qt(x2) =
∑

n∈N (t)

p1
t+1,nQn(x1)−

∑
n∈N (t+1)

p2
t+1,nQn(x2)

≤
∑

n∈N (t+1)

p1
t+1,n

(
Qn(x1)−Qn(x2)

)
≤

∑
n∈N (t+1)

p1
t+1,n · ln

∥∥x1 − x2
∥∥

≤ Lt
∥∥x1 − x2

∥∥ ,
where Lt := maxn∈N (t+1) ln. By exchanging the indices i = 1, 2, we can similarly derive

Qt(x2)−Qt(x1) ≤
∑

n∈N (t+1) p
2
t+1,n · ln

∥∥x1 − x2
∥∥ ≤ Lt

∥∥x1 − x2
∥∥, which completes the

proof.

Combining Lemma 3.1 and Proposition 3.1, we know that if the value functions are

convex and Lipschitz continuous, then so are the cost-to-go functions. In such a case, we

79

can use cutting plane method to build an under-approximation of the cost-to-go functions.

To be precise, for each node n ∈ N (t + 1), let Vn(xt) denote an affine function such that

Qn(xt) ≥ Vn(xt) for all xt ∈ Xt. Such affine function is referred to as a linear valid

inequality or a linear cut for the value function, which is generated in the following way.

Let Q
t+1

denote an under-approximation of the cost-to-go function Qt+1 and x̂t ∈ Xt a

feasible state. For each n ∈ N (t + 1), we can introduce an auxiliary variable zn ∈ Rdt

with the complicating constraint zn = x̂t. Then the Lagrangian dual problem

sup
λn∈Rdt

min
xn∈Xt+1,zn∈Rdt

fn(zn, xn) +Q
t+1

(xn) + 〈λn, x̂t − zn〉 (3.13)

gives an affine function Vn(xt) := vn + 〈λ̂n, xt − x̂t〉, where λ̂n is a dual solution of (3.13)

and vn := min{fn(zn, xn) + Q
t+1

(xn) + 〈λ̂n, x̂t − zn〉 : xn ∈ Xt+1, zn ∈ Rdt} is the

associated value to the problem (3.13). Then, by definition (3.12) and weak duality, we

have for every xt ∈ Xt,

Qn(xt) = sup
λn∈Rdt

min
xn,zn

{
fn(zn, xn) +Qt+1(xn) + 〈λn, xt − zn〉 : xn ∈ Xt+1, zn ∈ Rdt

}
=〈λn, xt − x̂t〉

+ sup
λn∈Rdt

min
xn,zn

{
fn(zn, xn) +Q

t+1
(xn) + 〈λn, x̂t − zn〉 : xn ∈ Xt+1, zn ∈ Rdt

}
≥〈λ̂n, xt − x̂t〉

+ min
xn,zn

{
fn(zn, xn) +Q

t+1
(xn) + 〈λ̂n, xt − zn〉 : xn ∈ Xt+1, zn ∈ Rdt

}
≥ 〈λ̂n, xt − x̂t〉+ vn. (3.14)

Therefore, Vn(xt) is a valid inequality for the value function Qn(xt). The next proposition

shows that we can combine linear cuts for value functions into a valid inequality for the

cost-to-go function.

Proposition 3.3. Fix a point x0
t ∈ Xt and a probability vector p0

t ∈ Pt. If for each

80

n ∈ N (t + 1), Vn(xt) = vn + 〈λ̂n, xt − x̂t〉 is an l′n-Lipschitz continuous valid inequality,

i.e. ‖λ̂n‖ ≤ l′n, thenQt(xt) ≥ Vt(xt) :=
∑

n∈N (t+1) p
0
t+1,nVn(xt) for all xt ∈ Xt. Moreover,

the valid inequality Vt is L′t := (
∑

n∈N (t+1) p
0
t+1,nl

′
n)-Lipschitz continuous such that for any

δ > γ := Qt(x0
t) − Vt(x0

t), we have Qt(xt) ≤ Vt(xt) + δ, for any point xt ∈ Xt with∥∥xt − x0
t

∥∥ ≤ (δ − γ)/(Lt + L′t).

Proof. The first claim follows from the definition

Qt(xt) = max
pt+1∈Pt+1

∑
n∈N (t+1)

pt,nQn(xt)

≥
∑

n∈N (t+1)

p0
t+1,nQn(xt)

≥
∑

n∈N (t+1)

p0
t+1,nVn(xt) = Vt(xt).

The second claim follows from the Lipschitz continuity of the valid inequality and the

cost-to-go function, i.e., for any point xt ∈ Xt with
∥∥xt − x0

t

∥∥ ≤ (δ − γ)/(Lt + L′t),

Qt(xt) ≤ Qt(x0
t) + Lt‖xt − x0

t‖ ≤ Vt(xt) + (Lt + L′t)‖xt − x0
t‖+ γ ≤ Vt(xt) + δ,

where the first inequality is due to Qt being Lt-Lipschitz continuous by Lemma 3.1.

The proposition suggests that the combined linear cut is close to the cost-to-go function

in a neighborhood, given that the gap Qt(x0
t) − Vt(x0

t) is small. However, the radius of

such neighborhood depends on the Lipschitz constants of the linear cuts Vn, which are not

necessarily bounded by the Lipschitz constants ln of value functionsQn, as is shown by the

following example.

Example 3.1. Consider a T -stage deterministic problem (i.e., Nt = 1 for all t ∈ T)

81

defined as

Qt(xt−1) := min
yt,xt

yt +Qt+1(xt)

s.t. yt ≥ max{0, 1− 2xt−1}, xt ≤ xt−1 +
1

2
, 0 ≤ xt ≤ 1.

Here, the convention QT+1(xt) ≡ 0 is used to simplify the definition. Note that for each

stage t ∈ T , since xt−1 ∈ [0, 1], we have a feasible solution xt = 1/2, which implies that

Qt(xt−1) ≤ min{yt : yt ≥ max{0, 1 − 2xt−1}. By taking yt = max{0, 1 − 2xt−1} and

using the fact that Qt+1(xt) ≥ 0 recursively, we conclude that the cost-to-go functions are

Qt+1(xt) = max{0, 1 − 2xt} for all t ∈ T . However, if we start our approximation with

points x0
t = 0 for all stages t ∈ T , then the linear cut Vt(xt) := vt +

〈
λt, xt − x0

t

〉
can be

generated from the following dual problem at stage t:

vt := max
λt

min
zt,yt,xt

yt + λt(0− zt) +Q0

t+1
(xt)

s.t. yt ≥ max{0, 1− 2zt}, xt ≤ zt +
1

2
, 0 ≤ xt ≤ 1.

Thus the under-approximation of the value functions of stage T will be Q0

T
(xT−1) = 1 −

2xT−1. Plugging in the under-approximation and the dual problem becomes

vt = max
λt

min
zt,yt,xt

yt + λt(0− zt) + 1− ctxt

s.t. yt ≥ max{0, 1− 2zt}, xt ≤ zt +
1

2
, 0 ≤ xt ≤ 1,

where cT = 2. By solving the dual problem recursively, we conclude that ct = ct+1 + 2 and

hence ct = 2(T − t + 1). In other words, the under-approximation obtained after the first

iteration has a Lipschitz constant greater than the actual one.

82

3.1.3 Regularization and Its Exactness

The potential gap between the actual Lipschitz constants of the value functions Qn and

the generated linear cuts Vn (Example 3.1) not only affects the complexity analysis, but

may also negatively impact algorithmic performance. For this reason, we consider the

regularization of value functions, in which an infimal convolution is conducted to bound

the Lipschitz constant of the generated linear cuts. We begin with the recursive definition of

regularized value functions and cost-to-go functions. Let Mt > 0 denote a regularization

factor for each t ∈ T \ {T}. In general, the regularized cost-to-go function is defined

recursively as

QR
t (xt) := sup

pt+1∈Pt+1

Eξt+1∼pt+1 min
xt+1∈Xt+1,zt∈Rdt

ft(zt, xt+1; ξt+1)+QR
t+1(xt+1)+Mt ‖xt − zt‖ .

(3.15)

In our case where Ξt is finite, the regularized cost-to-go function can be written as

QR
t (xt) = max

pt+1∈Pt+1

∑
n∈N (t+1)

pt+1,nQ
R
n (xt), (3.16)

where the regularized value function QR
n for each subproblem n ∈ N (t+ 1) is defined as

QR
n (xt) := min

xn∈Xt+1,zn∈Rdt
fn(zn, xn) +QR

t+1(xn) +Mt ‖xt − zn‖ (3.17)

We set the same convention that QR
T (xT) ≡ 0. Note that for each n ∈ N (T) in the last

stage and any xT−1 ∈ XT−1, since QR
n (xT−1) = minzn

{
Qn(zn) +MT−1 ‖xT−1 − zn‖

}
≤

Qn(xT−1) is an infimal convolution of Qn and the norm function MT−1 ‖ · ‖, hence it is

Mt-Lipschitz continuous. The next proposition shows that the functions QR
n and QR

t are

Lipschitz continuous envelopes of Qn and Qt, respectively, for all n ∈ N (t) and t ∈ T ,

which implies that our Lipschitz regularization is different from the quadratic regularization

heuristic studied in [76].

83

Proposition 3.4. For every node n ∈ N (t + 1), t ∈ T \ {T}, the regularized value

function QR
n is Mt-Lipschitz continuous, and QR

n (xt) ≤ Qn(xt), ∀xt ∈ Xt. Moreover, if

Qn is M ′
t-Lipschitz continuous with M ′

t < Mt for all n ∈ N (t + 1) and t < T , then

Qn(xt) = QR
n (xt), ∀xt ∈ Xt.

Proof. For any node n ∈ N (t+1) for some t ∈ T , pick any x1
t , x

2
t ∈ Xt. Let xin, z

i
n denote

the solutions in the definition (3.16) associated with xit for i = 1 and 2, respectively. Then,

QR
n (x1

t)−QR
n (x2

t) = fn(z1
n, x

1
n) +QR

t+1(x1
n) +Mt‖x1

t − z1
n‖

− fn(z2
n, x

2
n)−QR

t+1(x2
n)−Mt‖x2

t − z2
n‖

≤ fn(z2
n, x

2
n) +QR

t+1(x2
n) +Mt‖x1

t − z2
n‖

− fn(z2
n, x

2
n)−QR

t+1(x2
n)−Mt‖x2

t − z2
n‖

= Mt

(
‖x1

t − z2
n‖ − ‖x2

t − z2
n‖
)
≤Mt‖x1

t − x2
t‖.

Similarly by exchanging the indices i = 1, 2, we derive thatQR
n (x2

t)−QR
n (x1

t) ≤Mt

∥∥x1
t − x2

t

∥∥,

which shows that QR
n is Mt-Lipschitz continuous.

We next prove the inequalities QR
n (xt) ≤ Qn(xt), xt ∈ Xt recursively. For nodes in the

last stage n ∈ N (T), we already show that QR
n (xT−1) ≤ Qn(xT−1) for any xT−1 ∈ XT−1.

By definition (3.9), we have QR
T−1(xT−1) ≤ QT−1(xT−1). Now suppose QR

t (xt) ≤ Qt(xt)

for some t ∈ T \ {T}. Then,

QR
n (xt) = min

xn,zn

{
fn(zn, xn) +QR

t+1(xn) +Mt ‖xt − zn‖ : xn ∈ Xt+1, zn ∈ Rdt
}

≤ min
xn,zn

{
fn(zn, xn) +Qt+1(xn) +Mt ‖xt − zn‖ : xn ∈ Xt+1, zn ∈ Rdt

}
≤ min

xn

{
fn(xt, xn) +Qt+1(xn) : xn ∈ Xt+1

}
= Qn(xt), (3.18)

where the last inequality is due to the fact that zn = xt is a feasible solution to the mini-

mization problem. Now by definitions (3.9) and (3.16), we haveQR
t (xt) ≤ Qt(xt) as well.

We have thus shown recursively that QR
n (xt) ≤ Qn(xt) for any xt ∈ Xt.

84

For the last statement, we claim that if Qt+1(xt+1) = QR
t+1(xt+1) for any xt+1 ∈ Xt+1

andQn(xt) isM ′
t-Lipschitz continuous, thenQR

n (xt) = Qn(xt) for any xt ∈ Xt. To see this

claim, note that both inequalities in the above argument (3.18) become equalities: the first

one follows from the assumption, and the second one is due to that zn = xt is the unique

solution to the minimization problem. Therefore, we can apply the claim recursively as

well to see that QR
n (xt) = Qn(xt) for all xt ∈ Xt, n ∈ N (t+ 1), and all t ∈ T \ {T}.

We can generate linear cuts using the procedure for the regularized value functions

in (3.13) and its validness can be seen from the same argument as in (3.14). An important

difference that regularization brings is that all the linear cuts generated for the regularized

value functions are all Mt-Lipschitz continuous, as shown by the following proposition.

Proposition 3.5. LetQ
t+1

denote any under-approximation of the cost-to-go functionQR
t+1

and x̂t ∈ Xt a feasible state. The linear cut Vn(xt) := vn + 〈λ̂n, xt − x̂t〉 is Mt-Lipschitz

continuous, where λ̂n is a dual solution and vn is its associated value to the Lagrangian

dual problem

sup
λn∈Rdt

min
xn∈Xt+1,zn,wn∈Rdt

fn(zn, xn) +QR
t+1

(xn) +Mt ‖x̂t − wn‖+ 〈λn, wn − zn〉 (3.19)

Proof. Let λ̂n denote a feasible dual solution, i.e., the associated value vn > −∞. Then

using the optimality condition for the variable wn, we have −λ̂n ∈ ∂wn(Mt ‖x̂t − wn‖),

where all the norms of elements in the subdifferential set are bounded by Mt > 0. There-

fore we must have ‖λ̂n‖∗ ≤Mt and Vn(xt) is Mt-Lipschitz continuous.

We remark that after regularization, the Lipschitz constant of the linear cut can always

be bounded by the regularization factor Mt. In fact, it can be checked using the same

argument in Proposition 3.5 that the regularized value function is equal to

QR
n (xt) := max

‖λn‖∗≤Mt

min
xn∈Xt+1,zn∈Rdt

fn(zn, xn) +QR
t+1(xn) + 〈λn, xt − zn〉.

85

for each n ∈ N (t+ 1), so we only need to find an optimal dual variable λ̂n within the dual

norm ball {λn ∈ Rdt : ‖λn‖∗ ≤Mt}. Together with Proposition 3.4, this implies that even

for those problems with Lipschitz continuous value functions, regularization may help with

the approximation by avoiding linear cuts that have larger Lipschitz constant than that of

the value function (cp. Example 3.1).

Non-Lipschitz-Continuous Value Function Cases

We spend the rest of this section showing that the regularization can be exact for a broader

class of problems than those that already have Lipschitz continuous value functions, which

extends our analysis to problems without relatively complete recourse. The main idea

here is that if the extensive formulation of the finitely supported MDRO (3.10) on a finite

scenario tree satisfies the constraint qualification, and each component of the worst-case

transition probability pt ∈ Pt is either zero or strictly positive, then we can use the exact

penalization of the extensive formulation would imply the existence of an exact Lipschitz

regularization. To make the idea precise, we need to first define the extensive formulation of

MDRO (3.10) on a finite scenario tree with the nested structure removed by taking convex

dual problems in each stage.

It is known that Pt can be assumed to be convex without affecting the value functions.

Without loss of generality, we write Pt = Kt ∩ ∆Nt where Kt is a closed convex cone

contained in the nonnegative orthant, for each t ∈ T . Then the value function for node

n ∈ N (t) can be written as

Qn(xt−1) = min
xn,cn

fn(xt, xn) + cn, (3.20)

s.t.
(
cn −Qm(xn)

)
m∈N (t)

∈ K∗t ,

xn ∈ Xt, ∀n ∈ N (t),

by taking the dual of the maximization over transition probability vectors pt ∈ Pt in the

86

definition (3.11). To get an extensive formulation, we define Ñ (t) :=
∏t

t′=1N (t′) as a node

set of the scenario tree, such that each n ∈ Ñ (t) as a node in the recombining scenario tree

is determined by a vector (n1, . . . , nt) where nt′ ∈ N (t′) for each t′ ≤ t. The extended

node set Ñ := ∪Tt=1Ñ (t) naturally has a tree structure, so we use a(n), C(n), and D(n)

to denote the parent node, the set of child nodes, and the set of all descendent nodes of a

node n ∈ Ñ , respectively. For notational convenience, we use n = 1 to denote the root

node, corresponding to the deterministic first stage, and t(n) to denote the associated stage

to a node n ∈ Ñ . Now by substituting the formulation (3.20) into the recursion (3.11)

recursively, we obtain an extensive formulation of the problem (3.10).

vext := min f1(x0, x1; ξ1) + c1 (3.21)

s.t. xn ∈ Xt(n), ∀n ∈ Ñ ,

(cn − qnm)m∈C(n) ∈ K∗t(n), ∀n ∈ Ñ ,

qnm ≥ fm(xn, xm) + cm, ∀n = a(m), m ∈ Ñ .

We can develop exact penalization on the extensive formulation now. Let σ > 0 denote a

penalty factor for non-root nodes m 6= 1. Then the penalization value is defined by

vpen := min f1(x0, y1, x1) + c1 +
∑
m6=1

σ
∥∥xa(m) − zm

∥∥ (3.22)

s.t. xn ∈ Xt(n), ∀n ∈ Ñ ,

(cn − qnm)m∈C(n) ∈ K∗t(n), ∀n ∈ Ñ ,

qnm ≥ fm(zm, xm) + cm, ∀n = a(m), m ∈ Ñ .

The penalization objective value vpen depends on the choice of the penalty factor σ. We

make the following assumption on the exactness of this penalization.

Assumption 3.2. There exists a penalty factor σ > 0 such that vpen = vext. Moreover, any

87

optimal solution to the penalization (3.22) satisfies zm = xa(m) for all m 6= 1 ∈ Ñ .

We remark that this assumption is satisfied given some constraint qualification, e.g.,

Slater condition for (3.21) assuming convexity. By the introduction of cost-to-go functions

Qt, we can define the recursive formulation as follows.

vpen = min
x1∈X1

f1(x0, x1; ξ1) +Qpen
1 (x1),

Qpen
1 (x1) := min c1 +

∑
m 6=1

σ
∥∥xa(m) − zm

∥∥
s.t. xm ∈ Xt(m), ∀m 6= 1 ∈ Ñ ,

(cm − qml)l∈C(m) ∈ K∗t(m), ∀m ∈ Ñ ,

qml ≥ fl(zl, xl) + cl, ∀m = a(l), l ∈ Ñ ,

= min
zm

∑
m6=1

σ
∥∥xa(m) − zm

∥∥+ min
c1,q1m

min
cm,qml,xm

c1

s.t. xm ∈ Xt(m), ∀m 6= 1 ∈ Ñ ,

(cm − qml)l∈C(m) ∈ K∗t(m), ∀m ∈ Ñ ,

qml ≥ fl(zl, xl) + cl, ∀m = a(l), l ∈ Ñ .

88

Note that by the definition of the dual cone K∗1, the cost-to-go function can be rewritten as

Qpen
1 (x1) = min

zm

∑
m6=1

σ
∥∥xa(m) − zm

∥∥+ max
p2∈P2

min
xm

∑
m∈C(1)

p2,m(fm(zm, xm) + cm)

s.t. xm ∈ Xt(m), ∀m 6= 1 ∈ Ñ ,

(cm − qml)l∈C(m) ∈ K∗t(m), ∀m 6= 1 ∈ Ñ ,

qml ≥ fl(zl, xl) + cl, ∀m = a(l) 6= 1, l ∈ Ñ .

= max
p2∈P2

min
∑

m∈C(1)

p2,m(fm(zm, xm) + cm) +
∑
m 6=1

σ
∥∥xa(m) − zm

∥∥
s.t. xm ∈ Xt(m), ∀m 6= 1 ∈ Ñ ,

(cm − qml)l∈C(m) ∈ K∗t(m), ∀m 6= 1 ∈ Ñ ,

qml ≥ fl(zl, xl) + cl, ∀m = a(l) 6= 1, l ∈ Ñ .

The last step of exchanging min and max is due to the convexity of the problem and the

compactness of the uncertainty set P1. Now, we define the cost-to-go functions for m ∈

C(1):

Qpen
1 (x1) = max

p2∈P2

min
xm,zm

∑
m∈C(1)

[
p2,m(fm(zm, xm)+Qpen

m (xm)) + σ ‖x1 − zm‖
]
,

with Qpen
m (xm) := min cm +

∑
l∈D(m)

σ
∥∥xa(l) − zl

∥∥
s.t. xl ∈ Xt(l), ∀ l ∈ D(m),

(cl − qlk)k∈C(l) ∈ K∗l , ∀ l ∈ D(m),

qlk ≥ fk(zk, xk) + ck, ∀ l = a(k) ∈ D(m).

By repeating the above definition of cost-to-go functions, we can have the recursive formu-

89

lation of the penalization

vpen = min
x1∈X1

f1(x0, x1; ξ1) +Qpen
1 (x1), (3.23)

Qpen
n (xn) = max

pt′∈Pt′
min

xm∈Xt(m)

∑
m∈C(n)

[
pt′,m(fm(zm, xm) +Qpen

m (xm)) + σ ‖xn − zm‖
]
,

(3.24)

where t′ := t(n) + 1 ∈ T . Note by this definition, Qn ≡ 0 for all leaf nodes n ∈ Ñ with

C(n) = ∅.

While the penalization is known to be exact under Assumption 3.2, the evaluation of the

cost-to-go function at a given point may be challenging. In the sequel, we show that we can

replace the penalization formulation with regularization under the following assumption:

Assumption 3.3. There exists a constant 0 < c ≤ 1 such that for any n ∈ Ñ and xn ∈ Xn,

there exists a maximizer p̂t ∈ Pt(n) in (3.24) with each component satisfying either p̂t,m = 0

or p̂t,m ≥ c, m ∈ C(n).

Let τ > 0 denote a regularization factor for all non-root nodes. We now define the

regularization cost-to-go functions recursively as

vreg = min
x1∈X1

f1(x0, x1; ξ1) +Qreg
1 (x1), (3.25)

Qreg
n (xn) = max

pt′∈Pt′
min

xm∈Xt(m)

∑
m∈C(n)

pnm
[
fm(zm, xm) +Qreg

m (xm) + τ ‖xn − zm‖
]
. (3.26)

We can now state the exactness result for the regularization.

Proposition 3.6. Given the constant c > 0 stated in Assumption 3.3, if τ ≥ σ/c, then

the regularization is exact, i.e., vreg = vpen = vext and the corresponding set of first stage

minimizers are the same.

