
MODELING, MONITORING, AND DIAGNOSIS OF COMPLEX SYSTEMS
WITH HIGH-DIMENSIONAL STREAMING DATA

A Dissertation
Presented to

The Academic Faculty

By

Ana Marı́a Estrada Gómez

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2021

© Ana Marı́a Estrada Gómez 2021

MODELING, MONITORING, AND DIAGNOSIS OF COMPLEX SYSTEMS
WITH HIGH-DIMENSIONAL STREAMING DATA

Thesis committee:

Dr. Kamran Paynabar
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Jianjun Shi
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Yajun Mei
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Brani Vidakovic
Department of Statistics
Texas A & M University

Dr. Babak Mahmoudi
Department of Biomedical Informatics
Emory University

Date approved: July 14, 2021

So we beat on, boats against the current, borne back ceaselessly into the past.

F. Scott Fitzgerald

For my grandfather, Hugo, who gave me wings.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my advisor Dr. Kamran

Paynabar for his invaluable guidance and unconditional support during my Ph.D. journey.

In five years, he taught me to be an independent researcher, an encouraging mentor, and an

engaging teacher. The lessons learned will travel with me wherever life takes me.

I sincerely thank Dr. Jianjun Shi, Dr. Brani Vidakovic, Dr. Yajun Mei, and Dr. Babak

Mahmoudi for serving on my thesis committee. Their constructive comments and insight-

ful advice helped immensely in improving this dissertation. I would also like to thank

Dr. Massimo Pacella, Dr. Pinar Keskinocak, Dr. Joel Sokol, Dr. Edmond Chow, Lucas

Erlandson, and Dan Li for collaborating with me and helping me grow as a researcher.

Special thanks go to Dr. Marı́a Elsa Correal, Dr. Adolfo Quiroz, and Dr. Carlos

Valencia for their guidance when I was a student at the Universidad de los Andes. Without

them and their support, I would have never considered a life in academia. My Ph.D. journey

started with them.

Next, I would like to thank my academic family, Samaneh Ebrahimi, Xiaolei Fang,

Jinhyeun Kim, Dan Li, Anjolaoluwa Popoola, Mostafa Reisi, Qian Wang, Wei Yang , and

Zhen Zhong, for allowing me to be a part of their journey. I learned many things from

them, their feedback constantly improved the quality of my work.

I would also like to express my gratitude to my dear friends who were there to celebrate

my wins but also to support me through difficult times. Thank you Juan David Barbosa,

Beste Basciftci, Alessia Benevento, Jana Boerger, Mariana De Almeida, Akane Fujimoto,

Paola Guevara, Kirthana Hampapur, Daniela Hurtado, Arvind Krishna, Adriana Lozoya,

Diana Montañes, Germán Ramirez, Camilo Riveros, and Catalina Villabona.

Last but not least, I would like to express my most profound appreciation to my mom,

Claudia, my sister, Carolina, my grandparents, Helena and Hugo, and the rest of my fam-

ily for their unconditional love, encouragement, and patience. I could not have traveled

v

this path without them. Finally, but most importantly, I would like to thank my husband,

Camilo, who has held my hand every step of the way. I feel fortunate to share my life

journey with him.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

List of Acronyms . xv

Summary . xvii

Chapter 1: Introduction . 1

1.1 Background and Motivation . 1

1.2 Data Characteristics and Challenges . 1

1.3 Overview of the Dissertation . 3

1.3.1 Functional Directed Graphical Models for Root-Cause Analysis and
Diagnosis . 3

1.3.2 Online Structural Change-point Detection via Sparse Spectral Graph-
ical Models . 4

1.3.3 Adaptive Sampling Strategy for Online Monitoring and Diagnosis
of High-dimensional (HD) Streaming Data 6

Chapter 2: Functional Directed Graphical Models and Applications in Root-
Cause Analysis and Diagnosis . 8

2.1 Introduction . 8

vii

2.2 Methodology Overview . 12

2.3 Proposed Functional Directed Graphical Models 13

2.3.1 Known Graph Structure . 13

2.3.2 Structure Learning . 21

2.4 Performance Evaluation via Simulations 26

2.4.1 Known Graph Structure . 27

2.4.2 Structure Learning . 30

2.5 Case Study . 33

2.6 Conclusion . 38

Chapter 3: Online Structural Change-point Detection of High-dimensional Stream-
ing Data via Sparse Spectral Graphical Models 40

3.1 Introduction . 40

3.2 Probabilistic Graphical Models for Stationary Time Series 43

3.2.1 Gaussian Graphical Models . 43

3.2.2 Graphical Models for Stationary Time Series 44

3.3 Structural Change-point Detection via Sparse Spectral Graphical Models . . 46

3.3.1 Problem Definition . 46

3.3.2 Sparse Spectral Graphical Models for Non-stationary Time Series . 47

3.3.3 Sparse Spectral Graphical Models for HD Streaming Data 49

3.3.4 Online Structural Change-point Detection 53

3.4 Performance Evaluation via Simulations 54

3.5 Case Studies . 58

3.5.1 Human Gesture Tracking . 58

viii

3.5.2 Monitoring Dynamic Functional Brain Connectivity 62

3.6 Conclusion . 64

Chapter 4: An Adaptive Sampling Strategy for Online Monitoring and Diagno-
sis of High-dimensional Streaming Data 66

4.1 Introduction . 66

4.2 Overview of the Proposed Methodology 69

4.2.1 Problem Formulation . 69

4.2.2 Methodology Overview . 70

4.3 Multilinear Algebra and Tensor Completion 70

4.3.1 Tensor Notation and Multilinear Algebra 70

4.3.2 Tensor Completion Methodologies 72

4.4 Recursive Tensor Recovery Model . 73

4.4.1 Step 1: Recursive Tensor Factorization 75

4.4.2 Step 2: Soft-Thresholding . 77

4.5 Adaptive Sampling Strategy . 80

4.6 Online Monitoring and Diagnosis . 83

4.6.1 Monitoring Statistic and Stopping Time 83

4.6.2 Diagnosis of the Detected Changes 84

4.7 Performance Evaluation via Simulations 86

4.8 Case Studies . 94

4.8.1 Online Monitoring of Solar Activity 95

4.8.2 Online Monitoring of Water Temperature in a Dryland Agricultural
Field . 99

ix

4.9 Conclusion . 102

Chapter 5: Conclusions and Future Research . 106

5.1 Conclusions . 106

5.2 Future Research . 108

Appendices . 110

Appendix A: Supplementary Materials of Chapter 2 111

Appendix B: Supplementary Materials of Chapter 3 115

Appendix C: Supplementary Materials of Chapter 4 117

References . 124

Vita . 132

x

LIST OF TABLES

2.1 Simulation factor settings . 27

2.2 Comparison between methods using MSPE, 1000 simulations. Results are
reported in the form of mean (standard error). 30

2.3 Comparison between methods in terms of computational time in seconds,
100 simulations. Results are reported in the form of mean (standard error). . 30

2.4 Comparison between methods using MSPEk, for the scenario with 10
nodes, density 0.4, and SNR 200, 1000 simulations. Results are reported in
the form of mean (standard error). 31

2.5 MSPE and standard error for a functional DGM with 10 nodes, density 0.2,
and SNR 200/20 . 32

2.6 Confusion matrix for a functional DGM with 10 nodes, density 0.2, and
SNR 200/20 . 33

2.7 Computational time to establish the parents of each node in the graph for a
functional DGM with 10 nodes and density 0.2 33

2.8 List of on-board sensors (channels) . 35

2.9 MSPEk, k = 1, · · · , 12, for clusters A and B, over 100 replicates. Results
are reported in the form of mean (standard error). 37

3.1 Comparison of detection power for Signal-to-noise ratio (SNR)=1.00 56

4.1 Sensitivity analysis results for ARL1, for different parameter combinations
over 500 simulation replicates. Results are in the form of mean(standard
deviation). 89

4.2 Computational time of the TSS algorithm and other benchmark methods . . 91

xi

LIST OF FIGURES

2.1 Exhaust after-treatment process of an internal combustion engine 9

2.2 Flow diagram of the proposed methodology 12

2.3 Illustrative example. Left: the data, xki(t) for k = 1, · · · , 7 nodes and
i = 1, · · · ,M observations. Right: the true underlying graph structure. . . . 14

2.4 Illustrative example of a sequential manufacturing process 22

2.5 DAGs generated for each simulation scenario 28

2.6 True structure and structure learned for a functional DGM with 10 nodes,
density 0.2, and SNR ratio 200/20 . 32

2.7 12 channels for clusters A and B. Each panel depicts the signals (black),
and the mean signal (red). 35

2.8 Structure learned for clusters A and B . 37

3.1 Three sensors with associated time series readings, and three different cross-
correlation structures [35] . 47

3.2 Overlapping windows to learn the dynamic cross-correlation structure of a
system with three sensors. W is the window size and O is the overlap. . . . 48

3.3 Detection power of the proposed method. Solid blue curve is the Average
Run Length (ARL)1, pointed red curves represent the confidence interval . 56

3.4 Example of true and estimated structures for one simulation run, for SNR=1.00 57

3.5 Structure learning performance for SNR=1.00, in terms of precision, re-
call,and F-score, over 100 simulation replicates 58

3.6 Snapshots of gestures being tracked by a Kinect sensor 59

xii

3.7 Control chart for motion segmentation . 60

3.8 Body structures learned for each gesture 61

3.9 Simulated firing rates of 80 brain regions over 40 seconds 62

3.10 Control chart for dynamic Functional Connectivity (FC) 63

3.11 FC for two identified segments . 64

4.1 Flow diagram of the proposed Tensor Sequential Sampling (TSS) method-
ology . 71

4.2 Simulated image with functional mean, clustered anomalies and noise at
time t = 50 . 87

4.3 RMSE distribution for in-control data . 88

4.4 Detection power comparison based on ARL1 91

4.5 Diagnosis comparison for T = 20, q = 15%, and β = 0.2 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 93

4.6 Diagnosis comparison for T = 20, q = 15%, and β = 0.8 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 94

4.7 Detected anomalies with two methods at τ + 6, for SNR = 5, T = 20,
q = 30%, and β = 0.8 . 94

4.8 Control chart for solar flare monitoring (no background information) 96

4.9 Detection results for solar flares at time t = 190 (no background information) 97

4.10 Detection results for solar flares at time t = 216 (no background information) 98

4.11 Control chart for solar flare monitoring (original data captured by satellites) 99

4.12 Detection results for solar flare at time t = 219 (original data captured by
satellites) . 100

4.13 Sensor network measuring water temperature at the CAF 101

4.14 Temperature (°C) readings for the 42 sensors at the CAF with out-of-control
periods and monitoring control chart . 103

xiii

4.15 Detection of abnormal regions (depicted as squares) of water temperature
at the CAF . 104

B.1 Example of true and estimated structures for one simulation run for SNR=0.25115

B.2 Structure learning performance for SNR=0.25, in terms of precision, re-
call,and F-score, over 100 simulation replicates 116

C.1 Diagnosis comparison for T = 20, q = 5%, and β = 0.2 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 122

C.2 Diagnosis comparison for T = 20, q = 5%, and β = 0.8 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 122

C.3 Diagnosis comparison for T = 20, q = 30%, and β = 0.2 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 123

C.4 Diagnosis comparison for T = 20, q = 30%, and β = 0.8 in terms of
precision, recall, F-score, and accuracy, over 500 simulation replicates . . . 123

xiv

LIST OF ACRONYMS

ADMM Alternating Direction Method of Multipliers

ARL Average Run Length

CP CANDECOMP/PARAFAC

CP-WOPT CP-Weighted Optimization

CUSUM Cumulative Sum

DAG Directed Acyclic Graph

DGMs Directed Graphical Models

DSSGM Dynamic Sparse Spectral Graphical Model

DSSL Dynamic Sparse Subspace Learning

EEG electroencephalography

EGR Exhausted Gas Recirculated

EWMA Exponentially Weighted Moving Average

FC Functional Connectivity

FPCA Functional Principal Components Analysis

HD High-dimensional

LD Low-dimensional

MGP Multivariate Gaussian Process

MSPE Mean Square Prediction Error

NSC NOx Storage Catalyst

PGD Proximal Gradient Descent

RCP-WOPT Recursive CP-Weighted Optimization

RD Recursive Diagnosis

xv

RMSE Root Mean Square Error

RTR Recursive Tensor Recovery

SDM Spectral Density Matrix

SNR Signal-to-noise ratio

ST-SSD Spatio-temporal Smooth Sparse Decomposition

TSS Tensor Sequential Sampling

xvi

SUMMARY

With the development of technology, sensing systems became ubiquitous. As a result,

a wide variety of complex systems are continuously monitored by hundreds of sensors col-

lecting large volumes of rich data. Learning the structure of complex systems, from sens-

ing data, provides unique opportunities for real-time process monitoring and for accurate

fault diagnosis in a wide range of applications. This dissertation presents new method-

ologies to analyze the high-dimensional data collected by sensors to learn the interactions

between different entities in complex systems for system monitoring and diagnosis. Chap-

ter 1 presents the research background, motivation, and challenges, and briefly introduces

the methodologies developed.

Chapters 2 and 3 aim at representing complex systems as probabilistic graphical models

to capture the relationships between the variables in the system. Chapter 2 presents a

methodology to learn directed graphical models when the sensing data has a functional

form. The goal is to use the direction of the edges in the graph to identify the root-causes

behind system failures. Learning a directed graphical model from data includes parameter

learning and structure learning. When the structure of the graph is known, function-to-

function linear regression is used to estimate the parameters of the graph. When the goal is

to learn the structure, a penalized least square loss function with a group LASSO penalty,

for variable selection, and an L2 penalty, to handle group selection of nodes, is defined. The

cyclic coordinate accelerated proximal gradient descent algorithm is employed to minimize

the loss function and learn the structure of the directed graph. To illustrate the advantages

of the proposed methodology, multivariate sensor data from an internal combustion engine

is used.

Chapter 3 aims at monitoring the structural evolution of complex systems by sequen-

tially estimating undirected graphical models from high-dimensional streaming data. The

main idea is to exploit the spectral information contained in the data to learn the system’s

xvii

structure over time. For this purpose, the streaming data is divided into windows, and the

graphical LASSO for time series data is used to learn the conditional independence rela-

tionships of the system’s variables. The structural change between windows is allowed but

regularized to allow for change-point detection. The proposed monitoring strategy is effi-

ciently implemented by applying the Alternating Direction Method of Multipliers and can

be used for real-time monitoring. The effectiveness of the methodology is demonstrated in

two case studies. First, we track human motion, and later we monitor for changes in the

brain’s functional connectivity.

Chapter 4 leaves aside probabilistic graphical models to deal with a challenge com-

monly encountered when analyzing high-dimensional sensing data: incomplete informa-

tion. In many applications, the sensing system that collects online data can only provide

partial information from the process under study due to resource constraints. In such cases,

an adaptive sampling strategy is needed to decide where to collect data while maximizing

the change detection capability. This chapter proposes an adaptive sampling strategy for

online monitoring and diagnosis with partially observed data. The proposed methodology

integrates two novel ideas: (i) the recursive projection of the high-dimensional stream-

ing data onto a low-dimensional subspace to capture the spatio-temporal structure of the

data while performing missing data imputation; and (ii) the development of an adaptive

sampling scheme, balancing exploration and exploitation, to decide where to collect data

at each acquisition time. Through simulations and two case studies, the proposed frame-

work’s performance is evaluated and compared with benchmark methods.

Lastly, Chapter 5 concludes the dissertation and outlines topics for future research.

xviii

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Nowadays, most complex systems are continuously monitored by hundreds of sensors.

These sensors provide a variety of HD streaming data with rich information about the

system’s performance. Analyzing the HD data provides unique opportunities for system

modeling, monitoring, and diagnosis in a wide range of applications. For example, in the

automotive industry, sensors mounted on car engines are used to identify the root-causes

behind engines’ faults. In precision agriculture, sensors located in the fields are used to con-

tinuously monitor the quality of the crops. In neuroscience, intracranial electroencephalog-

raphy (EEG) sensors are used to detect seizures in epileptic patients and to identify the

brain regions responsible for the attacks. While real-time system monitoring and diagno-

sis are crucial in many applications, the complex characteristics of the data collected pose

significant analytical and computational challenges yet to be addressed. These challenges

are presented in more detail in section 1.2. The main goal of this dissertation is to develop

new methodologies for the analysis of HD sensing data to translate data-rich environments

into smart decision-making by addressing existing challenges. In section 1.3 we present an

overview of the methodologies developed.

1.2 Data Characteristics and Challenges

Analyzing HD sensing data for modeling, monitoring, and diagnosing complex systems is

an important yet challenging task. In this section, we discuss the common characteristics

and modeling challenges associated with analyzing HD data.

1

High-dimensionality. Sensors monitoring complex systems are continuously taking

measurements over time and generating various types of HD data. In some applications,

sensors produce one observation at each sampling time, which results in time series data

with hundreds or thousands of observations over time. In other instances, sensors sample

profiles or functional data, where a single observation represents hundreds of data mea-

surements. Other types of sensors capture images for system monitoring. In these cases,

the dimensionality is even higher. In addition to the large number of pixels in each image,

the number of images linearly grows over time as new images are recorded. The high-

dimensionality of each sensor signal, coupled with the large number of sensors, produces

prohibitive volumes of data, which raises significant scalability challenges for modeling,

monitoring, and diagnosing complex systems.

High-velocity. With the development of technology, many sensing devices generate

data at a fast rate. For example, a commercially available ultrasonic sensor can easily

record data at the rate of 1KHz, and a high-speed industrial camera is capable of scanning a

product surface with the rate of 80 million pixels per second or faster. These high collection

rates pose significant computational challenges for real time monitoring and diagnosis,

and require new methodologies to be computationally efficient.

Complex correlation structure. HD streaming data has an intrinsic complex spatio-

temporal correlation structure. Neighbouring sensors exhibit high spatial correlation, while

measurements across time are temporally correlated. When analyzing HD data, the auto-

correlation of each signal over time needs to be considered. Additionally, the cross- corre-

lation among different signals needs to be modeled. The complex correlation structure pose

significant analytical challenges. The correlation patterns need to be modeled carefully to

achieve high monitoring and diagnosis performances.

Incomplete data. In some cases, it is possible to have resources constraints on the

system, that limit the amount of data available for modeling, monitoring, and diagnosis.

For example, in environmental monitoring, sensors have a limited battery lifetime, and the

2

cost of replacing the battery is often high. Therefore, monitoring needs to be done with

a limited number of operational sensors, at any given time. Partial observations can also

arise when the number of available sensors is small compared to the number of variables

for monitoring. Finally, transmission and processing constraints can limit the amount of

available data. In all of these settings, a robust sampling strategy needs to be implemented

to decide where to collect data in order to maximize the change detectability.

This dissertation focuses on developing new methodologies that address the aforemen-

tioned scalability, computational, analytical, and robustness challenges to analyze HD sens-

ing data with the goal of learning the interactions between different entities in complex

systems for system monitoring and diagnosis.

1.3 Overview of the Dissertation

The dissertation is organized as follows. In the first part (Chapters 2 and 3), we use prob-

abilistic graphical models to capture the complex correlation structure of the system under

study. In the second part (Chapter 4) we leave aside probabilistic graphical models, to

focus on the incomplete data challenge. Next, we introduce each of the methodologies

developed.

1.3.1 Functional Directed Graphical Models for Root-Cause Analysis and Diagnosis

Complex biological, physical, and social systems are often comprised of various entities

and variables that exhibit intricate relationships and interactions. Directed Graphical Mod-

els (DGMs) have been widely used to provide a probabilistic representation of these com-

plex systems. For example, in reliability modeling, DGMs are used to compute the overall

reliability of a system, given the reliability of the individual components and how they in-

teract [1]. In manufacturing processes, they are used to learn the causal relationship among

process variables and quality measures, and to facilitate process control [2].

In the graphical representation of a system, the nodes represent random variables, and

3

the directed arcs express the probabilistic relationships between the variables. The graph

captures the way in which the joint distribution over all the random variables can be de-

composed into a product of factors, each depending only on a subset of the variables [3].

Therefore, the problem of estimating a joint distribution is simplified by the problem of

estimating a few low-dimensional conditional distributions.

Most of the existing DGMs assume that the random variables associated with the nodes

are scalars. However, in practice, it is common to encounter systems where the variables

have a functional form, over time or space. In such cases, it makes sense to think of

the variables as functional variables. The main challenge to learn functional DGMs is

preserving the functional information in each node.

The main goal of this chapter is to develop a methodology for learning functional

DGMs while preserving the existing cross-correlation between the variables in the sys-

tem. For this purpose, we first assume that the structure of the graph is known, and use

function-to-function regression [4], to perform parameter learning of the graph. Then, in-

spired by Meinshausen and Buhlmann’s (2006) neighborhood selection method [5], we

present a new approach to learn the structure of functional DGMs. The main contributions

of the chapter are: (i) we establish a methodology to estimate the parameters of functional

DGMs, given the structure of the graph, that outperforms existing methods, and (ii) we

develop a novel structure learning algorithm that identifies the parents of the functional

variables in a graph in a neighborhood selection fashion. The proposed methodology can

be used for diagnosis and root-cause analysis, as well as system control when the variables

involved have a functional form.

1.3.2 Online Structural Change-point Detection via Sparse Spectral Graphical Models

Complex systems are continuously monitored by sensors collecting high-dimensional (HD)

streaming data. The sensing data provides unique opportunities to learn the system state

by exploiting the cross-correlation structure between the system entities. For example, in

4

neuroscience, EEG sensors record the brain’s spontaneous electrical activity to identify

different emotional states based on functional connectivity patterns [6]. In biomechanics,

Kinect sensors capture body poses by tracking body joints. The data is used to recognize

different human gestures based on the skeletal body part movements [7]. As another exam-

ple, in the automotive industry, sensors mounted on smart cars allow to identify different

driving events such as driving straight, turning, and stopping [8].

Furthermore, complex systems are constantly evolving over time. For example, the

brain can transition from a happy state to a sad state, the human body can perform different

activities one after the other, and a car can go from driving straight to turning. As a system

evolves, the cross-correlation structure between its entities changes. Therefore, using the

HD streaming data collected by sensors to detect structural changes in the system is critical

to monitor the system evolution.

The main goal of this chapter is to develop a new online structural change-point de-

tection method able to estimate the cross-correlation structure of the HD streaming data

collected by sensors. For this purpose, we sequentially estimate the cross-correlation struc-

ture for streaming windows of data. For each window, we assume that the time series data

is stationary, and exploit the underlying spectral information as it is known that zeros at

all frequencies in the inverse spectral density matrices characterize the conditional inde-

pendence between the entities in the system [9]. Therefore, for each window, we estimate

a probabilistic sparse spectral graphical model capturing the cross-correlation of the data.

To control the change from window to window, we regularize it by using a group LASSO

penalty [10]. Furthermore, to detect a structural-change point, we use an Exponentially

Weighted Moving Average (EWMA) control chart that monitors the performance of the

sparse spectral graphical model.

The main contributions of this chapter are: (i) we develop a new methodology to detect,

in real-time, the structural changes in a system via sparse spectral graphical models, (ii) we

estimate the cross-correlation structure of the system as a graph at each point in time.

5

1.3.3 Adaptive Sampling Strategy for Online Monitoring and Diagnosis of HD Streaming

Data

Monitoring HD streaming data, in real-time, is critical to detect anomalies and system

failures. For example, in power distribution systems, smart sensors located across the dis-

tribution grid are used for the detection and isolation of outages [11, 12]. In manufacturing,

a large number of process variables are measured during the production for online quality

insurance [13, 14, 15].

In this chapter we address two main challenges associated with the analysis of HD

streaming data for system monitoring and diagnosis. On the one hand, we take into ac-

count that the system has resource constraints and only a subset of the variables can be

observed at any point in time. Hence, a sequential sampling strategy needs to be imple-

mented to decide where to collect data in order to maximize the change detectability. On

the other hand, we consider the complex spatio-temporal structure of the data, as we know

that neighboring measurements exhibit high spatial correlation, while measurements across

time are temporally correlated with a non-stationary behavior.

The main goal of this chapter is to develop an adaptive sampling strategy, and an online

process monitoring and diagnosis approach for incomplete and non-stationary HD stream-

ing data, by incorporating its spatial and temporal information. To develop our adaptive

sampling strategy, we propose to consider the streaming data as an incomplete tensor. We

develop a Recursive Tensor Recovery (RTR) model that decomposes the streaming tensor

into three components: a low-rank component, a sparse component, and a noise compo-

nent. The low-rank component captures the spatio-temporal correlation of the data, which

is estimated through tensor factorization [16, 17, 18], while the sparse component captures

the variables suspicious of change. We use the information contained in the sparse com-

ponent for monitoring and diagnosis. To define where to sample at each acquisition time,

we propose a Tensor Sequential Sampling (TSS) scheme that balances exploration and ex-

ploitation by combining two probability functions. When the process is in-control, our

6

sampling strategy behaves like random sampling, and when the process is out-of-control, it

behaves like greedy sampling to locate where the changes have occurred.

The main contributions of this chapter are: (i) we develop an adaptive sequential sam-

pling strategy for online monitoring of HD streaming data that outperforms existing meth-

ods by capturing their spatio-temporal correlation, (ii) we estimate the values of the un-

observed variables at each acquisition time, and (iii) we develop a Recursive Diagnosis

(RD) algorithm able to detect the abnormal variables quickly by incorporating the spatial

correlation.

7

CHAPTER 2

FUNCTIONAL DIRECTED GRAPHICAL MODELS AND APPLICATIONS IN

ROOT-CAUSE ANALYSIS AND DIAGNOSIS

2.1 Introduction

Complex biological, physical, and social systems are often comprised of various entities

and variables that exhibit intricate relationships and interactions. DGMs have been widely

used to provide a probabilistic representation of these complex systems. For example, in re-

liability modeling, DGMs are used to compute the overall reliability of a system, given the

reliability of the individual components and how they interact [1]. In manufacturing pro-

cesses, they are used to learn the causal relationship among process variables and quality

measures, and to facilitate process control [2]. Additional applications to medical diag-

nosis, clinical decision support, crime factor analysis, sensor validation, credit-rating, risk

management, and robotics are found in [19].

In the graphical representation of a system, the nodes represent random variables, and

the directed arcs express the probabilistic relationships between the variables. The graph

captures the way in which the joint distribution over all the random variables can be de-

composed into a product of factors, each depending only on a subset of the variables [3].

