
BLOCKCHAIN-ENABLED INFORMATION AS A SERVICE (IAAS) 

AND OPTIMAL FULFILLMENT CAPACITY BALANCING IN 

CYBER PLATFORM-DRIVEN CROWDSOURCED 

MANUFACTURING 
 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Mulang Song 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master in the 

George W. Woodruff School of Mechanical Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

May 2022 

 

 

COPYRIGHT © 2022 BY MULANG SONG 



BLOCKCHAIN-ENABLED INFORMATION AS A SERVICE (IAAS) 

AND OPTIMAL FULFILLMENT CAPACITY BALANCING IN 

CYBER PLATFORM-DRIVEN CROWDSOURCED 

MANUFACTURING 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. Roger J. Jiao, Advisor 

School of Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Shuman Xia, 

School of Mechanical Engineering 

Georgia Institute of Technology 

 

 

  

Dr. J. Rhett Mayor, 

School of Mechanical Engineering 

Georgia Institute of Technology 

  

 

 

  

Dr. Roxanne Moore, 

School of Mechanical Engineering 

Georgia Institute of Technology 

  

   

  Date Approved:  April 6, 2022 

 



iii 

ACKNOWLEDGEMENTS 

The work of this thesis would be impossible to finish without the help and support 

of lots of people and the great research environment provided by the Georgia Institute of 

Technology. 

First, thanks to my advisor Dr. Roger Jiao at Georgia Institute of Technology, for 

providing guidance, constructive advice, and encouragement during my graduate studies. 

Secondly, I want to express my sincere gratitude to the thesis reading committee members, 

Dr. Roger Jiao, Dr. J. Rhett Mayor, Dr. Roxanne Moore, and Dr. Shuman Xia, for their 

help and time in revising the thesis work. Thirdly, I would like to thank all the students 

studying in GTMI 264B, Dr. Xuejian Gong, Pan Zou, Shu Wang, Jianyuan Peng, Yiyun 

(Cindy) Fei, and Roosan Liyoons, and the staff at Georgia Institute of Technology. Lastly, 

I would like to thank my family for their great support during my graduate studies. 

 

 

 

 

 

 

 



iv 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

LIST OF SYMBOLS AND ABBREVIATIONS ix 

SUMMARY xii 

CHAPTER 1. Introduction 1 

1.1 Platform-driven Crowdsourced Manufacturing 1 

1.2 Information as a Service for Platform-driven Crowdsourced Manufacturing3 

1.3 Fulfillment Capacity Balancing in Crowdsourced Manufacturing 4 

1.4 Technical Challenges and Research Tasks 5 

1.5 Organization of This Thesis 6 

CHAPTER 2. Related work 9 

2.1 Smart Manufacturing, IoT, Cyber Platform, and Cyber-Physical System 9 

2.2 Crowdsourcing Manufacturing Fulfillment Capacity Balancing Modeling 10 

2.3 Blockchain Technologies Applications 12 

CHAPTER 3. BLockchain-enabled IaaS System Analysis and Design for Product 

Fulfillment Crowdsourcing 14 

3.1 Workflow of Platform-driven Crowdsourced Manufacturing 14 

3.2 Use Case Analysis of Crowdsourced Manufacturing Cyber Platform 17 

3.3 Architecture Design of Blockchain-enabled IaaS Fulfillment System 22 

3.3.1 Information-sharing Space 25 

3.3.2 Virtual Space 28 

3.3.3 Infrastructure Space 30 

3.4 Chapter Summary 31 

CHAPTER 4. Blockchain-enabled IaaS Fulfillment System For Product 

Fulfillment Crowdsourcing 33 

4.1 Blockchain Technologies and Smart Contract 33 

4.1.1 Block and blockchain network structure 33 

4.1.2 Consensus mechanism 35 

4.1.3 Smart Contract 36 

4.2 IPFS Distributed File Sharing System 37 

4.3 Mechanism of Blockchain-enabled IaaS Fulfillment System 37 

4.4 Chapter Summary 50 

CHAPTER 5. Application of Blockchian-enabled IaaS for Tank Trailer 

Crowdsourced Manufacturing 51 

5.1 Case Description of Tank Trailer Crowdsourcing 51 



v 

5.2 Developmental Tools and Environments 53 

5.2.1 Raw data generation using Simio 54 

5.2.2 Test network Construction using Truffle & Ganache 56 

5.2.3 Web-based Interface Development 57 

5.3 Illustrated Working Procedure of the Proposed System 58 

5.3.1 Data upload and data extraction 58 

5.3.2 Block Data Structurization 65 

5.3.3 Data Retrieving 66 

5.4 Chapter Summary 69 

CHAPTER 6. Crowdsourcing System Modeling and Fulfillment Capacity 

Balancing Opmization 70 

6.1 Multi-cluster Population Dynamics Model based on ECC Game Theory 71 

6.2 Moran Process in Multi-cluster ECC Game Model 76 

6.3 Optimization Strategy Based on Population Dynamics Model and Moran 

Process Simulations 80 

6.4 Example Problem 86 

6.5 Chapter Summary 88 

CHAPTER 7. Conclusions 89 

7.1 Contributions 89 

7.2 Future Work 90 

REFERENCES 91 

 



vi 

LIST OF TABLES 

Table 4-1 Pseudocode of “User_Registration” 39 

Table 4-2 Pseudocode of “M_extraction” 40 

Table 4-3 Pseudocode of “M_Storage” 41 

Table 4-4 Pseudocode of “L_extraction” 43 

Table 4-5 Pseudocode of “L_Storage” 43 

Table 4-6 Pseudocode of “Structurization” 45 

Table 5-1 Development Tools for the Case Study 53 

Table 5-2 Simplified Structured Block Data 67 

Table 6-1 Payoff Matrix of Multi-cluster Evolutionary Game Model 75 

Table 6-2 Parameters of Example Problem 86 

Table 6-3 Boundary Conditions of Example Problem 87 

 

  



vii 

LIST OF FIGURES 

Figure 1-1 Technical Roadmap of the Thesis 8 

Figure 3-1 Workflow of Crowdsourced Manufacturing (Gong et al., 2022) 17 

Figure 3-2 UML Case Diagram of Crowdsourced Manufacturing Cyber 

Platform 

20 

Figure 3-3 Functional Requirements of IaaS Fulfillment System for Cyber 

Platform-Driven Crowdsourced Manufacturing 

21 

Figure 3-4 Architecture Design of the IaaS Fulfillment System 24 

Figure 3-5 Information-Sharing Space 26 

Figure 3-6 Virtual Space 29 

Figure 3-7 Infrastructure Space 31 

Figure 4-1 Example of Blockchain Structure 34 

Figure 4-2 Mechanism of the Blockchain-enabled IaaS Fulfillment System 38 

Figure 4-3 Structure of “User” Class 47 

Figure 4-4 IPFS Network in IaaS Fulfillment System 48 

Figure 5-1 Clustered Manufacturing Task for Crowdsourcing 52 

Figure 5-2 Supply Chain of Tank Trailer Crowdsourcing Task 53 

Figure 5-3 Manufacturing Status Data Generated by Simo 55 

Figure 5-4 Model Layout in Simio 56 

Figure 5-5 User registration 59 

Figure 5-6 Smart Contract Deployment 60 

Figure 5-7 Uploading File to IPFS 61 

Figure 5-8 Data Extraction and Blockchain Transaction 63 

Figure 5-9 Blockchain in the Test Ethereum Network 64 



viii 

Figure 5-10 Structured Block Data 65 

Figure 5-11 Failed Retrieve Case 68 

Figure 5-12 Successful Retrieve Case 68 

Figure 6-1 Evolutionary Game in Participation of Multi-Clusters 73 

Figure 6-2 Transition Matrix in a Manufacturing Cluster 79 

Figure 6-3 Phase Plot of a 3-cluster Population Dynamics Model 81 

Figure 6-4 Workflow of the Proposed Optimization Method 85 

Figure 6-5 Workflow of the Proposed Optimization Method 87 

Figure 6-5 Overall Optimization Results for the Different Participation States 88 

 

  



ix 

LIST OF SYMBOLS AND ABBREVIATIONS 

IaaS Information as a Service 

MaaS Manufacturing as a Service 

ICT Information and Communications Technologies 

IoTs Internet of Things 

CNs Customer Needs 

DPs Design Parameters 

PVs Process Variables 

PoW Proof of Work 

PoS Proof of Stake 

PoA Proof of Authority 

IPFS Interplanetary File System 

CID Content Identifier 

ECC Evolutionary Competition-Cooperation 

𝐶0 Customer order 

𝑀 Manufacturing agents 

𝛼, Α Manufacturing agent cluster index and total number 

𝜇𝑛𝛼
𝛼  Bidding manufacturing agent 𝑛𝛼 in cluster 𝛼 

𝜑𝑛 Non-bidding agents  

𝐷0 Design specs 

𝑃0 Process specs 

𝛿𝑘, Δ Manufacturing subtask and its associated product 

𝑐𝑖 𝑖𝑡ℎ cluster of manufacturers 



x 

𝜂𝑖 Fulfillment capacity factor of 𝑖𝑡ℎ cluster 

𝐹𝑖(𝑡) Participation level of manufacturing cluster 𝑐𝑖 

𝑢𝑏𝑖 Uncorrected bidding cost of manufacturing cluster 𝑐𝑖 

𝑏𝑖 Bidding cost of manufacturing cluster 𝑐𝑖 

𝜌𝑖 Crowdsourcing income of manufacturing cluster 𝑐𝑖 

Ρ Uncorrected crowdsourcing income 

𝐸𝑖  Manufacturing income of manufacturing cluster 𝑐𝑖 

𝐶  Strategy C, participate in the bidding. 

 𝐷 Strategy D, don’t participate in the bidding 

𝑓𝑖
𝑐   Average payoff of choosing strategy C of manufacturing cluster 𝑐𝑖 

𝑓𝑖
𝐷  Average payoff of choosing strategy D of manufacturing cluster 𝑐𝑖 

𝑟𝑖 Replicator equation of manufacturing cluster 𝑐𝑖 

   𝑁𝑖 Number of manufacturers in cluster 𝑖 

𝑗𝑖 Number of participating manufacturers in cluster 𝑖 

𝑇𝑗𝑖
+ Probability that the number of participating manufacturers in cluster 𝑖 

changes from 𝑗𝑖 to (𝑗𝑖 + 1) 

𝑇𝑗𝑖
− Probability that the number of participating manufacturers in cluster 𝑖 

changes from 𝑗𝑖 to (𝑗𝑖 + 1) from 𝑗𝑖 to (𝑗𝑖 − 1) 

𝑓𝐶𝑖 Fitness function of selecting strategy 𝐶 in 𝑖th manufacturing cluster 

𝑓𝐷𝑖 Fitness function of selecting strategy 𝐷 in 𝑖th manufacturing cluster 

𝑤 Selection Intensity 

𝑡𝑎→𝑁𝑖 Probability of number of participating manufacturers in 𝑖𝑡ℎ  cluster 𝑗𝑖 
changes from 𝑎 to 𝑁𝑖 

𝑝𝑓
𝑖 , 𝑡0→𝑁𝑖 Probability of number of participating manufacturers in 𝑖𝑡ℎ  cluster 𝑗𝑖 

changes from 0 to 𝑁𝑖 

𝑟𝑖
𝑛𝑒𝑤 Replicator equation of cluster 𝑐𝑖 with the substitution of new variables 



xi 

𝑏𝑖,𝑚𝑖𝑛, 𝑏𝑖,𝑚𝑎𝑥 Minimum and Maximum of bidding cost 𝑏𝑖 

𝑔𝑖 Fraction of total manufacturers for cluster 𝑐𝑖 



xii 

SUMMARY 

As a new emerging manufacturing paradigm, platform-driven crowdsourced 

manufacturing utilizes the cooperation between the platform, designer, and service 

providers to configure and fulfill the supply chain. In this value creation and delivery 

process, the cyber platform enables and manages the interaction between each participant 

in the supply chain to respond to varieties of customer needs which lets platform-driven 

crowdsourced manufacturing become a persuasive approach to seeking manufacturing 

solutions.  

This thesis examines platform-driven crowdsourced manufacturing based on two 

unique perspectives: Information as a Service (IaaS) fulfillment and operational excellence 

of the platform. From the first perspective, this thesis analyzes the use case of the cyber 

platform in the platform-driven crowdsourced manufacturing system based on its workflow. 

An IaaS fulfillment system is designed based on the analysis using blockchain and 

distributed file-sharing technologies. The proposed system is distributed, which fulfills 

IaaS by providing secured information upload, sharing, and management services. The 

decentralization feature of the system reduces the cost of trust for using the system. From 

the perspective of operational excellence, the thesis models the interactions between users 

and their decision-making process in the system based on ECC game theory, population 

dynamics, and the Moran process. Based on the models, an optimization strategy is 

proposed to manage the fulfillment capacity balance by facilitating the participation level 

of users.  
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CHAPTER 1. INTRODUCTION 

The transition in the market causes new challenges to manufacturing companies 

where they are forced to increase and manage more product varieties and complexities to 

satisfy the dynamics of customer needs (Brettel et al., 2014). Confronting new challenges, 

the ability to design and test new products effectively becomes the unique key to success 

in the competition (Jiao et al., 2003). Under the transformation to the buyer’s market, larger 

product variety and complexity affect both design and manufacturing domains, attracting 

attention in the design domain from academia and industry.  

Transformation in the market leads the transformation in the industry. To confront 

the challenges and intense competition brought by demands in highly customized products 

with reduced life cycles, manufacturing companies integrate the newly emerging 

technologies, new design strategies, and new organizational structures.  

1.1 Platform-driven Crowdsourced Manufacturing 

As an emerging open business model, crowdsourcing allows the business owner to 

utilize the extra resource and capabilities of the others across the crowd to finish a certain 

task. Four key elements in a crowdsourcing system are identified as the crowd, the 

crowdsourcer, the crowdsourcing task, and the crowdsourcing platform (Hosseini et al., 

2014). The crowd is an essential component of the system for participating in 

crowdsourcing tasks. The crowdsourcer is the entity in a crowdsourcing system that 

outsource task across groups of crowds for seeking solutions (Bücheler and Sieg, 2011). 