90

Proof. For ease of notation, we denote

F̂1 := arg min
x1∈X1

{f1(x0, x1; ξ1) +Q1(x1)},

F̂pen
1 := arg min

x1∈X1

{f1(x0, x1; ξ1) +Qpen
1 (x1)},

and

F̂ reg
1 := arg min

x1∈X1

{f1(x0, x1; ξ1) +Qreg
1 (x1)},

respectively. By definition, we have Qreg
n (xn) ≤ Qn(xn) for all n ∈ Ñ and xn ∈ Xn,

which implies vreg ≤ vext. Assumption 3.2 of exact penalization implies that vpen = vext

and F̂pen
1 = F̂1. We claim that Qreg

n (xn) ≥ Qpen
n (xn) for all nodes n ∈ Ñ and states

xn ∈ Xn. Given this claim, it follows that vreg ≥ vpen and hence vreg = vpen = vext. We

thus conclude F̂1 ⊆ F̂ reg
1 ⊆ F̂pen

1 , implying the equality of these three sets.

We prove the claim recursively. For any leaf node n, Qreg
n (xn) = Qpen

n (xn) = 0 since

C(n) = ∅. Now assume that the claim Qreg
m (xm) ≥ Qpen

m (xm) holds for all descendent

nodes m ∈ D(n). Let pt′ ∈ Pt′ denote a maximizer associated with the state xn ∈ Xn in

the definition (3.24) for t′ := t(n) + 1. Thus

Qpen
n (xn) =

∑
m∈C(n):
pt′,m 6=0

min
xm∈Xt(m)

∑
m∈C(n)

pnm
(
fm(zm, xm) +Qpen

m (xm)
)

+ σ ‖xn − zm‖ .

91

By Assumption 3.3, we can have pt′,m ≥ c. This implies that

Qpen
n (xn) ≤

∑
m∈C(n):
pt′,m 6=0

pt′,m · min
xm∈Xt(m)

fm(zm, xm) +Qpen
m (xm) + τ ‖xn − zm‖

≤
∑

m∈C(n):
pt′,m 6=0

pt′,m · min
xm∈Xt(m)

fm(zm, xm) +Qreg
m (xm) + τ ‖xn − zm‖

≤ max
pt′∈Pt′

min
xm∈Xt(m)

∑
m∈C(n)

pt′,m
[
fm(zm, xm) +Qreg

m (xm) + τ ‖xn − zm‖
]

= Qreg
n (xn).

The first inequality is due to pnmτ ≥ cτ ≥ σ; the second inequality is due to the recursion

hypothesis; the third inequality is due to the definition of maximum in the worst-case prob-

ability distribution. Thus we have shown Qreg
n (xn) ≥ Qpen

n (xn), which finishes the proof

through recursion.

We remark that although in general Assumption 3.3 is not easy to verify, it holds in

some common cases where the uncertainty set does not contain any point with zero com-

ponent (and thus in particular, MSCO with empirical distributions), or the case where all

the uncertainty sets and the subproblems are polyhedral (e.g., the MRCO studied in [39]).

3.2 Algorithms and Complexity Analysis

In this section, we first define single stage subproblem oracles (SSSO) for MDRO (3.8),

based on which we define the notion of complexity of the algorithms. A simple implemen-

tation of the SSSO is then discussed for the finitely supported problems (3.10). We describe

two versions of our proposed dual dynamic programming algorithm with consecutive and

nonconsecutive stage selection strategies, respectively. The complexity upper bound for

each algorithm is then presented, and finally we provide a complexity lower bound for both

algorithms, which shows the upper complexity bounds are nearly tight.

92

3.2.1 Single Stage Subproblem Oracles

A subproblem oracle is an oracle that gives a solution to the subproblem given its own infor-

mation as well as the data generated by the algorithm. The single stage subproblem oracles

(SSSO) used in this dissertation solve an approximation of the problem given by (3.16) and

(3.17) (or given by (3.11) and (3.12) if Mt = +∞, i.e., no regularization is conducted) for

some stage t ∈ T .

Definition 3.1 (Initial stage subproblem oracle). Let Q
1
,Q1 : X1 → R̄ denote two lsc

convex functions, representing an under-approximation and an over-approximation of the

cost-to-go function QR
1 in (3.15), respectively. Consider the following subproblem for the

first stage t = 1,

min
x1∈X1

f1(x0, x1; ξ1) +Q
1
(x1), (I)

where x0 and ξ1 are given parameters. The initial stage subproblem oracle provides an

optimal solution x1 to (I) and calculates the approximation gap γ1 := Q1(x1)−Q
1
(x1) at

the solution. We thus define the subproblem oracle formally as the map O1 : (Q
1
,Q1) 7→

(x1; γ1).

Definition 3.2 (Noninitial stage subproblem oracle). Let Q
t
,Qt : Xt → R̄ denote two lsc

convex functions, representing an under-approximation and an over-approximation of the

cost-to-go function QR
t in (3.15), respectively, for some stage t > 1. Then given a feasible

state xt−1 ∈ Xt−1, the noninitial stage subproblem oracle provides a feasible state xt ∈ Xt,

anMt−1-Lipschitz continuous linear cut Vt−1(·), and an over-estimate value vt−1 such that

• they are valid, i.e., Vt−1(x) ≤ QR
t−1(x) for any x ∈ Xt−1 and vt−1 ≥ QR

t−1(xt−1);

• the gap is controlled, i.e., vt−1 − Vt−1(xt−1) ≤ γt := Qt(xt)−Qt(xt).

We thus define the subproblem oracle formally as the map Ot : (xt−1,Qt,Qt) 7→ (Vt−1, vt−1, xt; γt).

The noninitial stage subproblem oracles are different from the initial stage subprob-

lem oracle, in the sense that it does not necessarily provide any optimal solution to some

93

optimization problem. Instead, it provides some feasible state, which could be used for

exploration of the following stages, a linear cut and an estimate value for updating the ap-

proximation in the previous stages. This is a much weaker requirement on the oracle itself

than assuming that we can get optimal solutions to the MDRO recursion (3.9).

Since the initial stage subproblem oracle in Definition 3.1 represents the solution pro-

cedure of the first stage problem (I), its implementation is straightforward. In contrast,

implementations for Definition 3.2 may be less intuitive, so we provide some further dis-

cussion for the finitely supported MDRO (3.10) below.

SSSO Implementation for Finitely Supported MDRO

We now propose a possible realization of the noninitial stage subproblem oracle based on

the linear cut generation scheme discussed in Section 3.1.2. We first consider an under-

approximation problem:

max
pt∈Pt

∑
n∈N (t)

pt,n ·
(

min
xt∈Xt

fn(xt−1, xt) +Q
t
(xt)

)
. (3.27)

Recall that the Lagrangian dual for each inner minimization problem in (3.27) gives a

primal-dual solution pair (x̂n, ẑn; λ̂n) and its associated value vn, as in (3.19). The linear

cut Vn(x) = vn + 〈λ̂n, x− xt−1〉 is valid for the value function QR
n and by Proposition 3.5,

it is Mt−1-Lipschitz continuous. Now we define a linear cut Vt−1(x) :=
∑

n∈N (t) p̂t,nVn(x)

where p̂t ∈ arg maxpt∈Pt
∑

n∈N (t) pt,nVn(xt−1) is a probability vector maximizer at the

current state xt−1. Then by Proposition 3.3, Vt−1 is a valid linear cut for QR
t−1 with a

Lipschitz constant Mt−1.

For the over-estimate value vt−1, we consider an over-approximation problem:

max
pt∈Pt

∑
n∈N (t)

pt,n ·
(

min
xt∈Xt

fn(xt−1, xt) +Qt(xt)
)
. (3.28)

94

Since by assumption Qt(x) ≥ QR
t (x) for all x ∈ Xt, the optimal value vt−1 of (3.28)

satisfies vt−1 ≥ QR
t−1(xt−1) by definition. Moreover, suppose the gap at realization ξ̂t,n

given by the primal solution x̂n is γn := Qt(x̂n) − Q
t
(x̂n). We pick the index n∗ such

that the state x̂n∗ has the largest approximation gap γn∗ , and set xt = x̂n∗ , γt = γn∗ .

Consequently, we have

vt−1 = max
pt∈Pt

∑
n∈N (t)

pt,n

(
min

xn∈Xt,zn∈Rdt−1

fn(zn, xn) +Qt(xn) +Mt−1 ‖xt−1 − zn‖

)

≤ max
pt∈Pt

∑
n∈N (t)

pt,n

(
fn(ẑn, x̂n) +Qt(x̂n) +Mt−1 ‖xt−1 − ẑn‖

)
= max

pt∈Pt

∑
n∈N (t)

pt,n
(
fn(ẑn, x̂n) +Q

t
(x̂n) + γn +Mt−1 ‖xt−1 − ẑn‖

)
≤ γt + max

pt∈Pt

∑
n∈N (t)

pt,n
(
fn(ẑn, x̂n) +Q

t
(x̂n) +Mt−1 ‖xt−1 − ẑn‖

)
= γt + Vt−1(xt−1).

Therefore, the condition vt−1 − Vt−1(xt−1) ≤ γt is satisfied. We summarize the above

realization of the noninitial stage subproblem oracles in Algorithm 4.

Assuming that the subproblems (3.27) and (3.28) can be solved for any state xt−1 ∈

Xt−1 and approximation of the cost-to-go function Q
t

and Qt, Algorithm 4 provides an

implementation of Definition 3.2. However, we remark that Algorithm 4 is not the only

way to realize the SSSO in Definition 3.2. For example, it is discussed in [39] that a poly-

hedral single stage subproblem of MRCO (3.7) can be reformulated as mixed-integer linear

program, which may then be solved by branch-and-bound type algorithms. Therefore, the

introduction of SSSO may benefit our discussion by avoiding restriction of solution meth-

ods in each stage, even when the uncertainty sets are finite. Besides, with SSSO, the com-

plexity analysis will better reflect the computation time as the for-loop in Algorithm 4 can

be easily parallelized. We also show in the next section that SSSO enables us to introduce

a nonconsecutive dual dynamic programming algorithm.

95

Algorithm 4 A Realization of Noninitial Stage Subproblem Oracle for (3.11)

Require: state xt−1 ∈ Xt−1, approximations Q
t
,Qt : Q

t
(x) ≤ QR

t (x) ≤ Qt(x), ∀x ∈
Xt, t > 1

Ensure: a linear cut Vt−1, an over-estimate vt−1, a state xt, and a gap value γt as in Defi-
nition 3.2

1: for n ∈ N (t) do
2: solve the Lagrangian dual of

min
{
fn(zn, xn) +Q

t
(xn) +Mt−1 ‖xt−1 − zn‖ : xn ∈ Xt, zn ∈ Rdt−1

}
3: collect the primal-dual solution pair (x̂n, ẑn; λ̂n) and the value vn
4: define Vn(x) := vn + 〈λ̂n, x− xt−1〉
5: calculate γn := Qt(xn)−Q

t
(xn)

6: let v̄n := min
{
fn(zn, xn) +Qt(xn) +Mt−1 ‖xt−1 − zn‖ : xn ∈ Xt, zn ∈ Rdt−1

}
7: end for
8: construct Vt−1(x) :=

∑
n∈N (t) p̂t,nVn(x) where p̂t ∈ arg maxpt∈Pt

∑
n∈N (t) pt,nvn

9: calculate vt−1 := maxpt∈Pt
∑

n∈N (t) pt,nv̄n
10: find n∗ ∈ N (t) such that γn∗ ≥ γn for all n ∈ N (t) and set xt := x̂n∗ , γt := γn∗

3.2.2 Dual Dynamic Programming Algorithms

With the subproblem oracles, we first introduce a consecutive dual dynamic programming

(CDDP) algorithm. To ease the notation, we use conv{h1, h2} =: g to denote the function

corresponding to the closed convex hull of the epigraphs of functions h1 and h2. More

precisely, using convex bi-conjugacy, we define

g(x) :=
(
min{h1(x), h2(x)}

)∗∗
= sup

λ
inf
z

{
min{h1(z), h2(z)}+ 〈λ, x− z〉

}
.

Note that if h1, h2 are both polyhedral (hence closed and convex), then by linear program

strong duality, the function g (assuming it is proper) can be represented as

g(x) = min


v ∈ R :

(z, v) = µ1(z1, v1) + µ2(z2, v2),

vi ≥ hi(zi), µi ∈ R≥0, i = 1, 2,

µ1 + µ2 = 1


.

96

Algorithm 5 Consecutive Dual Dynamic Programming Algorithm
Require: subproblem oracles Ot for t ∈ T , optimality gap ε > 0
Ensure: an ε-optimal first stage solution x∗1 to the regularization (3.15)

1: initialize: Q0
t
← 0,Q0

t ← +∞, t ∈ T \{T}; Qj
T
,QjT ← 0, j ∈ N; i← 1

2: evaluate (x1
1; γ1

1)← O1(Q0
1
,Q0

1)
3: set LOWERBOUND ← f1(x0, x

1
1; ξ1), UPPERBOUND ← +∞

4: while UPPERBOUND − LOWERBOUND > ε do
5: for t = 2, . . . , T do
6: evaluate (V it−1, v

i
t−1, x

i
t; γ

i
t) = Ot(x

i
t−1,Qi−1

t
,Qi−1

t) . forward step
7: end for
8: for t = T, . . . , 2 do
9: update Qi

t−1
(x)← max{Qi−1

t−1
(x),V it−1(x)} . backward step

10: update Qit−1(x)← conv{Qi−1

t−1(x), vit−1 +Mt−1

∥∥x− xit−1

∥∥}
11: end for
12: evaluate (xi+1

1 ; γi+1
1)← O1(Qi

1
,Qi1) . initial stage step

13: update LOWERBOUND ← f1(x0, x
i+1
1 ; ξ1) +Qi

1
(xi+1

1)

14: update UPPERBOUND′ ← f1(x0, x
i+1
1 ; ξ1) +Qi1(xi+1

1)
15: if UPPERBOUND′ < UPPERBOUND then
16: set x∗1 ← xi+1

1 , UPPERBOUND ← UPPERBOUND′

17: end if
18: update i← i+ 1
19: end while

For each iteration i ∈ N, the main loop of Algorithm 5 consists of three parts. The

forward step uses the state xit−1 in the previous stage and the approximations Qi−1
t

and

Qi−1

t to produce a new state xit. Then the backward step at stage t uses the cut V it−1(x)

and the value vit−1 to update the approximations Qi
t−1
,Qit−1 in its precedent stage t − 1.

Finally, the initial stage step produces a new first stage solution xi+1
1 and updates the lower

and upper bounds.

We next show the correctness of Algorithm 5, i.e., the returned solution x∗1 is ε-optimal,

while leaving the finiteness proof to Section 3.2.3. From the termination of the while-loop,

it suffices to show that the approximations are valid Qi
t
(x) ≤ QR

t (x) ≤ Qit(x) for each

t ∈ T and i ∈ N. The first inequality follows from the validness of linear cuts V i
t (x)

(cf. Proposition 3.3). The second inequality is due to the Mt-Lipschitz continuity of the

97

regularized cost-to-go functions QR
t . In particular, by Definition 3.2, whenever the input

Qit(x) ≥ QR
t (x) for x ∈ Xt, the value vit−1 ≥ QR

t−1(xit−1). Then vit−1 + Mt

∥∥x− xit−1

∥∥ ≥
QR
t (x) for all x ∈ Xt−1. Given that Qi−1

t−1(x) ≥ QR
t−1(x) for x ∈ Xt−1, which is obviously

true for i = 1, we conclude that

min{Qi−1

t−1(x), vit−1 +Mt−1‖x− xit−1‖} ≥ QR
t−1(x), ∀x ∈ Xt−1. (3.29)

By taking the closed convex hull of the epigraphs on both sides, we have shown that

Qit−1(x) ≥ QR
t−1(x) for all x ∈ Xt−1. The above argument shows inductively that for all

i ∈ N, the approximations are valid, which then implies the correctness of the algorithm.

We comment that the linear cut V it−1 and the over-estimate value vit−1 are generated

using only the information in the previous iteration i − 1. In fact, the subproblem oracles

can be re-evaluated in the backward steps to produce tighter approximations. We simply

keep the CDDP algorithm in its current form because it is already sufficient for us to provide

its complexity bound. At the same time, we propose an alternative nonconsecutive version

of the dual dynamic programming (NDDP) algorithm that could possibly conduct more

efficient approximation updates.

Algorithm 6 describes the NDDP algorithm. To start the algorithm, it requires an addi-

tionally chosen vector of approximation gaps δ := (δt)
T
t=1 such that ε = δ1 > δ2 > · · · >

δT = 0, compared with the CDDP algorithm. These predetermined approximation gaps

serve as criteria at stage t for deciding the next stage to be solved: the precedent stage

t − 1 or the subsequent one t + 1. If the algorithm decides to proceed to the subsequent

stage t + 1, then the current state xt is used; otherwise the generated linear cut Vt−1 and

over-estimate value vt−1 are used for updating the approximations. The above argument of

validness of approximations imply that Qit
t

(x) ≤ QR
t (x) ≤ Qitt (x) for all x ∈ Xt holds for

any stage t ∈ T and any index it ∈ N. Therefore, when NDDP terminates, the returned

solution x∗1 is indeed ε-optimal.

98

Algorithm 6 Nonconsecutive Dual Dynamic Programming Algorithm
Require: subproblem oracles Ot for t ∈ T , opt. and approx. gaps ε = δ1 > · · · > δT = 0
Ensure: an ε-optimal first stage solution x∗1 to the regularization (3.15)

1: initialize: Q0
t
← 0,Q0

t ← +∞, t ∈ T \{T}; Qj
T
,QjT ← 0, j ∈ N; it ← 0, t ∈ T

2: set LOWERBOUND ← 0, UPPERBOUND ← +∞, t← 1
3: while true do
4: update it ← it + 1
5: if t = 1 then
6: evaluate (xi11 ; γi11)← O1(Qi1

1
,Qi11) . initial stage step

7: update LOWERBOUND ← f1(x0, x
i1
1 ; ξ1) +Qi1

1
(xi11)

8: update UPPERBOUND′ ← f1(x0, x
i1
1 ; ξ1) +Qi11 (xi11)

9: if UPPERBOUND′ < UPPERBOUND then
10: set x∗1 ← xi11 , UPPERBOUND ← UPPERBOUND′

11: end if
12: if UPPERBOUND − LOWERBOUND ≤ ε then
13: break
14: end if
15: maintain Qi2+1

2
(x)← Qi2

2
(x), Qi2+1

2 (x)← Qi22 (x)
16: set t← t+ 1
17: else
18: evaluate (V itt−1, v

it
t−1, x

it
t ; γitt)← Ot(x

it−1

t−1 ,Qitt ,Q
it
t) . noninitial stage step

19: if t < T and γitt > δt then
20: maintain Qit+1+1

t+1
(x)← Qit+1

t+1
(x), Qit+1+1

t+1 (x)← Qit+1

t+1 (x)
21: set t← t+ 1
22: else
23: update Qit−1+1

t−1
(x)← max{Qit−1

t−1
(x),V itt−1(x)}

24: update Qit−1+1

t−1 (x)← conv{Qit−1

t−1 (x), vitt−1 +Mt−1‖x− xit−1

t−1 ‖}
25: set t← t− 1
26: end if
27: end if
28: end while

99

3.2.3 Complexity Upper Bounds

In this section, we provide a complexity analysis for the proposed CDDP and NDDP algo-

rithms, which implies that both algorithms terminate in finite time. Our goal is to derive an

upper bound on the total number of subproblem oracle evaluations before the termination

of the algorithm. To begin with, let Jt, t > 1 denote the set of pair of indices (it−1, it) such

that the noninitial stage subproblem oracle is evaluated at the it-th time at the state xit−1

t−1 ,

i.e., (V itt−1, v
it
t−1, x

it
t ; γitt) = Ot(x

it−1

t−1 ,Qitt ,Q
it
t). For the CDDP algorithm, all stages share

the same iteration index it = i, so Jt = {(i, i) : i ∈ N} for all t > 1. We define the

following sets of indices for each t ∈ T \ {T}:

It(δ) :=
{
it ∈ N : γitt > δt and γit+1

t+1 ≤ δt+1, (it, it+1) ∈ Jt+1

}
. (3.30)

Here, for NDDP algorithm, δ is the given approximation gap vector, while for CDDP algo-

rithm, δ = (δt)
T
t=1 can be any vector satisfying ε = δ1 > δ2 > · · · > δT = 0 for the purpose

of analysis, since it is not required for the CDDP algorithm. We adopt the convention that

the gap for the last stage γiTT ≡ 0 such that iT−1 ∈ IT−1(δ) if and only if γiT−1

T−1 > δT−1

and (iT−1, iT) ∈ JT . An important observation is that all these index sets are finite (before

algorithm termination)|It| <∞, which is more precisely stated in the following lemma.

Lemma 3.2. For stage t, suppose the state space Xt ⊂ Rdt is contained in a ball with

diameter Dt > 0. Then, ∣∣It(δ)∣∣ ≤ (1 +
2MtDt

δt − δt+1

)dt
. (3.31)

Proof. We claim that for any j, k ∈ It, j 6= k, it holds that ‖xjt −xkt ‖ > (δt− δt+1)/(2Mt).

Assume for contradiction that ‖xjt−xkt ‖ ≤ (δt−δt+1)/(2Mt) for some j < k, j, k ∈ It(δ).

By definition of It(δ), the t + 1-th subproblem oracle is evaluated at the state xjt , and in

both the CDDP and the NDDP algorithms, the approximations Qj
t

and Qjt are updated

since γit+1

t+1 ≤ δt+1 for some it+1 ∈ N with (j, it+1) ∈ Jt+1. Then by Definition 3.2

100

of the noninitial stage subproblem oracle, we have Qjt(x
j
t) − Qjt(x

j
t) ≤ δt+1. Following

Proposition 3.3, for any point x ∈ Xt with ‖x − xjt‖ ≤ (δt − δt+1)/(2Mt), we have

Qjt(x) − Qj
t
(x) ≤ δt because of the Mt-Lipschitz continuity of the approximations. By

setting x = xkt , we see a contradiction with the assumption that k ∈ It(δ), which proves

the claim.

To ease the notation, let rt := (δt−δt+1)/(2Mt) denote the radius of the dt-dimensional

balls Bdt(xjt ; rt) centered at xjt for j ∈ It(δ), and let Bt ⊇ Xt denote a ball with diameter

Dt. From the above claim, we know that xkt /∈ Bdt(x
j
t ; rt) for any j, k ∈ It(δ) with j < k.

