
BLOCKCHAIN-ENABLED INFORMATION AS A SERVICE (IAAS)

AND OPTIMAL FULFILLMENT CAPACITY BALANCING IN

CYBER PLATFORM-DRIVEN CROWDSOURCED

MANUFACTURING

A Dissertation

Presented to

The Academic Faculty

by

Mulang Song

In Partial Fulfillment

of the Requirements for the Degree

Master in the

George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

May 2022

COPYRIGHT © 2022 BY MULANG SONG

BLOCKCHAIN-ENABLED INFORMATION AS A SERVICE (IAAS)

AND OPTIMAL FULFILLMENT CAPACITY BALANCING IN

CYBER PLATFORM-DRIVEN CROWDSOURCED

MANUFACTURING

Approved by:

Dr. Roger J. Jiao, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Shuman Xia,

School of Mechanical Engineering

Georgia Institute of Technology

Dr. J. Rhett Mayor,

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Roxanne Moore,

School of Mechanical Engineering

Georgia Institute of Technology

 Date Approved: April 6, 2022

iii

ACKNOWLEDGEMENTS

The work of this thesis would be impossible to finish without the help and support

of lots of people and the great research environment provided by the Georgia Institute of

Technology.

First, thanks to my advisor Dr. Roger Jiao at Georgia Institute of Technology, for

providing guidance, constructive advice, and encouragement during my graduate studies.

Secondly, I want to express my sincere gratitude to the thesis reading committee members,

Dr. Roger Jiao, Dr. J. Rhett Mayor, Dr. Roxanne Moore, and Dr. Shuman Xia, for their

help and time in revising the thesis work. Thirdly, I would like to thank all the students

studying in GTMI 264B, Dr. Xuejian Gong, Pan Zou, Shu Wang, Jianyuan Peng, Yiyun

(Cindy) Fei, and Roosan Liyoons, and the staff at Georgia Institute of Technology. Lastly,

I would like to thank my family for their great support during my graduate studies.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS ix

SUMMARY xii

CHAPTER 1. Introduction 1

1.1 Platform-driven Crowdsourced Manufacturing 1

1.2 Information as a Service for Platform-driven Crowdsourced Manufacturing3

1.3 Fulfillment Capacity Balancing in Crowdsourced Manufacturing 4

1.4 Technical Challenges and Research Tasks 5

1.5 Organization of This Thesis 6

CHAPTER 2. Related work 9

2.1 Smart Manufacturing, IoT, Cyber Platform, and Cyber-Physical System 9

2.2 Crowdsourcing Manufacturing Fulfillment Capacity Balancing Modeling 10

2.3 Blockchain Technologies Applications 12

CHAPTER 3. BLockchain-enabled IaaS System Analysis and Design for Product

Fulfillment Crowdsourcing 14

3.1 Workflow of Platform-driven Crowdsourced Manufacturing 14

3.2 Use Case Analysis of Crowdsourced Manufacturing Cyber Platform 17

3.3 Architecture Design of Blockchain-enabled IaaS Fulfillment System 22

3.3.1 Information-sharing Space 25

3.3.2 Virtual Space 28

3.3.3 Infrastructure Space 30

3.4 Chapter Summary 31

CHAPTER 4. Blockchain-enabled IaaS Fulfillment System For Product

Fulfillment Crowdsourcing 33

4.1 Blockchain Technologies and Smart Contract 33

4.1.1 Block and blockchain network structure 33

4.1.2 Consensus mechanism 35

4.1.3 Smart Contract 36

4.2 IPFS Distributed File Sharing System 37

4.3 Mechanism of Blockchain-enabled IaaS Fulfillment System 37

4.4 Chapter Summary 50

CHAPTER 5. Application of Blockchian-enabled IaaS for Tank Trailer

Crowdsourced Manufacturing 51

5.1 Case Description of Tank Trailer Crowdsourcing 51

v

5.2 Developmental Tools and Environments 53

5.2.1 Raw data generation using Simio 54

5.2.2 Test network Construction using Truffle & Ganache 56

5.2.3 Web-based Interface Development 57

5.3 Illustrated Working Procedure of the Proposed System 58

5.3.1 Data upload and data extraction 58

5.3.2 Block Data Structurization 65

5.3.3 Data Retrieving 66

5.4 Chapter Summary 69

CHAPTER 6. Crowdsourcing System Modeling and Fulfillment Capacity

Balancing Opmization 70

6.1 Multi-cluster Population Dynamics Model based on ECC Game Theory 71

6.2 Moran Process in Multi-cluster ECC Game Model 76

6.3 Optimization Strategy Based on Population Dynamics Model and Moran

Process Simulations 80

6.4 Example Problem 86

6.5 Chapter Summary 88

CHAPTER 7. Conclusions 89

7.1 Contributions 89

7.2 Future Work 90

REFERENCES 91

vi

LIST OF TABLES

Table 4-1 Pseudocode of “User_Registration” 39

Table 4-2 Pseudocode of “M_extraction” 40

Table 4-3 Pseudocode of “M_Storage” 41

Table 4-4 Pseudocode of “L_extraction” 43

Table 4-5 Pseudocode of “L_Storage” 43

Table 4-6 Pseudocode of “Structurization” 45

Table 5-1 Development Tools for the Case Study 53

Table 5-2 Simplified Structured Block Data 67

Table 6-1 Payoff Matrix of Multi-cluster Evolutionary Game Model 75

Table 6-2 Parameters of Example Problem 86

Table 6-3 Boundary Conditions of Example Problem 87

vii

LIST OF FIGURES

Figure 1-1 Technical Roadmap of the Thesis 8

Figure 3-1 Workflow of Crowdsourced Manufacturing (Gong et al., 2022) 17

Figure 3-2 UML Case Diagram of Crowdsourced Manufacturing Cyber

Platform

20

Figure 3-3 Functional Requirements of IaaS Fulfillment System for Cyber

Platform-Driven Crowdsourced Manufacturing

21

Figure 3-4 Architecture Design of the IaaS Fulfillment System 24

Figure 3-5 Information-Sharing Space 26

Figure 3-6 Virtual Space 29

Figure 3-7 Infrastructure Space 31

Figure 4-1 Example of Blockchain Structure 34

Figure 4-2 Mechanism of the Blockchain-enabled IaaS Fulfillment System 38

Figure 4-3 Structure of “User” Class 47

Figure 4-4 IPFS Network in IaaS Fulfillment System 48

Figure 5-1 Clustered Manufacturing Task for Crowdsourcing 52

Figure 5-2 Supply Chain of Tank Trailer Crowdsourcing Task 53

Figure 5-3 Manufacturing Status Data Generated by Simo 55

Figure 5-4 Model Layout in Simio 56

Figure 5-5 User registration 59

Figure 5-6 Smart Contract Deployment 60

Figure 5-7 Uploading File to IPFS 61

Figure 5-8 Data Extraction and Blockchain Transaction 63

Figure 5-9 Blockchain in the Test Ethereum Network 64

viii

Figure 5-10 Structured Block Data 65

Figure 5-11 Failed Retrieve Case 68

Figure 5-12 Successful Retrieve Case 68

Figure 6-1 Evolutionary Game in Participation of Multi-Clusters 73

Figure 6-2 Transition Matrix in a Manufacturing Cluster 79

Figure 6-3 Phase Plot of a 3-cluster Population Dynamics Model 81

Figure 6-4 Workflow of the Proposed Optimization Method 85

Figure 6-5 Workflow of the Proposed Optimization Method 87

Figure 6-5 Overall Optimization Results for the Different Participation States 88

ix

LIST OF SYMBOLS AND ABBREVIATIONS

IaaS Information as a Service

MaaS Manufacturing as a Service

ICT Information and Communications Technologies

IoTs Internet of Things

CNs Customer Needs

DPs Design Parameters

PVs Process Variables

PoW Proof of Work

PoS Proof of Stake

PoA Proof of Authority

IPFS Interplanetary File System

CID Content Identifier

ECC Evolutionary Competition-Cooperation

𝐶0 Customer order

𝑀 Manufacturing agents

𝛼, Α Manufacturing agent cluster index and total number

𝜇𝑛𝛼
𝛼 Bidding manufacturing agent 𝑛𝛼 in cluster 𝛼

𝜑𝑛 Non-bidding agents

𝐷0 Design specs

𝑃0 Process specs

𝛿𝑘, Δ Manufacturing subtask and its associated product

𝑐𝑖 𝑖𝑡ℎ cluster of manufacturers

x

𝜂𝑖 Fulfillment capacity factor of 𝑖𝑡ℎ cluster

𝐹𝑖(𝑡) Participation level of manufacturing cluster 𝑐𝑖

𝑢𝑏𝑖 Uncorrected bidding cost of manufacturing cluster 𝑐𝑖

𝑏𝑖 Bidding cost of manufacturing cluster 𝑐𝑖

𝜌𝑖 Crowdsourcing income of manufacturing cluster 𝑐𝑖

Ρ Uncorrected crowdsourcing income

𝐸𝑖 Manufacturing income of manufacturing cluster 𝑐𝑖

𝐶 Strategy C, participate in the bidding.

 𝐷 Strategy D, don’t participate in the bidding

𝑓𝑖
𝑐 Average payoff of choosing strategy C of manufacturing cluster 𝑐𝑖

𝑓𝑖
𝐷 Average payoff of choosing strategy D of manufacturing cluster 𝑐𝑖

𝑟𝑖 Replicator equation of manufacturing cluster 𝑐𝑖

 𝑁𝑖 Number of manufacturers in cluster 𝑖

𝑗𝑖 Number of participating manufacturers in cluster 𝑖

𝑇𝑗𝑖
+ Probability that the number of participating manufacturers in cluster 𝑖

changes from 𝑗𝑖 to (𝑗𝑖 + 1)

𝑇𝑗𝑖
− Probability that the number of participating manufacturers in cluster 𝑖

changes from 𝑗𝑖 to (𝑗𝑖 + 1) from 𝑗𝑖 to (𝑗𝑖 − 1)

𝑓𝐶𝑖 Fitness function of selecting strategy 𝐶 in 𝑖th manufacturing cluster

𝑓𝐷𝑖 Fitness function of selecting strategy 𝐷 in 𝑖th manufacturing cluster

𝑤 Selection Intensity

𝑡𝑎→𝑁𝑖 Probability of number of participating manufacturers in 𝑖𝑡ℎ cluster 𝑗𝑖
changes from 𝑎 to 𝑁𝑖

𝑝𝑓
𝑖 , 𝑡0→𝑁𝑖 Probability of number of participating manufacturers in 𝑖𝑡ℎ cluster 𝑗𝑖

changes from 0 to 𝑁𝑖

𝑟𝑖
𝑛𝑒𝑤 Replicator equation of cluster 𝑐𝑖 with the substitution of new variables

xi

𝑏𝑖,𝑚𝑖𝑛, 𝑏𝑖,𝑚𝑎𝑥 Minimum and Maximum of bidding cost 𝑏𝑖

𝑔𝑖 Fraction of total manufacturers for cluster 𝑐𝑖

xii

SUMMARY

As a new emerging manufacturing paradigm, platform-driven crowdsourced

manufacturing utilizes the cooperation between the platform, designer, and service

providers to configure and fulfill the supply chain. In this value creation and delivery

process, the cyber platform enables and manages the interaction between each participant

in the supply chain to respond to varieties of customer needs which lets platform-driven

crowdsourced manufacturing become a persuasive approach to seeking manufacturing

solutions.

This thesis examines platform-driven crowdsourced manufacturing based on two

unique perspectives: Information as a Service (IaaS) fulfillment and operational excellence

of the platform. From the first perspective, this thesis analyzes the use case of the cyber

platform in the platform-driven crowdsourced manufacturing system based on its workflow.

An IaaS fulfillment system is designed based on the analysis using blockchain and

distributed file-sharing technologies. The proposed system is distributed, which fulfills

IaaS by providing secured information upload, sharing, and management services. The

decentralization feature of the system reduces the cost of trust for using the system. From

the perspective of operational excellence, the thesis models the interactions between users

and their decision-making process in the system based on ECC game theory, population

dynamics, and the Moran process. Based on the models, an optimization strategy is

proposed to manage the fulfillment capacity balance by facilitating the participation level

of users.

 1

CHAPTER 1. INTRODUCTION

The transition in the market causes new challenges to manufacturing companies

where they are forced to increase and manage more product varieties and complexities to

satisfy the dynamics of customer needs (Brettel et al., 2014). Confronting new challenges,

the ability to design and test new products effectively becomes the unique key to success

in the competition (Jiao et al., 2003). Under the transformation to the buyer’s market, larger

product variety and complexity affect both design and manufacturing domains, attracting

attention in the design domain from academia and industry.

Transformation in the market leads the transformation in the industry. To confront

the challenges and intense competition brought by demands in highly customized products

with reduced life cycles, manufacturing companies integrate the newly emerging

technologies, new design strategies, and new organizational structures.

1.1 Platform-driven Crowdsourced Manufacturing

As an emerging open business model, crowdsourcing allows the business owner to

utilize the extra resource and capabilities of the others across the crowd to finish a certain

task. Four key elements in a crowdsourcing system are identified as the crowd, the

crowdsourcer, the crowdsourcing task, and the crowdsourcing platform (Hosseini et al.,

2014). The crowd is an essential component of the system for participating in

crowdsourcing tasks. The crowdsourcer is the entity in a crowdsourcing system that

outsource task across groups of crowds for seeking solutions (Bücheler and Sieg, 2011).

The crowdsourcing task is an activity in which the crowdsourcer participates. The

 2

crowdsourcing platform gathers active users in a virtual platform for involving value-

creating activities which collaborate resources and capabilities from distributed individuals

(Kohler, 2015).

From a special perspective, platform-driven crowdsourced manufacturing is a

crowdsourcing system that enables product innovation and production after the

coordination and negotiation across the crowdsourcer in a cyber platform (Gong et al.,

2021). As an open manufacturing model, platform-driven crowdsourced manufacturing

enables the utilization of external knowledge and resources for achieving product

fulfillment collaboratively for a manufacturer in a distributed crowdsourcing network. In

this regard, key elements in platform-driven crowdsourced manufacturing are reidentified

as the crowdsourcer, crowdsourced manufacturing tasks, and cyber platform. The

crowdsourcer includes both individuals who initiate a new manufacturing task and

individuals who provide services in the product fulfillment process. The crowdsourced

manufacturing task is a task initiated by the crowdsourcer which can be decomposed into

several processes and fulfilled by the service-providing crowdsourcer. The cyber platform

provides the virtual space for accruing crowds and provides necessary services to

crowdsourcers in the supply chain formulation and product fulfillment process. For a

crowdsourcing framework, four prerequisites are identified cognitive diversity,

independence, decentralization, and aggregation (Surowiecki, 2004). For platform-driven

crowdsourced manufacturing, the cyber platform should take the responsibility of

management to meet the prerequisite of facilitating prosperity for crowdsourced

manufacturing through providing services.