The crowdsourcing task is an activity in which the crowdsourcer participates. The 
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crowdsourcing platform gathers active users in a virtual platform for involving value-

creating activities which collaborate resources and capabilities from distributed individuals 

(Kohler, 2015).  

From a special perspective, platform-driven crowdsourced manufacturing is a 

crowdsourcing system that enables product innovation and production after the 

coordination and negotiation across the crowdsourcer in a cyber platform (Gong et al., 

2021). As an open manufacturing model, platform-driven crowdsourced manufacturing 

enables the utilization of external knowledge and resources for achieving product 

fulfillment collaboratively for a manufacturer in a distributed crowdsourcing network. In 

this regard, key elements in platform-driven crowdsourced manufacturing are reidentified 

as the crowdsourcer, crowdsourced manufacturing tasks, and cyber platform. The 

crowdsourcer includes both individuals who initiate a new manufacturing task and 

individuals who provide services in the product fulfillment process. The crowdsourced 

manufacturing task is a task initiated by the crowdsourcer which can be decomposed into 

several processes and fulfilled by the service-providing crowdsourcer. The cyber platform 

provides the virtual space for accruing crowds and provides necessary services to 

crowdsourcers in the supply chain formulation and product fulfillment process. For a 

crowdsourcing framework, four prerequisites are identified cognitive diversity, 

independence, decentralization, and aggregation (Surowiecki, 2004). For platform-driven 

crowdsourced manufacturing, the cyber platform should take the responsibility of 

management to meet the prerequisite of facilitating prosperity for crowdsourced 

manufacturing through providing services.  
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In cyber platform-driven crowdsourced manufacturing, there are three fundamental 

issues which are manufacturing activities digitalization, information coordination and 

management, and operational management. The term blockchain-enabled information as a 

service in the title is derived from these two issues. Optimal fulfillment capacity balancing 

corresponds to the third issue.  

1.2 Information as a Service for Platform-driven Crowdsourced Manufacturing 

With the vision of open manufacturing, X as a service (XaaS) is the term that 

represents the service provided in X of the function domain (Kusiak, 2020). In platform-

driven crowdsourced manufacturing, the value is created and fulfilled through the 

interaction between the crowdsourcer and the cyber platform, which are two agents in the 

system. The cyber platform attracts and gathers the crowdsourcer and provides necessary 

services to the user. In this regard, the cyber platform in platform-driven crowdsourcing 

manufacturing has become a service-oriented paradigm. The cyber platform is able to 

facilitate the fulfillment of manufacturing-as-a-service (MaaS) in crowdsourced 

manufacturing by providing decision support services as intelligent cognitive assistants 

(ICA) to manufacturers (Gong et al., 2021). Complementarily, the fulfillment of 

information-as-a-service is fulfilled through the collaborative product fulfillment process 

in crowdsourced manufacturing by serving the service of information exchanging and 

sharing among crowdsourcers. 

Information exchanging and sharing are significant in the product fulfillment process 

in an open manufacturing network. Information sharing and coordination in the supply 

chain can reduce costs and increase the overall economic benefit (Sahin & Robinson, 2005). 
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It brings direct effect to the stakeholder in the supply chain. In platform-driven 

crowdsourced manufacturing, information exchanging and sharing is necessary for the 

decision strategy coordination and product fulfillment. Furthermore, it establishes the 

fundamental requirement for IaaS fulfillment in the cyber platform. 

Different from the traditional manufacturing paradigm, in crowdsourced 

manufacturing, manufacturers and logistic service providers are widely dispersed and 

connected through the cyber platform or the information system. One issue that existed in 

the IaaS fulfilled by the system or platform is data transparency and privacy. In the product 

fulfillment process, the management of data transparency and privacy can have the trust 

issue due to distributed manufacturing layout. For the centralized system, the main trust 

provider needs to be identified. For example, a centralized information system is managed 

by a third-party agent. Blockchain technologies and other distributed file-sharing 

technologies can be considered the solution to this problem. The cooperation between 

agents in a crowdsourced task can be solidified by this kind of security database. The stored 

data is distributed, traceable, and unerasable without the management of a third party.  The 

decentralization feature of the blockchain technologies make it more suitable for providing 

data management services to a distributed manufacturing system. 

1.3 Fulfillment Capacity Balancing in Crowdsourced Manufacturing 

In the cyber platform-driven crowdsourced manufacturing, the crowdsourced task is 

fulfilled by manufacturers that provide different kinds of services. Multiple clusters of 

manufacturers and other service providers are formed in the platform. The match and 
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balance of fulfillment capacity become one of the fundamental issues for platform 

prosperity. 

The solution-seeking process in crowdsourced manufacturing involves both 

cooperation and competition. Despite the cooperation that happened in the fulfillment 

process, in the supply chain formulation process of crowdsourced manufacturing, 

manufacturers are supposed to participate in steps of the product fulfillment process based 

on their manufacturing capabilities and capacity. For manufacturers that have similar 

manufacturing capabilities, competition relationships are unavoidable in such a 

manufacturing cluster as the result of limited crowdsourced tasks. Since a successful 

crowdsourcing platform requires not only the number of crowdsourced tasks but also 

requires high participation level from crowdsourcers (Thuan et al., 2015), the term 

fulfillment capacity is introduced here as the total manufacturing capacity of a 

manufacturing cluster in platform-driven crowdsourced manufacturing which reflect a 

certain type of production capacity in the platform.  

Increasing and balancing different kinds of fulfillment capacity is one of the key 

factors for fulfilling crowdsourced tasks. From the perspective of the platform, this can be 

achieved through a management protocols strategy. This requires an understanding of the 

behavior and changes in the crowdsourcing system and the prediction methodology of the 

changes in the system. 

1.4 Technical Challenges and Research Tasks 

 The objective of the work is to investigate platform-driven crowdsourced 

manufacturing from two unique perspectives. The first perspective is how to design 
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information as a service (IaaS) fulfillment system for the product fulfillment process in the 

crowdsourced task. The second perspective is how to develop an optimal management 

strategy based on the population dynamics model to manage and optimize fulfillment 

capacity between clusters of manufacturers, which also inspires the participation 

willingness in the tournament-based bidding process of the contracting process in platform-

driven crowdsourcing manufacturing.  

For the first objective, the technical challenges come from three research questions: 

(i) How to determine the information flow in the cyber platform; (ii) How to exchange and 

share the information across the different agents of crowds; (iii) How to manage the 

information with lower cost the higher security. For the second objective, the technical 

challenges are (i) how to model the interactive behavior among the manufacturers in a 

tournament-based bidding process for a crowdsourced task; (ii) how to simulate the 

stochastic process in the simulation of the evolution of manufacturing clusters; (iii) how to 

design the optimal strategy based on models. 

1.5 Organization of This Thesis 

The rest of this thesis work is organized as shown in figure 1-1. Chapter 2 reviews 

the related work of smart manufacturing, cyber physical system, cyber platform, 

crowdsourcing product fulfillment and blockchain-related technology. Chapter 3 presents 

the analysis and design of a blockchain-enabled IaaS fulfillment system for product 

fulfillment crowdsourcing which includes the use case analysis and architecture design. 

Chapter 4 discusses IaaS management provided by the proposed system from the 

perspective of user management, smart contract management, and information 
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management. Chapter 5 shows an application of the proposed system based on a tank trailer 

case. The illustration is focused on the information flow management in the product 

fulfillment process of the tank trailer. Chapter 6 discusses fulfillment capacity balancing 

and optimization in cyber platform-driven crowdsourced manufacturing. It introduces a 

population dynamics model and Moran process based on evolutionary competition-

cooperation (ECC) game theory. An optimization strategy is also proposed and illustrated 

by a case study example in this chapter. Chapter 7 summarizes the contributions, 

assumptions, and limitations of this thesis work and provides a future vision of 

improvements. 
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CHAPTER 2. RELATED WORK 

2.1 Smart Manufacturing, IoT, Cyber Platform, and the Cyber-Physical System  

New challenges and new technology bring revolution to the industry. The 

manufacturing ecosystem can be divided into Industrial 1.0, 2.0, 3.0, and 4.0, which go 

through the process from centralized organization to network or even decentralized 

organization (Li et al., 2018). Breakthroughs of technology bring innovations in the 

manufacturing system, which leads to the emergence of the automated, computerized and 

complex smart manufacturing system. The term smart manufacturing has attracted 

attention from both academia and industries. The smart manufacturing system is more open, 

which tends to have properties like stronger external connectivity and more manufacturing 

and resource sharing (Kusiak, 2017).  These technology integrations in smart 

manufacturing inspire the design of the system that fulfills IaaS in cyber platform-driven 

crowdsourced manufacturing. 

Open manufacturing is a paradigm of the smart manufacturing system that is 

designed for sharing knowledge, resources, and service in the manufacturing ecosystem, 

which presents a framework that provides service of information-sharing services (Li et al., 

2018). Followed by the concept of smart manufacturing, distributed manufacturing is a 

paradigm that utilizes information and communication technologies (ICT) to achieve the 

manufacturing value chain through a decentralized manufacturing network (Srai et al., 

2016). Social manufacturing is another emerging paradigm of smart manufacturing which 

combine the usage of the Cyber-Physics System (CPS) with social media to provide 

services in design and production (Jiang et al., 2017).  
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Cloud manufacturing utilizes a service-oriented platform to manage the 

manufacturing capabilities and resources across the internet to provide manufacturing 

services to users, which has become a new paradigm of smart manufacturing systems 

(Zhang et al., 2012). Qu et al. proposed an IoT-based real-time production logistic 

synchronization system for smart cloud manufacturing in 2015, which integrates IoT to 

cloud manufacturing to synchronize the dynamics in production. In the proposed system, 

information in real-time collected from sensors and RFID tags flows through a multi-level 

system for logistic production synchronization. The information flow in the virtual space 

corresponds to the material flow in the real world in the proposed system. 

It can be summarized that ICT, IoT, and CPS are the most common technology 

adopted in the new manufacturing system, which ensures the establishment of a service-

oriented cyber platform for information, logistic, resources coordination, and management. 

These technologies enable a new level of architecture design of information systems for 

fulfilling IaaS in the production of the cyber platform-driven crowdsourced manufacturing 

system.  

2.2 Crowdsourcing Manufacturing Fulfillment Capacity Balancing Modeling 

As mentioned earlier, fulfillment capacity refers to the total manufacturing capacity 

of a manufacturing cluster in a crowdsourcing manufacturing system. The fulfillment 

capacity could be evaluated from two perspectives which are level and balance across 

different types of product capacities. To come up with a strategy of management, modeling 

the interaction and behaviors of agents in crowdsourcing manufacturing is necessary. 
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Guazzini et al. provided a mathematical model of crowdsourcing in 2015. The model 

includes a preference for collaboration simplicity of the tasks to describe the behavior in 

groups of crowdsourcers. The performance and effectiveness of crowdsourcing are 

evaluated through the fitness of crowdsourcers. The model also indicates that the 

effectiveness and performance of crowdsourcing can be optimized based on the number of 

groups. Hoßfeld et al. proposed another crowdsourcing modeling method to predict growth 

dynamics through measurement-based statistical analysis in 2011. The population 

dynamics model is also utilized to describe the dynamics in the platform.  

In the cyber platform-driven crowdsourcing manufacturing, modeling the 

competition relationship and cooperation relationship inside and among manufacturing 

clusters becomes more significant. Population dynamics becomes a powerful tool that is 

able to demonstrate mechanisms in evolutionary group interactions (Perc et al., 2013).  In 

2015, Chen et al. studied competition and cooperation modeling in public goods games 

with different punishment strategies.  

There are lots of studies in evolutionary cooperation and competition game theory.  

A colloquium discusses the evolutionary games on with the condition of different kinds of 

multilayer networks (Wang et al., 2015). Studies in multiplayer ECC game theory imply 

that the difficulties and complexities increase extremely when it involves multiple players 

and strategies (Gokhale & Traulsen, 2010). Additionally, in complex multiplayer games, 

simulation based on graph theory can demonstrate interactions among players, which can 

validate the results of the evolutionary dynamics of populations in an analytic model (Pena 

et al., 2016).  
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These studies provide the theoretical basis for modeling the evolutionary dynamics 

of fulfillment capacity based on the growth of manufacturing clusters and corresponding 

validation through simulations. Furthermore,  parameterization of the dynamics model 

enables the management strategy based on optimization. 

2.3 Blockchain Technologies Applications 

The concept of Blockchain was firstly introduced firstly in 2008 by Satoshi 

Nakamoto as the fundamental technology of the digital currency bitcoin. Blockchain 

technology is commonly implemented in digital currency (Nderwood, 2016). Despite the 

financial area, blockchain has been introduced in different industries. 

Software solutions could be offered by employing blockchain as a software 

connector, which can provide interaction services across different software blocks. It can 

be applied in communication services, coordination services, and facilitation services (Xu 

et al., 2016). Transparency and traceability make blockchain suitable for the manufacturing 

supply chain, which has huge potential for supply chain function transformation 

(Abeyratne & Monfrad, 2016 & Dutta et al., 2020). Tian et al. proposed a traceability 

system based on blockchain technology for tracking agri-food safety in 2016, which can 

provide services of information tracing, freshness checking. In 2021, Liu et al. proposed a 

smart tracking and tracing platform for the drug supply chain using blockchain technology.  

Transparency and security in information sharing and exchanging can be fulfilled by 

the blockchain-enabled cyber platform by providing unified standards and protocols (Jiang 

et al., 2021).  The blockchain-based platform is also designed for manufacturing. With the 

implementation of IoT, a peer-to-peer platform called BPIIoT is proposed for 
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manufacturing. The proposed platform allows the development of distributed apps (Dapps) 

that can enhance the existing cloud-based manufacturing (Bahga & Madisetti, 2016). The 

Dapps is also known as smart contacts, which is the self-executable script stored on the 

blockchain. The automation created by smart contracts can facilitate the sharing of services, 

automate the cryptographically veritable workflows (Christidis et al., 2016).  
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CHAPTER 3. BLOCKCHAIN-ENABLED IAAS SYSTEM 

ANALYSIS AND DESIGN FOR PRODUCT FULFILLMENT 

CROWDSOURCING 

3.1 Workflow of Platform-driven Crowdsourced Manufacturing 

To design an information service system to fulfill IaaS in cyber platform-driven 

crowdsourced manufacturing system, the workflow in such a manufacturing system is 

necessary to be clarified for establishing an understanding of behavior and functional 

requirements for crowdsourcers and the cyber platform.  Figure 3-1 illustrates an adapted 

example of crowdsourced manufacturing workflow (Gong et al., 2022). 