Therefore, the problem of estimating a joint distribution is simplified by the problem of

estimating a few low-dimensional conditional distributions.

Most of the existing DGMs assume that the random variables associated with the nodes

are scalars. However, in practice, it is common to encounter systems where the variables

have a functional form, over time or space. In such cases, it makes sense to think of the

variables as functional variables. For example, the exhaust after-treatment process of an

internal combustion engine can be monitored by several sensors, measuring, for example,

8

Figure 2.1: Exhaust after-treatment process of an internal combustion engine

the vehicle velocity, the engine rotational speed, and the intercooler pressure, which provide

a large number of waveform signals or functional data, as shown in Figure 2.1. Faults in

the exhaust after-treatment process translate into higher fuel consumption and uncontrolled

emissions of pollutants, such as nitrogen oxides (NOx), into the environment (Pacella,

2018). Faults are easily detected by an air-to-fuel ratio (λ-upstream) falling bellow an

acceptability threshold. However, the root-causes behind this behavior may change and are

not clearly defined. By modeling the exhaust after-treatment process as a functional DGM,

the root-causes behind fault events can be identified, and control actions can be taken.

Understanding the causal relationships of this complex system can significantly improve

the overall performance of the engine and the vehicle’s environmental impact.

The main challenge to learn functional DGMs is preserving the functional informa-

tion in each node. Existing probabilistic graphical models, developed for scalars, cannot

be used or easily extended to deal with functional data. If each point in the functional

data is considered as a scalar, the functional structure is lost. Recently, some methodolo-

gies have been developed to learn the structure of functional undirected graphical models.

Zhu, Strawn and, Dunson (2016) proposed decomposable graphical models for multivari-

9

ate functional data from a Bayesian perspective. Qiao et al. (2018) extended the graphical

LASSO of Yuan and Lin (2007) to the functional setting. Li and Solea (2018), extended

the previous work, to a non-parametrical setting. On the other hand, methodologies aiming

to learn functional DGM have been developed in a very specific context: brain connectiv-

ity. Lindquist (2012) proposed an algorithm to learn the parameters of a graph with one

functional node, two scalar nodes, and a known structure. The goal of the study was to

find brain regions whose activity acted as a potential mediator of the relationship between

a treatment variable and an outcome variable. Cao et al. (2019) proposed a causal dy-

namic network to estimate the parameters of differential equations’ models, representing

latent neuronal states, from fMRI data. Under their methodology, the parameters link-

ing two functional nodes are fixed scalars and represent brain activations and connections.

The authors do not learn the parameters of the conditional distributions of the graphical

model. General methodologies aiming to learn the functional parameters and the structure

of a DGM with functional variables are scarce. To the best of our knowledge, there is

only one paper on this topic. Sun, Huang, and Jin (2017) proposed a modeling strategy

for functional DGMs in manufacturing processes. However, they assumed that time t of a

functional node is only affected by time t of its functional parents. Their approach ignores

the temporal cross-correlation between the variables.

The main goal of this chapter is to develop a methodology for learning functional

DGMs while preserving the existing cross-correlation between the variables in the sys-

tem. For example, we would like to learn how the variables in the internal combustion

engine interact to identify the root-causes behind a system fault event.

Throughout the chapter, we have two main assumptions. (A1) The functional variables

jointly follow from a Multivariate Gaussian Process (MGP). This is a common assumption

in learning graphical models that has been shown to hold in practice [22, 26, 21]. (A2) The

functional variables can be represented as a Directed Acyclic Graph (DAG). Therefore,

there exists an ordering of the variables, called topological ordering, where only the vari-

10

ables with lower orders can be parents (variable i is a parent of variable j if there is an arc

from i to j) for the variables with higher orders. A practical example of a system where the

variables have such an ordering is a sequential manufacturing process where upstream pro-

cess variables can affect the downstream process variables, but the reverse cannot happen.

For the internal combustion engine example, thanks to domain knowledge, it is possible to

establish a topological ordering. For example, we know that the vehicle velocity depends

on the accelerator pedal position and on the gear ratio. Therefore, in the model, these two

variables have a lower order than the vehicle velocity.

First, we assume that the structure of the graph is known, and use function-to-function

regression [4], to perform parameter learning of the graph. Then, inspired by Meinshausen

and Buhlmann’s (2006) neighborhood selection method, we present a new approach to

learn the structure of functional DGMs. In order to learn the structure of a system, we de-

fine a penalized least square loss function with two penalties: a group LASSO penalty, for

variable selection, and an L2 penalty, to handle grouped selection of nodes. We recursively

employ cyclic coordinate accelerated proximal gradient descent as an algorithm to mini-

mize the loss function and learn the structure of the directed graph. Finally, we adapt the

modified cross-validation for penalized high-dimensional linear regression models [27], to

the functional setting, to tune the parameters of the penalty terms. The main contributions

of the chapter are: (1) we establish a methodology to estimate the parameters of functional

DGMs, given the structure of the graph, that outperforms existing methods, and (2) we

develop a novel structure learning algorithm that identifies the parents of the functional

variables in a graph in a neighborhood selection fashion. The proposed methodology can

be used for diagnosis and root-cause analysis, as well as system control when the variables

involved have a functional form.

The rest of the chapter is organized as follows. In section 2.2, we provide a method-

ology overview. In section 2.3, we first present the parameter learning method for func-

tional DGMs when the structure is known. Then, we present the methodology to learn the

11

Figure 2.2: Flow diagram of the proposed methodology

structure of functional DGMs. Simulation studies and real data analysis are conducted in

section 2.4 and section 2.5, respectively. Finally, we conclude the chapter in section 2.6.

2.2 Methodology Overview

A general framework of the proposed methodology is shown in Figure 2.2. If the struc-

ture of the functional DGM is known, we use the measured functional observations to fit

function-to-function linear regressions and learn the parameters of the conditional distribu-

tions governing the DGM. The first step is to transform the infinite-dimensional regression

problem into a finite-dimensional one by using a functional basis expansion. We propose

to use either a data-driven basis or a domain knowledge basis to reduce the dimensionality

of the problem. The use of a basis set transforms the function-to-function linear regres-

sion into a multilinear regression problem with a closed-form solution. The solution to this

problem allows for the estimation of the parameters of the functional DGM. On the other

hand, if the structure of the graph is unknown, we propose to add a penalty term to the loss

function of the function-to-function linear regressions. In this scenario, we use a domain

knowledge basis to reduce the dimensionality of the problem. A closed-form solution no

12

longer exists because of the penalty term. We employ cyclic coordinate accelerated prox-

imal gradient descent to solve the regression problems and estimate the structure and the

parameters of the functional DGM. The detailed analysis of each step will be elaborated in

subsequent sections.

2.3 Proposed Functional Directed Graphical Models

As our motivating example, we use a dataset collected during fault events of the exhaust

after-treatment process of an internal combustion engine [20]. Variables, such as vehicle

velocity, intercooler pressure, and air-to-fuel ratio (λ-upstream), are measured byD sensors

mounted on the engine (Figure 2.1). There is information onM fault events. Let xki(t), k =

1, · · · , D, i = 1, · · · ,M , be the ith observation measured by the kth sensor at time t. Then,

we have M samples of independent and identically distributed multivariate functional ran-

dom variables {xi(t) : t ∈ Γ, i = 1, · · · ,M} where xi(t) = (x1i(t), x2i(t), · · · , xDi(t))′

and Γ is a compact set. Without loss of generality, we assume Γ = [0, 1]. The detailed

information about this case will be given in section 2.5. The main goal of this chapter is

to develop a methodology to learn the relationship between the variables measured by the

different sensors. Understanding the root-causes behind a fault event is critical to improve

the performance of the engine and to control the vehicle’s environmental impact. Learning

the relationship between the variables is equivalent to learning the underlying DGM. We

begin by assuming that the structure of the graph is known, and explain how to estimate the

parameters of a functional DGM. Then, we present a learning structure algorithm.

2.3.1 Known Graph Structure

Throughout the chapter, we assume that the functional variables x1i(t), x2i(t), · · · , xDi(t)

jointly follow from a D-dimensional MGP, G(t), independently and identically, and that

they can be represented as a DAG, G = (N,A), with node set N = {1, · · · , D} and arc

set A. If (j, k) ∈ A, we have that there is an arc going from node j to node k, which

13

Figure 2.3: Illustrative example. Left: the data, xki(t) for k = 1, · · · , 7 nodes and i =
1, · · · ,M observations. Right: the true underlying graph structure.

is equivalent to say that node j belongs to the parents’ set of node k (j ∈ pak). In this

section, we assume that A is known. Therefore, we can write the joint distribution G(t) as

the product of the conditional distributions of each node, given the variables corresponding

to its parents. That is

G(t) = p(x1(t), · · · , xD(t)) =
D∏
k=1

p(xk(t)|pak). (2.1)

This equation expresses the factorization properties of the joint distribution for a DGM [3].

The estimation of the joint distribution, G(t), can be simplified by estimating the parameters

of the low-dimensional conditional distributions, p(xk(t)|pak) for k = 1, · · · , D.

Figure 2.3 provides an illustrative example with D = 7. The left panel presents the

data, functions xki(t), where k = 1, · · · , 7 and i = 1, · · · ,M . The right panel illustrates

the conditional dependence structure of these functions, that is, the DGM. By exploring

the graph structure, we see that, for example, nodes 1 and 3 are parents of nodes 4 and 5.

14

Additionally, we have that

p (x1(t), · · · , x7(t)) =p (x1(t))× p (x2(t))× p (x3(t))

× p (x4(t)|x1, x2, x3))× p (x5(t)|x1, x3)

× p (x6(t)|x4)× p (x7(t)|x4, x5)

(2.2)

We can conclude that the variables 4 and 5 are conditionally independent, given the states

of the variables 1 and 3. Our goal, in this section, is to take the observed functions in the

left panel and estimate the parameters of the DGM in the right panel.

Beyond our motivating example, learning a functional DGM can be of interest in many

other contexts. Consider a sequential manufacturing system whereM samples ofD process

variables are measured over time. xki(t) represents the performance of process variable

k when producing part i at time t. This example can be modeled as a DAG since the

upstream process variables can be potential parents for the downstream process variables,

but the reverse cannot happen. Another example, arises in reliability systems, with D

components, where xki(t) represents the reliability of component k for system i at time t.

The distribution of the components in the system determines the structure of the DAG.

Since the functional variables x1i(t), x2i(t), · · · , xDi(t) jointly follow from a D dimen-

sional MGP, G(t), independently and identically, and since G(t) can be decomposed as a

product of conditional distributions following the known graph structure, we have that the

conditional distribution of xki(t) can be written as

xki(t)|pak ∼ N

∑
j∈pak

∫ 1

0

βkj(t, s)xji(s)ds, σ2
k

 (2.3)

where βkj(t, s), for k = 1, · · · , D and j ∈ pak, are functional parameters governing the

mean and σ2
k is the variance of the conditional distribution for xki(t). Given the conditional

distribution of xki(t), we can write xki(t) as a function of its parents using function-to-

15

function linear regression,

xki(t) =
∑
j∈pak

∫ 1

0

βkj(t, s)xji(s)ds+ σkεki(t) (2.4)

were εki(t) is a standard Gaussian random variable.

Learning the parameters of the functional DGM is equivalent to estimating the param-

eters βkj(t, s), t, s ∈ [0, 1], by using the M samples of the D-functional random variables,

xki(t), k = 1, · · · , D and i = 1, · · · ,M . In practice, the function xki(t) is observed over

a grid of size nk. Thus, we estimate βkj(t, s) with {xki(t1), xki(t2), ..., xki(tnk)}
D,M
k=1,i=1.

The main challenge is that the functional parameters are continuous functions with infinite-

dimension. To address this issue, following [28], we assume that the parameters have a

functional expansion, defined by

βkj(t, s) =

Pk∑
p=1

Pj∑
q=1

bkjpqθkp(t)θjq(s) (2.5)

where {θkp(t) : p = 1, 2, · · · , Pk � nk} and {θjq(s) : q = 1, 2, · · · , Pj � nj} are small

sets of basis functions suitable for expanding xki(t) and xji(s), respectively. Given the basis

functions, this expansion transforms the functional parameters, with infinite dimension, to

a set of finite parameters bkjpq that can be estimated using the training data. There are

two approaches for choosing appropriate basis functions. The first one is to use data-

driven basis functions, such as eigenbasis obtained by Functional Principal Components

Analysis (FPCA), and the second one is to use a set of pre-specified basis functions such

as splines, Fourier, or wavelets, based on the domain knowledge about the system. One

of the advantages of using a functional expansion is that the functional variables do not

need to be observed with the same frequency (i.e., we can have different values for nk, for

k = 1, · · · , D). We discuss both of the functional expansion approaches next.

16

FPCA Basis Functions

FPCA has been widely used for reducing the dimensionality of functional data to a small

set of finite features preserving the majority of the data variability [28]. Using the eigen-

decomposition of the covariance function of xk, cov(xk(t), xk(t
′)), xki(t) can be written

as:

xki(t) =
∞∑
p=1

ξkipθkp(t) (2.6)

where {θkp(t)} are the eigen-functions, {ξkip = 〈xki(t), θkp(t)〉} are the FPC scores, k =

1, · · · , D, and i = 1, · · · ,M .

If both xki(t) and xji(s) are expanded as in Equation 2.6, by plugging Equation 2.5 into

Equation 2.4, we have

∞∑
p=1

ξkipθkp(t) =
∑
j∈pak

∫ 1

0

∞∑
p=1

∞∑
q=1

bkjpqθkp(t)θjq(s)
∞∑
q=1

ξjiqθjq(s)ds+ σkεki(t). (2.7)

Using the orthonormality of the θjq’s, Equation 2.7 can be reduced to

∞∑
p=1

ξkipθkp(t) =
∑
j∈pak

∞∑
p=1

∞∑
q=1

bkjpqξjqθkp(t) + σkεki(t). (2.8)

Multiplying this equation by θkp(t) and integrating over t, would result in

ξkip =
∑
j∈pak

∞∑
q=1

bkjpqξjiq + σkεki (2.9)

where εki =
∫ 1

0
θkp(t)εki(t)dt.

The goal is to estimate the parameters bkjpq. Since the FPC scores are descendingly

ordered, the first few FPC scores can capture the most important information of the data

and provide good approximates. Therefore, we set Pk � nk and Pj � nj and approximate

17

xki(t) and xji(s) by

x̂ki(t) =

Pk∑
p=1

ξ̂kipθ̂kp(t) (2.10)

x̂ji(s) =

Pj∑
q=1

ξ̂jiqθ̂jiq(s). (2.11)

Let ξk = [ξ̂kip] ∈ RM×Pk , ξj = [ξ̂jiq] ∈ RM×Pj , bkj = [bkjpq] ∈ RPj×Pk , and εk = [εkip] ∈

RM×Pk , i = 1, · · · ,M , p = 1, · · · , Pk, q = 1, · · · , Pj , Equation 2.9 can be approximated

by the following multilinear regression problem,

ξk =
∑
j∈pak

ξjbkj + σkεk (2.12)

Let Ξk = [ξj], j ∈ pak, be the M by Qk =
∑

j∈pak
Pj design matrix, and Bk = [bkj]

>,

j ∈ pak, be the Qk by Pk matrix of coefficients that should be estimated. Consequently, the

matrix form of Equation 2.12 is

ξk = ΞkBk + σkεk (2.13)

To estimateBk, we minimize the least square loss function,

L(Bk) =
1

2
||ξk −ΞkBk||22 (2.14)

which results in a closed-form solution in the form of

B̂k = (Ξ>k Ξk)
−1Ξ>k ξk. (2.15)

When the truncation parameters Pk and Pj go to infinity with the sample size M , our

18

proposed estimates β̂kj(t, s) are consistent, that is

lim
M→∞

∫ 1

0

∫ 1

0

[βkj(t, s)− β̂kj(t, s)]2dsdt = 0 in probabiliy, (2.16)

under some assumptions on the unknown functional parameters, βkj(t, s). This property

implies that, when the sample size is large, the parameters estimated using FPCA basis

functions are close to the true parameters governing the functional DGM. The consistency

of the estimators follows the proof in [29].

Learning the parameters of the functional DGM, using FPCA basis functions, involves

two key steps. First, for each variable k, k = 1, · · · , D, we estimate the FPC scores,

the computational cost associated with this step is O(Mn2
k + n3

k). The second step is

estimating the parameters B̂k, for k = 1, · · · , D, with the closed-form solution presented

in Equation 2.15. The computational cost for this step is O(MQ2
k +Q3

k +MPkQk).

Pre-specified Basis Functions

In practice, sometimes, basis functions can be chosen based on the domain knowledge

about the system and on the type and shape of the functional data. Examples of such

basis functions include polynomials, splines, wavelets, and Fourier. Define {θkp(t) : p =

1, 2, · · · , Pk} and {θjq(s) : q = 1, 2, · · · , Pj} as the pre-specified basis for the functional

variables xk(t) and xj(s). Let Bkj = [bkjpq], 1 ≤ p ≤ Pk, 1 ≤ q ≤ Pj represent the

Pj by Pk matrix of coefficients. The regression problem defining the functional DGM in

Equation 2.4 becomes

xk(t) =
∑
j∈pak

∫ 1

0

xj(s)θ
>
j (s)Bkjθk(t)ds+ σkεk(t) (2.17)

19

where xk(t) = [xk1(t), · · · , xkM(t)]> and xj(s) = [xj1(s), · · · , xjM(s)]>. In order to

further simplify the notation, we define

Zj :=

∫ 1

0

xj(s)θ
>
j (s)ds ∈ RM×Pj

and

Xk := [xk(t1), · · · ,xk(tnk)] ∈ RM×nk ,

where {xk(t1), · · · ,xk(tnk)} correspond to the grid of observed values for the function

xk(t), Θk := [θk(t1), · · · ,θk(tnk)] ∈ RPk×nk , and Ek := [εk(t1), · · · , εk(tnk)] ∈ RM×nk ,

which simplifies the above equation to

Xk =
∑
j∈pak

ZjBkjΘk + σkEk. (2.18)

This can be further simplified to

xk =
∑
j∈pak

Ξkjbkj + σkek, (2.19)

where xk = vec(X>k), Ξkj = Zj ⊗Θ>k , bkj = vec(B>kj), and ek = vec(E>k). Our goal

is to estimate bkj , for all j in pak. To this end, we minimize the least square loss function

given by

L(bkj|j ∈ pak) =
1

2
||xk −

∑
j∈pak

Ξkjbkj||22. (2.20)

The problem has the closed-form solution,

B̂k = (Ξk
>Ξk)−1Ξk

>xk (2.21)

where Ξk = [Ξkj] and Bk = [bkj]
>, j ∈ pak. Consistency properties of this approach

are not fully understood [28], however, it gives useful estimates, which can be computed

20

analogous to the univariate case.

Learning the parameters of the functional DGM, using pre-specified basis, involves

three main steps. For each variable k, k = 1, · · · , D, first, we compute the matrix Zk ,

the associated cost is O(MnkPk). Second, we build the matrix Ξk, the computational cost

is O(MnkPkQk), where Qk =
∑

j∈pak
Pj . Finally, we estimate the parameters B̂k with

the closed-form solution presented in Equation 2.21, the associated cost isO(MnkP
2
kQ

2
k +

P 3
kQ

3
k +MnkPkQk).

2.3.2 Structure Learning

In this section, we assume that the structure of the functional DGM is unknown. Our goal

is to take the observed functions in the left panel of Figure 2.3 and learn the structure

depicted in the right panel. The first step is to define the set of candidate parents cpak for

each variable k, k = 1, · · · , D. This step is critical as we need to guarantee that the learned

DGM is, in fact, a DAG.

To avoid cycles in the DGM it is necessary to order the variables in such a way that

only the variables with lower orders can be candidate parents for the variables with higher

orders (i.e., for variable k, cpak ⊆ {1, · · · , k − 1}, k = 1, · · · , D). If the system satis-

fies assumption (A2), this ordering exists and its definition is possible thanks to domain

knowledge on the system.

We illustrate the definition of cpak, for k = 1, · · · , D, with an example of a sequential

manufacturing process. Suppose the process has three stages and three process variables

per stage, as seen in Figure 2.4. The arcs represent the set of potential relationships between

the variables in the system. Since variables 1, 2, and 3 are on the same stage and do not have

any predecessor, we can conclude that they are independent. Therefore, the set of candidate

parents for these variables is empty (cpak = ∅, for k = 1, 2, 3). We see that variables in

stage 2 are conditionally independent from each other given the state of the variables in

stage 1, thus cpak = {1, 2, 3} for k = 4, 5, 6. Finally, we have that the variables in stage

21

Figure 2.4: Illustrative example of a sequential manufacturing process

3 are conditionally independent from each other and from the variables in stage 1, given

the state of the variables in stage 2. Therefore, cpak = {4, 5, 6} for k = 7, 8, 9. This

example shows how previous domain knowledge on the system is crucial to define the set

of candidate parents for each variable to guarantee that the learned DGM is a DAG.

Once the set of candidate parents for each variable in the system is defined, inspired by

the neighborhood selection method, introduced by [5], we specify our model as a penalized

function-to-function linear regression. For every variable k, k = 1, · · · , D, we minimize

the loss function:

L(bkj|j ∈ cpak) =
1

2
||xk−

∑
j∈cpak

Ξkjbkj||22+γ
∑
j∈cpak

√
qkj||bkj||2+

λ

2

∑
j∈cpak

||bkj||22. (2.22)

The first term corresponds to the least square loss function presented in Equation 2.20. The

second term is a group LASSO penalty that encourages sparsity in the model by performing

variable selection [10], where qkj is a weight representing the size of vector bkj . The third

term is an L2 norm penalty as used in the elastic net regularization problem [30]. If there

is a group of highly correlated variables, the group LASSO penalty tends to select one

variable and ignore the others, adding the L2 norm penalty overcomes this limitation. For

example, consider a graph with three nodes, assume that node 1 is a parent of nodes 2 and

3, and that node 2 is a parent of node 3. It is clear that nodes 1 and 2 are highly correlated.

When minimizing the loss function for node 3, if the L2 norm penalty is not considered,

22

the group LASSO penalty will enforce sparsity and select only one of the two nodes as a

parent. Finally, γ and λ are tuning parameters.

The goal of learning the structure of the functional DGM reduces to estimating bkj , for

every node k, and j ∈ cpak, k = 1, · · · , D. If all elements of bkj are shrunk to zero, for

some j ∈ cpak, we conclude that node j is not a parent of node k. Thanks to the assumption

(A2) and to the corresponding definition of the set of candidate parents for each variable,

we conclude that if variable j belongs to the estimated set of parents of variable k, then

variable j causes variable k.

To learn the structure of the graphical model, we minimize the loss function, L(bkj|j ∈

cpak), for every node k in the system. We adopt a cyclic coordinate accelerated proximal

gradient descent algorithm [10]. First, we notice that the loss function is block coordinate

separable. That is, given the group of parameters bkl, for all l in cpak, l 6= j, the loss

function in Equation 2.22 can be reduced to

L(bkj) =
1

2
||rkj −Ξkjbkj||22 + γ

√
qkj||bkj||2 +

λ

2
||bkj||22 + C (2.23)

where rkj = xk −
∑

l 6=j Ξklbkl is the lth partial residual, and C =
∑

l 6=j
√
qkj||bkl||2 +∑

l 6=j ||bkl||22 is a constant independent of bkj . To minimize the loss function, L(bkj|j ∈

cpak), we repeatedly cycle through the candidate parents of node k. At the j th step, we

update the coefficients bkj by minimizing L(bkj), while holding bkl, l 6= j, fixed at their

current values.

The next step is to find an optimization algorithm to minimize the loss function for each

coordinate. The Proximal Gradient Descent (PGD) method is an optimization algorithm

focusing on minimizing the summation of a group of convex functions, some of which are

not differentiable. As L(bkj) is the sum of f(bkj) = 1
2
||rkj − Ξkjbkj||22 + λ

2
||bkj||22 + C,

which is convex and differentiable, and g(bkj) = γ
√
qj||bkj||2, which is convex and non-

differentiable, PGD can be used to find the optimal solution through an iterative algorithm

23

given by

b
(t+1)
kj = arg min

bkj

{
f(b

(t)
kj) +

〈
∇f(b

(t)
kj), bkj − b(t)kj

〉
+

1

2s(t)
||bkj − b(t)kj ||

2
2 + g(bkj)

}
(2.24)

where the super-indices (t) and (t + 1) denote iteration numbers, and s(t) > 0 is a step-

size parameter. At iteration t, PGD has a closed form solution as stated in the following

proposition.

Proposition 1. The proximal gradient descent algorithm, with step-size s(t), at iteration

t, has a closed form solution in the form of a soft-tresholding function, given by (Proof in

Appendix, section A.1):

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>kj(rkj −Ξkjb

(t)
kj)− λb(t)kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)
(2.25)

To increase the convergence speed of the optimization algorithm, we use Nesterov’s

accelerated PGD method, which uses weighted combinations of the current and previous

gradient directions. The accelerated gradient method involves a pair of sequences {b(t)kj }∞t=0

and {η(t)
kj }∞t=0, and some initialization b(0)kj = η

(0)
kj . For iterations t = 1, 2, . . . the solution

is then updated according to the following recursive equations:

z(t+1) ← η
(t)
kj + s(t)

(
Ξ>kj(rkj −Ξkjη

(t)
kj)− λη(t)

kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||zt+1||2

)
+

z(t+1)

η
(t+1)
kj ← b

(t+1)
kj +

t

t+ 3
(b

(t+1)
kj − b(t)kj)

(2.26)

Algorithm 1 summarizes the estimation procedure. This algorithm has a convergence guar-

antee, if the component f is continuously differentiable with a Lipschitz gradient. It is clear

that f(bkj) is continuously differentiable, and by Proposition 2 we have that f(bkj) has a

24

Lipschitz gradient, Therefore, we can conclude that the algorithm converges. Furthermore,

the computational complexity for each step of the PGD method is O(MnkPkQk).