 3

In cyber platform-driven crowdsourced manufacturing, there are three fundamental

issues which are manufacturing activities digitalization, information coordination and

management, and operational management. The term blockchain-enabled information as a

service in the title is derived from these two issues. Optimal fulfillment capacity balancing

corresponds to the third issue.

1.2 Information as a Service for Platform-driven Crowdsourced Manufacturing

With the vision of open manufacturing, X as a service (XaaS) is the term that

represents the service provided in X of the function domain (Kusiak, 2020). In platform-

driven crowdsourced manufacturing, the value is created and fulfilled through the

interaction between the crowdsourcer and the cyber platform, which are two agents in the

system. The cyber platform attracts and gathers the crowdsourcer and provides necessary

services to the user. In this regard, the cyber platform in platform-driven crowdsourcing

manufacturing has become a service-oriented paradigm. The cyber platform is able to

facilitate the fulfillment of manufacturing-as-a-service (MaaS) in crowdsourced

manufacturing by providing decision support services as intelligent cognitive assistants

(ICA) to manufacturers (Gong et al., 2021). Complementarily, the fulfillment of

information-as-a-service is fulfilled through the collaborative product fulfillment process

in crowdsourced manufacturing by serving the service of information exchanging and

sharing among crowdsourcers.

Information exchanging and sharing are significant in the product fulfillment process

in an open manufacturing network. Information sharing and coordination in the supply

chain can reduce costs and increase the overall economic benefit (Sahin & Robinson, 2005).

 4

It brings direct effect to the stakeholder in the supply chain. In platform-driven

crowdsourced manufacturing, information exchanging and sharing is necessary for the

decision strategy coordination and product fulfillment. Furthermore, it establishes the

fundamental requirement for IaaS fulfillment in the cyber platform.

Different from the traditional manufacturing paradigm, in crowdsourced

manufacturing, manufacturers and logistic service providers are widely dispersed and

connected through the cyber platform or the information system. One issue that existed in

the IaaS fulfilled by the system or platform is data transparency and privacy. In the product

fulfillment process, the management of data transparency and privacy can have the trust

issue due to distributed manufacturing layout. For the centralized system, the main trust

provider needs to be identified. For example, a centralized information system is managed

by a third-party agent. Blockchain technologies and other distributed file-sharing

technologies can be considered the solution to this problem. The cooperation between

agents in a crowdsourced task can be solidified by this kind of security database. The stored

data is distributed, traceable, and unerasable without the management of a third party. The

decentralization feature of the blockchain technologies make it more suitable for providing

data management services to a distributed manufacturing system.

1.3 Fulfillment Capacity Balancing in Crowdsourced Manufacturing

In the cyber platform-driven crowdsourced manufacturing, the crowdsourced task is

fulfilled by manufacturers that provide different kinds of services. Multiple clusters of

manufacturers and other service providers are formed in the platform. The match and

 5

balance of fulfillment capacity become one of the fundamental issues for platform

prosperity.

The solution-seeking process in crowdsourced manufacturing involves both

cooperation and competition. Despite the cooperation that happened in the fulfillment

process, in the supply chain formulation process of crowdsourced manufacturing,

manufacturers are supposed to participate in steps of the product fulfillment process based

on their manufacturing capabilities and capacity. For manufacturers that have similar

manufacturing capabilities, competition relationships are unavoidable in such a

manufacturing cluster as the result of limited crowdsourced tasks. Since a successful

crowdsourcing platform requires not only the number of crowdsourced tasks but also

requires high participation level from crowdsourcers (Thuan et al., 2015), the term

fulfillment capacity is introduced here as the total manufacturing capacity of a

manufacturing cluster in platform-driven crowdsourced manufacturing which reflect a

certain type of production capacity in the platform.

Increasing and balancing different kinds of fulfillment capacity is one of the key

factors for fulfilling crowdsourced tasks. From the perspective of the platform, this can be

achieved through a management protocols strategy. This requires an understanding of the

behavior and changes in the crowdsourcing system and the prediction methodology of the

changes in the system.

1.4 Technical Challenges and Research Tasks

 The objective of the work is to investigate platform-driven crowdsourced

manufacturing from two unique perspectives. The first perspective is how to design

 6

information as a service (IaaS) fulfillment system for the product fulfillment process in the

crowdsourced task. The second perspective is how to develop an optimal management

strategy based on the population dynamics model to manage and optimize fulfillment

capacity between clusters of manufacturers, which also inspires the participation

willingness in the tournament-based bidding process of the contracting process in platform-

driven crowdsourcing manufacturing.

For the first objective, the technical challenges come from three research questions:

(i) How to determine the information flow in the cyber platform; (ii) How to exchange and

share the information across the different agents of crowds; (iii) How to manage the

information with lower cost the higher security. For the second objective, the technical

challenges are (i) how to model the interactive behavior among the manufacturers in a

tournament-based bidding process for a crowdsourced task; (ii) how to simulate the

stochastic process in the simulation of the evolution of manufacturing clusters; (iii) how to

design the optimal strategy based on models.

1.5 Organization of This Thesis

The rest of this thesis work is organized as shown in figure 1-1. Chapter 2 reviews

the related work of smart manufacturing, cyber physical system, cyber platform,

crowdsourcing product fulfillment and blockchain-related technology. Chapter 3 presents

the analysis and design of a blockchain-enabled IaaS fulfillment system for product

fulfillment crowdsourcing which includes the use case analysis and architecture design.

Chapter 4 discusses IaaS management provided by the proposed system from the

perspective of user management, smart contract management, and information

 7

management. Chapter 5 shows an application of the proposed system based on a tank trailer

case. The illustration is focused on the information flow management in the product

fulfillment process of the tank trailer. Chapter 6 discusses fulfillment capacity balancing

and optimization in cyber platform-driven crowdsourced manufacturing. It introduces a

population dynamics model and Moran process based on evolutionary competition-

cooperation (ECC) game theory. An optimization strategy is also proposed and illustrated

by a case study example in this chapter. Chapter 7 summarizes the contributions,

assumptions, and limitations of this thesis work and provides a future vision of

improvements.

 8

 9

CHAPTER 2. RELATED WORK

2.1 Smart Manufacturing, IoT, Cyber Platform, and the Cyber-Physical System

New challenges and new technology bring revolution to the industry. The

manufacturing ecosystem can be divided into Industrial 1.0, 2.0, 3.0, and 4.0, which go

through the process from centralized organization to network or even decentralized

organization (Li et al., 2018). Breakthroughs of technology bring innovations in the

manufacturing system, which leads to the emergence of the automated, computerized and

complex smart manufacturing system. The term smart manufacturing has attracted

attention from both academia and industries. The smart manufacturing system is more open,

which tends to have properties like stronger external connectivity and more manufacturing

and resource sharing (Kusiak, 2017). These technology integrations in smart

manufacturing inspire the design of the system that fulfills IaaS in cyber platform-driven

crowdsourced manufacturing.

Open manufacturing is a paradigm of the smart manufacturing system that is

designed for sharing knowledge, resources, and service in the manufacturing ecosystem,

which presents a framework that provides service of information-sharing services (Li et al.,

2018). Followed by the concept of smart manufacturing, distributed manufacturing is a

paradigm that utilizes information and communication technologies (ICT) to achieve the

manufacturing value chain through a decentralized manufacturing network (Srai et al.,

2016). Social manufacturing is another emerging paradigm of smart manufacturing which

combine the usage of the Cyber-Physics System (CPS) with social media to provide

services in design and production (Jiang et al., 2017).

 10

Cloud manufacturing utilizes a service-oriented platform to manage the

manufacturing capabilities and resources across the internet to provide manufacturing

services to users, which has become a new paradigm of smart manufacturing systems

(Zhang et al., 2012). Qu et al. proposed an IoT-based real-time production logistic

synchronization system for smart cloud manufacturing in 2015, which integrates IoT to

cloud manufacturing to synchronize the dynamics in production. In the proposed system,

information in real-time collected from sensors and RFID tags flows through a multi-level

system for logistic production synchronization. The information flow in the virtual space

corresponds to the material flow in the real world in the proposed system.

It can be summarized that ICT, IoT, and CPS are the most common technology

adopted in the new manufacturing system, which ensures the establishment of a service-

oriented cyber platform for information, logistic, resources coordination, and management.

These technologies enable a new level of architecture design of information systems for

fulfilling IaaS in the production of the cyber platform-driven crowdsourced manufacturing

system.

2.2 Crowdsourcing Manufacturing Fulfillment Capacity Balancing Modeling

As mentioned earlier, fulfillment capacity refers to the total manufacturing capacity

of a manufacturing cluster in a crowdsourcing manufacturing system. The fulfillment

capacity could be evaluated from two perspectives which are level and balance across

different types of product capacities. To come up with a strategy of management, modeling

the interaction and behaviors of agents in crowdsourcing manufacturing is necessary.

 11

Guazzini et al. provided a mathematical model of crowdsourcing in 2015. The model

includes a preference for collaboration simplicity of the tasks to describe the behavior in

groups of crowdsourcers. The performance and effectiveness of crowdsourcing are

evaluated through the fitness of crowdsourcers. The model also indicates that the

effectiveness and performance of crowdsourcing can be optimized based on the number of

groups. Hoßfeld et al. proposed another crowdsourcing modeling method to predict growth

dynamics through measurement-based statistical analysis in 2011. The population

dynamics model is also utilized to describe the dynamics in the platform.

In the cyber platform-driven crowdsourcing manufacturing, modeling the

competition relationship and cooperation relationship inside and among manufacturing

clusters becomes more significant. Population dynamics becomes a powerful tool that is

able to demonstrate mechanisms in evolutionary group interactions (Perc et al., 2013). In

2015, Chen et al. studied competition and cooperation modeling in public goods games

with different punishment strategies.

There are lots of studies in evolutionary cooperation and competition game theory.

A colloquium discusses the evolutionary games on with the condition of different kinds of

multilayer networks (Wang et al., 2015). Studies in multiplayer ECC game theory imply

that the difficulties and complexities increase extremely when it involves multiple players

and strategies (Gokhale & Traulsen, 2010). Additionally, in complex multiplayer games,

simulation based on graph theory can demonstrate interactions among players, which can

validate the results of the evolutionary dynamics of populations in an analytic model (Pena

et al., 2016).

 12

These studies provide the theoretical basis for modeling the evolutionary dynamics

of fulfillment capacity based on the growth of manufacturing clusters and corresponding

validation through simulations. Furthermore, parameterization of the dynamics model

enables the management strategy based on optimization.

2.3 Blockchain Technologies Applications

The concept of Blockchain was firstly introduced firstly in 2008 by Satoshi

Nakamoto as the fundamental technology of the digital currency bitcoin. Blockchain

technology is commonly implemented in digital currency (Nderwood, 2016). Despite the

financial area, blockchain has been introduced in different industries.

Software solutions could be offered by employing blockchain as a software

connector, which can provide interaction services across different software blocks. It can

be applied in communication services, coordination services, and facilitation services (Xu

et al., 2016). Transparency and traceability make blockchain suitable for the manufacturing

supply chain, which has huge potential for supply chain function transformation

(Abeyratne & Monfrad, 2016 & Dutta et al., 2020). Tian et al. proposed a traceability

system based on blockchain technology for tracking agri-food safety in 2016, which can

provide services of information tracing, freshness checking. In 2021, Liu et al. proposed a

smart tracking and tracing platform for the drug supply chain using blockchain technology.

Transparency and security in information sharing and exchanging can be fulfilled by

the blockchain-enabled cyber platform by providing unified standards and protocols (Jiang

et al., 2021). The blockchain-based platform is also designed for manufacturing. With the

implementation of IoT, a peer-to-peer platform called BPIIoT is proposed for

 13

manufacturing. The proposed platform allows the development of distributed apps (Dapps)

that can enhance the existing cloud-based manufacturing (Bahga & Madisetti, 2016). The

Dapps is also known as smart contacts, which is the self-executable script stored on the

blockchain. The automation created by smart contracts can facilitate the sharing of services,

automate the cryptographically veritable workflows (Christidis et al., 2016).

 14

CHAPTER 3. BLOCKCHAIN-ENABLED IAAS SYSTEM

ANALYSIS AND DESIGN FOR PRODUCT FULFILLMENT

CROWDSOURCING

3.1 Workflow of Platform-driven Crowdsourced Manufacturing

To design an information service system to fulfill IaaS in cyber platform-driven

crowdsourced manufacturing system, the workflow in such a manufacturing system is

necessary to be clarified for establishing an understanding of behavior and functional

requirements for crowdsourcers and the cyber platform. Figure 3-1 illustrates an adapted

example of crowdsourced manufacturing workflow (Gong et al., 2022).

There are three physical domains in the figure which are the designer domain,

crowdsourced manufacturing platform domain, and open manufacturing domain. The

crowdsourced task is fulfilled through the activities achieved by the collaboration of

participants in all three physical domains. In the open innovation domain, the designer 𝐷

is the crowdsourcer that designs a product and proposes the crowdsourced task.

Crowdsourced manufacturing platform domain store and restructure the design into

crowdsourced tasks for bidding. There are three types of platform agents, where �̅� = 𝑃𝐶 ∪

�̅�𝐼 ∪ �̅�𝐸. It also provides evaluation services at the end of the product fulfillment process.

The open manufacturing domain contains manufacturing agents that are clustered based on

their manufacturing capabilities. For each manufacturing cluster, not all manufacturing

agents participate in the bidding process. To start with, the designer design new products

based on customer orders that saved into 𝐶0 based on the customer needs CNs. Once the

 15

design process is finished, designers can initialize the crowdsourcing process by sending

the design specifications (DPs) of products to 𝐷0 in the virtue field of crowdsourcing

information management. In the database of design specifications, Δ = 𝛿1 × …𝛿𝑞 × …𝛿𝑄

denotes the product structure. In the equation, 𝛿𝑞 represents a manufacturing subtask of the

product and 𝑞 ∈ [1, 𝑄], where 𝑞 indicates the index of subtask among 𝑄 number of subtasks

in total. 𝑃𝐶 represents the manufacturing configuration manager who receives the 𝐷0 and

restructures the design to manufacturing subtasks. Invitation broker �̅�𝐼 receives subtasks

and broadcasts each subtask to the corresponding manufacturing clusters for bidding.