There are three physical domains in the figure which are the designer domain, 

crowdsourced manufacturing platform domain, and open manufacturing domain. The 

crowdsourced task is fulfilled through the activities achieved by the collaboration of 

participants in all three physical domains. In the open innovation domain, the designer 𝐷 

is the crowdsourcer that designs a product and proposes the crowdsourced task. 

Crowdsourced manufacturing platform domain store and restructure the design into 

crowdsourced tasks for bidding. There are three types of platform agents, where �̅� = 𝑃𝐶 ∪

�̅�𝐼 ∪ �̅�𝐸. It also provides evaluation services at the end of the product fulfillment process. 

The open manufacturing domain contains manufacturing agents that are clustered based on 

their manufacturing capabilities. For each manufacturing cluster, not all manufacturing 

agents participate in the bidding process. To start with, the designer design new products 

based on customer orders that saved into 𝐶0 based on the customer needs CNs. Once the 
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design process is finished, designers can initialize the crowdsourcing process by sending 

the design specifications (DPs) of products to 𝐷0  in the virtue field of crowdsourcing 

information management. In the database of design specifications, Δ = 𝛿1 × …𝛿𝑞 × …𝛿𝑄   

denotes the product structure. In the equation, 𝛿𝑞 represents a manufacturing subtask of the 

product and  𝑞 ∈ [1, 𝑄], where 𝑞 indicates the index of subtask among 𝑄 number of subtasks 

in total. 𝑃𝐶 represents the manufacturing configuration manager who receives the 𝐷0 and 

restructures the design to manufacturing subtasks. Invitation broker  �̅�𝐼 receives subtasks 

and broadcasts each subtask to the corresponding manufacturing clusters for bidding. 

Invitation broker  �̅�𝐼  consists of individual invitation broker 𝑃𝛼
𝐼, where ∀𝑃𝛼

𝐼 ∈ �̅�𝐼. The index 

𝛼 corresponds to manufacturing cluster 𝛼. Evaluation broker �̅�𝐸 follows a similar pattern 

which is composed of individual evaluation broker 𝑃𝛼
𝐸. The evaluation broker evaluates the 

results of the bid and chooses the winner of each manufacturing cluster for participating in 

the crowdsourced task. In the bidding process, manufacturing agents 𝜇𝑛
𝛼  in each 

manufacturing cluster 𝜇𝛼̅̅̅̅  proposes their manufacturing process as bids 𝐵 =

{𝐵1, … , 𝐵𝛼 , … , 𝐵Α}  to the evaluation broker. After the evaluation, the crowdsourced 

manufacturing supply contract 𝑆 = 𝜇1
∗
× …𝜇𝛼

∗
× …𝜇𝛢

∗
is established, which contains each 

manufacturing agent. Manufacturing configuration manager 𝑃𝐶 send process specification 

set 𝐵∗ =  {𝐵𝛼
∗}|Α to process specifications database 𝑃0  based on the returned manufacturing 

supply contract  𝑆 . Final products are returned to the designer 𝐷  through the product 

fulfillment process. 

Material flow and knowledge flow are defined in the workflow, and the platform 

coordinates these flows back and forth between the open innovation domain and the open 

manufacturing domain. The defined workflow focuses on the crowdsourced task derivation 
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from the design domain to the manufacturing domain. Data that carries that knowledge in 

the workflow requires storage and sharing services. Furthermore, in the product fulfillment 

process of the crowdsourced task, the needs for data storage and sharing are lifted and 

boarded to new levels. This leads to the design of an information service system for the 

purpose of management which fulfills IaaS for agents in the cyber platform-driven 

crowdsourced manufacturing system.  
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Figure 3-1 Workflow of Crowdsourced Manufacturing (Gong et al., 2022) 

3.2 Use Case Analysis of Crowdsourced Manufacturing Cyber Platform 

Based on the workflow in section 3.1, a UML case diagram is proposed in this section, 

as shown in figure 3-2. The UML case diagram reconstructs the workflow in platform-
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driven crowdsourcing manufacturing based on the interaction between use cases and users. 

Three main actors identified for the crowdsourced manufacturing cyber platform are 

designers, service providers, and managers. Both designers and service providers are 

crowdsourcers in the crowdsourcing system. The designer is the crowdsourcer that initiates 

the crowdsourced task. Service providers are crowdsourcers that participate in the 

fulfillment process of crowdsourced tasks, 

The cyber platform is service-oriented. Despite the services provided for third-party 

users like service providers and designers, it also assists in the coordination of information 

for managers. The platform serves for contract establishment between desginers and 

manufacturers, task execution for manufacturers, and management for managers. In the 

contract establishment process of the crowdsourced task, as indicated in section 3.1, the 

designers can propose manufacturing tasks on the cyber platform, as shown in figure 3-2. 

This use case is included in the use case of evaluating proposed tasks that are under the 

supervision of the manager on the cyber platform. The evaluation of proposed tasks also 

enables the bids for crowdsourced tasks, which require the participation of service 

providers. Based on the evaluation of tasks and bidding results, service providers, designers, 

and managers establish the order contract of crowdsourced tasks through the platform. The 

contract data is stored on the cyber platform for future reference. Store data is the most 

significant use case in the crowdsourced manufacturing cyber platform, which includes 

several sub-use cases. It is the foundation of fulfilling IaaS in services of contract 

establishment, task execution, and management.  

Serving for task execution of crowdsourced tasks, retrieving the real-time task 

execution or product fulfillment status is necessary for all main actors. To achieve the use 
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case of retrieving product fulfillment status, the cyber platform should receive and store 

the product fulfillment data uploaded by service providers first. Furthermore, the process 

of receiving, storing, and accessing product fulfillment data requires management for the 

purpose of security and coordination. When uploading the product fulfillment status, the 

cyber platform inspects the identity of the request sender for security. Similarly, functions 

like identity verification should be employed for the use case of retrieving product 

fulfillment status. As mentioned before, storing data is the most significant use case since 

it participates in all the information sharing and referencing use cases in the platform.  Once 

the product fulfillment process is finished, designers, service providers, and managers 

evaluate the performance of each agent that provides service in product fulfillment.  
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Figure 3-2 UML Case Diagram of Crowdsourced Manufacturing Cyber Platform 

 Based on the use case and relationship identification of platform-driven 

crowdsourced manufacturing in the UML case diagram, a unique view can be proposed 

from the perspective of the fulfillment of IaaS through an information service system that 

is integrated into the crowdsourced manufacturing cyber platform as shown in figure 3-3. 

To fulfill the IaaS in task execution and overall information management for crowdsourced 
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manufacturing, functional requirements in different overlapped areas are identified from 

the mapping between workflow and use case analysis, as shown in figure 3-3.   

 

Figure 3-3 Functional Requirements of IaaS Fulfillment System for Cyber Platform-

Driven Crowdsourced Manufacturing 

In the overlapping between task execution and management areas, functional 

requirements for an IaaS fulfillment system are identified as (1) product fulfillment data 

upload, (2) product fulfillment data retrieve, (3) identity verification, and (4) identity-based 

permission-giving. Management is required in contract establishment for (1) contract data 

storage and (2) contract data access, as shown in figure 3-3. In the product fulfillment 

process, users need to access the data stored in the contract establishment process for 

reference. The IaaS fulfillment system is designed to achieve these requirements with low 
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construction cost, low time latency, system standardization, high operational conveniences 

and efficiency, high security, and trust from users. 

3.3 Architecture Design of Blockchain-enabled IaaS Fulfillment System 

To meet the functional requirements identified in section 3.2, blockchain technology 

is introduced for the design of the system. Blockchain technology has been widely applied 

in areas like distributed databases, public ledgers for transactions, and digital events with 

high security provided by distributed consensus (Crosby et al., 2016). With the aid of smart 

contracts, automated scripts run in blockchain, new types of synchronized interactions 

between users and blockchain are enabled in the distributed network without a third party’s 

supervision (Zou et al., 2019). The integration of blockchain ensures traceability, 

unchangeability, transparency in information sharing and exchanging, and the integration 

of smart contracts provides a certain level of automation in information management. 

However, blockchain has limitations in the size and bandwidth, which indicates that higher 

latency can be caused when the size of sharing data is large (Mending et al., 2018). This 

brings the question of what kind of file should be posted on the blockchain network, which 

requires aid from other types of distributed file-sharing systems.  

Another term that is brought to the architecture design is Cyber-Physical Systems 

(CPSs). CPSs digitalize the process in the physical world into computerized entity flows 

to establish the connection between the bounded physical world and relative boundless 

cyberspace, which provides services like real-time data access and data processing through 

the internet (Monostori et al., 2014). Interactions between human to human and human to 

machine in CPSs have projections on both the actual physical world and digital space. By 
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integrating CPSs into manufacturing systems based on smart sensing and IoT technologies, 

material and entity flow in the physical world are digitalized as information flow which 

leads to interactions between human to human and human to machine. In the system 

platform-driven crowdsourced manufacturing, the cyber platform is required to allow 

interaction between crowdsourcers through providing different kinds of services, as 

mentioned in the previous chpater. This leads to the need to establish a cyber-physical 

system based on the crowdsourcing platform to coordinate and combine entities in both the 

physical world and digitalized data. At the same time, fulfillment of IaaS is achieved 

through this coordination process.  

In this section, an overall architecture design is proposed to provide a general view 

of the proposed system in figure 3-4. Three spaces are included in the figure are 

information-sharing space, virtual space, and infrastructural space. The virtual space and 

interactions inside it are achieved through actions and flow in the other two spaces.    

Information-sharing space demonstrates the information flow and actions related to 

data sharing and transferring. Stakeholders in this space are manufacturer and logistics 

service providers and task managers. Manufacturers and logistics service providers both 

belong to the term service providers, which is introduced in chapter 3.2. The task manager 

corresponds to the term manager in chapter 3.2. Service providers upload and retrieve 

information in the information-sharing space under the supervision of the task manager. 

Blockchain technologies are employed for constructing a database that contains extracted 

product fulfillment status. The raw product fulfillment data is stored in the distributed 

database due to its large size. Contract data, and specifications data are also stored in the 

distributed database for the same reason. The data stored in the blockchain network is un-
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structuralized, which will be structuralized and saved into a database for access. The 

organization reduces the cost and difficulties of data access management.  

Stakeholders in the virtual space are the same as stakeholders in the information-

sharing space. In the virtual space, the virtue manufacturing system is constructed based 

on the established contact of the crowdsourced task. Manufacturer, logistics service 

provider, and designer who proposes the task participate in the contracting process based 

on decision support resources.  Both crowdsourced task contracts and decision support 

resources are stored in the distributed database. Product fulfillment status is the real-time 

task product fulfillment data collected through IoT and smart sensors.  

Infrastructure space contains the physical resources for fulfilling the product. The 

resources and entities in different levels are categorized and configured from the supply 

chain network. For each logistics service provider, the real-time product fulfillment data is 

collected and uploaded to their local database, which gives feedback to the local service 

providers.  

 

Figure 3-4 Architecture Design of the IaaS Fulfillment System  



 25 

3.3.1 Information-sharing Space 

Figure 3-5 demonstrates details in the information-sharing space. The blockchain 

network in the information-sharing space store the extracted product fulfillment data. The 

characteristics of blockchain technologies make the stored data unchangeable and traceable. 

To initiate the information flow, service providers firstly upload the raw product fulfillment 

data to distributed database. At the same time, the raw product fulfillment data is extracted 

to a certain format and sent to the blockchain network through transactions. Blocks are 

formed through these transactions that contain the extracted data. These three types of 

transactions in the designed system which are User_info transaction, Manufact_info 

transaction, and Logistics_info transaction. Three types of transactions represent three 

types of data stored in the blockchain network.  
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Figure 3-5 Information-Sharing Space 

User_info transaction carries user information like user ID and user type. User ID 

is employed for differentiating different service providers in the crowdsourced task. User 
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type includes manufacturers and logistics service provider. The hash address is also 

included in the user information, which is unique for each participant in the blockchain 

network. The user information is used to provide a reference for identity verification and 

coordination. Users need to enter their user ID and hash address as passwords to check if 

they are allowed to perform a certain behavior. Details of the utilization will be discussed 

in chapter 4. TX_type in the transaction data can label the type of transactions. 

Logistics_info is the second type of transaction which carries extracted logistics data. The 

logistics data record the physical flow of the entity. Logistics_info contains departure 

location, destination location, current location, departure time, and expected arrival time. 

This information can describe the status of logistics services. Logistics_info transaction is 

extracted from the logistic data and uploaded by the logistics service provider. The third 

type of transaction type is Manufact_info which contains extracted information on 

manufacturing data. It contains the name of the part or entity that is manufactured. The 

manufacturing status is represented by the number of finished parts, the start time of that 

manufacturing process, and the time when the manufacturing process is ended.  

Based on different consensus mechanisms and settings of the blockchain network, 

the block is mined while containing transactions that carry extracted product fulfillment 

data. Blocks are mined and connected. Data in the transaction can be retrieved by block ID 

or hash address of the transactions. The extracted data is stored in the blockchain network 

discretely where there aren’t connections between these transactions, which causes 

difficulties in managing and retrieving. Therefore, data in the blockchain is reorganized in 

struct format and saved to a structuralized database. As shown in figure 3-5, the 

structuralized data is stored in a distributed database. The structuralized database is updated 
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when new transactions are sent to the blockchain network. The structuralized data can also 

be stored into transaction data in a block if the block size is permitted.  