Algorithm 1: Structure learning algorithm for functional DGM
Set a convergence threshold ε > 0
for k = 1 to D do

Initialize bkj and ηkj for all j in cpak; set i = 1; let L1 −L0 = inf and L0 = inf
while |Li − Li−1| > ε do

for j ∈ cpak do
rkj = xk −

∑
l∈cpak,l 6=j

Ξklbkl

||b1kj − b0kj||22 = inf
t = 1
while ||b(t)kj − b

(t−1)
kj ||22 > ε do

z(t) = η
(t)
kj + s(t)(Ξ>kj(rkj −Ξkjη

(t)
kj)− λη(t)

kj)

b
(t)
kj =

(
1−

s(t)γ
√
qkj

||z(t)||2

)
+

z(t)

η
(t)
kj = b

(t)
kj +

t

t+ 3

(
b
(t)
kj − b

(t−1)
kj

)
t = t+ 1

Li = L(bikj|j ∈ cpak)
i = i+ 1

Proposition 2. f(bkj) = 1
2
||rkj − Ξkjbkj||22 + λ

2
||bkj||22 + C has a Lipschitz gradient (i.e.

there exist a constant L such that for every α, β, ||∇f(α) − ∇f(β)||2 ≤ L||α − β||2).

(Proof in Appendix, section A.2)

The performance of the proposed method depends on the choice and number of basis

functions considered. In the simulations and case study, we use B-splines as the basis

functions. The selection of the basis functions depends on the functional forms of the

nodes and should be done based on domain knowledge, or initial analysis. In order to learn

the structure of the graph, we used a pre-specified basis, since the parameter estimation

is done in an analogous way to the univariate case. However, the methodology can be

extended to use a data-driven basis.

The choice of tuning parameters γ and λ can be made based on information-type cri-

teria methods (e.g. AIC, BIC, GCV, Cp), or using cross-validation, which is a data-driven

25

approach. In this chapter, we will follow the methods proposed in [27], as they have a good

performance for penalized high-dimensional linear regression models. In addition, their

proposed criterion to select the optimal tuning parameters can be easily adapted to the func-

tional setting. Specifically, we randomly split the dataset into training dataset designated

by c, with size mc, and validation dataset designated by v, with size mv (mc + mv = M),

b times. For every node k in the graph, we minimize the loss function L(bkj|j ∈ cpak),

for each training dataset and each combination of penalty parameters γ and λ, and obtain a

model denoted by M (γ,λ)
c,k with β̃(γ,λ)

kj (t, s) as the least square estimates. For each split, we

use the corresponding validation data set to calculate the values of the criterion function

and average them across the b replicates. The modified cross-validation criterion function,

adapted to the functional setting, is given by

Lk(γ, λ) =
1

mv

∑
i∈mv

1

nk

nk∑
t=1

(x
(v)
ki (t)− x̃(c)ki (t))2 (2.27)

where x̃(c)ki (t) =
∫ 1

0
β̃kj(t, s)xji(s)ds. This criterion is designed to remove the systematic

bias introduced by the shrinkage. We find the optimal γ̂k and λ̂k as the penalty parameters

that result in the smallest average criterion value. Finally, we fit a function-to-function

regression for the model M (γ̂k,λ̂k)
k . After cycling through all the nodes in the graph, we

obtain the structure for the functional directed graphical model.

2.4 Performance Evaluation via Simulations

In this section, we conduct two simulation studies to evaluate the performance of the pro-

posed methods. In the first study, we assume that the causal graph structure is known.

We compare the graph parameters obtained using FPCA basis and pre-specified basis with

the existing benchmark. In the second study, we evaluate the performance of our learning

structure methodology when the graph structure is unknown.

26

Table 2.1: Simulation factor settings

Factors Description Levels
Number of nodes Number of nodes in the graph 10, 20

Density of arcs
Proportion of arcs included in the
graph compared with a fully
connected graph

For 10 nodes: 0.2, 0.4
For 20 nodes: 0.1, 0.2

SNR
Ratio of variance of the response
and noise term

20, 200

2.4.1 Known Graph Structure

To evaluate the performance of the proposed methodology, we simulate eight different

scenarios, in which we vary three different factors, as shown in Table 2.1. To build the

different simulation scenarios, the first step is to randomly create the DAGs. The four

structures used in this section are presented in Figure 2.5. The second step is to generate the

functional random variables. The curves are produced by following the simulation study

in [31]. The root nodes are sampled from a Gaussian process with covariance function

Σ1(t, t
′) = e−10(t−t

′)2 . Noises are added in two different ways. First, as a Gaussian process

with covariance function Σ2(t, t
′) = e−0.1(t−t

′)2 , and then as white noise, using a Gaussian

process with covariance function Σ3(t, t
′) = σ2I , where σ2 is defined using the SNR

established for each scenario. For each node k, that is not a root node, and for all j ∈ pak,

we randomly generate βkj(s, t) =
∑3

l=1 γlkj(t)φlkj(s) where γlkj(t) and φlkj(s), l = 1, 2, 3,

are Gaussian processes with covariance function Σ1. Finally, we generate the response

curves as

xk(t) =
∑
j∈pak

∫
βkj(s, t)xj(s)ds+ σkεk(t) (2.28)

where εk(t) is generated from a standard normal distribution, and σ2
k is defined by the

SNR. We generate all the curves with Ck = [0, 1], k = 1, · · · , D, and take samples over an

equidistant grid of size nk = 50.

To evaluate the performance of each parameter estimation method, we generate a set of

M = 100 samples, and randomly divide the data into a training set of size 80 and a test set

27

(a) 10 nodes, density 0.2 (b) 10 nodes, density 0.4

(c) 20 nodes, density 0.1 (d) 20 nodes, density 0.2

Figure 2.5: DAGs generated for each simulation scenario

28

of size 20. We calculate the Mean Square Prediction Error (MSPE), for each node, using

the testing data as follows:

MSPEk =
1

Mtest

Mtest∑
i=1

1

50

50∑
t=1

(xki(t)− x̂ki(t))2. (2.29)

To have an overall performance metric, we compute the average across all nodes,

MSPE =
1

D

D∑
k=1

MSPEk. (2.30)

We compare the results obtained using FPCA basis (labeled as FPCR) and pre-specified

basis (labeled as FDGM) with the existing benchmark proposed in [26] (labeled as FGM).

The loss function in [26] is given by,

L(bkj(t)|j ∈ pak, t ∈ Ck) =
∑M

i=1

∑
t∈Ck

(
xki(t)−

∑
j∈pak

xji(t)bkj(t)
)2

+λ
∑

t∈Ck ||bkj(t)−
1

nk

∑
t∈Ck bkj(t)||

2
2

(2.31)

Each simulation scenario is replicated a thousand times, the average MSPE values and

the standard errors for the proposed methods as well, as for the benchmark, are reported in

Table 2.2. As can be seen from the table, both FPCR and FDGM outperform the bench-

mark FGM, consistently. The MSPE is much higher for FGM. This occurs because the

benchmark method does not consider the correlation structure between different points in

time of the functional nodes. Additionally, it is important to notice that FGM method re-

quires all the functional nodes to be observed on the same grid, as xki(t) depends only

on xji(t), for all j ∈ pak. This is a disadvantage when compared to our proposed meth-

ods. Another disadvantage is that FGM has a tuning parameter, and, given the nature of

the penalty term, no closed-form solution exists. Therefore, the computational time of this

method is considerably larger than ours, as reported in Table 2.3. Both FPCR and FDGM

have a closed-form solution, with no tuning parameter. Furthermore, Table 2.3 shows that

29

Table 2.2: Comparison between methods using MSPE, 1000 simulations. Results are re-
ported in the form of mean (standard error).

Nodes Density SNR FGM FPCR FDGM

10
0.2

200 2.1941 (0.0162) 0.0821 (0.0009) 0.0206 (0.0001)
20 2.4270 (0.0181) 0.2527 (0.0017) 0.2031 (0.0001)

0.4
200 4.5831 (0.0263) 0.0602 (0.0006) 0.0275 (0.0003)
20 4.9397 (0.0295) 0.2991 (0.0029) 0.2717 (0.0027)

20
0.1

200 0.5883 (0.0034) 0.0554 (0.0004) 0.0067 (0.0000)
20 0.6598 (0.0037) 0.1132 (0.0007) 0.0669 (0.0005)

0.2
200 9.4871 (0.0527) 0.3361 (0.0033) 0.0700 (0.0005)
20 9.3164 (0.0525) 0.8314 (0.0061) 0.7077 (0.0049)

Table 2.3: Comparison between methods in terms of computational time in seconds, 100
simulations. Results are reported in the form of mean (standard error).

Nodes Density FGM FPCR FDGM

10
0.2 5.8875 (0.0036) 0.4214 (0.0012) 0.1408 (0.0004)
0.4 28.9699 (0.0331) 0.4198 (0.0007) 0.2543 (0.0003)

20
0.1 13.8311 (0.0121) 0.8421 (0.0012) 0.1438 (0.0003)
0.2 17.7029 (0.0162) 0.8381 (0.0010) 0.5594 (0.0005)

the fastest method is FDGM.

In Table 2.4, the three methods are compared, using the MSPE for every node, for the

scenario with 10 nodes, density 0.4 (refer to Figure 2.5 (b)), and a SNR of 200. It can be

seen that, for the down-stream variables (i.e. higher-numbered nodes), the corresponding

MSPEk increases. This is due to the error propagation from the up-stream predictions

to the down-stream predictions. From Table 2.2, Table 2.3, and Table 2.4, it is clear that

FDGM is consistently the best method.

2.4.2 Structure Learning

In this simulation study, we evaluate the proposed structure learning method using a graph-

ical model with 10 nodes and a density of 0.2 (Figure 2.6 (a)). We consider two dif-

ferent SNR: 200 and 20. The signals are generated as in the previous section. To learn

the structure, we use cubic B-splines with 8 knots as basis functions. We select γ from

{40.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9, 11, 13, 15} and λ from {10−10, 10−8, 10−6, 10−4, 10−2}. We

30

Table 2.4: Comparison between methods using MSPEk, for the scenario with 10 nodes,
density 0.4, and SNR 200, 1000 simulations. Results are reported in the form of mean
(standard error).

Node 2 Node 3 Node 4 Node 5 Node 6
FGM 0.391(0.002) 0.046(0.000) 0.087(0.001) 0.135(0.001) 1.781(0.009)
FPCR 0.008(0.000) 0.001(0.000) 0.009(0.000) 0.004(0.000) 0.013(0.000)
FDGM 0.002(0.000) 0.001(0.000) 0.000(0.000) 0.002(0.000) 0.005(0.000)

Node 7 Node 8 Node 9 Node 10
FGM 0.021(0.000) 0.531(0.003) 8.466(0.037) 29.791(0.184)
FPCR 0.003(0.000) 0.179(0.002) 0.172(0.001) 0.154(0.002)
FDGM 0.000(0.000) 0.004(0.000) 0.127(0.001) 0.106(0.001)

use mv = M0.7 and b = 5. As mentioned earlier, we assume that we have a DAG with

ordered nodes such that each child node has a higher number than its parents. Therefore,

we consider 1 as the root node, and learn the structure in an orderly fashion for nodes 2

through 10. For node k, the set cpak is equal to {1, . . . , k − 1}.

The true model and the learned structure over a thousand simulation experiments are

presented in Figure 2.6. For the two different simulation scenarios with different SNRs (i.e.

200, 20), the learned structures coincide. This implies that the noise of the signals does not

affect the structure learned. However, the mean square prediction errors and their standard

errors are different, as observed in Table 2.5. As expected, when the noise increases, the

SNR decreases, and, therefore, the prediction task is harder.

To evaluate the recall and precision of the method, the confusion matrix is computed in

Table 2.6. We observe that the proposed method has a true positive rate of 100%. However,

the learned structure has additional arcs. This is because the group LASSO penalty tends

to select more variables. As an overall performance measure, we use the Fβ-score, which

is a harmonic mean of precision and recall. We have:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

(2.32)

where precision = TP/(TP + FP), recall = TP/(TP + FN), and β is a coefficient that

31

(a) True structure (b) Learned structure

Figure 2.6: True structure and structure learned for a functional DGM with 10 nodes,
density 0.2, and SNR ratio 200/20

Table 2.5: MSPE and standard error for a functional DGM with 10 nodes, density 0.2, and
SNR 200/20

MSPE St. Error
SNR 200 0.13017 0.0049
SNR 20 0.25385 0.0053

determines the weight assigned to precision and recall. TP, FP , and FN stand for true

positive, false positive, and false negative, respectively. If we assign the same weight to

precision and recall, the F1-score is 81%. However, in many applications, having a false

negative is worse than a false positive. In health prediction, for example, it is preferable to

order further analysis for a healthy patient that is believed to have a disease (false positive),

than to send a sick patient home with no treatment (false negative). Similarly, in a man-

ufacturing plant, it is preferable to have a false alarm (false positive) when predicting the

quality of a product, than to mistakenly sell defective items (false negatives). In a scenario

in which recall is twice as important as precision, the F2-score is 92%.

The computational time to learn the parents of each node is presented in Table 2.7. We

can see that the computational time highly depends on the number of candidate parents for

each node. Furthermore, it is important to notice that the set of parents for each node can

be estimated in parallel which speeds-up the process of learning the functional DGM.

32

Table 2.6: Confusion matrix for a functional DGM with 10 nodes, density 0.2, and SNR
200/20

Predicted Model
aTruea False

True True 13 0
Model False 6 26

Table 2.7: Computational time to establish the parents of each node in the graph for a
functional DGM with 10 nodes and density 0.2

Average Time (s.) Standard Error (s.)
Node 2 131.61 1.82
Node 3 545.06 6.85
Node 4 540.78 7.15
Node 5 1,219.67 15.30
Node 6 1,823.94 22.85
Node 7 2,501.29 32.43
Node 8 2,878.99 38.19
Node 9 4,810.76 71.78
Node 10 3,798.18 50.04

2.5 Case Study

In this section, we illustrate how our method for learning a functional graphical model

can be applied to real data. We focus on root-cause analysis for the internal combustion

engine case study described earlier. An internal combustion engine produces gas with pol-

luting substances such as nitrogen oxides (NOx). Gas emission control regulations have

been set up to protect the environment and are becoming increasingly restrictive. To ful-

fill legislation requirements, a higher number of on-board sensors is needed to monitor the

performance of the combustion and the exhaust gas after-treatment process. The compli-

ance of combustion engines with emission regulations demands more efficient and reliable

emission control systems.

The NOx Storage Catalyst (NSC) is an exhaust after-treatment system by which the

exhaust gas is treated after the combustion process in two alternating phases: adsorption

(molecules of NOx in the exhaust gas are captured by an adsorber), and regeneration (the

33

stored NOx is reduced in a catalytic process). The regeneration phase starts when the NOx

adsorber is saturated. During the regeneration phase, of duration ranging between 30 and

90 seconds, the engine control unit is programmed to maintain the combustion process in a

rich air-to-fuel status. This status is related to the amount of oxygen present during the com-

bustion process. The relative air-to-fuel ratio normalized by stoichiometry (λ-upstream),

which is measured upstream of the NSC, is the indicator of a correct regeneration phase.

During regeneration, λ-upstream should assume values in the interval [0.92,0.95]. How-

ever, faults occur. They are detected by a λ-upstream value falling bellow an acceptability

threshold of 0.9. This kind of fault, which is called λ-undershoot, worsens the NSC perfor-

mance during the regeneration phase. Although a λ-undershoot fault can be easily detected

by monitoring the λ-upstream sensor, the root-causes behind this behavior may change and

are not clearly defined.

Pacella (2018) developed a methodology of unsupervised classification for the pro-

file data obtained, under real driving conditions, by on-board sensors (channels) during

λ-undershoot fault events. Based on the clusters found, field experts analyzed the cluster

patterns to further understand the root-causes behind fault events.

In this section, we learn the structure of the network of on-board sensors, for different

clusters, to identify the cause of λ-undershoot. The signals of 12 on-board sensors (Ta-

ble 2.8) are available for two clusters, cluster A has 20 fault events, and cluster B has 5

fault events. All signals are measured over a two-second interval with a sample rate of 100

Hz. The signals for each channel in clusters A and B can be seen in Figure 2.7. From the

signals in cluster A, the experts noted that the velocity is constant (Ch12) and that there is

no change in the accelerator pedal position (Ch02) or in the gear index (Ch11). Further-

more, the throttle valve (Ch10) is constantly opened for air intake, and the Exhausted Gas

Recirculated (EGR) valve (Ch03) is actuated to bring a portion of the exhausted gas back

to the cylinders to reduce the temperature. For experts, this clearly represents a driving

condition in which no additional power and torque are required to the engine during the re-

34

Table 2.8: List of on-board sensors (channels)

Description Label Unit
1 air aspirated per cylinder Ch01 [mg/s]
2 accelerator pedal position Ch02 -
3 low pressure EGR valve Ch03 -
4 engine rotational speed Ch04 [rpm]
5 fuel in the 2nd pre-injection Ch05 [mg/s]
6 total quantity of fuel injected Ch06 [mg/s]
7 lambda upstream NSC Ch07 -
8 down-stream intercooler pressure Ch08 [mbar]
9 inner torque Ch09 [Nm]
10 aperture ratio of inlet valve Ch10 -
11 gear index Ch11 -
12 vehicle velocity Ch12 [km/h]

(a) Cluster A (b) Cluster B

Figure 2.7: 12 channels for clusters A and B. Each panel depicts the signals (black), and
the mean signal (red).

generation phase. On the other hand, for cluster B, experts concluded that the fault occurred

during an acceleration phase of the vehicle, recognized by sudden changes in the throttle

valve (Ch10). As a consequence of the acceleration phase, the fluctuations of the intake air

mass (Ch01) during the NSC regeneration phase are higher and the EGR valve (Ch03) is

not active. Additionally, the λ-upstream value (Ch07) presents an increasing trend in the

final part of the window. This indicates the end of the NSC regeneration phase, which is

due to changes in the engine operation conditions, such as a reduction of the amount of

injected fuel charge in the second pre-injection (Ch05) and higher engine rotational speed

(Ch04) and downstream intercooler pressure (Ch08) [20].

35

Using our proposed method, we learned the structure for the two available clusters.

The structures obtained, after 100 replications of the learning process, can be observed in

Figure 2.8. For the case study, the set of candidate parents for each node was proposed

by a group of field experts. We used cubic B-splines with 8 knots as basis functions,

and selected λ from {10−12, 10−8, 10−4} and γ from {10−4, 10−3, 10−2, 10−1, 1}. We used

mv = M0.7 and b = 5. We can observe that the structures obtained support the observations

of the experts. For cluster A, the conclusion is that the λ-upstream sensor (Ch07) has

no parents. This follows from the fact that most of the channels in this cluster have a

constant behavior, as cluster A refers to a stationary mode of the Diesel engine without

acceleration. In cluster B, the λ-upstream sensor (Ch07) has four parents: air aspirated

per cylinder (Ch01), engine rotational speed (Ch04), amount of injected fuel charge in the

second pre-injection (Ch05), and downstream intercooler pressure (Ch08). The structure

learned agrees with the observations made by the experts, the fault is generated by changes

produced in the parent nodes of the sensor due to an acceleration during the ending of

the NSC regeneration phase. In addition, most of the arcs are the same for both clusters.

This makes sense as both structures represent the relationship of different sensors in a car.

However, the difference in λ-undershoot root-cause is detected as the parents for the λ-

sensor (Ch07) change. The structures learned detect that, for cluster A, the fault is due to a

poor performance of the NSC controller or sensor, while, in the case of cluster B, it is due

to the dynamics of the engine operation, rather than to the NSC efficiency.

To further study the performance of the proposed method, for each one of the 100

replications, we randomly divided the data into a training set, with 80% of the signals,

and a test set, with 20% of the signals. We computed the MSPEk for each variable k,

k = 1, · · · , 12, for each cluster. The results are reported in Table 2.9. We observe that the

prediction is fairly accurate in both cases. However, we obtain better results for Cluster A

as we have more observations in this cluster, and, therefore, more information.

36

(a) Cluster A (b) Cluster B

Figure 2.8: Structure learned for clusters A and B

Table 2.9: MSPEk, k = 1, · · · , 12, for clusters A and B, over 100 replicates. Results are
reported in the form of mean (standard error).

Label Description Cluster A Cluster B
Ch01 air aspirated per cylinder 0.0014 (0.0002) 0.0067 (0.0008)
Ch03 low pressure EGR valve 0.0014 (0.0002) 0.0387 (0.0026)
Ch04 engine rotational speed 0.0019 (0.0003) 0.0046 (0.0003)
Ch05 fuel in the 2nd pre-injection 0.0057 (0.0003) 0.0263 (0.0013)
Ch06 total quantity of fuel injected 0.0004 (0.0000) 0.0057 (0.0002)
Ch07 lambda upstream NSC 0.0005 (0.0000) 0.0025 (0.0002)
Ch08 downstream intercooler pressure 0.0018 (0.0001) 0.0164 (0.0008)
Ch09 inner torque 0.0005 (0.0000) 0.0006 (0.0000)
Ch10 aperture ratio of inlet valve 0.0004 (0.0000) 0.0131 (0.0014)
Ch11 gear index 0.0056 (0.0003) 0.0033 (0.0003)
Ch12 vehicle velocity 0.0083 (0.0005) 0.0015 (0.0000)

37

2.6 Conclusion

This chapter proposed a novel method to learn functional DGM, while taking into account

the correlation structure between functional variables over time. First, we presented two

methods to learn the parameters of a functional DGM when the structure is known. Both are

based on function-to-function linear regression. In order to evaluate their performances, we

conducted a simulation study with eight different scenarios. We compared the performance

of the proposed methods with a method presented in [26]. The mean square prediction

errors for the proposed methods were consistently smaller. Another advantage of the pro-

posed methods is that they have a closed-form solution, therefore, they are computationally

more efficient than the benchmark. In a second stage, we extended the methodology to the

case when the structure of the graph is unknown. A learning structure algorithm was pre-

sented. The parents of every node in the graph are selected from a set of candidate parents,

by iteratively fitting penalized function-to-function linear regressions. The loss function

used includes a group LASSO penalty, for variable selection, and an L2 penalty to handle

group selection of correlated nodes. The cyclic coordinate accelerated proximal gradient

descent algorithm was employed to find the optimal model, and to learn the parameters. In

the simulation study, we saw that our method is able to learn a structure with a recall of

100%. We obtained an F1-score of 81%. If we consider that in many real-life situations,

a false negative is worse than a false positive, the method performance improves, as the

F2-score is 92%. In the case study, we proved that the proposed method is able to detect

different root-causes of λ-undershoot.

In this chapter, we assumed that (A2) the functional variables can be represented as

a DAG. This assumption limits the size of the system of study. To learn the structure of

the graph, it is necessary to order the variables in the system in such a way that the lower

ordered variables can be candidate parents for the higher-ordered variables, but the reverse

cannot happen. This ordering is based on domain knowledge of the system and could be

38

difficult to achieve when the number of variables is large. If previous domain knowledge

on the system is unavailable to create a topological ordering of the variables, the task of

learning a DGM becomes a challenging problem. It is possible to define cpak = N \ {k},

for k = 1, · · · , D, where N is the set of nodes. However, this strategy is computationally

expensive and allows for undirected edges and cycles in the model. Therefore, the learned

structure is not guaranteed to be a DAG, and the causality relationship between variables

could be lost. Solutions to deal with undirected edges remain to be investigated.

39

CHAPTER 3

ONLINE STRUCTURAL CHANGE-POINT DETECTION OF

HIGH-DIMENSIONAL STREAMING DATA VIA SPARSE SPECTRAL

GRAPHICAL MODELS

3.1 Introduction

Complex systems are continuously monitored by sensors collecting high-dimensional (HD)

streaming data. The sensing data provides unique opportunities to learn the system state

by exploiting the cross-correlation structure between the system entities. For example, in

neuroscience, EEG sensors record the brain’s spontaneous electrical activity to identify

different emotional states based on functional connectivity patterns [6]. In biomechanics,

Kinect sensors capture body poses by tracking body joints. The data is used to recognize

different human gestures based on the skeletal body part movements [7]. As another exam-

ple, in the automotive industry, sensors mounted on smart cars allow to identify different

driving events such as driving straight, turning, and stopping [8].

Furthermore, complex systems are constantly evolving over time. For example, the

brain can transition from a happy state to a sad state, the human body can perform different

activities one after the other, and a car can go from driving straight to turning. As a system

evolves, the cross-correlation structure between its entities changes. Therefore, using the

HD streaming data collected by sensors to detect structural changes in the system is critical

to monitor the system evolution.

Assume the system is being monitored by p sensors collecting data at a grid of time

points u1, u2, · · · , uT , and thatM samples are available. One possible approach to learn the

dynamic cross-correlation between the system entities is to estimate T probabilistic graph-

ical models, one per time point. In the graphical representation, the nodes act as the entities

40

in the system, and the edges express the partial correlations between the entities. In particu-

lar, if there is no edge between node j and node l, we can conclude that these two variables

are conditionally independent given all the other variables in the system. To learn each

graph at time t = 1, · · · , T , the graphical LASSO [32] can be used. This method assumes

that the variables jointly follow from a multivariate Gaussian distribution and estimates the

precision matrix Θ(t), with entries Θ(t)jl, j, l = 1, · · · , p, t = 1, · · · , T . The precision

matrix encodes the conditional independence structure of the system, if Θ(t)jl = 0, then

node j and node l are conditionally independent given all other variables at time t. How-

ever, this approach allows for too much variability as a different structure can be learned at

each point in time.

In order to generate temporally consistent graphs, methodologies to jointly learn T

graphical models that share certain characteristics are developed [33, 34, 35]. Specifi-

cally, in [35], Hallac et al. propose jointly learning T graphical models by regularizing

the change for consecutive time points. They suggest selecting the regularization penalty

based on domain knowledge about the system, where different evolutionary patterns are

considered (few edges change at a time, global restructuring, block-wise restructuring,...).

Other strategies to learn T temporally consistent graphs are based on smoothed sample co-

variance matrix estimators [36, 37, 38]. In particular, in [38], Qiu et al. propose a kernel

based method to jointly estimate the graphical models. Nonetheless, these methodologies

are not computationally scalable in cases where p and T are large. Additionally, they still

give too much flexibility for the graphs dynamics. Even for some time intervals where no

cross-correlation changes at all, these models generate fictitious dynamics, leading to the

biased estimation of the cross-correlation change-points [39].

Recently, two new methods have been developed to overcome these limitations. On the

one hand, in [40], Qiao et al. propose to estimate doubly graphical models. First, they apply

a non-parametric approach to smooth p covariance functions and represent each curve us-

ing the first functional principal components. Then, the finite-dimensional representations

41

of the curves lead to the functional estimate for the p × p covariance matrix. Finally, the

structure of the system is estimated by computing the functional sparse precision matrix

on a gird of points. On the other hand, in [39], Zhang et al. assume different functions

come from different subspaces, in the sense that only functions of the same subspace have

non-zero cross-correlation with each other. The subspace relationship is learned as a sparse

self-expressive linear regression. To describe the cross-correlation dynamics, the regres-

sion coefficients are allowed to change over time, but the change is regularized with a fused

LASSO penalty. Later on, the functions are clustered into different subspaces. Although,

these methodologies are able to learn the dynamic cross-correlation structure of a system

using functional data, they do it in an offline fashion. They cannot sequentially estimate

the cross-correlation structure and detect, in real-time, the structural change-points. Addi-

tionally, in order to learn the dynamic cross-correlation structure, they need the number of

samples M to be greater than one.