Invitation broker �̅�𝐼 consists of individual invitation broker 𝑃𝛼
𝐼, where ∀𝑃𝛼

𝐼 ∈ �̅�𝐼. The index

𝛼 corresponds to manufacturing cluster 𝛼. Evaluation broker �̅�𝐸 follows a similar pattern

which is composed of individual evaluation broker 𝑃𝛼
𝐸. The evaluation broker evaluates the

results of the bid and chooses the winner of each manufacturing cluster for participating in

the crowdsourced task. In the bidding process, manufacturing agents 𝜇𝑛
𝛼 in each

manufacturing cluster 𝜇𝛼̅̅̅̅ proposes their manufacturing process as bids 𝐵 =

{𝐵1, … , 𝐵𝛼 , … , 𝐵Α} to the evaluation broker. After the evaluation, the crowdsourced

manufacturing supply contract 𝑆 = 𝜇1
∗
× …𝜇𝛼

∗
× …𝜇𝛢

∗
is established, which contains each

manufacturing agent. Manufacturing configuration manager 𝑃𝐶 send process specification

set 𝐵∗ = {𝐵𝛼
∗}|Α to process specifications database 𝑃0 based on the returned manufacturing

supply contract 𝑆 . Final products are returned to the designer 𝐷 through the product

fulfillment process.

Material flow and knowledge flow are defined in the workflow, and the platform

coordinates these flows back and forth between the open innovation domain and the open

manufacturing domain. The defined workflow focuses on the crowdsourced task derivation

 16

from the design domain to the manufacturing domain. Data that carries that knowledge in

the workflow requires storage and sharing services. Furthermore, in the product fulfillment

process of the crowdsourced task, the needs for data storage and sharing are lifted and

boarded to new levels. This leads to the design of an information service system for the

purpose of management which fulfills IaaS for agents in the cyber platform-driven

crowdsourced manufacturing system.

 17

Figure 3-1 Workflow of Crowdsourced Manufacturing (Gong et al., 2022)

3.2 Use Case Analysis of Crowdsourced Manufacturing Cyber Platform

Based on the workflow in section 3.1, a UML case diagram is proposed in this section,

as shown in figure 3-2. The UML case diagram reconstructs the workflow in platform-

 18

driven crowdsourcing manufacturing based on the interaction between use cases and users.

Three main actors identified for the crowdsourced manufacturing cyber platform are

designers, service providers, and managers. Both designers and service providers are

crowdsourcers in the crowdsourcing system. The designer is the crowdsourcer that initiates

the crowdsourced task. Service providers are crowdsourcers that participate in the

fulfillment process of crowdsourced tasks,

The cyber platform is service-oriented. Despite the services provided for third-party

users like service providers and designers, it also assists in the coordination of information

for managers. The platform serves for contract establishment between desginers and

manufacturers, task execution for manufacturers, and management for managers. In the

contract establishment process of the crowdsourced task, as indicated in section 3.1, the

designers can propose manufacturing tasks on the cyber platform, as shown in figure 3-2.

This use case is included in the use case of evaluating proposed tasks that are under the

supervision of the manager on the cyber platform. The evaluation of proposed tasks also

enables the bids for crowdsourced tasks, which require the participation of service

providers. Based on the evaluation of tasks and bidding results, service providers, designers,

and managers establish the order contract of crowdsourced tasks through the platform. The

contract data is stored on the cyber platform for future reference. Store data is the most

significant use case in the crowdsourced manufacturing cyber platform, which includes

several sub-use cases. It is the foundation of fulfilling IaaS in services of contract

establishment, task execution, and management.

Serving for task execution of crowdsourced tasks, retrieving the real-time task

execution or product fulfillment status is necessary for all main actors. To achieve the use

 19

case of retrieving product fulfillment status, the cyber platform should receive and store

the product fulfillment data uploaded by service providers first. Furthermore, the process

of receiving, storing, and accessing product fulfillment data requires management for the

purpose of security and coordination. When uploading the product fulfillment status, the

cyber platform inspects the identity of the request sender for security. Similarly, functions

like identity verification should be employed for the use case of retrieving product

fulfillment status. As mentioned before, storing data is the most significant use case since

it participates in all the information sharing and referencing use cases in the platform. Once

the product fulfillment process is finished, designers, service providers, and managers

evaluate the performance of each agent that provides service in product fulfillment.

 20

Figure 3-2 UML Case Diagram of Crowdsourced Manufacturing Cyber Platform

 Based on the use case and relationship identification of platform-driven

crowdsourced manufacturing in the UML case diagram, a unique view can be proposed

from the perspective of the fulfillment of IaaS through an information service system that

is integrated into the crowdsourced manufacturing cyber platform as shown in figure 3-3.

To fulfill the IaaS in task execution and overall information management for crowdsourced

 21

manufacturing, functional requirements in different overlapped areas are identified from

the mapping between workflow and use case analysis, as shown in figure 3-3.

Figure 3-3 Functional Requirements of IaaS Fulfillment System for Cyber Platform-

Driven Crowdsourced Manufacturing

In the overlapping between task execution and management areas, functional

requirements for an IaaS fulfillment system are identified as (1) product fulfillment data

upload, (2) product fulfillment data retrieve, (3) identity verification, and (4) identity-based

permission-giving. Management is required in contract establishment for (1) contract data

storage and (2) contract data access, as shown in figure 3-3. In the product fulfillment

process, users need to access the data stored in the contract establishment process for

reference. The IaaS fulfillment system is designed to achieve these requirements with low

 22

construction cost, low time latency, system standardization, high operational conveniences

and efficiency, high security, and trust from users.

3.3 Architecture Design of Blockchain-enabled IaaS Fulfillment System

To meet the functional requirements identified in section 3.2, blockchain technology

is introduced for the design of the system. Blockchain technology has been widely applied

in areas like distributed databases, public ledgers for transactions, and digital events with

high security provided by distributed consensus (Crosby et al., 2016). With the aid of smart

contracts, automated scripts run in blockchain, new types of synchronized interactions

between users and blockchain are enabled in the distributed network without a third party’s

supervision (Zou et al., 2019). The integration of blockchain ensures traceability,

unchangeability, transparency in information sharing and exchanging, and the integration

of smart contracts provides a certain level of automation in information management.

However, blockchain has limitations in the size and bandwidth, which indicates that higher

latency can be caused when the size of sharing data is large (Mending et al., 2018). This

brings the question of what kind of file should be posted on the blockchain network, which

requires aid from other types of distributed file-sharing systems.

Another term that is brought to the architecture design is Cyber-Physical Systems

(CPSs). CPSs digitalize the process in the physical world into computerized entity flows

to establish the connection between the bounded physical world and relative boundless

cyberspace, which provides services like real-time data access and data processing through

the internet (Monostori et al., 2014). Interactions between human to human and human to

machine in CPSs have projections on both the actual physical world and digital space. By

 23

integrating CPSs into manufacturing systems based on smart sensing and IoT technologies,

material and entity flow in the physical world are digitalized as information flow which

leads to interactions between human to human and human to machine. In the system

platform-driven crowdsourced manufacturing, the cyber platform is required to allow

interaction between crowdsourcers through providing different kinds of services, as

mentioned in the previous chpater. This leads to the need to establish a cyber-physical

system based on the crowdsourcing platform to coordinate and combine entities in both the

physical world and digitalized data. At the same time, fulfillment of IaaS is achieved

through this coordination process.

In this section, an overall architecture design is proposed to provide a general view

of the proposed system in figure 3-4. Three spaces are included in the figure are

information-sharing space, virtual space, and infrastructural space. The virtual space and

interactions inside it are achieved through actions and flow in the other two spaces.

Information-sharing space demonstrates the information flow and actions related to

data sharing and transferring. Stakeholders in this space are manufacturer and logistics

service providers and task managers. Manufacturers and logistics service providers both

belong to the term service providers, which is introduced in chapter 3.2. The task manager

corresponds to the term manager in chapter 3.2. Service providers upload and retrieve

information in the information-sharing space under the supervision of the task manager.

Blockchain technologies are employed for constructing a database that contains extracted

product fulfillment status. The raw product fulfillment data is stored in the distributed

database due to its large size. Contract data, and specifications data are also stored in the

distributed database for the same reason. The data stored in the blockchain network is un-

 24

structuralized, which will be structuralized and saved into a database for access. The

organization reduces the cost and difficulties of data access management.

Stakeholders in the virtual space are the same as stakeholders in the information-

sharing space. In the virtual space, the virtue manufacturing system is constructed based

on the established contact of the crowdsourced task. Manufacturer, logistics service

provider, and designer who proposes the task participate in the contracting process based

on decision support resources. Both crowdsourced task contracts and decision support

resources are stored in the distributed database. Product fulfillment status is the real-time

task product fulfillment data collected through IoT and smart sensors.

Infrastructure space contains the physical resources for fulfilling the product. The

resources and entities in different levels are categorized and configured from the supply

chain network. For each logistics service provider, the real-time product fulfillment data is

collected and uploaded to their local database, which gives feedback to the local service

providers.

Figure 3-4 Architecture Design of the IaaS Fulfillment System

 25

3.3.1 Information-sharing Space

Figure 3-5 demonstrates details in the information-sharing space. The blockchain

network in the information-sharing space store the extracted product fulfillment data. The

characteristics of blockchain technologies make the stored data unchangeable and traceable.

To initiate the information flow, service providers firstly upload the raw product fulfillment

data to distributed database. At the same time, the raw product fulfillment data is extracted

to a certain format and sent to the blockchain network through transactions. Blocks are

formed through these transactions that contain the extracted data. These three types of

transactions in the designed system which are User_info transaction, Manufact_info

transaction, and Logistics_info transaction. Three types of transactions represent three

types of data stored in the blockchain network.

 26

Figure 3-5 Information-Sharing Space

User_info transaction carries user information like user ID and user type. User ID

is employed for differentiating different service providers in the crowdsourced task. User

 27

type includes manufacturers and logistics service provider. The hash address is also

included in the user information, which is unique for each participant in the blockchain

network. The user information is used to provide a reference for identity verification and

coordination. Users need to enter their user ID and hash address as passwords to check if

they are allowed to perform a certain behavior. Details of the utilization will be discussed

in chapter 4. TX_type in the transaction data can label the type of transactions.

Logistics_info is the second type of transaction which carries extracted logistics data. The

logistics data record the physical flow of the entity. Logistics_info contains departure

location, destination location, current location, departure time, and expected arrival time.

This information can describe the status of logistics services. Logistics_info transaction is

extracted from the logistic data and uploaded by the logistics service provider. The third

type of transaction type is Manufact_info which contains extracted information on

manufacturing data. It contains the name of the part or entity that is manufactured. The

manufacturing status is represented by the number of finished parts, the start time of that

manufacturing process, and the time when the manufacturing process is ended.

Based on different consensus mechanisms and settings of the blockchain network,

the block is mined while containing transactions that carry extracted product fulfillment

data. Blocks are mined and connected. Data in the transaction can be retrieved by block ID

or hash address of the transactions. The extracted data is stored in the blockchain network

discretely where there aren’t connections between these transactions, which causes

difficulties in managing and retrieving. Therefore, data in the blockchain is reorganized in

struct format and saved to a structuralized database. As shown in figure 3-5, the

structuralized data is stored in a distributed database. The structuralized database is updated

 28

when new transactions are sent to the blockchain network. The structuralized data can also

be stored into transaction data in a block if the block size is permitted.

The structuralized database provides conveniences for access management. In the

general case, the manufacturer and logistics service provider can only access the product

fulfillment status of users that are upstream and downstream of the supply chain. Managers

of the crowdsourced task can access all users’ product fulfillment status in both blockchain

and structuralized databases for supervision and coordination.

3.3.2 Virtual Space

The interactions between stakeholders and their behaviors are demonstrated in the

virtual space. The decision support resource includes a database of manufacturing

specifications and task specifications which is provided during the task proposing process.

The task manager, manufacturing service provider, and logistic service provider

established the contract from negotiation. During the negotiation process, the duties and

obligations of each service provider are clarified and stored in the distributed database. The

contract of crowdsourced tasks also includes logistics service specifications,

manufacturing service specifications, supply chain structure, and deliverables. Information

stored in the crowdsourced contract can establish the structure of the virtue manufacturing

model. The virtue manufacturing system digitalizes the layout, precedence in the product

fulfillment process.

The manufacturer and logistics service provider upload the real-time manufacturing

status and logistics service status, which represents the real-time execution status in the

virtue manufacturing model. Interactions and behaviors shown in figure 3-6 are projected

 29

from the physical and virtual processes in the other two spaces, which give a relatively

general view of the system.

Figure 3-6 Virtual Space

 30

3.3.3 Infrastructure Space

Infrastructure space demonstrates the data acquisition locally for each

manufacturing service provider and logistic service provider. The physical resources are

configured and categorized based on the raw data uploaded and shared. In the resources

layer, changes in inventory level, location changes for forklifts or any other transportations,

and numbers of processed parts by machines are digitalized through smart sensing and IoT

integration layer through technologies like barcodes, RFID tags, GPS, accelerometers, and

other sensors. Like any smart manufacturing system, the data are collected and stored in a

local database which gives feedback to the local service provider for analysis and planning.

The task manager can monitor and coordinate the overall product status based on

the shared database. The upstream or downstream service providers are also able to acquire

some real-time data for production preparations.

 31

Figure 3-7 Infrastructure Space

3.4 Chapter Summary

In this chapter, the scope is narrowed down from the overall workflow of platform-

driven crowdsourced manufacturing to a system architecture design of the proposed system,

 32

which demonstrates the actual interaction. In chapter 3.1, a referenced model of workflow

in crowdsourced manufacturing is introduced. In chapter 3.2, a use case diagram is

employed to identify the use cases in crowdsourced manufacturing. Focused on use cases

for IaaS fulfillment, functional requirements are also identified in chapter 3.2. In chapter

3.3, the architecture design is proposed, which includes perspectives from three different

perspectives.

 33

CHAPTER 4. BLOCKCHAIN-ENABLED IAAS FULFILLMENT

SYSTEM FOR PRODUCT FULFILLMENT CROWDSOURCING

In this chapter, a unique solution is designed for the IaaS fulfillment system in the

product fulfillment crowdsourcing based on the analysis and design discussed in chapter 3.

The proposed solution is enabled by blockchain technologies mainly, which allows users

to upload, access, manage product fulfillment data easily and securely. This chapter is

organized as follows: chapter 4.1 and chapter 4.2 discuss the mechanism of blockchain and

other related technologies, and chapter 4.3 introduces key components of the proposed

system.

4.1 Blockchain Technologies and Smart Contract

4.1.1 Block and blockchain network structure

Blockchain can be regarded as a digital ledger that records each information and

transaction. Each block is added sequentially to the existed block, which records the

transaction that happens within a certain time interval. Figure 4-1 shows an example of a

blockchain structure. As shown in figure 4-1, the block contains a block header and the

main body. The block header consists of the Hash of the previous block, Timestamp, Nonce,

and Merkle root:

(1) Hash of the previous block is a 256-bit value that indicates the virtue address of

the previous block.

(2) Timestamp is the time when the current block is mined and validated in the

blockchain network. Generally, the time is counted since January 1st, 1970.

 34

(3) The nonce is a variance value employed for hash calculation of new block and

validation of new blocks.