The structuralized database provides conveniences for access management. In the 

general case, the manufacturer and logistics service provider can only access the product 

fulfillment status of users that are upstream and downstream of the supply chain. Managers 

of the crowdsourced task can access all users’ product fulfillment status in both blockchain 

and structuralized databases for supervision and coordination.  

3.3.2 Virtual Space 

The interactions between stakeholders and their behaviors are demonstrated in the 

virtual space. The decision support resource includes a database of manufacturing 

specifications and task specifications which is provided during the task proposing process. 

The task manager, manufacturing service provider, and logistic service provider 

established the contract from negotiation. During the negotiation process, the duties and 

obligations of each service provider are clarified and stored in the distributed database. The 

contract of crowdsourced tasks also includes logistics service specifications, 

manufacturing service specifications, supply chain structure, and deliverables. Information 

stored in the crowdsourced contract can establish the structure of the virtue manufacturing 

model. The virtue manufacturing system digitalizes the layout, precedence in the product 

fulfillment process.  

The manufacturer and logistics service provider upload the real-time manufacturing 

status and logistics service status, which represents the real-time execution status in the 

virtue manufacturing model. Interactions and behaviors shown in figure 3-6 are projected 
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from the physical and virtual processes in the other two spaces, which give a relatively 

general view of the system.  

 

Figure 3-6 Virtual Space 
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3.3.3 Infrastructure Space 

Infrastructure space demonstrates the data acquisition locally for each 

manufacturing service provider and logistic service provider. The physical resources are 

configured and categorized based on the raw data uploaded and shared. In the resources 

layer, changes in inventory level, location changes for forklifts or any other transportations, 

and numbers of processed parts by machines are digitalized through smart sensing and IoT 

integration layer through technologies like barcodes, RFID tags, GPS, accelerometers, and 

other sensors. Like any smart manufacturing system, the data are collected and stored in a 

local database which gives feedback to the local service provider for analysis and planning.  

The task manager can monitor and coordinate the overall product status based on 

the shared database. The upstream or downstream service providers are also able to acquire 

some real-time data for production preparations.   
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Figure 3-7 Infrastructure Space 

3.4 Chapter Summary 

In this chapter, the scope is narrowed down from the overall workflow of platform-

driven crowdsourced manufacturing to a system architecture design of the proposed system, 
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which demonstrates the actual interaction. In chapter 3.1, a referenced model of workflow 

in crowdsourced manufacturing is introduced. In chapter 3.2, a use case diagram is 

employed to identify the use cases in crowdsourced manufacturing. Focused on use cases 

for IaaS fulfillment, functional requirements are also identified in chapter 3.2. In chapter 

3.3, the architecture design is proposed, which includes perspectives from three different 

perspectives.  
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CHAPTER 4. BLOCKCHAIN-ENABLED IAAS FULFILLMENT 

SYSTEM FOR PRODUCT FULFILLMENT CROWDSOURCING  

In this chapter, a unique solution is designed for the IaaS fulfillment system in the 

product fulfillment crowdsourcing based on the analysis and design discussed in chapter 3. 

The proposed solution is enabled by blockchain technologies mainly, which allows users 

to upload, access, manage product fulfillment data easily and securely. This chapter is 

organized as follows: chapter 4.1 and chapter 4.2 discuss the mechanism of blockchain and 

other related technologies, and chapter 4.3 introduces key components of the proposed 

system.  

4.1 Blockchain Technologies and Smart Contract  

4.1.1 Block and blockchain network structure 

Blockchain can be regarded as a digital ledger that records each information and 

transaction. Each block is added sequentially to the existed block, which records the 

transaction that happens within a certain time interval. Figure 4-1 shows an example of a 

blockchain structure. As shown in figure 4-1, the block contains a block header and the 

main body. The block header consists of the Hash of the previous block, Timestamp, Nonce, 

and Merkle root: 

(1) Hash of the previous block is a 256-bit value that indicates the virtue address of 

the previous block. 

(2) Timestamp is the time when the current block is mined and validated in the 

blockchain network. Generally, the time is counted since January 1st, 1970.  
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(3) The nonce is a variance value employed for hash calculation of new block and 

validation of new blocks. 

(4) Merkle root contains all the hash values that point to transactions in the current 

block. 

The main body of the block consists of transaction data. The number of transaction 

data in a block is affected by the employed block size and each transaction data size. In 

other words, fewer transactions are recorded in a block if each transaction is larger. Data 

is encrypted when sending data through the transaction to the blockchain network. Each 

transaction can be tracked by its hash data which is the transaction hash (TX Hash). The 

users use a private key to access their account and sign transactions which prove the users’ 

ownership of their address of blockchain network accounts. 

 

Figure 4-1 Example of Blockchain Structure 

Moving from inside to outside of a block, the blockchain network is a sequence block 

that records a whole list of transactions decentralized with persistency and audibility, which 

is considered a unique public ledger system (Zheng et al., 2017). In a blockchain network, 

each block is connected to a previous block except for the first block. The first block which 

initializes a blockchain network is also called the genesis block. 
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4.1.2 Consensus mechanism 

Trust issues and validation of transactions are solved through consensus mechanisms 

in the blockchain network safely, efficiently, and conveniently. There are several 

commonly used consensus algorithms which are proof of work (PoW), proof of stake (PoS), 

and proof of authority (PoA).  

PoW is a non-trust-based consensus mechanism that believes that the node that does 

the most amount of work has the least probability of attacking the blockchain network 

through publishing transactions. PoW is employed as the consensus mechanism for the 

Bitcoin network. The node that reaches a certain level within a value through using the 

computer to calculate the hash value of the next block can broadcast the new block to other 

nodes for validation (Nakamoto, 2008). In general, nodes in a PoW-based blockchain 

network use computational power to solve a question provided by the algorithm, and the 

first node who solves the problem that meets the algorithm’s requirement becomes the 

miner of that block. PoW wastes lots of resources in calculations of consensus mechanism. 

PoS is another non-trust-based consensus mechanism employed by Ethereum (Wood, 

2017). Nodes that have more electrical currencies in the blockchain network have less 

probability of attacking. To avoid the new block being always mined by the richest node, 

PoS usually combines with other types of algorithms like randomization or new judgment 

criterion (Zheng et al., 2017). Compared to PoW, PoS wastes fewer resources in the 

consensus mechanism and has a higher probability of being attacked. 

PoA is a trust-based consensus mechanism that is applied to the blockchain network 

for relatively trustful users. Applications like health data sharing, smart home appliance 
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management, and distributed control systems employ PoA as a consensus mechanism 

(Singh et al., 2019, Asad et al., 2020, Yang et al., 2022). A certain number of nodes (usually 

higher than the half number of total users) are trusted in the blockchain network, and these 

trusted nodes process the consensus for transactions acted by non-trusted nodes (Angelis 

et al., 2018).  

4.1.3 Smart Contract 

The smart contract is developed based on blockchain technology. It is a self-simple 

executable script based on simple rules and logic. Utilized with masses of pre-defined 

conditions and rules, the smart contract can respond automatically by executing the pre-

defined command to manipulate the blockchain network. The decentralized application 

(Dapp) is the application that employs smart contracts to provide services to users (Bahga 

& Madisetti, 2016).  

The smart contract has been furtherly developed commonly used in different 

blockchain platforms with different mechanisms. It has three characteristics which are 

autonomy, self-sufficiency, and decentralization. As mentioned before, autonomy indicates 

that the contract is executed automatically after the initialization. Self-sufficiency means 

that a smart contract can acquire and manage the resources in the blockchain network 

without the control of the agents. Decentralization is inherited from the characteristics of 

blockchain technology, where the smart contract is deployed distributivity to all nodes in 

the network. Furtherly, the smart contract is programmable, which can leverage the 

possibilities of providing complex services and enclosing the node behaviors in the 

blockchain network. 
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4.2 IPFS Distributed File Sharing System 

Compared to the blockchain network, Interplanetary File System (IPFS) provides 

convenience for large file storage with large throughput, which is a distributed file storing 

and sharing system. Two important characteristics of IPFS are decentralization, content 

addressing. Decentralization makes it possible for users to access a file not managed by a 

centralized organization in IPFS. Content addressing means files are identified by their 

content in the IPFS. Content identifier (CID) labels and points the content in a shared file 

which is a short cryptographic hash. CID is firstly generated when uploading a file to the 

IPFS network, which can also be used to access that file by inputting ‘/ipfs/’ + ‘CID’ in the 

web browser. A different CID is produced when there is a change in that shared file which 

indicates both the new version and the old version of the file are stored in IPFS with 

different CIDs. In other words, the change in the uploaded file is trackable in IPFS.  

4.3 Mechanism of Blockchain-enabled IaaS Fulfillment System 

Figure 4-2 shows the mechanism of the blockchain-enabled IaaS fulfillment system. 

The figure shows mechanisms behind the architecture design figure proposed in chapter 3. 

There are three types of users, as shown in the figure, which are the task manager, the 

manufacturer, and the logistics service provider. Three types of users interact with IPFS 

and the blockchain network services provided by a web-based interface. To establish the 

connection between the web-based interface to the blockchain network and IPFS, smart 

contracts deployed to the blockchain network, algorithms executed on the web-based 

interface, and APIs collaborate to process the information and requests. There are two kinds 

of portals that provide different kinds of services in the web-based interface.  
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Four services are provided in the upload portal: 

(1) User information upload allows the task manager to upload user information of 

participants to the blockchain network. Through a smart contract API, smart 

contract User_Registration is deployed to the blockchain network for sending 

transaction data. The smart contract only allows the task manager which is the 

blockchain network initializer to upload the user information. Table 4-1 shows 

the pseudo code of User_Registration smart contract. As shown in the table 

below, the smart contract firstly checks task manger’s identity by checking if its 

account hash address is the blockchain network initializer. Once the task manager 

passed the identity inspection, it can input the user id, username, user type, and 

user’s account hash address and the smart contract will store those data to the 

blockchain network. The user id, username and users’ account address hash are 

strings. User type is defined as integer where “0” represents the manufacturer and 

“1” represents the logistics service provider.  

Table 4-1 Pseudocode of “User_Registration” 

 

Input: 1. User ID, User type, Username and Hash address.  

Output: Transaction data that contains user information. 

1:   Begin Smart Contract 

2:       create string _UserID, _Usernanme, _hash; 

3:       create int _Usertype; 

4:       create address _hash; 

5:       function store(UserID, Usertype, Username, hash):   

6:           If (AccountAddress==sender.address): 

7:               _UserID = UserID; 

8:               _Usertype =_Usertype; 

9:               _Username = Username; 

10:             _hash =hash; 
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Table 4-1 Continued 

 

11:         Else: 

12:             print(‘Access Denied’) 

13:      End function 

14:  End Smart Contract 

 

(2) Raw manufacturing data upload is the second service in the uploading portal. 

Manufacturers upload the raw data through the web-based interface, and the web 

interface will firstly transfer the file to IPFS through IPFS API. After that, the 

CID of the uploaded file is returned to the web-based interface, and the uploaded 

raw data file is extracted based on algorithm M_extraction as shown in table 4-2.  

Table 4-2 Pseudocode of M_extraction 

 

Input:  Array that records when does a process happen in the system. The 

process is defined as: an entity occupies a resource for executing a certain 

action and one entity requires several processes for leaving the system. 

Output: Extracted data that summarize the overall action exaction results. 

1:   Begin 

2:      Read array 

2:           Acquire the time when the first process happens in the array as 𝑡𝑠𝑡𝑎𝑟𝑡;   

3:           Acquire the time when the last process ends in the array as 𝑡𝑒𝑛𝑑;    

5:           Acquire the number of entities that are transferred out from the last 

process o in the array as 𝑁 

6:      return 𝑡𝑠𝑡𝑎𝑟𝑡;  

7:      return 𝑡𝑒𝑛𝑑; 

8:      return N; 

9:  End 

 

The extraction algorithm outputs the number of finished tasks or parts from the 

raw manufacturing data and returns them to the web-based interface. Extracted 
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manufacturing data and CID of the raw data uploaded in the IPFS are sent to the 

blockchain network through smart contract M_Storage. The pseudo-code of 

M_Storage is shown table 4-3. As shown in table 4-3, the M_storage requires 

four kinds of input which are (i) the CID of the uploaded raw manufacturing data, 

(ii) the task name inputted by the manufacturer, (iii) the extracted manufacturing 

data, and (iv) the list that contains account address hash of all manufacturers 

which is uploaded by the task manager through user information upload function. 

The M_storage sends the transaction data to the blockchain network that contains 

extracted manufacturing data and the CID for accessing related raw data. The 

transaction type is also recorded in the blockchain, where the integer “0” 

indicates that the transaction is related to manufacturing status. The on-chain and 

off-chain data storage design improves the efficiency of the blockchain by 

reducing the sizes of transactions. The extracted manufacturing data reflect the 

product fulfillment status with fewer complexities when accessed by other users.  

Table 4-3 Pseudocode of M_Storage  

 

Input: 1. CID outputted from IPFS.  

            2. Manufacturing task name  

            3. 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑, and N outputted from M_extraction algorithm 

            4. List of account address hash of manufacturers uploaded by the task 

manager 

Output: Transaction data that contains manufacturing information. 

1:   Begin Smart Contract 

2:       Import account address hash list as L  

3:       create string _t_start, _t_end, _CID, _TaskName _; 

4:       create int _N, _type; 

5:       function store(t_start, t_end, CID, TaskName):   

6:           If (sender.address in L): 

7:               _t_start = t_start; 
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Table 4-3 Continued 

 

8:               _t_end =_t_end; 

9:               _CID = CID; 

10:               _TaskName = TaskName; 

11:             _type = 0; 

12:         Else: 

13:             print(‘Access Denied’) 

14:      End function 

15:  End Smart Contract 

 

(3) Raw Logistics Data Upload is the third service provided in the upload portal for 

logistics service providers. Similar to the raw manufacturing data upload, the 

web-based interface firstly uploads the raw logistics data that contains time and 

location information to the IPFS. During the raw data upload, the web-based 

interface utilizes the algorithm L_extraction as shown in table 4-4 to obtain key 

information from the raw logistics data and send the extracted logistics service 

information, and return CID to the blockchain network through smart contract 

L_storage. The raw logistics data is data that records a list of location information 

(latitude and longitude) and related time information at those locations, which 

reflect the location and time changes from the departure location. Pseudocode 

L_extraction is shown in table 4-4. As shown in the table, L_extraction will 

output the locations at the departure time and end time from the raw data. In other 

words, it merges the logistics service conditions in several time steps to the 

beginning and end conditions in one time step.  
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Table 4-4 Pseudocode of L_extraction 

 

Input:  Array that records entity’s location with time.   