To the best of our knowledge, there is only one paper dealing with online structural

change-point detection. In [41], Xu et al. propose a dynamic sparse subspace learning

methodology inspired by [39], where the subspace relationship is still learned as a self-

expressive linear regression. However, the authors assume that the parameters of the re-

gression are not time-dependent for segments with fixed correlation structures. Therefore,

they replace the fused LASSO penalty with one regularizing the number of change-points.

With these modifications, the proposed approach is computationally efficient to perform

online structural change-point detection. Nonetheless, this methodology has some draw-

backs. First, by the way the problem is formulated, the underlying assumption is that inside

each segment, the observations collected by the sensors are independent and identically

distributed. In practice, this might not be true as in HD streaming data there is temporal

correlation between consecutive measurements that needs to be properly modeled. Second,

the methodology does not provide a graphical representation of the system in real-time,

which is critical to monitor the state of the system.

42

The main goal of this chapter is to develop a new online structural change-point de-

tection method able to estimate the cross-correlation structure of the HD streaming data

collected by sensors. For this purpose, we sequentially estimate the cross-correlation struc-

ture for streaming windows of data. For each window, we assume that the time series

data is stationary, and exploit the underlying spectral information as it is known that ze-

ros at all frequencies in the inverse spectral density matrices characterize the conditional

independence between the entities in the system [9]. Therefore, for each window, we esti-

mate a probabilistic sparse spectral graphical model capturing the cross-correlation of the

data. To control the change from window to window, we regularize it by using a group

LASSO penalty [10]. Furthermore, to detect a structural-change point, we use an EWMA

control chart that monitors the performance of the sparse spectral graphical model. The

proposed monitoring strategy is efficiently implemented by applying the Alternating Di-

rection Method of Multipliers (ADMM) and can be used for real-time monitoring.

The main contributions of this chapter are: (i) we develop a new methodology to detect,

in real-time, the structural changes in a system via sparse spectral graphical models, (ii) we

estimate the cross-correlation structure of the system as a graph at each point in time.

The rest of the chapter is organized as follows. In section 3.2, we introduce probabilistic

graphical models for stationary time series data. In section 3.3, we present the proposed

online structural change-point detection methodology. Simulation studies and two real-data

analysis are conducted in section 3.4 and section 3.5, respectively. Finally, we conclude the

chapter in section 3.6.

3.2 Probabilistic Graphical Models for Stationary Time Series

3.2.1 Gaussian Graphical Models

A graphical model is used to depict the conditional dependence structure among p random

variables,X = (X1, · · · , Xp)
>. Such a network consists of p nodes, one for each variable,

and a number of edges connecting a subset of the nodes. The edges describe the conditional

43

dependence structure of the p variables, that is, nodes j and l are connected by an edge if

and only if Xj and Xl are dependent, conditional on the other p− 2 variables.

For Gaussian data, where X follows a multivariate Gaussian distribution, i.e., X ∼

N(0,Σ), one can show that estimating the edge set, E, is equivalent to identifying the

locations of the nonzero elements in the precision matrix, Θ(= Σ−1) [32]. Therefore,

E = {(j, l) : Θjl 6= 0, (j, l) ∈ V × V, j 6= l}.

In practice, Θ must be estimated based on a set of M observed p-dimensional real-

izations, x1, · · · ,xM , of the random vector X . The graphical LASSO [32] considers a

regularized estimator for Θ by adding an l1 penalty on the off-diagonal entries of the pre-

cision matrix to the Gaussian log-likelihood:

Θ̂ = arg min
Θ

{
− log det Θ + trace{Σ̂Θ}+ λ

∑
j 6=l

|Θjl|

}
(3.1)

where Θ ∈ Rp×p is symmetric positive definite, Σ̂ is the sample covariance matrix of

x1, · · · ,xM , and λ is a non-negative tuning parameter. The l1 penalty regularizes the

estimate and ensures that Θ̂ is sparse. Once Θ̂ is computed, it is straight forward to estimate

the edge set E.

3.2.2 Graphical Models for Stationary Time Series

Let X(t) = (X1(t), · · · , Xp(t))
>, for t ∈ Z, be a stationary multivariate Gaussian time

series. We have that E[X(t)] = 0 and E[X(t),X(t+h)] = Γ(h), for all t ∈ Z, where Γ(h)

is the autocovariance function of the time series. For all h ∈ Z, Γ(h) is a p× p symmetric

positive definite matrix. Furthermore, assume that
∑∞

h=−∞ ||Γ(h)||2 < ∞ where || · ||2 is

the spectral norm. We can define the Spectral Density Matrix (SDM) of the time series,

S(ω), ω ∈ [0, 2π], via the discrete Fourier transform of the autocovariance function:

S(ω) =
1

2π

∞∑
h=−∞

Γ(h)e−ihω. (3.2)

44

For each ω, S(ω) is a p × p Hermitian positive definite matrix. In addition, the function

ω → S(ω) is 2π periodic, and, for real-valued random variables, symmetric. Therefore,

we only need to consider the SDM for ω ∈ [0, π].

The idea behind Gaussian graphical models can be naturally extended to Gaussian sta-

tionary time series. Estimating the edge set, E, is equivalent to identifying the location of

the nonzero elements in the inverse SDM Θ(ω)(= S(ω))−1), ω ∈ [0, π] [9]. Specifically,

if Θ(ω)jl = 0 for all ω ∈ [0, π], then the components Xj and Xl are conditionally indepen-

dent given the remaining p − 2 series. Therefore, E = {(j, l) : ∃ω ∈ [0, π] s.t. Θ(ω)jl 6=

0, (j, l) ∈ V × V, j 6= l}.

In practice, Θ(ω), ω ∈ [0, π], must be estimated based on a realization x(t), for t =

1, · · · , T , of the time series X(t). The graphical LASSO for time series [42] considers a

regularized estimator for Θ(ω). In the frequency domain, the log-likelihood of the time

series can be efficiently computed using the Whittle approximation [43, 44]:

log p(x(1), · · · ,x(T)) ≈ 1

2

T−1∑
k=0

{
log det Θ(ωk)− trace{Ŝ(ωk)Θ(ωk)}

}
− Tp

2
log 2π,

(3.3)

where Ŝ(ωk) is the SDM estimate at frequency ωk = 2πk/T . A sample based estimate of

the SDM is given by the periodogram,

I(ωk) =
1

2π
d(k)d(k)H (3.4)

where d(k), k = 0, · · · , T − 1 is the discrete Fourier transform of x(t), and d(k)H is its

Hermitian transpose. However, the periodogram is not a consistent estimator of the SDM.

For consistency, it is common to smooth the periodogram and set

Ŝ(ωk) =
∞∑

h=−∞

w(h)I(ωk+h) (3.5)

for w(h) a smoothing window that is symmetric and sums to one [45, 46].

45

The graphical LASSO for time series [42, 46] considers a regularized estimator for

Θ(ωk), k = 0, · · · , (T − 1)/2, by adding a group LASSO penalty to the Whittle approxi-

mation of the log-likelihood of the time series:

Θ̂(·) = arg min
Θ(·)

2

T

(T−1)/2∑
k=0

{
− log det Θ(ωk) + trace{Ŝ(ωk)Θ(ωk)}

}

+ λ
∑
j 6=l

√√√√ 2

T

(T−1)/2∑
k=0

|Θ(ωk)jl|2 (3.6)

where Θ(·) = (Θ(ω0), · · · ,Θ(ω(T−1)/2)) is a sequence of Hermitian positive definite ma-

trices such that Θ(ωk) ∈ Cp×p for k = 0, · · · , (T − 1)/2, and λ is a non-negative tuning

parameter. The group LASSO penalty regularizes the estimate, ensures that Θ̂(·) is sparse,

and that the zero paterns are shared across all frequencies. Once Θ̂(·) is computed, it is

straight forward to estimate the edge set E.

3.3 Structural Change-point Detection via Sparse Spectral Graphical Models

3.3.1 Problem Definition

Let X(t) = (X1(t), · · · , Xp(t))
>, for t ∈ Z, be a multivariate time series, and let x(t) =

(x1(t), · · · , xp(t))> be a realization of the time series. Assume that the cross-correlation

structure between the series remains constant for a certain period of time, and then changes

to another constant state as the system evolves, which is a common assumption in practice

[35, 39, 41]. In other words, the cross-correlation structure has only step-wise changes at

certain time points, as illustrated in Figure 3.1 [35].

The main goal of this chapter is to detect the structural change-points, in real-time,

while learning the different cross-correlation structures. For this purpose, we need to an-

swer the following questions: (i) how to model the evolving cross-correlation structure

between the time series and (ii) how to use the proposed model to quickly detect a system

change while maintaining a pre-specified false alarm rate and an in-control ARL. To an-

46

Figure 3.1: Three sensors with associated time series readings, and three different cross-
correlation structures [35]

swer these questions, we make the following assumption. (A1) For each segment ι where

the cross-correlation structure is fixed, the underlying time series is stationary with mean

zero and autocovariance function Γι(h), h ∈ Z, such that
∑∞

h=−∞ ||Γι(h)||2 <∞.

3.3.2 Sparse Spectral Graphical Models for Non-stationary Time Series

For now, let’s assume that the realization of the time series is fully observed. We have

x(t) = (x1(t), · · · , xp(t))>, for t = 1, · · · , T , where T is a fixed finite number. We are

interested in learning the system’s dynamic cross-correlation structure. For this purpose, we

divide the data into overlapping windows of size W , where the overlap is O, as illustrated

in Figure 3.2. In total, we have N = (T − O)/(W − O) windows. A naive approach to

learn the dynamic cross-correlation structure is to learn a graphical model for each window

n = 1, · · · , N . Based on assumption (A1), we suppose that the time series in each window

are stationary and use the graphical LASSO for time series to estimate the inverse SDM,

Θ̂n(ωk), k = 0, · · · , (W − 1)/2, for each window n = 1, · · · , N . However, this approach

allows for too much variability as different structures can be learned for each window.

To generate temporally consistent graphs, we propose to jointly learn the N graphical

models, ensuring that the sparsity pattern is shared across windows. The estimated inverse

47

Figure 3.2: Overlapping windows to learn the dynamic cross-correlation structure of a
system with three sensors. W is the window size and O is the overlap.

SDM are found by solving the following optimization problem:

min
Θn(·)

n=1,··· ,N

2

NW

N∑
n=1

(W−1)/2∑
k=0

{
− log det Θn(ωk) + trace{Ŝn(ωk)Θn(ωk)}

}

+ λ
∑
j 6=l

√√√√ 2

NW

N∑
n=1

(W−1)/2∑
k=0

|Θn(ωk)jl|2 (3.7)

where Θn(·) = (Θn(ω0), · · · ,Θn(ω(W−1)/2)), n = 1, · · · , N , is a sequence of Hermitian

positive definite matrices such that Θn(ωk) ∈ Cp×p, Ŝn(ωk) is the estimate of the SDM at

frequency ωk, k = 0, · · · , (W − 1)/2, and λ is a non-negative tuning parameter. The last

term is a group LASSO penalty which ensures that the structure learned for each window is

sparse by enforcing zeros across frequencies. Additionally, the penalty term regularizes the

pattern of sparsity across windows to ensure the estimation of temporally consistent graphs.

By estimating the inverse SDM for each window, we are able to estimate the corresponding

edge set, as we have seen that there is a one-to-one correspondence between the two, and,

thus, the system’s dynamic cross-correlation structure.

Even though the idea of jointly estimating graphical models is not new [33, 34, 35],

the proposed methodology has two main advantages. First, it is able to learn the system’s

dynamic cross-correlation structure with only one sample of observations at each point in

time. Existing approaches estimate one graph per sampling time t = 1, · · · , T , which

48

requires the number of samples M to be greater than one. Second, the proposed method

models the temporal cross-correlation of the data while existing approaches ignore it by

assuming that observations across time are independent. Modeling the temporal cross-

correlation is critical to avoid learning fictitious dynamics over time.

So far, we have assumed that the realization of the time series is fully observed. How-

ever, in practice, for streaming data, at each point in time, we receive a new observation.

We need to be able to update, in real-time, the cross-correlation structure of the series as

new data is received. Additionally, we are interested in detecting a structural change. Next,

we extend the proposed approach to be able to handle streaming time series.

3.3.3 Sparse Spectral Graphical Models for HD Streaming Data

Assume that we observe a realization of the time series x(t) = (x1(t), · · · , xp(t))>, for

t = 1, 2, · · · . Since our goal is to detect a structural change-point we do not need to

consider all historical data. Hence, we learn the structure for the most recent N windows.

The optimization problem that we want to solve is:

min
Θn(·)

n=1,··· ,N

2

NW

N∑
n=1

(W−1)/2∑
k=0

{
− log det Θn(ωk) + trace{Ŝn(ωk)Θn(ωk)}

}

+ λ
∑
j 6=l

√√√√ 2

NW

N∑
n=1

(W−1)/2∑
k=0

|Θn(ωk)jl|2 (3.8)

where Θn(·) = (Θn(ω0), · · · ,Θn(ω(W−1)/2)), n = 1, · · · , N , is a sequence of Hermitian

positive definite matrices such that Θn(ωk) ∈ Cp×p, Ŝn(ωk) is the estimate of the SDM at

frequency ωk, k = 0, · · · , (W − 1)/2, and λ is a non-negative tuning parameter. The last

term is a group LASSO penalty which ensures that the structure learned for each window is

sparse by enforcing zeros across frequencies. Additionally, the penalty term regularizes the

pattern of sparsity across windows to ensure the estimation of temporally consistent graphs.

By estimating the inverse SDM for each window, we are able to estimate the corresponding

49

edge set, as we have seen that there is a one-to-one correspondence between the two, and,

thus, the system’s dynamic cross-correlation structure.

We solve the problem in Equation 3.8 using the ADMM algorithm [47]. To split the

problem, we introduce consensus variables Zn(ωk), k = 0, · · · , (W − 1)/2 and n =

1, · · · , N . With this we can rewrite the problem as:

min
Θn(·),Zn(·)
n=1,··· ,N

2

NW

N∑
n=1

(W−1)/2∑
k=0

{
− log det Θn(ωk) + trace{Ŝn(ωk)Θn(ωk)}

}

+ λ
∑
j 6=l

√√√√ 2

NW

N∑
n=1

(W−1)/2∑
k=0

|Zn(ωk)jl|2

s.t. Θn(·) = Zn(·) for n = 1, · · · , N

(3.9)

where Θn(·) = (Θn(ω0), · · · ,Θn(ω(W−1)/2)) and Zn(·) = (Zn(ω0), · · · ,Zn(ω(W−1)/2)),

n = 1, · · · , N .

The corresponding augmented Lagrangian becomes

Lρ(Θ,Z,U) =
2

NW

N∑
n=1

(W−1)/2∑
k=0

{
− log det Θn(ωk) + trace{Ŝn(ωk)Θn(ωk)}

}

+ λ
∑
j 6=l

√√√√ 2

NW

N∑
n=1

(W−1)/2∑
k=0

|Zn(ωk)jl|2

+
ρ

NW

N∑
n=1

(W−1)/2∑
k=0

{
||Θn(ωk)−Zn(ωk) +Un(ωk)||2F − ||Un(ωk)||2F

}
(3.10)

where Un(·) = (Un(ω0), · · · ,Un(ω(W−1)/2)), n = 1, · · · , N are the scaled dual variables

and ρ > 0 is the ADMM penalty parameter [47]. The ADMM consists of the following

updates where s denotes the iteration number:

• Θs+1 = arg min Θn(·)
n=1,··· ,N

Lρ(Θ,Zs,U s)

• Zs+1 = arg min Zn(·)
n=1,··· ,N

Lρ(Θs+1,Z,U s)

50

• U s+1 = U s + Θs+1 −Zs+1

By separating the problem in Equation 3.8 into two blocks of variables, Θ and Z, the

proposed ADMM approach is guaranteed to converge to the global optimum [47]. Our

iterative algorithm uses a stopping criterion based on the primal and dual residual values

being below specified thresholds as recommended in [47].

Θ Update

The Θ step can be split into separate updates for each Θn(ωk), n = 1, · · · , N , k =

0, · · · , (W − 1)/2, which can then be solved in parallel:

Θs+1
n (ωk) = arg min

Θn(ωk)
− log det Θn(ωk) + trace{Ŝn(ωk)Θn(ωk)}

+
ρ

2
||Θn(ωk)−Zs

n(ωk) +U s
n(ωk)||2F (3.11)

Let QDQH denote the eigen-decomposition of Ŝn(ωk) − ρ (Zs
n(ωk)−U s

n(ωk)). The

solution to the problem presented in Equation 3.11 is given by QD̃Q
H

, where D̃ is a

diagonal matrix with jth diagonal element (−Djj +
√
D2
jj + 4ρ)/(2ρ) [48]. Then, the Θ

update is

Θs+1
n (ωk) = QD̃Q

H
(3.12)

for n = 1, · · · , N and k = 0, · · · , (W − 1)/2.

Z Update

For the Z step, we need to solve:

Zs+1 = arg min
Zn(·)

n=1,··· ,N

λ
∑
j 6=l

√√√√ 2

NW

N∑
n=1

(W−1)/2∑
k=0

|Zn(ωk)jl|2

+
ρ

NW

N∑
n=1

(W−1)/2∑
k=0

||Θs+1
n (ωk)−Zn(ωk) +U s

n(ωk)||2F (3.13)

LetAn(ωk) = Θs+1
n (ωk) +U s

n(ωk). Since the minimization problem in Equation 3.13 has

51

the form of a group LASSO problem, its solution is

Ẑ
s+1

n (ωk)jl =

1− λ

ρ

√
2

NW

∑N
n′=1

∑(W−1)/2
k′=0 |An′(ωk′)jl|

+

An(ωk)jl, (3.14)

for n = 1, · · · , N , k = 0, · · · , (W − 1)/2, and j, l = 1, · · · , p [42, 47], where (·)+ =

max(0, ·).

By iteratively solving the problem in Equation 3.8, using the ADMM, for streaming

windows of HD data, we can sequentially estimate the system’s dynamic cross-correlation

structure. One thing left to discuss is how to tune the different model parameters. The

proposed method has five parameters: the window size W , the overlap between windows

O, the number of windows considered at each point in time N , the penalty parameter λ,

and the ADMM paramter ρ. Next, we provide guidelines for selecting these parameters.

• Window size W : This parameter needs to be sufficiently large to capture the spectral

information contained in the data, it also needs to be sufficiently small to satisfy the

assumption of the time series being stationary inside the window. We recommend us-

ing the Nyquist-Shannon sampling theorem [49] in combination with domain knowl-

edge about the system to select W .

• Overlap between windows O: This parameter controls the number of new observa-

tions considered in each iteration of the proposed methodology. If it is too small

it will hinder the detection capability, but if it is too large it will unnecessarily in-

crease the computational time. This parameter should be chosen based on domain

knowledge about the system.

• Number of windows considered N : This parameter needs to be sufficiently large to

guaranty the time consistency of the sparse spectral graphical models. However, if

it is too large, the computational time would become prohibitive for online change-

52

point detection. In practice, we recommend choosing this parameter based on the

frequency at which data is being collected to ensure online monitoring is feasible.

• Penalty parameter λ: This parameter controls the level of sparseness of the graphs,

as well as the level of similarity between neighboring windows. If there is domain

knowledge about the level of sparsity in the system, it can be used to tune this pa-

rameter. If not, AIC or BIC methods that control the model complexity can be used.

• ADMM paramter ρ: This parameter controls the convergence speed of the ADMM.

In [47], Boyd et al. provide guidelines for selecting it. In practice, the selection of

ρ does not have a considerable impact on the computational time of the proposed

method. For the simulations and case studies of this chapter, we used ρ = 1.

3.3.4 Online Structural Change-point Detection

With the proposed sparse spectral graphical model for streaming time series, we are able to

learn the dynamic cross-correlation structure of the data. However, we still need to explain

how to monitor the learning process to be able to detect a structural change.

At every iteration ι, the performance of the proposed method can be assessed by study-

ing the resulting approximate log-likelihood:

llι =
2

NW

N∑
n=1

(W−1)/2∑
k=0

{
log det Θ(ι)

n (ωk)− trace{Ŝ
(ι)

n (ωk)Θ
(ι)
n (ωk)}

}
. (3.15)

A higher value of llι implies a better performance. When there is a structural change,

the performance, and thus the value of llι, will decrease as the group LASSO penalty in

Equation 3.8 enforces the similarity across the N windows under study, even when there is

a change. Therefore, a structural change can be detected by a sudden decrease in the value

of the approximate log-likelihood.

We use an EWMA control chart. The EWMA monitoring statistic, for all ι > 1, is

53

given by

zι = γllι + (1− γ)zι−1, (3.16)

where γ ∈ (0, 1) is a weight parameter that controls the importance of historical data, and

z1 = ll1. In the simulations and case studies, we use γ = 0.5. The stopping time of the

monitoring procedure can be determined by:

T (h) = inf{ι| zι ≥ h}, (3.17)

where h is the control limit estimated based on the empirical in-control distribution of zι

[50]. The value of h is related to the pre-specified desired in-control ARL of the monitoring

scheme, when no change occurs in the system.

3.4 Performance Evaluation via Simulations

In this section, we evaluate the performance of the proposed method using simulations.

First, we will illustrate the detection capability of the proposed method. Then, we will

compare the proposed method with the state-of-art method. Finally, we will show the

performance of the learning algorithm.

In our simulations, the time series has T sampling time points, and a structural change-

point at time τ (0 < τ < T). Therefore, we have two time segments where the structure

remains unchanged. For the first time segment, t = 1, · · · , τ − 1, we construct a vector

autoregressive process VAR(1), with variablesX(t) = (X1(t), · · · , Xp(t))
> such that

X(t) = AX(t− 1) + ε(t) (3.18)

where ε(t) ∼ N(0, σIp), A ∈ Rp×p is the process transition matrix, and Ip is the p × p

identity matrix. To construct A, we first set the diagonal entries to be 0.2. Then, in each

row of A, we randomly select one entry and set it to -0.5 with probability 0.5, or to 0.5

54

with probability 0.5. Lastly, we divide A by its maximum eigenvalue in order to make the

process stable. We set σ = ||A||2/2.

The structure of the first time segment, can be determined as follows. If Ajl 6= 0, we

know that node l influences node j by construction of the VAR(1) process. Let S(A)
l =

{j : Ajl 6= 0, j ∈ V }, for l ∈ V . We have that node j is conditionally independent of

node l given the remaining p− 2 variables, if S(A)
j ∩ S(A)

l = ∅. Therefore, E(A) = {(j, l) :

S
(A)
j ∩ S(A)

l 6= ∅ : (j, l) ∈ V × V, j 6= l}.

To generate the second segment, t = τ, · · · , T , we construct a VAR(1) process such

that

X(t) = BX(t− 1) + ε(t) (3.19)

where ε(t) ∼ N(0, σIp) andB ∈ Rp×p is the process transition matrix. To constructB, we

first set B = A. Then, we randomly sample c of the non-diagonal, non-zero entries of A

and c of the zero entries, and switch their values. If we define S(B)
l = {j : Bjl 6= 0, j ∈ V },

the structure of the second segment is given by E(B) = {(j, l) : S
(B)
j ∩ S(B)

l 6= ∅ : (j, l) ∈

V × V, j 6= l}.

In the simulations, we use p = 10, T = 2, 000 and τ = 1, 000. Therefore, A has 10

non-diagonal, non-zero entries. We set c = b10 · SNRc, where b10 · SNRc is the greatest

integer smaller than or equal to 10 · SNR, and the SNR is defined as the percentage of

the non-diagonal, non-zero entries modified. We considered three different levels of SNR:

0.25, 0.5, and 1.00.

For the proposed method, we set the window size W = 200, the overlap O = 190,

the number of windows N = 3, and the ADMM parameter ρ = 1. The penalty parameter

λ is tuned by fixing the sparsity level at 10. To test the detection power of the proposed

method, we fix the in-control ARL0 to be 200 and compare the out-of-control ARL1 under

the different SNR. The out-of-control ARLs obtained from 100 simulation replicates are

shown in Figure 3.3. As expected, as the SNR increases, the structural change is easier

to detect, i.e., smaller ARL1 values. The next step is to compare our method, denoted

55

Figure 3.3: Detection power of the proposed method. Solid blue curve is the ARL1, pointed
red curves represent the confidence interval

Table 3.1: Comparison of detection power for SNR=1.00

DSSGM DSSL
ARL1 4.48 15.60
St. error 0.39 2.76

as Dynamic Sparse Spectral Graphical Model (DSSGM), with the state-of-art method, de-

noted Dynamic Sparse Subspace Learning (DSSL). The DSSL method is based on dynamic

sparse subspace learning [41]. We compare both methods using the simulation setting

where SNR=1.00. For the DSSL method, we used the best parameters we could find by

following the authors recommendations on parameter selection. The results are presented

in Table 3.1. We observe that the detection capability of our method is better. We are able

to detect a change faster because we incorporate the temporal cross-correlation of the data

in our model.

An additional advantage of the DSSGM is that it is able to learn the structure of the data

in real-time, while the DSSL method cannot. In Figure 3.4, we present the true structures

for segments 1 and 2, as well as the learned structures, for one simulation replicate of the

setting SNR=1.00. We observe that existing edges are correctly estimated, however, the

method estimates additional edges. To evaluate the overall performance of the learning

method, we compute the following three criteria for each segment: (i) precision, defined as

the proportion of learned edges that are true edges, (ii) recall, defined as the proportion of

56

learned edges that are correctly identified, and (iii) F-score, a single criterion that combines

precision and recall by calculating their harmonic mean. A boxplot for each metric and each

segment is presented in Figure 3.5 for the setting SNR=1.00. Similar results are obtained

for other simulation settings, they are presented in Appendix B.