(4) Merkle root contains all the hash values that point to transactions in the current

block.

The main body of the block consists of transaction data. The number of transaction

data in a block is affected by the employed block size and each transaction data size. In

other words, fewer transactions are recorded in a block if each transaction is larger. Data

is encrypted when sending data through the transaction to the blockchain network. Each

transaction can be tracked by its hash data which is the transaction hash (TX Hash). The

users use a private key to access their account and sign transactions which prove the users’

ownership of their address of blockchain network accounts.

Figure 4-1 Example of Blockchain Structure

Moving from inside to outside of a block, the blockchain network is a sequence block

that records a whole list of transactions decentralized with persistency and audibility, which

is considered a unique public ledger system (Zheng et al., 2017). In a blockchain network,

each block is connected to a previous block except for the first block. The first block which

initializes a blockchain network is also called the genesis block.

 35

4.1.2 Consensus mechanism

Trust issues and validation of transactions are solved through consensus mechanisms

in the blockchain network safely, efficiently, and conveniently. There are several

commonly used consensus algorithms which are proof of work (PoW), proof of stake (PoS),

and proof of authority (PoA).

PoW is a non-trust-based consensus mechanism that believes that the node that does

the most amount of work has the least probability of attacking the blockchain network

through publishing transactions. PoW is employed as the consensus mechanism for the

Bitcoin network. The node that reaches a certain level within a value through using the

computer to calculate the hash value of the next block can broadcast the new block to other

nodes for validation (Nakamoto, 2008). In general, nodes in a PoW-based blockchain

network use computational power to solve a question provided by the algorithm, and the

first node who solves the problem that meets the algorithm’s requirement becomes the

miner of that block. PoW wastes lots of resources in calculations of consensus mechanism.

PoS is another non-trust-based consensus mechanism employed by Ethereum (Wood,

2017). Nodes that have more electrical currencies in the blockchain network have less

probability of attacking. To avoid the new block being always mined by the richest node,

PoS usually combines with other types of algorithms like randomization or new judgment

criterion (Zheng et al., 2017). Compared to PoW, PoS wastes fewer resources in the

consensus mechanism and has a higher probability of being attacked.

PoA is a trust-based consensus mechanism that is applied to the blockchain network

for relatively trustful users. Applications like health data sharing, smart home appliance

 36

management, and distributed control systems employ PoA as a consensus mechanism

(Singh et al., 2019, Asad et al., 2020, Yang et al., 2022). A certain number of nodes (usually

higher than the half number of total users) are trusted in the blockchain network, and these

trusted nodes process the consensus for transactions acted by non-trusted nodes (Angelis

et al., 2018).

4.1.3 Smart Contract

The smart contract is developed based on blockchain technology. It is a self-simple

executable script based on simple rules and logic. Utilized with masses of pre-defined

conditions and rules, the smart contract can respond automatically by executing the pre-

defined command to manipulate the blockchain network. The decentralized application

(Dapp) is the application that employs smart contracts to provide services to users (Bahga

& Madisetti, 2016).

The smart contract has been furtherly developed commonly used in different

blockchain platforms with different mechanisms. It has three characteristics which are

autonomy, self-sufficiency, and decentralization. As mentioned before, autonomy indicates

that the contract is executed automatically after the initialization. Self-sufficiency means

that a smart contract can acquire and manage the resources in the blockchain network

without the control of the agents. Decentralization is inherited from the characteristics of

blockchain technology, where the smart contract is deployed distributivity to all nodes in

the network. Furtherly, the smart contract is programmable, which can leverage the

possibilities of providing complex services and enclosing the node behaviors in the

blockchain network.

 37

4.2 IPFS Distributed File Sharing System

Compared to the blockchain network, Interplanetary File System (IPFS) provides

convenience for large file storage with large throughput, which is a distributed file storing

and sharing system. Two important characteristics of IPFS are decentralization, content

addressing. Decentralization makes it possible for users to access a file not managed by a

centralized organization in IPFS. Content addressing means files are identified by their

content in the IPFS. Content identifier (CID) labels and points the content in a shared file

which is a short cryptographic hash. CID is firstly generated when uploading a file to the

IPFS network, which can also be used to access that file by inputting ‘/ipfs/’ + ‘CID’ in the

web browser. A different CID is produced when there is a change in that shared file which

indicates both the new version and the old version of the file are stored in IPFS with

different CIDs. In other words, the change in the uploaded file is trackable in IPFS.

4.3 Mechanism of Blockchain-enabled IaaS Fulfillment System

Figure 4-2 shows the mechanism of the blockchain-enabled IaaS fulfillment system.

The figure shows mechanisms behind the architecture design figure proposed in chapter 3.

There are three types of users, as shown in the figure, which are the task manager, the

manufacturer, and the logistics service provider. Three types of users interact with IPFS

and the blockchain network services provided by a web-based interface. To establish the

connection between the web-based interface to the blockchain network and IPFS, smart

contracts deployed to the blockchain network, algorithms executed on the web-based

interface, and APIs collaborate to process the information and requests. There are two kinds

of portals that provide different kinds of services in the web-based interface.

 38

 39

Four services are provided in the upload portal:

(1) User information upload allows the task manager to upload user information of

participants to the blockchain network. Through a smart contract API, smart

contract User_Registration is deployed to the blockchain network for sending

transaction data. The smart contract only allows the task manager which is the

blockchain network initializer to upload the user information. Table 4-1 shows

the pseudo code of User_Registration smart contract. As shown in the table

below, the smart contract firstly checks task manger’s identity by checking if its

account hash address is the blockchain network initializer. Once the task manager

passed the identity inspection, it can input the user id, username, user type, and

user’s account hash address and the smart contract will store those data to the

blockchain network. The user id, username and users’ account address hash are

strings. User type is defined as integer where “0” represents the manufacturer and

“1” represents the logistics service provider.

Table 4-1 Pseudocode of “User_Registration”

Input: 1. User ID, User type, Username and Hash address.

Output: Transaction data that contains user information.

1: Begin Smart Contract

2: create string _UserID, _Usernanme, _hash;

3: create int _Usertype;

4: create address _hash;

5: function store(UserID, Usertype, Username, hash):

6: If (AccountAddress==sender.address):

7: _UserID = UserID;

8: _Usertype =_Usertype;

9: _Username = Username;

10: _hash =hash;

 40

Table 4-1 Continued

11: Else:

12: print(‘Access Denied’)

13: End function

14: End Smart Contract

(2) Raw manufacturing data upload is the second service in the uploading portal.

Manufacturers upload the raw data through the web-based interface, and the web

interface will firstly transfer the file to IPFS through IPFS API. After that, the

CID of the uploaded file is returned to the web-based interface, and the uploaded

raw data file is extracted based on algorithm M_extraction as shown in table 4-2.

Table 4-2 Pseudocode of M_extraction

Input: Array that records when does a process happen in the system. The

process is defined as: an entity occupies a resource for executing a certain

action and one entity requires several processes for leaving the system.

Output: Extracted data that summarize the overall action exaction results.

1: Begin

2: Read array

2: Acquire the time when the first process happens in the array as 𝑡𝑠𝑡𝑎𝑟𝑡;

3: Acquire the time when the last process ends in the array as 𝑡𝑒𝑛𝑑;

5: Acquire the number of entities that are transferred out from the last

process o in the array as 𝑁

6: return 𝑡𝑠𝑡𝑎𝑟𝑡;

7: return 𝑡𝑒𝑛𝑑;

8: return N;

9: End

The extraction algorithm outputs the number of finished tasks or parts from the

raw manufacturing data and returns them to the web-based interface. Extracted

 41

manufacturing data and CID of the raw data uploaded in the IPFS are sent to the

blockchain network through smart contract M_Storage. The pseudo-code of

M_Storage is shown table 4-3. As shown in table 4-3, the M_storage requires

four kinds of input which are (i) the CID of the uploaded raw manufacturing data,

(ii) the task name inputted by the manufacturer, (iii) the extracted manufacturing

data, and (iv) the list that contains account address hash of all manufacturers

which is uploaded by the task manager through user information upload function.

The M_storage sends the transaction data to the blockchain network that contains

extracted manufacturing data and the CID for accessing related raw data. The

transaction type is also recorded in the blockchain, where the integer “0”

indicates that the transaction is related to manufacturing status. The on-chain and

off-chain data storage design improves the efficiency of the blockchain by

reducing the sizes of transactions. The extracted manufacturing data reflect the

product fulfillment status with fewer complexities when accessed by other users.

Table 4-3 Pseudocode of M_Storage

Input: 1. CID outputted from IPFS.

 2. Manufacturing task name

 3. 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑, and N outputted from M_extraction algorithm

 4. List of account address hash of manufacturers uploaded by the task

manager

Output: Transaction data that contains manufacturing information.

1: Begin Smart Contract

2: Import account address hash list as L

3: create string _t_start, _t_end, _CID, _TaskName _;

4: create int _N, _type;

5: function store(t_start, t_end, CID, TaskName):

6: If (sender.address in L):

7: _t_start = t_start;

 42

Table 4-3 Continued

8: _t_end =_t_end;

9: _CID = CID;

10: _TaskName = TaskName;

11: _type = 0;

12: Else:

13: print(‘Access Denied’)

14: End function

15: End Smart Contract

(3) Raw Logistics Data Upload is the third service provided in the upload portal for

logistics service providers. Similar to the raw manufacturing data upload, the

web-based interface firstly uploads the raw logistics data that contains time and

location information to the IPFS. During the raw data upload, the web-based

interface utilizes the algorithm L_extraction as shown in table 4-4 to obtain key

information from the raw logistics data and send the extracted logistics service

information, and return CID to the blockchain network through smart contract

L_storage. The raw logistics data is data that records a list of location information

(latitude and longitude) and related time information at those locations, which

reflect the location and time changes from the departure location. Pseudocode

L_extraction is shown in table 4-4. As shown in the table, L_extraction will

output the locations at the departure time and end time from the raw data. In other

words, it merges the logistics service conditions in several time steps to the

beginning and end conditions in one time step.

 43

Table 4-4 Pseudocode of L_extraction

Input: Array that records entity’s location with time.

Output: Extracted information that contains departure location and time

current location and time

1: Begin

2: Read array

3: Acquire the time of departure in the array as 𝑡𝑑𝑒𝑝𝑎𝑟𝑡;

4: Acquire the location of departure in the array as 𝐶𝑑𝑒𝑝𝑎𝑟𝑡;

5: Acquire the time of departure in the array as 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

6: Acquire the location of departure in the array as 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡:

7: return 𝑡𝑑𝑒𝑝𝑎𝑟𝑡;

8: return 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

9: return 𝐶𝑑𝑒𝑝𝑎𝑟𝑡;

10: return 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

11: End

The pseudocode of L_storage is shown in table 4-5. It requires four kinds of

inputs which are the CIDs of the uploaded raw logistics service data, the name of

the logistics service task, outputs from algorithm L_extraction, and a list of

logistics service providers’ account address hash. The deployed smart contract

ensures that only the logistics service provider can send this type of transaction

to the blockchain network. The transaction is also labeled with integer 1.

Table 4-5 Pseudo-code of L_Storage

Input: 1. CID outputted from IPFS.

 2. Logistics service task name.

 3.𝑡𝑑𝑒𝑝𝑎𝑟𝑡 , 𝐶𝑑𝑒𝑝𝑎𝑟𝑡 , 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡outputted from L_extraction

algorithm.

 4. List of account address hash of logistics service providers uploaded

by the task manager

Output: Transaction data that contains logistics service information.

 44

Table 4-5 Continued

1: Begin Smart Contract

2: Import account address hash list as L

3: create string _t_depart, _t_current, _C_departure, _C_current, CID

_ServiceName;

4: create int _type；

5: function store(t_depart, t_current, C_depart, C_current, CID,

ServiceName):

6: If (sender.address in L):

7: _t_start = t_start;

8: _t_current = t_current;

9: _CID = CID;

10: _ServiceName = ServiceName;

11： _type = 1;

12: Else:

13: print(‘Access Denied’)

14: End function

15: End Smart Contract

(4) Contact information upload is the last service in the upload portal. This service

is only provided for the task manager for uploading the data in the contract of the

crowdsourced task, as mentioned in chapter 3. This data is directly uploaded to

the IPFS through the web-based interface. Some CIDs of uploaded files are

shared with all the participants in the crowdsourced tasks for accessing files like

product specifications for references.

Files in IPFS and data in the blockchain network are updated with the progress of

product fulfillment. Meanwhile, the structurization algorithm structuralizes the

uncategorized data stored in the transaction data of blocks. The algorithm is designed to be

executed at a certain time interval for acquiring the updated data in the blockchain network.

 45

Table 4-6 shows the pseudocode of the structurization algorithm. The algorithm can access

the blockchain network directly without any limitations, which is encapsulated from users

of the system.

Table 4-6 Pseudocode of Structurization

Input: 1. The blockchain network of the crowdsourced task.

 2. Precedence of the supply chain for the crowdsourced task.

Output: A list of class instances that contain categorized transaction data and

precedence.

1: Define struct User{

2: string userID;

3: string account_hash;

4: int usertype;

5: list Manu_TX;

6: list Log_TX;

7: list upstream;

8: list downstream;

9: function M_TX(transaction_hash) {

10: appendix transaction hash to the list Manu_TX;

11: end

12: function L_TX(transaction_hash) {

13: appendix transaction hash to the list Log_TX;

14: end

15: function addupstream(account_address_hash) {

16: appendix account address hash to the list upstream;

17: end

18: function adddownstream(account_address_hash) {

19: appendix account address hash to the list upstream;

20: end

21: End Define

22: Connect to Blockchain network

22: Import Precedence Data

23: Create list Allusers

24: For i in range (1 to number of blocks):

25: acquire list of transactions in block i as TX_list;

26: for each transaction c_tx in TX_list:

27: acquire string stored in c_tx as extracted_data;

28: if extracted_data contains user information:

29 acquire userID stored in extracted_data as c_uid;

30: create a User class instance named with string in c_uid

31: save sender’s account address to c_uid.acount_hash;

 46

Table 4-6 Continued

32: save usertype information in c_uid.usertype;

33: save list of account address hash to list upstream

34: save list of account address hash to list downstream

35: appendix the new instance of User class to list Allusers

36: end

37: elseif extracted_data contains extracted manufacturing transaction data:

38: acquire the struct belongs to User class that have same account_hash to the

sender’s

39: acquire the userID of that struct

40: global()userID.M_TX(c_tx.address); //append the current transaction hash

to list Manu_TX of the struct that is named as string contains in

userID

41 update the instance of User class to list Allusers to replace the existed

instance

42: end

43: elseif extracted_data contains extracted logistics service transaction data:

44: acquire the struct belongs to User class that have same account_hash to

the sender’s

45: acquire the userID of that struct

46: global()userID.L_TX(c_tx.address); //append the current transaction hash

to list LOG_TX of the struct that is named as string contains in

userID

47: update the instance of User class to list Allusers to replace the existed

instance

48: end

49: return Allusers

50: End

As shown in table 9-6, to structuralize the blockchain data, a class object named

“User” is firstly defined. The defined class not only has attributes for storing data but also

has class methods for updating attributes. Instances of the “User” class are created and

updated through scraping data in the blockchain network. A list of instances of the “User”

class is returned and saved into IPFS. In the list, each instance is defined with the user ID

and contains different kinds. The structure of “User” class and its instances is shown in

figure 4-3. The class has seven attributes. “userID” is a string type attribute for recording

 47

the name of a user. When creating an instance of “User” class, the string saved in “userID”

is also used for naming and pointing new instances. “account_hash” is the account address

hash in the blockchain network. “usertype” is an integral type of attribute where “0”

represents the manufacturer, and “1” represents the logistics service provider. The rest of

the attributes are list types where “Manu_TX” contains all the TX Hashes of manufacturing

type transactions sent by this user, and “Log_TX” contains all the TX Hashes of logistics

service type transactions sent by this user. Therefore, for a manufacturer type of instance,

“Log_TX” attribute is empty since the related user is not allowed to update any data or

transaction that do not belong to the manufacturing type. “upstream” and “downstream”

are lists that contain account addresses hashes of both manufacturers and logistics service

providers in the upstream and downstream supply chain.