In other words, the smaller balls Bdt(xjt ; rt/2) are disjoint. Meanwhile, note that each of

these smaller balls satisfies Bdt(xjt ; rt/2) ⊂ Bt + Bdt(0; rt/2) (the Minkowski sum in the

Euclidean space Rdt). Therefore, the volumes satisfy the relation

Vol
(⋃

j∈It(δ) B
dt(xjt ; rt/2)

)
=
∣∣It(δ)∣∣ · VolBdt(0; rt/2) ≤ Vol

(
Bt + Bdt(0; rt/2)

)
,

which implies that

∣∣It(δ)∣∣ ≤ Vol(Bt + Bdt(0; rt/2))

VolBdt(0; rt/2)
=

(
Dt/2 + rt/2

rt/2

)dt
=

(
1 +

2MtDt

δt − δt+1

)dt
.

Thus we complete the proof.

We prove the following complexity upper bounds for the CDDP algorithm (Theorem

3.1) and the NDDP algorithm (Theorem 3.2).

Theorem 3.1. Suppose the state spaces Xt ⊂ Rdt are contained in balls, each with diam-

eter Dt > 0. Then for the CDDP algorithm (Algorithm 5), the total number of subproblem

oracle evaluations #EvalCDDP before termination is bounded by

#EvalCDDP ≤ 1 + T · inf
δ


T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
: ε = δ1 > δ2 > · · · > δT = 0

 .

101

Proof. We prove by showing that for any approximation gap vector δ satisfying ε = δ1 >

δ2 > · · · > δT = 0, the largest iteration index i is bounded by

i ≤
T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
. (3.32)

We claim that each iteration i ∈ N must lie in either of the following two cases:

1. the initial stage step has γi1 ≤ ε; or

2. the i-th forward step is in the index set i ∈ It(δ) for some stage t < T .

To see the claim, suppose that the iteration i ∈ N is not in the first case. Then we have

γi1 > ε and by convention γiT = 0 ≤ δT . Therefore, there exists a stage t < T such that γit >

δt while γit+1 ≤ δt+1, which is the second case. Note that when the first case happens, we

have UPPERBOUND−LOWERBOUND ≤ γi1 ≤ ε and thus the CDDP algorithm terminates.

By Lemma 3.2, the second case can only happen at most
∑T−1

t=1

∣∣It(δ)∣∣ times, proving the

bound (3.32). The theorem then follows from the fact that in each CDDP iteration, the

subproblem oracle is evaluated T times and one additional evaluation of the initial stage

subproblem oracle is needed for checking the termination criterion.

Theorem 3.2. Suppose the state spaces Xt ⊂ Rdt are contained in balls, each with di-

ameter Dt > 0. Then, for the NDDP algorithm (Algorithm 6) with the predetermined

approximation gap vector (δt)
T
t=1 satisfying ε = δ1 > δ2 > · · · > δT = 0, the total number

of subproblem oracle evaluations #EvalNDDP before termination is bounded by

#EvalNDDP ≤ 1 + 2 ·
T−1∑
t=1

(
1 +

2MtDt

δt − δt+1

)dt
.

Proof. For the NDDP algorithm, each time when it decides to go back to the precedent

stage t ← t − 1, we must have γitt ≤ δt while γit−1

t−1 > δt−1 for some (it−1, it) ∈ Jt. In

this case, we have by definition that it ∈ It(δ). By Lemma 3.2, such “going back” step can

only happen at most
∑T−1

t=1

∣∣It(δ)∣∣ times. The theorem then follows from the fact that there

are exactly two times such “going back” cases and one additional evaluation of the single

102

stage subproblem oracle for checking the termination criterion.

Let us compare the complexity bounds of the two algorithms. If we fix the approx-

imation gap vector δ in Theorem 3.1 to be the same in the NDDP algorithm, then the

complexity bound of CDDP is worse than that of NDDP as T ≥ 2. However, since an

optimal choice of the gap vector δ is usually not known, CDDP has the advantage of not

requiring an a-priori estimate of these factors for the complexity bound to be valid. We

provide below an important simplification of the above complexity bounds that applies to

many practical problems.

Corollary 3.1. Suppose that all the state spaces have the same dimension dt = d and

bounded by a common diameter Dt ≤ D, and let M := max{Mt : t = 1, . . . , T − 1}. If

for each stage t ∈ T , the local cost functions are strictly positive for all feasible solutions

fn(xt−1, xn) ≥ C, n ∈ N (t) for some C > 0, then the total number of subproblem oracle

evaluations before achieving an α-relative optimal solution x∗1 for CDDP and NDDP are

upper bounded respectively by

#EvalCDDP ≤ 1 + T (T − 1)

(
1 +

2MD

αC

)d
,

#EvalNDDP ≤ 1 + 2(T − 1)

(
1 +

2MD

αC

)d
.

Proof. Note that if an solution x∗1 is ε-optimal with ε = αC(T − 1) < αCT , then it

is also α-relative optimal. The result then follows from Theorems 3.1 and 3.2 by setting

δt = (T − t)αC.

Corollary 3.1 shows that for problems that have strictly positive cost in each stage, the

proposed complexity bounds for an α-relative optimal solution grow at most quadratically

for CDDP and linearly for NDDP with respect to the number of stages T . This provides

an answer to the open question about the iteration complexity of DDP-type algorithms. In

the next subsection, we will show this complexity bound is essentially tight by providing a

103

matching lower bound.

3.2.4 Complexity Lower Bound

Note that if we take δt = ε(T − t)/(T − 1) for t ∈ T , then the complexity upper bounds in

Theorems 3.1 and 3.2 depend on the terms (T − 1)dt where dt is the state space dimension

of stage t < T . It is natural to ask whether it is possible for either algorithm to achieve an

ε-optimal solution with complexity that is linear or quadratic in T , independent of the state

space dimensions (cp. Corollary 3.1). We present a class of convex problems to show that

this is indeed impossible.

Given a d-sphere Sd(r) = {x ∈ Rd+1 : ‖x‖2 = r} with radius r > 0, a spherical

cap with depth θ > 0 centered at a point x ∈ Sd(r) is the set Sdθ (r, x) := {y ∈ Sd(r) :

〈y − x, x〉 ≥ −θr}. The next lemma shows that we can put many spherical caps on a

sphere such that the center of each is not contained in any other spherical cap. This is a key

technical result needed for proving lower complexity bound. Let Γ(·) denote the gamma

function.

Lemma 3.3. Given a d-sphere Sd(r), d ≥ 2 and depth θ < (1−
√

2
2

)r, there exists a finite

set of pointsW with

|W| ≥ (d2 − 1)
√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
r

2θ

)(d−1)/2

,

such that for any w ∈ W , Sdθ (r, w) ∩W = {w}.

Proof. Let vd denote the d-volume for a d-dimensional unit ball. Recall that the d-volume

for Sd(r) is given by Vold(Sd(r)) = (d+ 1)vd+1r
d =

(d+ 1)π(d+1)/2

Γ(d+1
2

+ 1)
rd. We next estimate

the d-volume for the spherical cap Sdθ (r, x). Let α ∈ (0, π/2) denote the central angle for

the spherical cap, i.e., cosα = 1− θ/r. Since θ < (1−
√

2
2

)r, we know that α < π/4. Then

104

for any x ∈ Sd(r), the d-volume of the spherical cap can be calculated through

Vold(Sdθ (r, x)) =

∫ α

0

Vold−1(Sd−1(r sinϕ))r dϕ = dvdr
d

∫ α

0

(sinϕ)d−1 dϕ.

Note that when ϕ ∈ (0, α), sinϕ > 0 and cosϕ/ sinϕ > 1. Therefore, since d ≥ 2,

Vold(Sdθ (r, x)) ≤ dvdr
d

∫ α

0

(sinϕ)d−1 cosϕ

sinϕ
dϕ = dvdr

d · (sinα)d−1

d− 1
.

By substituting sinα =
√

1− (1− θ/r)2, we have

Vold(Sdθ (r, x))

Vold(Sd(r))
≤ d

d2 − 1

vd
vd+1

(sinα)d−1

=
d

d2 − 1

vd
vd+1

(
1−

(
1− θ

r

)2)(d−1)/2

≤ d

d2 − 1

vd
vd+1

(
2θ

r

)(d−1)/2

.

Now suppose W = {wi}Kk=1 is a maximal set satisfying the assumption, that is, for any

w ∈ Sd(r), w /∈ W , there exists wk ∈ W such that w ∈ Sdθ (r, wk). Then, ∪Kk=1Sdθ (r, wk) ⊇

Sd(r), and thus Vold(Sd(r)) ≤
∑K

k=1 Vold(Sdθ (r, wk)) = |W|Vold(Sdθ (r, w1)). Therefore

we have

|W| ≥ Vold(Sd(r))
Vold(Sdθ (r, w1))

≥

[
d

d2 − 1

vd
vd+1

(
2θ

r

)(d−1)/2
]−1

=
(d2 − 1)

√
π

d

Γ(d/2 + 1)

Γ(d/2 + 3/2)

(
r

2θ

)(d−1)/2

.

This completes the proof.

We denote the set of points associated to the sphere Sd(r) as Wd
θ (r) = {wk}Kk=1 in

Lemma 3.3. For any constants ε > 0 and l > 0, and values vk ∈ (ε/2, ε), k = 1, . . . , K,

we define a function associated with the pair (W = Wd
θ (r), v = (vk)

K
k=1) as FW,v(x) :=

maxk{0, vk + l
r
〈wk, x− wk〉}, x ∈ Bd+1(r), which is obviously convex and l-Lipschitz

105

continuous. Moreover, if the depth θ and the constants ε, l satisfy lθ ≥ ε, then we have vk+

l
r
〈wk, wk′ − wk〉 < vk − l

r
θr ≤ vk − ε < 0 for any wk′ 6= wk ∈ Wd

θ (r). This implies that

FW,v(wk) = vk and the subdifferential ∂FW,v(wk) = { l
r
wk} for all k = 1, . . . , K. Another

important observation is that the convex function F
6=k

(x) := convk′ 6=k{vk′ + l ‖x− wk′‖}

has the property that F
6=k

(wk) > ε/2 + l · dist(wk, convk′ 6=k{wk′}) ≥ ε/2 + lθ ≥ 3ε/2.

We next construct a class of MRCO’s using such convex functions, with the following

parameters: T ≥ 3 as the number of stages, L > 0 as a prescribed Lipschitz constant,

d ≥ 3 as the state space dimension, D = 2r > 0 as the state space diameter, and ε > 0 as

the optimality gap. Choose any l1, . . . , lT−1 such that L/2 = lT < lT−1 < · · · < l1 = L,

and set εt = 2ε/(T − 2). Construct sets of points Wt := Wd−1
θt

(r) = {wt,k}Ktk=1, where

θt = εt/lt for t = 1, . . . , T − 1. Let Ft(x) = FWt,vt(x) be constructed as above for any

values vt = (vt,k)
Kt
k=1, vt,k ∈ (εt/2, εt), and the Lipschitz constant lt, k = 1, . . . , Kt, for

t > 1 and F1(x) ≡ 0. The problem is then constructed as

Qt(xt) = max
ξt∈conv(Wt+1)

min
xt+1∈Bd(r)

{
Ft(xt) + lt ‖xt+1 − ξt‖+Qt+1(xt+1)

}
, 1 < t < T,

(3.33)

whereQT (x) ≡ 0, and the deterministic first stage problem is defined as minx1=0Q1(x1) =

Q1(0). In other words, this class of problems seeks the optimal value corresponding to

x1 = 0. We are now at the point to give the lower bound of the complexity of CDDP and

NDDP algorithms, assuming the regularization factors Mt ≥ L, t ∈ T for the exactness by

Proposition 3.4.

Theorem 3.3. For the problem (3.33), the number of subproblem oracle evaluations

#Eval for either of Algorithms 5 and 6 before termination has the following lower bound

#Eval ≥ d

d− 1

√
π

2
(d2 − 4)

(
DL(T − 2)

16ε

)d/2−1

= O(T d/2−1) as T →∞.

Proof. By reformulation of the problem (3.33), we assume that the algorithms only con-

106

sider the worst-case uncertainty vector ξt ∈ Wt. Note that for 1 < t < T ,

Qt(xt) = Ft(xt) + max
ξt∈Wt+1

min
xt+1∈Bd(r)

{lt ‖xt+1 − ξt‖+Qt+1(xt+1)} =: Ft(xt) + ct+1.

Therefore, the cost-to-go function Qt and any under-approximation Q
t

is lt-Lipschitz con-

tinuous, which means QR
t = Qt by Proposition 3.4. We further assume that the return

of the SSSO satisfies xt = ξt−1 ∈ Wt−1, which is true for the case of Algorithm 4 since

lt−1 > lt implies xt = ξt−1 is the unique minimizer to the recursion (3.33).

Now letQit
t
,Qitt denote the under- and over-approximations ofQt at stage index it, and

c̄itt , c
it
t denote the corresponding under- and over-estimations of the value ct. Let F it

t (x) :=

max{0,max{vt,k + lt
r

〈
wt,k, x− wt,k

〉
: wt,k = xitt , (it, it+1) ∈ Jt+1}} and F

it
t (x) :=

conv{vt,k + Mt

∥∥x− wt,k∥∥ : wt,k = xitt , (it, it+1) ∈ Jt+1} denote the under- and over-

approximations of the function Ft. Note thatQit
t

(x) ≤ F it
t (x)+c

it+1

t+1 andQitt (x) ≥ F
it
t (x)+

c̄
it+1

t+1 , for all t ∈ T . For all it < Kt, there exists wt,k ∈ Wt such that F
it
t (wt,k) > 3εt/2

from the discussion following the definition. Therefore, if it < Kt for all t > 1, then we

have

c̄itt − citt = max
ξt−1∈Wt

min
xt∈Bd(r)

{lt−1 ‖xt − ξt−1‖+Qitt (xt)}

− max
ξt−1∈Wt

min
xt∈Bd(r)

{lt−1 ‖xt − ξt−1‖+Qit
t

(xt)}

≥ F
it
t (wt,k)− max

ξt−1∈Wt

Ft(ξt−1) + c̄
it+1

t+1 − c
it+1

t+1

>
εt
2

+ c̄
it+1

t+1 − c
it+1

t+1 .

Therefore, UPPERBOUND−LOWERBOUND = c̄i11 −ci11 >
∑

t εt/2 ≥ (T−2)·2ε/(T−2) =

ε. Equivalently, when the algorithms terminate, we must have it ≥ Kt for some t > 1,

107

which implies

#Eval ≥ Kt ≥
((d− 1)2 − 1)

√
π

d− 1

Γ((d− 1)/2 + 1)

Γ((d− 1)/2 + 3/2)

(
rLt(T − 2)

2εt

)(d−2)/2

≥ d(d− 2)
√
π

d− 1

Γ(d/2 + 1/2)

Γ(d/2 + 1)

(
DL(T − 2)

16ε

)(d−2)/2

>
d

d− 1

√
π

2
(d2 − 4)

(
DL(T − 2)

16ε

)d/2−1

by Lemma 3.3 since Lt ≥ L/2. Here, the last inequality is due to Wendel’s bound on the

ratio of two gamma functions [77]. This completes the proof.

Remark. The CDDP and NDDP algorithms (Algorithms 5 and 6) and their complexity anal-

yses depend only on the SSSO (Definitions 3.1 and 3.2). Therefore, while we focus on the

MDRO with finite uncertainty sets in this chapter, the CDDP and NDDP algorithms should

work for more general MDRO problems (3.8), once we are able to implement the SSSO

(esp. the noninitial stage subproblem oracles). Moreover, the complexity upper bounds

(Theorems 3.1 and 3.2, Corollary 3.1) and the lower bound (Theorem 3.3) remain valid for

them as well.

3.3 Numerical Experiments

In this section, we numerically test the proposed CDDP and NDDP algorithms. The first

test problem is a robust multi-commodity inventory problem with customer demand uncer-

tainty. The second test problem is a distributionally robust hydro-thermal power planning

problem with stochastic energy inflows. The computation budget consists of 40 2.1-GHz

CPU cores and a total of 80 GBytes of RAM. The algorithms are implemented using JuMP

package ([78], v0.21) in Julia language (v1.4) with Gurobi 9.0 as its underlying LP solver.

108

3.3.1 Multi-Commodity Inventory Problem

We consider a multi-commodity inventory problem with uncertain customer demands and

deterministic holding and backlogging costs, following the description in [39]. Due to the

stagewise independence of the bounded uncertainties and convexity of the problem, we

formulate the problem below as an MRCO recursion (3.7). Let K := {1, 2, . . . , K} denote

the set of product indices. We first describe the variables in each stage t ∈ T . We use lt,k to

denote the inventory level, at,k (resp. bt,k) to denote the amount of express (resp. standard)

order fulfilled in the current (resp. subsequent) stage, of some product k ∈ K. Let ξt ∈ Ξt

denote the uncertainty vector controlling the customer demands in stage t. The first stage

is assumed to be deterministic, i.e., Ξ1 = {0} without loss of generality. Then, the stage t

subproblem can be written as

Qt−1(xt−1) := max
ξt∈Ξt

min
∑
k∈K

(
cF + cakat,k + cbkbt,k + cHk [lt,k]+ + cBk [lt,k]−

)
+Qt(xt)

(3.34)

s.t.
∑
k∈K

at,k ≤ Bc,

lt,k − at,k − bt−1,k = lt,k − dt,k(ξt), ∀ k ∈ K,

at,k ∈ [0, Ba
k], ∀ k ∈ K,

bt,k ∈ [0, Bb
k], ∀ k ∈ K,

lt,k ∈ [−Bl
k, B

l
k], ∀ k ∈ K.

Here in the formulation, cak (resp. cb) denotes the express (resp. standard) order unit cost,

cHk (resp. cBk) the inventory holding (resp. backlogging) unit cost, Ba
k (resp. Bb

k) the pro-

ductwise bound for the express (resp. standard) order, and Bl
k the inventory level bound,

for the product k, respectively. The first constraint in (3.34) is a cumulative bound Bc on

the express orders, the second constraint characterizes the change in the inventory level,

109

and the rest are bounds on the decision variables with respect to each product. We also put

cF > 0 as a fixed cost to ensure the cost function is strictly positive (cf. Corollary 3.1).

We use [l]+ := max{l, 0} and [l]− := −min{0, l} to denote the positive and negative part

of a real number l. The state variables xt consist of the inventory levels (lt,k)k∈K and the

standard order amounts (bt,k)k∈K, while the internal variables are the express order amounts

yt = (at,k)k∈K. The initial state x0 is given by l0,k = b0,k = 0 for all k ∈ K. The uncer-

tainty set Ξt is a E-dimensional box [−1, 1]E , and the customer demand is predicted by the

following factor model:

dt,k(ξt) =


2 + sin

(
(t− 1)π

5

)
+ Φt,kξt, k ≤ K/2,

2 + cos

(
(t− 1)π

5

)
+ Φt,kξt, k > K/2,

(3.35)

where Φt, is a E-dimensional vector where each entry is chosen uniformly at random from

[−1/E, 1/E]. Thus the value Φt,kξt ∈ [−1, 1] and dt,k(ξt) ≥ 0 for all t ∈ T and k ∈ K.

For the following numerical test, we set the number of products K = 5, the number of

uncertainty factors E = 4, Ba
k = Bb

k = Bl
k = 10, cbk = 1 for all k ∈ K, cF = 1, and Bc =

0.3K = 1.5. The costs are generated uniformly at random within cak ∈ [1, 3], cHk , c
B
k ∈

[0, 2] for all k ∈ K. Due to lack of relatively complete recourse of the problem (3.34),

we use the nonconsecutive dual dynamic programming algorithm (Algorithm 6) with the

optimality gap set to be relative α = 1% and approximation gaps set dynamically by δitt =

LOWERBOUND · α(T − t)/(T − 1) for t ∈ T . As a comparison, we implement the same

algorithm without regularization which generates linear feasibility cuts for approximation

of the feasible sets (see definition of feasibility cuts in, e.g., [79]). For 5 independently

generated test cases, we have obtained the following results (Table 3.1) within a time limit

of 5 hours and regularization factor of Mt = 1.0× 102 for all t ∈ T .

In Table 3.1, the inf indicates values of infinity or numerically infinity values (i.e., val-

ues greater than 109) within the computation time of 5 hours. As we see from the table,

110

Table 3.1: Comparison of NDDP with and without regularization

Regularized Problem Unregularized Problem
Stage LB UB Time (s) #Eval LB UB Time (s) #Eval

10

154.66 155.92 203.99 1497 154.70 154.70 96.15 1448
155.94 157.01 175.12 1502 155.95 inf 18000.29 14151
128.31 129.39 230.47 1638 127.56 inf 18002.84 14195
137.01 138.37 168.36 1405 137.06 137.16 82.40 1565
120.13 121.01 365.65 1948 120.13 121.16 160.65 2302

15

232.46 234.35 473.59 3158 232.46 232.59 265.05 3109
233.37 235.40 509.25 3107 233.44 235.18 121.63 2752
202.48 203.84 413.36 3038 201.89 inf 18001.74 15956
208.59 209.78 443.00 2930 208.57 208.95 214.33 2992
195.16 196.97 680.97 4272 187.11 inf 18069.06 26686

20

291.87 294.41 1222.93 6189 291.90 292.76 404.01 5175
292.47 294.87 1248.34 6156 292.84 293.77 437.24 4848
256.28 258.53 1026.97 5190 256.30 257.20 401.07 5519
261.70 264.31 775.68 4770 261.81 261.81 385.10 4765
249.86 251.32 2135.50 8455 248.12 inf 18072.89 26618

25

369.52 370.89 3079.75 11507 369.66 370.31 613.28 7399
370.01 373.55 2473.70 9814 370.47 370.87 529.98 7422
330.01 332.46 1474.33 7674 330.42 332.22 718.88 8291
333.28 336.27 1009.98 6345 333.34 333.40 578.25 7247
324.54 326.43 3283.15 12148 311.97 inf 18106.49 33727

30

428.94 432.04 4319.78 14394 429.11 429.23 1004.61 10102
429.48 430.88 3836.59 13707 407.22 inf 18057.45 29520
384.21 387.11 2445.64 11142 383.76 inf 18001.47 23233
386.44 390.29 2006.87 10319 386.54 387.36 922.64 10277
379.33 382.14 5981.94 16756 379.59 382.24 1615.91 15104

111

the NDDP algorithm together with feasibility cuts fails to solve two out of five cases even

when there is only 10 stages, showing the instability of the performance of feasibility cuts.