(a) True Structure 1 (b) Estimated structure 1

(c) True structure 2 (d) Estimated structure 2

Figure 3.4: Example of true and estimated structures for one simulation run, for SNR=1.00

57

(a) Structure 1 (b) Structure 2

Figure 3.5: Structure learning performance for SNR=1.00, in terms of precision, recall,and
F-score, over 100 simulation replicates

3.5 Case Studies

3.5.1 Human Gesture Tracking

One application where the proposed methodology can be used is motion segmentation,

which is a critical step for human gesture recognition. Kinect sensors track the movements

of human subjects by capturing the location of 18 body joints. Their data acquisition rate

is 30 Hz with 2 cm accuracy in the joint positions. Every joint is recorded as a point in a

three-dimensional Cartesian coordinate system. The MSRC-12 gesture dataset [7] consists

of sequences of human gestures performed by 30 subjects and tracked by Kinect sensors.

The position of the joints and some snapshots of the shoot and throw gestures are shown in

Figure 3.6.

To evaluate the performance of the proposed methodology in motion segmentation, we

combine the sequences of two gestures, shoot and throw, performed by the same subject,

which leads to a time series with 239 observations. In the first segment, the subject stretches

his arms out in front of him, holding a pistol, makes a recoil movement and then returns

58

(a) Five snapshots of the shoot gesture

(b) Five snapshots of the throw gesture

Figure 3.6: Snapshots of gestures being tracked by a Kinect sensor

59

Figure 3.7: Control chart for motion segmentation

to the initial position. In the second segment, the subject uses his right arm to make an

overarm throwing movement, and then returns to the initial position. The gesture change

occurs at t = 119.

To favor the interpretability of the graphs learned, we convert the Cartesian coordinates

of each joint into a single distance variable, representing the distance of the joint to a

reference point established by the Kinect sensor. Our goal is to detect when the gesture

changes. For this purpose, we set W = 30, O = 25, and N = 3. The monitoring control

chart is presented in Figure 3.7. We detect the change at iteration 17, which corresponds to

t = 130, which leads to a detection delay of 11 time observations.

The structures learned for each gesture are presented in Figure 3.8. We see that for

the shoot gesture, the hands, elbows, and shoulders from both arms are connected. The

structure is consistent with the gesture, as both arms are performing similar movements to

shoot. The graph learned for the throw gesture is sparser. In this case, the right side of the

body is connected (foot, ankle, knee, hand, elbow, shoulder). This is consistent with the

fact that the subject involves the right side of the body in the throwing movement.

60

(a) Body structure for shooting

(b) Body structure for throwing

Figure 3.8: Body structures learned for each gesture

61

Figure 3.9: Simulated firing rates of 80 brain regions over 40 seconds

3.5.2 Monitoring Dynamic Functional Brain Connectivity

The proposed methodology can also be used to model the dynamic Functioanal Connec-

tivity (FC) of the brain. FC is the statistical dependency between distinct brain regions

and has been an important tool in understanding brain processes [51]. Recently, FC has

been shown to fluctuate over time, implying that the cross-correlation structure between

different neuron populations changes over time [52]. Thus, assessing and characterizing

the dynamic FC is critical to understand how our brain works.

To illustrate how the proposed methodology can learn the dynamic FC, we simulate

whole-brain dynamics using an example dataset from neurolib, a computational frame-

work for simulating coupled neural mass models [53]. We consider the firing rates of

80 ecxitatory populations of neurons (brain regions) during 40 seconds at a rate of 10Hz,

which leads to 400 time observations. The signals can be observed in Figure 3.9. We set

W = 200, O = 190, and N = 3, and use the DSSGM to learn the dynamic FC.

The monitoring control chart is presented in Figure 3.10. We detect a change in the FC

at iteration 12. The cross-correlations structures learned for each segment can be seen in

Figure 3.11. For the first cross-correlation structure, we observe that regions 14, 57, and

62

64 are highly active as they are conditionally dependent on many other regions. For the

second structure, we observed that the number of active regions increases. Regions 45, 49,

57, 64, and 73 are conditionally dependent on other regions. Additionally, we can see that

the number of connections between regions 60 to 80 increases. So far, given the way the

example dataset is simulated by neurolib [53] we ignore the ground truth, and do not have a

reliable way to validate our results. In the near future, we will explore how to generate the

simulations by defining the structural connectivity matrices in order to be able to validate

our results.

Figure 3.10: Control chart for dynamic FC

63

(a) FC 1 (b) FC 2

Figure 3.11: FC for two identified segments

3.6 Conclusion

This chapter proposed a novel method to learn the evolving cross-correlation structure of

systems collecting HD streaming data. At each point in time, the method is able to repre-

sent the system as a graph, where the nodes represent the system’s entities and the edges

represent the system’s conditional dependence structure. Specifically, if there is an edge

between node j and node l, we can conclude that these entities are conditionally dependent

given all other variables in the system. The proposed method is not only capable of learn-

ing the cross-correlation structure, it can also detect, in real-time, structural change-points

in the system.

To learn the system’s evolving cross-correlation structure, we partition the streaming

data into streaming windows. Then, we assume that, inside each window, the time series

is stationary and use sparse spectral graphical models to estimate the structure of the sys-

tem. By exploiting the spectral information contained in the data, we are able to model the

temporal cross-correlation, which represents an advantage against existing methods. Ad-

ditionally, to ensure that we obtain temporally consistent graphs from one window to the

64

next, we regularize the change using a group LASSO penalty. Finally, to detect a structural

change-point, we use an EWMA control chart that monitors the performance of the sparse

spectral graphical model. The proposed method is efficiently implemented by applying the

ADMM and can be used in real-time in many applications.

With the simulation experiments and the two case studies, we showed that the proposed

method is able to learn the evolving cross-correlation structure of a system. Furthermore,

we showed that it is also capable of timely identifying the structural change-points. The

proposed method presents two main advantages against existing methods. First, it incorpo-

rates the temporal cross-correlation of the data improving its detection capability. Second,

it is able to detect structural changes in the system while simultaneously learning the struc-

ture.

In the near future, we want to expand our simulation experiments. We want to compare

with the benchmark method in different scenarios to test the detection capability of our

method. Additionally, we would like to perform a sensitivity analysis to explore how each

parameter affects the performance of the DSSGM. Furthermore, we want to further explore

the simulation capabilities of neurolib to be able to validate the results obtained with the

proposed method. We also plan to use our methodology in real neurological datasets,

collected by EEG sensors, to investigate how the structure of our brain changes over time.

We are also interested in expanding our methodology for network classification. Consider

the human gesture tracking example. If we have enough historical data recorded when a

subject performs different tasks, we can train a gesture classification model using graphical

representations of each gesture. Then, with the DSSGM we can learn the current structure,

in real-time, and classify it.

65

CHAPTER 4

AN ADAPTIVE SAMPLING STRATEGY FOR ONLINE MONITORING AND

DIAGNOSIS OF HIGH-DIMENSIONAL STREAMING DATA

4.1 Introduction

Nowadays, most complex systems are continuously monitored by hundreds of sensors that

provide a variety of spatio-temporal streaming data with rich information about the sys-

tem’s performance. Monitoring such HD streaming data, in real-time, is critical to detect

anomalies and system failures. For example, in power distribution systems, smart sensors

located across the distribution grid are used for the detection and isolation of outages [11,

12]. In manufacturing, a large number of process variables are measured during the pro-

duction for online quality insurance [13, 14, 15]. In healthcare, intracranial EEG sensors

are used for early detection of seizures in epileptic patients, and to identify the brain regions

responsible for the seizures [54].

While online process monitoring and diagnosis are crucial in many applications, the

complex characteristics of the HD streaming data pose some analytical challenges yet to

be addressed. One of these challenges arises when only partial observations are available

for monitoring due to the system’s resource constraints. These constraints are common in

practice. For example, in environmental monitoring, sensors have a limited battery lifetime,

and the cost of replacing the battery is often high. Therefore, monitoring micro-climate for

agriculture [55], forest fires, [56], and volcanic earthquakes [57], needs to be done with

a limited number of operational sensors, at any given time. Partial observations can also

arise when the number of available sensors is small compared to the number of variables for

monitoring. For example, water quality monitoring requires wireless water sensor technol-

ogy together with unmanned surface vehicles [58], an expensive pair of equipment. Finally,

66

transmission and processing constraints can limit the amount of available data. When an-

alyzing streaming images for detecting process changes [59], the high resolution and high

acquisition rate of images hinder the monitoring process due to the limited bandwidth and

processing capacity. Hence, only a subset of the pixels can be analyzed in real-time. In all

of these settings, a sequential sampling strategy needs to be implemented to decide where

to collect data in order to maximize the change detectability. Furthermore, in HD stream-

ing data, neighboring measurements exhibit high spatial correlation, while measurements

across time are temporally correlated with a non-stationary behavior. This spatio-temporal

structure of the HD data poses another challenge for online monitoring and diagnosis.

In the literature, a series of papers has focused on sequential sampling for online mon-

itoring of HD streaming data. Liu et al. (2015) proposed an adaptive sampling algorithm

based on local Cumulative Sum (CUSUM) statistics. Under the assumption of regional

shifts, Wang et al. (2018) proposed a spatial-adaptive sampling strategy where a wide

search strategy is combined with a deep search strategy to speed up the detection of ab-

normal regions. The drawback of these methods is that they assume that the observations

from all the data streams are independent and follow a normal distribution. To overcome

this limitation, Xian et al. (2018) developed a non-parametric adaptive sampling strat-

egy. The authors adopted a rank-based, non-parametric CUSUM procedure as a baseline

to construct the monitoring statistic. To deal with the unobserved variables, they proposed

a methodology to correct the anti-rank statistics. However, this adaptive sampling strategy

still assumes that the data streams are independent and identically distributed with an in-

control joint distribution, which may not be valid for spatio-temporal streaming data. To

the best of our knowledge, none of the existing sequential sampling methods considers the

spatio-temporal correlation of the HD streaming data.

In the absence of missing data due to resource constraints, monitoring methods that

incorporate the spatio-temporal structure of the HD streaming data have been developed.

These methods reduce the dimensionality of the problem by projecting the HD data streams

67

onto Low-dimensional (LD) subspaces. The extracted features and residuals are used

for monitoring and diagnosis [63, 64, 65]. The main drawback of these methods is that

they cannot be directly used for non-stationary data streams. Recently, a Spatio-temporal

Smooth Sparse Decomposition (ST-SSD) method was proposed to monitor non-stationary

data streams [15]. However, the ST-SSD method cannot perform monitoring in a setting

where the available data is incomplete due to resource constraints, and cannot be easily

adapted.

The main goal of this chapter is to develop an adaptive sampling strategy, and an online

process monitoring and diagnosis approach for incomplete and non-stationary HD stream-

ing data, by incorporating its spatial and temporal information. To develop our adaptive

sampling strategy, we propose to consider the streaming data as an incomplete tensor. We

develop a RTR model that decomposes the streaming tensor into three components: a low-

rank component, a sparse component, and a noise component. The low-rank component

captures the spatio-temporal correlation of the data, which is estimated through tensor fac-

torization [16, 17, 18], while the sparse component captures the variables suspicious of

change. We use the information contained in the sparse component for monitoring and

diagnosis. To define where to sample at each acquisition time, we propose a TSS scheme

that balances exploration and exploitation by combining two probability functions. When

the process is in-control, our sampling strategy behaves like random sampling, and when

the process is out-of-control, it behaves like greedy sampling to locate where the changes

have occurred.

The main contributions of this chapter are: (i) we develop an adaptive sequential sam-

pling strategy for online monitoring of HD streaming data that outperforms existing meth-

ods by capturing their spatio-temporal correlation, (ii) we estimate the values of the unob-

served variables at each acquisition time, and (iii) we develop a RD algorithm able to detect

the abnormal variables quickly by incorporating the spatial correlation.

The rest of the chapter is organized as follows. In section 4.2, we provide a methodol-

68

ogy overview. In section 4.3, we give a review on multilinear algebra and tensor completion

algorithms. In section 4.4, we present the recursive tensor recovery model. In section 4.5

we present the adaptive sampling strategy, while, in section 4.6, we develop the monitor-

ing and diagnosis methods. Simulation studies and two real data analysis are conducted in

section 4.7 and section 4.8, respectively. Finally, we conclude in section 4.9.

4.2 Overview of the Proposed Methodology

4.2.1 Problem Formulation

Suppose there are I × J variables of interest distributed over a rectangular grid. Let xi,j,t,

i = 1, · · · , I , j = 1, · · · , J , t = 1, 2, · · · , denote the measurement values of these vari-

ables at location (i, j), and at acquisition time t. They can be represented as an I × J

matrix, denoted by X t. For example, each pixel of an image corresponds to an element

of this matrix. We are interested in detecting a possible change in the components of X t.

However, due to resource constraints, only q (q ≤ I × J) measurements can be observed

at each acquisition time. Let wi,j,t be a binary variable, equal to 1 when xi,j,t is observed.

Consequently,
∑I

i=1

∑J
j=1wi,j,t = q, for all time t.

To develop an effective monitoring and diagnosis framework for partially observed data

streams, we need to answer the following questions: (i) how to adaptively choose wi,j,t for

each acquisition time t, (ii) how to use the available data to quickly detect a system change

while maintaining a pre-specified false alarm rate and an in-control ARL, and (iii) how to

determine the location(s) of the change or the set of variables responsible for the change. To

answer these questions, we make four assumptions. (A1) The in-control data streams have a

spatial structure that may gradually change over time, and (A2) can be represented as a low-

rank tensor. These two assumptions are satisfied in several practical applications [66, 67].

(A3) At some finite time ta, there are changes in the means of a small number of spatially

correlated data streams. The change point ta, the number of abnormal streams, and the

magnitude and direction of the post-change means are unknown. The assumption of sparse

69

changes is common when monitoring high-dimensional streaming data as an assignable

cause likely impacts only a subset of sensors or small local regions. For example, in a steel

rolling process, seam defects occur in small sections of the rolling bar [15]. As another

example, in environmental monitoring, abrupt changes can be observed in specific regions

when monitoring climate data [62]. (A4) The sampling strategy can be timely implemented

without any cost within each sampling interval. This assumption is common in adaptive

sampling strategies for online monitoring of sensing systems [60, 61, 62].

4.2.2 Methodology Overview

The general framework of the proposed methodology is shown in Figure 4.1. At each ac-

quisition time, the sensor readings are organized into a tensor, and a RTR algorithm is pro-

posed to estimate two key components from the partially observed data stream: a low-rank

component, that captures the spatio-temporal structure of the data and contains estimates

for the unobserved variables, and a sparse component, that captures the suspicious variables

that may indicate an out-of-control state. To detect statistically significant changes using

the sparse component, we construct an exponentially weighted moving average (EWMA)

control chart. If an alarm is raised, we propose a RD algorithm to find the abnormal re-

gions. Otherwise, based on the location and pattern of the suspicious observations in the

sparse component, we decide where to sample next. Each step of the methodology will be

elaborated in subsequent sections.

4.3 Multilinear Algebra and Tensor Completion

4.3.1 Tensor Notation and Multilinear Algebra

A tensor is a multidimensional array. A first-order tensor is a vector, a second-order tensor

is a matrix, and tensors of order three or higher are called higher-order tensors. The order

of a tensor is the number of dimensions, also known as ways or modes. Throughout the

chapter, tensors of order N ≥ 3 are denoted by Euler script letters, e.g., X , matrices are

70

Figure 4.1: Flow diagram of the proposed Tensor Sequential Sampling (TSS) methodology

denoted by boldface capital letters, e.g., X , vectors are denoted by boldface lowercase

letters, e.g., x, and scalars are denoted by lower case letters, e.g., x. Entries of a matrix or

a tensor are denoted by lower case letters with subscripts, e.g., the (i1, i2, · · · , iN) entry of

an N -way tensor X is denoted by xi1,i2,··· ,iN .

Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined

by fixing every index but one. A matrix column is a mode-1 fiber and a matrix row is a

mode-2 fiber. Third-order tensors have column, row, and tube fibers, denoted by x:jk, xi:k,

and xij:, respectively.

An N -way tensor can be unfolded into a matrix, this is also known as matricization or

flattening. The mode-nmatricization of a tensor X ∈ RI1×I2×···×IN is denoted byX(n) and

arranges the mode-n one dimensional fibers to be the columns of the resulting matrix.

The Hadamard product of two tensors X , Y of equal size, I1×I2×· · ·×IN , is denoted

by X ∗Y and defined as

(X ∗Y)i1,i2,··· ,iN = xi1,i2,··· ,iNyi1,i2,··· ,iN .

71

The inner product of X and Y is the sum of the product of their entries,

〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

xi1,i2,··· ,iNyi1,i2,··· ,iN .

The norm of tensor X is defined as ||X || =
√
〈X ,X 〉. For matrices, || · || refers to the

analogous Frobenius norm, and for vectors, || · || refers to the analogous L2 norm.

The CANDECOMP/PARAFAC (CP) [68] tensor decomposition factorizes a tensor into

a sum of rank-one tensors. For example, given a third-order tensor X ∈ RI×J×K , its CP-

decomposition is X ≈
∑R

r=1 ar ◦ br ◦ cr, where ◦ represents the vector outer product, R is

a positive integer approximating the rank of the tensor, and ar ∈ RI , br ∈ RJ and cr ∈ RK

for r = 1 · · · , R. We define the factor matrices as the combination of the vectors from the

rank-one components: A = [a1 a2 · · · aR],B = [b1 b2 · · · bR], andC = [c1 c2 · · · cR],

and write X ≈ [[A,B,C]]. The rank of a tensor X is defined as the smallest number

of rank-one tensors sum of which is exactly equal to X . See [69] for a comprehensive

overview of higher-order tensor decomposition and their applications.

4.3.2 Tensor Completion Methodologies

Several methods have been proposed to complete tensors with missing entries. They can

be divided into three groups. The first one aims to minimize the estimated tensor’s rank

while requiring that the known entries remain unchanged. Since finding the rank of a ten-

sor is an NP-hard problem [70], the tensor’s rank is approximated by flattening the tensor

and using matrix completion techniques [66, 67, 71]. The problem with this approach is

that it does not preserve the multi-way structure of the data. The second group of ten-

sor completion methods uses CP tensor decomposition to extract the underlying factors in

each dimension of the tensor and to perform missing data imputation. Several optimization

methods have been proposed to solve the decomposition problem, including expected mini-

mization alternating least squares [16], second-order methods [17], and first-order methods

72

[18]. Although these methods are able to extract the latent factors and impute the missing

data, while preserving the spatio-temporal structure, they are highly sensitive to outliers

and anomalies in the data [72]. In an attempt to make tensor completion methods robust to

corrupted data, robust low-rank tensor recovery methodologies have been developed [72,

73]. However, these methodologies have three main drawbacks: they rely on flattening the

tensor to minimize the rank, hence losing the multi-way structure, they assume that the out-

liers and anomalies are fully observed, and they are mainly developed for offline diagnosis

and are not scalable to online monitoring.

In the next section, using CP tensor decomposition, we develop a new recursive tensor

recovery model that preserves the spatio-temporal structure of the streaming data, is robust

to corrupted data, and can be used for online monitoring.

4.4 Recursive Tensor Recovery Model

As seen in the problem formulation section, the streaming data can be represented as a

third-order tensor, X , with the first two modes representing spatial locations across the

I × J grid, and the third mode representing time. Since our goal is online monitoring,

we do not need to consider all historical data. Hence, we use a sliding window of size T ,

defined by the user. We discuss how to choose a value for T at the end of the section. Let the

tensor X (t) ∈ RI×J×T represent the measurements xi,j,k for i = 1, · · · , I , j = 1, · · · , J ,

and k = t − T + 1, · · · , t. Similarly, the indicator tensor for missing data is defined as

W (t) ∈ RI×J×T , where

wi,j,k =

1 if xi,j,k is observed

0 if xi,j,k is missing
.

We defineX(t)
k as the kth temporal slice (matrix) of tensor X (t), k = 1, · · · , T , x(t)

i,:,k as the

ith row of this matrix, and x(t)
:,j,k as the jth column.

73

One of the questions that we need to answer is how to quickly and accurately detect

anomalies in the streaming data at each sampling time t, where anomalies are defined as

mean changes. To answer this question, we start by decomposing the streaming tensor

X (t), t > T , into three components, a low-rank component L(t), a sparse component S(t),

and a noise component E (t), as X (t) = L(t) + S(t) + E (t). The low-rank component, L(t),

captures the spatio-temporal structure of the streaming data, while the sparse component,

S(t), captures the variables suspicious of change. The entries of the noise component, E (t),

are assumed to be uncorrelated with constant variance σ2. To estimate L(t) and S(t), we

propose the following model:

min
L(t),S(t)

1

2
||W (t) ∗ E (t)||2 + λ

I∑
i=1

J∑
j=1

t∑
k=t−T

wi,j,k|si,j,k|

s.t. W (t) ∗X (t) = W (t) ∗ (L(t) + S(t) + E (t)),

(4.1)

where the first term in the objective function is a quadratic loss, the second term is an

L1 penalty term that encourages sparsity in S(t), and λ > 0 is a tuning parameter to be

determined, its choice will be discusses at the end of the section.

Due to the high-dimensionality of the data, it would be impossible to directly solve this

optimization problem. Therefore, we use the CP decomposition to capture the low-rank

spatio-temporal structure of the streaming data. We set L(t) ≈ [[A(t),B(t),C(t)]], where

A(t) ∈ RI×R,B(t) ∈ RJ×R, and C(t) ∈ RT×R are the factor matrices of the low-rank

component L(t), and R is the approximate rank of L(t). In practice, we estimate R using

historical in-control data by trying different values and penalizing model complexity using

a BIC criterion. By incorporating the CP decomposition into Equation 4.1, the optimization

model can be rewritten as:

min
A(t),B(t),C(t),S(t)

1

2
||W (t) ∗ E (t)||2 + λ

I∑
i=1

J∑
j=1

t∑
k=t−T

wi,j,k|si,j,k|

s.t. W (t) ∗X (t) = W (t) ∗
(

[[A(t),B(t),C(t)]] + S(t) + E (t)
)
.

(4.2)

74

By decomposing the tensor X (t) as the sum of a low-rank component, a sparse com-

ponent, and a noise component, we guarantee that the CP decomposition of the low-rank

component L(t) is not affected by the presence of anomalies in the streaming data. The fac-

tor matrices, A(t),B(t), and C(t), estimate the missing entries of the low-rank tensor L(t).

Additionally, the sparse component S(t) captures the variables suspicious of change at each

point in time. This information is critical for the development of our adaptive sequential

sampling strategy, as we demonstrate in section 4.5.

The problem presented in Equation 4.2 is a large-scale decomposable optimization

problem that can be efficiently solved by alternating minimization as shown in algorithm 3.

For each acquisition time t > T , in step 1, we fix S(t) and find the optimal factor matrices

A(t),B(t), and C(t). Then, in step 2, given that we have estimated the suspicious locations

for previous acquisition times (i.e., Sk for k < t) and by fixing the low-rank component,

L(t) = [[A(t),B(t),C(t)]], we optimize S(t)
T . We iterate steps 1 and 2 until convergence,

given a tolerance parameter ε. In our numerical experiments, we observed that the iterative

process converges very fast (often in less than 5 iterations). The details of the optimization

algorithm for each step are discussed in the following subsections.

4.4.1 Step 1: Recursive Tensor Factorization

Since the problem in Equation 4.2 is a large-scale decomposable optimization problem,

we use alternating minimization to solve it. In step 1, we assume that S(t) is known and

find the optimal factor matrices defining the low-rank component, L(t). Consequently, the

problem reduces to:

min
A(t),B(t),C(t)

1

2
||W (t) ∗ (X (t) − [[A(t),B(t),C(t)]]− S(t))||2. (4.3)

Equation 4.3 is a tensor factorization problem with missing data. To solve it, we use

the CP-Weighted Optimization (CP-WOPT) algorithm [18]. This algorithm uses nonlinear

75

conjugate gradient descent [74] to solve the optimization problem and is faster than other

optimization methods available in the literature [16, 17].

Although the CP-WOPT is a rather fast algorithm, it may not scale to online monitor-

ing applications, which require solving problem in Equation 4.3 for each acquisition time

t > T . Therefore, we propose a new recursive CP weighted optimization algorithm that ac-

celerates the tensor completion process. Recursive tensor factorization methods have been

previously studied in the literature [75, 76]. These methods estimate the underlying factor

matrices recursively so that the estimation error decreases at each iteration, and thus cannot

be used for online monitoring. For monitoring streaming data, for each t > T , we need

to find the factor matrices Â
(t)
, B̂

(t)
, and Ĉ

(t)
that minimize the problem in Equation 4.3.

For this reason, we develop a new recursive tensor factorization method, named Recursive

CP-Weighted Optimization (RCP-WOPT).

At time t, we observe the new temporal slice (matrix) of the tensor, i.e. X t = X
(t)
T .

With the proposed decomposition method, we have thatX(t)
T = L

(t)
T +S

(t)
T +E

(t)
T . Assum-

ing thatS(t)
T is known, we need to estimateL(t)

T . We have thatL(t)
T = A(t)diag(c

(t)
T,:)(B

(t))>,

where diag(c
(t)
T,:) is a square diagonal matrix with the elements of the vector c(t)T,: on the main

diagonal. Since we are assuming that the spatial structure gradually changes over time (As-

sumption (A1)), we start by estimating c(t)T,:, using Â
(t−1)

and B̂
(t−1)

. For this purpose, we

solve the following optimization problem:

min
c
(t)
T,:∈RR

1

2

I∑
i=1

J∑
j=1

(
wi,j,t

(
xi,j,t −

(
a
(t−1)
i,: ∗ b(t−1)j,:

)>
c
(t)
T,: − si,j,t

))2

. (4.4)

This problem is derived from Equation 4.3, by considering only the last temporal slice of

the tensors. It is easy to see that this problem has a closed-form solution given by

ĉ
(t)
T,: =

(∑I
i=1

∑J
j=1wi,j,t

(
a
(t−1)
i,: ∗ b(t−1)j,:

)(
a
(t−1)
i,: ∗ b(t−1)j,:

)>)−1
×
(∑I

i=1

∑J
j=1wi,j,t(xi,j,t − si,j,t)

(
a
(t−1)
i,: ∗ b(t−1)j,:

))
.

(4.5)

76

With an initial estimate for ĉ(t)T,:, we proceed to run CP-WOPT with a warm start, using

the matrices Â
(t−1)

, B̂
(t−1)

, and Ĉ
(t)

, where ĉ(t)k,: = ĉ
(t−1)
k+1,:, for k = 1, · · · , T − 1, and

ĉ
(t)
T,: was estimated using Equation 4.5. With the warm start the CP-WOPT converges in

very few iterations, due to the spatial structure that gradually changes over time. The RCP-

WOPT algorithm is summarized in algorithm 2.