Output: Extracted information that contains departure location and time 

current location and time 

1:  Begin 

2:      Read array 

3:          Acquire the time of departure in the array as 𝑡𝑑𝑒𝑝𝑎𝑟𝑡;   

4:          Acquire the location of departure in the array as 𝐶𝑑𝑒𝑝𝑎𝑟𝑡; 

5:          Acquire the time of departure in the array as 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡;   

6:          Acquire the location of departure in the array as 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡: 

7:      return 𝑡𝑑𝑒𝑝𝑎𝑟𝑡;  

8:      return 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡; 

9:      return 𝐶𝑑𝑒𝑝𝑎𝑟𝑡; 

10:    return 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡; 

11: End 

 

The pseudocode of L_storage is shown in table 4-5. It requires four kinds of 

inputs which are the CIDs of the uploaded raw logistics service data, the name of 

the logistics service task, outputs from algorithm L_extraction, and a list of 

logistics service providers’ account address hash. The deployed smart contract 

ensures that only the logistics service provider can send this type of transaction 

to the blockchain network. The transaction is also labeled with integer 1. 

Table 4-5 Pseudo-code of L_Storage  

 

Input: 1. CID outputted from IPFS.  

            2. Logistics service task name.  

            3.𝑡𝑑𝑒𝑝𝑎𝑟𝑡 ,  𝐶𝑑𝑒𝑝𝑎𝑟𝑡 , 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,  and 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡outputted from L_extraction 

algorithm. 

            4. List of account address hash of logistics service providers uploaded 

by the task manager 

Output: Transaction data that contains logistics service information. 
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Table 4-5 Continued 

 

1:   Begin Smart Contract 

2:       Import account address hash list as L  

3:  create string _t_depart, _t_current, _C_departure, _C_current, CID 

_ServiceName; 

4:       create int _type； 

5:       function store(t_depart, t_current, C_depart, C_current, CID, 

ServiceName):   

6:           If (sender.address in L): 

7:               _t_start = t_start; 

8:               _t_current =  t_current; 

9:               _CID = CID; 

10:             _ServiceName = ServiceName; 

11：          _type = 1; 

12:         Else: 

13:             print(‘Access Denied’) 

14:      End function 

15:  End Smart Contract 

 

(4) Contact information upload is the last service in the upload portal. This service 

is only provided for the task manager for uploading the data in the contract of the 

crowdsourced task, as mentioned in chapter 3. This data is directly uploaded to 

the IPFS through the web-based interface. Some CIDs of uploaded files are 

shared with all the participants in the crowdsourced tasks for accessing files like 

product specifications for references.   

Files in IPFS and data in the blockchain network are updated with the progress of 

product fulfillment. Meanwhile, the structurization algorithm structuralizes the 

uncategorized data stored in the transaction data of blocks. The algorithm is designed to be 

executed at a certain time interval for acquiring the updated data in the blockchain network. 
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Table 4-6 shows the pseudocode of the structurization algorithm. The algorithm can access 

the blockchain network directly without any limitations, which is encapsulated from users 

of the system.  

Table 4-6 Pseudocode of Structurization 

 

Input: 1. The blockchain network of the crowdsourced task. 

            2. Precedence of the supply chain for the crowdsourced task. 

Output: A list of class instances that contain categorized transaction data and 

precedence. 

1:  Define struct User{   

2:       string userID; 

3:       string account_hash; 

4:       int usertype; 

5:       list Manu_TX;   

6:       list Log_TX; 

7:       list upstream; 

8:       list downstream; 

9:       function M_TX(transaction_hash) { 

10:        appendix transaction hash to the list Manu_TX; 

11:     end 

12:     function L_TX(transaction_hash) {          

13:         appendix transaction hash to the list Log_TX; 

14:     end 

15:     function addupstream(account_address_hash) {           

16:        appendix account address hash to the list upstream; 

17:     end 

18:     function adddownstream(account_address_hash) {           

19:         appendix account address hash to the list upstream; 

20:     end 

21: End Define    

22: Connect to Blockchain network 

22: Import Precedence Data 

23: Create list Allusers 

24: For i in range (1 to number of blocks ):  

25:    acquire list of transactions in block i as TX_list; 

26:    for each transaction c_tx in TX_list: 

27:        acquire string stored in c_tx as extracted_data; 

28:        if extracted_data contains user information:  

29             acquire userID stored in extracted_data as c_uid; 

30:            create a User class instance named with string in c_uid 

31:            save sender’s account address to c_uid.acount_hash; 
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Table 4-6 Continued 

 

32:            save usertype information in c_uid.usertype; 

33:            save list of account address hash to list upstream 

34:            save list of account address hash to list downstream 

35:            appendix the new instance of User class to list Allusers 

36:        end 

37:        elseif extracted_data contains extracted manufacturing transaction data: 

38:            acquire the struct belongs to User class that have same account_hash to the 

sender’s 

39:            acquire the userID of that struct  

40:            global()userID.M_TX(c_tx.address); //append the current transaction hash 

to list Manu_TX of the struct that is named as string contains in 

userID 

41             update the instance of User class to list Allusers to replace the existed 

instance 

42:        end 

43:        elseif extracted_data contains extracted logistics service transaction data: 

44:            acquire the struct belongs to User class that have same account_hash to 

the sender’s  

45:            acquire the userID of that struct  

46:            global()userID.L_TX(c_tx.address); //append the current transaction hash 

to list LOG_TX of the struct that is named as string contains in 

userID 

47:            update the instance of User class to list Allusers to replace the existed 

instance 

48:        end 

49: return Allusers      

50: End 

 

As shown in table 9-6, to structuralize the blockchain data, a class object named 

“User” is firstly defined. The defined class not only has attributes for storing data but also 

has class methods for updating attributes. Instances of the “User” class are created and 

updated through scraping data in the blockchain network. A list of instances of the “User” 

class is returned and saved into IPFS. In the list, each instance is defined with the user ID 

and contains different kinds. The structure of “User” class and its instances is shown in 

figure 4-3. The class has seven attributes. “userID” is a string type attribute for recording 
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the name of a user. When creating an instance of “User” class, the string saved in “userID” 

is also used for naming and pointing new instances. “account_hash” is the account address 

hash in the blockchain network. “usertype” is an integral type of attribute where “0” 

represents the manufacturer, and “1” represents the logistics service provider. The rest of 

the attributes are list types where “Manu_TX” contains all the TX Hashes of manufacturing 

type transactions sent by this user, and “Log_TX” contains all the TX Hashes of logistics 

service type transactions sent by this user. Therefore, for a manufacturer type of instance, 

“Log_TX” attribute is empty since the related user is not allowed to update any data or 

transaction that do not belong to the manufacturing type. “upstream” and “downstream” 

are lists that contain account addresses hashes of both manufacturers and logistics service 

providers in the upstream and downstream supply chain.  

 

Figure 4-3 Structure of “User” Class 

 The “structurization” algorithm returns a list that can be considered as a table of 

content that categorizes all data transacted to the blockchain network. The TX hashes of 

blockchain transactions are categorized by their senders and types. This list doesn’t store 

the data directly but stores “keys” that can be employed for retrieving those transactions 

and raw data files.  The list is saved as “XML” or “JSON” files in the IPFS.  
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Figure 4-4 IPFS Network in IaaS Fulfillment System 

Figure 4-4 shows the IPFS network in the IaaS fulfillment system. As mentioned in 

figure 4-2, IPFS plays a big role in raw data storage. In such a peer-to-peer (P2P) system, 

the file is only accessible by CID when the local node switch on the daemon that builds the 

connection between the local storage to IPFS when other nodes don’t host that data. In the 

proposed system, each node must turn on the daemon locally to ensure that the raw data 

file is accessible since users don’t host data uploaded by other nodes. As shown in figure 

4-4, each manufacturer and logistics service provider takes the responsibility of hosting 

raw data files uploaded by them. For the task manager, it must host both contract data of 

crowdsourced tasks and the structuralized data from the blockchain. Same as other types 

of users, the task manager doesn’t interact with IPFS directly. 



 49 

As shown in figure 4-2, users retrieve data through the access portal in the web-based 

interface. There are five services provided in the access portal, which are: 

(1) Contract information access is employed for accessing contract data of 

crowdsourced tasks stored in the IPFS hosted by the task manager. The contract 

data of the crowdsourced task consists of data for product fulfillment process 

referencing. When the user sends the request for contract information access, 

“Access_managment” algorithm will send CIDs of accessible files to that user 

based on its identity. 

(2) Manufacturing data access is used for retrieving manufacturing status from the 

raw data file in the IPFS. Based on users’ identity, “Access_managment” algorithm 

accesses the blockchain structuralized data to find instances of class “User” that are 

allowed to be accessed. The algorithm retrieves all TX hashes in the list attribute 

“Manu_TX” and uses those TX hashes for retrieving transaction data in the 

blockchain network. The web-based interface can display the extracted 

manufacturing data and CIDs related to the raw data. The user could use CIDs to 

access the raw manufacturing data.    

(3) Logistics service data access is similar to manufacturing data access which is used 

for retrieving logistics service data. Similarly, “Access_managment” algorithm 

accesses the blockchain structuralized data to find instances of class “User” that are 

allowed to be accessed. The algorithm retrieves all TX hashes in the list attribute 

“Log_TX” and uses those TX hashes for retrieving transaction data in the 

blockchain network. In this regard, the user could access both extracted logistics 

service status and raw logistics service data. 
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4.4 Chapter Summary 

In this chapter, section 4.1 introduces the blockchain technologies in detail for 

providing a better understanding of the mechanism. Section 4.2 goes through the 

mechanism of IPFS, which plays a big role in the proposed system for fulfilling IPFS. 

Section 4.3 introduces the detailed mechanism and flow of the proposed system. The 

system utilizes the web-based interface, smart contract, algorithms, IPFS, and blockchain 

network to provide IaaS to users by uploading and retrieving product fulfillment status 

conveniently and securely with low trust cost. Pseudo codes are also included in this section 

for demonstrating algorithms of smart contracts. 
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CHAPTER 5. APPLICATION OF BLOCKCHIAN-ENABLED 

IAAS FOR TANK TRAILER CROWDSOURCED 

MANUFACTURING 

In this chapter, the crowdsourced manufacturing task of the tank trailer is employed for 

demonstrating the performance and feasibility of the proposed IaaS fulfillment system.  In 

this chapter, the development process of the system and the application of the developed 

system is also included. IaaS is fulfilled through interactions between a web-based interface, 

blockchain network, smart contract, and IPFS in the system. Chapter 5.1 introduces the 

description of tank trailer crowdsourcing. Chapter 5.2 introduces the required tools and 

environments for the development. Chapter 5.3 applies simulated data to the developed 

system for validation and evaluation. 

5.1 Case Description of Tank Trailer Crowdsourcing 

There are huge amounts of product varieties in the tank trailer industry. To contain 

different kinds of chemical fluids, different materials, parts, designs, and manufacturing 

procedures are required for production. Figure 5-1 presents the case scenario of a 

crowdsourced task for a tank trailer. Figure 5-1 shows the genetic product and process 

structure (GPPS) of the tank trailer that is crowdsourced. The manufacturing process can 

be structuralized into raw material, sub-assembly, part, and end-product. There are nine 

assembly processes and two manufacturing processes that connect each element in the 

structure. The GPPS is clustered into five groups, and each group represents the 
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crowdsourced tasks for a manufacturing crowdsourcer. As shown in the figure, five 

manufacturers participated in the tank trailer crowdsourced task. 

 

Figure 5-1 Clustered Manufacturing Task for Crowdsourcing 

The transportation service is carried out by a logistic service provider who 

participates in the crowdsourced task. Figure 5-2 demonstrates the case scenario described 

in the tank trailer crowdsourcing supply chain. Five manufacturers and two logistics service 

providers who are distributed at different locations geographically participate in the 

crowdsourced task and try to deliver the final product to the customer. The proposed system 
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in this case study enables IaaS fulfillment by providing information upload, access service 

to these participants. 

 

Figure 5-2 Supply Chain of Tank Trailer Crowdsourcing Task 

5.2 Developmental Tools and Environments 

To meet the functional requirements of the proposed system, the development 

process of the system in the case study involves several stages using different tools. Table 

5-1 shows the tools employed for development and the test environment. The development 

tools are categorized into five usage purposes which are building a blockchain test network, 

generating manufacturing data, developing a web-based interface, developing a smart 

contract, and structuring data stored in the blockchain network.  

Table 5-1 Development Tools for the Case Study 

 

 

 

 

Usage   Component   Description 

Blockchain test 

network 

  
Ubuntu Linux 21.10, 8 

processors, 32 GB RAM 
  Test environment 

 Ganache-cli  
GUI of showing status 

of the test blockchain 

network 

  Truffle   
Test Blockchain 

network deployment 

Manufacturing 

data generation 
 Simio  A discrete event 

simulation software 
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Table 5-1 Continued 

 

 

5.2.1 Raw data generation using Simio 

To obtain the data for running the experiment on the developed system, the discrete 

event simulation software Simio is used. There are five Simio models, which represent five 

manufacturers who participate in the crowdsourced task. The Simio model simulates the 

manufacturing process of each clustered task and generates the manufacturing status data 

based on IoT, where each part or sub-assembly is tracked with location and time. Function 

“mode trace” in Simio can generate the manufacturing data in the format of “CSV”. Figure 

5-3 shows the example of “model trace data” generated by Simio. This data is generated 

Manufacturing 

data generation 
 Simio  A discrete event 

simulation software 

Developing web-

based interface 

  JavaScript, CSS   
Programming 

languages 
 Atom  IDE 

 Web3.js  

Development tool for 

sending and access 

transactions to the test 

blockchain network 

 React.js  Development tool for 

web-based interface 

 IPFS  Tool for P2P file 

sharing 

  Meta Mask   

Web-based blockchain 

account management 

tool 

Smart contract 

development 

 Solidity  Smart contract 

developing languages 

 Remix  
Web-based smart 

contract deployment 

tool 

Blockchain 

Structurization 

  Spyder   IDE 

  web3.py   

Development tool for 

sending and access 

transactions to the test 

blockchain network 
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from the Simio model of “Manufacturer 5” in the “EntityID” column. The entity 

“TankTraikerAssembly” is being processed by server “A9”. The data will be extracted 

when it is uploaded to IPFS through the web-based interface. Figure 5-4 shows the layout 

of simulation models for five manufacturers built by Simio. 