In contrast, the algorithm with the regularization technique solves all of the cases within

a reasonable computation time and number of subproblem oracle evaluations, without any

optimality gap on those cases that both formulations are able to solve. This demonstrates

the ability of the NDDP handling problems without relatively complete recourses. It is

worth mentioning that for cases where the NDDP algorithm converges without regulariza-

tion, the computation time used is usually smaller than it spends on the regularized problem,

which can be explained by better numerical conditions of feasibility cuts and their effect

on reducing the effective volumes of the state space.

3.3.2 Hydro-Thermal Power Planning Problem

We next consider the Brazilian interconnected power system described in [80]. By assum-

ing the stagewise independence in the underlying stochastic energy inflow, we formulate

the problem below as a MDRO recursion (3.9). Let K = {1, . . . , K} denote the indices of

four regions in the system, and L = ∪k∈KLk the indices of thermal power plants, where

each of the disjoint subsets Lk is associated with the region k ∈ K. We first describe the de-

cision variables in each stage t ∈ T . Let n ∈ N (t) denote the index of a sampled outcome

in stage t. We use ln,k to denote the stored energy level, hn,k to denote the hydro power

generation, and sn,k to denote the energy spillage, of some region k ∈ K; and gn,l to denote

the thermal power generation for some thermal power plant l ∈ L. For two different re-

gions k 6= k′ ∈ K, we use en,k,k′ to denote the energy exchange from region k to region k′,

and an,k,k′ to denote the deficit account for region k in region k′. Suppose (wn,k)k∈K is the

energy inflow associated with the sampled outcome n ∈ N (t), then the stage t subproblem

112

can be written as

Qt−1(xt−1) := max
pt−1∈Pt−1

∑
n∈N (t)

pt−1,n· (3.36)[
min

∑
k∈K

(
cssn,k +

∑
l∈Lk

cgl gn,l +
∑
k′∈K

(
cek,k′en,k,k′ + cak,k′an,k,k′

))
+Qt(xn)

]

s.t. ln,k + hn,k + sn,k = lt−1,k + wn,k, ∀ k ∈ K,

hn,k +
∑
l∈Lk

gn,l +
∑
k′∈K

(an,k,k′ − en,k,k′ + en,k′,k) = dt,k, ∀ k ∈ K,

ln,k ∈ [0, Bl
k], ∀ k ∈ K,

hn,k ∈ [0, Bh
k], ∀ k ∈ K,

gn,l ∈ [Bg,−
l , Bg,+

l], ∀ l ∈ L,

an,k,k′ ∈ [0, Ba
k,k′], ∀ k, k′ ∈ K,

en,k,k′ ∈ [0, Be
k,k′], ∀ k, k′ ∈ K.

Here in the formulation, cs denotes the unit penalty on energy spillage, cgl the unit cost of

thermal power generation of plant l, cek,k′ the unit cost of power exchange from region k to

region k′, cak,k′ the unit cost on the energy deficit account for region k in region k′, dt,k the

deterministic power demand in stage t and region k, Bl
k the bound on the storage level in

region k, Bh
k the bound on hydro power generation in region k, Bg,−

l , Bg,+
l the lower and

upper bounds of thermal power generation in plant l, Ba
k,k′ the bound on the deficit account

for region k in region k′, and Be
k,k′ the bound on the energy exchange from region k to

region k′. The first constraint in (3.36) characterizes the change of energy storage levels

in each region k, the second constraint imposes the power generation-demand balance for

each region k, and the rest are bounds on the decision variables. The state variables xt (resp.

xn) are the energy storage levels (lt,k)k∈K (resp. (ln,k)k∈K), while the internal variables

consist of all the rest of decision variables. The initial state x0 is given by data.

The energy inflow outcomes are sampled from multivariate lognormal distributions that

113

are interstage independent. Then the distributional uncertainty set is constructed using

Wasserstein metric to reduce the effect of overtraining with the sampled outcome, accord-

ing to [28]. To be precise, suppose p̂t ∈ ∆N is an empirical distribution of outcomes

ln := (ln,k)k∈K for n ∈ N (t), where N =
∣∣N (t)

∣∣ and often p̂t = (1/N, . . . , 1/N). Then,

the distributional uncertainty set Pt is described by

Pt :=
{
pt ∈ ∆N : ρ(pt, p̂t) ≤ σ

}
, (3.37)

for some radius σ ≥ 0, where the Wasserstein metric ρ for finitely supported distributions

is defined by

ρ(pt, p̂t) := min
um,n≥0

∑
m,n∈N (t)

‖lm − ln‖um,n (3.38)

s.t.
∑

n∈N (t)

um,n = pt,m, ∀m ∈ N (t),

∑
m∈N (t)

um,n = p̂t,n, ∀n ∈ N (t).

Note when the radius σ = 0, the ambiguity set Pt becomes a singleton. In our nu-

merical tests, we choose the radius to be relative to the total distances, i.e., σ = β ·∑
m,n∈N (t) ‖lm − ln‖ for some β ≥ 0. At the same time, we use uniform regularization

factors for the tests, i.e., Mt = M > 0 for all t ∈ T . When the relative optimality gap α is

smaller than the threshold 5%, we check whether all the active cuts in the recent iterations

are strictly smaller than the regularization factor. If they are, then the algorithm is termi-

nated, and otherwise the regularization factor M is increased by a factor of
√

10 ≈ 3.1623

with all the over-approximations reset toQi
t
(x)← +∞, t ∈ T . Five scenarios are sampled

independently in each stage for the nominal problemN = 5 before the distributional robust

counterpart is constructed by (3.37). for the 24-stage problem that we consider, the sam-

ples already give a total 524 ≈ 5.9 × 1016 scenario paths, which is practically impossible

114

to solve via an extensive robust formulation. We have then obtained the following results

(Table 3.2) using our CDDP algorithm within a time limit of 5 hours.

Table 3.2: Comparison of CDDP with different regularization factors and ambiguity radii

β log10(M) LB (·107) UB (·107) Med. Time (s) Med. #Eval

0.00

2 4.63 4.87 4411.02 35314
3 4.62 4.86 3635.46 15012
4 4.60 4.84 5947.57 18377
5 4.60 4.84 7918.13 17795

0.02

2 4.88 5.14 3676.19 32111
3 4.84 5.09 2642.95 14663
4 4.85 5.10 5086.24 16480
5 4.84 5.10 6333.10 16605

0.04

2 5.11 5.38 2976.62 28469
3 5.11 5.38 4443.41 23952
4 5.08 5.35 4757.78 15897
5 5.09 5.35 5475.20 15465

0.06

2 5.37 5.66 2988.33 29978
3 5.34 5.62 2000.84 12999
4 5.33 5.61 3434.14 14401
5 5.33 5.61 4717.09 14578

0.08

2 5.61 5.90 2642.00 28871
3 5.59 5.88 1889.54 12243
4 5.57 5.86 2645.60 13432
5 5.57 5.86 3338.21 13653

0.10

2 5.85 6.16 2551.69 29052
3 5.82 6.12 1260.03 10404
4 5.81 6.11 1713.84 12433
5 5.81 6.12 2677.05 12660

In Table 3.2, the lower bound (LB), the upper bound (UB) at termination, the com-

putation time (Med. Time) and the number of subproblem oracles (Med.#Eval) shown

are the median of the five test cases of the hydro-thermal power planning problems. The

logarithmic regularization factors log10(M) listed in the table correspond to the initial reg-

ularization factors. We see that for different choices of the relative radii β, the median

computation time and number of subproblem oracle evaluations are usually smaller when

115

log10(M) = 3, without compromising the quality of upper and lower bounds. Moreover,

for β ≤ 0.08, the median computation times for log10(M) = 2 are still smaller than those

of log10(M) = 4 or 5, despite the larger number of subproblem oracle evaluations. This

can be explained by the better numerical conditions for the smaller regularization factors

(the cuts have smaller Lipschitz constants), leading to shorter subproblem oracle evalua-

tions times (cf. Algorithm 4). We thus conclude that the regularization technique could

lead to smaller number of subproblem oracle evaluations, as well as shorter computation

time for a given MDRO problem.

116

CHAPTER 4

DATA-DRIVEN CONVEX MDRO MODELS AND THEIR PERFORMANCE

4.1 Data-driven Model and Properties

4.1.1 Data-driven Model Formulation

In this section, we present a data-driven model for MDRO and some of its properties. Let

T := {1, . . . , T} denote the set of stage indices. In each stage t ∈ T , we use Xt ⊂ Rdt

to denote the convex state space and xt its elements, which is known as the state vector.

We denote the set of uncertainties before stage t as Ξt ⊆ Rδt and its elements as ξt. For

simplicity, we use the notation X0 = {x0} and Ξ1 = {ξ1} to denote parameter sets of

the given initial state. After each stage t ∈ T \ {T}, the uncertainty ξt is assumed to

be distributed according to an unknown probability measure pt taken from a subset of the

probability measures Pt ⊂ MProb(Ξt). The cost in each stage t ∈ T is described through

a nonnegative, lower semicontinuous local cost function ft(xt−1, xt; ξt), that is assumed to

be convex in xt−1 and xt for every ξt ∈ Ξt. We allow ft taking value of +∞ to model

constraints relating the states xt−1, xt and the uncertainty ξt. The MDRO can be written in

a nested formulation as follows.

inf
x1∈X1

f1(x0, x1; ξ1) + sup
p2∈P2

Eξ2∼p2

[
inf
x2∈X2

f2(x1, x2; ξ2)+ (4.1)

+ sup
p3∈P3

Eξ3∼p3

[
inf
x3∈X3

f3(x2, x3; ξ3) + · · ·

+ sup
pT∈PT

EξT∼pT
[

inf
xT∈XT

fT (xT−1, xT ; ξT)
]
· · ·
]]
.

Here, Eξt∼pt is the expectation with respect to variable ξt distributed according to the prob-

ability measure pt. We remark that both the uncertainty sets Ξt and the ambiguity sets Pt

117

are independent between stages, which are usually referred to as stagewise independence.

Based on the stagewise independence in the nested formulation, we can write the fol-

lowing recursion that is equivalent to (4.1) using the (worst-case expected) cost-to-go func-

tions,

Qt−1(xt−1) := sup
pt∈Pt

Eξt∼pt
[

inf
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt)
]
, (4.2)

for each t ∈ T and we set by convention QT (xT) := 0 for any xT ∈ XT . To simplify the

notation, we also define the following value functions for each stage t ∈ T :

Qt(xt−1; ξt) := inf
xt∈Xt

ft(xt−1, xt; ξt) +Qt(xt). (4.3)

Using these value functions, we may write the optimal value of the MDRO (4.1) asQ1(x0; ξ1)

and further simplify the recursion (4.2) as

Qt−1(xt−1) = sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt) dpt(ξt). (4.4)

While there are many different choices of the ambiguity set Pt for each stage t ∈ T

(see e.g., [17]), we would like to focus on the data-driven ambiguity sets constructed as

follows. Suppose we have the knowledge of nt samples ξ̂t,1, . . . , ξ̂t,nt of the uncertainty

ξt. We can write ν̂t := 1
nt

∑nt
k=1 δξ̂t,k for the empirical probability measure, where for

each k = 1, . . . , nt, δξ̂t,k is the Dirac probability measure supported at the point ξ̂t,k ∈ Ξt,

i.e.,
∫

Ξt
f dδξ̂t,k = f(ξ̂t,k) for any compactly supported function f on Ξt. Such empirical

probability measure ν̂t captures the information from the sample data and is often used to

build the sample average approximation for multistage stochastic optimization [12].

Fix any distance function dt(·, ·) on Ξt, the Wasserstein (1-)distance (a.k.a, Kantorovich-

Rubinstein distance) is defined as

Wt(µ, ν) := inf
π∈MProb(Ξt×Ξt)

{∫
Ξt×Ξt

dt(ξ
1, ξ2) dπ(ξ1, ξ2) : P 1

∗ (π) = µ, P 2
∗ (π) = ν

}
,

(4.5)

118

for any two probability measures µ, ν ∈MProb(Ξt), where P i
∗(π) is the pushforward mea-

sure induced by the projection maps P i : Ξt × Ξt → Ξt by sending P i(ξ1, ξ2) = ξi, for

i = 1 or 2. In plain language, the joint probability measure π in (4.5) should have marginal

probability measures equal to the given ones µ and ν.

It can be shown that Wt is indeed a distance on the space of probability measures

MProb(Ξt) [81, Definition 6.1] except that it may take the value of +∞. Thus it is natural

to restrict our attention to the convex subset of probability measures with finite distance to

a Dirac measure on Ξt

Wt :=

{
µ ∈MProb(Ξt) :

∫
Ξt

dt(ξ̄, ξ) dµ(ξ) < +∞, for some ξ̄ ∈ Ξt

}
. (4.6)

Note that any continuous function g(ξ) that satisfies |g(ξ)| ≤ C(1 + dt(ξ̄, ξ)) for some

C > 0 and ξ̄ ∈ Ξt would be integrable for any probability measure inWt. Now given any

such continuous functions gt,1, . . . , gt,mt on Ξt and a real vector ρt := (ρt,j)
mt
t=0 ∈ Rmt+1,

we define the Wasserstein ambiguity set Pt as

Pt :=
{
p ∈ Wt : Wt(p, ν̂t) ≤ ρt,0, 〈gt,j, p〉 ≤ ρt,j, j = 1, . . . ,mt

}
. (4.7)

The first inequality constraint in the definition (4.7) bounds the Wasserstein distance of the

probability measure p ∈ Wt from the empirical measure ν̂t, while the rest are structural

constraints on p, e.g., bounds on the moments, that are known beforehand. We next show

some favorable properties of the Wasserstein ambiguity sets (4.7) that are analogous to the

single-stage or the two-stage cases [26, 27].

With the choice of the Wasserstein ambiguity set Pt, the recursion (4.4) can be written

119

explicitly as

Qt−1(xt−1) = sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt)dpt(ξt) (4.8a)

s.t. inf
π∈MProb(Ξt×Ξt)

{∫
Ξt×Ξt

dt(ξ
1, ξ2) dπ(ξ1, ξ2) : P 1

∗ (π) = pt, P
2
∗ (π) = ν̂t

}
≤ ρt,0,

(4.8b)∫
Ξt

gt,j(ξt)dpt(ξt) ≤ ρt,j, ∀j = 1, . . . ,mt, (4.8c)

where (4.8b) can be equivalently written as

∀ε > 0, ∃ π ∈MProb(Ξt × Ξt), (4.9)∫
Ξt×Ξt

dt(ξ
1, ξ2) dπ(ξ1, ξ2) ≤ ρt,0 + ε, P 1

∗ (π) = pt, P
2
∗ (π) = ν̂t.

4.1.2 Finite Dimensional Dual Recursion

The arguably most important property of Wasserstein ambiguity sets is that they allow

finite dimensional dual reformulation, which often leads to computational tractability in

many practical cases. We briefly review the duality result and derive the dual reformulation

for the recursion (4.2).

Generalized Slater Condition and Lagrangian Duality

Given an R-vector spaceM, we consider the following problem.

vP := inf
µ∈C

ϕ0(µ) (4.10)

s.t. ϕj(µ) ≤ 0, j = 1, . . . , l,

ϕj(µ) = 0, j = l + 1, . . . ,m.

120

Here, C ⊂M is a convex subset, the functions ϕj :M→ R∪ {+∞} are convex for each

j = 0, 1, . . . , l and ϕj : M → R are affine for each j = l + 1, . . . ,m. Using a vector of

multipliers λ ∈ Rm, the Lagrangian dual problem of (4.10) can be written as

vD := sup
λ∈Λ

inf
µ∈C

ϕ0(µ) +
m∑
j=1

λjϕj(µ)

 , (4.11)

where the admissible set for the multipliers is defined as Λ := {λ ∈ Rm : λj ≥ 0, ∀ j =

1, . . . , l}. We want to show the strong duality between (4.10) and (4.11), given the follow-

ing condition.

Definition 4.1. We say that the problem (4.10) satisfies the (generalized) Slater condition

if the point η = 0 is in the relative interior of the effective domain of the convex value

function associated with the primal problem (4.10) defined for η ∈ Rm:

v(η) := inf
µ∈C

{
ϕ0(µ) : ϕj(µ) = ηj, j = 1, . . . , l, and ϕj(µ) ≤ ηj, j = l + 1, . . . ,m

}
.

Recall that the effective domain of a convex function v : Rm → R ∪ {±∞} is defined

as dom v := {η ∈ Rm : v(η) < +∞}, which is clearly a convex set. The affine hull of a

convex setK ⊂ Rm is defined to be the smallest affine space containingK, and the relative

interior of K is the interior of K viewed as a subset of its affine hull (equipped with the

subspace topology). By convention, we have v(η) = +∞ if there is no µ ∈ C such that

ϕj(µ) ≤ ηj for all j = 1, . . . ,m.

Proposition 4.1. Assuming the Slater condition, the strong duality holds vP = vD with an

optimal dual solution λ∗ ≥ 0 (i.e., the supremum in the dual problem (4.11) is attained).

Proof. The weak duality vP ≥ vD holds with a standard argument of exchanging the inf

and sup operators, so it suffices to show that vP ≤ vD. If vP = −∞ then the inequality

holds trivially, so we assume that vP > −∞. Given the Slater condition, the value function

v(η) of the primal problem (4.10) must be proper v(η) > −∞ for all η ∈ Rm (ref. Theorem

121

7.2 in [82]) because η = 0 is in the relative interior of the effective domain of v and

v(0) > −∞. Thus it is also subdifferentiable at the point η = 0 (ref. Theorem 23.4

in [82]), i.e., there exists a subgradient vector λ∗ ∈ Rm such that v(η) ≥ v(0) − (λ∗)Tη

for any η ∈ Rm. Here, for each j = 1, . . . , l, the multiplier λ∗j must be nonnegative since

the function v(η) is not increasing in the j-th component, so we have λ ∈ Λ. Since the

inequality v(η) + (λ∗)Tη ≥ v(0) = vP holds for any η ∈ Rm, we have

vP ≤ inf
η∈Rm
{v(η) + (λ∗)Tη}

= inf
µ∈C

inf
η∈Rm

ϕ0(µ) +
m∑
j=1

λ∗jηj :
ϕj(µ) ≤ ηj, j = 1, . . . , l,

ϕj(µ) = ηj, j = l + 1, . . . ,m


= inf

µ∈C

ϕ0(µ) +
m∑
j=1

λ∗jϕj(µ)

 ≤ vD.

The first equality here results from exchanging two infimum operators, while the second

one follows by taking ηj = ϕj(µ), due to the nonnegativity of λ∗j for each j = 1, . . . , l, and

replacing ηj with ϕj(µ) for each j = l + 1, . . . ,m.

The strong Lagrangian duality guaranteed by the Slater condition is useful for many

applications because we do not have to specify the topology on the vector spaceM. The

corollary below summarizes a special case where there is no equality constraint, and all the

inequality constraints can be strictly satisfied.

Corollary 4.1. For problems (4.10) and (4.11) with l = m (no equality constraints), the

strong duality holds if there exists a point µ̄ ∈ C such that ϕj(µ̄) < 0, for each j =

1, . . . ,m.

Proof. Let εj := −ϕj(µ) > 0 for j = 1, . . . ,m, and U :=
∏m

j=1(− εj
2
,
εj
2

) ⊂ Rm be an

open hyperrectangle. Then for any η ∈ U , we have v(η) ≤ ϕ0(µ̄) < +∞. Therefore, we

know that the Slater condition holds because 0 ∈ U ⊂ dom v, and the result follows from

122

Proposition 4.1.

Another interesting case is summarized below where the Slater condition can be applied

to problems with equality constraints, assuming the vector spaceM, equipped with a norm

‖·‖, is complete. This condition could be, however, much harder to check. For example, in

the space of finite signed regular Borel measures on a set Ξ ⊆ Rδ, an empirical probability

measure is usually not in the relative interior of the cone of nonnegative measures (with

respect to the subspace {µ : µ(Ξ) = 1}), for the total variation norm. Thus we do not base

our discussion on it.

Corollary 4.2. Suppose (M, ‖·‖) is a Banach space and ϕj is continuous for each j =

1, . . . ,m. For problems (4.10) and (4.11), the strong duality holds if there exists a point

µ̄ ∈ intC with ϕj(µ̄) < 0 for each j = 1, . . . , l and ϕj(µ̄) = 0 for each j = l + 1, . . . ,m.

Proof. Since ϕj with j = l + 1, . . . ,m are continuous affine functions, they can be trans-

lated to a continuous linear map. More specifically, let Φ : M → Rm−l be a linear map

that sends µ 7→ (ϕl+1(µ), . . . , ϕm(µ)) and L := im Φ ⊂ Rm−l its image subspace, which

is complete due its finite dimension. Since Φ is continuous and surjective onto its image

L, it is an open map onto L (ref. Theorem 2.6 in [83]). Now let εj := −ϕj(µ) > 0 for

j = 1, . . . , l, and U :=
∏l

j=1(− εj
2
,
εj
2

) ⊂ Rl be an open hyperrectangle. By the continuity

of ϕj for j = 1, . . . , l, there exists an open neighborhood V ⊂ M of µ̄ ∈ V such that

ϕj(µ) < − εj
2

for all j = 1, . . . , l. Then U × Φ(V) is an open subset of the product space

Rl × L, which is the affine hull of the effective domain of the value function v. Thus the

Slater condition holds and the result follows from Proposition 4.1.

Dual Recursion for Wasserstein MDRO

Now recall that by the definition of Wasserstein distance (4.5), the constraint Wt(p, ν̂t) ≤

ρt,0 is ensured if there exists a probability measure on the product space πt ∈ MProb(Ξt ×

123

Ξt) with marginal probability measures P 1
∗ (πt) = p and P 2

∗ (πt) = ν̂t, such that

∫
Ξt×Ξt

dt dπt =

∫
Ξt

∫
Ξt

dt(ξ, ξ
′) dπt(ξ|ξ′) dν̂t(ξ

′) =
1

nt

nt∑
k=1

∫
Ξt

dt,k(ξ) dpt,k(ξ) ≤ ρt,0,

(4.12)

where we define pt,k(·) := πt(·|ξ̂t,k) ∈ Wt to be the probability measure conditioned on

{ξ′ = ξ̂t,k} and dt,k(ξ) := d(ξ, ξ̂t,k) for any ξ ∈ Ξt. Then by the law of total probability, we

have

pt =
1

nt

nt∑
k=1

pt,k. (4.13)

Due to this condition, we define the following parametrized optimization problem for any

ρ > 0 and any state xt−1 ∈ Xt−1,

qt(xt−1; ρ) := sup
pt,k∈Wt

1

nt

nt∑
k=1

∫
Ξt

Qt(xt−1; ξt) dpt,k(ξt) (4.14a)

s.t.
1

nt

nt∑
k=1

∫
Ξt

dt,k(ξt) dpt,k(ξt) ≤ ρ, (4.14b)

1

nt

nt∑
k=1

∫
Ξt

gt,j(ξt) dpt,k(ξt) ≤ ρt,j, j = 1, . . . ,mt. (4.14c)

In the following, we establish some simple properties of qt(xt−1; ρ) and prove the equality

qt(xt−1; ρt,0) = Qt−1(xt−1) and eventually establish the dual recursion for Qt using strong

Lagrangian duality. First, we prove the following lemma.