Algorithm 2: RCP-WOPT Algorithm
For a fixed t > T
Input: W (t),X (t),S(t), Â

(t−1)
, B̂

(t−1)
, Ĉ

(t−1)

Step 1: Set ĉ(t)k,: = ĉ
(t−1)
k+1,: for k = 1, · · · , T − 1 and compute ĉ(t)T,: using Equation 4.5

Step 2: Run CP-WOPT with Â
(t−1)

, B̂
(t−1)

and Ĉ
(t)

as a warm start
Output: L̂(t)

= [[Â
(t)
, B̂

(t)
, Ĉ

(t)
]]

4.4.2 Step 2: Soft-Thresholding

In this step, we try to estimate the location of the suspicious variables given the updated

low-rank structure. As these locations have already been estimated for previous acqui-

sition times, i.e., Sk, for k < t, we only need to estimate St = S
(t)
T , given L̂(t)

=

[[Â
(t)
, B̂

(t)
, Ĉ

(t)
]], obtained in Step 1. Therefore, the problem presented in Equation 4.2

reduces to:

min
si,j,t

1

2

I∑
i=1

J∑
j=1

wi,j,te
2
i,j,t + λ

I∑
i=1

J∑
j=1

wi,j,t|si,j,t|

s.t. wi,j,txi,j,t = wi,j,t

(
R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr + si,j,t + ei,j,t

)
,

(4.6)

for all i = 1, · · · , I and j = 1, · · · , J . The solution to this optimization problem has a

closed-form computed by the soft-thresholding function as shown in Proposition 3.

Proposition 3. Given Sk, for k < t, and L̂(t)
= [[Â

(t)
, B̂

(t)
, Ĉ

(t)
]], the solution to the

77

problem presented in Equation 4.6 is obtained by the soft-thresholding function:

ŝi,j,t = Sλ

(
wi,j,t

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr

))
, (4.7)

where Sλ(·) = sgn(·) (| · | − λ)+, sgn(·) is the sign function, and (·)+ = max(·, 0). (Proof

in Appendix, section C.1)

The soft-thresholding function translates the value of wi,j,t
(
xi,j,t −

∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
toward zero by the amount λ, and sets it to zero if

∣∣∣wi,j,t (xi,j,t −∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)∣∣∣ ≤ λ.

Therefore, if ŝi,j,t 6= 0, we conclude that the variable corresponding to the location (i, j)

has a suspicious behaviour at time t, not captured by the low-rank component, and that this

location is a feasible candidate for sampling.

The proposed RTR methodology, summarized as algorithm 3, has two main advan-

tages: (i) RTR is robust to abnormal changes in the data as it decomposes the streaming

tensor into a low-rank component, L(t), and a sparse component, S(t), and performs the

CP decomposition on only the low-rank component; and (ii) if the system is in-control, at

each acquisition time, RTR is able to recover the value of the unobserved variables in the

system, while other sequential sampling methods [60, 61, 62] are not capable of missing

data imputation.

One question that remains to be answered is how to choose the window size T and the

regularization parameter λ for the RTR algorithm. Next, we discuss how to set values for

these two parameters.

The window size T cannot be too large or too small. If T is too large, running the RTR

algorithm is computationally too expensive for online monitoring and diagnosis. On the

other hand, if T is too small, we loose information on the temporal structure of the data and

the detection capability of the proposed method worsens. In practice, the value for T can

be determined with in-control historical data by fixing a desired Root Mean Square Error

(RMSE).

78

Algorithm 3: Recursive Tensor Recovery (RTR) Algorithm
For a fixed t > T and a tolerance parameter ε > 0,
Input: W (t),X (t), Â

(t−1)
, B̂

(t−1)
, Ĉ

(t−1)
, Ŝ(t−1)

Let ι = 0
Estimate ĉ(t)T,: (subsection 4.4.1, Equation 4.5)

Set L̂(t,ι)
= [[Â

(t−1)
, B̂

(t−1)
, Ĉ

(t,ι)
]] where ĉ(t)k,: = ĉ

(t−1)
k+1,: for k = 1, · · · , T − 1

Set Ŝ
(t,ι)

k = Ŝ
(t−1)
k+1 for k = 1, · · · , T − 1 and Ŝ

(t,ι)

T = 0
repeat

ι = ι+ 1
Step 1: Solve the recursive tensor factorization problem (subsection 4.4.1) to
get L̂(t,ι)

= [[Â
(t,ι)

, B̂
(t,ι)

, Ĉ
(t,ι)

]]
Step 2: Solve the soft-thresholding problem (subsection 4.4.2) to estimate
Ŝ

(t,ι)

T

until convergence, i.e. ||L̂(t,ι)
+ Ŝ(t,ι) − L̂(t,ι−1) − Ŝ(t,ι−1)||2 ≤ ε;

Output: L̂(t,ι)
= [[Â

(t,ι)
, B̂

(t,ι)
, Ĉ

(t,ι)
]], Ŝ(t,ι)

Under the assumption that the entries of the noise component are independent normal

random variables with mean zero and variance σ2, a reasonable choice for the regularization

parameter is λ = σ̂
√

2 log(q), where q is the number of variables observed, and σ̂ is

estimated using in-control data. This is because the expected value of the maximum of

n independent and identically distributed normal random variables with mean zero and

variance σ2 cannot exceed σ
√

2 log(n), when n is large [77]. However, this threshold may

not be appropriate for the mean shifts smaller than σ
√

2 log(q). For such cases, following

the recommendations in [78], we could use the BIC criterion to tune the penalty parameter

at each iteration, denoted by λBIC . If there is no domain knowledge on the magnitude of

the shift, we suggest using the following regularization parameter:

λ∗ = min(λBIC , σ̂
√

2 log(q)). (4.8)

Finally, it is important to highlight the differences between the proposed RTR algorithm

and the ST-SSD method [15] which decomposes the data into a functional mean compo-

nent, an abnormal component, and a noise component, and performs online monitoring

79

and diagnosis of non-stationary streaming data. First, ST-SSD assumes that the data has

a smooth spatial structure and uses pre-specified spatial and temporal bases to reduce the

dimensionality of the components to be estimated. The definition of the bases relies on

domain knowledge about the process and the anomalies. In contrast, RTR uses the CP

decomposition to estimate the low-rank component of the data which is a data-driven ap-

proach and does not need to assume a smooth spatial structure. Second, ST-SSD was not

designed for the case where there is missing data due to resource constraints. On the one

hand, it cannot perform missing data imputation, and on the other the assumptions on the

monitoring test statistic will not hold.

4.5 Adaptive Sampling Strategy

In this section, we define an adaptive sampling strategy that balances between exploring the

space and sampling around the locations that are suspicious of change. At each acquisition

time t > T , we sample q out of the I × J variables, where q depends on the resource

constraints, from the following probability mass function:

pt(i, j) = βrt(i, j) + (1− β)gt(i, j); i = 1, · · · , I; j = 1, · · · , J, (4.9)

where rt is a probability mass function that encourages exploration by random sampling

over the space, gt is a probability mass function that encourages greedy sampling around

suspicious areas of the grid, and β ∈ (0, 1) is a tuning parameter that balances the ex-

ploration and exploitation. With the proposed adaptive sampling strategy, it is possible to

sample a variable multiple times. If this is the case, we continue sampling until we select

q different variables. The q chosen variables are observed at time t and used for online

monitoring and diagnosis. The exploration probability mass function is defined as:

rt(i, j) =
1

Z

(
1− 1

t− 1

t−1∑
k=1

wi,j,k

)
, (4.10)

80

where
∑t−1

k=1wi,j,k is the number of times a variable has been observed in the past and Z

is a normalizing constant. According to this mass function, the more frequently a variable

has been visited, the smaller the chances that the variable will be visited again. Hence,

it encourages exploration over the grid. The exploitation probability mass function, gt, is

defined by fitting an empirical kernel density function over the sparse component, Ŝt−1,

obtained by the RTR algorithm. We define the set of all variables as N = {(i, j)| i =

1, · · · , I, j = 1, · · · , J} and the set of suspicious variables, at time t − 1, as Ut−1 =

{(i, j)| ŝi,j,t−1 6= 0, i = 1, · · · , I, j = 1, · · · , J}. For all n ∈ N , the empirica kernel

density function is computed as:

gt(n) =
1

#(Ut−1)

#(Ut−1)∑
i=1

Kθ(n− ui), (4.11)

where #(·) is the cardinality of a set, Kθ(·) is the kernel density, θ is a bandwidth param-

eter, and ui ∈ Ut−1, for i = 1, · · · ,#(Ut−1). In practice, any kernel can be used, and

its choice may depend on the domain knowledge about the anomalies. In this chapter, we

use a Gaussian kernel with an optimal bandwidth obtained by using the L-BFGS-B algo-

rithm [79]. If there are no suspicious variables, i.e. Ŝt−1 = 0, we set gt as a uniform

mass function. When the system is out-of-control, sampling according to this mass func-

tion guarantees a fast discovery of the defective regions, as it greedily samples around the

suspicious locations.

The proposed sequential sampling strategy ensures the fast detection of a wide range

of possible shifts, thanks to the exploration probability mass function (Proposition 4), and

identifies the shifted variables or anomalous regions, thanks to the exploitation probability

mass function (Proposition 5).

81

Proposition 4. Let V1 denote the set of variables n ∈ N which will never be observed after

a finite time t0. If the proposed sequential sampling procedure is followed, with probability

1 we observe all the variables after a finite time t0. That is, P (V1 = ∅) = 1, where ∅

represents the empty set. (Proof in Appendix, section C.2)

Observing all the variables after a finite time is an important property as it ensures

that if a change appears at a particular location, it will not be missed due to incomplete

sampling, and it will be detected after a finite number of sampling iterations. Note that

the effectiveness of the sampling strategy is highly dependent on the number of available

sensors, q. As q increases, the detection capability of the sampling strategy also increases.

Proposition 5. Assume that the entries of the noise component are normally and inde-

pendently distributed with mean zero and variance σ2. Let V2 denote the set of variables

n ∈ N , which have a mean shift at time ta. If the mean shift is larger than σ
√

2 log(q), for

any finite time t ≥ ta, once a variable v2 ∈ V2 is observed, there is a non-zero probability

that the variable will be observed at each time after t. (Proof in Appendix, section C.3)

Proposition 5 indicates that, when the system is out-of-control, once an abnormal vari-

able is observed (which is surely observed according to Proposition 4), it will be observed

indefinitely with probability greater than zero. The foregoing propositions guarantee that

if q ≥ #(V2), all variables in V2 will eventually be observed, and an accurate diagnosis can

be achieved.

It remains to discuss how to set a value for the parameter β. If β is close to one, the

sampling algorithm will favor the exploration of the space, and, if it is close to zero, it will

exploit the information contained in the sparse component. If there is no domain knowledge

on the number of clustered anomalies or on the magnitude of their change, we recommend

choosing β = 0.5, giving equal weight to the exploration and exploitation probability mass

functions. If it is possible to observe more than one clustered anomaly, choosing β ≥ 0.5

is recommended. Even if an abnormal cluster is detected, exploring the space is needed

82

to find the remaining abnormal areas. Furthermore, domain knowledge on the magnitude

of the change can influence the choice of β. For small changes (i.e., a SNR smaller than

3) we recommend giving more weight to the exploitation probability mass function, and

choosing β ≤ 0.5.

4.6 Online Monitoring and Diagnosis

In this section, we propose a monitoring procedure that integrates the proposed RTR method

with an EWMA control chart. We also discuss how to perform diagnosis after a change is

detected by the monitoring scheme.

4.6.1 Monitoring Statistic and Stopping Time

The estimated sparse component, Ŝt, at time t > T , contains information about the poten-

tial changes in the system. If the system is out-of-control, the elements of Ŝt are expected

to be large. Therefore, to detect a change, we propose to monitor the sum of the absolute

values of its entries, denoted as yt =
∑I

i=1

∑J
j=1 |ŝi,j,t|, using an EWMA control chart.

The EWMA monitoring statistic, for all t > T + 1, is given by

zt = γyt + (1− γ)zt−1, (4.12)

where γ ∈ (0, 1) is the weight parameter that controls the importance of historical data,

and zT+1 = yT+1. In the simulations and case studies, we use γ = 0.2. The stopping time

of the monitoring procedure can be determined by:

TTSS(h) = inf{t > T | zt ≥ h}, (4.13)

where h is the control limit estimated based on the empirical in-control distribution of zt.

The practitioner can determine the h value from a sufficiently large in-control data or via

Monte Carlo Simulation or bootstrapping [50]. The value of h is related to the pre-specified

83

desired in-control ARL of the monitoring scheme, when no change occurs in the system.

In the Appendix, section C.4, a simulation procedure for obtaining the h value is given.

4.6.2 Diagnosis of the Detected Changes

After the proposed monitoring approach triggers an alarm, the next step is to diagnose the

detected change and find the variables (regions) affected by the change. Our diagnosis

method provides an advantage over existing adaptive monitoring methodologies, which

lack diagnosability.

Suppose that the control chart triggers an alarm at time τ . A naı̈ve approach for diag-

nosis is to identify the location (i, j) that has a non-zero ŝi,j,τ value as an out-of-control

variable. However, this approach ignores the fact that there might be unobserved out-of-

control variables because of the sparse sampling. Consequently, it would not be able to

detect such variables. In contrast, our diagnosis method relies on multiple samples that are

selected according to the proposed adaptive sampling strategy.

At each acquisition time after the alarm is raised, i.e., t ≥ τ , we use the average of

the entries of the sparse component, s̄i,j,t =
1

t− τ
∑t

k=τ ŝi,j,t, to identify the anomalous

variables or regions. Furthermore, since there is a spatial correlation between the variables,

to have a smooth estimate of the anomalous regions, we convolve a smoothing filter with

S̄t. For this purpose, different filters including the mean filter, the weighted average filter,

and the Gaussian filter can be used. The resulting smoothed estimate of the anomaly,

denoted by S̃t, is further denoised by thresholding. That is,

˜̃si,j,t = SλD(s̃i,j,t), (4.14)

for all i = 1, · · · , I and j = 1, · · · , J , where the threshold, λD, is a tuning parameter. In

practice, we use the BIC criterion to select the optimal value of λD at each iteration. We

conclude that the location (i, j) is abnormal if ˜̃si,j,t is non-zero. When the set of abnormal

84

variables does not change significantly from one acquisition time to the next, we stop the

diagnosis procedure, which is summarized in algorithm 4.

Algorithm 4: Recursive Diagnosis (RD) Algorithm
For a fixed t ≥ τ
Input: Ŝk, k = τ, · · · , t
repeat

Step 1: Compute the average of the abnormal component S̄t
Step 2: Use a filter to smooth the average sparse component and get S̃t
Step 3: Use soft-thresholding to estimate ˜̃St

until the set of abnormal variables does not change significantly;
Output: Set with abnormal variables, at time t,
ABNt = {(i, j)| ˜̃si,j,t 6= 0, i = 1, · · · , I, j = 1, · · · , J}

At this point, we have discussed all the steps in our proposed adaptive sampling strategy

for online monitoring and diagnosis of HD streaming data. algorithm 5 summarizes the

whole proposed TSS methodology. At each acquisition step, we use our adaptive sampling

strategy to decide where to sample, then we run the RTR algorithm to estimate the low-rank

and the sparse components, and use an EWMA control-chart for monitoring. Once an alarm

is raised, we use the RD algorithm for diagnosis. It is important to note that since all of the

algorithms are recursive (i.e., they exploit the estimations of previous acquisition times),

our proposed methodology is efficient in terms of computational time and memory usage.

Next, we evaluate the performance of the TSS algorithm with simulation experiments and

two case studies.

Algorithm 5: Tensor Sequential Sampling (TSS) Algorithm
For a fixed t > T
Input: W (t−1), L̂(t−1)

= [[Â
(t−1)

, B̂
(t−1)

, Ĉ
(t−1)

]], Ŝ(t−1)

Step 1: Estimate the exploration probability mass function rt
Step 2: Estimate the exploitation probability mass function gt
Step 3: Select the q variables to be observed, by sampling from the probability
mass function pt

Step 4: Run the RTR algorithm to estimate X̂ (t)
, L̂(t)

= [[Â
(t)
, B̂

(t)
, Ĉ

(t)
]] and Ŝ(t)

Step 5: Compute the monitoring statistic zt. If zt > h raise an alarm and proceed
to the RD algorithm. Otherwise t = t+ 1.

Output: W (t) and X̂ (t)
= [[Â

(t)
, B̂

(t)
, Ĉ

(t)
]] + Ŝ(t)

85

4.7 Performance Evaluation via Simulations

In this section, we evaluate the performance of the proposed methodology using simula-

tions. We generate a stream of images, assuming that not all pixel data is accessible at each

epoch due to data transmission constraints. To simulate a functional mean with a spatial

structure that gradually changes over time, we generate data from a heat transfer process.

The functional mean H(x, y, t) is generated according to the following heat transfer equa-

tion [80]:
∂H

∂t
= α

(
∂2H

∂x2
+
∂2H

∂y2

)
(4.15)

where x, y ∈ [0, 0.05] denote pixel locations in the image, α = 5 × 10−5 is a thermal

diffusivity coefficient, describing how fast the material can conduct thermal energy, and t

is the time frame. The initial condition is set as H|t=0 = 0 and the boundary conditions are

set as H|x=0 = H|y=0 = H|x=0.05 = H|y=0.05 = 1. At each time t, the functional mean

H(x, y, t) is recorded at locations x = i
I+1

, y = j
I+1

, i, j = 1, · · · , I , which results in an

I × I matrix denoted by H t. For the simulation study we set I = 51 and t = 1, · · · , 401,

which leads to 401 images of size 51×51, that can be represented as a 51×51×401 tensor.

Independent and identically distributed normal random noises with standard deviation σ =

0.01 are added to each pixel. To generate out-of-control streams, for t ≥ 50, we randomly

generate three clustered anomalous regions, two 10 × 2 rectangles and one 5 × 5 square,

by adding a constant value δ whose intensity is defined by a pre-specified Signal-to-Noise

Ratio (SNR). Therefore, 2.5% of the pixels have an abnormal behaviour, for t ≥ 50. An

example of the simulated anomalies, the random noise, and the functional mean is shown

in Figure 4.2.

We begin by evaluating the effectiveness of the TSS algorithm in imputing missing

data when there are no abnormal regions and no noise. For this purpose, we generate a

51 × 51 × 401 tensor using only the heat transfer equation (Equation 4.15). Using the

TSS algorithm, we complete the streaming tensor (51 × 51 × T , where T is the window

86

(a) Clustered anomalies (b) Normal i.i.d. noise

(c) Functional mean (d) Simulated image

Figure 4.2: Simulated image with functional mean, clustered anomalies and noise at time
t = 50

87

(a) T = 5 (b) T = 20

Figure 4.3: RMSE distribution for in-control data

size) at each acquisition time and compute the RMSE. The results are presented for two

window sizes, T = 5 and T = 20, and three sampling percentages, q = 5%, q = 15%,

q = 30%, in Figure 4.3. As expected, we observe that a larger tensor window and larger

sampling percentages have smaller completion errors. The fact that the TSS algorithm is

able to estimate the value of unobserved pixels, reasonably well, is a considerable advan-

tage over the existing sequential sampling monitoring methods, which are not capable of

data imputation.

Next, we study the effect of the parameters on the monitoring performance of the TSS

algorithm. The window size of the streaming tensor (T), the percentage of pixels observed

in each image (q), and the parameter β, balancing exploration and exploitation in the pro-

posed sampling scheme, can impact the performance of the TSS algorithm. Specifically,

we consider two window sizes, T = 5, T = 20, three sampling percentages, q = 5%,

q = 15%, q = 30%, and three balancing parameters, β = 0.2, β = 0.5, β = 0.8. We

fix the in-control ARL0 for all scenarios to be 200 and compare the out-of-control ARL1

under different SNRs. The out-of-control ARLs obtained from 500 simulation replicates

are shown in Table 4.1. As expected, in all scenarios, as the SNR increases, the anomalies

are easier to detect, i.e., smaller ARL1 values. In terms of the parameters T , q, and β, we

observe the following:

88

Table 4.1: Sensitivity analysis results for ARL1, for different parameter combinations over
500 simulation replicates. Results are in the form of mean(standard deviation).

β = 0.8 β = 0.5 β = 0.2
q = 0.05 q = 0.15 q = 0.30 q = 0.05 q = 0.15 q = 0.30 q = 0.05 q = 0.15 q = 0.30

T=5

SNR = 1.5 141.42(0.25) 171.40(0.24) 160.41(0.24) 181.38(0.26) 152.78(0.22) 148.90(0.22) 152.02(0.25) 157.88(0.22) 152.31(0.23)
SNR = 2.0 111.39(0.20) 111.73(0.20) 102.56(0.19) 118.29(0.23) 94.09(0.18) 91.88(0.17) 117.79(0.22) 93.46(0.17) 89.60(0.16)
SNR = 2.5 66.59(0.15) 56.82(0.13) 50.00(0.10) 69.18(0.16) 47.00(0.09) 46.84(0.10) 67.37(0.15) 50.23(0.11) 44.16(0.10)
SNR = 3.0 32.19(0.08) 21.03(0.04) 25.48(0.05) 32.67(0.08) 20.91(0.06) 22.15(0.05) 34.87(0.09) 26.48(0.06) 22.01(0.05)
SNR = 3.5 13.08(0.03) 10.01(0.02) 12.33(0.02) 16.80(0.05) 9.27(0.02) 13.17(0.03) 17.65(0.05) 10.98(0.03) 12.63(0.03)
SNR = 4.0 5.59(0.01) 4.80(0.01) 8.63(0.02) 8.33(0.02) 4.76(0.01) 8.93(0.02) 10.94(0.03) 5.29(0.01) 9.15(0.02)
SNR = 4.5 3.22(0.00) 2.51(0.00) 4.89(0.01) 3.98(0.01) 3.03(0.01) 5.42(0.01) 5.45(0.01) 3.12(0.01) 4.71(0.01)
SNR = 5.0 2.08(0.00) 1.38(0.00) 2.00(0.00) 2.70(0.00) 1.46(0.00) 2.08(0.00) 3.64(0.01) 1.76(0.00) 2.56(0.00)

T=20

SNR = 1.5 169.06(0.27) 130.06(0.23) 138.39(0.23) 166.98(0.26) 164.48(0.24) 156.22(0.24) 195.03(0.27) 155.30(0.24) 135.93(0.23)
SNR = 2.0 122.88(0.24) 73.37(0.16) 85.65(0.18) 114.32(0.23) 92.44(0.19) 79.59(0.17) 121.27(0.23) 87.46(0.18) 77.91(0.17)
SNR = 2.5 46.92(0.14) 29.17(0.09) 31.71(0.10) 44.95(0.13) 44.61(0.12) 35.30(0.09) 65.05(0.18) 36.11(0.10) 35.52(0.10)
SNR = 3.0 17.08(0.06) 11.37(0.03) 15.80(0.04) 16.87(0.07) 17.80(0.05) 16.96(0.05) 23.94(0.08) 15.84(0.04) 16.12(0.04)
SNR = 3.5 4.57(0.02) 4.35(0.01) 9.09(0.02) 5.97(0.03) 4.91(0.01) 9.19(0.02) 8.85(0.04) 6.83(0.02) 9.46(0.02)
SNR = 4.0 1.98(0.00) 2.46(0.00) 5.06(0.01) 2.83(0.00) 3.22(0.00) 5.43(0.01) 3.08(0.00) 2.95(0.00) 6.64(0.02)
SNR = 4.5 1.44(0.00) 1.42(0.00) 2.61(0.00) 1.50(0.00) 1.60(0.00) 2.80(0.00) 2.03(0.00) 1.75(0.00) 2.99(0.01)
SNR = 5.0 1.16(0.00) 1.10(0.00) 1.28(0.00) 1.28(0.00) 1.08(0.00) 1.40(0.00) 1.49(0.00) 1.34(0.00) 1.66(0.00)

• A larger window size T results in shorter out-of-controlARLs. The reason for this is

that more temporal information is captured by larger window sizes, which translates

into a higher detectability.

• For 45 out of the 48 combinations of T , β, and SNR, using the sampling percentages

q = 15% and q = 30% is preferred. In general, when the SNR is smaller than 3,

q = 30% is preferred, and, when the SNR is larger than 3, q = 15% achieves better

results. This means that when the shift is small, more sensors are needed to detect

it, but when the shift is large enough, a small number of sensors is sufficient. Given

that in the simulation study only 2.5% of the pixels have a mean shift, sampling

15% of the sensors is enough to detect the change when the SNR is sufficiently large.

However, it is important to remember that, in practice, this parameter is chosen based

on resource constraints and sensing capabilities.

• For 43 out of the 48 combinations of T , q, and SNR, a parameter β favoring explo-

ration is preferred, i.e. β ≥ 0.5. This aligns with the intuition that more exploration

increases the chances of detecting an out-of-control signal faster.

• The combination T = 20, β = 0.8, and q = 15% achieves the best results for all but

two SNR values.

89

We proceed to compare the monitoring performance of our method with two bench-

marks. Specifically, we compare the TSS algorithm with the sequential sampling method

based on local CUSUM statistics [60] (designated as TRAS) and the spatial-adaptive sam-

pling method [61] (designated as SASAM). For the TSS algorithm, we use the parameters

with the worst performance, identified in Table 4.1 (T = 5 and β = 0.2). For the TRAS

and the SASAM algorithms, we use the best parameters we could find by following the

authors’ recommendations on parameter selection. Additionally, it should be noted that as

none of the benchmarks is designed for non-stationary data, to have a fair comparison, we

take the difference between consecutive images to remove the background. For all meth-

ods, we fix the in-control ARL0 to be 200 and compare the out-of-control ARL1 under

different SNR. The average time for computing the monitoring statistic for each acquisi-

tion time is presented in Table 4.2, and the out-of-control ARL curves obtained from 500

simulations replicates are shown in Figure 4.4. As can be seen from the figure, in all cases,

the TSS algorithm has a better detection performance than the benchmark methods. The

reason for this is that the TRAS and the SASAM algorithms lack the ability to model both

the spatial and temporal structures of the streaming data. When the sampling percentage

is 5%, the SASAM algorithm is not able to detect a change, the out-of-control ARL stays

close to 200 for all levels of SNR. The performance of the TRAS algorithm is slightly

better. However, for a SNR of 5, its ARL1 is 15 times higher than the ARL1 of the TSS

algorithm. By using the low-rank structure of the data, and preserving the spatio-temporal

information, we are able to detect changes more quickly with fewer observations. When

the sampling percentage increases, the performance of the TRAS and the SASAM algo-

rithms also improves. Nonetheless, these methods are unable to detect small changes. For

q = 30%, and SNR = 3, the ARL1 for the TRAS algorithm is 5 times larger than that

of the TSS algorithm. Even though the computational time of TSS is larger than that of

TRAS and SASAM, it is still small enough to be used for online monitoring applications.