 

Figure 5-3 Manufacturing Status Data Generated by Simo 
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Figure 5-4 Model Layout in Simio 

5.2.2 Test network Construction using Truffle & Ganache  

The whole case study is applied based on the Ethereum blockchain due to its ability 

and feasibility in smart contract development support. When testing and deploying the 

smart contract, a test network is necessary for saving time and cost. Truffle is employed in 

the case study for building the Ethereum blockchain test network. Properties of the test 

network like block size, block mining logic, transaction cost can be adjusted by using 

Truffle. The detailed parameter settings will be introduced in chapter 5.3.  
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Ganache is a similar tool to Truffle, which is a personal blockchain for developing, 

deploying, and testing smart contracts. Different from using the command line to interact 

with the test network, it can show the condition of the test blockchain network through 

GUI. In this case study, Ganache is a demonstration tool for showing the test blockchain 

network. 

5.2.3 Web-based Interface Development 

The development of the web-based interface is the most difficult part of the case 

study since it must interact with the test blockchain network and IPFS to provide services. 

In this case study, the web-based interface is developed to achieve data upload, data 

extraction, sending extracted data to the blockchain.  The interface is mainly developed in 

React.js, which is a JavaScript library for building user interfaces. The Ethereum JavaScript 

API Web3.js is used for building the connection between the web-based interface and the 

test blockchain network. The smart contract is deployed using Truffle, and Web3.js, which 

allows users to use the web-based interface to interact with the deployed smart contract. 

MetaMask is a web-based blockchain account management tool. Different use cases are 

achieved by switching Ethereum accounts by using MetaMask. 

The smart contract is another essential part of the case study. Solidity is used in the 

case study for developing smart contracts that are executed based on the Ethereum network. 

Solidity is an object-oriented and high-level language, and Smart contracts are written in 

the version of Solidity “^0.6.0” (Solidity, 2022). Smart contracts are deployed by using 

Truffle, and the web-based interface allows users to interact with the local test blockchain 

network through API provided by Web3.js. 
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5.3 Illustrated Working Procedure of the Proposed System 

In this chapter, an illustrative case demonstrates the exact procedure of using the 

developed system. There are five major steps illustrated here which are (1) user information 

registration, (2) manufacturing status data and logistics service status data upload, (3) raw 

data extraction, (4) blockchain data structurization, and (5) data retrieving. Different tools 

are employed for achieving required services at different steps.  

5.3.1 Data upload and data extraction 

The step 1 to step 3 are included in this sub-chapter. In the case study, the Ethereum 

blockchain test network is built by using Truffle and exhibited through using Ganache. The 

local test network is hosted in “127.0.0.1” with port ID “8545”. The gas limit used for 

smart contract deployment is 6721975, and the gas price used for deployment is 20 Gwei. 

The cost of deploying smart contracts and sending transactions can be ignored since they 

are related to cryptocurrency transactions which are not considered in the case study. 

Blocks are mined after a time interval in the blockchain network for user information 

registration. The time interval is set to be 300 seconds which means all transactions sent to 

the local Ethereum blockchain network in 300 seconds are contained in the same block. 

The mining mechanism for manufacturing data upload and logistics service data upload is 

set to be auto which means one block is mined automatically after sending a new 

transaction. In this case, one block only contains one transaction related to manufacturing 

status or logistics service status data. 

The first step in using the system is user registration. “URegistration” is the smart 

contract for registering users’ information to the blockchain network. To reduce the 
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difficulties in development process, the user information in the case study is sent through 

using Remix. Remix web-based IDE for executing smart contracts, which allows some 

low-level interaction with the local Ethereum network. Since user registration in this case 

study doesn’t involve the use of IPFS, Remix can be used as the web-based interface for 

simplifying the development process. In the beginning, the manager of this crowdsourced 

task takes the responsibility of registering the user information. The manager needs to input 

the User ID, Username, account hash address, and user type for registering the user to the 

blockchain network.  Figure 5-5 shows an example of user registration. As shown in the 

figure, the manager inputs the information of the first manufacturer through Remix IDE. 

The smart contract identifies the account address of the sender to ensure only the task 

manager can upload the user information. 

 

Figure 5-5 User registration 

Step 2 and step 3 require the usage of IPFS. A web-based interface developed by 

React.js is used in these two steps for data upload. Smart contracts are deployed at different 

hash addresses in the blockchain network. Those hash addresses are receivers that receive 
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the different types of transactions from users individually. Smart contracts are deployed 

after establishing the local Ethereum blockchain network. As shown in figure 5-6, smart 

contracts are deployed, and their deployed status is shown in the bottom half in the figure. 

“L_Storage” and “M_Storage” are used for sending transactions that contain logistics 

services information and manufacturing status information to the blockchain as mentioned 

in chapter 4. 

 

Figure 5-6 Smart Contract Deployment 

After the user registration, manufacturers and logistics service providers are 

supposed to build the connection between their local database to IPFS. Files shared in IPFS 

are updated after a certain time interval based on the updated local file. At the same time, 

the raw file shared in IPFS is extracted and sent to the blockchain network through a 

blockchain API Web3.js. Due to the similarity between manufacturing status data upload 
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and logistics service status data upload, the use case of the manufacturer is only shown 

here. Figure 5-7 shows procedures of manufacturing status data upload from 

“Manufacturer 1”. After selecting and uploading the file “M1_Model_trace.csv” by 

clicking “Return CSV” in the interface, the interface returns the CID of the uploaded file, 

which indicates the upload is successful. As mentioned earlier, CID is a hash that points to 

the storage location of the file in IPFS.  

 

Figure 5-7 Uploading File to IPFS 

After sharing the raw data file in IFPS, information in the file can be extracted by 

clicking “Write Information to ETH Blockchain” button. Figure 5-8 shows the data 

extraction and transaction process. Once the “Manufacturer 1” clicks the button, the 

uploaded “CSV” file is read and extracted at the backend of the web-based interface. The 

data extraction algorithm is based on pseudocode shown in table 4-4. Then, the interface 

initiates a transaction request of sending the extracted information to the address of the 

deployed smart contract “M_storage” which is 

“0x9c4EBdaBCFc0BfFd161c39d36079cb1811F372CE” as shown in figure 5-6 and figure 
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5-8. Meanwhile, the web-based Ethereum wallet tool MetaMask pops up to let the user 

confirm the transaction, as shown in the first window in figure 5-8. If the account hash 

address of the current user matches with manufacturers’ account addresses stored in smart 

contract “M_Storage”, the extracted information is transacted to test the blockchain 

network. As shown in the second window of figure 5-8, the interface returns a message 

said “Info has been written to blockchain” which indicates a successful blockchain 

transaction. 
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Figure 5-8 Data Extraction and Blockchain Transaction 

The “manufacturer 1” can check the extracted information by clicking “read info 

from blockchain” button as shown in the third window in figure 5-8.  The interface can 

print the extracted information. As shown in figure 5-8, it takes 2.28 days for 
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“Manufacturer 1” to finish manufacturing  “tank sub-assembly 1”. The interface also prints 

the URL for downloading the uploaded file.  

During the manufacturing process, each manufacturer and logistic service provider 

are supposed to upload the data with a similar procedure. Figure 5-9 shows the situation of 

the test blockchain network. There are 15 blocks mined during the simulated manufacturing 

process. Block 0 is the genesis block which is mined at the initialization moment of the test 

network. Block 1 contains seven transactions which represents the registration of five 

manufacturers and two logistics service providers. Those transactions are sent by the 

crowdsourced task manager. Block 2 to block 14 contains only one transaction, which is 

sent by manufacturers and logistic service providers.  

 

Figure 5-9 Blockchain in the Test Ethereum Network 
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5.3.2 Block Data Structurization 

Structurization and categorization of block data is processed during the whole 

manufacturing process. It is designed to acquire information in blockchain after a certain 

time interval. If there are any updates to the blockchain network, the structured block data 

is updated by storing the new transaction hash address. In this case study, the block data is 

structured by using Python and Web3.py package. The Python code connects to the 

blockchain network and obtains information stored in transactions of each block. It first 

creates several class instances based on user information registered by the task manager. 

Then transactions are stored in different fields of different class instances based on the 

senders’ addresses.  The left side of Figure 5-10 shows the structured block data, which is 

a list. There are seven instances of “userclass” stored in the list that represent seven 

crowdsourced task participants. The right side of figure 5-10 shows the username and its 

index number. For example, “L1” is the username of logistics provider 1. The value “2” 

represents information of logistic provider 1 is stored in the third element of the list. The 

structured block data can be serialized and exported, and stored in IPFS or another 

blockchain network for data retrieving.  

 

Figure 5-10 Structured Block Data 
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5.3.3 Data Retrieving 

Data stored in the block are structured and exported for data retrieving. In this case 

study, it assumed that the serialized data is stored in another blockchain network instead of 

IPFS as proposed in chapter 4 due to difficulties in development. Remix is employed again 

for illustrating the interaction between users and storing structured data in another 

blockchain network.  

The exported structured block data based on figure 5-10 is shown in table 5-2. The 

serialized and exported structured data is saved to another Ethereum blockchain test 

network. Table 5-2 is generated based on material in figure 5-10 which the first column in 

the table represents the index, and the third column represents the username corresponding 

to the index. For example, “M1” represents manufacturer 1, and its index is “0” according 

to structured block data shown in figure 5-10. The user type of manufacturer 1 is “1” which 

represents manufacture.  The second column record the account hash address of each user. 

“Sent Transactions” records the transaction sent by that user.  These transaction hashes can 

be used to access the data carried by them. The data includes extracted information on 

manufacturing status or logistics service status. It should be noted that CIDs are also 

included in the extracted information. Therefore, once a user retrieves its accessible 

transaction hashes, the user can access the extracted information. The user can also access 

related raw data files by using CIDs that are stored in extracted information. Due to the 

purpose of demonstration, transaction hashes are simplified to strings in table 5-2. 

“Upstream User” is the last column that stores indexes of some users in the upstream of 

the supply chain. The accessibility of data uploaded by other users is controlled by 

“Upstream User” column. For example, manufacturer 1 and manufacturer 2 don’t have any 
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upstream users since they initiate the manufacturing process. For manufacturer 3 in the 

second row, its upstream users are manufacturer 1 and logistic service provider 1 as 

indicated in the table. 

Table 5-2 Simplified Structured Block Data   

 

  

Account Hash Address 
Userna-

me 
User 
Type 

Sent 
Transactions 

Upstream 
User 

0 "0x5B38Da6a701c568545dCfcB03FcB875f56beddC4" "M1"  "1" "Hash_Tx_M1" "[]" 

1 "0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2" "M3"  "1" "Hash_Tx_M3" [0 2] 

2 "0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db" "L1"  "2" "Hash_Tx_L1" [0] 

3 "0x78731D3Ca6b7E34aC0F824c42a7cC18A495cabaB" "L2"  "2" "Hash_Tx_L2" [5] 

4 "0x617F2E2fD72FD9D5503197092aC168c91465E7f2" "M5"  "1" "Hash_Tx_M5" [1 2 3 6] 

5 "0x17F6AD8Ef982297579C203069C1DbfFE4348c372" "M2"  "1" "Hash_Tx_M2" [] 

6 "0x5c6B0f7Bf3E7ce046039Bd8FABdfD3f9F5021678" "M4"  "1" "Hash_Tx_M4" [3 5] 

In this case study, the simplified structured block data shown in table 5-2 is stored in 

another test Ethereum blockchain network. Smart contracts are developed which let users 

access data only uploaded by their upstream users. In the case study, the hash address of 

the account is employed as a password or identity verification when retrieving data. The 

smart contract deployed in Remix can only achieve data retrieving if the account exists in 

the system and has upstream users.  Figure 5-11 shows a failed retrieve case. The input 

account hash address “0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C” doesn’t 

exist in table 5-2. This example shows the security of the data retrieving process. 
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Figure 5-11 Failed Retrieve Case 

Figure 5-12 show a successful retrieving case. Except for the task manager, 

manufacturer 5 is the only participant that knows its account address. By inputting 

“0x617F2E2fD72FD9D5503197092aC168c91465E7f2” to the smart contract, it 

successfully returns user indexes which are “1”, “2”, “3”, and “6”. The smart contract also 

returns the simplified transaction hashes sent by these upstream users. In this example, 

manufacturer 4 can only retrieve transaction hashes, and it can access the extracted 

information and raw data files based on those returned transaction hashes. 