Lemma 4.1. Qt−1(xt−1) ≥ qt(xt−1; ρt,0), for any xt−1 ∈ Xt−1.

Proof. Comparing with (4.8) and (4.9), we see that if pt,k is a feasible solution of (4.14)

with ρ = ρt,0, then it can be used to form pt as in (4.13) such that pt is feasible to (4.8c)

and makes the objectives (4.8a) and (4.8b) identical. Moreover, the infimum in (4.8b) can

be achieved by π := 1
nt

∑nt
k=1 pt,kδξ̂t,k and (4.8b) is satisfied due to (4.14b). Therefore, the

124

desired inequality follows.

We next show that the reverse inequality, thus the equality, indeed holds under a Slater

condition (Assumption 4.1) for (4.14).

Assumption 4.1. The empirical probability measure ν̂t satisfies the constraints 〈gt,j, ν̂t〉 <

ρt,j for all j = 1, . . . ,mt. Equivalently, we assume that 1
nt

∑nt
i=1 gt,j(ξ̂t,k) < ρt,j , for all

j = 1, . . . ,mt.

Note that the solution pt,k := δξ̂t,k for k = 1, . . . , nt satisfies (4.14b) with ρ = 0. There-

fore, Assumption 4.1 is equivalent to assuming that (4.14) has a strictly feasible solution,

which is sufficient to prove the following strong duality for (4.14).

Lemma 4.2. Under Assumption 4.1, the Lagrangian dual problem of (4.14) satisfies strong

duality

qt(xt−1; ρ) (4.15)

= min
λ≥0

ρλ0 +
mt∑
j=1

ρt,jλj +
1

nt

nt∑
k=1

sup
pt,k∈Wt

∫
Ξt

[
Qt(xt−1; ·)− λ0dt,k −

mt∑
j=1

λjgt,j

]
dpt,k


= min

λ≥0

ρλ0 +
mt∑
j=1

ρt,jλj +
1

nt

nt∑
k=1

sup
ξk∈Ξt

{
Qt(xt−1; ξk)− λ0dt,k(ξk)−

mt∑
j=1

λjgt,j(ξk)

} .

Proof. The first equation follows from Corollary 4.1 in the Appendix. The second equality

holds because each Dirac measure δξ centered at ξ ∈ Ξt satisfies δξ ∈ Wt and each pt,k ∈

Wt is a probability measure.

We need one more property of qt(xt−1; ρ) before we can showQt−1(xt−1) = qt(xt−1; ρt,0).

Lemma 4.3. Under Assumption 4.1, qt(xt−1; ρ) is a concave function, thus continuous, in

ρ ∈ (0,+∞), for any fixed xt−1 ∈ Xt−1.

Proof. Fix any xt−1 ∈ Xt−1. The concavity of qt(xt−1; ρ) follows directly from (4.15)

in Lemma 4.2, since qt(xt−1; ·) is a minimum of affine functions. Moreover, from the

125

definition (4.14) we see that qt(xt−1; ρ) ≥ 0 for any ρ > 0 as the measures pt,k = δξ̂t,k

satisfy the constraints and Qt(xt−1; ξt) ≥ 0 by the nonnegativity of the cost functions

ft. If qt(xt−1; ρt,0) = +∞, then the equality holds trivially as we already showed that

Qt−1(xt−1) ≥ qt(xt−1; ρt,0). Otherwise, we must have qt(xt−1; ρ) < +∞ for any ρ > 0

due to the concavity. Thus qt(xt−1; ·) is a continuous function on (0,+∞).

Now we can prove Qt−1(xt−1) = qt(xt−1; ρt,0) and thus give a reformulation of (4.4).

Theorem 4.1. Under Assumption 4.1, in any stage t ≥ 2, the expected cost-to-go func-

tion (4.2) satisfies Qt−1(xt−1) = qt(xt−1; ρt,0) and thus (4.4) can be equivalently rewritten

as

Qt−1(xt−1) = min
λ≥0


mt∑
j=0

ρt,jλj +
1

nt

nt∑
k=1

sup
ξk∈Ξt

[
Qt(xt−1; ξk)− λ0dt,k(ξk)−

mt∑
j=1

λjgt,j(ξk)

] .

(4.16)

Proof. Due to Lemma 4.1, we only need to prove Qt−1(xt−1) ≤ qt(xt−1; ρt,0). From (4.9),

we know that the constraint Wt(p, ν̂t) ≤ ρt,0 implies that, for any ε > 0, there exists a

probability measure πt ∈MProb(Ξt×Ξt) with marginal probability measures P 1
∗ (πt) = pt

and P 2
∗ (πt) = ν̂t such that

∫
dt dπt ≤ ρt,0 + ε. Such π and pt are feasible for (4.14).

Therefore, Qt−1(xt−1) ≤ qt(xt−1; ρt,0 + ε). Now by the continuity of qt(xt−1; ·) proved in

Lemma 4.3 under Assumption 4.1, we conclude thatQt−1(xt−1) ≤ limε→0+ qt(xt−1; ρt,0 +

ε) = qt(xt−1; ρt,0). Thus, (4.16) follows from Lemma 4.2.

As a corollary, we can easily prove a special version of the famous Kantorovich-

Rubinstein duality formula [81, Remark 6.5].

Corollary 4.3. Under Assumption 4.1, if the value function Qt(xt−1; ξt) is lt-Lipschitz con-

tinuous in the uncertainty ξt ∈ Ξt for any xt−1 ∈ Xt−1, then we have

Qt−1(xt−1) ≤ ρt,0lt +
1

nt

nt∑
k=1

Qt(xt−1; ξ̂t,k).

126

Proof. Take a feasible solution λ0 = lt and λj = 0 for j = 1, . . . ,mt in Theorem 4.1.

Note that by the Lipschitz continuity assumption, the supremum is attained at ξ̂t,k for each

k = 1, . . . , nt. Thus we have the desired inequality.

4.1.3 Out-of-Sample Performance Guarantee

A major motivation for using distributionally robust models over stochastic models is the

out-of-sample performance guarantee, which ensures that the decisions evaluated on the

true probability distribution would perform no worse than the in-sample training with high

probability. To begin with, we say that a probability measure µ ∈ Wt is sub-Gaussian

if
∫

Ξt
exp(Cξ2) dµ(ξ) < +∞ for some constant C > 0, or it has finite skewness if∫

Ξt
|ξ|3 dµ(ξ) < +∞. Our discussion is based on the following specialized version of

the well-known measure concentration inequality [24, Theorem 2].

Theorem 4.2. Fix any probability measure νt ∈MProb(Ξt) in stage t and let ν̂t denote the

empirical measure from nt iid samples of νt. Then for any ρt,0 > 0, we have

P
(
Wt(νt, ν̂t) > ρt,0

)
≤


Ct exp

(
−C ′tntρ

max{δt,2}
t,0

)
, if νt is sub-Gaussian and δt 6= 2, (4.17)

C ′′t (ntρ
2
t,0)−1, if νt has finite skewness, (4.18)

for some positive constants Ct, C ′t, C
′′
t > 0 that depend only on νt.

The measure concentration bound in (4.17) becomes slightly more intricate when the

dimension of the uncertainty δt = 2 (see the details in [24]), so we focus our discussion

below on the other cases that can be adapted to the 2-dimensional case with little effort.

The out-of-sample performance refers to the evaluation of the solutions and policies

obtained from solving MDRO (4.1) on the true probability measures νt for each t ∈ T .

To be precise, consider the multistage stochastic convex optimization (MSCO) problem

127

defined by the following recursion (cf. (4.2)) for t ∈ T

QStoch
t−1 (xt−1) :=

∫
Ξt

QStoch
t (xt−1; ξt) dνt(ξt), (4.19)

where

QStoch
t (xt−1; ξt) := inf

xt∈Xt
ft(xt−1, xt; ξt) +QStoch

t (xt), (4.20)

and QStoch
T (xT) = 0 for any xT ∈ XT . That is, the MSCO uses singleton ambiguity sets

PStoch
t := {νt} in the places of Pt in the MDRO (4.1). The next theorem characterizes

the probabilistic bound with which the decisions and policies made according to Qt in the

MSCO (4.19) would perform no worse than our MDRO (4.2).

Theorem 4.3. Fix any probability measure νt ∈ Wt and let ν̂t denote the empirical measure

from nt iid samples of νt for all stages t ∈ T . Assume that 〈gt,j, νt〉 ≤ ρt,j for any

t ∈ T and j = 1, . . . ,mt. Then for any α ∈ (0, 1), we have QStoch
t (xt) ≤ Qt(xt) and

QStoch
t (xt; ξt) ≤ Qt(xt; ξt) for any xt ∈ Xt, ξt ∈ Ξt, t ∈ T with probability at least α if

either of the following conditions holds for each t ∈ T :

1. the probability measure νt is sub-Gaussian, δt 6= 2, and

nt · ρmax{δt,2}
t,0 ≥ 1

C ′t

[
lnCt − ln

(
1− α1/(T−1)

)]
,

2. the probability measure νt has finite skewness and

nt · ρ2
t,0 ≥

C ′′t
1− α1/(T−1)

,

where Ct, C ′t, and C ′′t are the positive constants in Theorem 4.2, that depend only on νt.

Proof. If either of the conditions is satisfied, then it is straightforward to check from

Theorem 4.2 that the probability P(Wt(νt, ν̂t) > ρt,0) ≤ 1 − α1/(T−1). By the assump-

tion on the iid sampling of ν̂t and that 〈gt,j, νt〉 ≤ ρt,j for all j = 1, . . . ,mt, the event

128

E := {νt ∈ Pt for all t ∈ T } has the probability

P(E) = P{Wt(νt, ν̂t) ≤ ρt,0 for all t ∈ T } =
T∏
t=2

P(Wt(νt, ν̂t) ≤ ρt,0) ≥ α.

Note that on this event E, we have PStoch
t ⊆ Pt for each t ∈ T . Thus the theorem follows

directly from the recursions (4.2) and (4.19).

While Theorem 4.3 is a direct consequence of Theorem 4.2, it shows some interesting

aspects of MDRO using Wasserstein ambiguity sets. First, to get a certain probabilistic

bound for the out-of-sample performance guarantee, we may need to increase the number of

samples nt or the Wasserstein distance bound ρt,0 for a larger number of stages T . Second,

for probability measures that are not sub-Gaussian (or more generally those with heavy

tails, see [26]), for which we would like to apply the second condition, such increase require

the product nt · ρ2
t,0 to grow approximately on the order of O(T) when α is close to 1.

Therefore, it is sometimes useful to take larger values of ρt,0 for out-of-sample performance

guarantees, especially when the number of sample nt is limited, or when the true probability

measures νt are not sub-Gaussian.

4.1.4 Adjustable In-Sample Conservatism

Another well-studied approach to guarantee out-of-sample performance is the multistage

robust convex optimization (MRCO) model [39]. However, MRCO considers only the

worst-case outcomes of the uncertainties and thus can be overly conservative. To be precise,

we define the nominal MSCO from the empirical measures ν̂t by the following recursion

QNomin
t−1 (xt−1) :=

∫
Ξt

QNomin
t (xt−1; ξt) dν̂t(ξt) =

1

nt

nt∑
k=1

QNomin
t (xt−1; ξ̂t,k), (4.21)

where

QNomin
t (xt−1; ξt) := inf

xt∈Xt
ft(xt−1, xt; ξt) +QNomin

t (xt), (4.22)

129

and QNomin
T (xT) = 0 for any xT ∈ XT . Any MRCO that is built directly from data could

have a much larger optimal cost than the nominal MSCO with a probability growing with

the numbers of samples nt and stages T , as illustrated by the following example.

Example 4.1. Consider an MSCO with local cost functions ft(xt−1, xt; ξt) := xt + ξt and

state spaces Xt := [0, 1] ⊆ R for all t ∈ T . For each t ≥ 2, the uncertainties are described

by a probability measure νt on the set Ξt := R≥0 such that for any C > 0, we have

νt(C,+∞) > 0. By taking solutions xt = 0 in each stage t ≥ 2, it is easy to see that the

optimal value QStoch
1 (x0; ξ1) = x0 + ξ1 +

∑T
t=2 E[ξt] assuming the expectations exist.

Now to approximate this MSCO, suppose we are given iid samples ξ̂t,1, . . . , ξ̂t,nt from

the probability measure νt in each stage t ≥ 2. Then any MRCO defined by the following

recursion of expected cost-to-go functions

QRobust
t−1 (xt−1) := sup

ξt∈Ξ̂t

min
xt∈Xt

ft(xt−1, xt; ξt) +QRobust
t (xt), ∀ t ≥ 2,

where Ξ̂t ⊇ {ξ̂t,1, . . . , ξ̂t,nt} is an uncertainty subset constructed from the data, would have

its optimal valueQRobust
1 (x0; ξ1) ≥ x0+ξ1+

∑T
t=2 ξ̂

max
t , where ξ̂max

t := max{ξ̂t,1, . . . , ξ̂t,nt}.

The optimal value of the corresponding nominal MSCO is QNomin
1 (x0; ξ1) = x0 + ξ1 +∑T

t=2 ξ̂
mean
t where ξ̂mean

t := 1
nt

∑nt
k=1 ξ̂t,k. Therefore, for any constantC > maxt=2,...,T E[ξt],

130

we have

P
{
QRobust

1 (x0; ξ1)−QNomin
1 (x0; ξ1) > C

}
≥ 1−

T∏
t=2

P
{
ξ̂max
t − ξ̂mean

t ≤ C
}

≥ 1−
T∏
t=2

(
1− P

{
ξ̂max
t > 2C, ξ̂mean

t ≤ C
})

≥ 1−
T∏
t=2

(
2− P

{
ξ̂max
t > 2C

}
− P

{
ξ̂mean
t ≤ C

})

= 1−
T∏
t=2

(
(νt[0, 2C])nt + P

{
ξ̂mean
t > C

})
,

where νt[0, 2C] < 1 by assumption. Using the law of large numbers, we see that P{ξ̂mean
t >

C} → 0 as nt → ∞. In fact, if the probability measures νt have finite moment generating

functions, then by the large deviation theory, the right-hand-side is on the order of 1 −

O(exp(−C ′n(T − 1))), where n := min{n2, . . . , nT}, for some C ′ > 0.

In contrast, MDRO using Wasserstein ambiguity sets has an adjustable level of in-

sample conservatism. The difference of the optimal values between the MDRO and the

nominal MSCO Q1(x0; ξ1)−QNomin
1 (x0; ξ1) can be bounded by the Wasserstein distances

ρt,0, as shown below.

Theorem 4.4. Suppose the value function Qt(xt−1; ξt) is lt-Lipschitz continuous in ξt ∈ Ξt

for any xt−1 ∈ Xt−1, for each stage t ∈ T . Under Assumption 4.1, the difference of optimal

values between the MDRO and the nominal MSCO satisfies

Q1(x0; ξ1)−QNomin
1 (x0; ξ1) ≤

T∑
t=2

ltρt,0.

Proof. We first observe that if there exists ε ≥ 0 such that supxt∈Xt |Qt(xt)−QNomin
t (xt)| ≤

ε, then the value functions satisfy Qt(xt−1; ξt) − QNomin
t (xt−1; ξt) ≤ ε by the defini-

tions (4.3) and (4.22). Now we prove by recursion thatQt(xt)−QNomin
t (xt) ≤

∑
s>t lsρs,0

131

for any xt ∈ Xt, which holds trivially for t = T . For any t ∈ T , we have

Qt−1(xt−1)−QNomin
t−1 (xt−1) =

(
sup
pt∈Pt

∫
Ξt

Qt(xt−1; ξt) dpt(ξt)−
∫

Ξt

Qt(xt−1; ξt) dν̂t(ξt)

)

+

∫
Ξt

(
Qt(xt−1; ξt)−QNomin

t (xt−1; ξt)
)

dν̂t(ξt)

≤ltρt,0 +
∑
s>t

lsρs,0 =
∑
s>t−1

lsρs,0,

where the first part before the inequality is bounded by ltρt,0 using Corollary 4.3, and the

second part is bounded by our observation above. This recursion shows that Q1(x1) −

QNomin
1 (x1) ≤

∑T
t=2 ltρt,0, which completes the proof by the same observation.

Theorem 4.4 shows that the conservatism of the MDRO can be adjusted linearly with

the Wasserstein distance bound ρt,0, assuming the Lipschitz continuity of the value func-

tions in the uncertainties. Together with Theorem 4.3, it shows that the trade-off of the

objective value for the out-of-sample performance guarantee is on the order O(n−1/2) for

n := min{n2, . . . , nT} (or O(n−1/δ) if the probability measures are sub-Gaussian and

δ := min{δ2, . . . , δT} > 2), for some fixed probability threshold α and the number of

stages T . However, as this optimal rate depends on the unknown constants in Theorem 4.2,

it is not easy to numerically determine the Wasserstein distance bounds ρt,0. We discuss

some practical choices of the bounds ρt,0 in Section 3.3.

4.2 Dual Dynamic Programming Algorithm

In this section, we first review the recursive cutting plane approximations for the expected

cost-to-go functions and the dual dynamic programming (DDP) algorithm. Then we focus

on different realizations of the single stage subproblem oracles (SSSO) for MDRO with

Wasserstein ambiguity sets that would guarantee the convergence of the DDP algorithm.

132

4.2.1 Recursive Approximations and Regularization

Recall that for any convex function Q : X → R ∪ {+∞}, an affine function V : X → R

is called a (valid) linear cut if Q(x) ≥ V(x) for all x ∈ X . A collection of such valid

linear cuts {Vj}1≤j≤i defines a valid under-approximation Qi(x) := max1≤j≤i Vj(x) of

Q(x). Similarly by convexity, given a collection of overestimate values vj ≥ Q(xj) for

j = 1, . . . , i, we can define a valid over-approximation by the convex envelope Qi(x) :=

conv1≤j≤i(v
j + ιxj(x)), where ιxj(x) = 0 when x = xj and +∞ otherwise, is the convex

indicator function centered at xj . The validness of these approximations Q(x) ≤ Q(x) ≤

Q(x) for all x ∈ X suggests that we may use them in the place of Q for recursive updates

during a stagewise decomposition algorithm.

As discussed in Section 3.1.3, given regularization factors Mt > 0, we define the regu-

larized local cost function as

fR
t (xt−1, xt; ξt) := inf

zt∈Rdt−1

ft(zt, xt; ξt) +Mt‖xt−1 − zt‖, (4.23)

and the regularized value function

QR
t (xt−1; ξt) := min

xt∈Xt
fR
t (xt−1, xt; ξt) +QR

t (xt), (4.24)

recursively for t = T, T − 1, . . . , 2, where QR
t is the regularized expected cost-to-go func-

tion defined as

QR
t (xt) := sup

pt+1∈Pt+1

Eξt+1∼pt+1Q
R
t+1(xt; ξt+1), (4.25)

for t ≤ T − 1, and QR
T (xT) ≡ 0 for any xT ∈ XT . It is then straightforward to check

that QR
t (xt−1; ξt) is uniformly Mt-Lipschitz continuous in xt−1 for each ξt ∈ Ξt, and con-

sequently QR
t−1 is also Mt-Lipschitz continuous. These regularized cost-to-go functions fit

into the definitions of SSSO (Definitions 3.1 and 3.2) in Section 3.2.1.

The Lipschitzian regularization in general only gives under-approximations of the true

133

value and expected cost-to-go functions. We need the following assumption to preserve the

optimality and feasibility of the solutions.

Assumption 4.2. For the given regularization factors Mt > 0, t ∈ T , the optimal value of

the regularized MDRO satisfies

min
x1∈X1

f1(x0, x1; ξ1) +Q1(x1) = min
x1∈X1

f1(x0, x1; ξ1) +QR
1 (x1)

and the set of optimal first-stage solutions

arg min{f1(x0, x1; ξ1)+QR
1 (x1) : x1 ∈ X1} = arg min{f1(x0, x1; ξ1)+Q1(x1) : x1 ∈ X1}.

We remark by the following proposition that Assumption 4.2 can be satisfied in any

problem that already have uniformly Lipschitz continuous value function Qt(·; ξt) for all

ξt ∈ Ξt. We begin with the following technical lemma.

Lemma 4.4. For any convex function f : Rd → R that is M -Lipschitz continuous on a

convex subset X ⊆ Rd with intX 6= ∅, we have f(x) = f2(M‖·‖)(x) := infz∈Rd{f(z) +

M‖x− z‖} for any x ∈ X .

Proof. Assume for contradiction that for some x ∈ X , there exists z ∈ Rd and ε > 0 such

that f(x) > f(z)+(1+ε)M‖z−x‖. If x ∈ intX , then we can find z′ = x+ c(x−z) ∈ X

for some c > 0. Thus by convexity, (f(z′)− f(x))/‖z′ − x‖ ≥ (f(x)− f(z))/‖x− z‖ >

(1 + ε)M , which contradicts the M -Lipschitz continuity of f on X .

Otherwise if x /∈ intX , we can find x′ ∈ intX with ‖x′ − x‖ ≤ ‖z − x‖ · ε/2, so

‖x′ − z‖ ≤ (1 + ε/2)‖z − x‖. Besides, by the M -Lipschitz continuity of f on X , we have

f(x′) ≥ f(x)−M‖x− x′‖ > f(z) + (1 + ε/2)M‖z − x‖. Therefore,

f(x′)− f(z)

‖x′ − z‖
>

(1 + ε/2)M‖z − x‖
(1 + ε/2)‖z − x‖

= M,

which shows contradiction as x′ ∈ intX . This completes the proof.

134

Proposition 4.2. Suppose each state space Xt ⊆ Rdt is full dimensional, i.e., intXt 6= ∅.

Then Assumption 4.2 holds if for each stage t ≥ 2, the value function Qt(·; ξt) is Mt-

Lipschitz continuous for any ξt ∈ Ξt.

Proof. We prove the assertion by induction from t = T to t = 1 using Lemma 4.4. Suppose

that Qt = QR
t on Xt for some t ∈ T , which holds trivially for t = T . We see that

Qt(·; ξt) = QR
t (·; ξt) everywhere on Xt−1 for any ξt ∈ Ξt by definition (4.24). Thus by

definition (4.25), Qt−1 = QR
t−1 on Xt−1 and this finishes the induction.