In short, the simulation studies attest to the superior performance of the TSS algorithm over

90

the benchmarks and validate its capability in capturing the spatio-temporal structure of the

streaming data and effectively imputing missing data.

Table 4.2: Computational time of the TSS algorithm and other benchmark methods

TSS TRAS SASAM

Time (s.) 2.3366 0.0158 0.0692

(a) Sampling percentage 5% (b) Sampling percentage 15%

(c) Sampling percentage 30%

Figure 4.4: Detection power comparison based on ARL1

As discussed earlier, another advantage of the TSS algorithm is its diagnosability once

an alarm is raised. Next, we evaluate the performance of the diagnosis method. Since none

of the previous sequential sampling methods in the literature have proposed an explicit

diagnosis solution, we cannot use them for comparison. Instead, we compare the results

91

of the recursive diagnosis algorithm (designated as RD), with an ad-hoc approach that

considers the non-zero entries in the sparse component as faulty signals (designated as

SCN0). For this purpose, we compute the following four criteria after a shift is detected:

(i) precision, defined as the proportion of detected anomalies that are true anomalies, (ii)

recall, defined as the proportion of detected anomalies that are correctly identified, (iii)

F-score, a single criterion that combines precision and recall by calculating their harmonic

mean, and (iv) accuracy, defined as the proportion of signals that are correctly classified.

We evaluate how these criteria evolve as the number of samples after detecting the change

increases. For the RD algorithm, we use the following blurring filter for convolution:

1 2 1

2 4 2

1 2 1

We fix T = 20 and q = 15%, and study the behaviour of the two methods for different

values of SNR (SNR = 3, SNR = 5) and β (β = 0.2, β = 0.8). The results for

500 simulation replicates, can be found in Figure 4.5 and Figure 4.6. We observe that,

overall, the RD algorithm is better than the SCN0 algorithm in terms of recall, F-score,

and accuracy. As time increases, the performance of the SCN0 algorithm converges to

the performance of the RD algorithm. Exploiting the spatial structure of the data allows

identifying the abnormal regions faster. Therefore, the RD algorithm should be preferred

over the SCN0 algorithm.

Moreover, we observe that the RD algorithm results are better for SNR = 5, as a larger

SNR is easier to detect. It is also interesting to see that the value of recall (proportion of

correctly detected anomalies) increases as a function of time. This observation aligns with

the fact that after an anomaly is detected, as time progresses, we have more samples, and

thus more information, which allows us to identify the majority of the abnormal streams

more effectively. After a finite number of acquisition times, it seems that the value of recall

92

converges to a constant value. For SNR = 3, this number is around t = 10, and, for

SNR = 5, it is close to 5. These results imply that when the shift magnitude is small,

more samples are needed to detect the location of the faulty signals. On the other hand, we

see that the value of precision (proportion of detected anomalies that are true anomalies)

seems to be constant across time. As time progresses, with the collection of more samples,

we are able to correctly identify more abnormal signals, however, given the thresholding

scheme used by the RD algorithm, the number of false positives increases at the same rate

as the number of true positives. Finally, it is important to notice that the performance is

better for β = 0.8. It can be the case that the alarm is raised because variables from one

abnormal region were sampled, it is important to keep exploring the space to detect other

abnormal regions. In our simulation, since we have three abnormal regions, a larger β,

favoring exploration, is preferred.

Additional simulation results for different sampling percentages q, presented in the

Appendix, section C.5, indicate a similar behavior. An example of detected anomalies is

presented in Figure 4.7, for t = τ + 6, SNR = 5, T = 20, q = 30% and β = 0.8.

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure 4.5: Diagnosis comparison for T = 20, q = 15%, and β = 0.2 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

93

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure 4.6: Diagnosis comparison for T = 20, q = 15%, and β = 0.8 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

(a) True anomaly (b) SCN0

Figure 4.7: Detected anomalies with two methods at τ + 6, for SNR = 5, T = 20,
q = 30%, and β = 0.8

4.8 Case Studies

In this section, the proposed TSS method for monitoring and diagnosis is applied to two

real datasets. The first dataset contains data collected from a solar data observatory in the

form of a stream of images. This dataset has been widely used in the literature [15, 60, 61,

81]. The second dataset provides information on soil temperature for a dryland agricultural

field in the form of multi-stream scalars [82].

94

4.8.1 Online Monitoring of Solar Activity

As a first case study, we use a stream of solar images, collected from a solar data obser-

vatory. The goal is to monitor the solar activity to detect solar flares. A solar flare is

defined as a sudden, transient, and intense variation in brightness observed over the Sun’s

surface [83]. A solar flare emits a large number of energetic charged particles, which may

potentially cause failures of power grids or radio communications. Thus, the quick detec-

tion of solar flares is a critical task. However, due to the large amount of data generated

by satellites, traditional methodologies for image change detection [84] can exceed the

transmission and processing capabilities, and thus are incapable of detecting solar flares in

real-time.

The dataset used in this study is publicly available online at http:/nislab.ee.duke.edu/

MOUSSE/index.html. It contains a sequence of 300 images of size 232× 292 pixels. This

dataset was used to illustrate the performance of TRAS [60] and SASAM [61]. Note that

as these sequential sampling methods assume that the data is independent and identically

normally distributed, they first used the Multiscale Online Union of SubSpaces Estimation

(MOUSSE) algorithm [81] to remove the background information, and then monitor the

residuals which are approximately normally and independently distributed.

As in [60], we assume that due to limited transmission and processing capabilities,

only 2000 (2.95%) out of the 67,774 pixels are available at each data frame, and can be

sent back to the fusion center for analysis. The first 100 frames are considered as the in-

control sample. To detect the solar flare in real-time, the proposed TSS algorithm is used

with T = 20 and β = 0.5. The monitoring control chart is plotted in Figure 4.8. Two solar

flares are detected at [190, 201] and [216, 258]. This is compatible with the results reported

in [60] and [61]. The TRAS algorithm detects two solar flares, at t = 190 and t = 221,

while the SASAM algorithm only reports the detection of the first solar flare, at t = 190.

The three methods detect the first solar flare at the same time. However, for the second

solar flare, the detection delay of the TSS algorithm is much shorter than the detection

95

http:/nislab.ee.duke.edu/MOUSSE/index.html
http:/nislab.ee.duke.edu/MOUSSE/index.html

Figure 4.8: Control chart for solar flare monitoring (no background information)

delay of the TRAS algorithm. Furthermore, the TSS algorithm is able to detect the second

solar flare as fast as the methods presented in [15, 81], which use the full information of

the 67,744 pixels in each data frame for monitoring.

To find the location of the solar flares in the out-of-control images, the proposed recur-

sive diagnosis is used. Figure 4.9 and Figure 4.10 show the observed pixels and the iden-

tified anomalous regions at the time when the alarms were raised, as well as the identified

anomalies after 10 iterations of the RD algorithm. The results indicate that the proposed

method is not only able to detect changes in the process, but can also identify the location

of solar flares in different time frames.

Previous results are obtained by removing the background information from the video

and using the residuals for monitoring and diagnosis. This step is needed for TRAS and

SASAM as they assume that the data streams are independent and identically normally

distributed. However, this pre-processing step cannot be done in real-time and limits the

applicability of the benchmarks. To further test the capabilities of our proposed method, we

perform online monitoring of the raw images captured by the satellites. In order to capture

the spatio-temporal structure of the data, we need to sample more pixels at each acquisition

time. Since, unlike the previous scenario, the data stream contains spatial information, we

increase the number of sampled pixels to 6,774 (10%). The monitoring control chart of

96

(a) Solar flare (t = 190) (b) Samples (t = 190)

(c) Anomalies (t = 190) (d) Diagnosis (t = 200)

Figure 4.9: Detection results for solar flares at time t = 190 (no background information)

97

(a) Solar flare (t = 216) (b) Samples (t = 216)

(c) Anomalies (t = 216) (d) Diagnosis (t = 226)

Figure 4.10: Detection results for solar flares at time t = 216 (no background information)

98

Figure 4.11: Control chart for solar flare monitoring (original data captured by satellites)

the TSS algorithm is given in Figure 4.11. In this case, we only detect the second solar

flare at t = 219. Figure 4.12 shows the diagnosis results obtained once the monitoring

algorithm detects the solar flare. With only 10% of the pixels used at each acquisition time,

we are able to detect and locate the second solar flare in the video, without applying any

pre-processing step to the original data. Note that the first solar flare could be detected by

increasing the number of pixels observed with the cost of increased computational time.

4.8.2 Online Monitoring of Water Temperature in a Dryland Agricultural Field

The second case study illustrates how to use the TSS algorithm for environmental moni-

toring under resource constraints. Understanding soil water dynamics is critical for agri-

culture, especially in dryland annual croplands that depend on stored soil water [85]. The

stored water temperature highly affects the rate of plant development, and extreme temper-

atures have a negative impact on production [86]. In this section, we use the TSS algorithm

to monitor water temperature at the R.J. Cook Agronomy Farm (CAF) [82], a long-term

agro-ecosystem research site operated by Washington State University.

The CAF is a working farm, and farming operations have posed some challenges to

the sensor network design and maintenance [85]. One of the challenges is the presence

of missing data due to the battery death of the sensors. To overcome this limitation and

99

(a) Solar flare (t = 219) (b) Samples (t = 219)

(c) Anomalies (t = 219) (d) Diagnosis (t = 239)

Figure 4.12: Detection results for solar flare at time t = 219 (original data captured by
satellites)

100

493200 493400 493600 493800 494000 49420051
80

50
0

51
80

70
0

51
80

90
0

51
81

10
0

Latitude

Lo
ng

itu
de

CAF003
CAF007 CAF009

CAF019
CAF031 CAF033

CAF035

CAF061
CAF067

CAF075 CAF079
CAF095 CAF119

CAF125
CAF129 CAF133

CAF135
CAF139

CAF141
CAF163

CAF173

CAF197

CAF201 CAF205 CAF209
CAF215 CAF217

CAF231 CAF237 CAF245

CAF275

CAF308
CAF310 CAF312 CAF314 CAF316

CAF349 CAF351 CAF357
CAF377

CAF397 CAF401

actual sensors
virtual sensors

Figure 4.13: Sensor network measuring water temperature at the CAF

reduce maintenance costs, it is desirable to have only some of the sensors operational at

any point in time. Next, we illustrate how to monitor water temperature to detect extreme

temperatures that hinder the crops’ development by deciding which sensors to activate at

each acquisition time.

At the CAF, water temperature measurements are collected by 42 sensors, installed in a

non-aligned systematic grid with a depth of 30cm. The sensors’ location can be observed in

Figure 4.13. We monitor the daily average temperature from January 1, 2013 to September

27, 2015.

First, we align the measurements to create a data tensor. For this purpose, we generate

grid coordinates by uniformly distributing virtual measurement locations on the approxi-

mated pentagonal area of the agricultural field (shaded area shown in Figure 4.13). After

generating the location coordinates of the virtual measurements, the virtual water tempera-

ture measurements are estimated using a Gaussian kernel:

ˆTemp(x, y) =

∑42
k=1 TempkK(xk, yk)∑42

k=1K(xk, yk)
, (4.16)

where x and y are the coordinates of the virtual sensor location, xk and yk are the coordi-

101

nates of sensor k, Tempk is the temperature measurement of sensor k, and K(xk, yk) =

1
2πσ2 exp (− (xk−x)2+(yk−y)2

2σ2) with σ = 50. We obtain a 6×7×1000 tensor to monitor water

temperature. We set a window size T equal to 7 days, a sampling percentage q of 25% (at

each acquisition time we have 11 operational sensors), and a balancing parameter β of 0.9.

The monitoring results are in Figure 4.14. Three main abnormal periods are detected.

The first one goes from 06/07/2014 to 06/24/2014, the second one starts on 07/16/2014 and

ends on 07/23/2014, and the third one starts on 05/22/2015 and continues until the end of

the dataset. We observe that the first two periods correspond with high temperatures, while

the last abnormal period indicates low temperatures. This implies that the TSS algorithm is

able to detect temperature changes in both directions. Next, we use our diagnosis algorithm

to identify the regions in the farm where the stored soil water temperature is abnormal. The

abnormal regions, for each period, are depicted in Figure 4.15. We verified that these

regions correspond to the abnormal series observed in Figure 4.14. It is interesting to see

that the water temperatures on the bottom right corner are always abnormal, which might be

related to some physical and environmental properties of the reservoirs in this area. Further

investigation, however, is required to verify this.

4.9 Conclusion

Online monitoring of HD streaming data under resource constraints is critical in various

applications. In this chapter, we proposed a new sequential sampling methodology for real-

time monitoring and diagnosis of sensing systems that generate incomplete data streams.

First, we developed the RTR algorithm, a recursive tensor recovery algorithm that effec-

tively decomposes the streaming tensor into a low-rank component and a sparse compo-

nent. By estimating the low-rank component, we were able to approximate the value of

the unobserved variables at each acquisition time. This represents an advantage over other

adaptive sampling methods in the literature. By monitoring the sparse component, using

an EWMA control chart, we were able to detect abrupt changes in the process. We also

102

(a) Temperature time series (b) Identified abnormal periods

(c) Monitoring control chart

Figure 4.14: Temperature (°C) readings for the 42 sensors at the CAF with out-of-control
periods and monitoring control chart

103

(a) Abnormal region 06/14/2014 (b) Abnormal region 07/23/2014

(c) Abnormal region 05/29/2015

Figure 4.15: Detection of abnormal regions (depicted as squares) of water temperature at
the CAF

104

developed a recursive diagnosis algorithm that exploits the spatial correlation of the data

to locate all the abnormal streams quickly once an alarm is raised. Finally, we developed

an adaptive tensor sequential sampling algorithm, that defines the variables to observe at

each acquisition time. The TSS algorithm balances exploration, to detect a wide variety

of shifts, and exploitation, to quickly locate abnormal streams. Since all of our algorithms

have a recursive form, they are computationally efficient and allow for real-time monitoring

and diagnosis. In the simulation study, we showed that the proposed method outperforms

existing sequential sampling methods, under resource constraints. This happens because

we incorporate both the spatial and temporal information contained in the data. The results

from the case studies demonstrated the capability of the proposed method in identifying

not only the time of process changes but also the location of the detected anomalies.

The proposed methodology was developed for the monitoring and diagnosis of sparse

persistent changes. Proposition 4 and Proposition 5 only hold if the changes in the data

streams are persistent in time. When sparse transient changes (outliers) appear, one pos-

sibility is that no alarm is raised by our methodology. This will be the case if we do not

sample the streams during the short period when they present an abnormal behavior. The

second possibility is that the abnormal streams are sampled. In this case, the abnormal

behavior will be captured by the sparse component, and, depending on the magnitude of

the change, an alarm will be raised. Since we monitor the sum of the absolute values of the

sparse component, we could potentially differentiate between transient changes and per-

sistent changes by visually inspecting the behavior of the control chart after the alarm is

raised. However, the differentiation between outliers and sparse changes needs to be further

investigated.

In this chapter, we assumed that at each acquisition time, we can decide to observe any

of the variables. However, in practice, it is possible to have additional restrictions. For

example, in a grid of sensors, it is possible to have malfunctioning sensors that cannot be

used. In the future, we plan to extend our method to be applicable under such constraints.

105

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

This thesis has presented new methodologies to analyze high-dimensional data collected

by sensors to learn the complex spatio-temporal structure of a variety of systems for pro-

cess monitoring and diagnosis. The main research results and new contributions of this

dissertation are summarized as follows.

In Chapter 2, a new methodology was developed to learn directed graphical models

from functional data for root-cause analysis and diagnosis. If the structure of the functional

DGM was known, functional observations were used to fit function-to-function linear re-

gressions and learn the parameters of the conditional distributions governing the model.

To transform the infinite-dimensional regression problems into finite-dimensional ones, we

used data-driven or domain knowledge functional basis expansions. To evaluate the per-

formance of the parameter learning methodology, we conducted a simulation study and

compared the performance of the proposed methodology with a benchmark method. The

mean square prediction errors for the developed methodology were consistently smaller.

On the other hand, if the structure of the DGM was unknown, we proposed to add a penalty

term to the loss function of the function-to-function linear regressions to learn the set of

parents for each node. To reduce the dimensionality of the problem, we used a domain

knowledge basis and employed cyclic coordinate accelerated proximal gradient descent to

solve the regression problems. With simulations, we showed that the structure learning

methodology is able to learn a structure with a recall of 100% and with an F1-score of

81%. In the case study, we proved that the proposed framework is able to detect different

root-causes of λ-undershoot in an internal combustion engine.

106

In Chapter 3, a new online monitoring strategy was proposed to detect structural

changes in a system collecting time-dependent high-dimensional streaming data. The main

contributions of this Chapter are (i) learning in real-time the complex cross-correlation

structure between the system’s variables and (ii) detecting structural changes due to the

system evolution. The first step in the proposed methodology was to divide the stream-

ing data into windows. Then, sequentially, we estimated an undirected graphical model

for each window. To learn the cross-correlation structure, we exploited the spectral infor-

mation contained in the data and used graphical LASSO for time series data. To detect

structural changes, we allowed the graphical model to evolve over time while regularizing

the change flexibility. An efficient framework based on the Alternating Direction Method

of Multipliers was proposed for online optimization and change-point detection. Numeri-

cal studies together with two case studies demonstrated the efficiency and applicability of

the proposed methodology. Using dynamic spectral functional graphical models, we were

able to perform human motion tracking and to monitor functional brain connectivity.

In Chapter 4, a novel adaptive sequential sampling strategy for real-time monitoring

and diagnosis of sensing systems that generate incomplete data streams due to resources

constraints was developed. At each acquisition time, the sensor readings were organized

into a tensor. Then, a recursive tensor recovery algorithm was proposed to estimate two key

components from the partially observed data stream: a low-rank component, that captured

the spatio-temporal structure of the data and contained estimates for the unobserved vari-

ables, and a sparse component, that captured the suspicious variables that may indicate an

out-of-control state. To detect statistically significant changes using the sparse component,

we constructed an EWMA control chart. If an alarm was raised, we proposed a recursive

diagnosis algorithm to find the abnormal regions. Otherwise, based on the location and pat-

tern of the suspicious observations in the sparse component, we decided where to sample

next. Since all of our algorithms have a recursive form, they are computationally efficient

and allow for real-time monitoring and diagnosis. In the simulation study, we showed that

107

the proposed method outperforms existing sequential sampling methods for online mon-

itoring under resource constraints. This happens because we incorporate both the spatial

and temporal information contained in the data. Furthermore, the results from the case

studies demonstrated the capability of the proposed method in identifying not only the time

of process changes but also the location of the detected anomalies.

5.2 Future Research

Modeling and analyzing high-dimensional sensing data for system monitoring and diagno-

sis is an important yet challenging research problem. In this dissertation, we have made

efforts to tackle some of the challenges. However, there are still many interesting research

opportunities. Some of which are summarized in what follows.

It would be exciting to extend the methodologies presented in Chapters 2 and 3 and

learn probabilistic graphical models for systems where the sensing data comes in different

forms (functions, images, videos, point-clouds). Nowadays, with technological advance-

ments, sensors are able to collect heterogeneous types of data. For example, in additive

manufacturing, the layering process is monitored by cameras, while different sensors cap-

ture important process variables such as temperature and speed. In healthcare, for example,

ambient assisted smart living homes collect data from cameras, motion sensors, and sensors

carried by the user. It is imperative to learn the relationships between the variables in these

systems for real-time system monitoring and control, and for accurate fault diagnosis. This

is a challenging task, as the correlation between heterogeneous forms of data needs to be

modeled. To approach this task, new statistical learning techniques need to be developed.

A potential avenue is to use tensors or manifolds to represent the data collected and learn

heterogeneous probabilistic graphical models.

Potential extensions for Chapter 4 can also be considered. First, the proposed method-

ology was developed for monitoring and diagnosis of sparse persistent changes. However,

it can also detect sparse transient changes (outliers). Currently, the differentiation between

108

outliers and sparse persistent changes is not possible. It would be interesting to develop

an adaptive sequential sampling methodology robust to outliers in the data. Second, in

Chapter 4, we assumed that at each acquisition time, we could decide to observe any of

the variables. However, in practice, it is possible to have additional restrictions due to mal-

functioning sensors, for example. In the future, it would be great to extend the proposed

method to incorporate such constraints.

Another fruitful research avenue revolves around federated learning. Federated learning

involves training statistical models over remote devices or siloed data centers while keeping

data localized. Mobile phones, wearable devices, and autonomous vehicles are just a few of

the modern distributed networks generating a wealth of data each day. Due to the growing

computational power of these devices, coupled with concerns over transmitting private

information, it is increasingly attractive to store data locally and push computations to the

edge. A global statistical model is then learned based on the information shared by a small

number of devices. One question that needs to be answered is how to select the devices

that will participate in each round of training. Currently, the decision is based on the

devices’ specific computation and communication capabilities, assuming these are static

over time. It would be interesting to develop an adaptive sampling strategy to sample a set

of small but sufficiently representative devices based on the underlying statistical structure.

In this setting, it is critical to ensure that the proposed methodology does not induce bias in

the model. Another interesting challenge arises from the fact that the data collected from

different devices is heterogeneous (user-specific distribution). Methods that are robust and

scalable to train models within the federated setting need to be developed.

109

Appendices

APPENDIX A

SUPPLEMENTARY MATERIALS OF CHAPTER 2

A.1 Proof of Proposition 1: Proximal Gradient Descent Closed Form Solution

Proposition 1. The proximal gradient descent, with step-size s(t), at iteration t, presented

in Equation 2.25, consists of the following two steps:

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>kj(rkj −Ξkjb

(t)
kj)− λb(t)kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

Proof. We want to solve:

b
(t+1)
kj = arg min

bkj

{
f(b

(t)
kj) +

〈
∇f(b

(t)
kj), bkj − b(t)kj

〉
+

1

2s(t)
||bkj − b(t)kj ||

2
2 + g(bkj)

}

We define the proximal map of a convex function g, as:

proxg(z) := arg min
θ

{
1

2
||z − θ||22 + g(θ)

}

We will show that the update has the equivalent representation:

b
(t+1)
kj = proxs(t)g

(
b
(t)
kj − s

(t)∇f(b
(t)
kj)
)

111

We have:

b
(t+1)
kj = proxs(t)g

(
b
(t)
kj − s(t)∇f(b

(t)
kj)
)

= arg minbkj

{
1
2
||b(t)kj − s(t)∇f(b

(t)
kj)− bkj||22 + s(t)g(bkj)

}
= arg minbkj

{
1
2st
||b(t)kj − s(t)∇f(b

(t)
kj)− bkj||22 + g(bkj)

}
= arg minbkj

{
f(b

(t)
kj) +

〈
∇f(b

(t)
kj), bkj − b(t)kj

〉
+ 1

2s(t)
||bkj − b(t)kj ||22 + g(bkj)

}
Using the proximal gradient descent method, first, we take a gradient step:

z(t) = b
(t)
kj − s

(t)∇f(b
(t)
kj) = b

(t)
kj − s

(t)
(
−ΞT

kj(rkj − Ξkjb
(t)
kj) + λb

(t)
kj

)

Second, we update the parameters:

b
(t+1)
kj = proxs(t)g(z

(t+1))

= arg minbkj
1

2s(t)
||z(t+1) − bkj||22 + g(bkj)

= arg minbkj
1

2s(t)
||z(t+1) − bkj||22 + γ

√
qkj||bkj||2

We need to solve the previous optimization problem. Let:

h(bkj) =
1

2s(t)
||z(t+1) − bkj||22 + γ

√
qkj||bkj||2

Since, h is not differentiable at bkj = 0, we need to use sub-gradients. We have that:

∂h(bkj) =
1

s(t)
(bkj − z(t)+1) + γ

√
qkj∂||bkj||2

To minimize h, we need to solve:

0 ∈ ∂h(bkj)⇔
z(t+1) − bkj
s(t)γ
√
qkj

∈ ∂||bkj||2

We know that ∂||bkj||2 = bkj/||bkj||2 if bkj 6= 0 and ||bkj||2 ≤ 1 if bkj = 0. We need to

112

consider two cases:

• bkj 6= 0⇒ ∂||bkj||2 = bkj/||bkj||2

We need to solve:

z(t+1) − bkj
s(t)γ
√
qkj

=
bkj
||bkj||2

⇔ bkj =
||bkj||2

||bkj||2 + s(t)γ
√
qkj
z(t+1)

Since ||bkj||2 > 0 and s(t)γ√qkj ≥ 0, we have that bkj = az(t+1), where a is a

positive constant. We have that:

a =
a||z(t+1)||2

a||z(t+1)||2 + s(t)γ
√
qkj
⇒ a = 1−

s(t)γ
√
qkj

||z(t+1)||2

Since a > 0, we must have ||z(t+1)||2 > s(t)γ
√
qkj .

• bkj = 0

If bkj = 0 then z(t+1)/(s(t)γ
√
qkj) ∈ ∂||bkj||2. Therefore, ||z(t+1)/(s(t)γ

√
qkj)||2 ≤

1. This implies that ||z(t+1)||2 ≤ s(t)γ
√
qkj .

We can conclude that the optimal solution to the problem is:

b
(t+1)
kj =

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

Therefore, the updates for the proximal gradient descent are:

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>kj(rkj −Ξkjb

(t)
kj)− λb(t)kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

113

A.2 Proof of Proposition 2: Convergence of the PGD Algorithm

Proposition 2. f(bkj) = 1
2
||rkj −Ξkjbkj||22 + λ

2
||bkj||22 + C has a Lipschitz gradient.

Proof. Let α, β ∈ Rqkj ,

||∇f(α)−∇f(β)||2 = || −Ξ>kj(rkj −Ξkjα) + λα + Ξ>kj(rkj −Ξkjβ)− λβ)||2

= ||(Ξ>kjΞkj + λI)(α− β)||2

≤ θmax(Ξ
>
kjΞkj + λI)||α− β||2

≤ L||α− β||2

where I is the identity matrix with same dimensions as Ξ>kjΞkj , and θmax(Ξ
>
kjΞkj + λI) is

the maximum eigenvalue of Ξ>kjΞkj +λI . Therefore, f has a Lipschitz gradient with L the

maximum eigenvalue of Ξ>kjΞkj + λI .