Figure 4-3 Structure of “User” Class

 The “structurization” algorithm returns a list that can be considered as a table of

content that categorizes all data transacted to the blockchain network. The TX hashes of

blockchain transactions are categorized by their senders and types. This list doesn’t store

the data directly but stores “keys” that can be employed for retrieving those transactions

and raw data files. The list is saved as “XML” or “JSON” files in the IPFS.

 48

Figure 4-4 IPFS Network in IaaS Fulfillment System

Figure 4-4 shows the IPFS network in the IaaS fulfillment system. As mentioned in

figure 4-2, IPFS plays a big role in raw data storage. In such a peer-to-peer (P2P) system,

the file is only accessible by CID when the local node switch on the daemon that builds the

connection between the local storage to IPFS when other nodes don’t host that data. In the

proposed system, each node must turn on the daemon locally to ensure that the raw data

file is accessible since users don’t host data uploaded by other nodes. As shown in figure

4-4, each manufacturer and logistics service provider takes the responsibility of hosting

raw data files uploaded by them. For the task manager, it must host both contract data of

crowdsourced tasks and the structuralized data from the blockchain. Same as other types

of users, the task manager doesn’t interact with IPFS directly.

 49

As shown in figure 4-2, users retrieve data through the access portal in the web-based

interface. There are five services provided in the access portal, which are:

(1) Contract information access is employed for accessing contract data of

crowdsourced tasks stored in the IPFS hosted by the task manager. The contract

data of the crowdsourced task consists of data for product fulfillment process

referencing. When the user sends the request for contract information access,

“Access_managment” algorithm will send CIDs of accessible files to that user

based on its identity.

(2) Manufacturing data access is used for retrieving manufacturing status from the

raw data file in the IPFS. Based on users’ identity, “Access_managment” algorithm

accesses the blockchain structuralized data to find instances of class “User” that are

allowed to be accessed. The algorithm retrieves all TX hashes in the list attribute

“Manu_TX” and uses those TX hashes for retrieving transaction data in the

blockchain network. The web-based interface can display the extracted

manufacturing data and CIDs related to the raw data. The user could use CIDs to

access the raw manufacturing data.

(3) Logistics service data access is similar to manufacturing data access which is used

for retrieving logistics service data. Similarly, “Access_managment” algorithm

accesses the blockchain structuralized data to find instances of class “User” that are

allowed to be accessed. The algorithm retrieves all TX hashes in the list attribute

“Log_TX” and uses those TX hashes for retrieving transaction data in the

blockchain network. In this regard, the user could access both extracted logistics

service status and raw logistics service data.

 50

4.4 Chapter Summary

In this chapter, section 4.1 introduces the blockchain technologies in detail for

providing a better understanding of the mechanism. Section 4.2 goes through the

mechanism of IPFS, which plays a big role in the proposed system for fulfilling IPFS.

Section 4.3 introduces the detailed mechanism and flow of the proposed system. The

system utilizes the web-based interface, smart contract, algorithms, IPFS, and blockchain

network to provide IaaS to users by uploading and retrieving product fulfillment status

conveniently and securely with low trust cost. Pseudo codes are also included in this section

for demonstrating algorithms of smart contracts.

 51

CHAPTER 5. APPLICATION OF BLOCKCHIAN-ENABLED

IAAS FOR TANK TRAILER CROWDSOURCED

MANUFACTURING

In this chapter, the crowdsourced manufacturing task of the tank trailer is employed for

demonstrating the performance and feasibility of the proposed IaaS fulfillment system. In

this chapter, the development process of the system and the application of the developed

system is also included. IaaS is fulfilled through interactions between a web-based interface,

blockchain network, smart contract, and IPFS in the system. Chapter 5.1 introduces the

description of tank trailer crowdsourcing. Chapter 5.2 introduces the required tools and

environments for the development. Chapter 5.3 applies simulated data to the developed

system for validation and evaluation.

5.1 Case Description of Tank Trailer Crowdsourcing

There are huge amounts of product varieties in the tank trailer industry. To contain

different kinds of chemical fluids, different materials, parts, designs, and manufacturing

procedures are required for production. Figure 5-1 presents the case scenario of a

crowdsourced task for a tank trailer. Figure 5-1 shows the genetic product and process

structure (GPPS) of the tank trailer that is crowdsourced. The manufacturing process can

be structuralized into raw material, sub-assembly, part, and end-product. There are nine

assembly processes and two manufacturing processes that connect each element in the

structure. The GPPS is clustered into five groups, and each group represents the

 52

crowdsourced tasks for a manufacturing crowdsourcer. As shown in the figure, five

manufacturers participated in the tank trailer crowdsourced task.

Figure 5-1 Clustered Manufacturing Task for Crowdsourcing

The transportation service is carried out by a logistic service provider who

participates in the crowdsourced task. Figure 5-2 demonstrates the case scenario described

in the tank trailer crowdsourcing supply chain. Five manufacturers and two logistics service

providers who are distributed at different locations geographically participate in the

crowdsourced task and try to deliver the final product to the customer. The proposed system

 53

in this case study enables IaaS fulfillment by providing information upload, access service

to these participants.

Figure 5-2 Supply Chain of Tank Trailer Crowdsourcing Task

5.2 Developmental Tools and Environments

To meet the functional requirements of the proposed system, the development

process of the system in the case study involves several stages using different tools. Table

5-1 shows the tools employed for development and the test environment. The development

tools are categorized into five usage purposes which are building a blockchain test network,

generating manufacturing data, developing a web-based interface, developing a smart

contract, and structuring data stored in the blockchain network.

Table 5-1 Development Tools for the Case Study

Usage Component Description

Blockchain test

network

Ubuntu Linux 21.10, 8

processors, 32 GB RAM
 Test environment

 Ganache-cli
GUI of showing status

of the test blockchain

network

 Truffle
Test Blockchain

network deployment

Manufacturing

data generation
 Simio A discrete event

simulation software

 54

Table 5-1 Continued

5.2.1 Raw data generation using Simio

To obtain the data for running the experiment on the developed system, the discrete

event simulation software Simio is used. There are five Simio models, which represent five

manufacturers who participate in the crowdsourced task. The Simio model simulates the

manufacturing process of each clustered task and generates the manufacturing status data

based on IoT, where each part or sub-assembly is tracked with location and time. Function

“mode trace” in Simio can generate the manufacturing data in the format of “CSV”. Figure

5-3 shows the example of “model trace data” generated by Simio. This data is generated

Manufacturing

data generation
 Simio A discrete event

simulation software

Developing web-

based interface

 JavaScript, CSS
Programming

languages
 Atom IDE

 Web3.js

Development tool for

sending and access

transactions to the test

blockchain network

 React.js Development tool for

web-based interface

 IPFS Tool for P2P file

sharing

 Meta Mask

Web-based blockchain

account management

tool

Smart contract

development

 Solidity Smart contract

developing languages

 Remix
Web-based smart

contract deployment

tool

Blockchain

Structurization

 Spyder IDE

 web3.py

Development tool for

sending and access

transactions to the test

blockchain network

 55

from the Simio model of “Manufacturer 5” in the “EntityID” column. The entity

“TankTraikerAssembly” is being processed by server “A9”. The data will be extracted

when it is uploaded to IPFS through the web-based interface. Figure 5-4 shows the layout

of simulation models for five manufacturers built by Simio.

Figure 5-3 Manufacturing Status Data Generated by Simo

 56

Figure 5-4 Model Layout in Simio

5.2.2 Test network Construction using Truffle & Ganache

The whole case study is applied based on the Ethereum blockchain due to its ability

and feasibility in smart contract development support. When testing and deploying the

smart contract, a test network is necessary for saving time and cost. Truffle is employed in

the case study for building the Ethereum blockchain test network. Properties of the test

network like block size, block mining logic, transaction cost can be adjusted by using

Truffle. The detailed parameter settings will be introduced in chapter 5.3.

 57

Ganache is a similar tool to Truffle, which is a personal blockchain for developing,

deploying, and testing smart contracts. Different from using the command line to interact

with the test network, it can show the condition of the test blockchain network through

GUI. In this case study, Ganache is a demonstration tool for showing the test blockchain

network.

5.2.3 Web-based Interface Development

The development of the web-based interface is the most difficult part of the case

study since it must interact with the test blockchain network and IPFS to provide services.

In this case study, the web-based interface is developed to achieve data upload, data

extraction, sending extracted data to the blockchain. The interface is mainly developed in

React.js, which is a JavaScript library for building user interfaces. The Ethereum JavaScript

API Web3.js is used for building the connection between the web-based interface and the

test blockchain network. The smart contract is deployed using Truffle, and Web3.js, which

allows users to use the web-based interface to interact with the deployed smart contract.

MetaMask is a web-based blockchain account management tool. Different use cases are

achieved by switching Ethereum accounts by using MetaMask.

The smart contract is another essential part of the case study. Solidity is used in the

case study for developing smart contracts that are executed based on the Ethereum network.

Solidity is an object-oriented and high-level language, and Smart contracts are written in

the version of Solidity “^0.6.0” (Solidity, 2022). Smart contracts are deployed by using

Truffle, and the web-based interface allows users to interact with the local test blockchain

network through API provided by Web3.js.

 58

5.3 Illustrated Working Procedure of the Proposed System

In this chapter, an illustrative case demonstrates the exact procedure of using the

developed system. There are five major steps illustrated here which are (1) user information

registration, (2) manufacturing status data and logistics service status data upload, (3) raw

data extraction, (4) blockchain data structurization, and (5) data retrieving. Different tools

are employed for achieving required services at different steps.

5.3.1 Data upload and data extraction

The step 1 to step 3 are included in this sub-chapter. In the case study, the Ethereum

blockchain test network is built by using Truffle and exhibited through using Ganache. The

local test network is hosted in “127.0.0.1” with port ID “8545”. The gas limit used for

smart contract deployment is 6721975, and the gas price used for deployment is 20 Gwei.

The cost of deploying smart contracts and sending transactions can be ignored since they

are related to cryptocurrency transactions which are not considered in the case study.

Blocks are mined after a time interval in the blockchain network for user information

registration. The time interval is set to be 300 seconds which means all transactions sent to

the local Ethereum blockchain network in 300 seconds are contained in the same block.

The mining mechanism for manufacturing data upload and logistics service data upload is

set to be auto which means one block is mined automatically after sending a new

transaction. In this case, one block only contains one transaction related to manufacturing

status or logistics service status data.

The first step in using the system is user registration. “URegistration” is the smart

contract for registering users’ information to the blockchain network. To reduce the

 59

difficulties in development process, the user information in the case study is sent through

using Remix. Remix web-based IDE for executing smart contracts, which allows some

low-level interaction with the local Ethereum network. Since user registration in this case

study doesn’t involve the use of IPFS, Remix can be used as the web-based interface for

simplifying the development process. In the beginning, the manager of this crowdsourced

task takes the responsibility of registering the user information. The manager needs to input

the User ID, Username, account hash address, and user type for registering the user to the

blockchain network. Figure 5-5 shows an example of user registration. As shown in the

figure, the manager inputs the information of the first manufacturer through Remix IDE.

The smart contract identifies the account address of the sender to ensure only the task

manager can upload the user information.

Figure 5-5 User registration

Step 2 and step 3 require the usage of IPFS. A web-based interface developed by

React.js is used in these two steps for data upload. Smart contracts are deployed at different

hash addresses in the blockchain network. Those hash addresses are receivers that receive

 60

the different types of transactions from users individually. Smart contracts are deployed

after establishing the local Ethereum blockchain network. As shown in figure 5-6, smart

contracts are deployed, and their deployed status is shown in the bottom half in the figure.

“L_Storage” and “M_Storage” are used for sending transactions that contain logistics

services information and manufacturing status information to the blockchain as mentioned

in chapter 4.

Figure 5-6 Smart Contract Deployment

After the user registration, manufacturers and logistics service providers are

supposed to build the connection between their local database to IPFS. Files shared in IPFS

are updated after a certain time interval based on the updated local file. At the same time,

the raw file shared in IPFS is extracted and sent to the blockchain network through a

blockchain API Web3.js. Due to the similarity between manufacturing status data upload

 61

and logistics service status data upload, the use case of the manufacturer is only shown

here. Figure 5-7 shows procedures of manufacturing status data upload from

“Manufacturer 1”. After selecting and uploading the file “M1_Model_trace.csv” by

clicking “Return CSV” in the interface, the interface returns the CID of the uploaded file,

which indicates the upload is successful. As mentioned earlier, CID is a hash that points to

the storage location of the file in IPFS.

Figure 5-7 Uploading File to IPFS

After sharing the raw data file in IFPS, information in the file can be extracted by

clicking “Write Information to ETH Blockchain” button. Figure 5-8 shows the data

extraction and transaction process. Once the “Manufacturer 1” clicks the button, the

uploaded “CSV” file is read and extracted at the backend of the web-based interface. The

data extraction algorithm is based on pseudocode shown in table 4-4. Then, the interface

initiates a transaction request of sending the extracted information to the address of the

deployed smart contract “M_storage” which is

“0x9c4EBdaBCFc0BfFd161c39d36079cb1811F372CE” as shown in figure 5-6 and figure

 62

5-8. Meanwhile, the web-based Ethereum wallet tool MetaMask pops up to let the user

confirm the transaction, as shown in the first window in figure 5-8. If the account hash

address of the current user matches with manufacturers’ account addresses stored in smart

contract “M_Storage”, the extracted information is transacted to test the blockchain

network. As shown in the second window of figure 5-8, the interface returns a message

said “Info has been written to blockchain” which indicates a successful blockchain

transaction.