There are also other cases for Assumption 4.2 to hold, especially where the uncertainty

sets Ξt are finite (see Section 3.1.3). In general, we can execute the DDP algorithm even

with Mt = +∞.

Now if we can implement the SSSO (Definitions 3.1 and 3.2), we know we can ap-

ply Algorithm 5 (or 6) with guaranteed convergence (Theorems 3.1 and 3.2). However,

the SSSO implementations are not straightforward. It is well known that the worst-case

probability measure may not exist (see e.g., [26, Example 2]). Moreover, the integration

with respect to some worst-case probability measure could also be numerically challeng-

ing. Therefore, we next provide two possible SSSO implementation methods directly using

the finite dimensional recursion (4.16).

4.2.2 Subproblem Oracles: Concave Uncertain Cost Functions

If the following assumption holds, we are able to reformulate the recursion (4.16) into a

convex optimization problem using a minimax theorem.

Assumption 4.3. The local cost function ft(xt−1, xt; ξt) is concave and upper semicontin-

uous in the uncertainty ξt for any xt−1 ∈ Xt−1 and xt ∈ Xt.

A direct consequence of Assumption 4.3 is that the effective domain of the state xt does

not depend on the uncertainty ξt, as shown in the following lemma.

135

Lemma 4.5. Under Assumption 4.3, we have dom ft(xt−1, ·; ξt) = dom ft(xt−1, ·; ξ′t) for

any xt−1 ∈ Xt−1 and ξt, ξ′t ∈ Ξt.

Proof. Assume for contradiction that there exists some xt−1 ∈ Xt−1, xt ∈ Xt, and ξt, ξ′t ∈

Ξt such that ft(xt−1, xt; ξt) < +∞ but ft(xt−1, xt; ξ
′
t) = +∞. Then for c ∈ (0, 1), we have

ft(xt−1, xt; (1−c)ξt+cξ′t) = +∞ by the concavity and nonnegativity of ft. It follows from

upper semicontinuity that ft(xt−1, xt; ξt) ≥ lim supc→0+ ft(xt−1, xt; (1−c)ξt+cξ′t) = +∞,

which is a contradiction.

We are now ready to prove the alternative formulation of the recursion (4.16).

Theorem 4.5. Under Assumption 4.3, if we further assume that the continuous functions

gt,j are convex for j = 1, . . . ,m and dt,k(ξt,k) = ‖ξt,k − ξ̂t,k‖ for k = 1, . . . , nt, then we

have

Qt−1(xt−1) = min
mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

[
ht,k(zt, xt,k, ζt,k, λt) +Qt(xt,k)

]
s.t.

∥∥ζt,k∥∥∗ ≤ λt,0,

zt = xt−1,

λt ∈ Rmt+1
≥0 , xt,k ∈ Xt,

(4.26)

where for each k = 1, . . . , nt, ht,k is defined as

ht,k(xt−1, xt,k, ζt,k, λt) := sup
ξt,k∈Ξt

ft(xt−1, xt,k; ξt,k)−
mt∑
j=1

λt,jgt,j(ξt,k) + ζTt,k(ξt,k − ξ̂t,k).

Proof. By Lemma 4.5, for any xt−1 ∈ Xt−1, we can define a set

Xt(xt−1) := dom ft(xt−1, ·; ξt) ⊆ Xt,

which is independent of ξt ∈ Ξt and closed by the lower semicontinuity of ft. Note that the

norm function has the dual representation dt,k(ξt,k) = ‖ξt,k − ξ̂t,k‖ = max‖ζ‖∗≤1 ζ
T(ξt,k −

136

ξ̂t,k). Thus by the recursion (4.16), we can write

Qt−1(xt−1) = min
λt∈Rmt+1

≥0

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

sup
ξt,k∈Ξt

[
−

mt∑
j=1

λt,jgt,j(ξt,k)

+ min
xt,k,ζt,k

ft(xt−1, xt,k; ξt,k) +Qt(xt,k) + ζTt,k(ξt,k − ξ̂t,k)
]

s.t.
∥∥ζt,k∥∥∗ ≤ λt,0,

xt,k ∈ Xt(xt−1).

Now for any fixed xt−1 and λt, we see that the sets {ζt,k : ‖ζt,k‖∗ ≤ λt,0} and Xt(xt−1)

are compact. Moreover, the function inside the supremum of ξt,k is concave and upper

semicontinuous in ξt,k, while convex and lower semicontinuous in ξt,k and ζt,k. Thus the

result follows by applying Sion’s minimax theorem [84].

Remark. The proof remains valid if we replace simultaneously Qt, Qt−1, and ft with QR
t ,

QR
t−1, and fR

t in the theorem. In this case we use hR
t,k to denote the convex conjugate

functions.

We provide a possible implementation for noninitial stage SSSO in Algorithm 7 based

on Theorem 4.5. Its correctness is verified by the following corollary.

Algorithm 7 Single Stage Subproblem Oracle Implementation Under Assumption 4.3

Require: function ht, over- and under-approximationsQit andQi
t
, and a state xt−1 ∈ Xt−1

Ensure: a linear cut Vt−1, an overestimate vt−1, a state xt, and a gap value γt
1: Solve the minimization (4.26) with Qt replaced by Qi

t
and store the optimal value

v∗t−1, optimal solutions λ∗t and (x∗t,k, ζ
∗
t,k)

nt
k=1 and the dual solutions ut associated with

the constraints zt = xt−1

2: for k = 1, . . . , nt do
3: Compute the gap value γt,k := Qit(x∗t,k)−Qit(x

∗
t,k)

4: end for
5: Set Vt−1(·)← v∗t−1 + uTt (·)
6: Set vt−1 ← v∗t−1 + 1

nt

∑nt
k=1 γt,k

7: Take any k∗ ∈ arg max{γt,k : k = 1, . . . , nt} and set xt ← x∗t,k∗ , γt ← γt,k∗

137

Corollary 4.4. Under the same assumptions of Theorem 4.5, the outputs (Vt−1, vt−1, xt; γt)

of Algorithm 7 satisfy the conditions in Definition 3.2.

Proof. To check the validness of vt−1, let (z∗t , x
∗
t,k, ζ

∗
t,k, λ

∗
t) denote an optimal solution in

the minimization (4.26) with Qt replaced by Qi
t
. Then we have

vt−1 = v∗t−1 +
1

nt

nt∑
k=1

γt,k

=
mt∑
j=0

ρt,jλ
∗
t,j +

1

nt

nt∑
k=1

[ht,k(z
∗
t , x

∗
t,k, ζ

∗
t,k, λ

∗
t) +Qi

t
(x∗t,k) + γt,k]

≥
mt∑
j=0

ρt,jλ
∗
t,j +

1

nt

nt∑
k=1

[ht,k(z
∗
t , x

∗
t,k, ζ

∗
t,k, λ

∗
t) +Qt(x∗t,k)] ≥ Qt−1(xt−1),

the last inequality is due to the feasibility of (Vt−1, vt−1, xt; γt) in the minimization (4.26).

For the validness of Vt−1(·), note that the value v∗t−1 and the dual solution ut define a valid

linear under-approximation for the functionQ′t−1(·) defined by replacingQt withQi
t

in the

minimization (4.26). Since clearly Q′t−1(xt−1) ≤ Qt−1(xt−1) for all xt−1 ∈ Xt−1, we see

that Vt−1(·) is a valid under-approximation forQt−1(·). Finally the gap vt−1−Vt−1(xt−1) =

1
nt

∑nt
k=1 γt,k ≤ γt is controlled.

Theorem 4.5 and Algorithm 7 would be most useful when the functions ht,k can be

written explicitly as minimization problems. We thus spend the rest of this section to derive

the form of ht,k in a special yet practically important case, where the local cost function ft

can be written as
ft(xt−1, xt; ξt) = min (Atξt + at)

Tyt

s.t. (xt−1, yt, xt) ∈ Ft,
(4.27)

for some compact convex setFt ⊆ Xt−1×Rd′t×Xt in each stage t ∈ T . It is straightforward

to check that ft in (4.27) is lower semicontinuous and convex in (xt−1, xt) for any ξt ∈ Ξt.

To simplify our discussion, we assume that ft(·, xt; ξt) is Mt-Lipschitz continuous, so by

Lemma 4.4 we have fR
t = ft and consequentlyQt = QR

t for all t ∈ T . The problem (4.27)

138

is a common formulation in the usual MSCO literature, such as [40], where Ft is supposed

to be a polytope.

Proposition 4.3. Suppose the local cost function ft(xt−1, xt; ξt) is given in the form (4.27)

and uniformly Mt-Lipschitz continuous in the variable xt−1. Fix any point ξ̄t ∈ intΞt and

let σt(ζ) := supξ∈Ξt ζ
T(ξ− ξ̄t) denote the support function of the set Ξt− ξ̄t. If the functions

gt,j(ξt) = ξTt Bt,jξt + bTt,jξt are quadratic with coefficients Bt,j ∈ Sδt�0 and bt,j ∈ Rδt for

j = 1, . . . ,mt, then we can write

ht,k(xt−1, xt,k, ζt,k, λt) =

min
yt,k,wt,j ,w

′
t,j ,κj

(Atξ̄t + at)
Tyt,k −

mt∑
j=1

λt,j[ξ̄
T
t Bt,j ξ̄t + bTt,j ξ̄t]

+ ζTt,k(ξ̄t − ξ̂t,k) +
mt∑
j=1

κt,j + σt(wt,0)

s.t.
mt∑
j=0

wt,j = ζt,k + AT
t yt,k −

mt∑
j=1

λt,j
[
2Bt,j ξ̄t + bt,j

]
,

κt,j ≥ 0, j = 1, . . . ,m,

wt,j ∈ Rδt , j = 0, . . . ,m,

κt,j + λt,j ≥ ‖(κt,j − λt,j, Ut,jwt,j)‖2, j = 1, . . . ,mt,

wt,j = Bt,jw
′
t,j, w

′
t,j ∈ Rδt , j = 1, . . . ,m,

(xt−1, yt,k, xt,k) ∈ Ft.

(4.28)

Here, Ut,j is a δt × δt real matrix such that UT
t,jUt,j = B†t,j is the pseudoinverse of Bt,j .

Proof. Under the assumptions, we can write the function ht,k as

ht,k(xt−1, xt,k, ζt,k, λt) = sup
ξt∈Ξt

min
yt,k

(Atξt + at)
Tyt,k −

mt∑
j=1

λt,j(ξ
T
t Bt,jξt + bTt,jξt) + ζTt,k(ξt − ξ̂t,k)

s.t. (xt−1, yt,k, xt,k) ∈ Ft.

Note that the objective function in (4.28) is continuous in both yt and ξt,k, and the projec-

139

tion of Ft onto the variables yt,k is compact. Thus by the minimax theorem [84], we can

exchange the supremum and minimum operations

ht,k(xt−1, xt,k, ζt,k, λt) = (4.29)

min
yt,k

(Atξ̄t + at)
Tyt,k −

mt∑
j=1

λt,j[ξ̄
T
t Bt,j ξ̄t + bTt,j ξ̄t] + ζTt,k(ξ̄t − ξ̂t,k)

+ sup
ξt∈Rδt

{
ζTt,kξt − ιt(ξt) + yTt,kAtξt −

mt∑
j=1

λt,j(ξ
T
t Bt,jξt + 2ξ̄tBt,jξt + bTt,jξt)

}
s.t. (xt−1, yt,k, xt,k) ∈ Ft,

where ιt is the convex indicator function of the set Ξt − ξ̄t, the convex conjugate of which

is the support function σt by definition. If we further denote ϕt,j(ξt;λt,j) := λt,j(ξ
T
t Bt,jξt),

the supremum can be written using convex conjugacy as

ιt +
mt∑
j=1

ϕt,j(·;λt,j)

∗(ζt,k + AT
t yt,k −

mt∑
j=1

λt,j
[
2Bt,j ξ̄t + bt,j

])
.

Note that for each j = 1, . . . ,mt, the parametrized conjugate function ϕ∗t,j(·;λt,j) can be

written as [72, Example 11.10]

ϕ∗t,j(w;λt,j) =


wTB†t,jw

4λt,j
, if w ∈ rangeBt,j,

+∞, otherwise,

= min
{
κt,j ≥ 0 : 4κt,jλt,j ≥ (Ut,jw)T(Ut,jw), w = Bt,jw

′
}

= min
{
κt,j ≥ 0 : κt,j + λt,j ≥ ‖(κt,j − λt,j, Ut,jw)‖2, w = Bt,jw

′} ,
which is nonnegative and second-order conic representable. Here the convention for λt,j =

0 is consistent: we have ϕ∗t,j(0; 0) = 0 and ϕ∗t,j(w; 0) = +∞ for any w 6= 0 because

(Ut,jBt,j)
T(Ut,jBt,j) = Bt,jB

†
t,jBt,j = Bt,j , which implies that Ut,jw = Ut,jBt,jw

′ 6= 0.

140

Now using the formula for convex conjugate of sum of convex functions, we have

ιt +
mt∑
j=1

ϕt,j(·;λt,j)

∗ = cl
(
σt2ϕ

∗
t,1(·;λt,1)2 · · · 2ϕt,mt(·;λt,mt)

)
, (4.30)

where 2 denotes the infimal convolution (a.k.a. epi-addition) of two convex functions and

cl denotes the lower semicontinuous hull of a proper function. Since ξ̄t ∈ intΞt, the support

function is coercive, i.e., lim‖w‖→∞ σt(w) = +∞. Moreover, each ϕ∗t,j is bounded below as

it is nonnegative. Therefore, the closure operation is superficial and the convex conjugate

of the sum is indeed lower semicontinuous [74, Proposition 12.14]. The rest of the proof

follows from substitution of this convex conjugate expression (4.30) into the supremum

in (4.29).

4.2.3 Subproblem Oracles: Convex Uncertain Cost Functions

We provide another useful reformulation of the recursion (4.16) in this section, based on

the following assumption.

Assumption 4.4. The local cost function ft(xt−1, xt; ξt) is jointly convex in the state vari-

able xt and the uncertainty ξt, for any xt−1 ∈ Xt−1. Moreover, the uncertainty set Ξt is a

pointed polyhedron and the distance function dt,k(·) is polyhedrally representable.

We first mention some direct consequences of Assumption 4.4. First, the value function

Qt(xt−1; ξt) would be a convex function in the uncertainty ξt for each state xt−1 ∈ Xt−1, al-

though it may not be a jointly convex function. Second, recall that a polyhedron is pointed

if it does not contain any lines. Any point in a pointed polyhedron can be written as a con-

vex combination of its extreme points and rays [85, Theorem 3.37]. Now under Assump-

tion 4.4, we may define a lifted uncertainty set as Ξ̃t,k := {(ζ, ξ) : ξ ∈ Ξt, ζ ≥ dt,k(ξ)}.

It is easy to see that Ξ̃t,k is also a pointed polyhedron. We denote the finite set of ex-

treme points of it as ext Ξ̃t,k = {(ζ̃l, ξ̃l)}l∈Et,k where Et,k is the set of indices, and want to

141

show that the maximization in (4.16) can be taken over the finite set {(ζ̃l, ξ̃l)}l∈Et,k in two

important cases. First, we consider problems with bounded uncertainty sets Ξt.

Proposition 4.4. Under Assumption 4.4, if we further assume that Ξt is bounded and all

functions gt,j are concave for j = 1, . . . ,mt, then the problem (4.16) can be equivalently

reformulated as

Qt−1(xt−1) = min
λt,τt

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

τt,k (4.31)

s.t. λt ≥ 0,

τt,k ≥ Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l), l ∈ Et,k, k = 1, . . . , nt.

Proof. From the definition of lifted uncertainty set Ξ̃t, we have

sup
ξk∈Ξt

Qt(xt−1; ξk)− λt,0dt,k(ξk)−
mt∑
j=1

λt,jgt,j(ξk)


= max

ξk∈Ξt,ζk∈R

Qt(xt−1; ξk)− λt,0ζk −
mt∑
j=1

λt,jgt,j(ξk) : ζk ≥ dt,k(ξk)


= max

(ζk,ξk)∈Ξ̃t,k

Qt(xt−1; ξk)− λt,0ζk −
mt∑
j=1

λt,jgt,j(ξk)


= max

l∈Et,k

Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l)

 .

To see the last equality, note that if Ξt is bounded, then the only recession direction of the

lifted uncertainty set Ξ̃t,k is (1, 0). Since λt,0 ≥ 0, any maximum solution (ζ∗k , ξ
∗
k) lies in

the convex hull of ext Ξ̃t,k. Now the last equality follows from the convexity of the function

Qt(xt−1; ξk)−λt,0ζk−
∑mt

j=1 λt,jgt,j(ξk) in terms of ξk and ζk. Finally, the reformulation is

done by replacing the maximum of finitely many functions by its epigraphical representa-

tion τt,k ≥ Qt(xt−1; ξl)− λt,0ζl −
∑mt

j=1 λt,jgt,j(ξl) for all l ∈ Et,k and k = 1, . . . , nt.

142

If the uncertainty sets Ξt are unbounded, then in general the supremum in (4.16) can

take +∞ in some unbounded directions of Ξt, even when the value functionQt(xt−1; ·) has

finite values everywhere. To avoid such situation, we consider the growth rate of the value

function Qt(xt−1; ·) defined as

rt(xt−1) := lim sup
dt,k(ξt)→∞,

ξt∈Ξt

Qt(xt−1; ξt)−Qt(xt−1; ξ̂t,k)

dt,k(ξt)
≥ 0, (4.32)

for any real-valued Qt(xt−1, ·), where the limit superior is in fact independent of the choice

of k = 1, . . . , nt, and the inequality is due to that Qt(xt−1; ·) is assumed to be lower

bounded by 0. Our convention is to set rt(xt−1) ≡ 0 when Ξt is bounded. We now consider

problems with unbounded uncertainty sets Ξt.

Proposition 4.5. Under Assumption 4.4, if Qt(xt−1; ·) has finite growth rate rt(xt−1) and

all functions gt,j are bounded and concave for j = 1, . . . ,mt, then the problem (4.16) with

any xt−1 ∈ Xt−1 such that Qt−1(xt−1) < +∞ can be equivalently reformulated as

Qt−1(xt−1) = min
λt,τt

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

τt,k (4.33)

s.t. λt ≥ 0,

λt,0 ≥ rt(xt−1),

τt,k ≥ Qt(xt−1; ξ̃l)− λt,0ζ̃l −
mt∑
j=1

λt,jgt,j(ξ̃l), l ∈ Et,k, k = 1, . . . , nt.

Proof. We claim that the supremum

sup
ξk∈Ξt

{
Qt(xt−1; ξk)− λt,0dt,k(ξk)−

mt∑
j=1

λt,jgt,j(ξk)

}
< +∞

if and only if λt,0 ≥ rt(xt−1), for each k = 1, . . . , nt. Suppose λt,0 < rt(xt−1). By

definition (4.32), there exists a sequence {ξ(i)
k }i∈N ⊆ Ξt and a constant ε > 0 such that

143

dt,k(ξ
(i)
k) → ∞ as i → ∞ and Qt(xt−1; ξ

(i)
k) ≥ Qt(xt−1; ξ̂t,k) + (λt,0 + ε)dt,k(ξ

(i)
k).

Thus supi∈N{Qt(xt−1; ξ
(i)
k) − λt,0dt,k(ξ

(i)
k) −

∑mt
j=1 λt,jgt,j(ξ

(i)
k)} ≥ supi∈N{εdt,k(ξ

(i)
k) −∑mt

j=1 λt,jgt,j(ξ
(i)
k)} = +∞ as gt,j(ξ

(i)
k) for j = 1, . . . ,mt are bounded.

Conversely, by definition (4.32), there exists a constant d̄ > dt,k(ξ̂t,k) such that

Qt(xt−1; ξk) ≤ Qt(xt−1; ξ̂t,k) + λt,0dt,k(ξk)

for all ξk ∈ Ξt with dt,k(ξk) ≥ d̄. Thus we have

sup
ξk∈Ξt

Qt(xt−1; ξk)− λt,0dt,k(ξk)−
mt∑
j=1

λt,jgt,j(ξk)


≤ sup

dt,k(ξk)≤d̄

{
Qt(xt−1; ξk)− λt,0dt,k(ξk)

}
+ sup

ξk∈Ξt

mt∑
j=1

(
−λt,jgt,j(ξk)

)
= max

(ζk,ξk)∈Ξ̃t(d̄)

{
Qt(xt−1; ξk)− λt,0ζk

}
+ sup

ξk∈Ξt

mt∑
j=1

(
−λt,jgt,j(ξk)

)
< +∞,

where Ξ̃t(d̄) := {(ζ, ξ) : ξ ∈ Ξt, dt,k(ξ) ≤ d̄, ζ ≥ dt,k(ξ)}, and the maximum is finite be-

cause it is attained on some extreme point (ζ̄k, ξ̄k) ∈ Ξ̃t(d̄) by convexity, so Qt(xt−1; ξ̄k)−

λt,0ζ̄k < +∞.

Now from this claim, we see that for any xt−1 ∈ Xt−1 such thatQt−1(xt−1) < +∞, the

problem (4.16) can be formulated equivalently as

Qt−1(xt−1) = min
λt≥0

mt∑
j=0

ρt,jλt,j +
1

nt

nt∑
k=1

sup
(ζk,ξk)∈Ξt

{
Qt(xt−1; ξk)− λt,0ζk −

mt∑
j=1

λt,jgt,j(ξk)

}
s.t. λt,0 ≥ rt(xt−1).

The supremum can be attained in Ξ̃′t,k := conv(ext Ξ̃t,k): otherwise there exists a point

(ζ̌k, ξ̌k) ∈ Ξ̃t,k \ Ξ̃′t,k and (ζ̄k, ξ̄k) ∈ Ξ̃′t,k such that

Qt(xt−1; ξ̌k)− λt,0ζ̌k −
mt∑
j=1

λt,jgt,j(ξ̌k) > Qt(xt−1; ξ̄k)− λt,0ζ̄k −
mt∑
j=1

λt,jgt,j(ξ̄k).

144

In other words, (ζ̌k, ξ̌k)− (ζ̄k, ξ̄k) defines a strictly increasing ray of Ξ̃t, which by convexity

implies that the supremum is +∞, a contradiction. Using the convexity again as in the

proof of Proposition 4.4, we conclude that the supremum is indeed attained in ext Ξ̃t,k, and

this completes the proof.