 

Figure 5-12 Successful Retrieve Case 
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5.4 Chapter Summary 

In this chapter, the proposed system is developed and applied to a case study to test 

its feasibility. In the case study, the manufacturing of a tank trailer is crowdsourced to five 

manufacturers and two logistics service providers. Different tools are employed in different 

developmental stages of the system in different environments. The whole system is 

developed to work on the test Ethereum blockchain network established by Truffle. Five 

steps are illustrated in the case study. User information is registered by the task manager 

by using smart contracts deployed on Remix. Manufacturing status data and logistics 

service status data are simulated based on Simo. Users use a web-based interface to upload 

the data to IPFS. The web-based interface extracts the information from raw data and sends 

transactions to the test blockchain network. If the user’s account hash address is verified 

and the request of sending the transaction is confirmed, the transaction is successful. Block 

data stored in transactions are structured and categorized during the manufacturing and 

transportation process. The structured data is imported to another Ethereum blockchain test 

network for data retrieving. Users use their account hash addresses to retrieve data through 

smart contracts deployed on Remix. Smart contracts can return accessible transaction 

hashes, which can be employed for viewing related extracted information and raw data file 

about the crowdsourced task. 
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CHAPTER 6. CROWDSOURCING SYSTEM MODELING AND 

FULFILLMENT CAPACITY BALANCING OPMIZATION  

Collaboration is not the only relationship that exists between crowdsourcers. In a 

cyber platform-driven crowdsourced manufacturing system, manufacturers with different 

manufacturing capabilities are clustered into different groups. For manufacturers in the 

same cluster, they tend to participate in similar crowdsourced. Therefore, a competitive 

relationship exists between manufacturers in the same cluster. As described by the 

workflow of platform-driven crowdsourced manufacturing in chapter 2.1, manufacturers 

need to bid for a crowdsourced task. However, the participation level of bidding is not 

always maximized. When there are too many competitors, the lower possibility of winning 

the bid and higher bid cost stagnate the increase in the number of bids participated 

manufacturers. Furthermore, the success of a crowdsourced task requires participation in 

all decomposed tasks. The differences between scales of manufacturing clusters affect the 

number of tasks that can be crowdsourced which eventually affects the participation level 

in bidding. The fulfillment capacity discussed in this chapter is defined as the total 

manufacturing capacities of active bidding participants in a manufacturing cluster.  

This brings a huge management problem to the crowdsourcing platform, and it is 

hard for decision-makers to come up with plans without understanding the interrelationship 

between crowdsourcers. Therefore, a model, a simulation method, and an optimization plan 

are necessary, which benefit the decision-making process for facilitating the platform. A 

crowdsourcing model is proposed based on the number of participants and difficulties of 

the crowdsourced task (Guazzini et al., 2015). The model provided a measurement-based 
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analysis method of a crowdsourcing platform. The population dynamics model based on 

evolutionary cooperation-competition (ECC) game theory is also proposed (Gong et al., 

2021). The model demonstrates the population dynamics interactions between two 

manufacturing clusters. However, the model assumes that the number of each cluster is 

infinite. The goal of this chapter is to propose a multi-cluster population dynamics model, 

a simulation model, and an optimization method. The population dynamics model is based 

on previous work done by Gong, which provides an analytical solution. However, the 

population dynamics model assumes that A simulation model is also proposed based on 

the ECC game theory using the Moran process. The model simulates the interactions 

between crowdsourcers in a finite group. The proposed optimization method is based on 

the population dynamics model and simulation results which can assist the platform 

management.  

6.1 Multi-cluster Population Dynamics Model based on ECC Game Theory  

In this chapter, the multiplayer-player ECC game model is introduced first to 

demonstrate the population dynamics of the crowdsourcing platform based on a previous 

model (Gong et al., 2021). Assuming there are 𝑛 clusters of manufacturers 𝑐1, 𝑐2, …, 𝑐𝑛. 

The manufacturers are clustered based on their different types of manufacturing abilities. 

Manufacturers can bid for a crowdsourcing task that is decomposed into 𝑛 parts. Therefore, 

there is only one winner in each cluster who can participate in the crowdsourcing task. This 

collaboration-competition relationship is modeled by the game theory with several 

assumptions. As shown in figure 6-1, manufacturers in the same manufacturing cluster 𝑐 

directly interact with each other. In an online platform, every two manufacturers can 

interact with each other no matter their physical locations or their participation states which 
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is the first assumption. The second assumption is that the number of agents in each cluster 

is assumed to be static to reduce the complexity where the total number of crowdsourcers 

doesn’t change with time. The third assumption is that each agent belongs to only one 

cluster. It is assumed that a manufacturer only has one type of manufacturing capability. 

The fourth assumption is that each manufacturer in the cluster, it can only choose to bid or 

not to bid. Therefore, each agent in the model only has two strategies. The fifth assumption 

is the population in each cluster is finite and large enough. The sixth assumption is that the 

payoffs of two strategies of manufacturers in one cluster are the same, and they only choose 

different strategies based on the payoffs. The last assumption is that manufacturers only 

interact with each other in the same cluster. The effect from the outer cluster is only applied 

to the payoffs. These assumptions reduce the complexities of modeling. The evolution of 

the system happens when a manufacturer changes its participation state due to its judgment 

of the obtainable benefit from bidding. The judgment is modeled based on the payoff 

matrix in game theory.  
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Figure 6-1 Evolutionary Game in Participation of Multi-Clusters  

The participation level or fraction of manufacturers that choose to bid in each cluster 

is defined as 𝐹1(𝑡),  𝐹2(𝑡), … , 𝐹𝑖(𝑡), … , 𝐹𝑛(𝑡) .  𝐹𝑖(𝑡)  is defined as the number of 

participating manufacturers over the number of total manufacturers in a cluster. The whole 

model is constructed in the domain where 0 < 𝐹𝑖(𝑡) < 1, 𝑖 ∈ [1, 𝑛] . To construct the 

payoff matrix based on game theory, the benefit of participating in bidding should be 

defined. When a manufacturer finishes a certain type of manufacturing task, it receives a 

profit as a reward. Based on experience in manufacturing, manufacturers in crowdsourcing 

platforms have expectations in profits of finishing manufacturing tasks. Both participating 

manufacturers and non-participated manufacturers in one cluster have the expected amount 
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of profit. For non-participated manufacturers, it is assumed that the reason they don’t place 

bids is they can take manufacturing tasks outside the crowdsourcing platform. Therefore, 

they gain manufacturing income without the effects of the crowdsourcing platform. For 

participated manufacturers, the overall benefit of participating in a crowdsourced 

manufacturing task consists of three parts which are fundamental manufacturing income, 

biding cost, and crowdsourcing income of the crowdsourced tasks. The fundamental 

manufacturing income of the 𝑖th manufacturing cluster 𝐸𝑖 is defined which is the same for 

all two types of manufacturers in a cluster. Fulfillment capacity factor 𝜂𝑖 is used to describe 

unbalances among manufacturing clusters which are expressed down below: 

𝜂𝑖 =
𝐹𝑖(𝑡)

∏ 𝐹𝑗(𝑡)1≤𝑗≤n,𝑗≠𝑖
  (6 − 1) 

As described by equation 6.1, the fulfillment capacity factor 𝜂𝑖 is constructed based 

on the participation level of the current cluster over the product of the participation level 

of other clusters. This number increases when there is a huger difference between the 

participation level of the current cluster and other clusters. The fulfillment capacity factor 

𝜂𝑖  can affect the bidding cost in one cluster since the maximum number of potential 

successful crowdsourced tasks depends on the cluster that has the lowest number of 

participating manufacturers. The average bidding cost in 𝑖th cluster 𝑏𝑖 is represented by the 

equation down below: 

𝑏𝑖 = 𝑢𝑏𝑖(1 + 𝜂𝑖)   (6 − 2) 

The average bidding cost comes from the average uncorrected bidding cost 𝑢𝑏𝑖, the bidding 

cost increases when the participation level of the current cluster is higher than others.  
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 The crowdsourcing income 𝜌 from participating a crowdsourced task is defined in 

equation 6.3 as shown below: 

𝜌𝑖 = 𝑋𝑖Ρ∏ 𝐹𝑖(𝑡)
𝑖=𝑛

𝑖=1
(6 − 3) 

The crowdsourcing income obtained from a crowdsourced task is the product of a fraction 

of 𝑖 th cluster in the total amount of manufacturers 𝑋𝑖 , participation level 𝐹𝑖(𝑡) , and 

uncorrected crowdsourcing income Ρ. The participated manufacturer can gain more benefit 

from the crowdsourced task if the overall participation level is high. Based on equations 

defined above, the payoff matrix of this two-strategies multi-cluster game model is shown 

in table 6-1. The dimension of matrix would be 𝑛 × 2 for a model that has 𝑛 manufacturing 

clusters. 

Table 6-1 Payoff Matrix of Multi-cluster Evolutionary Game Model 

Cluster 
Chosen Strategies 

Bidding (𝐶) Non-Bidding (𝐷) 

1 𝑓1
𝐶 = 𝐸1 − 𝑏1 + 𝜌1 𝑓1

𝐷 = 𝐸1 

2 𝑓2
𝐶 = 𝐸2 − 𝑏2 + 𝜌2 𝑓2

𝐷 = 𝐸2 

… … … 

𝑖 𝑓𝛼
𝐶 = 𝐸𝑖 − 𝑏𝑖 + 𝜌𝑖 𝑓𝛼

𝐷 = 𝐸𝛼 

… … … 

𝑛 𝑓𝑛
𝐶 = 𝐸𝑛 − 𝑏𝑛 + 𝜌𝑛 𝑓𝑛

𝐷 = 𝐸𝑛 

As shown in table 6-2, the average payoff of choosing to bid in 𝑖th cluster is 𝑓𝑖
𝑐 and 𝑓𝑖

𝐷 

represents non-bidding behaviors. These payoffs in the matrix represent the averaged 

output of behaviors. The system of replicator equations is given in equation 6.3 based on 
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the average payoffs (Hoffbauer and Sigmund, 1998). The system of replicator equations 

demonstrates the population dynamics in the crowdsourcing platform with 𝑛 

manufacturing clusters. 

{
  
 

  
 

 

𝑟1(𝑡) =
𝑑𝐹1(𝑡)

𝑑𝑡
= 𝐹1(𝑡) ⋅ (1 − 𝐹1(𝑡)) ⋅ (𝑓1

𝐶 − 𝑓1
𝐷)

…

𝑟𝑖(𝑡) =
𝑑𝐹𝑖(𝑡)

𝑑𝑡
= 𝐹𝑖(𝑡) ⋅ (1 − 𝐹𝑖(𝑡)) ⋅ (𝑓𝑖

𝐶 − 𝑓𝑖
𝐷)

…

𝑟𝑛(𝑡) =
𝑑𝐹n(𝑡)

𝑑𝑡
= 𝐹n(𝑡) ⋅ (1 − 𝐹n(𝑡)) ⋅ (𝑓n

𝐶 − 𝑓n
𝐷)

   (6 − 3) 

6.2 Moran Process in Multi-cluster ECC Game Model 

In this chapter, the Moran process simulation method for the multi-cluster ECC game 

model based on the payoff matrix in table 6-1 is proposed. Moran process is one of the 

most popular dynamics processes used in synchronous updating, which can be used to 

simulate the stochastic dynamics of the evolutionary game model (Gu et al., 2020). The 

Moran process becomes useful in simulation in this study by transforming the changing 

process from continuous to discrete. There are two steps in a general Moran process 

(Traulsen et al., 2005). The first step is to select one agent for reproduction, and the 

reproduced agent has the same strategy as its parent’s. The second step is to randomly 

select another agent to be replaced by the reproduced one. The total amount of agents is 

unchanged in the Moran process. Moran process has been applied to an evolutionary game 

that involves choosing strategies.  

There are several assumptions made for the proposed Moran process simulation:  

(1) The contracts can be formed with every agent in the population; 
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(2) Total numbers of manufacturers in cluster 𝑐 is static. 

(3) One manufacturer only belongs to one cluster. 

(4) The manufacturer can only select bidding or non-bidding as their strategies. 

(5) The total number of manufacturers is finite. 

(6) Manufacturers has same payoffs in one cluster. 

(7) Manufacturers in a cluster have the same probability of being selected during the 

simulation. 

These assumptions are similar to the assumptions made in chapter 6.1. The number 

of manufacturers in 𝑖th cluster is defined as 𝑁𝑖. The number of manufacturers that place 

bides in 𝑖the cluster is defined as 𝑗𝑖. As shown in equation 6.4, the participation level 𝐹𝑖 

mentioned in chapter 6.1 is calculated form 𝑁𝑖 and 𝑗𝑖. 

𝐹𝑖 =
𝑗𝑖
𝑁𝑖
   (6.4) 

 According to the Moran process, which is a Markov process in a special situation, 

the transition probability of the number of participating manufacturers in 𝑖th cluster from 

state to state is defined in equation 6.5. 𝑇𝑗𝑖
+ represents the probability that the number of 

participating manufacturers in cluster 𝑖 changes from 𝑗𝑖 to (𝑗𝑖 + 1). On the contrary, 𝑇𝑗𝑖
− 

represents the transition probability of changing from 𝑗𝑖  to (𝑗𝑖 − 1) . 𝑇𝑗𝑖  represents the 

probability that the number 𝑗𝑖 remains the same.  
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{
  
 

  
 𝑇𝑗𝑖

+ =
𝑗
𝑖
𝑓
𝐶𝑖

𝑗
𝑖
𝑓
𝐶𝑖
+ (𝑁− 𝑗)𝑓

𝐷𝑖

(𝑁𝑖 − 𝑗𝑖)

𝑁𝑖

𝑇𝑗𝑖
− =

𝑗
𝑖
𝑓
𝐷𝑖

𝑗
𝑖
𝑓
𝐶𝑖
+ (𝑁𝑖 − 𝑗𝑖)𝑓𝐷𝑖

𝐹𝑖

𝑇𝑗𝑖 = 1− 𝑇𝑗𝑖
+ − 𝑇𝑗𝑖

−

                           (6 − 5) 

𝑓𝐶𝑖 and 𝑓𝐷𝑖 represents the fitness function of selecting strategy 𝐶 or 𝐷 in 𝑖th manufacturing 

cluster, which is derived from average payoffs defined in table 6.1 as shown in equation 

6.6 (Traulsen et al., 2008). As shown in equation 6.6, 𝑤 represents the selection intensity. 

When 𝑤 ≪ 1, the selection is weak. The fitness functions are equal to payoffs if 𝑤 = 1, 

which means a strong selection. 𝑤 is assumed to be 1 in the presented model.  