114

APPENDIX B

SUPPLEMENTARY MATERIALS OF CHAPTER 3

B.1 Structure Learning: Additional Simulation Results

(a) True Structure 1 (b) Estimated structure 1

(c) True structure 2 (d) Estimated structure 2

Figure B.1: Example of true and estimated structures for one simulation run for SNR=0.25

115

(a) Structure 1 (b) Structure 2

Figure B.2: Structure learning performance for SNR=0.25, in terms of precision, recall,and
F-score, over 100 simulation replicates

116

APPENDIX C

SUPPLEMENTARY MATERIALS OF CHAPTER 4

C.1 Soft-thresholding: Proof of Proposition 3

Proposition 3. Given Sk, for k < t, and L̂(t)
= [[Â

(t)
, B̂

(t)
, Ĉ

(t)
]], the solution to the

optimization problem in Equation 4.6 is obtained by the soft-thresholding function:

ŝi,j,t = Sλ

(
wi,j,t

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr

))
,

where Sλ(·) = sgn(·) (| · | − λ)+, sgn(·) is the sign function, and (·)+ = max(·, 0).

Proof. The optimization problem in Equation 4.6 can be written as:

min
si,j,t

1

2
wi,j,t

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr − si,j,t

)2

+ λ
I∑
i=1

J∑
j=1

wi,j,t|si,j,t|.

We need to consider two cases. If wi,j,t = 0, si,j,t can take any value, in this case we set

si,j,t = 0. If wi,j,t = 1, we need to solve:

min
si,j,t

1

2

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr − si,j,t

)2

+ λ

I∑
i=1

J∑
j=1

|si,j,t|.

The sub-gradient equation for this problem is:

−

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
+ si,j,t + λ∂|si,j,t| = 0

where ∂|si,j,t| = sgn(si,j,t), if si,j,t 6= 0, and ∂|si,j,t| ∈ [−1, 1], if si,j,t = 0. With this we

117

have that:

ŝi,j,t =

(
xi,j,t −

∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
− λ if

(
xi,j,t −

∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
> λ

0 if
(
xi,j,t −

∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
= λ(

xi,j,t −
∑R

r=1 â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
+ λ if

(
xi,j,t −

∑R
r=1 â

(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
< −λ

,

which can be written succinctly as:

ŝi,j,t = Sλ

(
xi,j,t −

R∑
r=1

â
(t)
ir b̂

(t)
jr ĉ

(t)
Tr

)
.

C.2 Exploration: Proof of Proposition 4

Proposition 4. Let V1 denote the set of variables n ∈ N which will never be observed after

a finite time t0. If the proposed sequential sampling procedure is followed, with probability

1 we observe all the variables after a finite time t0. That is, P (V1 = ∅) = 1, where ∅

represents the empty set.

Proof. Let v1 ∈ V1. For all t ≥ t0, we must have that

pt(v1) = βrt(v1) + (1− β)gt(v1) = 0

This means that rt(v1) = 0 and gt(v1) = 0. We have that

rt(v1) = 0⇔ 1− 1

t− 1

t−1∑
k=1

wv1,k = 0⇔
t−1∑
k=1

wv1,k = t− 1.

This means that variable v1 has been observed at every acquisition time. This contracticts

the fact that v1 ∈ V1. Therefore, we conclude that P (V1 = ∅) = 1.

118

C.3 Exploitation: Proof of Proposition 5

Proposition 5. Assume that the entries of the noise component are normally and inde-

pendently distributed with mean zero and variance σ2. Let V2 denote the set of variables

n ∈ N , which have a mean shift at time ta. If the mean shift is larger than σ
√

2 log(q), for

any finite time t ≥ ta, once a variable v2 ∈ V2 is observed, there is a non-zero probability

that the variable will be observed at each time after t.

Proof. Let v2 ∈ V2. Suppose v2 is observed at time t0 ≥ ta. We want to show that

P (wv2,t0 = 1, wv2,t0+1 = 1, · · ·) > 0.

We are going to prove this using induction.

• Base case: Since at time t0 we observed v2, we have that

P (wv2,t0 = 1) = 1 > 0.

• Induction step: Suppose that for η > 0 we have that

P (wv2,t0 = 1, · · · , wv2,t0+η = 1) > 0.

We want to show that

P (wv2,t0 = 1, · · · , wv2,t0+η = 1, wv2,t0+(η+1) = 1) > 0.

Using conditional probabilities, we have that

P (wv2,t0 = 1, · · · , wv2,t0+(η+1) = 1)

= P (wv2,t0+(η+1) = 1|wv2,t0 = 1, · · · , wv2,t0+η = 1)P (wv2,t0 = 1, · · · , wv2,t0+η = 1)

119

The induction hypothesis is that P (wv2,t0 = 1, · · · , wv2,t0+η = 1) > 0, it remains to

show that P (wv2,t0+(η+1) = 1|wv2,t0 = 1, · · · , wv2,t0+η = 1) > 0. The latter is true if

and only if, given that wv2,t0 = 1, · · · , wv2,t0+η = 1,

pt0+(η+1)(v2) = βrt0+(η+1)(v2) + (1− β)gt0+(η+1)(v2) > 0.

Next, we show that gt0+(η+1)(v2) > 0, which concludes the proof of Proposition 5.

We have that

gt0+(η+1)(v2) =
1

#(Ut0+η)

#(Ut0+η)∑
i=1

Kθ(v2 − ui),

where Ut0+η = {(i, j)| ŝi,j,t0+η 6= 0, i = 1, · · · , I, j = 1, · · · , J} and ui ∈ Ut0+η,

for i = 1, · · · ,#(Ut0+η).

If v2 ∈ Ut0+η, by definition of kernel density function, we have thatKθ(v2−v2) > 0,

and, therefore, gt0+(η+1)(v2) > 0.

We have that v2 ∈ Ut0+η if and only if

ŝv2,t+η = Sλ∗
(
wv2,t+η

(
xv2,t+η − l̂v2,t+η

))
6= 0.

Since wv2,t+η = 1, we have that ŝv2,t+η 6= 0 if and only if
∣∣∣xv2,t+η − l̂v2,t+η

∣∣∣ > λ∗,

where λ∗ = min(λBIC , σ̂
√

2 log(q)). One of the assumptions of this proposition is

that the mean shift of v2 is larger than σ
√

2 log(q)), therefore, we have that

∣∣∣xv2,t+η − l̂v2,t+η

∣∣∣ > σ̂
√

2 log(q) ≥ min(λBIC , σ̂
√

2 log(q)).

We conclude that v2 ∈ Ut0+η.

120

C.4 Monitoring: Control Limit

This appendix describes the detailed steps to estimate the control limit h given a prescribed

in-control ARL. In the simulation experiments, we used an in-control ARL of 200.

1. Set hmin and hmax a small and a large values as the initial lower and upper bounds of

h, respectively. Let h = hmin+hmax

2
.

2. Generate an in-control sample of HD data streams. For the simulation experiments,

we generated 401 frames from a heat transfer process, as described in Section 7.

3. Implement the TSS algorithm and record the index of the first out-of-control sample,

RL.

4. Repeat steps 2 and 3 for M(= 500) times. Calculate the average of RL, R̄L.

5. If the R̄L value is larger than the prescribed in-control ARL, let hmax = h. Other-

wise, let hmin = h. Then, update h = hmin+hmax

2
.

6. Repeat steps 2-5 until there is no difference between R̄L and the prescribed in-control

ARL.

121

C.5 Diagnosis: Additional Simulations

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure C.1: Diagnosis comparison for T = 20, q = 5%, and β = 0.2 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure C.2: Diagnosis comparison for T = 20, q = 5%, and β = 0.8 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

122

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure C.3: Diagnosis comparison for T = 20, q = 30%, and β = 0.2 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

(a) Precision, SNR = 3 (b) Recall, SNR = 3 (c) F-score, SNR = 3 (d) Accuracy, SNR = 3

(e) Precision, SNR = 5 (f) Recall, SNR = 5 (g) F-score, SNR = 5 (h) Accuracy, SNR = 5

Figure C.4: Diagnosis comparison for T = 20, q = 30%, and β = 0.8 in terms of precision,
recall, F-score, and accuracy, over 500 simulation replicates

123

REFERENCES

[1] H. Langseth and L. Portinale, “Bayesian networks in reliability,” Reliability Engi-
neering & System Safety, vol. 92, no. 1, pp. 92–108, 2007.

[2] J. Li and J. Shi, “Knowledge discovery from observational data for process control
using causal bayesian networks,” IIE Transactions, vol. 39, no. 6, pp. 681–690, 2007.

[3] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[4] M. Reisi Gahrooei, K. Paynabar, M. Pacella, and J. Shi, “Process modeling and
prediction with large number of high-dimensional variables using functional regres-
sion,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2,
pp. 684–696, 2020.

[5] N. Meinshausen and P. Buhlmann, “High-dimensional graphs and variable selection
with the lasso,” The Annals of Statistics, vol. 34, no. 3, pp. 1436–1462, 2006.

[6] Y.-Y. Lee and S. Hsieh, “Classifying different emotional states by means of eeg-
based functional connectivity patterns,” PloS one, vol. 9, no. 4, e95415, 2014.

[7] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin, “Instructing people for training
gestural interactive systems,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’12, Austin, Texas, USA: Association for
Computing Machinery, 2012, pp. 1737–1746.

[8] C. Zhang, M. Patel, S. Buthpitiya, K. Lyons, B. Harrison, and G. D. Abowd, “Driver
classification based on driving behaviors,” in Proceedings of the 21st International
Conference on Intelligent User Interfaces, ser. IUI ’16, Sonoma, California, USA:
Association for Computing Machinery, 2016, pp. 80–84.

[9] R. Dahlhaus, “Graphical interaction models for multivariate time series1,” Metrika,
vol. 51, pp. 157–172, 2000.

[10] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman & Hall/CRC, 2015.

[11] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid, the new and improved power
grid: A survey,” IEEE Communications Surveys Tutorials, vol. 14, no. 4, pp. 944–
980, 2012.

124

[12] P. Wang and M. Govindarasu, “Cyber-physical anomaly detection for power grid
with machine learning,” in Industrial Control Systems Security and Resiliency: Prac-
tice and Theory. Cham: Springer International Publishing, 2019, pp. 31–49.

[13] C. Zou, Z. Wang, X. Zi, and W. Jiang, “An efficient online monitoring method for
high-dimensional data streams,” Technometrics, vol. 57, no. 3, pp. 374–387, 2015.

[14] D. Qi, Z. Li, and Z. Wang, “On-line monitoring data quality of high-dimensional
data streams,” Journal of Statistical Computation and Simulation, vol. 86, no. 11,
pp. 2204–2216, 2016.

[15] H. Yan, K. Paynabar, and J. Shi, “Real-time monitoring of high-dimensional func-
tional data streams via spatio-temporal smooth sparse decomposition,” Technomet-
rics, vol. 60, no. 2, pp. 181–197, 2018.

[16] B. Walczak and D. Massart, “Dealing with missing data: Part i,” Chemometrics and
Intelligent Laboratory Systems, vol. 58, no. 1, pp. 15–27, 2001.

[17] G. Tomasi and R. Bro, “Parafac and missing values,” Chemometrics and Intelligent
Laboratory Systems, vol. 75, no. 2, pp. 163–180, 2005.

[18] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor factorizations
for incomplete data,” Chemometrics and Intelligent Laboratory Systems, vol. 106,
no. 1, pp. 41–56, 2011.

[19] O. Pourret, P. Naim, and B. Marcot, Bayesian Networks. A Practical Guide to Ap-
plications. Wiley, 2008.

[20] M. Pacella, “Unsupervised classification of multichannel profile data using pca: An
application to an emission control system,” Computers and Industrial Engineering,
vol. 122, pp. 161–169, 2018.

[21] H. Zhu, N. Strawn, and D. B. Dunson, “Bayesian graphical models for multivariate
functional data,” Journal of Machine Learning Research, vol. 17, no. 204, pp. 1–27,
2016.

[22] X. Qiao, S. Guo, and G. M. James, “Functional graphical models,” Journal of the
American Statistical Association, vol. 114, no. 525, pp. 211–222, 2019.

[23] B. Li and E. Solea, “A nonparametric graphical model for functional data with ap-
plication to brain networks based on fmri,” Journal of the American Statistical As-
sociation, vol. 113, no. 524, pp. 1637–1655, 2018.

125

[24] M. Lindquist, “Functional causal mediation analysis with an application to brain
connectivity,” Journal of the American Statistical Association, vol. 107, no. 500,
pp. 1297–1309, 2012.

[25] X. Cao, B. Sandstede, and X. Luo, “A functional data method for causal dynamic
network modeling of task-related fmri,” Frontiers in Neuroscience, vol. 13, no. 127,
pp. 1–19, 2019.

[26] H. Sun, S. Huang, and R. Jin, “Functional graphical models for manufacturing pro-
cess modeling,” IEEE Transactions on Automation Science and Engineering, vol. 14,
no. 4, pp. 1612–1621, 2017.

[27] Y. Yu and Y. Feng, “Modified cross-validation for penalized high-dimensional lin-
ear regression models,” Journal of Computational and Graphical Statistics, vol. 23,
no. 4, pp. 1009–1027, 2014.

[28] L. Horváth and P. Kokoszka, Inference for functional data with applications. Springer
Science & Business Media, 2012.

[29] F. Yao, H. G. Muller, and J. L. Wang, “Functional linear regression analysis for
longitudinal data,” The Annals of Statistics, vol. 33, no. 6, pp. 2873–2903, 2005.

[30] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”
Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301–320, 2005.

[31] R. Luo and X. Qi, “Function-on-function linear regression by signal compression,”
Journal of the American Statistical Association, vol. 112, no. 518, pp. 690–705,
2017.

[32] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with
the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2007.

[33] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for inverse co-
variance estimation across multiple classes,” Journal of the Royal Statistical Society.
Series B (Statistical Methodology), vol. 76, no. 2, pp. 373–397, 2014.

[34] T. T. Cai, H. Li, W. Liu, and J. Xie, “Joint estimation of multiple high-dimensional
precision matrices,” Statistica Sinica, vol. 26, no. 2, pp. 445–464, 2016.

[35] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the time-
varying graphical lasso,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’17, Halifax, NS,
Canada: Association for Computing Machinery, 2017, pp. 205–213.

126

[36] S. Zhou, J. Lafferty, and L. Wasserman, “Time varying undirected graphs,” Machine
Learning, vol. 80, pp. 295–319, 2010.

[37] M. Kolar, L. Song, A. Ahmed, and E. P. Xing, “Estimating time-varying networks,”
The Annals of Applied Statistics, vol. 4, no. 1, pp. 94–123, 2010.

[38] H. Qiu, F. Han, H. Liu, and B. Caffo, “Joint estimation of multiple graphical models
from high dimensional time series,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 78, no. 2, pp. 487–504, 2016.

[39] C. Zhang, H. Yan, S. Lee, and J. Shi, “Dynamic multivariate functional data model-
ing via sparse subspace learning,” Technometrics, vol. 0, no. 0, pp. 1–14, 2020.

[40] X. Qiao, C. Qian, G. M. James, and S. Guo, “Doubly functional graphical models in
high dimensions,” Biometrika, vol. 107, no. 2, pp. 415–431, Feb. 2020.

[41] R. Xu, J. Wu, X. Yue, and Y. Li, Online structural change-point detection of high-
dimensional streaming data via dynamic sparse subspace learning, 2020. arXiv:
2009.11713 [stat.ML].

[42] A. Jung, G. Hannak, and N. Goertz, “Graphical lasso based model selection for time
series,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1781–1785, 2015.

[43] P. Whittle, “Estimation and information in stationary time series,” Arkiv för Matem-
atik, vol. 2, no. 5, pp. 423–434, 1953.

[44] P. Stoica and R. Moses, Introduction to Spectral Analysis. Prentice Hall, 1997, ISBN:
9780132584197.

[45] F. Bach and M. Jordan, “Learning graphical models for stationary time series,” IEEE
Transactions on Signal Processing, vol. 52, no. 8, pp. 2189–2199, 2004.

[46] N. J. Foti, R. Nadkarni, A. Lee, and E. B. Fox, “Sparse plus low-rank graphical
models of time series for functional connectivity in meg,” in 2nd KDD Workshop on
Mining and Learning from Time Series, 2016.

[47] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Found.
Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[48] D. M. Witten and R. Tibshirani, “Covariance-regularized regression and classifica-
tion for high dimensional problems,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 71, no. 3, pp. 615–636, 2009.

127

https://arxiv.org/abs/2009.11713

[49] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, 1949.

[50] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, ser. Monographs
on Statistics and Applied Probability 57. Boca Raton, Florida, USA: Chapman &
Hall/CRC, 1993.

[51] A. G. Mahyari, D. M. Zoltowski, E. M. Bernat, and S. Aviyente, “A tensor decomposition-
based approach for detecting dynamic network states from eeg,” IEEE Transactions
on Biomedical Engineering, vol. 64, no. 1, pp. 225–237, 2017.

[52] M. G. Preti, T. A. Bolton, and D. Van De Ville, “The dynamic functional connec-
tome: State-of-the-art and perspectives,” NeuroImage, vol. 160, pp. 41–54, 2017,
Functional Architecture of the Brain.

[53] C. Cakan and K. Obermayer, “Biophysically grounded mean-field models of neu-
ral populations under electrical stimulation,” PLoS computational biology, vol. 16,
no. 4, e1007822, 2020.

[54] J. Liang, R. Lu, C. Zhang, and F. Wang, “Predicting seizures from electroencephalog-
raphy recordings: A knowledge transfer strategy,” in 2016 IEEE International Con-
ference on Healthcare Informatics (ICHI), 2016, pp. 184–191.

[55] N. Watthanawisuth, A. Tuantranont, and T. Kerdcharoen, “Microclimate real-time
monitoring based on zigbee sensor network,” in SENSORS, IEEE, 2009, pp. 1814–
1818.

[56] K. Bouabdellah, H. Noureddine, and S. Larbi, “Using wireless sensor networks for
reliable forest fires detection,” Procedia Computer Science, vol. 19, pp. 794–801,
2013.

[57] R. Tan, G. Xing, J. Chen, W.-Z. Song, and R. Huang, “Fusion-based volcanic earth-
quake detection and timing in wireless sensor networks,” ACM Trans. Sen. Netw.,
vol. 9, no. 2, 17:1–17:25, 2013.

[58] S. Siyang and T. Kerdcharoen, “Development of unmanned surface vehicle for smart
water quality inspector,” in 2016 13th International Conference on Electrical En-
gineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), 2016, pp. 1–5.

[59] N. Jin, S. Zhou, and T. Chang, “Identification of impacting factors of surface de-
fects in hot rolling processes using multi-level regression analysis,” Transactions of
NAMRI/SME, vol. 32, pp. 557–564, 2004.

128

[60] K. Liu, Y. Mei, and J. Shi, “An adaptive sampling strategy for online high-dimensional
process monitoring,” Technometrics, vol. 57, no. 3, pp. 305–319, 2015.

[61] A. Wang, X. Xian, F. Tsung, and K. Liu, “A spatial-adaptive sampling procedure
for online monitoring of big data streams,” Journal of Quality Technology, vol. 50,
no. 4, pp. 329–343, 2018.

[62] X. Xian, A. Wang, and K. Liu, “A nonparametric adaptive sampling strategy for
online monitoring of big data streams,” Technometrics, vol. 60, no. 1, pp. 14–25,
2018.

[63] R. Y. Liu, “Control charts for multivariate processes,” Journal of the American Sta-
tistical Association, vol. 90, no. 432, pp. 1380–1387, 1995.

[64] H. Yan, K. Paynabar, and J. Shi, “Image-based process monitoring using low-rank
tensor decomposition,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 1, pp. 216–227, 2015.

[65] K. Paynabar, C. Zou, and P. Qiu, “A change-point approach for phase-i analysis
in multivariate profile monitoring and diagnosis,” Technometrics, vol. 58, no. 2,
pp. 191–204, 2016.

[66] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing
values in visual data,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 1, pp. 208–220, 2013.

[67] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, G. Zhang, J. Cao, and D. Zhang, “Ac-
curate recovery of internet traffic data: A sequential tensor completion approach,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 793–806, 2018.

[68] H. A. L. Kiers, “Towards a standardized notation and terminology in multiway anal-
ysis,” Journal of Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[69] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM RE-
VIEW, vol. 51, no. 3, pp. 455–500, 2009.

[70] J. Hastad, “Tensor rank is np-complete,” Journal of Algorithms, vol. 11, no. 4, pp. 644–
654, 1990.

[71] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran, “Short-term traffic prediction based
on dynamic tensor completion,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 8, pp. 2123–2133, 2016.

129

[72] D. Goldfarb and Z. (Qin, “Robust low-rank tensor recovery: Models and algo-
rithms,” SIAM Journal on Matrix Analysis and Applications, vol. 35, no. 1, pp. 225–
253, 2014.

[73] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, J. Cao, and D. Zhang, “Fast tensor factoriza-
tion for accurate internet anomaly detection,” IEEE/ACM Transactions on Network-
ing, vol. 25, no. 6, pp. 3794–3807, 2017.

[74] J. Nocedal and S. J. Wright, Numerical Optimization, second. New York, NY, USA:
Springer, 2006.

[75] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and imputation for
streaming big data matrices and tensors,” IEEE Transactions on Signal Processing,
vol. 63, no. 10, pp. 2663–2677, 2015.

[76] H. Kasai, “Online low-rank tensor subspace tracking from incomplete data by cp de-
composition using recursive least squares,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 2519–2523.

[77] J. Fan, “Test of significance based on wavelet thresholding and neyman’s trunca-
tion,” Journal of the American Statistical Association, vol. 91, no. 434, pp. 674–688,
1996.

[78] H. Zou, T. Hastie, and R. Tibshirani, “On the degrees of freedom of the lasso,” Ann.
Statist., vol. 35, no. 5, pp. 2173–2192, 2007.

[79] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b: Fortran sub-
routines for large-scale bound-constrained optimization,” ACM Trans. Math. Softw.,
vol. 23, no. 4, pp. 550–560, 1997.

[80] S. V. Patankar, Numerical heat transfer and fluid flow, ser. Series on Computational
Methods in Mechanics and Thermal Science. Hemisphere Publishing Corporation
(CRC Press, Taylor & Francis Group), 1980.

[81] Y. Xie, J. Huang, and R. Willet, Multiscale online tracking of manifolds. Paper pre-
sented at the 2012 IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor,
MI, August 4-7, 2012.

[82] C. Gasch and D. Brown, Data from: A field-scale sensor network data set for mon-
itoring and modeling the spatial and temporal variation of soil moisture in a dryland
agricultural field. ag data commons. https://doi.org/10.15482/usda.adc/1349683. ac-
cessed 2020-03-07, 2017.

130

[83] C. R. A. Augusto, A. C. Fauth, C. E. Navia, H. Shigeouka, and K. H. Tsui, “Con-
nection among spacecrafts and ground level observations of small solar transient
events,” Exp Astron, vol. 31, p. 177, 2011.

[84] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection al-
gorithms: A systematic survey,” IEEE Transactions on Image Processing, vol. 14,
no. 3, pp. 294–307, 2005.

[85] C. K. Gasch, D. J. Brown, C. S. Campbell, D. R. Cobos, E. S. Brooks, M. Chahal, and
M. Poggio, “A field-scale sensor network data set for monitoring and modeling the
spatial and temporal variation of soil water content in a dryland agricultural field,”
Water Resources Research, vol. 53, no. 12, pp. 10 878–10 887, 2017.

[86] J. L. Hatfield and J. H. Prueger, “Temperature extremes: Effect on plant growth and
development,” Weather and Climate Extremes, vol. 10, pp. 4–10, 2015.

131

VITA

Ana Marı́a Estrada Gómez’s research interests lie in developing novel methodologies and

efficient algorithms for the analysis of high-dimensional, incomplete, and heterogeneous

data for data-driven decision making using statistical machine learning. Ana Marı́a is orig-

inally from Bogotá, Colombia, where she did her undergraduate studies and started her

graduate studies. She received B.Sc. in Industrial Engineering and Mathematics from la

Universidad de los Andes in 2013 and 2015, respectively, and an M.Sc. in Industrial En-

gineering from the same university in 2015. At the Georgia Institute of Technology, she

received an M.Sc. in Statistics in 2018 and her Ph.D. in Industrial Engineering in 2021.

Ana Marı́a is the recipient of the SPES+Q&P Best Student Paper Award from ASA, the

QSR Best Poster Award from INFORMS, and the IISE Doctoral Colloquium Best Poster

Award. At the Georgia Institute of Technology, she has been recognized with the Graduate

Teaching Fellowship, granted by the Center for Teaching and Learning, and with Stew-

art Fellowship, awarded by the School of Industrial and Systems Engineering. She has

also been appointed as a Latina Trailblazer in Engineering Fellow by Purdue’s College of

Engineering.

132

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Background and Motivation
	Data Characteristics and Challenges
	Overview of the Dissertation

	2 | Functional Directed Graphical Models and Applications in Root-Cause Analysis and Diagnosis
	Introduction
	Methodology Overview
	Proposed Functional Directed Graphical Models
	Performance Evaluation via Simulations
	Case Study
	Conclusion

	3 | Online Structural Change-point Detection of High-dimensional Streaming Data via Sparse Spectral Graphical Models
	Introduction
	Probabilistic Graphical Models for Stationary Time Series
	Structural Change-point Detection via Sparse Spectral Graphical Models
	Performance Evaluation via Simulations
	Case Studies
	Conclusion

	4 | An Adaptive Sampling Strategy for Online Monitoring and Diagnosis of High-dimensional Streaming Data
	Introduction
	Overview of the Proposed Methodology
	Multilinear Algebra and Tensor Completion
	Recursive Tensor Recovery Model
	Adaptive Sampling Strategy
	Online Monitoring and Diagnosis
	Performance Evaluation via Simulations
	Case Studies
	Conclusion

	5 | Conclusions and Future Research
	Conclusions
	Future Research

	Appendices
	A | Supplementary Materials of Chapter 2
	B | Supplementary Materials of Chapter 3
	C | Supplementary Materials of Chapter 4

	References
	Vita