Proposition 4.5 reduces to Proposition 4.4 since the growth rate rt(xt−1) = 0 and any

continuous function gt,j over a bounded polyhedron is bounded. The finite growth rate

condition is often satisfied, especially when the value function Qt(xt−1; ·) is Lipschitz con-

tinuous. However, it is in general difficult to estimate the growth rate (4.32).

Note that the problems (4.31) and (4.33) are standard linear optimization problems in

the variables λt and τt. Thus by strong duality, we can write the dual problem as

Qt−1(xt−1) = max
θt,κt,k,l≥0

θtrt(xt−1) +
nt∑
k=1

∑
l∈Et,k

κt,k,lQt(xt−1; ξ̃l)

s.t.
∑
l∈Et,k

κt,k,l =
1

nt
, k = 1, . . . , nt,

θt +
nt∑
k=1

∑
l∈Et,k

ζ̃lκt,k,l ≤ ρt,0,

nt∑
k=1

∑
l∈Et,k

gt,j(ξ̃l)κt,k,l ≤ ρt,j, j = 1, . . . ,mt.

(4.34)

Consequently, any feasible dual solutions θt and κt,k,l to the dual (4.34) define a valid

under-approximation

Qt−1(xt−1) ≥ θtrt(xt−1) +
nt∑
k=1

∑
l∈Et,k

κt,k,lQt(xt−1; ξ̃l), ∀xt−1 ∈ Xt−1. (4.35)

We now describe an SSSO implementation in Algorithm 8. Its correctness is verified in

the following corollary.

Corollary 4.5. Suppose that the growth rate function rt(·) is convex. Under the assump-

tions of of Proposition 4.5, the outputs (Vt−1, vt−1, xt; γt) of Algorithm 8 satisfy the condi-

145

Algorithm 8 Single Stage Subproblem Oracle Implementation Under Assumption 4.4

Require: over- and under-approximations Qit and Qi
t
, a state xt−1 ∈ Xt−1, growth rate

rt(xt−1), and extreme point sets ext Ξ̃t,k for k = 1, . . . , nt
Ensure: a linear cut Vt−1, an overestimate vt−1, a state xt, and a gap value γt

1: for k = 1, . . . , nt do
2: for l ∈ Et,k do
3: Evaluate the approximate value function

Q
t
(xt−1; ξ̃l) := min

xt∈Xt
ft(xt−1, xt; ξ̃l) +Qi

t
(xt)

with a minimizer stored as xt,k,l and a subgradient vector as ut,k,l ∈ ∂Qt
(·; ξ̃l) at xt−1

4: Calculate γt,k,l := Qit(xt,k,l)−Qit(xt,k,l)
5: end for
6: end for
7: Solve the problem (4.33) (or (4.31) if Ξt is bounded) with Qt(xt−1; ξ̃l) replaced by
Q
t
(xt−1; ξ̃l) and store the optimal value v∗t−1 and dual solutions θ∗t , κ

∗
t,k,l to (4.34)

8: for k = 1, . . . , nt do
9: Take any l∗ ∈ arg max

{
Qit(xt,k,l)−Qit(xt,k,l) : l ∈ Et,k

}
10: Set γt,k ← γt,k,l∗ and xt,k ← xt,k,l∗
11: end for
12: Take a subgradient wt ∈ ∂rt(·) at xt−1

13: Set Vt−1(·)← v∗t−1 + θ∗tw
T
t (· − xt−1) +

∑nt
k=1

∑
l∈Et κ

∗
t,k,lu

T
t,k,l(· − xt−1)

14: Set vt−1 ← v∗t−1 + 1
nt

∑nt
k=1 γt,k

15: Take any k∗ ∈ arg max{γt,k : k = 1, . . . , nt} and set xt ← xt,k∗ , γt ← γt,k∗

tions in Definition 3.2.

Proof. The validness of Vt−1(·) follows directly from the inequality (4.35) and the fact that

Q
t
(xt−1; ξk) ≤ Qt(xt−1; ξk) for any xt−1 ∈ Xt−1 and ξk ∈ Ξt by definition. To see the

validness of vt−1, note that for any k = 1, . . . , nt and l ∈ Et,k, we have

Qt(xt−1; ξ̃l) ≤ min
xt∈Xt

[
ft(xt−1, xt; ξ̃l) +Qit(xt)

]
≤ ft(xt−1, xt,k,l; ξ̃l) +Qit(xt,k,l)

≤ ft(xt−1, xt,k,l; ξ̃l) +Qi
t
(xt,k,l) + γt,k,l

≤ Q
t
(xt−1; ξ̃l) + γt,k

by the definition of γt,k in Algorithm 8. Thus for any optimal solution λ∗t to the prob-

146

lem (4.33) with Qt(xt−1; ξ̃l) replaced by Q
t
(xt−1; ξ̃l), we have

max
l∈Et,k

Qt(xt−1; ξ̃l)−λ∗t,0ζ̃l−
mt∑
j=1

λ∗t,jgt,j(ξ̃l) ≤ max
l∈Et,k

Q
t
(xt−1; ξ̃l)−λ∗t,0ζ̃l−

mt∑
j=1

λ∗t,jgt,j(ξ̃l)+γt,k,

and consequently vt−1 ≥ Qt−1(xt−1) since λ∗t is also a feasible solution to the minimization

in (4.33). Finally, the gap is controlled since vt−1 − Vt−1(xt−1) = 1
nt

∑nt
k=1 γt,k ≤ γt,k∗ =

Qit(xt)−Qit(xt).

4.3 Numerical Experiments

In this section, we first introduce baseline models used for comparison against the MDRO

model (4.1). Then we present comprehensive numerical studies of two application prob-

lems: the multi-commodity inventory problem with either uncertain demands or uncertain

prices, and the hydro-thermal power system planning problem with uncertain water inflows.

4.3.1 Baseline Models and Experiment Settings

For performance comparison, we introduce two types of baseline models in addition to

the MDRO with Wasserstein ambiguity sets (4.7). The first baseline model is the sim-

ple multistage robust convex optimization (MRCO) model, where we simply consider the

worst-case outcome out of the uncertainty set Ξt in each stage t. Namely, the cost-to-go

functions of the MRCO can be defined recursively as

QRobust
t−1 (xt−1) := sup

ξt∈Ξt

min
xt∈Xt

ft(xt−1, xt; ξt) +QRobust
t (xt), t = T, T − 1, . . . , 2. (4.36)

When the sum ft(xt−1, xt; ξt) +QRobust
t (xt) is jointly convex in the state xt and the uncer-

tainty ξt for any given xt−1, then the supremum can be attained at some extreme point of

the convex hull of Ξt if it is finite. In particular, if we have relatively complete recourse,

(i.e., the sum is always finite for any given xt−1), and if Ξt is a polytope, (i.e., it is a convex

147

hull of finitely many points), then we can enumerate over the extreme points of Ξt to find

the supremum, which allows us to solve the simple MRCO by Algorithm 5. In general,

if the uncertainty set Ξt is unbounded, then the cost-to-go functions of the MRCO model

can take +∞ everywhere, so we will only use the baseline MRCO model when we have

polytope uncertainty sets Ξt.

The second type of baseline models consists of risk-neutral and risk-averse multistage

stochastic convex optimization (MSCO) models constructed from the empirical probabil-

ity measures ν̂t. That is, in each stage t = 2, . . . , T , we only consider the outcomes

ξ̂t,1, . . . , ξ̂t,nt that have appeared in the empirical probability measure. The risk measure

we use is called conditional value-at-risk (CVaR, a.k.a. average value-at-risk or expected

shortfall). Its coherence leads to a dual representation [52], that allows the risk-averse

MSCO models solved by Algorithm 5 with a straightforward implementation of SSSO. For

simplicity, we only introduce the CVaR risk-averse MSCO based on this dual representa-

tion, and any interested reader is referred to [12] for the primal definition and the proof of

duality.

Given parameters α ∈ (0, 1) and β ∈ [0, 1], we define the cost-to-go functions associ-

ated with the (α, β)-CVaR risk measures recursively for t = T, T − 1, . . . , 2 as

QCVaR
t−1 (xt−1) := max

pt∈PCVaR
t

nt∑
k=1

pt,k

{
min
xt∈Xt

ft(xt−1, xt; ξ̂t,k) +QCVaR
t (xt)

}
, (4.37)

where the ambiguity set is defined as

PCVaR
t :=

{
pt = (pt,1, . . . , pt,nt) ∈ Rnt

≥0 :
nt∑
k=1

pt,k = 1, pt,k ≤
β

nt
+

1− β
αnt

, k = 1, . . . , nt

}
.

(4.38)

Note that when β = 1, the ambiguity set PCVaR
t = {(1

nt
, . . . , 1

nt
)} has only one element

corresponding to the empirical probability measure. Thus the CVaR risk-averse MSCO

model (4.37) reduces to the risk-neutral nominal MSCO in this case. Alternatively, if β =

0 and α ≤ 1
nt

, then the CVaR risk-averse MSCO model 4.37 considers only the worst

148

outcome of the empirical probability measure in each stage. We remark that both the simple

MRCO model (4.36) and the CVaR risk-averse MSCO model (4.37) can be solved by

Algorithm 5 since only finitely many outcomes need to be considered in each stage t. More

details on the SSSO for these two baseline models can be found in [69].

Our numerical experiments aim to demonstrate two attractive aspects of the MDRO

models on some application problems: better out-of-sample performance compared to the

baseline models, and ability to achieve out-of-sample performance guarantee with reason-

able conservatism. For ease of evaluation, we assume that we have the knowledge of the

true underlying probability measures νt for each stage t = 2, . . . , T on infinite support sets

Ξt. The experiments are then carried out in the following procedures.

1. Draw nt iid samples from νt to form the empirical probability measures ν̂t;

2. Construct the baseline models and MDRO models using ν̂t;

3. Solve these models using our DDP algorithm (Algorithm 5) to a desired accuracy or

within the maximum number of iterations or computation time;

4. Draw N iid sample paths from (ν2, . . . , νT) and evaluate the performance profiles

(mean, variance, and quantiles) of the models on these sample paths.

In particular, we focus on limited or moderate training sample sizes nt ∈ {5, 10, 20, 40},

while keeping our sizes of evaluation sample paths to be large (N = 100, 000). In each

independent test run of our numerical experiment, the training samples used in a smaller-

sized test are kept in larger-sized tests, and the evaluation sample paths are held unchanged

for all models and sample sizes.

Our algorithms and numerical examples are implemented using Julia 1.6 [86], with

Gurobi 9.0 [87] interfaced through the JuMP package (version 0.23) [78]. We use 25 single-

core 2.1GHz Intel Xeon processors (24 for the worker processes and 1 for the manager

process) with 50 GByte of RAM to allow parallelization of the SSSO (Algorithm 8).

149

4.3.2 Multi-commodity Inventory Problems

We consider a multi-commodity inventory problem which is adapted from the ones stud-

ied in [39, 69]. Let J := {1, 2, . . . , J} denote the set of product indices. We first de-

scribe the variables in each stage t ∈ T . We use xlt,j to denote the variable of inventory

level, yat,j (resp. xbt,j) to denote the amount of express (resp. standard) order fulfilled in

the current (resp. subsequent) stage, and yrt,j to denote the amount of rejected order of

each product j ∈ J . Let xt := (xlt,1, . . . , x
l
t,K , x

b
t,1, . . . , x

b
t,K) be the state variable and

yt := (yat,1, . . . , y
a
t,K , y

r
t,1, . . . , y

r
t,K) be the internal variable for each stage t ∈ T . The stage

t subproblem can be defined through the local cost functions ft as

ft(xt−1, xt; ξt) := min
yt

CF +
∑
j∈J

(
Ca
t,jy

a
t,j + Cb

t,jx
b
t,j + Cr

j y
r
t,j + CH

j [xlt,j]+ + CB
j [xlt,j]−

)
(4.39)

s.t.
∑
j∈J

yat,j ≤ Bc,

xlt,j ≤ xlt−1,j + yat,j + xbt−1,j + yrt,j −Dt,j, ∀ j ∈ J ,

yat,j ∈ [0, Ba
j], ∀ j ∈ J ,

xbt,j ∈ [0, Bb
j], ∀ j ∈ J ,

yrt,j ∈ [0, Dt,j], ∀ j ∈ J ,

xlt,j ∈ [Bl,−
j , Bl,+

j], ∀ j ∈ J .

In the definition (4.39), we use Ca
t,j = Ca

t,j(ξt) (resp. Cb
t,j = Cb

t,j(ξt)) to denote the un-

certain express (resp. standard) order unit cost, CH
j (resp. CB

j) the inventory holding (resp.

backlogging) unit cost, Cr
j the penalty on order rejections, CF ≡ 1 a positive fixed cost, Ba

j

(resp.Bb
j) the bound for the express (resp. standard) order, andBl,−

j , Bl,+
j the bounds on the

backlogging and inventory levels, Dt,j = Dt,j(ξt) the uncertain demand for the product j,

respectively. The first constraint in (4.39) is a cumulative bound Bc on the express orders,

150

the second constraint characterizes the change in the inventory level, and the rest are bounds

on the decision variables with respect to each product. The notations [x]+ := max{x, 0}

and [x]− := −min{0, x} are used to denote the positive and negative parts of a real num-

ber x. The initial state is given by xb0,j = xl0,j = 0 for all j ∈ J . Before we discuss the

details of the uncertain parameters Ca
t,j, C

b
t,j or Dt,j , we make the following remarks on the

definition (4.39).

First, it is easy to check that if we Ca
t,j, C

b
t,j (resp. Dt,j) are deterministic, then As-

sumption 4.4 (resp. Assumption 4.3) is satisfied so we are able to apply the SSSO imple-

mentations discussed in Sections 4.2.3 and 4.2.2. Second, as the bounds Bl,−
j , Bl,+

j do not

change with t and all orders can be rejected (i.e., yrt,j = Dt,j is feasible for all j ∈ J), we

see that the problem (4.39) has relatively complete recourse. Third, the Lipschitz constant

of the value functions Qt(·; ξt) is uniformly bounded by
∑

j∈J C
r
j , so Proposition 4.2 can

be applied here if we set the regularization factors to be sufficiently large Mt ≥
∑

j∈J C
r
j .

Besides, the Lipschitz continuity guarantees the in-sample adjustable conservatism by The-

orem 4.4. Last, since all state variables are bounded, together with the above observation,

we know by Theorem 3.1 that Algorithm 5 would always converge on our inventory prob-

lem (4.39).

4.3.3 Inventory Problems with Uncertain Demands

First, we consider the inventory problems with uncertain demands, where the goal is to

seek a policy with minimum mean inventory cost plus the penalty on order rejections. The

uncertain demands are modeled by the following expression:

Dt,j(ξt) := D0

[
1 + cos

(
2π(t+ j)

τ

)]
+ D̄ · ξt,j, j ∈ J , t ∈ T . (4.40)

Here, D0 is a factor and τ is the period for the base demands, and D̄ is the bound on

the uncertain demands. The uncertain vector ξt ∈ [0, 1]J has its components described as

151

follows: ξt,1 ∼ Uniform(0, 1), and for j = 2, . . . , J , we have

ξt,j | ξt,j−1 ∼


Uniform(0, (1 + ξt,j−1)/2), if ξt,j−1 ≤

1

2
,

Uniform(ξt,j−1/2, 1), otherwise.
(4.41)

For the experiments, we consider J = 3 products and T = τ = 5 stages. The unit prices of

each product are deterministically set to Ca
t,j = 5 and Cb

t,j = 1 for all t ∈ T ; the inventory

and holding costs are CH
j = 2 and CB

j = 10, and the rejection costs are Cr
j = 100, for each

j ∈ J . The bounds are set to Bc = 15, Ba
j = 10, Bb

j = 20, Bl,−
j = 10, and Bl,+

j = 100

for each j ∈ J . We pick the uncertainty parameters D0 = 5 and D̄ = 50. We terminate

the DDP algorithm if it reaches 1% relative optimality or 2000 iterations. For Wasserstein

ambiguity sets, we only consider the radius constraint (i.e., mt = 0) with radius set to be

relative to the following estimation of the distance among data points:

d̂t := max
k=1,...,nt

1

nt

∑
k′ 6=k

‖ξ̂t,k − ξ̂t,k′‖. (4.42)

For the CVaR baseline models, we consider parameters α ∈ {0.01, 0.05, 0.10} and β ∈

{0.0, 0.25, 0.50, 0.75}.

Using the experiment procedure described in Section 4.3.1, we present the results of

three independent test runs of our data-driven MDRO model with Wasserstein ambiguity

sets and the baseline models.

Figures 4.1, 4.2, and 4.3 display the out-of-sample performance quantiles of the nom-

inal stochastic model and the MDRO models with different Wasserstein radii, constructed

from the empirical probability measures ν̂t. Here we use the log radius −∞ to denote the

nominal stochastic model, i.e., ρt,0 = 0. From the figures, we see that in small-sample

case (nt = 5), the Wasserstein MDRO model significantly reduces the top 10% out-of-

sample evaluation costs when the radius is set to be 10−1.4 − 10−1.0 of the estimation d̂t.

Moreover, the difference between top 10% and bottom 10% of the out-of-sample evalua-

152

1,600

1,800

2,000

2,200

2,400

2,600

2,800
C
os
ts

nt = 5

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

nt = 10

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

1,600

1,800

2,000

2,200

2,400

2,600

2,800

Log Rel. Radius

C
os
ts

nt = 20

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Log Rel. Radius

nt = 40

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

Figure 4.1: Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test Run
No. 1

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

C
os
ts

nt = 5

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

nt = 10

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

Log Rel. Radius

C
os
ts

nt = 20

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Log Rel. Radius

nt = 40

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

Figure 4.2: Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test Run
No. 2

153

1,500

2,000

2,500

3,000

3,500

C
os
ts

nt = 5

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

nt = 10

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

1,500

2,000

2,500

3,000

3,500

Log Rel. Radius

C
os
ts

nt = 20

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

−∞ -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Log Rel. Radius

nt = 40

Top 10%
Top 30%
Median
Bottom 30%
Bottom 10%

Figure 4.3: Out-of-sample Performance of (4.1) with Different Wasserstein Radii, Test Run
No. 3

tion costs becomes smaller around the 10−1.0 · d̂t even for larger sample sizes. However,

the median out-of-sample cost increases with the Wasserstein radius, suggesting that larger

Wasserstein radii in the MDRO model could lead to overly conservative policies.

To better quantify the trade-off between mean and variance (or equivalently standard

deviation) of the out-of-sample evaluation costs on the policies from different models, we

present Figures 4.4, 4.5, and 4.6. Here, the lines connect the points representing Wasser-

stein MDRO models from the smallest radius to the largest one. We say one policy domi-

nates another policy if the former has smaller mean and standard deviation than the latter

does, and have the following observations. First, in all cases, the policy from the robust

model is dominated by some policy from the Wasserstein MDRO model. Second, the pol-

icy from the nominal stochastic model is dominated by some policy from the MDRO model

with a small Wasserstein radius, when the sample size is small (nt = 5 or sometimes 10).

Last, policies from the CVaR model are dominated by policies from the MDRO model,

until the sample sizes increase to nt = 20 or 40.

154

0

200

400

600

800

1,000
S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 5 Wasserstein
CVaR
Nominal
Robust

nt = 10 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

0

200

400

600

800

1,000

Mean

S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 20 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

Mean

nt = 40 Wasserstein
CVaR
Nominal
Robust

Figure 4.4: Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 1

0

200

400

600

800

1,000

1,200

S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 5 Wasserstein
CVaR
Nominal
Robust

nt = 10 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

0

200

400

600

800

1,000

1,200

Mean

S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 20 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

Mean

nt = 40 Wasserstein
CVaR
Nominal
Robust

Figure 4.5: Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 2

155

0

200

400

600

800

1,000

1,200

S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 5 Wasserstein
CVaR
Nominal
Robust

nt = 10 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

0

200

400

600

800

1,000

1,200

Mean

S
ta
n
d
ar
d
D
ev
ia
ti
on

nt = 20 Wasserstein
CVaR
Nominal
Robust

1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700 2,750 2,800

Mean

nt = 40 Wasserstein
CVaR
Nominal
Robust

Figure 4.6: Out-of-sample Performance Comparison against Baseline Models, Test Run
No. 3

4.3.4 Inventory Problems with Uncertain Prices

Now we discuss the inventory problems with uncertain prices and fixed demands. These

problems can be viewed as a simplified model for supply contract problems [88], where

the goal is to estimate the total cost of such supply contract and under-estimation would be

very undesirable. The uncertain prices are modeled by the following expression:

Cb
t,j(ξt) := ξt,j, Ca

t,j(ξt) := C1 · ξt,j, j ∈ J , t ∈ T . (4.43)

Here, C1 is a factor for express orders. The uncertain vector ξt ∈ RJ
≥0 follows a truncated

multivariate normal distribution:

ξt := max
{

Normal(µt, C̄ · Σt), C
}
, µt := C0

[
1 + sin

(
2π(t+ j)

τ

)]
, (4.44)

where the maximum is taken componentwise, C0 is a factor for base prices, τ is the period,

C̄ is the magnitude on the price variation, C is the lower bound on the prices, and the co-

variance matrix Σt is randomly generated (by multiplying a uniformly distributed random

156

matrix with its transpose) and normalized to have its maximum eigenvalue equal to 1. The

demands are deterministically given by

Dt,j := D0

[
1 + cos

(
2π(t+ j)

τ

)]
+ D̄, j ∈ J , t ∈ T . (4.45)

For the experiments, we consider J = 5 products, T = 10 stages, and the period τ = 5.

The price uncertainty has parametersC0 = 1, C1 = 5, C̄ = 0.1, andC = 0.001. We choose

the demand parameters D0 = 5 and D̄ = 10. The inventory and holding costs are CH
j = 1

and CB
j = 10, and the rejection costs are Cr

j = 100, for each j ∈ J . The bounds are set to

Bc = 15, Ba
j = 10, Bb

j = 20, Bl,−
j = 20, and Bl,+

j = 20 for each j ∈ J . The Wasserstein

radii in the MDRO models are set relatively with respect to d̂t defined in (4.42).