 63

Figure 5-8 Data Extraction and Blockchain Transaction

The “manufacturer 1” can check the extracted information by clicking “read info

from blockchain” button as shown in the third window in figure 5-8. The interface can

print the extracted information. As shown in figure 5-8, it takes 2.28 days for

 64

“Manufacturer 1” to finish manufacturing “tank sub-assembly 1”. The interface also prints

the URL for downloading the uploaded file.

During the manufacturing process, each manufacturer and logistic service provider

are supposed to upload the data with a similar procedure. Figure 5-9 shows the situation of

the test blockchain network. There are 15 blocks mined during the simulated manufacturing

process. Block 0 is the genesis block which is mined at the initialization moment of the test

network. Block 1 contains seven transactions which represents the registration of five

manufacturers and two logistics service providers. Those transactions are sent by the

crowdsourced task manager. Block 2 to block 14 contains only one transaction, which is

sent by manufacturers and logistic service providers.

Figure 5-9 Blockchain in the Test Ethereum Network

 65

5.3.2 Block Data Structurization

Structurization and categorization of block data is processed during the whole

manufacturing process. It is designed to acquire information in blockchain after a certain

time interval. If there are any updates to the blockchain network, the structured block data

is updated by storing the new transaction hash address. In this case study, the block data is

structured by using Python and Web3.py package. The Python code connects to the

blockchain network and obtains information stored in transactions of each block. It first

creates several class instances based on user information registered by the task manager.

Then transactions are stored in different fields of different class instances based on the

senders’ addresses. The left side of Figure 5-10 shows the structured block data, which is

a list. There are seven instances of “userclass” stored in the list that represent seven

crowdsourced task participants. The right side of figure 5-10 shows the username and its

index number. For example, “L1” is the username of logistics provider 1. The value “2”

represents information of logistic provider 1 is stored in the third element of the list. The

structured block data can be serialized and exported, and stored in IPFS or another

blockchain network for data retrieving.

Figure 5-10 Structured Block Data

 66

5.3.3 Data Retrieving

Data stored in the block are structured and exported for data retrieving. In this case

study, it assumed that the serialized data is stored in another blockchain network instead of

IPFS as proposed in chapter 4 due to difficulties in development. Remix is employed again

for illustrating the interaction between users and storing structured data in another

blockchain network.

The exported structured block data based on figure 5-10 is shown in table 5-2. The

serialized and exported structured data is saved to another Ethereum blockchain test

network. Table 5-2 is generated based on material in figure 5-10 which the first column in

the table represents the index, and the third column represents the username corresponding

to the index. For example, “M1” represents manufacturer 1, and its index is “0” according

to structured block data shown in figure 5-10. The user type of manufacturer 1 is “1” which

represents manufacture. The second column record the account hash address of each user.

“Sent Transactions” records the transaction sent by that user. These transaction hashes can

be used to access the data carried by them. The data includes extracted information on

manufacturing status or logistics service status. It should be noted that CIDs are also

included in the extracted information. Therefore, once a user retrieves its accessible

transaction hashes, the user can access the extracted information. The user can also access

related raw data files by using CIDs that are stored in extracted information. Due to the

purpose of demonstration, transaction hashes are simplified to strings in table 5-2.

“Upstream User” is the last column that stores indexes of some users in the upstream of

the supply chain. The accessibility of data uploaded by other users is controlled by

“Upstream User” column. For example, manufacturer 1 and manufacturer 2 don’t have any

 67

upstream users since they initiate the manufacturing process. For manufacturer 3 in the

second row, its upstream users are manufacturer 1 and logistic service provider 1 as

indicated in the table.

Table 5-2 Simplified Structured Block Data

Account Hash Address
Userna-

me
User
Type

Sent
Transactions

Upstream
User

0 "0x5B38Da6a701c568545dCfcB03FcB875f56beddC4" "M1" "1" "Hash_Tx_M1" "[]"

1 "0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2" "M3" "1" "Hash_Tx_M3" [0 2]

2 "0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db" "L1" "2" "Hash_Tx_L1" [0]

3 "0x78731D3Ca6b7E34aC0F824c42a7cC18A495cabaB" "L2" "2" "Hash_Tx_L2" [5]

4 "0x617F2E2fD72FD9D5503197092aC168c91465E7f2" "M5" "1" "Hash_Tx_M5" [1 2 3 6]

5 "0x17F6AD8Ef982297579C203069C1DbfFE4348c372" "M2" "1" "Hash_Tx_M2" []

6 "0x5c6B0f7Bf3E7ce046039Bd8FABdfD3f9F5021678" "M4" "1" "Hash_Tx_M4" [3 5]

In this case study, the simplified structured block data shown in table 5-2 is stored in

another test Ethereum blockchain network. Smart contracts are developed which let users

access data only uploaded by their upstream users. In the case study, the hash address of

the account is employed as a password or identity verification when retrieving data. The

smart contract deployed in Remix can only achieve data retrieving if the account exists in

the system and has upstream users. Figure 5-11 shows a failed retrieve case. The input

account hash address “0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C” doesn’t

exist in table 5-2. This example shows the security of the data retrieving process.

 68

Figure 5-11 Failed Retrieve Case

Figure 5-12 show a successful retrieving case. Except for the task manager,

manufacturer 5 is the only participant that knows its account address. By inputting

“0x617F2E2fD72FD9D5503197092aC168c91465E7f2” to the smart contract, it

successfully returns user indexes which are “1”, “2”, “3”, and “6”. The smart contract also

returns the simplified transaction hashes sent by these upstream users. In this example,

manufacturer 4 can only retrieve transaction hashes, and it can access the extracted

information and raw data files based on those returned transaction hashes.

Figure 5-12 Successful Retrieve Case

 69

5.4 Chapter Summary

In this chapter, the proposed system is developed and applied to a case study to test

its feasibility. In the case study, the manufacturing of a tank trailer is crowdsourced to five

manufacturers and two logistics service providers. Different tools are employed in different

developmental stages of the system in different environments. The whole system is

developed to work on the test Ethereum blockchain network established by Truffle. Five

steps are illustrated in the case study. User information is registered by the task manager

by using smart contracts deployed on Remix. Manufacturing status data and logistics

service status data are simulated based on Simo. Users use a web-based interface to upload

the data to IPFS. The web-based interface extracts the information from raw data and sends

transactions to the test blockchain network. If the user’s account hash address is verified

and the request of sending the transaction is confirmed, the transaction is successful. Block

data stored in transactions are structured and categorized during the manufacturing and

transportation process. The structured data is imported to another Ethereum blockchain test

network for data retrieving. Users use their account hash addresses to retrieve data through

smart contracts deployed on Remix. Smart contracts can return accessible transaction

hashes, which can be employed for viewing related extracted information and raw data file

about the crowdsourced task.

 70

CHAPTER 6. CROWDSOURCING SYSTEM MODELING AND

FULFILLMENT CAPACITY BALANCING OPMIZATION

Collaboration is not the only relationship that exists between crowdsourcers. In a

cyber platform-driven crowdsourced manufacturing system, manufacturers with different

manufacturing capabilities are clustered into different groups. For manufacturers in the

same cluster, they tend to participate in similar crowdsourced. Therefore, a competitive

relationship exists between manufacturers in the same cluster. As described by the

workflow of platform-driven crowdsourced manufacturing in chapter 2.1, manufacturers

need to bid for a crowdsourced task. However, the participation level of bidding is not

always maximized. When there are too many competitors, the lower possibility of winning

the bid and higher bid cost stagnate the increase in the number of bids participated

manufacturers. Furthermore, the success of a crowdsourced task requires participation in

all decomposed tasks. The differences between scales of manufacturing clusters affect the

number of tasks that can be crowdsourced which eventually affects the participation level

in bidding. The fulfillment capacity discussed in this chapter is defined as the total

manufacturing capacities of active bidding participants in a manufacturing cluster.

This brings a huge management problem to the crowdsourcing platform, and it is

hard for decision-makers to come up with plans without understanding the interrelationship

between crowdsourcers. Therefore, a model, a simulation method, and an optimization plan

are necessary, which benefit the decision-making process for facilitating the platform. A

crowdsourcing model is proposed based on the number of participants and difficulties of

the crowdsourced task (Guazzini et al., 2015). The model provided a measurement-based

 71

analysis method of a crowdsourcing platform. The population dynamics model based on

evolutionary cooperation-competition (ECC) game theory is also proposed (Gong et al.,

2021). The model demonstrates the population dynamics interactions between two

manufacturing clusters. However, the model assumes that the number of each cluster is

infinite. The goal of this chapter is to propose a multi-cluster population dynamics model,

a simulation model, and an optimization method. The population dynamics model is based

on previous work done by Gong, which provides an analytical solution. However, the

population dynamics model assumes that A simulation model is also proposed based on

the ECC game theory using the Moran process. The model simulates the interactions

between crowdsourcers in a finite group. The proposed optimization method is based on

the population dynamics model and simulation results which can assist the platform

management.

6.1 Multi-cluster Population Dynamics Model based on ECC Game Theory

In this chapter, the multiplayer-player ECC game model is introduced first to

demonstrate the population dynamics of the crowdsourcing platform based on a previous

model (Gong et al., 2021). Assuming there are 𝑛 clusters of manufacturers 𝑐1, 𝑐2, …, 𝑐𝑛.

The manufacturers are clustered based on their different types of manufacturing abilities.

Manufacturers can bid for a crowdsourcing task that is decomposed into 𝑛 parts. Therefore,

there is only one winner in each cluster who can participate in the crowdsourcing task. This

collaboration-competition relationship is modeled by the game theory with several

assumptions. As shown in figure 6-1, manufacturers in the same manufacturing cluster 𝑐

directly interact with each other. In an online platform, every two manufacturers can

interact with each other no matter their physical locations or their participation states which

 72

is the first assumption. The second assumption is that the number of agents in each cluster

is assumed to be static to reduce the complexity where the total number of crowdsourcers

doesn’t change with time. The third assumption is that each agent belongs to only one

cluster. It is assumed that a manufacturer only has one type of manufacturing capability.

The fourth assumption is that each manufacturer in the cluster, it can only choose to bid or

not to bid. Therefore, each agent in the model only has two strategies. The fifth assumption

is the population in each cluster is finite and large enough. The sixth assumption is that the

payoffs of two strategies of manufacturers in one cluster are the same, and they only choose

different strategies based on the payoffs. The last assumption is that manufacturers only

interact with each other in the same cluster. The effect from the outer cluster is only applied

to the payoffs. These assumptions reduce the complexities of modeling. The evolution of

the system happens when a manufacturer changes its participation state due to its judgment

of the obtainable benefit from bidding. The judgment is modeled based on the payoff

matrix in game theory.

 73

Figure 6-1 Evolutionary Game in Participation of Multi-Clusters

The participation level or fraction of manufacturers that choose to bid in each cluster

is defined as 𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑖(𝑡), … , 𝐹𝑛(𝑡) . 𝐹𝑖(𝑡) is defined as the number of

participating manufacturers over the number of total manufacturers in a cluster. The whole

model is constructed in the domain where 0 < 𝐹𝑖(𝑡) < 1, 𝑖 ∈ [1, 𝑛] . To construct the

payoff matrix based on game theory, the benefit of participating in bidding should be

defined. When a manufacturer finishes a certain type of manufacturing task, it receives a

profit as a reward. Based on experience in manufacturing, manufacturers in crowdsourcing

platforms have expectations in profits of finishing manufacturing tasks. Both participating

manufacturers and non-participated manufacturers in one cluster have the expected amount

 74

of profit. For non-participated manufacturers, it is assumed that the reason they don’t place

bids is they can take manufacturing tasks outside the crowdsourcing platform. Therefore,

they gain manufacturing income without the effects of the crowdsourcing platform. For

participated manufacturers, the overall benefit of participating in a crowdsourced

manufacturing task consists of three parts which are fundamental manufacturing income,

biding cost, and crowdsourcing income of the crowdsourced tasks. The fundamental

manufacturing income of the 𝑖th manufacturing cluster 𝐸𝑖 is defined which is the same for

all two types of manufacturers in a cluster. Fulfillment capacity factor 𝜂𝑖 is used to describe

unbalances among manufacturing clusters which are expressed down below:

𝜂𝑖 =
𝐹𝑖(𝑡)

∏ 𝐹𝑗(𝑡)1≤𝑗≤n,𝑗≠𝑖
 (6 − 1)

As described by equation 6.1, the fulfillment capacity factor 𝜂𝑖 is constructed based

on the participation level of the current cluster over the product of the participation level

of other clusters. This number increases when there is a huger difference between the

participation level of the current cluster and other clusters. The fulfillment capacity factor

𝜂𝑖 can affect the bidding cost in one cluster since the maximum number of potential

successful crowdsourced tasks depends on the cluster that has the lowest number of

participating manufacturers. The average bidding cost in 𝑖th cluster 𝑏𝑖 is represented by the

equation down below:

𝑏𝑖 = 𝑢𝑏𝑖(1 + 𝜂𝑖) (6 − 2)

The average bidding cost comes from the average uncorrected bidding cost 𝑢𝑏𝑖, the bidding

cost increases when the participation level of the current cluster is higher than others.

 75

 The crowdsourcing income 𝜌 from participating a crowdsourced task is defined in

equation 6.3 as shown below:

𝜌𝑖 = 𝑋𝑖Ρ∏ 𝐹𝑖(𝑡)
𝑖=𝑛

𝑖=1
(6 − 3)

The crowdsourcing income obtained from a crowdsourced task is the product of a fraction

of 𝑖 th cluster in the total amount of manufacturers 𝑋𝑖 , participation level 𝐹𝑖(𝑡) , and

uncorrected crowdsourcing income Ρ. The participated manufacturer can gain more benefit

from the crowdsourced task if the overall participation level is high. Based on equations

defined above, the payoff matrix of this two-strategies multi-cluster game model is shown

in table 6-1. The dimension of matrix would be 𝑛 × 2 for a model that has 𝑛 manufacturing

clusters.