                                                              {
𝑓
𝐶𝑖
= 1−𝑤+𝑤 ∙ 𝑓

𝑖
𝐶

𝑓
𝐷𝑖
= 1−𝑤+𝑤 ∙ 𝑓

𝑖
𝐷
                                (6 − 6) 

 Equation 6.5 can be expressed in a matrix form. If a manufacturing cluster 𝑐𝑖 has 

𝑁𝑖 manufacturers, a 𝑁𝑖 × 𝑁𝑖 matrix can show all possible transition probabilities in that 

cluster. Figure 6-2 shows matrix Φ, 𝜙𝑎,𝑏 is the transition probabilities from 𝑗𝑖 = 𝑎 − 1 to 

𝑗𝑖 = 𝑏 − 1.   According to equation 6.5,  𝜙1,1 = 1, 𝜙1,2 = 0,𝜙𝑁𝑖,𝑁𝑖−1 = 0, and  𝜙𝑁𝑖,𝑁𝑖 = 1. 

This indicates that the process has two stable situations which are 𝑗𝑖 = 0 and 𝑗𝑖 = 𝑁𝑖. If the 

process converges to either situation, the system becomes stable when no manufacturers or 

all manufacturers participate in the bidding process.  



 79 

 

Figure 6-2 Transition Matrix in a Manufacturing Cluster  

Based on equation 6.5 and figure 6-2, the probability of 𝑗𝑖 changes from 𝑎 to 𝑁𝑖 can be 

expressed in equation 6.4. 

𝑡𝑎→𝑁𝑖 =

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑎−1
𝑚=1

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑁𝑖−1
𝑚=1

   (6 − 7) 

The fixation probability is defined as the probability that 𝑗𝑖  changes from 1 to 𝑁𝑖 . The 

fixation probability can be derived from equation 6.7, as shown in equation 6.8. 

𝑝𝑓
𝑖 = 𝑡1→𝑁𝑖 =

1

1 + ∑ ∏
𝑇𝑗𝑖
−

𝑇𝑗𝑖
+

𝑚
𝑗𝑖=1

𝑁𝑖−1
𝑚=1

   (6 − 8)
 

When 𝑝𝑓
𝑖 > 0.5, bidding strategy 𝐶 can eventually replace the non-bidding strategy 𝐷 for 

all manufacturers in 𝑐𝑖 under strong selection when 𝑤 = 1. If we assume that the update in 



 80 

strategy change only happens after a bidding process, all manufacturers will participate in 

the bidding process after a finite number of bids. However, this requirement won’t always 

be satisfied for all clusters at the same time without manually changing the payoffs in some 

clusters.  

6.3 Optimization Strategy Based on Population Dynamics Model and Moran 

Process Simulations 

In this chapter, an optimization strategy is proposed to analyze the current 

participation level and provide a possible solution to facilitate the participation level in 

each cluster. To understand how the participation level can be lifted, further analysis of the 

multi-cluster population dynamics model is necessary. The phase diagram of a 3-cluster 

population dynamics model is shown in figure 6-4. Three nullclines in the figure are 

defined by 𝑟1 = 0, 𝑟2 = 0, and 𝑟3 = 0. 𝑟1, 𝑟2, and 𝑟3 are the system of replicator equations 

of the 3-cluster population dynamics model based on equation 6-3.  The red dot in the 

figure is the intersection of three nullclines which is the internal equilibrium point. When 

a solution exists in the real space for 𝑟1 = 𝑟2 = 𝑟3 = 0. The solution is the only internal 

equilibrium. The other two equilibrium points are at (0,0,0) and (1,1,1). The vector arrows 

figure are gradients of 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡). Three nullclines separate the whole phase 

diagram into two parts by the growth rate of a participation level in each cluster. For the 

area that is above the three nullclines, it leads to the convergence where 𝐹1(𝑡), 𝐹2(𝑡), and 

𝐹3(𝑡) are equal to 1. If the initial point in the space is in this area, it will eventually converge 

to (1,1,1). This is the situation in which all manufacturers in the three clusters are willing 
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to bid for manufacturing tasks. On the contrary, if the participation level is below three 

nullclines, the participation level of each cluster will eventually converge to 0. 

 

Figure 6-3 Phase Plot of a 3-cluster Population Dynamics Model  

For the crowdsourcing platform, it can give subsidies to the manufacturers to reduce 

the bidding cost 𝑏 and increase the crowdsourcing income 𝜌 by increasing the uncorrected 

crowdsourcing income Ρ. By doing this, three nullclines will move in the space, which lets 

the current participation state stay in the area above the three nullclines rather than below. 

A general optimization problem can be defined as shown in equation 6.9. The objective 

function is the length of vector projection of �⃗�  on 𝑣  where �⃗�  is the gradient of 

𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛(𝑡) and 𝑣  is the unit vector of direction from (𝐹1(𝑡), 𝐹2(𝑡), … , 𝐹𝑛(𝑡) ) to 

(1,1,…,1). The objective function is defined based on two aspects: (1) The direction of the 

gradient at the current state should point to (1,1,…,1) as much as possible since this is the 

shortest route for reaching the feasible location. (2) The magnitude of the gradient at the 

current state is as high as possible. The objective function 𝑓(Ρ, 𝑏1, 𝑏2, … , 𝑏𝑛) reflects the 
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overall growth rate of participation level at the current point. For a 𝑛-cluster situation, there 

are 2𝑛 + 1 sets of constraints. Constraints define the feasible region for each optimizable 

input like uncorrected crowdsourcing income Ρ  and bidding cost 𝑏 . The last set of 

constraints ensures the participation level 𝐹𝑖  is always above the nullcline 𝑟𝑖 = 0  in 

dimension 𝑖 . The defined optimization problem provides a deterministic solution for 

finding the best incentive plan for the platform. However, the defined optimization problem 

is not stochastic since it is defined based on the population dynamics model. There is a 

possibility that the actual participation level is located below nullclines returned by 

optimization. To introduce the stochastic process in the defined problem, the Moran 

process is utilized for simulating the changes in the participation level. In the Moran 

process, the continuous evolution process is transformed into discrete update steps. For 

each step, the number of one type of agent can increase by one, decrease by one, or stay at 

the same value. The possibilities of these transitions are calculated based on the payoff 

matrix.  
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𝐦𝐚𝐱
Π,𝑏1,𝑏2,…,𝑏𝑛

  𝑓(Ρ, 𝑏1, 𝑏2, … , 𝑏𝑛) =‖
�⃗� ⋅ 𝑣 

‖𝑣 ‖2
 𝑣 ‖ 

�⃗� = [

𝑟1
𝑛𝑒𝑤

𝑟2
𝑛𝑒𝑤

…
𝑟𝑛
𝑛𝑒𝑤

] , 𝑣 =

[

1 − 𝐹1
1 − 𝐹2
…

1 − 𝐹𝑛

]

‖[

1 − 𝐹1
1 − 𝐹2
…

1 − 𝐹𝑛

]‖

 

                                                 𝑟𝑖
𝑛𝑒𝑤 = 𝑟𝑖(𝑋1, 𝑋2, … , 𝑋𝑛, Ρ, 𝑏𝑖)                                 (6 − 9) 

                                                      𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨     Πmin ≤ Π ≤ Πmax 

{

𝑏1,𝑚𝑖𝑛 ≤ 𝑏1 ≤ 𝑏1,𝑚𝑎𝑥
𝑏2,𝑚𝑖𝑛 ≤ 𝑏2 ≤ 𝑏2,𝑚𝑎𝑥

…
𝑏𝑛,𝑚𝑖𝑛 ≤ 𝑏𝑛 ≤ 𝑏𝑛,𝑚𝑎𝑥

 

{

𝑟1
𝑛𝑒𝑤 ≥ 0

𝑟2
𝑛𝑒𝑤 ≥ 0
…

𝑟𝑛
𝑛𝑒𝑤 ≥ 0

 

  The population dynamics model proposed in chapter 6.1 and the Moran process 

introduced in chapter 6.2 are developed from the same payoff matrix. A general 

optimization strategy is proposed based on the population dynamics model and Moran 

process as shown in figure 6-4. The strategy is designed to assist with the management of 

the crowdsourcing platform from the perspective of making incentive plans at a certain 

confidence level. There are eight steps in the proposed strategy: 

(1) The first step is to obtain the participation level of each cluster based on recent 

biddings.  

(2) The second step is to estimate the parameters like bidding cost 𝑏𝑖 , uncorrected 

crowdsourcing income Ρ, and fundamental manufacturing income 𝐸𝑖 in each cluster.  

(3) The third step is to construct the n-cluster population dynamics model based on 

estimations and statistical results obtained in the first two steps and equation 6-3. 
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(4) The fourth step is to predict the possible participation level 𝐹𝑖 after a certain time 

interval or several update steps. Moran process is used to simulate the change in 

participation level. Randomness in the Moran process could be achieved by methods 

like Monte Carlo Simulation (MCS). Π simulated results can be obtained by Π runs 

of simulation. 

(5) The fifth step is to find the predictive samples generated in step 4 within the 

confidence interval. 

(6) The sixth step is to derive the acceptable constraints for variables in the objective 

function defined by equation 6-9. The constraints depend on how much subsidies 

could be given to manufacturers in each cluster to reduce the bidding cost 𝑏𝑖  or 

increase the uncorrected crowdsourcing income Ρ.  

(7) The seventh step is to solve the optimization problem with defined inputs. All 

simulated predictive results that lie within the confidence interval from step 5 are 

substituted to 𝑟𝑖
𝑛𝑒𝑤.  𝑟𝑖

𝑛𝑒𝑤 > 0 is one of the constraints of the optimization problem 

which ensures that the returned result can benefit all possible outcomes. 

(8) If feasible solutions are returned by the problem solver, incentive plan could be 

made based on the result.  
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Figure 6-4 Workflow of the Proposed Optimization Strategy 
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6.4 Example Problem 

In this chapter, a test case of the 3-player ECC game model is to illustrate the 

designed strategy introduced in chapter 6.3. The first step of this example is generating 

initial state points of 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡). Assuming in a cube with the side length of 1, 

where the 𝑥, 𝑦, and 𝑧 directions represent the 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡) respectively, like 

showing in figure 6-3. The cube is divided evenly into 1000 small cubes with a side length 

of 0.1. A random point is selected in each small cube by LHS methods. 1000 times of 

Moran process simulations are done on each point with 20 update steps. Hence, for each 

randomly generated point, there will be 1000 predictive points. The parameters of the 

example problem are summarized in table 6.2. 𝑁 is the total number of manufacturers. 

𝑔1, 𝑔2,  and 𝑔3  are fractions for cluster 1, cluster 2 and cluster 3. The number of 

manufacturers in each cluster is 150, 250, and 100. 

Table 6-2 Parameters of Example Problem 

Parameter Mean Variance 

𝑔1 0.3 N/A 

𝑔2 0.5 N/A 

𝑔3 0.2 N/A 

𝑁 500 N/A 

Π 100 150 

𝑏1 6 1.5 

𝑏2 10 1 

𝑏3 5 0.75 

𝜌1 20 3 

𝜌2 20 3 

𝜌3 20 3 

Only 95% of the generated data (within 2 standard deviations) will be used to run the 

optimization. This is for filtering out the outliers that are not good representatives for the 
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simulation. As shown in figure 6-5, 95% of data on the right plot is denser and without any 

extreme cases.  The initial point and constraints of variables of the objective function are 

summarized in table 6-3. The goal of this simulation is to figure out the performance of the 

current incentive strategy.  

Table 6-3 Boundary Conditions of Example Problem 

Parameter Initial Point Lower Bound Upper Bound 

Ρ 1000 1000 1500 

𝑏1 6 3 10 

𝑏2 10 5 15 

𝑏3 5 2 10 

 

 

Figure 6-5 Workflow of the Proposed Optimization Method 

The experiment shows that under the current optimization strategy, feasible solutions 

can be returned for 68.8% of randomized participation states, as shown in figure 6-6. From 

the plot, it can be identified that the infeasible initial states are those that have one or more 
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participation level that is close to 0. And the points that are in the center region of the cube 

have the highest growth rate.   

 

Figure 6-6 Overall Optimization Results for the Different Participation States 

6.5 Chapter Summary 

In this chapter, the population dynamics model and Moran process of the multi-

cluster crowdsourcing platform are introduced. An optimization strategy is proposed to 

balance the fulfillment capacity of each manufacturing cluster by optimizing the 

participation level. The strategy is based on both the population dynamics model and the 

Moran process. An example problem is also included for illustrating the proposed strategy. 
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CHAPTER 7. CONCLUSIONS 

The thesis work proposes two solutions for solving two different problems that exist 

in cyber platform-based crowdsourced manufacturing.  An IaaS fulfillment system for the 

crowdsourced task execution process is designed based on interactions and information 

flow in the crowdsourcing platform. A case study is employed for testing the proposed 

system. An optimal management strategy is also proposed for the fulfillment capacity 

balancing problem. The proposed strategy can motivate and balance the participation level 

of different manufacturing clusters in the tournament-based bidding process of 

crowdsourced work. The optimal management strategy is designed based on the simulation 

result based on the ECC model, population dynamics, and the Moran process simulation.  

7.1 Contributions 

The first contribution of this thesis work is identifying use cases and information 

flow based on the workflow of platform-driven crowdsourced manufacturing. Based on 

these findings, an IaaS fulfillment system is proposed and developed based on blockchain 

and IPFS technology. The proposed system fulfills the IaaS by providing information 

management services. The decentralized system is reliable, which also reduces the cost of 

trust. The second contribution of the thesis is proposing a population dynamics model and 

a Moran process model based on ECC game theory to describe the growth rate of a certain 

type of users in the cyber platform-driven crowdsourced manufacturing system. 

Furthermore, an optimization strategy is designed based on the population dynamics model 

and the Moran process simulations to facilitate the growth of users. The platform can 

manage the crowdsourcing system based on the optimization results. 
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7.2 Future Work 

Future work of this work has three aspects. The first aspect is to apply the proposed 

IaaS fulfillment system to an actual crowdsourced manufacturing case. With the larger 

scale of data, the reliability and efficiency of the system can be tested. The second aspect 

is to develop the proposed system based on the customized blockchain network. Currently, 

the system is developed based on the Ethereum blockchain network, which limits its 

development. The third aspect is about the fulfillment capacity balancing. The lack of 

actual cases makes it hard to validate the model and proposed optimization strategy.  
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