0

500

1,000

1,500

2,000

C
os
ts

nt = 5 In-sample
Out-of-sample

nt = 10 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

0

500

1,000

1,500

2,000

Models

C
os
ts

nt = 20 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

Models

nt = 40 In-sample
Out-of-sample

Figure 4.7: Comparison of In-sample and Out-of-sample Costs, Test Run No. 1

We plot the in-sample objective costs and out-of-sample mean evaluation costs in Fig-

ures 4.7, 4.8, and 4.9. The label Nominal refers to the nominal stochastic model; Wass(γ)

refers to the Wasserstein MDRO model with radius ρt,0 = γ · d̂t in each stage t ≥ 2;

and CVaR(α, β) refers to the CVaR risk-averse model with parameters α and β. As the

uncertainty vectors now have an unbounded support, the robust model is no longer appli-

157

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

C
os
ts

nt = 5 In-sample
Out-of-sample

nt = 10 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Models

C
os
ts

nt = 20 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

Models

nt = 40 In-sample
Out-of-sample

Figure 4.8: Comparison of In-sample and Out-of-sample Costs, Test Run No. 2

0

500

1,000

1,500

2,000

C
os
ts

nt = 5 In-sample
Out-of-sample

nt = 10 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

0

500

1,000

1,500

2,000

Models

C
os
ts

nt = 20 In-sample
Out-of-sample

N
om

in
al

W
as
s(
0.
2)

W
as
s(
0.
4)

W
as
s(
0.
6)

W
as
s(
0.
8)

W
as
s(
1.
0)

W
as
s(
1.
2)

W
as
s(
1.
4)

W
as
s(
1.
6)

W
as
s(
1.
8)

W
as
s(
2.
0)

W
as
s(
2.
2)

W
as
s(
2.
4)

W
as
s(
2.
6)

W
as
s(
2.
8)

W
as
s(
3.
0)

C
V
aR

(0
.7
5,
0.
9)

C
V
aR

(0
.5
,0
.9
)

C
V
aR

(0
.2
5,
0.
9)

C
V
aR

(0
.0
,0
.9
)

C
V
aR

(0
.7
5,
0.
95
)

C
V
aR

(0
.5
,0
.9
5)

C
V
aR

(0
.2
5,
0.
95
)

C
V
aR

(0
.0
,0
.9
5)

Models

nt = 40 In-sample
Out-of-sample

Figure 4.9: Comparison of In-sample and Out-of-sample Costs, Test Run No. 3

158

cable. We see that in all cases, the in-sample objective cost grows linearly with respect to

the Wasserstein distance, as predicted by Theorem 4.4. As the nominal stochastic model

inevitably under-estimates the mean evaluation costs, using Wasserstein MDRO models

with a relative radius γ ∈ [1.6, 2.4] depending on the sample size nt could achieve the

out-of-sample performance guarantee in almost all test cases. Moreover, none of the CVaR

risk-averse model in the experiments could achieve similar effect. Thus we believe that the

Wasserstein MDRO models are particularly more favorable in the context of supply con-

tracts. It is however worth mentioning that we do not observe any improvement of the mean

or the variance of evaluation costs from the Wasserstein MDRO model over the baseline

models.

159

CHAPTER 5

CONCLUSION

In this dissertation, we first propose three algorithms in a unified framework of DDP for

solving mixed-integer nonlinear MSO problems. The first algorithm is a generalization

of the classic nested Benders decomposition algorithm, which deals with general scenario

trees without the stagewise independence property. The second and third algorithms gen-

eralize DDP with sampling procedures on a stagewise independent scenario tree, where

the second algorithm uses a deterministic sampling approach, and the third one uses a

randomized sampling approach. The proposed algorithms are built on regularization of

value functions, which enables them to handle problems with value functions that are non-

Lipschitzian or discontinuous. We show that the regularized problem preserves the feasi-

bility and optimality of the original multistage program, when the corresponding penalty

reformulation satisfies exact penalization. The key ingredient of the proposed algorithms

is a new class of cuts based on generalized conjugacy for approximating nonconvex cost-

to-go functions of the regularized problems.

We obtain upper and lower bounds on the iteration complexity of the proposed algo-

rithms on mixed-integer nonlinear MSO problem classes that allow exact Lipschitz regu-

larization with predetermined penalty functions and parameters. The complexity analysis

is new and deepens our understanding of the behavior of SDDP. For example, it is the first

time to prove that the iteration complexity of the deterministic DDP depends polynomi-

ally on the number of stages, not exponentially, for both convex and nonconvex multistage

stochastic programs, and this complexity dependence can be reduced to linear if the opti-

mality gap is allowed to scale linearly with the number of stages, or if all the state spaces are

finite sets. These findings resolve a conjecture on the scalability of DDP-type algorithms.

Second, we proposed a new class of algorithms that generalize and strengthen DDP

160

algorithms to solve a broad class of convex MDRO problems. The new algorithms use

regularization to effectively control the growth of Lipschitz constants in the approxima-

tion and to handle problems without relatively complete recourse. We provide a thorough

complexity analysis of the new algorithms given SSSO, proving both upper complexity

bounds and a matching lower bound, which reveal, in a precise way, the dependence of

the complexity of the DDP-type algorithms on the number of stages, the dimension of the

decision space, and various regularity characteristics of MDRO. This is the first complexity

analysis of DDP-type algorithms in such a general setting, and we believe it provides key

insights for further developing efficient computational tools for the very many applications

of sequential decision making under uncertainty. We also provide numerical examples to

show the capability of the DDP-type algorithms method to solve problems without rela-

tively complete recourse, and reduction in computation time and number of subproblem

oracle evaluations, due to the regularization technique.

Then we apply the DDP algorithms to convex data-driven MDRO models with Wasser-

stein ambiguity sets. Using a verifiable generalized Slater condition, we derive a strong

duality result that allows finite dimensional dual recursion of the MDRO models. We also

review the out-of-sample performance guarantee in the multistage setting, and prove that

the in-sample conservatism is adjustable when the value functions are Lipschitz continuous

in the uncertainty vectors. By exploiting either the concavity or the convexity of uncertain

local cost functions, we propose two new implementations of SSSO that ensures the con-

vergence of DDP algorithms on these MDRO models. Extensive numerical experiments on

inventory problems are conducted to measure the performance of policies obtained from the

MDRO models against those from the risk-neutral and CVaR-based risk-averse empirical

MSO models, and the standard MRO model. We observe that the MDRO models yield poli-

cies that reduce the out-of-sample mean cost by up to 3.24%-10.35% with 35.75%-51.13%

reduction of the standard deviation, compared with the risk-neutral empirical MSO model,

and dominate the risk-averse empirical MSO models for small sample sizes and the MRO

161

model in all sample sizes. Moreover, for inventory problems with uncertain prices, the

policies from MDRO models are able to achieve the desired out-of-sample performance

guarantee with no more than 2.59% increase of the out-of-sample mean cost in almost all

cases.

162

REFERENCES

[1] S. Takriti, B. Krasenbrink, and L. S.-Y. Wu, “Incorporating Fuel Constraints and
Electricity Spot Prices into the Stochastic Unit Commitment Problem,” Operations
Research, vol. 48, no. 2, pp. 268–280, Apr. 2000.

[2] L. Baringo and A. J. Conejo, “Risk-Constrained Multi-Stage Wind Power Invest-
ment,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 401–411, Feb. 2013.

[3] J. Zou, S. Ahmed, and X. A. Sun, “Multistage Stochastic Unit Commitment Us-
ing Stochastic Dual Dynamic Integer Programming,” IEEE Transactions on Power
Systems, vol. 34, no. 3, pp. 1814–1823, May 2019.

[4] ——, “Partially Adaptive Stochastic Optimization for Electric Power Generation
Expansion Planning,” INFORMS Journal on Computing, vol. 30, no. 2, pp. 388–
401, May 2018.

[5] S. P. Bradley and D. B. Crane, “A Dynamic Model for Bond Portfolio Management,”
Management Science, vol. 19, no. 2, pp. 139–151, Oct. 1972.

[6] M. I. Kusy and W. T. Ziemba, “A Bank Asset and Liability Management Model,”
Operations Research, vol. 34, no. 3, pp. 356–376, Jun. 1986.

[7] J. M. Mulvey and H. Vladimirou, “Stochastic Network Programming for Financial
Planning Problems,” Management Science, vol. 38, no. 11, pp. 1642–1664, Nov.
1992.

[8] L. F. Escudero, P. V. Kamesam, A. J. King, and R. J.-B. Wets, “Production planning
via scenario modelling,” Annals of Operations research, p. 27, 1993.

[9] Z.-L. Chen, S. Li, and D. Tirupati, “A scenario-based stochastic programming ap-
proach for technology and capacity planning,” Computers & Operations Research,
vol. 29, no. 7, pp. 781–806, Jun. 2002.

[10] S. Ahmed, A. J. King, and G. Parija, “A Multi-stage Stochastic Integer Programming
Approach for Capacity Expansion under Uncertainty,” Journal of Global Optimiza-
tion, p. 23, 2000.

[11] B. Basciftci, S. Ahmed, and N. Gebraeel, “Adaptive Two-stage Stochastic Program-
ming with an Application to Capacity Expansion Planning,” arXiv:1906.03513 [math],
Jun. 2019. arXiv: 1906.03513 [math].

[12] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic program-
ming: modeling and theory. SIAM, 2021.

163

https://arxiv.org/abs/1906.03513

[13] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization. Princeton Uni-
versity Press, 2009, vol. 28.

[14] H. E. Scarf, A min-max solution of an inventory problem. Rand Corporation Santa
Monica, 1957.

[15] E. Delage and Y. Ye, “Distributionally Robust Optimization Under Moment Uncer-
tainty with Application to Data-Driven Problems,” Operations Research, vol. 58,
no. 3, pp. 595–612, Jun. 2010.

[16] A. Shapiro and S. Ahmed, “On a class of minimax stochastic programs,” SIAM Jour-
nal on Optimization, vol. 14, no. 4, pp. 1237–1249, 2004.

[17] W. Wiesemann, D. Kuhn, and M. Sim, “Distributionally robust convex optimiza-
tion,” Operations Research, vol. 62, no. 6, pp. 1358–1376, 2014.

[18] A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen, “Ro-
bust Solutions of Optimization Problems Affected by Uncertain Probabilities,” Man-
agement Science, vol. 59, no. 2, pp. 341–357, Feb. 2013.

[19] G. Bayraksan and D. K. Love, “Data-driven stochastic programming using phi-
divergences,” in The operations research revolution, INFORMS, 2015, pp. 1–19.

[20] H. Rahimian, G. Bayraksan, and T. Homem-de-Mello, “Identifying effective sce-
narios in distributionally robust stochastic programs with total variation distance,”
Mathematical Programming, vol. 173, no. 1, pp. 393–430, 2019.

[21] D. Bertsimas, V. Gupta, and N. Kallus, “Data-driven robust optimization,” Mathe-
matical Programming, vol. 167, no. 2, pp. 235–292, 2018.

[22] H. Rahimian and S. Mehrotra, “Distributionally Robust Optimization: A Review,”
arXiv:1908.05659 [cs, math, stat], Aug. 2019. arXiv: 1908.05659 [cs, math,
stat].

[23] F. Lin, X. Fang, and Z. Gao, “Distributionally robust optimization: A review on
theory and applications,” Numerical Algebra, Control & Optimization, vol. 12, no. 1,
p. 159, 2022.

[24] N. Fournier and A. Guillin, “On the rate of convergence in wasserstein distance
of the empirical measure,” Probability Theory and Related Fields, vol. 162, no. 3,
pp. 707–738, 2015.

[25] R. Gao and A. J. Kleywegt, “Distributionally Robust Stochastic Optimization with
Wasserstein Distance,” arXiv:1604.02199 [math], Jul. 2016. arXiv: 1604 . 02199
[math].

164

https://arxiv.org/abs/1908.05659
https://arxiv.org/abs/1908.05659
https://arxiv.org/abs/1604.02199
https://arxiv.org/abs/1604.02199

[26] P. M. Esfahani and D. Kuhn, “Data-driven distributionally robust optimization us-
ing the wasserstein metric: Performance guarantees and tractable reformulations,”
Mathematical Programming, vol. 171, no. 1, pp. 115–166, 2018.

[27] C. Zhao and Y. Guan, “Data-driven risk-averse stochastic optimization with wasser-
stein metric,” Operations Research Letters, vol. 46, no. 2, pp. 262–267, 2018.

[28] D. Duque and D. P. Morton, “Distributionally robust stochastic dual dynamic pro-
gramming,” SIAM Journal on Optimization, vol. 30, no. 4, pp. 2841–2865, 2020.

[29] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numerische mathematik, p. 15, 1962.

[30] G. B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Programs,” Oper-
ations Research, vol. 8, no. 1, pp. 101–111, Feb. 1960.

[31] R. M. V. Slyke and R. Wets, “L-Shaped Linear Programs with Applications to Opti-
mal Control and Stochastic Programming,” SIAM Journal on Applied Mathematics,
vol. 17, no. 4, pp. 638–663, 1969.

[32] J. K. Ho and A. S. Manne, “Nested decomposition for dynamic models,” Mathemat-
ical Programming, vol. 6, no. 1, pp. 121–140, Dec. 1974.

[33] C. R. Glassey, “Nested Decomposition and Multi-Stage Linear Programs,” Manage-
ment Science, vol. 20, no. 3, pp. 282–292, Nov. 1973.

[34] F. V. Louveaux, “A Solution Method for Multistage Stochastic Programs with Re-
course with Application to an Energy Investment Problem,” Operations Research,
vol. 28, no. 4, pp. 889–902, Aug. 1980.

[35] J. R. Birge, “Decomposition and Partitioning Methods for Multistage Stochastic Lin-
ear Programs,” Operations Research, vol. 33, no. 5, pp. 989–1007, Oct. 1985.

[36] M. V. F. Pereira and L. M. V. G. Pinto, “Stochastic Optimization of a Multireservoir
Hydroelectric System: A Decomposition Approach,” Water Resources Research,
vol. 21, no. 6, pp. 779–792, Jun. 1985.

[37] A. Shapiro, “On complexity of multistage stochastic programs,” OR Letters, vol. 34,
no. 1, pp. 1–8, Jan. 2006.

[38] M. Dyer and L. Stougie, “Computational complexity of stochastic programming
problems,” Mathematical Programming, vol. 106, no. 3, pp. 423–432, May 2006.

[39] A. Georghiou, A. Tsoukalas, and W. Wiesemann, “Robust dual dynamic program-
ming,” Operations Research, vol. 67, no. 3, pp. 813–830, 2019.

165

[40] A. Shapiro, “Analysis of stochastic dual dynamic programming method,” European
Journal of Operational Research, vol. 209, no. 1, pp. 63–72, Feb. 2011.

[41] A. Philpott and Z. Guan, “On the convergence of stochastic dual dynamic program-
ming and related methods,” Operations Research Letters, vol. 36, no. 4, pp. 450–
455, Jul. 2008.

[42] A. Philpott, F. Wahid, and F. Bonnans, “MIDAS: a mixed integer dynamic approxi-
mation scheme,” Mathematical Programming, pp. 1–32, 2019.

[43] R. Baucke, A. Downward, and G. Zakeri, “A deterministic algorithm for solving
multistage stochastic programming problems,” Optimization Online, 2017.

[44] ——, “A deterministic algorithm for solving stochastic minimax dynamic programmes,”
Optimization Online, 2018.

[45] S. Ahmed, F. G. Cabral, and B. Freitas Paulo da Costa, “Stochastic Lipschitz dy-
namic programming,” Mathematical Programming, pp. 1–39, 2020.

[46] J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer programming,”
Mathematical Programming, vol. 175, no. 1-2, pp. 461–502, May 2019.

[47] A. Shapiro and L. Ding, “Stationary multistage programs,” Optimization Online,
2019.

[48] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic optimization applied
to energy planning,” Mathematical Programming, vol. 52, no. 1-3, pp. 359–375, May
1991.

[49] B. Flach, L. Barroso, and M. Pereira, “Long-term optimal allocation of hydro gener-
ation for a price-maker company in a competitive market: Latest developments and
a stochastic dual dynamic programming approach,” IET Generation, Transmission
& Distribution, vol. 4, no. 2, p. 299, 2010.

[50] V. L. de Matos, A. B. Philpott, and E. C. Finardi, “Improving the performance of
Stochastic Dual Dynamic Programming,” Journal of Computational and Applied
Mathematics, vol. 290, pp. 196–208, Dec. 2015.

[51] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares, “Risk neutral and risk averse
Stochastic Dual Dynamic Programming method,” European Journal of Operational
Research, vol. 224, no. 2, pp. 375–391, Jan. 2013.

[52] A. Philpott, V. de Matos, and E. Finardi, “On Solving Multistage Stochastic Pro-
grams with Coherent Risk Measures,” Operations Research, vol. 61, no. 4, pp. 957–
970, Aug. 2013.

166

[53] E. Anderson and A. Philpott, “Improving sample average approximation using dis-
tributional robustness,” INFORMS Journal on Optimization, vol. 4, no. 1, pp. 90–
124, 2022.

[54] J. Huang, K. Zhou, and Y. Guan, “A Study of Distributionally Robust Multistage
Stochastic Optimization,” Aug. 2017. arXiv: 1708.07930 [math].

[55] A. B. Philpott, V. L. de Matos, and L. Kapelevich, “Distributionally robust SDDP,”
Computational Management Science, vol. 15, no. 3-4, pp. 431–454, Oct. 2018.

[56] R. P. Liu, “On feasibility of sample average approximation solutions,” SIAM Journal
on Optimization, vol. 30, no. 3, pp. 2026–2052, 2020.

[57] D. Kuhn, W. Wiesemann, and A. Georghiou, “Primal and dual linear decision rules
in stochastic and robust optimization,” Mathematical Programming, vol. 130, no. 1,
pp. 177–209, 2011.

[58] D. Bertsimas and A. Georghiou, “Design of near optimal decision rules in multistage
adaptive mixed-integer optimization,” Operations Research, vol. 63, no. 3, pp. 610–
627, 2015.

[59] M. J. Hadjiyiannis, P. J. Goulart, and D. Kuhn, “A scenario approach for estimating
the suboptimality of linear decision rules in two-stage robust optimization,” in 2011
50th IEEE Conference on Decision and Control and European Control Conference,
IEEE, 2011, pp. 7386–7391.

[60] M. N. Hjelmeland, J. Zou, A. Helseth, and S. Ahmed, “Nonconvex Medium-Term
Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming,” IEEE
Transactions on Sustainable Energy, vol. 10, no. 1, pp. 481–490, Jan. 2019.

[61] Z. L. Chen and W. B. Powell, “Convergent Cutting-Plane and Partial-Sampling Al-
gorithm for Multistage Stochastic Linear Programs with Recourse,” Journal of Op-
timization Theory and Applications, vol. 102, no. 3, pp. 497–524, Sep. 1999.

[62] K. Linowsky and A. B. Philpott, “On the Convergence of Sampling-Based Decom-
position Algorithms for Multistage Stochastic Programs,” Journal of Optimization
Theory and Applications, vol. 125, no. 2, pp. 349–366, May 2005.

[63] V. Guigues, “Dual dynamic programing with cut selection: Convergence proof and
numerical experiments,” European Journal of Operational Research, vol. 258, no. 1,
pp. 47–57, 2017.

[64] P. Girardeau, V. Leclere, and A. B. Philpott, “On the Convergence of Decomposition
Methods for Multistage Stochastic Convex Programs,” Mathematics of Operations
Research, vol. 40, no. 1, pp. 130–145, Feb. 2015.

167

https://arxiv.org/abs/1708.07930

[65] V. Guigues, “Convergence analysis of sampling-based decomposition methods for
risk-averse multistage stochastic convex programs,” SIAM Journal on Optimization,
vol. 26, no. 4, pp. 2468–2494, 2016.

[66] G. Lan, “Complexity of stochastic dual dynamic programming,” Mathematical Pro-
gramming, pp. 1–38, 2020.

[67] ——, “Correction to: Complexity of stochastic dual dynamic programming,” Math-
ematical Programming, pp. 1–3, 2022.

[68] S. Zhang and X. A. Sun, “Stochastic dual dynamic programming for multistage
stochastic mixed-integer nonlinear optimization,” arXiv:1912.13278, 2019.

[69] ——, “On distributionally robust multistage convex optimization: New algorithms
and complexity analysis,” arXiv:2010.06759, 2020.

[70] ——, “On distributionally robust multistage convex optimization: Data-driven mod-
els and performance comparison,” Working Paper, 2022.

[71] M. J. Feizollahi, S. Ahmed, and A. Sun, “Exact augmented lagrangian duality for
mixed integer linear programming,” Mathematical Programming, vol. 161, no. 1-2,
pp. 365–387, 2017.

[72] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer Science & Busi-
ness Media, 2009, vol. 317.

[73] Y. Nesterov, Lectures on convex optimization. Springer, 2018, vol. 137.

[74] H. H. Bauschke, P. L. Combettes, et al., Convex analysis and monotone operator
theory in Hilbert spaces. Springer, 2011, vol. 408.

[75] W. Rudin, Real and complex analysis, Third. Tata McGraw-hill education, 1987.

[76] T. Asamov and W. B. Powell, “Regularized Decomposition of High-Dimensional
Multistage Stochastic Programs with Markov Uncertainty,” SIAM Journal on Opti-
mization, vol. 28, no. 1, pp. 575–595, Jan. 2018.

[77] F. Qi, “Bounds for the ratio of two gamma functions,” Journal of Inequalities and
Applications, vol. 2010, pp. 1–84, 2010.

[78] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathemat-
ical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[79] A. Grothey, S. Leyffer, and K. McKinnon, “A note on feasibility in benders decom-
position,” Numerical Analysis Report NA/188, Dundee University, 1999.

168

[80] L. Ding, S. Ahmed, and A. Shapiro, “A python package for multi-stage stochastic
programming,” Optimization Online, pp. 1–41, 2019.

[81] C. Villani, Optimal transport: old and new. Springer Science & Business Media,
2008, vol. 338.

[82] R. T. Rockafellar, Convex analysis, 28. Princeton university press, 1970.

[83] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media, 2010.

[84] H. Komiya, “Elementary proof for sion’s minimax theorem,” Kodai mathematical
journal, vol. 11, no. 1, pp. 5–7, 1988.

[85] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming. Springer, 2014,
vol. 271.

[86] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[87] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2022.

[88] C.-L. Li and P. Kouvelis, “Flexible and risk-sharing supply contracts under price
uncertainty,” Management science, vol. 45, no. 10, pp. 1378–1398, 1999.

169

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Background
	Contributions

	2 | Iteration Complexity of DDP Algorithms on Mixed-integer Nonlinear MSO
	Problem Formulations
	Nested Decomposition and Dual Dynamic Programming Algorithms
	Upper Bounds on Iteration Complexity of Proposed Algorithms
	Lower Bounds on Iteration Complexity of Proposed Algorithms

	3 | DDP Algorithms for Convex MDRO with Complexity Analysis
	Formulations and Recursive Approximation
	Algorithms and Complexity Analysis
	Numerical Experiments

	4 | Data-driven Convex MDRO Models and Their Performance
	Data-driven Model and Properties
	Dual Dynamic Programming Algorithm
	Numerical Experiments

	5 | Conclusion
	References