Table 6-1 Payoff Matrix of Multi-cluster Evolutionary Game Model

Cluster
Chosen Strategies

Bidding (𝐶) Non-Bidding (𝐷)

1 𝑓1
𝐶 = 𝐸1 − 𝑏1 + 𝜌1 𝑓1

𝐷 = 𝐸1

2 𝑓2
𝐶 = 𝐸2 − 𝑏2 + 𝜌2 𝑓2

𝐷 = 𝐸2

… … …

𝑖 𝑓𝛼
𝐶 = 𝐸𝑖 − 𝑏𝑖 + 𝜌𝑖 𝑓𝛼

𝐷 = 𝐸𝛼

… … …

𝑛 𝑓𝑛
𝐶 = 𝐸𝑛 − 𝑏𝑛 + 𝜌𝑛 𝑓𝑛

𝐷 = 𝐸𝑛

As shown in table 6-2, the average payoff of choosing to bid in 𝑖th cluster is 𝑓𝑖
𝑐 and 𝑓𝑖

𝐷

represents non-bidding behaviors. These payoffs in the matrix represent the averaged

output of behaviors. The system of replicator equations is given in equation 6.3 based on

 76

the average payoffs (Hoffbauer and Sigmund, 1998). The system of replicator equations

demonstrates the population dynamics in the crowdsourcing platform with 𝑛

manufacturing clusters.

{

𝑟1(𝑡) =
𝑑𝐹1(𝑡)

𝑑𝑡
= 𝐹1(𝑡) ⋅ (1 − 𝐹1(𝑡)) ⋅ (𝑓1

𝐶 − 𝑓1
𝐷)

…

𝑟𝑖(𝑡) =
𝑑𝐹𝑖(𝑡)

𝑑𝑡
= 𝐹𝑖(𝑡) ⋅ (1 − 𝐹𝑖(𝑡)) ⋅ (𝑓𝑖

𝐶 − 𝑓𝑖
𝐷)

…

𝑟𝑛(𝑡) =
𝑑𝐹n(𝑡)

𝑑𝑡
= 𝐹n(𝑡) ⋅ (1 − 𝐹n(𝑡)) ⋅ (𝑓n

𝐶 − 𝑓n
𝐷)

 (6 − 3)

6.2 Moran Process in Multi-cluster ECC Game Model

In this chapter, the Moran process simulation method for the multi-cluster ECC game

model based on the payoff matrix in table 6-1 is proposed. Moran process is one of the

most popular dynamics processes used in synchronous updating, which can be used to

simulate the stochastic dynamics of the evolutionary game model (Gu et al., 2020). The

Moran process becomes useful in simulation in this study by transforming the changing

process from continuous to discrete. There are two steps in a general Moran process

(Traulsen et al., 2005). The first step is to select one agent for reproduction, and the

reproduced agent has the same strategy as its parent’s. The second step is to randomly

select another agent to be replaced by the reproduced one. The total amount of agents is

unchanged in the Moran process. Moran process has been applied to an evolutionary game

that involves choosing strategies.

There are several assumptions made for the proposed Moran process simulation:

(1) The contracts can be formed with every agent in the population;

 77

(2) Total numbers of manufacturers in cluster 𝑐 is static.

(3) One manufacturer only belongs to one cluster.

(4) The manufacturer can only select bidding or non-bidding as their strategies.

(5) The total number of manufacturers is finite.

(6) Manufacturers has same payoffs in one cluster.

(7) Manufacturers in a cluster have the same probability of being selected during the

simulation.

These assumptions are similar to the assumptions made in chapter 6.1. The number

of manufacturers in 𝑖th cluster is defined as 𝑁𝑖. The number of manufacturers that place

bides in 𝑖the cluster is defined as 𝑗𝑖. As shown in equation 6.4, the participation level 𝐹𝑖

mentioned in chapter 6.1 is calculated form 𝑁𝑖 and 𝑗𝑖.

𝐹𝑖 =
𝑗𝑖
𝑁𝑖
 (6.4)

 According to the Moran process, which is a Markov process in a special situation,

the transition probability of the number of participating manufacturers in 𝑖th cluster from

state to state is defined in equation 6.5. 𝑇𝑗𝑖
+ represents the probability that the number of

participating manufacturers in cluster 𝑖 changes from 𝑗𝑖 to (𝑗𝑖 + 1). On the contrary, 𝑇𝑗𝑖
−

represents the transition probability of changing from 𝑗𝑖 to (𝑗𝑖 − 1) . 𝑇𝑗𝑖 represents the

probability that the number 𝑗𝑖 remains the same.

 78

{

 𝑇𝑗𝑖

+ =
𝑗
𝑖
𝑓
𝐶𝑖

𝑗
𝑖
𝑓
𝐶𝑖
+ (𝑁− 𝑗)𝑓

𝐷𝑖

(𝑁𝑖 − 𝑗𝑖)

𝑁𝑖

𝑇𝑗𝑖
− =

𝑗
𝑖
𝑓
𝐷𝑖

𝑗
𝑖
𝑓
𝐶𝑖
+ (𝑁𝑖 − 𝑗𝑖)𝑓𝐷𝑖

𝐹𝑖

𝑇𝑗𝑖 = 1− 𝑇𝑗𝑖
+ − 𝑇𝑗𝑖

−

 (6 − 5)

𝑓𝐶𝑖 and 𝑓𝐷𝑖 represents the fitness function of selecting strategy 𝐶 or 𝐷 in 𝑖th manufacturing

cluster, which is derived from average payoffs defined in table 6.1 as shown in equation

6.6 (Traulsen et al., 2008). As shown in equation 6.6, 𝑤 represents the selection intensity.

When 𝑤 ≪ 1, the selection is weak. The fitness functions are equal to payoffs if 𝑤 = 1,

which means a strong selection. 𝑤 is assumed to be 1 in the presented model.

 {
𝑓
𝐶𝑖
= 1−𝑤+𝑤 ∙ 𝑓

𝑖
𝐶

𝑓
𝐷𝑖
= 1−𝑤+𝑤 ∙ 𝑓

𝑖
𝐷
 (6 − 6)

 Equation 6.5 can be expressed in a matrix form. If a manufacturing cluster 𝑐𝑖 has

𝑁𝑖 manufacturers, a 𝑁𝑖 × 𝑁𝑖 matrix can show all possible transition probabilities in that

cluster. Figure 6-2 shows matrix Φ, 𝜙𝑎,𝑏 is the transition probabilities from 𝑗𝑖 = 𝑎 − 1 to

𝑗𝑖 = 𝑏 − 1. According to equation 6.5, 𝜙1,1 = 1, 𝜙1,2 = 0,𝜙𝑁𝑖,𝑁𝑖−1 = 0, and 𝜙𝑁𝑖,𝑁𝑖 = 1.

This indicates that the process has two stable situations which are 𝑗𝑖 = 0 and 𝑗𝑖 = 𝑁𝑖. If the

process converges to either situation, the system becomes stable when no manufacturers or

all manufacturers participate in the bidding process.

 79

Figure 6-2 Transition Matrix in a Manufacturing Cluster

Based on equation 6.5 and figure 6-2, the probability of 𝑗𝑖 changes from 𝑎 to 𝑁𝑖 can be

expressed in equation 6.4.

𝑡𝑎→𝑁𝑖 =

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑎−1
𝑚=1

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑁𝑖−1
𝑚=1

 (6 − 7)

The fixation probability is defined as the probability that 𝑗𝑖 changes from 1 to 𝑁𝑖 . The

fixation probability can be derived from equation 6.7, as shown in equation 6.8.

𝑝𝑓
𝑖 = 𝑡1→𝑁𝑖 =

1

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑁𝑖−1
𝑚=1

 (6 − 8)

When 𝑝𝑓
𝑖 > 0.5, bidding strategy 𝐶 can eventually replace the non-bidding strategy 𝐷 for

all manufacturers in 𝑐𝑖 under strong selection when 𝑤 = 1. If we assume that the update in

 80

strategy change only happens after a bidding process, all manufacturers will participate in

the bidding process after a finite number of bids. However, this requirement won’t always

be satisfied for all clusters at the same time without manually changing the payoffs in some

clusters.

6.3 Optimization Strategy Based on Population Dynamics Model and Moran

Process Simulations

In this chapter, an optimization strategy is proposed to analyze the current

participation level and provide a possible solution to facilitate the participation level in

each cluster. To understand how the participation level can be lifted, further analysis of the

multi-cluster population dynamics model is necessary. The phase diagram of a 3-cluster

population dynamics model is shown in figure 6-4. Three nullclines in the figure are

defined by 𝑟1 = 0, 𝑟2 = 0, and 𝑟3 = 0. 𝑟1, 𝑟2, and 𝑟3 are the system of replicator equations

of the 3-cluster population dynamics model based on equation 6-3. The red dot in the

figure is the intersection of three nullclines which is the internal equilibrium point. When

a solution exists in the real space for 𝑟1 = 𝑟2 = 𝑟3 = 0. The solution is the only internal

equilibrium. The other two equilibrium points are at (0,0,0) and (1,1,1). The vector arrows

figure are gradients of 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡). Three nullclines separate the whole phase

diagram into two parts by the growth rate of a participation level in each cluster. For the

area that is above the three nullclines, it leads to the convergence where 𝐹1(𝑡), 𝐹2(𝑡), and

𝐹3(𝑡) are equal to 1. If the initial point in the space is in this area, it will eventually converge

to (1,1,1). This is the situation in which all manufacturers in the three clusters are willing

 81

to bid for manufacturing tasks. On the contrary, if the participation level is below three

nullclines, the participation level of each cluster will eventually converge to 0.

Figure 6-3 Phase Plot of a 3-cluster Population Dynamics Model

For the crowdsourcing platform, it can give subsidies to the manufacturers to reduce

the bidding cost 𝑏 and increase the crowdsourcing income 𝜌 by increasing the uncorrected

crowdsourcing income Ρ. By doing this, three nullclines will move in the space, which lets

the current participation state stay in the area above the three nullclines rather than below.

A general optimization problem can be defined as shown in equation 6.9. The objective

function is the length of vector projection of �⃗� on 𝑣 where �⃗� is the gradient of

𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛(𝑡) and 𝑣 is the unit vector of direction from (𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛(𝑡)) to

(1,1,…,1). The objective function is defined based on two aspects: (1) The direction of the

gradient at the current state should point to (1,1,…,1) as much as possible since this is the

shortest route for reaching the feasible location. (2) The magnitude of the gradient at the

current state is as high as possible. The objective function 𝑓(Ρ, 𝑏1, 𝑏2, … , 𝑏𝑛) reflects the

 82

overall growth rate of participation level at the current point. For a 𝑛-cluster situation, there

are 2𝑛 + 1 sets of constraints. Constraints define the feasible region for each optimizable

input like uncorrected crowdsourcing income Ρ and bidding cost 𝑏 . The last set of

constraints ensures the participation level 𝐹𝑖 is always above the nullcline 𝑟𝑖 = 0 in

dimension 𝑖 . The defined optimization problem provides a deterministic solution for

finding the best incentive plan for the platform. However, the defined optimization problem

is not stochastic since it is defined based on the population dynamics model. There is a

possibility that the actual participation level is located below nullclines returned by

optimization. To introduce the stochastic process in the defined problem, the Moran

process is utilized for simulating the changes in the participation level. In the Moran

process, the continuous evolution process is transformed into discrete update steps. For

each step, the number of one type of agent can increase by one, decrease by one, or stay at

the same value. The possibilities of these transitions are calculated based on the payoff

matrix.

 83

𝐦𝐚𝐱
Π,𝑏1,𝑏2,…,𝑏𝑛

 𝑓(Ρ, 𝑏1, 𝑏2, … , 𝑏𝑛) =‖
�⃗� ⋅ 𝑣

‖𝑣 ‖2
 𝑣 ‖

�⃗� = [

𝑟1
𝑛𝑒𝑤

𝑟2
𝑛𝑒𝑤

…
𝑟𝑛
𝑛𝑒𝑤

] , 𝑣 =

[

1 − 𝐹1
1 − 𝐹2
…

1 − 𝐹𝑛

]

‖[

1 − 𝐹1
1 − 𝐹2
…

1 − 𝐹𝑛

]‖

 𝑟𝑖
𝑛𝑒𝑤 = 𝑟𝑖(𝑋1, 𝑋2, … , 𝑋𝑛, Ρ, 𝑏𝑖) (6 − 9)

 𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 Πmin ≤ Π ≤ Πmax

{

𝑏1,𝑚𝑖𝑛 ≤ 𝑏1 ≤ 𝑏1,𝑚𝑎𝑥
𝑏2,𝑚𝑖𝑛 ≤ 𝑏2 ≤ 𝑏2,𝑚𝑎𝑥

…
𝑏𝑛,𝑚𝑖𝑛 ≤ 𝑏𝑛 ≤ 𝑏𝑛,𝑚𝑎𝑥

{

𝑟1
𝑛𝑒𝑤 ≥ 0

𝑟2
𝑛𝑒𝑤 ≥ 0
…

𝑟𝑛
𝑛𝑒𝑤 ≥ 0

 The population dynamics model proposed in chapter 6.1 and the Moran process

introduced in chapter 6.2 are developed from the same payoff matrix. A general

optimization strategy is proposed based on the population dynamics model and Moran

process as shown in figure 6-4. The strategy is designed to assist with the management of

the crowdsourcing platform from the perspective of making incentive plans at a certain

confidence level. There are eight steps in the proposed strategy:

(1) The first step is to obtain the participation level of each cluster based on recent

biddings.

(2) The second step is to estimate the parameters like bidding cost 𝑏𝑖 , uncorrected

crowdsourcing income Ρ, and fundamental manufacturing income 𝐸𝑖 in each cluster.

(3) The third step is to construct the n-cluster population dynamics model based on

estimations and statistical results obtained in the first two steps and equation 6-3.

 84

(4) The fourth step is to predict the possible participation level 𝐹𝑖 after a certain time

interval or several update steps. Moran process is used to simulate the change in

participation level. Randomness in the Moran process could be achieved by methods

like Monte Carlo Simulation (MCS). Π simulated results can be obtained by Π runs

of simulation.

(5) The fifth step is to find the predictive samples generated in step 4 within the

confidence interval.

(6) The sixth step is to derive the acceptable constraints for variables in the objective

function defined by equation 6-9. The constraints depend on how much subsidies

could be given to manufacturers in each cluster to reduce the bidding cost 𝑏𝑖 or

increase the uncorrected crowdsourcing income Ρ.

(7) The seventh step is to solve the optimization problem with defined inputs. All

simulated predictive results that lie within the confidence interval from step 5 are

substituted to 𝑟𝑖
𝑛𝑒𝑤. 𝑟𝑖

𝑛𝑒𝑤 > 0 is one of the constraints of the optimization problem

which ensures that the returned result can benefit all possible outcomes.

(8) If feasible solutions are returned by the problem solver, incentive plan could be

made based on the result.

 85

Figure 6-4 Workflow of the Proposed Optimization Strategy

 86

6.4 Example Problem

In this chapter, a test case of the 3-player ECC game model is to illustrate the

designed strategy introduced in chapter 6.3. The first step of this example is generating

initial state points of 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡). Assuming in a cube with the side length of 1,

where the 𝑥, 𝑦, and 𝑧 directions represent the 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡) respectively, like

showing in figure 6-3. The cube is divided evenly into 1000 small cubes with a side length

of 0.1. A random point is selected in each small cube by LHS methods. 1000 times of

Moran process simulations are done on each point with 20 update steps. Hence, for each

randomly generated point, there will be 1000 predictive points. The parameters of the

example problem are summarized in table 6.2. 𝑁 is the total number of manufacturers.

𝑔1, 𝑔2, and 𝑔3 are fractions for cluster 1, cluster 2 and cluster 3. The number of

manufacturers in each cluster is 150, 250, and 100.

Table 6-2 Parameters of Example Problem

Parameter Mean Variance

𝑔1 0.3 N/A

𝑔2 0.5 N/A

𝑔3 0.2 N/A

𝑁 500 N/A

Π 100 150

𝑏1 6 1.5

𝑏2 10 1

𝑏3 5 0.75

𝜌1 20 3

𝜌2 20 3

𝜌3 20 3

Only 95% of the generated data (within 2 standard deviations) will be used to run the

optimization. This is for filtering out the outliers that are not good representatives for the

 87

simulation. As shown in figure 6-5, 95% of data on the right plot is denser and without any

extreme cases. The initial point and constraints of variables of the objective function are

summarized in table 6-3. The goal of this simulation is to figure out the performance of the

current incentive strategy.

Table 6-3 Boundary Conditions of Example Problem

Parameter Initial Point Lower Bound Upper Bound

Ρ 1000 1000 1500

𝑏1 6 3 10

𝑏2 10 5 15

𝑏3 5 2 10

Figure 6-5 Workflow of the Proposed Optimization Method

The experiment shows that under the current optimization strategy, feasible solutions

can be returned for 68.8% of randomized participation states, as shown in figure 6-6. From

the plot, it can be identified that the infeasible initial states are those that have one or more

 88

participation level that is close to 0. And the points that are in the center region of the cube

have the highest growth rate.

Figure 6-6 Overall Optimization Results for the Different Participation States

6.5 Chapter Summary

In this chapter, the population dynamics model and Moran process of the multi-

cluster crowdsourcing platform are introduced. An optimization strategy is proposed to

balance the fulfillment capacity of each manufacturing cluster by optimizing the

participation level. The strategy is based on both the population dynamics model and the

Moran process. An example problem is also included for illustrating the proposed strategy.

 89

CHAPTER 7. CONCLUSIONS

The thesis work proposes two solutions for solving two different problems that exist

in cyber platform-based crowdsourced manufacturing. An IaaS fulfillment system for the

crowdsourced task execution process is designed based on interactions and information

flow in the crowdsourcing platform. A case study is employed for testing the proposed

system. An optimal management strategy is also proposed for the fulfillment capacity

balancing problem. The proposed strategy can motivate and balance the participation level

of different manufacturing clusters in the tournament-based bidding process of

crowdsourced work. The optimal management strategy is designed based on the simulation

result based on the ECC model, population dynamics, and the Moran process simulation.

7.1 Contributions

The first contribution of this thesis work is identifying use cases and information

flow based on the workflow of platform-driven crowdsourced manufacturing. Based on

these findings, an IaaS fulfillment system is proposed and developed based on blockchain

and IPFS technology. The proposed system fulfills the IaaS by providing information

management services. The decentralized system is reliable, which also reduces the cost of

trust. The second contribution of the thesis is proposing a population dynamics model and

a Moran process model based on ECC game theory to describe the growth rate of a certain

type of users in the cyber platform-driven crowdsourced manufacturing system.

Furthermore, an optimization strategy is designed based on the population dynamics model

and the Moran process simulations to facilitate the growth of users. The platform can

manage the crowdsourcing system based on the optimization results.

 90

7.2 Future Work

Future work of this work has three aspects. The first aspect is to apply the proposed

IaaS fulfillment system to an actual crowdsourced manufacturing case. With the larger

scale of data, the reliability and efficiency of the system can be tested. The second aspect

is to develop the proposed system based on the customized blockchain network. Currently,

the system is developed based on the Ethereum blockchain network, which limits its

development. The third aspect is about the fulfillment capacity balancing. The lack of

actual cases makes it hard to validate the model and proposed optimization strategy.

 91

REFERENCES

Albano, M., Sharma, P., Campos, J., & Jantunen, E. (2019). Energy saving by

blockchaining maintenance. Journal of Industrial Engineering and Management

Science, 2018(1), 63–88. https://doi.org/10.13052/jiems2446-1822.2018.004

Angelis, S.D., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., & Sassone, V.

(2018). PBFT vs Proof-of-Authority: Applying the CAP Theorem to Permissioned

Blockchain. ITASEC.

Asad, N. A., Elahi, M. T., Hasan, A. A., & Yousuf, M. A. (2020). Permission-based

blockchain with proof of authority for secured Healthcare Data Sharing. 2020 2nd

International Conference on Advanced Information and Communication

Technology (ICAICT). https://doi.org/10.1109/icaict51780.2020.9333488

Bahga, A., & Madisetti, V. K. (2016). Blockchain platform for Industrial Internet of

Things. Journal of Software Engineering and Applications, 09(10), 533–546.

https://doi.org/10.4236/jsea.2016.910036

Brettel, M. , Friederichsen, N. , Keller, M. , Rosenberg, M. (2014). 'How Virtualization,

Decentralization and Network Building Change the Manufacturing Landscape: An

Industry 4.0 Perspective'. World Academy of Science, Engineering and

Technology, Open Science Index 85, International Journal of Information and

Communication Engineering, 8(1), 37 - 44.

Bücheler, T., & Sieg, J. H. (2011). Understanding science 2.0: Crowdsourcing and open

innovation in the scientific method. Procedia Computer Science, 7, 327–329.

https://doi.org/10.1016/j.procs.2011.09.014

Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the

internet of things. IEEE Access, 4, 2292–2303.

https://doi.org/10.1109/access.2016.2566339

Dutta, P., Choi, T.-M., Somani, S., & Butala, R. (2020). Blockchain technology in Supply

Chain Operations: Applications, challenges and research opportunities.

Transportation Research Part E: Logistics and Transportation Review, 142, 102067.

https://doi.org/10.1016/j.tre.2020.102067

ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., &

Bernard, A. (2013). Product variety management. CIRP Annals, 62(2), 629–652.

https://doi.org/10.1016/j.cirp.2013.05.007

https://doi.org/10.1016/j.tre.2020.102067

 92

Gokhale, C. S., & Traulsen, A. (2010). Evolutionary games in the multiverse.

Proceedings of the National Academy of Sciences, 107(12), 5500–5504.

https://doi.org/10.1073/pnas.0912214107

Gong, X., Jiao, R., Jariwala, A., & Morkos, B. (2021). Crowdsourced manufacturing

cyber platform and intelligent cognitive assistants for delivery of manufacturing as

a service: fundamental issues and outlook. The International Journal of Advanced

Manufacturing Technology, (5-6).

Gu, C., Wang, X., Zhao, J., Ding, R., & He, Q. (2020). Evolutionary game dynamics of

Moran process with fuzzy payoffs and its application. Applied Mathematics and

Computation, 378, 125227. https://doi.org/10.1016/j.amc.2020.125227

Guazzini, A., Vilone, D., Donati, C., Nardi, A., & Levnajić, Z. (2015). Modeling

crowdsourcing as collective problem solving. Scientific Reports, 5(1).

https://doi.org/10.1038/srep16557

Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics

(Cambridge Univ Press, Cambridge, UK).

Hosseini, M., Phalp, K., Taylor, J., & Ali, R. (2014). The four pillars of crowdsourcing:

A reference model. 2014 IEEE Eighth International Conference on Research

Challenges in Information Science (RCIS).

https://doi.org/10.1109/rcis.2014.6861072

J. Yang, J. Dai, H. B. Gooi, H. Nguyen and A. Paudel, "A Proof-of-Authority Blockchain

Based Distributed Control System for Islanded Microgrids," in IEEE Transactions

on Industrial Informatics, doi: 10.1109/TII.2022.3142755.

Jiang, P., & Leng, J. (2017). The configuration of social manufacturing: a social

intelligence way toward service-oriented manufacturing. Int. J. Manuf. Res., 12, 4-

19.

Jiang, Y., Liu, X., Kang, K., Wang, Z., Zhong, R. Y., & Huang, G. Q. (2021).

Blockchain-enabled cyber-physical Smart Modular Integrated Construction.

Computers in Industry, 133, 103553.

https://doi.org/10.1016/j.compind.2021.103553

Jiao, J., Ma, Q., & Tseng, M. M. (2003). Towards high value-added products and

services: Mass customization and beyond. Technovation, 23(10), 809–821.

https://doi.org/10.1016/s0166-4972(02)00023-8

Kohler, T. (2015). Crowdsourcing-based business models: How to create and capture

value. California Management Review, 57(4), 63–84.

https://doi.org/10.1525/cmr.2015.57.4.63

 93

Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research,

56(1-2), 508–517. https://doi.org/10.1080/00207543.2017.1351644

Kusiak, A. (2020). Service manufacturing = process-as-a-service + manufacturing

operations-as-a-service. Journal of Intelligent Manufacturing, 31(1), 1–2.

https://doi.org/10.1007/s10845-019-01527-3

Li, Z., Wang, W. M., Liu, G., Liu, L., He, J., & Huang, G. Q. (2018). Toward open

manufacturing. Industrial Management & Data Systems, 118(1), 303–320.

https://doi.org/10.1108/imds-04-2017-0142

Mendling, J., Weber, I., Aalst, W. V., Brocke, J. V., Cabanillas, C., Daniel, F., Debois,

S., Ciccio, C. D., Dumas, M., Dustdar, S., Gal, A., García-Bañuelos, L.,

Governatori, G., Hull, R., Rosa, M. L., Leopold, H., Leymann, F., Recker, J.,

Reichert, M., … Zhu, L. (2018). Blockchains for Business Process Management -

challenges and opportunities. ACM Transactions on Management Information

Systems, 9(1), 1–16. https://doi.org/10.1145/3183367

Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D

challenges. Procedia CIRP, 17, 9–13. https://doi.org/10.1016/j.procir.2014.03.115

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system

Peña, J., Wu, B., Arranz, J., & Traulsen, A. (2016). Evolutionary games of multiplayer

cooperation on Graphs. PLOS Computational Biology, 12(8).

https://doi.org/10.1371/journal.pcbi.1005059

Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M., & Moreno, Y. (2013).

Evolutionary Dynamics of group interactions on structured populations: A Review.

Journal of The Royal Society Interface, 10(80), 20120997.

https://doi.org/10.1098/rsif.2012.0997

Qu, T., Lei, S. P., Wang, Z. Z., Nie, D. X., Chen, X., & Huang, G. Q. (2015). IOT-based

real-time production logistics synchronization system under SMART Cloud

Manufacturing. The International Journal of Advanced Manufacturing Technology,

84(1-4), 147–164. https://doi.org/10.1007/s00170-015-7220-1

Sahin, F., & Robinson, E. P. (2004). Information sharing and coordination in make-to-

order supply chains. Journal of Operations Management, 23(6), 579–598.

https://doi.org/10.1016/j.jom.2004.08.007

Singh, P. K., Singh, R., Nandi, S. K., & Nandi, S. (2019). Managing smart home

appliances with proof of authority and Blockchain. Innovations for Community

Services, 221–232. https://doi.org/10.1007/978-3-030-22482-0_16

 94

Srai, J. S., Kumar, M., Graham, G., Phillips, W., Tooze, J., Ford, S., Beecher, P., Raj, B.,

Gregory, M., Tiwari, M. K., Ravi, B., Neely, A., Shankar, R., Charnley, F., &

Tiwari, A. (2016). Distributed manufacturing: Scope, challenges and opportunities.

International Journal of Production Research, 54(23), 6917–6935.

https://doi.org/10.1080/00207543.2016.1192302

Surowiecki, J. (2005). The Wisdom of Crowds: Why the many are smarter than the few

and how collective wisdom shapes business, economies, societies, and nations.

Anchor Books.

T. Hoßfeld, M. Hirth and P. Tran-Gia, "Modeling of crowdsourcing platforms and

granularity of work organization in Future Internet," 2011 23rd International

Teletraffic Congress (ITC), 2011, pp. 142-149.

Thuan, N. H., Antunes, P., & Johnstone, D. (2015). Factors influencing the decision to

Crowdsource: A systematic literature review. Information Systems Frontiers, 18(1),

47–68. https://doi.org/10.1007/s10796-015-9578-x

Traulsen, A., Claussen, J. C., & Hauert, C. (2005). Coevolutionary Dynamics: From

finite to infinite populations. Physical Review Letters, 95(23).

https://doi.org/10.1103/physrevlett.95.238701

Traulsen, A., Shoresh, N., & Nowak, M. A. (2008). Analytical results for individual and

group selection of any intensity. Bulletin of Mathematical Biology, 70(5), 1410–

1424. https://doi.org/10.1007/s11538-008-9305-6

Underwood, S. (2016). Blockchain Beyond Bitcoin. Communications of the ACM,

59(11), 15–17. https://doi.org/10.1145/2994581

Wang, Z., Wang, L., Szolnoki, A., & Perc, M. (2015). Evolutionary games on multilayer

networks: A colloquium. The European Physical Journal B, 88(5).

https://doi.org/10.1140/epjb/e2015-60270-7

Xu, X., Lu, Q., Liu, Y., Zhu, L., Yao, H., & Vasilakos, A. V. (2019). Designing

blockchain-based applications a case study for imported product traceability. Future

Generation Computer Systems, 92, 399–406.

https://doi.org/10.1016/j.future.2018.10.010

Y. Hao, Y. Li, X. Dong, L. Fang and P. Chen, "Performance Analysis of Consensus

Algorithm in Private Blockchain," 2018 IEEE Intelligent Vehicles Symposium

(IV), 2018, pp. 280-285, doi: 10.1109/IVS.2018.8500557.

Yang, H., Bao, B., Li, C., Yao, Q., Yu, A., Zhang, J., & Ji, Y. (2022). Blockchain-

enabled Tripartite Anonymous identification trusted service provisioning in

industrial IOT. IEEE Internet of Things Journal, 9(3), 2419–2431.

https://doi.org/10.1109/jiot.2021.3097440

 95

Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., Guo, H., Cheng, Y., Hu, A., &

Liu, Y. (2012). Cloud manufacturing: A new manufacturing paradigm. Enterprise

Information Systems, 8(2), 167–187.

https://doi.org/10.1080/17517575.2012.683812

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain

technology: Architecture, Consensus, and future trends. 2017 IEEE International

Congress on Big Data (BigData Congress).

https://doi.org/10.1109/bigdatacongress.2017.85

Zou, W., Lo, D., Kochhar, P. S., Le, X.-B. D., Xia, X., Feng, Y., Chen, Z., & Xu, B.

(2021). Smart contract development: Challenges and opportunities. IEEE

Transactions on Software Engineering, 47(10), 2084–2106.

https://doi.org/10.1109/tse.2019.2942301

